* gcc_update: libjava/configure.in -> configure.ac.
[official-gcc.git] / gcc / optabs.c
blob1f013f37a6092192dd7716f5acb8f1a8cdedcc07
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "except.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "ggc.h"
44 #include "real.h"
45 #include "basic-block.h"
46 #include "target.h"
48 /* Each optab contains info on how this target machine
49 can perform a particular operation
50 for all sizes and kinds of operands.
52 The operation to be performed is often specified
53 by passing one of these optabs as an argument.
55 See expr.h for documentation of these optabs. */
57 optab optab_table[OTI_MAX];
59 rtx libfunc_table[LTI_MAX];
61 /* Tables of patterns for converting one mode to another. */
62 convert_optab convert_optab_table[CTI_MAX];
64 /* Contains the optab used for each rtx code. */
65 optab code_to_optab[NUM_RTX_CODE + 1];
67 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
68 gives the gen_function to make a branch to test that condition. */
70 rtxfun bcc_gen_fctn[NUM_RTX_CODE];
72 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
73 gives the insn code to make a store-condition insn
74 to test that condition. */
76 enum insn_code setcc_gen_code[NUM_RTX_CODE];
78 #ifdef HAVE_conditional_move
79 /* Indexed by the machine mode, gives the insn code to make a conditional
80 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
81 setcc_gen_code to cut down on the number of named patterns. Consider a day
82 when a lot more rtx codes are conditional (eg: for the ARM). */
84 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
85 #endif
87 /* The insn generating function can not take an rtx_code argument.
88 TRAP_RTX is used as an rtx argument. Its code is replaced with
89 the code to be used in the trap insn and all other fields are ignored. */
90 static GTY(()) rtx trap_rtx;
92 static int add_equal_note (rtx, rtx, enum rtx_code, rtx, rtx);
93 static rtx widen_operand (rtx, enum machine_mode, enum machine_mode, int,
94 int);
95 static int expand_cmplxdiv_straight (rtx, rtx, rtx, rtx, rtx, rtx,
96 enum machine_mode, int,
97 enum optab_methods, enum mode_class,
98 optab);
99 static int expand_cmplxdiv_wide (rtx, rtx, rtx, rtx, rtx, rtx,
100 enum machine_mode, int, enum optab_methods,
101 enum mode_class, optab);
102 static void prepare_cmp_insn (rtx *, rtx *, enum rtx_code *, rtx,
103 enum machine_mode *, int *,
104 enum can_compare_purpose);
105 static enum insn_code can_fix_p (enum machine_mode, enum machine_mode, int,
106 int *);
107 static enum insn_code can_float_p (enum machine_mode, enum machine_mode, int);
108 static optab new_optab (void);
109 static convert_optab new_convert_optab (void);
110 static inline optab init_optab (enum rtx_code);
111 static inline optab init_optabv (enum rtx_code);
112 static inline convert_optab init_convert_optab (enum rtx_code);
113 static void init_libfuncs (optab, int, int, const char *, int);
114 static void init_integral_libfuncs (optab, const char *, int);
115 static void init_floating_libfuncs (optab, const char *, int);
116 static void init_interclass_conv_libfuncs (convert_optab, const char *,
117 enum mode_class, enum mode_class);
118 static void init_intraclass_conv_libfuncs (convert_optab, const char *,
119 enum mode_class, bool);
120 static void emit_cmp_and_jump_insn_1 (rtx, rtx, enum machine_mode,
121 enum rtx_code, int, rtx);
122 static void prepare_float_lib_cmp (rtx *, rtx *, enum rtx_code *,
123 enum machine_mode *, int *);
124 static rtx expand_vector_binop (enum machine_mode, optab, rtx, rtx, rtx, int,
125 enum optab_methods);
126 static rtx expand_vector_unop (enum machine_mode, optab, rtx, rtx, int);
127 static rtx widen_clz (enum machine_mode, rtx, rtx);
128 static rtx expand_parity (enum machine_mode, rtx, rtx);
130 #ifndef HAVE_conditional_trap
131 #define HAVE_conditional_trap 0
132 #define gen_conditional_trap(a,b) (abort (), NULL_RTX)
133 #endif
135 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
136 the result of operation CODE applied to OP0 (and OP1 if it is a binary
137 operation).
139 If the last insn does not set TARGET, don't do anything, but return 1.
141 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
142 don't add the REG_EQUAL note but return 0. Our caller can then try
143 again, ensuring that TARGET is not one of the operands. */
145 static int
146 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
148 rtx last_insn, insn, set;
149 rtx note;
151 if (! insns
152 || ! INSN_P (insns)
153 || NEXT_INSN (insns) == NULL_RTX)
154 abort ();
156 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
157 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
158 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
159 && GET_RTX_CLASS (code) != RTX_COMPARE
160 && GET_RTX_CLASS (code) != RTX_UNARY)
161 return 1;
163 if (GET_CODE (target) == ZERO_EXTRACT)
164 return 1;
166 for (last_insn = insns;
167 NEXT_INSN (last_insn) != NULL_RTX;
168 last_insn = NEXT_INSN (last_insn))
171 set = single_set (last_insn);
172 if (set == NULL_RTX)
173 return 1;
175 if (! rtx_equal_p (SET_DEST (set), target)
176 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
177 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
178 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
179 return 1;
181 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
182 besides the last insn. */
183 if (reg_overlap_mentioned_p (target, op0)
184 || (op1 && reg_overlap_mentioned_p (target, op1)))
186 insn = PREV_INSN (last_insn);
187 while (insn != NULL_RTX)
189 if (reg_set_p (target, insn))
190 return 0;
192 insn = PREV_INSN (insn);
196 if (GET_RTX_CLASS (code) == RTX_UNARY)
197 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
198 else
199 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
201 set_unique_reg_note (last_insn, REG_EQUAL, note);
203 return 1;
206 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
207 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
208 not actually do a sign-extend or zero-extend, but can leave the
209 higher-order bits of the result rtx undefined, for example, in the case
210 of logical operations, but not right shifts. */
212 static rtx
213 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
214 int unsignedp, int no_extend)
216 rtx result;
218 /* If we don't have to extend and this is a constant, return it. */
219 if (no_extend && GET_MODE (op) == VOIDmode)
220 return op;
222 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
223 extend since it will be more efficient to do so unless the signedness of
224 a promoted object differs from our extension. */
225 if (! no_extend
226 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
227 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
228 return convert_modes (mode, oldmode, op, unsignedp);
230 /* If MODE is no wider than a single word, we return a paradoxical
231 SUBREG. */
232 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
233 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
235 /* Otherwise, get an object of MODE, clobber it, and set the low-order
236 part to OP. */
238 result = gen_reg_rtx (mode);
239 emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
240 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
241 return result;
244 /* Generate code to perform a straightforward complex divide. */
246 static int
247 expand_cmplxdiv_straight (rtx real0, rtx real1, rtx imag0, rtx imag1,
248 rtx realr, rtx imagr, enum machine_mode submode,
249 int unsignedp, enum optab_methods methods,
250 enum mode_class class, optab binoptab)
252 rtx divisor;
253 rtx real_t, imag_t;
254 rtx temp1, temp2;
255 rtx res;
256 optab this_add_optab = add_optab;
257 optab this_sub_optab = sub_optab;
258 optab this_neg_optab = neg_optab;
259 optab this_mul_optab = smul_optab;
261 if (binoptab == sdivv_optab)
263 this_add_optab = addv_optab;
264 this_sub_optab = subv_optab;
265 this_neg_optab = negv_optab;
266 this_mul_optab = smulv_optab;
269 /* Don't fetch these from memory more than once. */
270 real0 = force_reg (submode, real0);
271 real1 = force_reg (submode, real1);
273 if (imag0 != 0)
274 imag0 = force_reg (submode, imag0);
276 imag1 = force_reg (submode, imag1);
278 /* Divisor: c*c + d*d. */
279 temp1 = expand_binop (submode, this_mul_optab, real1, real1,
280 NULL_RTX, unsignedp, methods);
282 temp2 = expand_binop (submode, this_mul_optab, imag1, imag1,
283 NULL_RTX, unsignedp, methods);
285 if (temp1 == 0 || temp2 == 0)
286 return 0;
288 divisor = expand_binop (submode, this_add_optab, temp1, temp2,
289 NULL_RTX, unsignedp, methods);
290 if (divisor == 0)
291 return 0;
293 if (imag0 == 0)
295 /* Mathematically, ((a)(c-id))/divisor. */
296 /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */
298 /* Calculate the dividend. */
299 real_t = expand_binop (submode, this_mul_optab, real0, real1,
300 NULL_RTX, unsignedp, methods);
302 imag_t = expand_binop (submode, this_mul_optab, real0, imag1,
303 NULL_RTX, unsignedp, methods);
305 if (real_t == 0 || imag_t == 0)
306 return 0;
308 imag_t = expand_unop (submode, this_neg_optab, imag_t,
309 NULL_RTX, unsignedp);
311 else
313 /* Mathematically, ((a+ib)(c-id))/divider. */
314 /* Calculate the dividend. */
315 temp1 = expand_binop (submode, this_mul_optab, real0, real1,
316 NULL_RTX, unsignedp, methods);
318 temp2 = expand_binop (submode, this_mul_optab, imag0, imag1,
319 NULL_RTX, unsignedp, methods);
321 if (temp1 == 0 || temp2 == 0)
322 return 0;
324 real_t = expand_binop (submode, this_add_optab, temp1, temp2,
325 NULL_RTX, unsignedp, methods);
327 temp1 = expand_binop (submode, this_mul_optab, imag0, real1,
328 NULL_RTX, unsignedp, methods);
330 temp2 = expand_binop (submode, this_mul_optab, real0, imag1,
331 NULL_RTX, unsignedp, methods);
333 if (temp1 == 0 || temp2 == 0)
334 return 0;
336 imag_t = expand_binop (submode, this_sub_optab, temp1, temp2,
337 NULL_RTX, unsignedp, methods);
339 if (real_t == 0 || imag_t == 0)
340 return 0;
343 if (class == MODE_COMPLEX_FLOAT)
344 res = expand_binop (submode, binoptab, real_t, divisor,
345 realr, unsignedp, methods);
346 else
347 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
348 real_t, divisor, realr, unsignedp);
350 if (res == 0)
351 return 0;
353 if (res != realr)
354 emit_move_insn (realr, res);
356 if (class == MODE_COMPLEX_FLOAT)
357 res = expand_binop (submode, binoptab, imag_t, divisor,
358 imagr, unsignedp, methods);
359 else
360 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
361 imag_t, divisor, imagr, unsignedp);
