2012-10-17 Michael Meissner <meissner@linux.vnet.ibm.com>
[official-gcc.git] / gcc / graphite-scop-detection.c
blob0ea9e6a473d959c204fbe16b1421368c3b2c99ca
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
24 #ifdef HAVE_cloog
25 #include <isl/set.h>
26 #include <isl/map.h>
27 #include <isl/union_map.h>
28 #include <cloog/cloog.h>
29 #include <cloog/isl/domain.h>
30 #endif
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tree-flow.h"
35 #include "cfgloop.h"
36 #include "tree-chrec.h"
37 #include "tree-data-ref.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-pass.h"
40 #include "sese.h"
42 #ifdef HAVE_cloog
43 #include "graphite-poly.h"
44 #include "graphite-scop-detection.h"
46 /* Forward declarations. */
47 static void make_close_phi_nodes_unique (basic_block);
49 /* The type of the analyzed basic block. */
51 typedef enum gbb_type {
52 GBB_UNKNOWN,
53 GBB_LOOP_SING_EXIT_HEADER,
54 GBB_LOOP_MULT_EXIT_HEADER,
55 GBB_LOOP_EXIT,
56 GBB_COND_HEADER,
57 GBB_SIMPLE,
58 GBB_LAST
59 } gbb_type;
61 /* Detect the type of BB. Loop headers are only marked, if they are
62 new. This means their loop_father is different to LAST_LOOP.
63 Otherwise they are treated like any other bb and their type can be
64 any other type. */
66 static gbb_type
67 get_bb_type (basic_block bb, struct loop *last_loop)
69 VEC (basic_block, heap) *dom;
70 int nb_dom;
71 struct loop *loop = bb->loop_father;
73 /* Check, if we entry into a new loop. */
74 if (loop != last_loop)
76 if (single_exit (loop) != NULL)
77 return GBB_LOOP_SING_EXIT_HEADER;
78 else if (loop->num != 0)
79 return GBB_LOOP_MULT_EXIT_HEADER;
80 else
81 return GBB_COND_HEADER;
84 dom = get_dominated_by (CDI_DOMINATORS, bb);
85 nb_dom = VEC_length (basic_block, dom);
86 VEC_free (basic_block, heap, dom);
88 if (nb_dom == 0)
89 return GBB_LAST;
91 if (nb_dom == 1 && single_succ_p (bb))
92 return GBB_SIMPLE;
94 return GBB_COND_HEADER;
97 /* A SCoP detection region, defined using bbs as borders.
99 All control flow touching this region, comes in passing basic_block
100 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
101 edges for the borders we are able to represent also regions that do
102 not have a single entry or exit edge.
104 But as they have a single entry basic_block and a single exit
105 basic_block, we are able to generate for every sd_region a single
106 entry and exit edge.
110 3 <- entry
113 / \ This region contains: {3, 4, 5, 6, 7, 8}
118 9 <- exit */
121 typedef struct sd_region_p
123 /* The entry bb dominates all bbs in the sd_region. It is part of
124 the region. */
125 basic_block entry;
127 /* The exit bb postdominates all bbs in the sd_region, but is not
128 part of the region. */
129 basic_block exit;
130 } sd_region;
132 DEF_VEC_O(sd_region);
133 DEF_VEC_ALLOC_O(sd_region, heap);
136 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
138 static void
139 move_sd_regions (VEC (sd_region, heap) **source,
140 VEC (sd_region, heap) **target)
142 sd_region *s;
143 int i;
145 FOR_EACH_VEC_ELT (sd_region, *source, i, s)
146 VEC_safe_push (sd_region, heap, *target, *s);
148 VEC_free (sd_region, heap, *source);
151 /* Something like "n * m" is not allowed. */
153 static bool
154 graphite_can_represent_init (tree e)
156 switch (TREE_CODE (e))
158 case POLYNOMIAL_CHREC:
159 return graphite_can_represent_init (CHREC_LEFT (e))
160 && graphite_can_represent_init (CHREC_RIGHT (e));
162 case MULT_EXPR:
163 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
164 return graphite_can_represent_init (TREE_OPERAND (e, 0))
165 && host_integerp (TREE_OPERAND (e, 1), 0);
166 else
167 return graphite_can_represent_init (TREE_OPERAND (e, 1))
168 && host_integerp (TREE_OPERAND (e, 0), 0);
170 case PLUS_EXPR:
171 case POINTER_PLUS_EXPR:
172 case MINUS_EXPR:
173 return graphite_can_represent_init (TREE_OPERAND (e, 0))
174 && graphite_can_represent_init (TREE_OPERAND (e, 1));
176 case NEGATE_EXPR:
177 case BIT_NOT_EXPR:
178 CASE_CONVERT:
179 case NON_LVALUE_EXPR:
180 return graphite_can_represent_init (TREE_OPERAND (e, 0));
182 default:
183 break;
186 return true;
189 /* Return true when SCEV can be represented in the polyhedral model.
