* fold-const.c: Fix a comment typo.
[official-gcc.git] / gcc / fold-const.c
blobab81bf4913140510f1e44dbdcb26f2ec2493196f
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
30 /* The entry points in this file are fold, size_int_wide, size_binop
31 and force_fit_type.
33 fold takes a tree as argument and returns a simplified tree.
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
42 force_fit_type takes a constant, an overflowable flag and prior
43 overflow indicators. It forces the value to fit the type and sets
44 TREE_OVERFLOW and TREE_CONSTANT_OVERFLOW as appropriate. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "flags.h"
51 #include "tree.h"
52 #include "real.h"
53 #include "rtl.h"
54 #include "expr.h"
55 #include "tm_p.h"
56 #include "toplev.h"
57 #include "ggc.h"
58 #include "hashtab.h"
59 #include "langhooks.h"
60 #include "md5.h"
62 /* The following constants represent a bit based encoding of GCC's
63 comparison operators. This encoding simplifies transformations
64 on relational comparison operators, such as AND and OR. */
65 enum comparison_code {
66 COMPCODE_FALSE = 0,
67 COMPCODE_LT = 1,
68 COMPCODE_EQ = 2,
69 COMPCODE_LE = 3,
70 COMPCODE_GT = 4,
71 COMPCODE_LTGT = 5,
72 COMPCODE_GE = 6,
73 COMPCODE_ORD = 7,
74 COMPCODE_UNORD = 8,
75 COMPCODE_UNLT = 9,
76 COMPCODE_UNEQ = 10,
77 COMPCODE_UNLE = 11,
78 COMPCODE_UNGT = 12,
79 COMPCODE_NE = 13,
80 COMPCODE_UNGE = 14,
81 COMPCODE_TRUE = 15
84 static void encode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT, HOST_WIDE_INT);
85 static void decode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
86 static bool negate_mathfn_p (enum built_in_function);
87 static bool negate_expr_p (tree);
88 static tree negate_expr (tree);
89 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
90 static tree associate_trees (tree, tree, enum tree_code, tree);
91 static tree const_binop (enum tree_code, tree, tree, int);
92 static tree build_zero_vector (tree);
93 static tree fold_convert_const (enum tree_code, tree, tree);
94 static enum tree_code invert_tree_comparison (enum tree_code, bool);
95 static enum comparison_code comparison_to_compcode (enum tree_code);
96 static enum tree_code compcode_to_comparison (enum comparison_code);
97 static tree combine_comparisons (enum tree_code, enum tree_code,
98 enum tree_code, tree, tree, tree);
99 static int truth_value_p (enum tree_code);
100 static int operand_equal_for_comparison_p (tree, tree, tree);
101 static int twoval_comparison_p (tree, tree *, tree *, int *);
102 static tree eval_subst (tree, tree, tree, tree, tree);
103 static tree pedantic_omit_one_operand (tree, tree, tree);
104 static tree distribute_bit_expr (enum tree_code, tree, tree, tree);
105 static tree make_bit_field_ref (tree, tree, int, int, int);
106 static tree optimize_bit_field_compare (enum tree_code, tree, tree, tree);
107 static tree decode_field_reference (tree, HOST_WIDE_INT *, HOST_WIDE_INT *,
108 enum machine_mode *, int *, int *,
109 tree *, tree *);
110 static int all_ones_mask_p (tree, int);
111 static tree sign_bit_p (tree, tree);
112 static int simple_operand_p (tree);
113 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
114 static tree make_range (tree, int *, tree *, tree *);
115 static tree build_range_check (tree, tree, int, tree, tree);
116 static int merge_ranges (int *, tree *, tree *, int, tree, tree, int, tree,
117 tree);
118 static tree fold_range_test (tree);
119 static tree fold_cond_expr_with_comparison (tree, tree, tree, tree);
120 static tree unextend (tree, int, int, tree);
121 static tree fold_truthop (enum tree_code, tree, tree, tree);
122 static tree optimize_minmax_comparison (tree);
123 static tree extract_muldiv (tree, tree, enum tree_code, tree);
124 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree);
125 static int multiple_of_p (tree, tree, tree);
126 static tree fold_binary_op_with_conditional_arg (enum tree_code, tree, tree,
127 tree, int);
128 static bool fold_real_zero_addition_p (tree, tree, int);
129 static tree fold_mathfn_compare (enum built_in_function, enum tree_code,
130 tree, tree, tree);
131 static tree fold_inf_compare (enum tree_code, tree, tree, tree);
132 static tree fold_div_compare (enum tree_code, tree, tree, tree);
133 static bool reorder_operands_p (tree, tree);
134 static tree fold_negate_const (tree, tree);
135 static tree fold_not_const (tree, tree);
136 static tree fold_relational_const (enum tree_code, tree, tree, tree);
137 static tree fold_relational_hi_lo (enum tree_code *, const tree,
138 tree *, tree *);
139 static bool tree_expr_nonzero_p (tree);
141 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
142 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
143 and SUM1. Then this yields nonzero if overflow occurred during the
144 addition.
146 Overflow occurs if A and B have the same sign, but A and SUM differ in
147 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
148 sign. */
149 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
151 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
152 We do that by representing the two-word integer in 4 words, with only
153 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
154 number. The value of the word is LOWPART + HIGHPART * BASE. */
156 #define LOWPART(x) \
157 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
158 #define HIGHPART(x) \
159 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
160 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
162 /* Unpack a two-word integer into 4 words.
163 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
164 WORDS points to the array of HOST_WIDE_INTs. */
166 static void
167 encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
169 words[0] = LOWPART (low);
170 words[1] = HIGHPART (low);
171 words[2] = LOWPART (hi);
172 words[3] = HIGHPART (hi);
175 /* Pack an array of 4 words into a two-word integer.
176 WORDS points to the array of words.
177 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
179 static void
180 decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
181 HOST_WIDE_INT *hi)
183 *low = words[0] + words[1] * BASE;
184 *hi = words[2] + words[3] * BASE;
187 /* T is an INT_CST node. OVERFLOWABLE indicates if we are interested
188 in overflow of the value, when >0 we are only interested in signed
189 overflow, for <0 we are interested in any overflow. OVERFLOWED
190 indicates whether overflow has already occurred. CONST_OVERFLOWED
191 indicates whether constant overflow has already occurred. We force
192 T's value to be within range of T's type (by setting to 0 or 1 all
193 the bits outside the type's range). We set TREE_OVERFLOWED if,
194 OVERFLOWED is nonzero,
195 or OVERFLOWABLE is >0 and signed overflow occurs
196 or OVERFLOWABLE is <0 and any overflow occurs
197 We set TREE_CONSTANT_OVERFLOWED if,
198 CONST_OVERFLOWED is nonzero
199 or we set TREE_OVERFLOWED.
200 We return either the original T, or a copy. */
202 tree
203 force_fit_type (tree t, int overflowable,
204 bool overflowed, bool overflowed_const)
206 unsigned HOST_WIDE_INT low;
207 HOST_WIDE_INT high;
208 unsigned int prec;
209 int sign_extended_type;
211 gcc_assert (TREE_CODE (t) == INTEGER_CST);
213 low = TREE_INT_CST_LOW (t);
214 high = TREE_INT_CST_HIGH (t);
216 if (POINTER_TYPE_P (TREE_TYPE (t))
217 || TREE_CODE (TREE_TYPE (t)) == OFFSET_TYPE)
218 prec = POINTER_SIZE;
219 else
220 prec = TYPE_PRECISION (TREE_TYPE (t));
221 /* Size types *are* sign extended. */
222 sign_extended_type = (!TYPE_UNSIGNED (TREE_TYPE (t))
223 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
224 && TYPE_IS_SIZETYPE (TREE_TYPE (t))));
226 /* First clear all bits that are beyond the type's precision. */
228 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
230 else if (prec > HOST_BITS_PER_WIDE_INT)
231 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
232 else
234 high = 0;
235 if (prec < HOST_BITS_PER_WIDE_INT)
236 low &= ~((HOST_WIDE_INT) (-1) << prec);
239 if (!sign_extended_type)
240 /* No sign extension */;
241 else if (prec == 2 * HOST_BITS_PER_WIDE_INT)
242 /* Correct width already. */;
243 else if (prec > HOST_BITS_PER_WIDE_INT)
245 /* Sign extend top half? */
246 if (high & ((unsigned HOST_WIDE_INT)1
247 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
248 high |= (HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT);
250 else if (prec == HOST_BITS_PER_WIDE_INT)
252 if ((HOST_WIDE_INT)low < 0)
253 high = -1;
255 else
257 /* Sign extend bottom half? */
258 if (low & ((unsigned HOST_WIDE_INT)1 << (prec - 1)))
260 high = -1;
261 low |= (HOST_WIDE_INT)(-1) << prec;
265 /* If the value changed, return a new node. */
266 if (overflowed || overflowed_const
267 || low != TREE_INT_CST_LOW (t) || high != TREE_INT_CST_HIGH (t))
269 t = build_int_cst_wide (TREE_TYPE (t), low, high);
271 if (overflowed
272 || overflowable < 0
273 || (overflowable > 0 && sign_extended_type))
275 t = copy_node (t);
276 TREE_OVERFLOW (t) = 1;
277 TREE_CONSTANT_OVERFLOW (t) = 1;
279 else if (overflowed_const)
281 t = copy_node (t);
282 TREE_CONSTANT_OVERFLOW (t) = 1;
286 return t;
289 /* Add two doubleword integers with doubleword result.
290 Each argument is given as two `HOST_WIDE_INT' pieces.
291 One argument is L1 and H1; the other, L2 and H2.
292 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
295 add_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
296 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
297 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
299 unsigned HOST_WIDE_INT l;
300 HOST_WIDE_INT h;
302 l = l1 + l2;
303 h = h1 + h2 + (l < l1);
305 *lv = l;
306 *hv = h;
307 return OVERFLOW_SUM_SIGN (h1, h2, h);
310 /* Negate a doubleword integer with doubleword result.
311 Return nonzero if the operation overflows, assuming it's signed.
312 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
313 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
316 neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
317 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
319 if (l1 == 0)
321 *lv = 0;
322 *hv = - h1;
323 return (*hv & h1) < 0;
325 else
327 *lv = -l1;
328 *hv = ~h1;
329 return 0;
333 /* Multiply two doubleword integers with doubleword result.
334 Return nonzero if the operation overflows, assuming it's signed.
335 Each argument is given as two `HOST_WIDE_INT' pieces.
336 One argument is L1 and H1; the other, L2 and H2.
337 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
340 mul_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
341 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
342 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
344 HOST_WIDE_INT arg1[4];
345 HOST_WIDE_INT arg2[4];
346 HOST_WIDE_INT prod[4 * 2];
347 unsigned HOST_WIDE_INT carry;
348 int i, j, k;
349 unsigned HOST_WIDE_INT toplow, neglow;
350 HOST_WIDE_INT tophigh, neghigh;
352 encode (arg1, l1, h1);
353 encode (arg2, l2, h2);
355 memset (prod, 0, sizeof prod);
357 for (i = 0; i < 4; i++)
359 carry = 0;
360 for (j = 0; j < 4; j++)
362 k = i + j;
363 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
364 carry += arg1[i] * arg2[j];
365 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
366 carry += prod[k];
367 prod[k] = LOWPART (carry);
368 carry = HIGHPART (carry);
370 prod[i + 4] = carry;
373 decode (prod, lv, hv); /* This ignores prod[4] through prod[4*2-1] */
375 /* Check for overflow by calculating the top half of the answer in full;
376 it should agree with the low half's sign bit. */
377 decode (prod + 4, &toplow, &tophigh);
378 if (h1 < 0)
380 neg_double (l2, h2, &neglow, &neghigh);
381 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
383 if (h2 < 0)
385 neg_double (l1, h1, &neglow, &neghigh);
386 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
388 return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
391 /* Shift the doubleword integer in L1, H1 left by COUNT places
392 keeping only PREC bits of result.
393 Shift right if COUNT is negative.
394 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
395 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
397 void
398 lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
399 HOST_WIDE_INT count, unsigned int prec,
400 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, int arith)
402 unsigned HOST_WIDE_INT signmask;
404 if (count < 0)
406 rshift_double (l1, h1, -count, prec, lv, hv, arith);
407 return;
410 if (SHIFT_COUNT_TRUNCATED)
411 count %= prec;
413 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
415 /* Shifting by the host word size is undefined according to the
416 ANSI standard, so we must handle this as a special case. */
417 *hv = 0;
418 *lv = 0;
420 else if (count >= HOST_BITS_PER_WIDE_INT)
422 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
423 *lv = 0;
425 else
427 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
428 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
429 *lv = l1 << count;
432 /* Sign extend all bits that are beyond the precision. */
434 signmask = -((prec > HOST_BITS_PER_WIDE_INT
435 ? ((unsigned HOST_WIDE_INT) *hv
436 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
437 : (*lv >> (prec - 1))) & 1);
439 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
441 else if (prec >= HOST_BITS_PER_WIDE_INT)
443 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
444 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
446 else
448 *hv = signmask;
449 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
450 *lv |= signmask << prec;
454 /* Shift the doubleword integer in L1, H1 right by COUNT places
455 keeping only PREC bits of result. COUNT must be positive.
456 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
457 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
459 void
460 rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
461 HOST_WIDE_INT count, unsigned int prec,
462 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
463 int arith)
465 unsigned HOST_WIDE_INT signmask;
467 signmask = (arith
468 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
469 : 0);
471 if (SHIFT_COUNT_TRUNCATED)
472 count %= prec;
474 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
476 /* Shifting by the host word size is undefined according to the
477 ANSI standard, so we must handle this as a special case. */
478 *hv = 0;
479 *lv = 0;
481 else if (count >= HOST_BITS_PER_WIDE_INT)
483 *hv = 0;
484 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
486 else
488 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
489 *lv = ((l1 >> count)
490 | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
493 /* Zero / sign extend all bits that are beyond the precision. */
495 if (count >= (HOST_WIDE_INT)prec)
497 *hv = signmask;
498 *lv = signmask;
500 else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
502 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
504 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
505 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
507 else
509 *hv = signmask;
510 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
511 *lv |= signmask << (prec - count);
515 /* Rotate the doubleword integer in L1, H1 left by COUNT places
516 keeping only PREC bits of result.
517 Rotate right if COUNT is negative.
518 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
520 void
521 lrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
522 HOST_WIDE_INT count, unsigned int prec,
523 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
525 unsigned HOST_WIDE_INT s1l, s2l;
526 HOST_WIDE_INT s1h, s2h;
528 count %= prec;
529 if (count < 0)
530 count += prec;
532 lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
533 rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
534 *lv = s1l | s2l;
535 *hv = s1h | s2h;
538 /* Rotate the doubleword integer in L1, H1 left by COUNT places
539 keeping only PREC bits of result. COUNT must be positive.
540 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
542 void
543 rrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
544 HOST_WIDE_INT count, unsigned int prec,
545 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
547 unsigned HOST_WIDE_INT s1l, s2l;
548 HOST_WIDE_INT s1h, s2h;
550 count %= prec;
551 if (count < 0)
552 count += prec;
554 rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
555 lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
556 *lv = s1l | s2l;
557 *hv = s1h | s2h;
560 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
561 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
562 CODE is a tree code for a kind of division, one of
563 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
564 or EXACT_DIV_EXPR
565 It controls how the quotient is rounded to an integer.
566 Return nonzero if the operation overflows.
567 UNS nonzero says do unsigned division. */
570 div_and_round_double (enum tree_code code, int uns,
571 unsigned HOST_WIDE_INT lnum_orig, /* num == numerator == dividend */
572 HOST_WIDE_INT hnum_orig,
573 unsigned HOST_WIDE_INT lden_orig, /* den == denominator == divisor */
574 HOST_WIDE_INT hden_orig,
575 unsigned HOST_WIDE_INT *lquo,
576 HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
577 HOST_WIDE_INT *hrem)
579 int quo_neg = 0;
580 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
581 HOST_WIDE_INT den[4], quo[4];
582 int i, j;
583 unsigned HOST_WIDE_INT work;
584 unsigned HOST_WIDE_INT carry = 0;
585 unsigned HOST_WIDE_INT lnum = lnum_orig;
586 HOST_WIDE_INT hnum = hnum_orig;
587 unsigned HOST_WIDE_INT lden = lden_orig;
588 HOST_WIDE_INT hden = hden_orig;
589 int overflow = 0;
591 if (hden == 0 && lden == 0)
592 overflow = 1, lden = 1;
594 /* Calculate quotient sign and convert operands to unsigned. */
595 if (!uns)
597 if (hnum < 0)
599 quo_neg = ~ quo_neg;
600 /* (minimum integer) / (-1) is the only overflow case. */
601 if (neg_double (lnum, hnum, &lnum, &hnum)
602 && ((HOST_WIDE_INT) lden & hden) == -1)
603 overflow = 1;
605 if (hden < 0)
607 quo_neg = ~ quo_neg;
608 neg_double (lden, hden, &lden, &hden);
612 if (hnum == 0 && hden == 0)
613 { /* single precision */
614 *hquo = *hrem = 0;
615 /* This unsigned division rounds toward zero. */
616 *lquo = lnum / lden;
617 goto finish_up;
620 if (hnum == 0)
621 { /* trivial case: dividend < divisor */
622 /* hden != 0 already checked. */
623 *hquo = *lquo = 0;
624 *hrem = hnum;
625 *lrem = lnum;
626 goto finish_up;
629 memset (quo, 0, sizeof quo);
631 memset (num, 0, sizeof num); /* to zero 9th element */
632 memset (den, 0, sizeof den);
634 encode (num, lnum, hnum);
635 encode (den, lden, hden);
637 /* Special code for when the divisor < BASE. */
638 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
640 /* hnum != 0 already checked. */
641 for (i = 4 - 1; i >= 0; i--)
643 work = num[i] + carry * BASE;
644 quo[i] = work / lden;
645 carry = work % lden;
648 else
650 /* Full double precision division,
651 with thanks to Don Knuth's "Seminumerical Algorithms". */
652 int num_hi_sig, den_hi_sig;
653 unsigned HOST_WIDE_INT quo_est, scale;
655 /* Find the highest nonzero divisor digit. */
656 for (i = 4 - 1;; i--)
657 if (den[i] != 0)
659 den_hi_sig = i;
660 break;
663 /* Insure that the first digit of the divisor is at least BASE/2.
664 This is required by the quotient digit estimation algorithm. */
666 scale = BASE / (den[den_hi_sig] + 1);
667 if (scale > 1)
668 { /* scale divisor and dividend */
669 carry = 0;
670 for (i = 0; i <= 4 - 1; i++)
672 work = (num[i] * scale) + carry;
673 num[i] = LOWPART (work);
674 carry = HIGHPART (work);
677 num[4] = carry;
678 carry = 0;
679 for (i = 0; i <= 4 - 1; i++)
681 work = (den[i] * scale) + carry;
682 den[i] = LOWPART (work);
683 carry = HIGHPART (work);
684 if (den[i] != 0) den_hi_sig = i;
688 num_hi_sig = 4;
690 /* Main loop */
691 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
693 /* Guess the next quotient digit, quo_est, by dividing the first
694 two remaining dividend digits by the high order quotient digit.
695 quo_est is never low and is at most 2 high. */
696 unsigned HOST_WIDE_INT tmp;
698 num_hi_sig = i + den_hi_sig + 1;
699 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
700 if (num[num_hi_sig] != den[den_hi_sig])
701 quo_est = work / den[den_hi_sig];
702 else
703 quo_est = BASE - 1;
705 /* Refine quo_est so it's usually correct, and at most one high. */
706 tmp = work - quo_est * den[den_hi_sig];
707 if (tmp < BASE
708 && (den[den_hi_sig - 1] * quo_est
709 > (tmp * BASE + num[num_hi_sig - 2])))
710 quo_est--;
712 /* Try QUO_EST as the quotient digit, by multiplying the
713 divisor by QUO_EST and subtracting from the remaining dividend.
714 Keep in mind that QUO_EST is the I - 1st digit. */
716 carry = 0;
717 for (j = 0; j <= den_hi_sig; j++)
719 work = quo_est * den[j] + carry;
720 carry = HIGHPART (work);
721 work = num[i + j] - LOWPART (work);
722 num[i + j] = LOWPART (work);
723 carry += HIGHPART (work) != 0;
726 /* If quo_est was high by one, then num[i] went negative and
727 we need to correct things. */
728 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
730 quo_est--;
731 carry = 0; /* add divisor back in */
732 for (j = 0; j <= den_hi_sig; j++)
734 work = num[i + j] + den[j] + carry;
735 carry = HIGHPART (work);
736 num[i + j] = LOWPART (work);
739 num [num_hi_sig] += carry;
742 /* Store the quotient digit. */
743 quo[i] = quo_est;
747 decode (quo, lquo, hquo);
749 finish_up:
750 /* If result is negative, make it so. */
751 if (quo_neg)
752 neg_double (*lquo, *hquo, lquo, hquo);
754 /* Compute trial remainder: rem = num - (quo * den) */
755 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
756 neg_double (*lrem, *hrem, lrem, hrem);
757 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
759 switch (code)
761 case TRUNC_DIV_EXPR:
762 case TRUNC_MOD_EXPR: /* round toward zero */
763 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
764 return overflow;
766 case FLOOR_DIV_EXPR:
767 case FLOOR_MOD_EXPR: /* round toward negative infinity */
768 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
770 /* quo = quo - 1; */
771 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
772 lquo, hquo);
774 else
775 return overflow;
776 break;
778 case CEIL_DIV_EXPR:
779 case CEIL_MOD_EXPR: /* round toward positive infinity */
780 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
782 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
783 lquo, hquo);
785 else
786 return overflow;
787 break;
789 case ROUND_DIV_EXPR:
790 case ROUND_MOD_EXPR: /* round to closest integer */
792 unsigned HOST_WIDE_INT labs_rem = *lrem;
793 HOST_WIDE_INT habs_rem = *hrem;
794 unsigned HOST_WIDE_INT labs_den = lden, ltwice;
795 HOST_WIDE_INT habs_den = hden, htwice;
797 /* Get absolute values. */
798 if (*hrem < 0)
799 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
800 if (hden < 0)
801 neg_double (lden, hden, &labs_den, &habs_den);
803 /* If (2 * abs (lrem) >= abs (lden)) */
804 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
805 labs_rem, habs_rem, &ltwice, &htwice);
807 if (((unsigned HOST_WIDE_INT) habs_den
808 < (unsigned HOST_WIDE_INT) htwice)
809 || (((unsigned HOST_WIDE_INT) habs_den
810 == (unsigned HOST_WIDE_INT) htwice)
811 && (labs_den < ltwice)))
813 if (*hquo < 0)
814 /* quo = quo - 1; */
815 add_double (*lquo, *hquo,
816 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
817 else
818 /* quo = quo + 1; */
819 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
820 lquo, hquo);
822 else
823 return overflow;
825 break;
827 default:
828 gcc_unreachable ();
831 /* Compute true remainder: rem = num - (quo * den) */
832 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
833 neg_double (*lrem, *hrem, lrem, hrem);
834 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
835 return overflow;
838 /* Return true if built-in mathematical function specified by CODE
839 preserves the sign of it argument, i.e. -f(x) == f(-x). */
841 static bool
842 negate_mathfn_p (enum built_in_function code)
844 switch (code)
846 case BUILT_IN_ASIN:
847 case BUILT_IN_ASINF:
848 case BUILT_IN_ASINL:
849 case BUILT_IN_ATAN:
850 case BUILT_IN_ATANF:
851 case BUILT_IN_ATANL:
852 case BUILT_IN_SIN:
853 case BUILT_IN_SINF:
854 case BUILT_IN_SINL:
855 case BUILT_IN_TAN:
856 case BUILT_IN_TANF:
857 case BUILT_IN_TANL:
858 return true;
860 default:
861 break;
863 return false;
866 /* Check whether we may negate an integer constant T without causing
867 overflow. */
869 bool
870 may_negate_without_overflow_p (tree t)
872 unsigned HOST_WIDE_INT val;
873 unsigned int prec;
874 tree type;
876 gcc_assert (TREE_CODE (t) == INTEGER_CST);
878 type = TREE_TYPE (t);
879 if (TYPE_UNSIGNED (type))
880 return false;
882 prec = TYPE_PRECISION (type);
883 if (prec > HOST_BITS_PER_WIDE_INT)
885 if (TREE_INT_CST_LOW (t) != 0)
886 return true;
887 prec -= HOST_BITS_PER_WIDE_INT;
888 val = TREE_INT_CST_HIGH (t);
890 else
891 val = TREE_INT_CST_LOW (t);
892 if (prec < HOST_BITS_PER_WIDE_INT)
893 val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
894 return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
897 /* Determine whether an expression T can be cheaply negated using
898 the function negate_expr. */
900 static bool
901 negate_expr_p (tree t)
903 tree type;
905 if (t == 0)
906 return false;
908 type = TREE_TYPE (t);
910 STRIP_SIGN_NOPS (t);
911 switch (TREE_CODE (t))
913 case INTEGER_CST:
914 if (TYPE_UNSIGNED (type) || ! flag_trapv)
915 return true;
917 /* Check that -CST will not overflow type. */
918 return may_negate_without_overflow_p (t);
920 case REAL_CST:
921 case NEGATE_EXPR:
922 return true;
924 case COMPLEX_CST:
925 return negate_expr_p (TREE_REALPART (t))
926 && negate_expr_p (TREE_IMAGPART (t));
928 case PLUS_EXPR:
929 if (FLOAT_TYPE_P (type) && !flag_unsafe_math_optimizations)
930 return false;
931 /* -(A + B) -> (-B) - A. */
932 if (negate_expr_p (TREE_OPERAND (t, 1))
933 && reorder_operands_p (TREE_OPERAND (t, 0),
934 TREE_OPERAND (t, 1)))
935 return true;
936 /* -(A + B) -> (-A) - B. */
937 return negate_expr_p (TREE_OPERAND (t, 0));
939 case MINUS_EXPR:
940 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
941 return (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
942 && reorder_operands_p (TREE_OPERAND (t, 0),
943 TREE_OPERAND (t, 1));
945 case MULT_EXPR:
946 if (TYPE_UNSIGNED (TREE_TYPE (t)))
947 break;
949 /* Fall through. */
951 case RDIV_EXPR:
952 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
953 return negate_expr_p (TREE_OPERAND (t, 1))
954 || negate_expr_p (TREE_OPERAND (t, 0));
955 break;
957 case NOP_EXPR:
958 /* Negate -((double)float) as (double)(-float). */
959 if (TREE_CODE (type) == REAL_TYPE)
961 tree tem = strip_float_extensions (t);
962 if (tem != t)
963 return negate_expr_p (tem);
965 break;
967 case CALL_EXPR:
968 /* Negate -f(x) as f(-x). */
969 if (negate_mathfn_p (builtin_mathfn_code (t)))
970 return negate_expr_p (TREE_VALUE (TREE_OPERAND (t, 1)));
971 break;
973 case RSHIFT_EXPR:
974 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
975 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
977 tree op1 = TREE_OPERAND (t, 1);
978 if (TREE_INT_CST_HIGH (op1) == 0
979 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
980 == TREE_INT_CST_LOW (op1))
981 return true;
983 break;
985 default:
986 break;
988 return false;
991 /* Given T, an expression, return the negation of T. Allow for T to be
992 null, in which case return null. */
994 static tree
995 negate_expr (tree t)
997 tree type;
998 tree tem;
1000 if (t == 0)
1001 return 0;
1003 type = TREE_TYPE (t);
1004 STRIP_SIGN_NOPS (t);
1006 switch (TREE_CODE (t))
1008 case INTEGER_CST:
1009 tem = fold_negate_const (t, type);
1010 if (! TREE_OVERFLOW (tem)
1011 || TYPE_UNSIGNED (type)
1012 || ! flag_trapv)
1013 return tem;
1014 break;
1016 case REAL_CST:
1017 tem = fold_negate_const (t, type);
1018 /* Two's complement FP formats, such as c4x, may overflow. */
1019 if (! TREE_OVERFLOW (tem) || ! flag_trapping_math)
1020 return fold_convert (type, tem);
1021 break;
1023 case COMPLEX_CST:
1025 tree rpart = negate_expr (TREE_REALPART (t));
1026 tree ipart = negate_expr (TREE_IMAGPART (t));
1028 if ((TREE_CODE (rpart) == REAL_CST
1029 && TREE_CODE (ipart) == REAL_CST)
1030 || (TREE_CODE (rpart) == INTEGER_CST
1031 && TREE_CODE (ipart) == INTEGER_CST))
1032 return build_complex (type, rpart, ipart);
1034 break;
1036 case NEGATE_EXPR:
1037 return fold_convert (type, TREE_OPERAND (t, 0));
1039 case PLUS_EXPR:
1040 if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
1042 /* -(A + B) -> (-B) - A. */
1043 if (negate_expr_p (TREE_OPERAND (t, 1))
1044 && reorder_operands_p (TREE_OPERAND (t, 0),
1045 TREE_OPERAND (t, 1)))
1047 tem = negate_expr (TREE_OPERAND (t, 1));
1048 tem = fold (build2 (MINUS_EXPR, TREE_TYPE (t),
1049 tem, TREE_OPERAND (t, 0)));
1050 return fold_convert (type, tem);
1053 /* -(A + B) -> (-A) - B. */
1054 if (negate_expr_p (TREE_OPERAND (t, 0)))
1056 tem = negate_expr (TREE_OPERAND (t, 0));
1057 tem = fold (build2 (MINUS_EXPR, TREE_TYPE (t),
1058 tem, TREE_OPERAND (t, 1)));
1059 return fold_convert (type, tem);
1062 break;
1064 case MINUS_EXPR:
1065 /* - (A - B) -> B - A */
1066 if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
1067 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
1068 return fold_convert (type,
1069 fold (build2 (MINUS_EXPR, TREE_TYPE (t),
1070 TREE_OPERAND (t, 1),
1071 TREE_OPERAND (t, 0))));
1072 break;
1074 case MULT_EXPR:
1075 if (TYPE_UNSIGNED (TREE_TYPE (t)))
1076 break;
1078 /* Fall through. */
1080 case RDIV_EXPR:
1081 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
1083 tem = TREE_OPERAND (t, 1);
1084 if (negate_expr_p (tem))
1085 return fold_convert (type,
1086 fold (build2 (TREE_CODE (t), TREE_TYPE (t),
1087 TREE_OPERAND (t, 0),
1088 negate_expr (tem))));
1089 tem = TREE_OPERAND (t, 0);
1090 if (negate_expr_p (tem))
1091 return fold_convert (type,
1092 fold (build2 (TREE_CODE (t), TREE_TYPE (t),
1093 negate_expr (tem),
1094 TREE_OPERAND (t, 1))));
1096 break;
1098 case NOP_EXPR:
1099 /* Convert -((double)float) into (double)(-float). */
1100 if (TREE_CODE (type) == REAL_TYPE)
1102 tem = strip_float_extensions (t);
1103 if (tem != t && negate_expr_p (tem))
1104 return fold_convert (type, negate_expr (tem));
1106 break;
1108 case CALL_EXPR:
1109 /* Negate -f(x) as f(-x). */
1110 if (negate_mathfn_p (builtin_mathfn_code (t))
1111 && negate_expr_p (TREE_VALUE (TREE_OPERAND (t, 1))))
1113 tree fndecl, arg, arglist;
1115 fndecl = get_callee_fndecl (t);
1116 arg = negate_expr (TREE_VALUE (TREE_OPERAND (t, 1)));
1117 arglist = build_tree_list (NULL_TREE, arg);
1118 return build_function_call_expr (fndecl, arglist);
1120 break;
1122 case RSHIFT_EXPR:
1123 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1124 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
1126 tree op1 = TREE_OPERAND (t, 1);
1127 if (TREE_INT_CST_HIGH (op1) == 0
1128 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
1129 == TREE_INT_CST_LOW (op1))
1131 tree ntype = TYPE_UNSIGNED (type)
1132 ? lang_hooks.types.signed_type (type)
1133 : lang_hooks.types.unsigned_type (type);
1134 tree temp = fold_convert (ntype, TREE_OPERAND (t, 0));
1135 temp = fold (build2 (RSHIFT_EXPR, ntype, temp, op1));
1136 return fold_convert (type, temp);
1139 break;
1141 default:
1142 break;
1145 tem = fold (build1 (NEGATE_EXPR, TREE_TYPE (t), t));
1146 return fold_convert (type, tem);
1149 /* Split a tree IN into a constant, literal and variable parts that could be
1150 combined with CODE to make IN. "constant" means an expression with
1151 TREE_CONSTANT but that isn't an actual constant. CODE must be a
1152 commutative arithmetic operation. Store the constant part into *CONP,
1153 the literal in *LITP and return the variable part. If a part isn't
1154 present, set it to null. If the tree does not decompose in this way,
1155 return the entire tree as the variable part and the other parts as null.
1157 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
1158 case, we negate an operand that was subtracted. Except if it is a
1159 literal for which we use *MINUS_LITP instead.
1161 If NEGATE_P is true, we are negating all of IN, again except a literal
1162 for which we use *MINUS_LITP instead.
1164 If IN is itself a literal or constant, return it as appropriate.
1166 Note that we do not guarantee that any of the three values will be the
1167 same type as IN, but they will have the same signedness and mode. */
1169 static tree
1170 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
1171 tree *minus_litp, int negate_p)
1173 tree var = 0;
1175 *conp = 0;
1176 *litp = 0;
1177 *minus_litp = 0;
1179 /* Strip any conversions that don't change the machine mode or signedness. */
1180 STRIP_SIGN_NOPS (in);
1182 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST)
1183 *litp = in;
1184 else if (TREE_CODE (in) == code
1185 || (! FLOAT_TYPE_P (TREE_TYPE (in))
1186 /* We can associate addition and subtraction together (even
1187 though the C standard doesn't say so) for integers because
1188 the value is not affected. For reals, the value might be
1189 affected, so we can't. */
1190 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
1191 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
1193 tree op0 = TREE_OPERAND (in, 0);
1194 tree op1 = TREE_OPERAND (in, 1);
1195 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
1196 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
1198 /* First see if either of the operands is a literal, then a constant. */
1199 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
1200 *litp = op0, op0 = 0;
1201 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST)
1202 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
1204 if (op0 != 0 && TREE_CONSTANT (op0))
1205 *conp = op0, op0 = 0;
1206 else if (op1 != 0 && TREE_CONSTANT (op1))
1207 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
1209 /* If we haven't dealt with either operand, this is not a case we can
1210 decompose. Otherwise, VAR is either of the ones remaining, if any. */
1211 if (op0 != 0 && op1 != 0)
1212 var = in;
1213 else if (op0 != 0)
1214 var = op0;
1215 else
1216 var = op1, neg_var_p = neg1_p;
1218 /* Now do any needed negations. */
1219 if (neg_litp_p)
1220 *minus_litp = *litp, *litp = 0;
1221 if (neg_conp_p)
1222 *conp = negate_expr (*conp);
1223 if (neg_var_p)
1224 var = negate_expr (var);
1226 else if (TREE_CONSTANT (in))
1227 *conp = in;
1228 else
1229 var = in;
1231 if (negate_p)
1233 if (*litp)
1234 *minus_litp = *litp, *litp = 0;
1235 else if (*minus_litp)
1236 *litp = *minus_litp, *minus_litp = 0;
1237 *conp = negate_expr (*conp);
1238 var = negate_expr (var);
1241 return var;
1244 /* Re-associate trees split by the above function. T1 and T2 are either
1245 expressions to associate or null. Return the new expression, if any. If
1246 we build an operation, do it in TYPE and with CODE. */
1248 static tree
1249 associate_trees (tree t1, tree t2, enum tree_code code, tree type)
1251 if (t1 == 0)
1252 return t2;
1253 else if (t2 == 0)
1254 return t1;
1256 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
1257 try to fold this since we will have infinite recursion. But do
1258 deal with any NEGATE_EXPRs. */
1259 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
1260 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
1262 if (code == PLUS_EXPR)
1264 if (TREE_CODE (t1) == NEGATE_EXPR)
1265 return build2 (MINUS_EXPR, type, fold_convert (type, t2),
1266 fold_convert (type, TREE_OPERAND (t1, 0)));
1267 else if (TREE_CODE (t2) == NEGATE_EXPR)
1268 return build2 (MINUS_EXPR, type, fold_convert (type, t1),
1269 fold_convert (type, TREE_OPERAND (t2, 0)));
1270 else if (integer_zerop (t2))
1271 return fold_convert (type, t1);
1273 else if (code == MINUS_EXPR)
1275 if (integer_zerop (t2))
1276 return fold_convert (type, t1);
1279 return build2 (code, type, fold_convert (type, t1),
1280 fold_convert (type, t2));
1283 return fold (build2 (code, type, fold_convert (type, t1),
1284 fold_convert (type, t2)));
1287 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1288 to produce a new constant.
1290 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1292 tree
1293 int_const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1295 unsigned HOST_WIDE_INT int1l, int2l;
1296 HOST_WIDE_INT int1h, int2h;
1297 unsigned HOST_WIDE_INT low;
1298 HOST_WIDE_INT hi;
1299 unsigned HOST_WIDE_INT garbagel;
1300 HOST_WIDE_INT garbageh;
1301 tree t;
1302 tree type = TREE_TYPE (arg1);
1303 int uns = TYPE_UNSIGNED (type);
1304 int is_sizetype
1305 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
1306 int overflow = 0;
1307 int no_overflow = 0;
1309 int1l = TREE_INT_CST_LOW (arg1);
1310 int1h = TREE_INT_CST_HIGH (arg1);
1311 int2l = TREE_INT_CST_LOW (arg2);
1312 int2h = TREE_INT_CST_HIGH (arg2);
1314 switch (code)
1316 case BIT_IOR_EXPR:
1317 low = int1l | int2l, hi = int1h | int2h;
1318 break;
1320 case BIT_XOR_EXPR:
1321 low = int1l ^ int2l, hi = int1h ^ int2h;
1322 break;
1324 case BIT_AND_EXPR:
1325 low = int1l & int2l, hi = int1h & int2h;
1326 break;
1328 case RSHIFT_EXPR:
1329 int2l = -int2l;
1330 case LSHIFT_EXPR:
1331 /* It's unclear from the C standard whether shifts can overflow.
1332 The following code ignores overflow; perhaps a C standard
1333 interpretation ruling is needed. */
1334 lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1335 &low, &hi, !uns);
1336 no_overflow = 1;
1337 break;
1339 case RROTATE_EXPR:
1340 int2l = - int2l;
1341 case LROTATE_EXPR:
1342 lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1343 &low, &hi);
1344 break;
1346 case PLUS_EXPR:
1347 overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
1348 break;
1350 case MINUS_EXPR:
1351 neg_double (int2l, int2h, &low, &hi);
1352 add_double (int1l, int1h, low, hi, &low, &hi);
1353 overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
1354 break;
1356 case MULT_EXPR:
1357 overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
1358 break;
1360 case TRUNC_DIV_EXPR:
1361 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1362 case EXACT_DIV_EXPR:
1363 /* This is a shortcut for a common special case. */
1364 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1365 && ! TREE_CONSTANT_OVERFLOW (arg1)
1366 && ! TREE_CONSTANT_OVERFLOW (arg2)
1367 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1369 if (code == CEIL_DIV_EXPR)
1370 int1l += int2l - 1;
1372 low = int1l / int2l, hi = 0;
1373 break;
1376 /* ... fall through ... */
1378 case ROUND_DIV_EXPR:
1379 if (int2h == 0 && int2l == 1)
1381 low = int1l, hi = int1h;
1382 break;
1384 if (int1l == int2l && int1h == int2h
1385 && ! (int1l == 0 && int1h == 0))
1387 low = 1, hi = 0;
1388 break;
1390 overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
1391 &low, &hi, &garbagel, &garbageh);
1392 break;
1394 case TRUNC_MOD_EXPR:
1395 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1396 /* This is a shortcut for a common special case. */
1397 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1398 && ! TREE_CONSTANT_OVERFLOW (arg1)
1399 && ! TREE_CONSTANT_OVERFLOW (arg2)
1400 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1402 if (code == CEIL_MOD_EXPR)
1403 int1l += int2l - 1;
1404 low = int1l % int2l, hi = 0;
1405 break;
1408 /* ... fall through ... */
1410 case ROUND_MOD_EXPR:
1411 overflow = div_and_round_double (code, uns,
1412 int1l, int1h, int2l, int2h,
1413 &garbagel, &garbageh, &low, &hi);
1414 break;
1416 case MIN_EXPR:
1417 case MAX_EXPR:
1418 if (uns)
1419 low = (((unsigned HOST_WIDE_INT) int1h
1420 < (unsigned HOST_WIDE_INT) int2h)
1421 || (((unsigned HOST_WIDE_INT) int1h
1422 == (unsigned HOST_WIDE_INT) int2h)
1423 && int1l < int2l));
1424 else
1425 low = (int1h < int2h
1426 || (int1h == int2h && int1l < int2l));
1428 if (low == (code == MIN_EXPR))
1429 low = int1l, hi = int1h;
1430 else
1431 low = int2l, hi = int2h;
1432 break;
1434 default:
1435 gcc_unreachable ();
1438 t = build_int_cst_wide (TREE_TYPE (arg1), low, hi);
1440 if (notrunc)
1442 /* Propagate overflow flags ourselves. */
1443 if (((!uns || is_sizetype) && overflow)
1444 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1446 t = copy_node (t);
1447 TREE_OVERFLOW (t) = 1;
1448 TREE_CONSTANT_OVERFLOW (t) = 1;
1450 else if (TREE_CONSTANT_OVERFLOW (arg1) | TREE_CONSTANT_OVERFLOW (arg2))
1452 t = copy_node (t);
1453 TREE_CONSTANT_OVERFLOW (t) = 1;
1456 else
1457 t = force_fit_type (t, 1,
1458 ((!uns || is_sizetype) && overflow)
1459 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2),
1460 TREE_CONSTANT_OVERFLOW (arg1)
1461 | TREE_CONSTANT_OVERFLOW (arg2));
1463 return t;
1466 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1467 constant. We assume ARG1 and ARG2 have the same data type, or at least
1468 are the same kind of constant and the same machine mode.
1470 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1472 static tree
1473 const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1475 STRIP_NOPS (arg1);
1476 STRIP_NOPS (arg2);
1478 if (TREE_CODE (arg1) == INTEGER_CST)
1479 return int_const_binop (code, arg1, arg2, notrunc);
1481 if (TREE_CODE (arg1) == REAL_CST)
1483 enum machine_mode mode;
1484 REAL_VALUE_TYPE d1;
1485 REAL_VALUE_TYPE d2;
1486 REAL_VALUE_TYPE value;
1487 tree t, type;
1489 d1 = TREE_REAL_CST (arg1);
1490 d2 = TREE_REAL_CST (arg2);
1492 type = TREE_TYPE (arg1);
1493 mode = TYPE_MODE (type);
1495 /* Don't perform operation if we honor signaling NaNs and
1496 either operand is a NaN. */
1497 if (HONOR_SNANS (mode)
1498 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1499 return NULL_TREE;
1501 /* Don't perform operation if it would raise a division
1502 by zero exception. */
1503 if (code == RDIV_EXPR
1504 && REAL_VALUES_EQUAL (d2, dconst0)
1505 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1506 return NULL_TREE;
1508 /* If either operand is a NaN, just return it. Otherwise, set up
1509 for floating-point trap; we return an overflow. */
1510 if (REAL_VALUE_ISNAN (d1))
1511 return arg1;
1512 else if (REAL_VALUE_ISNAN (d2))
1513 return arg2;
1515 REAL_ARITHMETIC (value, code, d1, d2);
1517 t = build_real (type, real_value_truncate (mode, value));
1519 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1520 TREE_CONSTANT_OVERFLOW (t)
1521 = TREE_OVERFLOW (t)
1522 | TREE_CONSTANT_OVERFLOW (arg1)
1523 | TREE_CONSTANT_OVERFLOW (arg2);
1524 return t;
1526 if (TREE_CODE (arg1) == COMPLEX_CST)
1528 tree type = TREE_TYPE (arg1);
1529 tree r1 = TREE_REALPART (arg1);
1530 tree i1 = TREE_IMAGPART (arg1);
1531 tree r2 = TREE_REALPART (arg2);
1532 tree i2 = TREE_IMAGPART (arg2);
1533 tree t;
1535 switch (code)
1537 case PLUS_EXPR:
1538 t = build_complex (type,
1539 const_binop (PLUS_EXPR, r1, r2, notrunc),
1540 const_binop (PLUS_EXPR, i1, i2, notrunc));
1541 break;
1543 case MINUS_EXPR:
1544 t = build_complex (type,
1545 const_binop (MINUS_EXPR, r1, r2, notrunc),
1546 const_binop (MINUS_EXPR, i1, i2, notrunc));
1547 break;
1549 case MULT_EXPR:
1550 t = build_complex (type,
1551 const_binop (MINUS_EXPR,
1552 const_binop (MULT_EXPR,
1553 r1, r2, notrunc),
1554 const_binop (MULT_EXPR,
1555 i1, i2, notrunc),
1556 notrunc),
1557 const_binop (PLUS_EXPR,
1558 const_binop (MULT_EXPR,
1559 r1, i2, notrunc),
1560 const_binop (MULT_EXPR,
1561 i1, r2, notrunc),
1562 notrunc));
1563 break;
1565 case RDIV_EXPR:
1567 tree magsquared
1568 = const_binop (PLUS_EXPR,
1569 const_binop (MULT_EXPR, r2, r2, notrunc),
1570 const_binop (MULT_EXPR, i2, i2, notrunc),
1571 notrunc);
1573 t = build_complex (type,
1574 const_binop
1575 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1576 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1577 const_binop (PLUS_EXPR,
1578 const_binop (MULT_EXPR, r1, r2,
1579 notrunc),
1580 const_binop (MULT_EXPR, i1, i2,
1581 notrunc),
1582 notrunc),
1583 magsquared, notrunc),
1584 const_binop
1585 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1586 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1587 const_binop (MINUS_EXPR,
1588 const_binop (MULT_EXPR, i1, r2,
1589 notrunc),
1590 const_binop (MULT_EXPR, r1, i2,
1591 notrunc),
1592 notrunc),
1593 magsquared, notrunc));
1595 break;
1597 default:
1598 gcc_unreachable ();
1600 return t;
1602 return 0;
1605 /* Create a size type INT_CST node with NUMBER sign extended. KIND
1606 indicates which particular sizetype to create. */
1608 tree
1609 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1611 return build_int_cst (sizetype_tab[(int) kind], number);
1614 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1615 is a tree code. The type of the result is taken from the operands.