363 if (res == 0)
364 return 0;
366 if (res != imagr)
367 emit_move_insn (imagr, res);
369 return 1;
372 /* Generate code to perform a wide-input-range-acceptable complex divide. */
374 static int
375 expand_cmplxdiv_wide (rtx real0, rtx real1, rtx imag0, rtx imag1, rtx realr,
376 rtx imagr, enum machine_mode submode, int unsignedp,
377 enum optab_methods methods, enum mode_class class,
378 optab binoptab)
380 rtx ratio, divisor;
381 rtx real_t, imag_t;
382 rtx temp1, temp2, lab1, lab2;
383 enum machine_mode mode;
384 rtx res;
385 optab this_add_optab = add_optab;
386 optab this_sub_optab = sub_optab;
387 optab this_neg_optab = neg_optab;
388 optab this_mul_optab = smul_optab;
390 if (binoptab == sdivv_optab)
392 this_add_optab = addv_optab;
393 this_sub_optab = subv_optab;
394 this_neg_optab = negv_optab;
395 this_mul_optab = smulv_optab;
398 /* Don't fetch these from memory more than once. */
399 real0 = force_reg (submode, real0);
400 real1 = force_reg (submode, real1);
402 if (imag0 != 0)
403 imag0 = force_reg (submode, imag0);
405 imag1 = force_reg (submode, imag1);
407 /* XXX What's an "unsigned" complex number? */
408 if (unsignedp)
410 temp1 = real1;
411 temp2 = imag1;
413 else
415 temp1 = expand_abs (submode, real1, NULL_RTX, unsignedp, 1);
416 temp2 = expand_abs (submode, imag1, NULL_RTX, unsignedp, 1);
419 if (temp1 == 0 || temp2 == 0)
420 return 0;
422 mode = GET_MODE (temp1);
423 lab1 = gen_label_rtx ();
424 emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX,
425 mode, unsignedp, lab1);
427 /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */
429 if (class == MODE_COMPLEX_FLOAT)
430 ratio = expand_binop (submode, binoptab, imag1, real1,
431 NULL_RTX, unsignedp, methods);
432 else
433 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
434 imag1, real1, NULL_RTX, unsignedp);
436 if (ratio == 0)
437 return 0;
439 /* Calculate divisor. */
441 temp1 = expand_binop (submode, this_mul_optab, imag1, ratio,
442 NULL_RTX, unsignedp, methods);
444 if (temp1 == 0)
445 return 0;
447 divisor = expand_binop (submode, this_add_optab, temp1, real1,
448 NULL_RTX, unsignedp, methods);
450 if (divisor == 0)
451 return 0;
453 /* Calculate dividend. */
455 if (imag0 == 0)
457 real_t = real0;
459 /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */
461 imag_t = expand_binop (submode, this_mul_optab, real0, ratio,
462 NULL_RTX, unsignedp, methods);
464 if (imag_t == 0)
465 return 0;
467 imag_t = expand_unop (submode, this_neg_optab, imag_t,
468 NULL_RTX, unsignedp);
470 if (real_t == 0 || imag_t == 0)
471 return 0;
473 else
475 /* Compute (a+ib)/(c+id) as
476 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */
478 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
479 NULL_RTX, unsignedp, methods);
481 if (temp1 == 0)
482 return 0;
484 real_t = expand_binop (submode, this_add_optab, temp1, real0,
485 NULL_RTX, unsignedp, methods);
487 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
488 NULL_RTX, unsignedp, methods);
490 if (temp1 == 0)
491 return 0;
493 imag_t = expand_binop (submode, this_sub_optab, imag0, temp1,
494 NULL_RTX, unsignedp, methods);
496 if (real_t == 0 || imag_t == 0)
497 return 0;
500 if (class == MODE_COMPLEX_FLOAT)
501 res = expand_binop (submode, binoptab, real_t, divisor,
502 realr, unsignedp, methods);
503 else
504 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
505 real_t, divisor, realr, unsignedp);
507 if (res == 0)
508 return 0;
510 if (res != realr)
511 emit_move_insn (realr, res);
513 if (class == MODE_COMPLEX_FLOAT)
514 res = expand_binop (submode, binoptab, imag_t, divisor,
515 imagr, unsignedp, methods);
516 else
517 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
518 imag_t, divisor, imagr, unsignedp);
520 if (res == 0)
521 return 0;
523 if (res != imagr)
524 emit_move_insn (imagr, res);
526 lab2 = gen_label_rtx ();
527 emit_jump_insn (gen_jump (lab2));
528 emit_barrier ();
530 emit_label (lab1);
532 /* |d| > |c|; use ratio c/d to scale dividend and divisor. */
534 if (class == MODE_COMPLEX_FLOAT)
535 ratio = expand_binop (submode, binoptab, real1, imag1,
536 NULL_RTX, unsignedp, methods);
537 else
538 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
539 real1, imag1, NULL_RTX, unsignedp);
541 if (ratio == 0)
542 return 0;
544 /* Calculate divisor. */
546 temp1 = expand_binop (submode, this_mul_optab, real1, ratio,
547 NULL_RTX, unsignedp, methods);
549 if (temp1 == 0)
550 return 0;
552 divisor = expand_binop (submode, this_add_optab, temp1, imag1,
553 NULL_RTX, unsignedp, methods);
555 if (divisor == 0)
556 return 0;
558 /* Calculate dividend. */
560 if (imag0 == 0)
562 /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */
564 real_t = expand_binop (submode, this_mul_optab, real0, ratio,
565 NULL_RTX, unsignedp, methods);
567 imag_t = expand_unop (submode, this_neg_optab, real0,
568 NULL_RTX, unsignedp);
570 if (real_t == 0 || imag_t == 0)
571 return 0;
573 else
575 /* Compute (a+ib)/(c+id) as
576 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */
578 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
579 NULL_RTX, unsignedp, methods);
581 if (temp1 == 0)
582 return 0;
584 real_t = expand_binop (submode, this_add_optab, temp1, imag0,
585 NULL_RTX, unsignedp, methods);
587 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
588 NULL_RTX, unsignedp, methods);
590 if (temp1 == 0)
591 return 0;
593 imag_t = expand_binop (submode, this_sub_optab, temp1, real0,
594 NULL_RTX, unsignedp, methods);
596 if (real_t == 0 || imag_t == 0)
597 return 0;
600 if (class == MODE_COMPLEX_FLOAT)
601 res = expand_binop (submode, binoptab, real_t, divisor,
602 realr, unsignedp, methods);
603 else
604 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
605 real_t, divisor, realr, unsignedp);
607 if (res == 0)
608 return 0;
610 if (res != realr)
611 emit_move_insn (realr, res);
613 if (class == MODE_COMPLEX_FLOAT)
614 res = expand_binop (submode, binoptab, imag_t, divisor,
615 imagr, unsignedp, methods);
616 else
617 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
618 imag_t, divisor, imagr, unsignedp);
620 if (res == 0)
621 return 0;
623 if (res != imagr)
624 emit_move_insn (imagr, res);
626 emit_label (lab2);
628 return 1;
631 /* Return the optab used for computing the operation given by
632 the tree code, CODE. This function is not always usable (for
633 example, it cannot give complete results for multiplication
634 or division) but probably ought to be relied on more widely
635 throughout the expander. */
636 optab
637 optab_for_tree_code (enum tree_code code, tree type)
639 bool trapv;
640 switch (code)
642 case BIT_AND_EXPR:
643 return and_optab;
645 case BIT_IOR_EXPR:
646 return ior_optab;
648 case BIT_NOT_EXPR:
649 return one_cmpl_optab;
651 case BIT_XOR_EXPR:
652 return xor_optab;
654 case TRUNC_MOD_EXPR:
655 case CEIL_MOD_EXPR:
656 case FLOOR_MOD_EXPR:
657 case ROUND_MOD_EXPR:
658 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
660 case RDIV_EXPR:
661 case TRUNC_DIV_EXPR:
662 case CEIL_DIV_EXPR:
663 case FLOOR_DIV_EXPR:
664 case ROUND_DIV_EXPR:
665 case EXACT_DIV_EXPR:
666 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
668 case LSHIFT_EXPR:
669 return ashl_optab;
671 case RSHIFT_EXPR:
672 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
674 case LROTATE_EXPR:
675 return rotl_optab;
677 case RROTATE_EXPR:
678 return rotr_optab;
680 case MAX_EXPR:
681 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
683 case MIN_EXPR:
684 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
686 default:
687 break;
690 trapv = flag_trapv && INTEGRAL_TYPE_P (type) && !TYPE_UNSIGNED (type);
691 switch (code)
693 case PLUS_EXPR:
694 return trapv ? addv_optab : add_optab;
696 case MINUS_EXPR:
697 return trapv ? subv_optab : sub_optab;
699 case MULT_EXPR:
700 return trapv ? smulv_optab : smul_optab;
702 case NEGATE_EXPR:
703 return trapv ? negv_optab : neg_optab;
705 case ABS_EXPR:
706 return trapv ? absv_optab : abs_optab;
708 default:
709 return NULL;
714 /* Wrapper around expand_binop which takes an rtx code to specify
715 the operation to perform, not an optab pointer. All other
716 arguments are the same. */
718 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
719 rtx op1, rtx target, int unsignedp,
720 enum optab_methods methods)
722 optab binop = code_to_optab[(int) code];
723 if (binop == 0)
724 abort ();
726 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
729 /* Generate code to perform an operation specified by BINOPTAB
730 on operands OP0 and OP1, with result having machine-mode MODE.
732 UNSIGNEDP is for the case where we have to widen the operands
733 to perform the operation. It says to use zero-extension.
735 If TARGET is nonzero, the value
736 is generated there, if it is convenient to do so.
737 In all cases an rtx is returned for the locus of the value;
738 this may or may not be TARGET. */
741 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
742 rtx target, int unsignedp, enum optab_methods methods)
744 enum optab_methods next_methods
745 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
746 ? OPTAB_WIDEN : methods);
747 enum mode_class class;
748 enum machine_mode wider_mode;
749 rtx temp;
750 int commutative_op = 0;
751 int shift_op = (binoptab->code == ASHIFT
752 || binoptab->code == ASHIFTRT
753 || binoptab->code == LSHIFTRT
754 || binoptab->code == ROTATE
755 || binoptab->code == ROTATERT);
756 rtx entry_last = get_last_insn ();
757 rtx last;
759 class = GET_MODE_CLASS (mode);
761 if (flag_force_mem)
763 /* Load duplicate non-volatile operands once. */
764 if (rtx_equal_p (op0, op1) && ! volatile_refs_p (op0))
766 op0 = force_not_mem (op0);
767 op1 = op0;
769 else
771 op0 = force_not_mem (op0);
772 op1 = force_not_mem (op1);
776 /* If subtracting an integer constant, convert this into an addition of
777 the negated constant. */
779 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
781 op1 = negate_rtx (mode, op1);
782 binoptab = add_optab;
785 /* If we are inside an appropriately-short loop and one operand is an
786 expensive constant, force it into a register. */
787 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
788 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
789 op0 = force_reg (mode, op0);
791 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
792 && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
793 op1 = force_reg (mode, op1);
795 /* Record where to delete back to if we backtrack. */
796 last = get_last_insn ();
798 /* If operation is commutative,
799 try to make the first operand a register.
