re PR middle-end/87916 (ICE in dwarf2out_abstract_function, at dwarf2out.c:22479...
[official-gcc.git] / gcc / tree-affine.c
blob96b479dfc4caa6c9bb04f9ee551ee2ff646ad9da
1 /* Operations with affine combinations of trees.
2 Copyright (C) 2005-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "ssa.h"
28 #include "tree-pretty-print.h"
29 #include "fold-const.h"
30 #include "tree-affine.h"
31 #include "gimplify.h"
32 #include "dumpfile.h"
33 #include "cfgexpand.h"
35 /* Extends CST as appropriate for the affine combinations COMB. */
37 static widest_int
38 wide_int_ext_for_comb (const widest_int &cst, tree type)
40 return wi::sext (cst, TYPE_PRECISION (type));
43 /* Likewise for polynomial offsets. */
45 static poly_widest_int
46 wide_int_ext_for_comb (const poly_widest_int &cst, tree type)
48 return wi::sext (cst, TYPE_PRECISION (type));
51 /* Initializes affine combination COMB so that its value is zero in TYPE. */
53 static void
54 aff_combination_zero (aff_tree *comb, tree type)
56 int i;
57 comb->type = type;
58 comb->offset = 0;
59 comb->n = 0;
60 for (i = 0; i < MAX_AFF_ELTS; i++)
61 comb->elts[i].coef = 0;
62 comb->rest = NULL_TREE;
65 /* Sets COMB to CST. */
67 void
68 aff_combination_const (aff_tree *comb, tree type, const poly_widest_int &cst)
70 aff_combination_zero (comb, type);
71 comb->offset = wide_int_ext_for_comb (cst, comb->type);;
74 /* Sets COMB to single element ELT. */
76 void
77 aff_combination_elt (aff_tree *comb, tree type, tree elt)
79 aff_combination_zero (comb, type);
81 comb->n = 1;
82 comb->elts[0].val = elt;
83 comb->elts[0].coef = 1;
86 /* Scales COMB by SCALE. */
88 void
89 aff_combination_scale (aff_tree *comb, const widest_int &scale_in)
91 unsigned i, j;
93 widest_int scale = wide_int_ext_for_comb (scale_in, comb->type);
94 if (scale == 1)
95 return;
97 if (scale == 0)
99 aff_combination_zero (comb, comb->type);
100 return;
103 comb->offset = wide_int_ext_for_comb (scale * comb->offset, comb->type);
104 for (i = 0, j = 0; i < comb->n; i++)
106 widest_int new_coef
107 = wide_int_ext_for_comb (scale * comb->elts[i].coef, comb->type);
108 /* A coefficient may become zero due to overflow. Remove the zero
109 elements. */
110 if (new_coef == 0)
111 continue;
112 comb->elts[j].coef = new_coef;
113 comb->elts[j].val = comb->elts[i].val;
114 j++;
116 comb->n = j;
118 if (comb->rest)
120 tree type = comb->type;
121 if (POINTER_TYPE_P (type))
122 type = sizetype;
123 if (comb->n < MAX_AFF_ELTS)
125 comb->elts[comb->n].coef = scale;
126 comb->elts[comb->n].val = comb->rest;
127 comb->rest = NULL_TREE;
128 comb->n++;
130 else
131 comb->rest = fold_build2 (MULT_EXPR, type, comb->rest,
132 wide_int_to_tree (type, scale));
136 /* Adds ELT * SCALE to COMB. */
138 void
139 aff_combination_add_elt (aff_tree *comb, tree elt, const widest_int &scale_in)
141 unsigned i;
142 tree type;
144 widest_int scale = wide_int_ext_for_comb (scale_in, comb->type);
145 if (scale == 0)
146 return;
148 for (i = 0; i < comb->n; i++)
149 if (operand_equal_p (comb->elts[i].val, elt, 0))
151 widest_int new_coef
152 = wide_int_ext_for_comb (comb->elts[i].coef + scale, comb->type);
153 if (new_coef != 0)
155 comb->elts[i].coef = new_coef;
156 return;
159 comb->n--;
160 comb->elts[i] = comb->elts[comb->n];