191 An expression can be represented, if it can be expressed as an
192 affine expression. For loops (i, j) and parameters (m, n) all
193 affine expressions are of the form:
195 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
197 1 i + 20 j + (-2) m + 25
199 Something like "i * n" or "n * m" is not allowed. */
201 static bool
202 graphite_can_represent_scev (tree scev)
204 if (chrec_contains_undetermined (scev))
205 return false;
207 switch (TREE_CODE (scev))
209 case PLUS_EXPR:
210 case MINUS_EXPR:
211 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
212 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
214 case MULT_EXPR:
215 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
216 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
217 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
218 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
219 && graphite_can_represent_init (scev)
220 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
221 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
223 case POLYNOMIAL_CHREC:
224 /* Check for constant strides. With a non constant stride of
225 'n' we would have a value of 'iv * n'. Also check that the
226 initial value can represented: for example 'n * m' cannot be
227 represented. */
228 if (!evolution_function_right_is_integer_cst (scev)
229 || !graphite_can_represent_init (scev))
230 return false;
232 default:
233 break;
236 /* Only affine functions can be represented. */
237 if (!scev_is_linear_expression (scev))
238 return false;
240 return true;
244 /* Return true when EXPR can be represented in the polyhedral model.
246 This means an expression can be represented, if it is linear with
247 respect to the loops and the strides are non parametric.
248 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
249 entry of the region we analyse. */
251 static bool
252 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
253 tree expr)
255 tree scev = analyze_scalar_evolution (loop, expr);
257 scev = instantiate_scev (scop_entry, loop, scev);
259 return graphite_can_represent_scev (scev);
262 /* Return true if the data references of STMT can be represented by
263 Graphite. */
265 static bool
266 stmt_has_simple_data_refs_p (loop_p outermost_loop ATTRIBUTE_UNUSED,
267 gimple stmt)
269 data_reference_p dr;
270 unsigned i;
271 int j;
272 bool res = true;
273 VEC (data_reference_p, heap) *drs = NULL;
274 loop_p outer;
276 for (outer = loop_containing_stmt (stmt); outer; outer = loop_outer (outer))
278 graphite_find_data_references_in_stmt (outer,
279 loop_containing_stmt (stmt),
280 stmt, &drs);
282 FOR_EACH_VEC_ELT (data_reference_p, drs, j, dr)
283 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
284 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
286 res = false;
287 goto done;
290 free_data_refs (drs);
291 drs = NULL;
294 done:
295 free_data_refs (drs);
296 return res;
299 /* Return true only when STMT is simple enough for being handled by
300 Graphite. This depends on SCOP_ENTRY, as the parameters are
301 initialized relatively to this basic block, the linear functions
302 are initialized to OUTERMOST_LOOP and BB is the place where we try
303 to evaluate the STMT. */
305 static bool
306 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
307 gimple stmt, basic_block bb)
309 loop_p loop = bb->loop_father;
311 gcc_assert (scop_entry);
313 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
314 Calls have side-effects, except those to const or pure
315 functions. */
316 if (gimple_has_volatile_ops (stmt)
317 || (gimple_code (stmt) == GIMPLE_CALL
318 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
319 || (gimple_code (stmt) == GIMPLE_ASM))
320 return false;
322 if (is_gimple_debug (stmt))
323 return true;
325 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
326 return false;
328 switch (gimple_code (stmt))
330 case GIMPLE_RETURN:
331 case GIMPLE_LABEL:
332 return true;
334 case GIMPLE_COND:
336 tree op;
337 ssa_op_iter op_iter;
338 enum tree_code code = gimple_cond_code (stmt);
340 /* We can handle all binary comparisons. Inequalities are
341 also supported as they can be represented with union of
342 polyhedra. */
343 if (!(code == LT_EXPR
344 || code == GT_EXPR
345 || code == LE_EXPR
346 || code == GE_EXPR
347 || code == EQ_EXPR
348 || code == NE_EXPR))
349 return false;
351 FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
352 if (!graphite_can_represent_expr (scop_entry, loop, op)
353 /* We can not handle REAL_TYPE. Failed for pr39260. */
354 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
355 return false;
357 return true;
360 case GIMPLE_ASSIGN:
361 case GIMPLE_CALL:
362 return true;
364 default:
365 /* These nodes cut a new scope. */
366 return false;
369 return false;
372 /* Returns the statement of BB that contains a harmful operation: that
373 can be a function call with side effects, the induction variables
374 are not linear with respect to SCOP_ENTRY, etc. The current open
375 scop should end before this statement. The evaluation is limited using
376 OUTERMOST_LOOP as outermost loop that may change. */
378 static gimple
379 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
381 gimple_stmt_iterator gsi;
383 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
384 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
385 return gsi_stmt (gsi);
387 return NULL;
390 /* Return true if LOOP can be represented in the polyhedral
391 representation. This is evaluated taking SCOP_ENTRY and
392 OUTERMOST_LOOP in mind. */
394 static bool
395 graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
397 tree niter;
398 struct tree_niter_desc niter_desc;
400 /* FIXME: For the moment, graphite cannot be used on loops that
401 iterate using induction variables that wrap. */
403 return number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
404 && niter_desc.control.no_overflow
405 && (niter = number_of_latch_executions (loop))
406 && !chrec_contains_undetermined (niter)
