Avoid no-stack-protector-attr fails on hppa*-*-*.
[official-gcc.git] / gcc / reload1.c
blob40e7e39c4765f97a0763296d8ecd4976f3d2a121
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "recog.h"
36 #include "rtl-error.h"
37 #include "expr.h"
38 #include "addresses.h"
39 #include "cfgrtl.h"
40 #include "cfgbuild.h"
41 #include "reload.h"
42 #include "except.h"
43 #include "dumpfile.h"
44 #include "rtl-iter.h"
45 #include "function-abi.h"
47 /* This file contains the reload pass of the compiler, which is
48 run after register allocation has been done. It checks that
49 each insn is valid (operands required to be in registers really
50 are in registers of the proper class) and fixes up invalid ones
51 by copying values temporarily into registers for the insns
52 that need them.
54 The results of register allocation are described by the vector
55 reg_renumber; the insns still contain pseudo regs, but reg_renumber
56 can be used to find which hard reg, if any, a pseudo reg is in.
58 The technique we always use is to free up a few hard regs that are
59 called ``reload regs'', and for each place where a pseudo reg
60 must be in a hard reg, copy it temporarily into one of the reload regs.
62 Reload regs are allocated locally for every instruction that needs
63 reloads. When there are pseudos which are allocated to a register that
64 has been chosen as a reload reg, such pseudos must be ``spilled''.
65 This means that they go to other hard regs, or to stack slots if no other
66 available hard regs can be found. Spilling can invalidate more
67 insns, requiring additional need for reloads, so we must keep checking
68 until the process stabilizes.
70 For machines with different classes of registers, we must keep track
71 of the register class needed for each reload, and make sure that
72 we allocate enough reload registers of each class.
74 The file reload.c contains the code that checks one insn for
75 validity and reports the reloads that it needs. This file
76 is in charge of scanning the entire rtl code, accumulating the
77 reload needs, spilling, assigning reload registers to use for
78 fixing up each insn, and generating the new insns to copy values
79 into the reload registers. */
81 struct target_reload default_target_reload;
82 #if SWITCHABLE_TARGET
83 struct target_reload *this_target_reload = &default_target_reload;
84 #endif
86 #define spill_indirect_levels \
87 (this_target_reload->x_spill_indirect_levels)
89 /* During reload_as_needed, element N contains a REG rtx for the hard reg
90 into which reg N has been reloaded (perhaps for a previous insn). */
91 static rtx *reg_last_reload_reg;
93 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
94 for an output reload that stores into reg N. */
95 static regset_head reg_has_output_reload;
97 /* Indicates which hard regs are reload-registers for an output reload
98 in the current insn. */
99 static HARD_REG_SET reg_is_output_reload;
101 /* Widest mode in which each pseudo reg is referred to (via subreg). */
102 static machine_mode *reg_max_ref_mode;
104 /* Vector to remember old contents of reg_renumber before spilling. */
105 static short *reg_old_renumber;
107 /* During reload_as_needed, element N contains the last pseudo regno reloaded
108 into hard register N. If that pseudo reg occupied more than one register,
109 reg_reloaded_contents points to that pseudo for each spill register in
110 use; all of these must remain set for an inheritance to occur. */
111 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
113 /* During reload_as_needed, element N contains the insn for which
114 hard register N was last used. Its contents are significant only
115 when reg_reloaded_valid is set for this register. */
116 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
118 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
119 static HARD_REG_SET reg_reloaded_valid;
120 /* Indicate if the register was dead at the end of the reload.
121 This is only valid if reg_reloaded_contents is set and valid. */
122 static HARD_REG_SET reg_reloaded_dead;
124 /* Number of spill-regs so far; number of valid elements of spill_regs. */
125 static int n_spills;
127 /* In parallel with spill_regs, contains REG rtx's for those regs.
128 Holds the last rtx used for any given reg, or 0 if it has never
129 been used for spilling yet. This rtx is reused, provided it has
130 the proper mode. */
131 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
133 /* In parallel with spill_regs, contains nonzero for a spill reg
134 that was stored after the last time it was used.
135 The precise value is the insn generated to do the store. */
136 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
138 /* This is the register that was stored with spill_reg_store. This is a
139 copy of reload_out / reload_out_reg when the value was stored; if
140 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
141 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
143 /* This table is the inverse mapping of spill_regs:
144 indexed by hard reg number,
145 it contains the position of that reg in spill_regs,
146 or -1 for something that is not in spill_regs.
148 ?!? This is no longer accurate. */
149 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
151 /* This reg set indicates registers that can't be used as spill registers for
152 the currently processed insn. These are the hard registers which are live
153 during the insn, but not allocated to pseudos, as well as fixed
154 registers. */
155 static HARD_REG_SET bad_spill_regs;
157 /* These are the hard registers that can't be used as spill register for any
158 insn. This includes registers used for user variables and registers that
159 we can't eliminate. A register that appears in this set also can't be used
160 to retry register allocation. */
161 static HARD_REG_SET bad_spill_regs_global;
163 /* Describes order of use of registers for reloading
164 of spilled pseudo-registers. `n_spills' is the number of
165 elements that are actually valid; new ones are added at the end.
167 Both spill_regs and spill_reg_order are used on two occasions:
168 once during find_reload_regs, where they keep track of the spill registers
169 for a single insn, but also during reload_as_needed where they show all
170 the registers ever used by reload. For the latter case, the information
171 is calculated during finish_spills. */
172 static short spill_regs[FIRST_PSEUDO_REGISTER];
174 /* This vector of reg sets indicates, for each pseudo, which hard registers
175 may not be used for retrying global allocation because the register was
176 formerly spilled from one of them. If we allowed reallocating a pseudo to
177 a register that it was already allocated to, reload might not
178 terminate. */
179 static HARD_REG_SET *pseudo_previous_regs;
181 /* This vector of reg sets indicates, for each pseudo, which hard
182 registers may not be used for retrying global allocation because they
183 are used as spill registers during one of the insns in which the
184 pseudo is live. */
185 static HARD_REG_SET *pseudo_forbidden_regs;
187 /* All hard regs that have been used as spill registers for any insn are
188 marked in this set. */
189 static HARD_REG_SET used_spill_regs;
191 /* Index of last register assigned as a spill register. We allocate in
192 a round-robin fashion. */
193 static int last_spill_reg;
195 /* Record the stack slot for each spilled hard register. */
196 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
198 /* Width allocated so far for that stack slot. */
199 static poly_uint64_pod spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
201 /* Record which pseudos needed to be spilled. */
202 static regset_head spilled_pseudos;
204 /* Record which pseudos changed their allocation in finish_spills. */
205 static regset_head changed_allocation_pseudos;
207 /* Used for communication between order_regs_for_reload and count_pseudo.
208 Used to avoid counting one pseudo twice. */
209 static regset_head pseudos_counted;
211 /* First uid used by insns created by reload in this function.
212 Used in find_equiv_reg. */
213 int reload_first_uid;
215 /* Flag set by local-alloc or global-alloc if anything is live in
216 a call-clobbered reg across calls. */
217 int caller_save_needed;
219 /* Set to 1 while reload_as_needed is operating.
220 Required by some machines to handle any generated moves differently. */
221 int reload_in_progress = 0;
223 /* This obstack is used for allocation of rtl during register elimination.
224 The allocated storage can be freed once find_reloads has processed the
225 insn. */
226 static struct obstack reload_obstack;
228 /* Points to the beginning of the reload_obstack. All insn_chain structures
229 are allocated first. */
230 static char *reload_startobj;
232 /* The point after all insn_chain structures. Used to quickly deallocate
233 memory allocated in copy_reloads during calculate_needs_all_insns. */
234 static char *reload_firstobj;
236 /* This points before all local rtl generated by register elimination.
237 Used to quickly free all memory after processing one insn. */
238 static char *reload_insn_firstobj;
240 /* List of insn_chain instructions, one for every insn that reload needs to
241 examine. */
242 class insn_chain *reload_insn_chain;
244 /* TRUE if we potentially left dead insns in the insn stream and want to
245 run DCE immediately after reload, FALSE otherwise. */
246 static bool need_dce;
248 /* List of all insns needing reloads. */
249 static class insn_chain *insns_need_reload;
251 /* This structure is used to record information about register eliminations.
252 Each array entry describes one possible way of eliminating a register
253 in favor of another. If there is more than one way of eliminating a
254 particular register, the most preferred should be specified first. */
256 struct elim_table
258 int from; /* Register number to be eliminated. */
259 int to; /* Register number used as replacement. */
260 poly_int64_pod initial_offset; /* Initial difference between values. */
261 int can_eliminate; /* Nonzero if this elimination can be done. */
262 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
263 target hook in previous scan over insns
264 made by reload. */
265 poly_int64_pod offset; /* Current offset between the two regs. */
266 poly_int64_pod previous_offset; /* Offset at end of previous insn. */
267 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
268 rtx from_rtx; /* REG rtx for the register to be eliminated.
269 We cannot simply compare the number since
270 we might then spuriously replace a hard
271 register corresponding to a pseudo
272 assigned to the reg to be eliminated. */
273 rtx to_rtx; /* REG rtx for the replacement. */
276 static struct elim_table *reg_eliminate = 0;
278 /* This is an intermediate structure to initialize the table. It has
279 exactly the members provided by ELIMINABLE_REGS. */
280 static const struct elim_table_1
282 const int from;
283 const int to;
284 } reg_eliminate_1[] =
286 ELIMINABLE_REGS;
288 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
290 /* Record the number of pending eliminations that have an offset not equal
291 to their initial offset. If nonzero, we use a new copy of each
292 replacement result in any insns encountered. */
293 int num_not_at_initial_offset;
295 /* Count the number of registers that we may be able to eliminate. */
296 static int num_eliminable;
297 /* And the number of registers that are equivalent to a constant that
298 can be eliminated to frame_pointer / arg_pointer + constant. */
299 static int num_eliminable_invariants;
301 /* For each label, we record the offset of each elimination. If we reach
302 a label by more than one path and an offset differs, we cannot do the
303 elimination. This information is indexed by the difference of the
304 number of the label and the first label number. We can't offset the
305 pointer itself as this can cause problems on machines with segmented
306 memory. The first table is an array of flags that records whether we
307 have yet encountered a label and the second table is an array of arrays,
308 one entry in the latter array for each elimination. */
310 static int first_label_num;
311 static char *offsets_known_at;
312 static poly_int64_pod (*offsets_at)[NUM_ELIMINABLE_REGS];
314 vec<reg_equivs_t, va_gc> *reg_equivs;
316 /* Stack of addresses where an rtx has been changed. We can undo the
317 changes by popping items off the stack and restoring the original
318 value at each location.
320 We use this simplistic undo capability rather than copy_rtx as copy_rtx
321 will not make a deep copy of a normally sharable rtx, such as
322 (const (plus (symbol_ref) (const_int))). If such an expression appears
323 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
324 rtx expression would be changed. See PR 42431. */
326 typedef rtx *rtx_p;
327 static vec<rtx_p> substitute_stack;
329 /* Number of labels in the current function. */
331 static int num_labels;
333 static void replace_pseudos_in (rtx *, machine_mode, rtx);
334 static void maybe_fix_stack_asms (void);
335 static void copy_reloads (class insn_chain *);
336 static void calculate_needs_all_insns (int);
337 static int find_reg (class insn_chain *, int);
338 static void find_reload_regs (class insn_chain *);
339 static void select_reload_regs (void);
340 static void delete_caller_save_insns (void);
342 static void spill_failure (rtx_insn *, enum reg_class);
343 static void count_spilled_pseudo (int, int, int);
344 static void delete_dead_insn (rtx_insn *);
345 static void alter_reg (int, int, bool);
346 static void set_label_offsets (rtx, rtx_insn *, int);
347 static void check_eliminable_occurrences (rtx);
348 static void elimination_effects (rtx, machine_mode);
349 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
350 static int eliminate_regs_in_insn (rtx_insn *, int);
351 static void update_eliminable_offsets (void);
352 static void mark_not_eliminable (rtx, const_rtx, void *);
353 static void set_initial_elim_offsets (void);
354 static bool verify_initial_elim_offsets (void);
355 static void set_initial_label_offsets (void);
356 static void set_offsets_for_label (rtx_insn *);
357 static void init_eliminable_invariants (rtx_insn *, bool);
358 static void init_elim_table (void);
359 static void free_reg_equiv (void);
360 static void update_eliminables (HARD_REG_SET *);
361 static bool update_eliminables_and_spill (void);
362 static void elimination_costs_in_insn (rtx_insn *);
363 static void spill_hard_reg (unsigned int, int);
364 static int finish_spills (int);
365 static void scan_paradoxical_subregs (rtx);
366 static void count_pseudo (int);
367 static void order_regs_for_reload (class insn_chain *);
368 static void reload_as_needed (int);
369 static void forget_old_reloads_1 (rtx, const_rtx, void *);
370 static void forget_marked_reloads (regset);
371 static int reload_reg_class_lower (const void *, const void *);
372 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
373 machine_mode);
374 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
375 machine_mode);
376 static int reload_reg_free_p (unsigned int, int, enum reload_type);
377 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
378 rtx, rtx, int, int);
379 static int free_for_value_p (int, machine_mode, int, enum reload_type,
380 rtx, rtx, int, int);
381 static int allocate_reload_reg (class insn_chain *, int, int);
382 static int conflicts_with_override (rtx);
383 static void failed_reload (rtx_insn *, int);
384 static int set_reload_reg (int, int);
385 static void choose_reload_regs_init (class insn_chain *, rtx *);
386 static void choose_reload_regs (class insn_chain *);
387 static void emit_input_reload_insns (class insn_chain *, struct reload *,
388 rtx, int);
389 static void emit_output_reload_insns (class insn_chain *, struct reload *,
390 int);
391 static void do_input_reload (class insn_chain *, struct reload *, int);
392 static void do_output_reload (class insn_chain *, struct reload *, int);
393 static void emit_reload_insns (class insn_chain *);
394 static void delete_output_reload (rtx_insn *, int, int, rtx);
395 static void delete_address_reloads (rtx_insn *, rtx_insn *);
396 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
397 static void inc_for_reload (rtx, rtx, rtx, poly_int64);
398 static void substitute (rtx *, const_rtx, rtx);
399 static bool gen_reload_chain_without_interm_reg_p (int, int);
400 static int reloads_conflict (int, int);
401 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
402 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
404 /* Initialize the reload pass. This is called at the beginning of compilation
405 and may be called again if the target is reinitialized. */
407 void
408 init_reload (void)
410 int i;
412 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
413 Set spill_indirect_levels to the number of levels such addressing is
414 permitted, zero if it is not permitted at all. */
416 rtx tem
417 = gen_rtx_MEM (Pmode,
418 gen_rtx_PLUS (Pmode,
419 gen_rtx_REG (Pmode,
420 LAST_VIRTUAL_REGISTER + 1),
421 gen_int_mode (4, Pmode)));
422 spill_indirect_levels = 0;
424 while (memory_address_p (QImode, tem))
426 spill_indirect_levels++;
427 tem = gen_rtx_MEM (Pmode, tem);
430 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
432 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
433 indirect_symref_ok = memory_address_p (QImode, tem);
435 /* See if reg+reg is a valid (and offsettable) address. */
437 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
439 tem = gen_rtx_PLUS (Pmode,
440 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
441 gen_rtx_REG (Pmode, i));
443 /* This way, we make sure that reg+reg is an offsettable address. */
444 tem = plus_constant (Pmode, tem, 4);
446 for (int mode = 0; mode < MAX_MACHINE_MODE; mode++)
447 if (!double_reg_address_ok[mode]
448 && memory_address_p ((enum machine_mode)mode, tem))
449 double_reg_address_ok[mode] = 1;
452 /* Initialize obstack for our rtl allocation. */
453 if (reload_startobj == NULL)
455 gcc_obstack_init (&reload_obstack);
456 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
459 INIT_REG_SET (&spilled_pseudos);
460 INIT_REG_SET (&changed_allocation_pseudos);
461 INIT_REG_SET (&pseudos_counted);
464 /* List of insn chains that are currently unused. */
465 static class insn_chain *unused_insn_chains = 0;
467 /* Allocate an empty insn_chain structure. */
468 class insn_chain *
469 new_insn_chain (void)
471 class insn_chain *c;
473 if (unused_insn_chains == 0)
475 c = XOBNEW (&reload_obstack, class insn_chain);
476 INIT_REG_SET (&c->live_throughout);
477 INIT_REG_SET (&c->dead_or_set);
479 else
481 c = unused_insn_chains;
482 unused_insn_chains = c->next;
484 c->is_caller_save_insn = 0;
485 c->need_operand_change = 0;
486 c->need_reload = 0;
487 c->need_elim = 0;
488 return c;
491 /* Small utility function to set all regs in hard reg set TO which are
492 allocated to pseudos in regset FROM. */
494 void
495 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
497 unsigned int regno;
498 reg_set_iterator rsi;
500 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
502 int r = reg_renumber[regno];
504 if (r < 0)
506 /* reload_combine uses the information from DF_LIVE_IN,
507 which might still contain registers that have not
508 actually been allocated since they have an
509 equivalence. */
510 gcc_assert (ira_conflicts_p || reload_completed);
512 else
513 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
517 /* Replace all pseudos found in LOC with their corresponding
518 equivalences. */
520 static void
521 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
523 rtx x = *loc;
524 enum rtx_code code;
525 const char *fmt;
526 int i, j;
528 if (! x)
529 return;
531 code = GET_CODE (x);
532 if (code == REG)
534 unsigned int regno = REGNO (x);
536 if (regno < FIRST_PSEUDO_REGISTER)
537 return;
539 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
540 if (x != *loc)
542 *loc = x;
543 replace_pseudos_in (loc, mem_mode, usage);
544 return;
547 if (reg_equiv_constant (regno))
548 *loc = reg_equiv_constant (regno);
549 else if (reg_equiv_invariant (regno))
550 *loc = reg_equiv_invariant (regno);
551 else if (reg_equiv_mem (regno))
552 *loc = reg_equiv_mem (regno);
553 else if (reg_equiv_address (regno))
554 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
555 else
557 gcc_assert (!REG_P (regno_reg_rtx[regno])
558 || REGNO (regno_reg_rtx[regno]) != regno);
559 *loc = regno_reg_rtx[regno];
562 return;
564 else if (code == MEM)
566 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
567 return;
570 /* Process each of our operands recursively. */
571 fmt = GET_RTX_FORMAT (code);
572 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
573 if (*fmt == 'e')
574 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
575 else if (*fmt == 'E')
576 for (j = 0; j < XVECLEN (x, i); j++)
577 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
580 /* Determine if the current function has an exception receiver block
581 that reaches the exit block via non-exceptional edges */
583 static bool
584 has_nonexceptional_receiver (void)
586 edge e;
587 edge_iterator ei;
588 basic_block *tos, *worklist, bb;
590 /* If we're not optimizing, then just err on the safe side. */
591 if (!optimize)
592 return true;
594 /* First determine which blocks can reach exit via normal paths. */
595 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
597 FOR_EACH_BB_FN (bb, cfun)
598 bb->flags &= ~BB_REACHABLE;
600 /* Place the exit block on our worklist. */
601 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
602 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
604 /* Iterate: find everything reachable from what we've already seen. */
605 while (tos != worklist)
607 bb = *--tos;
609 FOR_EACH_EDGE (e, ei, bb->preds)
610 if (!(e->flags & EDGE_ABNORMAL))
612 basic_block src = e->src;
614 if (!(src->flags & BB_REACHABLE))
616 src->flags |= BB_REACHABLE;
617 *tos++ = src;
621 free (worklist);
623 /* Now see if there's a reachable block with an exceptional incoming
624 edge. */
625 FOR_EACH_BB_FN (bb, cfun)
626 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
627 return true;
629 /* No exceptional block reached exit unexceptionally. */
630 return false;
633 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
634 zero elements) to MAX_REG_NUM elements.
636 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
637 void
638 grow_reg_equivs (void)
640 int old_size = vec_safe_length (reg_equivs);
641 int max_regno = max_reg_num ();
642 int i;
643 reg_equivs_t ze;
645 memset (&ze, 0, sizeof (reg_equivs_t));
646 vec_safe_reserve (reg_equivs, max_regno);
647 for (i = old_size; i < max_regno; i++)
648 reg_equivs->quick_insert (i, ze);
652 /* Global variables used by reload and its subroutines. */
654 /* The current basic block while in calculate_elim_costs_all_insns. */
655 static basic_block elim_bb;
657 /* Set during calculate_needs if an insn needs register elimination. */
658 static int something_needs_elimination;
659 /* Set during calculate_needs if an insn needs an operand changed. */
660 static int something_needs_operands_changed;
661 /* Set by alter_regs if we spilled a register to the stack. */
662 static bool something_was_spilled;
664 /* Nonzero means we couldn't get enough spill regs. */
665 static int failure;
667 /* Temporary array of pseudo-register number. */
668 static int *temp_pseudo_reg_arr;
670 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
671 If that insn didn't set the register (i.e., it copied the register to
672 memory), just delete that insn instead of the equivalencing insn plus
673 anything now dead. If we call delete_dead_insn on that insn, we may
674 delete the insn that actually sets the register if the register dies
675 there and that is incorrect. */
676 static void
677 remove_init_insns ()
679 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
681 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
683 rtx list;
684 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
686 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
688 /* If we already deleted the insn or if it may trap, we can't
689 delete it. The latter case shouldn't happen, but can
690 if an insn has a variable address, gets a REG_EH_REGION
691 note added to it, and then gets converted into a load
692 from a constant address. */
693 if (NOTE_P (equiv_insn)
694 || can_throw_internal (equiv_insn))
696 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
697 delete_dead_insn (equiv_insn);
698 else
699 SET_INSN_DELETED (equiv_insn);
705 /* Return true if remove_init_insns will delete INSN. */
706 static bool
707 will_delete_init_insn_p (rtx_insn *insn)
709 rtx set = single_set (insn);
710 if (!set || !REG_P (SET_DEST (set)))
711 return false;
712 unsigned regno = REGNO (SET_DEST (set));
714 if (can_throw_internal (insn))
715 return false;
717 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
718 return false;
720 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
722 rtx equiv_insn = XEXP (list, 0);
723 if (equiv_insn == insn)
724 return true;
726 return false;
729 /* Main entry point for the reload pass.
731 FIRST is the first insn of the function being compiled.
733 GLOBAL nonzero means we were called from global_alloc
734 and should attempt to reallocate any pseudoregs that we
735 displace from hard regs we will use for reloads.
736 If GLOBAL is zero, we do not have enough information to do that,
737 so any pseudo reg that is spilled must go to the stack.
739 Return value is TRUE if reload likely left dead insns in the
740 stream and a DCE pass should be run to elimiante them. Else the
741 return value is FALSE. */
743 bool
744 reload (rtx_insn *first, int global)
746 int i, n;
747 rtx_insn *insn;
748 struct elim_table *ep;
749 basic_block bb;
750 bool inserted;
752 /* Make sure even insns with volatile mem refs are recognizable. */
753 init_recog ();
755 failure = 0;
757 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
759 /* Make sure that the last insn in the chain
760 is not something that needs reloading. */
761 emit_note (NOTE_INSN_DELETED);
763 /* Enable find_equiv_reg to distinguish insns made by reload. */
764 reload_first_uid = get_max_uid ();
766 /* Initialize the secondary memory table. */
767 clear_secondary_mem ();
769 /* We don't have a stack slot for any spill reg yet. */
770 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
771 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
773 /* Initialize the save area information for caller-save, in case some
774 are needed. */
775 init_save_areas ();
777 /* Compute which hard registers are now in use
778 as homes for pseudo registers.
779 This is done here rather than (eg) in global_alloc
780 because this point is reached even if not optimizing. */
781 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
782 mark_home_live (i);
784 /* A function that has a nonlocal label that can reach the exit
785 block via non-exceptional paths must save all call-saved
786 registers. */
787 if (cfun->has_nonlocal_label
788 && has_nonexceptional_receiver ())
789 crtl->saves_all_registers = 1;
791 if (crtl->saves_all_registers)
792 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
793 if (! crtl->abi->clobbers_full_reg_p (i)
794 && ! fixed_regs[i]
795 && ! LOCAL_REGNO (i))
796 df_set_regs_ever_live (i, true);
798 /* Find all the pseudo registers that didn't get hard regs
799 but do have known equivalent constants or memory slots.
800 These include parameters (known equivalent to parameter slots)
801 and cse'd or loop-moved constant memory addresses.
803 Record constant equivalents in reg_equiv_constant
804 so they will be substituted by find_reloads.
805 Record memory equivalents in reg_mem_equiv so they can
806 be substituted eventually by altering the REG-rtx's. */
808 grow_reg_equivs ();
809 reg_old_renumber = XCNEWVEC (short, max_regno);
810 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
811 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
812 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
814 CLEAR_HARD_REG_SET (bad_spill_regs_global);
816 init_eliminable_invariants (first, true);
817 init_elim_table ();
819 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
820 stack slots to the pseudos that lack hard regs or equivalents.
821 Do not touch virtual registers. */
823 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
824 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
825 temp_pseudo_reg_arr[n++] = i;
827 if (ira_conflicts_p)
828 /* Ask IRA to order pseudo-registers for better stack slot
829 sharing. */
830 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_mode);
832 for (i = 0; i < n; i++)
833 alter_reg (temp_pseudo_reg_arr[i], -1, false);
835 /* If we have some registers we think can be eliminated, scan all insns to
836 see if there is an insn that sets one of these registers to something
837 other than itself plus a constant. If so, the register cannot be
838 eliminated. Doing this scan here eliminates an extra pass through the
839 main reload loop in the most common case where register elimination
840 cannot be done. */
841 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
842 if (INSN_P (insn))
843 note_pattern_stores (PATTERN (insn), mark_not_eliminable, NULL);
845 maybe_fix_stack_asms ();
847 insns_need_reload = 0;
848 something_needs_elimination = 0;
850 /* Initialize to -1, which means take the first spill register. */
851 last_spill_reg = -1;
853 /* Spill any hard regs that we know we can't eliminate. */
854 CLEAR_HARD_REG_SET (used_spill_regs);
855 /* There can be multiple ways to eliminate a register;
856 they should be listed adjacently.
857 Elimination for any register fails only if all possible ways fail. */
858 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
860 int from = ep->from;
861 int can_eliminate = 0;
864 can_eliminate |= ep->can_eliminate;
865 ep++;
867 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
868 if (! can_eliminate)
869 spill_hard_reg (from, 1);
872 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
873 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
875 finish_spills (global);
877 /* From now on, we may need to generate moves differently. We may also
878 allow modifications of insns which cause them to not be recognized.
879 Any such modifications will be cleaned up during reload itself. */
880 reload_in_progress = 1;
882 /* This loop scans the entire function each go-round
883 and repeats until one repetition spills no additional hard regs. */
884 for (;;)
886 int something_changed;
887 poly_int64 starting_frame_size;
889 starting_frame_size = get_frame_size ();
890 something_was_spilled = false;
892 set_initial_elim_offsets ();
893 set_initial_label_offsets ();
895 /* For each pseudo register that has an equivalent location defined,
896 try to eliminate any eliminable registers (such as the frame pointer)
897 assuming initial offsets for the replacement register, which
898 is the normal case.
900 If the resulting location is directly addressable, substitute
901 the MEM we just got directly for the old REG.
903 If it is not addressable but is a constant or the sum of a hard reg
904 and constant, it is probably not addressable because the constant is
905 out of range, in that case record the address; we will generate
906 hairy code to compute the address in a register each time it is
907 needed. Similarly if it is a hard register, but one that is not
908 valid as an address register.
910 If the location is not addressable, but does not have one of the
911 above forms, assign a stack slot. We have to do this to avoid the
912 potential of producing lots of reloads if, e.g., a location involves
913 a pseudo that didn't get a hard register and has an equivalent memory
914 location that also involves a pseudo that didn't get a hard register.
916 Perhaps at some point we will improve reload_when_needed handling
917 so this problem goes away. But that's very hairy. */
919 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
920 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
922 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
923 NULL_RTX);
925 if (strict_memory_address_addr_space_p
926 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
927 MEM_ADDR_SPACE (x)))
928 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
929 else if (CONSTANT_P (XEXP (x, 0))
930 || (REG_P (XEXP (x, 0))
931 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
932 || (GET_CODE (XEXP (x, 0)) == PLUS
933 && REG_P (XEXP (XEXP (x, 0), 0))
934 && (REGNO (XEXP (XEXP (x, 0), 0))
935 < FIRST_PSEUDO_REGISTER)
936 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
937 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
938 else
940 /* Make a new stack slot. Then indicate that something
941 changed so we go back and recompute offsets for
942 eliminable registers because the allocation of memory
943 below might change some offset. reg_equiv_{mem,address}
944 will be set up for this pseudo on the next pass around
945 the loop. */
946 reg_equiv_memory_loc (i) = 0;
947 reg_equiv_init (i) = 0;
948 alter_reg (i, -1, true);
952 if (caller_save_needed)
953 setup_save_areas ();
955 if (maybe_ne (starting_frame_size, 0) && crtl->stack_alignment_needed)
957 /* If we have a stack frame, we must align it now. The
958 stack size may be a part of the offset computation for
959 register elimination. So if this changes the stack size,
960 then repeat the elimination bookkeeping. We don't
961 realign when there is no stack, as that will cause a
962 stack frame when none is needed should
963 TARGET_STARTING_FRAME_OFFSET not be already aligned to
964 STACK_BOUNDARY. */
965 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
967 /* If we allocated another stack slot, redo elimination bookkeeping. */
968 if (something_was_spilled
969 || maybe_ne (starting_frame_size, get_frame_size ()))
971 if (update_eliminables_and_spill ())
972 finish_spills (0);
973 continue;
976 if (caller_save_needed)
978 save_call_clobbered_regs ();
979 /* That might have allocated new insn_chain structures. */
980 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
983 calculate_needs_all_insns (global);
985 if (! ira_conflicts_p)
986 /* Don't do it for IRA. We need this info because we don't
987 change live_throughout and dead_or_set for chains when IRA
988 is used. */
989 CLEAR_REG_SET (&spilled_pseudos);
991 something_changed = 0;
993 /* If we allocated any new memory locations, make another pass
994 since it might have changed elimination offsets. */
995 if (something_was_spilled
996 || maybe_ne (starting_frame_size, get_frame_size ()))
997 something_changed = 1;
999 /* Even if the frame size remained the same, we might still have
1000 changed elimination offsets, e.g. if find_reloads called
1001 force_const_mem requiring the back end to allocate a constant
1002 pool base register that needs to be saved on the stack. */
1003 else if (!verify_initial_elim_offsets ())
1004 something_changed = 1;
1006 if (update_eliminables_and_spill ())
1008 finish_spills (0);
1009 something_changed = 1;
1011 else
1013 select_reload_regs ();
1014 if (failure)
1015 goto failed;
1016 if (insns_need_reload)
1017 something_changed |= finish_spills (global);
1020 if (! something_changed)
1021 break;
1023 if (caller_save_needed)
1024 delete_caller_save_insns ();
1026 obstack_free (&reload_obstack, reload_firstobj);
1029 /* If global-alloc was run, notify it of any register eliminations we have
1030 done. */
1031 if (global)
1032 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1033 if (ep->can_eliminate)
1034 mark_elimination (ep->from, ep->to);
1036 remove_init_insns ();
1038 /* Use the reload registers where necessary
1039 by generating move instructions to move the must-be-register
1040 values into or out of the reload registers. */
1042 if (insns_need_reload != 0 || something_needs_elimination
1043 || something_needs_operands_changed)
1045 poly_int64 old_frame_size = get_frame_size ();
1047 reload_as_needed (global);
1049 gcc_assert (known_eq (old_frame_size, get_frame_size ()));
1051 gcc_assert (verify_initial_elim_offsets ());
1054 /* If we were able to eliminate the frame pointer, show that it is no
1055 longer live at the start of any basic block. If it ls live by
1056 virtue of being in a pseudo, that pseudo will be marked live
1057 and hence the frame pointer will be known to be live via that
1058 pseudo. */
1060 if (! frame_pointer_needed)
1061 FOR_EACH_BB_FN (bb, cfun)
1062 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1064 /* Come here (with failure set nonzero) if we can't get enough spill
1065 regs. */
1066 failed:
1068 CLEAR_REG_SET (&changed_allocation_pseudos);
1069 CLEAR_REG_SET (&spilled_pseudos);
1070 reload_in_progress = 0;
1072 /* Now eliminate all pseudo regs by modifying them into
1073 their equivalent memory references.
1074 The REG-rtx's for the pseudos are modified in place,
1075 so all insns that used to refer to them now refer to memory.