1616 Both must be the same type integer type and it must be a size type.
1617 If the operands are constant, so is the result. */
1619 tree
1620 size_binop (enum tree_code code, tree arg0, tree arg1)
1622 tree type = TREE_TYPE (arg0);
1624 gcc_assert (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1625 && type == TREE_TYPE (arg1));
1627 /* Handle the special case of two integer constants faster. */
1628 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1630 /* And some specific cases even faster than that. */
1631 if (code == PLUS_EXPR && integer_zerop (arg0))
1632 return arg1;
1633 else if ((code == MINUS_EXPR || code == PLUS_EXPR)
1634 && integer_zerop (arg1))
1635 return arg0;
1636 else if (code == MULT_EXPR && integer_onep (arg0))
1637 return arg1;
1639 /* Handle general case of two integer constants. */
1640 return int_const_binop (code, arg0, arg1, 0);
1643 if (arg0 == error_mark_node || arg1 == error_mark_node)
1644 return error_mark_node;
1646 return fold (build2 (code, type, arg0, arg1));
1649 /* Given two values, either both of sizetype or both of bitsizetype,
1650 compute the difference between the two values. Return the value
1651 in signed type corresponding to the type of the operands. */
1653 tree
1654 size_diffop (tree arg0, tree arg1)
1656 tree type = TREE_TYPE (arg0);
1657 tree ctype;
1659 gcc_assert (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1660 && type == TREE_TYPE (arg1));
1662 /* If the type is already signed, just do the simple thing. */
1663 if (!TYPE_UNSIGNED (type))
1664 return size_binop (MINUS_EXPR, arg0, arg1);
1666 ctype = type == bitsizetype ? sbitsizetype : ssizetype;
1668 /* If either operand is not a constant, do the conversions to the signed
1669 type and subtract. The hardware will do the right thing with any
1670 overflow in the subtraction. */
1671 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1672 return size_binop (MINUS_EXPR, fold_convert (ctype, arg0),
1673 fold_convert (ctype, arg1));
1675 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1676 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1677 overflow) and negate (which can't either). Special-case a result
1678 of zero while we're here. */
1679 if (tree_int_cst_equal (arg0, arg1))
1680 return fold_convert (ctype, integer_zero_node);
1681 else if (tree_int_cst_lt (arg1, arg0))
1682 return fold_convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
1683 else
1684 return size_binop (MINUS_EXPR, fold_convert (ctype, integer_zero_node),
1685 fold_convert (ctype, size_binop (MINUS_EXPR,
1686 arg1, arg0)));
1689 /* Construct a vector of zero elements of vector type TYPE. */
1691 static tree
1692 build_zero_vector (tree type)
1694 tree elem, list;
1695 int i, units;
1697 elem = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
1698 units = TYPE_VECTOR_SUBPARTS (type);
1700 list = NULL_TREE;
1701 for (i = 0; i < units; i++)
1702 list = tree_cons (NULL_TREE, elem, list);
1703 return build_vector (type, list);
1707 /* Attempt to fold type conversion operation CODE of expression ARG1 to
1708 type TYPE. If no simplification can be done return NULL_TREE. */
1710 static tree
1711 fold_convert_const (enum tree_code code, tree type, tree arg1)
1713 int overflow = 0;
1714 tree t;
1716 if (TREE_TYPE (arg1) == type)
1717 return arg1;
1719 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
1721 if (TREE_CODE (arg1) == INTEGER_CST)
1723 /* If we would build a constant wider than GCC supports,
1724 leave the conversion unfolded. */
1725 if (TYPE_PRECISION (type) > 2 * HOST_BITS_PER_WIDE_INT)
1726 return NULL_TREE;
1728 /* Given an integer constant, make new constant with new type,
1729 appropriately sign-extended or truncated. */
1730 t = build_int_cst_wide (type, TREE_INT_CST_LOW (arg1),
1731 TREE_INT_CST_HIGH (arg1));
1733 t = force_fit_type (t,
1734 /* Don't set the overflow when
1735 converting a pointer */
1736 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1737 (TREE_INT_CST_HIGH (arg1) < 0
1738 && (TYPE_UNSIGNED (type)
1739 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1740 | TREE_OVERFLOW (arg1),
1741 TREE_CONSTANT_OVERFLOW (arg1));
1742 return t;
1744 else if (TREE_CODE (arg1) == REAL_CST)
1746 /* The following code implements the floating point to integer
1747 conversion rules required by the Java Language Specification,
1748 that IEEE NaNs are mapped to zero and values that overflow
1749 the target precision saturate, i.e. values greater than
1750 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1751 are mapped to INT_MIN. These semantics are allowed by the
1752 C and C++ standards that simply state that the behavior of
1753 FP-to-integer conversion is unspecified upon overflow. */
1755 HOST_WIDE_INT high, low;
1756 REAL_VALUE_TYPE r;
1757 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1759 switch (code)
1761 case FIX_TRUNC_EXPR:
1762 real_trunc (&r, VOIDmode, &x);
1763 break;
1765 case FIX_CEIL_EXPR:
1766 real_ceil (&r, VOIDmode, &x);
1767 break;
1769 case FIX_FLOOR_EXPR:
1770 real_floor (&r, VOIDmode, &x);
1771 break;
1773 case FIX_ROUND_EXPR:
1774 real_round (&r, VOIDmode, &x);
1775 break;
1777 default:
1778 gcc_unreachable ();
1781 /* If R is NaN, return zero and show we have an overflow. */
1782 if (REAL_VALUE_ISNAN (r))
1784 overflow = 1;
1785 high = 0;
1786 low = 0;
1789 /* See if R is less than the lower bound or greater than the
1790 upper bound. */
1792 if (! overflow)
1794 tree lt = TYPE_MIN_VALUE (type);
1795 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1796 if (REAL_VALUES_LESS (r, l))
1798 overflow = 1;
1799 high = TREE_INT_CST_HIGH (lt);
1800 low = TREE_INT_CST_LOW (lt);
1804 if (! overflow)
1806 tree ut = TYPE_MAX_VALUE (type);
1807 if (ut)
1809 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1810 if (REAL_VALUES_LESS (u, r))
1812 overflow = 1;
1813 high = TREE_INT_CST_HIGH (ut);
1814 low = TREE_INT_CST_LOW (ut);
1819 if (! overflow)
1820 REAL_VALUE_TO_INT (&low, &high, r);
1822 t = build_int_cst_wide (type, low, high);
1824 t = force_fit_type (t, -1, overflow | TREE_OVERFLOW (arg1),
1825 TREE_CONSTANT_OVERFLOW (arg1));
1826 return t;
1829 else if (TREE_CODE (type) == REAL_TYPE)
1831 if (TREE_CODE (arg1) == INTEGER_CST)
1832 return build_real_from_int_cst (type, arg1);
1833 if (TREE_CODE (arg1) == REAL_CST)
1835 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
1837 /* We make a copy of ARG1 so that we don't modify an
1838 existing constant tree. */
1839 t = copy_node (arg1);
1840 TREE_TYPE (t) = type;
1841 return t;
1844 t = build_real (type,
1845 real_value_truncate (TYPE_MODE (type),
1846 TREE_REAL_CST (arg1)));
1848 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1849 TREE_CONSTANT_OVERFLOW (t)
1850 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1851 return t;
1854 return NULL_TREE;
1857 /* Convert expression ARG to type TYPE. Used by the middle-end for
1858 simple conversions in preference to calling the front-end's convert. */
1860 tree
1861 fold_convert (tree type, tree arg)
1863 tree orig = TREE_TYPE (arg);
1864 tree tem;
1866 if (type == orig)
1867 return arg;
1869 if (TREE_CODE (arg) == ERROR_MARK
1870 || TREE_CODE (type) == ERROR_MARK
1871 || TREE_CODE (orig) == ERROR_MARK)
1872 return error_mark_node;
1874 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig)
1875 || lang_hooks.types_compatible_p (TYPE_MAIN_VARIANT (type),
1876 TYPE_MAIN_VARIANT (orig)))
1877 return fold (build1 (NOP_EXPR, type, arg));
1879 switch (TREE_CODE (type))
1881 case INTEGER_TYPE: case CHAR_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1882 case POINTER_TYPE: case REFERENCE_TYPE:
1883 case OFFSET_TYPE:
1884 if (TREE_CODE (arg) == INTEGER_CST)
1886 tem = fold_convert_const (NOP_EXPR, type, arg);
1887 if (tem != NULL_TREE)
1888 return tem;
1890 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
1891 || TREE_CODE (orig) == OFFSET_TYPE)
1892 return fold (build1 (NOP_EXPR, type, arg));
1893 if (TREE_CODE (orig) == COMPLEX_TYPE)
1895 tem = fold (build1 (REALPART_EXPR, TREE_TYPE (orig), arg));
1896 return fold_convert (type, tem);
1898 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
1899 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
1900 return fold (build1 (NOP_EXPR, type, arg));
1902 case REAL_TYPE:
1903 if (TREE_CODE (arg) == INTEGER_CST)
1905 tem = fold_convert_const (FLOAT_EXPR, type, arg);
1906 if (tem != NULL_TREE)
1907 return tem;
1909 else if (TREE_CODE (arg) == REAL_CST)
1911 tem = fold_convert_const (NOP_EXPR, type, arg);
1912 if (tem != NULL_TREE)
1913 return tem;
1916 switch (TREE_CODE (orig))
1918 case INTEGER_TYPE: case CHAR_TYPE:
1919 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
1920 case POINTER_TYPE: case REFERENCE_TYPE:
1921 return fold (build1 (FLOAT_EXPR, type, arg));
1923 case REAL_TYPE:
1924 return fold (build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
1925 type, arg));
1927 case COMPLEX_TYPE:
1928 tem = fold (build1 (REALPART_EXPR, TREE_TYPE (orig), arg));
1929 return fold_convert (type, tem);
1931 default:
1932 gcc_unreachable ();
1935 case COMPLEX_TYPE:
1936 switch (TREE_CODE (orig))
1938 case INTEGER_TYPE: case CHAR_TYPE:
1939 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
1940 case POINTER_TYPE: case REFERENCE_TYPE:
1941 case REAL_TYPE:
1942 return build2 (COMPLEX_EXPR, type,
1943 fold_convert (TREE_TYPE (type), arg),
1944 fold_convert (TREE_TYPE (type), integer_zero_node));
1945 case COMPLEX_TYPE:
1947 tree rpart, ipart;
1949 if (TREE_CODE (arg) == COMPLEX_EXPR)
1951 rpart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 0));
1952 ipart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 1));
1953 return fold (build2 (COMPLEX_EXPR, type, rpart, ipart));
1956 arg = save_expr (arg);
1957 rpart = fold (build1 (REALPART_EXPR, TREE_TYPE (orig), arg));
1958 ipart = fold (build1 (IMAGPART_EXPR, TREE_TYPE (orig), arg));
1959 rpart = fold_convert (TREE_TYPE (type), rpart);
1960 ipart = fold_convert (TREE_TYPE (type), ipart);
1961 return fold (build2 (COMPLEX_EXPR, type, rpart, ipart));
1964 default:
1965 gcc_unreachable ();
1968 case VECTOR_TYPE:
1969 if (integer_zerop (arg))
1970 return build_zero_vector (type);
1971 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
1972 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
1973 || TREE_CODE (orig) == VECTOR_TYPE);
1974 return fold (build1 (NOP_EXPR, type, arg));
1976 case VOID_TYPE:
1977 return fold (build1 (CONVERT_EXPR, type, fold_ignored_result (arg)));
1979 default:
1980 gcc_unreachable ();
1984 /* Return an expr equal to X but certainly not valid as an lvalue. */
1986 tree
1987 non_lvalue (tree x)
1989 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
1990 us. */
1991 if (in_gimple_form)
1992 return x;
1994 /* We only need to wrap lvalue tree codes. */
1995 switch (TREE_CODE (x))
1997 case VAR_DECL:
1998 case PARM_DECL:
1999 case RESULT_DECL:
2000 case LABEL_DECL:
2001 case FUNCTION_DECL:
2002 case SSA_NAME:
2004 case COMPONENT_REF:
2005 case INDIRECT_REF:
2006 case ALIGN_INDIRECT_REF:
2007 case MISALIGNED_INDIRECT_REF:
2008 case ARRAY_REF:
2009 case ARRAY_RANGE_REF:
2010 case BIT_FIELD_REF:
2011 case OBJ_TYPE_REF:
2013 case REALPART_EXPR:
2014 case IMAGPART_EXPR:
2015 case PREINCREMENT_EXPR:
2016 case PREDECREMENT_EXPR:
2017 case SAVE_EXPR:
2018 case TRY_CATCH_EXPR:
2019 case WITH_CLEANUP_EXPR:
2020 case COMPOUND_EXPR:
2021 case MODIFY_EXPR:
2022 case TARGET_EXPR:
2023 case COND_EXPR:
2024 case BIND_EXPR:
2025 case MIN_EXPR:
2026 case MAX_EXPR:
2027 break;
2029 default:
2030 /* Assume the worst for front-end tree codes. */
2031 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2032 break;
2033 return x;
2035 return build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
2038 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
2039 Zero means allow extended lvalues. */
2041 int pedantic_lvalues;
2043 /* When pedantic, return an expr equal to X but certainly not valid as a
2044 pedantic lvalue. Otherwise, return X. */
2046 static tree
2047 pedantic_non_lvalue (tree x)
2049 if (pedantic_lvalues)
2050 return non_lvalue (x);
2051 else
2052 return x;
2055 /* Given a tree comparison code, return the code that is the logical inverse
2056 of the given code. It is not safe to do this for floating-point
2057 comparisons, except for NE_EXPR and EQ_EXPR, so we receive a machine mode
2058 as well: if reversing the comparison is unsafe, return ERROR_MARK. */
2060 static enum tree_code
2061 invert_tree_comparison (enum tree_code code, bool honor_nans)
2063 if (honor_nans && flag_trapping_math)
2064 return ERROR_MARK;
2066 switch (code)
2068 case EQ_EXPR:
2069 return NE_EXPR;
2070 case NE_EXPR:
2071 return EQ_EXPR;
2072 case GT_EXPR:
2073 return honor_nans ? UNLE_EXPR : LE_EXPR;
2074 case GE_EXPR:
2075 return honor_nans ? UNLT_EXPR : LT_EXPR;
2076 case LT_EXPR:
2077 return honor_nans ? UNGE_EXPR : GE_EXPR;
2078 case LE_EXPR:
2079 return honor_nans ? UNGT_EXPR : GT_EXPR;
2080 case LTGT_EXPR:
2081 return UNEQ_EXPR;
2082 case UNEQ_EXPR:
2083 return LTGT_EXPR;
2084 case UNGT_EXPR:
2085 return LE_EXPR;
2086 case UNGE_EXPR:
2087 return LT_EXPR;
2088 case UNLT_EXPR:
2089 return GE_EXPR;
2090 case UNLE_EXPR:
2091 return GT_EXPR;
2092 case ORDERED_EXPR:
2093 return UNORDERED_EXPR;
2094 case UNORDERED_EXPR:
2095 return ORDERED_EXPR;
2096 default:
2097 gcc_unreachable ();
2101 /* Similar, but return the comparison that results if the operands are
2102 swapped. This is safe for floating-point. */
2104 enum tree_code
2105 swap_tree_comparison (enum tree_code code)
2107 switch (code)
2109 case EQ_EXPR:
2110 case NE_EXPR:
2111 return code;
2112 case GT_EXPR:
2113 return LT_EXPR;
2114 case GE_EXPR:
2115 return LE_EXPR;
2116 case LT_EXPR:
2117 return GT_EXPR;
2118 case LE_EXPR:
2119 return GE_EXPR;
2120 default:
2121 gcc_unreachable ();
2126 /* Convert a comparison tree code from an enum tree_code representation
2127 into a compcode bit-based encoding. This function is the inverse of
2128 compcode_to_comparison. */
2130 static enum comparison_code
2131 comparison_to_compcode (enum tree_code code)
2133 switch (code)
2135 case LT_EXPR:
2136 return COMPCODE_LT;
2137 case EQ_EXPR:
2138 return COMPCODE_EQ;
2139 case LE_EXPR:
2140 return COMPCODE_LE;
2141 case GT_EXPR:
2142 return COMPCODE_GT;
2143 case NE_EXPR:
2144 return COMPCODE_NE;
2145 case GE_EXPR:
2146 return COMPCODE_GE;
2147 case ORDERED_EXPR:
2148 return COMPCODE_ORD;
2149 case UNORDERED_EXPR:
2150 return COMPCODE_UNORD;
2151 case UNLT_EXPR:
2152 return COMPCODE_UNLT;
2153 case UNEQ_EXPR:
2154 return COMPCODE_UNEQ;
2155 case UNLE_EXPR:
2156 return COMPCODE_UNLE;
2157 case UNGT_EXPR:
2158 return COMPCODE_UNGT;
2159 case LTGT_EXPR:
2160 return COMPCODE_LTGT;
2161 case UNGE_EXPR:
2162 return COMPCODE_UNGE;
2163 default:
2164 gcc_unreachable ();
2168 /* Convert a compcode bit-based encoding of a comparison operator back
2169 to GCC's enum tree_code representation. This function is the
2170 inverse of comparison_to_compcode. */
2172 static enum tree_code
2173 compcode_to_comparison (enum comparison_code code)
2175 switch (code)
2177 case COMPCODE_LT:
2178 return LT_EXPR;
2179 case COMPCODE_EQ:
2180 return EQ_EXPR;
2181 case COMPCODE_LE:
2182 return LE_EXPR;
2183 case COMPCODE_GT:
2184 return GT_EXPR;
2185 case COMPCODE_NE:
2186 return NE_EXPR;
2187 case COMPCODE_GE:
2188 return GE_EXPR;
2189 case COMPCODE_ORD:
2190 return ORDERED_EXPR;
2191 case COMPCODE_UNORD:
2192 return UNORDERED_EXPR;
2193 case COMPCODE_UNLT:
2194 return UNLT_EXPR;
2195 case COMPCODE_UNEQ:
2196 return UNEQ_EXPR;
2197 case COMPCODE_UNLE:
2198 return UNLE_EXPR;
2199 case COMPCODE_UNGT:
2200 return UNGT_EXPR;
2201 case COMPCODE_LTGT:
2202 return LTGT_EXPR;
2203 case COMPCODE_UNGE:
2204 return UNGE_EXPR;
2205 default:
2206 gcc_unreachable ();
2210 /* Return a tree for the comparison which is the combination of
2211 doing the AND or OR (depending on CODE) of the two operations LCODE
2212 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2213 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2214 if this makes the transformation invalid. */
2216 tree
2217 combine_comparisons (enum tree_code code, enum tree_code lcode,
2218 enum tree_code rcode, tree truth_type,
2219 tree ll_arg, tree lr_arg)
2221 bool honor_nans = HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg)));
2222 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2223 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2224 enum comparison_code compcode;
2226 switch (code)
2228 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2229 compcode = lcompcode & rcompcode;
2230 break;
2232 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2233 compcode = lcompcode | rcompcode;
2234 break;
2236 default:
2237 return NULL_TREE;
2240 if (!honor_nans)
2242 /* Eliminate unordered comparisons, as well as LTGT and ORD
2243 which are not used unless the mode has NaNs. */
2244 compcode &= ~COMPCODE_UNORD;
2245 if (compcode == COMPCODE_LTGT)
2246 compcode = COMPCODE_NE;
2247 else if (compcode == COMPCODE_ORD)
2248 compcode = COMPCODE_TRUE;
2250 else if (flag_trapping_math)
2252 /* Check that the original operation and the optimized ones will trap
2253 under the same condition. */
2254 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2255 && (lcompcode != COMPCODE_EQ)
2256 && (lcompcode != COMPCODE_ORD);
2257 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2258 && (rcompcode != COMPCODE_EQ)
2259 && (rcompcode != COMPCODE_ORD);
2260 bool trap = (compcode & COMPCODE_UNORD) == 0
2261 && (compcode != COMPCODE_EQ)
2262 && (compcode != COMPCODE_ORD);
2264 /* In a short-circuited boolean expression the LHS might be
2265 such that the RHS, if evaluated, will never trap. For
2266 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2267 if neither x nor y is NaN. (This is a mixed blessing: for
2268 example, the expression above will never trap, hence
2269 optimizing it to x < y would be invalid). */
2270 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2271 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2272 rtrap = false;
2274 /* If the comparison was short-circuited, and only the RHS
2275 trapped, we may now generate a spurious trap. */
2276 if (rtrap && !ltrap
2277 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2278 return NULL_TREE;
2280 /* If we changed the conditions that cause a trap, we lose. */
2281 if ((ltrap || rtrap) != trap)
2282 return NULL_TREE;
2285 if (compcode == COMPCODE_TRUE)
2286 return constant_boolean_node (true, truth_type);
2287 else if (compcode == COMPCODE_FALSE)
2288 return constant_boolean_node (false, truth_type);
2289 else
2290 return fold (build2 (compcode_to_comparison (compcode),
2291 truth_type, ll_arg, lr_arg));
2294 /* Return nonzero if CODE is a tree code that represents a truth value. */
2296 static int
2297 truth_value_p (enum tree_code code)
2299 return (TREE_CODE_CLASS (code) == tcc_comparison
2300 || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
2301 || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
2302 || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
2305 /* Return nonzero if two operands (typically of the same tree node)
2306 are necessarily equal. If either argument has side-effects this
2307 function returns zero. FLAGS modifies behavior as follows:
2309 If OEP_ONLY_CONST is set, only return nonzero for constants.
2310 This function tests whether the operands are indistinguishable;
2311 it does not test whether they are equal using C's == operation.
2312 The distinction is important for IEEE floating point, because
2313 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2314 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2316 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2317 even though it may hold multiple values during a function.
2318 This is because a GCC tree node guarantees that nothing else is
2319 executed between the evaluation of its "operands" (which may often
2320 be evaluated in arbitrary order). Hence if the operands themselves
2321 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2322 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2323 unset means assuming isochronic (or instantaneous) tree equivalence.
2324 Unless comparing arbitrary expression trees, such as from different
2325 statements, this flag can usually be left unset.
2327 If OEP_PURE_SAME is set, then pure functions with identical arguments
2328 are considered the same. It is used when the caller has other ways
2329 to ensure that global memory is unchanged in between. */
2332 operand_equal_p (tree arg0, tree arg1, unsigned int flags)
2334 /* If either is ERROR_MARK, they aren't equal. */
2335 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK)
2336 return 0;
2338 /* If both types don't have the same signedness, then we can't consider
2339 them equal. We must check this before the STRIP_NOPS calls
2340 because they may change the signedness of the arguments. */
2341 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2342 return 0;
2344 STRIP_NOPS (arg0);
2345 STRIP_NOPS (arg1);
2347 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2348 /* This is needed for conversions and for COMPONENT_REF.
2349 Might as well play it safe and always test this. */
2350 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2351 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2352 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2353 return 0;
2355 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2356 We don't care about side effects in that case because the SAVE_EXPR
2357 takes care of that for us. In all other cases, two expressions are
2358 equal if they have no side effects. If we have two identical
2359 expressions with side effects that should be treated the same due
2360 to the only side effects being identical SAVE_EXPR's, that will
2361 be detected in the recursive calls below. */
2362 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2363 && (TREE_CODE (arg0) == SAVE_EXPR
2364 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2365 return 1;
2367 /* Next handle constant cases, those for which we can return 1 even
2368 if ONLY_CONST is set. */
2369 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2370 switch (TREE_CODE (arg0))
2372 case INTEGER_CST:
2373 return (! TREE_CONSTANT_OVERFLOW (arg0)
2374 && ! TREE_CONSTANT_OVERFLOW (arg1)
2375 && tree_int_cst_equal (arg0, arg1));
2377 case REAL_CST:
2378 return (! TREE_CONSTANT_OVERFLOW (arg0)
2379 && ! TREE_CONSTANT_OVERFLOW (arg1)
2380 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2381 TREE_REAL_CST (arg1)));
2383 case VECTOR_CST:
2385 tree v1, v2;
2387 if (TREE_CONSTANT_OVERFLOW (arg0)
2388 || TREE_CONSTANT_OVERFLOW (arg1))
2389 return 0;
2391 v1 = TREE_VECTOR_CST_ELTS (arg0);
2392 v2 = TREE_VECTOR_CST_ELTS (arg1);
2393 while (v1 && v2)
2395 if (!operand_equal_p (TREE_VALUE (v1), TREE_VALUE (v2),
2396 flags))
2397 return 0;
2398 v1 = TREE_CHAIN (v1);
2399 v2 = TREE_CHAIN (v2);
2402 return 1;
2405 case COMPLEX_CST:
2406 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2407 flags)
2408 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2409 flags));
2411 case STRING_CST:
2412 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2413 && ! memcmp (TREE_STRING_POINTER (arg0),
2414 TREE_STRING_POINTER (arg1),
2415 TREE_STRING_LENGTH (arg0)));
2417 case ADDR_EXPR:
2418 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2420 default:
2421 break;
2424 if (flags & OEP_ONLY_CONST)
2425 return 0;
2427 /* Define macros to test an operand from arg0 and arg1 for equality and a
2428 variant that allows null and views null as being different from any
2429 non-null value. In the latter case, if either is null, the both
2430 must be; otherwise, do the normal comparison. */
2431 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2432 TREE_OPERAND (arg1, N), flags)
2434 #define OP_SAME_WITH_NULL(N) \
2435 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2436 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2438 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2440 case tcc_unary:
2441 /* Two conversions are equal only if signedness and modes match. */
2442 switch (TREE_CODE (arg0))
2444 case NOP_EXPR:
2445 case CONVERT_EXPR:
2446 case FIX_CEIL_EXPR:
2447 case FIX_TRUNC_EXPR:
2448 case FIX_FLOOR_EXPR:
2449 case FIX_ROUND_EXPR:
2450 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2451 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2452 return 0;
2453 break;
2454 default:
2455 break;
2458 return OP_SAME (0);
2461 case tcc_comparison:
2462 case tcc_binary:
2463 if (OP_SAME (0) && OP_SAME (1))
2464 return 1;
2466 /* For commutative ops, allow the other order. */
2467 return (commutative_tree_code (TREE_CODE (arg0))
2468 && operand_equal_p (TREE_OPERAND (arg0, 0),
2469 TREE_OPERAND (arg1, 1), flags)
2470 && operand_equal_p (TREE_OPERAND (arg0, 1),
2471 TREE_OPERAND (arg1, 0), flags));
2473 case tcc_reference:
2474 /* If either of the pointer (or reference) expressions we are
2475 dereferencing contain a side effect, these cannot be equal. */
2476 if (TREE_SIDE_EFFECTS (arg0)
2477 || TREE_SIDE_EFFECTS (arg1))
2478 return 0;
2480 switch (TREE_CODE (arg0))
2482 case INDIRECT_REF:
2483 case ALIGN_INDIRECT_REF:
2484 case MISALIGNED_INDIRECT_REF:
2485 case REALPART_EXPR:
2486 case IMAGPART_EXPR:
2487 return OP_SAME (0);
2489 case ARRAY_REF:
2490 case ARRAY_RANGE_REF:
2491 /* Operands 2 and 3 may be null. */
2492 return (OP_SAME (0)
2493 && OP_SAME (1)
2494 && OP_SAME_WITH_NULL (2)
2495 && OP_SAME_WITH_NULL (3));
2497 case COMPONENT_REF:
2498 /* Handle operand 2 the same as for ARRAY_REF. */
2499 return OP_SAME (0) && OP_SAME (1) && OP_SAME_WITH_NULL (2);
2501 case BIT_FIELD_REF:
2502 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
2504 default:
2505 return 0;
2508 case tcc_expression:
2509 switch (TREE_CODE (arg0))
2511 case ADDR_EXPR:
2512 case TRUTH_NOT_EXPR:
2513 return OP_SAME (0);
2515 case TRUTH_ANDIF_EXPR:
2516 case TRUTH_ORIF_EXPR:
2517 return OP_SAME (0) && OP_SAME (1);
2519 case TRUTH_AND_EXPR:
2520 case TRUTH_OR_EXPR:
2521 case TRUTH_XOR_EXPR:
2522 if (OP_SAME (0) && OP_SAME (1))
2523 return 1;
2525 /* Otherwise take into account this is a commutative operation. */
2526 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2527 TREE_OPERAND (arg1, 1), flags)
2528 && operand_equal_p (TREE_OPERAND (arg0, 1),
2529 TREE_OPERAND (arg1, 0), flags));
2531 case CALL_EXPR:
2532 /* If the CALL_EXPRs call different functions, then they
2533 clearly can not be equal. */
2534 if (!OP_SAME (0))
2535 return 0;
2538 unsigned int cef = call_expr_flags (arg0);
2539 if (flags & OEP_PURE_SAME)
2540 cef &= ECF_CONST | ECF_PURE;
2541 else
2542 cef &= ECF_CONST;
2543 if (!cef)
2544 return 0;
2547 /* Now see if all the arguments are the same. operand_equal_p
2548 does not handle TREE_LIST, so we walk the operands here
2549 feeding them to operand_equal_p. */
2550 arg0 = TREE_OPERAND (arg0, 1);
2551 arg1 = TREE_OPERAND (arg1, 1);
2552 while (arg0 && arg1)
2554 if (! operand_equal_p (TREE_VALUE (arg0), TREE_VALUE (arg1),
2555 flags))
2556 return 0;
2558 arg0 = TREE_CHAIN (arg0);
2559 arg1 = TREE_CHAIN (arg1);
2562 /* If we get here and both argument lists are exhausted
2563 then the CALL_EXPRs are equal. */
2564 return ! (arg0 || arg1);
2566 default:
2567 return 0;
2570 case tcc_declaration:
2571 /* Consider __builtin_sqrt equal to sqrt. */
2572 return (TREE_CODE (arg0) == FUNCTION_DECL
2573 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
2574 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
2575 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
2577 default:
2578 return 0;
2581 #undef OP_SAME
2582 #undef OP_SAME_WITH_NULL
2585 /* Similar to operand_equal_p, but see if ARG0 might have been made by
2586 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
2588 When in doubt, return 0. */
2590 static int
2591 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
2593 int unsignedp1, unsignedpo;
2594 tree primarg0, primarg1, primother;
2595 unsigned int correct_width;
2597 if (operand_equal_p (arg0, arg1, 0))
2598 return 1;
2600 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
2601 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
2602 return 0;
2604 /* Discard any conversions that don't change the modes of ARG0 and ARG1
2605 and see if the inner values are the same. This removes any
2606 signedness comparison, which doesn't matter here. */
2607 primarg0 = arg0, primarg1 = arg1;
2608 STRIP_NOPS (primarg0);
2609 STRIP_NOPS (primarg1);
2610 if (operand_equal_p (primarg0, primarg1, 0))
2611 return 1;
2613 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
2614 actual comparison operand, ARG0.
2616 First throw away any conversions to wider types
2617 already present in the operands. */
2619 primarg1 = get_narrower (arg1, &unsignedp1);
2620 primother = get_narrower (other, &unsignedpo);
2622 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
2623 if (unsignedp1 == unsignedpo
2624 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
2625 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
2627 tree type = TREE_TYPE (arg0);
2629 /* Make sure shorter operand is extended the right way
2630 to match the longer operand. */
2631 primarg1 = fold_convert (lang_hooks.types.signed_or_unsigned_type
2632 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
2634 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
2635 return 1;
2638 return 0;
2641 /* See if ARG is an expression that is either a comparison or is performing
2642 arithmetic on comparisons. The comparisons must only be comparing
2643 two different values, which will be stored in *CVAL1 and *CVAL2; if
2644 they are nonzero it means that some operands have already been found.
2645 No variables may be used anywhere else in the expression except in the
2646 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2647 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2649 If this is true, return 1. Otherwise, return zero. */
2651 static int
2652 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
2654 enum tree_code code = TREE_CODE (arg);
2655 enum tree_code_class class = TREE_CODE_CLASS (code);
2657 /* We can handle some of the tcc_expression cases here. */
2658 if (class == tcc_expression && code == TRUTH_NOT_EXPR)
2659 class = tcc_unary;
2660 else if (class == tcc_expression
2661 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
2662 || code == COMPOUND_EXPR))
2663 class = tcc_binary;
2665 else if (class == tcc_expression && code == SAVE_EXPR
2666 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
2668 /* If we've already found a CVAL1 or CVAL2, this expression is
2669 two complex to handle. */
2670 if (*cval1 || *cval2)
2671 return 0;
2673 class = tcc_unary;
2674 *save_p = 1;
2677 switch (class)
2679 case tcc_unary:
2680 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
2682 case tcc_binary:
2683 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
2684 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2685 cval1, cval2, save_p));
2687 case tcc_constant:
2688 return 1;
2690 case tcc_expression:
2691 if (code == COND_EXPR)
2692 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
2693 cval1, cval2, save_p)
2694 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2695 cval1, cval2, save_p)
2696 && twoval_comparison_p (TREE_OPERAND (arg, 2),
2697 cval1, cval2, save_p));
2698 return 0;
2700 case tcc_comparison:
2701 /* First see if we can handle the first operand, then the second. For
2702 the second operand, we know *CVAL1 can't be zero. It must be that
2703 one side of the comparison is each of the values; test for the
2704 case where this isn't true by failing if the two operands
2705 are the same. */
2707 if (operand_equal_p (TREE_OPERAND (arg, 0),
2708 TREE_OPERAND (arg, 1), 0))
2709 return 0;
2711 if (*cval1 == 0)
2712 *cval1 = TREE_OPERAND (arg, 0);
2713 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
2715 else if (*cval2 == 0)
2716 *cval2 = TREE_OPERAND (arg, 0);
2717 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
2719 else
2720 return 0;
2722 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
2724 else if (*cval2 == 0)
2725 *cval2 = TREE_OPERAND (arg, 1);
2726 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
2728 else
2729 return 0;
2731 return 1;
2733 default:
2734 return 0;
2738 /* ARG is a tree that is known to contain just arithmetic operations and
2739 comparisons. Evaluate the operations in the tree substituting NEW0 for
2740 any occurrence of OLD0 as an operand of a comparison and likewise for
2741 NEW1 and OLD1. */
2743 static tree
2744 eval_subst (tree arg, tree old0, tree new0, tree old1, tree new1)
2746 tree type = TREE_TYPE (arg);
2747 enum tree_code code = TREE_CODE (arg);
2748 enum tree_code_class class = TREE_CODE_CLASS (code);
2750 /* We can handle some of the tcc_expression cases here. */
2751 if (class == tcc_expression && code == TRUTH_NOT_EXPR)
2752 class = tcc_unary;
2753 else if (class == tcc_expression
2754 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2755 class = tcc_binary;
2757 switch (class)
2759 case tcc_unary:
2760 return fold (build1 (code, type,
2761 eval_subst (TREE_OPERAND (arg, 0),
2762 old0, new0, old1, new1)));
2764 case tcc_binary:
2765 return fold (build2 (code, type,
2766 eval_subst (TREE_OPERAND (arg, 0),
2767 old0, new0, old1, new1),
2768 eval_subst (TREE_OPERAND (arg, 1),
2769 old0, new0, old1, new1)));
2771 case tcc_expression:
2772 switch (code)
2774 case SAVE_EXPR:
2775 return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
2777 case COMPOUND_EXPR:
2778 return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
2780 case COND_EXPR:
2781 return fold (build3 (code, type,
2782 eval_subst (TREE_OPERAND (arg, 0),
2783 old0, new0, old1, new1),
2784 eval_subst (TREE_OPERAND (arg, 1),
2785 old0, new0, old1, new1),
2786 eval_subst (TREE_OPERAND (arg, 2),
2787 old0, new0, old1, new1)));
2788 default:
2789 break;
2791 /* Fall through - ??? */
2793 case tcc_comparison:
2795 tree arg0 = TREE_OPERAND (arg, 0);
2796 tree arg1 = TREE_OPERAND (arg, 1);
2798 /* We need to check both for exact equality and tree equality. The
2799 former will be true if the operand has a side-effect. In that
2800 case, we know the operand occurred exactly once. */
2802 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
2803 arg0 = new0;
2804 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
2805 arg0 = new1;
2807 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
2808 arg1 = new0;
2809 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
2810 arg1 = new1;
2812 return fold (build2 (code, type, arg0, arg1));
2815 default:
2816 return arg;
2820 /* Return a tree for the case when the result of an expression is RESULT
2821 converted to TYPE and OMITTED was previously an operand of the expression
2822 but is now not needed (e.g., we folded OMITTED * 0).
2824 If OMITTED has side effects, we must evaluate it. Otherwise, just do
2825 the conversion of RESULT to TYPE. */
2827 tree
2828 omit_one_operand (tree type, tree result, tree omitted)
2830 tree t = fold_convert (type, result);
2832 if (TREE_SIDE_EFFECTS (omitted))
2833 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
2835 return non_lvalue (t);
2838 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
2840 static tree
2841 pedantic_omit_one_operand (tree type, tree result, tree omitted)
2843 tree t = fold_convert (type, result);
2845 if (TREE_SIDE_EFFECTS (omitted))
2846 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
2848 return pedantic_non_lvalue (t);
2851 /* Return a tree for the case when the result of an expression is RESULT
2852 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
2853 of the expression but are now not needed.
2855 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
2856 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
2857 evaluated before OMITTED2. Otherwise, if neither has side effects,
2858 just do the conversion of RESULT to TYPE. */
2860 tree
2861 omit_two_operands (tree type, tree result, tree omitted1, tree omitted2)
2863 tree t = fold_convert (type, result);
2865 if (TREE_SIDE_EFFECTS (omitted2))
2866 t = build2 (COMPOUND_EXPR, type, omitted2, t);
2867 if (TREE_SIDE_EFFECTS (omitted1))
2868 t = build2 (COMPOUND_EXPR, type, omitted1, t);
2870 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue (t) : t;
2874 /* Return a simplified tree node for the truth-negation of ARG. This
2875 never alters ARG itself. We assume that ARG is an operation that
2876 returns a truth value (0 or 1).
2878 FIXME: one would think we would fold the result, but it causes
2879 problems with the dominator optimizer. */
2880 tree
2881 invert_truthvalue (tree arg)
2883 tree type = TREE_TYPE (arg);
2884 enum tree_code code = TREE_CODE (arg);
2886 if (code == ERROR_MARK)
2887 return arg;
2889 /* If this is a comparison, we can simply invert it, except for
2890 floating-point non-equality comparisons, in which case we just
2891 enclose a TRUTH_NOT_EXPR around what we have. */
2893 if (TREE_CODE_CLASS (code) == tcc_comparison)
2895 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
2896 if (FLOAT_TYPE_P (op_type)
2897 && flag_trapping_math
2898 && code != ORDERED_EXPR && code != UNORDERED_EXPR
2899 && code != NE_EXPR && code != EQ_EXPR)
2900 return build1 (TRUTH_NOT_EXPR, type, arg);
2901 else
2903 code = invert_tree_comparison (code,
2904 HONOR_NANS (TYPE_MODE (op_type)));
2905 if (code == ERROR_MARK)
2906 return build1 (TRUTH_NOT_EXPR, type, arg);
2907 else
2908 return build2 (code, type,
2909 TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
2913 switch (code)
2915 case INTEGER_CST:
2916 return fold_convert (type,
2917 build_int_cst (NULL_TREE, integer_zerop (arg)));
2919 case TRUTH_AND_EXPR:
2920 return build2 (TRUTH_OR_EXPR, type,
2921 invert_truthvalue (TREE_OPERAND (arg, 0)),
2922 invert_truthvalue (TREE_OPERAND (arg, 1)));
2924 case TRUTH_OR_EXPR:
2925 return build2 (TRUTH_AND_EXPR, type,
2926 invert_truthvalue (TREE_OPERAND (arg, 0)),
2927 invert_truthvalue (TREE_OPERAND (arg, 1)));
2929 case TRUTH_XOR_EXPR:
2930 /* Here we can invert either operand. We invert the first operand
2931 unless the second operand is a TRUTH_NOT_EXPR in which case our
2932 result is the XOR of the first operand with the inside of the
2933 negation of the second operand. */
2935 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
2936 return build2 (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
2937 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
2938 else
2939 return build2 (TRUTH_XOR_EXPR, type,
2940 invert_truthvalue (TREE_OPERAND (arg, 0)),
2941 TREE_OPERAND (arg, 1));
2943 case TRUTH_ANDIF_EXPR:
2944 return build2 (TRUTH_ORIF_EXPR, type,
2945 invert_truthvalue (TREE_OPERAND (arg, 0)),
2946 invert_truthvalue (TREE_OPERAND (arg, 1)));
2948 case TRUTH_ORIF_EXPR:
2949 return build2 (TRUTH_ANDIF_EXPR, type,
2950 invert_truthvalue (TREE_OPERAND (arg, 0)),
2951 invert_truthvalue (TREE_OPERAND (arg, 1)));
2953 case TRUTH_NOT_EXPR:
2954 return TREE_OPERAND (arg, 0);
2956 case COND_EXPR:
2957 return build3 (COND_EXPR, type, TREE_OPERAND (arg, 0),
2958 invert_truthvalue (TREE_OPERAND (arg, 1)),
2959 invert_truthvalue (TREE_OPERAND (arg, 2)));
2961 case COMPOUND_EXPR:
2962 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
2963 invert_truthvalue (TREE_OPERAND (arg, 1)));
2965 case NON_LVALUE_EXPR:
2966 return invert_truthvalue (TREE_OPERAND (arg, 0));
2968 case NOP_EXPR:
2969 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2970 break;
2972 case CONVERT_EXPR:
2973 case FLOAT_EXPR:
2974 return build1 (TREE_CODE (arg), type,
2975 invert_truthvalue (TREE_OPERAND (arg, 0)));
2977 case BIT_AND_EXPR:
2978 if (!integer_onep (TREE_OPERAND (arg, 1)))
2979 break;
2980 return build2 (EQ_EXPR, type, arg,
2981 fold_convert (type, integer_zero_node));
2983 case SAVE_EXPR:
2984 return build1 (TRUTH_NOT_EXPR, type, arg);
2986 case CLEANUP_POINT_EXPR:
2987 return build1 (CLEANUP_POINT_EXPR, type,
2988 invert_truthvalue (TREE_OPERAND (arg, 0)));
2990 default:
2991 break;
2993 gcc_assert (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE);
2994 return build1 (TRUTH_NOT_EXPR, type, arg);
2997 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
2998 operands are another bit-wise operation with a common input. If so,
2999 distribute the bit operations to save an operation and possibly two if
3000 constants are involved. For example, convert
3001 (A | B) & (A | C) into A | (B & C)
3002 Further simplification will occur if B and C are constants.
3004 If this optimization cannot be done, 0 will be returned. */
3006 static tree
3007 distribute_bit_expr (enum tree_code code, tree type, tree arg0, tree arg1)
3009 tree common;
3010 tree left, right;
3012 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3013 || TREE_CODE (arg0) == code
3014 || (TREE_CODE (arg0) != BIT_AND_EXPR
3015 && TREE_CODE (arg0) != BIT_IOR_EXPR))
3016 return 0;
3018 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
3020 common = TREE_OPERAND (arg0, 0);
3021 left = TREE_OPERAND (arg0, 1);
3022 right = TREE_OPERAND (arg1, 1);
3024 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
3026 common = TREE_OPERAND (arg0, 0);
3027 left = TREE_OPERAND (arg0, 1);
3028 right = TREE_OPERAND (arg1, 0);
3030 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
3032 common = TREE_OPERAND (arg0, 1);
3033 left = TREE_OPERAND (arg0, 0);
3034 right = TREE_OPERAND (arg1, 1);
3036 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
3038 common = TREE_OPERAND (arg0, 1);
3039 left = TREE_OPERAND (arg0, 0);
3040 right = TREE_OPERAND (arg1, 0);
3042 else
3043 return 0;
3045 return fold (build2 (TREE_CODE (arg0), type, common,
3046 fold (build2 (code, type, left, right))));
3049 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3050 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3052 static tree
3053 make_bit_field_ref (tree inner, tree type, int bitsize, int bitpos,
3054 int unsignedp)
3056 tree result = build3 (BIT_FIELD_REF, type, inner,
3057 size_int (bitsize), bitsize_int (bitpos));
3059 BIT_FIELD_REF_UNSIGNED (result) = unsignedp;
3061 return result;
3064 /* Optimize a bit-field compare.
3066 There are two cases: First is a compare against a constant and the
3067 second is a comparison of two items where the fields are at the same
3068 bit position relative to the start of a chunk (byte, halfword, word)
3069 large enough to contain it. In these cases we can avoid the shift
3070 implicit in bitfield extractions.