800 Even better, try to make it the same as the target.
801 Also try to make the last operand a constant. */
802 if (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
803 || binoptab == smul_widen_optab
804 || binoptab == umul_widen_optab
805 || binoptab == smul_highpart_optab
806 || binoptab == umul_highpart_optab)
808 commutative_op = 1;
810 if (((target == 0 || REG_P (target))
811 ? ((REG_P (op1)
812 && !REG_P (op0))
813 || target == op1)
814 : rtx_equal_p (op1, target))
815 || GET_CODE (op0) == CONST_INT)
817 temp = op1;
818 op1 = op0;
819 op0 = temp;
823 /* If we can do it with a three-operand insn, do so. */
825 if (methods != OPTAB_MUST_WIDEN
826 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
828 int icode = (int) binoptab->handlers[(int) mode].insn_code;
829 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
830 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
831 rtx pat;
832 rtx xop0 = op0, xop1 = op1;
834 if (target)
835 temp = target;
836 else
837 temp = gen_reg_rtx (mode);
839 /* If it is a commutative operator and the modes would match
840 if we would swap the operands, we can save the conversions. */
841 if (commutative_op)
843 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
844 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
846 rtx tmp;
848 tmp = op0; op0 = op1; op1 = tmp;
849 tmp = xop0; xop0 = xop1; xop1 = tmp;
853 /* In case the insn wants input operands in modes different from
854 those of the actual operands, convert the operands. It would
855 seem that we don't need to convert CONST_INTs, but we do, so
856 that they're properly zero-extended, sign-extended or truncated
857 for their mode. */
859 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
860 xop0 = convert_modes (mode0,
861 GET_MODE (op0) != VOIDmode
862 ? GET_MODE (op0)
863 : mode,
864 xop0, unsignedp);
866 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
867 xop1 = convert_modes (mode1,
868 GET_MODE (op1) != VOIDmode
869 ? GET_MODE (op1)
870 : mode,
871 xop1, unsignedp);
873 /* Now, if insn's predicates don't allow our operands, put them into
874 pseudo regs. */
876 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
877 && mode0 != VOIDmode)
878 xop0 = copy_to_mode_reg (mode0, xop0);
880 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
881 && mode1 != VOIDmode)
882 xop1 = copy_to_mode_reg (mode1, xop1);
884 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
885 temp = gen_reg_rtx (mode);
887 pat = GEN_FCN (icode) (temp, xop0, xop1);
888 if (pat)
890 /* If PAT is composed of more than one insn, try to add an appropriate
891 REG_EQUAL note to it. If we can't because TEMP conflicts with an
892 operand, call ourselves again, this time without a target. */
893 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
894 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
896 delete_insns_since (last);
897 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
898 unsignedp, methods);
901 emit_insn (pat);
902 return temp;
904 else
905 delete_insns_since (last);
908 /* If this is a multiply, see if we can do a widening operation that
909 takes operands of this mode and makes a wider mode. */
911 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
912 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
913 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
914 != CODE_FOR_nothing))
916 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
917 unsignedp ? umul_widen_optab : smul_widen_optab,
918 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
920 if (temp != 0)
922 if (GET_MODE_CLASS (mode) == MODE_INT)
923 return gen_lowpart (mode, temp);
924 else
925 return convert_to_mode (mode, temp, unsignedp);
929 /* Look for a wider mode of the same class for which we think we
930 can open-code the operation. Check for a widening multiply at the
931 wider mode as well. */
933 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
934 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
935 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
936 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
938 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
939 || (binoptab == smul_optab
940 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
941 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
942 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
943 != CODE_FOR_nothing)))
945 rtx xop0 = op0, xop1 = op1;
946 int no_extend = 0;
948 /* For certain integer operations, we need not actually extend
949 the narrow operands, as long as we will truncate
950 the results to the same narrowness. */
952 if ((binoptab == ior_optab || binoptab == and_optab
953 || binoptab == xor_optab
954 || binoptab == add_optab || binoptab == sub_optab
955 || binoptab == smul_optab || binoptab == ashl_optab)
956 && class == MODE_INT)
957 no_extend = 1;
959 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
961 /* The second operand of a shift must always be extended. */
962 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
963 no_extend && binoptab != ashl_optab);
965 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
966 unsignedp, OPTAB_DIRECT);
967 if (temp)
969 if (class != MODE_INT)
971 if (target == 0)
972 target = gen_reg_rtx (mode);
973 convert_move (target, temp, 0);
974 return target;
976 else
977 return gen_lowpart (mode, temp);
979 else
980 delete_insns_since (last);
984 /* These can be done a word at a time. */
985 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
986 && class == MODE_INT
987 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
988 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
990 int i;
991 rtx insns;
992 rtx equiv_value;
994 /* If TARGET is the same as one of the operands, the REG_EQUAL note
995 won't be accurate, so use a new target. */
996 if (target == 0 || target == op0 || target == op1)
997 target = gen_reg_rtx (mode);
999 start_sequence ();
1001 /* Do the actual arithmetic. */
1002 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1004 rtx target_piece = operand_subword (target, i, 1, mode);
1005 rtx x = expand_binop (word_mode, binoptab,
1006 operand_subword_force (op0, i, mode),
1007 operand_subword_force (op1, i, mode),
1008 target_piece, unsignedp, next_methods);
1010 if (x == 0)
1011 break;
1013 if (target_piece != x)
1014 emit_move_insn (target_piece, x);
1017 insns = get_insns ();
1018 end_sequence ();
1020 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1022 if (binoptab->code != UNKNOWN)
1023 equiv_value
1024 = gen_rtx_fmt_ee (binoptab->code, mode,
1025 copy_rtx (op0), copy_rtx (op1));
1026 else
1027 equiv_value = 0;
1029 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1030 return target;
1034 /* Synthesize double word shifts from single word shifts. */
1035 if ((binoptab == lshr_optab || binoptab == ashl_optab
1036 || binoptab == ashr_optab)
1037 && class == MODE_INT
1038 && GET_CODE (op1) == CONST_INT
1039 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1040 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1041 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1042 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1044 rtx insns, inter, equiv_value;
1045 rtx into_target, outof_target;
1046 rtx into_input, outof_input;
1047 int shift_count, left_shift, outof_word;
1049 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1050 won't be accurate, so use a new target. */
1051 if (target == 0 || target == op0 || target == op1)
1052 target = gen_reg_rtx (mode);
1054 start_sequence ();
1056 shift_count = INTVAL (op1);
1058 /* OUTOF_* is the word we are shifting bits away from, and
1059 INTO_* is the word that we are shifting bits towards, thus
1060 they differ depending on the direction of the shift and
1061 WORDS_BIG_ENDIAN. */
1063 left_shift = binoptab == ashl_optab;
1064 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1066 outof_target = operand_subword (target, outof_word, 1, mode);
1067 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1069 outof_input = operand_subword_force (op0, outof_word, mode);
1070 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1072 if (shift_count >= BITS_PER_WORD)
1074 inter = expand_binop (word_mode, binoptab,
1075 outof_input,
1076 GEN_INT (shift_count - BITS_PER_WORD),
1077 into_target, unsignedp, next_methods);
1079 if (inter != 0 && inter != into_target)
1080 emit_move_insn (into_target, inter);
1082 /* For a signed right shift, we must fill the word we are shifting
1083 out of with copies of the sign bit. Otherwise it is zeroed. */
1084 if (inter != 0 && binoptab != ashr_optab)
1085 inter = CONST0_RTX (word_mode);
1086 else if (inter != 0)
1087 inter = expand_binop (word_mode, binoptab,
1088 outof_input,
1089 GEN_INT (BITS_PER_WORD - 1),
1090 outof_target, unsignedp, next_methods);
1092 if (inter != 0 && inter != outof_target)
1093 emit_move_insn (outof_target, inter);
1095 else
1097 rtx carries;
1098 optab reverse_unsigned_shift, unsigned_shift;
1100 /* For a shift of less then BITS_PER_WORD, to compute the carry,
1101 we must do a logical shift in the opposite direction of the
1102 desired shift. */
1104 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
1106 /* For a shift of less than BITS_PER_WORD, to compute the word
1107 shifted towards, we need to unsigned shift the orig value of
1108 that word. */
1110 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
1112 carries = expand_binop (word_mode, reverse_unsigned_shift,
1113 outof_input,
1114 GEN_INT (BITS_PER_WORD - shift_count),
1115 0, unsignedp, next_methods);
1117 if (carries == 0)
1118 inter = 0;
1119 else
1120 inter = expand_binop (word_mode, unsigned_shift, into_input,
1121 op1, 0, unsignedp, next_methods);
1123 if (inter != 0)
1124 inter = expand_binop (word_mode, ior_optab, carries, inter,
1125 into_target, unsignedp, next_methods);
1127 if (inter != 0 && inter != into_target)
1128 emit_move_insn (into_target, inter);
1130 if (inter != 0)
1131 inter = expand_binop (word_mode, binoptab, outof_input,
1132 op1, outof_target, unsignedp, next_methods);
1134 if (inter != 0 && inter != outof_target)
1135 emit_move_insn (outof_target, inter);
1138 insns = get_insns ();
1139 end_sequence ();
1141 if (inter != 0)
1143 if (binoptab->code != UNKNOWN)
1144 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1145 else
1146 equiv_value = 0;
1148 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1149 return target;
1153 /* Synthesize double word rotates from single word shifts. */
1154 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1155 && class == MODE_INT
1156 && GET_CODE (op1) == CONST_INT
1157 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1158 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1159 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1161 rtx insns, equiv_value;
1162 rtx into_target, outof_target;
1163 rtx into_input, outof_input;
1164 rtx inter;
1165 int shift_count, left_shift, outof_word;
1167 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1168 won't be accurate, so use a new target. Do this also if target is not
1169 a REG, first because having a register instead may open optimization
1170 opportunities, and second because if target and op0 happen to be MEMs
1171 designating the same location, we would risk clobbering it too early
1172 in the code sequence we generate below. */