407 && graphite_can_represent_expr (scop_entry, loop, niter);
410 /* Store information needed by scopdet_* functions. */
412 struct scopdet_info
414 /* Exit of the open scop would stop if the current BB is harmful. */
415 basic_block exit;
417 /* Where the next scop would start if the current BB is harmful. */
418 basic_block next;
420 /* The bb or one of its children contains open loop exits. That means
421 loop exit nodes that are not surrounded by a loop dominated by bb. */
422 bool exits;
424 /* The bb or one of its children contains only structures we can handle. */
425 bool difficult;
428 static struct scopdet_info build_scops_1 (basic_block, loop_p,
429 VEC (sd_region, heap) **, loop_p);
431 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
432 to SCOPS. TYPE is the gbb_type of BB. */
434 static struct scopdet_info
435 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
436 VEC (sd_region, heap) **scops, gbb_type type)
438 loop_p loop = bb->loop_father;
439 struct scopdet_info result;
440 gimple stmt;
442 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
443 basic_block entry_block = ENTRY_BLOCK_PTR;
444 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
445 result.difficult = (stmt != NULL);
446 result.exit = NULL;
448 switch (type)
450 case GBB_LAST:
451 result.next = NULL;
452 result.exits = false;
454 /* Mark bbs terminating a SESE region difficult, if they start
455 a condition. */
456 if (!single_succ_p (bb))
457 result.difficult = true;
458 else
459 result.exit = single_succ (bb);
461 break;
463 case GBB_SIMPLE:
464 result.next = single_succ (bb);
465 result.exits = false;
466 result.exit = single_succ (bb);
467 break;
469 case GBB_LOOP_SING_EXIT_HEADER:
471 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
472 struct scopdet_info sinfo;
473 edge exit_e = single_exit (loop);
475 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
477 if (!graphite_can_represent_loop (entry_block, loop))
478 result.difficult = true;
480 result.difficult |= sinfo.difficult;
482 /* Try again with another loop level. */
483 if (result.difficult
484 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
486 outermost_loop = loop;
488 VEC_free (sd_region, heap, regions);
489 regions = VEC_alloc (sd_region, heap, 3);
491 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
493 result = sinfo;
494 result.difficult = true;
496 if (sinfo.difficult)
497 move_sd_regions (&regions, scops);
498 else
500 sd_region open_scop;
501 open_scop.entry = bb;
502 open_scop.exit = exit_e->dest;
503 VEC_safe_push (sd_region, heap, *scops, open_scop);
504 VEC_free (sd_region, heap, regions);
507 else
509 result.exit = exit_e->dest;
510 result.next = exit_e->dest;
512 /* If we do not dominate result.next, remove it. It's either
513 the EXIT_BLOCK_PTR, or another bb dominates it and will
514 call the scop detection for this bb. */
515 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
516 result.next = NULL;
518 if (exit_e->src->loop_father != loop)
519 result.next = NULL;
521 result.exits = false;
523 if (result.difficult)
524 move_sd_regions (&regions, scops);
525 else
526 VEC_free (sd_region, heap, regions);
529 break;
532 case GBB_LOOP_MULT_EXIT_HEADER:
534 /* XXX: For now we just do not join loops with multiple exits. If the
535 exits lead to the same bb it may be possible to join the loop. */
536 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
537 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
538 edge e;
539 int i;
540 build_scops_1 (bb, loop, &regions, loop);
542 /* Scan the code dominated by this loop. This means all bbs, that are
543 are dominated by a bb in this loop, but are not part of this loop.
545 The easiest case:
546 - The loop exit destination is dominated by the exit sources.
548 TODO: We miss here the more complex cases:
549 - The exit destinations are dominated by another bb inside
550 the loop.
551 - The loop dominates bbs, that are not exit destinations. */
552 FOR_EACH_VEC_ELT (edge, exits, i, e)
553 if (e->src->loop_father == loop
554 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
556 if (loop_outer (outermost_loop))
557 outermost_loop = loop_outer (outermost_loop);
559 /* Pass loop_outer to recognize e->dest as loop header in
560 build_scops_1. */
561 if (e->dest->loop_father->header == e->dest)
562 build_scops_1 (e->dest, outermost_loop, &regions,
563 loop_outer (e->dest->loop_father));
564 else
565 build_scops_1 (e->dest, outermost_loop, &regions,
566 e->dest->loop_father);
569 result.next = NULL;
570 result.exit = NULL;
571 result.difficult = true;
572 result.exits = false;
573 move_sd_regions (&regions, scops);
574 VEC_free (edge, heap, exits);
575 break;
577 case GBB_COND_HEADER:
579 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
580 struct scopdet_info sinfo;
581 VEC (basic_block, heap) *dominated;
582 int i;
583 basic_block dom_bb;
584 basic_block last_exit = NULL;
585 edge e;
586 result.exits = false;
588 /* First check the successors of BB, and check if it is
589 possible to join the different branches. */
590 FOR_EACH_VEC_ELT (edge, bb->succs, i, e)
592 /* Ignore loop exits. They will be handled after the loop
593 body. */
594 if (loop_exits_to_bb_p (loop, e->dest))
596 result.exits = true;
597 continue;
600 /* Do not follow edges that lead to the end of the
601 conditions block. For example, in
604 | /|\
605 | 1 2 |
606 | | | |
607 | 3 4 |
608 | \|/
611 the edge from 0 => 6. Only check if all paths lead to
612 the same node 6. */
614 if (!single_pred_p (e->dest))
616 /* Check, if edge leads directly to the end of this
617 condition. */
618 if (!last_exit)
619 last_exit = e->dest;
621 if (e->dest != last_exit)
622 result.difficult = true;
624 continue;
627 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
629 result.difficult = true;
630 continue;
633 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
635 result.exits |= sinfo.exits;
636 result.difficult |= sinfo.difficult;
638 /* Checks, if all branches end at the same point.