1077 For a reg that has a reg_equiv_address, all those insns
1078 were changed by reloading so that no insns refer to it any longer;
1079 but the DECL_RTL of a variable decl may refer to it,
1080 and if so this causes the debugging info to mention the variable. */
1082 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1084 rtx addr = 0;
1086 if (reg_equiv_mem (i))
1087 addr = XEXP (reg_equiv_mem (i), 0);
1089 if (reg_equiv_address (i))
1090 addr = reg_equiv_address (i);
1092 if (addr)
1094 if (reg_renumber[i] < 0)
1096 rtx reg = regno_reg_rtx[i];
1098 REG_USERVAR_P (reg) = 0;
1099 PUT_CODE (reg, MEM);
1100 XEXP (reg, 0) = addr;
1101 if (reg_equiv_memory_loc (i))
1102 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1103 else
1104 MEM_ATTRS (reg) = 0;
1105 MEM_NOTRAP_P (reg) = 1;
1107 else if (reg_equiv_mem (i))
1108 XEXP (reg_equiv_mem (i), 0) = addr;
1111 /* We don't want complex addressing modes in debug insns
1112 if simpler ones will do, so delegitimize equivalences
1113 in debug insns. */
1114 if (MAY_HAVE_DEBUG_BIND_INSNS && reg_renumber[i] < 0)
1116 rtx reg = regno_reg_rtx[i];
1117 rtx equiv = 0;
1118 df_ref use, next;
1120 if (reg_equiv_constant (i))
1121 equiv = reg_equiv_constant (i);
1122 else if (reg_equiv_invariant (i))
1123 equiv = reg_equiv_invariant (i);
1124 else if (reg && MEM_P (reg))
1125 equiv = targetm.delegitimize_address (reg);
1126 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1127 equiv = reg;
1129 if (equiv == reg)
1130 continue;
1132 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1134 insn = DF_REF_INSN (use);
1136 /* Make sure the next ref is for a different instruction,
1137 so that we're not affected by the rescan. */
1138 next = DF_REF_NEXT_REG (use);
1139 while (next && DF_REF_INSN (next) == insn)
1140 next = DF_REF_NEXT_REG (next);
1142 if (DEBUG_BIND_INSN_P (insn))
1144 if (!equiv)
1146 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1147 df_insn_rescan_debug_internal (insn);
1149 else
1150 INSN_VAR_LOCATION_LOC (insn)
1151 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1152 reg, equiv);
1158 /* We must set reload_completed now since the cleanup_subreg_operands call
1159 below will re-recognize each insn and reload may have generated insns
1160 which are only valid during and after reload. */
1161 reload_completed = 1;
1163 /* Make a pass over all the insns and delete all USEs which we inserted
1164 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1165 notes. Delete all CLOBBER insns, except those that refer to the return
1166 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1167 from misarranging variable-array code, and simplify (subreg (reg))
1168 operands. Strip and regenerate REG_INC notes that may have been moved
1169 around. */
1171 for (insn = first; insn; insn = NEXT_INSN (insn))
1172 if (INSN_P (insn))
1174 rtx *pnote;
1176 if (CALL_P (insn))
1177 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1178 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1180 if ((GET_CODE (PATTERN (insn)) == USE
1181 /* We mark with QImode USEs introduced by reload itself. */
1182 && (GET_MODE (insn) == QImode
1183 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1184 || (GET_CODE (PATTERN (insn)) == CLOBBER
1185 && (!MEM_P (XEXP (PATTERN (insn), 0))
1186 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1187 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1188 && XEXP (XEXP (PATTERN (insn), 0), 0)
1189 != stack_pointer_rtx))
1190 && (!REG_P (XEXP (PATTERN (insn), 0))
1191 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1193 delete_insn (insn);
1194 continue;
1197 /* Some CLOBBERs may survive until here and still reference unassigned
1198 pseudos with const equivalent, which may in turn cause ICE in later
1199 passes if the reference remains in place. */
1200 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1201 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1202 VOIDmode, PATTERN (insn));
1204 /* Discard obvious no-ops, even without -O. This optimization
1205 is fast and doesn't interfere with debugging. */
1206 if (NONJUMP_INSN_P (insn)
1207 && GET_CODE (PATTERN (insn)) == SET
1208 && REG_P (SET_SRC (PATTERN (insn)))
1209 && REG_P (SET_DEST (PATTERN (insn)))
1210 && (REGNO (SET_SRC (PATTERN (insn)))
1211 == REGNO (SET_DEST (PATTERN (insn)))))
1213 delete_insn (insn);
1214 continue;
1217 pnote = &REG_NOTES (insn);
1218 while (*pnote != 0)
1220 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1221 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1222 || REG_NOTE_KIND (*pnote) == REG_INC)
1223 *pnote = XEXP (*pnote, 1);
1224 else
1225 pnote = &XEXP (*pnote, 1);
1228 if (AUTO_INC_DEC)
1229 add_auto_inc_notes (insn, PATTERN (insn));
1231 /* Simplify (subreg (reg)) if it appears as an operand. */
1232 cleanup_subreg_operands (insn);
1234 /* Clean up invalid ASMs so that they don't confuse later passes.
1235 See PR 21299. */
1236 if (asm_noperands (PATTERN (insn)) >= 0)
1238 extract_insn (insn);
1239 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1241 error_for_asm (insn,
1242 "%<asm%> operand has impossible constraints");
1243 delete_insn (insn);
1244 continue;
1249 free (temp_pseudo_reg_arr);
1251 /* Indicate that we no longer have known memory locations or constants. */
1252 free_reg_equiv ();
1254 free (reg_max_ref_mode);
1255 free (reg_old_renumber);
1256 free (pseudo_previous_regs);
1257 free (pseudo_forbidden_regs);
1259 CLEAR_HARD_REG_SET (used_spill_regs);
1260 for (i = 0; i < n_spills; i++)
1261 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1263 /* Free all the insn_chain structures at once. */
1264 obstack_free (&reload_obstack, reload_startobj);
1265 unused_insn_chains = 0;
1267 inserted = fixup_abnormal_edges ();
1269 /* We've possibly turned single trapping insn into multiple ones. */
1270 if (cfun->can_throw_non_call_exceptions)
1272 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1273 bitmap_ones (blocks);
1274 find_many_sub_basic_blocks (blocks);
1277 if (inserted)
1278 commit_edge_insertions ();
1280 /* Replacing pseudos with their memory equivalents might have
1281 created shared rtx. Subsequent passes would get confused
1282 by this, so unshare everything here. */
1283 unshare_all_rtl_again (first);
1285 #ifdef STACK_BOUNDARY
1286 /* init_emit has set the alignment of the hard frame pointer
1287 to STACK_BOUNDARY. It is very likely no longer valid if
1288 the hard frame pointer was used for register allocation. */
1289 if (!frame_pointer_needed)
1290 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1291 #endif
1293 substitute_stack.release ();
1295 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1297 reload_completed = !failure;
1299 return need_dce;
1302 /* Yet another special case. Unfortunately, reg-stack forces people to
1303 write incorrect clobbers in asm statements. These clobbers must not
1304 cause the register to appear in bad_spill_regs, otherwise we'll call
1305 fatal_insn later. We clear the corresponding regnos in the live
1306 register sets to avoid this.
1307 The whole thing is rather sick, I'm afraid. */
1309 static void
1310 maybe_fix_stack_asms (void)
1312 #ifdef STACK_REGS
1313 const char *constraints[MAX_RECOG_OPERANDS];
1314 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1315 class insn_chain *chain;
1317 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1319 int i, noperands;
1320 HARD_REG_SET clobbered, allowed;
1321 rtx pat;
1323 if (! INSN_P (chain->insn)
1324 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1325 continue;
1326 pat = PATTERN (chain->insn);
1327 if (GET_CODE (pat) != PARALLEL)
1328 continue;
1330 CLEAR_HARD_REG_SET (clobbered);
1331 CLEAR_HARD_REG_SET (allowed);
1333 /* First, make a mask of all stack regs that are clobbered. */
1334 for (i = 0; i < XVECLEN (pat, 0); i++)
1336 rtx t = XVECEXP (pat, 0, i);
1337 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1338 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1341 /* Get the operand values and constraints out of the insn. */
1342 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1343 constraints, operand_mode, NULL);
1345 /* For every operand, see what registers are allowed. */
1346 for (i = 0; i < noperands; i++)
1348 const char *p = constraints[i];
1349 /* For every alternative, we compute the class of registers allowed
1350 for reloading in CLS, and merge its contents into the reg set
1351 ALLOWED. */
1352 int cls = (int) NO_REGS;
1354 for (;;)
1356 char c = *p;
1358 if (c == '\0' || c == ',' || c == '#')
1360 /* End of one alternative - mark the regs in the current
1361 class, and reset the class. */
1362 allowed |= reg_class_contents[cls];
1363 cls = NO_REGS;
1364 p++;
1365 if (c == '#')
1366 do {
1367 c = *p++;
1368 } while (c != '\0' && c != ',');
1369 if (c == '\0')
1370 break;
1371 continue;
1374 switch (c)
1376 case 'g':
1377 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1378 break;
1380 default:
1381 enum constraint_num cn = lookup_constraint (p);
1382 if (insn_extra_address_constraint (cn))
1383 cls = (int) reg_class_subunion[cls]
1384 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1385 ADDRESS, SCRATCH)];
1386 else
1387 cls = (int) reg_class_subunion[cls]
1388 [reg_class_for_constraint (cn)];
1389 break;
1391 p += CONSTRAINT_LEN (c, p);
1394 /* Those of the registers which are clobbered, but allowed by the
1395 constraints, must be usable as reload registers. So clear them
1396 out of the life information. */
1397 allowed &= clobbered;
1398 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1399 if (TEST_HARD_REG_BIT (allowed, i))
1401 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1402 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1406 #endif
1409 /* Copy the global variables n_reloads and rld into the corresponding elts
1410 of CHAIN. */
1411 static void
1412 copy_reloads (class insn_chain *chain)
1414 chain->n_reloads = n_reloads;
1415 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1416 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1417 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1420 /* Walk the chain of insns, and determine for each whether it needs reloads
1421 and/or eliminations. Build the corresponding insns_need_reload list, and
1422 set something_needs_elimination as appropriate. */
1423 static void
1424 calculate_needs_all_insns (int global)
1426 class insn_chain **pprev_reload = &insns_need_reload;
1427 class insn_chain *chain, *next = 0;
1429 something_needs_elimination = 0;
1431 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1432 for (chain = reload_insn_chain; chain != 0; chain = next)
1434 rtx_insn *insn = chain->insn;
1436 next = chain->next;
1438 /* Clear out the shortcuts. */
1439 chain->n_reloads = 0;
1440 chain->need_elim = 0;
1441 chain->need_reload = 0;
1442 chain->need_operand_change = 0;
1444 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1445 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1446 what effects this has on the known offsets at labels. */
1448 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1449 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1450 set_label_offsets (insn, insn, 0);
1452 if (INSN_P (insn))
1454 rtx old_body = PATTERN (insn);
1455 int old_code = INSN_CODE (insn);
1456 rtx old_notes = REG_NOTES (insn);
1457 int did_elimination = 0;
1458 int operands_changed = 0;
1460 /* Skip insns that only set an equivalence. */
1461 if (will_delete_init_insn_p (insn))
1462 continue;
1464 /* If needed, eliminate any eliminable registers. */
1465 if (num_eliminable || num_eliminable_invariants)
1466 did_elimination = eliminate_regs_in_insn (insn, 0);
1468 /* Analyze the instruction. */
1469 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1470 global, spill_reg_order);
1472 /* If a no-op set needs more than one reload, this is likely
1473 to be something that needs input address reloads. We
1474 can't get rid of this cleanly later, and it is of no use
1475 anyway, so discard it now.
1476 We only do this when expensive_optimizations is enabled,
1477 since this complements reload inheritance / output
1478 reload deletion, and it can make debugging harder. */
1479 if (flag_expensive_optimizations && n_reloads > 1)
1481 rtx set = single_set (insn);
1482 if (set
1484 ((SET_SRC (set) == SET_DEST (set)
1485 && REG_P (SET_SRC (set))
1486 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1487 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1488 && reg_renumber[REGNO (SET_SRC (set))] < 0
1489 && reg_renumber[REGNO (SET_DEST (set))] < 0
1490 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1491 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1492 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1493 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1495 if (ira_conflicts_p)
1496 /* Inform IRA about the insn deletion. */
1497 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1498 REGNO (SET_SRC (set)));
1499 delete_insn (insn);
1500 /* Delete it from the reload chain. */
1501 if (chain->prev)
1502 chain->prev->next = next;
1503 else
1504 reload_insn_chain = next;
1505 if (next)
1506 next->prev = chain->prev;
1507 chain->next = unused_insn_chains;
1508 unused_insn_chains = chain;
1509 continue;
1512 if (num_eliminable)
1513 update_eliminable_offsets ();
1515 /* Remember for later shortcuts which insns had any reloads or
1516 register eliminations. */
1517 chain->need_elim = did_elimination;
1518 chain->need_reload = n_reloads > 0;
1519 chain->need_operand_change = operands_changed;
1521 /* Discard any register replacements done. */
1522 if (did_elimination)
1524 obstack_free (&reload_obstack, reload_insn_firstobj);
1525 PATTERN (insn) = old_body;
1526 INSN_CODE (insn) = old_code;
1527 REG_NOTES (insn) = old_notes;
1528 something_needs_elimination = 1;
1531 something_needs_operands_changed |= operands_changed;
1533 if (n_reloads != 0)
1535 copy_reloads (chain);
1536 *pprev_reload = chain;
1537 pprev_reload = &chain->next_need_reload;
1541 *pprev_reload = 0;
1544 /* This function is called from the register allocator to set up estimates
1545 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1546 an invariant. The structure is similar to calculate_needs_all_insns. */
1548 void
1549 calculate_elim_costs_all_insns (void)
1551 int *reg_equiv_init_cost;
1552 basic_block bb;
1553 int i;
1555 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1556 init_elim_table ();
1557 init_eliminable_invariants (get_insns (), false);
1559 set_initial_elim_offsets ();
1560 set_initial_label_offsets ();
1562 FOR_EACH_BB_FN (bb, cfun)
1564 rtx_insn *insn;
1565 elim_bb = bb;
1567 FOR_BB_INSNS (bb, insn)
1569 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1570 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1571 what effects this has on the known offsets at labels. */
1573 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1574 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1575 set_label_offsets (insn, insn, 0);
1577 if (INSN_P (insn))
1579 rtx set = single_set (insn);
1581 /* Skip insns that only set an equivalence. */
1582 if (set && REG_P (SET_DEST (set))
1583 && reg_renumber[REGNO (SET_DEST (set))] < 0
1584 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1585 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1587 unsigned regno = REGNO (SET_DEST (set));
1588 rtx_insn_list *init = reg_equiv_init (regno);
1589 if (init)
1591 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1592 false, true);
1593 machine_mode mode = GET_MODE (SET_DEST (set));
1594 int cost = set_src_cost (t, mode,
1595 optimize_bb_for_speed_p (bb));
1596 int freq = REG_FREQ_FROM_BB (bb);
1598 reg_equiv_init_cost[regno] = cost * freq;
1599 continue;
1602 /* If needed, eliminate any eliminable registers. */
1603 if (num_eliminable || num_eliminable_invariants)
1604 elimination_costs_in_insn (insn);
1606 if (num_eliminable)
1607 update_eliminable_offsets ();
1611 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1613 if (reg_equiv_invariant (i))
1615 if (reg_equiv_init (i))
1617 int cost = reg_equiv_init_cost[i];
1618 if (dump_file)
1619 fprintf (dump_file,
1620 "Reg %d has equivalence, initial gains %d\n", i, cost);
1621 if (cost != 0)
1622 ira_adjust_equiv_reg_cost (i, cost);
1624 else
1626 if (dump_file)
1627 fprintf (dump_file,
1628 "Reg %d had equivalence, but can't be eliminated\n",
1630 ira_adjust_equiv_reg_cost (i, 0);
1635 free (reg_equiv_init_cost);
1636 free (offsets_known_at);
1637 free (offsets_at);
1638 offsets_at = NULL;
1639 offsets_known_at = NULL;
1642 /* Comparison function for qsort to decide which of two reloads
1643 should be handled first. *P1 and *P2 are the reload numbers. */
1645 static int
1646 reload_reg_class_lower (const void *r1p, const void *r2p)
1648 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1649 int t;
1651 /* Consider required reloads before optional ones. */
1652 t = rld[r1].optional - rld[r2].optional;
1653 if (t != 0)
1654 return t;
1656 /* Count all solitary classes before non-solitary ones. */
1657 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1658 - (reg_class_size[(int) rld[r1].rclass] == 1));
1659 if (t != 0)
1660 return t;
1662 /* Aside from solitaires, consider all multi-reg groups first. */
1663 t = rld[r2].nregs - rld[r1].nregs;
1664 if (t != 0)
1665 return t;
1667 /* Consider reloads in order of increasing reg-class number. */
1668 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1669 if (t != 0)
1670 return t;
1672 /* If reloads are equally urgent, sort by reload number,
1673 so that the results of qsort leave nothing to chance. */
1674 return r1 - r2;
1677 /* The cost of spilling each hard reg. */
1678 static int spill_cost[FIRST_PSEUDO_REGISTER];
1680 /* When spilling multiple hard registers, we use SPILL_COST for the first
1681 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1682 only the first hard reg for a multi-reg pseudo. */
1683 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1685 /* Map of hard regno to pseudo regno currently occupying the hard
1686 reg. */
1687 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1689 /* Update the spill cost arrays, considering that pseudo REG is live. */
1691 static void
1692 count_pseudo (int reg)
1694 int freq = REG_FREQ (reg);
1695 int r = reg_renumber[reg];
1696 int nregs;
1698 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1699 if (ira_conflicts_p && r < 0)
1700 return;
1702 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1703 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1704 return;
1706 SET_REGNO_REG_SET (&pseudos_counted, reg);
1708 gcc_assert (r >= 0);
1710 spill_add_cost[r] += freq;
1711 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1712 while (nregs-- > 0)
1714 hard_regno_to_pseudo_regno[r + nregs] = reg;
1715 spill_cost[r + nregs] += freq;
1719 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1720 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1722 static void
1723 order_regs_for_reload (class insn_chain *chain)
1725 unsigned i;
1726 HARD_REG_SET used_by_pseudos;
1727 HARD_REG_SET used_by_pseudos2;
1728 reg_set_iterator rsi;
1730 bad_spill_regs = fixed_reg_set;
1732 memset (spill_cost, 0, sizeof spill_cost);
1733 memset (spill_add_cost, 0, sizeof spill_add_cost);
1734 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1735 hard_regno_to_pseudo_regno[i] = -1;
1737 /* Count number of uses of each hard reg by pseudo regs allocated to it
1738 and then order them by decreasing use. First exclude hard registers
1739 that are live in or across this insn. */
1741 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1742 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1743 bad_spill_regs |= used_by_pseudos;
1744 bad_spill_regs |= used_by_pseudos2;
1746 /* Now find out which pseudos are allocated to it, and update
1747 hard_reg_n_uses. */
1748 CLEAR_REG_SET (&pseudos_counted);
1750 EXECUTE_IF_SET_IN_REG_SET
1751 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1753 count_pseudo (i);
1755 EXECUTE_IF_SET_IN_REG_SET
1756 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1758 count_pseudo (i);
1760 CLEAR_REG_SET (&pseudos_counted);
1763 /* Vector of reload-numbers showing the order in which the reloads should
1764 be processed. */
1765 static short reload_order[MAX_RELOADS];
1767 /* This is used to keep track of the spill regs used in one insn. */
1768 static HARD_REG_SET used_spill_regs_local;
1770 /* We decided to spill hard register SPILLED, which has a size of
1771 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1772 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1773 update SPILL_COST/SPILL_ADD_COST. */
1775 static void
1776 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1778 int freq = REG_FREQ (reg);
1779 int r = reg_renumber[reg];
1780 int nregs;
1782 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1783 if (ira_conflicts_p && r < 0)
1784 return;
1786 gcc_assert (r >= 0);
1788 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1790 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1791 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1792 return;
1794 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1796 spill_add_cost[r] -= freq;
1797 while (nregs-- > 0)
1799 hard_regno_to_pseudo_regno[r + nregs] = -1;
1800 spill_cost[r + nregs] -= freq;
1804 /* Find reload register to use for reload number ORDER. */
1806 static int
1807 find_reg (class insn_chain *chain, int order)
1809 int rnum = reload_order[order];
1810 struct reload *rl = rld + rnum;
1811 int best_cost = INT_MAX;
1812 int best_reg = -1;
1813 unsigned int i, j, n;
1814 int k;
1815 HARD_REG_SET not_usable;
1816 HARD_REG_SET used_by_other_reload;
1817 reg_set_iterator rsi;
1818 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1819 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1821 not_usable = (bad_spill_regs
1822 | bad_spill_regs_global
1823 | ~reg_class_contents[rl->rclass]);
1825 CLEAR_HARD_REG_SET (used_by_other_reload);
1826 for (k = 0; k < order; k++)
1828 int other = reload_order[k];
1830 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1831 for (j = 0; j < rld[other].nregs; j++)
1832 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1835 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1837 #ifdef REG_ALLOC_ORDER
1838 unsigned int regno = reg_alloc_order[i];
1839 #else
1840 unsigned int regno = i;
1841 #endif
1843 if (! TEST_HARD_REG_BIT (not_usable, regno)
1844 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1845 && targetm.hard_regno_mode_ok (regno, rl->mode))
1847 int this_cost = spill_cost[regno];
1848 int ok = 1;
1849 unsigned int this_nregs = hard_regno_nregs (regno, rl->mode);
1851 for (j = 1; j < this_nregs; j++)
1853 this_cost += spill_add_cost[regno + j];
1854 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1855 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1856 ok = 0;
1858 if (! ok)
1859 continue;
1861 if (ira_conflicts_p)
1863 /* Ask IRA to find a better pseudo-register for
1864 spilling. */
1865 for (n = j = 0; j < this_nregs; j++)
1867 int r = hard_regno_to_pseudo_regno[regno + j];
1869 if (r < 0)
1870 continue;
1871 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1872 regno_pseudo_regs[n++] = r;
1874 regno_pseudo_regs[n++] = -1;
1875 if (best_reg < 0
1876 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1877 best_regno_pseudo_regs,
1878 rl->in, rl->out,
1879 chain->insn))
1881 best_reg = regno;
1882 for (j = 0;; j++)
1884 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1885 if (regno_pseudo_regs[j] < 0)
1886 break;
1889 continue;
1892 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1893 this_cost--;
1894 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1895 this_cost--;
1896 if (this_cost < best_cost
1897 /* Among registers with equal cost, prefer caller-saved ones, or
1898 use REG_ALLOC_ORDER if it is defined. */
1899 || (this_cost == best_cost
1900 #ifdef REG_ALLOC_ORDER
1901 && (inv_reg_alloc_order[regno]
1902 < inv_reg_alloc_order[best_reg])
1903 #else
1904 && crtl->abi->clobbers_full_reg_p (regno)
1905 && !crtl->abi->clobbers_full_reg_p (best_reg)
1906 #endif
1909 best_reg = regno;
1910 best_cost = this_cost;
1914 if (best_reg == -1)
1915 return 0;
1917 if (dump_file)
1918 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1920 rl->nregs = hard_regno_nregs (best_reg, rl->mode);
1921 rl->regno = best_reg;
1923 EXECUTE_IF_SET_IN_REG_SET
1924 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1926 count_spilled_pseudo (best_reg, rl->nregs, j);
1929 EXECUTE_IF_SET_IN_REG_SET
1930 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1932 count_spilled_pseudo (best_reg, rl->nregs, j);
1935 for (i = 0; i < rl->nregs; i++)
1937 gcc_assert (spill_cost[best_reg + i] == 0);
1938 gcc_assert (spill_add_cost[best_reg + i] == 0);
1939 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1940 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1942 return 1;
1945 /* Find more reload regs to satisfy the remaining need of an insn, which
1946 is given by CHAIN.
1947 Do it by ascending class number, since otherwise a reg
1948 might be spilled for a big class and might fail to count
1949 for a smaller class even though it belongs to that class. */
1951 static void
1952 find_reload_regs (class insn_chain *chain)
1954 int i;
1956 /* In order to be certain of getting the registers we need,
1957 we must sort the reloads into order of increasing register class.
1958 Then our grabbing of reload registers will parallel the process
1959 that provided the reload registers. */
1960 for (i = 0; i < chain->n_reloads; i++)
1962 /* Show whether this reload already has a hard reg. */
1963 if (chain->rld[i].reg_rtx)
1965 chain->rld[i].regno = REGNO (chain->rld[i].reg_rtx);
1966 chain->rld[i].nregs = REG_NREGS (chain->rld[i].reg_rtx);
1968 else
1969 chain->rld[i].regno = -1;
1970 reload_order[i] = i;
1973 n_reloads = chain->n_reloads;
1974 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1976 CLEAR_HARD_REG_SET (used_spill_regs_local);
1978 if (dump_file)
1979 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1981 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1983 /* Compute the order of preference for hard registers to spill. */
1985 order_regs_for_reload (chain);
1987 for (i = 0; i < n_reloads; i++)
1989 int r = reload_order[i];
1991 /* Ignore reloads that got marked inoperative. */
1992 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1993 && ! rld[r].optional
1994 && rld[r].regno == -1)
1995 if (! find_reg (chain, i))
1997 if (dump_file)
1998 fprintf (dump_file, "reload failure for reload %d\n", r);
1999 spill_failure (chain->insn, rld[r].rclass);
2000 failure = 1;
2001 return;
2005 chain->used_spill_regs = used_spill_regs_local;
2006 used_spill_regs |= used_spill_regs_local;
2008 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2011 static void
2012 select_reload_regs (void)
2014 class insn_chain *chain;
2016 /* Try to satisfy the needs for each insn. */
2017 for (chain = insns_need_reload; chain != 0;
2018 chain = chain->next_need_reload)
2019 find_reload_regs (chain);
2022 /* Delete all insns that were inserted by emit_caller_save_insns during
2023 this iteration. */
2024 static void
2025 delete_caller_save_insns (void)
2027 class insn_chain *c = reload_insn_chain;
2029 while (c != 0)
2031 while (c != 0 && c->is_caller_save_insn)
2033 class insn_chain *next = c->next;
2034 rtx_insn *insn = c->insn;
2036 if (c == reload_insn_chain)
2037 reload_insn_chain = next;
2038 delete_insn (insn);
2040 if (next)
2041 next->prev = c->prev;
2042 if (c->prev)
2043 c->prev->next = next;
2044 c->next = unused_insn_chains;
2045 unused_insn_chains = c;
2046 c = next;
2048 if (c != 0)
2049 c = c->next;
2053 /* Handle the failure to find a register to spill.
2054 INSN should be one of the insns which needed this particular spill reg. */
2056 static void
2057 spill_failure (rtx_insn *insn, enum reg_class rclass)
2059 if (asm_noperands (PATTERN (insn)) >= 0)
2060 error_for_asm (insn, "cannot find a register in class %qs while "
2061 "reloading %<asm%>",
2062 reg_class_names[rclass]);
2063 else
2065 error ("unable to find a register to spill in class %qs",
2066 reg_class_names[rclass]);
2068 if (dump_file)
2070 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2071 debug_reload_to_stream (dump_file);
2073 fatal_insn ("this is the insn:", insn);
2077 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2078 data that is dead in INSN. */
2080 static void
2081 delete_dead_insn (rtx_insn *insn)
2083 rtx_insn *prev = prev_active_insn (insn);
2084 rtx prev_dest;
2086 /* If the previous insn sets a register that dies in our insn make
2087 a note that we want to run DCE immediately after reload.
2089 We used to delete the previous insn & recurse, but that's wrong for
2090 block local equivalences. Instead of trying to figure out the exact
2091 circumstances where we can delete the potentially dead insns, just
2092 let DCE do the job. */
2093 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2094 && GET_CODE (PATTERN (prev)) == SET
2095 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2096 && reg_mentioned_p (prev_dest, PATTERN (insn))
2097 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2098 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2099 need_dce = 1;
2101 SET_INSN_DELETED (insn);
2104 /* Modify the home of pseudo-reg I.
2105 The new home is present in reg_renumber[I].
2107 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2108 or it may be -1, meaning there is none or it is not relevant.
2109 This is used so that all pseudos spilled from a given hard reg
2110 can share one stack slot. */
2112 static void
2113 alter_reg (int i, int from_reg, bool dont_share_p)
2115 /* When outputting an inline function, this can happen
2116 for a reg that isn't actually used. */
2117 if (regno_reg_rtx[i] == 0)
2118 return;
2120 /* If the reg got changed to a MEM at rtl-generation time,
2121 ignore it. */
2122 if (!REG_P (regno_reg_rtx[i]))
2123 return;
2125 /* Modify the reg-rtx to contain the new hard reg
2126 number or else to contain its pseudo reg number. */
2127 SET_REGNO (regno_reg_rtx[i],
2128 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2130 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2131 allocate a stack slot for it. */
2133 if (reg_renumber[i] < 0
2134 && REG_N_REFS (i) > 0
2135 && reg_equiv_constant (i) == 0
2136 && (reg_equiv_invariant (i) == 0
2137 || reg_equiv_init (i) == 0)
2138 && reg_equiv_memory_loc (i) == 0)
2140 rtx x = NULL_RTX;
2141 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2142 poly_uint64 inherent_size = GET_MODE_SIZE (mode);
2143 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2144 machine_mode wider_mode = wider_subreg_mode (mode, reg_max_ref_mode[i]);
2145 poly_uint64 total_size = GET_MODE_SIZE (wider_mode);
2146 /* ??? Seems strange to derive the minimum alignment from the size,
2147 but that's the traditional behavior. For polynomial-size modes,
2148 the natural extension is to use the minimum possible size. */
2149 unsigned int min_align
2150 = constant_lower_bound (GET_MODE_BITSIZE (reg_max_ref_mode[i]));
2151 poly_int64 adjust = 0;
2153 something_was_spilled = true;
2155 if (ira_conflicts_p)
2157 /* Mark the spill for IRA. */
2158 SET_REGNO_REG_SET (&spilled_pseudos, i);
2159 if (!dont_share_p)
2160 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2163 if (x)
2166 /* Each pseudo reg has an inherent size which comes from its own mode,
2167 and a total size which provides room for paradoxical subregs
2168 which refer to the pseudo reg in wider modes.
2170 We can use a slot already allocated if it provides both
2171 enough inherent space and enough total space.
2172 Otherwise, we allocate a new slot, making sure that it has no less
2173 inherent space, and no less total space, then the previous slot. */
2174 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2176 rtx stack_slot;
2178 /* The sizes are taken from a subreg operation, which guarantees
2179 that they're ordered. */
2180 gcc_checking_assert (ordered_p (total_size, inherent_size));
2182 /* No known place to spill from => no slot to reuse. */
2183 x = assign_stack_local (mode, total_size,
2184 min_align > inherent_align
2185 || maybe_gt (total_size, inherent_size)
2186 ? -1 : 0);
2188 stack_slot = x;
2190 /* Cancel the big-endian correction done in assign_stack_local.
2191 Get the address of the beginning of the slot. This is so we
2192 can do a big-endian correction unconditionally below. */
2193 if (BYTES_BIG_ENDIAN)
2195 adjust = inherent_size - total_size;
2196 if (maybe_ne (adjust, 0))
2198 poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2199 machine_mode mem_mode
2200 = int_mode_for_size (total_bits, 1).else_blk ();
2201 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2205 if (! dont_share_p && ira_conflicts_p)
2206 /* Inform IRA about allocation a new stack slot. */
2207 ira_mark_new_stack_slot (stack_slot, i, total_size);
2210 /* Reuse a stack slot if possible. */
2211 else if (spill_stack_slot[from_reg] != 0
2212 && known_ge (spill_stack_slot_width[from_reg], total_size)
2213 && known_ge (GET_MODE_SIZE
2214 (GET_MODE (spill_stack_slot[from_reg])),
2215 inherent_size)
2216 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2217 x = spill_stack_slot[from_reg];
2219 /* Allocate a bigger slot. */
2220 else
2222 /* Compute maximum size needed, both for inherent size
2223 and for total size. */
2224 rtx stack_slot;
2226 if (spill_stack_slot[from_reg])
2228 if (partial_subreg_p (mode,
2229 GET_MODE (spill_stack_slot[from_reg])))
2230 mode = GET_MODE (spill_stack_slot[from_reg]);
2231 total_size = ordered_max (total_size,
2232 spill_stack_slot_width[from_reg]);
2233 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2234 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2237 /* The sizes are taken from a subreg operation, which guarantees
2238 that they're ordered. */
2239 gcc_checking_assert (ordered_p (total_size, inherent_size));
2241 /* Make a slot with that size. */
2242 x = assign_stack_local (mode, total_size,
2243 min_align > inherent_align
2244 || maybe_gt (total_size, inherent_size)
2245 ? -1 : 0);
2246 stack_slot = x;
2248 /* Cancel the big-endian correction done in assign_stack_local.
2249 Get the address of the beginning of the slot. This is so we
2250 can do a big-endian correction unconditionally below. */
2251 if (BYTES_BIG_ENDIAN)
2253 adjust = GET_MODE_SIZE (mode) - total_size;
2254 if (maybe_ne (adjust, 0))
2256 poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2257 machine_mode mem_mode
2258 = int_mode_for_size (total_bits, 1).else_blk ();
2259 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2263 spill_stack_slot[from_reg] = stack_slot;
2264 spill_stack_slot_width[from_reg] = total_size;
2267 /* On a big endian machine, the "address" of the slot
2268 is the address of the low part that fits its inherent mode. */
2269 adjust += subreg_size_lowpart_offset (inherent_size, total_size);
2271 /* If we have any adjustment to make, or if the stack slot is the
2272 wrong mode, make a new stack slot. */
2273 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2275 /* Set all of the memory attributes as appropriate for a spill. */
2276 set_mem_attrs_for_spill (x);
2278 /* Save the stack slot for later. */
2279 reg_equiv_memory_loc (i) = x;
2283 /* Mark the slots in regs_ever_live for the hard regs used by
2284 pseudo-reg number REGNO, accessed in MODE. */
2286 static void
2287 mark_home_live_1 (int regno, machine_mode mode)
2289 int i, lim;
2291 i = reg_renumber[regno];
2292 if (i < 0)
2293 return;
2294 lim = end_hard_regno (mode, i);
2295 while (i < lim)
2296 df_set_regs_ever_live (i++, true);
2299 /* Mark the slots in regs_ever_live for the hard regs
2300 used by pseudo-reg number REGNO. */
2302 void
2303 mark_home_live (int regno)
2305 if (reg_renumber[regno] >= 0)
2306 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2309 /* This function handles the tracking of elimination offsets around branches.