1173 if (target == 0 || target == op0 || target == op1 || ! REG_P (target))
1174 target = gen_reg_rtx (mode);
1176 start_sequence ();
1178 shift_count = INTVAL (op1);
1180 /* OUTOF_* is the word we are shifting bits away from, and
1181 INTO_* is the word that we are shifting bits towards, thus
1182 they differ depending on the direction of the shift and
1183 WORDS_BIG_ENDIAN. */
1185 left_shift = (binoptab == rotl_optab);
1186 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1188 outof_target = operand_subword (target, outof_word, 1, mode);
1189 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1191 outof_input = operand_subword_force (op0, outof_word, mode);
1192 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1194 if (shift_count == BITS_PER_WORD)
1196 /* This is just a word swap. */
1197 emit_move_insn (outof_target, into_input);
1198 emit_move_insn (into_target, outof_input);
1199 inter = const0_rtx;
1201 else
1203 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1204 rtx first_shift_count, second_shift_count;
1205 optab reverse_unsigned_shift, unsigned_shift;
1207 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1208 ? lshr_optab : ashl_optab);
1210 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1211 ? ashl_optab : lshr_optab);
1213 if (shift_count > BITS_PER_WORD)
1215 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1216 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1218 else
1220 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1221 second_shift_count = GEN_INT (shift_count);
1224 into_temp1 = expand_binop (word_mode, unsigned_shift,
1225 outof_input, first_shift_count,
1226 NULL_RTX, unsignedp, next_methods);
1227 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1228 into_input, second_shift_count,
1229 NULL_RTX, unsignedp, next_methods);
1231 if (into_temp1 != 0 && into_temp2 != 0)
1232 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1233 into_target, unsignedp, next_methods);
1234 else
1235 inter = 0;
1237 if (inter != 0 && inter != into_target)
1238 emit_move_insn (into_target, inter);
1240 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1241 into_input, first_shift_count,
1242 NULL_RTX, unsignedp, next_methods);
1243 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1244 outof_input, second_shift_count,
1245 NULL_RTX, unsignedp, next_methods);
1247 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1248 inter = expand_binop (word_mode, ior_optab,
1249 outof_temp1, outof_temp2,
1250 outof_target, unsignedp, next_methods);
1252 if (inter != 0 && inter != outof_target)
1253 emit_move_insn (outof_target, inter);
1256 insns = get_insns ();
1257 end_sequence ();
1259 if (inter != 0)
1261 if (binoptab->code != UNKNOWN)
1262 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1263 else
1264 equiv_value = 0;
1266 /* We can't make this a no conflict block if this is a word swap,
1267 because the word swap case fails if the input and output values
1268 are in the same register. */
1269 if (shift_count != BITS_PER_WORD)
1270 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1271 else
1272 emit_insn (insns);
1275 return target;
1279 /* These can be done a word at a time by propagating carries. */
1280 if ((binoptab == add_optab || binoptab == sub_optab)
1281 && class == MODE_INT
1282 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1283 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1285 unsigned int i;
1286 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1287 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1288 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1289 rtx xop0, xop1, xtarget;
1291 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1292 value is one of those, use it. Otherwise, use 1 since it is the
1293 one easiest to get. */
1294 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1295 int normalizep = STORE_FLAG_VALUE;
1296 #else
1297 int normalizep = 1;
1298 #endif
1300 /* Prepare the operands. */
1301 xop0 = force_reg (mode, op0);
1302 xop1 = force_reg (mode, op1);
1304 xtarget = gen_reg_rtx (mode);
1306 if (target == 0 || !REG_P (target))
1307 target = xtarget;
1309 /* Indicate for flow that the entire target reg is being set. */
1310 if (REG_P (target))
1311 emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget));
1313 /* Do the actual arithmetic. */
1314 for (i = 0; i < nwords; i++)
1316 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1317 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1318 rtx op0_piece = operand_subword_force (xop0, index, mode);
1319 rtx op1_piece = operand_subword_force (xop1, index, mode);
1320 rtx x;
1322 /* Main add/subtract of the input operands. */
1323 x = expand_binop (word_mode, binoptab,
1324 op0_piece, op1_piece,
1325 target_piece, unsignedp, next_methods);
1326 if (x == 0)
1327 break;
1329 if (i + 1 < nwords)
1331 /* Store carry from main add/subtract. */
1332 carry_out = gen_reg_rtx (word_mode);
1333 carry_out = emit_store_flag_force (carry_out,
1334 (binoptab == add_optab
1335 ? LT : GT),
1336 x, op0_piece,
1337 word_mode, 1, normalizep);
1340 if (i > 0)
1342 rtx newx;
1344 /* Add/subtract previous carry to main result. */
1345 newx = expand_binop (word_mode,
1346 normalizep == 1 ? binoptab : otheroptab,
1347 x, carry_in,
1348 NULL_RTX, 1, next_methods);
1350 if (i + 1 < nwords)
1352 /* Get out carry from adding/subtracting carry in. */
1353 rtx carry_tmp = gen_reg_rtx (word_mode);
1354 carry_tmp = emit_store_flag_force (carry_tmp,
1355 (binoptab == add_optab
1356 ? LT : GT),
1357 newx, x,
1358 word_mode, 1, normalizep);
1360 /* Logical-ior the two poss. carry together. */
1361 carry_out = expand_binop (word_mode, ior_optab,
1362 carry_out, carry_tmp,
1363 carry_out, 0, next_methods);
1364 if (carry_out == 0)
1365 break;
1367 emit_move_insn (target_piece, newx);
1370 carry_in = carry_out;
1373 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
1375 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
1376 || ! rtx_equal_p (target, xtarget))
1378 rtx temp = emit_move_insn (target, xtarget);
1380 set_unique_reg_note (temp,
1381 REG_EQUAL,
1382 gen_rtx_fmt_ee (binoptab->code, mode,
1383 copy_rtx (xop0),
1384 copy_rtx (xop1)));
1386 else
1387 target = xtarget;
1389 return target;
1392 else
1393 delete_insns_since (last);
1396 /* If we want to multiply two two-word values and have normal and widening
1397 multiplies of single-word values, we can do this with three smaller
1398 multiplications. Note that we do not make a REG_NO_CONFLICT block here
1399 because we are not operating on one word at a time.
1401 The multiplication proceeds as follows:
1402 _______________________
1403 [__op0_high_|__op0_low__]
1404 _______________________
1405 * [__op1_high_|__op1_low__]
1406 _______________________________________________
1407 _______________________
1408 (1) [__op0_low__*__op1_low__]
1409 _______________________
1410 (2a) [__op0_low__*__op1_high_]
1411 _______________________
1412 (2b) [__op0_high_*__op1_low__]
1413 _______________________
1414 (3) [__op0_high_*__op1_high_]
1417 This gives a 4-word result. Since we are only interested in the
1418 lower 2 words, partial result (3) and the upper words of (2a) and
1419 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1420 calculated using non-widening multiplication.
1422 (1), however, needs to be calculated with an unsigned widening
1423 multiplication. If this operation is not directly supported we
1424 try using a signed widening multiplication and adjust the result.
1425 This adjustment works as follows:
1427 If both operands are positive then no adjustment is needed.
1429 If the operands have different signs, for example op0_low < 0 and
1430 op1_low >= 0, the instruction treats the most significant bit of
1431 op0_low as a sign bit instead of a bit with significance
1432 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1433 with 2**BITS_PER_WORD - op0_low, and two's complements the
1434 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1435 the result.
1437 Similarly, if both operands are negative, we need to add
1438 (op0_low + op1_low) * 2**BITS_PER_WORD.
1440 We use a trick to adjust quickly. We logically shift op0_low right
1441 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1442 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1443 logical shift exists, we do an arithmetic right shift and subtract
1444 the 0 or -1. */
1446 if (binoptab == smul_optab
1447 && class == MODE_INT
1448 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1449 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1450 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1451 && ((umul_widen_optab->handlers[(int) mode].insn_code
1452 != CODE_FOR_nothing)
1453 || (smul_widen_optab->handlers[(int) mode].insn_code
1454 != CODE_FOR_nothing)))
1456 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1457 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1458 rtx op0_high = operand_subword_force (op0, high, mode);
1459 rtx op0_low = operand_subword_force (op0, low, mode);
1460 rtx op1_high = operand_subword_force (op1, high, mode);
1461 rtx op1_low = operand_subword_force (op1, low, mode);
1462 rtx product = 0;
1463 rtx op0_xhigh = NULL_RTX;
1464 rtx op1_xhigh = NULL_RTX;
1466 /* If the target is the same as one of the inputs, don't use it. This
1467 prevents problems with the REG_EQUAL note. */
1468 if (target == op0 || target == op1
1469 || (target != 0 && !REG_P (target)))
1470 target = 0;
1472 /* Multiply the two lower words to get a double-word product.
1473 If unsigned widening multiplication is available, use that;
1474 otherwise use the signed form and compensate. */
1476 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1478 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1479 target, 1, OPTAB_DIRECT);
1481 /* If we didn't succeed, delete everything we did so far. */
1482 if (product == 0)
1483 delete_insns_since (last);
1484 else
1485 op0_xhigh = op0_high, op1_xhigh = op1_high;
1488 if (product == 0
1489 && smul_widen_optab->handlers[(int) mode].insn_code
1490 != CODE_FOR_nothing)
1492 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
1493 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1494 target, 1, OPTAB_DIRECT);
1495 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1496 NULL_RTX, 1, next_methods);
1497 if (op0_xhigh)
1498 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
1499 op0_xhigh, op0_xhigh, 0, next_methods);
1500 else
1502 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1503 NULL_RTX, 0, next_methods);
1504 if (op0_xhigh)
1505 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
1506 op0_xhigh, op0_xhigh, 0,
1507 next_methods);
1510 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1511 NULL_RTX, 1, next_methods);
1512 if (op1_xhigh)
1513 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
1514 op1_xhigh, op1_xhigh, 0, next_methods);
1515 else
1517 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1518 NULL_RTX, 0, next_methods);
1519 if (op1_xhigh)
1520 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
1521 op1_xhigh, op1_xhigh, 0,
1522 next_methods);
1526 /* If we have been able to directly compute the product of the
1527 low-order words of the operands and perform any required adjustments
1528 of the operands, we proceed by trying two more multiplications
1529 and then computing the appropriate sum.