639 If that is true, the condition stays joinable.
640 Have a look at the example above. */
641 if (sinfo.exit)
643 if (!last_exit)
644 last_exit = sinfo.exit;
646 if (sinfo.exit != last_exit)
647 result.difficult = true;
649 else
650 result.difficult = true;
653 if (!last_exit)
654 result.difficult = true;
656 /* Join the branches of the condition if possible. */
657 if (!result.exits && !result.difficult)
659 /* Only return a next pointer if we dominate this pointer.
660 Otherwise it will be handled by the bb dominating it. */
661 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
662 && last_exit != bb)
663 result.next = last_exit;
664 else
665 result.next = NULL;
667 result.exit = last_exit;
669 VEC_free (sd_region, heap, regions);
670 break;
673 /* Scan remaining bbs dominated by BB. */
674 dominated = get_dominated_by (CDI_DOMINATORS, bb);
676 FOR_EACH_VEC_ELT (basic_block, dominated, i, dom_bb)
678 /* Ignore loop exits: they will be handled after the loop body. */
679 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
680 < loop_depth (loop))
682 result.exits = true;
683 continue;
686 /* Ignore the bbs processed above. */
687 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
688 continue;
690 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
691 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
692 loop_outer (loop));
693 else
694 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
696 result.exits |= sinfo.exits;
697 result.difficult = true;
698 result.exit = NULL;
701 VEC_free (basic_block, heap, dominated);
703 result.next = NULL;
704 move_sd_regions (&regions, scops);
706 break;
709 default:
710 gcc_unreachable ();
713 return result;
716 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
717 SCOPS. The analyse if a sd_region can be handled is based on the value
718 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
719 is the loop in which CURRENT is handled.
721 TODO: These functions got a little bit big. They definitely should be cleaned
722 up. */
724 static struct scopdet_info
725 build_scops_1 (basic_block current, loop_p outermost_loop,
726 VEC (sd_region, heap) **scops, loop_p loop)
728 bool in_scop = false;
729 sd_region open_scop;
730 struct scopdet_info sinfo;
732 /* Initialize result. */
733 struct scopdet_info result;
734 result.exits = false;
735 result.difficult = false;
736 result.next = NULL;
737 result.exit = NULL;
738 open_scop.entry = NULL;
739 open_scop.exit = NULL;
740 sinfo.exit = NULL;
742 /* Loop over the dominance tree. If we meet a difficult bb, close
743 the current SCoP. Loop and condition header start a new layer,
744 and can only be added if all bbs in deeper layers are simple. */
745 while (current != NULL)
747 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
748 get_bb_type (current, loop));
750 if (!in_scop && !(sinfo.exits || sinfo.difficult))
752 open_scop.entry = current;
753 open_scop.exit = NULL;
754 in_scop = true;
756 else if (in_scop && (sinfo.exits || sinfo.difficult))
758 open_scop.exit = current;
759 VEC_safe_push (sd_region, heap, *scops, open_scop);
760 in_scop = false;
763 result.difficult |= sinfo.difficult;
764 result.exits |= sinfo.exits;
766 current = sinfo.next;
769 /* Try to close open_scop, if we are still in an open SCoP. */
770 if (in_scop)
772 open_scop.exit = sinfo.exit;
773 gcc_assert (open_scop.exit);
774 VEC_safe_push (sd_region, heap, *scops, open_scop);
777 result.exit = sinfo.exit;
778 return result;
781 /* Checks if a bb is contained in REGION. */
783 static bool
784 bb_in_sd_region (basic_block bb, sd_region *region)
786 return bb_in_region (bb, region->entry, region->exit);
789 /* Returns the single entry edge of REGION, if it does not exits NULL. */
791 static edge
792 find_single_entry_edge (sd_region *region)
794 edge e;
795 edge_iterator ei;
796 edge entry = NULL;
798 FOR_EACH_EDGE (e, ei, region->entry->preds)
799 if (!bb_in_sd_region (e->src, region))
801 if (entry)
803 entry = NULL;
804 break;
807 else
808 entry = e;
811 return entry;
814 /* Returns the single exit edge of REGION, if it does not exits NULL. */
816 static edge
817 find_single_exit_edge (sd_region *region)
819 edge e;
820 edge_iterator ei;
821 edge exit = NULL;
823 FOR_EACH_EDGE (e, ei, region->exit->preds)
824 if (bb_in_sd_region (e->src, region))
826 if (exit)
828 exit = NULL;
829 break;
832 else
833 exit = e;
836 return exit;
839 /* Create a single entry edge for REGION. */
841 static void
842 create_single_entry_edge (sd_region *region)
844 if (find_single_entry_edge (region))
845 return;
847 /* There are multiple predecessors for bb_3
849 | 1 2
850 | | /
851 | |/
852 | 3 <- entry
853 | |\
854 | | |
855 | 4 ^
856 | | |
857 | |/
860 There are two edges (1->3, 2->3), that point from outside into the region,
861 and another one (5->3), a loop latch, lead to bb_3.
