1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* High-level class interface. */
26 #include "coretypes.h"
36 static int is_subobject_of_p (tree
, tree
);
37 static tree
dfs_lookup_base (tree
, void *);
38 static tree
dfs_dcast_hint_pre (tree
, void *);
39 static tree
dfs_dcast_hint_post (tree
, void *);
40 static tree
dfs_debug_mark (tree
, void *);
41 static tree
dfs_walk_once_r (tree
, tree (*pre_fn
) (tree
, void *),
42 tree (*post_fn
) (tree
, void *), void *data
);
43 static void dfs_unmark_r (tree
);
44 static int check_hidden_convs (tree
, int, int, tree
, tree
, tree
);
45 static tree
split_conversions (tree
, tree
, tree
, tree
);
46 static int lookup_conversions_r (tree
, int, int,
47 tree
, tree
, tree
, tree
, tree
*, tree
*);
48 static int look_for_overrides_r (tree
, tree
);
49 static tree
lookup_field_r (tree
, void *);
50 static tree
dfs_accessible_post (tree
, void *);
51 static tree
dfs_walk_once_accessible_r (tree
, bool, bool,
52 tree (*pre_fn
) (tree
, void *),
53 tree (*post_fn
) (tree
, void *),
55 static tree
dfs_walk_once_accessible (tree
, bool,
56 tree (*pre_fn
) (tree
, void *),
57 tree (*post_fn
) (tree
, void *),
59 static tree
dfs_access_in_type (tree
, void *);
60 static access_kind
access_in_type (tree
, tree
);
61 static int protected_accessible_p (tree
, tree
, tree
);
62 static int friend_accessible_p (tree
, tree
, tree
);
63 static tree
dfs_get_pure_virtuals (tree
, void *);
66 /* Variables for gathering statistics. */
67 static int n_fields_searched
;
68 static int n_calls_lookup_field
, n_calls_lookup_field_1
;
69 static int n_calls_lookup_fnfields
, n_calls_lookup_fnfields_1
;
70 static int n_calls_get_base_type
;
71 static int n_outer_fields_searched
;
72 static int n_contexts_saved
;
75 /* Data for lookup_base and its workers. */
77 struct lookup_base_data_s
79 tree t
; /* type being searched. */
80 tree base
; /* The base type we're looking for. */
81 tree binfo
; /* Found binfo. */
82 bool via_virtual
; /* Found via a virtual path. */
83 bool ambiguous
; /* Found multiply ambiguous */
84 bool repeated_base
; /* Whether there are repeated bases in the
86 bool want_any
; /* Whether we want any matching binfo. */
89 /* Worker function for lookup_base. See if we've found the desired
90 base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
93 dfs_lookup_base (tree binfo
, void *data_
)
95 struct lookup_base_data_s
*data
= (struct lookup_base_data_s
*) data_
;
97 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), data
->base
))
103 = binfo_via_virtual (data
->binfo
, data
->t
) != NULL_TREE
;
105 if (!data
->repeated_base
)
106 /* If there are no repeated bases, we can stop now. */
109 if (data
->want_any
&& !data
->via_virtual
)
110 /* If this is a non-virtual base, then we can't do
114 return dfs_skip_bases
;
118 gcc_assert (binfo
!= data
->binfo
);
120 /* We've found more than one matching binfo. */
123 /* This is immediately ambiguous. */
124 data
->binfo
= NULL_TREE
;
125 data
->ambiguous
= true;
126 return error_mark_node
;
129 /* Prefer one via a non-virtual path. */
130 if (!binfo_via_virtual (binfo
, data
->t
))
133 data
->via_virtual
= false;
137 /* There must be repeated bases, otherwise we'd have stopped
138 on the first base we found. */
139 return dfs_skip_bases
;
146 /* Returns true if type BASE is accessible in T. (BASE is known to be
147 a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
148 true, consider any special access of the current scope, or access
149 bestowed by friendship. */
152 accessible_base_p (tree t
, tree base
, bool consider_local_p
)
156 /* [class.access.base]
158 A base class is said to be accessible if an invented public
159 member of the base class is accessible.
161 If BASE is a non-proper base, this condition is trivially
163 if (same_type_p (t
, base
))
165 /* Rather than inventing a public member, we use the implicit
166 public typedef created in the scope of every class. */
167 decl
= TYPE_FIELDS (base
);
168 while (!DECL_SELF_REFERENCE_P (decl
))
169 decl
= DECL_CHAIN (decl
);
170 while (ANON_AGGR_TYPE_P (t
))
171 t
= TYPE_CONTEXT (t
);
172 return accessible_p (t
, decl
, consider_local_p
);
175 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
176 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
177 non-NULL, fill with information about what kind of base we
180 If the base is inaccessible, or ambiguous, then error_mark_node is
181 returned. If the tf_error bit of COMPLAIN is not set, no error
185 lookup_base (tree t
, tree base
, base_access access
,
186 base_kind
*kind_ptr
, tsubst_flags_t complain
)
192 /* "Nothing" is definitely not derived from Base. */
196 *kind_ptr
= bk_not_base
;
200 if (t
== error_mark_node
|| base
== error_mark_node
)
203 *kind_ptr
= bk_not_base
;
204 return error_mark_node
;
206 gcc_assert (TYPE_P (base
));
215 t
= complete_type (TYPE_MAIN_VARIANT (t
));
216 t_binfo
= TYPE_BINFO (t
);
219 base
= TYPE_MAIN_VARIANT (base
);
221 /* If BASE is incomplete, it can't be a base of T--and instantiating it
222 might cause an error. */
223 if (t_binfo
&& CLASS_TYPE_P (base
) && COMPLETE_OR_OPEN_TYPE_P (base
))
225 struct lookup_base_data_s data
;
229 data
.binfo
= NULL_TREE
;
230 data
.ambiguous
= data
.via_virtual
= false;
231 data
.repeated_base
= CLASSTYPE_REPEATED_BASE_P (t
);
232 data
.want_any
= access
== ba_any
;
234 dfs_walk_once (t_binfo
, dfs_lookup_base
, NULL
, &data
);
238 bk
= data
.ambiguous
? bk_ambig
: bk_not_base
;
239 else if (binfo
== t_binfo
)
241 else if (data
.via_virtual
)
252 /* Check that the base is unambiguous and accessible. */
253 if (access
!= ba_any
)
260 if (complain
& tf_error
)
261 error ("%qT is an ambiguous base of %qT", base
, t
);
262 binfo
= error_mark_node
;
266 if ((access
& ba_check_bit
)
267 /* If BASE is incomplete, then BASE and TYPE are probably
268 the same, in which case BASE is accessible. If they
269 are not the same, then TYPE is invalid. In that case,
270 there's no need to issue another error here, and
271 there's no implicit typedef to use in the code that
272 follows, so we skip the check. */
273 && COMPLETE_TYPE_P (base
)
274 && !accessible_base_p (t
, base
, !(access
& ba_ignore_scope
)))
276 if (complain
& tf_error
)
277 error ("%qT is an inaccessible base of %qT", base
, t
);
278 binfo
= error_mark_node
;
279 bk
= bk_inaccessible
;
290 /* Data for dcast_base_hint walker. */
294 tree subtype
; /* The base type we're looking for. */
295 int virt_depth
; /* Number of virtual bases encountered from most
297 tree offset
; /* Best hint offset discovered so far. */
298 bool repeated_base
; /* Whether there are repeated bases in the
302 /* Worker for dcast_base_hint. Search for the base type being cast
306 dfs_dcast_hint_pre (tree binfo
, void *data_
)
308 struct dcast_data_s
*data
= (struct dcast_data_s
*) data_
;
310 if (BINFO_VIRTUAL_P (binfo
))
313 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), data
->subtype
))
315 if (data
->virt_depth
)
317 data
->offset
= ssize_int (-1);
321 data
->offset
= ssize_int (-3);
323 data
->offset
= BINFO_OFFSET (binfo
);
325 return data
->repeated_base
? dfs_skip_bases
: data
->offset
;
331 /* Worker for dcast_base_hint. Track the virtual depth. */
334 dfs_dcast_hint_post (tree binfo
, void *data_
)
336 struct dcast_data_s
*data
= (struct dcast_data_s
*) data_
;
338 if (BINFO_VIRTUAL_P (binfo
))
344 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
345 started from is related to the required TARGET type, in order to optimize
346 the inheritance graph search. This information is independent of the
347 current context, and ignores private paths, hence get_base_distance is
348 inappropriate. Return a TREE specifying the base offset, BOFF.
349 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
350 and there are no public virtual SUBTYPE bases.
351 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
352 BOFF == -2, SUBTYPE is not a public base.
353 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
356 dcast_base_hint (tree subtype
, tree target
)
358 struct dcast_data_s data
;
360 data
.subtype
= subtype
;
362 data
.offset
= NULL_TREE
;
363 data
.repeated_base
= CLASSTYPE_REPEATED_BASE_P (target
);
365 dfs_walk_once_accessible (TYPE_BINFO (target
), /*friends=*/false,
366 dfs_dcast_hint_pre
, dfs_dcast_hint_post
, &data
);
367 return data
.offset
? data
.offset
: ssize_int (-2);
370 /* Search for a member with name NAME in a multiple inheritance
371 lattice specified by TYPE. If it does not exist, return NULL_TREE.