1531 We have checked above that the required addition is provided.
1532 Full-word addition will normally always succeed, especially if
1533 it is provided at all, so we don't worry about its failure. The
1534 multiplication may well fail, however, so we do handle that. */
1536 if (product && op0_xhigh && op1_xhigh)
1538 rtx product_high = operand_subword (product, high, 1, mode);
1539 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1540 NULL_RTX, 0, OPTAB_DIRECT);
1542 if (!REG_P (product_high))
1543 product_high = force_reg (word_mode, product_high);
1545 if (temp != 0)
1546 temp = expand_binop (word_mode, add_optab, temp, product_high,
1547 product_high, 0, next_methods);
1549 if (temp != 0 && temp != product_high)
1550 emit_move_insn (product_high, temp);
1552 if (temp != 0)
1553 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
1554 NULL_RTX, 0, OPTAB_DIRECT);
1556 if (temp != 0)
1557 temp = expand_binop (word_mode, add_optab, temp,
1558 product_high, product_high,
1559 0, next_methods);
1561 if (temp != 0 && temp != product_high)
1562 emit_move_insn (product_high, temp);
1564 emit_move_insn (operand_subword (product, high, 1, mode), product_high);
1566 if (temp != 0)
1568 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1570 temp = emit_move_insn (product, product);
1571 set_unique_reg_note (temp,
1572 REG_EQUAL,
1573 gen_rtx_fmt_ee (MULT, mode,
1574 copy_rtx (op0),
1575 copy_rtx (op1)));
1578 return product;
1582 /* If we get here, we couldn't do it for some reason even though we
1583 originally thought we could. Delete anything we've emitted in
1584 trying to do it. */
1586 delete_insns_since (last);
1589 /* Open-code the vector operations if we have no hardware support
1590 for them. */
1591 if (class == MODE_VECTOR_INT || class == MODE_VECTOR_FLOAT)
1592 return expand_vector_binop (mode, binoptab, op0, op1, target,
1593 unsignedp, methods);
1595 /* We need to open-code the complex type operations: '+, -, * and /' */
1597 /* At this point we allow operations between two similar complex
1598 numbers, and also if one of the operands is not a complex number
1599 but rather of MODE_FLOAT or MODE_INT. However, the caller
1600 must make sure that the MODE of the non-complex operand matches
1601 the SUBMODE of the complex operand. */
1603 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
1605 rtx real0 = 0, imag0 = 0;
1606 rtx real1 = 0, imag1 = 0;
1607 rtx realr, imagr, res;
1608 rtx seq, result;
1609 int ok = 0;
1611 /* Find the correct mode for the real and imaginary parts. */
1612 enum machine_mode submode = GET_MODE_INNER (mode);
1614 if (submode == BLKmode)
1615 abort ();
1617 start_sequence ();
1619 if (GET_MODE (op0) == mode)
1621 real0 = gen_realpart (submode, op0);
1622 imag0 = gen_imagpart (submode, op0);
1624 else
1625 real0 = op0;
1627 if (GET_MODE (op1) == mode)
1629 real1 = gen_realpart (submode, op1);
1630 imag1 = gen_imagpart (submode, op1);
1632 else
1633 real1 = op1;
1635 if (real0 == 0 || real1 == 0 || ! (imag0 != 0 || imag1 != 0))
1636 abort ();
1638 result = gen_reg_rtx (mode);
1639 realr = gen_realpart (submode, result);
1640 imagr = gen_imagpart (submode, result);
1642 switch (binoptab->code)
1644 case PLUS:
1645 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
1646 case MINUS:
1647 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
1648 res = expand_binop (submode, binoptab, real0, real1,
1649 realr, unsignedp, methods);
1651 if (res == 0)
1652 break;
1653 else if (res != realr)
1654 emit_move_insn (realr, res);
1656 if (imag0 != 0 && imag1 != 0)
1657 res = expand_binop (submode, binoptab, imag0, imag1,
1658 imagr, unsignedp, methods);
1659 else if (imag0 != 0)
1660 res = imag0;
1661 else if (binoptab->code == MINUS)
1662 res = expand_unop (submode,
1663 binoptab == subv_optab ? negv_optab : neg_optab,
1664 imag1, imagr, unsignedp);
1665 else
1666 res = imag1;
1668 if (res == 0)
1669 break;
1670 else if (res != imagr)
1671 emit_move_insn (imagr, res);
1673 ok = 1;
1674 break;
1676 case MULT:
1677 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1679 if (imag0 != 0 && imag1 != 0)
1681 rtx temp1, temp2;
1683 /* Don't fetch these from memory more than once. */
1684 real0 = force_reg (submode, real0);
1685 real1 = force_reg (submode, real1);
1686 imag0 = force_reg (submode, imag0);
1687 imag1 = force_reg (submode, imag1);
1689 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1690 unsignedp, methods);
1692 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1693 unsignedp, methods);
1695 if (temp1 == 0 || temp2 == 0)
1696 break;
1698 res = (expand_binop
1699 (submode,
1700 binoptab == smulv_optab ? subv_optab : sub_optab,
1701 temp1, temp2, realr, unsignedp, methods));
1703 if (res == 0)
1704 break;
1705 else if (res != realr)
1706 emit_move_insn (realr, res);
1708 temp1 = expand_binop (submode, binoptab, real0, imag1,
1709 NULL_RTX, unsignedp, methods);
1711 /* Avoid expanding redundant multiplication for the common
1712 case of squaring a complex number. */
1713 if (rtx_equal_p (real0, real1) && rtx_equal_p (imag0, imag1))
1714 temp2 = temp1;
1715 else
1716 temp2 = expand_binop (submode, binoptab, real1, imag0,
1717 NULL_RTX, unsignedp, methods);
1719 if (temp1 == 0 || temp2 == 0)
1720 break;
1722 res = (expand_binop
1723 (submode,
1724 binoptab == smulv_optab ? addv_optab : add_optab,
1725 temp1, temp2, imagr, unsignedp, methods));
1727 if (res == 0)
1728 break;
1729 else if (res != imagr)
1730 emit_move_insn (imagr, res);
1732 ok = 1;
1734 else
1736 /* Don't fetch these from memory more than once. */
1737 real0 = force_reg (submode, real0);
1738 real1 = force_reg (submode, real1);
1740 res = expand_binop (submode, binoptab, real0, real1,
1741 realr, unsignedp, methods);
1742 if (res == 0)
1743 break;
1744 else if (res != realr)
1745 emit_move_insn (realr, res);
1747 if (imag0 != 0)
1748 res = expand_binop (submode, binoptab,
1749 real1, imag0, imagr, unsignedp, methods);
1750 else
1751 res = expand_binop (submode, binoptab,
1752 real0, imag1, imagr, unsignedp, methods);
1754 if (res == 0)
1755 break;
1756 else if (res != imagr)
1757 emit_move_insn (imagr, res);
1759 ok = 1;
1761 break;
1763 case DIV:
1764 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
1766 if (imag1 == 0)
1768 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
1770 /* Don't fetch these from memory more than once. */
1771 real1 = force_reg (submode, real1);
1773 /* Simply divide the real and imaginary parts by `c' */
1774 if (class == MODE_COMPLEX_FLOAT)
1775 res = expand_binop (submode, binoptab, real0, real1,
1776 realr, unsignedp, methods);
1777 else
1778 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1779 real0, real1, realr, unsignedp);
1781 if (res == 0)
1782 break;
1783 else if (res != realr)
1784 emit_move_insn (realr, res);
1786 if (class == MODE_COMPLEX_FLOAT)
1787 res = expand_binop (submode, binoptab, imag0, real1,
1788 imagr, unsignedp, methods);
1789 else
1790 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1791 imag0, real1, imagr, unsignedp);
1793 if (res == 0)
1794 break;
1795 else if (res != imagr)
1796 emit_move_insn (imagr, res);
1798 ok = 1;
1800 else
1802 switch (flag_complex_divide_method)
1804 case 0:
1805 ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1,
1806 realr, imagr, submode,
1807 unsignedp, methods,
1808 class, binoptab);
1809 break;
1811 case 1:
1812 ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1,
1813 realr, imagr, submode,
1814 unsignedp, methods,
1815 class, binoptab);
1816 break;
1818 default:
1819 abort ();
1822 break;
1824 default:
1825 abort ();
1828 seq = get_insns ();
1829 end_sequence ();
1831 if (ok)
1833 rtx equiv = gen_rtx_fmt_ee (binoptab->code, mode,
1834 copy_rtx (op0), copy_rtx (op1));
1835 emit_no_conflict_block (seq, result, op0, op1, equiv);
1836 return result;
1840 /* It can't be open-coded in this mode.
1841 Use a library call if one is available and caller says that's ok. */
1843 if (binoptab->handlers[(int) mode].libfunc
1844 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1846 rtx insns;
1847 rtx op1x = op1;
1848 enum machine_mode op1_mode = mode;
1849 rtx value;
1851 start_sequence ();
1853 if (shift_op)
1855 op1_mode = word_mode;
1856 /* Specify unsigned here,
1857 since negative shift counts are meaningless. */
1858 op1x = convert_to_mode (word_mode, op1, 1);
1861 if (GET_MODE (op0) != VOIDmode
1862 && GET_MODE (op0) != mode)
1863 op0 = convert_to_mode (mode, op0, unsignedp);
1865 /* Pass 1 for NO_QUEUE so we don't lose any increments
1866 if the libcall is cse'd or moved. */
1867 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
1868 NULL_RTX, LCT_CONST, mode, 2,
1869 op0, mode, op1x, op1_mode);
1871 insns = get_insns ();
1872 end_sequence ();
1874 target = gen_reg_rtx (mode);
1875 emit_libcall_block (insns, target, value,
1876 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
1878 return target;
1881 delete_insns_since (last);
1883 /* It can't be done in this mode. Can we do it in a wider mode? */
1885 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1886 || methods == OPTAB_MUST_WIDEN))
1888 /* Caller says, don't even try. */
1889 delete_insns_since (entry_last);
1890 return 0;
1893 /* Compute the value of METHODS to pass to recursive calls.
1894 Don't allow widening to be tried recursively. */
1896 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1898 /* Look for a wider mode of the same class for which it appears we can do
1899 the operation. */
1901 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1903 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1904 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1906 if ((binoptab->handlers[(int) wider_mode].insn_code
1907 != CODE_FOR_nothing)
1908 || (methods == OPTAB_LIB
1909 && binoptab->handlers[(int) wider_mode].libfunc))
1911 rtx xop0 = op0, xop1 = op1;
1912 int no_extend = 0;
1914 /* For certain integer operations, we need not actually extend
1915 the narrow operands, as long as we will truncate
1916 the results to the same narrowness. */
1918 if ((binoptab == ior_optab || binoptab == and_optab
1919 || binoptab == xor_optab
1920 || binoptab == add_optab || binoptab == sub_optab
1921 || binoptab == smul_optab || binoptab == ashl_optab)
1922 && class == MODE_INT)
1923 no_extend = 1;
1925 xop0 = widen_operand (xop0, wider_mode, mode,
1926 unsignedp, no_extend);
1928 /* The second operand of a shift must always be extended. */
1929 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1930 no_extend && binoptab != ashl_optab);
1932 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1933 unsignedp, methods);
1934 if (temp)
1936 if (class != MODE_INT)
1938 if (target == 0)
1939 target = gen_reg_rtx (mode);
1940 convert_move (target, temp, 0);
1941 return target;
1943 else
1944 return gen_lowpart (mode, temp);
1946 else
1947 delete_insns_since (last);
1952 delete_insns_since (entry_last);
1953 return 0;
1956 /* Like expand_binop, but for open-coding vectors binops. */
1958 static rtx
1959 expand_vector_binop (enum machine_mode mode, optab binoptab, rtx op0,
1960 rtx op1, rtx target, int unsignedp,
1961 enum optab_methods methods)
1963 enum machine_mode submode, tmode;
1964 int size, elts, subsize, subbitsize, i;
1965 rtx t, a, b, res, seq;
1966 enum mode_class class;
1968 class = GET_MODE_CLASS (mode);
1970 size = GET_MODE_SIZE (mode);
1971 submode = GET_MODE_INNER (mode);
1973 /* Search for the widest vector mode with the same inner mode that is
1974 still narrower than MODE and that allows to open-code this operator.