863 We split bb_3.
865 | 1 2
866 | | /
867 | |/
868 |3.0
869 | |\ (3.0 -> 3.1) = single entry edge
870 |3.1 | <- entry
871 | | |
872 | | |
873 | 4 ^
874 | | |
875 | |/
878 If the loop is part of the SCoP, we have to redirect the loop latches.
880 | 1 2
881 | | /
882 | |/
883 |3.0
884 | | (3.0 -> 3.1) = entry edge
885 |3.1 <- entry
886 | |\
887 | | |
888 | 4 ^
889 | | |
890 | |/
891 | 5 */
893 if (region->entry->loop_father->header != region->entry
894 || dominated_by_p (CDI_DOMINATORS,
895 loop_latch_edge (region->entry->loop_father)->src,
896 region->exit))
898 edge forwarder = split_block_after_labels (region->entry);
899 region->entry = forwarder->dest;
901 else
902 /* This case is never executed, as the loop headers seem always to have a
903 single edge pointing from outside into the loop. */
904 gcc_unreachable ();
906 gcc_checking_assert (find_single_entry_edge (region));
909 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
911 static bool
912 sd_region_without_exit (edge e)
914 sd_region *r = (sd_region *) e->aux;
916 if (r)
917 return r->exit == NULL;
918 else
919 return false;
922 /* Create a single exit edge for REGION. */
924 static void
925 create_single_exit_edge (sd_region *region)
927 edge e;
928 edge_iterator ei;
929 edge forwarder = NULL;
930 basic_block exit;
932 /* We create a forwarder bb (5) for all edges leaving this region
933 (3->5, 4->5). All other edges leading to the same bb, are moved
934 to a new bb (6). If these edges where part of another region (2->5)
935 we update the region->exit pointer, of this region.
937 To identify which edge belongs to which region we depend on the e->aux
938 pointer in every edge. It points to the region of the edge or to NULL,
939 if the edge is not part of any region.
941 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
942 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
943 5 <- exit
945 changes to
947 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
948 | | \/ 3->5 no region, 4->5 no region,
949 | | 5
950 \| / 5->6 region->exit = 6
953 Now there is only a single exit edge (5->6). */
954 exit = region->exit;
955 region->exit = NULL;
956 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
958 /* Unmark the edges, that are no longer exit edges. */
959 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
960 if (e->aux)
961 e->aux = NULL;
963 /* Mark the new exit edge. */
964 single_succ_edge (forwarder->src)->aux = region;
966 /* Update the exit bb of all regions, where exit edges lead to
967 forwarder->dest. */
968 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
969 if (e->aux)
970 ((sd_region *) e->aux)->exit = forwarder->dest;
972 gcc_checking_assert (find_single_exit_edge (region));
975 /* Unmark the exit edges of all REGIONS.
976 See comment in "create_single_exit_edge". */
978 static void
979 unmark_exit_edges (VEC (sd_region, heap) *regions)
981 int i;
982 sd_region *s;
983 edge e;
984 edge_iterator ei;
986 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
987 FOR_EACH_EDGE (e, ei, s->exit->preds)
988 e->aux = NULL;
992 /* Mark the exit edges of all REGIONS.