372 If the member is ambiguously referenced, return `error_mark_node'.
373 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
374 true, type declarations are preferred. */
376 /* Do a 1-level search for NAME as a member of TYPE. The caller must
377 figure out whether it can access this field. (Since it is only one
378 level, this is reasonable.) */
381 lookup_field_1 (tree type
, tree name
, bool want_type
)
385 gcc_assert (identifier_p (name
));
387 if (TREE_CODE (type
) == TEMPLATE_TYPE_PARM
388 || TREE_CODE (type
) == BOUND_TEMPLATE_TEMPLATE_PARM
389 || TREE_CODE (type
) == TYPENAME_TYPE
)
390 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
391 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
392 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
393 the code often worked even when we treated the index as a list
395 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
398 if (CLASSTYPE_SORTED_FIELDS (type
))
400 tree
*fields
= &CLASSTYPE_SORTED_FIELDS (type
)->elts
[0];
401 int lo
= 0, hi
= CLASSTYPE_SORTED_FIELDS (type
)->len
;
408 if (GATHER_STATISTICS
)
411 if (DECL_NAME (fields
[i
]) > name
)
413 else if (DECL_NAME (fields
[i
]) < name
)
419 /* We might have a nested class and a field with the
420 same name; we sorted them appropriately via
421 field_decl_cmp, so just look for the first or last
422 field with this name. */
427 while (i
>= lo
&& DECL_NAME (fields
[i
]) == name
);
428 if (!DECL_DECLARES_TYPE_P (field
))
435 while (i
< hi
&& DECL_NAME (fields
[i
]) == name
);
440 field
= strip_using_decl (field
);
441 if (is_overloaded_fn (field
))
451 field
= TYPE_FIELDS (type
);
453 if (GATHER_STATISTICS
)
454 n_calls_lookup_field_1
++;
456 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
460 if (GATHER_STATISTICS
)
463 gcc_assert (DECL_P (field
));
464 if (DECL_NAME (field
) == NULL_TREE
465 && ANON_AGGR_TYPE_P (TREE_TYPE (field
)))
467 tree temp
= lookup_field_1 (TREE_TYPE (field
), name
, want_type
);
472 if (TREE_CODE (decl
) == USING_DECL
473 && DECL_NAME (decl
) == name
)
475 decl
= strip_using_decl (decl
);
476 if (is_overloaded_fn (decl
))
480 if (DECL_NAME (decl
) == name
481 && (!want_type
|| DECL_DECLARES_TYPE_P (decl
)))
485 if (name
== vptr_identifier
)
487 /* Give the user what s/he thinks s/he wants. */
488 if (TYPE_POLYMORPHIC_P (type
))
489 return TYPE_VFIELD (type
);
494 /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
495 NAMESPACE_DECL corresponding to the innermost non-block scope. */
500 /* There are a number of cases we need to be aware of here:
501 current_class_type current_function_decl
508 Those last two make life interesting. If we're in a function which is
509 itself inside a class, we need decls to go into the fn's decls (our
510 second case below). But if we're in a class and the class itself is
511 inside a function, we need decls to go into the decls for the class. To
512 achieve this last goal, we must see if, when both current_class_ptr and
513 current_function_decl are set, the class was declared inside that
514 function. If so, we know to put the decls into the class's scope. */
515 if (current_function_decl
&& current_class_type
516 && ((DECL_FUNCTION_MEMBER_P (current_function_decl
)
517 && same_type_p (DECL_CONTEXT (current_function_decl
),
519 || (DECL_FRIEND_CONTEXT (current_function_decl
)
520 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl
),
521 current_class_type
))))
522 return current_function_decl
;
523 if (current_class_type
)
524 return current_class_type
;
525 if (current_function_decl
)
526 return current_function_decl
;
527 return current_namespace
;
530 /* Returns nonzero if we are currently in a function scope. Note
531 that this function returns zero if we are within a local class, but
532 not within a member function body of the local class. */
535 at_function_scope_p (void)
537 tree cs
= current_scope ();
538 /* Also check cfun to make sure that we're really compiling
539 this function (as opposed to having set current_function_decl
540 for access checking or some such). */
541 return (cs
&& TREE_CODE (cs
) == FUNCTION_DECL
542 && cfun
&& cfun
->decl
== current_function_decl
);
545 /* Returns true if the innermost active scope is a class scope. */
548 at_class_scope_p (void)
550 tree cs
= current_scope ();
551 return cs
&& TYPE_P (cs
);
554 /* Returns true if the innermost active scope is a namespace scope. */
557 at_namespace_scope_p (void)
559 tree cs
= current_scope ();
560 return cs
&& TREE_CODE (cs
) == NAMESPACE_DECL
;
563 /* Return the scope of DECL, as appropriate when doing name-lookup. */
566 context_for_name_lookup (tree decl
)
570 For the purposes of name lookup, after the anonymous union
571 definition, the members of the anonymous union are considered to
572 have been defined in the scope in which the anonymous union is
574 tree context
= DECL_CONTEXT (decl
);
576 while (context
&& TYPE_P (context
)
577 && (ANON_AGGR_TYPE_P (context
) || UNSCOPED_ENUM_P (context
)))
578 context
= TYPE_CONTEXT (context
);
580 context
= global_namespace
;
585 /* The accessibility routines use BINFO_ACCESS for scratch space
586 during the computation of the accessibility of some declaration. */
588 #define BINFO_ACCESS(NODE) \
589 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
591 /* Set the access associated with NODE to ACCESS. */
593 #define SET_BINFO_ACCESS(NODE, ACCESS) \
594 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
595 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
597 /* Called from access_in_type via dfs_walk. Calculate the access to
598 DATA (which is really a DECL) in BINFO. */
601 dfs_access_in_type (tree binfo
, void *data
)
603 tree decl
= (tree
) data
;
604 tree type
= BINFO_TYPE (binfo
);
605 access_kind access
= ak_none
;
607 if (context_for_name_lookup (decl
) == type
)
609 /* If we have descended to the scope of DECL, just note the
610 appropriate access. */
611 if (TREE_PRIVATE (decl
))
613 else if (TREE_PROTECTED (decl
))
614 access
= ak_protected
;
620 /* First, check for an access-declaration that gives us more
621 access to the DECL. */
622 if (DECL_LANG_SPECIFIC (decl
) && !DECL_DISCRIMINATOR_P (decl
))
624 tree decl_access
= purpose_member (type
, DECL_ACCESS (decl
));
628 decl_access
= TREE_VALUE (decl_access
);
630 if (decl_access
== access_public_node
)
632 else if (decl_access
== access_protected_node
)
633 access
= ak_protected
;
634 else if (decl_access
== access_private_node
)
645 vec
<tree
, va_gc
> *accesses
;
647 /* Otherwise, scan our baseclasses, and pick the most favorable
649 accesses
= BINFO_BASE_ACCESSES (binfo
);
650 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
652 tree base_access
= (*accesses
)[i
];
653 access_kind base_access_now
= BINFO_ACCESS (base_binfo
);
655 if (base_access_now
== ak_none
|| base_access_now
== ak_private
)
656 /* If it was not accessible in the base, or only
657 accessible as a private member, we can't access it
659 base_access_now
= ak_none
;
660 else if (base_access
== access_protected_node
)
661 /* Public and protected members in the base become
663 base_access_now
= ak_protected
;
664 else if (base_access
== access_private_node
)
665 /* Public and protected members in the base become
667 base_access_now
= ak_private
;
669 /* See if the new access, via this base, gives more
670 access than our previous best access. */
671 if (base_access_now
!= ak_none
672 && (access
== ak_none
|| base_access_now
< access
))
674 access
= base_access_now
;
676 /* If the new access is public, we can't do better. */
677 if (access
== ak_public
)
684 /* Note the access to DECL in TYPE. */
685 SET_BINFO_ACCESS (binfo
, access
);
690 /* Return the access to DECL in TYPE. */
693 access_in_type (tree type
, tree decl
)
695 tree binfo
= TYPE_BINFO (type
);
697 /* We must take into account
701 If a name can be reached by several paths through a multiple
702 inheritance graph, the access is that of the path that gives
705 The algorithm we use is to make a post-order depth-first traversal
706 of the base-class hierarchy. As we come up the tree, we annotate
707 each node with the most lenient access. */
708 dfs_walk_once (binfo
, NULL
, dfs_access_in_type
, decl
);
710 return BINFO_ACCESS (binfo
);
713 /* Returns nonzero if it is OK to access DECL through an object
714 indicated by BINFO in the context of DERIVED. */
717 protected_accessible_p (tree decl
, tree derived
, tree binfo
)
721 /* We're checking this clause from [class.access.base]
723 m as a member of N is protected, and the reference occurs in a
724 member or friend of class N, or in a member or friend of a
725 class P derived from N, where m as a member of P is public, private
728 Here DERIVED is a possible P, DECL is m and BINFO_TYPE (binfo) is N. */
730 /* If DERIVED isn't derived from N, then it can't be a P. */
731 if (!DERIVED_FROM_P (BINFO_TYPE (binfo
), derived
))
734 access
= access_in_type (derived
, decl
);
736 /* If m is inaccessible in DERIVED, then it's not a P. */
737 if (access
== ak_none
)
742 When a friend or a member function of a derived class references