2311 X is a piece of RTL being scanned.
2313 INSN is the insn that it came from, if any.
2315 INITIAL_P is nonzero if we are to set the offset to be the initial
2316 offset and zero if we are setting the offset of the label to be the
2317 current offset. */
2319 static void
2320 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2322 enum rtx_code code = GET_CODE (x);
2323 rtx tem;
2324 unsigned int i;
2325 struct elim_table *p;
2327 switch (code)
2329 case LABEL_REF:
2330 if (LABEL_REF_NONLOCAL_P (x))
2331 return;
2333 x = label_ref_label (x);
2335 /* fall through */
2337 case CODE_LABEL:
2338 /* If we know nothing about this label, set the desired offsets. Note
2339 that this sets the offset at a label to be the offset before a label
2340 if we don't know anything about the label. This is not correct for
2341 the label after a BARRIER, but is the best guess we can make. If
2342 we guessed wrong, we will suppress an elimination that might have
2343 been possible had we been able to guess correctly. */
2345 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2347 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2348 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2349 = (initial_p ? reg_eliminate[i].initial_offset
2350 : reg_eliminate[i].offset);
2351 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2354 /* Otherwise, if this is the definition of a label and it is
2355 preceded by a BARRIER, set our offsets to the known offset of
2356 that label. */
2358 else if (x == insn
2359 && (tem = prev_nonnote_insn (insn)) != 0
2360 && BARRIER_P (tem))
2361 set_offsets_for_label (insn);
2362 else
2363 /* If neither of the above cases is true, compare each offset
2364 with those previously recorded and suppress any eliminations
2365 where the offsets disagree. */
2367 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2368 if (maybe_ne (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i],
2369 (initial_p ? reg_eliminate[i].initial_offset
2370 : reg_eliminate[i].offset)))
2371 reg_eliminate[i].can_eliminate = 0;
2373 return;
2375 case JUMP_TABLE_DATA:
2376 set_label_offsets (PATTERN (insn), insn, initial_p);
2377 return;
2379 case JUMP_INSN:
2380 set_label_offsets (PATTERN (insn), insn, initial_p);
2382 /* fall through */
2384 case INSN:
2385 case CALL_INSN:
2386 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2387 to indirectly and hence must have all eliminations at their
2388 initial offsets. */
2389 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2390 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2391 set_label_offsets (XEXP (tem, 0), insn, 1);
2392 return;
2394 case PARALLEL:
2395 case ADDR_VEC:
2396 case ADDR_DIFF_VEC:
2397 /* Each of the labels in the parallel or address vector must be
2398 at their initial offsets. We want the first field for PARALLEL
2399 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2401 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2402 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2403 insn, initial_p);
2404 return;
2406 case SET:
2407 /* We only care about setting PC. If the source is not RETURN,
2408 IF_THEN_ELSE, or a label, disable any eliminations not at
2409 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2410 isn't one of those possibilities. For branches to a label,
2411 call ourselves recursively.
2413 Note that this can disable elimination unnecessarily when we have
2414 a non-local goto since it will look like a non-constant jump to
2415 someplace in the current function. This isn't a significant
2416 problem since such jumps will normally be when all elimination
2417 pairs are back to their initial offsets. */
2419 if (SET_DEST (x) != pc_rtx)
2420 return;
2422 switch (GET_CODE (SET_SRC (x)))
2424 case PC:
2425 case RETURN:
2426 return;
2428 case LABEL_REF:
2429 set_label_offsets (SET_SRC (x), insn, initial_p);
2430 return;
2432 case IF_THEN_ELSE:
2433 tem = XEXP (SET_SRC (x), 1);
2434 if (GET_CODE (tem) == LABEL_REF)
2435 set_label_offsets (label_ref_label (tem), insn, initial_p);
2436 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2437 break;
2439 tem = XEXP (SET_SRC (x), 2);
2440 if (GET_CODE (tem) == LABEL_REF)
2441 set_label_offsets (label_ref_label (tem), insn, initial_p);
2442 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2443 break;
2444 return;
2446 default:
2447 break;
2450 /* If we reach here, all eliminations must be at their initial
2451 offset because we are doing a jump to a variable address. */
2452 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2453 if (maybe_ne (p->offset, p->initial_offset))
2454 p->can_eliminate = 0;
2455 break;
2457 default:
2458 break;
2462 /* This function examines every reg that occurs in X and adjusts the
2463 costs for its elimination which are gathered by IRA. INSN is the
2464 insn in which X occurs. We do not recurse into MEM expressions. */
2466 static void
2467 note_reg_elim_costly (const_rtx x, rtx insn)
2469 subrtx_iterator::array_type array;
2470 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2472 const_rtx x = *iter;
2473 if (MEM_P (x))
2474 iter.skip_subrtxes ();
2475 else if (REG_P (x)
2476 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2477 && reg_equiv_init (REGNO (x))
2478 && reg_equiv_invariant (REGNO (x)))
2480 rtx t = reg_equiv_invariant (REGNO (x));
2481 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2482 int cost = set_src_cost (new_rtx, Pmode,
2483 optimize_bb_for_speed_p (elim_bb));
2484 int freq = REG_FREQ_FROM_BB (elim_bb);
2486 if (cost != 0)
2487 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2492 /* Scan X and replace any eliminable registers (such as fp) with a
2493 replacement (such as sp), plus an offset.
2495 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2496 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2497 MEM, we are allowed to replace a sum of a register and the constant zero
2498 with the register, which we cannot do outside a MEM. In addition, we need
2499 to record the fact that a register is referenced outside a MEM.
2501 If INSN is an insn, it is the insn containing X. If we replace a REG
2502 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2503 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2504 the REG is being modified.
2506 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2507 That's used when we eliminate in expressions stored in notes.
2508 This means, do not set ref_outside_mem even if the reference
2509 is outside of MEMs.
2511 If FOR_COSTS is true, we are being called before reload in order to
2512 estimate the costs of keeping registers with an equivalence unallocated.
2514 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2515 replacements done assuming all offsets are at their initial values. If
2516 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2517 encounter, return the actual location so that find_reloads will do
2518 the proper thing. */
2520 static rtx
2521 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2522 bool may_use_invariant, bool for_costs)
2524 enum rtx_code code = GET_CODE (x);
2525 struct elim_table *ep;
2526 int regno;
2527 rtx new_rtx;
2528 int i, j;
2529 const char *fmt;
2530 int copied = 0;
2532 if (! current_function_decl)
2533 return x;
2535 switch (code)
2537 CASE_CONST_ANY:
2538 case CONST:
2539 case SYMBOL_REF:
2540 case CODE_LABEL:
2541 case PC:
2542 case CC0:
2543 case ASM_INPUT:
2544 case ADDR_VEC:
2545 case ADDR_DIFF_VEC:
2546 case RETURN:
2547 return x;
2549 case REG:
2550 regno = REGNO (x);
2552 /* First handle the case where we encounter a bare register that
2553 is eliminable. Replace it with a PLUS. */
2554 if (regno < FIRST_PSEUDO_REGISTER)
2556 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2557 ep++)
2558 if (ep->from_rtx == x && ep->can_eliminate)
2559 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2562 else if (reg_renumber && reg_renumber[regno] < 0
2563 && reg_equivs
2564 && reg_equiv_invariant (regno))
2566 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2567 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2568 mem_mode, insn, true, for_costs);
2569 /* There exists at least one use of REGNO that cannot be
2570 eliminated. Prevent the defining insn from being deleted. */
2571 reg_equiv_init (regno) = NULL;
2572 if (!for_costs)
2573 alter_reg (regno, -1, true);
2575 return x;
2577 /* You might think handling MINUS in a manner similar to PLUS is a
2578 good idea. It is not. It has been tried multiple times and every
2579 time the change has had to have been reverted.
2581 Other parts of reload know a PLUS is special (gen_reload for example)
2582 and require special code to handle code a reloaded PLUS operand.
2584 Also consider backends where the flags register is clobbered by a
2585 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2586 lea instruction comes to mind). If we try to reload a MINUS, we
2587 may kill the flags register that was holding a useful value.
2589 So, please before trying to handle MINUS, consider reload as a
2590 whole instead of this little section as well as the backend issues. */
2591 case PLUS:
2592 /* If this is the sum of an eliminable register and a constant, rework
2593 the sum. */
2594 if (REG_P (XEXP (x, 0))
2595 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2596 && CONSTANT_P (XEXP (x, 1)))
2598 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2599 ep++)
2600 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2602 /* The only time we want to replace a PLUS with a REG (this
2603 occurs when the constant operand of the PLUS is the negative
2604 of the offset) is when we are inside a MEM. We won't want
2605 to do so at other times because that would change the
2606 structure of the insn in a way that reload can't handle.
2607 We special-case the commonest situation in
2608 eliminate_regs_in_insn, so just replace a PLUS with a
2609 PLUS here, unless inside a MEM. In DEBUG_INSNs, it is
2610 always ok to replace a PLUS with just a REG. */
2611 if ((mem_mode != 0 || (insn && DEBUG_INSN_P (insn)))
2612 && CONST_INT_P (XEXP (x, 1))
2613 && known_eq (INTVAL (XEXP (x, 1)), -ep->previous_offset))
2614 return ep->to_rtx;
2615 else
2616 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2617 plus_constant (Pmode, XEXP (x, 1),
2618 ep->previous_offset));
2621 /* If the register is not eliminable, we are done since the other
2622 operand is a constant. */
2623 return x;
2626 /* If this is part of an address, we want to bring any constant to the
2627 outermost PLUS. We will do this by doing register replacement in
2628 our operands and seeing if a constant shows up in one of them.
2630 Note that there is no risk of modifying the structure of the insn,
2631 since we only get called for its operands, thus we are either
2632 modifying the address inside a MEM, or something like an address
2633 operand of a load-address insn. */
2636 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2637 for_costs);
2638 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2639 for_costs);
2641 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2643 /* If one side is a PLUS and the other side is a pseudo that
2644 didn't get a hard register but has a reg_equiv_constant,
2645 we must replace the constant here since it may no longer
2646 be in the position of any operand. */
2647 if (GET_CODE (new0) == PLUS && REG_P (new1)
2648 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2649 && reg_renumber[REGNO (new1)] < 0
2650 && reg_equivs
2651 && reg_equiv_constant (REGNO (new1)) != 0)
2652 new1 = reg_equiv_constant (REGNO (new1));
2653 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2654 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2655 && reg_renumber[REGNO (new0)] < 0
2656 && reg_equiv_constant (REGNO (new0)) != 0)
2657 new0 = reg_equiv_constant (REGNO (new0));
2659 new_rtx = form_sum (GET_MODE (x), new0, new1);
2661 /* As above, if we are not inside a MEM we do not want to
2662 turn a PLUS into something else. We might try to do so here
2663 for an addition of 0 if we aren't optimizing. */
2664 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2665 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2666 else
2667 return new_rtx;
2670 return x;
2672 case MULT:
2673 /* If this is the product of an eliminable register and a
2674 constant, apply the distribute law and move the constant out
2675 so that we have (plus (mult ..) ..). This is needed in order
2676 to keep load-address insns valid. This case is pathological.
2677 We ignore the possibility of overflow here. */
2678 if (REG_P (XEXP (x, 0))
2679 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2680 && CONST_INT_P (XEXP (x, 1)))
2681 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2682 ep++)
2683 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2685 if (! mem_mode
2686 /* Refs inside notes or in DEBUG_INSNs don't count for
2687 this purpose. */
2688 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2689 || GET_CODE (insn) == INSN_LIST
2690 || DEBUG_INSN_P (insn))))
2691 ep->ref_outside_mem = 1;
2693 return
2694 plus_constant (Pmode,
2695 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2696 ep->previous_offset * INTVAL (XEXP (x, 1)));
2699 /* fall through */
2701 case CALL:
2702 case COMPARE:
2703 /* See comments before PLUS about handling MINUS. */
2704 case MINUS:
2705 case DIV: case UDIV:
2706 case MOD: case UMOD:
2707 case AND: case IOR: case XOR:
2708 case ROTATERT: case ROTATE:
2709 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2710 case NE: case EQ:
2711 case GE: case GT: case GEU: case GTU:
2712 case LE: case LT: case LEU: case LTU:
2714 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2715 for_costs);
2716 rtx new1 = XEXP (x, 1)
2717 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2718 for_costs) : 0;
2720 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2721 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2723 return x;
2725 case EXPR_LIST:
2726 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2727 if (XEXP (x, 0))
2729 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2730 for_costs);
2731 if (new_rtx != XEXP (x, 0))
2733 /* If this is a REG_DEAD note, it is not valid anymore.
2734 Using the eliminated version could result in creating a
2735 REG_DEAD note for the stack or frame pointer. */
2736 if (REG_NOTE_KIND (x) == REG_DEAD)
2737 return (XEXP (x, 1)
2738 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2739 for_costs)
2740 : NULL_RTX);
2742 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2746 /* fall through */
2748 case INSN_LIST:
2749 case INT_LIST:
2750 /* Now do eliminations in the rest of the chain. If this was
2751 an EXPR_LIST, this might result in allocating more memory than is
2752 strictly needed, but it simplifies the code. */
2753 if (XEXP (x, 1))
2755 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2756 for_costs);
2757 if (new_rtx != XEXP (x, 1))
2758 return
2759 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2761 return x;
2763 case PRE_INC:
2764 case POST_INC:
2765 case PRE_DEC:
2766 case POST_DEC:
2767 /* We do not support elimination of a register that is modified.
2768 elimination_effects has already make sure that this does not
2769 happen. */
2770 return x;
2772 case PRE_MODIFY:
2773 case POST_MODIFY:
2774 /* We do not support elimination of a register that is modified.
2775 elimination_effects has already make sure that this does not
2776 happen. The only remaining case we need to consider here is
2777 that the increment value may be an eliminable register. */
2778 if (GET_CODE (XEXP (x, 1)) == PLUS
2779 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2781 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2782 insn, true, for_costs);
2784 if (new_rtx != XEXP (XEXP (x, 1), 1))
2785 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2786 gen_rtx_PLUS (GET_MODE (x),
2787 XEXP (x, 0), new_rtx));
2789 return x;
2791 case STRICT_LOW_PART:
2792 case NEG: case NOT:
2793 case SIGN_EXTEND: case ZERO_EXTEND:
2794 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2795 case FLOAT: case FIX:
2796 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2797 case ABS:
2798 case SQRT:
2799 case FFS:
2800 case CLZ:
2801 case CTZ:
2802 case POPCOUNT:
2803 case PARITY:
2804 case BSWAP:
2805 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2806 for_costs);
2807 if (new_rtx != XEXP (x, 0))
2808 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2809 return x;
2811 case SUBREG:
2812 /* Similar to above processing, but preserve SUBREG_BYTE.
2813 Convert (subreg (mem)) to (mem) if not paradoxical.
2814 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2815 pseudo didn't get a hard reg, we must replace this with the
2816 eliminated version of the memory location because push_reload
2817 may do the replacement in certain circumstances. */
2818 if (REG_P (SUBREG_REG (x))
2819 && !paradoxical_subreg_p (x)
2820 && reg_equivs
2821 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2823 new_rtx = SUBREG_REG (x);
2825 else
2826 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2828 if (new_rtx != SUBREG_REG (x))
2830 poly_int64 x_size = GET_MODE_SIZE (GET_MODE (x));
2831 poly_int64 new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2833 if (MEM_P (new_rtx)
2834 && ((partial_subreg_p (GET_MODE (x), GET_MODE (new_rtx))
2835 /* On RISC machines, combine can create rtl of the form
2836 (set (subreg:m1 (reg:m2 R) 0) ...)
2837 where m1 < m2, and expects something interesting to
2838 happen to the entire word. Moreover, it will use the
2839 (reg:m2 R) later, expecting all bits to be preserved.
2840 So if the number of words is the same, preserve the
2841 subreg so that push_reload can see it. */
2842 && !(WORD_REGISTER_OPERATIONS
2843 && known_equal_after_align_down (x_size - 1,
2844 new_size - 1,
2845 UNITS_PER_WORD)))
2846 || known_eq (x_size, new_size))
2848 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2849 else if (insn && GET_CODE (insn) == DEBUG_INSN)
2850 return gen_rtx_raw_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2851 else
2852 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2855 return x;
2857 case MEM:
2858 /* Our only special processing is to pass the mode of the MEM to our
2859 recursive call and copy the flags. While we are here, handle this
2860 case more efficiently. */
2862 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2863 for_costs);
2864 if (for_costs
2865 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2866 && !memory_address_p (GET_MODE (x), new_rtx))
2867 note_reg_elim_costly (XEXP (x, 0), insn);
2869 return replace_equiv_address_nv (x, new_rtx);
2871 case USE:
2872 /* Handle insn_list USE that a call to a pure function may generate. */
2873 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2874 for_costs);
2875 if (new_rtx != XEXP (x, 0))
2876 return gen_rtx_USE (GET_MODE (x), new_rtx);
2877 return x;
2879 case CLOBBER:
2880 case ASM_OPERANDS:
2881 gcc_assert (insn && DEBUG_INSN_P (insn));
2882 break;
2884 case SET:
2885 gcc_unreachable ();
2887 default:
2888 break;
2891 /* Process each of our operands recursively. If any have changed, make a
2892 copy of the rtx. */
2893 fmt = GET_RTX_FORMAT (code);
2894 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2896 if (*fmt == 'e')
2898 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2899 for_costs);
2900 if (new_rtx != XEXP (x, i) && ! copied)
2902 x = shallow_copy_rtx (x);
2903 copied = 1;
2905 XEXP (x, i) = new_rtx;
2907 else if (*fmt == 'E')
2909 int copied_vec = 0;
2910 for (j = 0; j < XVECLEN (x, i); j++)
2912 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2913 for_costs);
2914 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2916 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2917 XVEC (x, i)->elem);
2918 if (! copied)
2920 x = shallow_copy_rtx (x);
2921 copied = 1;
2923 XVEC (x, i) = new_v;
2924 copied_vec = 1;
2926 XVECEXP (x, i, j) = new_rtx;
2931 return x;
2935 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2937 if (reg_eliminate == NULL)
2939 gcc_assert (targetm.no_register_allocation);
2940 return x;
2942 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2945 /* Scan rtx X for modifications of elimination target registers. Update
2946 the table of eliminables to reflect the changed state. MEM_MODE is
2947 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2949 static void
2950 elimination_effects (rtx x, machine_mode mem_mode)
2952 enum rtx_code code = GET_CODE (x);
2953 struct elim_table *ep;
2954 int regno;
2955 int i, j;
2956 const char *fmt;
2958 switch (code)
2960 CASE_CONST_ANY:
2961 case CONST:
2962 case SYMBOL_REF:
2963 case CODE_LABEL:
2964 case PC:
2965 case CC0:
2966 case ASM_INPUT:
2967 case ADDR_VEC:
2968 case ADDR_DIFF_VEC:
2969 case RETURN:
2970 return;
2972 case REG:
2973 regno = REGNO (x);
2975 /* First handle the case where we encounter a bare register that
2976 is eliminable. Replace it with a PLUS. */
2977 if (regno < FIRST_PSEUDO_REGISTER)
2979 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2980 ep++)
2981 if (ep->from_rtx == x && ep->can_eliminate)
2983 if (! mem_mode)
2984 ep->ref_outside_mem = 1;
2985 return;
2989 else if (reg_renumber[regno] < 0
2990 && reg_equivs
2991 && reg_equiv_constant (regno)
2992 && ! function_invariant_p (reg_equiv_constant (regno)))
2993 elimination_effects (reg_equiv_constant (regno), mem_mode);
2994 return;
2996 case PRE_INC:
2997 case POST_INC:
2998 case PRE_DEC:
2999 case POST_DEC:
3000 case POST_MODIFY:
3001 case PRE_MODIFY:
3002 /* If we modify the source of an elimination rule, disable it. */
3003 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3004 if (ep->from_rtx == XEXP (x, 0))
3005 ep->can_eliminate = 0;
3007 /* If we modify the target of an elimination rule by adding a constant,
3008 update its offset. If we modify the target in any other way, we'll
3009 have to disable the rule as well. */
3010 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3011 if (ep->to_rtx == XEXP (x, 0))
3013 poly_int64 size = GET_MODE_SIZE (mem_mode);
3015 /* If more bytes than MEM_MODE are pushed, account for them. */
3016 #ifdef PUSH_ROUNDING
3017 if (ep->to_rtx == stack_pointer_rtx)
3018 size = PUSH_ROUNDING (size);
3019 #endif
3020 if (code == PRE_DEC || code == POST_DEC)
3021 ep->offset += size;
3022 else if (code == PRE_INC || code == POST_INC)
3023 ep->offset -= size;
3024 else if (code == PRE_MODIFY || code == POST_MODIFY)
3026 if (GET_CODE (XEXP (x, 1)) == PLUS
3027 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3028 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3029 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3030 else
3031 ep->can_eliminate = 0;
3035 /* These two aren't unary operators. */
3036 if (code == POST_MODIFY || code == PRE_MODIFY)
3037 break;
3039 /* Fall through to generic unary operation case. */
3040 gcc_fallthrough ();
3041 case STRICT_LOW_PART:
3042 case NEG: case NOT:
3043 case SIGN_EXTEND: case ZERO_EXTEND:
3044 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3045 case FLOAT: case FIX:
3046 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3047 case ABS:
3048 case SQRT:
3049 case FFS:
3050 case CLZ:
3051 case CTZ:
3052 case POPCOUNT:
3053 case PARITY:
3054 case BSWAP:
3055 elimination_effects (XEXP (x, 0), mem_mode);
3056 return;
3058 case SUBREG:
3059 if (REG_P (SUBREG_REG (x))
3060 && !paradoxical_subreg_p (x)
3061 && reg_equivs
3062 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3063 return;
3065 elimination_effects (SUBREG_REG (x), mem_mode);
3066 return;
3068 case USE:
3069 /* If using a register that is the source of an eliminate we still
3070 think can be performed, note it cannot be performed since we don't
3071 know how this register is used. */
3072 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3073 if (ep->from_rtx == XEXP (x, 0))
3074 ep->can_eliminate = 0;
3076 elimination_effects (XEXP (x, 0), mem_mode);
3077 return;
3079 case CLOBBER:
3080 /* If clobbering a register that is the replacement register for an
3081 elimination we still think can be performed, note that it cannot
3082 be performed. Otherwise, we need not be concerned about it. */
3083 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3084 if (ep->to_rtx == XEXP (x, 0))
3085 ep->can_eliminate = 0;
3087 elimination_effects (XEXP (x, 0), mem_mode);
3088 return;
3090 case SET:
3091 /* Check for setting a register that we know about. */
3092 if (REG_P (SET_DEST (x)))
3094 /* See if this is setting the replacement register for an
3095 elimination.
3097 If DEST is the hard frame pointer, we do nothing because we
3098 assume that all assignments to the frame pointer are for
3099 non-local gotos and are being done at a time when they are valid
3100 and do not disturb anything else. Some machines want to
3101 eliminate a fake argument pointer (or even a fake frame pointer)
3102 with either the real frame or the stack pointer. Assignments to
3103 the hard frame pointer must not prevent this elimination. */
3105 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3106 ep++)
3107 if (ep->to_rtx == SET_DEST (x)
3108 && SET_DEST (x) != hard_frame_pointer_rtx)
3110 /* If it is being incremented, adjust the offset. Otherwise,
3111 this elimination can't be done. */
3112 rtx src = SET_SRC (x);
3114 if (GET_CODE (src) == PLUS
3115 && XEXP (src, 0) == SET_DEST (x)
3116 && CONST_INT_P (XEXP (src, 1)))
3117 ep->offset -= INTVAL (XEXP (src, 1));
3118 else
3119 ep->can_eliminate = 0;
3123 elimination_effects (SET_DEST (x), VOIDmode);
3124 elimination_effects (SET_SRC (x), VOIDmode);
3125 return;
3127 case MEM:
3128 /* Our only special processing is to pass the mode of the MEM to our
3129 recursive call. */
3130 elimination_effects (XEXP (x, 0), GET_MODE (x));
3131 return;
3133 default:
3134 break;
3137 fmt = GET_RTX_FORMAT (code);
3138 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3140 if (*fmt == 'e')
3141 elimination_effects (XEXP (x, i), mem_mode);
3142 else if (*fmt == 'E')
3143 for (j = 0; j < XVECLEN (x, i); j++)
3144 elimination_effects (XVECEXP (x, i, j), mem_mode);
3148 /* Descend through rtx X and verify that no references to eliminable registers
3149 remain. If any do remain, mark the involved register as not
3150 eliminable. */
3152 static void
3153 check_eliminable_occurrences (rtx x)
3155 const char *fmt;
3156 int i;
3157 enum rtx_code code;
3159 if (x == 0)
3160 return;
3162 code = GET_CODE (x);
3164 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3166 struct elim_table *ep;
3168 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3169 if (ep->from_rtx == x)
3170 ep->can_eliminate = 0;
3171 return;
3174 fmt = GET_RTX_FORMAT (code);
3175 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3177 if (*fmt == 'e')
3178 check_eliminable_occurrences (XEXP (x, i));
3179 else if (*fmt == 'E')
3181 int j;
3182 for (j = 0; j < XVECLEN (x, i); j++)
3183 check_eliminable_occurrences (XVECEXP (x, i, j));
3188 /* Scan INSN and eliminate all eliminable registers in it.
3190 If REPLACE is nonzero, do the replacement destructively. Also
3191 delete the insn as dead it if it is setting an eliminable register.
3193 If REPLACE is zero, do all our allocations in reload_obstack.
3195 If no eliminations were done and this insn doesn't require any elimination
3196 processing (these are not identical conditions: it might be updating sp,
3197 but not referencing fp; this needs to be seen during reload_as_needed so
3198 that the offset between fp and sp can be taken into consideration), zero
3199 is returned. Otherwise, 1 is returned. */
3201 static int
3202 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3204 int icode = recog_memoized (insn);
3205 rtx old_body = PATTERN (insn);
3206 int insn_is_asm = asm_noperands (old_body) >= 0;
3207 rtx old_set = single_set (insn);
3208 rtx new_body;
3209 int val = 0;
3210 int i;
3211 rtx substed_operand[MAX_RECOG_OPERANDS];
3212 rtx orig_operand[MAX_RECOG_OPERANDS];
3213 struct elim_table *ep;
3214 rtx plus_src, plus_cst_src;
3216 if (! insn_is_asm && icode < 0)
3218 gcc_assert (DEBUG_INSN_P (insn)
3219 || GET_CODE (PATTERN (insn)) == USE
3220 || GET_CODE (PATTERN (insn)) == CLOBBER
3221 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3222 if (DEBUG_BIND_INSN_P (insn))
3223 INSN_VAR_LOCATION_LOC (insn)
3224 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3225 return 0;
3228 /* We allow one special case which happens to work on all machines we
3229 currently support: a single set with the source or a REG_EQUAL
3230 note being a PLUS of an eliminable register and a constant. */
3231 plus_src = plus_cst_src = 0;
3232 if (old_set && REG_P (SET_DEST (old_set)))
3234 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3235 plus_src = SET_SRC (old_set);
3236 /* First see if the source is of the form (plus (...) CST). */
3237 if (plus_src
3238 && CONST_INT_P (XEXP (plus_src, 1)))
3239 plus_cst_src = plus_src;
3240 else if (REG_P (SET_SRC (old_set))
3241 || plus_src)
3243 /* Otherwise, see if we have a REG_EQUAL note of the form
3244 (plus (...) CST). */
3245 rtx links;
3246 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3248 if ((REG_NOTE_KIND (links) == REG_EQUAL
3249 || REG_NOTE_KIND (links) == REG_EQUIV)
3250 && GET_CODE (XEXP (links, 0)) == PLUS
3251 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3253 plus_cst_src = XEXP (links, 0);
3254 break;
3259 /* Check that the first operand of the PLUS is a hard reg or
3260 the lowpart subreg of one. */
3261 if (plus_cst_src)
3263 rtx reg = XEXP (plus_cst_src, 0);
3264 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3265 reg = SUBREG_REG (reg);
3267 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3268 plus_cst_src = 0;
3271 if (plus_cst_src)
3273 rtx reg = XEXP (plus_cst_src, 0);
3274 poly_int64 offset = INTVAL (XEXP (plus_cst_src, 1));
3276 if (GET_CODE (reg) == SUBREG)
3277 reg = SUBREG_REG (reg);
3279 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3280 if (ep->from_rtx == reg && ep->can_eliminate)
3282 rtx to_rtx = ep->to_rtx;
3283 offset += ep->offset;
3284 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3286 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3287 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3288 to_rtx);
3289 /* If we have a nonzero offset, and the source is already
3290 a simple REG, the following transformation would
3291 increase the cost of the insn by replacing a simple REG
3292 with (plus (reg sp) CST). So try only when we already
3293 had a PLUS before. */
3294 if (known_eq (offset, 0) || plus_src)
3296 rtx new_src = plus_constant (GET_MODE (to_rtx),
3297 to_rtx, offset);
3299 new_body = old_body;
3300 if (! replace)
3302 new_body = copy_insn (old_body);
3303 if (REG_NOTES (insn))
3304 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3306 PATTERN (insn) = new_body;
3307 old_set = single_set (insn);
3309 /* First see if this insn remains valid when we make the
3310 change. If not, try to replace the whole pattern with
3311 a simple set (this may help if the original insn was a
3312 PARALLEL that was only recognized as single_set due to
3313 REG_UNUSED notes). If this isn't valid either, keep
3314 the INSN_CODE the same and let reload fix it up. */
3315 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3317 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3319 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3320 SET_SRC (old_set) = new_src;
3323 else
3324 break;
3326 val = 1;
3327 /* This can't have an effect on elimination offsets, so skip right
3328 to the end. */
3329 goto done;
3333 /* Determine the effects of this insn on elimination offsets. */
3334 elimination_effects (old_body, VOIDmode);
3336 /* Eliminate all eliminable registers occurring in operands that
3337 can be handled by reload. */
3338 extract_insn (insn);
3339 for (i = 0; i < recog_data.n_operands; i++)
3341 orig_operand[i] = recog_data.operand[i];
3342 substed_operand[i] = recog_data.operand[i];
3344 /* For an asm statement, every operand is eliminable. */
3345 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3347 bool is_set_src, in_plus;
3349 /* Check for setting a register that we know about. */
3350 if (recog_data.operand_type[i] != OP_IN
3351 && REG_P (orig_operand[i]))
3353 /* If we are assigning to a register that can be eliminated, it
3354 must be as part of a PARALLEL, since the code above handles
3355 single SETs. We must indicate that we can no longer
3356 eliminate this reg. */
3357 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3358 ep++)
3359 if (ep->from_rtx == orig_operand[i])
3360 ep->can_eliminate = 0;
3363 /* Companion to the above plus substitution, we can allow
3364 invariants as the source of a plain move. */
3365 is_set_src = false;
3366 if (old_set
3367 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3368 is_set_src = true;
3369 in_plus = false;
3370 if (plus_src
3371 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3372 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3373 in_plus = true;
3375 substed_operand[i]
3376 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3377 replace ? insn : NULL_RTX,
3378 is_set_src || in_plus, false);
3379 if (substed_operand[i] != orig_operand[i])
3380 val = 1;
3381 /* Terminate the search in check_eliminable_occurrences at
3382 this point. */
3383 *recog_data.operand_loc[i] = 0;
3385 /* If an output operand changed from a REG to a MEM and INSN is an
3386 insn, write a CLOBBER insn. */
3387 if (recog_data.operand_type[i] != OP_IN
3388 && REG_P (orig_operand[i])
3389 && MEM_P (substed_operand[i])
3390 && replace)
3391 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3395 for (i = 0; i < recog_data.n_dups; i++)
3396 *recog_data.dup_loc[i]
3397 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3399 /* If any eliminable remain, they aren't eliminable anymore. */
3400 check_eliminable_occurrences (old_body);
3402 /* Substitute the operands; the new values are in the substed_operand
3403 array. */
3404 for (i = 0; i < recog_data.n_operands; i++)
3405 *recog_data.operand_loc[i] = substed_operand[i];
3406 for (i = 0; i < recog_data.n_dups; i++)
3407 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3409 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3410 re-recognize the insn. We do this in case we had a simple addition
3411 but now can do this as a load-address. This saves an insn in this
3412 common case.
3413 If re-recognition fails, the old insn code number will still be used,
3414 and some register operands may have changed into PLUS expressions.
3415 These will be handled by find_reloads by loading them into a register
3416 again. */
3418 if (val)
3420 /* If we aren't replacing things permanently and we changed something,
3421 make another copy to ensure that all the RTL is new. Otherwise
3422 things can go wrong if find_reload swaps commutative operands
3423 and one is inside RTL that has been copied while the other is not. */
3424 new_body = old_body;
3425 if (! replace)
3427 new_body = copy_insn (old_body);
3428 if (REG_NOTES (insn))
3429 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3431 PATTERN (insn) = new_body;
3433 /* If we had a move insn but now we don't, rerecognize it. This will
3434 cause spurious re-recognition if the old move had a PARALLEL since
3435 the new one still will, but we can't call single_set without
3436 having put NEW_BODY into the insn and the re-recognition won't
3437 hurt in this rare case. */
3438 /* ??? Why this huge if statement - why don't we just rerecognize the
3439 thing always? */
3440 if (! insn_is_asm
3441 && old_set != 0
3442 && ((REG_P (SET_SRC (old_set))
3443 && (GET_CODE (new_body) != SET
3444 || !REG_P (SET_SRC (new_body))))
3445 /* If this was a load from or store to memory, compare
3446 the MEM in recog_data.operand to the one in the insn.
