PR ada/18692
[official-gcc.git] / gcc / tree-vrp.c
blob9eac7e9b67deb8b2b03d6e86b5bfd7372bee56ab
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph;
44 /* Local functions. */
45 static int compare_values (tree val1, tree val2);
47 /* Location information for ASSERT_EXPRs. Each instance of this
48 structure describes an ASSERT_EXPR for an SSA name. Since a single
49 SSA name may have more than one assertion associated with it, these
50 locations are kept in a linked list attached to the corresponding
51 SSA name. */
52 struct assert_locus_d
54 /* Basic block where the assertion would be inserted. */
55 basic_block bb;
57 /* Some assertions need to be inserted on an edge (e.g., assertions
58 generated by COND_EXPRs). In those cases, BB will be NULL. */
59 edge e;
61 /* Pointer to the statement that generated this assertion. */
62 block_stmt_iterator si;
64 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
65 enum tree_code comp_code;
67 /* Value being compared against. */
68 tree val;
70 /* Next node in the linked list. */
71 struct assert_locus_d *next;
74 typedef struct assert_locus_d *assert_locus_t;
76 /* If bit I is present, it means that SSA name N_i has a list of
77 assertions that should be inserted in the IL. */
78 static bitmap need_assert_for;
80 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
81 holds a list of ASSERT_LOCUS_T nodes that describe where
82 ASSERT_EXPRs for SSA name N_I should be inserted. */
83 static assert_locus_t *asserts_for;
85 /* Set of blocks visited in find_assert_locations. Used to avoid
86 visiting the same block more than once. */
87 static sbitmap blocks_visited;
89 /* Value range array. After propagation, VR_VALUE[I] holds the range
90 of values that SSA name N_I may take. */
91 static value_range_t **vr_value;
94 /* Return true if ARG is marked with the nonnull attribute in the
95 current function signature. */
97 static bool
98 nonnull_arg_p (tree arg)
100 tree t, attrs, fntype;
101 unsigned HOST_WIDE_INT arg_num;
103 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
105 fntype = TREE_TYPE (current_function_decl);
106 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
108 /* If "nonnull" wasn't specified, we know nothing about the argument. */
109 if (attrs == NULL_TREE)
110 return false;
112 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
113 if (TREE_VALUE (attrs) == NULL_TREE)
114 return true;
116 /* Get the position number for ARG in the function signature. */
117 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
119 t = TREE_CHAIN (t), arg_num++)
121 if (t == arg)
122 break;
125 gcc_assert (t == arg);
127 /* Now see if ARG_NUM is mentioned in the nonnull list. */
128 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
130 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
131 return true;
134 return false;
138 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
140 static void
141 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
142 tree max, bitmap equiv)
144 #if defined ENABLE_CHECKING
145 /* Check the validity of the range. */
146 if (t == VR_RANGE || t == VR_ANTI_RANGE)
148 int cmp;
150 gcc_assert (min && max);
152 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
153 gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
154 || max != TYPE_MAX_VALUE (TREE_TYPE (max)));
156 cmp = compare_values (min, max);
157 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
160 if (t == VR_UNDEFINED || t == VR_VARYING)
161 gcc_assert (min == NULL_TREE && max == NULL_TREE);
163 if (t == VR_UNDEFINED || t == VR_VARYING)
164 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
165 #endif
167 vr->type = t;
168 vr->min = min;
169 vr->max = max;
171 /* Since updating the equivalence set involves deep copying the
172 bitmaps, only do it if absolutely necessary. */
173 if (vr->equiv == NULL)
174 vr->equiv = BITMAP_ALLOC (NULL);
176 if (equiv != vr->equiv)
178 if (equiv && !bitmap_empty_p (equiv))
179 bitmap_copy (vr->equiv, equiv);
180 else
181 bitmap_clear (vr->equiv);
186 /* Copy value range FROM into value range TO. */
188 static inline void
189 copy_value_range (value_range_t *to, value_range_t *from)
191 set_value_range (to, from->type, from->min, from->max, from->equiv);
194 /* Set value range VR to a non-negative range of type TYPE. */
196 static inline void
197 set_value_range_to_nonnegative (value_range_t *vr, tree type)
199 tree zero = build_int_cst (type, 0);
200 set_value_range (vr, VR_RANGE, zero, TYPE_MAX_VALUE (type), vr->equiv);
203 /* Set value range VR to a non-NULL range of type TYPE. */
205 static inline void
206 set_value_range_to_nonnull (value_range_t *vr, tree type)
208 tree zero = build_int_cst (type, 0);
209 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
213 /* Set value range VR to a NULL range of type TYPE. */
215 static inline void
216 set_value_range_to_null (value_range_t *vr, tree type)
218 tree zero = build_int_cst (type, 0);
219 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
223 /* Set value range VR to VR_VARYING. */
225 static inline void
226 set_value_range_to_varying (value_range_t *vr)
228 vr->type = VR_VARYING;
229 vr->min = vr->max = NULL_TREE;
230 if (vr->equiv)
231 bitmap_clear (vr->equiv);
235 /* Set value range VR to VR_UNDEFINED. */
237 static inline void
238 set_value_range_to_undefined (value_range_t *vr)
240 vr->type = VR_UNDEFINED;
241 vr->min = vr->max = NULL_TREE;
242 if (vr->equiv)
243 bitmap_clear (vr->equiv);
247 /* Return value range information for VAR.
249 If we have no values ranges recorded (ie, VRP is not running), then
250 return NULL. Otherwise create an empty range if none existed for VAR. */
252 static value_range_t *
253 get_value_range (tree var)
255 value_range_t *vr;
256 tree sym;
257 unsigned ver = SSA_NAME_VERSION (var);
259 /* If we have no recorded ranges, then return NULL. */
260 if (! vr_value)
261 return NULL;
263 vr = vr_value[ver];
264 if (vr)
265 return vr;
267 /* Create a default value range. */
268 vr_value[ver] = vr = XNEW (value_range_t);
269 memset (vr, 0, sizeof (*vr));
271 /* Allocate an equivalence set. */
272 vr->equiv = BITMAP_ALLOC (NULL);
274 /* If VAR is a default definition, the variable can take any value
275 in VAR's type. */
276 sym = SSA_NAME_VAR (var);
277 if (var == default_def (sym))
279 /* Try to use the "nonnull" attribute to create ~[0, 0]
280 anti-ranges for pointers. Note that this is only valid with
281 default definitions of PARM_DECLs. */
282 if (TREE_CODE (sym) == PARM_DECL
283 && POINTER_TYPE_P (TREE_TYPE (sym))
284 && nonnull_arg_p (sym))
285 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
286 else
287 set_value_range_to_varying (vr);
290 return vr;
294 /* Update the value range and equivalence set for variable VAR to
295 NEW_VR. Return true if NEW_VR is different from VAR's previous
296 value.
298 NOTE: This function assumes that NEW_VR is a temporary value range
299 object created for the sole purpose of updating VAR's range. The
300 storage used by the equivalence set from NEW_VR will be freed by
301 this function. Do not call update_value_range when NEW_VR
302 is the range object associated with another SSA name. */
304 static inline bool
305 update_value_range (tree var, value_range_t *new_vr)
307 value_range_t *old_vr;
308 bool is_new;
310 /* Update the value range, if necessary. */
311 old_vr = get_value_range (var);
312 is_new = old_vr->type != new_vr->type
313 || old_vr->min != new_vr->min
314 || old_vr->max != new_vr->max
315 || (old_vr->equiv == NULL && new_vr->equiv)
316 || (old_vr->equiv && new_vr->equiv == NULL)
317 || (!bitmap_equal_p (old_vr->equiv, new_vr->equiv));
319 if (is_new)
320 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
321 new_vr->equiv);
323 BITMAP_FREE (new_vr->equiv);
324 new_vr->equiv = NULL;
326 return is_new;
330 /* Add VAR and VAR's equivalence set to EQUIV. */
332 static void
333 add_equivalence (bitmap equiv, tree var)
335 unsigned ver = SSA_NAME_VERSION (var);
336 value_range_t *vr = vr_value[ver];
338 bitmap_set_bit (equiv, ver);
339 if (vr && vr->equiv)
340 bitmap_ior_into (equiv, vr->equiv);
344 /* Return true if VR is ~[0, 0]. */
346 static inline bool
347 range_is_nonnull (value_range_t *vr)
349 return vr->type == VR_ANTI_RANGE
350 && integer_zerop (vr->min)
351 && integer_zerop (vr->max);
355 /* Return true if VR is [0, 0]. */
357 static inline bool
358 range_is_null (value_range_t *vr)
360 return vr->type == VR_RANGE
361 && integer_zerop (vr->min)
362 && integer_zerop (vr->max);
366 /* Return true if value range VR involves at least one symbol. */
368 static inline bool
369 symbolic_range_p (value_range_t *vr)
371 return (!is_gimple_min_invariant (vr->min)
372 || !is_gimple_min_invariant (vr->max));
375 /* Like tree_expr_nonnegative_p, but this function uses value ranges
376 obtained so far. */
378 static bool
379 vrp_expr_computes_nonnegative (tree expr)
381 return tree_expr_nonnegative_p (expr);
384 /* Like tree_expr_nonzero_p, but this function uses value ranges
385 obtained so far. */
387 static bool
388 vrp_expr_computes_nonzero (tree expr)
390 if (tree_expr_nonzero_p (expr))
391 return true;
393 /* If we have an expression of the form &X->a, then the expression
394 is nonnull if X is nonnull. */
395 if (TREE_CODE (expr) == ADDR_EXPR)
397 tree base = get_base_address (TREE_OPERAND (expr, 0));
399 if (base != NULL_TREE
400 && TREE_CODE (base) == INDIRECT_REF
401 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
403 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
404 if (range_is_nonnull (vr))
405 return true;
409 return false;
412 /* Returns true if EXPR is a valid value (as expected by compare_values) --
413 a gimple invariant, or SSA_NAME +- CST. */
415 static bool
416 valid_value_p (tree expr)
418 if (TREE_CODE (expr) == SSA_NAME)
419 return true;
421 if (TREE_CODE (expr) == PLUS_EXPR
422 || TREE_CODE (expr) == MINUS_EXPR)
423 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
424 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
426 return is_gimple_min_invariant (expr);
429 /* Compare two values VAL1 and VAL2. Return
431 -2 if VAL1 and VAL2 cannot be compared at compile-time,
432 -1 if VAL1 < VAL2,
433 0 if VAL1 == VAL2,
434 +1 if VAL1 > VAL2, and
435 +2 if VAL1 != VAL2
437 This is similar to tree_int_cst_compare but supports pointer values
438 and values that cannot be compared at compile time. */
440 static int
441 compare_values (tree val1, tree val2)
443 if (val1 == val2)
444 return 0;
446 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
447 both integers. */
448 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
449 == POINTER_TYPE_P (TREE_TYPE (val2)));
451 if ((TREE_CODE (val1) == SSA_NAME
452 || TREE_CODE (val1) == PLUS_EXPR
453 || TREE_CODE (val1) == MINUS_EXPR)
454 && (TREE_CODE (val2) == SSA_NAME
455 || TREE_CODE (val2) == PLUS_EXPR
456 || TREE_CODE (val2) == MINUS_EXPR))
458 tree n1, c1, n2, c2;
459 enum tree_code code1, code2;
461 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
462 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
463 same name, return -2. */
464 if (TREE_CODE (val1) == SSA_NAME)
466 code1 = SSA_NAME;
467 n1 = val1;
468 c1 = NULL_TREE;
470 else
472 code1 = TREE_CODE (val1);
473 n1 = TREE_OPERAND (val1, 0);
474 c1 = TREE_OPERAND (val1, 1);
475 if (tree_int_cst_sgn (c1) == -1)
477 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
478 if (!c1)
479 return -2;
480 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
484 if (TREE_CODE (val2) == SSA_NAME)
486 code2 = SSA_NAME;
487 n2 = val2;
488 c2 = NULL_TREE;
490 else
492 code2 = TREE_CODE (val2);
493 n2 = TREE_OPERAND (val2, 0);
494 c2 = TREE_OPERAND (val2, 1);
495 if (tree_int_cst_sgn (c2) == -1)
497 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
498 if (!c2)
499 return -2;
500 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
504 /* Both values must use the same name. */
505 if (n1 != n2)
506 return -2;
508 if (code1 == SSA_NAME
509 && code2 == SSA_NAME)
510 /* NAME == NAME */
511 return 0;
513 /* If overflow is defined we cannot simplify more. */
514 if (TYPE_UNSIGNED (TREE_TYPE (val1))
515 || flag_wrapv)
516 return -2;
518 if (code1 == SSA_NAME)
520 if (code2 == PLUS_EXPR)
521 /* NAME < NAME + CST */
522 return -1;
523 else if (code2 == MINUS_EXPR)
524 /* NAME > NAME - CST */
525 return 1;
527 else if (code1 == PLUS_EXPR)
529 if (code2 == SSA_NAME)
530 /* NAME + CST > NAME */
531 return 1;
532 else if (code2 == PLUS_EXPR)
533 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
534 return compare_values (c1, c2);
535 else if (code2 == MINUS_EXPR)
536 /* NAME + CST1 > NAME - CST2 */
537 return 1;
539 else if (code1 == MINUS_EXPR)
541 if (code2 == SSA_NAME)
542 /* NAME - CST < NAME */
543 return -1;
544 else if (code2 == PLUS_EXPR)
545 /* NAME - CST1 < NAME + CST2 */
546 return -1;
547 else if (code2 == MINUS_EXPR)
548 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
549 C1 and C2 are swapped in the call to compare_values. */
550 return compare_values (c2, c1);
553 gcc_unreachable ();
556 /* We cannot compare non-constants. */
557 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
558 return -2;
560 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
562 /* We cannot compare overflowed values. */
563 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
564 return -2;
566 return tree_int_cst_compare (val1, val2);
568 else
570 tree t;
572 /* First see if VAL1 and VAL2 are not the same. */
573 if (val1 == val2 || operand_equal_p (val1, val2, 0))
574 return 0;
576 /* If VAL1 is a lower address than VAL2, return -1. */
577 t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
578 if (t == boolean_true_node)
579 return -1;
581 /* If VAL1 is a higher address than VAL2, return +1. */
582 t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
583 if (t == boolean_true_node)
584 return 1;
586 /* If VAL1 is different than VAL2, return +2. */
587 t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
588 if (t == boolean_true_node)
589 return 2;
591 return -2;
596 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
597 0 if VAL is not inside VR,
598 -2 if we cannot tell either way.
600 FIXME, the current semantics of this functions are a bit quirky
601 when taken in the context of VRP. In here we do not care
602 about VR's type. If VR is the anti-range ~[3, 5] the call
603 value_inside_range (4, VR) will return 1.
605 This is counter-intuitive in a strict sense, but the callers
606 currently expect this. They are calling the function
607 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
608 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
609 themselves.
611 This also applies to value_ranges_intersect_p and
612 range_includes_zero_p. The semantics of VR_RANGE and
613 VR_ANTI_RANGE should be encoded here, but that also means
614 adapting the users of these functions to the new semantics. */
616 static inline int
617 value_inside_range (tree val, value_range_t *vr)
619 tree cmp1, cmp2;
621 cmp1 = fold_binary_to_constant (GE_EXPR, boolean_type_node, val, vr->min);
622 if (!cmp1)
623 return -2;
625 cmp2 = fold_binary_to_constant (LE_EXPR, boolean_type_node, val, vr->max);
626 if (!cmp2)
627 return -2;
629 return cmp1 == boolean_true_node && cmp2 == boolean_true_node;
633 /* Return true if value ranges VR0 and VR1 have a non-empty
634 intersection. */
636 static inline bool
637 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
639 return (value_inside_range (vr1->min, vr0) == 1
640 || value_inside_range (vr1->max, vr0) == 1
641 || value_inside_range (vr0->min, vr1) == 1
642 || value_inside_range (vr0->max, vr1) == 1);
646 /* Return true if VR includes the value zero, false otherwise. FIXME,
647 currently this will return false for an anti-range like ~[-4, 3].