3072 For constants, we emit a compare of the shifted constant with the
3073 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3074 compared. For two fields at the same position, we do the ANDs with the
3075 similar mask and compare the result of the ANDs.
3077 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3078 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3079 are the left and right operands of the comparison, respectively.
3081 If the optimization described above can be done, we return the resulting
3082 tree. Otherwise we return zero. */
3084 static tree
3085 optimize_bit_field_compare (enum tree_code code, tree compare_type,
3086 tree lhs, tree rhs)
3088 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3089 tree type = TREE_TYPE (lhs);
3090 tree signed_type, unsigned_type;
3091 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3092 enum machine_mode lmode, rmode, nmode;
3093 int lunsignedp, runsignedp;
3094 int lvolatilep = 0, rvolatilep = 0;
3095 tree linner, rinner = NULL_TREE;
3096 tree mask;
3097 tree offset;
3099 /* Get all the information about the extractions being done. If the bit size
3100 if the same as the size of the underlying object, we aren't doing an
3101 extraction at all and so can do nothing. We also don't want to
3102 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3103 then will no longer be able to replace it. */
3104 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3105 &lunsignedp, &lvolatilep);
3106 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3107 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
3108 return 0;
3110 if (!const_p)
3112 /* If this is not a constant, we can only do something if bit positions,
3113 sizes, and signedness are the same. */
3114 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3115 &runsignedp, &rvolatilep);
3117 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3118 || lunsignedp != runsignedp || offset != 0
3119 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
3120 return 0;
3123 /* See if we can find a mode to refer to this field. We should be able to,
3124 but fail if we can't. */
3125 nmode = get_best_mode (lbitsize, lbitpos,
3126 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3127 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3128 TYPE_ALIGN (TREE_TYPE (rinner))),
3129 word_mode, lvolatilep || rvolatilep);
3130 if (nmode == VOIDmode)
3131 return 0;
3133 /* Set signed and unsigned types of the precision of this mode for the
3134 shifts below. */
3135 signed_type = lang_hooks.types.type_for_mode (nmode, 0);
3136 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3138 /* Compute the bit position and size for the new reference and our offset
3139 within it. If the new reference is the same size as the original, we
3140 won't optimize anything, so return zero. */
3141 nbitsize = GET_MODE_BITSIZE (nmode);
3142 nbitpos = lbitpos & ~ (nbitsize - 1);
3143 lbitpos -= nbitpos;
3144 if (nbitsize == lbitsize)
3145 return 0;
3147 if (BYTES_BIG_ENDIAN)
3148 lbitpos = nbitsize - lbitsize - lbitpos;
3150 /* Make the mask to be used against the extracted field. */
3151 mask = build_int_cst (unsigned_type, -1);
3152 mask = force_fit_type (mask, 0, false, false);
3153 mask = fold_convert (unsigned_type, mask);
3154 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
3155 mask = const_binop (RSHIFT_EXPR, mask,
3156 size_int (nbitsize - lbitsize - lbitpos), 0);
3158 if (! const_p)
3159 /* If not comparing with constant, just rework the comparison
3160 and return. */
3161 return build2 (code, compare_type,
3162 build2 (BIT_AND_EXPR, unsigned_type,
3163 make_bit_field_ref (linner, unsigned_type,
3164 nbitsize, nbitpos, 1),
3165 mask),
3166 build2 (BIT_AND_EXPR, unsigned_type,
3167 make_bit_field_ref (rinner, unsigned_type,
3168 nbitsize, nbitpos, 1),
3169 mask));
3171 /* Otherwise, we are handling the constant case. See if the constant is too
3172 big for the field. Warn and return a tree of for 0 (false) if so. We do
3173 this not only for its own sake, but to avoid having to test for this
3174 error case below. If we didn't, we might generate wrong code.
3176 For unsigned fields, the constant shifted right by the field length should
3177 be all zero. For signed fields, the high-order bits should agree with
3178 the sign bit. */
3180 if (lunsignedp)
3182 if (! integer_zerop (const_binop (RSHIFT_EXPR,
3183 fold_convert (unsigned_type, rhs),
3184 size_int (lbitsize), 0)))
3186 warning ("comparison is always %d due to width of bit-field",
3187 code == NE_EXPR);
3188 return constant_boolean_node (code == NE_EXPR, compare_type);
3191 else
3193 tree tem = const_binop (RSHIFT_EXPR, fold_convert (signed_type, rhs),
3194 size_int (lbitsize - 1), 0);
3195 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
3197 warning ("comparison is always %d due to width of bit-field",
3198 code == NE_EXPR);
3199 return constant_boolean_node (code == NE_EXPR, compare_type);
3203 /* Single-bit compares should always be against zero. */
3204 if (lbitsize == 1 && ! integer_zerop (rhs))
3206 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3207 rhs = fold_convert (type, integer_zero_node);
3210 /* Make a new bitfield reference, shift the constant over the
3211 appropriate number of bits and mask it with the computed mask
3212 (in case this was a signed field). If we changed it, make a new one. */
3213 lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
3214 if (lvolatilep)
3216 TREE_SIDE_EFFECTS (lhs) = 1;
3217 TREE_THIS_VOLATILE (lhs) = 1;
3220 rhs = fold (const_binop (BIT_AND_EXPR,
3221 const_binop (LSHIFT_EXPR,
3222 fold_convert (unsigned_type, rhs),
3223 size_int (lbitpos), 0),
3224 mask, 0));
3226 return build2 (code, compare_type,
3227 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask),
3228 rhs);
3231 /* Subroutine for fold_truthop: decode a field reference.
3233 If EXP is a comparison reference, we return the innermost reference.
3235 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3236 set to the starting bit number.
3238 If the innermost field can be completely contained in a mode-sized
3239 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3241 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3242 otherwise it is not changed.
3244 *PUNSIGNEDP is set to the signedness of the field.
3246 *PMASK is set to the mask used. This is either contained in a
3247 BIT_AND_EXPR or derived from the width of the field.
3249 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3251 Return 0 if this is not a component reference or is one that we can't
3252 do anything with. */
3254 static tree
3255 decode_field_reference (tree exp, HOST_WIDE_INT *pbitsize,
3256 HOST_WIDE_INT *pbitpos, enum machine_mode *pmode,
3257 int *punsignedp, int *pvolatilep,
3258 tree *pmask, tree *pand_mask)
3260 tree outer_type = 0;
3261 tree and_mask = 0;
3262 tree mask, inner, offset;
3263 tree unsigned_type;
3264 unsigned int precision;
3266 /* All the optimizations using this function assume integer fields.
3267 There are problems with FP fields since the type_for_size call
3268 below can fail for, e.g., XFmode. */
3269 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3270 return 0;
3272 /* We are interested in the bare arrangement of bits, so strip everything
3273 that doesn't affect the machine mode. However, record the type of the
3274 outermost expression if it may matter below. */
3275 if (TREE_CODE (exp) == NOP_EXPR
3276 || TREE_CODE (exp) == CONVERT_EXPR
3277 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3278 outer_type = TREE_TYPE (exp);
3279 STRIP_NOPS (exp);
3281 if (TREE_CODE (exp) == BIT_AND_EXPR)
3283 and_mask = TREE_OPERAND (exp, 1);
3284 exp = TREE_OPERAND (exp, 0);
3285 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3286 if (TREE_CODE (and_mask) != INTEGER_CST)
3287 return 0;
3290 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
3291 punsignedp, pvolatilep);
3292 if ((inner == exp && and_mask == 0)
3293 || *pbitsize < 0 || offset != 0
3294 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
3295 return 0;
3297 /* If the number of bits in the reference is the same as the bitsize of
3298 the outer type, then the outer type gives the signedness. Otherwise
3299 (in case of a small bitfield) the signedness is unchanged. */
3300 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
3301 *punsignedp = TYPE_UNSIGNED (outer_type);
3303 /* Compute the mask to access the bitfield. */
3304 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
3305 precision = TYPE_PRECISION (unsigned_type);
3307 mask = build_int_cst (unsigned_type, -1);
3308 mask = force_fit_type (mask, 0, false, false);
3310 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
3311 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
3313 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3314 if (and_mask != 0)
3315 mask = fold (build2 (BIT_AND_EXPR, unsigned_type,
3316 fold_convert (unsigned_type, and_mask), mask));
3318 *pmask = mask;
3319 *pand_mask = and_mask;
3320 return inner;
3323 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3324 bit positions. */
3326 static int
3327 all_ones_mask_p (tree mask, int size)
3329 tree type = TREE_TYPE (mask);
3330 unsigned int precision = TYPE_PRECISION (type);
3331 tree tmask;
3333 tmask = build_int_cst (lang_hooks.types.signed_type (type), -1);
3334 tmask = force_fit_type (tmask, 0, false, false);
3336 return
3337 tree_int_cst_equal (mask,
3338 const_binop (RSHIFT_EXPR,
3339 const_binop (LSHIFT_EXPR, tmask,
3340 size_int (precision - size),
3342 size_int (precision - size), 0));
3345 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3346 represents the sign bit of EXP's type. If EXP represents a sign
3347 or zero extension, also test VAL against the unextended type.
3348 The return value is the (sub)expression whose sign bit is VAL,
3349 or NULL_TREE otherwise. */
3351 static tree
3352 sign_bit_p (tree exp, tree val)
3354 unsigned HOST_WIDE_INT mask_lo, lo;
3355 HOST_WIDE_INT mask_hi, hi;
3356 int width;
3357 tree t;
3359 /* Tree EXP must have an integral type. */
3360 t = TREE_TYPE (exp);
3361 if (! INTEGRAL_TYPE_P (t))
3362 return NULL_TREE;
3364 /* Tree VAL must be an integer constant. */
3365 if (TREE_CODE (val) != INTEGER_CST
3366 || TREE_CONSTANT_OVERFLOW (val))
3367 return NULL_TREE;
3369 width = TYPE_PRECISION (t);
3370 if (width > HOST_BITS_PER_WIDE_INT)
3372 hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
3373 lo = 0;
3375 mask_hi = ((unsigned HOST_WIDE_INT) -1
3376 >> (2 * HOST_BITS_PER_WIDE_INT - width));
3377 mask_lo = -1;
3379 else
3381 hi = 0;
3382 lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
3384 mask_hi = 0;
3385 mask_lo = ((unsigned HOST_WIDE_INT) -1
3386 >> (HOST_BITS_PER_WIDE_INT - width));
3389 /* We mask off those bits beyond TREE_TYPE (exp) so that we can
3390 treat VAL as if it were unsigned. */
3391 if ((TREE_INT_CST_HIGH (val) & mask_hi) == hi
3392 && (TREE_INT_CST_LOW (val) & mask_lo) == lo)
3393 return exp;
3395 /* Handle extension from a narrower type. */
3396 if (TREE_CODE (exp) == NOP_EXPR
3397 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
3398 return sign_bit_p (TREE_OPERAND (exp, 0), val);
3400 return NULL_TREE;
3403 /* Subroutine for fold_truthop: determine if an operand is simple enough
3404 to be evaluated unconditionally. */
3406 static int
3407 simple_operand_p (tree exp)
3409 /* Strip any conversions that don't change the machine mode. */
3410 STRIP_NOPS (exp);
3412 return (CONSTANT_CLASS_P (exp)
3413 || TREE_CODE (exp) == SSA_NAME
3414 || (DECL_P (exp)
3415 && ! TREE_ADDRESSABLE (exp)
3416 && ! TREE_THIS_VOLATILE (exp)
3417 && ! DECL_NONLOCAL (exp)
3418 /* Don't regard global variables as simple. They may be
3419 allocated in ways unknown to the compiler (shared memory,
3420 #pragma weak, etc). */
3421 && ! TREE_PUBLIC (exp)
3422 && ! DECL_EXTERNAL (exp)
3423 /* Loading a static variable is unduly expensive, but global
3424 registers aren't expensive. */
3425 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
3428 /* The following functions are subroutines to fold_range_test and allow it to
3429 try to change a logical combination of comparisons into a range test.
3431 For example, both
3432 X == 2 || X == 3 || X == 4 || X == 5
3434 X >= 2 && X <= 5
3435 are converted to
3436 (unsigned) (X - 2) <= 3
3438 We describe each set of comparisons as being either inside or outside
3439 a range, using a variable named like IN_P, and then describe the
3440 range with a lower and upper bound. If one of the bounds is omitted,
3441 it represents either the highest or lowest value of the type.
3443 In the comments below, we represent a range by two numbers in brackets
3444 preceded by a "+" to designate being inside that range, or a "-" to
3445 designate being outside that range, so the condition can be inverted by
3446 flipping the prefix. An omitted bound is represented by a "-". For
3447 example, "- [-, 10]" means being outside the range starting at the lowest
3448 possible value and ending at 10, in other words, being greater than 10.
3449 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
3450 always false.
3452 We set up things so that the missing bounds are handled in a consistent
3453 manner so neither a missing bound nor "true" and "false" need to be
3454 handled using a special case. */
3456 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
3457 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
3458 and UPPER1_P are nonzero if the respective argument is an upper bound
3459 and zero for a lower. TYPE, if nonzero, is the type of the result; it
3460 must be specified for a comparison. ARG1 will be converted to ARG0's
3461 type if both are specified. */
3463 static tree
3464 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
3465 tree arg1, int upper1_p)
3467 tree tem;
3468 int result;
3469 int sgn0, sgn1;
3471 /* If neither arg represents infinity, do the normal operation.
3472 Else, if not a comparison, return infinity. Else handle the special
3473 comparison rules. Note that most of the cases below won't occur, but
3474 are handled for consistency. */
3476 if (arg0 != 0 && arg1 != 0)
3478 tem = fold (build2 (code, type != 0 ? type : TREE_TYPE (arg0),
3479 arg0, fold_convert (TREE_TYPE (arg0), arg1)));
3480 STRIP_NOPS (tem);
3481 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
3484 if (TREE_CODE_CLASS (code) != tcc_comparison)
3485 return 0;
3487 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
3488 for neither. In real maths, we cannot assume open ended ranges are
3489 the same. But, this is computer arithmetic, where numbers are finite.
3490 We can therefore make the transformation of any unbounded range with
3491 the value Z, Z being greater than any representable number. This permits
3492 us to treat unbounded ranges as equal. */
3493 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
3494 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
3495 switch (code)
3497 case EQ_EXPR:
3498 result = sgn0 == sgn1;
3499 break;
3500 case NE_EXPR:
3501 result = sgn0 != sgn1;
3502 break;
3503 case LT_EXPR:
3504 result = sgn0 < sgn1;
3505 break;
3506 case LE_EXPR:
3507 result = sgn0 <= sgn1;
3508 break;
3509 case GT_EXPR:
3510 result = sgn0 > sgn1;
3511 break;
3512 case GE_EXPR:
3513 result = sgn0 >= sgn1;
3514 break;
3515 default:
3516 gcc_unreachable ();
3519 return constant_boolean_node (result, type);
3522 /* Given EXP, a logical expression, set the range it is testing into
3523 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
3524 actually being tested. *PLOW and *PHIGH will be made of the same type
3525 as the returned expression. If EXP is not a comparison, we will most
3526 likely not be returning a useful value and range. */
3528 static tree
3529 make_range (tree exp, int *pin_p, tree *plow, tree *phigh)
3531 enum tree_code code;
3532 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
3533 tree exp_type = NULL_TREE, arg0_type = NULL_TREE;
3534 int in_p, n_in_p;
3535 tree low, high, n_low, n_high;
3537 /* Start with simply saying "EXP != 0" and then look at the code of EXP
3538 and see if we can refine the range. Some of the cases below may not
3539 happen, but it doesn't seem worth worrying about this. We "continue"
3540 the outer loop when we've changed something; otherwise we "break"
3541 the switch, which will "break" the while. */
3543 in_p = 0;
3544 low = high = fold_convert (TREE_TYPE (exp), integer_zero_node);
3546 while (1)
3548 code = TREE_CODE (exp);
3549 exp_type = TREE_TYPE (exp);
3551 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
3553 if (first_rtl_op (code) > 0)
3554 arg0 = TREE_OPERAND (exp, 0);
3555 if (TREE_CODE_CLASS (code) == tcc_comparison
3556 || TREE_CODE_CLASS (code) == tcc_unary
3557 || TREE_CODE_CLASS (code) == tcc_binary)
3558 arg0_type = TREE_TYPE (arg0);
3559 if (TREE_CODE_CLASS (code) == tcc_binary
3560 || TREE_CODE_CLASS (code) == tcc_comparison
3561 || (TREE_CODE_CLASS (code) == tcc_expression
3562 && TREE_CODE_LENGTH (code) > 1))
3563 arg1 = TREE_OPERAND (exp, 1);
3566 switch (code)
3568 case TRUTH_NOT_EXPR:
3569 in_p = ! in_p, exp = arg0;
3570 continue;
3572 case EQ_EXPR: case NE_EXPR:
3573 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
3574 /* We can only do something if the range is testing for zero
3575 and if the second operand is an integer constant. Note that
3576 saying something is "in" the range we make is done by
3577 complementing IN_P since it will set in the initial case of
3578 being not equal to zero; "out" is leaving it alone. */
3579 if (low == 0 || high == 0
3580 || ! integer_zerop (low) || ! integer_zerop (high)
3581 || TREE_CODE (arg1) != INTEGER_CST)
3582 break;
3584 switch (code)
3586 case NE_EXPR: /* - [c, c] */
3587 low = high = arg1;
3588 break;
3589 case EQ_EXPR: /* + [c, c] */
3590 in_p = ! in_p, low = high = arg1;
3591 break;
3592 case GT_EXPR: /* - [-, c] */
3593 low = 0, high = arg1;
3594 break;
3595 case GE_EXPR: /* + [c, -] */
3596 in_p = ! in_p, low = arg1, high = 0;
3597 break;
3598 case LT_EXPR: /* - [c, -] */
3599 low = arg1, high = 0;
3600 break;
3601 case LE_EXPR: /* + [-, c] */
3602 in_p = ! in_p, low = 0, high = arg1;
3603 break;
3604 default:
3605 gcc_unreachable ();
3608 /* If this is an unsigned comparison, we also know that EXP is
3609 greater than or equal to zero. We base the range tests we make
3610 on that fact, so we record it here so we can parse existing
3611 range tests. We test arg0_type since often the return type
3612 of, e.g. EQ_EXPR, is boolean. */
3613 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
3615 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3616 in_p, low, high, 1,
3617 fold_convert (arg0_type, integer_zero_node),
3618 NULL_TREE))
3619 break;
3621 in_p = n_in_p, low = n_low, high = n_high;
3623 /* If the high bound is missing, but we have a nonzero low
3624 bound, reverse the range so it goes from zero to the low bound
3625 minus 1. */
3626 if (high == 0 && low && ! integer_zerop (low))
3628 in_p = ! in_p;
3629 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
3630 integer_one_node, 0);
3631 low = fold_convert (arg0_type, integer_zero_node);
3635 exp = arg0;
3636 continue;
3638 case NEGATE_EXPR:
3639 /* (-x) IN [a,b] -> x in [-b, -a] */
3640 n_low = range_binop (MINUS_EXPR, exp_type,
3641 fold_convert (exp_type, integer_zero_node),
3642 0, high, 1);
3643 n_high = range_binop (MINUS_EXPR, exp_type,
3644 fold_convert (exp_type, integer_zero_node),
3645 0, low, 0);
3646 low = n_low, high = n_high;
3647 exp = arg0;
3648 continue;
3650 case BIT_NOT_EXPR:
3651 /* ~ X -> -X - 1 */
3652 exp = build2 (MINUS_EXPR, exp_type, negate_expr (arg0),
3653 fold_convert (exp_type, integer_one_node));
3654 continue;
3656 case PLUS_EXPR: case MINUS_EXPR:
3657 if (TREE_CODE (arg1) != INTEGER_CST)
3658 break;
3660 /* If EXP is signed, any overflow in the computation is undefined,
3661 so we don't worry about it so long as our computations on
3662 the bounds don't overflow. For unsigned, overflow is defined
3663 and this is exactly the right thing. */
3664 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3665 arg0_type, low, 0, arg1, 0);
3666 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3667 arg0_type, high, 1, arg1, 0);
3668 if ((n_low != 0 && TREE_OVERFLOW (n_low))
3669 || (n_high != 0 && TREE_OVERFLOW (n_high)))
3670 break;
3672 /* Check for an unsigned range which has wrapped around the maximum
3673 value thus making n_high < n_low, and normalize it. */
3674 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
3676 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
3677 integer_one_node, 0);
3678 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
3679 integer_one_node, 0);
3681 /* If the range is of the form +/- [ x+1, x ], we won't
3682 be able to normalize it. But then, it represents the
3683 whole range or the empty set, so make it
3684 +/- [ -, - ]. */
3685 if (tree_int_cst_equal (n_low, low)
3686 && tree_int_cst_equal (n_high, high))
3687 low = high = 0;
3688 else
3689 in_p = ! in_p;
3691 else
3692 low = n_low, high = n_high;
3694 exp = arg0;
3695 continue;
3697 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
3698 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
3699 break;
3701 if (! INTEGRAL_TYPE_P (arg0_type)
3702 || (low != 0 && ! int_fits_type_p (low, arg0_type))
3703 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
3704 break;
3706 n_low = low, n_high = high;
3708 if (n_low != 0)
3709 n_low = fold_convert (arg0_type, n_low);
3711 if (n_high != 0)
3712 n_high = fold_convert (arg0_type, n_high);
3715 /* If we're converting arg0 from an unsigned type, to exp,
3716 a signed type, we will be doing the comparison as unsigned.
3717 The tests above have already verified that LOW and HIGH
3718 are both positive.
3720 So we have to ensure that we will handle large unsigned
3721 values the same way that the current signed bounds treat
3722 negative values. */
3724 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
3726 tree high_positive;
3727 tree equiv_type = lang_hooks.types.type_for_mode
3728 (TYPE_MODE (arg0_type), 1);
3730 /* A range without an upper bound is, naturally, unbounded.
3731 Since convert would have cropped a very large value, use
3732 the max value for the destination type. */
3733 high_positive
3734 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
3735 : TYPE_MAX_VALUE (arg0_type);
3737 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
3738 high_positive = fold (build2 (RSHIFT_EXPR, arg0_type,
3739 fold_convert (arg0_type,
3740 high_positive),
3741 fold_convert (arg0_type,
3742 integer_one_node)));
3744 /* If the low bound is specified, "and" the range with the
3745 range for which the original unsigned value will be
3746 positive. */
3747 if (low != 0)
3749 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3750 1, n_low, n_high, 1,
3751 fold_convert (arg0_type,
3752 integer_zero_node),
3753 high_positive))
3754 break;
3756 in_p = (n_in_p == in_p);
3758 else
3760 /* Otherwise, "or" the range with the range of the input
3761 that will be interpreted as negative. */
3762 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3763 0, n_low, n_high, 1,
3764 fold_convert (arg0_type,
3765 integer_zero_node),
3766 high_positive))
3767 break;
3769 in_p = (in_p != n_in_p);
3773 exp = arg0;
3774 low = n_low, high = n_high;
3775 continue;
3777 default:
3778 break;
3781 break;
3784 /* If EXP is a constant, we can evaluate whether this is true or false. */
3785 if (TREE_CODE (exp) == INTEGER_CST)
3787 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
3788 exp, 0, low, 0))
3789 && integer_onep (range_binop (LE_EXPR, integer_type_node,
3790 exp, 1, high, 1)));
3791 low = high = 0;
3792 exp = 0;
3795 *pin_p = in_p, *plow = low, *phigh = high;
3796 return exp;
3799 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
3800 type, TYPE, return an expression to test if EXP is in (or out of, depending
3801 on IN_P) the range. Return 0 if the test couldn't be created. */
3803 static tree
3804 build_range_check (tree type, tree exp, int in_p, tree low, tree high)
3806 tree etype = TREE_TYPE (exp);
3807 tree value;
3809 if (! in_p)
3811 value = build_range_check (type, exp, 1, low, high);
3812 if (value != 0)
3813 return invert_truthvalue (value);
3815 return 0;
3818 if (low == 0 && high == 0)
3819 return fold_convert (type, integer_one_node);
3821 if (low == 0)
3822 return fold (build2 (LE_EXPR, type, exp, high));
3824 if (high == 0)
3825 return fold (build2 (GE_EXPR, type, exp, low));
3827 if (operand_equal_p (low, high, 0))
3828 return fold (build2 (EQ_EXPR, type, exp, low));
3830 if (integer_zerop (low))
3832 if (! TYPE_UNSIGNED (etype))
3834 etype = lang_hooks.types.unsigned_type (etype);
3835 high = fold_convert (etype, high);
3836 exp = fold_convert (etype, exp);
3838 return build_range_check (type, exp, 1, 0, high);
3841 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
3842 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
3844 unsigned HOST_WIDE_INT lo;
3845 HOST_WIDE_INT hi;
3846 int prec;
3848 prec = TYPE_PRECISION (etype);
3849 if (prec <= HOST_BITS_PER_WIDE_INT)
3851 hi = 0;
3852 lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
3854 else
3856 hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
3857 lo = (unsigned HOST_WIDE_INT) -1;
3860 if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
3862 if (TYPE_UNSIGNED (etype))
3864 etype = lang_hooks.types.signed_type (etype);
3865 exp = fold_convert (etype, exp);
3867 return fold (build2 (GT_EXPR, type, exp,
3868 fold_convert (etype, integer_zero_node)));
3872 value = const_binop (MINUS_EXPR, high, low, 0);
3873 if (value != 0 && TREE_OVERFLOW (value) && ! TYPE_UNSIGNED (etype))
3875 tree utype, minv, maxv;
3877 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
3878 for the type in question, as we rely on this here. */
3879 switch (TREE_CODE (etype))
3881 case INTEGER_TYPE:
3882 case ENUMERAL_TYPE:
3883 case CHAR_TYPE:
3884 utype = lang_hooks.types.unsigned_type (etype);
3885 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
3886 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
3887 integer_one_node, 1);
3888 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
3889 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
3890 minv, 1, maxv, 1)))
3892 etype = utype;
3893 high = fold_convert (etype, high);
3894 low = fold_convert (etype, low);
3895 exp = fold_convert (etype, exp);
3896 value = const_binop (MINUS_EXPR, high, low, 0);
3898 break;
3899 default:
3900 break;
3904 if (value != 0 && ! TREE_OVERFLOW (value))
3905 return build_range_check (type,
3906 fold (build2 (MINUS_EXPR, etype, exp, low)),
3907 1, fold_convert (etype, integer_zero_node),
3908 value);
3910 return 0;
3913 /* Given two ranges, see if we can merge them into one. Return 1 if we
3914 can, 0 if we can't. Set the output range into the specified parameters. */
3916 static int
3917 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
3918 tree high0, int in1_p, tree low1, tree high1)
3920 int no_overlap;
3921 int subset;
3922 int temp;
3923 tree tem;
3924 int in_p;
3925 tree low, high;
3926 int lowequal = ((low0 == 0 && low1 == 0)
3927 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3928 low0, 0, low1, 0)));
3929 int highequal = ((high0 == 0 && high1 == 0)
3930 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3931 high0, 1, high1, 1)));
3933 /* Make range 0 be the range that starts first, or ends last if they
3934 start at the same value. Swap them if it isn't. */
3935 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
3936 low0, 0, low1, 0))
3937 || (lowequal
3938 && integer_onep (range_binop (GT_EXPR, integer_type_node,
3939 high1, 1, high0, 1))))
3941 temp = in0_p, in0_p = in1_p, in1_p = temp;
3942 tem = low0, low0 = low1, low1 = tem;
3943 tem = high0, high0 = high1, high1 = tem;
3946 /* Now flag two cases, whether the ranges are disjoint or whether the
3947 second range is totally subsumed in the first. Note that the tests
3948 below are simplified by the ones above. */
3949 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
3950 high0, 1, low1, 0));
3951 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
3952 high1, 1, high0, 1));
3954 /* We now have four cases, depending on whether we are including or
3955 excluding the two ranges. */
3956 if (in0_p && in1_p)
3958 /* If they don't overlap, the result is false. If the second range
3959 is a subset it is the result. Otherwise, the range is from the start
3960 of the second to the end of the first. */
3961 if (no_overlap)
3962 in_p = 0, low = high = 0;
3963 else if (subset)
3964 in_p = 1, low = low1, high = high1;
3965 else
3966 in_p = 1, low = low1, high = high0;
3969 else if (in0_p && ! in1_p)
3971 /* If they don't overlap, the result is the first range. If they are
3972 equal, the result is false. If the second range is a subset of the
3973 first, and the ranges begin at the same place, we go from just after
3974 the end of the first range to the end of the second. If the second
3975 range is not a subset of the first, or if it is a subset and both
3976 ranges end at the same place, the range starts at the start of the
3977 first range and ends just before the second range.
3978 Otherwise, we can't describe this as a single range. */
3979 if (no_overlap)
3980 in_p = 1, low = low0, high = high0;
3981 else if (lowequal && highequal)
3982 in_p = 0, low = high = 0;
3983 else if (subset && lowequal)
3985 in_p = 1, high = high0;
3986 low = range_binop (PLUS_EXPR, NULL_TREE, high1, 0,
3987 integer_one_node, 0);
3989 else if (! subset || highequal)
3991 in_p = 1, low = low0;
3992 high = range_binop (MINUS_EXPR, NULL_TREE, low1, 0,
3993 integer_one_node, 0);
3995 else
3996 return 0;
3999 else if (! in0_p && in1_p)
4001 /* If they don't overlap, the result is the second range. If the second
4002 is a subset of the first, the result is false. Otherwise,
4003 the range starts just after the first range and ends at the
4004 end of the second. */
4005 if (no_overlap)
4006 in_p = 1, low = low1, high = high1;
4007 else if (subset || highequal)
4008 in_p = 0, low = high = 0;
4009 else
4011 in_p = 1, high = high1;
4012 low = range_binop (PLUS_EXPR, NULL_TREE, high0, 1,
4013 integer_one_node, 0);
4017 else
4019 /* The case where we are excluding both ranges. Here the complex case
4020 is if they don't overlap. In that case, the only time we have a
4021 range is if they are adjacent. If the second is a subset of the
4022 first, the result is the first. Otherwise, the range to exclude
4023 starts at the beginning of the first range and ends at the end of the
4024 second. */
4025 if (no_overlap)
4027 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4028 range_binop (PLUS_EXPR, NULL_TREE,
4029 high0, 1,
4030 integer_one_node, 1),
4031 1, low1, 0)))
4032 in_p = 0, low = low0, high = high1;
4033 else
4035 /* Canonicalize - [min, x] into - [-, x]. */
4036 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4037 switch (TREE_CODE (TREE_TYPE (low0)))
4039 case ENUMERAL_TYPE:
4040 if (TYPE_PRECISION (TREE_TYPE (low0))
4041 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4042 break;
4043 /* FALLTHROUGH */
4044 case INTEGER_TYPE:
4045 case CHAR_TYPE:
4046 if (tree_int_cst_equal (low0,
4047 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4048 low0 = 0;
4049 break;
4050 case POINTER_TYPE:
4051 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4052 && integer_zerop (low0))
4053 low0 = 0;
4054 break;
4055 default:
4056 break;
4059 /* Canonicalize - [x, max] into - [x, -]. */
4060 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4061 switch (TREE_CODE (TREE_TYPE (high1)))
4063 case ENUMERAL_TYPE:
4064 if (TYPE_PRECISION (TREE_TYPE (high1))
4065 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4066 break;
4067 /* FALLTHROUGH */
4068 case INTEGER_TYPE:
4069 case CHAR_TYPE:
4070 if (tree_int_cst_equal (high1,
4071 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4072 high1 = 0;
4073 break;
4074 case POINTER_TYPE:
4075 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4076 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4077 high1, 1,
4078 integer_one_node, 1)))
4079 high1 = 0;
4080 break;
4081 default:
4082 break;
4085 /* The ranges might be also adjacent between the maximum and
4086 minimum values of the given type. For
4087 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4088 return + [x + 1, y - 1]. */
4089 if (low0 == 0 && high1 == 0)
4091 low = range_binop (PLUS_EXPR, NULL_TREE, high0, 1,
4092 integer_one_node, 1);
4093 high = range_binop (MINUS_EXPR, NULL_TREE, low1, 0,
4094 integer_one_node, 0);
4095 if (low == 0 || high == 0)
4096 return 0;
4098 in_p = 1;
4100 else
4101 return 0;
4104 else if (subset)
4105 in_p = 0, low = low0, high = high0;
4106 else
4107 in_p = 0, low = low0, high = high1;
4110 *pin_p = in_p, *plow = low, *phigh = high;
4111 return 1;
4115 /* Subroutine of fold, looking inside expressions of the form
4116 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4117 of the COND_EXPR. This function is being used also to optimize
4118 A op B ? C : A, by reversing the comparison first.
4120 Return a folded expression whose code is not a COND_EXPR
4121 anymore, or NULL_TREE if no folding opportunity is found. */
4123 static tree
4124 fold_cond_expr_with_comparison (tree type, tree arg0, tree arg1, tree arg2)
4126 enum tree_code comp_code = TREE_CODE (arg0);
4127 tree arg00 = TREE_OPERAND (arg0, 0);
4128 tree arg01 = TREE_OPERAND (arg0, 1);
4129 tree arg1_type = TREE_TYPE (arg1);
4130 tree tem;
4132 STRIP_NOPS (arg1);
4133 STRIP_NOPS (arg2);
4135 /* If we have A op 0 ? A : -A, consider applying the following
4136 transformations:
4138 A == 0? A : -A same as -A
4139 A != 0? A : -A same as A
4140 A >= 0? A : -A same as abs (A)
4141 A > 0? A : -A same as abs (A)
4142 A <= 0? A : -A same as -abs (A)
4143 A < 0? A : -A same as -abs (A)
4145 None of these transformations work for modes with signed
4146 zeros. If A is +/-0, the first two transformations will
4147 change the sign of the result (from +0 to -0, or vice
4148 versa). The last four will fix the sign of the result,
4149 even though the original expressions could be positive or
4150 negative, depending on the sign of A.
4152 Note that all these transformations are correct if A is
4153 NaN, since the two alternatives (A and -A) are also NaNs. */
4154 if ((FLOAT_TYPE_P (TREE_TYPE (arg01))
4155 ? real_zerop (arg01)
4156 : integer_zerop (arg01))
4157 && TREE_CODE (arg2) == NEGATE_EXPR
4158 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
4159 switch (comp_code)
4161 case EQ_EXPR:
4162 case UNEQ_EXPR:
4163 tem = fold_convert (arg1_type, arg1);
4164 return pedantic_non_lvalue (fold_convert (type, negate_expr (tem)));
4165 case NE_EXPR:
4166 case LTGT_EXPR:
4167 return pedantic_non_lvalue (fold_convert (type, arg1));
4168 case UNGE_EXPR:
4169 case UNGT_EXPR:
4170 if (flag_trapping_math)
4171 break;
4172 /* Fall through. */
4173 case GE_EXPR:
4174 case GT_EXPR:
4175 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4176 arg1 = fold_convert (lang_hooks.types.signed_type
4177 (TREE_TYPE (arg1)), arg1);
4178 tem = fold (build1 (ABS_EXPR, TREE_TYPE (arg1), arg1));
4179 return pedantic_non_lvalue (fold_convert (type, tem));
4180 case UNLE_EXPR:
4181 case UNLT_EXPR:
4182 if (flag_trapping_math)
4183 break;
4184 case LE_EXPR:
4185 case LT_EXPR:
4186 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4187 arg1 = fold_convert (lang_hooks.types.signed_type
4188 (TREE_TYPE (arg1)), arg1);
4189 tem = fold (build1 (ABS_EXPR, TREE_TYPE (arg1), arg1));
4190 return negate_expr (fold_convert (type, tem));
4191 default:
4192 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4193 break;
4196 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4197 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4198 both transformations are correct when A is NaN: A != 0
4199 is then true, and A == 0 is false. */
4201 if (integer_zerop (arg01) && integer_zerop (arg2))
4203 if (comp_code == NE_EXPR)
4204 return pedantic_non_lvalue (fold_convert (type, arg1));
4205 else if (comp_code == EQ_EXPR)
4206 return fold_convert (type, integer_zero_node);
4209 /* Try some transformations of A op B ? A : B.
4211 A == B? A : B same as B
4212 A != B? A : B same as A
4213 A >= B? A : B same as max (A, B)
4214 A > B? A : B same as max (B, A)
4215 A <= B? A : B same as min (A, B)
4216 A < B? A : B same as min (B, A)
4218 As above, these transformations don't work in the presence
4219 of signed zeros. For example, if A and B are zeros of
4220 opposite sign, the first two transformations will change
4221 the sign of the result. In the last four, the original
4222 expressions give different results for (A=+0, B=-0) and
4223 (A=-0, B=+0), but the transformed expressions do not.
4225 The first two transformations are correct if either A or B
4226 is a NaN. In the first transformation, the condition will
4227 be false, and B will indeed be chosen. In the case of the
4228 second transformation, the condition A != B will be true,
4229 and A will be chosen.
4231 The conversions to max() and min() are not correct if B is
4232 a number and A is not. The conditions in the original
4233 expressions will be false, so all four give B. The min()
4234 and max() versions would give a NaN instead. */
4235 if (operand_equal_for_comparison_p (arg01, arg2, arg00))
4237 tree comp_op0 = arg00;
4238 tree comp_op1 = arg01;
4239 tree comp_type = TREE_TYPE (comp_op0);
4241 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
4242 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
4244 comp_type = type;
4245 comp_op0 = arg1;
4246 comp_op1 = arg2;
4249 switch (comp_code)
4251 case EQ_EXPR:
4252 return pedantic_non_lvalue (fold_convert (type, arg2));
4253 case NE_EXPR:
4254 return pedantic_non_lvalue (fold_convert (type, arg1));
4255 case LE_EXPR:
4256 case LT_EXPR:
4257 case UNLE_EXPR:
4258 case UNLT_EXPR:
4259 /* In C++ a ?: expression can be an lvalue, so put the
4260 operand which will be used if they are equal first
4261 so that we can convert this back to the
4262 corresponding COND_EXPR. */
4263 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4265 comp_op0 = fold_convert (comp_type, comp_op0);
4266 comp_op1 = fold_convert (comp_type, comp_op1);
4267 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
4268 ? fold (build2 (MIN_EXPR, comp_type, comp_op0, comp_op1))
4269 : fold (build2 (MIN_EXPR, comp_type, comp_op1, comp_op0));
4270 return pedantic_non_lvalue (fold_convert (type, tem));
4272 break;
4273 case GE_EXPR:
4274 case GT_EXPR:
4275 case UNGE_EXPR:
4276 case UNGT_EXPR:
4277 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4279 comp_op0 = fold_convert (comp_type, comp_op0);
4280 comp_op1 = fold_convert (comp_type, comp_op1);
4281 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
4282 ? fold (build2 (MAX_EXPR, comp_type, comp_op0, comp_op1))
4283 : fold (build2 (MAX_EXPR, comp_type, comp_op1, comp_op0));
4284 return pedantic_non_lvalue (fold_convert (type, tem));
4286 break;
4287 case UNEQ_EXPR:
4288 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4289 return pedantic_non_lvalue (fold_convert (type, arg2));
4290 break;
4291 case LTGT_EXPR:
4292 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4293 return pedantic_non_lvalue (fold_convert (type, arg1));
4294 break;
4295 default:
4296 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4297 break;
4301 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
4302 we might still be able to simplify this. For example,
4303 if C1 is one less or one more than C2, this might have started
4304 out as a MIN or MAX and been transformed by this function.
4305 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
4307 if (INTEGRAL_TYPE_P (type)
4308 && TREE_CODE (arg01) == INTEGER_CST
4309 && TREE_CODE (arg2) == INTEGER_CST)
4310 switch (comp_code)
4312 case EQ_EXPR:
4313 /* We can replace A with C1 in this case. */
4314 arg1 = fold_convert (type, arg01);
4315 return fold (build3 (COND_EXPR, type, arg0, arg1, arg2));
4317 case LT_EXPR:
4318 /* If C1 is C2 + 1, this is min(A, C2). */
4319 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4320 OEP_ONLY_CONST)
4321 && operand_equal_p (arg01,
4322 const_binop (PLUS_EXPR, arg2,
4323 integer_one_node, 0),
4324 OEP_ONLY_CONST))
4325 return pedantic_non_lvalue (fold (build2 (MIN_EXPR,
4326 type, arg1, arg2)));
4327 break;
4329 case LE_EXPR:
4330 /* If C1 is C2 - 1, this is min(A, C2). */
4331 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4332 OEP_ONLY_CONST)
4333 && operand_equal_p (arg01,
4334 const_binop (MINUS_EXPR, arg2,
4335 integer_one_node, 0),
4336 OEP_ONLY_CONST))
4337 return pedantic_non_lvalue (fold (build2 (MIN_EXPR,
4338 type, arg1, arg2)));
4339 break;
4341 case GT_EXPR:
4342 /* If C1 is C2 - 1, this is max(A, C2). */
4343 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4344 OEP_ONLY_CONST)
4345 && operand_equal_p (arg01,
4346 const_binop (MINUS_EXPR, arg2,
4347 integer_one_node, 0),
4348 OEP_ONLY_CONST))
4349 return pedantic_non_lvalue (fold (build2 (MAX_EXPR,
4350 type, arg1, arg2)));
4351 break;
4353 case GE_EXPR:
4354 /* If C1 is C2 + 1, this is max(A, C2). */
4355 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4356 OEP_ONLY_CONST)
4357 && operand_equal_p (arg01,
4358 const_binop (PLUS_EXPR, arg2,
4359 integer_one_node, 0),
4360 OEP_ONLY_CONST))
4361 return pedantic_non_lvalue (fold (build2 (MAX_EXPR,
4362 type, arg1, arg2)));
4363 break;
4364 case NE_EXPR:
4365 break;
4366 default:
4367 gcc_unreachable ();
4370 return NULL_TREE;
4375 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
4376 #define LOGICAL_OP_NON_SHORT_CIRCUIT (BRANCH_COST >= 2)
4377 #endif
4379 /* EXP is some logical combination of boolean tests. See if we can
4380 merge it into some range test. Return the new tree if so. */
4382 static tree
4383 fold_range_test (tree exp)
4385 int or_op = (TREE_CODE (exp) == TRUTH_ORIF_EXPR
4386 || TREE_CODE (exp) == TRUTH_OR_EXPR);
4387 int in0_p, in1_p, in_p;
4388 tree low0, low1, low, high0, high1, high;
4389 tree lhs = make_range (TREE_OPERAND (exp, 0), &in0_p, &low0, &high0);
4390 tree rhs = make_range (TREE_OPERAND (exp, 1), &in1_p, &low1, &high1);
4391 tree tem;
4393 /* If this is an OR operation, invert both sides; we will invert
4394 again at the end. */
4395 if (or_op)
4396 in0_p = ! in0_p, in1_p = ! in1_p;
4398 /* If both expressions are the same, if we can merge the ranges, and we
4399 can build the range test, return it or it inverted. If one of the
4400 ranges is always true or always false, consider it to be the same
4401 expression as the other. */
4402 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
4403 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
4404 in1_p, low1, high1)
4405 && 0 != (tem = (build_range_check (TREE_TYPE (exp),
4406 lhs != 0 ? lhs
4407 : rhs != 0 ? rhs : integer_zero_node,
4408 in_p, low, high))))
4409 return or_op ? invert_truthvalue (tem) : tem;
4411 /* On machines where the branch cost is expensive, if this is a
4412 short-circuited branch and the underlying object on both sides
4413 is the same, make a non-short-circuit operation. */
4414 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
4415 && lhs != 0 && rhs != 0
4416 && (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
4417 || TREE_CODE (exp) == TRUTH_ORIF_EXPR)
4418 && operand_equal_p (lhs, rhs, 0))
4420 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
4421 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
4422 which cases we can't do this. */
4423 if (simple_operand_p (lhs))
4424 return build2 (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
4425 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4426 TREE_TYPE (exp), TREE_OPERAND (exp, 0),
4427 TREE_OPERAND (exp, 1));
4429 else if (lang_hooks.decls.global_bindings_p () == 0
4430 && ! CONTAINS_PLACEHOLDER_P (lhs))
4432 tree common = save_expr (lhs);
4434 if (0 != (lhs = build_range_check (TREE_TYPE (exp), common,
4435 or_op ? ! in0_p : in0_p,
4436 low0, high0))
4437 && (0 != (rhs = build_range_check (TREE_TYPE (exp), common,
4438 or_op ? ! in1_p : in1_p,
4439 low1, high1))))
4440 return build2 (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
4441 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4442 TREE_TYPE (exp), lhs, rhs);
4446 return 0;
4449 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
4450 bit value. Arrange things so the extra bits will be set to zero if and
4451 only if C is signed-extended to its full width. If MASK is nonzero,
4452 it is an INTEGER_CST that should be AND'ed with the extra bits. */
4454 static tree
4455 unextend (tree c, int p, int unsignedp, tree mask)
4457 tree type = TREE_TYPE (c);
4458 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
4459 tree temp;
4461 if (p == modesize || unsignedp)
4462 return c;
4464 /* We work by getting just the sign bit into the low-order bit, then
4465 into the high-order bit, then sign-extend. We then XOR that value
4466 with C. */
4467 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
4468 temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
4470 /* We must use a signed type in order to get an arithmetic right shift.