3447 If they are not equal, then rerecognize the insn. */
3448 || (old_set != 0
3449 && ((MEM_P (SET_SRC (old_set))
3450 && SET_SRC (old_set) != recog_data.operand[1])
3451 || (MEM_P (SET_DEST (old_set))
3452 && SET_DEST (old_set) != recog_data.operand[0])))
3453 /* If this was an add insn before, rerecognize. */
3454 || GET_CODE (SET_SRC (old_set)) == PLUS))
3456 int new_icode = recog (PATTERN (insn), insn, 0);
3457 if (new_icode >= 0)
3458 INSN_CODE (insn) = new_icode;
3462 /* Restore the old body. If there were any changes to it, we made a copy
3463 of it while the changes were still in place, so we'll correctly return
3464 a modified insn below. */
3465 if (! replace)
3467 /* Restore the old body. */
3468 for (i = 0; i < recog_data.n_operands; i++)
3469 /* Restoring a top-level match_parallel would clobber the new_body
3470 we installed in the insn. */
3471 if (recog_data.operand_loc[i] != &PATTERN (insn))
3472 *recog_data.operand_loc[i] = orig_operand[i];
3473 for (i = 0; i < recog_data.n_dups; i++)
3474 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3477 /* Update all elimination pairs to reflect the status after the current
3478 insn. The changes we make were determined by the earlier call to
3479 elimination_effects.
3481 We also detect cases where register elimination cannot be done,
3482 namely, if a register would be both changed and referenced outside a MEM
3483 in the resulting insn since such an insn is often undefined and, even if
3484 not, we cannot know what meaning will be given to it. Note that it is
3485 valid to have a register used in an address in an insn that changes it
3486 (presumably with a pre- or post-increment or decrement).
3488 If anything changes, return nonzero. */
3490 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3492 if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3493 ep->can_eliminate = 0;
3495 ep->ref_outside_mem = 0;
3497 if (maybe_ne (ep->previous_offset, ep->offset))
3498 val = 1;
3501 done:
3502 /* If we changed something, perform elimination in REG_NOTES. This is
3503 needed even when REPLACE is zero because a REG_DEAD note might refer
3504 to a register that we eliminate and could cause a different number
3505 of spill registers to be needed in the final reload pass than in
3506 the pre-passes. */
3507 if (val && REG_NOTES (insn) != 0)
3508 REG_NOTES (insn)
3509 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3510 false);
3512 return val;
3515 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3516 register allocator. INSN is the instruction we need to examine, we perform
3517 eliminations in its operands and record cases where eliminating a reg with
3518 an invariant equivalence would add extra cost. */
3520 #pragma GCC diagnostic push
3521 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3522 static void
3523 elimination_costs_in_insn (rtx_insn *insn)
3525 int icode = recog_memoized (insn);
3526 rtx old_body = PATTERN (insn);
3527 int insn_is_asm = asm_noperands (old_body) >= 0;
3528 rtx old_set = single_set (insn);
3529 int i;
3530 rtx orig_operand[MAX_RECOG_OPERANDS];
3531 rtx orig_dup[MAX_RECOG_OPERANDS];
3532 struct elim_table *ep;
3533 rtx plus_src, plus_cst_src;
3534 bool sets_reg_p;
3536 if (! insn_is_asm && icode < 0)
3538 gcc_assert (DEBUG_INSN_P (insn)
3539 || GET_CODE (PATTERN (insn)) == USE
3540 || GET_CODE (PATTERN (insn)) == CLOBBER
3541 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3542 return;
3545 if (old_set != 0 && REG_P (SET_DEST (old_set))
3546 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3548 /* Check for setting an eliminable register. */
3549 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3550 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3551 return;
3554 /* We allow one special case which happens to work on all machines we
3555 currently support: a single set with the source or a REG_EQUAL
3556 note being a PLUS of an eliminable register and a constant. */
3557 plus_src = plus_cst_src = 0;
3558 sets_reg_p = false;
3559 if (old_set && REG_P (SET_DEST (old_set)))
3561 sets_reg_p = true;
3562 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3563 plus_src = SET_SRC (old_set);
3564 /* First see if the source is of the form (plus (...) CST). */
3565 if (plus_src
3566 && CONST_INT_P (XEXP (plus_src, 1)))
3567 plus_cst_src = plus_src;
3568 else if (REG_P (SET_SRC (old_set))
3569 || plus_src)
3571 /* Otherwise, see if we have a REG_EQUAL note of the form
3572 (plus (...) CST). */
3573 rtx links;
3574 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3576 if ((REG_NOTE_KIND (links) == REG_EQUAL
3577 || REG_NOTE_KIND (links) == REG_EQUIV)
3578 && GET_CODE (XEXP (links, 0)) == PLUS
3579 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3581 plus_cst_src = XEXP (links, 0);
3582 break;
3588 /* Determine the effects of this insn on elimination offsets. */
3589 elimination_effects (old_body, VOIDmode);
3591 /* Eliminate all eliminable registers occurring in operands that
3592 can be handled by reload. */
3593 extract_insn (insn);
3594 int n_dups = recog_data.n_dups;
3595 for (i = 0; i < n_dups; i++)
3596 orig_dup[i] = *recog_data.dup_loc[i];
3598 int n_operands = recog_data.n_operands;
3599 for (i = 0; i < n_operands; i++)
3601 orig_operand[i] = recog_data.operand[i];
3603 /* For an asm statement, every operand is eliminable. */
3604 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3606 bool is_set_src, in_plus;
3608 /* Check for setting a register that we know about. */
3609 if (recog_data.operand_type[i] != OP_IN
3610 && REG_P (orig_operand[i]))
3612 /* If we are assigning to a register that can be eliminated, it
3613 must be as part of a PARALLEL, since the code above handles
3614 single SETs. We must indicate that we can no longer
3615 eliminate this reg. */
3616 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3617 ep++)
3618 if (ep->from_rtx == orig_operand[i])
3619 ep->can_eliminate = 0;
3622 /* Companion to the above plus substitution, we can allow
3623 invariants as the source of a plain move. */
3624 is_set_src = false;
3625 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3626 is_set_src = true;
3627 if (is_set_src && !sets_reg_p)
3628 note_reg_elim_costly (SET_SRC (old_set), insn);
3629 in_plus = false;
3630 if (plus_src && sets_reg_p
3631 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3632 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3633 in_plus = true;
3635 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3636 NULL_RTX,
3637 is_set_src || in_plus, true);
3638 /* Terminate the search in check_eliminable_occurrences at
3639 this point. */
3640 *recog_data.operand_loc[i] = 0;
3644 for (i = 0; i < n_dups; i++)
3645 *recog_data.dup_loc[i]
3646 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3648 /* If any eliminable remain, they aren't eliminable anymore. */
3649 check_eliminable_occurrences (old_body);
3651 /* Restore the old body. */
3652 for (i = 0; i < n_operands; i++)
3653 *recog_data.operand_loc[i] = orig_operand[i];
3654 for (i = 0; i < n_dups; i++)
3655 *recog_data.dup_loc[i] = orig_dup[i];
3657 /* Update all elimination pairs to reflect the status after the current
3658 insn. The changes we make were determined by the earlier call to
3659 elimination_effects. */
3661 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3663 if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3664 ep->can_eliminate = 0;
3666 ep->ref_outside_mem = 0;
3669 return;
3671 #pragma GCC diagnostic pop
3673 /* Loop through all elimination pairs.
3674 Recalculate the number not at initial offset.
3676 Compute the maximum offset (minimum offset if the stack does not
3677 grow downward) for each elimination pair. */
3679 static void
3680 update_eliminable_offsets (void)
3682 struct elim_table *ep;
3684 num_not_at_initial_offset = 0;
3685 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3687 ep->previous_offset = ep->offset;
3688 if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3689 num_not_at_initial_offset++;
3693 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3694 replacement we currently believe is valid, mark it as not eliminable if X
3695 modifies DEST in any way other than by adding a constant integer to it.
3697 If DEST is the frame pointer, we do nothing because we assume that
3698 all assignments to the hard frame pointer are nonlocal gotos and are being
3699 done at a time when they are valid and do not disturb anything else.
3700 Some machines want to eliminate a fake argument pointer with either the
3701 frame or stack pointer. Assignments to the hard frame pointer must not
3702 prevent this elimination.
3704 Called via note_stores from reload before starting its passes to scan
3705 the insns of the function. */
3707 static void
3708 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3710 unsigned int i;
3712 /* A SUBREG of a hard register here is just changing its mode. We should
3713 not see a SUBREG of an eliminable hard register, but check just in
3714 case. */
3715 if (GET_CODE (dest) == SUBREG)
3716 dest = SUBREG_REG (dest);
3718 if (dest == hard_frame_pointer_rtx)
3719 return;
3721 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3722 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3723 && (GET_CODE (x) != SET
3724 || GET_CODE (SET_SRC (x)) != PLUS
3725 || XEXP (SET_SRC (x), 0) != dest
3726 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3728 reg_eliminate[i].can_eliminate_previous
3729 = reg_eliminate[i].can_eliminate = 0;
3730 num_eliminable--;
3734 /* Verify that the initial elimination offsets did not change since the
3735 last call to set_initial_elim_offsets. This is used to catch cases
3736 where something illegal happened during reload_as_needed that could
3737 cause incorrect code to be generated if we did not check for it. */
3739 static bool
3740 verify_initial_elim_offsets (void)
3742 poly_int64 t;
3743 struct elim_table *ep;
3745 if (!num_eliminable)
3746 return true;
3748 targetm.compute_frame_layout ();
3749 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3751 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3752 if (maybe_ne (t, ep->initial_offset))
3753 return false;
3756 return true;
3759 /* Reset all offsets on eliminable registers to their initial values. */
3761 static void
3762 set_initial_elim_offsets (void)
3764 struct elim_table *ep = reg_eliminate;
3766 targetm.compute_frame_layout ();
3767 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3769 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3770 ep->previous_offset = ep->offset = ep->initial_offset;
3773 num_not_at_initial_offset = 0;
3776 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3778 static void
3779 set_initial_eh_label_offset (rtx label)
3781 set_label_offsets (label, NULL, 1);
3784 /* Initialize the known label offsets.
3785 Set a known offset for each forced label to be at the initial offset
3786 of each elimination. We do this because we assume that all
3787 computed jumps occur from a location where each elimination is
3788 at its initial offset.
3789 For all other labels, show that we don't know the offsets. */
3791 static void
3792 set_initial_label_offsets (void)
3794 memset (offsets_known_at, 0, num_labels);
3796 unsigned int i;
3797 rtx_insn *insn;
3798 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3799 set_label_offsets (insn, NULL, 1);
3801 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3802 if (x->insn ())
3803 set_label_offsets (x->insn (), NULL, 1);
3805 for_each_eh_label (set_initial_eh_label_offset);
3808 /* Set all elimination offsets to the known values for the code label given
3809 by INSN. */
3811 static void
3812 set_offsets_for_label (rtx_insn *insn)
3814 unsigned int i;
3815 int label_nr = CODE_LABEL_NUMBER (insn);
3816 struct elim_table *ep;
3818 num_not_at_initial_offset = 0;
3819 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3821 ep->offset = ep->previous_offset
3822 = offsets_at[label_nr - first_label_num][i];
3823 if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3824 num_not_at_initial_offset++;
3828 /* See if anything that happened changes which eliminations are valid.
3829 For example, on the SPARC, whether or not the frame pointer can
3830 be eliminated can depend on what registers have been used. We need
3831 not check some conditions again (such as flag_omit_frame_pointer)
3832 since they can't have changed. */
3834 static void
3835 update_eliminables (HARD_REG_SET *pset)
3837 int previous_frame_pointer_needed = frame_pointer_needed;
3838 struct elim_table *ep;
3840 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3841 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3842 && targetm.frame_pointer_required ())
3843 || ! targetm.can_eliminate (ep->from, ep->to)
3845 ep->can_eliminate = 0;
3847 /* Look for the case where we have discovered that we can't replace
3848 register A with register B and that means that we will now be
3849 trying to replace register A with register C. This means we can
3850 no longer replace register C with register B and we need to disable
3851 such an elimination, if it exists. This occurs often with A == ap,
3852 B == sp, and C == fp. */
3854 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3856 struct elim_table *op;
3857 int new_to = -1;
3859 if (! ep->can_eliminate && ep->can_eliminate_previous)
3861 /* Find the current elimination for ep->from, if there is a
3862 new one. */
3863 for (op = reg_eliminate;
3864 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3865 if (op->from == ep->from && op->can_eliminate)
3867 new_to = op->to;
3868 break;
3871 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3872 disable it. */
3873 for (op = reg_eliminate;
3874 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3875 if (op->from == new_to && op->to == ep->to)
3876 op->can_eliminate = 0;
3880 /* See if any registers that we thought we could eliminate the previous
3881 time are no longer eliminable. If so, something has changed and we
3882 must spill the register. Also, recompute the number of eliminable
3883 registers and see if the frame pointer is needed; it is if there is
3884 no elimination of the frame pointer that we can perform. */
3886 frame_pointer_needed = 1;
3887 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3889 if (ep->can_eliminate
3890 && ep->from == FRAME_POINTER_REGNUM
3891 && ep->to != HARD_FRAME_POINTER_REGNUM
3892 && (! SUPPORTS_STACK_ALIGNMENT
3893 || ! crtl->stack_realign_needed))
3894 frame_pointer_needed = 0;
3896 if (! ep->can_eliminate && ep->can_eliminate_previous)
3898 ep->can_eliminate_previous = 0;
3899 SET_HARD_REG_BIT (*pset, ep->from);
3900 num_eliminable--;
3904 /* If we didn't need a frame pointer last time, but we do now, spill
3905 the hard frame pointer. */
3906 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3907 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3910 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3911 Return true iff a register was spilled. */
3913 static bool
3914 update_eliminables_and_spill (void)
3916 int i;
3917 bool did_spill = false;
3918 HARD_REG_SET to_spill;
3919 CLEAR_HARD_REG_SET (to_spill);
3920 update_eliminables (&to_spill);
3921 used_spill_regs &= ~to_spill;
3923 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3924 if (TEST_HARD_REG_BIT (to_spill, i))
3926 spill_hard_reg (i, 1);
3927 did_spill = true;
3929 /* Regardless of the state of spills, if we previously had
3930 a register that we thought we could eliminate, but now
3931 cannot eliminate, we must run another pass.
3933 Consider pseudos which have an entry in reg_equiv_* which
3934 reference an eliminable register. We must make another pass
3935 to update reg_equiv_* so that we do not substitute in the
3936 old value from when we thought the elimination could be
3937 performed. */
3939 return did_spill;
3942 /* Return true if X is used as the target register of an elimination. */
3944 bool
3945 elimination_target_reg_p (rtx x)
3947 struct elim_table *ep;
3949 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3950 if (ep->to_rtx == x && ep->can_eliminate)
3951 return true;
3953 return false;
3956 /* Initialize the table of registers to eliminate.
3957 Pre-condition: global flag frame_pointer_needed has been set before
3958 calling this function. */
3960 static void
3961 init_elim_table (void)
3963 struct elim_table *ep;
3964 const struct elim_table_1 *ep1;
3966 if (!reg_eliminate)
3967 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
3969 num_eliminable = 0;
3971 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3972 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3974 ep->from = ep1->from;
3975 ep->to = ep1->to;
3976 ep->can_eliminate = ep->can_eliminate_previous
3977 = (targetm.can_eliminate (ep->from, ep->to)
3978 && ! (ep->to == STACK_POINTER_REGNUM
3979 && frame_pointer_needed
3980 && (! SUPPORTS_STACK_ALIGNMENT
3981 || ! stack_realign_fp)));
3984 /* Count the number of eliminable registers and build the FROM and TO
3985 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3986 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3987 We depend on this. */
3988 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3990 num_eliminable += ep->can_eliminate;
3991 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3992 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3996 /* Find all the pseudo registers that didn't get hard regs
3997 but do have known equivalent constants or memory slots.
3998 These include parameters (known equivalent to parameter slots)
3999 and cse'd or loop-moved constant memory addresses.
4001 Record constant equivalents in reg_equiv_constant
4002 so they will be substituted by find_reloads.
4003 Record memory equivalents in reg_mem_equiv so they can
4004 be substituted eventually by altering the REG-rtx's. */
4006 static void
4007 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4009 int i;
4010 rtx_insn *insn;
4012 grow_reg_equivs ();
4013 if (do_subregs)
4014 reg_max_ref_mode = XCNEWVEC (machine_mode, max_regno);
4015 else
4016 reg_max_ref_mode = NULL;
4018 num_eliminable_invariants = 0;
4020 first_label_num = get_first_label_num ();
4021 num_labels = max_label_num () - first_label_num;
4023 /* Allocate the tables used to store offset information at labels. */
4024 offsets_known_at = XNEWVEC (char, num_labels);
4025 offsets_at = (poly_int64_pod (*)[NUM_ELIMINABLE_REGS])
4026 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (poly_int64));
4028 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4029 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4030 find largest such for each pseudo. FIRST is the head of the insn
4031 list. */
4033 for (insn = first; insn; insn = NEXT_INSN (insn))
4035 rtx set = single_set (insn);
4037 /* We may introduce USEs that we want to remove at the end, so
4038 we'll mark them with QImode. Make sure there are no
4039 previously-marked insns left by say regmove. */
4040 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4041 && GET_MODE (insn) != VOIDmode)
4042 PUT_MODE (insn, VOIDmode);
4044 if (do_subregs && NONDEBUG_INSN_P (insn))
4045 scan_paradoxical_subregs (PATTERN (insn));
4047 if (set != 0 && REG_P (SET_DEST (set)))
4049 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4050 rtx x;
4052 if (! note)
4053 continue;
4055 i = REGNO (SET_DEST (set));
4056 x = XEXP (note, 0);
4058 if (i <= LAST_VIRTUAL_REGISTER)
4059 continue;
4061 /* If flag_pic and we have constant, verify it's legitimate. */
4062 if (!CONSTANT_P (x)
4063 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4065 /* It can happen that a REG_EQUIV note contains a MEM
4066 that is not a legitimate memory operand. As later
4067 stages of reload assume that all addresses found
4068 in the reg_equiv_* arrays were originally legitimate,
4069 we ignore such REG_EQUIV notes. */
4070 if (memory_operand (x, VOIDmode))
4072 /* Always unshare the equivalence, so we can
4073 substitute into this insn without touching the
4074 equivalence. */
4075 reg_equiv_memory_loc (i) = copy_rtx (x);
4077 else if (function_invariant_p (x))
4079 machine_mode mode;
4081 mode = GET_MODE (SET_DEST (set));
4082 if (GET_CODE (x) == PLUS)
4084 /* This is PLUS of frame pointer and a constant,
4085 and might be shared. Unshare it. */
4086 reg_equiv_invariant (i) = copy_rtx (x);
4087 num_eliminable_invariants++;
4089 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4091 reg_equiv_invariant (i) = x;
4092 num_eliminable_invariants++;
4094 else if (targetm.legitimate_constant_p (mode, x))
4095 reg_equiv_constant (i) = x;
4096 else
4098 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4099 if (! reg_equiv_memory_loc (i))
4100 reg_equiv_init (i) = NULL;
4103 else
4105 reg_equiv_init (i) = NULL;
4106 continue;
4109 else
4110 reg_equiv_init (i) = NULL;
4114 if (dump_file)
4115 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4116 if (reg_equiv_init (i))
4118 fprintf (dump_file, "init_insns for %u: ", i);
4119 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4120 fprintf (dump_file, "\n");
4124 /* Indicate that we no longer have known memory locations or constants.
4125 Free all data involved in tracking these. */
4127 static void
4128 free_reg_equiv (void)
4130 int i;
4132 free (offsets_known_at);
4133 free (offsets_at);
4134 offsets_at = 0;
4135 offsets_known_at = 0;
4137 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4138 if (reg_equiv_alt_mem_list (i))
4139 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4140 vec_free (reg_equivs);
4143 /* Kick all pseudos out of hard register REGNO.
4145 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4146 because we found we can't eliminate some register. In the case, no pseudos
4147 are allowed to be in the register, even if they are only in a block that
4148 doesn't require spill registers, unlike the case when we are spilling this
4149 hard reg to produce another spill register.
4151 Return nonzero if any pseudos needed to be kicked out. */
4153 static void
4154 spill_hard_reg (unsigned int regno, int cant_eliminate)
4156 int i;
4158 if (cant_eliminate)
4160 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4161 df_set_regs_ever_live (regno, true);
4164 /* Spill every pseudo reg that was allocated to this reg
4165 or to something that overlaps this reg. */
4167 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4168 if (reg_renumber[i] >= 0
4169 && (unsigned int) reg_renumber[i] <= regno
4170 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4171 SET_REGNO_REG_SET (&spilled_pseudos, i);
4174 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4175 insns that need reloads, this function is used to actually spill pseudo
4176 registers and try to reallocate them. It also sets up the spill_regs
4177 array for use by choose_reload_regs.
4179 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4180 that we displace from hard registers. */
4182 static int
4183 finish_spills (int global)
4185 class insn_chain *chain;
4186 int something_changed = 0;
4187 unsigned i;
4188 reg_set_iterator rsi;
4190 /* Build the spill_regs array for the function. */
4191 /* If there are some registers still to eliminate and one of the spill regs
4192 wasn't ever used before, additional stack space may have to be
4193 allocated to store this register. Thus, we may have changed the offset
4194 between the stack and frame pointers, so mark that something has changed.
4196 One might think that we need only set VAL to 1 if this is a call-used
4197 register. However, the set of registers that must be saved by the
4198 prologue is not identical to the call-used set. For example, the
4199 register used by the call insn for the return PC is a call-used register,
4200 but must be saved by the prologue. */
4202 n_spills = 0;
4203 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4204 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4206 spill_reg_order[i] = n_spills;
4207 spill_regs[n_spills++] = i;
4208 if (num_eliminable && ! df_regs_ever_live_p (i))
4209 something_changed = 1;
4210 df_set_regs_ever_live (i, true);
4212 else
4213 spill_reg_order[i] = -1;
4215 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4216 if (reg_renumber[i] >= 0)
4218 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4219 /* Mark it as no longer having a hard register home. */
4220 reg_renumber[i] = -1;
4221 if (ira_conflicts_p)
4222 /* Inform IRA about the change. */
4223 ira_mark_allocation_change (i);
4224 /* We will need to scan everything again. */
4225 something_changed = 1;
4228 /* Retry global register allocation if possible. */
4229 if (global && ira_conflicts_p)
4231 unsigned int n;
4233 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4234 /* For every insn that needs reloads, set the registers used as spill
4235 regs in pseudo_forbidden_regs for every pseudo live across the
4236 insn. */
4237 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4239 EXECUTE_IF_SET_IN_REG_SET
4240 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4242 pseudo_forbidden_regs[i] |= chain->used_spill_regs;
4244 EXECUTE_IF_SET_IN_REG_SET
4245 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4247 pseudo_forbidden_regs[i] |= chain->used_spill_regs;
4251 /* Retry allocating the pseudos spilled in IRA and the
4252 reload. For each reg, merge the various reg sets that
4253 indicate which hard regs can't be used, and call
4254 ira_reassign_pseudos. */
4255 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4256 if (reg_old_renumber[i] != reg_renumber[i])
4258 if (reg_renumber[i] < 0)
4259 temp_pseudo_reg_arr[n++] = i;
4260 else
4261 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4263 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4264 bad_spill_regs_global,
4265 pseudo_forbidden_regs, pseudo_previous_regs,
4266 &spilled_pseudos))
4267 something_changed = 1;
4269 /* Fix up the register information in the insn chain.
4270 This involves deleting those of the spilled pseudos which did not get
4271 a new hard register home from the live_{before,after} sets. */
4272 for (chain = reload_insn_chain; chain; chain = chain->next)
4274 HARD_REG_SET used_by_pseudos;
4275 HARD_REG_SET used_by_pseudos2;
4277 if (! ira_conflicts_p)
4279 /* Don't do it for IRA because IRA and the reload still can
4280 assign hard registers to the spilled pseudos on next
4281 reload iterations. */
4282 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4283 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4285 /* Mark any unallocated hard regs as available for spills. That
4286 makes inheritance work somewhat better. */
4287 if (chain->need_reload)
4289 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4290 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4291 used_by_pseudos |= used_by_pseudos2;
4293 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4294 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4295 /* Value of chain->used_spill_regs from previous iteration
4296 may be not included in the value calculated here because
4297 of possible removing caller-saves insns (see function
4298 delete_caller_save_insns. */
4299 chain->used_spill_regs = ~used_by_pseudos & used_spill_regs;
4303 CLEAR_REG_SET (&changed_allocation_pseudos);
4304 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4305 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4307 int regno = reg_renumber[i];
4308 if (reg_old_renumber[i] == regno)
4309 continue;
4311 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4313 alter_reg (i, reg_old_renumber[i], false);
4314 reg_old_renumber[i] = regno;
4315 if (dump_file)
4317 if (regno == -1)
4318 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4319 else
4320 fprintf (dump_file, " Register %d now in %d.\n\n",
4321 i, reg_renumber[i]);
4325 return something_changed;
4328 /* Find all paradoxical subregs within X and update reg_max_ref_mode. */
4330 static void
4331 scan_paradoxical_subregs (rtx x)
4333 int i;
4334 const char *fmt;
4335 enum rtx_code code = GET_CODE (x);
4337 switch (code)
4339 case REG:
4340 case CONST:
4341 case SYMBOL_REF:
4342 case LABEL_REF:
4343 CASE_CONST_ANY:
4344 case CC0:
4345 case PC:
4346 case USE:
4347 case CLOBBER:
4348 return;
4350 case SUBREG:
4351 if (REG_P (SUBREG_REG (x)))
4353 unsigned int regno = REGNO (SUBREG_REG (x));
4354 if (partial_subreg_p (reg_max_ref_mode[regno], GET_MODE (x)))
4356 reg_max_ref_mode[regno] = GET_MODE (x);
4357 mark_home_live_1 (regno, GET_MODE (x));
4360 return;
4362 default:
4363 break;
4366 fmt = GET_RTX_FORMAT (code);
4367 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4369 if (fmt[i] == 'e')
4370 scan_paradoxical_subregs (XEXP (x, i));
4371 else if (fmt[i] == 'E')
4373 int j;
4374 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4375 scan_paradoxical_subregs (XVECEXP (x, i, j));
4380 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4381 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4382 and apply the corresponding narrowing subreg to *OTHER_PTR.
4383 Return true if the operands were changed, false otherwise. */
4385 static bool
4386 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4388 rtx op, inner, other, tem;
4390 op = *op_ptr;
4391 if (!paradoxical_subreg_p (op))
4392 return false;
4393 inner = SUBREG_REG (op);
4395 other = *other_ptr;
4396 tem = gen_lowpart_common (GET_MODE (inner), other);
4397 if (!tem)
4398 return false;
4400 /* If the lowpart operation turned a hard register into a subreg,
4401 rather than simplifying it to another hard register, then the
4402 mode change cannot be properly represented. For example, OTHER
4403 might be valid in its current mode, but not in the new one. */
4404 if (GET_CODE (tem) == SUBREG
4405 && REG_P (other)
4406 && HARD_REGISTER_P (other))
4407 return false;
4409 *op_ptr = inner;
4410 *other_ptr = tem;
4411 return true;
4414 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4415 examine all of the reload insns between PREV and NEXT exclusive, and
4416 annotate all that may trap. */
4418 static void
4419 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4421 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4422 if (note == NULL)
4423 return;
4424 if (!insn_could_throw_p (insn))
4425 remove_note (insn, note);
4426 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4429 /* Reload pseudo-registers into hard regs around each insn as needed.
4430 Additional register load insns are output before the insn that needs it
4431 and perhaps store insns after insns that modify the reloaded pseudo reg.
4433 reg_last_reload_reg and reg_reloaded_contents keep track of
4434 which registers are already available in reload registers.
4435 We update these for the reloads that we perform,
4436 as the insns are scanned. */
4438 static void
4439 reload_as_needed (int live_known)
4441 class insn_chain *chain;
4442 #if AUTO_INC_DEC
4443 int i;
4444 #endif
4445 rtx_note *marker;
4447 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4448 memset (spill_reg_store, 0, sizeof spill_reg_store);
4449 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4450 INIT_REG_SET (&reg_has_output_reload);
4451 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4453 set_initial_elim_offsets ();
4455 /* Generate a marker insn that we will move around. */
4456 marker = emit_note (NOTE_INSN_DELETED);
4457 unlink_insn_chain (marker, marker);
4459 for (chain = reload_insn_chain; chain; chain = chain->next)
4461 rtx_insn *prev = 0;
4462 rtx_insn *insn = chain->insn;
4463 rtx_insn *old_next = NEXT_INSN (insn);
4464 #if AUTO_INC_DEC
4465 rtx_insn *old_prev = PREV_INSN (insn);
4466 #endif
4468 if (will_delete_init_insn_p (insn))
4469 continue;
4471 /* If we pass a label, copy the offsets from the label information
4472 into the current offsets of each elimination. */
4473 if (LABEL_P (insn))
4474 set_offsets_for_label (insn);
4476 else if (INSN_P (insn))
4478 regset_head regs_to_forget;
4479 INIT_REG_SET (&regs_to_forget);
4480 note_stores (insn, forget_old_reloads_1, &regs_to_forget);
4482 /* If this is a USE and CLOBBER of a MEM, ensure that any
4483 references to eliminable registers have been removed. */
4485 if ((GET_CODE (PATTERN (insn)) == USE
4486 || GET_CODE (PATTERN (insn)) == CLOBBER)
4487 && MEM_P (XEXP (PATTERN (insn), 0)))
4488 XEXP (XEXP (PATTERN (insn), 0), 0)
4489 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4490 GET_MODE (XEXP (PATTERN (insn), 0)),
4491 NULL_RTX);
4493 /* If we need to do register elimination processing, do so.
4494 This might delete the insn, in which case we are done. */
4495 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4497 eliminate_regs_in_insn (insn, 1);
4498 if (NOTE_P (insn))
4500 update_eliminable_offsets ();
4501 CLEAR_REG_SET (&regs_to_forget);
4502 continue;
4506 /* If need_elim is nonzero but need_reload is zero, one might think
4507 that we could simply set n_reloads to 0. However, find_reloads
4508 could have done some manipulation of the insn (such as swapping
4509 commutative operands), and these manipulations are lost during
4510 the first pass for every insn that needs register elimination.
4511 So the actions of find_reloads must be redone here. */
4513 if (! chain->need_elim && ! chain->need_reload
4514 && ! chain->need_operand_change)
4515 n_reloads = 0;
4516 /* First find the pseudo regs that must be reloaded for this insn.
4517 This info is returned in the tables reload_... (see reload.h).
4518 Also modify the body of INSN by substituting RELOAD
4519 rtx's for those pseudo regs. */
4520 else
4522 CLEAR_REG_SET (&reg_has_output_reload);
4523 CLEAR_HARD_REG_SET (reg_is_output_reload);
4525 find_reloads (insn, 1, spill_indirect_levels, live_known,
4526 spill_reg_order);
4529 if (n_reloads > 0)
4531 rtx_insn *next = NEXT_INSN (insn);
4533 /* ??? PREV can get deleted by reload inheritance.
4534 Work around this by emitting a marker note. */
4535 prev = PREV_INSN (insn);
4536 reorder_insns_nobb (marker, marker, prev);
4538 /* Now compute which reload regs to reload them into. Perhaps
4539 reusing reload regs from previous insns, or else output
4540 load insns to reload them. Maybe output store insns too.
4541 Record the choices of reload reg in reload_reg_rtx. */
4542 choose_reload_regs (chain);
4544 /* Generate the insns to reload operands into or out of
4545 their reload regs. */
4546 emit_reload_insns (chain);
4548 /* Substitute the chosen reload regs from reload_reg_rtx
4549 into the insn's body (or perhaps into the bodies of other
4550 load and store insn that we just made for reloading
4551 and that we moved the structure into). */
4552 subst_reloads (insn);
4554 prev = PREV_INSN (marker);
4555 unlink_insn_chain (marker, marker);
4557 /* Adjust the exception region notes for loads and stores. */
4558 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4559 fixup_eh_region_note (insn, prev, next);
4561 /* Adjust the location of REG_ARGS_SIZE. */
4562 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4563 if (p)
4565 remove_note (insn, p);
4566 fixup_args_size_notes (prev, PREV_INSN (next),
4567 get_args_size (p));
4570 /* If this was an ASM, make sure that all the reload insns
4571 we have generated are valid. If not, give an error
4572 and delete them. */
4573 if (asm_noperands (PATTERN (insn)) >= 0)
4574 for (rtx_insn *p = NEXT_INSN (prev);
4575 p != next;
4576 p = NEXT_INSN (p))
4577 if (p != insn && INSN_P (p)
4578 && GET_CODE (PATTERN (p)) != USE
4579 && (recog_memoized (p) < 0
4580 || (extract_insn (p),
4581 !(constrain_operands (1,
4582 get_enabled_alternatives (p))))))
4584 error_for_asm (insn,
4585 "%<asm%> operand requires "
4586 "impossible reload");
4587 delete_insn (p);
4591 if (num_eliminable && chain->need_elim)
4592 update_eliminable_offsets ();
4594 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4595 is no longer validly lying around to save a future reload.