648 This will be wrong when the semantics of value_inside_range are
649 modified (currently the users of this function expect these
650 semantics). */
652 static inline bool
653 range_includes_zero_p (value_range_t *vr)
655 tree zero;
657 gcc_assert (vr->type != VR_UNDEFINED
658 && vr->type != VR_VARYING
659 && !symbolic_range_p (vr));
661 zero = build_int_cst (TREE_TYPE (vr->min), 0);
662 return (value_inside_range (zero, vr) == 1);
665 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
666 false otherwise or if no value range information is available. */
668 bool
669 ssa_name_nonnegative_p (tree t)
671 value_range_t *vr = get_value_range (t);
673 if (!vr)
674 return false;
676 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
677 which would return a useful value should be encoded as a VR_RANGE. */
678 if (vr->type == VR_RANGE)
680 int result = compare_values (vr->min, integer_zero_node);
682 return (result == 0 || result == 1);
684 return false;
687 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
688 false otherwise or if no value range information is available. */
690 bool
691 ssa_name_nonzero_p (tree t)
693 value_range_t *vr = get_value_range (t);
695 if (!vr)
696 return false;
698 /* A VR_RANGE which does not include zero is a nonzero value. */
699 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
700 return ! range_includes_zero_p (vr);
702 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
703 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
704 return range_includes_zero_p (vr);
706 return false;
710 /* When extracting ranges from X_i = ASSERT_EXPR <Y_j, pred>, we will
711 initially consider X_i and Y_j equivalent, so the equivalence set
712 of Y_j is added to the equivalence set of X_i. However, it is
713 possible to have a chain of ASSERT_EXPRs whose predicates are
714 actually incompatible. This is usually the result of nesting of
715 contradictory if-then-else statements. For instance, in PR 24670:
717 count_4 has range [-INF, 63]
719 if (count_4 != 0)
721 count_19 = ASSERT_EXPR <count_4, count_4 != 0>
722 if (count_19 > 63)
724 count_18 = ASSERT_EXPR <count_19, count_19 > 63>
725 if (count_18 <= 63)
730 Notice that 'if (count_19 > 63)' is trivially false and will be
731 folded out at the end. However, during propagation, the flowgraph
732 is not cleaned up and so, VRP will evaluate predicates more
733 predicates than necessary, so it must support these
734 inconsistencies. The problem here is that because of the chaining
735 of ASSERT_EXPRs, the equivalency set for count_18 includes count_4.
736 Since count_4 has an incompatible range, we ICE when evaluating the
737 ranges in the equivalency set. So, we need to remove count_4 from
738 it. */
740 static void
741 fix_equivalence_set (value_range_t *vr_p)
743 bitmap_iterator bi;
744 unsigned i;
745 bitmap e = vr_p->equiv;
746 bitmap to_remove = BITMAP_ALLOC (NULL);
748 /* Only detect inconsistencies on numeric ranges. */
749 if (vr_p->type == VR_VARYING
750 || vr_p->type == VR_UNDEFINED
751 || symbolic_range_p (vr_p))
752 return;
754 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
756 value_range_t *equiv_vr = vr_value[i];
758 if (equiv_vr->type == VR_VARYING
759 || equiv_vr->type == VR_UNDEFINED
760 || symbolic_range_p (equiv_vr))
761 continue;
763 if (equiv_vr->type == VR_RANGE
764 && vr_p->type == VR_RANGE
765 && !value_ranges_intersect_p (vr_p, equiv_vr))
766 bitmap_set_bit (to_remove, i);
767 else if ((equiv_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
768 || (equiv_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
770 /* A range and an anti-range have an empty intersection if
771 their end points are the same. FIXME,
772 value_ranges_intersect_p should handle this
773 automatically. */
774 if (compare_values (equiv_vr->min, vr_p->min) == 0
775 && compare_values (equiv_vr->max, vr_p->max) == 0)
776 bitmap_set_bit (to_remove, i);
780 bitmap_and_compl_into (vr_p->equiv, to_remove);
781 BITMAP_FREE (to_remove);
785 /* Extract value range information from an ASSERT_EXPR EXPR and store
786 it in *VR_P. */
788 static void
789 extract_range_from_assert (value_range_t *vr_p, tree expr)
791 tree var, cond, limit, min, max, type;
792 value_range_t *var_vr, *limit_vr;
793 enum tree_code cond_code;
795 var = ASSERT_EXPR_VAR (expr);
796 cond = ASSERT_EXPR_COND (expr);
798 gcc_assert (COMPARISON_CLASS_P (cond));
800 /* Find VAR in the ASSERT_EXPR conditional. */
801 if (var == TREE_OPERAND (cond, 0))
803 /* If the predicate is of the form VAR COMP LIMIT, then we just
804 take LIMIT from the RHS and use the same comparison code. */
805 limit = TREE_OPERAND (cond, 1);
806 cond_code = TREE_CODE (cond);
808 else
810 /* If the predicate is of the form LIMIT COMP VAR, then we need
811 to flip around the comparison code to create the proper range
812 for VAR. */
813 limit = TREE_OPERAND (cond, 0);
814 cond_code = swap_tree_comparison (TREE_CODE (cond));
817 type = TREE_TYPE (limit);
818 gcc_assert (limit != var);
820 /* For pointer arithmetic, we only keep track of pointer equality
821 and inequality. */
822 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
824 set_value_range_to_varying (vr_p);
825 return;
828 /* If LIMIT is another SSA name and LIMIT has a range of its own,
829 try to use LIMIT's range to avoid creating symbolic ranges
830 unnecessarily. */
831 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
833 /* LIMIT's range is only interesting if it has any useful information. */
834 if (limit_vr
835 && (limit_vr->type == VR_UNDEFINED
836 || limit_vr->type == VR_VARYING
837 || symbolic_range_p (limit_vr)))
838 limit_vr = NULL;
840 /* Initially, the new range has the same set of equivalences of
841 VAR's range. This will be revised before returning the final
842 value. Since assertions may be chained via mutually exclusive
843 predicates, we will need to trim the set of equivalences before
844 we are done. */
845 gcc_assert (vr_p->equiv == NULL);
846 vr_p->equiv = BITMAP_ALLOC (NULL);
847 add_equivalence (vr_p->equiv, var);
849 /* Extract a new range based on the asserted comparison for VAR and
850 LIMIT's value range. Notice that if LIMIT has an anti-range, we
851 will only use it for equality comparisons (EQ_EXPR). For any
852 other kind of assertion, we cannot derive a range from LIMIT's
853 anti-range that can be used to describe the new range. For
854 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
855 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
856 no single range for x_2 that could describe LE_EXPR, so we might
857 as well build the range [b_4, +INF] for it. */
858 if (cond_code == EQ_EXPR)
860 enum value_range_type range_type;
862 if (limit_vr)
864 range_type = limit_vr->type;
865 min = limit_vr->min;
866 max = limit_vr->max;
868 else
870 range_type = VR_RANGE;
871 min = limit;
872 max = limit;
875 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
877 /* When asserting the equality VAR == LIMIT and LIMIT is another
878 SSA name, the new range will also inherit the equivalence set
879 from LIMIT. */
880 if (TREE_CODE (limit) == SSA_NAME)
881 add_equivalence (vr_p->equiv, limit);
883 else if (cond_code == NE_EXPR)
885 /* As described above, when LIMIT's range is an anti-range and
886 this assertion is an inequality (NE_EXPR), then we cannot
887 derive anything from the anti-range. For instance, if
888 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
889 not imply that VAR's range is [0, 0]. So, in the case of
890 anti-ranges, we just assert the inequality using LIMIT and
891 not its anti-range.
893 If LIMIT_VR is a range, we can only use it to build a new
894 anti-range if LIMIT_VR is a single-valued range. For
895 instance, if LIMIT_VR is [0, 1], the predicate
896 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
897 Rather, it means that for value 0 VAR should be ~[0, 0]
898 and for value 1, VAR should be ~[1, 1]. We cannot
899 represent these ranges.
901 The only situation in which we can build a valid
902 anti-range is when LIMIT_VR is a single-valued range
903 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
904 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
905 if (limit_vr
906 && limit_vr->type == VR_RANGE
907 && compare_values (limit_vr->min, limit_vr->max) == 0)
909 min = limit_vr->min;
910 max = limit_vr->max;
912 else
914 /* In any other case, we cannot use LIMIT's range to build a
915 valid anti-range. */
916 min = max = limit;
919 /* If MIN and MAX cover the whole range for their type, then
920 just use the original LIMIT. */
921 if (INTEGRAL_TYPE_P (type)
922 && min == TYPE_MIN_VALUE (type)
923 && max == TYPE_MAX_VALUE (type))
924 min = max = limit;
926 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
928 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
930 min = TYPE_MIN_VALUE (type);
932 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
933 max = limit;
934 else
936 /* If LIMIT_VR is of the form [N1, N2], we need to build the
937 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
938 LT_EXPR. */
939 max = limit_vr->max;
942 /* If the maximum value forces us to be out of bounds, simply punt.
943 It would be pointless to try and do anything more since this
944 all should be optimized away above us. */
945 if (cond_code == LT_EXPR && compare_values (max, min) == 0)
946 set_value_range_to_varying (vr_p);
947 else
949 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
950 if (cond_code == LT_EXPR)
952 tree one = build_int_cst (type, 1);
953 max = fold_build2 (MINUS_EXPR, type, max, one);
956 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
959 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
961 max = TYPE_MAX_VALUE (type);
963 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
964 min = limit;
965 else
967 /* If LIMIT_VR is of the form [N1, N2], we need to build the
968 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
969 GT_EXPR. */
970 min = limit_vr->min;
973 /* If the minimum value forces us to be out of bounds, simply punt.
974 It would be pointless to try and do anything more since this
975 all should be optimized away above us. */
976 if (cond_code == GT_EXPR && compare_values (min, max) == 0)
977 set_value_range_to_varying (vr_p);
978 else
980 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
981 if (cond_code == GT_EXPR)
983 tree one = build_int_cst (type, 1);
984 min = fold_build2 (PLUS_EXPR, type, min, one);
987 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
990 else
991 gcc_unreachable ();
993 /* If VAR already had a known range, it may happen that the new
994 range we have computed and VAR's range are not compatible. For
995 instance,
997 if (p_5 == NULL)
998 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
999 x_7 = p_6->fld;
1000 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1002 While the above comes from a faulty program, it will cause an ICE
1003 later because p_8 and p_6 will have incompatible ranges and at
1004 the same time will be considered equivalent. A similar situation
1005 would arise from
1007 if (i_5 > 10)
1008 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1009 if (i_5 < 5)
1010 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1012 Again i_6 and i_7 will have incompatible ranges. It would be
1013 pointless to try and do anything with i_7's range because
1014 anything dominated by 'if (i_5 < 5)' will be optimized away.
1015 Note, due to the wa in which simulation proceeds, the statement
1016 i_7 = ASSERT_EXPR <...> we would never be visited because the
1017 conditional 'if (i_5 < 5)' always evaluates to false. However,
1018 this extra check does not hurt and may protect against future
1019 changes to VRP that may get into a situation similar to the
1020 NULL pointer dereference example.
1022 Note that these compatibility tests are only needed when dealing
1023 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1024 are both anti-ranges, they will always be compatible, because two
1025 anti-ranges will always have a non-empty intersection. */
1027 var_vr = get_value_range (var);
1029 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1030 ranges or anti-ranges. */
1031 if (vr_p->type == VR_VARYING
1032 || vr_p->type == VR_UNDEFINED
1033 || var_vr->type == VR_VARYING
1034 || var_vr->type == VR_UNDEFINED
1035 || symbolic_range_p (vr_p)
1036 || symbolic_range_p (var_vr))
1037 goto done;
1039 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1041 /* If the two ranges have a non-empty intersection, we can
1042 refine the resulting range. Since the assert expression
1043 creates an equivalency and at the same time it asserts a
1044 predicate, we can take the intersection of the two ranges to
1045 get better precision. */
1046 if (value_ranges_intersect_p (var_vr, vr_p))
1048 /* Use the larger of the two minimums. */
1049 if (compare_values (vr_p->min, var_vr->min) == -1)
1050 min = var_vr->min;
1051 else
1052 min = vr_p->min;
1054 /* Use the smaller of the two maximums. */
1055 if (compare_values (vr_p->max, var_vr->max) == 1)
1056 max = var_vr->max;
1057 else
1058 max = vr_p->max;
1060 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1062 else
1064 /* The two ranges do not intersect, set the new range to
1065 VARYING, because we will not be able to do anything
1066 meaningful with it. */
1067 set_value_range_to_varying (vr_p);
1070 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1071 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1073 /* A range and an anti-range will cancel each other only if
1074 their ends are the same. For instance, in the example above,
1075 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1076 so VR_P should be set to VR_VARYING. */
1077 if (compare_values (var_vr->min, vr_p->min) == 0
1078 && compare_values (var_vr->max, vr_p->max) == 0)
1079 set_value_range_to_varying (vr_p);
1080 else
1082 tree min, max, anti_min, anti_max, real_min, real_max;
1084 /* We want to compute the logical AND of the two ranges;
1085 there are three cases to consider.
1088 1. The VR_ANTI_RANGE range is completely within the
1089 VR_RANGE and the endpoints of the ranges are
1090 different. In that case the resulting range
1091 should be whichever range is more precise.
1092 Typically that will be the VR_RANGE.
1094 2. The VR_ANTI_RANGE is completely disjoint from
1095 the VR_RANGE. In this case the resulting range
1096 should be the VR_RANGE.
1098 3. There is some overlap between the VR_ANTI_RANGE
1099 and the VR_RANGE.
1101 3a. If the high limit of the VR_ANTI_RANGE resides
1102 within the VR_RANGE, then the result is a new
1103 VR_RANGE starting at the high limit of the
1104 the VR_ANTI_RANGE + 1 and extending to the
1105 high limit of the original VR_RANGE.
1107 3b. If the low limit of the VR_ANTI_RANGE resides
1108 within the VR_RANGE, then the result is a new
1109 VR_RANGE starting at the low limit of the original
1110 VR_RANGE and extending to the low limit of the
1111 VR_ANTI_RANGE - 1. */
1112 if (vr_p->type == VR_ANTI_RANGE)
1114 anti_min = vr_p->min;
1115 anti_max = vr_p->max;
1116 real_min = var_vr->min;
1117 real_max = var_vr->max;
1119 else
1121 anti_min = var_vr->min;
1122 anti_max = var_vr->max;
1123 real_min = vr_p->min;
1124 real_max = vr_p->max;
1128 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1129 not including any endpoints. */
1130 if (compare_values (anti_max, real_max) == -1
1131 && compare_values (anti_min, real_min) == 1)
1133 set_value_range (vr_p, VR_RANGE, real_min,
1134 real_max, vr_p->equiv);
1136 /* Case 2, VR_ANTI_RANGE completely disjoint from
1137 VR_RANGE. */
1138 else if (compare_values (anti_min, real_max) == 1
1139 || compare_values (anti_max, real_min) == -1)
1141 set_value_range (vr_p, VR_RANGE, real_min,
1142 real_max, vr_p->equiv);
1144 /* Case 3a, the anti-range extends into the low
1145 part of the real range. Thus creating a new
1146 low for the real range. */
1147 else if ((compare_values (anti_max, real_min) == 1
1148 || compare_values (anti_max, real_min) == 0)
1149 && compare_values (anti_max, real_max) == -1)
1151 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1152 anti_max,
1153 build_int_cst (TREE_TYPE (var_vr->min), 1));
1154 max = real_max;
1155 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1157 /* Case 3b, the anti-range extends into the high
1158 part of the real range. Thus creating a new
1159 higher for the real range. */
1160 else if (compare_values (anti_min, real_min) == 1
1161 && (compare_values (anti_min, real_max) == -1
1162 || compare_values (anti_min, real_max) == 0))
1164 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1165 anti_min,
1166 build_int_cst (TREE_TYPE (var_vr->min), 1));
1167 min = real_min;
1168 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1173 /* Remove names from the equivalence set that have ranges
1174 incompatible with VR_P. */
1175 done:
1176 fix_equivalence_set (vr_p);
1180 /* Extract range information from SSA name VAR and store it in VR. If
1181 VAR has an interesting range, use it. Otherwise, create the
1182 range [VAR, VAR] and return it. This is useful in situations where
1183 we may have conditionals testing values of VARYING names. For
1184 instance,
1186 x_3 = y_5;
1187 if (x_3 > y_5)
1190 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1191 always false. */
1193 static void
1194 extract_range_from_ssa_name (value_range_t *vr, tree var)
1196 value_range_t *var_vr = get_value_range (var);
1198 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1199 copy_value_range (vr, var_vr);
1200 else
1201 set_value_range (vr, VR_RANGE, var, var, NULL);
1203 add_equivalence (vr->equiv, var);
1207 /* Wrapper around int_const_binop. If the operation overflows and we
1208 are not using wrapping arithmetic, then adjust the result to be
1209 -INF or +INF depending on CODE, VAL1 and VAL2. */
1211 static inline tree
1212 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1214 tree res;
1216 if (flag_wrapv)
1217 return int_const_binop (code, val1, val2, 0);
1219 /* If we are not using wrapping arithmetic, operate symbolically
1220 on -INF and +INF. */
1221 res = int_const_binop (code, val1, val2, 0);
1223 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1225 int checkz = compare_values (res, val1);
1226 bool overflow = false;
1228 /* Ensure that res = val1 [+*] val2 >= val1
1229 or that res = val1 - val2 <= val1. */
1230 if ((code == PLUS_EXPR
1231 && !(checkz == 1 || checkz == 0))
1232 || (code == MINUS_EXPR
1233 && !(checkz == 0 || checkz == -1)))
1235 overflow = true;
1237 /* Checking for multiplication overflow is done by dividing the
1238 output of the multiplication by the first input of the
1239 multiplication. If the result of that division operation is
1240 not equal to the second input of the multiplication, then the
1241 multiplication overflowed. */
1242 else if (code == MULT_EXPR && !integer_zerop (val1))
1244 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1245 TYPE_MAX_VALUE (TREE_TYPE (val1)),
1246 val1, 0);
1247 int check = compare_values (tmp, val2);
1249 if (check != 0)
1250 overflow = true;
1253 if (overflow)
1255 res = copy_node (res);
1256 TREE_OVERFLOW (res) = 1;
1260 else if (TREE_OVERFLOW (res)
1261 && !TREE_OVERFLOW (val1)
1262 && !TREE_OVERFLOW (val2))
1264 /* If the operation overflowed but neither VAL1 nor VAL2 are
1265 overflown, return -INF or +INF depending on the operation
1266 and the combination of signs of the operands. */
1267 int sgn1 = tree_int_cst_sgn (val1);
1268 int sgn2 = tree_int_cst_sgn (val2);
1270 /* Notice that we only need to handle the restricted set of
1271 operations handled by extract_range_from_binary_expr.