4471 However, we must also avoid introducing accidental overflows, so that
4472 a subsequent call to integer_zerop will work. Hence we must
4473 do the type conversion here. At this point, the constant is either
4474 zero or one, and the conversion to a signed type can never overflow.
4475 We could get an overflow if this conversion is done anywhere else. */
4476 if (TYPE_UNSIGNED (type))
4477 temp = fold_convert (lang_hooks.types.signed_type (type), temp);
4479 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
4480 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
4481 if (mask != 0)
4482 temp = const_binop (BIT_AND_EXPR, temp,
4483 fold_convert (TREE_TYPE (c), mask), 0);
4484 /* If necessary, convert the type back to match the type of C. */
4485 if (TYPE_UNSIGNED (type))
4486 temp = fold_convert (type, temp);
4488 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
4491 /* Find ways of folding logical expressions of LHS and RHS:
4492 Try to merge two comparisons to the same innermost item.
4493 Look for range tests like "ch >= '0' && ch <= '9'".
4494 Look for combinations of simple terms on machines with expensive branches
4495 and evaluate the RHS unconditionally.
4497 For example, if we have p->a == 2 && p->b == 4 and we can make an
4498 object large enough to span both A and B, we can do this with a comparison
4499 against the object ANDed with the a mask.
4501 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
4502 operations to do this with one comparison.
4504 We check for both normal comparisons and the BIT_AND_EXPRs made this by
4505 function and the one above.
4507 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
4508 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
4510 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
4511 two operands.
4513 We return the simplified tree or 0 if no optimization is possible. */
4515 static tree
4516 fold_truthop (enum tree_code code, tree truth_type, tree lhs, tree rhs)
4518 /* If this is the "or" of two comparisons, we can do something if
4519 the comparisons are NE_EXPR. If this is the "and", we can do something
4520 if the comparisons are EQ_EXPR. I.e.,
4521 (a->b == 2 && a->c == 4) can become (a->new == NEW).
4523 WANTED_CODE is this operation code. For single bit fields, we can
4524 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
4525 comparison for one-bit fields. */
4527 enum tree_code wanted_code;
4528 enum tree_code lcode, rcode;
4529 tree ll_arg, lr_arg, rl_arg, rr_arg;
4530 tree ll_inner, lr_inner, rl_inner, rr_inner;
4531 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
4532 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
4533 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
4534 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
4535 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
4536 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
4537 enum machine_mode lnmode, rnmode;
4538 tree ll_mask, lr_mask, rl_mask, rr_mask;
4539 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
4540 tree l_const, r_const;
4541 tree lntype, rntype, result;
4542 int first_bit, end_bit;
4543 int volatilep;
4545 /* Start by getting the comparison codes. Fail if anything is volatile.
4546 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
4547 it were surrounded with a NE_EXPR. */
4549 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
4550 return 0;
4552 lcode = TREE_CODE (lhs);
4553 rcode = TREE_CODE (rhs);
4555 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
4557 lhs = build2 (NE_EXPR, truth_type, lhs,
4558 fold_convert (TREE_TYPE (lhs), integer_zero_node));
4559 lcode = NE_EXPR;
4562 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
4564 rhs = build2 (NE_EXPR, truth_type, rhs,
4565 fold_convert (TREE_TYPE (rhs), integer_zero_node));
4566 rcode = NE_EXPR;
4569 if (TREE_CODE_CLASS (lcode) != tcc_comparison
4570 || TREE_CODE_CLASS (rcode) != tcc_comparison)
4571 return 0;
4573 ll_arg = TREE_OPERAND (lhs, 0);
4574 lr_arg = TREE_OPERAND (lhs, 1);
4575 rl_arg = TREE_OPERAND (rhs, 0);
4576 rr_arg = TREE_OPERAND (rhs, 1);
4578 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
4579 if (simple_operand_p (ll_arg)
4580 && simple_operand_p (lr_arg))
4582 tree result;
4583 if (operand_equal_p (ll_arg, rl_arg, 0)
4584 && operand_equal_p (lr_arg, rr_arg, 0))
4586 result = combine_comparisons (code, lcode, rcode,
4587 truth_type, ll_arg, lr_arg);
4588 if (result)
4589 return result;
4591 else if (operand_equal_p (ll_arg, rr_arg, 0)
4592 && operand_equal_p (lr_arg, rl_arg, 0))
4594 result = combine_comparisons (code, lcode,
4595 swap_tree_comparison (rcode),
4596 truth_type, ll_arg, lr_arg);
4597 if (result)
4598 return result;
4602 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
4603 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
4605 /* If the RHS can be evaluated unconditionally and its operands are
4606 simple, it wins to evaluate the RHS unconditionally on machines
4607 with expensive branches. In this case, this isn't a comparison
4608 that can be merged. Avoid doing this if the RHS is a floating-point
4609 comparison since those can trap. */
4611 if (BRANCH_COST >= 2
4612 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
4613 && simple_operand_p (rl_arg)
4614 && simple_operand_p (rr_arg))
4616 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
4617 if (code == TRUTH_OR_EXPR
4618 && lcode == NE_EXPR && integer_zerop (lr_arg)
4619 && rcode == NE_EXPR && integer_zerop (rr_arg)
4620 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
4621 return build2 (NE_EXPR, truth_type,
4622 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
4623 ll_arg, rl_arg),
4624 fold_convert (TREE_TYPE (ll_arg), integer_zero_node));
4626 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
4627 if (code == TRUTH_AND_EXPR
4628 && lcode == EQ_EXPR && integer_zerop (lr_arg)
4629 && rcode == EQ_EXPR && integer_zerop (rr_arg)
4630 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
4631 return build2 (EQ_EXPR, truth_type,
4632 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
4633 ll_arg, rl_arg),
4634 fold_convert (TREE_TYPE (ll_arg), integer_zero_node));
4636 if (LOGICAL_OP_NON_SHORT_CIRCUIT)
4637 return build2 (code, truth_type, lhs, rhs);
4640 /* See if the comparisons can be merged. Then get all the parameters for
4641 each side. */
4643 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
4644 || (rcode != EQ_EXPR && rcode != NE_EXPR))
4645 return 0;
4647 volatilep = 0;
4648 ll_inner = decode_field_reference (ll_arg,
4649 &ll_bitsize, &ll_bitpos, &ll_mode,
4650 &ll_unsignedp, &volatilep, &ll_mask,
4651 &ll_and_mask);
4652 lr_inner = decode_field_reference (lr_arg,
4653 &lr_bitsize, &lr_bitpos, &lr_mode,
4654 &lr_unsignedp, &volatilep, &lr_mask,
4655 &lr_and_mask);
4656 rl_inner = decode_field_reference (rl_arg,
4657 &rl_bitsize, &rl_bitpos, &rl_mode,
4658 &rl_unsignedp, &volatilep, &rl_mask,
4659 &rl_and_mask);
4660 rr_inner = decode_field_reference (rr_arg,
4661 &rr_bitsize, &rr_bitpos, &rr_mode,
4662 &rr_unsignedp, &volatilep, &rr_mask,
4663 &rr_and_mask);
4665 /* It must be true that the inner operation on the lhs of each
4666 comparison must be the same if we are to be able to do anything.
4667 Then see if we have constants. If not, the same must be true for
4668 the rhs's. */
4669 if (volatilep || ll_inner == 0 || rl_inner == 0
4670 || ! operand_equal_p (ll_inner, rl_inner, 0))
4671 return 0;
4673 if (TREE_CODE (lr_arg) == INTEGER_CST
4674 && TREE_CODE (rr_arg) == INTEGER_CST)
4675 l_const = lr_arg, r_const = rr_arg;
4676 else if (lr_inner == 0 || rr_inner == 0
4677 || ! operand_equal_p (lr_inner, rr_inner, 0))
4678 return 0;
4679 else
4680 l_const = r_const = 0;
4682 /* If either comparison code is not correct for our logical operation,
4683 fail. However, we can convert a one-bit comparison against zero into
4684 the opposite comparison against that bit being set in the field. */
4686 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
4687 if (lcode != wanted_code)
4689 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
4691 /* Make the left operand unsigned, since we are only interested
4692 in the value of one bit. Otherwise we are doing the wrong
4693 thing below. */
4694 ll_unsignedp = 1;
4695 l_const = ll_mask;
4697 else
4698 return 0;
4701 /* This is analogous to the code for l_const above. */
4702 if (rcode != wanted_code)
4704 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
4706 rl_unsignedp = 1;
4707 r_const = rl_mask;
4709 else
4710 return 0;
4713 /* After this point all optimizations will generate bit-field
4714 references, which we might not want. */
4715 if (! lang_hooks.can_use_bit_fields_p ())
4716 return 0;
4718 /* See if we can find a mode that contains both fields being compared on
4719 the left. If we can't, fail. Otherwise, update all constants and masks
4720 to be relative to a field of that size. */
4721 first_bit = MIN (ll_bitpos, rl_bitpos);
4722 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
4723 lnmode = get_best_mode (end_bit - first_bit, first_bit,
4724 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
4725 volatilep);
4726 if (lnmode == VOIDmode)
4727 return 0;
4729 lnbitsize = GET_MODE_BITSIZE (lnmode);
4730 lnbitpos = first_bit & ~ (lnbitsize - 1);
4731 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
4732 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
4734 if (BYTES_BIG_ENDIAN)
4736 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
4737 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
4740 ll_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, ll_mask),
4741 size_int (xll_bitpos), 0);
4742 rl_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, rl_mask),
4743 size_int (xrl_bitpos), 0);
4745 if (l_const)
4747 l_const = fold_convert (lntype, l_const);
4748 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
4749 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
4750 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
4751 fold (build1 (BIT_NOT_EXPR,
4752 lntype, ll_mask)),
4753 0)))
4755 warning ("comparison is always %d", wanted_code == NE_EXPR);
4757 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
4760 if (r_const)
4762 r_const = fold_convert (lntype, r_const);
4763 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
4764 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
4765 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
4766 fold (build1 (BIT_NOT_EXPR,
4767 lntype, rl_mask)),
4768 0)))
4770 warning ("comparison is always %d", wanted_code == NE_EXPR);
4772 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
4776 /* If the right sides are not constant, do the same for it. Also,
4777 disallow this optimization if a size or signedness mismatch occurs
4778 between the left and right sides. */
4779 if (l_const == 0)
4781 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
4782 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
4783 /* Make sure the two fields on the right
4784 correspond to the left without being swapped. */
4785 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
4786 return 0;
4788 first_bit = MIN (lr_bitpos, rr_bitpos);
4789 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
4790 rnmode = get_best_mode (end_bit - first_bit, first_bit,
4791 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
4792 volatilep);
4793 if (rnmode == VOIDmode)
4794 return 0;
4796 rnbitsize = GET_MODE_BITSIZE (rnmode);
4797 rnbitpos = first_bit & ~ (rnbitsize - 1);
4798 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
4799 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
4801 if (BYTES_BIG_ENDIAN)
4803 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
4804 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
4807 lr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, lr_mask),
4808 size_int (xlr_bitpos), 0);
4809 rr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, rr_mask),
4810 size_int (xrr_bitpos), 0);
4812 /* Make a mask that corresponds to both fields being compared.
4813 Do this for both items being compared. If the operands are the
4814 same size and the bits being compared are in the same position
4815 then we can do this by masking both and comparing the masked
4816 results. */
4817 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
4818 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
4819 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
4821 lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
4822 ll_unsignedp || rl_unsignedp);
4823 if (! all_ones_mask_p (ll_mask, lnbitsize))
4824 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
4826 rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
4827 lr_unsignedp || rr_unsignedp);
4828 if (! all_ones_mask_p (lr_mask, rnbitsize))
4829 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
4831 return build2 (wanted_code, truth_type, lhs, rhs);
4834 /* There is still another way we can do something: If both pairs of
4835 fields being compared are adjacent, we may be able to make a wider
4836 field containing them both.
4838 Note that we still must mask the lhs/rhs expressions. Furthermore,
4839 the mask must be shifted to account for the shift done by
4840 make_bit_field_ref. */
4841 if ((ll_bitsize + ll_bitpos == rl_bitpos
4842 && lr_bitsize + lr_bitpos == rr_bitpos)
4843 || (ll_bitpos == rl_bitpos + rl_bitsize
4844 && lr_bitpos == rr_bitpos + rr_bitsize))
4846 tree type;
4848 lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
4849 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
4850 rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
4851 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
4853 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
4854 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
4855 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
4856 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
4858 /* Convert to the smaller type before masking out unwanted bits. */
4859 type = lntype;
4860 if (lntype != rntype)
4862 if (lnbitsize > rnbitsize)
4864 lhs = fold_convert (rntype, lhs);
4865 ll_mask = fold_convert (rntype, ll_mask);
4866 type = rntype;
4868 else if (lnbitsize < rnbitsize)
4870 rhs = fold_convert (lntype, rhs);
4871 lr_mask = fold_convert (lntype, lr_mask);
4872 type = lntype;
4876 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
4877 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
4879 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
4880 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
4882 return build2 (wanted_code, truth_type, lhs, rhs);
4885 return 0;
4888 /* Handle the case of comparisons with constants. If there is something in
4889 common between the masks, those bits of the constants must be the same.
4890 If not, the condition is always false. Test for this to avoid generating
4891 incorrect code below. */
4892 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
4893 if (! integer_zerop (result)
4894 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
4895 const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
4897 if (wanted_code == NE_EXPR)
4899 warning ("%<or%> of unmatched not-equal tests is always 1");
4900 return constant_boolean_node (true, truth_type);
4902 else
4904 warning ("%<and%> of mutually exclusive equal-tests is always 0");
4905 return constant_boolean_node (false, truth_type);
4909 /* Construct the expression we will return. First get the component
4910 reference we will make. Unless the mask is all ones the width of
4911 that field, perform the mask operation. Then compare with the
4912 merged constant. */
4913 result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
4914 ll_unsignedp || rl_unsignedp);
4916 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
4917 if (! all_ones_mask_p (ll_mask, lnbitsize))
4918 result = build2 (BIT_AND_EXPR, lntype, result, ll_mask);
4920 return build2 (wanted_code, truth_type, result,
4921 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
4924 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
4925 constant. */
4927 static tree
4928 optimize_minmax_comparison (tree t)
4930 tree type = TREE_TYPE (t);
4931 tree arg0 = TREE_OPERAND (t, 0);
4932 enum tree_code op_code;
4933 tree comp_const = TREE_OPERAND (t, 1);
4934 tree minmax_const;
4935 int consts_equal, consts_lt;
4936 tree inner;
4938 STRIP_SIGN_NOPS (arg0);
4940 op_code = TREE_CODE (arg0);
4941 minmax_const = TREE_OPERAND (arg0, 1);
4942 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
4943 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
4944 inner = TREE_OPERAND (arg0, 0);
4946 /* If something does not permit us to optimize, return the original tree. */
4947 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
4948 || TREE_CODE (comp_const) != INTEGER_CST
4949 || TREE_CONSTANT_OVERFLOW (comp_const)
4950 || TREE_CODE (minmax_const) != INTEGER_CST
4951 || TREE_CONSTANT_OVERFLOW (minmax_const))
4952 return t;
4954 /* Now handle all the various comparison codes. We only handle EQ_EXPR
4955 and GT_EXPR, doing the rest with recursive calls using logical
4956 simplifications. */
4957 switch (TREE_CODE (t))
4959 case NE_EXPR: case LT_EXPR: case LE_EXPR:
4960 return
4961 invert_truthvalue (optimize_minmax_comparison (invert_truthvalue (t)));
4963 case GE_EXPR:
4964 return
4965 fold (build2 (TRUTH_ORIF_EXPR, type,
4966 optimize_minmax_comparison
4967 (build2 (EQ_EXPR, type, arg0, comp_const)),
4968 optimize_minmax_comparison
4969 (build2 (GT_EXPR, type, arg0, comp_const))));
4971 case EQ_EXPR:
4972 if (op_code == MAX_EXPR && consts_equal)
4973 /* MAX (X, 0) == 0 -> X <= 0 */
4974 return fold (build2 (LE_EXPR, type, inner, comp_const));
4976 else if (op_code == MAX_EXPR && consts_lt)
4977 /* MAX (X, 0) == 5 -> X == 5 */
4978 return fold (build2 (EQ_EXPR, type, inner, comp_const));
4980 else if (op_code == MAX_EXPR)
4981 /* MAX (X, 0) == -1 -> false */
4982 return omit_one_operand (type, integer_zero_node, inner);
4984 else if (consts_equal)
4985 /* MIN (X, 0) == 0 -> X >= 0 */
4986 return fold (build2 (GE_EXPR, type, inner, comp_const));
4988 else if (consts_lt)
4989 /* MIN (X, 0) == 5 -> false */
4990 return omit_one_operand (type, integer_zero_node, inner);
4992 else
4993 /* MIN (X, 0) == -1 -> X == -1 */
4994 return fold (build2 (EQ_EXPR, type, inner, comp_const));
4996 case GT_EXPR:
4997 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
4998 /* MAX (X, 0) > 0 -> X > 0
4999 MAX (X, 0) > 5 -> X > 5 */
5000 return fold (build2 (GT_EXPR, type, inner, comp_const));
5002 else if (op_code == MAX_EXPR)
5003 /* MAX (X, 0) > -1 -> true */
5004 return omit_one_operand (type, integer_one_node, inner);
5006 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5007 /* MIN (X, 0) > 0 -> false
5008 MIN (X, 0) > 5 -> false */
5009 return omit_one_operand (type, integer_zero_node, inner);
5011 else
5012 /* MIN (X, 0) > -1 -> X > -1 */
5013 return fold (build2 (GT_EXPR, type, inner, comp_const));
5015 default:
5016 return t;
5020 /* T is an integer expression that is being multiplied, divided, or taken a
5021 modulus (CODE says which and what kind of divide or modulus) by a
5022 constant C. See if we can eliminate that operation by folding it with
5023 other operations already in T. WIDE_TYPE, if non-null, is a type that
5024 should be used for the computation if wider than our type.
5026 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5027 (X * 2) + (Y * 4). We must, however, be assured that either the original
5028 expression would not overflow or that overflow is undefined for the type
5029 in the language in question.
5031 We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
5032 the machine has a multiply-accumulate insn or that this is part of an
5033 addressing calculation.
5035 If we return a non-null expression, it is an equivalent form of the
5036 original computation, but need not be in the original type. */
5038 static tree
5039 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type)
5041 /* To avoid exponential search depth, refuse to allow recursion past
5042 three levels. Beyond that (1) it's highly unlikely that we'll find
5043 something interesting and (2) we've probably processed it before
5044 when we built the inner expression. */
5046 static int depth;
5047 tree ret;
5049 if (depth > 3)
5050 return NULL;
5052 depth++;
5053 ret = extract_muldiv_1 (t, c, code, wide_type);
5054 depth--;
5056 return ret;
5059 static tree
5060 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type)
5062 tree type = TREE_TYPE (t);
5063 enum tree_code tcode = TREE_CODE (t);
5064 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5065 > GET_MODE_SIZE (TYPE_MODE (type)))
5066 ? wide_type : type);
5067 tree t1, t2;
5068 int same_p = tcode == code;
5069 tree op0 = NULL_TREE, op1 = NULL_TREE;
5071 /* Don't deal with constants of zero here; they confuse the code below. */
5072 if (integer_zerop (c))
5073 return NULL_TREE;
5075 if (TREE_CODE_CLASS (tcode) == tcc_unary)
5076 op0 = TREE_OPERAND (t, 0);
5078 if (TREE_CODE_CLASS (tcode) == tcc_binary)
5079 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5081 /* Note that we need not handle conditional operations here since fold
5082 already handles those cases. So just do arithmetic here. */
5083 switch (tcode)
5085 case INTEGER_CST:
5086 /* For a constant, we can always simplify if we are a multiply
5087 or (for divide and modulus) if it is a multiple of our constant. */
5088 if (code == MULT_EXPR
5089 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
5090 return const_binop (code, fold_convert (ctype, t),
5091 fold_convert (ctype, c), 0);
5092 break;
5094 case CONVERT_EXPR: case NON_LVALUE_EXPR: case NOP_EXPR:
5095 /* If op0 is an expression ... */
5096 if ((COMPARISON_CLASS_P (op0)
5097 || UNARY_CLASS_P (op0)
5098 || BINARY_CLASS_P (op0)
5099 || EXPRESSION_CLASS_P (op0))
5100 /* ... and is unsigned, and its type is smaller than ctype,
5101 then we cannot pass through as widening. */
5102 && ((TYPE_UNSIGNED (TREE_TYPE (op0))
5103 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
5104 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
5105 && (GET_MODE_SIZE (TYPE_MODE (ctype))
5106 > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0)))))
5107 /* ... or this is a truncation (t is narrower than op0),
5108 then we cannot pass through this narrowing. */
5109 || (GET_MODE_SIZE (TYPE_MODE (type))
5110 < GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0))))
5111 /* ... or signedness changes for division or modulus,
5112 then we cannot pass through this conversion. */
5113 || (code != MULT_EXPR
5114 && (TYPE_UNSIGNED (ctype)
5115 != TYPE_UNSIGNED (TREE_TYPE (op0))))))
5116 break;
5118 /* Pass the constant down and see if we can make a simplification. If
5119 we can, replace this expression with the inner simplification for
5120 possible later conversion to our or some other type. */
5121 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
5122 && TREE_CODE (t2) == INTEGER_CST
5123 && ! TREE_CONSTANT_OVERFLOW (t2)
5124 && (0 != (t1 = extract_muldiv (op0, t2, code,
5125 code == MULT_EXPR
5126 ? ctype : NULL_TREE))))
5127 return t1;
5128 break;
5130 case ABS_EXPR:
5131 /* If widening the type changes it from signed to unsigned, then we
5132 must avoid building ABS_EXPR itself as unsigned. */
5133 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
5135 tree cstype = (*lang_hooks.types.signed_type) (ctype);
5136 if ((t1 = extract_muldiv (op0, c, code, cstype)) != 0)
5138 t1 = fold (build1 (tcode, cstype, fold_convert (cstype, t1)));
5139 return fold_convert (ctype, t1);
5141 break;
5143 /* FALLTHROUGH */
5144 case NEGATE_EXPR:
5145 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
5146 return fold (build1 (tcode, ctype, fold_convert (ctype, t1)));
5147 break;
5149 case MIN_EXPR: case MAX_EXPR:
5150 /* If widening the type changes the signedness, then we can't perform
5151 this optimization as that changes the result. */
5152 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
5153 break;
5155 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
5156 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0
5157 && (t2 = extract_muldiv (op1, c, code, wide_type)) != 0)
5159 if (tree_int_cst_sgn (c) < 0)
5160 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
5162 return fold (build2 (tcode, ctype, fold_convert (ctype, t1),
5163 fold_convert (ctype, t2)));
5165 break;
5167 case LSHIFT_EXPR: case RSHIFT_EXPR:
5168 /* If the second operand is constant, this is a multiplication
5169 or floor division, by a power of two, so we can treat it that
5170 way unless the multiplier or divisor overflows. Signed
5171 left-shift overflow is implementation-defined rather than
5172 undefined in C90, so do not convert signed left shift into
5173 multiplication. */
5174 if (TREE_CODE (op1) == INTEGER_CST
5175 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
5176 /* const_binop may not detect overflow correctly,
5177 so check for it explicitly here. */
5178 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
5179 && TREE_INT_CST_HIGH (op1) == 0
5180 && 0 != (t1 = fold_convert (ctype,
5181 const_binop (LSHIFT_EXPR,
5182 size_one_node,
5183 op1, 0)))
5184 && ! TREE_OVERFLOW (t1))
5185 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
5186 ? MULT_EXPR : FLOOR_DIV_EXPR,
5187 ctype, fold_convert (ctype, op0), t1),
5188 c, code, wide_type);
5189 break;
5191 case PLUS_EXPR: case MINUS_EXPR:
5192 /* See if we can eliminate the operation on both sides. If we can, we
5193 can return a new PLUS or MINUS. If we can't, the only remaining
5194 cases where we can do anything are if the second operand is a
5195 constant. */
5196 t1 = extract_muldiv (op0, c, code, wide_type);
5197 t2 = extract_muldiv (op1, c, code, wide_type);
5198 if (t1 != 0 && t2 != 0
5199 && (code == MULT_EXPR
5200 /* If not multiplication, we can only do this if both operands
5201 are divisible by c. */
5202 || (multiple_of_p (ctype, op0, c)
5203 && multiple_of_p (ctype, op1, c))))
5204 return fold (build2 (tcode, ctype, fold_convert (ctype, t1),
5205 fold_convert (ctype, t2)));
5207 /* If this was a subtraction, negate OP1 and set it to be an addition.
5208 This simplifies the logic below. */
5209 if (tcode == MINUS_EXPR)
5210 tcode = PLUS_EXPR, op1 = negate_expr (op1);
5212 if (TREE_CODE (op1) != INTEGER_CST)
5213 break;
5215 /* If either OP1 or C are negative, this optimization is not safe for
5216 some of the division and remainder types while for others we need
5217 to change the code. */
5218 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
5220 if (code == CEIL_DIV_EXPR)
5221 code = FLOOR_DIV_EXPR;
5222 else if (code == FLOOR_DIV_EXPR)
5223 code = CEIL_DIV_EXPR;
5224 else if (code != MULT_EXPR
5225 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
5226 break;
5229 /* If it's a multiply or a division/modulus operation of a multiple
5230 of our constant, do the operation and verify it doesn't overflow. */
5231 if (code == MULT_EXPR
5232 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5234 op1 = const_binop (code, fold_convert (ctype, op1),
5235 fold_convert (ctype, c), 0);
5236 /* We allow the constant to overflow with wrapping semantics. */
5237 if (op1 == 0
5238 || (TREE_OVERFLOW (op1) && ! flag_wrapv))
5239 break;
5241 else
5242 break;
5244 /* If we have an unsigned type is not a sizetype, we cannot widen
5245 the operation since it will change the result if the original
5246 computation overflowed. */
5247 if (TYPE_UNSIGNED (ctype)
5248 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
5249 && ctype != type)
5250 break;
5252 /* If we were able to eliminate our operation from the first side,
5253 apply our operation to the second side and reform the PLUS. */
5254 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
5255 return fold (build2 (tcode, ctype, fold_convert (ctype, t1), op1));
5257 /* The last case is if we are a multiply. In that case, we can
5258 apply the distributive law to commute the multiply and addition
5259 if the multiplication of the constants doesn't overflow. */
5260 if (code == MULT_EXPR)
5261 return fold (build2 (tcode, ctype,
5262 fold (build2 (code, ctype,
5263 fold_convert (ctype, op0),
5264 fold_convert (ctype, c))),
5265 op1));
5267 break;
5269 case MULT_EXPR:
5270 /* We have a special case here if we are doing something like
5271 (C * 8) % 4 since we know that's zero. */
5272 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
5273 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
5274 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
5275 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5276 return omit_one_operand (type, integer_zero_node, op0);
5278 /* ... fall through ... */
5280 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
5281 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
5282 /* If we can extract our operation from the LHS, do so and return a
5283 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
5284 do something only if the second operand is a constant. */
5285 if (same_p
5286 && (t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
5287 return fold (build2 (tcode, ctype, fold_convert (ctype, t1),
5288 fold_convert (ctype, op1)));
5289 else if (tcode == MULT_EXPR && code == MULT_EXPR
5290 && (t1 = extract_muldiv (op1, c, code, wide_type)) != 0)
5291 return fold (build2 (tcode, ctype, fold_convert (ctype, op0),
5292 fold_convert (ctype, t1)));
5293 else if (TREE_CODE (op1) != INTEGER_CST)
5294 return 0;
5296 /* If these are the same operation types, we can associate them
5297 assuming no overflow. */
5298 if (tcode == code
5299 && 0 != (t1 = const_binop (MULT_EXPR, fold_convert (ctype, op1),
5300 fold_convert (ctype, c), 0))
5301 && ! TREE_OVERFLOW (t1))
5302 return fold (build2 (tcode, ctype, fold_convert (ctype, op0), t1));
5304 /* If these operations "cancel" each other, we have the main
5305 optimizations of this pass, which occur when either constant is a
5306 multiple of the other, in which case we replace this with either an
5307 operation or CODE or TCODE.
5309 If we have an unsigned type that is not a sizetype, we cannot do
5310 this since it will change the result if the original computation
5311 overflowed. */
5312 if ((! TYPE_UNSIGNED (ctype)
5313 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
5314 && ! flag_wrapv
5315 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
5316 || (tcode == MULT_EXPR
5317 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
5318 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR)))
5320 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5321 return fold (build2 (tcode, ctype, fold_convert (ctype, op0),
5322 fold_convert (ctype,
5323 const_binop (TRUNC_DIV_EXPR,
5324 op1, c, 0))));
5325 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
5326 return fold (build2 (code, ctype, fold_convert (ctype, op0),
5327 fold_convert (ctype,
5328 const_binop (TRUNC_DIV_EXPR,
5329 c, op1, 0))));
5331 break;
5333 default:
5334 break;
5337 return 0;
5340 /* Return a node which has the indicated constant VALUE (either 0 or
5341 1), and is of the indicated TYPE. */
5343 tree
5344 constant_boolean_node (int value, tree type)
5346 if (type == integer_type_node)
5347 return value ? integer_one_node : integer_zero_node;
5348 else if (type == boolean_type_node)
5349 return value ? boolean_true_node : boolean_false_node;
5350 else if (TREE_CODE (type) == BOOLEAN_TYPE)
5351 return lang_hooks.truthvalue_conversion (value ? integer_one_node
5352 : integer_zero_node);
5353 else
5354 return build_int_cst (type, value);
5357 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
5358 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
5359 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
5360 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
5361 COND is the first argument to CODE; otherwise (as in the example
5362 given here), it is the second argument. TYPE is the type of the
5363 original expression. Return NULL_TREE if no simplification is
5364 possible. */
5366 static tree
5367 fold_binary_op_with_conditional_arg (enum tree_code code, tree type,
5368 tree cond, tree arg, int cond_first_p)
5370 tree test, true_value, false_value;
5371 tree lhs = NULL_TREE;
5372 tree rhs = NULL_TREE;
5374 /* This transformation is only worthwhile if we don't have to wrap
5375 arg in a SAVE_EXPR, and the operation can be simplified on atleast
5376 one of the branches once its pushed inside the COND_EXPR. */
5377 if (!TREE_CONSTANT (arg))
5378 return NULL_TREE;
5380 if (TREE_CODE (cond) == COND_EXPR)
5382 test = TREE_OPERAND (cond, 0);
5383 true_value = TREE_OPERAND (cond, 1);
5384 false_value = TREE_OPERAND (cond, 2);
5385 /* If this operand throws an expression, then it does not make
5386 sense to try to perform a logical or arithmetic operation
5387 involving it. */
5388 if (VOID_TYPE_P (TREE_TYPE (true_value)))
5389 lhs = true_value;
5390 if (VOID_TYPE_P (TREE_TYPE (false_value)))
5391 rhs = false_value;
5393 else
5395 tree testtype = TREE_TYPE (cond);
5396 test = cond;
5397 true_value = constant_boolean_node (true, testtype);
5398 false_value = constant_boolean_node (false, testtype);
5401 if (lhs == 0)
5402 lhs = fold (cond_first_p ? build2 (code, type, true_value, arg)
5403 : build2 (code, type, arg, true_value));
5404 if (rhs == 0)
5405 rhs = fold (cond_first_p ? build2 (code, type, false_value, arg)
5406 : build2 (code, type, arg, false_value));
5408 test = fold (build3 (COND_EXPR, type, test, lhs, rhs));
5409 return fold_convert (type, test);
5413 /* Subroutine of fold() that checks for the addition of +/- 0.0.
5415 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
5416 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
5417 ADDEND is the same as X.
5419 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
5420 and finite. The problematic cases are when X is zero, and its mode
5421 has signed zeros. In the case of rounding towards -infinity,
5422 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
5423 modes, X + 0 is not the same as X because -0 + 0 is 0. */
5425 static bool
5426 fold_real_zero_addition_p (tree type, tree addend, int negate)
5428 if (!real_zerop (addend))
5429 return false;
5431 /* Don't allow the fold with -fsignaling-nans. */
5432 if (HONOR_SNANS (TYPE_MODE (type)))
5433 return false;
5435 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
5436 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
5437 return true;
5439 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
5440 if (TREE_CODE (addend) == REAL_CST
5441 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
5442 negate = !negate;
5444 /* The mode has signed zeros, and we have to honor their sign.
5445 In this situation, there is only one case we can return true for.
5446 X - 0 is the same as X unless rounding towards -infinity is
5447 supported. */
5448 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
5451 /* Subroutine of fold() that checks comparisons of built-in math
5452 functions against real constants.
5454 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
5455 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
5456 is the type of the result and ARG0 and ARG1 are the operands of the
5457 comparison. ARG1 must be a TREE_REAL_CST.
5459 The function returns the constant folded tree if a simplification
5460 can be made, and NULL_TREE otherwise. */
5462 static tree
5463 fold_mathfn_compare (enum built_in_function fcode, enum tree_code code,
5464 tree type, tree arg0, tree arg1)
5466 REAL_VALUE_TYPE c;
5468 if (BUILTIN_SQRT_P (fcode))
5470 tree arg = TREE_VALUE (TREE_OPERAND (arg0, 1));
5471 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
5473 c = TREE_REAL_CST (arg1);
5474 if (REAL_VALUE_NEGATIVE (c))
5476 /* sqrt(x) < y is always false, if y is negative. */
5477 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
5478 return omit_one_operand (type, integer_zero_node, arg);
5480 /* sqrt(x) > y is always true, if y is negative and we
5481 don't care about NaNs, i.e. negative values of x. */
5482 if (code == NE_EXPR || !HONOR_NANS (mode))
5483 return omit_one_operand (type, integer_one_node, arg);
5485 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
5486 return fold (build2 (GE_EXPR, type, arg,
5487 build_real (TREE_TYPE (arg), dconst0)));
5489 else if (code == GT_EXPR || code == GE_EXPR)
5491 REAL_VALUE_TYPE c2;
5493 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
5494 real_convert (&c2, mode, &c2);
5496 if (REAL_VALUE_ISINF (c2))
5498 /* sqrt(x) > y is x == +Inf, when y is very large. */
5499 if (HONOR_INFINITIES (mode))
5500 return fold (build2 (EQ_EXPR, type, arg,
5501 build_real (TREE_TYPE (arg), c2)));
5503 /* sqrt(x) > y is always false, when y is very large
5504 and we don't care about infinities. */
5505 return omit_one_operand (type, integer_zero_node, arg);
5508 /* sqrt(x) > c is the same as x > c*c. */
5509 return fold (build2 (code, type, arg,
5510 build_real (TREE_TYPE (arg), c2)));
5512 else if (code == LT_EXPR || code == LE_EXPR)
5514 REAL_VALUE_TYPE c2;
5516 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
5517 real_convert (&c2, mode, &c2);
5519 if (REAL_VALUE_ISINF (c2))
5521 /* sqrt(x) < y is always true, when y is a very large
5522 value and we don't care about NaNs or Infinities. */
5523 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
5524 return omit_one_operand (type, integer_one_node, arg);
5526 /* sqrt(x) < y is x != +Inf when y is very large and we
5527 don't care about NaNs. */
5528 if (! HONOR_NANS (mode))
5529 return fold (build2 (NE_EXPR, type, arg,
5530 build_real (TREE_TYPE (arg), c2)));
5532 /* sqrt(x) < y is x >= 0 when y is very large and we
5533 don't care about Infinities. */
5534 if (! HONOR_INFINITIES (mode))
5535 return fold (build2 (GE_EXPR, type, arg,
5536 build_real (TREE_TYPE (arg), dconst0)));
5538 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
5539 if (lang_hooks.decls.global_bindings_p () != 0
5540 || CONTAINS_PLACEHOLDER_P (arg))
5541 return NULL_TREE;
5543 arg = save_expr (arg);
5544 return fold (build2 (TRUTH_ANDIF_EXPR, type,
5545 fold (build2 (GE_EXPR, type, arg,
5546 build_real (TREE_TYPE (arg),
5547 dconst0))),
5548 fold (build2 (NE_EXPR, type, arg,
5549 build_real (TREE_TYPE (arg),
5550 c2)))));
5553 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
5554 if (! HONOR_NANS (mode))
5555 return fold (build2 (code, type, arg,
5556 build_real (TREE_TYPE (arg), c2)));
5558 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
5559 if (lang_hooks.decls.global_bindings_p () == 0
5560 && ! CONTAINS_PLACEHOLDER_P (arg))
5562 arg = save_expr (arg);
5563 return fold (build2 (TRUTH_ANDIF_EXPR, type,
5564 fold (build2 (GE_EXPR, type, arg,
5565 build_real (TREE_TYPE (arg),
5566 dconst0))),
5567 fold (build2 (code, type, arg,
5568 build_real (TREE_TYPE (arg),
5569 c2)))));
5574 return NULL_TREE;
5577 /* Subroutine of fold() that optimizes comparisons against Infinities,
5578 either +Inf or -Inf.
5580 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
5581 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
5582 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
5584 The function returns the constant folded tree if a simplification
5585 can be made, and NULL_TREE otherwise. */
5587 static tree
5588 fold_inf_compare (enum tree_code code, tree type, tree arg0, tree arg1)
5590 enum machine_mode mode;
5591 REAL_VALUE_TYPE max;
5592 tree temp;
5593 bool neg;
5595 mode = TYPE_MODE (TREE_TYPE (arg0));
5597 /* For negative infinity swap the sense of the comparison. */
5598 neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
5599 if (neg)
5600 code = swap_tree_comparison (code);
5602 switch (code)
5604 case GT_EXPR:
5605 /* x > +Inf is always false, if with ignore sNANs. */
5606 if (HONOR_SNANS (mode))
5607 return NULL_TREE;
5608 return omit_one_operand (type, integer_zero_node, arg0);
5610 case LE_EXPR:
5611 /* x <= +Inf is always true, if we don't case about NaNs. */
5612 if (! HONOR_NANS (mode))
5613 return omit_one_operand (type, integer_one_node, arg0);
5615 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
5616 if (lang_hooks.decls.global_bindings_p () == 0
5617 && ! CONTAINS_PLACEHOLDER_P (arg0))
5619 arg0 = save_expr (arg0);
5620 return fold (build2 (EQ_EXPR, type, arg0, arg0));
5622 break;
5624 case EQ_EXPR:
5625 case GE_EXPR:
5626 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
5627 real_maxval (&max, neg, mode);
5628 return fold (build2 (neg ? LT_EXPR : GT_EXPR, type,
5629 arg0, build_real (TREE_TYPE (arg0), max)));
5631 case LT_EXPR:
5632 /* x < +Inf is always equal to x <= DBL_MAX. */
5633 real_maxval (&max, neg, mode);
5634 return fold (build2 (neg ? GE_EXPR : LE_EXPR, type,
5635 arg0, build_real (TREE_TYPE (arg0), max)));
5637 case NE_EXPR:
5638 /* x != +Inf is always equal to !(x > DBL_MAX). */
5639 real_maxval (&max, neg, mode);
5640 if (! HONOR_NANS (mode))
5641 return fold (build2 (neg ? GE_EXPR : LE_EXPR, type,
5642 arg0, build_real (TREE_TYPE (arg0), max)));
5644 /* The transformation below creates non-gimple code and thus is
5645 not appropriate if we are in gimple form. */
5646 if (in_gimple_form)
5647 return NULL_TREE;
5649 temp = fold (build2 (neg ? LT_EXPR : GT_EXPR, type,
5650 arg0, build_real (TREE_TYPE (arg0), max)));
5651 return fold (build1 (TRUTH_NOT_EXPR, type, temp));
5653 default:
5654 break;
5657 return NULL_TREE;
5660 /* Subroutine of fold() that optimizes comparisons of a division by
5661 a nonzero integer constant against an integer constant, i.e.
5662 X/C1 op C2.
5664 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
5665 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
5666 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
5668 The function returns the constant folded tree if a simplification
5669 can be made, and NULL_TREE otherwise. */
5671 static tree
5672 fold_div_compare (enum tree_code code, tree type, tree arg0, tree arg1)
5674 tree prod, tmp, hi, lo;
5675 tree arg00 = TREE_OPERAND (arg0, 0);
5676 tree arg01 = TREE_OPERAND (arg0, 1);
5677 unsigned HOST_WIDE_INT lpart;
5678 HOST_WIDE_INT hpart;
5679 int overflow;
5681 /* We have to do this the hard way to detect unsigned overflow.
5682 prod = int_const_binop (MULT_EXPR, arg01, arg1, 0); */
5683 overflow = mul_double (TREE_INT_CST_LOW (arg01),
5684 TREE_INT_CST_HIGH (arg01),
5685 TREE_INT_CST_LOW (arg1),
5686 TREE_INT_CST_HIGH (arg1), &lpart, &hpart);
5687 prod = build_int_cst_wide (TREE_TYPE (arg00), lpart, hpart);
5688 prod = force_fit_type (prod, -1, overflow, false);
5690 if (TYPE_UNSIGNED (TREE_TYPE (arg0)))
5692 tmp = int_const_binop (MINUS_EXPR, arg01, integer_one_node, 0);
5693 lo = prod;
5695 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp, 0). */
5696 overflow = add_double (TREE_INT_CST_LOW (prod),
5697 TREE_INT_CST_HIGH (prod),
5698 TREE_INT_CST_LOW (tmp),
5699 TREE_INT_CST_HIGH (tmp),
5700 &lpart, &hpart);
5701 hi = build_int_cst_wide (TREE_TYPE (arg00), lpart, hpart);
5702 hi = force_fit_type (hi, -1, overflow | TREE_OVERFLOW (prod),
5703 TREE_CONSTANT_OVERFLOW (prod));
5705 else if (tree_int_cst_sgn (arg01) >= 0)
5707 tmp = int_const_binop (MINUS_EXPR, arg01, integer_one_node, 0);
5708 switch (tree_int_cst_sgn (arg1))
5710 case -1:
5711 lo = int_const_binop (MINUS_EXPR, prod, tmp, 0);
5712 hi = prod;
5713 break;
5715 case 0:
5716 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
5717 hi = tmp;
5718 break;
5720 case 1:
5721 hi = int_const_binop (PLUS_EXPR, prod, tmp, 0);
5722 lo = prod;
5723 break;
5725 default:
5726 gcc_unreachable ();
5729 else
5731 /* A negative divisor reverses the relational operators. */
5732 code = swap_tree_comparison (code);
5734 tmp = int_const_binop (PLUS_EXPR, arg01, integer_one_node, 0);
5735 switch (tree_int_cst_sgn (arg1))
5737 case -1:
5738 hi = int_const_binop (MINUS_EXPR, prod, tmp, 0);
5739 lo = prod;
5740 break;
5742 case 0:
5743 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
5744 lo = tmp;
5745 break;
5747 case 1:
5748 lo = int_const_binop (PLUS_EXPR, prod, tmp, 0);
5749 hi = prod;
5750 break;
5752 default:
5753 gcc_unreachable ();
5757 switch (code)
5759 case EQ_EXPR:
5760 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
5761 return omit_one_operand (type, integer_zero_node, arg00);
5762 if (TREE_OVERFLOW (hi))
5763 return fold (build2 (GE_EXPR, type, arg00, lo));
5764 if (TREE_OVERFLOW (lo))
5765 return fold (build2 (LE_EXPR, type, arg00, hi));
5766 return build_range_check (type, arg00, 1, lo, hi);
5768 case NE_EXPR:
5769 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
5770 return omit_one_operand (type, integer_one_node, arg00);
5771 if (TREE_OVERFLOW (hi))
5772 return fold (build2 (LT_EXPR, type, arg00, lo));
5773 if (TREE_OVERFLOW (lo))
5774 return fold (build2 (GT_EXPR, type, arg00, hi));
5775 return build_range_check (type, arg00, 0, lo, hi);
5777 case LT_EXPR:
5778 if (TREE_OVERFLOW (lo))
5779 return omit_one_operand (type, integer_zero_node, arg00);
5780 return fold (build2 (LT_EXPR, type, arg00, lo));
5782 case LE_EXPR:
5783 if (TREE_OVERFLOW (hi))
5784 return omit_one_operand (type, integer_one_node, arg00);
5785 return fold (build2 (LE_EXPR, type, arg00, hi));
5787 case GT_EXPR:
5788 if (TREE_OVERFLOW (hi))
5789 return omit_one_operand (type, integer_zero_node, arg00);
5790 return fold (build2 (GT_EXPR, type, arg00, hi));
5792 case GE_EXPR:
5793 if (TREE_OVERFLOW (lo))
5794 return omit_one_operand (type, integer_one_node, arg00);
5795 return fold (build2 (GE_EXPR, type, arg00, lo));
5797 default:
5798 break;
5801 return NULL_TREE;
5805 /* If CODE with arguments ARG0 and ARG1 represents a single bit
5806 equality/inequality test, then return a simplified form of
5807 the test using shifts and logical operations. Otherwise return
5808 NULL. TYPE is the desired result type. */
5810 tree
5811 fold_single_bit_test (enum tree_code code, tree arg0, tree arg1,
5812 tree result_type)
5814 /* If this is a TRUTH_NOT_EXPR, it may have a single bit test inside
5815 operand 0. */
5816 if (code == TRUTH_NOT_EXPR)
5818 code = TREE_CODE (arg0);
5819 if (code != NE_EXPR && code != EQ_EXPR)
5820 return NULL_TREE;
5822 /* Extract the arguments of the EQ/NE. */
5823 arg1 = TREE_OPERAND (arg0, 1);
5824 arg0 = TREE_OPERAND (arg0, 0);
5826 /* This requires us to invert the code. */
5827 code = (code == EQ_EXPR ? NE_EXPR : EQ_EXPR);
5830 /* If this is testing a single bit, we can optimize the test. */
5831 if ((code == NE_EXPR || code == EQ_EXPR)
5832 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
5833 && integer_pow2p (TREE_OPERAND (arg0, 1)))
5835 tree inner = TREE_OPERAND (arg0, 0);
5836 tree type = TREE_TYPE (arg0);
5837 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
5838 enum machine_mode operand_mode = TYPE_MODE (type);
5839 int ops_unsigned;
5840 tree signed_type, unsigned_type, intermediate_type;
5841 tree arg00;
5843 /* If we have (A & C) != 0 where C is the sign bit of A, convert
5844 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
5845 arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
5846 if (arg00 != NULL_TREE
5847 /* This is only a win if casting to a signed type is cheap,
5848 i.e. when arg00's type is not a partial mode. */
5849 && TYPE_PRECISION (TREE_TYPE (arg00))
5850 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg00))))
5852 tree stype = lang_hooks.types.signed_type (TREE_TYPE (arg00));
5853 return fold (build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
5854 result_type, fold_convert (stype, arg00),
5855 fold_convert (stype, integer_zero_node)));
5858 /* Otherwise we have (A & C) != 0 where C is a single bit,
5859 convert that into ((A >> C2) & 1). Where C2 = log2(C).