162 if (comb->rest)
164 gcc_assert (comb->n == MAX_AFF_ELTS - 1);
165 comb->elts[comb->n].coef = 1;
166 comb->elts[comb->n].val = comb->rest;
167 comb->rest = NULL_TREE;
168 comb->n++;
170 return;
172 if (comb->n < MAX_AFF_ELTS)
174 comb->elts[comb->n].coef = scale;
175 comb->elts[comb->n].val = elt;
176 comb->n++;
177 return;
180 type = comb->type;
181 if (POINTER_TYPE_P (type))
182 type = sizetype;
184 if (scale == 1)
185 elt = fold_convert (type, elt);
186 else
187 elt = fold_build2 (MULT_EXPR, type,
188 fold_convert (type, elt),
189 wide_int_to_tree (type, scale));
191 if (comb->rest)
192 comb->rest = fold_build2 (PLUS_EXPR, type, comb->rest,
193 elt);
194 else
195 comb->rest = elt;
198 /* Adds CST to C. */
200 static void
201 aff_combination_add_cst (aff_tree *c, const poly_widest_int &cst)
203 c->offset = wide_int_ext_for_comb (c->offset + cst, c->type);
206 /* Adds COMB2 to COMB1. */
208 void
209 aff_combination_add (aff_tree *comb1, aff_tree *comb2)
211 unsigned i;
213 aff_combination_add_cst (comb1, comb2->offset);
214 for (i = 0; i < comb2->n; i++)
215 aff_combination_add_elt (comb1, comb2->elts[i].val, comb2->elts[i].coef);
216 if (comb2->rest)
217 aff_combination_add_elt (comb1, comb2->rest, 1);
220 /* Converts affine combination COMB to TYPE. */
222 void
223 aff_combination_convert (aff_tree *comb, tree type)
225 unsigned i, j;
226 tree comb_type = comb->type;
228 if (TYPE_PRECISION (type) > TYPE_PRECISION (comb_type))
230 tree val = fold_convert (type, aff_combination_to_tree (comb));
231 tree_to_aff_combination (val, type, comb);
232 return;
235 comb->type = type;
236 if (comb->rest && !POINTER_TYPE_P (type))
237 comb->rest = fold_convert (type, comb->rest);
239 if (TYPE_PRECISION (type) == TYPE_PRECISION (comb_type))
240 return;
242 comb->offset = wide_int_ext_for_comb (comb->offset, comb->type);
243 for (i = j = 0; i < comb->n; i++)
245 if (comb->elts[i].coef == 0)
246 continue;
247 comb->elts[j].coef = comb->elts[i].coef;
248 comb->elts[j].val = fold_convert (type, comb->elts[i].val);
249 j++;
252 comb->n = j;
253 if (comb->n < MAX_AFF_ELTS && comb->rest)
255 comb->elts[comb->n].coef = 1;
256 comb->elts[comb->n].val = comb->rest;
257 comb->rest = NULL_TREE;
258 comb->n++;
262 /* Splits EXPR into an affine combination of parts. */
264 void
265 tree_to_aff_combination (tree expr, tree type, aff_tree *comb)
267 aff_tree tmp;
268 enum tree_code code;
269 tree cst, core, toffset;
270 poly_int64 bitpos, bitsize, bytepos;
271 machine_mode mode;
272 int unsignedp, reversep, volatilep;
274 STRIP_NOPS (expr);
276 code = TREE_CODE (expr);
277 switch (code)
279 case POINTER_PLUS_EXPR:
280 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
281 tree_to_aff_combination (TREE_OPERAND (expr, 1), sizetype, &tmp);
282 aff_combination_add (comb, &tmp);
283 return;
285 case PLUS_EXPR:
286 case MINUS_EXPR:
287 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
288 tree_to_aff_combination (TREE_OPERAND (expr, 1), type, &tmp);
289 if (code == MINUS_EXPR)
290 aff_combination_scale (&tmp, -1);
291 aff_combination_add (comb, &tmp);
292 return;
294 case MULT_EXPR:
295 cst = TREE_OPERAND (expr, 1);
296 if (TREE_CODE (cst) != INTEGER_CST)
297 break;
298 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