4596 Note that this does not detect pseudos that were reloaded
4597 for this insn in order to be stored in
4598 (obeying register constraints). That is correct; such reload
4599 registers ARE still valid. */
4600 forget_marked_reloads (&regs_to_forget);
4601 CLEAR_REG_SET (&regs_to_forget);
4603 /* There may have been CLOBBER insns placed after INSN. So scan
4604 between INSN and NEXT and use them to forget old reloads. */
4605 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4606 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4607 note_stores (x, forget_old_reloads_1, NULL);
4609 #if AUTO_INC_DEC
4610 /* Likewise for regs altered by auto-increment in this insn.
4611 REG_INC notes have been changed by reloading:
4612 find_reloads_address_1 records substitutions for them,
4613 which have been performed by subst_reloads above. */
4614 for (i = n_reloads - 1; i >= 0; i--)
4616 rtx in_reg = rld[i].in_reg;
4617 if (in_reg)
4619 enum rtx_code code = GET_CODE (in_reg);
4620 /* PRE_INC / PRE_DEC will have the reload register ending up
4621 with the same value as the stack slot, but that doesn't
4622 hold true for POST_INC / POST_DEC. Either we have to
4623 convert the memory access to a true POST_INC / POST_DEC,
4624 or we can't use the reload register for inheritance. */
4625 if ((code == POST_INC || code == POST_DEC)
4626 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4627 REGNO (rld[i].reg_rtx))
4628 /* Make sure it is the inc/dec pseudo, and not
4629 some other (e.g. output operand) pseudo. */
4630 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4631 == REGNO (XEXP (in_reg, 0))))
4634 rtx reload_reg = rld[i].reg_rtx;
4635 machine_mode mode = GET_MODE (reload_reg);
4636 int n = 0;
4637 rtx_insn *p;
4639 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4641 /* We really want to ignore REG_INC notes here, so
4642 use PATTERN (p) as argument to reg_set_p . */
4643 if (reg_set_p (reload_reg, PATTERN (p)))
4644 break;
4645 n = count_occurrences (PATTERN (p), reload_reg, 0);
4646 if (! n)
4647 continue;
4648 if (n == 1)
4650 rtx replace_reg
4651 = gen_rtx_fmt_e (code, mode, reload_reg);
4653 validate_replace_rtx_group (reload_reg,
4654 replace_reg, p);
4655 n = verify_changes (0);
4657 /* We must also verify that the constraints
4658 are met after the replacement. Make sure
4659 extract_insn is only called for an insn
4660 where the replacements were found to be
4661 valid so far. */
4662 if (n)
4664 extract_insn (p);
4665 n = constrain_operands (1,
4666 get_enabled_alternatives (p));
4669 /* If the constraints were not met, then
4670 undo the replacement, else confirm it. */
4671 if (!n)
4672 cancel_changes (0);
4673 else
4674 confirm_change_group ();
4676 break;
4678 if (n == 1)
4680 add_reg_note (p, REG_INC, reload_reg);
4681 /* Mark this as having an output reload so that the
4682 REG_INC processing code below won't invalidate
4683 the reload for inheritance. */
4684 SET_HARD_REG_BIT (reg_is_output_reload,
4685 REGNO (reload_reg));
4686 SET_REGNO_REG_SET (&reg_has_output_reload,
4687 REGNO (XEXP (in_reg, 0)));
4689 else
4690 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4691 NULL);
4693 else if ((code == PRE_INC || code == PRE_DEC)
4694 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4695 REGNO (rld[i].reg_rtx))
4696 /* Make sure it is the inc/dec pseudo, and not
4697 some other (e.g. output operand) pseudo. */
4698 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4699 == REGNO (XEXP (in_reg, 0))))
4701 SET_HARD_REG_BIT (reg_is_output_reload,
4702 REGNO (rld[i].reg_rtx));
4703 SET_REGNO_REG_SET (&reg_has_output_reload,
4704 REGNO (XEXP (in_reg, 0)));
4706 else if (code == PRE_INC || code == PRE_DEC
4707 || code == POST_INC || code == POST_DEC)
4709 int in_regno = REGNO (XEXP (in_reg, 0));
4711 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4713 int in_hard_regno;
4714 bool forget_p = true;
4716 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4717 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4718 in_hard_regno))
4720 for (rtx_insn *x = (old_prev ?
4721 NEXT_INSN (old_prev) : insn);
4722 x != old_next;
4723 x = NEXT_INSN (x))
4724 if (x == reg_reloaded_insn[in_hard_regno])
4726 forget_p = false;
4727 break;
4730 /* If for some reasons, we didn't set up
4731 reg_last_reload_reg in this insn,
4732 invalidate inheritance from previous
4733 insns for the incremented/decremented
4734 register. Such registers will be not in
4735 reg_has_output_reload. Invalidate it
4736 also if the corresponding element in
4737 reg_reloaded_insn is also
4738 invalidated. */
4739 if (forget_p)
4740 forget_old_reloads_1 (XEXP (in_reg, 0),
4741 NULL_RTX, NULL);
4746 /* If a pseudo that got a hard register is auto-incremented,
4747 we must purge records of copying it into pseudos without
4748 hard registers. */
4749 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4750 if (REG_NOTE_KIND (x) == REG_INC)
4752 /* See if this pseudo reg was reloaded in this insn.
4753 If so, its last-reload info is still valid
4754 because it is based on this insn's reload. */
4755 for (i = 0; i < n_reloads; i++)
4756 if (rld[i].out == XEXP (x, 0))
4757 break;
4759 if (i == n_reloads)
4760 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4762 #endif
4764 /* A reload reg's contents are unknown after a label. */
4765 if (LABEL_P (insn))
4766 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4768 /* Don't assume a reload reg is still good after a call insn
4769 if it is a call-used reg, or if it contains a value that will
4770 be partially clobbered by the call. */
4771 else if (CALL_P (insn))
4773 reg_reloaded_valid
4774 &= ~insn_callee_abi (insn).full_and_partial_reg_clobbers ();
4776 /* If this is a call to a setjmp-type function, we must not
4777 reuse any reload reg contents across the call; that will
4778 just be clobbered by other uses of the register in later
4779 code, before the longjmp. */
4780 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4781 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4785 /* Clean up. */
4786 free (reg_last_reload_reg);
4787 CLEAR_REG_SET (&reg_has_output_reload);
4790 /* Discard all record of any value reloaded from X,
4791 or reloaded in X from someplace else;
4792 unless X is an output reload reg of the current insn.
4794 X may be a hard reg (the reload reg)
4795 or it may be a pseudo reg that was reloaded from.
4797 When DATA is non-NULL just mark the registers in regset
4798 to be forgotten later. */
4800 static void
4801 forget_old_reloads_1 (rtx x, const_rtx, void *data)
4803 unsigned int regno;
4804 unsigned int nr;
4805 regset regs = (regset) data;
4807 /* note_stores does give us subregs of hard regs,
4808 subreg_regno_offset requires a hard reg. */
4809 while (GET_CODE (x) == SUBREG)
4811 /* We ignore the subreg offset when calculating the regno,
4812 because we are using the entire underlying hard register
4813 below. */
4814 x = SUBREG_REG (x);
4817 if (!REG_P (x))
4818 return;
4820 regno = REGNO (x);
4822 if (regno >= FIRST_PSEUDO_REGISTER)
4823 nr = 1;
4824 else
4826 unsigned int i;
4828 nr = REG_NREGS (x);
4829 /* Storing into a spilled-reg invalidates its contents.
4830 This can happen if a block-local pseudo is allocated to that reg
4831 and it wasn't spilled because this block's total need is 0.
4832 Then some insn might have an optional reload and use this reg. */
4833 if (!regs)
4834 for (i = 0; i < nr; i++)
4835 /* But don't do this if the reg actually serves as an output
4836 reload reg in the current instruction. */
4837 if (n_reloads == 0
4838 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4840 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4841 spill_reg_store[regno + i] = 0;
4845 if (regs)
4846 while (nr-- > 0)
4847 SET_REGNO_REG_SET (regs, regno + nr);
4848 else
4850 /* Since value of X has changed,
4851 forget any value previously copied from it. */
4853 while (nr-- > 0)
4854 /* But don't forget a copy if this is the output reload
4855 that establishes the copy's validity. */
4856 if (n_reloads == 0
4857 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4858 reg_last_reload_reg[regno + nr] = 0;
4862 /* Forget the reloads marked in regset by previous function. */
4863 static void
4864 forget_marked_reloads (regset regs)
4866 unsigned int reg;
4867 reg_set_iterator rsi;
4868 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4870 if (reg < FIRST_PSEUDO_REGISTER
4871 /* But don't do this if the reg actually serves as an output
4872 reload reg in the current instruction. */
4873 && (n_reloads == 0
4874 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4876 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4877 spill_reg_store[reg] = 0;
4879 if (n_reloads == 0
4880 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4881 reg_last_reload_reg[reg] = 0;
4885 /* The following HARD_REG_SETs indicate when each hard register is
4886 used for a reload of various parts of the current insn. */
4888 /* If reg is unavailable for all reloads. */
4889 static HARD_REG_SET reload_reg_unavailable;
4890 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4891 static HARD_REG_SET reload_reg_used;
4892 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4893 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4894 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4895 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4896 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4897 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4898 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4899 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4900 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4901 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4902 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4903 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4904 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4905 static HARD_REG_SET reload_reg_used_in_op_addr;
4906 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4907 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4908 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4909 static HARD_REG_SET reload_reg_used_in_insn;
4910 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4911 static HARD_REG_SET reload_reg_used_in_other_addr;
4913 /* If reg is in use as a reload reg for any sort of reload. */
4914 static HARD_REG_SET reload_reg_used_at_all;
4916 /* If reg is use as an inherited reload. We just mark the first register
4917 in the group. */
4918 static HARD_REG_SET reload_reg_used_for_inherit;
4920 /* Records which hard regs are used in any way, either as explicit use or
4921 by being allocated to a pseudo during any point of the current insn. */
4922 static HARD_REG_SET reg_used_in_insn;
4924 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4925 TYPE. MODE is used to indicate how many consecutive regs are
4926 actually used. */
4928 static void
4929 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4930 machine_mode mode)
4932 switch (type)
4934 case RELOAD_OTHER:
4935 add_to_hard_reg_set (&reload_reg_used, mode, regno);
4936 break;
4938 case RELOAD_FOR_INPUT_ADDRESS:
4939 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
4940 break;
4942 case RELOAD_FOR_INPADDR_ADDRESS:
4943 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
4944 break;
4946 case RELOAD_FOR_OUTPUT_ADDRESS:
4947 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
4948 break;
4950 case RELOAD_FOR_OUTADDR_ADDRESS:
4951 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
4952 break;
4954 case RELOAD_FOR_OPERAND_ADDRESS:
4955 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
4956 break;
4958 case RELOAD_FOR_OPADDR_ADDR:
4959 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
4960 break;
4962 case RELOAD_FOR_OTHER_ADDRESS:
4963 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
4964 break;
4966 case RELOAD_FOR_INPUT:
4967 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
4968 break;
4970 case RELOAD_FOR_OUTPUT:
4971 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
4972 break;
4974 case RELOAD_FOR_INSN:
4975 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
4976 break;
4979 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
4982 /* Similarly, but show REGNO is no longer in use for a reload. */
4984 static void
4985 clear_reload_reg_in_use (unsigned int regno, int opnum,
4986 enum reload_type type, machine_mode mode)
4988 unsigned int nregs = hard_regno_nregs (regno, mode);
4989 unsigned int start_regno, end_regno, r;
4990 int i;
4991 /* A complication is that for some reload types, inheritance might
4992 allow multiple reloads of the same types to share a reload register.
4993 We set check_opnum if we have to check only reloads with the same
4994 operand number, and check_any if we have to check all reloads. */
4995 int check_opnum = 0;
4996 int check_any = 0;
4997 HARD_REG_SET *used_in_set;
4999 switch (type)
5001 case RELOAD_OTHER:
5002 used_in_set = &reload_reg_used;
5003 break;
5005 case RELOAD_FOR_INPUT_ADDRESS:
5006 used_in_set = &reload_reg_used_in_input_addr[opnum];
5007 break;
5009 case RELOAD_FOR_INPADDR_ADDRESS:
5010 check_opnum = 1;
5011 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5012 break;
5014 case RELOAD_FOR_OUTPUT_ADDRESS:
5015 used_in_set = &reload_reg_used_in_output_addr[opnum];
5016 break;
5018 case RELOAD_FOR_OUTADDR_ADDRESS:
5019 check_opnum = 1;
5020 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5021 break;
5023 case RELOAD_FOR_OPERAND_ADDRESS:
5024 used_in_set = &reload_reg_used_in_op_addr;
5025 break;
5027 case RELOAD_FOR_OPADDR_ADDR:
5028 check_any = 1;
5029 used_in_set = &reload_reg_used_in_op_addr_reload;
5030 break;
5032 case RELOAD_FOR_OTHER_ADDRESS:
5033 used_in_set = &reload_reg_used_in_other_addr;
5034 check_any = 1;
5035 break;
5037 case RELOAD_FOR_INPUT:
5038 used_in_set = &reload_reg_used_in_input[opnum];
5039 break;
5041 case RELOAD_FOR_OUTPUT:
5042 used_in_set = &reload_reg_used_in_output[opnum];
5043 break;
5045 case RELOAD_FOR_INSN:
5046 used_in_set = &reload_reg_used_in_insn;
5047 break;
5048 default:
5049 gcc_unreachable ();
5051 /* We resolve conflicts with remaining reloads of the same type by
5052 excluding the intervals of reload registers by them from the
5053 interval of freed reload registers. Since we only keep track of
5054 one set of interval bounds, we might have to exclude somewhat
5055 more than what would be necessary if we used a HARD_REG_SET here.
5056 But this should only happen very infrequently, so there should
5057 be no reason to worry about it. */
5059 start_regno = regno;
5060 end_regno = regno + nregs;
5061 if (check_opnum || check_any)
5063 for (i = n_reloads - 1; i >= 0; i--)
5065 if (rld[i].when_needed == type
5066 && (check_any || rld[i].opnum == opnum)
5067 && rld[i].reg_rtx)
5069 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5070 unsigned int conflict_end
5071 = end_hard_regno (rld[i].mode, conflict_start);
5073 /* If there is an overlap with the first to-be-freed register,
5074 adjust the interval start. */
5075 if (conflict_start <= start_regno && conflict_end > start_regno)
5076 start_regno = conflict_end;
5077 /* Otherwise, if there is a conflict with one of the other
5078 to-be-freed registers, adjust the interval end. */
5079 if (conflict_start > start_regno && conflict_start < end_regno)
5080 end_regno = conflict_start;
5085 for (r = start_regno; r < end_regno; r++)
5086 CLEAR_HARD_REG_BIT (*used_in_set, r);
5089 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5090 specified by OPNUM and TYPE. */
5092 static int
5093 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5095 int i;
5097 /* In use for a RELOAD_OTHER means it's not available for anything. */
5098 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5099 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5100 return 0;
5102 switch (type)
5104 case RELOAD_OTHER:
5105 /* In use for anything means we can't use it for RELOAD_OTHER. */
5106 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5107 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5108 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5109 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5110 return 0;
5112 for (i = 0; i < reload_n_operands; i++)
5113 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5114 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5115 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5116 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5117 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5118 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5119 return 0;
5121 return 1;
5123 case RELOAD_FOR_INPUT:
5124 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5125 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5126 return 0;
5128 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5129 return 0;
5131 /* If it is used for some other input, can't use it. */
5132 for (i = 0; i < reload_n_operands; i++)
5133 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5134 return 0;
5136 /* If it is used in a later operand's address, can't use it. */
5137 for (i = opnum + 1; i < reload_n_operands; i++)
5138 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5139 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5140 return 0;
5142 return 1;
5144 case RELOAD_FOR_INPUT_ADDRESS:
5145 /* Can't use a register if it is used for an input address for this
5146 operand or used as an input in an earlier one. */
5147 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5148 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5149 return 0;
5151 for (i = 0; i < opnum; i++)
5152 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5153 return 0;
5155 return 1;
5157 case RELOAD_FOR_INPADDR_ADDRESS:
5158 /* Can't use a register if it is used for an input address
5159 for this operand or used as an input in an earlier
5160 one. */
5161 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5162 return 0;
5164 for (i = 0; i < opnum; i++)
5165 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5166 return 0;
5168 return 1;
5170 case RELOAD_FOR_OUTPUT_ADDRESS:
5171 /* Can't use a register if it is used for an output address for this
5172 operand or used as an output in this or a later operand. Note
5173 that multiple output operands are emitted in reverse order, so
5174 the conflicting ones are those with lower indices. */
5175 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5176 return 0;
5178 for (i = 0; i <= opnum; i++)
5179 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5180 return 0;
5182 return 1;
5184 case RELOAD_FOR_OUTADDR_ADDRESS:
5185 /* Can't use a register if it is used for an output address
5186 for this operand or used as an output in this or a
5187 later operand. Note that multiple output operands are
5188 emitted in reverse order, so the conflicting ones are
5189 those with lower indices. */
5190 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5191 return 0;
5193 for (i = 0; i <= opnum; i++)
5194 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5195 return 0;
5197 return 1;
5199 case RELOAD_FOR_OPERAND_ADDRESS:
5200 for (i = 0; i < reload_n_operands; i++)
5201 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5202 return 0;
5204 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5205 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5207 case RELOAD_FOR_OPADDR_ADDR:
5208 for (i = 0; i < reload_n_operands; i++)
5209 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5210 return 0;
5212 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5214 case RELOAD_FOR_OUTPUT:
5215 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5216 outputs, or an operand address for this or an earlier output.
5217 Note that multiple output operands are emitted in reverse order,
5218 so the conflicting ones are those with higher indices. */
5219 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5220 return 0;
5222 for (i = 0; i < reload_n_operands; i++)
5223 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5224 return 0;
5226 for (i = opnum; i < reload_n_operands; i++)
5227 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5228 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5229 return 0;
5231 return 1;
5233 case RELOAD_FOR_INSN:
5234 for (i = 0; i < reload_n_operands; i++)
5235 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5236 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5237 return 0;
5239 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5240 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5242 case RELOAD_FOR_OTHER_ADDRESS:
5243 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5245 default:
5246 gcc_unreachable ();
5250 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5251 the number RELOADNUM, is still available in REGNO at the end of the insn.
5253 We can assume that the reload reg was already tested for availability
5254 at the time it is needed, and we should not check this again,
5255 in case the reg has already been marked in use. */
5257 static int
5258 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5260 int opnum = rld[reloadnum].opnum;
5261 enum reload_type type = rld[reloadnum].when_needed;
5262 int i;
5264 /* See if there is a reload with the same type for this operand, using
5265 the same register. This case is not handled by the code below. */
5266 for (i = reloadnum + 1; i < n_reloads; i++)
5268 rtx reg;
5270 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5271 continue;
5272 reg = rld[i].reg_rtx;
5273 if (reg == NULL_RTX)
5274 continue;
5275 if (regno >= REGNO (reg) && regno < END_REGNO (reg))
5276 return 0;
5279 switch (type)
5281 case RELOAD_OTHER:
5282 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5283 its value must reach the end. */
5284 return 1;
5286 /* If this use is for part of the insn,
5287 its value reaches if no subsequent part uses the same register.
5288 Just like the above function, don't try to do this with lots
5289 of fallthroughs. */
5291 case RELOAD_FOR_OTHER_ADDRESS:
5292 /* Here we check for everything else, since these don't conflict
5293 with anything else and everything comes later. */
5295 for (i = 0; i < reload_n_operands; i++)
5296 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5297 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5298 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5299 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5300 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5301 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5302 return 0;
5304 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5305 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5306 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5307 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5309 case RELOAD_FOR_INPUT_ADDRESS:
5310 case RELOAD_FOR_INPADDR_ADDRESS:
5311 /* Similar, except that we check only for this and subsequent inputs
5312 and the address of only subsequent inputs and we do not need
5313 to check for RELOAD_OTHER objects since they are known not to
5314 conflict. */
5316 for (i = opnum; i < reload_n_operands; i++)
5317 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5318 return 0;
5320 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5321 could be killed if the register is also used by reload with type
5322 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5323 if (type == RELOAD_FOR_INPADDR_ADDRESS
5324 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5325 return 0;
5327 for (i = opnum + 1; i < reload_n_operands; i++)
5328 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5329 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5330 return 0;
5332 for (i = 0; i < reload_n_operands; i++)
5333 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5334 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5335 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5336 return 0;
5338 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5339 return 0;
5341 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5342 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5343 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5345 case RELOAD_FOR_INPUT:
5346 /* Similar to input address, except we start at the next operand for
5347 both input and input address and we do not check for
5348 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5349 would conflict. */
5351 for (i = opnum + 1; i < reload_n_operands; i++)
5352 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5353 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5354 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5355 return 0;
5357 /* ... fall through ... */
5359 case RELOAD_FOR_OPERAND_ADDRESS:
5360 /* Check outputs and their addresses. */
5362 for (i = 0; i < reload_n_operands; i++)
5363 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5364 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5365 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5366 return 0;
5368 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5370 case RELOAD_FOR_OPADDR_ADDR:
5371 for (i = 0; i < reload_n_operands; i++)
5372 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5373 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5374 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5375 return 0;
5377 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5378 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5379 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5381 case RELOAD_FOR_INSN:
5382 /* These conflict with other outputs with RELOAD_OTHER. So
5383 we need only check for output addresses. */
5385 opnum = reload_n_operands;
5387 /* fall through */
5389 case RELOAD_FOR_OUTPUT:
5390 case RELOAD_FOR_OUTPUT_ADDRESS:
5391 case RELOAD_FOR_OUTADDR_ADDRESS:
5392 /* We already know these can't conflict with a later output. So the
5393 only thing to check are later output addresses.
5394 Note that multiple output operands are emitted in reverse order,
5395 so the conflicting ones are those with lower indices. */
5396 for (i = 0; i < opnum; i++)
5397 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5398 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5399 return 0;
5401 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5402 could be killed if the register is also used by reload with type
5403 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5404 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5405 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5406 return 0;
5408 return 1;
5410 default:
5411 gcc_unreachable ();
5415 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5416 every register in REG. */
5418 static bool
5419 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5421 unsigned int i;
5423 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5424 if (!reload_reg_reaches_end_p (i, reloadnum))
5425 return false;
5426 return true;
5430 /* Returns whether R1 and R2 are uniquely chained: the value of one
5431 is used by the other, and that value is not used by any other
5432 reload for this insn. This is used to partially undo the decision
5433 made in find_reloads when in the case of multiple
5434 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5435 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5436 reloads. This code tries to avoid the conflict created by that
5437 change. It might be cleaner to explicitly keep track of which
5438 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5439 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5440 this after the fact. */
5441 static bool
5442 reloads_unique_chain_p (int r1, int r2)
5444 int i;
5446 /* We only check input reloads. */
5447 if (! rld[r1].in || ! rld[r2].in)
5448 return false;
5450 /* Avoid anything with output reloads. */
5451 if (rld[r1].out || rld[r2].out)
5452 return false;
5454 /* "chained" means one reload is a component of the other reload,
5455 not the same as the other reload. */
5456 if (rld[r1].opnum != rld[r2].opnum
5457 || rtx_equal_p (rld[r1].in, rld[r2].in)
5458 || rld[r1].optional || rld[r2].optional
5459 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5460 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5461 return false;
5463 /* The following loop assumes that r1 is the reload that feeds r2. */
5464 if (r1 > r2)
5465 std::swap (r1, r2);
5467 for (i = 0; i < n_reloads; i ++)
5468 /* Look for input reloads that aren't our two */
5469 if (i != r1 && i != r2 && rld[i].in)
5471 /* If our reload is mentioned at all, it isn't a simple chain. */
5472 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5473 return false;
5475 return true;
5478 /* The recursive function change all occurrences of WHAT in *WHERE
5479 to REPL. */
5480 static void
5481 substitute (rtx *where, const_rtx what, rtx repl)
5483 const char *fmt;
5484 int i;
5485 enum rtx_code code;
5487 if (*where == 0)
5488 return;
5490 if (*where == what || rtx_equal_p (*where, what))
5492 /* Record the location of the changed rtx. */
5493 substitute_stack.safe_push (where);
5494 *where = repl;
5495 return;
5498 code = GET_CODE (*where);
5499 fmt = GET_RTX_FORMAT (code);
5500 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5502 if (fmt[i] == 'E')
5504 int j;
5506 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5507 substitute (&XVECEXP (*where, i, j), what, repl);
5509 else if (fmt[i] == 'e')
5510 substitute (&XEXP (*where, i), what, repl);
5514 /* The function returns TRUE if chain of reload R1 and R2 (in any
5515 order) can be evaluated without usage of intermediate register for
5516 the reload containing another reload. It is important to see
5517 gen_reload to understand what the function is trying to do. As an
5518 example, let us have reload chain
5520 r2: const
5521 r1: <something> + const
5523 and reload R2 got reload reg HR. The function returns true if
5524 there is a correct insn HR = HR + <something>. Otherwise,
5525 gen_reload will use intermediate register (and this is the reload
5526 reg for R1) to reload <something>.
5528 We need this function to find a conflict for chain reloads. In our
5529 example, if HR = HR + <something> is incorrect insn, then we cannot
5530 use HR as a reload register for R2. If we do use it then we get a
5531 wrong code:
5533 HR = const
5534 HR = <something>
5535 HR = HR + HR
5538 static bool
5539 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5541 /* Assume other cases in gen_reload are not possible for
5542 chain reloads or do need an intermediate hard registers. */
5543 bool result = true;
5544 int regno, code;
5545 rtx out, in;
5546 rtx_insn *insn;
5547 rtx_insn *last = get_last_insn ();
5549 /* Make r2 a component of r1. */
5550 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5551 std::swap (r1, r2);
5553 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5554 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5555 gcc_assert (regno >= 0);
5556 out = gen_rtx_REG (rld[r1].mode, regno);
5557 in = rld[r1].in;
5558 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5560 /* If IN is a paradoxical SUBREG, remove it and try to put the
5561 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5562 strip_paradoxical_subreg (&in, &out);
5564 if (GET_CODE (in) == PLUS
5565 && (REG_P (XEXP (in, 0))
5566 || GET_CODE (XEXP (in, 0)) == SUBREG
5567 || MEM_P (XEXP (in, 0)))
5568 && (REG_P (XEXP (in, 1))
5569 || GET_CODE (XEXP (in, 1)) == SUBREG
5570 || CONSTANT_P (XEXP (in, 1))
5571 || MEM_P (XEXP (in, 1))))
5573 insn = emit_insn (gen_rtx_SET (out, in));
5574 code = recog_memoized (insn);
5575 result = false;
5577 if (code >= 0)
5579 extract_insn (insn);
5580 /* We want constrain operands to treat this insn strictly in
5581 its validity determination, i.e., the way it would after
5582 reload has completed. */
5583 result = constrain_operands (1, get_enabled_alternatives (insn));
5586 delete_insns_since (last);
5589 /* Restore the original value at each changed address within R1. */
5590 while (!substitute_stack.is_empty ())
5592 rtx *where = substitute_stack.pop ();
5593 *where = rld[r2].in;
5596 return result;
5599 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5600 Return 0 otherwise.
5602 This function uses the same algorithm as reload_reg_free_p above. */
5604 static int
5605 reloads_conflict (int r1, int r2)
5607 enum reload_type r1_type = rld[r1].when_needed;
5608 enum reload_type r2_type = rld[r2].when_needed;
5609 int r1_opnum = rld[r1].opnum;
5610 int r2_opnum = rld[r2].opnum;
5612 /* RELOAD_OTHER conflicts with everything. */
5613 if (r2_type == RELOAD_OTHER)
5614 return 1;
5616 /* Otherwise, check conflicts differently for each type. */
5618 switch (r1_type)
5620 case RELOAD_FOR_INPUT:
5621 return (r2_type == RELOAD_FOR_INSN
5622 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5623 || r2_type == RELOAD_FOR_OPADDR_ADDR
5624 || r2_type == RELOAD_FOR_INPUT
5625 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5626 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5627 && r2_opnum > r1_opnum));
5629 case RELOAD_FOR_INPUT_ADDRESS:
5630 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5631 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5633 case RELOAD_FOR_INPADDR_ADDRESS:
5634 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5635 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5637 case RELOAD_FOR_OUTPUT_ADDRESS:
5638 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5639 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5641 case RELOAD_FOR_OUTADDR_ADDRESS:
5642 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5643 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5645 case RELOAD_FOR_OPERAND_ADDRESS:
5646 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5647 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5648 && (!reloads_unique_chain_p (r1, r2)
5649 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5651 case RELOAD_FOR_OPADDR_ADDR:
5652 return (r2_type == RELOAD_FOR_INPUT
5653 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5655 case RELOAD_FOR_OUTPUT:
5656 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5657 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5658 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5659 && r2_opnum >= r1_opnum));
5661 case RELOAD_FOR_INSN:
5662 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5663 || r2_type == RELOAD_FOR_INSN
5664 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5666 case RELOAD_FOR_OTHER_ADDRESS:
5667 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5669 case RELOAD_OTHER:
5670 return 1;
5672 default:
5673 gcc_unreachable ();
5677 /* Indexed by reload number, 1 if incoming value
5678 inherited from previous insns. */
5679 static char reload_inherited[MAX_RELOADS];
5681 /* For an inherited reload, this is the insn the reload was inherited from,
5682 if we know it. Otherwise, this is 0. */
5683 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5685 /* If nonzero, this is a place to get the value of the reload,
5686 rather than using reload_in. */
5687 static rtx reload_override_in[MAX_RELOADS];
5689 /* For each reload, the hard register number of the register used,
5690 or -1 if we did not need a register for this reload. */
5691 static int reload_spill_index[MAX_RELOADS];
5693 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5694 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5696 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5697 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5699 /* Subroutine of free_for_value_p, used to check a single register.
5700 START_REGNO is the starting regno of the full reload register
5701 (possibly comprising multiple hard registers) that we are considering. */
5703 static int
5704 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5705 enum reload_type type, rtx value, rtx out,
5706 int reloadnum, int ignore_address_reloads)
5708 int time1;
5709 /* Set if we see an input reload that must not share its reload register
5710 with any new earlyclobber, but might otherwise share the reload
5711 register with an output or input-output reload. */
5712 int check_earlyclobber = 0;
5713 int i;
5714 int copy = 0;
5716 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5717 return 0;
5719 if (out == const0_rtx)
5721 copy = 1;
5722 out = NULL_RTX;
5725 /* We use some pseudo 'time' value to check if the lifetimes of the
5726 new register use would overlap with the one of a previous reload
5727 that is not read-only or uses a different value.
5728 The 'time' used doesn't have to be linear in any shape or form, just
5729 monotonic.
5730 Some reload types use different 'buckets' for each operand.
5731 So there are MAX_RECOG_OPERANDS different time values for each
5732 such reload type.
5733 We compute TIME1 as the time when the register for the prospective
5734 new reload ceases to be live, and TIME2 for each existing
5735 reload as the time when that the reload register of that reload
5736 becomes live.