5860 Similarly for (A & C) == 0. */
5862 /* If INNER is a right shift of a constant and it plus BITNUM does
5863 not overflow, adjust BITNUM and INNER. */
5864 if (TREE_CODE (inner) == RSHIFT_EXPR
5865 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
5866 && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
5867 && bitnum < TYPE_PRECISION (type)
5868 && 0 > compare_tree_int (TREE_OPERAND (inner, 1),
5869 bitnum - TYPE_PRECISION (type)))
5871 bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
5872 inner = TREE_OPERAND (inner, 0);
5875 /* If we are going to be able to omit the AND below, we must do our
5876 operations as unsigned. If we must use the AND, we have a choice.
5877 Normally unsigned is faster, but for some machines signed is. */
5878 #ifdef LOAD_EXTEND_OP
5879 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND ? 0 : 1);
5880 #else
5881 ops_unsigned = 1;
5882 #endif
5884 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
5885 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
5886 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
5887 inner = fold_convert (intermediate_type, inner);
5889 if (bitnum != 0)
5890 inner = build2 (RSHIFT_EXPR, intermediate_type,
5891 inner, size_int (bitnum));
5893 if (code == EQ_EXPR)
5894 inner = fold (build2 (BIT_XOR_EXPR, intermediate_type,
5895 inner, integer_one_node));
5897 /* Put the AND last so it can combine with more things. */
5898 inner = build2 (BIT_AND_EXPR, intermediate_type,
5899 inner, integer_one_node);
5901 /* Make sure to return the proper type. */
5902 inner = fold_convert (result_type, inner);
5904 return inner;
5906 return NULL_TREE;
5909 /* Check whether we are allowed to reorder operands arg0 and arg1,
5910 such that the evaluation of arg1 occurs before arg0. */
5912 static bool
5913 reorder_operands_p (tree arg0, tree arg1)
5915 if (! flag_evaluation_order)
5916 return true;
5917 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
5918 return true;
5919 return ! TREE_SIDE_EFFECTS (arg0)
5920 && ! TREE_SIDE_EFFECTS (arg1);
5923 /* Test whether it is preferable two swap two operands, ARG0 and
5924 ARG1, for example because ARG0 is an integer constant and ARG1
5925 isn't. If REORDER is true, only recommend swapping if we can
5926 evaluate the operands in reverse order. */
5928 bool
5929 tree_swap_operands_p (tree arg0, tree arg1, bool reorder)
5931 STRIP_SIGN_NOPS (arg0);
5932 STRIP_SIGN_NOPS (arg1);
5934 if (TREE_CODE (arg1) == INTEGER_CST)
5935 return 0;
5936 if (TREE_CODE (arg0) == INTEGER_CST)
5937 return 1;
5939 if (TREE_CODE (arg1) == REAL_CST)
5940 return 0;
5941 if (TREE_CODE (arg0) == REAL_CST)
5942 return 1;
5944 if (TREE_CODE (arg1) == COMPLEX_CST)
5945 return 0;
5946 if (TREE_CODE (arg0) == COMPLEX_CST)
5947 return 1;
5949 if (TREE_CONSTANT (arg1))
5950 return 0;
5951 if (TREE_CONSTANT (arg0))
5952 return 1;
5954 if (optimize_size)
5955 return 0;
5957 if (reorder && flag_evaluation_order
5958 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
5959 return 0;
5961 if (DECL_P (arg1))
5962 return 0;
5963 if (DECL_P (arg0))
5964 return 1;
5966 /* It is preferable to swap two SSA_NAME to ensure a canonical form
5967 for commutative and comparison operators. Ensuring a canonical
5968 form allows the optimizers to find additional redundancies without
5969 having to explicitly check for both orderings. */
5970 if (TREE_CODE (arg0) == SSA_NAME
5971 && TREE_CODE (arg1) == SSA_NAME
5972 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
5973 return 1;
5975 return 0;
5978 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
5979 ARG0 is extended to a wider type. */
5981 static tree
5982 fold_widened_comparison (enum tree_code code, tree type, tree arg0, tree arg1)
5984 tree arg0_unw = get_unwidened (arg0, NULL_TREE);
5985 tree arg1_unw;
5986 tree shorter_type, outer_type;
5987 tree min, max;
5988 bool above, below;
5990 if (arg0_unw == arg0)
5991 return NULL_TREE;
5992 shorter_type = TREE_TYPE (arg0_unw);
5994 arg1_unw = get_unwidened (arg1, shorter_type);
5995 if (!arg1_unw)
5996 return NULL_TREE;
5998 /* If possible, express the comparison in the shorter mode. */
5999 if ((code == EQ_EXPR || code == NE_EXPR
6000 || TYPE_UNSIGNED (TREE_TYPE (arg0)) == TYPE_UNSIGNED (shorter_type))
6001 && (TREE_TYPE (arg1_unw) == shorter_type
6002 || (TREE_CODE (arg1_unw) == INTEGER_CST
6003 && int_fits_type_p (arg1_unw, shorter_type))))
6004 return fold (build (code, type, arg0_unw,
6005 fold_convert (shorter_type, arg1_unw)));
6007 if (TREE_CODE (arg1_unw) != INTEGER_CST)
6008 return NULL_TREE;
6010 /* If we are comparing with the integer that does not fit into the range
6011 of the shorter type, the result is known. */
6012 outer_type = TREE_TYPE (arg1_unw);
6013 min = lower_bound_in_type (outer_type, shorter_type);
6014 max = upper_bound_in_type (outer_type, shorter_type);
6016 above = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6017 max, arg1_unw));
6018 below = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6019 arg1_unw, min));
6021 switch (code)
6023 case EQ_EXPR:
6024 if (above || below)
6025 return constant_boolean_node (false, type);
6026 break;
6028 case NE_EXPR:
6029 if (above || below)
6030 return constant_boolean_node (true, type);
6031 break;
6033 case LT_EXPR:
6034 case LE_EXPR:
6035 if (above)
6036 return constant_boolean_node (true, type);
6037 else if (below)
6038 return constant_boolean_node (false, type);;
6040 case GT_EXPR:
6041 case GE_EXPR:
6042 if (above)
6043 return constant_boolean_node (false, type);
6044 else if (below)
6045 return constant_boolean_node (true, type);;
6047 default:
6048 break;
6051 return NULL_TREE;
6054 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
6055 ARG0 just the signedness is changed. */
6057 static tree
6058 fold_sign_changed_comparison (enum tree_code code, tree type,
6059 tree arg0, tree arg1)
6061 tree arg0_inner, tmp;
6062 tree inner_type, outer_type;
6064 if (TREE_CODE (arg0) != NOP_EXPR)
6065 return NULL_TREE;
6067 outer_type = TREE_TYPE (arg0);
6068 arg0_inner = TREE_OPERAND (arg0, 0);
6069 inner_type = TREE_TYPE (arg0_inner);
6071 if (TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
6072 return NULL_TREE;
6074 if (TREE_CODE (arg1) != INTEGER_CST
6075 && !(TREE_CODE (arg1) == NOP_EXPR
6076 && TREE_TYPE (TREE_OPERAND (arg1, 0)) == inner_type))
6077 return NULL_TREE;
6079 if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
6080 && code != NE_EXPR
6081 && code != EQ_EXPR)
6082 return NULL_TREE;
6084 if (TREE_CODE (arg1) == INTEGER_CST)
6086 tmp = build_int_cst_wide (inner_type,
6087 TREE_INT_CST_LOW (arg1),
6088 TREE_INT_CST_HIGH (arg1));
6089 arg1 = force_fit_type (tmp, 0,
6090 TREE_OVERFLOW (arg1),
6091 TREE_CONSTANT_OVERFLOW (arg1));
6093 else
6094 arg1 = fold_convert (inner_type, arg1);
6096 return fold (build (code, type, arg0_inner, arg1));
6099 /* Tries to replace &a[idx] CODE s * delta with &a[idx CODE delta], if s is
6100 step of the array. TYPE is the type of the expression. ADDR is the address.
6101 MULT is the multiplicative expression. If the function succeeds, the new
6102 address expression is returned. Otherwise NULL_TREE is returned. */
6104 static tree
6105 try_move_mult_to_index (tree type, enum tree_code code, tree addr, tree mult)
6107 tree s, delta, step;
6108 tree arg0 = TREE_OPERAND (mult, 0), arg1 = TREE_OPERAND (mult, 1);
6109 tree ref = TREE_OPERAND (addr, 0), pref;
6110 tree ret, pos;
6111 tree itype;
6113 STRIP_NOPS (arg0);
6114 STRIP_NOPS (arg1);
6116 if (TREE_CODE (arg0) == INTEGER_CST)
6118 s = arg0;
6119 delta = arg1;
6121 else if (TREE_CODE (arg1) == INTEGER_CST)
6123 s = arg1;
6124 delta = arg0;
6126 else
6127 return NULL_TREE;
6129 for (;; ref = TREE_OPERAND (ref, 0))
6131 if (TREE_CODE (ref) == ARRAY_REF)
6133 step = array_ref_element_size (ref);
6135 if (TREE_CODE (step) != INTEGER_CST)
6136 continue;
6138 itype = TREE_TYPE (step);
6140 /* If the type sizes do not match, we might run into problems
6141 when one of them would overflow. */
6142 if (TYPE_PRECISION (itype) != TYPE_PRECISION (type))
6143 continue;
6145 if (!operand_equal_p (step, fold_convert (itype, s), 0))
6146 continue;
6148 delta = fold_convert (itype, delta);
6149 break;
6152 if (!handled_component_p (ref))
6153 return NULL_TREE;
6156 /* We found the suitable array reference. So copy everything up to it,
6157 and replace the index. */
6159 pref = TREE_OPERAND (addr, 0);
6160 ret = copy_node (pref);
6161 pos = ret;
6163 while (pref != ref)
6165 pref = TREE_OPERAND (pref, 0);
6166 TREE_OPERAND (pos, 0) = copy_node (pref);
6167 pos = TREE_OPERAND (pos, 0);
6170 TREE_OPERAND (pos, 1) = fold (build2 (code, itype,
6171 TREE_OPERAND (pos, 1),
6172 delta));
6174 return build1 (ADDR_EXPR, type, ret);
6178 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6179 means A >= Y && A != MAX, but in this case we know that
6180 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6182 static tree
6183 fold_to_nonsharp_ineq_using_bound (tree ineq, tree bound)
6185 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6187 if (TREE_CODE (bound) == LT_EXPR)
6188 a = TREE_OPERAND (bound, 0);
6189 else if (TREE_CODE (bound) == GT_EXPR)
6190 a = TREE_OPERAND (bound, 1);
6191 else
6192 return NULL_TREE;
6194 typea = TREE_TYPE (a);
6195 if (!INTEGRAL_TYPE_P (typea)
6196 && !POINTER_TYPE_P (typea))
6197 return NULL_TREE;
6199 if (TREE_CODE (ineq) == LT_EXPR)
6201 a1 = TREE_OPERAND (ineq, 1);
6202 y = TREE_OPERAND (ineq, 0);
6204 else if (TREE_CODE (ineq) == GT_EXPR)
6206 a1 = TREE_OPERAND (ineq, 0);
6207 y = TREE_OPERAND (ineq, 1);
6209 else
6210 return NULL_TREE;
6212 if (TREE_TYPE (a1) != typea)
6213 return NULL_TREE;
6215 diff = fold (build2 (MINUS_EXPR, typea, a1, a));
6216 if (!integer_onep (diff))
6217 return NULL_TREE;
6219 return fold (build2 (GE_EXPR, type, a, y));
6222 /* Perform constant folding and related simplification of EXPR.
6223 The related simplifications include x*1 => x, x*0 => 0, etc.,
6224 and application of the associative law.
6225 NOP_EXPR conversions may be removed freely (as long as we
6226 are careful not to change the type of the overall expression).
6227 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
6228 but we can constant-fold them if they have constant operands. */
6230 #ifdef ENABLE_FOLD_CHECKING
6231 # define fold(x) fold_1 (x)
6232 static tree fold_1 (tree);
6233 static
6234 #endif
6235 tree
6236 fold (tree expr)
6238 const tree t = expr;
6239 const tree type = TREE_TYPE (expr);
6240 tree t1 = NULL_TREE;
6241 tree tem;
6242 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
6243 enum tree_code code = TREE_CODE (t);
6244 enum tree_code_class kind = TREE_CODE_CLASS (code);
6246 /* WINS will be nonzero when the switch is done
6247 if all operands are constant. */
6248 int wins = 1;
6250 /* Return right away if a constant. */
6251 if (kind == tcc_constant)
6252 return t;
6254 if (code == NOP_EXPR || code == FLOAT_EXPR || code == CONVERT_EXPR)
6256 tree subop;
6258 /* Special case for conversion ops that can have fixed point args. */
6259 arg0 = TREE_OPERAND (t, 0);
6261 /* Don't use STRIP_NOPS, because signedness of argument type matters. */
6262 if (arg0 != 0)
6263 STRIP_SIGN_NOPS (arg0);
6265 if (arg0 != 0 && TREE_CODE (arg0) == COMPLEX_CST)
6266 subop = TREE_REALPART (arg0);
6267 else
6268 subop = arg0;
6270 if (subop != 0 && TREE_CODE (subop) != INTEGER_CST
6271 && TREE_CODE (subop) != REAL_CST)
6272 /* Note that TREE_CONSTANT isn't enough:
6273 static var addresses are constant but we can't
6274 do arithmetic on them. */
6275 wins = 0;
6277 else if (IS_EXPR_CODE_CLASS (kind))
6279 int len = first_rtl_op (code);
6280 int i;
6281 for (i = 0; i < len; i++)
6283 tree op = TREE_OPERAND (t, i);
6284 tree subop;
6286 if (op == 0)
6287 continue; /* Valid for CALL_EXPR, at least. */
6289 /* Strip any conversions that don't change the mode. This is
6290 safe for every expression, except for a comparison expression
6291 because its signedness is derived from its operands. So, in
6292 the latter case, only strip conversions that don't change the
6293 signedness.
6295 Note that this is done as an internal manipulation within the
6296 constant folder, in order to find the simplest representation
6297 of the arguments so that their form can be studied. In any
6298 cases, the appropriate type conversions should be put back in
6299 the tree that will get out of the constant folder. */
6300 if (kind == tcc_comparison)
6301 STRIP_SIGN_NOPS (op);
6302 else
6303 STRIP_NOPS (op);
6305 if (TREE_CODE (op) == COMPLEX_CST)
6306 subop = TREE_REALPART (op);
6307 else
6308 subop = op;
6310 if (TREE_CODE (subop) != INTEGER_CST
6311 && TREE_CODE (subop) != REAL_CST)
6312 /* Note that TREE_CONSTANT isn't enough:
6313 static var addresses are constant but we can't
6314 do arithmetic on them. */
6315 wins = 0;
6317 if (i == 0)
6318 arg0 = op;
6319 else if (i == 1)
6320 arg1 = op;
6324 /* If this is a commutative operation, and ARG0 is a constant, move it
6325 to ARG1 to reduce the number of tests below. */
6326 if (commutative_tree_code (code)
6327 && tree_swap_operands_p (arg0, arg1, true))
6328 return fold (build2 (code, type, TREE_OPERAND (t, 1),
6329 TREE_OPERAND (t, 0)));
6331 /* Now WINS is set as described above,
6332 ARG0 is the first operand of EXPR,
6333 and ARG1 is the second operand (if it has more than one operand).
6335 First check for cases where an arithmetic operation is applied to a
6336 compound, conditional, or comparison operation. Push the arithmetic
6337 operation inside the compound or conditional to see if any folding
6338 can then be done. Convert comparison to conditional for this purpose.
6339 The also optimizes non-constant cases that used to be done in
6340 expand_expr.
6342 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
6343 one of the operands is a comparison and the other is a comparison, a
6344 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
6345 code below would make the expression more complex. Change it to a
6346 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
6347 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
6349 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
6350 || code == EQ_EXPR || code == NE_EXPR)
6351 && ((truth_value_p (TREE_CODE (arg0))
6352 && (truth_value_p (TREE_CODE (arg1))
6353 || (TREE_CODE (arg1) == BIT_AND_EXPR
6354 && integer_onep (TREE_OPERAND (arg1, 1)))))
6355 || (truth_value_p (TREE_CODE (arg1))
6356 && (truth_value_p (TREE_CODE (arg0))
6357 || (TREE_CODE (arg0) == BIT_AND_EXPR
6358 && integer_onep (TREE_OPERAND (arg0, 1)))))))
6360 tem = fold (build2 (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
6361 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
6362 : TRUTH_XOR_EXPR,
6363 type, fold_convert (boolean_type_node, arg0),
6364 fold_convert (boolean_type_node, arg1)));
6366 if (code == EQ_EXPR)
6367 tem = invert_truthvalue (tem);
6369 return tem;
6372 if (TREE_CODE_CLASS (code) == tcc_unary)
6374 if (TREE_CODE (arg0) == COMPOUND_EXPR)
6375 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
6376 fold (build1 (code, type, TREE_OPERAND (arg0, 1))));
6377 else if (TREE_CODE (arg0) == COND_EXPR)
6379 tree arg01 = TREE_OPERAND (arg0, 1);
6380 tree arg02 = TREE_OPERAND (arg0, 2);
6381 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
6382 arg01 = fold (build1 (code, type, arg01));
6383 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
6384 arg02 = fold (build1 (code, type, arg02));
6385 tem = fold (build3 (COND_EXPR, type, TREE_OPERAND (arg0, 0),
6386 arg01, arg02));
6388 /* If this was a conversion, and all we did was to move into
6389 inside the COND_EXPR, bring it back out. But leave it if
6390 it is a conversion from integer to integer and the
6391 result precision is no wider than a word since such a
6392 conversion is cheap and may be optimized away by combine,
6393 while it couldn't if it were outside the COND_EXPR. Then return
6394 so we don't get into an infinite recursion loop taking the
6395 conversion out and then back in. */
6397 if ((code == NOP_EXPR || code == CONVERT_EXPR
6398 || code == NON_LVALUE_EXPR)
6399 && TREE_CODE (tem) == COND_EXPR
6400 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
6401 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
6402 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
6403 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
6404 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
6405 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
6406 && ! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
6407 && (INTEGRAL_TYPE_P
6408 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
6409 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD))
6410 tem = build1 (code, type,
6411 build3 (COND_EXPR,
6412 TREE_TYPE (TREE_OPERAND
6413 (TREE_OPERAND (tem, 1), 0)),
6414 TREE_OPERAND (tem, 0),
6415 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
6416 TREE_OPERAND (TREE_OPERAND (tem, 2), 0)));
6417 return tem;
6419 else if (COMPARISON_CLASS_P (arg0))
6421 if (TREE_CODE (type) == BOOLEAN_TYPE)
6423 arg0 = copy_node (arg0);
6424 TREE_TYPE (arg0) = type;
6425 return arg0;
6427 else if (TREE_CODE (type) != INTEGER_TYPE)
6428 return fold (build3 (COND_EXPR, type, arg0,
6429 fold (build1 (code, type,
6430 integer_one_node)),
6431 fold (build1 (code, type,
6432 integer_zero_node))));
6435 else if (TREE_CODE_CLASS (code) == tcc_comparison
6436 && TREE_CODE (arg0) == COMPOUND_EXPR)
6437 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
6438 fold (build2 (code, type, TREE_OPERAND (arg0, 1), arg1)));
6439 else if (TREE_CODE_CLASS (code) == tcc_comparison
6440 && TREE_CODE (arg1) == COMPOUND_EXPR)
6441 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
6442 fold (build2 (code, type, arg0, TREE_OPERAND (arg1, 1))));
6443 else if (TREE_CODE_CLASS (code) == tcc_binary
6444 || TREE_CODE_CLASS (code) == tcc_comparison)
6446 if (TREE_CODE (arg0) == COMPOUND_EXPR)
6447 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
6448 fold (build2 (code, type, TREE_OPERAND (arg0, 1),
6449 arg1)));
6450 if (TREE_CODE (arg1) == COMPOUND_EXPR
6451 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
6452 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
6453 fold (build2 (code, type,
6454 arg0, TREE_OPERAND (arg1, 1))));
6456 if (TREE_CODE (arg0) == COND_EXPR || COMPARISON_CLASS_P (arg0))
6458 tem = fold_binary_op_with_conditional_arg (code, type, arg0, arg1,
6459 /*cond_first_p=*/1);
6460 if (tem != NULL_TREE)
6461 return tem;
6464 if (TREE_CODE (arg1) == COND_EXPR || COMPARISON_CLASS_P (arg1))
6466 tem = fold_binary_op_with_conditional_arg (code, type, arg1, arg0,
6467 /*cond_first_p=*/0);
6468 if (tem != NULL_TREE)
6469 return tem;
6473 switch (code)
6475 case CONST_DECL:
6476 return fold (DECL_INITIAL (t));
6478 case NOP_EXPR:
6479 case FLOAT_EXPR:
6480 case CONVERT_EXPR:
6481 case FIX_TRUNC_EXPR:
6482 case FIX_CEIL_EXPR:
6483 case FIX_FLOOR_EXPR:
6484 case FIX_ROUND_EXPR:
6485 if (TREE_TYPE (TREE_OPERAND (t, 0)) == type)
6486 return TREE_OPERAND (t, 0);
6488 /* Handle cases of two conversions in a row. */
6489 if (TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
6490 || TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR)
6492 tree inside_type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
6493 tree inter_type = TREE_TYPE (TREE_OPERAND (t, 0));
6494 int inside_int = INTEGRAL_TYPE_P (inside_type);
6495 int inside_ptr = POINTER_TYPE_P (inside_type);
6496 int inside_float = FLOAT_TYPE_P (inside_type);
6497 unsigned int inside_prec = TYPE_PRECISION (inside_type);
6498 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
6499 int inter_int = INTEGRAL_TYPE_P (inter_type);
6500 int inter_ptr = POINTER_TYPE_P (inter_type);
6501 int inter_float = FLOAT_TYPE_P (inter_type);
6502 unsigned int inter_prec = TYPE_PRECISION (inter_type);
6503 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
6504 int final_int = INTEGRAL_TYPE_P (type);
6505 int final_ptr = POINTER_TYPE_P (type);
6506 int final_float = FLOAT_TYPE_P (type);
6507 unsigned int final_prec = TYPE_PRECISION (type);
6508 int final_unsignedp = TYPE_UNSIGNED (type);
6510 /* In addition to the cases of two conversions in a row
6511 handled below, if we are converting something to its own
6512 type via an object of identical or wider precision, neither
6513 conversion is needed. */
6514 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (type)
6515 && ((inter_int && final_int) || (inter_float && final_float))
6516 && inter_prec >= final_prec)
6517 return fold (build1 (code, type,
6518 TREE_OPERAND (TREE_OPERAND (t, 0), 0)));
6520 /* Likewise, if the intermediate and final types are either both
6521 float or both integer, we don't need the middle conversion if
6522 it is wider than the final type and doesn't change the signedness
6523 (for integers). Avoid this if the final type is a pointer
6524 since then we sometimes need the inner conversion. Likewise if
6525 the outer has a precision not equal to the size of its mode. */
6526 if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
6527 || (inter_float && inside_float))
6528 && inter_prec >= inside_prec
6529 && (inter_float || inter_unsignedp == inside_unsignedp)
6530 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
6531 && TYPE_MODE (type) == TYPE_MODE (inter_type))
6532 && ! final_ptr)
6533 return fold (build1 (code, type,
6534 TREE_OPERAND (TREE_OPERAND (t, 0), 0)));
6536 /* If we have a sign-extension of a zero-extended value, we can
6537 replace that by a single zero-extension. */
6538 if (inside_int && inter_int && final_int
6539 && inside_prec < inter_prec && inter_prec < final_prec
6540 && inside_unsignedp && !inter_unsignedp)
6541 return fold (build1 (code, type,
6542 TREE_OPERAND (TREE_OPERAND (t, 0), 0)));
6544 /* Two conversions in a row are not needed unless:
6545 - some conversion is floating-point (overstrict for now), or
6546 - the intermediate type is narrower than both initial and
6547 final, or
6548 - the intermediate type and innermost type differ in signedness,
6549 and the outermost type is wider than the intermediate, or
6550 - the initial type is a pointer type and the precisions of the
6551 intermediate and final types differ, or
6552 - the final type is a pointer type and the precisions of the
6553 initial and intermediate types differ. */
6554 if (! inside_float && ! inter_float && ! final_float
6555 && (inter_prec > inside_prec || inter_prec > final_prec)
6556 && ! (inside_int && inter_int
6557 && inter_unsignedp != inside_unsignedp
6558 && inter_prec < final_prec)
6559 && ((inter_unsignedp && inter_prec > inside_prec)
6560 == (final_unsignedp && final_prec > inter_prec))
6561 && ! (inside_ptr && inter_prec != final_prec)
6562 && ! (final_ptr && inside_prec != inter_prec)
6563 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
6564 && TYPE_MODE (type) == TYPE_MODE (inter_type))
6565 && ! final_ptr)
6566 return fold (build1 (code, type,
6567 TREE_OPERAND (TREE_OPERAND (t, 0), 0)));
6570 if (TREE_CODE (TREE_OPERAND (t, 0)) == MODIFY_EXPR
6571 && TREE_CONSTANT (TREE_OPERAND (TREE_OPERAND (t, 0), 1))
6572 /* Detect assigning a bitfield. */
6573 && !(TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 0)) == COMPONENT_REF
6574 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 0), 0), 1))))
6576 /* Don't leave an assignment inside a conversion
6577 unless assigning a bitfield. */
6578 tree prev = TREE_OPERAND (t, 0);
6579 tem = copy_node (t);
6580 TREE_OPERAND (tem, 0) = TREE_OPERAND (prev, 1);
6581 /* First do the assignment, then return converted constant. */
6582 tem = build2 (COMPOUND_EXPR, TREE_TYPE (tem), prev, fold (tem));
6583 TREE_NO_WARNING (tem) = 1;
6584 TREE_USED (tem) = 1;
6585 return tem;
6588 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
6589 constants (if x has signed type, the sign bit cannot be set
6590 in c). This folds extension into the BIT_AND_EXPR. */
6591 if (INTEGRAL_TYPE_P (type)
6592 && TREE_CODE (type) != BOOLEAN_TYPE
6593 && TREE_CODE (TREE_OPERAND (t, 0)) == BIT_AND_EXPR
6594 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 1)) == INTEGER_CST)
6596 tree and = TREE_OPERAND (t, 0);
6597 tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
6598 int change = 0;
6600 if (TYPE_UNSIGNED (TREE_TYPE (and))
6601 || (TYPE_PRECISION (type)
6602 <= TYPE_PRECISION (TREE_TYPE (and))))
6603 change = 1;
6604 else if (TYPE_PRECISION (TREE_TYPE (and1))
6605 <= HOST_BITS_PER_WIDE_INT
6606 && host_integerp (and1, 1))
6608 unsigned HOST_WIDE_INT cst;
6610 cst = tree_low_cst (and1, 1);
6611 cst &= (HOST_WIDE_INT) -1
6612 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
6613 change = (cst == 0);
6614 #ifdef LOAD_EXTEND_OP
6615 if (change
6616 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
6617 == ZERO_EXTEND))
6619 tree uns = lang_hooks.types.unsigned_type (TREE_TYPE (and0));
6620 and0 = fold_convert (uns, and0);
6621 and1 = fold_convert (uns, and1);
6623 #endif
6625 if (change)
6626 return fold (build2 (BIT_AND_EXPR, type,
6627 fold_convert (type, and0),
6628 fold_convert (type, and1)));
6631 /* Convert (T1)((T2)X op Y) into (T1)X op Y, for pointer types T1 and
6632 T2 being pointers to types of the same size. */
6633 if (POINTER_TYPE_P (TREE_TYPE (t))
6634 && BINARY_CLASS_P (arg0)
6635 && TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
6636 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0))))
6638 tree arg00 = TREE_OPERAND (arg0, 0);
6639 tree t0 = TREE_TYPE (t);
6640 tree t1 = TREE_TYPE (arg00);
6641 tree tt0 = TREE_TYPE (t0);
6642 tree tt1 = TREE_TYPE (t1);
6643 tree s0 = TYPE_SIZE (tt0);
6644 tree s1 = TYPE_SIZE (tt1);
6646 if (s0 && s1 && operand_equal_p (s0, s1, OEP_ONLY_CONST))
6647 return build2 (TREE_CODE (arg0), t0, fold_convert (t0, arg00),
6648 TREE_OPERAND (arg0, 1));
6651 tem = fold_convert_const (code, type, arg0);
6652 return tem ? tem : t;
6654 case VIEW_CONVERT_EXPR:
6655 if (TREE_CODE (TREE_OPERAND (t, 0)) == VIEW_CONVERT_EXPR)
6656 return build1 (VIEW_CONVERT_EXPR, type,
6657 TREE_OPERAND (TREE_OPERAND (t, 0), 0));
6658 return t;
6660 case COMPONENT_REF:
6661 if (TREE_CODE (arg0) == CONSTRUCTOR
6662 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
6664 tree m = purpose_member (arg1, CONSTRUCTOR_ELTS (arg0));
6665 if (m)
6666 return TREE_VALUE (m);
6668 return t;
6670 case RANGE_EXPR:
6671 if (TREE_CONSTANT (t) != wins)
6673 tem = copy_node (t);
6674 TREE_CONSTANT (tem) = wins;
6675 TREE_INVARIANT (tem) = wins;
6676 return tem;
6678 return t;
6680 case NEGATE_EXPR:
6681 if (negate_expr_p (arg0))
6682 return fold_convert (type, negate_expr (arg0));
6683 return t;
6685 case ABS_EXPR:
6686 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
6687 return fold_abs_const (arg0, type);
6688 else if (TREE_CODE (arg0) == NEGATE_EXPR)
6689 return fold (build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0)));
6690 /* Convert fabs((double)float) into (double)fabsf(float). */
6691 else if (TREE_CODE (arg0) == NOP_EXPR
6692 && TREE_CODE (type) == REAL_TYPE)
6694 tree targ0 = strip_float_extensions (arg0);
6695 if (targ0 != arg0)
6696 return fold_convert (type, fold (build1 (ABS_EXPR,
6697 TREE_TYPE (targ0),
6698 targ0)));
6700 else if (tree_expr_nonnegative_p (arg0))
6701 return arg0;
6702 return t;
6704 case CONJ_EXPR:
6705 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
6706 return fold_convert (type, arg0);
6707 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
6708 return build2 (COMPLEX_EXPR, type,
6709 TREE_OPERAND (arg0, 0),
6710 negate_expr (TREE_OPERAND (arg0, 1)));
6711 else if (TREE_CODE (arg0) == COMPLEX_CST)
6712 return build_complex (type, TREE_REALPART (arg0),
6713 negate_expr (TREE_IMAGPART (arg0)));
6714 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
6715 return fold (build2 (TREE_CODE (arg0), type,
6716 fold (build1 (CONJ_EXPR, type,
6717 TREE_OPERAND (arg0, 0))),
6718 fold (build1 (CONJ_EXPR, type,
6719 TREE_OPERAND (arg0, 1)))));
6720 else if (TREE_CODE (arg0) == CONJ_EXPR)
6721 return TREE_OPERAND (arg0, 0);
6722 return t;
6724 case BIT_NOT_EXPR:
6725 if (TREE_CODE (arg0) == INTEGER_CST)
6726 return fold_not_const (arg0, type);
6727 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
6728 return TREE_OPERAND (arg0, 0);
6729 return t;
6731 case PLUS_EXPR:
6732 /* A + (-B) -> A - B */
6733 if (TREE_CODE (arg1) == NEGATE_EXPR)
6734 return fold (build2 (MINUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
6735 /* (-A) + B -> B - A */
6736 if (TREE_CODE (arg0) == NEGATE_EXPR
6737 && reorder_operands_p (TREE_OPERAND (arg0, 0), arg1))
6738 return fold (build2 (MINUS_EXPR, type, arg1, TREE_OPERAND (arg0, 0)));
6739 if (! FLOAT_TYPE_P (type))
6741 if (integer_zerop (arg1))
6742 return non_lvalue (fold_convert (type, arg0));
6744 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
6745 with a constant, and the two constants have no bits in common,
6746 we should treat this as a BIT_IOR_EXPR since this may produce more
6747 simplifications. */
6748 if (TREE_CODE (arg0) == BIT_AND_EXPR
6749 && TREE_CODE (arg1) == BIT_AND_EXPR
6750 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
6751 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
6752 && integer_zerop (const_binop (BIT_AND_EXPR,
6753 TREE_OPERAND (arg0, 1),
6754 TREE_OPERAND (arg1, 1), 0)))
6756 code = BIT_IOR_EXPR;
6757 goto bit_ior;
6760 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
6761 (plus (plus (mult) (mult)) (foo)) so that we can
6762 take advantage of the factoring cases below. */
6763 if (((TREE_CODE (arg0) == PLUS_EXPR
6764 || TREE_CODE (arg0) == MINUS_EXPR)
6765 && TREE_CODE (arg1) == MULT_EXPR)
6766 || ((TREE_CODE (arg1) == PLUS_EXPR
6767 || TREE_CODE (arg1) == MINUS_EXPR)
6768 && TREE_CODE (arg0) == MULT_EXPR))
6770 tree parg0, parg1, parg, marg;
6771 enum tree_code pcode;
6773 if (TREE_CODE (arg1) == MULT_EXPR)
6774 parg = arg0, marg = arg1;
6775 else
6776 parg = arg1, marg = arg0;
6777 pcode = TREE_CODE (parg);
6778 parg0 = TREE_OPERAND (parg, 0);
6779 parg1 = TREE_OPERAND (parg, 1);
6780 STRIP_NOPS (parg0);
6781 STRIP_NOPS (parg1);
6783 if (TREE_CODE (parg0) == MULT_EXPR
6784 && TREE_CODE (parg1) != MULT_EXPR)
6785 return fold (build2 (pcode, type,
6786 fold (build2 (PLUS_EXPR, type,
6787 fold_convert (type, parg0),
6788 fold_convert (type, marg))),
6789 fold_convert (type, parg1)));
6790 if (TREE_CODE (parg0) != MULT_EXPR
6791 && TREE_CODE (parg1) == MULT_EXPR)
6792 return fold (build2 (PLUS_EXPR, type,
6793 fold_convert (type, parg0),
6794 fold (build2 (pcode, type,
6795 fold_convert (type, marg),
6796 fold_convert (type,
6797 parg1)))));
6800 if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR)
6802 tree arg00, arg01, arg10, arg11;
6803 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6805 /* (A * C) + (B * C) -> (A+B) * C.
6806 We are most concerned about the case where C is a constant,
6807 but other combinations show up during loop reduction. Since
6808 it is not difficult, try all four possibilities. */
6810 arg00 = TREE_OPERAND (arg0, 0);
6811 arg01 = TREE_OPERAND (arg0, 1);
6812 arg10 = TREE_OPERAND (arg1, 0);
6813 arg11 = TREE_OPERAND (arg1, 1);
6814 same = NULL_TREE;
6816 if (operand_equal_p (arg01, arg11, 0))
6817 same = arg01, alt0 = arg00, alt1 = arg10;
6818 else if (operand_equal_p (arg00, arg10, 0))
6819 same = arg00, alt0 = arg01, alt1 = arg11;
6820 else if (operand_equal_p (arg00, arg11, 0))
6821 same = arg00, alt0 = arg01, alt1 = arg10;
6822 else if (operand_equal_p (arg01, arg10, 0))
6823 same = arg01, alt0 = arg00, alt1 = arg11;
6825 /* No identical multiplicands; see if we can find a common
6826 power-of-two factor in non-power-of-two multiplies. This
6827 can help in multi-dimensional array access. */
6828 else if (TREE_CODE (arg01) == INTEGER_CST
6829 && TREE_CODE (arg11) == INTEGER_CST
6830 && TREE_INT_CST_HIGH (arg01) == 0
6831 && TREE_INT_CST_HIGH (arg11) == 0)
6833 HOST_WIDE_INT int01, int11, tmp;
6834 int01 = TREE_INT_CST_LOW (arg01);
6835 int11 = TREE_INT_CST_LOW (arg11);
6837 /* Move min of absolute values to int11. */
6838 if ((int01 >= 0 ? int01 : -int01)
6839 < (int11 >= 0 ? int11 : -int11))
6841 tmp = int01, int01 = int11, int11 = tmp;
6842 alt0 = arg00, arg00 = arg10, arg10 = alt0;
6843 alt0 = arg01, arg01 = arg11, arg11 = alt0;
6846 if (exact_log2 (int11) > 0 && int01 % int11 == 0)
6848 alt0 = fold (build2 (MULT_EXPR, type, arg00,
6849 build_int_cst (NULL_TREE,
6850 int01 / int11)));
6851 alt1 = arg10;
6852 same = arg11;
6856 if (same)
6857 return fold (build2 (MULT_EXPR, type,
6858 fold (build2 (PLUS_EXPR, type,
6859 fold_convert (type, alt0),
6860 fold_convert (type, alt1))),
6861 same));
6864 /* Try replacing &a[i1] + c * i2 with &a[i1 + i2], if c is step
6865 of the array. Loop optimizer sometimes produce this type of
6866 expressions. */
6867 if (TREE_CODE (arg0) == ADDR_EXPR
6868 && TREE_CODE (arg1) == MULT_EXPR)
6870 tem = try_move_mult_to_index (type, PLUS_EXPR, arg0, arg1);
6871 if (tem)
6872 return fold (tem);
6874 else if (TREE_CODE (arg1) == ADDR_EXPR
6875 && TREE_CODE (arg0) == MULT_EXPR)
6877 tem = try_move_mult_to_index (type, PLUS_EXPR, arg1, arg0);
6878 if (tem)
6879 return fold (tem);
6882 else
6884 /* See if ARG1 is zero and X + ARG1 reduces to X. */
6885 if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
6886 return non_lvalue (fold_convert (type, arg0));
6888 /* Likewise if the operands are reversed. */
6889 if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
6890 return non_lvalue (fold_convert (type, arg1));
6892 /* Convert X + -C into X - C. */
6893 if (TREE_CODE (arg1) == REAL_CST
6894 && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
6896 tem = fold_negate_const (arg1, type);
6897 if (!TREE_OVERFLOW (arg1) || !flag_trapping_math)
6898 return fold (build2 (MINUS_EXPR, type,
6899 fold_convert (type, arg0),
6900 fold_convert (type, tem)));
6903 /* Convert x+x into x*2.0. */
6904 if (operand_equal_p (arg0, arg1, 0)
6905 && SCALAR_FLOAT_TYPE_P (type))
6906 return fold (build2 (MULT_EXPR, type, arg0,
6907 build_real (type, dconst2)));
6909 /* Convert x*c+x into x*(c+1). */
6910 if (flag_unsafe_math_optimizations
6911 && TREE_CODE (arg0) == MULT_EXPR
6912 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
6913 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg0, 1))
6914 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
6916 REAL_VALUE_TYPE c;
6918 c = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
6919 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
6920 return fold (build2 (MULT_EXPR, type, arg1,
6921 build_real (type, c)));
6924 /* Convert x+x*c into x*(c+1). */
6925 if (flag_unsafe_math_optimizations
6926 && TREE_CODE (arg1) == MULT_EXPR
6927 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST
6928 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg1, 1))
6929 && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
6931 REAL_VALUE_TYPE c;
6933 c = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
6934 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
6935 return fold (build2 (MULT_EXPR, type, arg0,
6936 build_real (type, c)));
6939 /* Convert x*c1+x*c2 into x*(c1+c2). */
6940 if (flag_unsafe_math_optimizations
6941 && TREE_CODE (arg0) == MULT_EXPR
6942 && TREE_CODE (arg1) == MULT_EXPR
6943 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
6944 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg0, 1))
6945 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST
6946 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg1, 1))
6947 && operand_equal_p (TREE_OPERAND (arg0, 0),
6948 TREE_OPERAND (arg1, 0), 0))
6950 REAL_VALUE_TYPE c1, c2;
6952 c1 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
6953 c2 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
6954 real_arithmetic (&c1, PLUS_EXPR, &c1, &c2);
6955 return fold (build2 (MULT_EXPR, type,
6956 TREE_OPERAND (arg0, 0),
6957 build_real (type, c1)));
6959 /* Convert a + (b*c + d*e) into (a + b*c) + d*e. */
6960 if (flag_unsafe_math_optimizations
6961 && TREE_CODE (arg1) == PLUS_EXPR
6962 && TREE_CODE (arg0) != MULT_EXPR)
6964 tree tree10 = TREE_OPERAND (arg1, 0);
6965 tree tree11 = TREE_OPERAND (arg1, 1);
6966 if (TREE_CODE (tree11) == MULT_EXPR
6967 && TREE_CODE (tree10) == MULT_EXPR)
6969 tree tree0;
6970 tree0 = fold (build2 (PLUS_EXPR, type, arg0, tree10));
6971 return fold (build2 (PLUS_EXPR, type, tree0, tree11));
6974 /* Convert (b*c + d*e) + a into b*c + (d*e +a). */
6975 if (flag_unsafe_math_optimizations
6976 && TREE_CODE (arg0) == PLUS_EXPR
6977 && TREE_CODE (arg1) != MULT_EXPR)
6979 tree tree00 = TREE_OPERAND (arg0, 0);
6980 tree tree01 = TREE_OPERAND (arg0, 1);
6981 if (TREE_CODE (tree01) == MULT_EXPR
6982 && TREE_CODE (tree00) == MULT_EXPR)
6984 tree tree0;
6985 tree0 = fold (build2 (PLUS_EXPR, type, tree01, arg1));
6986 return fold (build2 (PLUS_EXPR, type, tree00, tree0));
6991 bit_rotate:
6992 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
6993 is a rotate of A by C1 bits. */
6994 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
6995 is a rotate of A by B bits. */
6997 enum tree_code code0, code1;
6998 code0 = TREE_CODE (arg0);
6999 code1 = TREE_CODE (arg1);
7000 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
7001 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
7002 && operand_equal_p (TREE_OPERAND (arg0, 0),
7003 TREE_OPERAND (arg1, 0), 0)
7004 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
7006 tree tree01, tree11;
7007 enum tree_code code01, code11;
7009 tree01 = TREE_OPERAND (arg0, 1);
7010 tree11 = TREE_OPERAND (arg1, 1);
7011 STRIP_NOPS (tree01);
7012 STRIP_NOPS (tree11);
7013 code01 = TREE_CODE (tree01);
7014 code11 = TREE_CODE (tree11);
7015 if (code01 == INTEGER_CST
7016 && code11 == INTEGER_CST
7017 && TREE_INT_CST_HIGH (tree01) == 0
7018 && TREE_INT_CST_HIGH (tree11) == 0
7019 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
7020 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
7021 return build2 (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
7022 code0 == LSHIFT_EXPR ? tree01 : tree11);
7023 else if (code11 == MINUS_EXPR)
7025 tree tree110, tree111;
7026 tree110 = TREE_OPERAND (tree11, 0);
7027 tree111 = TREE_OPERAND (tree11, 1);
7028 STRIP_NOPS (tree110);
7029 STRIP_NOPS (tree111);
7030 if (TREE_CODE (tree110) == INTEGER_CST
7031 && 0 == compare_tree_int (tree110,
7032 TYPE_PRECISION
7033 (TREE_TYPE (TREE_OPERAND
7034 (arg0, 0))))
7035 && operand_equal_p (tree01, tree111, 0))
7036 return build2 ((code0 == LSHIFT_EXPR
7037 ? LROTATE_EXPR
7038 : RROTATE_EXPR),
7039 type, TREE_OPERAND (arg0, 0), tree01);
7041 else if (code01 == MINUS_EXPR)
7043 tree tree010, tree011;
7044 tree010 = TREE_OPERAND (tree01, 0);
7045 tree011 = TREE_OPERAND (tree01, 1);
7046 STRIP_NOPS (tree010);
7047 STRIP_NOPS (tree011);
7048 if (TREE_CODE (tree010) == INTEGER_CST
7049 && 0 == compare_tree_int (tree010,
7050 TYPE_PRECISION
7051 (TREE_TYPE (TREE_OPERAND
7052 (arg0, 0))))
7053 && operand_equal_p (tree11, tree011, 0))
7054 return build2 ((code0 != LSHIFT_EXPR
7055 ? LROTATE_EXPR
7056 : RROTATE_EXPR),
7057 type, TREE_OPERAND (arg0, 0), tree11);
7062 associate:
7063 /* In most languages, can't associate operations on floats through
7064 parentheses. Rather than remember where the parentheses were, we
7065 don't associate floats at all, unless the user has specified
7066 -funsafe-math-optimizations. */
7068 if (! wins
7069 && (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
7071 tree var0, con0, lit0, minus_lit0;
7072 tree var1, con1, lit1, minus_lit1;
7074 /* Split both trees into variables, constants, and literals. Then
7075 associate each group together, the constants with literals,
7076 then the result with variables. This increases the chances of
7077 literals being recombined later and of generating relocatable
7078 expressions for the sum of a constant and literal. */
7079 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
7080 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
7081 code == MINUS_EXPR);
7083 /* Only do something if we found more than two objects. Otherwise,
7084 nothing has changed and we risk infinite recursion. */
7085 if (2 < ((var0 != 0) + (var1 != 0)
7086 + (con0 != 0) + (con1 != 0)
7087 + (lit0 != 0) + (lit1 != 0)
7088 + (minus_lit0 != 0) + (minus_lit1 != 0)))
7090 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
7091 if (code == MINUS_EXPR)
7092 code = PLUS_EXPR;
7094 var0 = associate_trees (var0, var1, code, type);
7095 con0 = associate_trees (con0, con1, code, type);
7096 lit0 = associate_trees (lit0, lit1, code, type);
7097 minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);
7099 /* Preserve the MINUS_EXPR if the negative part of the literal is
7100 greater than the positive part. Otherwise, the multiplicative
7101 folding code (i.e extract_muldiv) may be fooled in case
7102 unsigned constants are subtracted, like in the following
7103 example: ((X*2 + 4) - 8U)/2. */
7104 if (minus_lit0 && lit0)
7106 if (TREE_CODE (lit0) == INTEGER_CST
7107 && TREE_CODE (minus_lit0) == INTEGER_CST
7108 && tree_int_cst_lt (lit0, minus_lit0))
7110 minus_lit0 = associate_trees (minus_lit0, lit0,
7111 MINUS_EXPR, type);
7112 lit0 = 0;
7114 else
7116 lit0 = associate_trees (lit0, minus_lit0,
7117 MINUS_EXPR, type);
7118 minus_lit0 = 0;
7121 if (minus_lit0)
7123 if (con0 == 0)
7124 return fold_convert (type,
7125 associate_trees (var0, minus_lit0,
7126 MINUS_EXPR, type));
7127 else
7129 con0 = associate_trees (con0, minus_lit0,
7130 MINUS_EXPR, type);
7131 return fold_convert (type,
7132 associate_trees (var0, con0,
7133 PLUS_EXPR, type));
7137 con0 = associate_trees (con0, lit0, code, type);
7138 return fold_convert (type, associate_trees (var0, con0,
7139 code, type));
7143 binary:
7144 if (wins)
7145 t1 = const_binop (code, arg0, arg1, 0);
7146 if (t1 != NULL_TREE)
7148 /* The return value should always have
7149 the same type as the original expression. */
7150 if (TREE_TYPE (t1) != type)
7151 t1 = fold_convert (type, t1);
7153 return t1;
7155 return t;
7157 case MINUS_EXPR:
7158 /* A - (-B) -> A + B */
7159 if (TREE_CODE (arg1) == NEGATE_EXPR)
7160 return fold (build2 (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
7161 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
7162 if (TREE_CODE (arg0) == NEGATE_EXPR
7163 && (FLOAT_TYPE_P (type)
7164 || (INTEGRAL_TYPE_P (type) && flag_wrapv && !flag_trapv))
7165 && negate_expr_p (arg1)
7166 && reorder_operands_p (arg0, arg1))
7167 return fold (build2 (MINUS_EXPR, type, negate_expr (arg1),
7168 TREE_OPERAND (arg0, 0)));
7170 if (! FLOAT_TYPE_P (type))
7172 if (! wins && integer_zerop (arg0))
7173 return negate_expr (fold_convert (type, arg1));
7174 if (integer_zerop (arg1))
7175 return non_lvalue (fold_convert (type, arg0));
7177 /* Fold A - (A & B) into ~B & A. */
7178 if (!TREE_SIDE_EFFECTS (arg0)
7179 && TREE_CODE (arg1) == BIT_AND_EXPR)
7181 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
7182 return fold (build2 (BIT_AND_EXPR, type,
7183 fold (build1 (BIT_NOT_EXPR, type,
7184 TREE_OPERAND (arg1, 0))),
7185 arg0));
7186 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
7187 return fold (build2 (BIT_AND_EXPR, type,
7188 fold (build1 (BIT_NOT_EXPR, type,
7189 TREE_OPERAND (arg1, 1))),
7190 arg0));
7193 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
7194 any power of 2 minus 1. */
7195 if (TREE_CODE (arg0) == BIT_AND_EXPR
7196 && TREE_CODE (arg1) == BIT_AND_EXPR
7197 && operand_equal_p (TREE_OPERAND (arg0, 0),
7198 TREE_OPERAND (arg1, 0), 0))
7200 tree mask0 = TREE_OPERAND (arg0, 1);
7201 tree mask1 = TREE_OPERAND (arg1, 1);
7202 tree tem = fold (build1 (BIT_NOT_EXPR, type, mask0));
7204 if (operand_equal_p (tem, mask1, 0))
7206 tem = fold (build2 (BIT_XOR_EXPR, type,
7207 TREE_OPERAND (arg0, 0), mask1));
7208 return fold (build2 (MINUS_EXPR, type, tem, mask1));
7213 /* See if ARG1 is zero and X - ARG1 reduces to X. */
7214 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
7215 return non_lvalue (fold_convert (type, arg0));
7217 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
7218 ARG0 is zero and X + ARG0 reduces to X, since that would mean
7219 (-ARG1 + ARG0) reduces to -ARG1. */
7220 else if (!wins && fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
7221 return negate_expr (fold_convert (type, arg1));
7223 /* Fold &x - &x. This can happen from &x.foo - &x.