299 aff_combination_scale (comb, wi::to_widest (cst));
300 return;
302 case NEGATE_EXPR:
303 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
304 aff_combination_scale (comb, -1);
305 return;
307 case BIT_NOT_EXPR:
308 /* ~x = -x - 1 */
309 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
310 aff_combination_scale (comb, -1);
311 aff_combination_add_cst (comb, -1);
312 return;
314 case ADDR_EXPR:
315 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
316 if (TREE_CODE (TREE_OPERAND (expr, 0)) == MEM_REF)
318 expr = TREE_OPERAND (expr, 0);
319 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
320 tree_to_aff_combination (TREE_OPERAND (expr, 1), sizetype, &tmp);
321 aff_combination_add (comb, &tmp);
322 return;
324 core = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize, &bitpos,
325 &toffset, &mode, &unsignedp, &reversep,
326 &volatilep);
327 if (!multiple_p (bitpos, BITS_PER_UNIT, &bytepos))
328 break;
329 aff_combination_const (comb, type, bytepos);
330 if (TREE_CODE (core) == MEM_REF)
332 tree mem_offset = TREE_OPERAND (core, 1);
333 aff_combination_add_cst (comb, wi::to_poly_widest (mem_offset));
334 core = TREE_OPERAND (core, 0);
336 else
337 core = build_fold_addr_expr (core);
339 if (TREE_CODE (core) == ADDR_EXPR)
340 aff_combination_add_elt (comb, core, 1);
341 else
343 tree_to_aff_combination (core, type, &tmp);
344 aff_combination_add (comb, &tmp);
346 if (toffset)
348 tree_to_aff_combination (toffset, type, &tmp);
349 aff_combination_add (comb, &tmp);
351 return;
353 case MEM_REF:
354 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
355 tree_to_aff_combination (TREE_OPERAND (TREE_OPERAND (expr, 0), 0),
356 type, comb);
357 else if (integer_zerop (TREE_OPERAND (expr, 1)))
359 aff_combination_elt (comb, type, expr);
360 return;
362 else
363 aff_combination_elt (comb, type,
364 build2 (MEM_REF, TREE_TYPE (expr),
365 TREE_OPERAND (expr, 0),
366 build_int_cst
367 (TREE_TYPE (TREE_OPERAND (expr, 1)), 0)));
368 tree_to_aff_combination (TREE_OPERAND (expr, 1), sizetype, &tmp);
369 aff_combination_add (comb, &tmp);
370 return;
372 CASE_CONVERT:
374 tree otype = TREE_TYPE (expr);
375 tree inner = TREE_OPERAND (expr, 0);
376 tree itype = TREE_TYPE (inner);
377 enum tree_code icode = TREE_CODE (inner);
379 /* In principle this is a valid folding, but it isn't necessarily
380 an optimization, so do it here and not in fold_unary. */
381 if ((icode == PLUS_EXPR || icode == MINUS_EXPR || icode == MULT_EXPR)
382 && TREE_CODE (itype) == INTEGER_TYPE
383 && TREE_CODE (otype) == INTEGER_TYPE
384 && TYPE_PRECISION (otype) > TYPE_PRECISION (itype))
386 tree op0 = TREE_OPERAND (inner, 0), op1 = TREE_OPERAND (inner, 1);
388 /* If inner type has undefined overflow behavior, fold conversion
389 for below two cases:
390 (T1)(X *+- CST) -> (T1)X *+- (T1)CST
391 (T1)(X + X) -> (T1)X + (T1)X. */
392 if (TYPE_OVERFLOW_UNDEFINED (itype)
393 && (TREE_CODE (op1) == INTEGER_CST
394 || (icode == PLUS_EXPR && operand_equal_p (op0, op1, 0))))
396 op0 = fold_convert (otype, op0);
397 op1 = fold_convert (otype, op1);
398 expr = fold_build2 (icode, otype, op0, op1);
399 tree_to_aff_combination (expr, type, comb);
400 return;
402 wide_int minv, maxv;
403 /* If inner type has wrapping overflow behavior, fold conversion