993 See comment in "create_single_exit_edge". */
995 static void
996 mark_exit_edges (VEC (sd_region, heap) *regions)
998 int i;
999 sd_region *s;
1000 edge e;
1001 edge_iterator ei;
1003 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1004 FOR_EACH_EDGE (e, ei, s->exit->preds)
1005 if (bb_in_sd_region (e->src, s))
1006 e->aux = s;
1009 /* Create for all scop regions a single entry and a single exit edge. */
1011 static void
1012 create_sese_edges (VEC (sd_region, heap) *regions)
1014 int i;
1015 sd_region *s;
1017 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1018 create_single_entry_edge (s);
1020 mark_exit_edges (regions);
1022 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1023 /* Don't handle multiple edges exiting the function. */
1024 if (!find_single_exit_edge (s)
1025 && s->exit != EXIT_BLOCK_PTR)
1026 create_single_exit_edge (s);
1028 unmark_exit_edges (regions);
1030 calculate_dominance_info (CDI_DOMINATORS);
1031 fix_loop_structure (NULL);
1033 #ifdef ENABLE_CHECKING
1034 verify_loop_structure ();
1035 verify_ssa (false);
1036 #endif
1039 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1041 static void
1042 build_graphite_scops (VEC (sd_region, heap) *regions,
1043 VEC (scop_p, heap) **scops)
1045 int i;
1046 sd_region *s;
1048 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1050 edge entry = find_single_entry_edge (s);
1051 edge exit = find_single_exit_edge (s);
1052 scop_p scop;
1054 if (!exit)
1055 continue;
1057 scop = new_scop (new_sese (entry, exit));
1058 VEC_safe_push (scop_p, heap, *scops, scop);
1060 /* Are there overlapping SCoPs? */
1061 #ifdef ENABLE_CHECKING
1063 int j;
1064 sd_region *s2;
1066 FOR_EACH_VEC_ELT (sd_region, regions, j, s2)
1067 if (s != s2)
1068 gcc_assert (!bb_in_sd_region (s->entry, s2));
1070 #endif
1074 /* Returns true when BB contains only close phi nodes. */
1076 static bool
1077 contains_only_close_phi_nodes (basic_block bb)
1079 gimple_stmt_iterator gsi;
1081 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1082 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1083 return false;
1085 return true;
1088 /* Print statistics for SCOP to FILE. */
1090 static void
1091 print_graphite_scop_statistics (FILE* file, scop_p scop)
1093 long n_bbs = 0;
1094 long n_loops = 0;
1095 long n_stmts = 0;
1096 long n_conditions = 0;
1097 long n_p_bbs = 0;
1098 long n_p_loops = 0;
1099 long n_p_stmts = 0;
1100 long n_p_conditions = 0;
1102 basic_block bb;
1104 FOR_ALL_BB (bb)
1106 gimple_stmt_iterator psi;
1107 loop_p loop = bb->loop_father;
1109 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1110 continue;
1112 n_bbs++;
1113 n_p_bbs += bb->count;
1115 if (EDGE_COUNT (bb->succs) > 1)
1117 n_conditions++;
1118 n_p_conditions += bb->count;
1121 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1123 n_stmts++;
1124 n_p_stmts += bb->count;
1127 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1129 n_loops++;
1130 n_p_loops += bb->count;
1135 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1136 fprintf (file, "BBS:%ld, ", n_bbs);
1137 fprintf (file, "LOOPS:%ld, ", n_loops);
1138 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1139 fprintf (file, "STMTS:%ld)\n", n_stmts);
1140 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1141 fprintf (file, "BBS:%ld, ", n_p_bbs);
1142 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1143 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1144 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1147 /* Print statistics for SCOPS to FILE. */
1149 static void
1150 print_graphite_statistics (FILE* file, VEC (scop_p, heap) *scops)
1152 int i;
1153 scop_p scop;
1155 FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
1156 print_graphite_scop_statistics (file, scop);
1159 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1161 Example:
1163 for (i |
1165 for (j | SCoP 1
1166 for (k |
1169 * SCoP frontier, as this line is not surrounded by any loop. *
1171 for (l | SCoP 2
1173 This is necessary as scalar evolution and parameter detection need a
1174 outermost loop to initialize parameters correctly.
1176 TODO: FIX scalar evolution and parameter detection to allow more flexible
1177 SCoP frontiers. */
1179 static void
1180 limit_scops (VEC (scop_p, heap) **scops)
1182 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1184 int i;
1185 scop_p scop;
1187 FOR_EACH_VEC_ELT (scop_p, *scops, i, scop)
1189 int j;
1190 loop_p loop;
1191 sese region = SCOP_REGION (scop);
1192 build_sese_loop_nests (region);
1194 FOR_EACH_VEC_ELT (loop_p, SESE_LOOP_NEST (region), j, loop)
1195 if (!loop_in_sese_p (loop_outer (loop), region)
1196 && single_exit (loop))
1198 sd_region open_scop;
1199 open_scop.entry = loop->header;
1200 open_scop.exit = single_exit (loop)->dest;
1202 /* This is a hack on top of the limit_scops hack. The
1203 limit_scops hack should disappear all together. */
1204 if (single_succ_p (open_scop.exit)
1205 && contains_only_close_phi_nodes (open_scop.exit))
1206 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1208 VEC_safe_push (sd_region, heap, regions, open_scop);
1212 free_scops (*scops);
1213 *scops = VEC_alloc (scop_p, heap, 3);
1215 create_sese_edges (regions);
1216 build_graphite_scops (regions, scops);
1217 VEC_free (sd_region, heap, regions);
1220 /* Returns true when P1 and P2 are close phis with the same