743 a protected nonstatic member of a base class, an access check
744 applies in addition to those described earlier in clause
745 _class.access_) Except when forming a pointer to member
746 (_expr.unary.op_), the access must be through a pointer to,
747 reference to, or object of the derived class itself (or any class
748 derived from that class) (_expr.ref_). If the access is to form
749 a pointer to member, the nested-name-specifier shall name the
750 derived class (or any class derived from that class). */
751 if (DECL_NONSTATIC_MEMBER_P (decl
))
753 /* We can tell through what the reference is occurring by
754 chasing BINFO up to the root. */
756 while (BINFO_INHERITANCE_CHAIN (t
))
757 t
= BINFO_INHERITANCE_CHAIN (t
);
759 if (!DERIVED_FROM_P (derived
, BINFO_TYPE (t
)))
766 /* Returns nonzero if SCOPE is a friend of a type which would be able
767 to access DECL through the object indicated by BINFO. */
770 friend_accessible_p (tree scope
, tree decl
, tree binfo
)
772 tree befriending_classes
;
778 if (DECL_DECLARES_FUNCTION_P (scope
))
779 befriending_classes
= DECL_BEFRIENDING_CLASSES (scope
);
780 else if (TYPE_P (scope
))
781 befriending_classes
= CLASSTYPE_BEFRIENDING_CLASSES (scope
);
785 for (t
= befriending_classes
; t
; t
= TREE_CHAIN (t
))
786 if (protected_accessible_p (decl
, TREE_VALUE (t
), binfo
))
789 /* Nested classes have the same access as their enclosing types, as
790 per DR 45 (this is a change from the standard). */
792 for (t
= TYPE_CONTEXT (scope
); t
&& TYPE_P (t
); t
= TYPE_CONTEXT (t
))
793 if (protected_accessible_p (decl
, t
, binfo
))
796 if (DECL_DECLARES_FUNCTION_P (scope
))
798 /* Perhaps this SCOPE is a member of a class which is a
800 if (DECL_CLASS_SCOPE_P (scope
)
801 && friend_accessible_p (DECL_CONTEXT (scope
), decl
, binfo
))
804 /* Or an instantiation of something which is a friend. */
805 if (DECL_TEMPLATE_INFO (scope
))
808 /* Increment processing_template_decl to make sure that
809 dependent_type_p works correctly. */
810 ++processing_template_decl
;
811 ret
= friend_accessible_p (DECL_TI_TEMPLATE (scope
), decl
, binfo
);
812 --processing_template_decl
;
820 /* Called via dfs_walk_once_accessible from accessible_p */
823 dfs_accessible_post (tree binfo
, void * /*data*/)
825 if (BINFO_ACCESS (binfo
) != ak_none
)
827 tree scope
= current_scope ();
828 if (scope
&& TREE_CODE (scope
) != NAMESPACE_DECL
829 && is_friend (BINFO_TYPE (binfo
), scope
))
836 /* Like accessible_p below, but within a template returns true iff DECL is
837 accessible in TYPE to all possible instantiations of the template. */
840 accessible_in_template_p (tree type
, tree decl
)
842 int save_ptd
= processing_template_decl
;
843 processing_template_decl
= 0;
844 int val
= accessible_p (type
, decl
, false);
845 processing_template_decl
= save_ptd
;
849 /* DECL is a declaration from a base class of TYPE, which was the
850 class used to name DECL. Return nonzero if, in the current
851 context, DECL is accessible. If TYPE is actually a BINFO node,
852 then we can tell in what context the access is occurring by looking
853 at the most derived class along the path indicated by BINFO. If
854 CONSIDER_LOCAL is true, do consider special access the current
855 scope or friendship thereof we might have. */
858 accessible_p (tree type
, tree decl
, bool consider_local_p
)
864 /* Nonzero if it's OK to access DECL if it has protected
865 accessibility in TYPE. */
866 int protected_ok
= 0;
868 /* If this declaration is in a block or namespace scope, there's no
870 if (!TYPE_P (context_for_name_lookup (decl
)))
873 /* There is no need to perform access checks inside a thunk. */
874 scope
= current_scope ();
875 if (scope
&& DECL_THUNK_P (scope
))
878 /* In a template declaration, we cannot be sure whether the
879 particular specialization that is instantiated will be a friend
880 or not. Therefore, all access checks are deferred until
881 instantiation. However, PROCESSING_TEMPLATE_DECL is set in the
882 parameter list for a template (because we may see dependent types
883 in default arguments for template parameters), and access
884 checking should be performed in the outermost parameter list. */
885 if (processing_template_decl
886 && (!processing_template_parmlist
|| processing_template_decl
> 1))
892 type
= BINFO_TYPE (type
);
895 binfo
= TYPE_BINFO (type
);
897 /* [class.access.base]
899 A member m is accessible when named in class N if
901 --m as a member of N is public, or
903 --m as a member of N is private, and the reference occurs in a
904 member or friend of class N, or
906 --m as a member of N is protected, and the reference occurs in a
907 member or friend of class N, or in a member or friend of a
908 class P derived from N, where m as a member of P is private or
911 --there exists a base class B of N that is accessible at the point
912 of reference, and m is accessible when named in class B.
914 We walk the base class hierarchy, checking these conditions. */
916 if (consider_local_p
)
918 /* Figure out where the reference is occurring. Check to see if
919 DECL is private or protected in this scope, since that will
920 determine whether protected access is allowed. */
921 tree ct
= current_nonlambda_class_type ();
923 protected_ok
= protected_accessible_p (decl
,
927 /* Now, loop through the classes of which we are a friend. */
929 protected_ok
= friend_accessible_p (scope
, decl
, binfo
);
932 /* Standardize the binfo that access_in_type will use. We don't
933 need to know what path was chosen from this point onwards. */
934 binfo
= TYPE_BINFO (type
);
936 /* Compute the accessibility of DECL in the class hierarchy
937 dominated by type. */
938 access
= access_in_type (type
, decl
);
939 if (access
== ak_public
940 || (access
== ak_protected
&& protected_ok
))
943 if (!consider_local_p
)
946 /* Walk the hierarchy again, looking for a base class that allows
948 return dfs_walk_once_accessible (binfo
, /*friends=*/true,
949 NULL
, dfs_accessible_post
, NULL
)
953 struct lookup_field_info
{
954 /* The type in which we're looking. */
956 /* The name of the field for which we're looking. */
958 /* If non-NULL, the current result of the lookup. */
960 /* The path to RVAL. */
962 /* If non-NULL, the lookup was ambiguous, and this is a list of the
965 /* If nonzero, we are looking for types, not data members. */
967 /* If something went wrong, a message indicating what. */
971 /* Nonzero for a class member means that it is shared between all objects
974 [class.member.lookup]:If the resulting set of declarations are not all
975 from sub-objects of the same type, or the set has a nonstatic member
976 and includes members from distinct sub-objects, there is an ambiguity
977 and the program is ill-formed.
979 This function checks that T contains no nonstatic members. */
982 shared_member_p (tree t
)
984 if (VAR_P (t
) || TREE_CODE (t
) == TYPE_DECL \
985 || TREE_CODE (t
) == CONST_DECL
)
987 if (is_overloaded_fn (t
))
990 for (; t
; t
= OVL_NEXT (t
))
992 tree fn
= OVL_CURRENT (t
);
993 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn
))
1001 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1002 found as a base class and sub-object of the object denoted by
1006 is_subobject_of_p (tree parent
, tree binfo
)
1010 for (probe
= parent
; probe
; probe
= BINFO_INHERITANCE_CHAIN (probe
))
1014 if (BINFO_VIRTUAL_P (probe
))
1015 return (binfo_for_vbase (BINFO_TYPE (probe
), BINFO_TYPE (binfo
))
1021 /* DATA is really a struct lookup_field_info. Look for a field with
1022 the name indicated there in BINFO. If this function returns a
1023 non-NULL value it is the result of the lookup. Called from
1024 lookup_field via breadth_first_search. */
1027 lookup_field_r (tree binfo
, void *data
)
1029 struct lookup_field_info
*lfi
= (struct lookup_field_info
*) data
;
1030 tree type
= BINFO_TYPE (binfo
);
1031 tree nval
= NULL_TREE
;
1033 /* If this is a dependent base, don't look in it. */
1034 if (BINFO_DEPENDENT_BASE_P (binfo
))
1037 /* If this base class is hidden by the best-known value so far, we
1038 don't need to look. */
1039 if (lfi
->rval_binfo
&& BINFO_INHERITANCE_CHAIN (binfo
) == lfi
->rval_binfo
1040 && !BINFO_VIRTUAL_P (binfo
))
1041 return dfs_skip_bases
;
1043 /* First, look for a function. There can't be a function and a data
1044 member with the same name, and if there's a function and a type
1045 with the same name, the type is hidden by the function. */
1046 if (!lfi
->want_type
)
1047 nval
= lookup_fnfields_slot (type
, lfi
->name
);
1050 /* Look for a data member or type. */
1051 nval
= lookup_field_1 (type
, lfi
->name
, lfi
->want_type
);
1053 /* If there is no declaration with the indicated name in this type,
1054 then there's nothing to do. */
1058 /* If we're looking up a type (as with an elaborated type specifier)
1059 we ignore all non-types we find. */
1060 if (lfi
->want_type
&& !DECL_DECLARES_TYPE_P (nval
))
1062 if (lfi
->name
== TYPE_IDENTIFIER (type
))
1064 /* If the aggregate has no user defined constructors, we allow
1065 it to have fields with the same name as the enclosing type.