404 for below case:
405 (T1)(X - CST) -> (T1)X - (T1)CST
406 if X - CST doesn't overflow by range information. Also handle
407 (T1)(X + CST) as (T1)(X - (-CST)). */
408 if (TYPE_UNSIGNED (itype)
409 && TYPE_OVERFLOW_WRAPS (itype)
410 && TREE_CODE (op0) == SSA_NAME
411 && TREE_CODE (op1) == INTEGER_CST
412 && icode != MULT_EXPR
413 && get_range_info (op0, &minv, &maxv) == VR_RANGE)
415 if (icode == PLUS_EXPR)
416 op1 = wide_int_to_tree (itype, -wi::to_wide (op1));
417 if (wi::geu_p (minv, wi::to_wide (op1)))
419 op0 = fold_convert (otype, op0);
420 op1 = fold_convert (otype, op1);
421 expr = fold_build2 (MINUS_EXPR, otype, op0, op1);
422 tree_to_aff_combination (expr, type, comb);
423 return;
428 break;
430 default:
432 if (poly_int_tree_p (expr))
434 aff_combination_const (comb, type, wi::to_poly_widest (expr));
435 return;
437 break;
441 aff_combination_elt (comb, type, expr);
444 /* Creates EXPR + ELT * SCALE in TYPE. EXPR is taken from affine
445 combination COMB. */
447 static tree
448 add_elt_to_tree (tree expr, tree type, tree elt, const widest_int &scale_in)
450 enum tree_code code;
452 widest_int scale = wide_int_ext_for_comb (scale_in, type);
454 elt = fold_convert (type, elt);
455 if (scale == 1)
457 if (!expr)
458 return elt;
460 return fold_build2 (PLUS_EXPR, type, expr, elt);
463 if (scale == -1)
465 if (!expr)
466 return fold_build1 (NEGATE_EXPR, type, elt);
468 return fold_build2 (MINUS_EXPR, type, expr, elt);
471 if (!expr)
472 return fold_build2 (MULT_EXPR, type, elt, wide_int_to_tree (type, scale));
474 if (wi::neg_p (scale))
476 code = MINUS_EXPR;
477 scale = -scale;
479 else
480 code = PLUS_EXPR;
482 elt = fold_build2 (MULT_EXPR, type, elt, wide_int_to_tree (type, scale));
483 return fold_build2 (code, type, expr, elt);
486 /* Makes tree from the affine combination COMB. */
488 tree
489 aff_combination_to_tree (aff_tree *comb)
491 tree type = comb->type, base = NULL_TREE, expr = NULL_TREE;
492 unsigned i;
493 poly_widest_int off;
494 int sgn;
496 gcc_assert (comb->n == MAX_AFF_ELTS || comb->rest == NULL_TREE);
498 i = 0;
499 if (POINTER_TYPE_P (type))
501 type = sizetype;
502 if (comb->n > 0 && comb->elts[0].coef == 1
503 && POINTER_TYPE_P (TREE_TYPE (comb->elts[0].val)))
505 base = comb->elts[0].val;
506 ++i;
510 for (; i < comb->n; i++)
511 expr = add_elt_to_tree (expr, type, comb->elts[i].val, comb->elts[i].coef);
513 if (comb->rest)
514 expr = add_elt_to_tree (expr, type, comb->rest, 1);
516 /* Ensure that we get x - 1, not x + (-1) or x + 0xff..f if x is
517 unsigned. */
518 if (known_lt (comb->offset, 0))
520 off = -comb->offset;
521 sgn = -1;
523 else
525 off = comb->offset;
526 sgn = 1;
528 expr = add_elt_to_tree (expr, type, wide_int_to_tree (type, off), sgn);
530 if (base)
531 return fold_build_pointer_plus (base, expr);
532 else
533 return fold_convert (comb->type, expr);
536 /* Copies the tree elements of COMB to ensure that they are not shared. */
538 void
539 unshare_aff_combination (aff_tree *comb)
541 unsigned i;
543 for (i = 0; i < comb->n; i++)
544 comb->elts[i].val = unshare_expr (comb->elts[i].val);
545 if (comb->rest)
546 comb->rest = unshare_expr (comb->rest);
549 /* Remove M-th element from COMB. */
551 void