5737 Where there is little to be gained by exact lifetime calculations,
5738 we just make conservative assumptions, i.e. a longer lifetime;
5739 this is done in the 'default:' cases. */
5740 switch (type)
5742 case RELOAD_FOR_OTHER_ADDRESS:
5743 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5744 time1 = copy ? 0 : 1;
5745 break;
5746 case RELOAD_OTHER:
5747 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5748 break;
5749 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5750 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5751 respectively, to the time values for these, we get distinct time
5752 values. To get distinct time values for each operand, we have to
5753 multiply opnum by at least three. We round that up to four because
5754 multiply by four is often cheaper. */
5755 case RELOAD_FOR_INPADDR_ADDRESS:
5756 time1 = opnum * 4 + 2;
5757 break;
5758 case RELOAD_FOR_INPUT_ADDRESS:
5759 time1 = opnum * 4 + 3;
5760 break;
5761 case RELOAD_FOR_INPUT:
5762 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5763 executes (inclusive). */
5764 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5765 break;
5766 case RELOAD_FOR_OPADDR_ADDR:
5767 /* opnum * 4 + 4
5768 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5769 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5770 break;
5771 case RELOAD_FOR_OPERAND_ADDRESS:
5772 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5773 is executed. */
5774 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5775 break;
5776 case RELOAD_FOR_OUTADDR_ADDRESS:
5777 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5778 break;
5779 case RELOAD_FOR_OUTPUT_ADDRESS:
5780 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5781 break;
5782 default:
5783 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5786 for (i = 0; i < n_reloads; i++)
5788 rtx reg = rld[i].reg_rtx;
5789 if (reg && REG_P (reg)
5790 && (unsigned) regno - true_regnum (reg) < REG_NREGS (reg)
5791 && i != reloadnum)
5793 rtx other_input = rld[i].in;
5795 /* If the other reload loads the same input value, that
5796 will not cause a conflict only if it's loading it into
5797 the same register. */
5798 if (true_regnum (reg) != start_regno)
5799 other_input = NULL_RTX;
5800 if (! other_input || ! rtx_equal_p (other_input, value)
5801 || rld[i].out || out)
5803 int time2;
5804 switch (rld[i].when_needed)
5806 case RELOAD_FOR_OTHER_ADDRESS:
5807 time2 = 0;
5808 break;
5809 case RELOAD_FOR_INPADDR_ADDRESS:
5810 /* find_reloads makes sure that a
5811 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5812 by at most one - the first -
5813 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5814 address reload is inherited, the address address reload
5815 goes away, so we can ignore this conflict. */
5816 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5817 && ignore_address_reloads
5818 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5819 Then the address address is still needed to store
5820 back the new address. */
5821 && ! rld[reloadnum].out)
5822 continue;
5823 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5824 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5825 reloads go away. */
5826 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5827 && ignore_address_reloads
5828 /* Unless we are reloading an auto_inc expression. */
5829 && ! rld[reloadnum].out)
5830 continue;
5831 time2 = rld[i].opnum * 4 + 2;
5832 break;
5833 case RELOAD_FOR_INPUT_ADDRESS:
5834 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5835 && ignore_address_reloads
5836 && ! rld[reloadnum].out)
5837 continue;
5838 time2 = rld[i].opnum * 4 + 3;
5839 break;
5840 case RELOAD_FOR_INPUT:
5841 time2 = rld[i].opnum * 4 + 4;
5842 check_earlyclobber = 1;
5843 break;
5844 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5845 == MAX_RECOG_OPERAND * 4 */
5846 case RELOAD_FOR_OPADDR_ADDR:
5847 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5848 && ignore_address_reloads
5849 && ! rld[reloadnum].out)
5850 continue;
5851 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5852 break;
5853 case RELOAD_FOR_OPERAND_ADDRESS:
5854 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5855 check_earlyclobber = 1;
5856 break;
5857 case RELOAD_FOR_INSN:
5858 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5859 break;
5860 case RELOAD_FOR_OUTPUT:
5861 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5862 instruction is executed. */
5863 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5864 break;
5865 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5866 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5867 value. */
5868 case RELOAD_FOR_OUTADDR_ADDRESS:
5869 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5870 && ignore_address_reloads
5871 && ! rld[reloadnum].out)
5872 continue;
5873 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5874 break;
5875 case RELOAD_FOR_OUTPUT_ADDRESS:
5876 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5877 break;
5878 case RELOAD_OTHER:
5879 /* If there is no conflict in the input part, handle this
5880 like an output reload. */
5881 if (! rld[i].in || rtx_equal_p (other_input, value))
5883 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5884 /* Earlyclobbered outputs must conflict with inputs. */
5885 if (earlyclobber_operand_p (rld[i].out))
5886 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5888 break;
5890 time2 = 1;
5891 /* RELOAD_OTHER might be live beyond instruction execution,
5892 but this is not obvious when we set time2 = 1. So check
5893 here if there might be a problem with the new reload
5894 clobbering the register used by the RELOAD_OTHER. */
5895 if (out)
5896 return 0;
5897 break;
5898 default:
5899 return 0;
5901 if ((time1 >= time2
5902 && (! rld[i].in || rld[i].out
5903 || ! rtx_equal_p (other_input, value)))
5904 || (out && rld[reloadnum].out_reg
5905 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5906 return 0;
5911 /* Earlyclobbered outputs must conflict with inputs. */
5912 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5913 return 0;
5915 return 1;
5918 /* Return 1 if the value in reload reg REGNO, as used by a reload
5919 needed for the part of the insn specified by OPNUM and TYPE,
5920 may be used to load VALUE into it.
5922 MODE is the mode in which the register is used, this is needed to
5923 determine how many hard regs to test.
5925 Other read-only reloads with the same value do not conflict
5926 unless OUT is nonzero and these other reloads have to live while
5927 output reloads live.
5928 If OUT is CONST0_RTX, this is a special case: it means that the
5929 test should not be for using register REGNO as reload register, but
5930 for copying from register REGNO into the reload register.
5932 RELOADNUM is the number of the reload we want to load this value for;
5933 a reload does not conflict with itself.
5935 When IGNORE_ADDRESS_RELOADS is set, we cannot have conflicts with
5936 reloads that load an address for the very reload we are considering.
5938 The caller has to make sure that there is no conflict with the return
5939 register. */
5941 static int
5942 free_for_value_p (int regno, machine_mode mode, int opnum,
5943 enum reload_type type, rtx value, rtx out, int reloadnum,
5944 int ignore_address_reloads)
5946 int nregs = hard_regno_nregs (regno, mode);
5947 while (nregs-- > 0)
5948 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5949 value, out, reloadnum,
5950 ignore_address_reloads))
5951 return 0;
5952 return 1;
5955 /* Return nonzero if the rtx X is invariant over the current function. */
5956 /* ??? Actually, the places where we use this expect exactly what is
5957 tested here, and not everything that is function invariant. In
5958 particular, the frame pointer and arg pointer are special cased;
5959 pic_offset_table_rtx is not, and we must not spill these things to
5960 memory. */
5963 function_invariant_p (const_rtx x)
5965 if (CONSTANT_P (x))
5966 return 1;
5967 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5968 return 1;
5969 if (GET_CODE (x) == PLUS
5970 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5971 && GET_CODE (XEXP (x, 1)) == CONST_INT)
5972 return 1;
5973 return 0;
5976 /* Determine whether the reload reg X overlaps any rtx'es used for
5977 overriding inheritance. Return nonzero if so. */
5979 static int
5980 conflicts_with_override (rtx x)
5982 int i;
5983 for (i = 0; i < n_reloads; i++)
5984 if (reload_override_in[i]
5985 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5986 return 1;
5987 return 0;
5990 /* Give an error message saying we failed to find a reload for INSN,
5991 and clear out reload R. */
5992 static void
5993 failed_reload (rtx_insn *insn, int r)
5995 if (asm_noperands (PATTERN (insn)) < 0)
5996 /* It's the compiler's fault. */
5997 fatal_insn ("could not find a spill register", insn);
5999 /* It's the user's fault; the operand's mode and constraint
6000 don't match. Disable this reload so we don't crash in final. */
6001 error_for_asm (insn,
6002 "%<asm%> operand constraint incompatible with operand size");
6003 rld[r].in = 0;
6004 rld[r].out = 0;
6005 rld[r].reg_rtx = 0;
6006 rld[r].optional = 1;
6007 rld[r].secondary_p = 1;
6010 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6011 for reload R. If it's valid, get an rtx for it. Return nonzero if
6012 successful. */
6013 static int
6014 set_reload_reg (int i, int r)
6016 int regno;
6017 rtx reg = spill_reg_rtx[i];
6019 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6020 spill_reg_rtx[i] = reg
6021 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6023 regno = true_regnum (reg);
6025 /* Detect when the reload reg can't hold the reload mode.
6026 This used to be one `if', but Sequent compiler can't handle that. */
6027 if (targetm.hard_regno_mode_ok (regno, rld[r].mode))
6029 machine_mode test_mode = VOIDmode;
6030 if (rld[r].in)
6031 test_mode = GET_MODE (rld[r].in);
6032 /* If rld[r].in has VOIDmode, it means we will load it
6033 in whatever mode the reload reg has: to wit, rld[r].mode.
6034 We have already tested that for validity. */
6035 /* Aside from that, we need to test that the expressions
6036 to reload from or into have modes which are valid for this
6037 reload register. Otherwise the reload insns would be invalid. */
6038 if (! (rld[r].in != 0 && test_mode != VOIDmode
6039 && !targetm.hard_regno_mode_ok (regno, test_mode)))
6040 if (! (rld[r].out != 0
6041 && !targetm.hard_regno_mode_ok (regno, GET_MODE (rld[r].out))))
6043 /* The reg is OK. */
6044 last_spill_reg = i;
6046 /* Mark as in use for this insn the reload regs we use
6047 for this. */
6048 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6049 rld[r].when_needed, rld[r].mode);
6051 rld[r].reg_rtx = reg;
6052 reload_spill_index[r] = spill_regs[i];
6053 return 1;
6056 return 0;
6059 /* Find a spill register to use as a reload register for reload R.
6060 LAST_RELOAD is nonzero if this is the last reload for the insn being
6061 processed.
6063 Set rld[R].reg_rtx to the register allocated.
6065 We return 1 if successful, or 0 if we couldn't find a spill reg and
6066 we didn't change anything. */
6068 static int
6069 allocate_reload_reg (class insn_chain *chain ATTRIBUTE_UNUSED, int r,
6070 int last_reload)
6072 int i, pass, count;
6074 /* If we put this reload ahead, thinking it is a group,
6075 then insist on finding a group. Otherwise we can grab a
6076 reg that some other reload needs.
6077 (That can happen when we have a 68000 DATA_OR_FP_REG
6078 which is a group of data regs or one fp reg.)
6079 We need not be so restrictive if there are no more reloads
6080 for this insn.
6082 ??? Really it would be nicer to have smarter handling
6083 for that kind of reg class, where a problem like this is normal.
6084 Perhaps those classes should be avoided for reloading
6085 by use of more alternatives. */
6087 int force_group = rld[r].nregs > 1 && ! last_reload;
6089 /* If we want a single register and haven't yet found one,
6090 take any reg in the right class and not in use.
6091 If we want a consecutive group, here is where we look for it.
6093 We use three passes so we can first look for reload regs to
6094 reuse, which are already in use for other reloads in this insn,
6095 and only then use additional registers which are not "bad", then
6096 finally any register.
6098 I think that maximizing reuse is needed to make sure we don't
6099 run out of reload regs. Suppose we have three reloads, and
6100 reloads A and B can share regs. These need two regs.
6101 Suppose A and B are given different regs.
6102 That leaves none for C. */
6103 for (pass = 0; pass < 3; pass++)
6105 /* I is the index in spill_regs.
6106 We advance it round-robin between insns to use all spill regs
6107 equally, so that inherited reloads have a chance
6108 of leapfrogging each other. */
6110 i = last_spill_reg;
6112 for (count = 0; count < n_spills; count++)
6114 int rclass = (int) rld[r].rclass;
6115 int regnum;
6117 i++;
6118 if (i >= n_spills)
6119 i -= n_spills;
6120 regnum = spill_regs[i];
6122 if ((reload_reg_free_p (regnum, rld[r].opnum,
6123 rld[r].when_needed)
6124 || (rld[r].in
6125 /* We check reload_reg_used to make sure we
6126 don't clobber the return register. */
6127 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6128 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6129 rld[r].when_needed, rld[r].in,
6130 rld[r].out, r, 1)))
6131 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6132 && targetm.hard_regno_mode_ok (regnum, rld[r].mode)
6133 /* Look first for regs to share, then for unshared. But
6134 don't share regs used for inherited reloads; they are
6135 the ones we want to preserve. */
6136 && (pass
6137 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6138 regnum)
6139 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6140 regnum))))
6142 int nr = hard_regno_nregs (regnum, rld[r].mode);
6144 /* During the second pass we want to avoid reload registers
6145 which are "bad" for this reload. */
6146 if (pass == 1
6147 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6148 continue;
6150 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6151 (on 68000) got us two FP regs. If NR is 1,
6152 we would reject both of them. */
6153 if (force_group)
6154 nr = rld[r].nregs;
6155 /* If we need only one reg, we have already won. */
6156 if (nr == 1)
6158 /* But reject a single reg if we demand a group. */
6159 if (force_group)
6160 continue;
6161 break;
6163 /* Otherwise check that as many consecutive regs as we need
6164 are available here. */
6165 while (nr > 1)
6167 int regno = regnum + nr - 1;
6168 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6169 && spill_reg_order[regno] >= 0
6170 && reload_reg_free_p (regno, rld[r].opnum,
6171 rld[r].when_needed)))
6172 break;
6173 nr--;
6175 if (nr == 1)
6176 break;
6180 /* If we found something on the current pass, omit later passes. */
6181 if (count < n_spills)
6182 break;
6185 /* We should have found a spill register by now. */
6186 if (count >= n_spills)
6187 return 0;
6189 /* I is the index in SPILL_REG_RTX of the reload register we are to
6190 allocate. Get an rtx for it and find its register number. */
6192 return set_reload_reg (i, r);
6195 /* Initialize all the tables needed to allocate reload registers.
6196 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6197 is the array we use to restore the reg_rtx field for every reload. */
6199 static void
6200 choose_reload_regs_init (class insn_chain *chain, rtx *save_reload_reg_rtx)
6202 int i;
6204 for (i = 0; i < n_reloads; i++)
6205 rld[i].reg_rtx = save_reload_reg_rtx[i];
6207 memset (reload_inherited, 0, MAX_RELOADS);
6208 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6209 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6211 CLEAR_HARD_REG_SET (reload_reg_used);
6212 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6213 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6214 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6215 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6216 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6218 CLEAR_HARD_REG_SET (reg_used_in_insn);
6220 HARD_REG_SET tmp;
6221 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6222 reg_used_in_insn |= tmp;
6223 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6224 reg_used_in_insn |= tmp;
6225 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6226 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6229 for (i = 0; i < reload_n_operands; i++)
6231 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6232 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6233 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6234 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6235 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6236 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6239 reload_reg_unavailable = ~chain->used_spill_regs;
6241 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6243 for (i = 0; i < n_reloads; i++)
6244 /* If we have already decided to use a certain register,
6245 don't use it in another way. */
6246 if (rld[i].reg_rtx)
6247 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6248 rld[i].when_needed, rld[i].mode);
6251 /* If X is not a subreg, return it unmodified. If it is a subreg,
6252 look up whether we made a replacement for the SUBREG_REG. Return
6253 either the replacement or the SUBREG_REG. */
6255 static rtx
6256 replaced_subreg (rtx x)
6258 if (GET_CODE (x) == SUBREG)
6259 return find_replacement (&SUBREG_REG (x));
6260 return x;
6263 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6264 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6265 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6266 otherwise it is NULL. */
6268 static poly_int64
6269 compute_reload_subreg_offset (machine_mode outermode,
6270 rtx subreg,
6271 machine_mode innermode)
6273 poly_int64 outer_offset;
6274 machine_mode middlemode;
6276 if (!subreg)
6277 return subreg_lowpart_offset (outermode, innermode);
6279 outer_offset = SUBREG_BYTE (subreg);
6280 middlemode = GET_MODE (SUBREG_REG (subreg));
6282 /* If SUBREG is paradoxical then return the normal lowpart offset
6283 for OUTERMODE and INNERMODE. Our caller has already checked
6284 that OUTERMODE fits in INNERMODE. */
6285 if (paradoxical_subreg_p (outermode, middlemode))
6286 return subreg_lowpart_offset (outermode, innermode);
6288 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6289 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6290 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6293 /* Assign hard reg targets for the pseudo-registers we must reload
6294 into hard regs for this insn.
6295 Also output the instructions to copy them in and out of the hard regs.
6297 For machines with register classes, we are responsible for
6298 finding a reload reg in the proper class. */
6300 static void
6301 choose_reload_regs (class insn_chain *chain)
6303 rtx_insn *insn = chain->insn;
6304 int i, j;
6305 unsigned int max_group_size = 1;
6306 enum reg_class group_class = NO_REGS;
6307 int pass, win, inheritance;
6309 rtx save_reload_reg_rtx[MAX_RELOADS];
6311 /* In order to be certain of getting the registers we need,
6312 we must sort the reloads into order of increasing register class.
6313 Then our grabbing of reload registers will parallel the process
6314 that provided the reload registers.
6316 Also note whether any of the reloads wants a consecutive group of regs.
6317 If so, record the maximum size of the group desired and what
6318 register class contains all the groups needed by this insn. */
6320 for (j = 0; j < n_reloads; j++)
6322 reload_order[j] = j;
6323 if (rld[j].reg_rtx != NULL_RTX)
6325 gcc_assert (REG_P (rld[j].reg_rtx)
6326 && HARD_REGISTER_P (rld[j].reg_rtx));
6327 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6329 else
6330 reload_spill_index[j] = -1;
6332 if (rld[j].nregs > 1)
6334 max_group_size = MAX (rld[j].nregs, max_group_size);
6335 group_class
6336 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6339 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6342 if (n_reloads > 1)
6343 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6345 /* If -O, try first with inheritance, then turning it off.
6346 If not -O, don't do inheritance.
6347 Using inheritance when not optimizing leads to paradoxes
6348 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6349 because one side of the comparison might be inherited. */
6350 win = 0;
6351 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6353 choose_reload_regs_init (chain, save_reload_reg_rtx);
6355 /* Process the reloads in order of preference just found.
6356 Beyond this point, subregs can be found in reload_reg_rtx.
6358 This used to look for an existing reloaded home for all of the
6359 reloads, and only then perform any new reloads. But that could lose
6360 if the reloads were done out of reg-class order because a later
6361 reload with a looser constraint might have an old home in a register
6362 needed by an earlier reload with a tighter constraint.
6364 To solve this, we make two passes over the reloads, in the order
6365 described above. In the first pass we try to inherit a reload
6366 from a previous insn. If there is a later reload that needs a
6367 class that is a proper subset of the class being processed, we must
6368 also allocate a spill register during the first pass.
6370 Then make a second pass over the reloads to allocate any reloads
6371 that haven't been given registers yet. */
6373 for (j = 0; j < n_reloads; j++)
6375 int r = reload_order[j];
6376 rtx search_equiv = NULL_RTX;
6378 /* Ignore reloads that got marked inoperative. */
6379 if (rld[r].out == 0 && rld[r].in == 0
6380 && ! rld[r].secondary_p)
6381 continue;
6383 /* If find_reloads chose to use reload_in or reload_out as a reload
6384 register, we don't need to chose one. Otherwise, try even if it
6385 found one since we might save an insn if we find the value lying
6386 around.
6387 Try also when reload_in is a pseudo without a hard reg. */
6388 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6389 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6390 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6391 && !MEM_P (rld[r].in)
6392 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6393 continue;
6395 #if 0 /* No longer needed for correct operation.
6396 It might give better code, or might not; worth an experiment? */
6397 /* If this is an optional reload, we can't inherit from earlier insns
6398 until we are sure that any non-optional reloads have been allocated.
6399 The following code takes advantage of the fact that optional reloads
6400 are at the end of reload_order. */
6401 if (rld[r].optional != 0)
6402 for (i = 0; i < j; i++)
6403 if ((rld[reload_order[i]].out != 0
6404 || rld[reload_order[i]].in != 0
6405 || rld[reload_order[i]].secondary_p)
6406 && ! rld[reload_order[i]].optional
6407 && rld[reload_order[i]].reg_rtx == 0)
6408 allocate_reload_reg (chain, reload_order[i], 0);
6409 #endif
6411 /* First see if this pseudo is already available as reloaded
6412 for a previous insn. We cannot try to inherit for reloads
6413 that are smaller than the maximum number of registers needed
6414 for groups unless the register we would allocate cannot be used
6415 for the groups.
6417 We could check here to see if this is a secondary reload for
6418 an object that is already in a register of the desired class.
6419 This would avoid the need for the secondary reload register.
6420 But this is complex because we can't easily determine what
6421 objects might want to be loaded via this reload. So let a
6422 register be allocated here. In `emit_reload_insns' we suppress
6423 one of the loads in the case described above. */
6425 if (inheritance)
6427 poly_int64 byte = 0;
6428 int regno = -1;
6429 machine_mode mode = VOIDmode;
6430 rtx subreg = NULL_RTX;
6432 if (rld[r].in == 0)
6434 else if (REG_P (rld[r].in))
6436 regno = REGNO (rld[r].in);
6437 mode = GET_MODE (rld[r].in);
6439 else if (REG_P (rld[r].in_reg))
6441 regno = REGNO (rld[r].in_reg);
6442 mode = GET_MODE (rld[r].in_reg);
6444 else if (GET_CODE (rld[r].in_reg) == SUBREG
6445 && REG_P (SUBREG_REG (rld[r].in_reg)))
6447 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6448 if (regno < FIRST_PSEUDO_REGISTER)
6449 regno = subreg_regno (rld[r].in_reg);
6450 else
6452 subreg = rld[r].in_reg;
6453 byte = SUBREG_BYTE (subreg);
6455 mode = GET_MODE (rld[r].in_reg);
6457 #if AUTO_INC_DEC
6458 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6459 && REG_P (XEXP (rld[r].in_reg, 0)))
6461 regno = REGNO (XEXP (rld[r].in_reg, 0));
6462 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6463 rld[r].out = rld[r].in;
6465 #endif
6466 #if 0
6467 /* This won't work, since REGNO can be a pseudo reg number.
6468 Also, it takes much more hair to keep track of all the things
6469 that can invalidate an inherited reload of part of a pseudoreg. */
6470 else if (GET_CODE (rld[r].in) == SUBREG
6471 && REG_P (SUBREG_REG (rld[r].in)))
6472 regno = subreg_regno (rld[r].in);
6473 #endif
6475 if (regno >= 0
6476 && reg_last_reload_reg[regno] != 0
6477 && (known_ge
6478 (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno])),
6479 GET_MODE_SIZE (mode) + byte))
6480 /* Verify that the register it's in can be used in
6481 mode MODE. */
6482 && (REG_CAN_CHANGE_MODE_P
6483 (REGNO (reg_last_reload_reg[regno]),
6484 GET_MODE (reg_last_reload_reg[regno]),
6485 mode)))
6487 enum reg_class rclass = rld[r].rclass, last_class;
6488 rtx last_reg = reg_last_reload_reg[regno];
6490 i = REGNO (last_reg);
6491 byte = compute_reload_subreg_offset (mode,
6492 subreg,
6493 GET_MODE (last_reg));
6494 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6495 last_class = REGNO_REG_CLASS (i);
6497 if (reg_reloaded_contents[i] == regno
6498 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6499 && targetm.hard_regno_mode_ok (i, rld[r].mode)
6500 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6501 /* Even if we can't use this register as a reload
6502 register, we might use it for reload_override_in,
6503 if copying it to the desired class is cheap
6504 enough. */
6505 || ((register_move_cost (mode, last_class, rclass)
6506 < memory_move_cost (mode, rclass, true))
6507 && (secondary_reload_class (1, rclass, mode,
6508 last_reg)
6509 == NO_REGS)
6510 && !(targetm.secondary_memory_needed
6511 (mode, last_class, rclass))))
6512 && (rld[r].nregs == max_group_size
6513 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6515 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6516 rld[r].when_needed, rld[r].in,
6517 const0_rtx, r, 1))
6519 /* If a group is needed, verify that all the subsequent
6520 registers still have their values intact. */
6521 int nr = hard_regno_nregs (i, rld[r].mode);
6522 int k;
6524 for (k = 1; k < nr; k++)
6525 if (reg_reloaded_contents[i + k] != regno
6526 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6527 break;
6529 if (k == nr)
6531 int i1;
6532 int bad_for_class;
6534 last_reg = (GET_MODE (last_reg) == mode
6535 ? last_reg : gen_rtx_REG (mode, i));
6537 bad_for_class = 0;
6538 for (k = 0; k < nr; k++)
6539 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6540 i+k);
6542 /* We found a register that contains the
6543 value we need. If this register is the
6544 same as an `earlyclobber' operand of the
6545 current insn, just mark it as a place to
6546 reload from since we can't use it as the
6547 reload register itself. */
6549 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6550 if (reg_overlap_mentioned_for_reload_p
6551 (reg_last_reload_reg[regno],
6552 reload_earlyclobbers[i1]))
6553 break;
6555 if (i1 != n_earlyclobbers
6556 || ! (free_for_value_p (i, rld[r].mode,
6557 rld[r].opnum,
6558 rld[r].when_needed, rld[r].in,
6559 rld[r].out, r, 1))
6560 /* Don't use it if we'd clobber a pseudo reg. */
6561 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6562 && rld[r].out
6563 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6564 /* Don't clobber the frame pointer. */
6565 || (i == HARD_FRAME_POINTER_REGNUM
6566 && frame_pointer_needed
6567 && rld[r].out)
6568 /* Don't really use the inherited spill reg
6569 if we need it wider than we've got it. */
6570 || paradoxical_subreg_p (rld[r].mode, mode)
6571 || bad_for_class
6573 /* If find_reloads chose reload_out as reload
6574 register, stay with it - that leaves the
6575 inherited register for subsequent reloads. */
6576 || (rld[r].out && rld[r].reg_rtx
6577 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6579 if (! rld[r].optional)
6581 reload_override_in[r] = last_reg;
6582 reload_inheritance_insn[r]
6583 = reg_reloaded_insn[i];
6586 else
6588 int k;
6589 /* We can use this as a reload reg. */
6590 /* Mark the register as in use for this part of
6591 the insn. */
6592 mark_reload_reg_in_use (i,
6593 rld[r].opnum,
6594 rld[r].when_needed,
6595 rld[r].mode);
6596 rld[r].reg_rtx = last_reg;
6597 reload_inherited[r] = 1;
6598 reload_inheritance_insn[r]
6599 = reg_reloaded_insn[i];
6600 reload_spill_index[r] = i;
6601 for (k = 0; k < nr; k++)
6602 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6603 i + k);
6610 /* Here's another way to see if the value is already lying around. */
6611 if (inheritance
6612 && rld[r].in != 0
6613 && ! reload_inherited[r]
6614 && rld[r].out == 0
6615 && (CONSTANT_P (rld[r].in)
6616 || GET_CODE (rld[r].in) == PLUS
6617 || REG_P (rld[r].in)
6618 || MEM_P (rld[r].in))
6619 && (rld[r].nregs == max_group_size
6620 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6621 search_equiv = rld[r].in;
6623 if (search_equiv)
6625 rtx equiv
6626 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6627 -1, NULL, 0, rld[r].mode);
6628 int regno = 0;
6630 if (equiv != 0)
6632 if (REG_P (equiv))
6633 regno = REGNO (equiv);
6634 else
6636 /* This must be a SUBREG of a hard register.
6637 Make a new REG since this might be used in an
6638 address and not all machines support SUBREGs
6639 there. */
6640 gcc_assert (GET_CODE (equiv) == SUBREG);
6641 regno = subreg_regno (equiv);
6642 equiv = gen_rtx_REG (rld[r].mode, regno);
6643 /* If we choose EQUIV as the reload register, but the
6644 loop below decides to cancel the inheritance, we'll
6645 end up reloading EQUIV in rld[r].mode, not the mode
6646 it had originally. That isn't safe when EQUIV isn't
6647 available as a spill register since its value might
6648 still be live at this point. */
6649 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6650 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6651 equiv = 0;
6655 /* If we found a spill reg, reject it unless it is free
6656 and of the desired class. */
6657 if (equiv != 0)
6659 int regs_used = 0;
6660 int bad_for_class = 0;
6661 int max_regno = regno + rld[r].nregs;
6663 for (i = regno; i < max_regno; i++)
6665 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6667 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6671 if ((regs_used
6672 && ! free_for_value_p (regno, rld[r].mode,
6673 rld[r].opnum, rld[r].when_needed,
6674 rld[r].in, rld[r].out, r, 1))
6675 || bad_for_class)
6676 equiv = 0;
6679 if (equiv != 0
6680 && !targetm.hard_regno_mode_ok (regno, rld[r].mode))
6681 equiv = 0;
6683 /* We found a register that contains the value we need.
6684 If this register is the same as an `earlyclobber' operand
6685 of the current insn, just mark it as a place to reload from
6686 since we can't use it as the reload register itself. */
6688 if (equiv != 0)
6689 for (i = 0; i < n_earlyclobbers; i++)
6690 if (reg_overlap_mentioned_for_reload_p (equiv,
6691 reload_earlyclobbers[i]))
6693 if (! rld[r].optional)
6694 reload_override_in[r] = equiv;
6695 equiv = 0;
6696 break;
6699 /* If the equiv register we have found is explicitly clobbered
6700 in the current insn, it depends on the reload type if we
6701 can use it, use it for reload_override_in, or not at all.
6702 In particular, we then can't use EQUIV for a
6703 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6705 if (equiv != 0)
6707 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6708 switch (rld[r].when_needed)
6710 case RELOAD_FOR_OTHER_ADDRESS:
6711 case RELOAD_FOR_INPADDR_ADDRESS:
6712 case RELOAD_FOR_INPUT_ADDRESS:
6713 case RELOAD_FOR_OPADDR_ADDR:
6714 break;
6715 case RELOAD_OTHER:
6716 case RELOAD_FOR_INPUT:
6717 case RELOAD_FOR_OPERAND_ADDRESS:
6718 if (! rld[r].optional)
6719 reload_override_in[r] = equiv;
6720 /* Fall through. */
6721 default:
6722 equiv = 0;
6723 break;
6725 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6726 switch (rld[r].when_needed)
6728 case RELOAD_FOR_OTHER_ADDRESS:
6729 case RELOAD_FOR_INPADDR_ADDRESS:
6730 case RELOAD_FOR_INPUT_ADDRESS:
6731 case RELOAD_FOR_OPADDR_ADDR:
6732 case RELOAD_FOR_OPERAND_ADDRESS:
6733 case RELOAD_FOR_INPUT:
6734 break;
6735 case RELOAD_OTHER:
6736 if (! rld[r].optional)
6737 reload_override_in[r] = equiv;
6738 /* Fall through. */
6739 default:
6740 equiv = 0;
6741 break;
6745 /* If we found an equivalent reg, say no code need be generated
6746 to load it, and use it as our reload reg. */
6747 if (equiv != 0
6748 && (regno != HARD_FRAME_POINTER_REGNUM
6749 || !frame_pointer_needed))
6751 int nr = hard_regno_nregs (regno, rld[r].mode);
6752 int k;
6753 rld[r].reg_rtx = equiv;
6754 reload_spill_index[r] = regno;
6755 reload_inherited[r] = 1;
6757 /* If reg_reloaded_valid is not set for this register,
6758 there might be a stale spill_reg_store lying around.
6759 We must clear it, since otherwise emit_reload_insns
6760 might delete the store. */
6761 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6762 spill_reg_store[regno] = NULL;
6763 /* If any of the hard registers in EQUIV are spill
6764 registers, mark them as in use for this insn. */
6765 for (k = 0; k < nr; k++)
6767 i = spill_reg_order[regno + k];
6768 if (i >= 0)
6770 mark_reload_reg_in_use (regno, rld[r].opnum,
6771 rld[r].when_needed,
6772 rld[r].mode);
6773 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6774 regno + k);
6780 /* If we found a register to use already, or if this is an optional
6781 reload, we are done. */
6782 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6783 continue;
6785 #if 0
6786 /* No longer needed for correct operation. Might or might
6787 not give better code on the average. Want to experiment? */
6789 /* See if there is a later reload that has a class different from our
6790 class that intersects our class or that requires less register
6791 than our reload. If so, we must allocate a register to this
6792 reload now, since that reload might inherit a previous reload
6793 and take the only available register in our class. Don't do this
6794 for optional reloads since they will force all previous reloads
6795 to be allocated. Also don't do this for reloads that have been
6796 turned off. */
6798 for (i = j + 1; i < n_reloads; i++)
6800 int s = reload_order[i];
6802 if ((rld[s].in == 0 && rld[s].out == 0
6803 && ! rld[s].secondary_p)
6804 || rld[s].optional)
6805 continue;
6807 if ((rld[s].rclass != rld[r].rclass
6808 && reg_classes_intersect_p (rld[r].rclass,
6809 rld[s].rclass))
6810 || rld[s].nregs < rld[r].nregs)
6811 break;
6814 if (i == n_reloads)
6815 continue;
6817 allocate_reload_reg (chain, r, j == n_reloads - 1);
6818 #endif
6821 /* Now allocate reload registers for anything non-optional that
6822 didn't get one yet. */
6823 for (j = 0; j < n_reloads; j++)
6825 int r = reload_order[j];
6827 /* Ignore reloads that got marked inoperative. */
6828 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6829 continue;
6831 /* Skip reloads that already have a register allocated or are
6832 optional. */
6833 if (rld[r].reg_rtx != 0 || rld[r].optional)
6834 continue;
6836 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6837 break;
6840 /* If that loop got all the way, we have won. */
6841 if (j == n_reloads)
6843 win = 1;
6844 break;
6847 /* Loop around and try without any inheritance. */
6850 if (! win)
6852 /* First undo everything done by the failed attempt
6853 to allocate with inheritance. */
6854 choose_reload_regs_init (chain, save_reload_reg_rtx);
6856 /* Some sanity tests to verify that the reloads found in the first
6857 pass are identical to the ones we have now. */
6858 gcc_assert (chain->n_reloads == n_reloads);
6860 for (i = 0; i < n_reloads; i++)
6862 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6863 continue;
6864 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6865 for (j = 0; j < n_spills; j++)
6866 if (spill_regs[j] == chain->rld[i].regno)
6867 if (! set_reload_reg (j, i))
6868 failed_reload (chain->insn, i);
6872 /* If we thought we could inherit a reload, because it seemed that
6873 nothing else wanted the same reload register earlier in the insn,
6874 verify that assumption, now that all reloads have been assigned.
6875 Likewise for reloads where reload_override_in has been set. */
6877 /* If doing expensive optimizations, do one preliminary pass that doesn't
6878 cancel any inheritance, but removes reloads that have been needed only
6879 for reloads that we know can be inherited. */
6880 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6882 for (j = 0; j < n_reloads; j++)
6884 int r = reload_order[j];
6885 rtx check_reg;
6886 rtx tem;
6887 if (reload_inherited[r] && rld[r].reg_rtx)
6888 check_reg = rld[r].reg_rtx;
6889 else if (reload_override_in[r]
6890 && (REG_P (reload_override_in[r])
6891 || GET_CODE (reload_override_in[r]) == SUBREG))
6892 check_reg = reload_override_in[r];
6893 else
6894 continue;
6895 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6896 rld[r].opnum, rld[r].when_needed, rld[r].in,
6897 (reload_inherited[r]
6898 ? rld[r].out : const0_rtx),
6899 r, 1))
6901 if (pass)
6902 continue;
6903 reload_inherited[r] = 0;
6904 reload_override_in[r] = 0;
6906 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6907 reload_override_in, then we do not need its related
6908 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6909 likewise for other reload types.