1066 If we are looking for that name, find the corresponding
1068 for (nval
= TREE_CHAIN (nval
); nval
; nval
= TREE_CHAIN (nval
))
1069 if (DECL_NAME (nval
) == lfi
->name
1070 && TREE_CODE (nval
) == TYPE_DECL
)
1075 if (!nval
&& CLASSTYPE_NESTED_UTDS (type
) != NULL
)
1077 binding_entry e
= binding_table_find (CLASSTYPE_NESTED_UTDS (type
),
1080 nval
= TYPE_MAIN_DECL (e
->type
);
1086 /* If the lookup already found a match, and the new value doesn't
1087 hide the old one, we might have an ambiguity. */
1089 && !is_subobject_of_p (lfi
->rval_binfo
, binfo
))
1092 if (nval
== lfi
->rval
&& shared_member_p (nval
))
1093 /* The two things are really the same. */
1095 else if (is_subobject_of_p (binfo
, lfi
->rval_binfo
))
1096 /* The previous value hides the new one. */
1100 /* We have a real ambiguity. We keep a chain of all the
1102 if (!lfi
->ambiguous
&& lfi
->rval
)
1104 /* This is the first time we noticed an ambiguity. Add
1105 what we previously thought was a reasonable candidate
1107 lfi
->ambiguous
= tree_cons (NULL_TREE
, lfi
->rval
, NULL_TREE
);
1108 TREE_TYPE (lfi
->ambiguous
) = error_mark_node
;
1111 /* Add the new value. */
1112 lfi
->ambiguous
= tree_cons (NULL_TREE
, nval
, lfi
->ambiguous
);
1113 TREE_TYPE (lfi
->ambiguous
) = error_mark_node
;
1114 lfi
->errstr
= G_("request for member %qD is ambiguous");
1120 lfi
->rval_binfo
= binfo
;
1124 /* Don't look for constructors or destructors in base classes. */
1125 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi
->name
))
1126 return dfs_skip_bases
;
1130 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1131 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1132 FUNCTIONS, and OPTYPE respectively. */
1135 build_baselink (tree binfo
, tree access_binfo
, tree functions
, tree optype
)
1139 gcc_assert (TREE_CODE (functions
) == FUNCTION_DECL
1140 || TREE_CODE (functions
) == TEMPLATE_DECL
1141 || TREE_CODE (functions
) == TEMPLATE_ID_EXPR
1142 || TREE_CODE (functions
) == OVERLOAD
);
1143 gcc_assert (!optype
|| TYPE_P (optype
));
1144 gcc_assert (TREE_TYPE (functions
));
1146 baselink
= make_node (BASELINK
);
1147 TREE_TYPE (baselink
) = TREE_TYPE (functions
);
1148 BASELINK_BINFO (baselink
) = binfo
;
1149 BASELINK_ACCESS_BINFO (baselink
) = access_binfo
;
1150 BASELINK_FUNCTIONS (baselink
) = functions
;
1151 BASELINK_OPTYPE (baselink
) = optype
;
1156 /* Look for a member named NAME in an inheritance lattice dominated by
1157 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1158 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1159 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1160 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1161 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1162 TREE_VALUEs are the list of ambiguous candidates.
1164 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1166 If nothing can be found return NULL_TREE and do not issue an error. */
1169 lookup_member (tree xbasetype
, tree name
, int protect
, bool want_type
,
1170 tsubst_flags_t complain
)
1172 tree rval
, rval_binfo
= NULL_TREE
;
1173 tree type
= NULL_TREE
, basetype_path
= NULL_TREE
;
1174 struct lookup_field_info lfi
;
1176 /* rval_binfo is the binfo associated with the found member, note,
1177 this can be set with useful information, even when rval is not
1178 set, because it must deal with ALL members, not just non-function
1179 members. It is used for ambiguity checking and the hidden
1180 checks. Whereas rval is only set if a proper (not hidden)
1181 non-function member is found. */
1183 const char *errstr
= 0;
1185 if (name
== error_mark_node
1186 || xbasetype
== NULL_TREE
1187 || xbasetype
== error_mark_node
)
1190 gcc_assert (identifier_p (name
));
1192 if (TREE_CODE (xbasetype
) == TREE_BINFO
)
1194 type
= BINFO_TYPE (xbasetype
);
1195 basetype_path
= xbasetype
;
1199 if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype
)))
1202 xbasetype
= NULL_TREE
;
1205 type
= complete_type (type
);
1207 basetype_path
= TYPE_BINFO (type
);
1212 if (GATHER_STATISTICS
)
1213 n_calls_lookup_field
++;
1215 memset (&lfi
, 0, sizeof (lfi
));
1218 lfi
.want_type
= want_type
;
1219 dfs_walk_all (basetype_path
, &lookup_field_r
, NULL
, &lfi
);
1221 rval_binfo
= lfi
.rval_binfo
;
1223 type
= BINFO_TYPE (rval_binfo
);
1224 errstr
= lfi
.errstr
;
1226 /* If we are not interested in ambiguities, don't report them;
1227 just return NULL_TREE. */
1228 if (!protect
&& lfi
.ambiguous
)
1234 return lfi
.ambiguous
;
1241 In the case of overloaded function names, access control is
1242 applied to the function selected by overloaded resolution.
1244 We cannot check here, even if RVAL is only a single non-static
1245 member function, since we do not know what the "this" pointer
1248 class A { protected: void f(); };
1249 class B : public A {
1256 only the first call to "f" is valid. However, if the function is
1257 static, we can check. */
1259 && !really_overloaded_fn (rval
))
1261 tree decl
= is_overloaded_fn (rval
) ? get_first_fn (rval
) : rval
;
1262 if (!DECL_NONSTATIC_MEMBER_FUNCTION_P (decl
)
1263 && !perform_or_defer_access_check (basetype_path
, decl
, decl
,
1265 rval
= error_mark_node
;
1268 if (errstr
&& protect
)
1270 if (complain
& tf_error
)
1272 error (errstr
, name
, type
);
1274 print_candidates (lfi
.ambiguous
);
1276 rval
= error_mark_node
;
1279 if (rval
&& is_overloaded_fn (rval
))
1280 rval
= build_baselink (rval_binfo
, basetype_path
, rval
,
1281 (IDENTIFIER_TYPENAME_P (name
)
1282 ? TREE_TYPE (name
): NULL_TREE
));
1286 /* Like lookup_member, except that if we find a function member we
1287 return NULL_TREE. */
1290 lookup_field (tree xbasetype
, tree name
, int protect
, bool want_type
)
1292 tree rval
= lookup_member (xbasetype
, name
, protect
, want_type
,
1293 tf_warning_or_error
);
1295 /* Ignore functions, but propagate the ambiguity list. */
1296 if (!error_operand_p (rval
)
1297 && (rval
&& BASELINK_P (rval
)))
1303 /* Like lookup_member, except that if we find a non-function member we
1304 return NULL_TREE. */
1307 lookup_fnfields (tree xbasetype
, tree name
, int protect
)
1309 tree rval
= lookup_member (xbasetype
, name
, protect
, /*want_type=*/false,
1310 tf_warning_or_error
);
1312 /* Ignore non-functions, but propagate the ambiguity list. */
1313 if (!error_operand_p (rval
)
1314 && (rval
&& !BASELINK_P (rval
)))
1320 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1321 corresponding to "operator TYPE ()", or -1 if there is no such
1322 operator. Only CLASS_TYPE itself is searched; this routine does
1323 not scan the base classes of CLASS_TYPE. */
1326 lookup_conversion_operator (tree class_type
, tree type
)
1330 if (TYPE_HAS_CONVERSION (class_type
))
1334 vec
<tree
, va_gc
> *methods
= CLASSTYPE_METHOD_VEC (class_type
);
1336 for (i
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
1337 vec_safe_iterate (methods
, i
, &fn
); ++i
)
1339 /* All the conversion operators come near the beginning of
1340 the class. Therefore, if FN is not a conversion
1341 operator, there is no matching conversion operator in
1343 fn
= OVL_CURRENT (fn
);
1344 if (!DECL_CONV_FN_P (fn
))
1347 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
1348 /* All the templated conversion functions are on the same
1349 slot, so remember it. */
1351 else if (same_type_p (DECL_CONV_FN_TYPE (fn
), type
))
1359 /* TYPE is a class type. Return the index of the fields within
1360 the method vector with name NAME, or -1 if no such field exists.