552 aff_combination_remove_elt (aff_tree *comb, unsigned m)
554 comb->n--;
555 if (m <= comb->n)
556 comb->elts[m] = comb->elts[comb->n];
557 if (comb->rest)
559 comb->elts[comb->n].coef = 1;
560 comb->elts[comb->n].val = comb->rest;
561 comb->rest = NULL_TREE;
562 comb->n++;
566 /* Adds C * COEF * VAL to R. VAL may be NULL, in that case only
567 C * COEF is added to R. */
570 static void
571 aff_combination_add_product (aff_tree *c, const widest_int &coef, tree val,
572 aff_tree *r)
574 unsigned i;
575 tree aval, type;
577 for (i = 0; i < c->n; i++)
579 aval = c->elts[i].val;
580 if (val)
582 type = TREE_TYPE (aval);
583 aval = fold_build2 (MULT_EXPR, type, aval,
584 fold_convert (type, val));
587 aff_combination_add_elt (r, aval, coef * c->elts[i].coef);
590 if (c->rest)
592 aval = c->rest;
593 if (val)
595 type = TREE_TYPE (aval);
596 aval = fold_build2 (MULT_EXPR, type, aval,
597 fold_convert (type, val));
600 aff_combination_add_elt (r, aval, coef);
603 if (val)
605 if (c->offset.is_constant ())
606 /* Access coeffs[0] directly, for efficiency. */
607 aff_combination_add_elt (r, val, coef * c->offset.coeffs[0]);
608 else
610 /* c->offset is polynomial, so multiply VAL rather than COEF
611 by it. */
612 tree offset = wide_int_to_tree (TREE_TYPE (val), c->offset);
613 val = fold_build2 (MULT_EXPR, TREE_TYPE (val), val, offset);
614 aff_combination_add_elt (r, val, coef);
617 else
618 aff_combination_add_cst (r, coef * c->offset);
621 /* Multiplies C1 by C2, storing the result to R */
623 void
624 aff_combination_mult (aff_tree *c1, aff_tree *c2, aff_tree *r)
626 unsigned i;
627 gcc_assert (TYPE_PRECISION (c1->type) == TYPE_PRECISION (c2->type));
629 aff_combination_zero (r, c1->type);
631 for (i = 0; i < c2->n; i++)
632 aff_combination_add_product (c1, c2->elts[i].coef, c2->elts[i].val, r);
633 if (c2->rest)
634 aff_combination_add_product (c1, 1, c2->rest, r);
635 if (c2->offset.is_constant ())
636 /* Access coeffs[0] directly, for efficiency. */
637 aff_combination_add_product (c1, c2->offset.coeffs[0], NULL, r);
638 else
640 /* c2->offset is polynomial, so do the multiplication in tree form. */
641 tree offset = wide_int_to_tree (c2->type, c2->offset);
642 aff_combination_add_product (c1, 1, offset, r);
646 /* Returns the element of COMB whose value is VAL, or NULL if no such
647 element exists. If IDX is not NULL, it is set to the index of VAL in
648 COMB. */
650 static struct aff_comb_elt *
651 aff_combination_find_elt (aff_tree *comb, tree val, unsigned *idx)
653 unsigned i;
655 for (i = 0; i < comb->n; i++)
656 if (operand_equal_p (comb->elts[i].val, val, 0))
658 if (idx)
659 *idx = i;
661 return &comb->elts[i];
664 return NULL;
667 /* Element of the cache that maps ssa name NAME to its expanded form
668 as an affine expression EXPANSION. */
670 struct name_expansion
672 aff_tree expansion;
674 /* True if the expansion for the name is just being generated. */
675 unsigned in_progress : 1;
678 /* Expands SSA names in COMB recursively. CACHE is used to cache the
679 results. */
681 void
682 aff_combination_expand (aff_tree *comb ATTRIBUTE_UNUSED,
683 hash_map<tree, name_expansion *> **cache)
685 unsigned i;
686 aff_tree to_add, current, curre;
687 tree e, rhs;
688 gimple *def;
689 widest_int scale;