1221 argument. */
1223 static inline bool
1224 same_close_phi_node (gimple p1, gimple p2)
1226 return operand_equal_p (gimple_phi_arg_def (p1, 0),
1227 gimple_phi_arg_def (p2, 0), 0);
1230 /* Remove the close phi node at GSI and replace its rhs with the rhs
1231 of PHI. */
1233 static void
1234 remove_duplicate_close_phi (gimple phi, gimple_stmt_iterator *gsi)
1236 gimple use_stmt;
1237 use_operand_p use_p;
1238 imm_use_iterator imm_iter;
1239 tree res = gimple_phi_result (phi);
1240 tree def = gimple_phi_result (gsi_stmt (*gsi));
1242 gcc_assert (same_close_phi_node (phi, gsi_stmt (*gsi)));
1244 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1246 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1247 SET_USE (use_p, res);
1249 update_stmt (use_stmt);
1251 /* It is possible that we just created a duplicate close-phi
1252 for an already-processed containing loop. Check for this
1253 case and clean it up. */
1254 if (gimple_code (use_stmt) == GIMPLE_PHI
1255 && gimple_phi_num_args (use_stmt) == 1)
1256 make_close_phi_nodes_unique (gimple_bb (use_stmt));
1259 remove_phi_node (gsi, true);
1262 /* Removes all the close phi duplicates from BB. */
1264 static void
1265 make_close_phi_nodes_unique (basic_block bb)
1267 gimple_stmt_iterator psi;
1269 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1271 gimple_stmt_iterator gsi = psi;
1272 gimple phi = gsi_stmt (psi);
1274 /* At this point, PHI should be a close phi in normal form. */
1275 gcc_assert (gimple_phi_num_args (phi) == 1);
1277 /* Iterate over the next phis and remove duplicates. */
1278 gsi_next (&gsi);
1279 while (!gsi_end_p (gsi))
1280 if (same_close_phi_node (phi, gsi_stmt (gsi)))
1281 remove_duplicate_close_phi (phi, &gsi);
1282 else
1283 gsi_next (&gsi);
1287 /* Transforms LOOP to the canonical loop closed SSA form. */
1289 static void
1290 canonicalize_loop_closed_ssa (loop_p loop)
1292 edge e = single_exit (loop);
1293 basic_block bb;
1295 if (!e || e->flags & EDGE_ABNORMAL)
1296 return;
1298 bb = e->dest;
1300 if (single_pred_p (bb))
1302 e = split_block_after_labels (bb);
1303 make_close_phi_nodes_unique (e->src);
1305 else
1307 gimple_stmt_iterator psi;
1308 basic_block close = split_edge (e);
1310 e = single_succ_edge (close);
1312 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1314 gimple phi = gsi_stmt (psi);
1315 unsigned i;
1317 for (i = 0; i < gimple_phi_num_args (phi); i++)
1318 if (gimple_phi_arg_edge (phi, i) == e)
1320 tree res, arg = gimple_phi_arg_def (phi, i);
1321 use_operand_p use_p;
1322 gimple close_phi;
1324 if (TREE_CODE (arg) != SSA_NAME)
1325 continue;
1327 close_phi = create_phi_node (NULL_TREE, close);
1328 res = create_new_def_for (arg, close_phi,
1329 gimple_phi_result_ptr (close_phi));
1330 add_phi_arg (close_phi, arg,
1331 gimple_phi_arg_edge (close_phi, 0),
1332 UNKNOWN_LOCATION);
1333 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1334 replace_exp (use_p, res);
1335 update_stmt (phi);
1339 make_close_phi_nodes_unique (close);
1342 /* The code above does not properly handle changes in the post dominance
1343 information (yet). */
1344 free_dominance_info (CDI_POST_DOMINATORS);
1347 /* Converts the current loop closed SSA form to a canonical form
1348 expected by the Graphite code generation.
1350 The loop closed SSA form has the following invariant: a variable
1351 defined in a loop that is used outside the loop appears only in the
1352 phi nodes in the destination of the loop exit. These phi nodes are
1353 called close phi nodes.
1355 The canonical loop closed SSA form contains the extra invariants:
1357 - when the loop contains only one exit, the close phi nodes contain
1358 only one argument. That implies that the basic block that contains
1359 the close phi nodes has only one predecessor, that is a basic block
1360 in the loop.
1362 - the basic block containing the close phi nodes does not contain
1363 other statements.
1365 - there exist only one phi node per definition in the loop.
1368 static void
1369 canonicalize_loop_closed_ssa_form (void)
1371 loop_iterator li;
1372 loop_p loop;
1374 #ifdef ENABLE_CHECKING
1375 verify_loop_closed_ssa (true);
1376 #endif
1378 FOR_EACH_LOOP (li, loop, 0)
1379 canonicalize_loop_closed_ssa (loop);
1381 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1382 update_ssa (TODO_update_ssa);
1384 #ifdef ENABLE_CHECKING
1385 verify_loop_closed_ssa (true);
1386 #endif
1389 /* Find Static Control Parts (SCoP) in the current function and pushes
1390 them to SCOPS. */
1392 void
1393 build_scops (VEC (scop_p, heap) **scops)
1395 struct loop *loop = current_loops->tree_root;
1396 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1398 canonicalize_loop_closed_ssa_form ();
1399 build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
1400 &regions, loop);
1401 create_sese_edges (regions);
1402 build_graphite_scops (regions, scops);
1404 if (dump_file && (dump_flags & TDF_DETAILS))
1405 print_graphite_statistics (dump_file, *scops);
1407 limit_scops (scops);
1408 VEC_free (sd_region, heap, regions);
1410 if (dump_file && (dump_flags & TDF_DETAILS))
1411 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1412 VEC_length (scop_p, *scops));
1415 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1416 different colors. If there are not enough colors, paint the
1417 remaining SCoPs in gray.