1361 Does not lazily declare implicitly-declared member functions. */
1364 lookup_fnfields_idx_nolazy (tree type
, tree name
)
1366 vec
<tree
, va_gc
> *method_vec
;
1371 if (!CLASS_TYPE_P (type
))
1374 method_vec
= CLASSTYPE_METHOD_VEC (type
);
1378 if (GATHER_STATISTICS
)
1379 n_calls_lookup_fnfields_1
++;
1381 /* Constructors are first... */
1382 if (name
== ctor_identifier
)
1384 fn
= CLASSTYPE_CONSTRUCTORS (type
);
1385 return fn
? CLASSTYPE_CONSTRUCTOR_SLOT
: -1;
1387 /* and destructors are second. */
1388 if (name
== dtor_identifier
)
1390 fn
= CLASSTYPE_DESTRUCTORS (type
);
1391 return fn
? CLASSTYPE_DESTRUCTOR_SLOT
: -1;
1393 if (IDENTIFIER_TYPENAME_P (name
))
1394 return lookup_conversion_operator (type
, TREE_TYPE (name
));
1396 /* Skip the conversion operators. */
1397 for (i
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
1398 vec_safe_iterate (method_vec
, i
, &fn
);
1400 if (!DECL_CONV_FN_P (OVL_CURRENT (fn
)))
1403 /* If the type is complete, use binary search. */
1404 if (COMPLETE_TYPE_P (type
))
1410 hi
= method_vec
->length ();
1415 if (GATHER_STATISTICS
)
1416 n_outer_fields_searched
++;
1418 tmp
= (*method_vec
)[i
];
1419 tmp
= DECL_NAME (OVL_CURRENT (tmp
));
1422 else if (tmp
< name
)
1429 for (; vec_safe_iterate (method_vec
, i
, &fn
); ++i
)
1431 if (GATHER_STATISTICS
)
1432 n_outer_fields_searched
++;
1433 if (DECL_NAME (OVL_CURRENT (fn
)) == name
)
1440 /* TYPE is a class type. Return the index of the fields within
1441 the method vector with name NAME, or -1 if no such field exists. */
1444 lookup_fnfields_1 (tree type
, tree name
)
1446 if (!CLASS_TYPE_P (type
))
1449 if (COMPLETE_TYPE_P (type
))
1451 if ((name
== ctor_identifier
1452 || name
== base_ctor_identifier
1453 || name
== complete_ctor_identifier
))
1455 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type
))
1456 lazily_declare_fn (sfk_constructor
, type
);
1457 if (CLASSTYPE_LAZY_COPY_CTOR (type
))
1458 lazily_declare_fn (sfk_copy_constructor
, type
);
1459 if (CLASSTYPE_LAZY_MOVE_CTOR (type
))
1460 lazily_declare_fn (sfk_move_constructor
, type
);
1462 else if (name
== ansi_assopname (NOP_EXPR
))
1464 if (CLASSTYPE_LAZY_COPY_ASSIGN (type
))
1465 lazily_declare_fn (sfk_copy_assignment
, type
);
1466 if (CLASSTYPE_LAZY_MOVE_ASSIGN (type
))
1467 lazily_declare_fn (sfk_move_assignment
, type
);
1469 else if ((name
== dtor_identifier
1470 || name
== base_dtor_identifier
1471 || name
== complete_dtor_identifier
1472 || name
== deleting_dtor_identifier
)
1473 && CLASSTYPE_LAZY_DESTRUCTOR (type
))
1474 lazily_declare_fn (sfk_destructor
, type
);
1477 return lookup_fnfields_idx_nolazy (type
, name
);
1480 /* TYPE is a class type. Return the field within the method vector with
1481 name NAME, or NULL_TREE if no such field exists. */
1484 lookup_fnfields_slot (tree type
, tree name
)
1486 int ix
= lookup_fnfields_1 (complete_type (type
), name
);
1489 return (*CLASSTYPE_METHOD_VEC (type
))[ix
];
1492 /* As above, but avoid lazily declaring functions. */
1495 lookup_fnfields_slot_nolazy (tree type
, tree name
)
1497 int ix
= lookup_fnfields_idx_nolazy (complete_type (type
), name
);
1500 return (*CLASSTYPE_METHOD_VEC (type
))[ix
];
1503 /* Like lookup_fnfields_1, except that the name is extracted from
1504 FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
1507 class_method_index_for_fn (tree class_type
, tree function
)
1509 gcc_assert (DECL_DECLARES_FUNCTION_P (function
));
1511 return lookup_fnfields_1 (class_type
,
1512 DECL_CONSTRUCTOR_P (function
) ? ctor_identifier
:
1513 DECL_DESTRUCTOR_P (function
) ? dtor_identifier
:
1514 DECL_NAME (function
));
1518 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1519 the class or namespace used to qualify the name. CONTEXT_CLASS is
1520 the class corresponding to the object in which DECL will be used.
1521 Return a possibly modified version of DECL that takes into account
1524 In particular, consider an expression like `B::m' in the context of
1525 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1526 then the most derived class indicated by the BASELINK_BINFO will be
1527 `B', not `D'. This function makes that adjustment. */
1530 adjust_result_of_qualified_name_lookup (tree decl
,
1531 tree qualifying_scope
,
1534 if (context_class
&& context_class
!= error_mark_node
1535 && CLASS_TYPE_P (context_class
)
1536 && CLASS_TYPE_P (qualifying_scope
)
1537 && DERIVED_FROM_P (qualifying_scope
, context_class
)
1538 && BASELINK_P (decl
))
1542 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1543 Because we do not yet know which function will be chosen by
1544 overload resolution, we cannot yet check either accessibility
1545 or ambiguity -- in either case, the choice of a static member
1546 function might make the usage valid. */
1547 base
= lookup_base (context_class
, qualifying_scope
,
1548 ba_unique
, NULL
, tf_none
);
1549 if (base
&& base
!= error_mark_node
)
1551 BASELINK_ACCESS_BINFO (decl
) = base
;
1552 BASELINK_BINFO (decl
)
1553 = lookup_base (base
, BINFO_TYPE (BASELINK_BINFO (decl
)),
1554 ba_unique
, NULL
, tf_none
);
1558 if (BASELINK_P (decl
))
1559 BASELINK_QUALIFIED_P (decl
) = true;
1565 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1566 PRE_FN is called in preorder, while POST_FN is called in postorder.
1567 If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1568 walked. If PRE_FN or POST_FN returns a different non-NULL value,
1569 that value is immediately returned and the walk is terminated. One
1570 of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
1571 POST_FN are passed the binfo to examine and the caller's DATA
1572 value. All paths are walked, thus virtual and morally virtual
1573 binfos can be multiply walked. */
1576 dfs_walk_all (tree binfo
, tree (*pre_fn
) (tree
, void *),
1577 tree (*post_fn
) (tree
, void *), void *data
)
1583 /* Call the pre-order walking function. */
1586 rval
= pre_fn (binfo
, data
);
1589 if (rval
== dfs_skip_bases
)
1595 /* Find the next child binfo to walk. */
1596 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
1598 rval
= dfs_walk_all (base_binfo
, pre_fn
, post_fn
, data
);
1604 /* Call the post-order walking function. */
1607 rval
= post_fn (binfo
, data
);
1608 gcc_assert (rval
!= dfs_skip_bases
);
1615 /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
1616 that binfos are walked at most once. */
1619 dfs_walk_once_r (tree binfo
, tree (*pre_fn
) (tree
, void *),
1620 tree (*post_fn
) (tree
, void *), void *data
)
1626 /* Call the pre-order walking function. */
1629 rval
= pre_fn (binfo
, data
);
1632 if (rval
== dfs_skip_bases
)
1639 /* Find the next child binfo to walk. */
1640 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
1642 if (BINFO_VIRTUAL_P (base_binfo
))
1644 if (BINFO_MARKED (base_binfo
))
1646 BINFO_MARKED (base_binfo
) = 1;
1649 rval
= dfs_walk_once_r (base_binfo
, pre_fn
, post_fn
, data
);
1655 /* Call the post-order walking function. */
1658 rval
= post_fn (binfo
, data
);
1659 gcc_assert (rval
!= dfs_skip_bases
);
1666 /* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of
1670 dfs_unmark_r (tree binfo
)
1675 /* Process the basetypes. */
1676 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
1678 if (BINFO_VIRTUAL_P (base_binfo
))
1680 if (!BINFO_MARKED (base_binfo
))
1682 BINFO_MARKED (base_binfo
) = 0;
1684 /* Only walk, if it can contain more virtual bases. */
1685 if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo
)))
1686 dfs_unmark_r (base_binfo
);
1690 /* Like dfs_walk_all, except that binfos are not multiply walked. For
1691 non-diamond shaped hierarchies this is the same as dfs_walk_all.