1272 Among them, only multiplication, addition and subtraction
1273 can yield overflow without overflown operands because we
1274 are working with integral types only... except in the
1275 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1276 for division too. */
1278 /* For multiplication, the sign of the overflow is given
1279 by the comparison of the signs of the operands. */
1280 if ((code == MULT_EXPR && sgn1 == sgn2)
1281 /* For addition, the operands must be of the same sign
1282 to yield an overflow. Its sign is therefore that
1283 of one of the operands, for example the first. */
1284 || (code == PLUS_EXPR && sgn1 > 0)
1285 /* For subtraction, the operands must be of different
1286 signs to yield an overflow. Its sign is therefore
1287 that of the first operand or the opposite of that
1288 of the second operand. A first operand of 0 counts
1289 as positive here, for the corner case 0 - (-INF),
1290 which overflows, but must yield +INF. */
1291 || (code == MINUS_EXPR && sgn1 >= 0)
1292 /* For division, the only case is -INF / -1 = +INF. */
1293 || code == TRUNC_DIV_EXPR
1294 || code == FLOOR_DIV_EXPR
1295 || code == CEIL_DIV_EXPR
1296 || code == EXACT_DIV_EXPR
1297 || code == ROUND_DIV_EXPR)
1298 return TYPE_MAX_VALUE (TREE_TYPE (res));
1299 else
1300 return TYPE_MIN_VALUE (TREE_TYPE (res));
1303 return res;
1307 /* Extract range information from a binary expression EXPR based on
1308 the ranges of each of its operands and the expression code. */
1310 static void
1311 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1313 enum tree_code code = TREE_CODE (expr);
1314 enum value_range_type type;
1315 tree op0, op1, min, max;
1316 int cmp;
1317 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1318 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1320 /* Not all binary expressions can be applied to ranges in a
1321 meaningful way. Handle only arithmetic operations. */
1322 if (code != PLUS_EXPR
1323 && code != MINUS_EXPR
1324 && code != MULT_EXPR
1325 && code != TRUNC_DIV_EXPR
1326 && code != FLOOR_DIV_EXPR
1327 && code != CEIL_DIV_EXPR
1328 && code != EXACT_DIV_EXPR
1329 && code != ROUND_DIV_EXPR
1330 && code != MIN_EXPR
1331 && code != MAX_EXPR
1332 && code != BIT_AND_EXPR
1333 && code != TRUTH_ANDIF_EXPR
1334 && code != TRUTH_ORIF_EXPR
1335 && code != TRUTH_AND_EXPR
1336 && code != TRUTH_OR_EXPR)
1338 set_value_range_to_varying (vr);
1339 return;
1342 /* Get value ranges for each operand. For constant operands, create
1343 a new value range with the operand to simplify processing. */
1344 op0 = TREE_OPERAND (expr, 0);
1345 if (TREE_CODE (op0) == SSA_NAME)
1346 vr0 = *(get_value_range (op0));
1347 else if (is_gimple_min_invariant (op0))
1348 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1349 else
1350 set_value_range_to_varying (&vr0);
1352 op1 = TREE_OPERAND (expr, 1);
1353 if (TREE_CODE (op1) == SSA_NAME)
1354 vr1 = *(get_value_range (op1));
1355 else if (is_gimple_min_invariant (op1))
1356 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1357 else
1358 set_value_range_to_varying (&vr1);
1360 /* If either range is UNDEFINED, so is the result. */
1361 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1363 set_value_range_to_undefined (vr);
1364 return;
1367 /* The type of the resulting value range defaults to VR0.TYPE. */
1368 type = vr0.type;
1370 /* Refuse to operate on VARYING ranges, ranges of different kinds
1371 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1372 because we may be able to derive a useful range even if one of
1373 the operands is VR_VARYING or symbolic range. TODO, we may be
1374 able to derive anti-ranges in some cases. */
1375 if (code != BIT_AND_EXPR
1376 && code != TRUTH_AND_EXPR
1377 && code != TRUTH_OR_EXPR
1378 && (vr0.type == VR_VARYING
1379 || vr1.type == VR_VARYING
1380 || vr0.type != vr1.type
1381 || symbolic_range_p (&vr0)
1382 || symbolic_range_p (&vr1)))
1384 set_value_range_to_varying (vr);
1385 return;
1388 /* Now evaluate the expression to determine the new range. */
1389 if (POINTER_TYPE_P (TREE_TYPE (expr))
1390 || POINTER_TYPE_P (TREE_TYPE (op0))
1391 || POINTER_TYPE_P (TREE_TYPE (op1)))
1393 /* For pointer types, we are really only interested in asserting
1394 whether the expression evaluates to non-NULL. FIXME, we used
1395 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1396 ivopts is generating expressions with pointer multiplication
1397 in them. */
1398 if (code == PLUS_EXPR)
1400 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1401 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1402 else if (range_is_null (&vr0) && range_is_null (&vr1))
1403 set_value_range_to_null (vr, TREE_TYPE (expr));
1404 else
1405 set_value_range_to_varying (vr);
1407 else
1409 /* Subtracting from a pointer, may yield 0, so just drop the
1410 resulting range to varying. */
1411 set_value_range_to_varying (vr);
1414 return;
1417 /* For integer ranges, apply the operation to each end of the
1418 range and see what we end up with. */
1419 if (code == TRUTH_ANDIF_EXPR
1420 || code == TRUTH_ORIF_EXPR
1421 || code == TRUTH_AND_EXPR
1422 || code == TRUTH_OR_EXPR)
1424 /* If one of the operands is zero, we know that the whole
1425 expression evaluates zero. */
1426 if (code == TRUTH_AND_EXPR
1427 && ((vr0.type == VR_RANGE
1428 && integer_zerop (vr0.min)
1429 && integer_zerop (vr0.max))
1430 || (vr1.type == VR_RANGE
1431 && integer_zerop (vr1.min)
1432 && integer_zerop (vr1.max))))
1434 type = VR_RANGE;
1435 min = max = build_int_cst (TREE_TYPE (expr), 0);
1437 /* If one of the operands is one, we know that the whole
1438 expression evaluates one. */
1439 else if (code == TRUTH_OR_EXPR
1440 && ((vr0.type == VR_RANGE
1441 && integer_onep (vr0.min)
1442 && integer_onep (vr0.max))
1443 || (vr1.type == VR_RANGE
1444 && integer_onep (vr1.min)
1445 && integer_onep (vr1.max))))
1447 type = VR_RANGE;
1448 min = max = build_int_cst (TREE_TYPE (expr), 1);
1450 else if (vr0.type != VR_VARYING
1451 && vr1.type != VR_VARYING
1452 && vr0.type == vr1.type
1453 && !symbolic_range_p (&vr0)
1454 && !symbolic_range_p (&vr1))
1456 /* Boolean expressions cannot be folded with int_const_binop. */
1457 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1458 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1460 else
1462 set_value_range_to_varying (vr);
1463 return;
1466 else if (code == PLUS_EXPR
1467 || code == MIN_EXPR
1468 || code == MAX_EXPR)
1470 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1471 VR_VARYING. It would take more effort to compute a precise
1472 range for such a case. For example, if we have op0 == 1 and
1473 op1 == -1 with their ranges both being ~[0,0], we would have
1474 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1475 Note that we are guaranteed to have vr0.type == vr1.type at
1476 this point. */
1477 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1479 set_value_range_to_varying (vr);
1480 return;
1483 /* For operations that make the resulting range directly
1484 proportional to the original ranges, apply the operation to
1485 the same end of each range. */
1486 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1487 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1489 else if (code == MULT_EXPR
1490 || code == TRUNC_DIV_EXPR
1491 || code == FLOOR_DIV_EXPR
1492 || code == CEIL_DIV_EXPR
1493 || code == EXACT_DIV_EXPR
1494 || code == ROUND_DIV_EXPR)
1496 tree val[4];
1497 size_t i;
1499 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1500 drop to VR_VARYING. It would take more effort to compute a
1501 precise range for such a case. For example, if we have
1502 op0 == 65536 and op1 == 65536 with their ranges both being
1503 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1504 we cannot claim that the product is in ~[0,0]. Note that we
1505 are guaranteed to have vr0.type == vr1.type at this
1506 point. */
1507 if (code == MULT_EXPR
1508 && vr0.type == VR_ANTI_RANGE
1509 && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
1511 set_value_range_to_varying (vr);
1512 return;
1515 /* Multiplications and divisions are a bit tricky to handle,
1516 depending on the mix of signs we have in the two ranges, we
1517 need to operate on different values to get the minimum and
1518 maximum values for the new range. One approach is to figure
1519 out all the variations of range combinations and do the
1520 operations.
1522 However, this involves several calls to compare_values and it
1523 is pretty convoluted. It's simpler to do the 4 operations
1524 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1525 MAX1) and then figure the smallest and largest values to form
1526 the new range. */
1528 /* Divisions by zero result in a VARYING value. */
1529 if (code != MULT_EXPR
1530 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1532 set_value_range_to_varying (vr);
1533 return;
1536 /* Compute the 4 cross operations. */
1537 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1539 val[1] = (vr1.max != vr1.min)
1540 ? vrp_int_const_binop (code, vr0.min, vr1.max)
1541 : NULL_TREE;
1543 val[2] = (vr0.max != vr0.min)
1544 ? vrp_int_const_binop (code, vr0.max, vr1.min)
1545 : NULL_TREE;
1547 val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
1548 ? vrp_int_const_binop (code, vr0.max, vr1.max)
1549 : NULL_TREE;
1551 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1552 of VAL[i]. */
1553 min = val[0];
1554 max = val[0];
1555 for (i = 1; i < 4; i++)
1557 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1558 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1559 break;
1561 if (val[i])
1563 if (!is_gimple_min_invariant (val[i]) || TREE_OVERFLOW (val[i]))
1565 /* If we found an overflowed value, set MIN and MAX
1566 to it so that we set the resulting range to
1567 VARYING. */
1568 min = max = val[i];
1569 break;
1572 if (compare_values (val[i], min) == -1)
1573 min = val[i];
1575 if (compare_values (val[i], max) == 1)
1576 max = val[i];
1580 else if (code == MINUS_EXPR)
1582 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1583 VR_VARYING. It would take more effort to compute a precise
1584 range for such a case. For example, if we have op0 == 1 and
1585 op1 == 1 with their ranges both being ~[0,0], we would have
1586 op0 - op1 == 0, so we cannot claim that the difference is in
1587 ~[0,0]. Note that we are guaranteed to have
1588 vr0.type == vr1.type at this point. */
1589 if (vr0.type == VR_ANTI_RANGE)
1591 set_value_range_to_varying (vr);
1592 return;
1595 /* For MINUS_EXPR, apply the operation to the opposite ends of
1596 each range. */
1597 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1598 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1600 else if (code == BIT_AND_EXPR)
1602 if (vr0.type == VR_RANGE
1603 && vr0.min == vr0.max
1604 && tree_expr_nonnegative_p (vr0.max)
1605 && TREE_CODE (vr0.max) == INTEGER_CST)
1607 min = build_int_cst (TREE_TYPE (expr), 0);
1608 max = vr0.max;
1610 else if (vr1.type == VR_RANGE
1611 && vr1.min == vr1.max
1612 && tree_expr_nonnegative_p (vr1.max)
1613 && TREE_CODE (vr1.max) == INTEGER_CST)
1615 type = VR_RANGE;
1616 min = build_int_cst (TREE_TYPE (expr), 0);
1617 max = vr1.max;
1619 else
1621 set_value_range_to_varying (vr);
1622 return;
1625 else
1626 gcc_unreachable ();
1628 /* If either MIN or MAX overflowed, then set the resulting range to
1629 VARYING. */
1630 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1631 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1633 set_value_range_to_varying (vr);
1634 return;
1637 cmp = compare_values (min, max);
1638 if (cmp == -2 || cmp == 1)
1640 /* If the new range has its limits swapped around (MIN > MAX),
1641 then the operation caused one of them to wrap around, mark
1642 the new range VARYING. */
1643 set_value_range_to_varying (vr);
1645 else
1646 set_value_range (vr, type, min, max, NULL);
1650 /* Extract range information from a unary expression EXPR based on
1651 the range of its operand and the expression code. */
1653 static void
1654 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1656 enum tree_code code = TREE_CODE (expr);
1657 tree min, max, op0;
1658 int cmp;
1659 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1661 /* Refuse to operate on certain unary expressions for which we
1662 cannot easily determine a resulting range. */
1663 if (code == FIX_TRUNC_EXPR
1664 || code == FIX_CEIL_EXPR
1665 || code == FIX_FLOOR_EXPR
1666 || code == FIX_ROUND_EXPR
1667 || code == FLOAT_EXPR
1668 || code == BIT_NOT_EXPR
1669 || code == NON_LVALUE_EXPR
1670 || code == CONJ_EXPR)
1672 set_value_range_to_varying (vr);
1673 return;
1676 /* Get value ranges for the operand. For constant operands, create
1677 a new value range with the operand to simplify processing. */
1678 op0 = TREE_OPERAND (expr, 0);
1679 if (TREE_CODE (op0) == SSA_NAME)
1680 vr0 = *(get_value_range (op0));
1681 else if (is_gimple_min_invariant (op0))
1682 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1683 else
1684 set_value_range_to_varying (&vr0);
1686 /* If VR0 is UNDEFINED, so is the result. */
1687 if (vr0.type == VR_UNDEFINED)
1689 set_value_range_to_undefined (vr);
1690 return;
1693 /* Refuse to operate on symbolic ranges, or if neither operand is
1694 a pointer or integral type. */
1695 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
1696 && !POINTER_TYPE_P (TREE_TYPE (op0)))
1697 || (vr0.type != VR_VARYING
1698 && symbolic_range_p (&vr0)))
1700 set_value_range_to_varying (vr);
1701 return;
1704 /* If the expression involves pointers, we are only interested in
1705 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1706 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
1708 if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
1709 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1710 else if (range_is_null (&vr0))
1711 set_value_range_to_null (vr, TREE_TYPE (expr));
1712 else
1713 set_value_range_to_varying (vr);
1715 return;
1718 /* Handle unary expressions on integer ranges. */
1719 if (code == NOP_EXPR || code == CONVERT_EXPR)
1721 tree inner_type = TREE_TYPE (op0);
1722 tree outer_type = TREE_TYPE (expr);
1724 /* If VR0 represents a simple range, then try to convert
1725 the min and max values for the range to the same type
1726 as OUTER_TYPE. If the results compare equal to VR0's
1727 min and max values and the new min is still less than
1728 or equal to the new max, then we can safely use the newly
1729 computed range for EXPR. This allows us to compute
1730 accurate ranges through many casts. */
1731 if (vr0.type == VR_RANGE
1732 || (vr0.type == VR_VARYING
1733 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
1735 tree new_min, new_max, orig_min, orig_max;
1737 /* Convert the input operand min/max to OUTER_TYPE. If
1738 the input has no range information, then use the min/max
1739 for the input's type. */
1740 if (vr0.type == VR_RANGE)
1742 orig_min = vr0.min;
1743 orig_max = vr0.max;
1745 else
1747 orig_min = TYPE_MIN_VALUE (inner_type);
1748 orig_max = TYPE_MAX_VALUE (inner_type);
1751 new_min = fold_convert (outer_type, orig_min);
1752 new_max = fold_convert (outer_type, orig_max);
1754 /* Verify the new min/max values are gimple values and
1755 that they compare equal to the original input's
1756 min/max values. */
1757 if (is_gimple_val (new_min)
1758 && is_gimple_val (new_max)
1759 && tree_int_cst_equal (new_min, orig_min)
1760 && tree_int_cst_equal (new_max, orig_max)
1761 && compare_values (new_min, new_max) <= 0
1762 && compare_values (new_min, new_max) >= -1)
1764 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
1765 return;
1769 /* When converting types of different sizes, set the result to
1770 VARYING. Things like sign extensions and precision loss may
1771 change the range. For instance, if x_3 is of type 'long long
1772 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1773 is impossible to know at compile time whether y_5 will be
1774 ~[0, 0]. */
1775 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
1776 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1778 set_value_range_to_varying (vr);
1779 return;
1783 /* Conversion of a VR_VARYING value to a wider type can result
1784 in a usable range. So wait until after we've handled conversions
1785 before dropping the result to VR_VARYING if we had a source
1786 operand that is VR_VARYING. */
1787 if (vr0.type == VR_VARYING)
1789 set_value_range_to_varying (vr);
1790 return;
1793 /* Apply the operation to each end of the range and see what we end
1794 up with. */
1795 if (code == NEGATE_EXPR
1796 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1798 /* NEGATE_EXPR flips the range around. We need to treat
1799 TYPE_MIN_VALUE specially dependent on wrapping, range type
1800 and if it was used as minimum or maximum value:
1801 -~[MIN, MIN] == ~[MIN, MIN]
1802 -[MIN, 0] == [0, MAX] for -fno-wrapv