6910 We handle this by removing a reload when its only replacement
6911 is mentioned in reload_in of the reload we are going to inherit.
6912 A special case are auto_inc expressions; even if the input is
6913 inherited, we still need the address for the output. We can
6914 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6915 If we succeeded removing some reload and we are doing a preliminary
6916 pass just to remove such reloads, make another pass, since the
6917 removal of one reload might allow us to inherit another one. */
6918 else if (rld[r].in
6919 && rld[r].out != rld[r].in
6920 && remove_address_replacements (rld[r].in))
6922 if (pass)
6923 pass = 2;
6925 /* If we needed a memory location for the reload, we also have to
6926 remove its related reloads. */
6927 else if (rld[r].in
6928 && rld[r].out != rld[r].in
6929 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
6930 && REGNO (tem) < FIRST_PSEUDO_REGISTER
6931 && (targetm.secondary_memory_needed
6932 (rld[r].inmode, REGNO_REG_CLASS (REGNO (tem)),
6933 rld[r].rclass))
6934 && remove_address_replacements
6935 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
6936 rld[r].when_needed)))
6938 if (pass)
6939 pass = 2;
6944 /* Now that reload_override_in is known valid,
6945 actually override reload_in. */
6946 for (j = 0; j < n_reloads; j++)
6947 if (reload_override_in[j])
6948 rld[j].in = reload_override_in[j];
6950 /* If this reload won't be done because it has been canceled or is
6951 optional and not inherited, clear reload_reg_rtx so other
6952 routines (such as subst_reloads) don't get confused. */
6953 for (j = 0; j < n_reloads; j++)
6954 if (rld[j].reg_rtx != 0
6955 && ((rld[j].optional && ! reload_inherited[j])
6956 || (rld[j].in == 0 && rld[j].out == 0
6957 && ! rld[j].secondary_p)))
6959 int regno = true_regnum (rld[j].reg_rtx);
6961 if (spill_reg_order[regno] >= 0)
6962 clear_reload_reg_in_use (regno, rld[j].opnum,
6963 rld[j].when_needed, rld[j].mode);
6964 rld[j].reg_rtx = 0;
6965 reload_spill_index[j] = -1;
6968 /* Record which pseudos and which spill regs have output reloads. */
6969 for (j = 0; j < n_reloads; j++)
6971 int r = reload_order[j];
6973 i = reload_spill_index[r];
6975 /* I is nonneg if this reload uses a register.
6976 If rld[r].reg_rtx is 0, this is an optional reload
6977 that we opted to ignore. */
6978 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6979 && rld[r].reg_rtx != 0)
6981 int nregno = REGNO (rld[r].out_reg);
6982 int nr = 1;
6984 if (nregno < FIRST_PSEUDO_REGISTER)
6985 nr = hard_regno_nregs (nregno, rld[r].mode);
6987 while (--nr >= 0)
6988 SET_REGNO_REG_SET (&reg_has_output_reload,
6989 nregno + nr);
6991 if (i >= 0)
6992 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
6994 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6995 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6996 || rld[r].when_needed == RELOAD_FOR_INSN);
7001 /* Deallocate the reload register for reload R. This is called from
7002 remove_address_replacements. */
7004 void
7005 deallocate_reload_reg (int r)
7007 int regno;
7009 if (! rld[r].reg_rtx)
7010 return;
7011 regno = true_regnum (rld[r].reg_rtx);
7012 rld[r].reg_rtx = 0;
7013 if (spill_reg_order[regno] >= 0)
7014 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7015 rld[r].mode);
7016 reload_spill_index[r] = -1;
7019 /* These arrays are filled by emit_reload_insns and its subroutines. */
7020 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7021 static rtx_insn *other_input_address_reload_insns = 0;
7022 static rtx_insn *other_input_reload_insns = 0;
7023 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7024 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7025 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7026 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7027 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7028 static rtx_insn *operand_reload_insns = 0;
7029 static rtx_insn *other_operand_reload_insns = 0;
7030 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7032 /* Values to be put in spill_reg_store are put here first. Instructions
7033 must only be placed here if the associated reload register reaches
7034 the end of the instruction's reload sequence. */
7035 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7036 static HARD_REG_SET reg_reloaded_died;
7038 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7039 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7040 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7041 adjusted register, and return true. Otherwise, return false. */
7042 static bool
7043 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7044 enum reg_class new_class,
7045 machine_mode new_mode)
7048 rtx reg;
7050 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7052 unsigned regno = REGNO (reg);
7054 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7055 continue;
7056 if (GET_MODE (reg) != new_mode)
7058 if (!targetm.hard_regno_mode_ok (regno, new_mode))
7059 continue;
7060 if (hard_regno_nregs (regno, new_mode) > REG_NREGS (reg))
7061 continue;
7062 reg = reload_adjust_reg_for_mode (reg, new_mode);
7064 *reload_reg = reg;
7065 return true;
7067 return false;
7070 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7071 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7072 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7073 adjusted register, and return true. Otherwise, return false. */
7074 static bool
7075 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7076 enum insn_code icode)
7079 enum reg_class new_class = scratch_reload_class (icode);
7080 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7082 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7083 new_class, new_mode);
7086 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7087 has the number J. OLD contains the value to be used as input. */
7089 static void
7090 emit_input_reload_insns (class insn_chain *chain, struct reload *rl,
7091 rtx old, int j)
7093 rtx_insn *insn = chain->insn;
7094 rtx reloadreg;
7095 rtx oldequiv_reg = 0;
7096 rtx oldequiv = 0;
7097 int special = 0;
7098 machine_mode mode;
7099 rtx_insn **where;
7101 /* delete_output_reload is only invoked properly if old contains
7102 the original pseudo register. Since this is replaced with a
7103 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7104 find the pseudo in RELOAD_IN_REG. This is also used to
7105 determine whether a secondary reload is needed. */
7106 if (reload_override_in[j]
7107 && (REG_P (rl->in_reg)
7108 || (GET_CODE (rl->in_reg) == SUBREG
7109 && REG_P (SUBREG_REG (rl->in_reg)))))
7111 oldequiv = old;
7112 old = rl->in_reg;
7114 if (oldequiv == 0)
7115 oldequiv = old;
7116 else if (REG_P (oldequiv))
7117 oldequiv_reg = oldequiv;
7118 else if (GET_CODE (oldequiv) == SUBREG)
7119 oldequiv_reg = SUBREG_REG (oldequiv);
7121 reloadreg = reload_reg_rtx_for_input[j];
7122 mode = GET_MODE (reloadreg);
7124 /* If we are reloading from a register that was recently stored in
7125 with an output-reload, see if we can prove there was
7126 actually no need to store the old value in it. */
7128 if (optimize && REG_P (oldequiv)
7129 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7130 && spill_reg_store[REGNO (oldequiv)]
7131 && REG_P (old)
7132 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7133 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7134 rl->out_reg)))
7135 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7137 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7138 OLDEQUIV. */
7140 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7141 oldequiv = SUBREG_REG (oldequiv);
7142 if (GET_MODE (oldequiv) != VOIDmode
7143 && mode != GET_MODE (oldequiv))
7144 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7146 /* Switch to the right place to emit the reload insns. */
7147 switch (rl->when_needed)
7149 case RELOAD_OTHER:
7150 where = &other_input_reload_insns;
7151 break;
7152 case RELOAD_FOR_INPUT:
7153 where = &input_reload_insns[rl->opnum];
7154 break;
7155 case RELOAD_FOR_INPUT_ADDRESS:
7156 where = &input_address_reload_insns[rl->opnum];
7157 break;
7158 case RELOAD_FOR_INPADDR_ADDRESS:
7159 where = &inpaddr_address_reload_insns[rl->opnum];
7160 break;
7161 case RELOAD_FOR_OUTPUT_ADDRESS:
7162 where = &output_address_reload_insns[rl->opnum];
7163 break;
7164 case RELOAD_FOR_OUTADDR_ADDRESS:
7165 where = &outaddr_address_reload_insns[rl->opnum];
7166 break;
7167 case RELOAD_FOR_OPERAND_ADDRESS:
7168 where = &operand_reload_insns;
7169 break;
7170 case RELOAD_FOR_OPADDR_ADDR:
7171 where = &other_operand_reload_insns;
7172 break;
7173 case RELOAD_FOR_OTHER_ADDRESS:
7174 where = &other_input_address_reload_insns;
7175 break;
7176 default:
7177 gcc_unreachable ();
7180 push_to_sequence (*where);
7182 /* Auto-increment addresses must be reloaded in a special way. */
7183 if (rl->out && ! rl->out_reg)
7185 /* We are not going to bother supporting the case where a
7186 incremented register can't be copied directly from
7187 OLDEQUIV since this seems highly unlikely. */
7188 gcc_assert (rl->secondary_in_reload < 0);
7190 if (reload_inherited[j])
7191 oldequiv = reloadreg;
7193 old = XEXP (rl->in_reg, 0);
7195 /* Prevent normal processing of this reload. */
7196 special = 1;
7197 /* Output a special code sequence for this case. */
7198 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7201 /* If we are reloading a pseudo-register that was set by the previous
7202 insn, see if we can get rid of that pseudo-register entirely
7203 by redirecting the previous insn into our reload register. */
7205 else if (optimize && REG_P (old)
7206 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7207 && dead_or_set_p (insn, old)
7208 /* This is unsafe if some other reload
7209 uses the same reg first. */
7210 && ! conflicts_with_override (reloadreg)
7211 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7212 rl->when_needed, old, rl->out, j, 0))
7214 rtx_insn *temp = PREV_INSN (insn);
7215 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7216 temp = PREV_INSN (temp);
7217 if (temp
7218 && NONJUMP_INSN_P (temp)
7219 && GET_CODE (PATTERN (temp)) == SET
7220 && SET_DEST (PATTERN (temp)) == old
7221 /* Make sure we can access insn_operand_constraint. */
7222 && asm_noperands (PATTERN (temp)) < 0
7223 /* This is unsafe if operand occurs more than once in current
7224 insn. Perhaps some occurrences aren't reloaded. */
7225 && count_occurrences (PATTERN (insn), old, 0) == 1)
7227 rtx old = SET_DEST (PATTERN (temp));
7228 /* Store into the reload register instead of the pseudo. */
7229 SET_DEST (PATTERN (temp)) = reloadreg;
7231 /* Verify that resulting insn is valid.
7233 Note that we have replaced the destination of TEMP with
7234 RELOADREG. If TEMP references RELOADREG within an
7235 autoincrement addressing mode, then the resulting insn
7236 is ill-formed and we must reject this optimization. */
7237 extract_insn (temp);
7238 if (constrain_operands (1, get_enabled_alternatives (temp))
7239 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7241 /* If the previous insn is an output reload, the source is
7242 a reload register, and its spill_reg_store entry will
7243 contain the previous destination. This is now
7244 invalid. */
7245 if (REG_P (SET_SRC (PATTERN (temp)))
7246 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7248 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7249 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7252 /* If these are the only uses of the pseudo reg,
7253 pretend for GDB it lives in the reload reg we used. */
7254 if (REG_N_DEATHS (REGNO (old)) == 1
7255 && REG_N_SETS (REGNO (old)) == 1)
7257 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7258 if (ira_conflicts_p)
7259 /* Inform IRA about the change. */
7260 ira_mark_allocation_change (REGNO (old));
7261 alter_reg (REGNO (old), -1, false);
7263 special = 1;
7265 /* Adjust any debug insns between temp and insn. */
7266 while ((temp = NEXT_INSN (temp)) != insn)
7267 if (DEBUG_BIND_INSN_P (temp))
7268 INSN_VAR_LOCATION_LOC (temp)
7269 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7270 old, reloadreg);
7271 else
7272 gcc_assert (DEBUG_INSN_P (temp) || NOTE_P (temp));
7274 else
7276 SET_DEST (PATTERN (temp)) = old;
7281 /* We can't do that, so output an insn to load RELOADREG. */
7283 /* If we have a secondary reload, pick up the secondary register
7284 and icode, if any. If OLDEQUIV and OLD are different or
7285 if this is an in-out reload, recompute whether or not we
7286 still need a secondary register and what the icode should
7287 be. If we still need a secondary register and the class or
7288 icode is different, go back to reloading from OLD if using
7289 OLDEQUIV means that we got the wrong type of register. We
7290 cannot have different class or icode due to an in-out reload
7291 because we don't make such reloads when both the input and
7292 output need secondary reload registers. */
7294 if (! special && rl->secondary_in_reload >= 0)
7296 rtx second_reload_reg = 0;
7297 rtx third_reload_reg = 0;
7298 int secondary_reload = rl->secondary_in_reload;
7299 rtx real_oldequiv = oldequiv;
7300 rtx real_old = old;
7301 rtx tmp;
7302 enum insn_code icode;
7303 enum insn_code tertiary_icode = CODE_FOR_nothing;
7305 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7306 and similarly for OLD.
7307 See comments in get_secondary_reload in reload.c. */
7308 /* If it is a pseudo that cannot be replaced with its
7309 equivalent MEM, we must fall back to reload_in, which
7310 will have all the necessary substitutions registered.
7311 Likewise for a pseudo that can't be replaced with its
7312 equivalent constant.
7314 Take extra care for subregs of such pseudos. Note that
7315 we cannot use reg_equiv_mem in this case because it is
7316 not in the right mode. */
7318 tmp = oldequiv;
7319 if (GET_CODE (tmp) == SUBREG)
7320 tmp = SUBREG_REG (tmp);
7321 if (REG_P (tmp)
7322 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7323 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7324 || reg_equiv_constant (REGNO (tmp)) != 0))
7326 if (! reg_equiv_mem (REGNO (tmp))
7327 || num_not_at_initial_offset
7328 || GET_CODE (oldequiv) == SUBREG)
7329 real_oldequiv = rl->in;
7330 else
7331 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7334 tmp = old;
7335 if (GET_CODE (tmp) == SUBREG)
7336 tmp = SUBREG_REG (tmp);
7337 if (REG_P (tmp)
7338 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7339 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7340 || reg_equiv_constant (REGNO (tmp)) != 0))
7342 if (! reg_equiv_mem (REGNO (tmp))
7343 || num_not_at_initial_offset
7344 || GET_CODE (old) == SUBREG)
7345 real_old = rl->in;
7346 else
7347 real_old = reg_equiv_mem (REGNO (tmp));
7350 second_reload_reg = rld[secondary_reload].reg_rtx;
7351 if (rld[secondary_reload].secondary_in_reload >= 0)
7353 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7355 third_reload_reg = rld[tertiary_reload].reg_rtx;
7356 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7357 /* We'd have to add more code for quartary reloads. */
7358 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7360 icode = rl->secondary_in_icode;
7362 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7363 || (rl->in != 0 && rl->out != 0))
7365 secondary_reload_info sri, sri2;
7366 enum reg_class new_class, new_t_class;
7368 sri.icode = CODE_FOR_nothing;
7369 sri.prev_sri = NULL;
7370 new_class
7371 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7372 rl->rclass, mode,
7373 &sri);
7375 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7376 second_reload_reg = 0;
7377 else if (new_class == NO_REGS)
7379 if (reload_adjust_reg_for_icode (&second_reload_reg,
7380 third_reload_reg,
7381 (enum insn_code) sri.icode))
7383 icode = (enum insn_code) sri.icode;
7384 third_reload_reg = 0;
7386 else
7388 oldequiv = old;
7389 real_oldequiv = real_old;
7392 else if (sri.icode != CODE_FOR_nothing)
7393 /* We currently lack a way to express this in reloads. */
7394 gcc_unreachable ();
7395 else
7397 sri2.icode = CODE_FOR_nothing;
7398 sri2.prev_sri = &sri;
7399 new_t_class
7400 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7401 new_class, mode,
7402 &sri);
7403 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7405 if (reload_adjust_reg_for_temp (&second_reload_reg,
7406 third_reload_reg,
7407 new_class, mode))
7409 third_reload_reg = 0;
7410 tertiary_icode = (enum insn_code) sri2.icode;
7412 else
7414 oldequiv = old;
7415 real_oldequiv = real_old;
7418 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7420 rtx intermediate = second_reload_reg;
7422 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7423 new_class, mode)
7424 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7425 ((enum insn_code)
7426 sri2.icode)))
7428 second_reload_reg = intermediate;
7429 tertiary_icode = (enum insn_code) sri2.icode;
7431 else
7433 oldequiv = old;
7434 real_oldequiv = real_old;
7437 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7439 rtx intermediate = second_reload_reg;
7441 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7442 new_class, mode)
7443 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7444 new_t_class, mode))
7446 second_reload_reg = intermediate;
7447 tertiary_icode = (enum insn_code) sri2.icode;
7449 else
7451 oldequiv = old;
7452 real_oldequiv = real_old;
7455 else
7457 /* This could be handled more intelligently too. */
7458 oldequiv = old;
7459 real_oldequiv = real_old;
7464 /* If we still need a secondary reload register, check
7465 to see if it is being used as a scratch or intermediate
7466 register and generate code appropriately. If we need
7467 a scratch register, use REAL_OLDEQUIV since the form of
7468 the insn may depend on the actual address if it is
7469 a MEM. */
7471 if (second_reload_reg)
7473 if (icode != CODE_FOR_nothing)
7475 /* We'd have to add extra code to handle this case. */
7476 gcc_assert (!third_reload_reg);
7478 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7479 second_reload_reg));
7480 special = 1;
7482 else
7484 /* See if we need a scratch register to load the
7485 intermediate register (a tertiary reload). */
7486 if (tertiary_icode != CODE_FOR_nothing)
7488 emit_insn ((GEN_FCN (tertiary_icode)
7489 (second_reload_reg, real_oldequiv,
7490 third_reload_reg)));
7492 else if (third_reload_reg)
7494 gen_reload (third_reload_reg, real_oldequiv,
7495 rl->opnum,
7496 rl->when_needed);
7497 gen_reload (second_reload_reg, third_reload_reg,
7498 rl->opnum,
7499 rl->when_needed);
7501 else
7502 gen_reload (second_reload_reg, real_oldequiv,
7503 rl->opnum,
7504 rl->when_needed);
7506 oldequiv = second_reload_reg;
7511 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7513 rtx real_oldequiv = oldequiv;
7515 if ((REG_P (oldequiv)
7516 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7517 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7518 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7519 || (GET_CODE (oldequiv) == SUBREG
7520 && REG_P (SUBREG_REG (oldequiv))
7521 && (REGNO (SUBREG_REG (oldequiv))
7522 >= FIRST_PSEUDO_REGISTER)
7523 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7524 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7525 || (CONSTANT_P (oldequiv)
7526 && (targetm.preferred_reload_class (oldequiv,
7527 REGNO_REG_CLASS (REGNO (reloadreg)))
7528 == NO_REGS)))
7529 real_oldequiv = rl->in;
7530 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7531 rl->when_needed);
7534 if (cfun->can_throw_non_call_exceptions)
7535 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7537 /* End this sequence. */
7538 *where = get_insns ();
7539 end_sequence ();
7541 /* Update reload_override_in so that delete_address_reloads_1
7542 can see the actual register usage. */
7543 if (oldequiv_reg)
7544 reload_override_in[j] = oldequiv;
7547 /* Generate insns to for the output reload RL, which is for the insn described
7548 by CHAIN and has the number J. */
7549 static void
7550 emit_output_reload_insns (class insn_chain *chain, struct reload *rl,
7551 int j)
7553 rtx reloadreg;
7554 rtx_insn *insn = chain->insn;
7555 int special = 0;
7556 rtx old = rl->out;
7557 machine_mode mode;
7558 rtx_insn *p;
7559 rtx rl_reg_rtx;
7561 if (rl->when_needed == RELOAD_OTHER)
7562 start_sequence ();
7563 else
7564 push_to_sequence (output_reload_insns[rl->opnum]);
7566 rl_reg_rtx = reload_reg_rtx_for_output[j];
7567 mode = GET_MODE (rl_reg_rtx);
7569 reloadreg = rl_reg_rtx;
7571 /* If we need two reload regs, set RELOADREG to the intermediate
7572 one, since it will be stored into OLD. We might need a secondary
7573 register only for an input reload, so check again here. */
7575 if (rl->secondary_out_reload >= 0)
7577 rtx real_old = old;
7578 int secondary_reload = rl->secondary_out_reload;
7579 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7581 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7582 && reg_equiv_mem (REGNO (old)) != 0)
7583 real_old = reg_equiv_mem (REGNO (old));
7585 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7587 rtx second_reloadreg = reloadreg;
7588 reloadreg = rld[secondary_reload].reg_rtx;
7590 /* See if RELOADREG is to be used as a scratch register
7591 or as an intermediate register. */
7592 if (rl->secondary_out_icode != CODE_FOR_nothing)
7594 /* We'd have to add extra code to handle this case. */
7595 gcc_assert (tertiary_reload < 0);
7597 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7598 (real_old, second_reloadreg, reloadreg)));
7599 special = 1;
7601 else
7603 /* See if we need both a scratch and intermediate reload
7604 register. */
7606 enum insn_code tertiary_icode
7607 = rld[secondary_reload].secondary_out_icode;
7609 /* We'd have to add more code for quartary reloads. */
7610 gcc_assert (tertiary_reload < 0
7611 || rld[tertiary_reload].secondary_out_reload < 0);
7613 if (GET_MODE (reloadreg) != mode)
7614 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7616 if (tertiary_icode != CODE_FOR_nothing)
7618 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7620 /* Copy primary reload reg to secondary reload reg.
7621 (Note that these have been swapped above, then
7622 secondary reload reg to OLD using our insn.) */
7624 /* If REAL_OLD is a paradoxical SUBREG, remove it
7625 and try to put the opposite SUBREG on
7626 RELOADREG. */
7627 strip_paradoxical_subreg (&real_old, &reloadreg);
7629 gen_reload (reloadreg, second_reloadreg,
7630 rl->opnum, rl->when_needed);
7631 emit_insn ((GEN_FCN (tertiary_icode)
7632 (real_old, reloadreg, third_reloadreg)));
7633 special = 1;
7636 else
7638 /* Copy between the reload regs here and then to
7639 OUT later. */
7641 gen_reload (reloadreg, second_reloadreg,
7642 rl->opnum, rl->when_needed);
7643 if (tertiary_reload >= 0)
7645 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7647 gen_reload (third_reloadreg, reloadreg,
7648 rl->opnum, rl->when_needed);
7649 reloadreg = third_reloadreg;
7656 /* Output the last reload insn. */
7657 if (! special)
7659 rtx set;
7661 /* Don't output the last reload if OLD is not the dest of
7662 INSN and is in the src and is clobbered by INSN. */
7663 if (! flag_expensive_optimizations
7664 || !REG_P (old)
7665 || !(set = single_set (insn))
7666 || rtx_equal_p (old, SET_DEST (set))
7667 || !reg_mentioned_p (old, SET_SRC (set))
7668 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7669 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7670 gen_reload (old, reloadreg, rl->opnum,
7671 rl->when_needed);
7674 /* Look at all insns we emitted, just to be safe. */
7675 for (p = get_insns (); p; p = NEXT_INSN (p))
7676 if (INSN_P (p))
7678 rtx pat = PATTERN (p);
7680 /* If this output reload doesn't come from a spill reg,
7681 clear any memory of reloaded copies of the pseudo reg.
7682 If this output reload comes from a spill reg,
7683 reg_has_output_reload will make this do nothing. */
7684 note_stores (p, forget_old_reloads_1, NULL);
7686 if (reg_mentioned_p (rl_reg_rtx, pat))
7688 rtx set = single_set (insn);
7689 if (reload_spill_index[j] < 0
7690 && set
7691 && SET_SRC (set) == rl_reg_rtx)
7693 int src = REGNO (SET_SRC (set));
7695 reload_spill_index[j] = src;
7696 SET_HARD_REG_BIT (reg_is_output_reload, src);
7697 if (find_regno_note (insn, REG_DEAD, src))
7698 SET_HARD_REG_BIT (reg_reloaded_died, src);
7700 if (HARD_REGISTER_P (rl_reg_rtx))
7702 int s = rl->secondary_out_reload;
7703 set = single_set (p);
7704 /* If this reload copies only to the secondary reload
7705 register, the secondary reload does the actual
7706 store. */
7707 if (s >= 0 && set == NULL_RTX)
7708 /* We can't tell what function the secondary reload
7709 has and where the actual store to the pseudo is
7710 made; leave new_spill_reg_store alone. */
7712 else if (s >= 0
7713 && SET_SRC (set) == rl_reg_rtx
7714 && SET_DEST (set) == rld[s].reg_rtx)
7716 /* Usually the next instruction will be the
7717 secondary reload insn; if we can confirm
7718 that it is, setting new_spill_reg_store to
7719 that insn will allow an extra optimization. */
7720 rtx s_reg = rld[s].reg_rtx;
7721 rtx_insn *next = NEXT_INSN (p);
7722 rld[s].out = rl->out;
7723 rld[s].out_reg = rl->out_reg;
7724 set = single_set (next);
7725 if (set && SET_SRC (set) == s_reg
7726 && reload_reg_rtx_reaches_end_p (s_reg, s))
7728 SET_HARD_REG_BIT (reg_is_output_reload,
7729 REGNO (s_reg));
7730 new_spill_reg_store[REGNO (s_reg)] = next;
7733 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7734 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7739 if (rl->when_needed == RELOAD_OTHER)
7741 emit_insn (other_output_reload_insns[rl->opnum]);
7742 other_output_reload_insns[rl->opnum] = get_insns ();
7744 else
7745 output_reload_insns[rl->opnum] = get_insns ();
7747 if (cfun->can_throw_non_call_exceptions)
7748 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7750 end_sequence ();
7753 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7754 and has the number J. */
7755 static void
7756 do_input_reload (class insn_chain *chain, struct reload *rl, int j)
7758 rtx_insn *insn = chain->insn;
7759 rtx old = (rl->in && MEM_P (rl->in)
7760 ? rl->in_reg : rl->in);
7761 rtx reg_rtx = rl->reg_rtx;
7763 if (old && reg_rtx)
7765 machine_mode mode;
7767 /* Determine the mode to reload in.
7768 This is very tricky because we have three to choose from.
7769 There is the mode the insn operand wants (rl->inmode).
7770 There is the mode of the reload register RELOADREG.
7771 There is the intrinsic mode of the operand, which we could find
7772 by stripping some SUBREGs.
7773 It turns out that RELOADREG's mode is irrelevant:
7774 we can change that arbitrarily.
7776 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7777 then the reload reg may not support QImode moves, so use SImode.
7778 If foo is in memory due to spilling a pseudo reg, this is safe,
7779 because the QImode value is in the least significant part of a
7780 slot big enough for a SImode. If foo is some other sort of
7781 memory reference, then it is impossible to reload this case,
7782 so previous passes had better make sure this never happens.
7784 Then consider a one-word union which has SImode and one of its
7785 members is a float, being fetched as (SUBREG:SF union:SI).
7786 We must fetch that as SFmode because we could be loading into
7787 a float-only register. In this case OLD's mode is correct.
7789 Consider an immediate integer: it has VOIDmode. Here we need
7790 to get a mode from something else.
7792 In some cases, there is a fourth mode, the operand's
7793 containing mode. If the insn specifies a containing mode for
7794 this operand, it overrides all others.
7796 I am not sure whether the algorithm here is always right,
7797 but it does the right things in those cases. */
7799 mode = GET_MODE (old);
7800 if (mode == VOIDmode)
7801 mode = rl->inmode;
7803 /* We cannot use gen_lowpart_common since it can do the wrong thing
7804 when REG_RTX has a multi-word mode. Note that REG_RTX must
7805 always be a REG here. */
7806 if (GET_MODE (reg_rtx) != mode)
7807 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7809 reload_reg_rtx_for_input[j] = reg_rtx;
7811 if (old != 0
7812 /* AUTO_INC reloads need to be handled even if inherited. We got an
7813 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7814 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7815 && ! rtx_equal_p (reg_rtx, old)
7816 && reg_rtx != 0)
7817 emit_input_reload_insns (chain, rld + j, old, j);
7819 /* When inheriting a wider reload, we have a MEM in rl->in,
7820 e.g. inheriting a SImode output reload for
7821 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7822 if (optimize && reload_inherited[j] && rl->in
7823 && MEM_P (rl->in)
7824 && MEM_P (rl->in_reg)
7825 && reload_spill_index[j] >= 0
7826 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7827 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7829 /* If we are reloading a register that was recently stored in with an
7830 output-reload, see if we can prove there was
7831 actually no need to store the old value in it. */
7833 if (optimize
7834 && (reload_inherited[j] || reload_override_in[j])
7835 && reg_rtx
7836 && REG_P (reg_rtx)
7837 && spill_reg_store[REGNO (reg_rtx)] != 0
7838 #if 0
7839 /* There doesn't seem to be any reason to restrict this to pseudos
7840 and doing so loses in the case where we are copying from a
7841 register of the wrong class. */
7842 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7843 #endif
7844 /* The insn might have already some references to stackslots
7845 replaced by MEMs, while reload_out_reg still names the
7846 original pseudo. */
7847 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7848 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7849 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7852 /* Do output reloading for reload RL, which is for the insn described by
7853 CHAIN and has the number J.
7854 ??? At some point we need to support handling output reloads of
7855 JUMP_INSNs or insns that set cc0. */
7856 static void
7857 do_output_reload (class insn_chain *chain, struct reload *rl, int j)
7859 rtx note, old;
7860 rtx_insn *insn = chain->insn;
7861 /* If this is an output reload that stores something that is
7862 not loaded in this same reload, see if we can eliminate a previous
7863 store. */
7864 rtx pseudo = rl->out_reg;
7865 rtx reg_rtx = rl->reg_rtx;
7867 if (rl->out && reg_rtx)
7869 machine_mode mode;
7871 /* Determine the mode to reload in.
7872 See comments above (for input reloading). */
7873 mode = GET_MODE (rl->out);
7874 if (mode == VOIDmode)
7876 /* VOIDmode should never happen for an output. */
7877 if (asm_noperands (PATTERN (insn)) < 0)
7878 /* It's the compiler's fault. */
7879 fatal_insn ("VOIDmode on an output", insn);
7880 error_for_asm (insn, "output operand is constant in %<asm%>");
7881 /* Prevent crash--use something we know is valid. */
7882 mode = word_mode;
7883 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7885 if (GET_MODE (reg_rtx) != mode)
7886 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7888 reload_reg_rtx_for_output[j] = reg_rtx;
7890 if (pseudo
7891 && optimize
7892 && REG_P (pseudo)
7893 && ! rtx_equal_p (rl->in_reg, pseudo)
7894 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7895 && reg_last_reload_reg[REGNO (pseudo)])
7897 int pseudo_no = REGNO (pseudo);
7898 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7900 /* We don't need to test full validity of last_regno for
7901 inherit here; we only want to know if the store actually
7902 matches the pseudo. */
7903 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7904 && reg_reloaded_contents[last_regno] == pseudo_no
7905 && spill_reg_store[last_regno]
7906 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7907 delete_output_reload (insn, j, last_regno, reg_rtx);
7910 old = rl->out_reg;
7911 if (old == 0
7912 || reg_rtx == 0
7913 || rtx_equal_p (old, reg_rtx))
7914 return;
7916 /* An output operand that dies right away does need a reload,
7917 but need not be copied from it. Show the new location in the
7918 REG_UNUSED note. */
7919 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7920 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7922 XEXP (note, 0) = reg_rtx;
7923 return;
7925 /* Likewise for a SUBREG of an operand that dies. */
7926 else if (GET_CODE (old) == SUBREG
7927 && REG_P (SUBREG_REG (old))
7928 && (note = find_reg_note (insn, REG_UNUSED,
7929 SUBREG_REG (old))) != 0)
7931 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7932 return;
7934 else if (GET_CODE (old) == SCRATCH)
7935 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7936 but we don't want to make an output reload. */
7937 return;
7939 /* If is a JUMP_INSN, we can't support output reloads yet. */
7940 gcc_assert (NONJUMP_INSN_P (insn));
7942 emit_output_reload_insns (chain, rld + j, j);
7945 /* A reload copies values of MODE from register SRC to register DEST.
7946 Return true if it can be treated for inheritance purposes like a
7947 group of reloads, each one reloading a single hard register. The
7948 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7949 occupy the same number of hard registers. */
7951 static bool
7952 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7953 int src ATTRIBUTE_UNUSED,
7954 machine_mode mode ATTRIBUTE_UNUSED)
7956 return (REG_CAN_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7957 && REG_CAN_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7960 /* Output insns to reload values in and out of the chosen reload regs. */
7962 static void
7963 emit_reload_insns (class insn_chain *chain)
7965 rtx_insn *insn = chain->insn;
7967 int j;
7969 CLEAR_HARD_REG_SET (reg_reloaded_died);
7971 for (j = 0; j < reload_n_operands; j++)
7972 input_reload_insns[j] = input_address_reload_insns[j]
7973 = inpaddr_address_reload_insns[j]
7974 = output_reload_insns[j] = output_address_reload_insns[j]
7975 = outaddr_address_reload_insns[j]
7976 = other_output_reload_insns[j] = 0;
7977 other_input_address_reload_insns = 0;
7978 other_input_reload_insns = 0;
7979 operand_reload_insns = 0;
7980 other_operand_reload_insns = 0;
7982 /* Dump reloads into the dump file. */
7983 if (dump_file)
7985 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7986 debug_reload_to_stream (dump_file);
7989 for (j = 0; j < n_reloads; j++)
7990 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
7992 unsigned int i;
7994 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
7995 new_spill_reg_store[i] = 0;
7998 /* Now output the instructions to copy the data into and out of the
7999 reload registers. Do these in the order that the reloads were reported,
8000 since reloads of base and index registers precede reloads of operands
8001 and the operands may need the base and index registers reloaded. */
8003 for (j = 0; j < n_reloads; j++)
8005 do_input_reload (chain, rld + j, j);
8006 do_output_reload (chain, rld + j, j);
8009 /* Now write all the insns we made for reloads in the order expected by
8010 the allocation functions. Prior to the insn being reloaded, we write
8011 the following reloads:
8013 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8015 RELOAD_OTHER reloads.