1692 For diamond shaped hierarchies we must mark the virtual bases, to
1693 avoid multiple walks. */
1696 dfs_walk_once (tree binfo
, tree (*pre_fn
) (tree
, void *),
1697 tree (*post_fn
) (tree
, void *), void *data
)
1699 static int active
= 0; /* We must not be called recursively. */
1702 gcc_assert (pre_fn
|| post_fn
);
1703 gcc_assert (!active
);
1706 if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo
)))
1707 /* We are not diamond shaped, and therefore cannot encounter the
1708 same binfo twice. */
1709 rval
= dfs_walk_all (binfo
, pre_fn
, post_fn
, data
);
1712 rval
= dfs_walk_once_r (binfo
, pre_fn
, post_fn
, data
);
1713 if (!BINFO_INHERITANCE_CHAIN (binfo
))
1715 /* We are at the top of the hierarchy, and can use the
1716 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1718 vec
<tree
, va_gc
> *vbases
;
1722 for (vbases
= CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
)), ix
= 0;
1723 vec_safe_iterate (vbases
, ix
, &base_binfo
); ix
++)
1724 BINFO_MARKED (base_binfo
) = 0;
1727 dfs_unmark_r (binfo
);
1735 /* Worker function for dfs_walk_once_accessible. Behaves like
1736 dfs_walk_once_r, except (a) FRIENDS_P is true if special
1737 access given by the current context should be considered, (b) ONCE
1738 indicates whether bases should be marked during traversal. */
1741 dfs_walk_once_accessible_r (tree binfo
, bool friends_p
, bool once
,
1742 tree (*pre_fn
) (tree
, void *),
1743 tree (*post_fn
) (tree
, void *), void *data
)
1745 tree rval
= NULL_TREE
;
1749 /* Call the pre-order walking function. */
1752 rval
= pre_fn (binfo
, data
);
1755 if (rval
== dfs_skip_bases
)
1762 /* Find the next child binfo to walk. */
1763 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
1765 bool mark
= once
&& BINFO_VIRTUAL_P (base_binfo
);
1767 if (mark
&& BINFO_MARKED (base_binfo
))
1770 /* If the base is inherited via private or protected
1771 inheritance, then we can't see it, unless we are a friend of
1772 the current binfo. */
1773 if (BINFO_BASE_ACCESS (binfo
, ix
) != access_public_node
)
1778 scope
= current_scope ();
1780 || TREE_CODE (scope
) == NAMESPACE_DECL
1781 || !is_friend (BINFO_TYPE (binfo
), scope
))
1786 BINFO_MARKED (base_binfo
) = 1;
1788 rval
= dfs_walk_once_accessible_r (base_binfo
, friends_p
, once
,
1789 pre_fn
, post_fn
, data
);
1795 /* Call the post-order walking function. */
1798 rval
= post_fn (binfo
, data
);
1799 gcc_assert (rval
!= dfs_skip_bases
);
1806 /* Like dfs_walk_once except that only accessible bases are walked.
1807 FRIENDS_P indicates whether friendship of the local context
1808 should be considered when determining accessibility. */
1811 dfs_walk_once_accessible (tree binfo
, bool friends_p
,
1812 tree (*pre_fn
) (tree
, void *),
1813 tree (*post_fn
) (tree
, void *), void *data
)
1815 bool diamond_shaped
= CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo
));
1816 tree rval
= dfs_walk_once_accessible_r (binfo
, friends_p
, diamond_shaped
,
1817 pre_fn
, post_fn
, data
);
1821 if (!BINFO_INHERITANCE_CHAIN (binfo
))
1823 /* We are at the top of the hierarchy, and can use the
1824 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1826 vec
<tree
, va_gc
> *vbases
;
1830 for (vbases
= CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
)), ix
= 0;
1831 vec_safe_iterate (vbases
, ix
, &base_binfo
); ix
++)
1832 BINFO_MARKED (base_binfo
) = 0;
1835 dfs_unmark_r (binfo
);
1840 /* Check that virtual overrider OVERRIDER is acceptable for base function
1841 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1844 check_final_overrider (tree overrider
, tree basefn
)
1846 tree over_type
= TREE_TYPE (overrider
);
1847 tree base_type
= TREE_TYPE (basefn
);
1848 tree over_return
= fndecl_declared_return_type (overrider
);
1849 tree base_return
= fndecl_declared_return_type (basefn
);
1850 tree over_throw
, base_throw
;
1854 if (DECL_INVALID_OVERRIDER_P (overrider
))
1857 if (same_type_p (base_return
, over_return
))
1859 else if ((CLASS_TYPE_P (over_return
) && CLASS_TYPE_P (base_return
))
1860 || (TREE_CODE (base_return
) == TREE_CODE (over_return
)
1861 && POINTER_TYPE_P (base_return
)))
1863 /* Potentially covariant. */
1864 unsigned base_quals
, over_quals
;
1866 fail
= !POINTER_TYPE_P (base_return
);
1869 fail
= cp_type_quals (base_return
) != cp_type_quals (over_return
);
1871 base_return
= TREE_TYPE (base_return
);
1872 over_return
= TREE_TYPE (over_return
);
1874 base_quals
= cp_type_quals (base_return
);
1875 over_quals
= cp_type_quals (over_return
);
1877 if ((base_quals
& over_quals
) != over_quals
)
1880 if (CLASS_TYPE_P (base_return
) && CLASS_TYPE_P (over_return
))
1882 /* Strictly speaking, the standard requires the return type to be
1883 complete even if it only differs in cv-quals, but that seems
1884 like a bug in the wording. */
1885 if (!same_type_ignoring_top_level_qualifiers_p (base_return
,
1888 tree binfo
= lookup_base (over_return
, base_return
,
1889 ba_check
, NULL
, tf_none
);
1891 if (!binfo
|| binfo
== error_mark_node
)
1895 else if (can_convert_standard (TREE_TYPE (base_type
),
1896 TREE_TYPE (over_type
),
1897 tf_warning_or_error
))
1898 /* GNU extension, allow trivial pointer conversions such as
1899 converting to void *, or qualification conversion. */
1901 if (pedwarn (DECL_SOURCE_LOCATION (overrider
), 0,
1902 "invalid covariant return type for %q#D", overrider
))
1903 inform (DECL_SOURCE_LOCATION (basefn
),
1904 " overriding %q#D", basefn
);
1917 error ("invalid covariant return type for %q+#D", overrider
);
1918 error (" overriding %q+#D", basefn
);
1922 error ("conflicting return type specified for %q+#D", overrider
);
1923 error (" overriding %q+#D", basefn
);
1925 DECL_INVALID_OVERRIDER_P (overrider
) = 1;
1929 /* Check throw specifier is at least as strict. */
1930 maybe_instantiate_noexcept (basefn
);
1931 maybe_instantiate_noexcept (overrider
);
1932 base_throw
= TYPE_RAISES_EXCEPTIONS (TREE_TYPE (basefn
));
1933 over_throw
= TYPE_RAISES_EXCEPTIONS (TREE_TYPE (overrider
));
1935 if (!comp_except_specs (base_throw
, over_throw
, ce_derived
))
1937 error ("looser throw specifier for %q+#F", overrider
);
1938 error (" overriding %q+#F", basefn
);
1939 DECL_INVALID_OVERRIDER_P (overrider
) = 1;
1943 /* Check for conflicting type attributes. */
1944 if (!comp_type_attributes (over_type
, base_type
))
1946 error ("conflicting type attributes specified for %q+#D", overrider
);
1947 error (" overriding %q+#D", basefn
);
1948 DECL_INVALID_OVERRIDER_P (overrider
) = 1;
1952 if (DECL_DELETED_FN (basefn
) != DECL_DELETED_FN (overrider
))
1954 if (DECL_DELETED_FN (overrider
))
1956 error ("deleted function %q+D", overrider
);
1957 error ("overriding non-deleted function %q+D", basefn
);
1958 maybe_explain_implicit_delete (overrider
);
1962 error ("non-deleted function %q+D", overrider
);
1963 error ("overriding deleted function %q+D", basefn
);
1967 if (DECL_FINAL_P (basefn
))
1969 error ("virtual function %q+D", overrider
);
1970 error ("overriding final function %q+D", basefn
);
1976 /* Given a class TYPE, and a function decl FNDECL, look for
1977 virtual functions in TYPE's hierarchy which FNDECL overrides.
1978 We do not look in TYPE itself, only its bases.
1980 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1981 find that it overrides anything.