1803 -[MIN, 0] == [0, MIN] for -fwrapv (will be set to varying later) */
1804 min = vr0.max == TYPE_MIN_VALUE (TREE_TYPE (expr))
1805 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1806 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1808 max = vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr))
1809 ? (vr0.type == VR_ANTI_RANGE || flag_wrapv
1810 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1811 : TYPE_MAX_VALUE (TREE_TYPE (expr)))
1812 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1815 else if (code == NEGATE_EXPR
1816 && TYPE_UNSIGNED (TREE_TYPE (expr)))
1818 if (!range_includes_zero_p (&vr0))
1820 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1821 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1823 else
1825 if (range_is_null (&vr0))
1826 set_value_range_to_null (vr, TREE_TYPE (expr));
1827 else
1828 set_value_range_to_varying (vr);
1829 return;
1832 else if (code == ABS_EXPR
1833 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1835 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1836 useful range. */
1837 if (flag_wrapv
1838 && ((vr0.type == VR_RANGE
1839 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1840 || (vr0.type == VR_ANTI_RANGE
1841 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
1842 && !range_includes_zero_p (&vr0))))
1844 set_value_range_to_varying (vr);
1845 return;
1848 /* ABS_EXPR may flip the range around, if the original range
1849 included negative values. */
1850 min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1851 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1852 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1854 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1856 cmp = compare_values (min, max);
1858 /* If a VR_ANTI_RANGEs contains zero, then we have
1859 ~[-INF, min(MIN, MAX)]. */
1860 if (vr0.type == VR_ANTI_RANGE)
1862 if (range_includes_zero_p (&vr0))
1864 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
1866 /* Take the lower of the two values. */
1867 if (cmp != 1)
1868 max = min;
1870 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1871 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1872 flag_wrapv is set and the original anti-range doesn't include
1873 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1874 min = (flag_wrapv && vr0.min != type_min_value
1875 ? int_const_binop (PLUS_EXPR,
1876 type_min_value,
1877 integer_one_node, 0)
1878 : type_min_value);
1880 else
1882 /* All else has failed, so create the range [0, INF], even for
1883 flag_wrapv since TYPE_MIN_VALUE is in the original
1884 anti-range. */
1885 vr0.type = VR_RANGE;
1886 min = build_int_cst (TREE_TYPE (expr), 0);
1887 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
1891 /* If the range contains zero then we know that the minimum value in the
1892 range will be zero. */
1893 else if (range_includes_zero_p (&vr0))
1895 if (cmp == 1)
1896 max = min;
1897 min = build_int_cst (TREE_TYPE (expr), 0);
1899 else
1901 /* If the range was reversed, swap MIN and MAX. */
1902 if (cmp == 1)
1904 tree t = min;
1905 min = max;
1906 max = t;
1910 else
1912 /* Otherwise, operate on each end of the range. */
1913 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1914 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1917 cmp = compare_values (min, max);
1918 if (cmp == -2 || cmp == 1)
1920 /* If the new range has its limits swapped around (MIN > MAX),
1921 then the operation caused one of them to wrap around, mark
1922 the new range VARYING. */
1923 set_value_range_to_varying (vr);
1925 else
1926 set_value_range (vr, vr0.type, min, max, NULL);
1930 /* Extract range information from a comparison expression EXPR based
1931 on the range of its operand and the expression code. */
1933 static void
1934 extract_range_from_comparison (value_range_t *vr, tree expr)
1936 tree val = vrp_evaluate_conditional (expr, false);
1937 if (val)
1939 /* Since this expression was found on the RHS of an assignment,
1940 its type may be different from _Bool. Convert VAL to EXPR's
1941 type. */
1942 val = fold_convert (TREE_TYPE (expr), val);
1943 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
1945 else
1946 set_value_range_to_varying (vr);
1950 /* Try to compute a useful range out of expression EXPR and store it
1951 in *VR. */
1953 static void
1954 extract_range_from_expr (value_range_t *vr, tree expr)
1956 enum tree_code code = TREE_CODE (expr);
1958 if (code == ASSERT_EXPR)
1959 extract_range_from_assert (vr, expr);
1960 else if (code == SSA_NAME)
1961 extract_range_from_ssa_name (vr, expr);
1962 else if (TREE_CODE_CLASS (code) == tcc_binary
1963 || code == TRUTH_ANDIF_EXPR
1964 || code == TRUTH_ORIF_EXPR
1965 || code == TRUTH_AND_EXPR
1966 || code == TRUTH_OR_EXPR
1967 || code == TRUTH_XOR_EXPR)
1968 extract_range_from_binary_expr (vr, expr);
1969 else if (TREE_CODE_CLASS (code) == tcc_unary)
1970 extract_range_from_unary_expr (vr, expr);
1971 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1972 extract_range_from_comparison (vr, expr);
1973 else if (is_gimple_min_invariant (expr))
1974 set_value_range (vr, VR_RANGE, expr, expr, NULL);
1975 else
1976 set_value_range_to_varying (vr);
1978 /* If we got a varying range from the tests above, try a final
1979 time to derive a nonnegative or nonzero range. This time
1980 relying primarily on generic routines in fold in conjunction
1981 with range data. */
1982 if (vr->type == VR_VARYING)
1984 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
1985 && vrp_expr_computes_nonnegative (expr))
1986 set_value_range_to_nonnegative (vr, TREE_TYPE (expr));
1987 else if (vrp_expr_computes_nonzero (expr))
1988 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1992 /* Given a range VR, a LOOP and a variable VAR, determine whether it
1993 would be profitable to adjust VR using scalar evolution information
1994 for VAR. If so, update VR with the new limits. */
1996 static void
1997 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
1998 tree var)
2000 tree init, step, chrec;
2001 enum ev_direction dir;
2003 /* TODO. Don't adjust anti-ranges. An anti-range may provide
2004 better opportunities than a regular range, but I'm not sure. */
2005 if (vr->type == VR_ANTI_RANGE)
2006 return;
2008 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2009 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2010 return;
2012 init = initial_condition_in_loop_num (chrec, loop->num);
2013 step = evolution_part_in_loop_num (chrec, loop->num);
2015 /* If STEP is symbolic, we can't know whether INIT will be the
2016 minimum or maximum value in the range. Also, unless INIT is
2017 a simple expression, compare_values and possibly other functions
2018 in tree-vrp won't be able to handle it. */
2019 if (step == NULL_TREE
2020 || !is_gimple_min_invariant (step)
2021 || !valid_value_p (init))
2022 return;
2024 dir = scev_direction (chrec);
2025 if (/* Do not adjust ranges if we do not know whether the iv increases
2026 or decreases, ... */
2027 dir == EV_DIR_UNKNOWN
2028 /* ... or if it may wrap. */
2029 || scev_probably_wraps_p (init, step, stmt,
2030 current_loops->parray[CHREC_VARIABLE (chrec)],
2031 true))
2032 return;
2034 if (!POINTER_TYPE_P (TREE_TYPE (init))
2035 && (vr->type == VR_VARYING || vr->type == VR_UNDEFINED))
2037 /* For VARYING or UNDEFINED ranges, just about anything we get
2038 from scalar evolutions should be better. */
2039 tree min = TYPE_MIN_VALUE (TREE_TYPE (init));
2040 tree max = TYPE_MAX_VALUE (TREE_TYPE (init));
2042 if (dir == EV_DIR_DECREASES)
2043 max = init;
2044 else
2045 min = init;
2047 /* If we would create an invalid range, then just assume we
2048 know absolutely nothing. This may be over-conservative,
2049 but it's clearly safe. */
2050 if (compare_values (min, max) == 1)
2051 return;
2053 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2055 else if (vr->type == VR_RANGE)
2057 tree min = vr->min;
2058 tree max = vr->max;
2060 if (dir == EV_DIR_DECREASES)
2062 /* INIT is the maximum value. If INIT is lower than VR->MAX
2063 but no smaller than VR->MIN, set VR->MAX to INIT. */
2064 if (compare_values (init, max) == -1)
2066 max = init;
2068 /* If we just created an invalid range with the minimum
2069 greater than the maximum, take the minimum all the
2070 way to -INF. */
2071 if (compare_values (min, max) == 1)
2072 min = TYPE_MIN_VALUE (TREE_TYPE (min));
2075 else
2077 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2078 if (compare_values (init, min) == 1)
2080 min = init;
2082 /* If we just created an invalid range with the minimum
2083 greater than the maximum, take the maximum all the
2084 way to +INF. */
2085 if (compare_values (min, max) == 1)
2086 max = TYPE_MAX_VALUE (TREE_TYPE (max));
2090 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2095 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2097 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2098 all the values in the ranges.
2100 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2102 - Return NULL_TREE if it is not always possible to determine the
2103 value of the comparison. */
2106 static tree
2107 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
2109 /* VARYING or UNDEFINED ranges cannot be compared. */
2110 if (vr0->type == VR_VARYING
2111 || vr0->type == VR_UNDEFINED
2112 || vr1->type == VR_VARYING
2113 || vr1->type == VR_UNDEFINED)
2114 return NULL_TREE;
2116 /* Anti-ranges need to be handled separately. */
2117 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2119 /* If both are anti-ranges, then we cannot compute any
2120 comparison. */
2121 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2122 return NULL_TREE;
2124 /* These comparisons are never statically computable. */
2125 if (comp == GT_EXPR
2126 || comp == GE_EXPR
2127 || comp == LT_EXPR
2128 || comp == LE_EXPR)
2129 return NULL_TREE;
2131 /* Equality can be computed only between a range and an
2132 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2133 if (vr0->type == VR_RANGE)
2135 /* To simplify processing, make VR0 the anti-range. */
2136 value_range_t *tmp = vr0;
2137 vr0 = vr1;
2138 vr1 = tmp;
2141 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2143 if (compare_values (vr0->min, vr1->min) == 0
2144 && compare_values (vr0->max, vr1->max) == 0)
2145 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2147 return NULL_TREE;
2150 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2151 operands around and change the comparison code. */
2152 if (comp == GT_EXPR || comp == GE_EXPR)
2154 value_range_t *tmp;
2155 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2156 tmp = vr0;
2157 vr0 = vr1;
2158 vr1 = tmp;
2161 if (comp == EQ_EXPR)
2163 /* Equality may only be computed if both ranges represent
2164 exactly one value. */
2165 if (compare_values (vr0->min, vr0->max) == 0
2166 && compare_values (vr1->min, vr1->max) == 0)
2168 int cmp_min = compare_values (vr0->min, vr1->min);
2169 int cmp_max = compare_values (vr0->max, vr1->max);
2170 if (cmp_min == 0 && cmp_max == 0)
2171 return boolean_true_node;
2172 else if (cmp_min != -2 && cmp_max != -2)
2173 return boolean_false_node;
2175 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2176 else if (compare_values (vr0->min, vr1->max) == 1
2177 || compare_values (vr1->min, vr0->max) == 1)
2178 return boolean_false_node;
2180 return NULL_TREE;
2182 else if (comp == NE_EXPR)
2184 int cmp1, cmp2;
2186 /* If VR0 is completely to the left or completely to the right
2187 of VR1, they are always different. Notice that we need to
2188 make sure that both comparisons yield similar results to
2189 avoid comparing values that cannot be compared at
2190 compile-time. */
2191 cmp1 = compare_values (vr0->max, vr1->min);
2192 cmp2 = compare_values (vr0->min, vr1->max);
2193 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2194 return boolean_true_node;
2196 /* If VR0 and VR1 represent a single value and are identical,
2197 return false. */
2198 else if (compare_values (vr0->min, vr0->max) == 0
2199 && compare_values (vr1->min, vr1->max) == 0
2200 && compare_values (vr0->min, vr1->min) == 0
2201 && compare_values (vr0->max, vr1->max) == 0)
2202 return boolean_false_node;
2204 /* Otherwise, they may or may not be different. */
2205 else
2206 return NULL_TREE;
2208 else if (comp == LT_EXPR || comp == LE_EXPR)
2210 int tst;
2212 /* If VR0 is to the left of VR1, return true. */
2213 tst = compare_values (vr0->max, vr1->min);
2214 if ((comp == LT_EXPR && tst == -1)
2215 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2216 return boolean_true_node;
2218 /* If VR0 is to the right of VR1, return false. */
2219 tst = compare_values (vr0->min, vr1->max);
2220 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2221 || (comp == LE_EXPR && tst == 1))
2222 return boolean_false_node;
2224 /* Otherwise, we don't know. */
2225 return NULL_TREE;
2228 gcc_unreachable ();
2232 /* Given a value range VR, a value VAL and a comparison code COMP, return
2233 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2234 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2235 always returns false. Return NULL_TREE if it is not always
2236 possible to determine the value of the comparison. */
2238 static tree
2239 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
2241 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2242 return NULL_TREE;
2244 /* Anti-ranges need to be handled separately. */
2245 if (vr->type == VR_ANTI_RANGE)
2247 /* For anti-ranges, the only predicates that we can compute at
2248 compile time are equality and inequality. */
2249 if (comp == GT_EXPR
2250 || comp == GE_EXPR
2251 || comp == LT_EXPR
2252 || comp == LE_EXPR)
2253 return NULL_TREE;
2255 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2256 if (value_inside_range (val, vr) == 1)
2257 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2259 return NULL_TREE;
2262 if (comp == EQ_EXPR)
2264 /* EQ_EXPR may only be computed if VR represents exactly
2265 one value. */
2266 if (compare_values (vr->min, vr->max) == 0)
2268 int cmp = compare_values (vr->min, val);
2269 if (cmp == 0)
2270 return boolean_true_node;
2271 else if (cmp == -1 || cmp == 1 || cmp == 2)
2272 return boolean_false_node;
2274 else if (compare_values (val, vr->min) == -1
2275 || compare_values (vr->max, val) == -1)
2276 return boolean_false_node;
2278 return NULL_TREE;
2280 else if (comp == NE_EXPR)
2282 /* If VAL is not inside VR, then they are always different. */
2283 if (compare_values (vr->max, val) == -1
2284 || compare_values (vr->min, val) == 1)
2285 return boolean_true_node;
2287 /* If VR represents exactly one value equal to VAL, then return
2288 false. */
2289 if (compare_values (vr->min, vr->max) == 0
2290 && compare_values (vr->min, val) == 0)
2291 return boolean_false_node;
2293 /* Otherwise, they may or may not be different. */
2294 return NULL_TREE;
2296 else if (comp == LT_EXPR || comp == LE_EXPR)
2298 int tst;
2300 /* If VR is to the left of VAL, return true. */
2301 tst = compare_values (vr->max, val);
2302 if ((comp == LT_EXPR && tst == -1)
2303 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2304 return boolean_true_node;
2306 /* If VR is to the right of VAL, return false. */
2307 tst = compare_values (vr->min, val);
2308 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2309 || (comp == LE_EXPR && tst == 1))
2310 return boolean_false_node;
2312 /* Otherwise, we don't know. */
2313 return NULL_TREE;
2315 else if (comp == GT_EXPR || comp == GE_EXPR)
2317 int tst;
2319 /* If VR is to the right of VAL, return true. */
2320 tst = compare_values (vr->min, val);
2321 if ((comp == GT_EXPR && tst == 1)
2322 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2323 return boolean_true_node;
2325 /* If VR is to the left of VAL, return false. */
2326 tst = compare_values (vr->max, val);
2327 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2328 || (comp == GE_EXPR && tst == -1))
2329 return boolean_false_node;
2331 /* Otherwise, we don't know. */
2332 return NULL_TREE;
2335 gcc_unreachable ();
2339 /* Debugging dumps. */
2341 void dump_value_range (FILE *, value_range_t *);
2342 void debug_value_range (value_range_t *);
2343 void dump_all_value_ranges (FILE *);
2344 void debug_all_value_ranges (void);
2345 void dump_vr_equiv (FILE *, bitmap);
2346 void debug_vr_equiv (bitmap);
2349 /* Dump value range VR to FILE. */
2351 void
2352 dump_value_range (FILE *file, value_range_t *vr)
2354 if (vr == NULL)
2355 fprintf (file, "[]");
2356 else if (vr->type == VR_UNDEFINED)
2357 fprintf (file, "UNDEFINED");
2358 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2360 tree type = TREE_TYPE (vr->min);
2362 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2364 if (INTEGRAL_TYPE_P (type)
2365 && !TYPE_UNSIGNED (type)
2366 && vr->min == TYPE_MIN_VALUE (type))
2367 fprintf (file, "-INF");
2368 else