7224 This is unsafe for certain floats even in non-IEEE formats.
7225 In IEEE, it is unsafe because it does wrong for NaNs.
7226 Also note that operand_equal_p is always false if an operand
7227 is volatile. */
7229 if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
7230 && operand_equal_p (arg0, arg1, 0))
7231 return fold_convert (type, integer_zero_node);
7233 /* A - B -> A + (-B) if B is easily negatable. */
7234 if (!wins && negate_expr_p (arg1)
7235 && ((FLOAT_TYPE_P (type)
7236 /* Avoid this transformation if B is a positive REAL_CST. */
7237 && (TREE_CODE (arg1) != REAL_CST
7238 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
7239 || (INTEGRAL_TYPE_P (type) && flag_wrapv && !flag_trapv)))
7240 return fold (build2 (PLUS_EXPR, type, arg0, negate_expr (arg1)));
7242 /* Try folding difference of addresses. */
7244 HOST_WIDE_INT diff;
7246 if ((TREE_CODE (arg0) == ADDR_EXPR
7247 || TREE_CODE (arg1) == ADDR_EXPR)
7248 && ptr_difference_const (arg0, arg1, &diff))
7249 return build_int_cst_type (type, diff);
7252 /* Try replacing &a[i1] - c * i2 with &a[i1 - i2], if c is step
7253 of the array. Loop optimizer sometimes produce this type of
7254 expressions. */
7255 if (TREE_CODE (arg0) == ADDR_EXPR
7256 && TREE_CODE (arg1) == MULT_EXPR)
7258 tem = try_move_mult_to_index (type, MINUS_EXPR, arg0, arg1);
7259 if (tem)
7260 return fold (tem);
7263 if (TREE_CODE (arg0) == MULT_EXPR
7264 && TREE_CODE (arg1) == MULT_EXPR
7265 && (!FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
7267 /* (A * C) - (B * C) -> (A-B) * C. */
7268 if (operand_equal_p (TREE_OPERAND (arg0, 1),
7269 TREE_OPERAND (arg1, 1), 0))
7270 return fold (build2 (MULT_EXPR, type,
7271 fold (build2 (MINUS_EXPR, type,
7272 TREE_OPERAND (arg0, 0),
7273 TREE_OPERAND (arg1, 0))),
7274 TREE_OPERAND (arg0, 1)));
7275 /* (A * C1) - (A * C2) -> A * (C1-C2). */
7276 if (operand_equal_p (TREE_OPERAND (arg0, 0),
7277 TREE_OPERAND (arg1, 0), 0))
7278 return fold (build2 (MULT_EXPR, type,
7279 TREE_OPERAND (arg0, 0),
7280 fold (build2 (MINUS_EXPR, type,
7281 TREE_OPERAND (arg0, 1),
7282 TREE_OPERAND (arg1, 1)))));
7285 goto associate;
7287 case MULT_EXPR:
7288 /* (-A) * (-B) -> A * B */
7289 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
7290 return fold (build2 (MULT_EXPR, type,
7291 TREE_OPERAND (arg0, 0),
7292 negate_expr (arg1)));
7293 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
7294 return fold (build2 (MULT_EXPR, type,
7295 negate_expr (arg0),
7296 TREE_OPERAND (arg1, 0)));
7298 if (! FLOAT_TYPE_P (type))
7300 if (integer_zerop (arg1))
7301 return omit_one_operand (type, arg1, arg0);
7302 if (integer_onep (arg1))
7303 return non_lvalue (fold_convert (type, arg0));
7305 /* (a * (1 << b)) is (a << b) */
7306 if (TREE_CODE (arg1) == LSHIFT_EXPR
7307 && integer_onep (TREE_OPERAND (arg1, 0)))
7308 return fold (build2 (LSHIFT_EXPR, type, arg0,
7309 TREE_OPERAND (arg1, 1)));
7310 if (TREE_CODE (arg0) == LSHIFT_EXPR
7311 && integer_onep (TREE_OPERAND (arg0, 0)))
7312 return fold (build2 (LSHIFT_EXPR, type, arg1,
7313 TREE_OPERAND (arg0, 1)));
7315 if (TREE_CODE (arg1) == INTEGER_CST
7316 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0),
7317 fold_convert (type, arg1),
7318 code, NULL_TREE)))
7319 return fold_convert (type, tem);
7322 else
7324 /* Maybe fold x * 0 to 0. The expressions aren't the same
7325 when x is NaN, since x * 0 is also NaN. Nor are they the
7326 same in modes with signed zeros, since multiplying a
7327 negative value by 0 gives -0, not +0. */
7328 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
7329 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
7330 && real_zerop (arg1))
7331 return omit_one_operand (type, arg1, arg0);
7332 /* In IEEE floating point, x*1 is not equivalent to x for snans. */
7333 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
7334 && real_onep (arg1))
7335 return non_lvalue (fold_convert (type, arg0));
7337 /* Transform x * -1.0 into -x. */
7338 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
7339 && real_minus_onep (arg1))
7340 return fold_convert (type, negate_expr (arg0));
7342 /* Convert (C1/X)*C2 into (C1*C2)/X. */
7343 if (flag_unsafe_math_optimizations
7344 && TREE_CODE (arg0) == RDIV_EXPR
7345 && TREE_CODE (arg1) == REAL_CST
7346 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
7348 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
7349 arg1, 0);
7350 if (tem)
7351 return fold (build2 (RDIV_EXPR, type, tem,
7352 TREE_OPERAND (arg0, 1)));
7355 if (flag_unsafe_math_optimizations)
7357 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
7358 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
7360 /* Optimizations of root(...)*root(...). */
7361 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
7363 tree rootfn, arg, arglist;
7364 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
7365 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
7367 /* Optimize sqrt(x)*sqrt(x) as x. */
7368 if (BUILTIN_SQRT_P (fcode0)
7369 && operand_equal_p (arg00, arg10, 0)
7370 && ! HONOR_SNANS (TYPE_MODE (type)))
7371 return arg00;
7373 /* Optimize root(x)*root(y) as root(x*y). */
7374 rootfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
7375 arg = fold (build2 (MULT_EXPR, type, arg00, arg10));
7376 arglist = build_tree_list (NULL_TREE, arg);
7377 return build_function_call_expr (rootfn, arglist);
7380 /* Optimize expN(x)*expN(y) as expN(x+y). */
7381 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
7383 tree expfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
7384 tree arg = build2 (PLUS_EXPR, type,
7385 TREE_VALUE (TREE_OPERAND (arg0, 1)),
7386 TREE_VALUE (TREE_OPERAND (arg1, 1)));
7387 tree arglist = build_tree_list (NULL_TREE, fold (arg));
7388 return build_function_call_expr (expfn, arglist);
7391 /* Optimizations of pow(...)*pow(...). */
7392 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
7393 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
7394 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
7396 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
7397 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
7398 1)));
7399 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
7400 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
7401 1)));
7403 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
7404 if (operand_equal_p (arg01, arg11, 0))
7406 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
7407 tree arg = build2 (MULT_EXPR, type, arg00, arg10);
7408 tree arglist = tree_cons (NULL_TREE, fold (arg),
7409 build_tree_list (NULL_TREE,
7410 arg01));
7411 return build_function_call_expr (powfn, arglist);
7414 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
7415 if (operand_equal_p (arg00, arg10, 0))
7417 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
7418 tree arg = fold (build2 (PLUS_EXPR, type, arg01, arg11));
7419 tree arglist = tree_cons (NULL_TREE, arg00,
7420 build_tree_list (NULL_TREE,
7421 arg));
7422 return build_function_call_expr (powfn, arglist);
7426 /* Optimize tan(x)*cos(x) as sin(x). */
7427 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
7428 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
7429 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
7430 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
7431 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
7432 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
7433 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
7434 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
7436 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
7438 if (sinfn != NULL_TREE)
7439 return build_function_call_expr (sinfn,
7440 TREE_OPERAND (arg0, 1));
7443 /* Optimize x*pow(x,c) as pow(x,c+1). */
7444 if (fcode1 == BUILT_IN_POW
7445 || fcode1 == BUILT_IN_POWF
7446 || fcode1 == BUILT_IN_POWL)
7448 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
7449 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
7450 1)));
7451 if (TREE_CODE (arg11) == REAL_CST
7452 && ! TREE_CONSTANT_OVERFLOW (arg11)
7453 && operand_equal_p (arg0, arg10, 0))
7455 tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
7456 REAL_VALUE_TYPE c;
7457 tree arg, arglist;
7459 c = TREE_REAL_CST (arg11);
7460 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
7461 arg = build_real (type, c);
7462 arglist = build_tree_list (NULL_TREE, arg);
7463 arglist = tree_cons (NULL_TREE, arg0, arglist);
7464 return build_function_call_expr (powfn, arglist);
7468 /* Optimize pow(x,c)*x as pow(x,c+1). */
7469 if (fcode0 == BUILT_IN_POW
7470 || fcode0 == BUILT_IN_POWF
7471 || fcode0 == BUILT_IN_POWL)
7473 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
7474 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
7475 1)));
7476 if (TREE_CODE (arg01) == REAL_CST
7477 && ! TREE_CONSTANT_OVERFLOW (arg01)
7478 && operand_equal_p (arg1, arg00, 0))
7480 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
7481 REAL_VALUE_TYPE c;
7482 tree arg, arglist;
7484 c = TREE_REAL_CST (arg01);
7485 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
7486 arg = build_real (type, c);
7487 arglist = build_tree_list (NULL_TREE, arg);
7488 arglist = tree_cons (NULL_TREE, arg1, arglist);
7489 return build_function_call_expr (powfn, arglist);
7493 /* Optimize x*x as pow(x,2.0), which is expanded as x*x. */
7494 if (! optimize_size
7495 && operand_equal_p (arg0, arg1, 0))
7497 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
7499 if (powfn)
7501 tree arg = build_real (type, dconst2);
7502 tree arglist = build_tree_list (NULL_TREE, arg);
7503 arglist = tree_cons (NULL_TREE, arg0, arglist);
7504 return build_function_call_expr (powfn, arglist);
7509 goto associate;
7511 case BIT_IOR_EXPR:
7512 bit_ior:
7513 if (integer_all_onesp (arg1))
7514 return omit_one_operand (type, arg1, arg0);
7515 if (integer_zerop (arg1))
7516 return non_lvalue (fold_convert (type, arg0));
7517 if (operand_equal_p (arg0, arg1, 0))
7518 return non_lvalue (fold_convert (type, arg0));
7520 /* ~X | X is -1. */
7521 if (TREE_CODE (arg0) == BIT_NOT_EXPR
7522 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
7524 t1 = build_int_cst (type, -1);
7525 t1 = force_fit_type (t1, 0, false, false);
7526 return omit_one_operand (type, t1, arg1);
7529 /* X | ~X is -1. */
7530 if (TREE_CODE (arg1) == BIT_NOT_EXPR
7531 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
7533 t1 = build_int_cst (type, -1);
7534 t1 = force_fit_type (t1, 0, false, false);
7535 return omit_one_operand (type, t1, arg0);
7538 t1 = distribute_bit_expr (code, type, arg0, arg1);
7539 if (t1 != NULL_TREE)
7540 return t1;
7542 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
7544 This results in more efficient code for machines without a NAND
7545 instruction. Combine will canonicalize to the first form
7546 which will allow use of NAND instructions provided by the
7547 backend if they exist. */
7548 if (TREE_CODE (arg0) == BIT_NOT_EXPR
7549 && TREE_CODE (arg1) == BIT_NOT_EXPR)
7551 return fold (build1 (BIT_NOT_EXPR, type,
7552 build2 (BIT_AND_EXPR, type,
7553 TREE_OPERAND (arg0, 0),
7554 TREE_OPERAND (arg1, 0))));
7557 /* See if this can be simplified into a rotate first. If that
7558 is unsuccessful continue in the association code. */
7559 goto bit_rotate;
7561 case BIT_XOR_EXPR:
7562 if (integer_zerop (arg1))
7563 return non_lvalue (fold_convert (type, arg0));
7564 if (integer_all_onesp (arg1))
7565 return fold (build1 (BIT_NOT_EXPR, type, arg0));
7566 if (operand_equal_p (arg0, arg1, 0))
7567 return omit_one_operand (type, integer_zero_node, arg0);
7569 /* ~X ^ X is -1. */
7570 if (TREE_CODE (arg0) == BIT_NOT_EXPR
7571 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
7573 t1 = build_int_cst (type, -1);
7574 t1 = force_fit_type (t1, 0, false, false);
7575 return omit_one_operand (type, t1, arg1);
7578 /* X ^ ~X is -1. */
7579 if (TREE_CODE (arg1) == BIT_NOT_EXPR
7580 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
7582 t1 = build_int_cst (type, -1);
7583 t1 = force_fit_type (t1, 0, false, false);
7584 return omit_one_operand (type, t1, arg0);
7587 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
7588 with a constant, and the two constants have no bits in common,
7589 we should treat this as a BIT_IOR_EXPR since this may produce more
7590 simplifications. */
7591 if (TREE_CODE (arg0) == BIT_AND_EXPR
7592 && TREE_CODE (arg1) == BIT_AND_EXPR
7593 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7594 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
7595 && integer_zerop (const_binop (BIT_AND_EXPR,
7596 TREE_OPERAND (arg0, 1),
7597 TREE_OPERAND (arg1, 1), 0)))
7599 code = BIT_IOR_EXPR;
7600 goto bit_ior;
7603 /* See if this can be simplified into a rotate first. If that
7604 is unsuccessful continue in the association code. */
7605 goto bit_rotate;
7607 case BIT_AND_EXPR:
7608 if (integer_all_onesp (arg1))
7609 return non_lvalue (fold_convert (type, arg0));
7610 if (integer_zerop (arg1))
7611 return omit_one_operand (type, arg1, arg0);
7612 if (operand_equal_p (arg0, arg1, 0))
7613 return non_lvalue (fold_convert (type, arg0));
7615 /* ~X & X is always zero. */
7616 if (TREE_CODE (arg0) == BIT_NOT_EXPR
7617 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
7618 return omit_one_operand (type, integer_zero_node, arg1);
7620 /* X & ~X is always zero. */
7621 if (TREE_CODE (arg1) == BIT_NOT_EXPR
7622 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
7623 return omit_one_operand (type, integer_zero_node, arg0);
7625 t1 = distribute_bit_expr (code, type, arg0, arg1);
7626 if (t1 != NULL_TREE)
7627 return t1;
7628 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
7629 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
7630 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
7632 unsigned int prec
7633 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
7635 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
7636 && (~TREE_INT_CST_LOW (arg1)
7637 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
7638 return fold_convert (type, TREE_OPERAND (arg0, 0));
7641 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
7643 This results in more efficient code for machines without a NOR
7644 instruction. Combine will canonicalize to the first form
7645 which will allow use of NOR instructions provided by the
7646 backend if they exist. */
7647 if (TREE_CODE (arg0) == BIT_NOT_EXPR
7648 && TREE_CODE (arg1) == BIT_NOT_EXPR)
7650 return fold (build1 (BIT_NOT_EXPR, type,
7651 build2 (BIT_IOR_EXPR, type,
7652 TREE_OPERAND (arg0, 0),
7653 TREE_OPERAND (arg1, 0))));
7656 goto associate;
7658 case RDIV_EXPR:
7659 /* Don't touch a floating-point divide by zero unless the mode
7660 of the constant can represent infinity. */
7661 if (TREE_CODE (arg1) == REAL_CST
7662 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
7663 && real_zerop (arg1))
7664 return t;
7666 /* (-A) / (-B) -> A / B */
7667 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
7668 return fold (build2 (RDIV_EXPR, type,
7669 TREE_OPERAND (arg0, 0),
7670 negate_expr (arg1)));
7671 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
7672 return fold (build2 (RDIV_EXPR, type,
7673 negate_expr (arg0),
7674 TREE_OPERAND (arg1, 0)));
7676 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
7677 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
7678 && real_onep (arg1))
7679 return non_lvalue (fold_convert (type, arg0));
7681 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
7682 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
7683 && real_minus_onep (arg1))
7684 return non_lvalue (fold_convert (type, negate_expr (arg0)));
7686 /* If ARG1 is a constant, we can convert this to a multiply by the
7687 reciprocal. This does not have the same rounding properties,
7688 so only do this if -funsafe-math-optimizations. We can actually
7689 always safely do it if ARG1 is a power of two, but it's hard to
7690 tell if it is or not in a portable manner. */
7691 if (TREE_CODE (arg1) == REAL_CST)
7693 if (flag_unsafe_math_optimizations
7694 && 0 != (tem = const_binop (code, build_real (type, dconst1),
7695 arg1, 0)))
7696 return fold (build2 (MULT_EXPR, type, arg0, tem));
7697 /* Find the reciprocal if optimizing and the result is exact. */
7698 if (optimize)
7700 REAL_VALUE_TYPE r;
7701 r = TREE_REAL_CST (arg1);
7702 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
7704 tem = build_real (type, r);
7705 return fold (build2 (MULT_EXPR, type, arg0, tem));
7709 /* Convert A/B/C to A/(B*C). */
7710 if (flag_unsafe_math_optimizations
7711 && TREE_CODE (arg0) == RDIV_EXPR)
7712 return fold (build2 (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
7713 fold (build2 (MULT_EXPR, type,
7714 TREE_OPERAND (arg0, 1), arg1))));
7716 /* Convert A/(B/C) to (A/B)*C. */
7717 if (flag_unsafe_math_optimizations
7718 && TREE_CODE (arg1) == RDIV_EXPR)
7719 return fold (build2 (MULT_EXPR, type,
7720 fold (build2 (RDIV_EXPR, type, arg0,
7721 TREE_OPERAND (arg1, 0))),
7722 TREE_OPERAND (arg1, 1)));
7724 /* Convert C1/(X*C2) into (C1/C2)/X. */
7725 if (flag_unsafe_math_optimizations
7726 && TREE_CODE (arg1) == MULT_EXPR
7727 && TREE_CODE (arg0) == REAL_CST
7728 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
7730 tree tem = const_binop (RDIV_EXPR, arg0,
7731 TREE_OPERAND (arg1, 1), 0);
7732 if (tem)
7733 return fold (build2 (RDIV_EXPR, type, tem,
7734 TREE_OPERAND (arg1, 0)));
7737 if (flag_unsafe_math_optimizations)
7739 enum built_in_function fcode = builtin_mathfn_code (arg1);
7740 /* Optimize x/expN(y) into x*expN(-y). */
7741 if (BUILTIN_EXPONENT_P (fcode))
7743 tree expfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
7744 tree arg = negate_expr (TREE_VALUE (TREE_OPERAND (arg1, 1)));
7745 tree arglist = build_tree_list (NULL_TREE,
7746 fold_convert (type, arg));
7747 arg1 = build_function_call_expr (expfn, arglist);
7748 return fold (build2 (MULT_EXPR, type, arg0, arg1));
7751 /* Optimize x/pow(y,z) into x*pow(y,-z). */
7752 if (fcode == BUILT_IN_POW
7753 || fcode == BUILT_IN_POWF
7754 || fcode == BUILT_IN_POWL)
7756 tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
7757 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
7758 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1, 1)));
7759 tree neg11 = fold_convert (type, negate_expr (arg11));
7760 tree arglist = tree_cons(NULL_TREE, arg10,
7761 build_tree_list (NULL_TREE, neg11));
7762 arg1 = build_function_call_expr (powfn, arglist);
7763 return fold (build2 (MULT_EXPR, type, arg0, arg1));
7767 if (flag_unsafe_math_optimizations)
7769 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
7770 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
7772 /* Optimize sin(x)/cos(x) as tan(x). */
7773 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
7774 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
7775 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
7776 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
7777 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
7779 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
7781 if (tanfn != NULL_TREE)
7782 return build_function_call_expr (tanfn,
7783 TREE_OPERAND (arg0, 1));
7786 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
7787 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
7788 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
7789 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
7790 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
7791 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
7793 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
7795 if (tanfn != NULL_TREE)
7797 tree tmp = TREE_OPERAND (arg0, 1);
7798 tmp = build_function_call_expr (tanfn, tmp);
7799 return fold (build2 (RDIV_EXPR, type,
7800 build_real (type, dconst1), tmp));
7804 /* Optimize pow(x,c)/x as pow(x,c-1). */
7805 if (fcode0 == BUILT_IN_POW
7806 || fcode0 == BUILT_IN_POWF
7807 || fcode0 == BUILT_IN_POWL)
7809 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
7810 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0, 1)));
7811 if (TREE_CODE (arg01) == REAL_CST
7812 && ! TREE_CONSTANT_OVERFLOW (arg01)
7813 && operand_equal_p (arg1, arg00, 0))
7815 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
7816 REAL_VALUE_TYPE c;
7817 tree arg, arglist;
7819 c = TREE_REAL_CST (arg01);
7820 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
7821 arg = build_real (type, c);
7822 arglist = build_tree_list (NULL_TREE, arg);
7823 arglist = tree_cons (NULL_TREE, arg1, arglist);
7824 return build_function_call_expr (powfn, arglist);
7828 goto binary;
7830 case TRUNC_DIV_EXPR:
7831 case ROUND_DIV_EXPR:
7832 case FLOOR_DIV_EXPR:
7833 case CEIL_DIV_EXPR:
7834 case EXACT_DIV_EXPR:
7835 if (integer_onep (arg1))
7836 return non_lvalue (fold_convert (type, arg0));
7837 if (integer_zerop (arg1))
7838 return t;
7839 /* X / -1 is -X. */
7840 if (!TYPE_UNSIGNED (type)
7841 && TREE_CODE (arg1) == INTEGER_CST
7842 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
7843 && TREE_INT_CST_HIGH (arg1) == -1)
7844 return fold_convert (type, negate_expr (arg0));
7846 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
7847 operation, EXACT_DIV_EXPR.
7849 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
7850 At one time others generated faster code, it's not clear if they do
7851 after the last round to changes to the DIV code in expmed.c. */
7852 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
7853 && multiple_of_p (type, arg0, arg1))
7854 return fold (build2 (EXACT_DIV_EXPR, type, arg0, arg1));
7856 if (TREE_CODE (arg1) == INTEGER_CST
7857 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
7858 code, NULL_TREE)))
7859 return fold_convert (type, tem);
7861 goto binary;
7863 case CEIL_MOD_EXPR:
7864 case FLOOR_MOD_EXPR:
7865 case ROUND_MOD_EXPR:
7866 case TRUNC_MOD_EXPR:
7867 if (integer_onep (arg1))
7868 return omit_one_operand (type, integer_zero_node, arg0);
7869 if (integer_zerop (arg1))
7870 return t;
7872 /* X % -1 is zero. */
7873 if (!TYPE_UNSIGNED (type)
7874 && TREE_CODE (arg1) == INTEGER_CST
7875 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
7876 && TREE_INT_CST_HIGH (arg1) == -1)
7877 return omit_one_operand (type, integer_zero_node, arg0);
7879 /* Optimize unsigned TRUNC_MOD_EXPR by a power of two into a
7880 BIT_AND_EXPR, i.e. "X % C" into "X & C2". */
7881 if (code == TRUNC_MOD_EXPR
7882 && TYPE_UNSIGNED (type)
7883 && integer_pow2p (arg1))
7885 unsigned HOST_WIDE_INT high, low;
7886 tree mask;
7887 int l;
7889 l = tree_log2 (arg1);
7890 if (l >= HOST_BITS_PER_WIDE_INT)
7892 high = ((unsigned HOST_WIDE_INT) 1
7893 << (l - HOST_BITS_PER_WIDE_INT)) - 1;
7894 low = -1;
7896 else
7898 high = 0;
7899 low = ((unsigned HOST_WIDE_INT) 1 << l) - 1;
7902 mask = build_int_cst_wide (type, low, high);
7903 return fold (build2 (BIT_AND_EXPR, type,
7904 fold_convert (type, arg0), mask));
7907 /* X % -C is the same as X % C. */
7908 if (code == TRUNC_MOD_EXPR
7909 && !TYPE_UNSIGNED (type)
7910 && TREE_CODE (arg1) == INTEGER_CST
7911 && TREE_INT_CST_HIGH (arg1) < 0
7912 && !flag_trapv
7913 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
7914 && !sign_bit_p (arg1, arg1))
7915 return fold (build2 (code, type, fold_convert (type, arg0),
7916 fold_convert (type, negate_expr (arg1))));
7918 /* X % -Y is the same as X % Y. */
7919 if (code == TRUNC_MOD_EXPR
7920 && !TYPE_UNSIGNED (type)
7921 && TREE_CODE (arg1) == NEGATE_EXPR
7922 && !flag_trapv)
7923 return fold (build2 (code, type, fold_convert (type, arg0),
7924 fold_convert (type, TREE_OPERAND (arg1, 0))));
7926 if (TREE_CODE (arg1) == INTEGER_CST
7927 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
7928 code, NULL_TREE)))
7929 return fold_convert (type, tem);
7931 goto binary;
7933 case LROTATE_EXPR:
7934 case RROTATE_EXPR:
7935 if (integer_all_onesp (arg0))
7936 return omit_one_operand (type, arg0, arg1);
7937 goto shift;
7939 case RSHIFT_EXPR:
7940 /* Optimize -1 >> x for arithmetic right shifts. */
7941 if (integer_all_onesp (arg0) && !TYPE_UNSIGNED (type))
7942 return omit_one_operand (type, arg0, arg1);
7943 /* ... fall through ... */
7945 case LSHIFT_EXPR:
7946 shift:
7947 if (integer_zerop (arg1))
7948 return non_lvalue (fold_convert (type, arg0));
7949 if (integer_zerop (arg0))
7950 return omit_one_operand (type, arg0, arg1);
7952 /* Since negative shift count is not well-defined,
7953 don't try to compute it in the compiler. */
7954 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
7955 return t;
7956 /* Rewrite an LROTATE_EXPR by a constant into an
7957 RROTATE_EXPR by a new constant. */
7958 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
7960 tree tem = build_int_cst (NULL_TREE,
7961 GET_MODE_BITSIZE (TYPE_MODE (type)));
7962 tem = fold_convert (TREE_TYPE (arg1), tem);
7963 tem = const_binop (MINUS_EXPR, tem, arg1, 0);
7964 return fold (build2 (RROTATE_EXPR, type, arg0, tem));
7967 /* If we have a rotate of a bit operation with the rotate count and
7968 the second operand of the bit operation both constant,
7969 permute the two operations. */
7970 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
7971 && (TREE_CODE (arg0) == BIT_AND_EXPR
7972 || TREE_CODE (arg0) == BIT_IOR_EXPR
7973 || TREE_CODE (arg0) == BIT_XOR_EXPR)
7974 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
7975 return fold (build2 (TREE_CODE (arg0), type,
7976 fold (build2 (code, type,
7977 TREE_OPERAND (arg0, 0), arg1)),
7978 fold (build2 (code, type,
7979 TREE_OPERAND (arg0, 1), arg1))));
7981 /* Two consecutive rotates adding up to the width of the mode can
7982 be ignored. */
7983 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
7984 && TREE_CODE (arg0) == RROTATE_EXPR
7985 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7986 && TREE_INT_CST_HIGH (arg1) == 0
7987 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
7988 && ((TREE_INT_CST_LOW (arg1)
7989 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
7990 == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
7991 return TREE_OPERAND (arg0, 0);
7993 goto binary;
7995 case MIN_EXPR:
7996 if (operand_equal_p (arg0, arg1, 0))
7997 return omit_one_operand (type, arg0, arg1);
7998 if (INTEGRAL_TYPE_P (type)
7999 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
8000 return omit_one_operand (type, arg1, arg0);
8001 goto associate;
8003 case MAX_EXPR:
8004 if (operand_equal_p (arg0, arg1, 0))
8005 return omit_one_operand (type, arg0, arg1);
8006 if (INTEGRAL_TYPE_P (type)
8007 && TYPE_MAX_VALUE (type)
8008 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
8009 return omit_one_operand (type, arg1, arg0);
8010 goto associate;
8012 case TRUTH_NOT_EXPR:
8013 /* The argument to invert_truthvalue must have Boolean type. */
8014 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
8015 arg0 = fold_convert (boolean_type_node, arg0);
8017 /* Note that the operand of this must be an int
8018 and its values must be 0 or 1.
8019 ("true" is a fixed value perhaps depending on the language,
8020 but we don't handle values other than 1 correctly yet.) */
8021 tem = invert_truthvalue (arg0);
8022 /* Avoid infinite recursion. */
8023 if (TREE_CODE (tem) == TRUTH_NOT_EXPR)
8025 tem = fold_single_bit_test (code, arg0, arg1, type);
8026 if (tem)
8027 return tem;
8028 return t;
8030 return fold_convert (type, tem);
8032 case TRUTH_ANDIF_EXPR:
8033 /* Note that the operands of this must be ints
8034 and their values must be 0 or 1.
8035 ("true" is a fixed value perhaps depending on the language.) */
8036 /* If first arg is constant zero, return it. */
8037 if (integer_zerop (arg0))
8038 return fold_convert (type, arg0);
8039 case TRUTH_AND_EXPR:
8040 /* If either arg is constant true, drop it. */
8041 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
8042 return non_lvalue (fold_convert (type, arg1));
8043 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
8044 /* Preserve sequence points. */
8045 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
8046 return non_lvalue (fold_convert (type, arg0));
8047 /* If second arg is constant zero, result is zero, but first arg
8048 must be evaluated. */
8049 if (integer_zerop (arg1))
8050 return omit_one_operand (type, arg1, arg0);
8051 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
8052 case will be handled here. */
8053 if (integer_zerop (arg0))
8054 return omit_one_operand (type, arg0, arg1);
8056 /* !X && X is always false. */
8057 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
8058 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
8059 return omit_one_operand (type, integer_zero_node, arg1);
8060 /* X && !X is always false. */
8061 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
8062 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
8063 return omit_one_operand (type, integer_zero_node, arg0);
8065 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
8066 means A >= Y && A != MAX, but in this case we know that
8067 A < X <= MAX. */
8069 if (!TREE_SIDE_EFFECTS (arg0)
8070 && !TREE_SIDE_EFFECTS (arg1))
8072 tem = fold_to_nonsharp_ineq_using_bound (arg0, arg1);
8073 if (tem)
8074 return fold (build2 (code, type, tem, arg1));
8076 tem = fold_to_nonsharp_ineq_using_bound (arg1, arg0);
8077 if (tem)
8078 return fold (build2 (code, type, arg0, tem));
8081 truth_andor:
8082 /* We only do these simplifications if we are optimizing. */
8083 if (!optimize)
8084 return t;
8086 /* Check for things like (A || B) && (A || C). We can convert this
8087 to A || (B && C). Note that either operator can be any of the four
8088 truth and/or operations and the transformation will still be
8089 valid. Also note that we only care about order for the
8090 ANDIF and ORIF operators. If B contains side effects, this
8091 might change the truth-value of A. */
8092 if (TREE_CODE (arg0) == TREE_CODE (arg1)
8093 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
8094 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
8095 || TREE_CODE (arg0) == TRUTH_AND_EXPR
8096 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
8097 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
8099 tree a00 = TREE_OPERAND (arg0, 0);
8100 tree a01 = TREE_OPERAND (arg0, 1);
8101 tree a10 = TREE_OPERAND (arg1, 0);
8102 tree a11 = TREE_OPERAND (arg1, 1);
8103 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
8104 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
8105 && (code == TRUTH_AND_EXPR
8106 || code == TRUTH_OR_EXPR));
8108 if (operand_equal_p (a00, a10, 0))
8109 return fold (build2 (TREE_CODE (arg0), type, a00,
8110 fold (build2 (code, type, a01, a11))));
8111 else if (commutative && operand_equal_p (a00, a11, 0))
8112 return fold (build2 (TREE_CODE (arg0), type, a00,
8113 fold (build2 (code, type, a01, a10))));
8114 else if (commutative && operand_equal_p (a01, a10, 0))
8115 return fold (build2 (TREE_CODE (arg0), type, a01,
8116 fold (build2 (code, type, a00, a11))));
8118 /* This case if tricky because we must either have commutative
8119 operators or else A10 must not have side-effects. */
8121 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8122 && operand_equal_p (a01, a11, 0))
8123 return fold (build2 (TREE_CODE (arg0), type,
8124 fold (build2 (code, type, a00, a10)),
8125 a01));
8128 /* See if we can build a range comparison. */
8129 if (0 != (tem = fold_range_test (t)))
8130 return tem;
8132 /* Check for the possibility of merging component references. If our
8133 lhs is another similar operation, try to merge its rhs with our
8134 rhs. Then try to merge our lhs and rhs. */
8135 if (TREE_CODE (arg0) == code
8136 && 0 != (tem = fold_truthop (code, type,
8137 TREE_OPERAND (arg0, 1), arg1)))
8138 return fold (build2 (code, type, TREE_OPERAND (arg0, 0), tem));
8140 if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
8141 return tem;
8143 return t;
8145 case TRUTH_ORIF_EXPR:
8146 /* Note that the operands of this must be ints
8147 and their values must be 0 or true.
8148 ("true" is a fixed value perhaps depending on the language.) */
8149 /* If first arg is constant true, return it. */
8150 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
8151 return fold_convert (type, arg0);
8152 case TRUTH_OR_EXPR:
8153 /* If either arg is constant zero, drop it. */
8154 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
8155 return non_lvalue (fold_convert (type, arg1));
8156 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
8157 /* Preserve sequence points. */
8158 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
8159 return non_lvalue (fold_convert (type, arg0));
8160 /* If second arg is constant true, result is true, but we must
8161 evaluate first arg. */
8162 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
8163 return omit_one_operand (type, arg1, arg0);
8164 /* Likewise for first arg, but note this only occurs here for
8165 TRUTH_OR_EXPR. */
8166 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
8167 return omit_one_operand (type, arg0, arg1);
8169 /* !X || X is always true. */
8170 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
8171 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
8172 return omit_one_operand (type, integer_one_node, arg1);
8173 /* X || !X is always true. */
8174 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
8175 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
8176 return omit_one_operand (type, integer_one_node, arg0);
8178 goto truth_andor;
8180 case TRUTH_XOR_EXPR:
8181 /* If the second arg is constant zero, drop it. */
8182 if (integer_zerop (arg1))
8183 return non_lvalue (fold_convert (type, arg0));
8184 /* If the second arg is constant true, this is a logical inversion. */
8185 if (integer_onep (arg1))
8186 return non_lvalue (fold_convert (type, invert_truthvalue (arg0)));
8187 /* Identical arguments cancel to zero. */
8188 if (operand_equal_p (arg0, arg1, 0))
8189 return omit_one_operand (type, integer_zero_node, arg0);
8191 /* !X ^ X is always true. */
8192 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
8193 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
8194 return omit_one_operand (type, integer_one_node, arg1);
8196 /* X ^ !X is always true. */
8197 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
8198 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
8199 return omit_one_operand (type, integer_one_node, arg0);
8201 return t;
8203 case EQ_EXPR:
8204 case NE_EXPR:
8205 case LT_EXPR:
8206 case GT_EXPR:
8207 case LE_EXPR:
8208 case GE_EXPR:
8209 /* If one arg is a real or integer constant, put it last. */
8210 if (tree_swap_operands_p (arg0, arg1, true))
8211 return fold (build2 (swap_tree_comparison (code), type, arg1, arg0));
8213 /* If this is an equality comparison of the address of a non-weak
8214 object against zero, then we know the result. */
8215 if ((code == EQ_EXPR || code == NE_EXPR)
8216 && TREE_CODE (arg0) == ADDR_EXPR
8217 && DECL_P (TREE_OPERAND (arg0, 0))
8218 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
8219 && integer_zerop (arg1))
8220 return constant_boolean_node (code != EQ_EXPR, type);
8222 /* If this is an equality comparison of the address of two non-weak,
8223 unaliased symbols neither of which are extern (since we do not
8224 have access to attributes for externs), then we know the result. */
8225 if ((code == EQ_EXPR || code == NE_EXPR)
8226 && TREE_CODE (arg0) == ADDR_EXPR
8227 && DECL_P (TREE_OPERAND (arg0, 0))
8228 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
8229 && ! lookup_attribute ("alias",
8230 DECL_ATTRIBUTES (TREE_OPERAND (arg0, 0)))
8231 && ! DECL_EXTERNAL (TREE_OPERAND (arg0, 0))
8232 && TREE_CODE (arg1) == ADDR_EXPR
8233 && DECL_P (TREE_OPERAND (arg1, 0))
8234 && ! DECL_WEAK (TREE_OPERAND (arg1, 0))
8235 && ! lookup_attribute ("alias",
8236 DECL_ATTRIBUTES (TREE_OPERAND (arg1, 0)))
8237 && ! DECL_EXTERNAL (TREE_OPERAND (arg1, 0)))
8238 return constant_boolean_node (operand_equal_p (arg0, arg1, 0)
8239 ? code == EQ_EXPR : code != EQ_EXPR,
8240 type);
8242 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
8244 tree targ0 = strip_float_extensions (arg0);
8245 tree targ1 = strip_float_extensions (arg1);
8246 tree newtype = TREE_TYPE (targ0);
8248 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
8249 newtype = TREE_TYPE (targ1);
8251 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
8252 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
8253 return fold (build2 (code, type, fold_convert (newtype, targ0),
8254 fold_convert (newtype, targ1)));
8256 /* (-a) CMP (-b) -> b CMP a */
8257 if (TREE_CODE (arg0) == NEGATE_EXPR
8258 && TREE_CODE (arg1) == NEGATE_EXPR)
8259 return fold (build2 (code, type, TREE_OPERAND (arg1, 0),
8260 TREE_OPERAND (arg0, 0)));
8262 if (TREE_CODE (arg1) == REAL_CST)
8264 REAL_VALUE_TYPE cst;
8265 cst = TREE_REAL_CST (arg1);
8267 /* (-a) CMP CST -> a swap(CMP) (-CST) */
8268 if (TREE_CODE (arg0) == NEGATE_EXPR)
8269 return
8270 fold (build2 (swap_tree_comparison (code), type,
8271 TREE_OPERAND (arg0, 0),
8272 build_real (TREE_TYPE (arg1),
8273 REAL_VALUE_NEGATE (cst))));
8275 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
8276 /* a CMP (-0) -> a CMP 0 */
8277 if (REAL_VALUE_MINUS_ZERO (cst))
8278 return fold (build2 (code, type, arg0,
8279 build_real (TREE_TYPE (arg1), dconst0)));
8281 /* x != NaN is always true, other ops are always false. */
8282 if (REAL_VALUE_ISNAN (cst)
8283 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
8285 tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
8286 return omit_one_operand (type, tem, arg0);
8289 /* Fold comparisons against infinity. */
8290 if (REAL_VALUE_ISINF (cst))
8292 tem = fold_inf_compare (code, type, arg0, arg1);
8293 if (tem != NULL_TREE)
8294 return tem;
8298 /* If this is a comparison of a real constant with a PLUS_EXPR
8299 or a MINUS_EXPR of a real constant, we can convert it into a
8300 comparison with a revised real constant as long as no overflow
8301 occurs when unsafe_math_optimizations are enabled. */
8302 if (flag_unsafe_math_optimizations
8303 && TREE_CODE (arg1) == REAL_CST
8304 && (TREE_CODE (arg0) == PLUS_EXPR
8305 || TREE_CODE (arg0) == MINUS_EXPR)
8306 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
8307 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
8308 ? MINUS_EXPR : PLUS_EXPR,
8309 arg1, TREE_OPERAND (arg0, 1), 0))
8310 && ! TREE_CONSTANT_OVERFLOW (tem))
8311 return fold (build2 (code, type, TREE_OPERAND (arg0, 0), tem));
8313 /* Likewise, we can simplify a comparison of a real constant with
8314 a MINUS_EXPR whose first operand is also a real constant, i.e.