1983 We check that every function which is overridden, is correctly
1987 look_for_overrides (tree type
, tree fndecl
)
1989 tree binfo
= TYPE_BINFO (type
);
1994 /* A constructor for a class T does not override a function T
1996 if (DECL_CONSTRUCTOR_P (fndecl
))
1999 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
2001 tree basetype
= BINFO_TYPE (base_binfo
);
2003 if (TYPE_POLYMORPHIC_P (basetype
))
2004 found
+= look_for_overrides_r (basetype
, fndecl
);
2009 /* Look in TYPE for virtual functions with the same signature as
2013 look_for_overrides_here (tree type
, tree fndecl
)
2017 /* If there are no methods in TYPE (meaning that only implicitly
2018 declared methods will ever be provided for TYPE), then there are
2019 no virtual functions. */
2020 if (!CLASSTYPE_METHOD_VEC (type
))
2023 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl
))
2024 ix
= CLASSTYPE_DESTRUCTOR_SLOT
;
2026 ix
= lookup_fnfields_1 (type
, DECL_NAME (fndecl
));
2029 tree fns
= (*CLASSTYPE_METHOD_VEC (type
))[ix
];
2031 for (; fns
; fns
= OVL_NEXT (fns
))
2033 tree fn
= OVL_CURRENT (fns
);
2035 if (!DECL_VIRTUAL_P (fn
))
2036 /* Not a virtual. */;
2037 else if (DECL_CONTEXT (fn
) != type
)
2038 /* Introduced with a using declaration. */;
2039 else if (DECL_STATIC_FUNCTION_P (fndecl
))
2041 tree btypes
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
2042 tree dtypes
= TYPE_ARG_TYPES (TREE_TYPE (fndecl
));
2043 if (compparms (TREE_CHAIN (btypes
), dtypes
))
2046 else if (same_signature_p (fndecl
, fn
))
2053 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
2054 TYPE itself and its bases. */
2057 look_for_overrides_r (tree type
, tree fndecl
)
2059 tree fn
= look_for_overrides_here (type
, fndecl
);
2062 if (DECL_STATIC_FUNCTION_P (fndecl
))
2064 /* A static member function cannot match an inherited
2065 virtual member function. */
2066 error ("%q+#D cannot be declared", fndecl
);
2067 error (" since %q+#D declared in base class", fn
);
2071 /* It's definitely virtual, even if not explicitly set. */
2072 DECL_VIRTUAL_P (fndecl
) = 1;
2073 check_final_overrider (fndecl
, fn
);
2078 /* We failed to find one declared in this class. Look in its bases. */
2079 return look_for_overrides (type
, fndecl
);
2082 /* Called via dfs_walk from dfs_get_pure_virtuals. */
2085 dfs_get_pure_virtuals (tree binfo
, void *data
)
2087 tree type
= (tree
) data
;
2089 /* We're not interested in primary base classes; the derived class
2090 of which they are a primary base will contain the information we
2092 if (!BINFO_PRIMARY_P (binfo
))
2096 for (virtuals
= BINFO_VIRTUALS (binfo
);
2098 virtuals
= TREE_CHAIN (virtuals
))
2099 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals
)))
2100 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (type
), BV_FN (virtuals
));
2106 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
2109 get_pure_virtuals (tree type
)
2111 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2112 is going to be overridden. */
2113 CLASSTYPE_PURE_VIRTUALS (type
) = NULL
;
2114 /* Now, run through all the bases which are not primary bases, and
2115 collect the pure virtual functions. We look at the vtable in
2116 each class to determine what pure virtual functions are present.
2117 (A primary base is not interesting because the derived class of
2118 which it is a primary base will contain vtable entries for the
2119 pure virtuals in the base class. */
2120 dfs_walk_once (TYPE_BINFO (type
), NULL
, dfs_get_pure_virtuals
, type
);
2123 /* Debug info for C++ classes can get very large; try to avoid
2124 emitting it everywhere.
2126 Note that this optimization wins even when the target supports
2127 BINCL (if only slightly), and reduces the amount of work for the
2131 maybe_suppress_debug_info (tree t
)
2133 if (write_symbols
== NO_DEBUG
)
2136 /* We might have set this earlier in cp_finish_decl. */
2137 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t
)) = 0;
2139 /* Always emit the information for each class every time. */
2140 if (flag_emit_class_debug_always
)
2143 /* If we already know how we're handling this class, handle debug info
2145 if (CLASSTYPE_INTERFACE_KNOWN (t
))
2147 if (CLASSTYPE_INTERFACE_ONLY (t
))
2148 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t
)) = 1;
2149 /* else don't set it. */
2151 /* If the class has a vtable, write out the debug info along with
2153 else if (TYPE_CONTAINS_VPTR_P (t
))
2154 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t
)) = 1;
2156 /* Otherwise, just emit the debug info normally. */
2159 /* Note that we want debugging information for a base class of a class
2160 whose vtable is being emitted. Normally, this would happen because
2161 calling the constructor for a derived class implies calling the
2162 constructors for all bases, which involve initializing the
2163 appropriate vptr with the vtable for the base class; but in the
2164 presence of optimization, this initialization may be optimized
2165 away, so we tell finish_vtable_vardecl that we want the debugging
2166 information anyway. */
2169 dfs_debug_mark (tree binfo
, void * /*data*/)
2171 tree t
= BINFO_TYPE (binfo
);
2173 if (CLASSTYPE_DEBUG_REQUESTED (t
))
2174 return dfs_skip_bases
;
2176 CLASSTYPE_DEBUG_REQUESTED (t
) = 1;
2181 /* Write out the debugging information for TYPE, whose vtable is being
2182 emitted. Also walk through our bases and note that we want to
2183 write out information for them. This avoids the problem of not
2184 writing any debug info for intermediate basetypes whose
2185 constructors, and thus the references to their vtables, and thus
2186 the vtables themselves, were optimized away. */
2189 note_debug_info_needed (tree type
)
2191 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type
)))
2193 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type
)) = 0;
2194 rest_of_type_compilation (type
, toplevel_bindings_p ());
2197 dfs_walk_all (TYPE_BINFO (type
), dfs_debug_mark
, NULL
, 0);
2201 print_search_statistics (void)
2203 if (! GATHER_STATISTICS
)
2205 fprintf (stderr
, "no search statistics\n");
2209 fprintf (stderr
, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2210 n_fields_searched
, n_calls_lookup_field
, n_calls_lookup_field_1
);
2211 fprintf (stderr
, "%d fnfields searched in %d calls to lookup_fnfields\n",
2212 n_outer_fields_searched
, n_calls_lookup_fnfields
);
2213 fprintf (stderr
, "%d calls to get_base_type\n", n_calls_get_base_type
);
2217 reinit_search_statistics (void)
2219 n_fields_searched
= 0;
2220 n_calls_lookup_field
= 0, n_calls_lookup_field_1
= 0;
2221 n_calls_lookup_fnfields
= 0, n_calls_lookup_fnfields_1
= 0;
2222 n_calls_get_base_type
= 0;
2223 n_outer_fields_searched
= 0;
2224 n_contexts_saved
= 0;
2227 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
2228 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
2229 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2230 bases have been encountered already in the tree walk. PARENT_CONVS
2231 is the list of lists of conversion functions that could hide CONV
2232 and OTHER_CONVS is the list of lists of conversion functions that
2233 could hide or be hidden by CONV, should virtualness be involved in
2234 the hierarchy. Merely checking the conversion op's name is not
2235 enough because two conversion operators to the same type can have
2236 different names. Return nonzero if we are visible. */
2239 check_hidden_convs (tree binfo
, int virtual_depth
, int virtualness
,
2240 tree to_type
, tree parent_convs
, tree other_convs
)
2244 /* See if we are hidden by a parent conversion. */
2245 for (level
= parent_convs
; level
; level
= TREE_CHAIN (level
))
2246 for (probe
= TREE_VALUE (level
); probe
; probe
= TREE_CHAIN (probe
))
2247 if (same_type_p (to_type
, TREE_TYPE (probe
)))
2250 if (virtual_depth
|| virtualness
)
2252 /* In a virtual hierarchy, we could be hidden, or could hide a
2253 conversion function on the other_convs list. */
2254 for (level
= other_convs
; level
; level
= TREE_CHAIN (level
))
2260 if (!(virtual_depth
|| TREE_STATIC (level
)))
2261 /* Neither is morally virtual, so cannot hide each other. */
2264 if (!TREE_VALUE (level
))
2265 /* They evaporated away already. */
2268 they_hide_us
= (virtual_depth
2269 && original_binfo (binfo
, TREE_PURPOSE (level
)));
2270 we_hide_them
= (!they_hide_us
&& TREE_STATIC (level
)
2271 && original_binfo (TREE_PURPOSE (level
), binfo
));
2273 if (!(we_hide_them
|| they_hide_us
))
2274 /* Neither is within the other, so no hiding can occur. */
2277 for (prev
= &TREE_VALUE (level
), other
= *prev
; other
;)
2279 if (same_type_p (to_type
, TREE_TYPE (other
)))
2282 /* We are hidden. */
2287 /* We hide the other one. */
2288 other
= TREE_CHAIN (other
);
2293 prev
= &TREE_CHAIN (other
);
2301 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2302 of conversion functions, the first slot will be for the current
2303 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2304 of conversion functions from children of the current binfo,
2305 concatenated with conversions from elsewhere in the hierarchy --
2306 that list begins with OTHER_CONVS. Return a single list of lists
2307 containing only conversions from the current binfo and its
2311 split_conversions (tree my_convs
, tree parent_convs
,
2312 tree child_convs
, tree other_convs
)
2317 /* Remove the original other_convs portion from child_convs. */
2318 for (prev
= NULL
, t
= child_convs
;
2319 t
!= other_convs
; prev
= t
, t
= TREE_CHAIN (t
))
2323 TREE_CHAIN (prev
) = NULL_TREE
;
2325 child_convs
= NULL_TREE
;
2327 /* Attach the child convs to any we had at this level. */
2330 my_convs
= parent_convs
;
2331 TREE_CHAIN (my_convs
) = child_convs
;
2334 my_convs
= child_convs
;
2339 /* Worker for lookup_conversions. Lookup conversion functions in
2340 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2341 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2342 encountered virtual bases already in the tree walk. PARENT_CONVS &
2343 PARENT_TPL_CONVS are lists of list of conversions within parent
2344 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2345 elsewhere in the tree. Return the conversions found within this
2346 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2347 encountered virtualness. We keep template and non-template
2348 conversions separate, to avoid unnecessary type comparisons.