1975 Note, if we find such a mode and the handler later decides it can't
1976 do the expansion, we'll be called recursively with the narrower mode. */
1977 for (tmode = GET_CLASS_NARROWEST_MODE (class);
1978 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
1979 tmode = GET_MODE_WIDER_MODE (tmode))
1981 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
1982 && binoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
1983 submode = tmode;
1986 switch (binoptab->code)
1988 case AND:
1989 case IOR:
1990 case XOR:
1991 tmode = int_mode_for_mode (mode);
1992 if (tmode != BLKmode)
1993 submode = tmode;
1994 case PLUS:
1995 case MINUS:
1996 case MULT:
1997 case DIV:
1998 subsize = GET_MODE_SIZE (submode);
1999 subbitsize = GET_MODE_BITSIZE (submode);
2000 elts = size / subsize;
2002 /* If METHODS is OPTAB_DIRECT, we don't insist on the exact mode,
2003 but that we operate on more than one element at a time. */
2004 if (subsize == GET_MODE_UNIT_SIZE (mode) && methods == OPTAB_DIRECT)
2005 return 0;
2007 start_sequence ();
2009 /* Errors can leave us with a const0_rtx as operand. */
2010 if (GET_MODE (op0) != mode)
2011 op0 = copy_to_mode_reg (mode, op0);
2012 if (GET_MODE (op1) != mode)
2013 op1 = copy_to_mode_reg (mode, op1);
2015 if (!target)
2016 target = gen_reg_rtx (mode);
2018 for (i = 0; i < elts; ++i)
2020 /* If this is part of a register, and not the first item in the
2021 word, we can't store using a SUBREG - that would clobber
2022 previous results.
2023 And storing with a SUBREG is only possible for the least
2024 significant part, hence we can't do it for big endian
2025 (unless we want to permute the evaluation order. */
2026 if (REG_P (target)
2027 && (BYTES_BIG_ENDIAN
2028 ? subsize < UNITS_PER_WORD
2029 : ((i * subsize) % UNITS_PER_WORD) != 0))
2030 t = NULL_RTX;
2031 else
2032 t = simplify_gen_subreg (submode, target, mode, i * subsize);
2033 if (CONSTANT_P (op0))
2034 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
2035 else
2036 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
2037 NULL_RTX, submode, submode);
2038 if (CONSTANT_P (op1))
2039 b = simplify_gen_subreg (submode, op1, mode, i * subsize);
2040 else
2041 b = extract_bit_field (op1, subbitsize, i * subbitsize, unsignedp,
2042 NULL_RTX, submode, submode);
2044 if (binoptab->code == DIV)
2046 if (class == MODE_VECTOR_FLOAT)
2047 res = expand_binop (submode, binoptab, a, b, t,
2048 unsignedp, methods);
2049 else
2050 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
2051 a, b, t, unsignedp);
2053 else
2054 res = expand_binop (submode, binoptab, a, b, t,
2055 unsignedp, methods);
2057 if (res == 0)
2058 break;
2060 if (t)
2061 emit_move_insn (t, res);
2062 else
2063 store_bit_field (target, subbitsize, i * subbitsize, submode, res);
2065 break;
2067 default:
2068 abort ();
2071 seq = get_insns ();
2072 end_sequence ();
2073 emit_insn (seq);
2075 return target;
2078 /* Like expand_unop but for open-coding vector unops. */
2080 static rtx
2081 expand_vector_unop (enum machine_mode mode, optab unoptab, rtx op0,
2082 rtx target, int unsignedp)
2084 enum machine_mode submode, tmode;
2085 int size, elts, subsize, subbitsize, i;
2086 rtx t, a, res, seq;
2088 size = GET_MODE_SIZE (mode);
2089 submode = GET_MODE_INNER (mode);
2091 /* Search for the widest vector mode with the same inner mode that is
2092 still narrower than MODE and that allows to open-code this operator.
2093 Note, if we find such a mode and the handler later decides it can't
2094 do the expansion, we'll be called recursively with the narrower mode. */
2095 for (tmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (mode));
2096 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
2097 tmode = GET_MODE_WIDER_MODE (tmode))
2099 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
2100 && unoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
2101 submode = tmode;
2103 /* If there is no negate operation, try doing a subtract from zero. */
2104 if (unoptab == neg_optab && GET_MODE_CLASS (submode) == MODE_INT
2105 /* Avoid infinite recursion when an
2106 error has left us with the wrong mode. */
2107 && GET_MODE (op0) == mode)
2109 rtx temp;
2110 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2111 target, unsignedp, OPTAB_DIRECT);
2112 if (temp)
2113 return temp;
2116 if (unoptab == one_cmpl_optab)
2118 tmode = int_mode_for_mode (mode);
2119 if (tmode != BLKmode)
2120 submode = tmode;
2123 subsize = GET_MODE_SIZE (submode);
2124 subbitsize = GET_MODE_BITSIZE (submode);
2125 elts = size / subsize;
2127 /* Errors can leave us with a const0_rtx as operand. */
2128 if (GET_MODE (op0) != mode)
2129 op0 = copy_to_mode_reg (mode, op0);
2131 if (!target)
2132 target = gen_reg_rtx (mode);
2134 start_sequence ();
2136 for (i = 0; i < elts; ++i)
2138 /* If this is part of a register, and not the first item in the
2139 word, we can't store using a SUBREG - that would clobber
2140 previous results.
2141 And storing with a SUBREG is only possible for the least
2142 significant part, hence we can't do it for big endian
2143 (unless we want to permute the evaluation order. */
2144 if (REG_P (target)
2145 && (BYTES_BIG_ENDIAN
2146 ? subsize < UNITS_PER_WORD
2147 : ((i * subsize) % UNITS_PER_WORD) != 0))
2148 t = NULL_RTX;
2149 else
2150 t = simplify_gen_subreg (submode, target, mode, i * subsize);
2151 if (CONSTANT_P (op0))
2152 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
2153 else
2154 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
2155 t, submode, submode);
2157 res = expand_unop (submode, unoptab, a, t, unsignedp);
2159 if (t)
2160 emit_move_insn (t, res);
2161 else
2162 store_bit_field (target, subbitsize, i * subbitsize, submode, res);
2165 seq = get_insns ();
2166 end_sequence ();
2167 emit_insn (seq);
2169 return target;
2172 /* Expand a binary operator which has both signed and unsigned forms.
2173 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2174 signed operations.
2176 If we widen unsigned operands, we may use a signed wider operation instead
2177 of an unsigned wider operation, since the result would be the same. */
2180 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2181 rtx op0, rtx op1, rtx target, int unsignedp,
2182 enum optab_methods methods)
2184 rtx temp;
2185 optab direct_optab = unsignedp ? uoptab : soptab;
2186 struct optab wide_soptab;
2188 /* Do it without widening, if possible. */
2189 temp = expand_binop (mode, direct_optab, op0, op1, target,
2190 unsignedp, OPTAB_DIRECT);
2191 if (temp || methods == OPTAB_DIRECT)
2192 return temp;
2194 /* Try widening to a signed int. Make a fake signed optab that
2195 hides any signed insn for direct use. */
2196 wide_soptab = *soptab;
2197 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
2198 wide_soptab.handlers[(int) mode].libfunc = 0;
2200 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2201 unsignedp, OPTAB_WIDEN);
2203 /* For unsigned operands, try widening to an unsigned int. */
2204 if (temp == 0 && unsignedp)
2205 temp = expand_binop (mode, uoptab, op0, op1, target,
2206 unsignedp, OPTAB_WIDEN);
2207 if (temp || methods == OPTAB_WIDEN)
2208 return temp;
2210 /* Use the right width lib call if that exists. */
2211 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2212 if (temp || methods == OPTAB_LIB)
2213 return temp;
2215 /* Must widen and use a lib call, use either signed or unsigned. */
2216 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2217 unsignedp, methods);
2218 if (temp != 0)
2219 return temp;
2220 if (unsignedp)
2221 return expand_binop (mode, uoptab, op0, op1, target,
2222 unsignedp, methods);
2223 return 0;
2226 /* Generate code to perform an operation specified by UNOPPTAB
2227 on operand OP0, with two results to TARG0 and TARG1.
2228 We assume that the order of the operands for the instruction
2229 is TARG0, TARG1, OP0.
2231 Either TARG0 or TARG1 may be zero, but what that means is that
2232 the result is not actually wanted. We will generate it into
2233 a dummy pseudo-reg and discard it. They may not both be zero.
2235 Returns 1 if this operation can be performed; 0 if not. */
2238 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2239 int unsignedp)
2241 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2242 enum mode_class class;
2243 enum machine_mode wider_mode;
2244 rtx entry_last = get_last_insn ();
2245 rtx last;
2247 class = GET_MODE_CLASS (mode);
2249 if (flag_force_mem)
2250 op0 = force_not_mem (op0);
2252 if (!targ0)
2253 targ0 = gen_reg_rtx (mode);
2254 if (!targ1)
2255 targ1 = gen_reg_rtx (mode);
2257 /* Record where to go back to if we fail. */
2258 last = get_last_insn ();
2260 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2262 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2263 enum machine_mode mode0 = insn_data[icode].operand[2].mode;
2264 rtx pat;
2265 rtx xop0 = op0;
2267 if (GET_MODE (xop0) != VOIDmode
2268 && GET_MODE (xop0) != mode0)
2269 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2271 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2272 if (! (*insn_data[icode].operand[2].predicate) (xop0, mode0))
2273 xop0 = copy_to_mode_reg (mode0, xop0);
2275 /* We could handle this, but we should always be called with a pseudo
2276 for our targets and all insns should take them as outputs. */
2277 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2278 || ! (*insn_data[icode].operand[1].predicate) (targ1, mode))
2279 abort ();
2281 pat = GEN_FCN (icode) (targ0, targ1, xop0);
2282 if (pat)
2284 emit_insn (pat);
2285 return 1;
2287 else
2288 delete_insns_since (last);
2291 /* It can't be done in this mode. Can we do it in a wider mode? */
2293 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2295 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2296 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2298 if (unoptab->handlers[(int) wider_mode].insn_code
2299 != CODE_FOR_nothing)
2301 rtx t0 = gen_reg_rtx (wider_mode);
2302 rtx t1 = gen_reg_rtx (wider_mode);
2303 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2305 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2307 convert_move (targ0, t0, unsignedp);
2308 convert_move (targ1, t1, unsignedp);
2309 return 1;
2311 else
2312 delete_insns_since (last);
2317 delete_insns_since (entry_last);
2318 return 0;
2321 /* Generate code to perform an operation specified by BINOPTAB
2322 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2323 We assume that the order of the operands for the instruction
2324 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2325 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2327 Either TARG0 or TARG1 may be zero, but what that means is that
2328 the result is not actually wanted. We will generate it into
2329 a dummy pseudo-reg and discard it. They may not both be zero.