2369 print_generic_expr (file, vr->min, 0);
2371 fprintf (file, ", ");
2373 if (INTEGRAL_TYPE_P (type)
2374 && vr->max == TYPE_MAX_VALUE (type))
2375 fprintf (file, "+INF");
2376 else
2377 print_generic_expr (file, vr->max, 0);
2379 fprintf (file, "]");
2381 if (vr->equiv)
2383 bitmap_iterator bi;
2384 unsigned i, c = 0;
2386 fprintf (file, " EQUIVALENCES: { ");
2388 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2390 print_generic_expr (file, ssa_name (i), 0);
2391 fprintf (file, " ");
2392 c++;
2395 fprintf (file, "} (%u elements)", c);
2398 else if (vr->type == VR_VARYING)
2399 fprintf (file, "VARYING");
2400 else
2401 fprintf (file, "INVALID RANGE");
2405 /* Dump value range VR to stderr. */
2407 void
2408 debug_value_range (value_range_t *vr)
2410 dump_value_range (stderr, vr);
2414 /* Dump value ranges of all SSA_NAMEs to FILE. */
2416 void
2417 dump_all_value_ranges (FILE *file)
2419 size_t i;
2421 for (i = 0; i < num_ssa_names; i++)
2423 if (vr_value[i])
2425 print_generic_expr (file, ssa_name (i), 0);
2426 fprintf (file, ": ");
2427 dump_value_range (file, vr_value[i]);
2428 fprintf (file, "\n");
2432 fprintf (file, "\n");
2436 /* Dump all value ranges to stderr. */
2438 void
2439 debug_all_value_ranges (void)
2441 dump_all_value_ranges (stderr);
2445 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2446 create a new SSA name N and return the assertion assignment
2447 'V = ASSERT_EXPR <V, V OP W>'. */
2449 static tree
2450 build_assert_expr_for (tree cond, tree v)
2452 tree n, assertion;
2454 gcc_assert (TREE_CODE (v) == SSA_NAME);
2455 n = duplicate_ssa_name (v, NULL_TREE);
2457 if (COMPARISON_CLASS_P (cond))
2459 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2460 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, a);
2462 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
2464 /* Given !V, build the assignment N = false. */
2465 tree op0 = TREE_OPERAND (cond, 0);
2466 gcc_assert (op0 == v);
2467 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
2469 else if (TREE_CODE (cond) == SSA_NAME)
2471 /* Given V, build the assignment N = true. */
2472 gcc_assert (v == cond);
2473 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
2475 else
2476 gcc_unreachable ();
2478 SSA_NAME_DEF_STMT (n) = assertion;
2480 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2481 operand of the ASSERT_EXPR. Register the new name and the old one
2482 in the replacement table so that we can fix the SSA web after
2483 adding all the ASSERT_EXPRs. */
2484 register_new_name_mapping (n, v);
2486 return assertion;
2490 /* Return false if EXPR is a predicate expression involving floating
2491 point values. */
2493 static inline bool
2494 fp_predicate (tree expr)
2496 return (COMPARISON_CLASS_P (expr)
2497 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
2501 /* If the range of values taken by OP can be inferred after STMT executes,
2502 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2503 describes the inferred range. Return true if a range could be
2504 inferred. */
2506 static bool
2507 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
2509 *val_p = NULL_TREE;
2510 *comp_code_p = ERROR_MARK;
2512 /* Do not attempt to infer anything in names that flow through
2513 abnormal edges. */
2514 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2515 return false;
2517 /* Similarly, don't infer anything from statements that may throw
2518 exceptions. */
2519 if (tree_could_throw_p (stmt))
2520 return false;
2522 /* If STMT is the last statement of a basic block with no
2523 successors, there is no point inferring anything about any of its
2524 operands. We would not be able to find a proper insertion point
2525 for the assertion, anyway. */
2526 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
2527 return false;
2529 /* We can only assume that a pointer dereference will yield
2530 non-NULL if -fdelete-null-pointer-checks is enabled. */
2531 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
2533 bool is_store;
2534 unsigned num_uses, num_derefs;
2536 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
2537 if (num_derefs > 0)
2539 *val_p = build_int_cst (TREE_TYPE (op), 0);
2540 *comp_code_p = NE_EXPR;
2541 return true;
2545 return false;
2549 void dump_asserts_for (FILE *, tree);
2550 void debug_asserts_for (tree);
2551 void dump_all_asserts (FILE *);
2552 void debug_all_asserts (void);
2554 /* Dump all the registered assertions for NAME to FILE. */
2556 void
2557 dump_asserts_for (FILE *file, tree name)
2559 assert_locus_t loc;
2561 fprintf (file, "Assertions to be inserted for ");
2562 print_generic_expr (file, name, 0);
2563 fprintf (file, "\n");
2565 loc = asserts_for[SSA_NAME_VERSION (name)];
2566 while (loc)
2568 fprintf (file, "\t");
2569 print_generic_expr (file, bsi_stmt (loc->si), 0);
2570 fprintf (file, "\n\tBB #%d", loc->bb->index);
2571 if (loc->e)
2573 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2574 loc->e->dest->index);
2575 dump_edge_info (file, loc->e, 0);
2577 fprintf (file, "\n\tPREDICATE: ");
2578 print_generic_expr (file, name, 0);
2579 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
2580 print_generic_expr (file, loc->val, 0);
2581 fprintf (file, "\n\n");
2582 loc = loc->next;
2585 fprintf (file, "\n");
2589 /* Dump all the registered assertions for NAME to stderr. */
2591 void
2592 debug_asserts_for (tree name)
2594 dump_asserts_for (stderr, name);
2598 /* Dump all the registered assertions for all the names to FILE. */
2600 void
2601 dump_all_asserts (FILE *file)
2603 unsigned i;
2604 bitmap_iterator bi;
2606 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2607 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2608 dump_asserts_for (file, ssa_name (i));
2609 fprintf (file, "\n");
2613 /* Dump all the registered assertions for all the names to stderr. */
2615 void
2616 debug_all_asserts (void)
2618 dump_all_asserts (stderr);
2622 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2623 'NAME COMP_CODE VAL' at a location that dominates block BB or
2624 E->DEST, then register this location as a possible insertion point
2625 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2627 BB, E and SI provide the exact insertion point for the new
2628 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2629 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2630 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2631 must not be NULL. */
2633 static void
2634 register_new_assert_for (tree name,
2635 enum tree_code comp_code,
2636 tree val,
2637 basic_block bb,
2638 edge e,
2639 block_stmt_iterator si)
2641 assert_locus_t n, loc, last_loc;
2642 bool found;
2643 basic_block dest_bb;
2645 #if defined ENABLE_CHECKING
2646 gcc_assert (bb == NULL || e == NULL);
2648 if (e == NULL)
2649 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
2650 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
2651 #endif
2653 /* The new assertion A will be inserted at BB or E. We need to
2654 determine if the new location is dominated by a previously
2655 registered location for A. If we are doing an edge insertion,
2656 assume that A will be inserted at E->DEST. Note that this is not
2657 necessarily true.
2659 If E is a critical edge, it will be split. But even if E is
2660 split, the new block will dominate the same set of blocks that
2661 E->DEST dominates.
2663 The reverse, however, is not true, blocks dominated by E->DEST
2664 will not be dominated by the new block created to split E. So,
2665 if the insertion location is on a critical edge, we will not use
2666 the new location to move another assertion previously registered
2667 at a block dominated by E->DEST. */
2668 dest_bb = (bb) ? bb : e->dest;
2670 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2671 VAL at a block dominating DEST_BB, then we don't need to insert a new
2672 one. Similarly, if the same assertion already exists at a block
2673 dominated by DEST_BB and the new location is not on a critical
2674 edge, then update the existing location for the assertion (i.e.,
2675 move the assertion up in the dominance tree).
2677 Note, this is implemented as a simple linked list because there
2678 should not be more than a handful of assertions registered per
2679 name. If this becomes a performance problem, a table hashed by
2680 COMP_CODE and VAL could be implemented. */
2681 loc = asserts_for[SSA_NAME_VERSION (name)];
2682 last_loc = loc;
2683 found = false;
2684 while (loc)
2686 if (loc->comp_code == comp_code
2687 && (loc->val == val
2688 || operand_equal_p (loc->val, val, 0)))
2690 /* If the assertion NAME COMP_CODE VAL has already been
2691 registered at a basic block that dominates DEST_BB, then
2692 we don't need to insert the same assertion again. Note
2693 that we don't check strict dominance here to avoid
2694 replicating the same assertion inside the same basic
2695 block more than once (e.g., when a pointer is
2696 dereferenced several times inside a block).
2698 An exception to this rule are edge insertions. If the
2699 new assertion is to be inserted on edge E, then it will
2700 dominate all the other insertions that we may want to
2701 insert in DEST_BB. So, if we are doing an edge
2702 insertion, don't do this dominance check. */
2703 if (e == NULL
2704 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
2705 return;
2707 /* Otherwise, if E is not a critical edge and DEST_BB
2708 dominates the existing location for the assertion, move
2709 the assertion up in the dominance tree by updating its
2710 location information. */
2711 if ((e == NULL || !EDGE_CRITICAL_P (e))
2712 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2714 loc->bb = dest_bb;
2715 loc->e = e;
2716 loc->si = si;
2717 return;
2721 /* Update the last node of the list and move to the next one. */
2722 last_loc = loc;
2723 loc = loc->next;
2726 /* If we didn't find an assertion already registered for
2727 NAME COMP_CODE VAL, add a new one at the end of the list of
2728 assertions associated with NAME. */
2729 n = XNEW (struct assert_locus_d);
2730 n->bb = dest_bb;
2731 n->e = e;
2732 n->si = si;
2733 n->comp_code = comp_code;
2734 n->val = val;
2735 n->next = NULL;
2737 if (last_loc)
2738 last_loc->next = n;
2739 else
2740 asserts_for[SSA_NAME_VERSION (name)] = n;
2742 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2746 /* Try to register an edge assertion for SSA name NAME on edge E for
2747 the conditional jump pointed to by SI. Return true if an assertion
2748 for NAME could be registered. */
2750 static bool
2751 register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
2753 tree val, stmt;
2754 enum tree_code comp_code;
2756 stmt = bsi_stmt (si);
2758 /* Do not attempt to infer anything in names that flow through
2759 abnormal edges. */
2760 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2761 return false;
2763 /* If NAME was not found in the sub-graph reachable from E, then
2764 there's nothing to do. */
2765 if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
2766 return false;
2768 /* We found a use of NAME in the sub-graph rooted at E->DEST.
2769 Register an assertion for NAME according to the value that NAME
2770 takes on edge E. */
2771 if (TREE_CODE (stmt) == COND_EXPR)
2773 /* If BB ends in a COND_EXPR then NAME then we should insert
2774 the original predicate on EDGE_TRUE_VALUE and the
2775 opposite predicate on EDGE_FALSE_VALUE. */
2776 tree cond = COND_EXPR_COND (stmt);
2777 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
2779 /* Predicates may be a single SSA name or NAME OP VAL. */
2780 if (cond == name)
2782 /* If the predicate is a name, it must be NAME, in which
2783 case we create the predicate NAME == true or
2784 NAME == false accordingly. */
2785 comp_code = EQ_EXPR;
2786 val = (is_else_edge) ? boolean_false_node : boolean_true_node;
2788 else
2790 /* Otherwise, we have a comparison of the form NAME COMP VAL
2791 or VAL COMP NAME. */
2792 if (name == TREE_OPERAND (cond, 1))
2794 /* If the predicate is of the form VAL COMP NAME, flip
2795 COMP around because we need to register NAME as the
2796 first operand in the predicate. */
2797 comp_code = swap_tree_comparison (TREE_CODE (cond));
2798 val = TREE_OPERAND (cond, 0);
2800 else
2802 /* The comparison is of the form NAME COMP VAL, so the
2803 comparison code remains unchanged. */
2804 comp_code = TREE_CODE (cond);
2805 val = TREE_OPERAND (cond, 1);
2808 /* If we are inserting the assertion on the ELSE edge, we
2809 need to invert the sign comparison. */
2810 if (is_else_edge)
2811 comp_code = invert_tree_comparison (comp_code, 0);
2813 /* Do not register always-false predicates. FIXME, this
2814 works around a limitation in fold() when dealing with
2815 enumerations. Given 'enum { N1, N2 } x;', fold will not
2816 fold 'if (x > N2)' to 'if (0)'. */
2817 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2818 && (INTEGRAL_TYPE_P (TREE_TYPE (val))
2819 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
2821 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2822 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2824 if (comp_code == GT_EXPR && compare_values (val, max) == 0)
2825 return false;
2827 if (comp_code == LT_EXPR && compare_values (val, min) == 0)
2828 return false;
2832 else
2834 /* FIXME. Handle SWITCH_EXPR. */
2835 gcc_unreachable ();
2838 register_new_assert_for (name, comp_code, val, NULL, e, si);
2839 return true;
2843 static bool find_assert_locations (basic_block bb);
2845 /* Determine whether the outgoing edges of BB should receive an
2846 ASSERT_EXPR for each of the operands of BB's last statement. The
2847 last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2849 If any of the sub-graphs rooted at BB have an interesting use of
2850 the predicate operands, an assert location node is added to the
2851 list of assertions for the corresponding operands. */
2853 static bool
2854 find_conditional_asserts (basic_block bb)
2856 bool need_assert;
2857 block_stmt_iterator last_si;
2858 tree op, last;
2859 edge_iterator ei;
2860 edge e;
2861 ssa_op_iter iter;
2863 need_assert = false;
2864 last_si = bsi_last (bb);
2865 last = bsi_stmt (last_si);
2867 /* Look for uses of the operands in each of the sub-graphs
2868 rooted at BB. We need to check each of the outgoing edges
2869 separately, so that we know what kind of ASSERT_EXPR to
2870 insert. */
2871 FOR_EACH_EDGE (e, ei, bb->succs)
2873 if (e->dest == bb)
2874 continue;
2876 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
2877 Otherwise, when we finish traversing each of the sub-graphs, we
2878 won't know whether the variables were found in the sub-graphs or
2879 if they had been found in a block upstream from BB.
2881 This is actually a bad idea is some cases, particularly jump
2882 threading. Consider a CFG like the following:
2892 Assume that one or more operands in the conditional at the
2893 end of block 0 are used in a conditional in block 2, but not
2894 anywhere in block 1. In this case we will not insert any
2895 assert statements in block 1, which may cause us to miss
2896 opportunities to optimize, particularly for jump threading. */
2897 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2898 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2900 /* Traverse the strictly dominated sub-graph rooted at E->DEST
2901 to determine if any of the operands in the conditional
2902 predicate are used. */
2903 if (e->dest != bb)
2904 need_assert |= find_assert_locations (e->dest);
2906 /* Register the necessary assertions for each operand in the
2907 conditional predicate. */
2908 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2909 need_assert |= register_edge_assert_for (op, e, last_si);
2912 /* Finally, indicate that we have found the operands in the
2913 conditional. */
2914 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2915 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2917 return need_assert;
2921 /* Traverse all the statements in block BB looking for statements that
2922 may generate useful assertions for the SSA names in their operand.
2923 If a statement produces a useful assertion A for name N_i, then the
2924 list of assertions already generated for N_i is scanned to
2925 determine if A is actually needed.
2927 If N_i already had the assertion A at a location dominating the
2928 current location, then nothing needs to be done. Otherwise, the
2929 new location for A is recorded instead.
2931 1- For every statement S in BB, all the variables used by S are
2932 added to bitmap FOUND_IN_SUBGRAPH.
2934 2- If statement S uses an operand N in a way that exposes a known
2935 value range for N, then if N was not already generated by an
2936 ASSERT_EXPR, create a new assert location for N. For instance,
2937 if N is a pointer and the statement dereferences it, we can
2938 assume that N is not NULL.