690 struct name_expansion *exp;
692 aff_combination_zero (&to_add, comb->type);
693 for (i = 0; i < comb->n; i++)
695 tree type, name;
696 enum tree_code code;
698 e = comb->elts[i].val;
699 type = TREE_TYPE (e);
700 name = e;
701 /* Look through some conversions. */
702 if (CONVERT_EXPR_P (e)
703 && (TYPE_PRECISION (type)
704 >= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (e, 0)))))
705 name = TREE_OPERAND (e, 0);
706 if (TREE_CODE (name) != SSA_NAME)
707 continue;
708 def = SSA_NAME_DEF_STMT (name);
709 if (!is_gimple_assign (def) || gimple_assign_lhs (def) != name)
710 continue;
712 code = gimple_assign_rhs_code (def);
713 if (code != SSA_NAME
714 && !IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))
715 && (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
716 || !is_gimple_min_invariant (gimple_assign_rhs1 (def))))
717 continue;
719 /* We do not know whether the reference retains its value at the
720 place where the expansion is used. */
721 if (TREE_CODE_CLASS (code) == tcc_reference)
722 continue;
724 if (!*cache)
725 *cache = new hash_map<tree, name_expansion *>;
726 name_expansion **slot = &(*cache)->get_or_insert (e);
727 exp = *slot;
729 if (!exp)
731 exp = XNEW (struct name_expansion);
732 exp->in_progress = 1;
733 *slot = exp;
734 rhs = gimple_assign_rhs_to_tree (def);
735 if (e != name)
736 rhs = fold_convert (type, rhs);
738 tree_to_aff_combination_expand (rhs, comb->type, &current, cache);
739 exp->expansion = current;
740 exp->in_progress = 0;
742 else
744 /* Since we follow the definitions in the SSA form, we should not
745 enter a cycle unless we pass through a phi node. */
746 gcc_assert (!exp->in_progress);
747 current = exp->expansion;
750 /* Accumulate the new terms to TO_ADD, so that we do not modify
751 COMB while traversing it; include the term -coef * E, to remove
752 it from COMB. */
753 scale = comb->elts[i].coef;
754 aff_combination_zero (&curre, comb->type);
755 aff_combination_add_elt (&curre, e, -scale);
756 aff_combination_scale (&current, scale);
757 aff_combination_add (&to_add, &current);
758 aff_combination_add (&to_add, &curre);
760 aff_combination_add (comb, &to_add);
763 /* Similar to tree_to_aff_combination, but follows SSA name definitions
764 and expands them recursively. CACHE is used to cache the expansions
765 of the ssa names, to avoid exponential time complexity for cases
766 like
768 a1 = a0 + a0;
769 a2 = a1 + a1;
770 a3 = a2 + a2;
771 ... */
773 void
774 tree_to_aff_combination_expand (tree expr, tree type, aff_tree *comb,
775 hash_map<tree, name_expansion *> **cache)
777 tree_to_aff_combination (expr, type, comb);
778 aff_combination_expand (comb, cache);
781 /* Frees memory occupied by struct name_expansion in *VALUE. Callback for
782 hash_map::traverse. */
784 bool
785 free_name_expansion (tree const &, name_expansion **value, void *)
787 free (*value);
788 return true;
791 /* Frees memory allocated for the CACHE used by
792 tree_to_aff_combination_expand. */
794 void
795 free_affine_expand_cache (hash_map<tree, name_expansion *> **cache)
797 if (!*cache)
798 return;
800 (*cache)->traverse<void *, free_name_expansion> (NULL);
801 delete (*cache);
802 *cache = NULL;
805 /* If VAL != CST * DIV for any constant CST, returns false.