8315 (c1 - x) < c2 becomes x > c1-c2. */
8316 if (flag_unsafe_math_optimizations
8317 && TREE_CODE (arg1) == REAL_CST
8318 && TREE_CODE (arg0) == MINUS_EXPR
8319 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
8320 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
8321 arg1, 0))
8322 && ! TREE_CONSTANT_OVERFLOW (tem))
8323 return fold (build2 (swap_tree_comparison (code), type,
8324 TREE_OPERAND (arg0, 1), tem));
8326 /* Fold comparisons against built-in math functions. */
8327 if (TREE_CODE (arg1) == REAL_CST
8328 && flag_unsafe_math_optimizations
8329 && ! flag_errno_math)
8331 enum built_in_function fcode = builtin_mathfn_code (arg0);
8333 if (fcode != END_BUILTINS)
8335 tem = fold_mathfn_compare (fcode, code, type, arg0, arg1);
8336 if (tem != NULL_TREE)
8337 return tem;
8342 /* Convert foo++ == CONST into ++foo == CONST + INCR. */
8343 if (TREE_CONSTANT (arg1)
8344 && (TREE_CODE (arg0) == POSTINCREMENT_EXPR
8345 || TREE_CODE (arg0) == POSTDECREMENT_EXPR)
8346 /* This optimization is invalid for ordered comparisons
8347 if CONST+INCR overflows or if foo+incr might overflow.
8348 This optimization is invalid for floating point due to rounding.
8349 For pointer types we assume overflow doesn't happen. */
8350 && (POINTER_TYPE_P (TREE_TYPE (arg0))
8351 || (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8352 && (code == EQ_EXPR || code == NE_EXPR))))
8354 tree varop, newconst;
8356 if (TREE_CODE (arg0) == POSTINCREMENT_EXPR)
8358 newconst = fold (build2 (PLUS_EXPR, TREE_TYPE (arg0),
8359 arg1, TREE_OPERAND (arg0, 1)));
8360 varop = build2 (PREINCREMENT_EXPR, TREE_TYPE (arg0),
8361 TREE_OPERAND (arg0, 0),
8362 TREE_OPERAND (arg0, 1));
8364 else
8366 newconst = fold (build2 (MINUS_EXPR, TREE_TYPE (arg0),
8367 arg1, TREE_OPERAND (arg0, 1)));
8368 varop = build2 (PREDECREMENT_EXPR, TREE_TYPE (arg0),
8369 TREE_OPERAND (arg0, 0),
8370 TREE_OPERAND (arg0, 1));
8374 /* If VAROP is a reference to a bitfield, we must mask
8375 the constant by the width of the field. */
8376 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
8377 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (varop, 0), 1))
8378 && host_integerp (DECL_SIZE (TREE_OPERAND
8379 (TREE_OPERAND (varop, 0), 1)), 1))
8381 tree fielddecl = TREE_OPERAND (TREE_OPERAND (varop, 0), 1);
8382 HOST_WIDE_INT size = tree_low_cst (DECL_SIZE (fielddecl), 1);
8383 tree folded_compare, shift;
8385 /* First check whether the comparison would come out
8386 always the same. If we don't do that we would
8387 change the meaning with the masking. */
8388 folded_compare = fold (build2 (code, type,
8389 TREE_OPERAND (varop, 0), arg1));
8390 if (integer_zerop (folded_compare)
8391 || integer_onep (folded_compare))
8392 return omit_one_operand (type, folded_compare, varop);
8394 shift = build_int_cst (NULL_TREE,
8395 TYPE_PRECISION (TREE_TYPE (varop)) - size);
8396 shift = fold_convert (TREE_TYPE (varop), shift);
8397 newconst = fold (build2 (LSHIFT_EXPR, TREE_TYPE (varop),
8398 newconst, shift));
8399 newconst = fold (build2 (RSHIFT_EXPR, TREE_TYPE (varop),
8400 newconst, shift));
8403 return fold (build2 (code, type, varop, newconst));
8406 /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
8407 This transformation affects the cases which are handled in later
8408 optimizations involving comparisons with non-negative constants. */
8409 if (TREE_CODE (arg1) == INTEGER_CST
8410 && TREE_CODE (arg0) != INTEGER_CST
8411 && tree_int_cst_sgn (arg1) > 0)
8413 switch (code)
8415 case GE_EXPR:
8416 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
8417 return fold (build2 (GT_EXPR, type, arg0, arg1));
8419 case LT_EXPR:
8420 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
8421 return fold (build2 (LE_EXPR, type, arg0, arg1));
8423 default:
8424 break;
8428 /* Comparisons with the highest or lowest possible integer of
8429 the specified size will have known values.
8431 This is quite similar to fold_relational_hi_lo; however, my
8432 attempts to share the code have been nothing but trouble.
8433 I give up for now. */
8435 int width = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg1)));
8437 if (TREE_CODE (arg1) == INTEGER_CST
8438 && ! TREE_CONSTANT_OVERFLOW (arg1)
8439 && width <= HOST_BITS_PER_WIDE_INT
8440 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
8441 || POINTER_TYPE_P (TREE_TYPE (arg1))))
8443 unsigned HOST_WIDE_INT signed_max;
8444 unsigned HOST_WIDE_INT max, min;
8446 signed_max = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;
8448 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
8450 max = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
8451 min = 0;
8453 else
8455 max = signed_max;
8456 min = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
8459 if (TREE_INT_CST_HIGH (arg1) == 0
8460 && TREE_INT_CST_LOW (arg1) == max)
8461 switch (code)
8463 case GT_EXPR:
8464 return omit_one_operand (type, integer_zero_node, arg0);
8466 case GE_EXPR:
8467 return fold (build2 (EQ_EXPR, type, arg0, arg1));
8469 case LE_EXPR:
8470 return omit_one_operand (type, integer_one_node, arg0);
8472 case LT_EXPR:
8473 return fold (build2 (NE_EXPR, type, arg0, arg1));
8475 /* The GE_EXPR and LT_EXPR cases above are not normally
8476 reached because of previous transformations. */
8478 default:
8479 break;
8481 else if (TREE_INT_CST_HIGH (arg1) == 0
8482 && TREE_INT_CST_LOW (arg1) == max - 1)
8483 switch (code)
8485 case GT_EXPR:
8486 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
8487 return fold (build2 (EQ_EXPR, type, arg0, arg1));
8488 case LE_EXPR:
8489 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
8490 return fold (build2 (NE_EXPR, type, arg0, arg1));
8491 default:
8492 break;
8494 else if (TREE_INT_CST_HIGH (arg1) == (min ? -1 : 0)
8495 && TREE_INT_CST_LOW (arg1) == min)
8496 switch (code)
8498 case LT_EXPR:
8499 return omit_one_operand (type, integer_zero_node, arg0);
8501 case LE_EXPR:
8502 return fold (build2 (EQ_EXPR, type, arg0, arg1));
8504 case GE_EXPR:
8505 return omit_one_operand (type, integer_one_node, arg0);
8507 case GT_EXPR:
8508 return fold (build2 (NE_EXPR, type, arg0, arg1));
8510 default:
8511 break;
8513 else if (TREE_INT_CST_HIGH (arg1) == (min ? -1 : 0)
8514 && TREE_INT_CST_LOW (arg1) == min + 1)
8515 switch (code)
8517 case GE_EXPR:
8518 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
8519 return fold (build2 (NE_EXPR, type, arg0, arg1));
8520 case LT_EXPR:
8521 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
8522 return fold (build2 (EQ_EXPR, type, arg0, arg1));
8523 default:
8524 break;
8527 else if (!in_gimple_form
8528 && TREE_INT_CST_HIGH (arg1) == 0
8529 && TREE_INT_CST_LOW (arg1) == signed_max
8530 && TYPE_UNSIGNED (TREE_TYPE (arg1))
8531 /* signed_type does not work on pointer types. */
8532 && INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
8534 /* The following case also applies to X < signed_max+1
8535 and X >= signed_max+1 because previous transformations. */
8536 if (code == LE_EXPR || code == GT_EXPR)
8538 tree st0, st1;
8539 st0 = lang_hooks.types.signed_type (TREE_TYPE (arg0));
8540 st1 = lang_hooks.types.signed_type (TREE_TYPE (arg1));
8541 return fold
8542 (build2 (code == LE_EXPR ? GE_EXPR: LT_EXPR,
8543 type, fold_convert (st0, arg0),
8544 fold_convert (st1, integer_zero_node)));
8550 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
8551 a MINUS_EXPR of a constant, we can convert it into a comparison with
8552 a revised constant as long as no overflow occurs. */
8553 if ((code == EQ_EXPR || code == NE_EXPR)
8554 && TREE_CODE (arg1) == INTEGER_CST
8555 && (TREE_CODE (arg0) == PLUS_EXPR
8556 || TREE_CODE (arg0) == MINUS_EXPR)
8557 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8558 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
8559 ? MINUS_EXPR : PLUS_EXPR,
8560 arg1, TREE_OPERAND (arg0, 1), 0))
8561 && ! TREE_CONSTANT_OVERFLOW (tem))
8562 return fold (build2 (code, type, TREE_OPERAND (arg0, 0), tem));
8564 /* Similarly for a NEGATE_EXPR. */
8565 else if ((code == EQ_EXPR || code == NE_EXPR)
8566 && TREE_CODE (arg0) == NEGATE_EXPR
8567 && TREE_CODE (arg1) == INTEGER_CST
8568 && 0 != (tem = negate_expr (arg1))
8569 && TREE_CODE (tem) == INTEGER_CST
8570 && ! TREE_CONSTANT_OVERFLOW (tem))
8571 return fold (build2 (code, type, TREE_OPERAND (arg0, 0), tem));
8573 /* If we have X - Y == 0, we can convert that to X == Y and similarly
8574 for !=. Don't do this for ordered comparisons due to overflow. */
8575 else if ((code == NE_EXPR || code == EQ_EXPR)
8576 && integer_zerop (arg1) && TREE_CODE (arg0) == MINUS_EXPR)
8577 return fold (build2 (code, type,
8578 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1)));
8580 else if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
8581 && TREE_CODE (arg0) == NOP_EXPR)
8583 /* If we are widening one operand of an integer comparison,
8584 see if the other operand is similarly being widened. Perhaps we
8585 can do the comparison in the narrower type. */
8586 tem = fold_widened_comparison (code, type, arg0, arg1);
8587 if (tem)
8588 return tem;
8590 /* Or if we are changing signedness. */
8591 tem = fold_sign_changed_comparison (code, type, arg0, arg1);
8592 if (tem)
8593 return tem;
8596 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
8597 constant, we can simplify it. */
8598 else if (TREE_CODE (arg1) == INTEGER_CST
8599 && (TREE_CODE (arg0) == MIN_EXPR
8600 || TREE_CODE (arg0) == MAX_EXPR)
8601 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8602 return optimize_minmax_comparison (t);
8604 /* If we are comparing an ABS_EXPR with a constant, we can
8605 convert all the cases into explicit comparisons, but they may
8606 well not be faster than doing the ABS and one comparison.
8607 But ABS (X) <= C is a range comparison, which becomes a subtraction
8608 and a comparison, and is probably faster. */
8609 else if (code == LE_EXPR && TREE_CODE (arg1) == INTEGER_CST
8610 && TREE_CODE (arg0) == ABS_EXPR
8611 && ! TREE_SIDE_EFFECTS (arg0)
8612 && (0 != (tem = negate_expr (arg1)))
8613 && TREE_CODE (tem) == INTEGER_CST
8614 && ! TREE_CONSTANT_OVERFLOW (tem))
8615 return fold (build2 (TRUTH_ANDIF_EXPR, type,
8616 build2 (GE_EXPR, type,
8617 TREE_OPERAND (arg0, 0), tem),
8618 build2 (LE_EXPR, type,
8619 TREE_OPERAND (arg0, 0), arg1)));
8621 /* If this is an EQ or NE comparison with zero and ARG0 is
8622 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
8623 two operations, but the latter can be done in one less insn
8624 on machines that have only two-operand insns or on which a
8625 constant cannot be the first operand. */
8626 if (integer_zerop (arg1) && (code == EQ_EXPR || code == NE_EXPR)
8627 && TREE_CODE (arg0) == BIT_AND_EXPR)
8629 tree arg00 = TREE_OPERAND (arg0, 0);
8630 tree arg01 = TREE_OPERAND (arg0, 1);
8631 if (TREE_CODE (arg00) == LSHIFT_EXPR
8632 && integer_onep (TREE_OPERAND (arg00, 0)))
8633 return
8634 fold (build2 (code, type,
8635 build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
8636 build2 (RSHIFT_EXPR, TREE_TYPE (arg00),
8637 arg01, TREE_OPERAND (arg00, 1)),
8638 fold_convert (TREE_TYPE (arg0),
8639 integer_one_node)),
8640 arg1));
8641 else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
8642 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
8643 return
8644 fold (build2 (code, type,
8645 build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
8646 build2 (RSHIFT_EXPR, TREE_TYPE (arg01),
8647 arg00, TREE_OPERAND (arg01, 1)),
8648 fold_convert (TREE_TYPE (arg0),
8649 integer_one_node)),
8650 arg1));
8653 /* If this is an NE or EQ comparison of zero against the result of a
8654 signed MOD operation whose second operand is a power of 2, make
8655 the MOD operation unsigned since it is simpler and equivalent. */
8656 if ((code == NE_EXPR || code == EQ_EXPR)
8657 && integer_zerop (arg1)
8658 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
8659 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
8660 || TREE_CODE (arg0) == CEIL_MOD_EXPR
8661 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
8662 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
8663 && integer_pow2p (TREE_OPERAND (arg0, 1)))
8665 tree newtype = lang_hooks.types.unsigned_type (TREE_TYPE (arg0));
8666 tree newmod = fold (build2 (TREE_CODE (arg0), newtype,
8667 fold_convert (newtype,
8668 TREE_OPERAND (arg0, 0)),
8669 fold_convert (newtype,
8670 TREE_OPERAND (arg0, 1))));
8672 return fold (build2 (code, type, newmod,
8673 fold_convert (newtype, arg1)));
8676 /* If this is an NE comparison of zero with an AND of one, remove the
8677 comparison since the AND will give the correct value. */
8678 if (code == NE_EXPR && integer_zerop (arg1)
8679 && TREE_CODE (arg0) == BIT_AND_EXPR
8680 && integer_onep (TREE_OPERAND (arg0, 1)))
8681 return fold_convert (type, arg0);
8683 /* If we have (A & C) == C where C is a power of 2, convert this into
8684 (A & C) != 0. Similarly for NE_EXPR. */
8685 if ((code == EQ_EXPR || code == NE_EXPR)
8686 && TREE_CODE (arg0) == BIT_AND_EXPR
8687 && integer_pow2p (TREE_OPERAND (arg0, 1))
8688 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
8689 return fold (build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
8690 arg0, fold_convert (TREE_TYPE (arg0),
8691 integer_zero_node)));
8693 /* If we have (A & C) != 0 or (A & C) == 0 and C is a power of
8694 2, then fold the expression into shifts and logical operations. */
8695 tem = fold_single_bit_test (code, arg0, arg1, type);
8696 if (tem)
8697 return tem;
8699 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
8700 Similarly for NE_EXPR. */
8701 if ((code == EQ_EXPR || code == NE_EXPR)
8702 && TREE_CODE (arg0) == BIT_AND_EXPR
8703 && TREE_CODE (arg1) == INTEGER_CST
8704 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8706 tree notc = fold (build1 (BIT_NOT_EXPR,
8707 TREE_TYPE (TREE_OPERAND (arg0, 1)),
8708 TREE_OPERAND (arg0, 1)));
8709 tree dandnotc = fold (build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
8710 arg1, notc));
8711 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
8712 if (integer_nonzerop (dandnotc))
8713 return omit_one_operand (type, rslt, arg0);
8716 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
8717 Similarly for NE_EXPR. */
8718 if ((code == EQ_EXPR || code == NE_EXPR)
8719 && TREE_CODE (arg0) == BIT_IOR_EXPR
8720 && TREE_CODE (arg1) == INTEGER_CST
8721 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8723 tree notd = fold (build1 (BIT_NOT_EXPR, TREE_TYPE (arg1), arg1));
8724 tree candnotd = fold (build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
8725 TREE_OPERAND (arg0, 1), notd));
8726 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
8727 if (integer_nonzerop (candnotd))
8728 return omit_one_operand (type, rslt, arg0);
8731 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
8732 and similarly for >= into !=. */
8733 if ((code == LT_EXPR || code == GE_EXPR)
8734 && TYPE_UNSIGNED (TREE_TYPE (arg0))
8735 && TREE_CODE (arg1) == LSHIFT_EXPR
8736 && integer_onep (TREE_OPERAND (arg1, 0)))
8737 return build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
8738 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
8739 TREE_OPERAND (arg1, 1)),
8740 fold_convert (TREE_TYPE (arg0), integer_zero_node));
8742 else if ((code == LT_EXPR || code == GE_EXPR)
8743 && TYPE_UNSIGNED (TREE_TYPE (arg0))
8744 && (TREE_CODE (arg1) == NOP_EXPR
8745 || TREE_CODE (arg1) == CONVERT_EXPR)
8746 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
8747 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
8748 return
8749 build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
8750 fold_convert (TREE_TYPE (arg0),
8751 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
8752 TREE_OPERAND (TREE_OPERAND (arg1, 0),
8753 1))),
8754 fold_convert (TREE_TYPE (arg0), integer_zero_node));
8756 /* Simplify comparison of something with itself. (For IEEE
8757 floating-point, we can only do some of these simplifications.) */
8758 if (operand_equal_p (arg0, arg1, 0))
8760 switch (code)
8762 case EQ_EXPR:
8763 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
8764 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
8765 return constant_boolean_node (1, type);
8766 break;
8768 case GE_EXPR:
8769 case LE_EXPR:
8770 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
8771 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
8772 return constant_boolean_node (1, type);
8773 return fold (build2 (EQ_EXPR, type, arg0, arg1));
8775 case NE_EXPR:
8776 /* For NE, we can only do this simplification if integer
8777 or we don't honor IEEE floating point NaNs. */
8778 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
8779 && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
8780 break;
8781 /* ... fall through ... */
8782 case GT_EXPR:
8783 case LT_EXPR:
8784 return constant_boolean_node (0, type);
8785 default:
8786 gcc_unreachable ();
8790 /* If we are comparing an expression that just has comparisons
8791 of two integer values, arithmetic expressions of those comparisons,
8792 and constants, we can simplify it. There are only three cases
8793 to check: the two values can either be equal, the first can be
8794 greater, or the second can be greater. Fold the expression for
8795 those three values. Since each value must be 0 or 1, we have
8796 eight possibilities, each of which corresponds to the constant 0
8797 or 1 or one of the six possible comparisons.
8799 This handles common cases like (a > b) == 0 but also handles
8800 expressions like ((x > y) - (y > x)) > 0, which supposedly
8801 occur in macroized code. */
8803 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8805 tree cval1 = 0, cval2 = 0;
8806 int save_p = 0;
8808 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8809 /* Don't handle degenerate cases here; they should already
8810 have been handled anyway. */
8811 && cval1 != 0 && cval2 != 0
8812 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8813 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8814 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8815 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8816 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8817 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8818 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8820 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8821 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8823 /* We can't just pass T to eval_subst in case cval1 or cval2
8824 was the same as ARG1. */
8826 tree high_result
8827 = fold (build2 (code, type,
8828 eval_subst (arg0, cval1, maxval,
8829 cval2, minval),
8830 arg1));
8831 tree equal_result
8832 = fold (build2 (code, type,
8833 eval_subst (arg0, cval1, maxval,
8834 cval2, maxval),
8835 arg1));
8836 tree low_result
8837 = fold (build2 (code, type,
8838 eval_subst (arg0, cval1, minval,
8839 cval2, maxval),
8840 arg1));
8842 /* All three of these results should be 0 or 1. Confirm they
8843 are. Then use those values to select the proper code
8844 to use. */
8846 if ((integer_zerop (high_result)
8847 || integer_onep (high_result))
8848 && (integer_zerop (equal_result)
8849 || integer_onep (equal_result))
8850 && (integer_zerop (low_result)
8851 || integer_onep (low_result)))
8853 /* Make a 3-bit mask with the high-order bit being the
8854 value for `>', the next for '=', and the low for '<'. */
8855 switch ((integer_onep (high_result) * 4)
8856 + (integer_onep (equal_result) * 2)
8857 + integer_onep (low_result))
8859 case 0:
8860 /* Always false. */
8861 return omit_one_operand (type, integer_zero_node, arg0);
8862 case 1:
8863 code = LT_EXPR;
8864 break;
8865 case 2:
8866 code = EQ_EXPR;
8867 break;
8868 case 3:
8869 code = LE_EXPR;
8870 break;
8871 case 4:
8872 code = GT_EXPR;
8873 break;
8874 case 5:
8875 code = NE_EXPR;
8876 break;
8877 case 6:
8878 code = GE_EXPR;
8879 break;
8880 case 7:
8881 /* Always true. */
8882 return omit_one_operand (type, integer_one_node, arg0);
8885 tem = build2 (code, type, cval1, cval2);
8886 if (save_p)
8887 return save_expr (tem);
8888 else
8889 return fold (tem);
8894 /* If this is a comparison of a field, we may be able to simplify it. */
8895 if (((TREE_CODE (arg0) == COMPONENT_REF
8896 && lang_hooks.can_use_bit_fields_p ())
8897 || TREE_CODE (arg0) == BIT_FIELD_REF)
8898 && (code == EQ_EXPR || code == NE_EXPR)
8899 /* Handle the constant case even without -O
8900 to make sure the warnings are given. */
8901 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
8903 t1 = optimize_bit_field_compare (code, type, arg0, arg1);
8904 if (t1)
8905 return t1;
8908 /* If this is a comparison of complex values and either or both sides
8909 are a COMPLEX_EXPR or COMPLEX_CST, it is best to split up the
8910 comparisons and join them with a TRUTH_ANDIF_EXPR or TRUTH_ORIF_EXPR.
8911 This may prevent needless evaluations. */
8912 if ((code == EQ_EXPR || code == NE_EXPR)
8913 && TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
8914 && (TREE_CODE (arg0) == COMPLEX_EXPR
8915 || TREE_CODE (arg1) == COMPLEX_EXPR
8916 || TREE_CODE (arg0) == COMPLEX_CST
8917 || TREE_CODE (arg1) == COMPLEX_CST))
8919 tree subtype = TREE_TYPE (TREE_TYPE (arg0));
8920 tree real0, imag0, real1, imag1;
8922 arg0 = save_expr (arg0);
8923 arg1 = save_expr (arg1);
8924 real0 = fold (build1 (REALPART_EXPR, subtype, arg0));
8925 imag0 = fold (build1 (IMAGPART_EXPR, subtype, arg0));
8926 real1 = fold (build1 (REALPART_EXPR, subtype, arg1));
8927 imag1 = fold (build1 (IMAGPART_EXPR, subtype, arg1));
8929 return fold (build2 ((code == EQ_EXPR ? TRUTH_ANDIF_EXPR
8930 : TRUTH_ORIF_EXPR),
8931 type,
8932 fold (build2 (code, type, real0, real1)),
8933 fold (build2 (code, type, imag0, imag1))));
8936 /* Optimize comparisons of strlen vs zero to a compare of the
8937 first character of the string vs zero. To wit,
8938 strlen(ptr) == 0 => *ptr == 0
8939 strlen(ptr) != 0 => *ptr != 0
8940 Other cases should reduce to one of these two (or a constant)
8941 due to the return value of strlen being unsigned. */
8942 if ((code == EQ_EXPR || code == NE_EXPR)
8943 && integer_zerop (arg1)
8944 && TREE_CODE (arg0) == CALL_EXPR)
8946 tree fndecl = get_callee_fndecl (arg0);
8947 tree arglist;
8949 if (fndecl
8950 && DECL_BUILT_IN (fndecl)
8951 && DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_MD
8952 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
8953 && (arglist = TREE_OPERAND (arg0, 1))
8954 && TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) == POINTER_TYPE
8955 && ! TREE_CHAIN (arglist))
8956 return fold (build2 (code, type,
8957 build1 (INDIRECT_REF, char_type_node,
8958 TREE_VALUE (arglist)),
8959 fold_convert (char_type_node,
8960 integer_zero_node)));
8963 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
8964 into a single range test. */
8965 if (TREE_CODE (arg0) == TRUNC_DIV_EXPR
8966 && TREE_CODE (arg1) == INTEGER_CST
8967 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8968 && !integer_zerop (TREE_OPERAND (arg0, 1))
8969 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8970 && !TREE_OVERFLOW (arg1))
8972 t1 = fold_div_compare (code, type, arg0, arg1);
8973 if (t1 != NULL_TREE)
8974 return t1;
8977 if ((code == EQ_EXPR || code == NE_EXPR)
8978 && !TREE_SIDE_EFFECTS (arg0)
8979 && integer_zerop (arg1)
8980 && tree_expr_nonzero_p (arg0))
8981 return constant_boolean_node (code==NE_EXPR, type);
8983 t1 = fold_relational_const (code, type, arg0, arg1);
8984 return t1 == NULL_TREE ? t : t1;
8986 case UNORDERED_EXPR:
8987 case ORDERED_EXPR:
8988 case UNLT_EXPR:
8989 case UNLE_EXPR:
8990 case UNGT_EXPR:
8991 case UNGE_EXPR:
8992 case UNEQ_EXPR:
8993 case LTGT_EXPR:
8994 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
8996 t1 = fold_relational_const (code, type, arg0, arg1);
8997 if (t1 != NULL_TREE)
8998 return t1;
9001 /* If the first operand is NaN, the result is constant. */
9002 if (TREE_CODE (arg0) == REAL_CST
9003 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
9004 && (code != LTGT_EXPR || ! flag_trapping_math))
9006 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
9007 ? integer_zero_node
9008 : integer_one_node;
9009 return omit_one_operand (type, t1, arg1);
9012 /* If the second operand is NaN, the result is constant. */
9013 if (TREE_CODE (arg1) == REAL_CST
9014 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
9015 && (code != LTGT_EXPR || ! flag_trapping_math))
9017 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
9018 ? integer_zero_node
9019 : integer_one_node;
9020 return omit_one_operand (type, t1, arg0);
9023 /* Simplify unordered comparison of something with itself. */
9024 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
9025 && operand_equal_p (arg0, arg1, 0))
9026 return constant_boolean_node (1, type);
9028 if (code == LTGT_EXPR
9029 && !flag_trapping_math
9030 && operand_equal_p (arg0, arg1, 0))
9031 return constant_boolean_node (0, type);
9033 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
9035 tree targ0 = strip_float_extensions (arg0);
9036 tree targ1 = strip_float_extensions (arg1);
9037 tree newtype = TREE_TYPE (targ0);
9039 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
9040 newtype = TREE_TYPE (targ1);
9042 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
9043 return fold (build2 (code, type, fold_convert (newtype, targ0),
9044 fold_convert (newtype, targ1)));
9047 return t;
9049 case COND_EXPR:
9050 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
9051 so all simple results must be passed through pedantic_non_lvalue. */
9052 if (TREE_CODE (arg0) == INTEGER_CST)
9054 tem = TREE_OPERAND (t, (integer_zerop (arg0) ? 2 : 1));
9055 /* Only optimize constant conditions when the selected branch
9056 has the same type as the COND_EXPR. This avoids optimizing
9057 away "c ? x : throw", where the throw has a void type. */
9058 if (! VOID_TYPE_P (TREE_TYPE (tem))
9059 || VOID_TYPE_P (type))
9060 return pedantic_non_lvalue (tem);
9061 return t;
9063 if (operand_equal_p (arg1, TREE_OPERAND (t, 2), 0))
9064 return pedantic_omit_one_operand (type, arg1, arg0);
9066 /* If we have A op B ? A : C, we may be able to convert this to a
9067 simpler expression, depending on the operation and the values
9068 of B and C. Signed zeros prevent all of these transformations,
9069 for reasons given above each one.
9071 Also try swapping the arguments and inverting the conditional. */
9072 if (COMPARISON_CLASS_P (arg0)
9073 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
9074 arg1, TREE_OPERAND (arg0, 1))
9075 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
9077 tem = fold_cond_expr_with_comparison (type, arg0,
9078 TREE_OPERAND (t, 1),
9079 TREE_OPERAND (t, 2));
9080 if (tem)
9081 return tem;
9084 if (COMPARISON_CLASS_P (arg0)
9085 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
9086 TREE_OPERAND (t, 2),
9087 TREE_OPERAND (arg0, 1))
9088 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (TREE_OPERAND (t, 2)))))
9090 tem = invert_truthvalue (arg0);
9091 if (COMPARISON_CLASS_P (tem))
9093 tem = fold_cond_expr_with_comparison (type, tem,
9094 TREE_OPERAND (t, 2),
9095 TREE_OPERAND (t, 1));
9096 if (tem)
9097 return tem;
9101 /* If the second operand is simpler than the third, swap them
9102 since that produces better jump optimization results. */
9103 if (tree_swap_operands_p (TREE_OPERAND (t, 1),
9104 TREE_OPERAND (t, 2), false))
9106 /* See if this can be inverted. If it can't, possibly because
9107 it was a floating-point inequality comparison, don't do
9108 anything. */
9109 tem = invert_truthvalue (arg0);
9111 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
9112 return fold (build3 (code, type, tem,
9113 TREE_OPERAND (t, 2), TREE_OPERAND (t, 1)));
9116 /* Convert A ? 1 : 0 to simply A. */
9117 if (integer_onep (TREE_OPERAND (t, 1))
9118 && integer_zerop (TREE_OPERAND (t, 2))
9119 /* If we try to convert TREE_OPERAND (t, 0) to our type, the
9120 call to fold will try to move the conversion inside
9121 a COND, which will recurse. In that case, the COND_EXPR
9122 is probably the best choice, so leave it alone. */
9123 && type == TREE_TYPE (arg0))
9124 return pedantic_non_lvalue (arg0);
9126 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
9127 over COND_EXPR in cases such as floating point comparisons. */
9128 if (integer_zerop (TREE_OPERAND (t, 1))
9129 && integer_onep (TREE_OPERAND (t, 2))
9130 && truth_value_p (TREE_CODE (arg0)))
9131 return pedantic_non_lvalue (fold_convert (type,
9132 invert_truthvalue (arg0)));
9134 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
9135 if (TREE_CODE (arg0) == LT_EXPR
9136 && integer_zerop (TREE_OPERAND (arg0, 1))
9137 && integer_zerop (TREE_OPERAND (t, 2))
9138 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
9139 return fold_convert (type, fold (build2 (BIT_AND_EXPR,
9140 TREE_TYPE (tem), tem, arg1)));
9142 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
9143 already handled above. */
9144 if (TREE_CODE (arg0) == BIT_AND_EXPR
9145 && integer_onep (TREE_OPERAND (arg0, 1))
9146 && integer_zerop (TREE_OPERAND (t, 2))
9147 && integer_pow2p (arg1))
9149 tree tem = TREE_OPERAND (arg0, 0);
9150 STRIP_NOPS (tem);
9151 if (TREE_CODE (tem) == RSHIFT_EXPR
9152 && TREE_CODE (TREE_OPERAND (tem, 1)) == INTEGER_CST
9153 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
9154 TREE_INT_CST_LOW (TREE_OPERAND (tem, 1)))
9155 return fold (build2 (BIT_AND_EXPR, type,
9156 TREE_OPERAND (tem, 0), arg1));
9159 /* A & N ? N : 0 is simply A & N if N is a power of two. This
9160 is probably obsolete because the first operand should be a
9161 truth value (that's why we have the two cases above), but let's
9162 leave it in until we can confirm this for all front-ends. */
9163 if (integer_zerop (TREE_OPERAND (t, 2))
9164 && TREE_CODE (arg0) == NE_EXPR
9165 && integer_zerop (TREE_OPERAND (arg0, 1))
9166 && integer_pow2p (arg1)
9167 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
9168 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
9169 arg1, OEP_ONLY_CONST))
9170 return pedantic_non_lvalue (fold_convert (type,
9171 TREE_OPERAND (arg0, 0)));
9173 /* Convert A ? B : 0 into A && B if A and B are truth values. */
9174 if (integer_zerop (TREE_OPERAND (t, 2))
9175 && truth_value_p (TREE_CODE (arg0))
9176 && truth_value_p (TREE_CODE (arg1)))
9177 return fold (build2 (TRUTH_ANDIF_EXPR, type, arg0, arg1));
9179 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
9180 if (integer_onep (TREE_OPERAND (t, 2))
9181 && truth_value_p (TREE_CODE (arg0))
9182 && truth_value_p (TREE_CODE (arg1)))
9184 /* Only perform transformation if ARG0 is easily inverted. */
9185 tem = invert_truthvalue (arg0);
9186 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
9187 return fold (build2 (TRUTH_ORIF_EXPR, type, tem, arg1));
9190 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
9191 if (integer_zerop (arg1)
9192 && truth_value_p (TREE_CODE (arg0))
9193 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 2))))
9195 /* Only perform transformation if ARG0 is easily inverted. */
9196 tem = invert_truthvalue (arg0);
9197 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
9198 return fold (build2 (TRUTH_ANDIF_EXPR, type, tem,
9199 TREE_OPERAND (t, 2)));
9202 /* Convert A ? 1 : B into A || B if A and B are truth values. */
9203 if (integer_onep (arg1)
9204 && truth_value_p (TREE_CODE (arg0))
9205 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 2))))
9206 return fold (build2 (TRUTH_ORIF_EXPR, type, arg0,
9207 TREE_OPERAND (t, 2)));
9209 return t;
9211 case COMPOUND_EXPR:
9212 /* When pedantic, a compound expression can be neither an lvalue
9213 nor an integer constant expression. */
9214 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
9215 return t;
9216 /* Don't let (0, 0) be null pointer constant. */
9217 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
9218 : fold_convert (type, arg1);
9219 return pedantic_non_lvalue (tem);
9221 case COMPLEX_EXPR:
9222 if (wins)
9223 return build_complex (type, arg0, arg1);
9224 return t;
9226 case REALPART_EXPR:
9227 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
9228 return t;
9229 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
9230 return omit_one_operand (type, TREE_OPERAND (arg0, 0),
9231 TREE_OPERAND (arg0, 1));
9232 else if (TREE_CODE (arg0) == COMPLEX_CST)
9233 return TREE_REALPART (arg0);
9234 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
9235 return fold (build2 (TREE_CODE (arg0), type,
9236 fold (build1 (REALPART_EXPR, type,
9237 TREE_OPERAND (arg0, 0))),
9238 fold (build1 (REALPART_EXPR, type,
9239 TREE_OPERAND (arg0, 1)))));
9240 return t;
9242 case IMAGPART_EXPR:
9243 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
9244 return fold_convert (type, integer_zero_node);
9245 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
9246 return omit_one_operand (type, TREE_OPERAND (arg0, 1),
9247 TREE_OPERAND (arg0, 0));
9248 else if (TREE_CODE (arg0) == COMPLEX_CST)
9249 return TREE_IMAGPART (arg0);
9250 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
9251 return fold (build2 (TREE_CODE (arg0), type,
9252 fold (build1 (IMAGPART_EXPR, type,
9253 TREE_OPERAND (arg0, 0))),
9254 fold (build1 (IMAGPART_EXPR, type,
9255 TREE_OPERAND (arg0, 1)))));
9256 return t;
9258 case CALL_EXPR:
9259 /* Check for a built-in function. */
9260 if (TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
9261 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
9262 == FUNCTION_DECL)
9263 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (t, 0), 0)))
9265 tree tmp = fold_builtin (t, false);
9266 if (tmp)
9267 return tmp;
9269 return t;
9271 default:
9272 return t;
9273 } /* switch (code) */
9276 #ifdef ENABLE_FOLD_CHECKING
9277 #undef fold
9279 static void fold_checksum_tree (tree, struct md5_ctx *, htab_t);
9280 static void fold_check_failed (tree, tree);
9281 void print_fold_checksum (tree);
9283 /* When --enable-checking=fold, compute a digest of expr before
9284 and after actual fold call to see if fold did not accidentally
9285 change original expr. */
9287 tree
9288 fold (tree expr)
9290 tree ret;
9291 struct md5_ctx ctx;
9292 unsigned char checksum_before[16], checksum_after[16];
9293 htab_t ht;
9295 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
9296 md5_init_ctx (&ctx);
9297 fold_checksum_tree (expr, &ctx, ht);
9298 md5_finish_ctx (&ctx, checksum_before);
9299 htab_empty (ht);
9301 ret = fold_1 (expr);
9303 md5_init_ctx (&ctx);
9304 fold_checksum_tree (expr, &ctx, ht);
9305 md5_finish_ctx (&ctx, checksum_after);
9306 htab_delete (ht);
9308 if (memcmp (checksum_before, checksum_after, 16))
9309 fold_check_failed (expr, ret);
9311 return ret;
9314 void
9315 print_fold_checksum (tree expr)
9317 struct md5_ctx ctx;
9318 unsigned char checksum[16], cnt;
9319 htab_t ht;
9321 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
9322 md5_init_ctx (&ctx);
9323 fold_checksum_tree (expr, &ctx, ht);
9324 md5_finish_ctx (&ctx, checksum);
9325 htab_delete (ht);
9326 for (cnt = 0; cnt < 16; ++cnt)
9327 fprintf (stderr, "%02x", checksum[cnt]);
9328 putc ('\n', stderr);
9331 static void
9332 fold_check_failed (tree expr ATTRIBUTE_UNUSED, tree ret ATTRIBUTE_UNUSED)
9334 internal_error ("fold check: original tree changed by fold");
9337 static void
9338 fold_checksum_tree (tree expr, struct md5_ctx *ctx, htab_t ht)
9340 void **slot;
9341 enum tree_code code;
9342 char buf[sizeof (struct tree_decl)];
9343 int i, len;
9345 gcc_assert ((sizeof (struct tree_exp) + 5 * sizeof (tree)
9346 <= sizeof (struct tree_decl))
9347 && sizeof (struct tree_type) <= sizeof (struct tree_decl));
9348 if (expr == NULL)
9349 return;
9350 slot = htab_find_slot (ht, expr, INSERT);
9351 if (*slot != NULL)
9352 return;
9353 *slot = expr;
9354 code = TREE_CODE (expr);
9355 if (TREE_CODE_CLASS (code) == tcc_declaration
9356 && DECL_ASSEMBLER_NAME_SET_P (expr))
9358 /* Allow DECL_ASSEMBLER_NAME to be modified. */
9359 memcpy (buf, expr, tree_size (expr));
9360 expr = (tree) buf;
9361 SET_DECL_ASSEMBLER_NAME (expr, NULL);
9363 else if (TREE_CODE_CLASS (code) == tcc_type
9364 && (TYPE_POINTER_TO (expr) || TYPE_REFERENCE_TO (expr)
9365 || TYPE_CACHED_VALUES_P (expr)))
9367 /* Allow these fields to be modified. */
9368 memcpy (buf, expr, tree_size (expr));
9369 expr = (tree) buf;
9370 TYPE_POINTER_TO (expr) = NULL;
9371 TYPE_REFERENCE_TO (expr) = NULL;
9372 TYPE_CACHED_VALUES_P (expr) = 0;
9373 TYPE_CACHED_VALUES (expr) = NULL;
9375 md5_process_bytes (expr, tree_size (expr), ctx);
9376 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
9377 if (TREE_CODE_CLASS (code) != tcc_type
9378 && TREE_CODE_CLASS (code) != tcc_declaration)
9379 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
9380 switch (TREE_CODE_CLASS (code))
9382 case tcc_constant:
9383 switch (code)
9385 case STRING_CST:
9386 md5_process_bytes (TREE_STRING_POINTER (expr),
9387 TREE_STRING_LENGTH (expr), ctx);
9388 break;
9389 case COMPLEX_CST:
9390 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
9391 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
9392 break;
9393 case VECTOR_CST:
9394 fold_checksum_tree (TREE_VECTOR_CST_ELTS (expr), ctx, ht);
9395 break;
9396 default:
9397 break;
9399 break;
9400 case tcc_exceptional:
9401 switch (code)
9403 case TREE_LIST:
9404 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
9405 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
9406 break;
9407 case TREE_VEC:
9408 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
9409 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
9410 break;
9411 default:
9412 break;
9414 break;
9415 case tcc_expression:
9416 case tcc_reference:
9417 case tcc_comparison:
9418 case tcc_unary:
9419 case tcc_binary:
9420 case tcc_statement:
9421 len = first_rtl_op (code);
9422 for (i = 0; i < len; ++i)
9423 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
9424 break;
9425 case tcc_declaration:
9426 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
9427 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
9428 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
9429 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
9430 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
9431 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
9432 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
9433 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
9434 fold_checksum_tree (DECL_SECTION_NAME (expr), ctx, ht);
9435 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
9436 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
9437 break;
9438 case tcc_type:
9439 if (TREE_CODE (expr) == ENUMERAL_TYPE)
9440 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
9441 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
9442 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
9443 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
9444 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
9445 if (INTEGRAL_TYPE_P (expr)
9446 || SCALAR_FLOAT_TYPE_P (expr))
9448 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
9449 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
9451 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
9452 if (TREE_CODE (expr) == RECORD_TYPE
9453 || TREE_CODE (expr) == UNION_TYPE
9454 || TREE_CODE (expr) == QUAL_UNION_TYPE)
9455 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
9456 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
9457 break;
9458 default:
9459 break;
9463 #endif
9465 /* Perform constant folding and related simplification of initializer
9466 expression EXPR. This behaves identically to "fold" but ignores
9467 potential run-time traps and exceptions that fold must preserve. */
9469 tree
9470 fold_initializer (tree expr)
9472 int saved_signaling_nans = flag_signaling_nans;
9473 int saved_trapping_math = flag_trapping_math;
9474 int saved_trapv = flag_trapv;
9475 tree result;
9477 flag_signaling_nans = 0;
9478 flag_trapping_math = 0;
9479 flag_trapv = 0;
9481 result = fold (expr);
9483 flag_signaling_nans = saved_signaling_nans;
9484 flag_trapping_math = saved_trapping_math;
9485 flag_trapv = saved_trapv;
9487 return result;
9490 /* Determine if first argument is a multiple of second argument. Return 0 if
9491 it is not, or we cannot easily determined it to be.
9493 An example of the sort of thing we care about (at this point; this routine
9494 could surely be made more general, and expanded to do what the *_DIV_EXPR's
9495 fold cases do now) is discovering that
9497 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
9499 is a multiple of
9501 SAVE_EXPR (J * 8)
9503 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
9505 This code also handles discovering that
9507 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
9509 is a multiple of 8 so we don't have to worry about dealing with a
9510 possible remainder.