2940 3- COND_EXPRs are a special case of #2. We can derive range
2941 information from the predicate but need to insert different
2942 ASSERT_EXPRs for each of the sub-graphs rooted at the
2943 conditional block. If the last statement of BB is a conditional
2944 expression of the form 'X op Y', then
2946 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
2948 b) If the conditional is the only entry point to the sub-graph
2949 corresponding to the THEN_CLAUSE, recurse into it. On
2950 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
2951 an ASSERT_EXPR is added for the corresponding variable.
2953 c) Repeat step (b) on the ELSE_CLAUSE.
2955 d) Mark X and Y in FOUND_IN_SUBGRAPH.
2957 For instance,
2959 if (a == 9)
2960 b = a;
2961 else
2962 b = c + 1;
2964 In this case, an assertion on the THEN clause is useful to
2965 determine that 'a' is always 9 on that edge. However, an assertion
2966 on the ELSE clause would be unnecessary.
2968 4- If BB does not end in a conditional expression, then we recurse
2969 into BB's dominator children.
2971 At the end of the recursive traversal, every SSA name will have a
2972 list of locations where ASSERT_EXPRs should be added. When a new
2973 location for name N is found, it is registered by calling
2974 register_new_assert_for. That function keeps track of all the
2975 registered assertions to prevent adding unnecessary assertions.
2976 For instance, if a pointer P_4 is dereferenced more than once in a
2977 dominator tree, only the location dominating all the dereference of
2978 P_4 will receive an ASSERT_EXPR.
2980 If this function returns true, then it means that there are names
2981 for which we need to generate ASSERT_EXPRs. Those assertions are
2982 inserted by process_assert_insertions.
2984 TODO. Handle SWITCH_EXPR. */
2986 static bool
2987 find_assert_locations (basic_block bb)
2989 block_stmt_iterator si;
2990 tree last, phi;
2991 bool need_assert;
2992 basic_block son;
2994 if (TEST_BIT (blocks_visited, bb->index))
2995 return false;
2997 SET_BIT (blocks_visited, bb->index);
2999 need_assert = false;
3001 /* Traverse all PHI nodes in BB marking used operands. */
3002 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3004 use_operand_p arg_p;
3005 ssa_op_iter i;
3007 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3009 tree arg = USE_FROM_PTR (arg_p);
3010 if (TREE_CODE (arg) == SSA_NAME)
3012 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
3013 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
3018 /* Traverse all the statements in BB marking used names and looking
3019 for statements that may infer assertions for their used operands. */
3020 last = NULL_TREE;
3021 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3023 tree stmt, op;
3024 ssa_op_iter i;
3026 stmt = bsi_stmt (si);
3028 /* See if we can derive an assertion for any of STMT's operands. */
3029 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3031 tree value;
3032 enum tree_code comp_code;
3034 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
3035 the sub-graph of a conditional block, when we return from
3036 this recursive walk, our parent will use the
3037 FOUND_IN_SUBGRAPH bitset to determine if one of the
3038 operands it was looking for was present in the sub-graph. */
3039 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3041 /* If OP is used in such a way that we can infer a value
3042 range for it, and we don't find a previous assertion for
3043 it, create a new assertion location node for OP. */
3044 if (infer_value_range (stmt, op, &comp_code, &value))
3046 /* If we are able to infer a nonzero value range for OP,
3047 then walk backwards through the use-def chain to see if OP
3048 was set via a typecast.
3050 If so, then we can also infer a nonzero value range
3051 for the operand of the NOP_EXPR. */
3052 if (comp_code == NE_EXPR && integer_zerop (value))
3054 tree t = op;
3055 tree def_stmt = SSA_NAME_DEF_STMT (t);
3057 while (TREE_CODE (def_stmt) == MODIFY_EXPR
3058 && TREE_CODE (TREE_OPERAND (def_stmt, 1)) == NOP_EXPR
3059 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0)) == SSA_NAME
3060 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0))))
3062 t = TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0);
3063 def_stmt = SSA_NAME_DEF_STMT (t);
3065 /* Note we want to register the assert for the
3066 operand of the NOP_EXPR after SI, not after the
3067 conversion. */
3068 if (! has_single_use (t))
3070 register_new_assert_for (t, comp_code, value,
3071 bb, NULL, si);
3072 need_assert = true;
3077 /* If OP is used only once, namely in this STMT, don't
3078 bother creating an ASSERT_EXPR for it. Such an
3079 ASSERT_EXPR would do nothing but increase compile time. */
3080 if (!has_single_use (op))
3082 register_new_assert_for (op, comp_code, value, bb, NULL, si);
3083 need_assert = true;
3088 /* Remember the last statement of the block. */
3089 last = stmt;
3092 /* If BB's last statement is a conditional expression
3093 involving integer operands, recurse into each of the sub-graphs
3094 rooted at BB to determine if we need to add ASSERT_EXPRs. */
3095 if (last
3096 && TREE_CODE (last) == COND_EXPR
3097 && !fp_predicate (COND_EXPR_COND (last))
3098 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3099 need_assert |= find_conditional_asserts (bb);
3101 /* Recurse into the dominator children of BB. */
3102 for (son = first_dom_son (CDI_DOMINATORS, bb);
3103 son;
3104 son = next_dom_son (CDI_DOMINATORS, son))
3105 need_assert |= find_assert_locations (son);
3107 return need_assert;
3111 /* Create an ASSERT_EXPR for NAME and insert it in the location
3112 indicated by LOC. Return true if we made any edge insertions. */
3114 static bool
3115 process_assert_insertions_for (tree name, assert_locus_t loc)
3117 /* Build the comparison expression NAME_i COMP_CODE VAL. */
3118 tree stmt, cond, assert_expr;
3119 edge_iterator ei;
3120 edge e;
3122 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
3123 assert_expr = build_assert_expr_for (cond, name);
3125 if (loc->e)
3127 /* We have been asked to insert the assertion on an edge. This
3128 is used only by COND_EXPR and SWITCH_EXPR assertions. */
3129 #if defined ENABLE_CHECKING
3130 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
3131 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
3132 #endif
3134 bsi_insert_on_edge (loc->e, assert_expr);
3135 return true;
3138 /* Otherwise, we can insert right after LOC->SI iff the
3139 statement must not be the last statement in the block. */
3140 stmt = bsi_stmt (loc->si);
3141 if (!stmt_ends_bb_p (stmt))
3143 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
3144 return false;
3147 /* If STMT must be the last statement in BB, we can only insert new
3148 assertions on the non-abnormal edge out of BB. Note that since
3149 STMT is not control flow, there may only be one non-abnormal edge
3150 out of BB. */
3151 FOR_EACH_EDGE (e, ei, loc->bb->succs)
3152 if (!(e->flags & EDGE_ABNORMAL))
3154 bsi_insert_on_edge (e, assert_expr);
3155 return true;
3158 gcc_unreachable ();
3162 /* Process all the insertions registered for every name N_i registered
3163 in NEED_ASSERT_FOR. The list of assertions to be inserted are
3164 found in ASSERTS_FOR[i]. */
3166 static void
3167 process_assert_insertions (void)
3169 unsigned i;
3170 bitmap_iterator bi;
3171 bool update_edges_p = false;
3172 int num_asserts = 0;
3174 if (dump_file && (dump_flags & TDF_DETAILS))
3175 dump_all_asserts (dump_file);
3177 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3179 assert_locus_t loc = asserts_for[i];
3180 gcc_assert (loc);
3182 while (loc)
3184 assert_locus_t next = loc->next;
3185 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
3186 free (loc);
3187 loc = next;
3188 num_asserts++;
3192 if (update_edges_p)
3193 bsi_commit_edge_inserts ();
3195 if (dump_file && (dump_flags & TDF_STATS))
3196 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3197 num_asserts);
3201 /* Traverse the flowgraph looking for conditional jumps to insert range
3202 expressions. These range expressions are meant to provide information
3203 to optimizations that need to reason in terms of value ranges. They
3204 will not be expanded into RTL. For instance, given:
3206 x = ...
3207 y = ...
3208 if (x < y)
3209 y = x - 2;
3210 else
3211 x = y + 3;
3213 this pass will transform the code into:
3215 x = ...
3216 y = ...
3217 if (x < y)
3219 x = ASSERT_EXPR <x, x < y>
3220 y = x - 2
3222 else
3224 y = ASSERT_EXPR <y, x <= y>
3225 x = y + 3
3228 The idea is that once copy and constant propagation have run, other
3229 optimizations will be able to determine what ranges of values can 'x'
3230 take in different paths of the code, simply by checking the reaching
3231 definition of 'x'. */
3233 static void
3234 insert_range_assertions (void)
3236 edge e;
3237 edge_iterator ei;
3238 bool update_ssa_p;
3240 found_in_subgraph = sbitmap_alloc (num_ssa_names);
3241 sbitmap_zero (found_in_subgraph);
3243 blocks_visited = sbitmap_alloc (last_basic_block);
3244 sbitmap_zero (blocks_visited);
3246 need_assert_for = BITMAP_ALLOC (NULL);
3247 asserts_for = XNEWVEC (assert_locus_t, num_ssa_names);
3248 memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
3250 calculate_dominance_info (CDI_DOMINATORS);
3252 update_ssa_p = false;
3253 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3254 if (find_assert_locations (e->dest))
3255 update_ssa_p = true;
3257 if (update_ssa_p)
3259 process_assert_insertions ();
3260 update_ssa (TODO_update_ssa_no_phi);
3263 if (dump_file && (dump_flags & TDF_DETAILS))
3265 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
3266 dump_function_to_file (current_function_decl, dump_file, dump_flags);
3269 sbitmap_free (found_in_subgraph);
3270 free (asserts_for);
3271 BITMAP_FREE (need_assert_for);
3275 /* Convert range assertion expressions into the implied copies and
3276 copy propagate away the copies. Doing the trivial copy propagation
3277 here avoids the need to run the full copy propagation pass after
3278 VRP.
3280 FIXME, this will eventually lead to copy propagation removing the
3281 names that had useful range information attached to them. For
3282 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3283 then N_i will have the range [3, +INF].
3285 However, by converting the assertion into the implied copy
3286 operation N_i = N_j, we will then copy-propagate N_j into the uses
3287 of N_i and lose the range information. We may want to hold on to
3288 ASSERT_EXPRs a little while longer as the ranges could be used in
3289 things like jump threading.
3291 The problem with keeping ASSERT_EXPRs around is that passes after
3292 VRP need to handle them appropriately.
3294 Another approach would be to make the range information a first
3295 class property of the SSA_NAME so that it can be queried from
3296 any pass. This is made somewhat more complex by the need for
3297 multiple ranges to be associated with one SSA_NAME. */
3299 static void
3300 remove_range_assertions (void)
3302 basic_block bb;
3303 block_stmt_iterator si;
3305 /* Note that the BSI iterator bump happens at the bottom of the
3306 loop and no bump is necessary if we're removing the statement
3307 referenced by the current BSI. */
3308 FOR_EACH_BB (bb)
3309 for (si = bsi_start (bb); !bsi_end_p (si);)
3311 tree stmt = bsi_stmt (si);
3312 tree use_stmt;
3314 if (TREE_CODE (stmt) == MODIFY_EXPR
3315 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
3317 tree rhs = TREE_OPERAND (stmt, 1), var;
3318 tree cond = fold (ASSERT_EXPR_COND (rhs));
3319 use_operand_p use_p;
3320 imm_use_iterator iter;
3322 gcc_assert (cond != boolean_false_node);
3324 /* Propagate the RHS into every use of the LHS. */
3325 var = ASSERT_EXPR_VAR (rhs);
3326 FOR_EACH_IMM_USE_STMT (use_stmt, iter, TREE_OPERAND (stmt, 0))
3327 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3329 SET_USE (use_p, var);
3330 gcc_assert (TREE_CODE (var) == SSA_NAME);
3333 /* And finally, remove the copy, it is not needed. */
3334 bsi_remove (&si, true);
3336 else
3337 bsi_next (&si);
3340 sbitmap_free (blocks_visited);
3344 /* Return true if STMT is interesting for VRP. */
3346 static bool
3347 stmt_interesting_for_vrp (tree stmt)
3349 if (TREE_CODE (stmt) == PHI_NODE
3350 && is_gimple_reg (PHI_RESULT (stmt))
3351 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3352 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3353 return true;
3354 else if (TREE_CODE (stmt) == MODIFY_EXPR)
3356 tree lhs = TREE_OPERAND (stmt, 0);
3357 tree rhs = TREE_OPERAND (stmt, 1);
3359 /* In general, assignments with virtual operands are not useful
3360 for deriving ranges, with the obvious exception of calls to
3361 builtin functions. */
3362 if (TREE_CODE (lhs) == SSA_NAME
3363 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3364 || POINTER_TYPE_P (TREE_TYPE (lhs)))
3365 && ((TREE_CODE (rhs) == CALL_EXPR
3366 && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3367 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3368 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3369 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
3370 return true;
3372 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3373 return true;
3375 return false;
3379 /* Initialize local data structures for VRP. */
3381 static void
3382 vrp_initialize (void)
3384 basic_block bb;
3386 vr_value = XNEWVEC (value_range_t *, num_ssa_names);
3387 memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
3389 FOR_EACH_BB (bb)
3391 block_stmt_iterator si;
3392 tree phi;
3394 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3396 if (!stmt_interesting_for_vrp (phi))
3398 tree lhs = PHI_RESULT (phi);
3399 set_value_range_to_varying (get_value_range (lhs));
3400 DONT_SIMULATE_AGAIN (phi) = true;
3402 else
3403 DONT_SIMULATE_AGAIN (phi) = false;
3406 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3408 tree stmt = bsi_stmt (si);
3410 if (!stmt_interesting_for_vrp (stmt))
3412 ssa_op_iter i;
3413 tree def;
3414 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
3415 set_value_range_to_varying (get_value_range (def));
3416 DONT_SIMULATE_AGAIN (stmt) = true;
3418 else
3420 DONT_SIMULATE_AGAIN (stmt) = false;
3427 /* Visit assignment STMT. If it produces an interesting range, record
3428 the SSA name in *OUTPUT_P. */
3430 static enum ssa_prop_result
3431 vrp_visit_assignment (tree stmt, tree *output_p)
3433 tree lhs, rhs, def;
3434 ssa_op_iter iter;
3436 lhs = TREE_OPERAND (stmt, 0);
3437 rhs = TREE_OPERAND (stmt, 1);
3439 /* We only keep track of ranges in integral and pointer types. */
3440 if (TREE_CODE (lhs) == SSA_NAME
3441 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3442 /* It is valid to have NULL MIN/MAX values on a type. See
3443 build_range_type. */
3444 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
3445 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
3446 || POINTER_TYPE_P (TREE_TYPE (lhs))))
3448 struct loop *l;
3449 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3451 extract_range_from_expr (&new_vr, rhs);
3453 /* If STMT is inside a loop, we may be able to know something
3454 else about the range of LHS by examining scalar evolution
3455 information. */
3456 if (current_loops && (l = loop_containing_stmt (stmt)))
3457 adjust_range_with_scev (&new_vr, l, stmt, lhs);
3459 if (update_value_range (lhs, &new_vr))
3461 *output_p = lhs;
3463 if (dump_file && (dump_flags & TDF_DETAILS))
3465 fprintf (dump_file, "Found new range for ");
3466 print_generic_expr (dump_file, lhs, 0);
3467 fprintf (dump_file, ": ");
3468 dump_value_range (dump_file, &new_vr);
3469 fprintf (dump_file, "\n\n");
3472 if (new_vr.type == VR_VARYING)
3473 return SSA_PROP_VARYING;
3475 return SSA_PROP_INTERESTING;
3478 return SSA_PROP_NOT_INTERESTING;
3481 /* Every other statement produces no useful ranges. */
3482 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3483 set_value_range_to_varying (get_value_range (def));
3485 return SSA_PROP_VARYING;
3489 /* Compare all the value ranges for names equivalent to VAR with VAL
3490 using comparison code COMP. Return the same value returned by
3491 compare_range_with_value. */
3493 static tree
3494 compare_name_with_value (enum tree_code comp, tree var, tree val)
3496 bitmap_iterator bi;
3497 unsigned i;
3498 bitmap e;
3499 tree retval, t;
3501 t = retval = NULL_TREE;
3503 /* Get the set of equivalences for VAR. */
3504 e = get_value_range (var)->equiv;
3506 /* Add VAR to its own set of equivalences so that VAR's value range
3507 is processed by this loop (otherwise, we would have to replicate
3508 the body of the loop just to check VAR's value range). */
3509 bitmap_set_bit (e, SSA_NAME_VERSION (var));
3511 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
3513 value_range_t equiv_vr = *(vr_value[i]);
3515 /* If name N_i does not have a valid range, use N_i as its own
3516 range. This allows us to compare against names that may
3517 have N_i in their ranges. */
3518 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
3520 equiv_vr.type = VR_RANGE;
3521 equiv_vr.min = ssa_name (i);
3522 equiv_vr.max = ssa_name (i);
3525 t = compare_range_with_value (comp, &equiv_vr, val);
3526 if (t)
3528 /* All the ranges should compare the same against VAL. */
3529 gcc_assert (retval == NULL || t == retval);
3530 retval = t;
3534 /* Remove VAR from its own equivalence set. */
3535 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
3537 if (retval)
3538 return retval;
3540 /* We couldn't find a non-NULL value for the predicate. */
3541 return NULL_TREE;
3545 /* Given a comparison code COMP and names N1 and N2, compare all the
3546 ranges equivalent to N1 against all the ranges equivalent to N2
3547 to determine the value of N1 COMP N2. Return the same value
3548 returned by compare_ranges. */
3550 static tree
3551 compare_names (enum tree_code comp, tree n1, tree n2)
3553 tree t, retval;
3554 bitmap e1, e2;
3555 bitmap_iterator bi1, bi2;
3556 unsigned i1, i2;
3558 /* Compare the ranges of every name equivalent to N1 against the
3559 ranges of every name equivalent to N2. */
3560 e1 = get_value_range (n1)->equiv;
3561 e2 = get_value_range (n2)->equiv;
3563 /* Add N1 and N2 to their own set of equivalences to avoid
3564 duplicating the body of the loop just to check N1 and N2
3565 ranges. */
3566 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
3567 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
3569 /* If the equivalence sets have a common intersection, then the two
3570 names can be compared without checking their ranges. */
3571 if (bitmap_intersect_p (e1, e2))
3573 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3574 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3576 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
3577 ? boolean_true_node
3578 : boolean_false_node;
3581 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3582 N2 to their own set of equivalences to avoid duplicating the body
3583 of the loop just to check N1 and N2 ranges. */
3584 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
3586 value_range_t vr1 = *(vr_value[i1]);
3588 /* If the range is VARYING or UNDEFINED, use the name itself. */
3589 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
3591 vr1.type = VR_RANGE;
3592 vr1.min = ssa_name (i1);
3593 vr1.max = ssa_name (i1);
3596 t = retval = NULL_TREE;
3597 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
3599 value_range_t vr2 = *(vr_value[i2]);
3601 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
3603 vr2.type = VR_RANGE;
3604 vr2.min = ssa_name (i2);
3605 vr2.max = ssa_name (i2);
3608 t = compare_ranges (comp, &vr1, &vr2);
3609 if (t)
3611 /* All the ranges in the equivalent sets should compare
3612 the same. */
3613 gcc_assert (retval == NULL || t == retval);
3614 retval = t;
3618 if (retval)
3620 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3621 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3622 return retval;
3626 /* None of the equivalent ranges are useful in computing this
3627 comparison. */
3628 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3629 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3630 return NULL_TREE;
3634 /* Given a conditional predicate COND, try to determine if COND yields
3635 true or false based on the value ranges of its operands. Return
3636 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3637 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3638 NULL if the conditional cannot be evaluated at compile time.