2350 The located conversion functions are held in lists of lists. The
2351 TREE_VALUE of the outer list is the list of conversion functions
2352 found in a particular binfo. The TREE_PURPOSE of both the outer
2353 and inner lists is the binfo at which those conversions were
2354 found. TREE_STATIC is set for those lists within of morally
2355 virtual binfos. The TREE_VALUE of the inner list is the conversion
2356 function or overload itself. The TREE_TYPE of each inner list node
2357 is the converted-to type. */
2360 lookup_conversions_r (tree binfo
,
2361 int virtual_depth
, int virtualness
,
2362 tree parent_convs
, tree parent_tpl_convs
,
2363 tree other_convs
, tree other_tpl_convs
,
2364 tree
*convs
, tree
*tpl_convs
)
2366 int my_virtualness
= 0;
2367 tree my_convs
= NULL_TREE
;
2368 tree my_tpl_convs
= NULL_TREE
;
2369 tree child_convs
= NULL_TREE
;
2370 tree child_tpl_convs
= NULL_TREE
;
2373 vec
<tree
, va_gc
> *method_vec
= CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo
));
2376 /* If we have no conversion operators, then don't look. */
2377 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo
)))
2379 *convs
= *tpl_convs
= NULL_TREE
;
2384 if (BINFO_VIRTUAL_P (binfo
))
2387 /* First, locate the unhidden ones at this level. */
2388 for (i
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
2389 vec_safe_iterate (method_vec
, i
, &conv
);
2392 tree cur
= OVL_CURRENT (conv
);
2394 if (!DECL_CONV_FN_P (cur
))
2397 if (TREE_CODE (cur
) == TEMPLATE_DECL
)
2399 /* Only template conversions can be overloaded, and we must
2400 flatten them out and check each one individually. */
2403 for (tpls
= conv
; tpls
; tpls
= OVL_NEXT (tpls
))
2405 tree tpl
= OVL_CURRENT (tpls
);
2406 tree type
= DECL_CONV_FN_TYPE (tpl
);
2408 if (check_hidden_convs (binfo
, virtual_depth
, virtualness
,
2409 type
, parent_tpl_convs
, other_tpl_convs
))
2411 my_tpl_convs
= tree_cons (binfo
, tpl
, my_tpl_convs
);
2412 TREE_TYPE (my_tpl_convs
) = type
;
2415 TREE_STATIC (my_tpl_convs
) = 1;
2423 tree name
= DECL_NAME (cur
);
2425 if (!IDENTIFIER_MARKED (name
))
2427 tree type
= DECL_CONV_FN_TYPE (cur
);
2428 if (type_uses_auto (type
))
2431 type
= DECL_CONV_FN_TYPE (cur
);
2434 if (check_hidden_convs (binfo
, virtual_depth
, virtualness
,
2435 type
, parent_convs
, other_convs
))
2437 my_convs
= tree_cons (binfo
, conv
, my_convs
);
2438 TREE_TYPE (my_convs
) = type
;
2441 TREE_STATIC (my_convs
) = 1;
2444 IDENTIFIER_MARKED (name
) = 1;
2452 parent_convs
= tree_cons (binfo
, my_convs
, parent_convs
);
2454 TREE_STATIC (parent_convs
) = 1;
2459 parent_tpl_convs
= tree_cons (binfo
, my_tpl_convs
, parent_tpl_convs
);
2461 TREE_STATIC (parent_tpl_convs
) = 1;
2464 child_convs
= other_convs
;
2465 child_tpl_convs
= other_tpl_convs
;
2467 /* Now iterate over each base, looking for more conversions. */
2468 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
2470 tree base_convs
, base_tpl_convs
;
2471 unsigned base_virtualness
;
2473 base_virtualness
= lookup_conversions_r (base_binfo
,
2474 virtual_depth
, virtualness
,
2475 parent_convs
, parent_tpl_convs
,
2476 child_convs
, child_tpl_convs
,
2477 &base_convs
, &base_tpl_convs
);
2478 if (base_virtualness
)
2479 my_virtualness
= virtualness
= 1;
2480 child_convs
= chainon (base_convs
, child_convs
);
2481 child_tpl_convs
= chainon (base_tpl_convs
, child_tpl_convs
);
2484 /* Unmark the conversions found at this level */
2485 for (conv
= my_convs
; conv
; conv
= TREE_CHAIN (conv
))
2486 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv
)))) = 0;
2488 *convs
= split_conversions (my_convs
, parent_convs
,
2489 child_convs
, other_convs
);
2490 *tpl_convs
= split_conversions (my_tpl_convs
, parent_tpl_convs
,
2491 child_tpl_convs
, other_tpl_convs
);
2493 return my_virtualness
;
2496 /* Return a TREE_LIST containing all the non-hidden user-defined
2497 conversion functions for TYPE (and its base-classes). The
2498 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2499 function. The TREE_PURPOSE is the BINFO from which the conversion
2500 functions in this node were selected. This function is effectively
2501 performing a set of member lookups as lookup_fnfield does, but
2502 using the type being converted to as the unique key, rather than the
2506 lookup_conversions (tree type
)
2508 tree convs
, tpl_convs
;
2509 tree list
= NULL_TREE
;
2511 complete_type (type
);
2512 if (!CLASS_TYPE_P (type
) || !TYPE_BINFO (type
))
2515 lookup_conversions_r (TYPE_BINFO (type
), 0, 0,
2516 NULL_TREE
, NULL_TREE
, NULL_TREE
, NULL_TREE
,
2517 &convs
, &tpl_convs
);
2519 /* Flatten the list-of-lists */
2520 for (; convs
; convs
= TREE_CHAIN (convs
))
2524 for (probe
= TREE_VALUE (convs
); probe
; probe
= next
)
2526 next
= TREE_CHAIN (probe
);
2528 TREE_CHAIN (probe
) = list
;
2533 for (; tpl_convs
; tpl_convs
= TREE_CHAIN (tpl_convs
))
2537 for (probe
= TREE_VALUE (tpl_convs
); probe
; probe
= next
)
2539 next
= TREE_CHAIN (probe
);
2541 TREE_CHAIN (probe
) = list
;
2549 /* Returns the binfo of the first direct or indirect virtual base derived
2550 from BINFO, or NULL if binfo is not via virtual. */
2553 binfo_from_vbase (tree binfo
)
2555 for (; binfo
; binfo
= BINFO_INHERITANCE_CHAIN (binfo
))
2557 if (BINFO_VIRTUAL_P (binfo
))
2563 /* Returns the binfo of the first direct or indirect virtual base derived
2564 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2568 binfo_via_virtual (tree binfo
, tree limit
)
2570 if (limit
&& !CLASSTYPE_VBASECLASSES (limit
))
2571 /* LIMIT has no virtual bases, so BINFO cannot be via one. */
2574 for (; binfo
&& !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), limit
);
2575 binfo
= BINFO_INHERITANCE_CHAIN (binfo
))
2577 if (BINFO_VIRTUAL_P (binfo
))
2583 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2584 Find the equivalent binfo within whatever graph HERE is located.
2585 This is the inverse of original_binfo. */
2588 copied_binfo (tree binfo
, tree here
)
2590 tree result
= NULL_TREE
;
2592 if (BINFO_VIRTUAL_P (binfo
))
2596 for (t
= here
; BINFO_INHERITANCE_CHAIN (t
);
2597 t
= BINFO_INHERITANCE_CHAIN (t
))
2600 result
= binfo_for_vbase (BINFO_TYPE (binfo
), BINFO_TYPE (t
));
2602 else if (BINFO_INHERITANCE_CHAIN (binfo
))
2608 cbinfo
= copied_binfo (BINFO_INHERITANCE_CHAIN (binfo
), here
);
2609 for (ix
= 0; BINFO_BASE_ITERATE (cbinfo
, ix
, base_binfo
); ix
++)
2610 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo
), BINFO_TYPE (binfo
)))
2612 result
= base_binfo
;
2618 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here
), BINFO_TYPE (binfo
)));
2622 gcc_assert (result
);
2627 binfo_for_vbase (tree base
, tree t
)
2631 vec
<tree
, va_gc
> *vbases
;
2633 for (vbases
= CLASSTYPE_VBASECLASSES (t
), ix
= 0;
2634 vec_safe_iterate (vbases
, ix
, &binfo
); ix
++)
2635 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), base
))
2640 /* BINFO is some base binfo of HERE, within some other
2641 hierarchy. Return the equivalent binfo, but in the hierarchy
2642 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2643 is not a base binfo of HERE, returns NULL_TREE. */
2646 original_binfo (tree binfo
, tree here
)
2650 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), BINFO_TYPE (here
)))
2652 else if (BINFO_VIRTUAL_P (binfo
))
2653 result
= (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here
))
2654 ? binfo_for_vbase (BINFO_TYPE (binfo
), BINFO_TYPE (here
))
2656 else if (BINFO_INHERITANCE_CHAIN (binfo
))
2660 base_binfos
= original_binfo (BINFO_INHERITANCE_CHAIN (binfo
), here
);
2666 for (ix
= 0; (base_binfo
= BINFO_BASE_BINFO (base_binfos
, ix
)); ix
++)
2667 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo
),
2668 BINFO_TYPE (binfo
)))
2670 result
= base_binfo
;