2331 Returns 1 if this operation can be performed; 0 if not. */
2334 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2335 int unsignedp)
2337 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2338 enum mode_class class;
2339 enum machine_mode wider_mode;
2340 rtx entry_last = get_last_insn ();
2341 rtx last;
2343 class = GET_MODE_CLASS (mode);
2345 if (flag_force_mem)
2347 op0 = force_not_mem (op0);
2348 op1 = force_not_mem (op1);
2351 /* If we are inside an appropriately-short loop and one operand is an
2352 expensive constant, force it into a register. */
2353 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
2354 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
2355 op0 = force_reg (mode, op0);
2357 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
2358 && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
2359 op1 = force_reg (mode, op1);
2361 if (!targ0)
2362 targ0 = gen_reg_rtx (mode);
2363 if (!targ1)
2364 targ1 = gen_reg_rtx (mode);
2366 /* Record where to go back to if we fail. */
2367 last = get_last_insn ();
2369 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2371 int icode = (int) binoptab->handlers[(int) mode].insn_code;
2372 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2373 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2374 rtx pat;
2375 rtx xop0 = op0, xop1 = op1;
2377 /* In case the insn wants input operands in modes different from
2378 those of the actual operands, convert the operands. It would
2379 seem that we don't need to convert CONST_INTs, but we do, so
2380 that they're properly zero-extended, sign-extended or truncated
2381 for their mode. */
2383 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
2384 xop0 = convert_modes (mode0,
2385 GET_MODE (op0) != VOIDmode
2386 ? GET_MODE (op0)
2387 : mode,
2388 xop0, unsignedp);
2390 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
2391 xop1 = convert_modes (mode1,
2392 GET_MODE (op1) != VOIDmode
2393 ? GET_MODE (op1)
2394 : mode,
2395 xop1, unsignedp);
2397 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2398 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2399 xop0 = copy_to_mode_reg (mode0, xop0);
2401 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
2402 xop1 = copy_to_mode_reg (mode1, xop1);
2404 /* We could handle this, but we should always be called with a pseudo
2405 for our targets and all insns should take them as outputs. */
2406 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2407 || ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
2408 abort ();
2410 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2411 if (pat)
2413 emit_insn (pat);
2414 return 1;
2416 else
2417 delete_insns_since (last);
2420 /* It can't be done in this mode. Can we do it in a wider mode? */
2422 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2424 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2425 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2427 if (binoptab->handlers[(int) wider_mode].insn_code
2428 != CODE_FOR_nothing)
2430 rtx t0 = gen_reg_rtx (wider_mode);
2431 rtx t1 = gen_reg_rtx (wider_mode);
2432 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2433 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2435 if (expand_twoval_binop (binoptab, cop0, cop1,
2436 t0, t1, unsignedp))
2438 convert_move (targ0, t0, unsignedp);
2439 convert_move (targ1, t1, unsignedp);
2440 return 1;
2442 else
2443 delete_insns_since (last);
2448 delete_insns_since (entry_last);
2449 return 0;
2452 /* Wrapper around expand_unop which takes an rtx code to specify
2453 the operation to perform, not an optab pointer. All other
2454 arguments are the same. */
2456 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2457 rtx target, int unsignedp)
2459 optab unop = code_to_optab[(int) code];
2460 if (unop == 0)
2461 abort ();
2463 return expand_unop (mode, unop, op0, target, unsignedp);
2466 /* Try calculating
2467 (clz:narrow x)
2469 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
2470 static rtx
2471 widen_clz (enum machine_mode mode, rtx op0, rtx target)
2473 enum mode_class class = GET_MODE_CLASS (mode);
2474 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2476 enum machine_mode wider_mode;
2477 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2478 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2480 if (clz_optab->handlers[(int) wider_mode].insn_code
2481 != CODE_FOR_nothing)
2483 rtx xop0, temp, last;
2485 last = get_last_insn ();
2487 if (target == 0)
2488 target = gen_reg_rtx (mode);
2489 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2490 temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
2491 if (temp != 0)
2492 temp = expand_binop (wider_mode, sub_optab, temp,
2493 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2494 - GET_MODE_BITSIZE (mode)),
2495 target, true, OPTAB_DIRECT);
2496 if (temp == 0)
2497 delete_insns_since (last);
2499 return temp;
2503 return 0;
2506 /* Try calculating (parity x) as (and (popcount x) 1), where
2507 popcount can also be done in a wider mode. */
2508 static rtx
2509 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2511 enum mode_class class = GET_MODE_CLASS (mode);
2512 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2514 enum machine_mode wider_mode;
2515 for (wider_mode = mode; wider_mode != VOIDmode;
2516 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2518 if (popcount_optab->handlers[(int) wider_mode].insn_code
2519 != CODE_FOR_nothing)
2521 rtx xop0, temp, last;
2523 last = get_last_insn ();
2525 if (target == 0)
2526 target = gen_reg_rtx (mode);
2527 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2528 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2529 true);
2530 if (temp != 0)
2531 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2532 target, true, OPTAB_DIRECT);
2533 if (temp == 0)
2534 delete_insns_since (last);
2536 return temp;
2540 return 0;
2543 /* Generate code to perform an operation specified by UNOPTAB
2544 on operand OP0, with result having machine-mode MODE.
2546 UNSIGNEDP is for the case where we have to widen the operands
2547 to perform the operation. It says to use zero-extension.
2549 If TARGET is nonzero, the value
2550 is generated there, if it is convenient to do so.
2551 In all cases an rtx is returned for the locus of the value;
2552 this may or may not be TARGET. */
2555 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2556 int unsignedp)
2558 enum mode_class class;
2559 enum machine_mode wider_mode;
2560 rtx temp;
2561 rtx last = get_last_insn ();
2562 rtx pat;
2564 class = GET_MODE_CLASS (mode);
2566 if (flag_force_mem)
2567 op0 = force_not_mem (op0);
2569 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2571 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2572 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2573 rtx xop0 = op0;
2575 if (target)
2576 temp = target;
2577 else
2578 temp = gen_reg_rtx (mode);
2580 if (GET_MODE (xop0) != VOIDmode
2581 && GET_MODE (xop0) != mode0)
2582 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2584 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2586 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2587 xop0 = copy_to_mode_reg (mode0, xop0);
2589 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
2590 temp = gen_reg_rtx (mode);
2592 pat = GEN_FCN (icode) (temp, xop0);
2593 if (pat)
2595 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2596 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
2598 delete_insns_since (last);
2599 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2602 emit_insn (pat);
2604 return temp;
2606 else
2607 delete_insns_since (last);
2610 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2612 /* Widening clz needs special treatment. */
2613 if (unoptab == clz_optab)
2615 temp = widen_clz (mode, op0, target);
2616 if (temp)
2617 return temp;
2618 else
2619 goto try_libcall;
2622 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2623 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2624 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2626 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2628 rtx xop0 = op0;
2630 /* For certain operations, we need not actually extend
2631 the narrow operand, as long as we will truncate the
2632 results to the same narrowness. */
2634 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2635 (unoptab == neg_optab
2636 || unoptab == one_cmpl_optab)
2637 && class == MODE_INT);
2639 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2640 unsignedp);
2642 if (temp)
2644 if (class != MODE_INT)
2646 if (target == 0)
2647 target = gen_reg_rtx (mode);
2648 convert_move (target, temp, 0);
2649 return target;
2651 else
2652 return gen_lowpart (mode, temp);
2654 else
2655 delete_insns_since (last);
2659 /* These can be done a word at a time. */
2660 if (unoptab == one_cmpl_optab
2661 && class == MODE_INT
2662 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
2663 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
2665 int i;
2666 rtx insns;
2668 if (target == 0 || target == op0)
2669 target = gen_reg_rtx (mode);
2671 start_sequence ();
2673 /* Do the actual arithmetic. */
2674 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2676 rtx target_piece = operand_subword (target, i, 1, mode);
2677 rtx x = expand_unop (word_mode, unoptab,
2678 operand_subword_force (op0, i, mode),
2679 target_piece, unsignedp);
2681 if (target_piece != x)
2682 emit_move_insn (target_piece, x);
2685 insns = get_insns ();
2686 end_sequence ();
2688 emit_no_conflict_block (insns, target, op0, NULL_RTX,
2689 gen_rtx_fmt_e (unoptab->code, mode,
2690 copy_rtx (op0)));
2691 return target;
2694 /* Open-code the complex negation operation. */
2695 else if (unoptab->code == NEG
2696 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
2698 rtx target_piece;
2699 rtx x;
2700 rtx seq;
2702 /* Find the correct mode for the real and imaginary parts. */
2703 enum machine_mode submode = GET_MODE_INNER (mode);
2705 if (submode == BLKmode)
2706 abort ();
2708 if (target == 0)
2709 target = gen_reg_rtx (mode);
2711 start_sequence ();
2713 target_piece = gen_imagpart (submode, target);
2714 x = expand_unop (submode, unoptab,
2715 gen_imagpart (submode, op0),
2716 target_piece, unsignedp);
2717 if (target_piece != x)
2718 emit_move_insn (target_piece, x);
2720 target_piece = gen_realpart (submode, target);
2721 x = expand_unop (submode, unoptab,
2722 gen_realpart (submode, op0),
2723 target_piece, unsignedp);
2724 if (target_piece != x)
2725 emit_move_insn (target_piece, x);
2727 seq = get_insns ();
2728 end_sequence ();
2730 emit_no_conflict_block (seq, target, op0, 0,
2731 gen_rtx_fmt_e (unoptab->code, mode,
2732 copy_rtx (op0)));
2733 return target;
2736 /* Try negating floating point values by flipping the sign bit. */
2737 if (unoptab->code == NEG && class == MODE_FLOAT
2738 && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT)
2740 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
2741 enum machine_mode imode = int_mode_for_mode (mode);
2742 int bitpos = (fmt != 0) ? fmt->signbit : -1;
2744 if (imode != BLKmode && bitpos >= 0 && fmt->has_signed_zero)