8017 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8018 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8019 RELOAD_FOR_INPUT reload for the operand.
8021 RELOAD_FOR_OPADDR_ADDRS reloads.
8023 RELOAD_FOR_OPERAND_ADDRESS reloads.
8025 After the insn being reloaded, we write the following:
8027 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8028 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8029 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8030 reloads for the operand. The RELOAD_OTHER output reloads are
8031 output in descending order by reload number. */
8033 emit_insn_before (other_input_address_reload_insns, insn);
8034 emit_insn_before (other_input_reload_insns, insn);
8036 for (j = 0; j < reload_n_operands; j++)
8038 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8039 emit_insn_before (input_address_reload_insns[j], insn);
8040 emit_insn_before (input_reload_insns[j], insn);
8043 emit_insn_before (other_operand_reload_insns, insn);
8044 emit_insn_before (operand_reload_insns, insn);
8046 for (j = 0; j < reload_n_operands; j++)
8048 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8049 x = emit_insn_after (output_address_reload_insns[j], x);
8050 x = emit_insn_after (output_reload_insns[j], x);
8051 emit_insn_after (other_output_reload_insns[j], x);
8054 /* For all the spill regs newly reloaded in this instruction,
8055 record what they were reloaded from, so subsequent instructions
8056 can inherit the reloads.
8058 Update spill_reg_store for the reloads of this insn.
8059 Copy the elements that were updated in the loop above. */
8061 for (j = 0; j < n_reloads; j++)
8063 int r = reload_order[j];
8064 int i = reload_spill_index[r];
8066 /* If this is a non-inherited input reload from a pseudo, we must
8067 clear any memory of a previous store to the same pseudo. Only do
8068 something if there will not be an output reload for the pseudo
8069 being reloaded. */
8070 if (rld[r].in_reg != 0
8071 && ! (reload_inherited[r] || reload_override_in[r]))
8073 rtx reg = rld[r].in_reg;
8075 if (GET_CODE (reg) == SUBREG)
8076 reg = SUBREG_REG (reg);
8078 if (REG_P (reg)
8079 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8080 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8082 int nregno = REGNO (reg);
8084 if (reg_last_reload_reg[nregno])
8086 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8088 if (reg_reloaded_contents[last_regno] == nregno)
8089 spill_reg_store[last_regno] = 0;
8094 /* I is nonneg if this reload used a register.
8095 If rld[r].reg_rtx is 0, this is an optional reload
8096 that we opted to ignore. */
8098 if (i >= 0 && rld[r].reg_rtx != 0)
8100 int nr = hard_regno_nregs (i, GET_MODE (rld[r].reg_rtx));
8101 int k;
8103 /* For a multi register reload, we need to check if all or part
8104 of the value lives to the end. */
8105 for (k = 0; k < nr; k++)
8106 if (reload_reg_reaches_end_p (i + k, r))
8107 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8109 /* Maybe the spill reg contains a copy of reload_out. */
8110 if (rld[r].out != 0
8111 && (REG_P (rld[r].out)
8112 || (rld[r].out_reg
8113 ? REG_P (rld[r].out_reg)
8114 /* The reload value is an auto-modification of
8115 some kind. For PRE_INC, POST_INC, PRE_DEC
8116 and POST_DEC, we record an equivalence
8117 between the reload register and the operand
8118 on the optimistic assumption that we can make
8119 the equivalence hold. reload_as_needed must
8120 then either make it hold or invalidate the
8121 equivalence.
8123 PRE_MODIFY and POST_MODIFY addresses are reloaded
8124 somewhat differently, and allowing them here leads
8125 to problems. */
8126 : (GET_CODE (rld[r].out) != POST_MODIFY
8127 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8129 rtx reg;
8131 reg = reload_reg_rtx_for_output[r];
8132 if (reload_reg_rtx_reaches_end_p (reg, r))
8134 machine_mode mode = GET_MODE (reg);
8135 int regno = REGNO (reg);
8136 int nregs = REG_NREGS (reg);
8137 rtx out = (REG_P (rld[r].out)
8138 ? rld[r].out
8139 : rld[r].out_reg
8140 ? rld[r].out_reg
8141 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8142 int out_regno = REGNO (out);
8143 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8144 : hard_regno_nregs (out_regno, mode));
8145 bool piecemeal;
8147 spill_reg_store[regno] = new_spill_reg_store[regno];
8148 spill_reg_stored_to[regno] = out;
8149 reg_last_reload_reg[out_regno] = reg;
8151 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8152 && nregs == out_nregs
8153 && inherit_piecemeal_p (out_regno, regno, mode));
8155 /* If OUT_REGNO is a hard register, it may occupy more than
8156 one register. If it does, say what is in the
8157 rest of the registers assuming that both registers
8158 agree on how many words the object takes. If not,
8159 invalidate the subsequent registers. */
8161 if (HARD_REGISTER_NUM_P (out_regno))
8162 for (k = 1; k < out_nregs; k++)
8163 reg_last_reload_reg[out_regno + k]
8164 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8166 /* Now do the inverse operation. */
8167 for (k = 0; k < nregs; k++)
8169 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8170 reg_reloaded_contents[regno + k]
8171 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8172 ? out_regno
8173 : out_regno + k);
8174 reg_reloaded_insn[regno + k] = insn;
8175 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8179 /* Maybe the spill reg contains a copy of reload_in. Only do
8180 something if there will not be an output reload for
8181 the register being reloaded. */
8182 else if (rld[r].out_reg == 0
8183 && rld[r].in != 0
8184 && ((REG_P (rld[r].in)
8185 && !HARD_REGISTER_P (rld[r].in)
8186 && !REGNO_REG_SET_P (&reg_has_output_reload,
8187 REGNO (rld[r].in)))
8188 || (REG_P (rld[r].in_reg)
8189 && !REGNO_REG_SET_P (&reg_has_output_reload,
8190 REGNO (rld[r].in_reg))))
8191 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8193 rtx reg;
8195 reg = reload_reg_rtx_for_input[r];
8196 if (reload_reg_rtx_reaches_end_p (reg, r))
8198 machine_mode mode;
8199 int regno;
8200 int nregs;
8201 int in_regno;
8202 int in_nregs;
8203 rtx in;
8204 bool piecemeal;
8206 mode = GET_MODE (reg);
8207 regno = REGNO (reg);
8208 nregs = REG_NREGS (reg);
8209 if (REG_P (rld[r].in)
8210 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8211 in = rld[r].in;
8212 else if (REG_P (rld[r].in_reg))
8213 in = rld[r].in_reg;
8214 else
8215 in = XEXP (rld[r].in_reg, 0);
8216 in_regno = REGNO (in);
8218 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8219 : hard_regno_nregs (in_regno, mode));
8221 reg_last_reload_reg[in_regno] = reg;
8223 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8224 && nregs == in_nregs
8225 && inherit_piecemeal_p (regno, in_regno, mode));
8227 if (HARD_REGISTER_NUM_P (in_regno))
8228 for (k = 1; k < in_nregs; k++)
8229 reg_last_reload_reg[in_regno + k]
8230 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8232 /* Unless we inherited this reload, show we haven't
8233 recently done a store.
8234 Previous stores of inherited auto_inc expressions
8235 also have to be discarded. */
8236 if (! reload_inherited[r]
8237 || (rld[r].out && ! rld[r].out_reg))
8238 spill_reg_store[regno] = 0;
8240 for (k = 0; k < nregs; k++)
8242 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8243 reg_reloaded_contents[regno + k]
8244 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8245 ? in_regno
8246 : in_regno + k);
8247 reg_reloaded_insn[regno + k] = insn;
8248 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8254 /* The following if-statement was #if 0'd in 1.34 (or before...).
8255 It's reenabled in 1.35 because supposedly nothing else
8256 deals with this problem. */
8258 /* If a register gets output-reloaded from a non-spill register,
8259 that invalidates any previous reloaded copy of it.
8260 But forget_old_reloads_1 won't get to see it, because
8261 it thinks only about the original insn. So invalidate it here.
8262 Also do the same thing for RELOAD_OTHER constraints where the
8263 output is discarded. */
8264 if (i < 0
8265 && ((rld[r].out != 0
8266 && (REG_P (rld[r].out)
8267 || (MEM_P (rld[r].out)
8268 && REG_P (rld[r].out_reg))))
8269 || (rld[r].out == 0 && rld[r].out_reg
8270 && REG_P (rld[r].out_reg))))
8272 rtx out = ((rld[r].out && REG_P (rld[r].out))
8273 ? rld[r].out : rld[r].out_reg);
8274 int out_regno = REGNO (out);
8275 machine_mode mode = GET_MODE (out);
8277 /* REG_RTX is now set or clobbered by the main instruction.
8278 As the comment above explains, forget_old_reloads_1 only
8279 sees the original instruction, and there is no guarantee
8280 that the original instruction also clobbered REG_RTX.
8281 For example, if find_reloads sees that the input side of
8282 a matched operand pair dies in this instruction, it may
8283 use the input register as the reload register.
8285 Calling forget_old_reloads_1 is a waste of effort if
8286 REG_RTX is also the output register.
8288 If we know that REG_RTX holds the value of a pseudo
8289 register, the code after the call will record that fact. */
8290 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8291 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8293 if (!HARD_REGISTER_NUM_P (out_regno))
8295 rtx src_reg;
8296 rtx_insn *store_insn = NULL;
8298 reg_last_reload_reg[out_regno] = 0;
8300 /* If we can find a hard register that is stored, record
8301 the storing insn so that we may delete this insn with
8302 delete_output_reload. */
8303 src_reg = reload_reg_rtx_for_output[r];
8305 if (src_reg)
8307 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8308 store_insn = new_spill_reg_store[REGNO (src_reg)];
8309 else
8310 src_reg = NULL_RTX;
8312 else
8314 /* If this is an optional reload, try to find the
8315 source reg from an input reload. */
8316 rtx set = single_set (insn);
8317 if (set && SET_DEST (set) == rld[r].out)
8319 int k;
8321 src_reg = SET_SRC (set);
8322 store_insn = insn;
8323 for (k = 0; k < n_reloads; k++)
8325 if (rld[k].in == src_reg)
8327 src_reg = reload_reg_rtx_for_input[k];
8328 break;
8333 if (src_reg && REG_P (src_reg)
8334 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8336 int src_regno, src_nregs, k;
8337 rtx note;
8339 gcc_assert (GET_MODE (src_reg) == mode);
8340 src_regno = REGNO (src_reg);
8341 src_nregs = hard_regno_nregs (src_regno, mode);
8342 /* The place where to find a death note varies with
8343 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8344 necessarily checked exactly in the code that moves
8345 notes, so just check both locations. */
8346 note = find_regno_note (insn, REG_DEAD, src_regno);
8347 if (! note && store_insn)
8348 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8349 for (k = 0; k < src_nregs; k++)
8351 spill_reg_store[src_regno + k] = store_insn;
8352 spill_reg_stored_to[src_regno + k] = out;
8353 reg_reloaded_contents[src_regno + k] = out_regno;
8354 reg_reloaded_insn[src_regno + k] = store_insn;
8355 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8356 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8357 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8358 if (note)
8359 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8360 else
8361 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8363 reg_last_reload_reg[out_regno] = src_reg;
8364 /* We have to set reg_has_output_reload here, or else
8365 forget_old_reloads_1 will clear reg_last_reload_reg
8366 right away. */
8367 SET_REGNO_REG_SET (&reg_has_output_reload,
8368 out_regno);
8371 else
8373 int k, out_nregs = hard_regno_nregs (out_regno, mode);
8375 for (k = 0; k < out_nregs; k++)
8376 reg_last_reload_reg[out_regno + k] = 0;
8380 reg_reloaded_dead |= reg_reloaded_died;
8383 /* Go through the motions to emit INSN and test if it is strictly valid.
8384 Return the emitted insn if valid, else return NULL. */
8386 static rtx_insn *
8387 emit_insn_if_valid_for_reload (rtx pat)
8389 rtx_insn *last = get_last_insn ();
8390 int code;
8392 rtx_insn *insn = emit_insn (pat);
8393 code = recog_memoized (insn);
8395 if (code >= 0)
8397 extract_insn (insn);
8398 /* We want constrain operands to treat this insn strictly in its
8399 validity determination, i.e., the way it would after reload has
8400 completed. */
8401 if (constrain_operands (1, get_enabled_alternatives (insn)))
8402 return insn;
8405 delete_insns_since (last);
8406 return NULL;
8409 /* Emit code to perform a reload from IN (which may be a reload register) to
8410 OUT (which may also be a reload register). IN or OUT is from operand
8411 OPNUM with reload type TYPE.
8413 Returns first insn emitted. */
8415 static rtx_insn *
8416 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8418 rtx_insn *last = get_last_insn ();
8419 rtx_insn *tem;
8420 rtx tem1, tem2;
8422 /* If IN is a paradoxical SUBREG, remove it and try to put the
8423 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8424 if (!strip_paradoxical_subreg (&in, &out))
8425 strip_paradoxical_subreg (&out, &in);
8427 /* How to do this reload can get quite tricky. Normally, we are being
8428 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8429 register that didn't get a hard register. In that case we can just
8430 call emit_move_insn.
8432 We can also be asked to reload a PLUS that adds a register or a MEM to
8433 another register, constant or MEM. This can occur during frame pointer
8434 elimination and while reloading addresses. This case is handled by
8435 trying to emit a single insn to perform the add. If it is not valid,
8436 we use a two insn sequence.
8438 Or we can be asked to reload an unary operand that was a fragment of
8439 an addressing mode, into a register. If it isn't recognized as-is,
8440 we try making the unop operand and the reload-register the same:
8441 (set reg:X (unop:X expr:Y))
8442 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8444 Finally, we could be called to handle an 'o' constraint by putting
8445 an address into a register. In that case, we first try to do this
8446 with a named pattern of "reload_load_address". If no such pattern
8447 exists, we just emit a SET insn and hope for the best (it will normally
8448 be valid on machines that use 'o').
8450 This entire process is made complex because reload will never
8451 process the insns we generate here and so we must ensure that
8452 they will fit their constraints and also by the fact that parts of
8453 IN might be being reloaded separately and replaced with spill registers.
8454 Because of this, we are, in some sense, just guessing the right approach
8455 here. The one listed above seems to work.
8457 ??? At some point, this whole thing needs to be rethought. */
8459 if (GET_CODE (in) == PLUS
8460 && (REG_P (XEXP (in, 0))
8461 || GET_CODE (XEXP (in, 0)) == SUBREG
8462 || MEM_P (XEXP (in, 0)))
8463 && (REG_P (XEXP (in, 1))
8464 || GET_CODE (XEXP (in, 1)) == SUBREG
8465 || CONSTANT_P (XEXP (in, 1))
8466 || MEM_P (XEXP (in, 1))))
8468 /* We need to compute the sum of a register or a MEM and another
8469 register, constant, or MEM, and put it into the reload
8470 register. The best possible way of doing this is if the machine
8471 has a three-operand ADD insn that accepts the required operands.
8473 The simplest approach is to try to generate such an insn and see if it
8474 is recognized and matches its constraints. If so, it can be used.
8476 It might be better not to actually emit the insn unless it is valid,
8477 but we need to pass the insn as an operand to `recog' and
8478 `extract_insn' and it is simpler to emit and then delete the insn if
8479 not valid than to dummy things up. */
8481 rtx op0, op1, tem;
8482 rtx_insn *insn;
8483 enum insn_code code;
8485 op0 = find_replacement (&XEXP (in, 0));
8486 op1 = find_replacement (&XEXP (in, 1));
8488 /* Since constraint checking is strict, commutativity won't be
8489 checked, so we need to do that here to avoid spurious failure
8490 if the add instruction is two-address and the second operand
8491 of the add is the same as the reload reg, which is frequently
8492 the case. If the insn would be A = B + A, rearrange it so
8493 it will be A = A + B as constrain_operands expects. */
8495 if (REG_P (XEXP (in, 1))
8496 && REGNO (out) == REGNO (XEXP (in, 1)))
8497 tem = op0, op0 = op1, op1 = tem;
8499 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8500 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8502 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8503 if (insn)
8504 return insn;
8506 /* If that failed, we must use a conservative two-insn sequence.
8508 Use a move to copy one operand into the reload register. Prefer
8509 to reload a constant, MEM or pseudo since the move patterns can
8510 handle an arbitrary operand. If OP1 is not a constant, MEM or
8511 pseudo and OP1 is not a valid operand for an add instruction, then
8512 reload OP1.
8514 After reloading one of the operands into the reload register, add
8515 the reload register to the output register.
8517 If there is another way to do this for a specific machine, a
8518 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8519 we emit below. */
8521 code = optab_handler (add_optab, GET_MODE (out));
8523 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8524 || (REG_P (op1)
8525 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8526 || (code != CODE_FOR_nothing
8527 && !insn_operand_matches (code, 2, op1)))
8528 tem = op0, op0 = op1, op1 = tem;
8530 gen_reload (out, op0, opnum, type);
8532 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8533 This fixes a problem on the 32K where the stack pointer cannot
8534 be used as an operand of an add insn. */
8536 if (rtx_equal_p (op0, op1))
8537 op1 = out;
8539 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8540 if (insn)
8542 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8543 set_dst_reg_note (insn, REG_EQUIV, in, out);
8544 return insn;
8547 /* If that failed, copy the address register to the reload register.
8548 Then add the constant to the reload register. */
8550 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8551 gen_reload (out, op1, opnum, type);
8552 insn = emit_insn (gen_add2_insn (out, op0));
8553 set_dst_reg_note (insn, REG_EQUIV, in, out);
8556 /* If we need a memory location to do the move, do it that way. */
8557 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8558 (REG_P (tem1) && REG_P (tem2)))
8559 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8560 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8561 && targetm.secondary_memory_needed (GET_MODE (out),
8562 REGNO_REG_CLASS (REGNO (tem1)),
8563 REGNO_REG_CLASS (REGNO (tem2))))
8565 /* Get the memory to use and rewrite both registers to its mode. */
8566 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8568 if (GET_MODE (loc) != GET_MODE (out))
8569 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8571 if (GET_MODE (loc) != GET_MODE (in))
8572 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8574 gen_reload (loc, in, opnum, type);
8575 gen_reload (out, loc, opnum, type);
8577 else if (REG_P (out) && UNARY_P (in))
8579 rtx op1;
8580 rtx out_moded;
8581 rtx_insn *set;
8583 op1 = find_replacement (&XEXP (in, 0));
8584 if (op1 != XEXP (in, 0))
8585 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8587 /* First, try a plain SET. */
8588 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8589 if (set)
8590 return set;
8592 /* If that failed, move the inner operand to the reload
8593 register, and try the same unop with the inner expression
8594 replaced with the reload register. */
8596 if (GET_MODE (op1) != GET_MODE (out))
8597 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8598 else
8599 out_moded = out;
8601 gen_reload (out_moded, op1, opnum, type);
8603 rtx temp = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8604 out_moded));
8605 rtx_insn *insn = emit_insn_if_valid_for_reload (temp);
8606 if (insn)
8608 set_unique_reg_note (insn, REG_EQUIV, in);
8609 return insn;
8612 fatal_insn ("failure trying to reload:", set);
8614 /* If IN is a simple operand, use gen_move_insn. */
8615 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8617 tem = emit_insn (gen_move_insn (out, in));
8618 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8619 mark_jump_label (in, tem, 0);
8622 else if (targetm.have_reload_load_address ())
8623 emit_insn (targetm.gen_reload_load_address (out, in));
8625 /* Otherwise, just write (set OUT IN) and hope for the best. */
8626 else
8627 emit_insn (gen_rtx_SET (out, in));
8629 /* Return the first insn emitted.
8630 We cannot just return get_last_insn, because there may have
8631 been multiple instructions emitted. Also note that gen_move_insn may
8632 emit more than one insn itself, so we cannot assume that there is one
8633 insn emitted per emit_insn_before call. */
8635 return last ? NEXT_INSN (last) : get_insns ();
8638 /* Delete a previously made output-reload whose result we now believe
8639 is not needed. First we double-check.
8641 INSN is the insn now being processed.
8642 LAST_RELOAD_REG is the hard register number for which we want to delete
8643 the last output reload.
8644 J is the reload-number that originally used REG. The caller has made
8645 certain that reload J doesn't use REG any longer for input.
8646 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8648 static void
8649 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8650 rtx new_reload_reg)
8652 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8653 rtx reg = spill_reg_stored_to[last_reload_reg];
8654 int k;
8655 int n_occurrences;
8656 int n_inherited = 0;
8657 rtx substed;
8658 unsigned regno;
8659 int nregs;
8661 /* It is possible that this reload has been only used to set another reload
8662 we eliminated earlier and thus deleted this instruction too. */
8663 if (output_reload_insn->deleted ())
8664 return;
8666 /* Get the raw pseudo-register referred to. */
8668 while (GET_CODE (reg) == SUBREG)
8669 reg = SUBREG_REG (reg);
8670 substed = reg_equiv_memory_loc (REGNO (reg));
8672 /* This is unsafe if the operand occurs more often in the current
8673 insn than it is inherited. */
8674 for (k = n_reloads - 1; k >= 0; k--)
8676 rtx reg2 = rld[k].in;
8677 if (! reg2)
8678 continue;
8679 if (MEM_P (reg2) || reload_override_in[k])
8680 reg2 = rld[k].in_reg;
8682 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8683 reg2 = XEXP (rld[k].in_reg, 0);
8685 while (GET_CODE (reg2) == SUBREG)
8686 reg2 = SUBREG_REG (reg2);
8687 if (rtx_equal_p (reg2, reg))
8689 if (reload_inherited[k] || reload_override_in[k] || k == j)
8690 n_inherited++;
8691 else
8692 return;
8695 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8696 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8697 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8698 reg, 0);
8699 if (substed)
8700 n_occurrences += count_occurrences (PATTERN (insn),
8701 eliminate_regs (substed, VOIDmode,
8702 NULL_RTX), 0);
8703 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8705 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8706 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8708 if (n_occurrences > n_inherited)
8709 return;
8711 regno = REGNO (reg);
8712 nregs = REG_NREGS (reg);
8714 /* If the pseudo-reg we are reloading is no longer referenced
8715 anywhere between the store into it and here,
8716 and we're within the same basic block, then the value can only
8717 pass through the reload reg and end up here.
8718 Otherwise, give up--return. */
8719 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8720 i1 != insn; i1 = NEXT_INSN (i1))
8722 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8723 return;
8724 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8725 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8727 /* If this is USE in front of INSN, we only have to check that
8728 there are no more references than accounted for by inheritance. */
8729 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8731 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8732 i1 = NEXT_INSN (i1);
8734 if (n_occurrences <= n_inherited && i1 == insn)
8735 break;
8736 return;
8740 /* We will be deleting the insn. Remove the spill reg information. */
8741 for (k = hard_regno_nregs (last_reload_reg, GET_MODE (reg)); k-- > 0; )
8743 spill_reg_store[last_reload_reg + k] = 0;
8744 spill_reg_stored_to[last_reload_reg + k] = 0;
8747 /* The caller has already checked that REG dies or is set in INSN.
8748 It has also checked that we are optimizing, and thus some
8749 inaccuracies in the debugging information are acceptable.
8750 So we could just delete output_reload_insn. But in some cases
8751 we can improve the debugging information without sacrificing
8752 optimization - maybe even improving the code: See if the pseudo
8753 reg has been completely replaced with reload regs. If so, delete
8754 the store insn and forget we had a stack slot for the pseudo. */
8755 if (rld[j].out != rld[j].in
8756 && REG_N_DEATHS (REGNO (reg)) == 1
8757 && REG_N_SETS (REGNO (reg)) == 1
8758 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8759 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8761 rtx_insn *i2;
8763 /* We know that it was used only between here and the beginning of
8764 the current basic block. (We also know that the last use before
8765 INSN was the output reload we are thinking of deleting, but never
8766 mind that.) Search that range; see if any ref remains. */
8767 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8769 rtx set = single_set (i2);
8771 /* Uses which just store in the pseudo don't count,
8772 since if they are the only uses, they are dead. */
8773 if (set != 0 && SET_DEST (set) == reg)
8774 continue;
8775 if (LABEL_P (i2) || JUMP_P (i2))
8776 break;
8777 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8778 && reg_mentioned_p (reg, PATTERN (i2)))
8780 /* Some other ref remains; just delete the output reload we
8781 know to be dead. */
8782 delete_address_reloads (output_reload_insn, insn);
8783 delete_insn (output_reload_insn);
8784 return;
8788 /* Delete the now-dead stores into this pseudo. Note that this
8789 loop also takes care of deleting output_reload_insn. */
8790 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8792 rtx set = single_set (i2);
8794 if (set != 0 && SET_DEST (set) == reg)
8796 delete_address_reloads (i2, insn);
8797 delete_insn (i2);
8799 if (LABEL_P (i2) || JUMP_P (i2))
8800 break;
8803 /* For the debugging info, say the pseudo lives in this reload reg. */
8804 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8805 if (ira_conflicts_p)
8806 /* Inform IRA about the change. */
8807 ira_mark_allocation_change (REGNO (reg));
8808 alter_reg (REGNO (reg), -1, false);
8810 else
8812 delete_address_reloads (output_reload_insn, insn);
8813 delete_insn (output_reload_insn);
8817 /* We are going to delete DEAD_INSN. Recursively delete loads of
8818 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8819 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8820 static void
8821 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8823 rtx set = single_set (dead_insn);
8824 rtx set2, dst;
8825 rtx_insn *prev, *next;
8826 if (set)
8828 rtx dst = SET_DEST (set);
8829 if (MEM_P (dst))
8830 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8832 /* If we deleted the store from a reloaded post_{in,de}c expression,
8833 we can delete the matching adds. */
8834 prev = PREV_INSN (dead_insn);
8835 next = NEXT_INSN (dead_insn);
8836 if (! prev || ! next)
8837 return;
8838 set = single_set (next);
8839 set2 = single_set (prev);
8840 if (! set || ! set2
8841 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8842 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8843 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8844 return;
8845 dst = SET_DEST (set);
8846 if (! rtx_equal_p (dst, SET_DEST (set2))
8847 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8848 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8849 || (INTVAL (XEXP (SET_SRC (set), 1))
8850 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8851 return;
8852 delete_related_insns (prev);
8853 delete_related_insns (next);
8856 /* Subfunction of delete_address_reloads: process registers found in X. */
8857 static void
8858 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8860 rtx_insn *prev, *i2;
8861 rtx set, dst;
8862 int i, j;
8863 enum rtx_code code = GET_CODE (x);
8865 if (code != REG)
8867 const char *fmt = GET_RTX_FORMAT (code);
8868 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8870 if (fmt[i] == 'e')
8871 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8872 else if (fmt[i] == 'E')
8874 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8875 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8876 current_insn);
8879 return;
8882 if (spill_reg_order[REGNO (x)] < 0)
8883 return;
8885 /* Scan backwards for the insn that sets x. This might be a way back due
8886 to inheritance. */
8887 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8889 code = GET_CODE (prev);
8890 if (code == CODE_LABEL || code == JUMP_INSN)
8891 return;
8892 if (!INSN_P (prev))
8893 continue;
8894 if (reg_set_p (x, PATTERN (prev)))
8895 break;
8896 if (reg_referenced_p (x, PATTERN (prev)))
8897 return;
8899 if (! prev || INSN_UID (prev) < reload_first_uid)
8900 return;
8901 /* Check that PREV only sets the reload register. */
8902 set = single_set (prev);
8903 if (! set)
8904 return;
8905 dst = SET_DEST (set);
8906 if (!REG_P (dst)
8907 || ! rtx_equal_p (dst, x))
8908 return;
8909 if (! reg_set_p (dst, PATTERN (dead_insn)))
8911 /* Check if DST was used in a later insn -
8912 it might have been inherited. */
8913 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8915 if (LABEL_P (i2))
8916 break;
8917 if (! INSN_P (i2))
8918 continue;
8919 if (reg_referenced_p (dst, PATTERN (i2)))
8921 /* If there is a reference to the register in the current insn,
8922 it might be loaded in a non-inherited reload. If no other
8923 reload uses it, that means the register is set before
8924 referenced. */
8925 if (i2 == current_insn)
8927 for (j = n_reloads - 1; j >= 0; j--)
8928 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8929 || reload_override_in[j] == dst)
8930 return;
8931 for (j = n_reloads - 1; j >= 0; j--)
8932 if (rld[j].in && rld[j].reg_rtx == dst)
8933 break;
8934 if (j >= 0)
8935 break;
8937 return;
8939 if (JUMP_P (i2))
8940 break;
8941 /* If DST is still live at CURRENT_INSN, check if it is used for
8942 any reload. Note that even if CURRENT_INSN sets DST, we still
8943 have to check the reloads. */
8944 if (i2 == current_insn)
8946 for (j = n_reloads - 1; j >= 0; j--)
8947 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8948 || reload_override_in[j] == dst)
8949 return;
8950 /* ??? We can't finish the loop here, because dst might be
8951 allocated to a pseudo in this block if no reload in this
8952 block needs any of the classes containing DST - see
8953 spill_hard_reg. There is no easy way to tell this, so we
8954 have to scan till the end of the basic block. */
8956 if (reg_set_p (dst, PATTERN (i2)))
8957 break;
8960 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8961 reg_reloaded_contents[REGNO (dst)] = -1;
8962 delete_insn (prev);
8965 /* Output reload-insns to reload VALUE into RELOADREG.
8966 VALUE is an autoincrement or autodecrement RTX whose operand
8967 is a register or memory location;
8968 so reloading involves incrementing that location.
8969 IN is either identical to VALUE, or some cheaper place to reload from.
8971 INC_AMOUNT is the number to increment or decrement by (always positive).
8972 This cannot be deduced from VALUE. */
8974 static void
8975 inc_for_reload (rtx reloadreg, rtx in, rtx value, poly_int64 inc_amount)
8977 /* REG or MEM to be copied and incremented. */
8978 rtx incloc = find_replacement (&XEXP (value, 0));
8979 /* Nonzero if increment after copying. */
8980 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8981 || GET_CODE (value) == POST_MODIFY);
8982 rtx_insn *last;
8983 rtx inc;
8984 rtx_insn *add_insn;
8985 int code;
8986 rtx real_in = in == value ? incloc : in;
8988 /* No hard register is equivalent to this register after
8989 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
8990 we could inc/dec that register as well (maybe even using it for
8991 the source), but I'm not sure it's worth worrying about. */
8992 if (REG_P (incloc))
8993 reg_last_reload_reg[REGNO (incloc)] = 0;
8995 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
8997 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
8998 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9000 else
9002 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9003 inc_amount = -inc_amount;
9005 inc = gen_int_mode (inc_amount, Pmode);
9008 /* If this is post-increment, first copy the location to the reload reg. */
9009 if (post && real_in != reloadreg)
9010 emit_insn (gen_move_insn (reloadreg, real_in));
9012 if (in == value)
9014 /* See if we can directly increment INCLOC. Use a method similar to
9015 that in gen_reload. */
9017 last = get_last_insn ();
9018 add_insn = emit_insn (gen_rtx_SET (incloc,
9019 gen_rtx_PLUS (GET_MODE (incloc),
9020 incloc, inc)));
9022 code = recog_memoized (add_insn);
9023 if (code >= 0)
9025 extract_insn (add_insn);
9026 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9028 /* If this is a pre-increment and we have incremented the value
9029 where it lives, copy the incremented value to RELOADREG to
9030 be used as an address. */
9032 if (! post)
9033 emit_insn (gen_move_insn (reloadreg, incloc));
9034 return;
9037 delete_insns_since (last);
9040 /* If couldn't do the increment directly, must increment in RELOADREG.
9041 The way we do this depends on whether this is pre- or post-increment.
9042 For pre-increment, copy INCLOC to the reload register, increment it
9043 there, then save back. */
9045 if (! post)
9047 if (in != reloadreg)
9048 emit_insn (gen_move_insn (reloadreg, real_in));
9049 emit_insn (gen_add2_insn (reloadreg, inc));
9050 emit_insn (gen_move_insn (incloc, reloadreg));
9052 else
9054 /* Postincrement.
9055 Because this might be a jump insn or a compare, and because RELOADREG
9056 may not be available after the insn in an input reload, we must do
9057 the incrementation before the insn being reloaded for.
9059 We have already copied IN to RELOADREG. Increment the copy in
9060 RELOADREG, save that back, then decrement RELOADREG so it has
9061 the original value. */
9063 emit_insn (gen_add2_insn (reloadreg, inc));
9064 emit_insn (gen_move_insn (incloc, reloadreg));
9065 if (CONST_INT_P (inc))
9066 emit_insn (gen_add2_insn (reloadreg,
9067 gen_int_mode (-INTVAL (inc),
9068 GET_MODE (reloadreg))));
9069 else
9070 emit_insn (gen_sub2_insn (reloadreg, inc));