806 Otherwise, if *MULT_SET is true, additionally compares CST and MULT,
807 and if they are different, returns false. Finally, if neither of these
808 two cases occur, true is returned, and CST is stored to MULT and MULT_SET
809 is set to true. */
811 static bool
812 wide_int_constant_multiple_p (const poly_widest_int &val,
813 const poly_widest_int &div,
814 bool *mult_set, poly_widest_int *mult)
816 poly_widest_int rem, cst;
818 if (known_eq (val, 0))
820 if (*mult_set && maybe_ne (*mult, 0))
821 return false;
822 *mult_set = true;
823 *mult = 0;
824 return true;
827 if (maybe_eq (div, 0))
828 return false;
830 if (!multiple_p (val, div, &cst))
831 return false;
833 if (*mult_set && maybe_ne (*mult, cst))
834 return false;
836 *mult_set = true;
837 *mult = cst;
838 return true;
841 /* Returns true if VAL = X * DIV for some constant X. If this is the case,
842 X is stored to MULT. */
844 bool
845 aff_combination_constant_multiple_p (aff_tree *val, aff_tree *div,
846 poly_widest_int *mult)
848 bool mult_set = false;
849 unsigned i;
851 if (val->n == 0 && known_eq (val->offset, 0))
853 *mult = 0;
854 return true;
856 if (val->n != div->n)
857 return false;
859 if (val->rest || div->rest)
860 return false;
862 if (!wide_int_constant_multiple_p (val->offset, div->offset,
863 &mult_set, mult))
864 return false;
866 for (i = 0; i < div->n; i++)
868 struct aff_comb_elt *elt
869 = aff_combination_find_elt (val, div->elts[i].val, NULL);
870 if (!elt)
871 return false;
872 if (!wide_int_constant_multiple_p (elt->coef, div->elts[i].coef,
873 &mult_set, mult))
874 return false;
877 gcc_assert (mult_set);
878 return true;
881 /* Prints the affine VAL to the FILE. */
883 static void
884 print_aff (FILE *file, aff_tree *val)
886 unsigned i;
887 signop sgn = TYPE_SIGN (val->type);
888 if (POINTER_TYPE_P (val->type))
889 sgn = SIGNED;
890 fprintf (file, "{\n type = ");
891 print_generic_expr (file, val->type, TDF_VOPS|TDF_MEMSYMS);
892 fprintf (file, "\n offset = ");
893 print_dec (val->offset, file, sgn);
894 if (val->n > 0)
896 fprintf (file, "\n elements = {\n");
897 for (i = 0; i < val->n; i++)
899 fprintf (file, " [%d] = ", i);
900 print_generic_expr (file, val->elts[i].val, TDF_VOPS|TDF_MEMSYMS);
902 fprintf (file, " * ");
903 print_dec (val->elts[i].coef, file, sgn);
904 if (i != val->n - 1)
905 fprintf (file, ", \n");
907 fprintf (file, "\n }");
909 if (val->rest)
911 fprintf (file, "\n rest = ");
912 print_generic_expr (file, val->rest, TDF_VOPS|TDF_MEMSYMS);
914 fprintf (file, "\n}");
917 /* Prints the affine VAL to the standard error, used for debugging. */
919 DEBUG_FUNCTION void
920 debug_aff (aff_tree *val)
922 print_aff (stderr, val);
923 fprintf (stderr, "\n");
926 /* Computes address of the reference REF in ADDR. The size of the accessed
927 location is stored to SIZE. Returns the ultimate containing object to
928 which REF refers. */
930 tree
931 get_inner_reference_aff (tree ref, aff_tree *addr, poly_widest_int *size)
933 poly_int64 bitsize, bitpos;
934 tree toff;
935 machine_mode mode;
936 int uns, rev, vol;
937 aff_tree tmp;
938 tree base = get_inner_reference (ref, &bitsize, &bitpos, &toff, &mode,
939 &uns, &rev, &vol);
940 tree base_addr = build_fold_addr_expr (base);
942 /* ADDR = &BASE + TOFF + BITPOS / BITS_PER_UNIT. */
944 tree_to_aff_combination (base_addr, sizetype, addr);
946 if (toff)
948 tree_to_aff_combination (toff, sizetype, &tmp);
949 aff_combination_add (addr, &tmp);
952 aff_combination_const (&tmp, sizetype, bits_to_bytes_round_down (bitpos));
953 aff_combination_add (addr, &tmp);
955 *size = bits_to_bytes_round_up (bitsize);
957 return base;
960 /* Returns true if a region of size SIZE1 at position 0 and a region of
961 size SIZE2 at position DIFF cannot overlap. */
963 bool
964 aff_comb_cannot_overlap_p (aff_tree *diff, const poly_widest_int &size1,
965 const poly_widest_int &size2)
967 /* Unless the difference is a constant, we fail. */
968 if (diff->n != 0)
969 return false;
971 if (!ordered_p (diff->offset, 0))
972 return false;
974 if (maybe_lt (diff->offset, 0))
976 /* The second object is before the first one, we succeed if the last
977 element of the second object is before the start of the first one. */
978 return known_le (diff->offset + size2, 0);
980 else
982 /* We succeed if the second object starts after the first one ends. */
983 return known_le (size1, diff->offset);