3640 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3641 the operands in COND are used when trying to compute its value.
3642 This is only used during final substitution. During propagation,
3643 we only check the range of each variable and not its equivalents. */
3645 tree
3646 vrp_evaluate_conditional (tree cond, bool use_equiv_p)
3648 gcc_assert (TREE_CODE (cond) == SSA_NAME
3649 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
3651 if (TREE_CODE (cond) == SSA_NAME)
3653 value_range_t *vr;
3654 tree retval;
3656 if (use_equiv_p)
3657 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
3658 else
3660 value_range_t *vr = get_value_range (cond);
3661 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
3664 /* If COND has a known boolean range, return it. */
3665 if (retval)
3666 return retval;
3668 /* Otherwise, if COND has a symbolic range of exactly one value,
3669 return it. */
3670 vr = get_value_range (cond);
3671 if (vr->type == VR_RANGE && vr->min == vr->max)
3672 return vr->min;
3674 else
3676 tree op0 = TREE_OPERAND (cond, 0);
3677 tree op1 = TREE_OPERAND (cond, 1);
3679 /* We only deal with integral and pointer types. */
3680 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
3681 && !POINTER_TYPE_P (TREE_TYPE (op0)))
3682 return NULL_TREE;
3684 if (use_equiv_p)
3686 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
3687 return compare_names (TREE_CODE (cond), op0, op1);
3688 else if (TREE_CODE (op0) == SSA_NAME)
3689 return compare_name_with_value (TREE_CODE (cond), op0, op1);
3690 else if (TREE_CODE (op1) == SSA_NAME)
3691 return compare_name_with_value (
3692 swap_tree_comparison (TREE_CODE (cond)), op1, op0);
3694 else
3696 value_range_t *vr0, *vr1;
3698 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
3699 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
3701 if (vr0 && vr1)
3702 return compare_ranges (TREE_CODE (cond), vr0, vr1);
3703 else if (vr0 && vr1 == NULL)
3704 return compare_range_with_value (TREE_CODE (cond), vr0, op1);
3705 else if (vr0 == NULL && vr1)
3706 return compare_range_with_value (
3707 swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
3711 /* Anything else cannot be computed statically. */
3712 return NULL_TREE;
3716 /* Visit conditional statement STMT. If we can determine which edge
3717 will be taken out of STMT's basic block, record it in
3718 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3719 SSA_PROP_VARYING. */
3721 static enum ssa_prop_result
3722 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
3724 tree cond, val;
3726 *taken_edge_p = NULL;
3728 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3729 add ASSERT_EXPRs for them. */
3730 if (TREE_CODE (stmt) == SWITCH_EXPR)
3731 return SSA_PROP_VARYING;
3733 cond = COND_EXPR_COND (stmt);
3735 if (dump_file && (dump_flags & TDF_DETAILS))
3737 tree use;
3738 ssa_op_iter i;
3740 fprintf (dump_file, "\nVisiting conditional with predicate: ");
3741 print_generic_expr (dump_file, cond, 0);
3742 fprintf (dump_file, "\nWith known ranges\n");
3744 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
3746 fprintf (dump_file, "\t");
3747 print_generic_expr (dump_file, use, 0);
3748 fprintf (dump_file, ": ");
3749 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
3752 fprintf (dump_file, "\n");
3755 /* Compute the value of the predicate COND by checking the known
3756 ranges of each of its operands.
3758 Note that we cannot evaluate all the equivalent ranges here
3759 because those ranges may not yet be final and with the current
3760 propagation strategy, we cannot determine when the value ranges
3761 of the names in the equivalence set have changed.
3763 For instance, given the following code fragment
3765 i_5 = PHI <8, i_13>
3767 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3768 if (i_14 == 1)
3771 Assume that on the first visit to i_14, i_5 has the temporary
3772 range [8, 8] because the second argument to the PHI function is
3773 not yet executable. We derive the range ~[0, 0] for i_14 and the
3774 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3775 the first time, since i_14 is equivalent to the range [8, 8], we
3776 determine that the predicate is always false.
3778 On the next round of propagation, i_13 is determined to be
3779 VARYING, which causes i_5 to drop down to VARYING. So, another
3780 visit to i_14 is scheduled. In this second visit, we compute the
3781 exact same range and equivalence set for i_14, namely ~[0, 0] and
3782 { i_5 }. But we did not have the previous range for i_5
3783 registered, so vrp_visit_assignment thinks that the range for
3784 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3785 is not visited again, which stops propagation from visiting
3786 statements in the THEN clause of that if().
3788 To properly fix this we would need to keep the previous range
3789 value for the names in the equivalence set. This way we would've
3790 discovered that from one visit to the other i_5 changed from
3791 range [8, 8] to VR_VARYING.
3793 However, fixing this apparent limitation may not be worth the
3794 additional checking. Testing on several code bases (GCC, DLV,
3795 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3796 4 more predicates folded in SPEC. */
3797 val = vrp_evaluate_conditional (cond, false);
3798 if (val)
3799 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
3801 if (dump_file && (dump_flags & TDF_DETAILS))
3803 fprintf (dump_file, "\nPredicate evaluates to: ");
3804 if (val == NULL_TREE)
3805 fprintf (dump_file, "DON'T KNOW\n");
3806 else
3807 print_generic_stmt (dump_file, val, 0);
3810 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
3814 /* Evaluate statement STMT. If the statement produces a useful range,
3815 return SSA_PROP_INTERESTING and record the SSA name with the
3816 interesting range into *OUTPUT_P.
3818 If STMT is a conditional branch and we can determine its truth
3819 value, the taken edge is recorded in *TAKEN_EDGE_P.
3821 If STMT produces a varying value, return SSA_PROP_VARYING. */
3823 static enum ssa_prop_result
3824 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
3826 tree def;
3827 ssa_op_iter iter;
3828 stmt_ann_t ann;
3830 if (dump_file && (dump_flags & TDF_DETAILS))
3832 fprintf (dump_file, "\nVisiting statement:\n");
3833 print_generic_stmt (dump_file, stmt, dump_flags);
3834 fprintf (dump_file, "\n");
3837 ann = stmt_ann (stmt);
3838 if (TREE_CODE (stmt) == MODIFY_EXPR)
3840 tree rhs = TREE_OPERAND (stmt, 1);
3842 /* In general, assignments with virtual operands are not useful
3843 for deriving ranges, with the obvious exception of calls to
3844 builtin functions. */
3845 if ((TREE_CODE (rhs) == CALL_EXPR
3846 && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3847 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3848 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3849 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3850 return vrp_visit_assignment (stmt, output_p);
3852 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3853 return vrp_visit_cond_stmt (stmt, taken_edge_p);
3855 /* All other statements produce nothing of interest for VRP, so mark
3856 their outputs varying and prevent further simulation. */
3857 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3858 set_value_range_to_varying (get_value_range (def));
3860 return SSA_PROP_VARYING;
3864 /* Meet operation for value ranges. Given two value ranges VR0 and
3865 VR1, store in VR0 the result of meeting VR0 and VR1.
3867 The meeting rules are as follows:
3869 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
3871 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
3872 union of VR0 and VR1. */
3874 static void
3875 vrp_meet (value_range_t *vr0, value_range_t *vr1)
3877 if (vr0->type == VR_UNDEFINED)
3879 copy_value_range (vr0, vr1);
3880 return;
3883 if (vr1->type == VR_UNDEFINED)
3885 /* Nothing to do. VR0 already has the resulting range. */
3886 return;
3889 if (vr0->type == VR_VARYING)
3891 /* Nothing to do. VR0 already has the resulting range. */
3892 return;
3895 if (vr1->type == VR_VARYING)
3897 set_value_range_to_varying (vr0);
3898 return;
3901 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
3903 /* If VR0 and VR1 have a non-empty intersection, compute the
3904 union of both ranges. */
3905 if (value_ranges_intersect_p (vr0, vr1))
3907 int cmp;
3908 tree min, max;
3910 /* The lower limit of the new range is the minimum of the
3911 two ranges. If they cannot be compared, the result is
3912 VARYING. */
3913 cmp = compare_values (vr0->min, vr1->min);
3914 if (cmp == 0 || cmp == 1)
3915 min = vr1->min;
3916 else if (cmp == -1)
3917 min = vr0->min;
3918 else
3920 set_value_range_to_varying (vr0);
3921 return;
3924 /* Similarly, the upper limit of the new range is the
3925 maximum of the two ranges. If they cannot be compared,
3926 the result is VARYING. */
3927 cmp = compare_values (vr0->max, vr1->max);
3928 if (cmp == 0 || cmp == -1)
3929 max = vr1->max;
3930 else if (cmp == 1)
3931 max = vr0->max;
3932 else
3934 set_value_range_to_varying (vr0);
3935 return;
3938 /* The resulting set of equivalences is the intersection of
3939 the two sets. */
3940 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3941 bitmap_and_into (vr0->equiv, vr1->equiv);
3942 else if (vr0->equiv && !vr1->equiv)
3943 bitmap_clear (vr0->equiv);
3945 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
3947 else
3948 goto no_meet;
3950 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3952 /* Two anti-ranges meet only if they are both identical. */
3953 if (compare_values (vr0->min, vr1->min) == 0
3954 && compare_values (vr0->max, vr1->max) == 0
3955 && compare_values (vr0->min, vr0->max) == 0)
3957 /* The resulting set of equivalences is the intersection of
3958 the two sets. */
3959 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3960 bitmap_and_into (vr0->equiv, vr1->equiv);
3961 else if (vr0->equiv && !vr1->equiv)
3962 bitmap_clear (vr0->equiv);
3964 else
3965 goto no_meet;
3967 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3969 /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
3970 meet only if the ranges have an empty intersection. The
3971 result of the meet operation is the anti-range. */
3972 if (!symbolic_range_p (vr0)
3973 && !symbolic_range_p (vr1)
3974 && !value_ranges_intersect_p (vr0, vr1))
3976 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
3977 set. We need to compute the intersection of the two
3978 equivalence sets. */
3979 if (vr1->type == VR_ANTI_RANGE)
3980 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
3982 /* The resulting set of equivalences is the intersection of
3983 the two sets. */
3984 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3985 bitmap_and_into (vr0->equiv, vr1->equiv);
3986 else if (vr0->equiv && !vr1->equiv)
3987 bitmap_clear (vr0->equiv);
3989 else
3990 goto no_meet;
3992 else
3993 gcc_unreachable ();
3995 return;
3997 no_meet:
3998 /* The two range VR0 and VR1 do not meet. Before giving up and
3999 setting the result to VARYING, see if we can at least derive a
4000 useful anti-range. FIXME, all this nonsense about distinguishing
4001 anti-ranges from ranges is necessary because of the odd
4002 semantics of range_includes_zero_p and friends. */
4003 if (!symbolic_range_p (vr0)
4004 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
4005 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
4006 && !symbolic_range_p (vr1)
4007 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
4008 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
4010 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
4012 /* Since this meet operation did not result from the meeting of
4013 two equivalent names, VR0 cannot have any equivalences. */
4014 if (vr0->equiv)
4015 bitmap_clear (vr0->equiv);
4017 else
4018 set_value_range_to_varying (vr0);
4022 /* Visit all arguments for PHI node PHI that flow through executable
4023 edges. If a valid value range can be derived from all the incoming
4024 value ranges, set a new range for the LHS of PHI. */
4026 static enum ssa_prop_result
4027 vrp_visit_phi_node (tree phi)
4029 int i;
4030 tree lhs = PHI_RESULT (phi);
4031 value_range_t *lhs_vr = get_value_range (lhs);
4032 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4034 copy_value_range (&vr_result, lhs_vr);
4036 if (dump_file && (dump_flags & TDF_DETAILS))
4038 fprintf (dump_file, "\nVisiting PHI node: ");
4039 print_generic_expr (dump_file, phi, dump_flags);
4042 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
4044 edge e = PHI_ARG_EDGE (phi, i);
4046 if (dump_file && (dump_flags & TDF_DETAILS))
4048 fprintf (dump_file,
4049 "\n Argument #%d (%d -> %d %sexecutable)\n",
4050 i, e->src->index, e->dest->index,
4051 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
4054 if (e->flags & EDGE_EXECUTABLE)
4056 tree arg = PHI_ARG_DEF (phi, i);
4057 value_range_t vr_arg;
4059 if (TREE_CODE (arg) == SSA_NAME)
4060 vr_arg = *(get_value_range (arg));
4061 else
4063 vr_arg.type = VR_RANGE;
4064 vr_arg.min = arg;
4065 vr_arg.max = arg;
4066 vr_arg.equiv = NULL;
4069 if (dump_file && (dump_flags & TDF_DETAILS))
4071 fprintf (dump_file, "\t");
4072 print_generic_expr (dump_file, arg, dump_flags);
4073 fprintf (dump_file, "\n\tValue: ");
4074 dump_value_range (dump_file, &vr_arg);
4075 fprintf (dump_file, "\n");
4078 vrp_meet (&vr_result, &vr_arg);
4080 if (vr_result.type == VR_VARYING)
4081 break;
4085 if (vr_result.type == VR_VARYING)
4086 goto varying;
4088 /* To prevent infinite iterations in the algorithm, derive ranges
4089 when the new value is slightly bigger or smaller than the
4090 previous one. */
4091 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
4093 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
4095 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
4096 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
4098 /* If the new minimum is smaller or larger than the previous
4099 one, go all the way to -INF. In the first case, to avoid
4100 iterating millions of times to reach -INF, and in the
4101 other case to avoid infinite bouncing between different
4102 minimums. */
4103 if (cmp_min > 0 || cmp_min < 0)
4104 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
4106 /* Similarly, if the new maximum is smaller or larger than
4107 the previous one, go all the way to +INF. */
4108 if (cmp_max < 0 || cmp_max > 0)
4109 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
4111 /* If we ended up with a (-INF, +INF) range, set it to
4112 VARYING. */
4113 if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
4114 && vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
4115 goto varying;
4119 /* If the new range is different than the previous value, keep
4120 iterating. */
4121 if (update_value_range (lhs, &vr_result))
4122 return SSA_PROP_INTERESTING;
4124 /* Nothing changed, don't add outgoing edges. */
4125 return SSA_PROP_NOT_INTERESTING;
4127 /* No match found. Set the LHS to VARYING. */
4128 varying:
4129 set_value_range_to_varying (lhs_vr);
4130 return SSA_PROP_VARYING;
4133 /* Simplify a division or modulo operator to a right shift or
4134 bitwise and if the first operand is unsigned or is greater
4135 than zero and the second operand is an exact power of two. */
4137 static void
4138 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
4140 tree val = NULL;
4141 tree op = TREE_OPERAND (rhs, 0);
4142 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4144 if (TYPE_UNSIGNED (TREE_TYPE (op)))
4146 val = integer_one_node;
4148 else
4150 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
4153 if (val && integer_onep (val))
4155 tree t;
4156 tree op0 = TREE_OPERAND (rhs, 0);
4157 tree op1 = TREE_OPERAND (rhs, 1);
4159 if (rhs_code == TRUNC_DIV_EXPR)
4161 t = build_int_cst (NULL_TREE, tree_log2 (op1));
4162 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
4164 else
4166 t = build_int_cst (TREE_TYPE (op1), 1);
4167 t = int_const_binop (MINUS_EXPR, op1, t, 0);
4168 t = fold_convert (TREE_TYPE (op0), t);
4169 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
4172 TREE_OPERAND (stmt, 1) = t;
4173 update_stmt (stmt);
4177 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
4178 ABS_EXPR. If the operand is <= 0, then simplify the
4179 ABS_EXPR into a NEGATE_EXPR. */
4181 static void
4182 simplify_abs_using_ranges (tree stmt, tree rhs)
4184 tree val = NULL;
4185 tree op = TREE_OPERAND (rhs, 0);
4186 tree type = TREE_TYPE (op);
4187 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4189 if (TYPE_UNSIGNED (type))
4191 val = integer_zero_node;
4193 else if (vr)
4195 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
4196 if (!val)
4198 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
4200 if (val)
4202 if (integer_zerop (val))
4203 val = integer_one_node;
4204 else if (integer_onep (val))
4205 val = integer_zero_node;
4209 if (val
4210 && (integer_onep (val) || integer_zerop (val)))
4212 tree t;
4214 if (integer_onep (val))
4215 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
4216 else
4217 t = op;
4219 TREE_OPERAND (stmt, 1) = t;
4220 update_stmt (stmt);
4225 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
4226 a known value range VR.