9512 Note that we *look* inside a SAVE_EXPR only to determine how it was
9513 calculated; it is not safe for fold to do much of anything else with the
9514 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
9515 at run time. For example, the latter example above *cannot* be implemented
9516 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
9517 evaluation time of the original SAVE_EXPR is not necessarily the same at
9518 the time the new expression is evaluated. The only optimization of this
9519 sort that would be valid is changing
9521 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
9523 divided by 8 to
9525 SAVE_EXPR (I) * SAVE_EXPR (J)
9527 (where the same SAVE_EXPR (J) is used in the original and the
9528 transformed version). */
9530 static int
9531 multiple_of_p (tree type, tree top, tree bottom)
9533 if (operand_equal_p (top, bottom, 0))
9534 return 1;
9536 if (TREE_CODE (type) != INTEGER_TYPE)
9537 return 0;
9539 switch (TREE_CODE (top))
9541 case MULT_EXPR:
9542 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
9543 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
9545 case PLUS_EXPR:
9546 case MINUS_EXPR:
9547 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
9548 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
9550 case LSHIFT_EXPR:
9551 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
9553 tree op1, t1;
9555 op1 = TREE_OPERAND (top, 1);
9556 /* const_binop may not detect overflow correctly,
9557 so check for it explicitly here. */
9558 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
9559 > TREE_INT_CST_LOW (op1)
9560 && TREE_INT_CST_HIGH (op1) == 0
9561 && 0 != (t1 = fold_convert (type,
9562 const_binop (LSHIFT_EXPR,
9563 size_one_node,
9564 op1, 0)))
9565 && ! TREE_OVERFLOW (t1))
9566 return multiple_of_p (type, t1, bottom);
9568 return 0;
9570 case NOP_EXPR:
9571 /* Can't handle conversions from non-integral or wider integral type. */
9572 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
9573 || (TYPE_PRECISION (type)
9574 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
9575 return 0;
9577 /* .. fall through ... */
9579 case SAVE_EXPR:
9580 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
9582 case INTEGER_CST:
9583 if (TREE_CODE (bottom) != INTEGER_CST
9584 || (TYPE_UNSIGNED (type)
9585 && (tree_int_cst_sgn (top) < 0
9586 || tree_int_cst_sgn (bottom) < 0)))
9587 return 0;
9588 return integer_zerop (const_binop (TRUNC_MOD_EXPR,
9589 top, bottom, 0));
9591 default:
9592 return 0;
9596 /* Return true if `t' is known to be non-negative. */
9599 tree_expr_nonnegative_p (tree t)
9601 switch (TREE_CODE (t))
9603 case ABS_EXPR:
9604 return 1;
9606 case INTEGER_CST:
9607 return tree_int_cst_sgn (t) >= 0;
9609 case REAL_CST:
9610 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
9612 case PLUS_EXPR:
9613 if (FLOAT_TYPE_P (TREE_TYPE (t)))
9614 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
9615 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9617 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
9618 both unsigned and at least 2 bits shorter than the result. */
9619 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
9620 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
9621 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
9623 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
9624 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
9625 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
9626 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
9628 unsigned int prec = MAX (TYPE_PRECISION (inner1),
9629 TYPE_PRECISION (inner2)) + 1;
9630 return prec < TYPE_PRECISION (TREE_TYPE (t));
9633 break;
9635 case MULT_EXPR:
9636 if (FLOAT_TYPE_P (TREE_TYPE (t)))
9638 /* x * x for floating point x is always non-negative. */
9639 if (operand_equal_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1), 0))
9640 return 1;
9641 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
9642 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9645 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
9646 both unsigned and their total bits is shorter than the result. */
9647 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
9648 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
9649 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
9651 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
9652 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
9653 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
9654 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
9655 return TYPE_PRECISION (inner1) + TYPE_PRECISION (inner2)
9656 < TYPE_PRECISION (TREE_TYPE (t));
9658 return 0;
9660 case TRUNC_DIV_EXPR:
9661 case CEIL_DIV_EXPR:
9662 case FLOOR_DIV_EXPR:
9663 case ROUND_DIV_EXPR:
9664 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
9665 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9667 case TRUNC_MOD_EXPR:
9668 case CEIL_MOD_EXPR:
9669 case FLOOR_MOD_EXPR:
9670 case ROUND_MOD_EXPR:
9671 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
9673 case RDIV_EXPR:
9674 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
9675 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9677 case BIT_AND_EXPR:
9678 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1))
9679 || tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
9680 case BIT_IOR_EXPR:
9681 case BIT_XOR_EXPR:
9682 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
9683 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9685 case NOP_EXPR:
9687 tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
9688 tree outer_type = TREE_TYPE (t);
9690 if (TREE_CODE (outer_type) == REAL_TYPE)
9692 if (TREE_CODE (inner_type) == REAL_TYPE)
9693 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
9694 if (TREE_CODE (inner_type) == INTEGER_TYPE)
9696 if (TYPE_UNSIGNED (inner_type))
9697 return 1;
9698 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
9701 else if (TREE_CODE (outer_type) == INTEGER_TYPE)
9703 if (TREE_CODE (inner_type) == REAL_TYPE)
9704 return tree_expr_nonnegative_p (TREE_OPERAND (t,0));
9705 if (TREE_CODE (inner_type) == INTEGER_TYPE)
9706 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
9707 && TYPE_UNSIGNED (inner_type);
9710 break;
9712 case COND_EXPR:
9713 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1))
9714 && tree_expr_nonnegative_p (TREE_OPERAND (t, 2));
9715 case COMPOUND_EXPR:
9716 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9717 case MIN_EXPR:
9718 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
9719 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9720 case MAX_EXPR:
9721 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
9722 || tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9723 case MODIFY_EXPR:
9724 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9725 case BIND_EXPR:
9726 return tree_expr_nonnegative_p (expr_last (TREE_OPERAND (t, 1)));
9727 case SAVE_EXPR:
9728 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
9729 case NON_LVALUE_EXPR:
9730 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
9731 case FLOAT_EXPR:
9732 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
9734 case TARGET_EXPR:
9736 tree temp = TARGET_EXPR_SLOT (t);
9737 t = TARGET_EXPR_INITIAL (t);
9739 /* If the initializer is non-void, then it's a normal expression
9740 that will be assigned to the slot. */
9741 if (!VOID_TYPE_P (t))
9742 return tree_expr_nonnegative_p (t);
9744 /* Otherwise, the initializer sets the slot in some way. One common
9745 way is an assignment statement at the end of the initializer. */
9746 while (1)
9748 if (TREE_CODE (t) == BIND_EXPR)
9749 t = expr_last (BIND_EXPR_BODY (t));
9750 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
9751 || TREE_CODE (t) == TRY_CATCH_EXPR)
9752 t = expr_last (TREE_OPERAND (t, 0));
9753 else if (TREE_CODE (t) == STATEMENT_LIST)
9754 t = expr_last (t);
9755 else
9756 break;
9758 if (TREE_CODE (t) == MODIFY_EXPR
9759 && TREE_OPERAND (t, 0) == temp)
9760 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9762 return 0;
9765 case CALL_EXPR:
9767 tree fndecl = get_callee_fndecl (t);
9768 tree arglist = TREE_OPERAND (t, 1);
9769 if (fndecl
9770 && DECL_BUILT_IN (fndecl)
9771 && DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_MD)
9772 switch (DECL_FUNCTION_CODE (fndecl))
9774 #define CASE_BUILTIN_F(BUILT_IN_FN) \
9775 case BUILT_IN_FN: case BUILT_IN_FN##F: case BUILT_IN_FN##L:
9776 #define CASE_BUILTIN_I(BUILT_IN_FN) \
9777 case BUILT_IN_FN: case BUILT_IN_FN##L: case BUILT_IN_FN##LL:
9779 CASE_BUILTIN_F (BUILT_IN_ACOS)
9780 CASE_BUILTIN_F (BUILT_IN_ACOSH)
9781 CASE_BUILTIN_F (BUILT_IN_CABS)
9782 CASE_BUILTIN_F (BUILT_IN_COSH)
9783 CASE_BUILTIN_F (BUILT_IN_ERFC)
9784 CASE_BUILTIN_F (BUILT_IN_EXP)
9785 CASE_BUILTIN_F (BUILT_IN_EXP10)
9786 CASE_BUILTIN_F (BUILT_IN_EXP2)
9787 CASE_BUILTIN_F (BUILT_IN_FABS)
9788 CASE_BUILTIN_F (BUILT_IN_FDIM)
9789 CASE_BUILTIN_F (BUILT_IN_FREXP)
9790 CASE_BUILTIN_F (BUILT_IN_HYPOT)
9791 CASE_BUILTIN_F (BUILT_IN_POW10)
9792 CASE_BUILTIN_I (BUILT_IN_FFS)
9793 CASE_BUILTIN_I (BUILT_IN_PARITY)
9794 CASE_BUILTIN_I (BUILT_IN_POPCOUNT)
9795 /* Always true. */
9796 return 1;
9798 CASE_BUILTIN_F (BUILT_IN_SQRT)
9799 /* sqrt(-0.0) is -0.0. */
9800 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (t))))
9801 return 1;
9802 return tree_expr_nonnegative_p (TREE_VALUE (arglist));
9804 CASE_BUILTIN_F (BUILT_IN_ASINH)
9805 CASE_BUILTIN_F (BUILT_IN_ATAN)
9806 CASE_BUILTIN_F (BUILT_IN_ATANH)
9807 CASE_BUILTIN_F (BUILT_IN_CBRT)
9808 CASE_BUILTIN_F (BUILT_IN_CEIL)
9809 CASE_BUILTIN_F (BUILT_IN_ERF)
9810 CASE_BUILTIN_F (BUILT_IN_EXPM1)
9811 CASE_BUILTIN_F (BUILT_IN_FLOOR)
9812 CASE_BUILTIN_F (BUILT_IN_FMOD)
9813 CASE_BUILTIN_F (BUILT_IN_LDEXP)
9814 CASE_BUILTIN_F (BUILT_IN_LLRINT)
9815 CASE_BUILTIN_F (BUILT_IN_LLROUND)
9816 CASE_BUILTIN_F (BUILT_IN_LRINT)
9817 CASE_BUILTIN_F (BUILT_IN_LROUND)
9818 CASE_BUILTIN_F (BUILT_IN_MODF)
9819 CASE_BUILTIN_F (BUILT_IN_NEARBYINT)
9820 CASE_BUILTIN_F (BUILT_IN_POW)
9821 CASE_BUILTIN_F (BUILT_IN_RINT)
9822 CASE_BUILTIN_F (BUILT_IN_ROUND)
9823 CASE_BUILTIN_F (BUILT_IN_SIGNBIT)
9824 CASE_BUILTIN_F (BUILT_IN_SINH)
9825 CASE_BUILTIN_F (BUILT_IN_TANH)
9826 CASE_BUILTIN_F (BUILT_IN_TRUNC)
9827 /* True if the 1st argument is nonnegative. */
9828 return tree_expr_nonnegative_p (TREE_VALUE (arglist));
9830 CASE_BUILTIN_F (BUILT_IN_FMAX)
9831 /* True if the 1st OR 2nd arguments are nonnegative. */
9832 return tree_expr_nonnegative_p (TREE_VALUE (arglist))
9833 || tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist)));
9835 CASE_BUILTIN_F (BUILT_IN_FMIN)
9836 /* True if the 1st AND 2nd arguments are nonnegative. */
9837 return tree_expr_nonnegative_p (TREE_VALUE (arglist))
9838 && tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist)));
9840 CASE_BUILTIN_F (BUILT_IN_COPYSIGN)
9841 /* True if the 2nd argument is nonnegative. */
9842 return tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist)));
9844 default:
9845 break;
9846 #undef CASE_BUILTIN_F
9847 #undef CASE_BUILTIN_I
9851 /* ... fall through ... */
9853 default:
9854 if (truth_value_p (TREE_CODE (t)))
9855 /* Truth values evaluate to 0 or 1, which is nonnegative. */
9856 return 1;
9859 /* We don't know sign of `t', so be conservative and return false. */
9860 return 0;
9863 /* Return true when T is an address and is known to be nonzero.
9864 For floating point we further ensure that T is not denormal.
9865 Similar logic is present in nonzero_address in rtlanal.h. */
9867 static bool
9868 tree_expr_nonzero_p (tree t)
9870 tree type = TREE_TYPE (t);
9872 /* Doing something useful for floating point would need more work. */
9873 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
9874 return false;
9876 switch (TREE_CODE (t))
9878 case ABS_EXPR:
9879 if (!TYPE_UNSIGNED (type) && !flag_wrapv)
9880 return tree_expr_nonzero_p (TREE_OPERAND (t, 0));
9882 case INTEGER_CST:
9883 /* We used to test for !integer_zerop here. This does not work correctly
9884 if TREE_CONSTANT_OVERFLOW (t). */
9885 return (TREE_INT_CST_LOW (t) != 0
9886 || TREE_INT_CST_HIGH (t) != 0);
9888 case PLUS_EXPR:
9889 if (!TYPE_UNSIGNED (type) && !flag_wrapv)
9891 /* With the presence of negative values it is hard
9892 to say something. */
9893 if (!tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
9894 || !tree_expr_nonnegative_p (TREE_OPERAND (t, 1)))
9895 return false;
9896 /* One of operands must be positive and the other non-negative. */
9897 return (tree_expr_nonzero_p (TREE_OPERAND (t, 0))
9898 || tree_expr_nonzero_p (TREE_OPERAND (t, 1)));
9900 break;
9902 case MULT_EXPR:
9903 if (!TYPE_UNSIGNED (type) && !flag_wrapv)
9905 return (tree_expr_nonzero_p (TREE_OPERAND (t, 0))
9906 && tree_expr_nonzero_p (TREE_OPERAND (t, 1)));
9908 break;
9910 case NOP_EXPR:
9912 tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
9913 tree outer_type = TREE_TYPE (t);
9915 return (TYPE_PRECISION (inner_type) >= TYPE_PRECISION (outer_type)
9916 && tree_expr_nonzero_p (TREE_OPERAND (t, 0)));
9918 break;
9920 case ADDR_EXPR:
9922 tree base = get_base_address (TREE_OPERAND (t, 0));
9924 if (!base)
9925 return false;
9927 /* Weak declarations may link to NULL. */
9928 if (DECL_P (base))
9929 return !DECL_WEAK (base);
9931 /* Constants are never weak. */
9932 if (CONSTANT_CLASS_P (base))
9933 return true;
9935 return false;
9938 case COND_EXPR:
9939 return (tree_expr_nonzero_p (TREE_OPERAND (t, 1))
9940 && tree_expr_nonzero_p (TREE_OPERAND (t, 2)));
9942 case MIN_EXPR:
9943 return (tree_expr_nonzero_p (TREE_OPERAND (t, 0))
9944 && tree_expr_nonzero_p (TREE_OPERAND (t, 1)));
9946 case MAX_EXPR:
9947 if (tree_expr_nonzero_p (TREE_OPERAND (t, 0)))
9949 /* When both operands are nonzero, then MAX must be too. */
9950 if (tree_expr_nonzero_p (TREE_OPERAND (t, 1)))
9951 return true;
9953 /* MAX where operand 0 is positive is positive. */
9954 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
9956 /* MAX where operand 1 is positive is positive. */
9957 else if (tree_expr_nonzero_p (TREE_OPERAND (t, 1))
9958 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1)))
9959 return true;
9960 break;
9962 case COMPOUND_EXPR:
9963 case MODIFY_EXPR:
9964 case BIND_EXPR:
9965 return tree_expr_nonzero_p (TREE_OPERAND (t, 1));
9967 case SAVE_EXPR:
9968 case NON_LVALUE_EXPR:
9969 return tree_expr_nonzero_p (TREE_OPERAND (t, 0));
9971 case BIT_IOR_EXPR:
9972 return tree_expr_nonzero_p (TREE_OPERAND (t, 1))
9973 || tree_expr_nonzero_p (TREE_OPERAND (t, 0));
9975 default:
9976 break;
9978 return false;
9981 /* See if we are applying CODE, a relational to the highest or lowest
9982 possible integer of TYPE. If so, then the result is a compile
9983 time constant. */
9985 static tree
9986 fold_relational_hi_lo (enum tree_code *code_p, const tree type, tree *op0_p,
9987 tree *op1_p)
9989 tree op0 = *op0_p;
9990 tree op1 = *op1_p;
9991 enum tree_code code = *code_p;
9992 int width = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (op1)));
9994 if (TREE_CODE (op1) == INTEGER_CST
9995 && ! TREE_CONSTANT_OVERFLOW (op1)
9996 && width <= HOST_BITS_PER_WIDE_INT
9997 && (INTEGRAL_TYPE_P (TREE_TYPE (op1))
9998 || POINTER_TYPE_P (TREE_TYPE (op1))))
10000 unsigned HOST_WIDE_INT signed_max;
10001 unsigned HOST_WIDE_INT max, min;
10003 signed_max = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;
10005 if (TYPE_UNSIGNED (TREE_TYPE (op1)))
10007 max = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
10008 min = 0;
10010 else
10012 max = signed_max;
10013 min = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
10016 if (TREE_INT_CST_HIGH (op1) == 0
10017 && TREE_INT_CST_LOW (op1) == max)
10018 switch (code)
10020 case GT_EXPR:
10021 return omit_one_operand (type, integer_zero_node, op0);
10023 case GE_EXPR:
10024 *code_p = EQ_EXPR;
10025 break;
10026 case LE_EXPR:
10027 return omit_one_operand (type, integer_one_node, op0);
10029 case LT_EXPR:
10030 *code_p = NE_EXPR;
10031 break;
10033 /* The GE_EXPR and LT_EXPR cases above are not normally
10034 reached because of previous transformations. */
10036 default:
10037 break;
10039 else if (TREE_INT_CST_HIGH (op1) == 0
10040 && TREE_INT_CST_LOW (op1) == max - 1)
10041 switch (code)
10043 case GT_EXPR:
10044 *code_p = EQ_EXPR;
10045 *op1_p = const_binop (PLUS_EXPR, op1, integer_one_node, 0);
10046 break;
10047 case LE_EXPR:
10048 *code_p = NE_EXPR;
10049 *op1_p = const_binop (PLUS_EXPR, op1, integer_one_node, 0);
10050 break;
10051 default:
10052 break;
10054 else if (TREE_INT_CST_HIGH (op1) == (min ? -1 : 0)
10055 && TREE_INT_CST_LOW (op1) == min)
10056 switch (code)
10058 case LT_EXPR:
10059 return omit_one_operand (type, integer_zero_node, op0);
10061 case LE_EXPR:
10062 *code_p = EQ_EXPR;
10063 break;
10065 case GE_EXPR:
10066 return omit_one_operand (type, integer_one_node, op0);
10068 case GT_EXPR:
10069 *code_p = NE_EXPR;
10070 break;
10072 default:
10073 break;
10075 else if (TREE_INT_CST_HIGH (op1) == (min ? -1 : 0)
10076 && TREE_INT_CST_LOW (op1) == min + 1)
10077 switch (code)
10079 case GE_EXPR:
10080 *code_p = NE_EXPR;
10081 *op1_p = const_binop (MINUS_EXPR, op1, integer_one_node, 0);
10082 break;
10083 case LT_EXPR:
10084 *code_p = EQ_EXPR;
10085 *op1_p = const_binop (MINUS_EXPR, op1, integer_one_node, 0);
10086 break;
10087 default:
10088 break;
10091 else if (TREE_INT_CST_HIGH (op1) == 0
10092 && TREE_INT_CST_LOW (op1) == signed_max
10093 && TYPE_UNSIGNED (TREE_TYPE (op1))
10094 /* signed_type does not work on pointer types. */
10095 && INTEGRAL_TYPE_P (TREE_TYPE (op1)))
10097 /* The following case also applies to X < signed_max+1
10098 and X >= signed_max+1 because previous transformations. */
10099 if (code == LE_EXPR || code == GT_EXPR)
10101 tree st0, st1, exp, retval;
10102 st0 = lang_hooks.types.signed_type (TREE_TYPE (op0));
10103 st1 = lang_hooks.types.signed_type (TREE_TYPE (op1));
10105 exp = build2 (code == LE_EXPR ? GE_EXPR: LT_EXPR,
10106 type,
10107 fold_convert (st0, op0),
10108 fold_convert (st1, integer_zero_node));
10110 retval = fold_binary_to_constant (TREE_CODE (exp),
10111 TREE_TYPE (exp),
10112 TREE_OPERAND (exp, 0),
10113 TREE_OPERAND (exp, 1));
10115 /* If we are in gimple form, then returning EXP would create
10116 non-gimple expressions. Clearing it is safe and insures
10117 we do not allow a non-gimple expression to escape. */
10118 if (in_gimple_form)
10119 exp = NULL;
10121 return (retval ? retval : exp);
10126 return NULL_TREE;
10130 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
10131 attempt to fold the expression to a constant without modifying TYPE,
10132 OP0 or OP1.
10134 If the expression could be simplified to a constant, then return
10135 the constant. If the expression would not be simplified to a
10136 constant, then return NULL_TREE.
10138 Note this is primarily designed to be called after gimplification
10139 of the tree structures and when at least one operand is a constant.
10140 As a result of those simplifying assumptions this routine is far
10141 simpler than the generic fold routine. */
10143 tree
10144 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
10146 int wins = 1;
10147 tree subop0;
10148 tree subop1;
10149 tree tem;
10151 /* If this is a commutative operation, and ARG0 is a constant, move it
10152 to ARG1 to reduce the number of tests below. */
10153 if (commutative_tree_code (code)
10154 && (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST))
10156 tem = op0;
10157 op0 = op1;
10158 op1 = tem;
10161 /* If either operand is a complex type, extract its real component. */
10162 if (TREE_CODE (op0) == COMPLEX_CST)
10163 subop0 = TREE_REALPART (op0);
10164 else
10165 subop0 = op0;
10167 if (TREE_CODE (op1) == COMPLEX_CST)
10168 subop1 = TREE_REALPART (op1);
10169 else
10170 subop1 = op1;
10172 /* Note if either argument is not a real or integer constant.
10173 With a few exceptions, simplification is limited to cases
10174 where both arguments are constants. */
10175 if ((TREE_CODE (subop0) != INTEGER_CST
10176 && TREE_CODE (subop0) != REAL_CST)
10177 || (TREE_CODE (subop1) != INTEGER_CST
10178 && TREE_CODE (subop1) != REAL_CST))
10179 wins = 0;
10181 switch (code)
10183 case PLUS_EXPR:
10184 /* (plus (address) (const_int)) is a constant. */
10185 if (TREE_CODE (op0) == PLUS_EXPR
10186 && TREE_CODE (op1) == INTEGER_CST
10187 && (TREE_CODE (TREE_OPERAND (op0, 0)) == ADDR_EXPR
10188 || (TREE_CODE (TREE_OPERAND (op0, 0)) == NOP_EXPR
10189 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (op0, 0), 0))
10190 == ADDR_EXPR)))
10191 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
10193 return build2 (PLUS_EXPR, type, TREE_OPERAND (op0, 0),
10194 const_binop (PLUS_EXPR, op1,
10195 TREE_OPERAND (op0, 1), 0));
10197 case BIT_XOR_EXPR:
10199 binary:
10200 if (!wins)
10201 return NULL_TREE;
10203 /* Both arguments are constants. Simplify. */
10204 tem = const_binop (code, op0, op1, 0);
10205 if (tem != NULL_TREE)
10207 /* The return value should always have the same type as
10208 the original expression. */
10209 if (TREE_TYPE (tem) != type)
10210 tem = fold_convert (type, tem);
10212 return tem;
10214 return NULL_TREE;
10216 case MINUS_EXPR:
10217 /* Fold &x - &x. This can happen from &x.foo - &x.
10218 This is unsafe for certain floats even in non-IEEE formats.
10219 In IEEE, it is unsafe because it does wrong for NaNs.
10220 Also note that operand_equal_p is always false if an
10221 operand is volatile. */
10222 if (! FLOAT_TYPE_P (type) && operand_equal_p (op0, op1, 0))
10223 return fold_convert (type, integer_zero_node);
10225 goto binary;
10227 case MULT_EXPR:
10228 case BIT_AND_EXPR:
10229 /* Special case multiplication or bitwise AND where one argument
10230 is zero. */
10231 if (! FLOAT_TYPE_P (type) && integer_zerop (op1))
10232 return omit_one_operand (type, op1, op0);
10233 else
10234 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (op0)))
10235 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op0)))
10236 && real_zerop (op1))
10237 return omit_one_operand (type, op1, op0);
10239 goto binary;
10241 case BIT_IOR_EXPR:
10242 /* Special case when we know the result will be all ones. */
10243 if (integer_all_onesp (op1))
10244 return omit_one_operand (type, op1, op0);
10246 goto binary;
10248 case TRUNC_DIV_EXPR:
10249 case ROUND_DIV_EXPR:
10250 case FLOOR_DIV_EXPR:
10251 case CEIL_DIV_EXPR:
10252 case EXACT_DIV_EXPR:
10253 case TRUNC_MOD_EXPR:
10254 case ROUND_MOD_EXPR:
10255 case FLOOR_MOD_EXPR:
10256 case CEIL_MOD_EXPR:
10257 case RDIV_EXPR:
10258 /* Division by zero is undefined. */
10259 if (integer_zerop (op1))
10260 return NULL_TREE;
10262 if (TREE_CODE (op1) == REAL_CST
10263 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (op1)))
10264 && real_zerop (op1))
10265 return NULL_TREE;
10267 goto binary;
10269 case MIN_EXPR:
10270 if (INTEGRAL_TYPE_P (type)
10271 && operand_equal_p (op1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
10272 return omit_one_operand (type, op1, op0);
10274 goto binary;
10276 case MAX_EXPR:
10277 if (INTEGRAL_TYPE_P (type)
10278 && TYPE_MAX_VALUE (type)
10279 && operand_equal_p (op1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
10280 return omit_one_operand (type, op1, op0);
10282 goto binary;
10284 case RSHIFT_EXPR:
10285 /* Optimize -1 >> x for arithmetic right shifts. */
10286 if (integer_all_onesp (op0) && ! TYPE_UNSIGNED (type))
10287 return omit_one_operand (type, op0, op1);
10288 /* ... fall through ... */
10290 case LSHIFT_EXPR:
10291 if (integer_zerop (op0))
10292 return omit_one_operand (type, op0, op1);
10294 /* Since negative shift count is not well-defined, don't
10295 try to compute it in the compiler. */
10296 if (TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sgn (op1) < 0)
10297 return NULL_TREE;
10299 goto binary;
10301 case LROTATE_EXPR:
10302 case RROTATE_EXPR:
10303 /* -1 rotated either direction by any amount is still -1. */
10304 if (integer_all_onesp (op0))
10305 return omit_one_operand (type, op0, op1);
10307 /* 0 rotated either direction by any amount is still zero. */
10308 if (integer_zerop (op0))
10309 return omit_one_operand (type, op0, op1);
10311 goto binary;
10313 case COMPLEX_EXPR:
10314 if (wins)
10315 return build_complex (type, op0, op1);
10316 return NULL_TREE;
10318 case LT_EXPR:
10319 case LE_EXPR:
10320 case GT_EXPR:
10321 case GE_EXPR:
10322 case EQ_EXPR:
10323 case NE_EXPR:
10324 /* If one arg is a real or integer constant, put it last. */
10325 if ((TREE_CODE (op0) == INTEGER_CST
10326 && TREE_CODE (op1) != INTEGER_CST)
10327 || (TREE_CODE (op0) == REAL_CST
10328 && TREE_CODE (op0) != REAL_CST))
10330 tree temp;
10332 temp = op0;
10333 op0 = op1;
10334 op1 = temp;
10335 code = swap_tree_comparison (code);
10338 /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
10339 This transformation affects the cases which are handled in later
10340 optimizations involving comparisons with non-negative constants. */
10341 if (TREE_CODE (op1) == INTEGER_CST
10342 && TREE_CODE (op0) != INTEGER_CST
10343 && tree_int_cst_sgn (op1) > 0)
10345 switch (code)
10347 case GE_EXPR:
10348 code = GT_EXPR;
10349 op1 = const_binop (MINUS_EXPR, op1, integer_one_node, 0);
10350 break;
10352 case LT_EXPR:
10353 code = LE_EXPR;
10354 op1 = const_binop (MINUS_EXPR, op1, integer_one_node, 0);
10355 break;
10357 default:
10358 break;
10362 tem = fold_relational_hi_lo (&code, type, &op0, &op1);
10363 if (tem)
10364 return tem;
10366 /* Fall through. */
10368 case ORDERED_EXPR:
10369 case UNORDERED_EXPR:
10370 case UNLT_EXPR:
10371 case UNLE_EXPR:
10372 case UNGT_EXPR:
10373 case UNGE_EXPR:
10374 case UNEQ_EXPR:
10375 case LTGT_EXPR:
10376 if (!wins)
10377 return NULL_TREE;
10379 return fold_relational_const (code, type, op0, op1);
10381 case RANGE_EXPR:
10382 /* This could probably be handled. */
10383 return NULL_TREE;
10385 case TRUTH_AND_EXPR:
10386 /* If second arg is constant zero, result is zero, but first arg
10387 must be evaluated. */
10388 if (integer_zerop (op1))
10389 return omit_one_operand (type, op1, op0);
10390 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10391 case will be handled here. */
10392 if (integer_zerop (op0))
10393 return omit_one_operand (type, op0, op1);
10394 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
10395 return constant_boolean_node (true, type);
10396 return NULL_TREE;
10398 case TRUTH_OR_EXPR:
10399 /* If second arg is constant true, result is true, but we must
10400 evaluate first arg. */
10401 if (TREE_CODE (op1) == INTEGER_CST && ! integer_zerop (op1))
10402 return omit_one_operand (type, op1, op0);
10403 /* Likewise for first arg, but note this only occurs here for
10404 TRUTH_OR_EXPR. */
10405 if (TREE_CODE (op0) == INTEGER_CST && ! integer_zerop (op0))
10406 return omit_one_operand (type, op0, op1);
10407 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
10408 return constant_boolean_node (false, type);
10409 return NULL_TREE;
10411 case TRUTH_XOR_EXPR:
10412 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
10414 int x = ! integer_zerop (op0) ^ ! integer_zerop (op1);
10415 return constant_boolean_node (x, type);
10417 return NULL_TREE;
10419 default:
10420 return NULL_TREE;
10424 /* Given the components of a unary expression CODE, TYPE and OP0,
10425 attempt to fold the expression to a constant without modifying
10426 TYPE or OP0.
10428 If the expression could be simplified to a constant, then return
10429 the constant. If the expression would not be simplified to a
10430 constant, then return NULL_TREE.
10432 Note this is primarily designed to be called after gimplification
10433 of the tree structures and when op0 is a constant. As a result
10434 of those simplifying assumptions this routine is far simpler than
10435 the generic fold routine. */
10437 tree
10438 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
10440 /* Make sure we have a suitable constant argument. */
10441 if (code == NOP_EXPR || code == FLOAT_EXPR || code == CONVERT_EXPR)
10443 tree subop;
10445 if (TREE_CODE (op0) == COMPLEX_CST)
10446 subop = TREE_REALPART (op0);
10447 else
10448 subop = op0;
10450 if (TREE_CODE (subop) != INTEGER_CST && TREE_CODE (subop) != REAL_CST)
10451 return NULL_TREE;
10454 switch (code)
10456 case NOP_EXPR:
10457 case FLOAT_EXPR:
10458 case CONVERT_EXPR:
10459 case FIX_TRUNC_EXPR:
10460 case FIX_FLOOR_EXPR:
10461 case FIX_CEIL_EXPR:
10462 return fold_convert_const (code, type, op0);
10464 case NEGATE_EXPR:
10465 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
10466 return fold_negate_const (op0, type);
10467 else
10468 return NULL_TREE;
10470 case ABS_EXPR:
10471 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
10472 return fold_abs_const (op0, type);
10473 else
10474 return NULL_TREE;
10476 case BIT_NOT_EXPR:
10477 if (TREE_CODE (op0) == INTEGER_CST)
10478 return fold_not_const (op0, type);
10479 else
10480 return NULL_TREE;
10482 case REALPART_EXPR:
10483 if (TREE_CODE (op0) == COMPLEX_CST)
10484 return TREE_REALPART (op0);
10485 else
10486 return NULL_TREE;
10488 case IMAGPART_EXPR:
10489 if (TREE_CODE (op0) == COMPLEX_CST)
10490 return TREE_IMAGPART (op0);
10491 else
10492 return NULL_TREE;
10494 case CONJ_EXPR:
10495 if (TREE_CODE (op0) == COMPLEX_CST
10496 && TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
10497 return build_complex (type, TREE_REALPART (op0),
10498 negate_expr (TREE_IMAGPART (op0)));
10499 return NULL_TREE;
10501 default:
10502 return NULL_TREE;
10506 /* If EXP represents referencing an element in a constant string
10507 (either via pointer arithmetic or array indexing), return the
10508 tree representing the value accessed, otherwise return NULL. */
10510 tree
10511 fold_read_from_constant_string (tree exp)
10513 if (TREE_CODE (exp) == INDIRECT_REF || TREE_CODE (exp) == ARRAY_REF)
10515 tree exp1 = TREE_OPERAND (exp, 0);
10516 tree index;
10517 tree string;
10519 if (TREE_CODE (exp) == INDIRECT_REF)
10520 string = string_constant (exp1, &index);
10521 else
10523 tree low_bound = array_ref_low_bound (exp);
10524 index = fold_convert (sizetype, TREE_OPERAND (exp, 1));
10526 /* Optimize the special-case of a zero lower bound.
10528 We convert the low_bound to sizetype to avoid some problems
10529 with constant folding. (E.g. suppose the lower bound is 1,
10530 and its mode is QI. Without the conversion,l (ARRAY
10531 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
10532 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
10533 if (! integer_zerop (low_bound))
10534 index = size_diffop (index, fold_convert (sizetype, low_bound));
10536 string = exp1;
10539 if (string
10540 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (string))
10541 && TREE_CODE (string) == STRING_CST
10542 && TREE_CODE (index) == INTEGER_CST
10543 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
10544 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
10545 == MODE_INT)
10546 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
10547 return fold_convert (TREE_TYPE (exp),
10548 build_int_cst (NULL_TREE,
10549 (TREE_STRING_POINTER (string)
10550 [TREE_INT_CST_LOW (index)])));
10552 return NULL;
10555 /* Return the tree for neg (ARG0) when ARG0 is known to be either
10556 an integer constant or real constant.
10558 TYPE is the type of the result. */
10560 static tree
10561 fold_negate_const (tree arg0, tree type)
10563 tree t = NULL_TREE;
10565 switch (TREE_CODE (arg0))
10567 case INTEGER_CST:
10569 unsigned HOST_WIDE_INT low;
10570 HOST_WIDE_INT high;
10571 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
10572 TREE_INT_CST_HIGH (arg0),
10573 &low, &high);
10574 t = build_int_cst_wide (type, low, high);
10575 t = force_fit_type (t, 1,
10576 (overflow | TREE_OVERFLOW (arg0))
10577 && !TYPE_UNSIGNED (type),
10578 TREE_CONSTANT_OVERFLOW (arg0));
10579 break;
10582 case REAL_CST:
10583 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
10584 break;
10586 default:
10587 gcc_unreachable ();
10590 return t;
10593 /* Return the tree for abs (ARG0) when ARG0 is known to be either
10594 an integer constant or real constant.
10596 TYPE is the type of the result. */
10598 tree
10599 fold_abs_const (tree arg0, tree type)
10601 tree t = NULL_TREE;
10603 switch (TREE_CODE (arg0))
10605 case INTEGER_CST:
10606 /* If the value is unsigned, then the absolute value is
10607 the same as the ordinary value. */
10608 if (TYPE_UNSIGNED (type))
10609 t = arg0;
10610 /* Similarly, if the value is non-negative. */
10611 else if (INT_CST_LT (integer_minus_one_node, arg0))
10612 t = arg0;
10613 /* If the value is negative, then the absolute value is
10614 its negation. */
10615 else
10617 unsigned HOST_WIDE_INT low;
10618 HOST_WIDE_INT high;
10619 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
10620 TREE_INT_CST_HIGH (arg0),
10621 &low, &high);
10622 t = build_int_cst_wide (type, low, high);
10623 t = force_fit_type (t, -1, overflow | TREE_OVERFLOW (arg0),
10624 TREE_CONSTANT_OVERFLOW (arg0));
10626 break;
10628 case REAL_CST:
10629 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
10630 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
10631 else
10632 t = arg0;
10633 break;
10635 default:
10636 gcc_unreachable ();
10639 return t;
10642 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
10643 constant. TYPE is the type of the result. */
10645 static tree
10646 fold_not_const (tree arg0, tree type)
10648 tree t = NULL_TREE;
10650 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
10652 t = build_int_cst_wide (type,
10653 ~ TREE_INT_CST_LOW (arg0),
10654 ~ TREE_INT_CST_HIGH (arg0));
10655 t = force_fit_type (t, 0, TREE_OVERFLOW (arg0),
10656 TREE_CONSTANT_OVERFLOW (arg0));
10658 return t;
10661 /* Given CODE, a relational operator, the target type, TYPE and two
10662 constant operands OP0 and OP1, return the result of the
10663 relational operation. If the result is not a compile time
10664 constant, then return NULL_TREE. */
10666 static tree
10667 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
10669 int result, invert;
10671 /* From here on, the only cases we handle are when the result is
10672 known to be a constant. */
10674 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
10676 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
10677 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
10679 /* Handle the cases where either operand is a NaN. */
10680 if (real_isnan (c0) || real_isnan (c1))
10682 switch (code)
10684 case EQ_EXPR:
10685 case ORDERED_EXPR:
10686 result = 0;
10687 break;
10689 case NE_EXPR:
10690 case UNORDERED_EXPR:
10691 case UNLT_EXPR:
10692 case UNLE_EXPR:
10693 case UNGT_EXPR:
10694 case UNGE_EXPR:
10695 case UNEQ_EXPR:
10696 result = 1;
10697 break;
10699 case LT_EXPR:
10700 case LE_EXPR:
10701 case GT_EXPR:
10702 case GE_EXPR:
10703 case LTGT_EXPR:
10704 if (flag_trapping_math)
10705 return NULL_TREE;
10706 result = 0;
10707 break;
10709 default:
10710 gcc_unreachable ();
10713 return constant_boolean_node (result, type);
10716 return constant_boolean_node (real_compare (code, c0, c1), type);
10719 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
10721 To compute GT, swap the arguments and do LT.
10722 To compute GE, do LT and invert the result.
10723 To compute LE, swap the arguments, do LT and invert the result.
10724 To compute NE, do EQ and invert the result.
10726 Therefore, the code below must handle only EQ and LT. */
10728 if (code == LE_EXPR || code == GT_EXPR)
10730 tree tem = op0;
10731 op0 = op1;
10732 op1 = tem;
10733 code = swap_tree_comparison (code);
10736 /* Note that it is safe to invert for real values here because we
10737 have already handled the one case that it matters. */
10739 invert = 0;
10740 if (code == NE_EXPR || code == GE_EXPR)
10742 invert = 1;
10743 code = invert_tree_comparison (code, false);
10746 /* Compute a result for LT or EQ if args permit;
10747 Otherwise return T. */
10748 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
10750 if (code == EQ_EXPR)
10751 result = tree_int_cst_equal (op0, op1);
10752 else if (TYPE_UNSIGNED (TREE_TYPE (op0)))
10753 result = INT_CST_LT_UNSIGNED (op0, op1);
10754 else
10755 result = INT_CST_LT (op0, op1);
10757 else
10758 return NULL_TREE;
10760 if (invert)
10761 result ^= 1;
10762 return constant_boolean_node (result, type);
10765 /* Build an expression for the a clean point containing EXPR with type TYPE.
10766 Don't build a cleanup point expression for EXPR which don't have side
10767 effects. */
10769 tree
10770 fold_build_cleanup_point_expr (tree type, tree expr)
10772 /* If the expression does not have side effects then we don't have to wrap
10773 it with a cleanup point expression. */
10774 if (!TREE_SIDE_EFFECTS (expr))
10775 return expr;
10777 return build1 (CLEANUP_POINT_EXPR, type, expr);
10780 /* Build an expression for the address of T. Folds away INDIRECT_REF to
10781 avoid confusing the gimplify process. */
10783 tree
10784 build_fold_addr_expr_with_type (tree t, tree ptrtype)
10786 /* The size of the object is not relevant when talking about its address. */
10787 if (TREE_CODE (t) == WITH_SIZE_EXPR)
10788 t = TREE_OPERAND (t, 0);
10790 /* Note: doesn't apply to ALIGN_INDIRECT_REF */
10791 if (TREE_CODE (t) == INDIRECT_REF
10792 || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
10794 t = TREE_OPERAND (t, 0);
10795 if (TREE_TYPE (t) != ptrtype)
10796 t = build1 (NOP_EXPR, ptrtype, t);
10798 else
10800 tree base = t;
10802 while (handled_component_p (base)
10803 || TREE_CODE (base) == REALPART_EXPR
10804 || TREE_CODE (base) == IMAGPART_EXPR)
10805 base = TREE_OPERAND (base, 0);
10806 if (DECL_P (base))
10807 TREE_ADDRESSABLE (base) = 1;
10809 t = build1 (ADDR_EXPR, ptrtype, t);
10812 return t;
10815 tree
10816 build_fold_addr_expr (tree t)
10818 return build_fold_addr_expr_with_type (t, build_pointer_type (TREE_TYPE (t)));
10821 /* Builds an expression for an indirection through T, simplifying some
10822 cases. */
10824 tree
10825 build_fold_indirect_ref (tree t)
10827 tree type = TREE_TYPE (TREE_TYPE (t));
10828 tree sub = t;
10829 tree subtype;
10831 STRIP_NOPS (sub);
10832 if (TREE_CODE (sub) == ADDR_EXPR)
10834 tree op = TREE_OPERAND (sub, 0);
10835 tree optype = TREE_TYPE (op);
10836 /* *&p => p */
10837 if (lang_hooks.types_compatible_p (type, optype))
10838 return op;
10839 /* *(foo *)&fooarray => fooarray[0] */
10840 else if (TREE_CODE (optype) == ARRAY_TYPE
10841 && lang_hooks.types_compatible_p (type, TREE_TYPE (optype)))
10842 return build4 (ARRAY_REF, type, op, size_zero_node, NULL_TREE, NULL_TREE);
10845 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
10846 subtype = TREE_TYPE (sub);
10847 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
10848 && lang_hooks.types_compatible_p (type, TREE_TYPE (TREE_TYPE (subtype))))
10850 sub = build_fold_indirect_ref (sub);
10851 return build4 (ARRAY_REF, type, sub, size_zero_node, NULL_TREE, NULL_TREE);
10854 return build1 (INDIRECT_REF, type, t);
10857 /* Strip non-trapping, non-side-effecting tree nodes from an expression
10858 whose result is ignored. The type of the returned tree need not be
10859 the same as the original expression. */
10861 tree
10862 fold_ignored_result (tree t)
10864 if (!TREE_SIDE_EFFECTS (t))
10865 return integer_zero_node;
10867 for (;;)
10868 switch (TREE_CODE_CLASS (TREE_CODE (t)))
10870 case tcc_unary:
10871 t = TREE_OPERAND (t, 0);
10872 break;
10874 case tcc_binary:
10875 case tcc_comparison:
10876 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
10877 t = TREE_OPERAND (t, 0);
10878 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
10879 t = TREE_OPERAND (t, 1);
10880 else
10881 return t;
10882 break;
10884 case tcc_expression:
10885 switch (TREE_CODE (t))
10887 case COMPOUND_EXPR:
10888 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
10889 return t;
10890 t = TREE_OPERAND (t, 0);
10891 break;
10893 case COND_EXPR:
10894 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
10895 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
10896 return t;
10897 t = TREE_OPERAND (t, 0);
10898 break;
10900 default:
10901 return t;
10903 break;
10905 default:
10906 return t;
10910 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
10911 This can only be applied to objects of a sizetype. */
10913 tree
10914 round_up (tree value, int divisor)
10916 tree div = NULL_TREE;
10918 gcc_assert (divisor > 0);
10919 if (divisor == 1)
10920 return value;
10922 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
10923 have to do anything. Only do this when we are not given a const,
10924 because in that case, this check is more expensive than just
10925 doing it. */
10926 if (TREE_CODE (value) != INTEGER_CST)
10928 div = build_int_cst (TREE_TYPE (value), divisor);
10930 if (multiple_of_p (TREE_TYPE (value), value, div))
10931 return value;
10934 /* If divisor is a power of two, simplify this to bit manipulation. */
10935 if (divisor == (divisor & -divisor))
10937 tree t;
10939 t = build_int_cst (TREE_TYPE (value), divisor - 1);
10940 value = size_binop (PLUS_EXPR, value, t);
10941 t = build_int_cst (TREE_TYPE (value), -divisor);
10942 value = size_binop (BIT_AND_EXPR, value, t);
10944 else
10946 if (!div)
10947 div = build_int_cst (TREE_TYPE (value), divisor);
10948 value = size_binop (CEIL_DIV_EXPR, value, div);
10949 value = size_binop (MULT_EXPR, value, div);
10952 return value;
10955 /* Likewise, but round down. */
10957 tree
10958 round_down (tree value, int divisor)
10960 tree div = NULL_TREE;
10962 gcc_assert (divisor > 0);
10963 if (divisor == 1)
10964 return value;
10966 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
10967 have to do anything. Only do this when we are not given a const,
10968 because in that case, this check is more expensive than just
10969 doing it. */
10970 if (TREE_CODE (value) != INTEGER_CST)
10972 div = build_int_cst (TREE_TYPE (value), divisor);
10974 if (multiple_of_p (TREE_TYPE (value), value, div))
10975 return value;
10978 /* If divisor is a power of two, simplify this to bit manipulation. */
10979 if (divisor == (divisor & -divisor))
10981 tree t;
10983 t = build_int_cst (TREE_TYPE (value), -divisor);
10984 value = size_binop (BIT_AND_EXPR, value, t);
10986 else
10988 if (!div)
10989 div = build_int_cst (TREE_TYPE (value), divisor);
10990 value = size_binop (FLOOR_DIV_EXPR, value, div);
10991 value = size_binop (MULT_EXPR, value, div);
10994 return value;
10997 /* Returns the pointer to the base of the object addressed by EXP and
10998 extracts the information about the offset of the access, storing it
10999 to PBITPOS and POFFSET. */
11001 static tree
11002 split_address_to_core_and_offset (tree exp,
11003 HOST_WIDE_INT *pbitpos, tree *poffset)
11005 tree core;
11006 enum machine_mode mode;
11007 int unsignedp, volatilep;
11008 HOST_WIDE_INT bitsize;
11010 if (TREE_CODE (exp) == ADDR_EXPR)
11012 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
11013 poffset, &mode, &unsignedp, &volatilep);
11015 if (TREE_CODE (core) == INDIRECT_REF)
11016 core = TREE_OPERAND (core, 0);
11018 else
11020 core = exp;
11021 *pbitpos = 0;
11022 *poffset = NULL_TREE;
11025 return core;
11028 /* Returns true if addresses of E1 and E2 differ by a constant, false
11029 otherwise. If they do, E1 - E2 is stored in *DIFF. */
11031 bool
11032 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
11034 tree core1, core2;
11035 HOST_WIDE_INT bitpos1, bitpos2;
11036 tree toffset1, toffset2, tdiff, type;
11038 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
11039 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
11041 if (bitpos1 % BITS_PER_UNIT != 0
11042 || bitpos2 % BITS_PER_UNIT != 0
11043 || !operand_equal_p (core1, core2, 0))
11044 return false;
11046 if (toffset1 && toffset2)
11048 type = TREE_TYPE (toffset1);
11049 if (type != TREE_TYPE (toffset2))
11050 toffset2 = fold_convert (type, toffset2);
11052 tdiff = fold (build2 (MINUS_EXPR, type, toffset1, toffset2));
11053 if (!host_integerp (tdiff, 0))
11054 return false;
11056 *diff = tree_low_cst (tdiff, 0);
11058 else if (toffset1 || toffset2)
11060 /* If only one of the offsets is non-constant, the difference cannot
11061 be a constant. */
11062 return false;
11064 else
11065 *diff = 0;
11067 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
11068 return true;