1419 Special nodes:
1420 - "*" after the node number denotes the entry of a SCoP,
1421 - "#" after the node number denotes the exit of a SCoP,
1422 - "()" around the node number denotes the entry or the
1423 exit nodes of the SCOP. These are not part of SCoP. */
1425 static void
1426 dot_all_scops_1 (FILE *file, VEC (scop_p, heap) *scops)
1428 basic_block bb;
1429 edge e;
1430 edge_iterator ei;
1431 scop_p scop;
1432 const char* color;
1433 int i;
1435 /* Disable debugging while printing graph. */
1436 int tmp_dump_flags = dump_flags;
1437 dump_flags = 0;
1439 fprintf (file, "digraph all {\n");
1441 FOR_ALL_BB (bb)
1443 int part_of_scop = false;
1445 /* Use HTML for every bb label. So we are able to print bbs
1446 which are part of two different SCoPs, with two different
1447 background colors. */
1448 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1449 bb->index);
1450 fprintf (file, "CELLSPACING=\"0\">\n");
1452 /* Select color for SCoP. */
1453 FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
1455 sese region = SCOP_REGION (scop);
1456 if (bb_in_sese_p (bb, region)
1457 || (SESE_EXIT_BB (region) == bb)
1458 || (SESE_ENTRY_BB (region) == bb))
1460 switch (i % 17)
1462 case 0: /* red */
1463 color = "#e41a1c";
1464 break;
1465 case 1: /* blue */
1466 color = "#377eb8";
1467 break;
1468 case 2: /* green */
1469 color = "#4daf4a";
1470 break;
1471 case 3: /* purple */
1472 color = "#984ea3";
1473 break;
1474 case 4: /* orange */
1475 color = "#ff7f00";
1476 break;
1477 case 5: /* yellow */
1478 color = "#ffff33";
1479 break;
1480 case 6: /* brown */
1481 color = "#a65628";
1482 break;
1483 case 7: /* rose */
1484 color = "#f781bf";
1485 break;
1486 case 8:
1487 color = "#8dd3c7";
1488 break;
1489 case 9:
1490 color = "#ffffb3";
1491 break;
1492 case 10:
1493 color = "#bebada";
1494 break;
1495 case 11:
1496 color = "#fb8072";
1497 break;
1498 case 12:
1499 color = "#80b1d3";
1500 break;
1501 case 13:
1502 color = "#fdb462";
1503 break;
1504 case 14:
1505 color = "#b3de69";
1506 break;
1507 case 15:
1508 color = "#fccde5";
1509 break;
1510 case 16:
1511 color = "#bc80bd";
1512 break;
1513 default: /* gray */
1514 color = "#999999";
1517 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1519 if (!bb_in_sese_p (bb, region))
1520 fprintf (file, " (");
1522 if (bb == SESE_ENTRY_BB (region)
1523 && bb == SESE_EXIT_BB (region))
1524 fprintf (file, " %d*# ", bb->index);
1525 else if (bb == SESE_ENTRY_BB (region))
1526 fprintf (file, " %d* ", bb->index);
1527 else if (bb == SESE_EXIT_BB (region))
1528 fprintf (file, " %d# ", bb->index);
1529 else
1530 fprintf (file, " %d ", bb->index);
1532 if (!bb_in_sese_p (bb,region))
1533 fprintf (file, ")");
1535 fprintf (file, "</TD></TR>\n");
1536 part_of_scop = true;
1540 if (!part_of_scop)
1542 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1543 fprintf (file, " %d </TD></TR>\n", bb->index);
1545 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1548 FOR_ALL_BB (bb)
1550 FOR_EACH_EDGE (e, ei, bb->succs)
1551 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1554 fputs ("}\n\n", file);
1556 /* Enable debugging again. */
1557 dump_flags = tmp_dump_flags;
1560 /* Display all SCoPs using dotty. */
1562 DEBUG_FUNCTION void
1563 dot_all_scops (VEC (scop_p, heap) *scops)
1565 /* When debugging, enable the following code. This cannot be used
1566 in production compilers because it calls "system". */
1567 #if 0
1568 int x;
1569 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1570 gcc_assert (stream);
1572 dot_all_scops_1 (stream, scops);
1573 fclose (stream);
1575 x = system ("dotty /tmp/allscops.dot &");
1576 #else
1577 dot_all_scops_1 (stderr, scops);
1578 #endif
1581 /* Display all SCoPs using dotty. */
1583 DEBUG_FUNCTION void
1584 dot_scop (scop_p scop)
1586 VEC (scop_p, heap) *scops = NULL;
1588 if (scop)
1589 VEC_safe_push (scop_p, heap, scops, scop);
1591 /* When debugging, enable the following code. This cannot be used
1592 in production compilers because it calls "system". */
1593 #if 0
1595 int x;
1596 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1597 gcc_assert (stream);
1599 dot_all_scops_1 (stream, scops);
1600 fclose (stream);
1601 x = system ("dotty /tmp/allscops.dot &");
1603 #else
1604 dot_all_scops_1 (stderr, scops);
1605 #endif
1607 VEC_free (scop_p, heap, scops);
1610 #endif