4228 If there is one and only one value which will satisfy the
4229 conditional, then return that value. Else return NULL. */
4231 static tree
4232 test_for_singularity (enum tree_code cond_code, tree op0,
4233 tree op1, value_range_t *vr)
4235 tree min = NULL;
4236 tree max = NULL;
4238 /* Extract minimum/maximum values which satisfy the
4239 the conditional as it was written. */
4240 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
4242 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
4244 max = op1;
4245 if (cond_code == LT_EXPR)
4247 tree one = build_int_cst (TREE_TYPE (op0), 1);
4248 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
4251 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
4253 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
4255 min = op1;
4256 if (cond_code == GT_EXPR)
4258 tree one = build_int_cst (TREE_TYPE (op0), 1);
4259 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
4263 /* Now refine the minimum and maximum values using any
4264 value range information we have for op0. */
4265 if (min && max)
4267 if (compare_values (vr->min, min) == -1)
4268 min = min;
4269 else
4270 min = vr->min;
4271 if (compare_values (vr->max, max) == 1)
4272 max = max;
4273 else
4274 max = vr->max;
4276 /* If the new min/max values have converged to a single value,
4277 then there is only one value which can satisfy the condition,
4278 return that value. */
4279 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
4280 return min;
4282 return NULL;
4285 /* Simplify a conditional using a relational operator to an equality
4286 test if the range information indicates only one value can satisfy
4287 the original conditional. */
4289 static void
4290 simplify_cond_using_ranges (tree stmt)
4292 tree cond = COND_EXPR_COND (stmt);
4293 tree op0 = TREE_OPERAND (cond, 0);
4294 tree op1 = TREE_OPERAND (cond, 1);
4295 enum tree_code cond_code = TREE_CODE (cond);
4297 if (cond_code != NE_EXPR
4298 && cond_code != EQ_EXPR
4299 && TREE_CODE (op0) == SSA_NAME
4300 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
4301 && is_gimple_min_invariant (op1))
4303 value_range_t *vr = get_value_range (op0);
4305 /* If we have range information for OP0, then we might be
4306 able to simplify this conditional. */
4307 if (vr->type == VR_RANGE)
4309 tree new = test_for_singularity (cond_code, op0, op1, vr);
4311 if (new)
4313 if (dump_file)
4315 fprintf (dump_file, "Simplified relational ");
4316 print_generic_expr (dump_file, cond, 0);
4317 fprintf (dump_file, " into ");
4320 COND_EXPR_COND (stmt)
4321 = build2 (EQ_EXPR, boolean_type_node, op0, new);
4322 update_stmt (stmt);
4324 if (dump_file)
4326 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4327 fprintf (dump_file, "\n");
4329 return;
4333 /* Try again after inverting the condition. We only deal
4334 with integral types here, so no need to worry about
4335 issues with inverting FP comparisons. */
4336 cond_code = invert_tree_comparison (cond_code, false);
4337 new = test_for_singularity (cond_code, op0, op1, vr);
4339 if (new)
4341 if (dump_file)
4343 fprintf (dump_file, "Simplified relational ");
4344 print_generic_expr (dump_file, cond, 0);
4345 fprintf (dump_file, " into ");
4348 COND_EXPR_COND (stmt)
4349 = build2 (NE_EXPR, boolean_type_node, op0, new);
4350 update_stmt (stmt);
4352 if (dump_file)
4354 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4355 fprintf (dump_file, "\n");
4357 return;
4364 /* Simplify STMT using ranges if possible. */
4366 void
4367 simplify_stmt_using_ranges (tree stmt)
4369 if (TREE_CODE (stmt) == MODIFY_EXPR)
4371 tree rhs = TREE_OPERAND (stmt, 1);
4372 enum tree_code rhs_code = TREE_CODE (rhs);
4374 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4375 and BIT_AND_EXPR respectively if the first operand is greater
4376 than zero and the second operand is an exact power of two. */
4377 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
4378 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
4379 && integer_pow2p (TREE_OPERAND (rhs, 1)))
4380 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
4382 /* Transform ABS (X) into X or -X as appropriate. */
4383 if (rhs_code == ABS_EXPR
4384 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
4385 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
4386 simplify_abs_using_ranges (stmt, rhs);
4388 else if (TREE_CODE (stmt) == COND_EXPR
4389 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
4391 simplify_cond_using_ranges (stmt);
4395 /* Stack of dest,src equivalency pairs that need to be restored after
4396 each attempt to thread a block's incoming edge to an outgoing edge.
4398 A NULL entry is used to mark the end of pairs which need to be
4399 restored. */
4400 static VEC(tree,heap) *stack;
4402 /* A trivial wrapper so that we can present the generic jump
4403 threading code with a simple API for simplifying statements. */
4404 static tree
4405 simplify_stmt_for_jump_threading (tree stmt)
4407 /* We only use VRP information to simplify conditionals. This is
4408 overly conservative, but it's unclear if doing more would be
4409 worth the compile time cost. */
4410 if (TREE_CODE (stmt) != COND_EXPR)
4411 return NULL;
4413 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), true);
4416 /* Blocks which have more than one predecessor and more than
4417 one successor present jump threading opportunities. ie,
4418 when the block is reached from a specific predecessor, we
4419 may be able to determine which of the outgoing edges will
4420 be traversed. When this optimization applies, we are able
4421 to avoid conditionals at runtime and we may expose secondary
4422 optimization opportunities.
4424 This routine is effectively a driver for the generic jump
4425 threading code. It basically just presents the generic code
4426 with edges that may be suitable for jump threading.
4428 Unlike DOM, we do not iterate VRP if jump threading was successful.
4429 While iterating may expose new opportunities for VRP, it is expected
4430 those opportunities would be very limited and the compile time cost
4431 to expose those opportunities would be significant.
4433 As jump threading opportunities are discovered, they are registered
4434 for later realization. */
4436 static void
4437 identify_jump_threads (void)
4439 basic_block bb;
4440 tree dummy;
4442 /* Ugh. When substituting values earlier in this pass we can
4443 wipe the dominance information. So rebuild the dominator
4444 information as we need it within the jump threading code. */
4445 calculate_dominance_info (CDI_DOMINATORS);
4447 /* We do not allow VRP information to be used for jump threading
4448 across a back edge in the CFG. Otherwise it becomes too
4449 difficult to avoid eliminating loop exit tests. Of course
4450 EDGE_DFS_BACK is not accurate at this time so we have to
4451 recompute it. */
4452 mark_dfs_back_edges ();
4454 /* Allocate our unwinder stack to unwind any temporary equivalences
4455 that might be recorded. */
4456 stack = VEC_alloc (tree, heap, 20);
4458 /* To avoid lots of silly node creation, we create a single
4459 conditional and just modify it in-place when attempting to
4460 thread jumps. */
4461 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
4462 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
4464 /* Walk through all the blocks finding those which present a
4465 potential jump threading opportunity. We could set this up
4466 as a dominator walker and record data during the walk, but
4467 I doubt it's worth the effort for the classes of jump
4468 threading opportunities we are trying to identify at this
4469 point in compilation. */
4470 FOR_EACH_BB (bb)
4472 tree last, cond;
4474 /* If the generic jump threading code does not find this block
4475 interesting, then there is nothing to do. */
4476 if (! potentially_threadable_block (bb))
4477 continue;
4479 /* We only care about blocks ending in a COND_EXPR. While there
4480 may be some value in handling SWITCH_EXPR here, I doubt it's
4481 terribly important. */
4482 last = bsi_stmt (bsi_last (bb));
4483 if (TREE_CODE (last) != COND_EXPR)
4484 continue;
4486 /* We're basically looking for any kind of conditional with
4487 integral type arguments. */
4488 cond = COND_EXPR_COND (last);
4489 if ((TREE_CODE (cond) == SSA_NAME
4490 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
4491 || (COMPARISON_CLASS_P (cond)
4492 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
4493 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
4494 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
4495 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
4496 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
4498 edge_iterator ei;
4499 edge e;
4501 /* We've got a block with multiple predecessors and multiple
4502 successors which also ends in a suitable conditional. For
4503 each predecessor, see if we can thread it to a specific
4504 successor. */
4505 FOR_EACH_EDGE (e, ei, bb->preds)
4507 /* Do not thread across back edges or abnormal edges
4508 in the CFG. */
4509 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
4510 continue;
4512 thread_across_edge (dummy, e, true,
4513 &stack,
4514 simplify_stmt_for_jump_threading);
4519 /* We do not actually update the CFG or SSA graphs at this point as
4520 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
4521 handle ASSERT_EXPRs gracefully. */
4524 /* We identified all the jump threading opportunities earlier, but could
4525 not transform the CFG at that time. This routine transforms the
4526 CFG and arranges for the dominator tree to be rebuilt if necessary.
4528 Note the SSA graph update will occur during the normal TODO
4529 processing by the pass manager. */
4530 static void
4531 finalize_jump_threads (void)
4533 bool cfg_altered = false;
4534 cfg_altered = thread_through_all_blocks ();
4536 /* If we threaded jumps, then we need to recompute the dominance
4537 information, to safely do that we must clean up the CFG first. */
4538 if (cfg_altered)
4540 free_dominance_info (CDI_DOMINATORS);
4541 cleanup_tree_cfg ();
4542 calculate_dominance_info (CDI_DOMINATORS);
4544 VEC_free (tree, heap, stack);
4548 /* Traverse all the blocks folding conditionals with known ranges. */
4550 static void
4551 vrp_finalize (void)
4553 size_t i;
4554 prop_value_t *single_val_range;
4555 bool do_value_subst_p;
4557 if (dump_file)
4559 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
4560 dump_all_value_ranges (dump_file);
4561 fprintf (dump_file, "\n");
4564 /* We may have ended with ranges that have exactly one value. Those
4565 values can be substituted as any other copy/const propagated
4566 value using substitute_and_fold. */
4567 single_val_range = XNEWVEC (prop_value_t, num_ssa_names);
4568 memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
4570 do_value_subst_p = false;
4571 for (i = 0; i < num_ssa_names; i++)
4572 if (vr_value[i]
4573 && vr_value[i]->type == VR_RANGE
4574 && vr_value[i]->min == vr_value[i]->max)
4576 single_val_range[i].value = vr_value[i]->min;
4577 do_value_subst_p = true;
4580 if (!do_value_subst_p)
4582 /* We found no single-valued ranges, don't waste time trying to
4583 do single value substitution in substitute_and_fold. */
4584 free (single_val_range);
4585 single_val_range = NULL;
4588 substitute_and_fold (single_val_range, true);
4590 /* We must identify jump threading opportunities before we release
4591 the datastructures built by VRP. */
4592 identify_jump_threads ();
4594 /* Free allocated memory. */
4595 for (i = 0; i < num_ssa_names; i++)
4596 if (vr_value[i])
4598 BITMAP_FREE (vr_value[i]->equiv);
4599 free (vr_value[i]);
4602 free (single_val_range);
4603 free (vr_value);
4605 /* So that we can distinguish between VRP data being available
4606 and not available. */
4607 vr_value = NULL;
4611 /* Main entry point to VRP (Value Range Propagation). This pass is
4612 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4613 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4614 Programming Language Design and Implementation, pp. 67-78, 1995.
4615 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4617 This is essentially an SSA-CCP pass modified to deal with ranges
4618 instead of constants.
4620 While propagating ranges, we may find that two or more SSA name
4621 have equivalent, though distinct ranges. For instance,
4623 1 x_9 = p_3->a;
4624 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
4625 3 if (p_4 == q_2)
4626 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
4627 5 endif
4628 6 if (q_2)
4630 In the code above, pointer p_5 has range [q_2, q_2], but from the
4631 code we can also determine that p_5 cannot be NULL and, if q_2 had
4632 a non-varying range, p_5's range should also be compatible with it.
4634 These equivalences are created by two expressions: ASSERT_EXPR and
4635 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4636 result of another assertion, then we can use the fact that p_5 and
4637 p_4 are equivalent when evaluating p_5's range.
4639 Together with value ranges, we also propagate these equivalences
4640 between names so that we can take advantage of information from
4641 multiple ranges when doing final replacement. Note that this
4642 equivalency relation is transitive but not symmetric.
4644 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4645 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4646 in contexts where that assertion does not hold (e.g., in line 6).
4648 TODO, the main difference between this pass and Patterson's is that
4649 we do not propagate edge probabilities. We only compute whether
4650 edges can be taken or not. That is, instead of having a spectrum
4651 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4652 DON'T KNOW. In the future, it may be worthwhile to propagate
4653 probabilities to aid branch prediction. */
4655 static unsigned int
4656 execute_vrp (void)
4658 insert_range_assertions ();
4660 current_loops = loop_optimizer_init (LOOPS_NORMAL);
4661 if (current_loops)
4662 scev_initialize (current_loops);
4664 vrp_initialize ();
4665 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
4666 vrp_finalize ();
4668 if (current_loops)
4670 scev_finalize ();
4671 loop_optimizer_finalize (current_loops);
4672 current_loops = NULL;
4675 /* ASSERT_EXPRs must be removed before finalizing jump threads
4676 as finalizing jump threads calls the CFG cleanup code which
4677 does not properly handle ASSERT_EXPRs. */
4678 remove_range_assertions ();
4680 /* If we exposed any new variables, go ahead and put them into
4681 SSA form now, before we handle jump threading. This simplifies
4682 interactions between rewriting of _DECL nodes into SSA form
4683 and rewriting SSA_NAME nodes into SSA form after block
4684 duplication and CFG manipulation. */
4685 update_ssa (TODO_update_ssa);
4687 finalize_jump_threads ();
4688 return 0;
4691 static bool
4692 gate_vrp (void)
4694 return flag_tree_vrp != 0;
4697 struct tree_opt_pass pass_vrp =
4699 "vrp", /* name */
4700 gate_vrp, /* gate */
4701 execute_vrp, /* execute */
4702 NULL, /* sub */
4703 NULL, /* next */
4704 0, /* static_pass_number */
4705 TV_TREE_VRP, /* tv_id */
4706 PROP_ssa | PROP_alias, /* properties_required */
4707 0, /* properties_provided */
4708 PROP_smt_usage, /* properties_destroyed */
4709 0, /* todo_flags_start */
4710 TODO_cleanup_cfg
4711 | TODO_ggc_collect
4712 | TODO_verify_ssa
4713 | TODO_dump_func
4714 | TODO_update_ssa
4715 | TODO_update_smt_usage, /* todo_flags_finish */
4716 0 /* letter */