2746 HOST_WIDE_INT hi, lo;
2747 rtx last = get_last_insn ();
2749 /* Handle targets with different FP word orders. */
2750 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2752 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
2753 int word = nwords - (bitpos / BITS_PER_WORD) - 1;
2754 bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD;
2757 if (bitpos < HOST_BITS_PER_WIDE_INT)
2759 hi = 0;
2760 lo = (HOST_WIDE_INT) 1 << bitpos;
2762 else
2764 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2765 lo = 0;
2767 temp = expand_binop (imode, xor_optab,
2768 gen_lowpart (imode, op0),
2769 immed_double_const (lo, hi, imode),
2770 NULL_RTX, 1, OPTAB_LIB_WIDEN);
2771 if (temp != 0)
2773 rtx insn;
2774 if (target == 0)
2775 target = gen_reg_rtx (mode);
2776 insn = emit_move_insn (target, gen_lowpart (mode, temp));
2777 set_unique_reg_note (insn, REG_EQUAL,
2778 gen_rtx_fmt_e (NEG, mode,
2779 copy_rtx (op0)));
2780 return target;
2782 delete_insns_since (last);
2786 /* Try calculating parity (x) as popcount (x) % 2. */
2787 if (unoptab == parity_optab)
2789 temp = expand_parity (mode, op0, target);
2790 if (temp)
2791 return temp;
2794 /* If there is no negation pattern, try subtracting from zero. */
2795 if (unoptab == neg_optab && class == MODE_INT)
2797 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2798 target, unsignedp, OPTAB_DIRECT);
2799 if (temp)
2800 return temp;
2803 try_libcall:
2804 /* Now try a library call in this mode. */
2805 if (unoptab->handlers[(int) mode].libfunc)
2807 rtx insns;
2808 rtx value;
2809 enum machine_mode outmode = mode;
2811 /* All of these functions return small values. Thus we choose to
2812 have them return something that isn't a double-word. */
2813 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
2814 || unoptab == popcount_optab || unoptab == parity_optab)
2815 outmode
2816 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node)));
2818 start_sequence ();
2820 /* Pass 1 for NO_QUEUE so we don't lose any increments
2821 if the libcall is cse'd or moved. */
2822 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
2823 NULL_RTX, LCT_CONST, outmode,
2824 1, op0, mode);
2825 insns = get_insns ();
2826 end_sequence ();
2828 target = gen_reg_rtx (outmode);
2829 emit_libcall_block (insns, target, value,
2830 gen_rtx_fmt_e (unoptab->code, mode, op0));
2832 return target;
2835 if (class == MODE_VECTOR_FLOAT || class == MODE_VECTOR_INT)
2836 return expand_vector_unop (mode, unoptab, op0, target, unsignedp);
2838 /* It can't be done in this mode. Can we do it in a wider mode? */
2840 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2842 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2843 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2845 if ((unoptab->handlers[(int) wider_mode].insn_code
2846 != CODE_FOR_nothing)
2847 || unoptab->handlers[(int) wider_mode].libfunc)
2849 rtx xop0 = op0;
2851 /* For certain operations, we need not actually extend
2852 the narrow operand, as long as we will truncate the
2853 results to the same narrowness. */
2855 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2856 (unoptab == neg_optab
2857 || unoptab == one_cmpl_optab)
2858 && class == MODE_INT);
2860 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2861 unsignedp);
2863 /* If we are generating clz using wider mode, adjust the
2864 result. */
2865 if (unoptab == clz_optab && temp != 0)
2866 temp = expand_binop (wider_mode, sub_optab, temp,
2867 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2868 - GET_MODE_BITSIZE (mode)),
2869 target, true, OPTAB_DIRECT);
2871 if (temp)
2873 if (class != MODE_INT)
2875 if (target == 0)
2876 target = gen_reg_rtx (mode);
2877 convert_move (target, temp, 0);
2878 return target;
2880 else
2881 return gen_lowpart (mode, temp);
2883 else
2884 delete_insns_since (last);
2889 /* If there is no negate operation, try doing a subtract from zero.
2890 The US Software GOFAST library needs this. FIXME: This is *wrong*
2891 for floating-point operations due to negative zeros! */
2892 if (unoptab->code == NEG)
2894 rtx temp;
2895 temp = expand_binop (mode,
2896 unoptab == negv_optab ? subv_optab : sub_optab,
2897 CONST0_RTX (mode), op0,
2898 target, unsignedp, OPTAB_LIB_WIDEN);
2899 if (temp)
2900 return temp;
2903 return 0;
2906 /* Emit code to compute the absolute value of OP0, with result to
2907 TARGET if convenient. (TARGET may be 0.) The return value says
2908 where the result actually is to be found.
2910 MODE is the mode of the operand; the mode of the result is
2911 different but can be deduced from MODE.
2916 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
2917 int result_unsignedp)
2919 rtx temp;
2921 if (! flag_trapv)
2922 result_unsignedp = 1;
2924 /* First try to do it with a special abs instruction. */
2925 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
2926 op0, target, 0);
2927 if (temp != 0)
2928 return temp;
2930 /* For floating point modes, try clearing the sign bit. */
2931 if (GET_MODE_CLASS (mode) == MODE_FLOAT
2932 && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT)
2934 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
2935 enum machine_mode imode = int_mode_for_mode (mode);
2936 int bitpos = (fmt != 0) ? fmt->signbit : -1;
2938 if (imode != BLKmode && bitpos >= 0)
2940 HOST_WIDE_INT hi, lo;
2941 rtx last = get_last_insn ();
2943 /* Handle targets with different FP word orders. */
2944 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2946 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
2947 int word = nwords - (bitpos / BITS_PER_WORD) - 1;
2948 bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD;
2951 if (bitpos < HOST_BITS_PER_WIDE_INT)
2953 hi = 0;
2954 lo = (HOST_WIDE_INT) 1 << bitpos;
2956 else
2958 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2959 lo = 0;
2961 temp = expand_binop (imode, and_optab,
2962 gen_lowpart (imode, op0),
2963 immed_double_const (~lo, ~hi, imode),
2964 NULL_RTX, 1, OPTAB_LIB_WIDEN);
2965 if (temp != 0)
2967 rtx insn;
2968 if (target == 0)
2969 target = gen_reg_rtx (mode);
2970 insn = emit_move_insn (target, gen_lowpart (mode, temp));
2971 set_unique_reg_note (insn, REG_EQUAL,
2972 gen_rtx_fmt_e (ABS, mode,
2973 copy_rtx (op0)));
2974 return target;
2976 delete_insns_since (last);
2980 /* If we have a MAX insn, we can do this as MAX (x, -x). */
2981 if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2983 rtx last = get_last_insn ();
2985 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
2986 if (temp != 0)
2987 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
2988 OPTAB_WIDEN);
2990 if (temp != 0)
2991 return temp;
2993 delete_insns_since (last);
2996 /* If this machine has expensive jumps, we can do integer absolute
2997 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
2998 where W is the width of MODE. */
3000 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
3002 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3003 size_int (GET_MODE_BITSIZE (mode) - 1),
3004 NULL_RTX, 0);
3006 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3007 OPTAB_LIB_WIDEN);
3008 if (temp != 0)
3009 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3010 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3012 if (temp != 0)
3013 return temp;
3016 return NULL_RTX;
3020 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3021 int result_unsignedp, int safe)
3023 rtx temp, op1;
3025 if (! flag_trapv)
3026 result_unsignedp = 1;
3028 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3029 if (temp != 0)
3030 return temp;
3032 /* If that does not win, use conditional jump and negate. */
3034 /* It is safe to use the target if it is the same
3035 as the source if this is also a pseudo register */
3036 if (op0 == target && REG_P (op0)
3037 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3038 safe = 1;
3040 op1 = gen_label_rtx ();
3041 if (target == 0 || ! safe
3042 || GET_MODE (target) != mode
3043 || (MEM_P (target) && MEM_VOLATILE_P (target))
3044 || (REG_P (target)
3045 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3046 target = gen_reg_rtx (mode);
3048 emit_move_insn (target, op0);
3049 NO_DEFER_POP;
3051 /* If this mode is an integer too wide to compare properly,
3052 compare word by word. Rely on CSE to optimize constant cases. */
3053 if (GET_MODE_CLASS (mode) == MODE_INT
3054 && ! can_compare_p (GE, mode, ccp_jump))
3055 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
3056 NULL_RTX, op1);
3057 else
3058 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3059 NULL_RTX, NULL_RTX, op1);
3061 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3062 target, target, 0);
3063 if (op0 != target)
3064 emit_move_insn (target, op0);
3065 emit_label (op1);
3066 OK_DEFER_POP;
3067 return target;
3070 /* Emit code to compute the absolute value of OP0, with result to
3071 TARGET if convenient. (TARGET may be 0.) The return value says
3072 where the result actually is to be found.
3074 MODE is the mode of the operand; the mode of the result is
3075 different but can be deduced from MODE.
3077 UNSIGNEDP is relevant for complex integer modes. */
3080 expand_complex_abs (enum machine_mode mode, rtx op0, rtx target,
3081 int unsignedp)
3083 enum mode_class class = GET_MODE_CLASS (mode);
3084 enum machine_mode wider_mode;
3085 rtx temp;
3086 rtx entry_last = get_last_insn ();
3087 rtx last;
3088 rtx pat;
3089 optab this_abs_optab;
3091 /* Find the correct mode for the real and imaginary parts. */
3092 enum machine_mode submode = GET_MODE_INNER (mode);
3094 if (submode == BLKmode)
3095 abort ();
3097 if (flag_force_mem)
3098 op0 = force_not_mem (op0);
3100 last = get_last_insn ();
3102 this_abs_optab = ! unsignedp && flag_trapv
3103 && (GET_MODE_CLASS(mode) == MODE_INT)
3104 ? absv_optab : abs_optab;
3106 if (this_abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3108 int icode = (int) this_abs_optab->handlers[(int) mode].insn_code;
3109 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3110 rtx xop0 = op0;
3112 if (target)
3113 temp = target;
3114 else
3115 temp = gen_reg_rtx (submode);
3117 if (GET_MODE (xop0) != VOIDmode
3118 && GET_MODE (xop0) != mode0)
3119 xop0 = convert_to_mode (mode0, xop0, unsignedp);
3121 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
3123 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
3124 xop0 = copy_to_mode_reg (mode0, xop0);
3126 if (! (*insn_data[icode].operand[0].predicate) (temp, submode))
3127 temp = gen_reg_rtx (submode);
3129 pat = GEN_FCN (icode) (temp, xop0);
3130 if (pat)
3132 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3133 && ! add_equal_note (pat, temp, this_abs_optab->code, xop0,
3134 NULL_RTX))
3136 delete_insns_since (last);
3137 return expand_unop (mode, this_abs_optab, op0, NULL_RTX,
3138 unsignedp);
3141 emit_insn (pat);
3143 return temp;
3145 else
3146 delete_insns_since (last);
3149 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3151 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3152 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3154 if (this_abs_optab->handlers[(int) wider_mode].insn_code
3155 != CODE_FOR_nothing)
3157 rtx xop0 = op0;
3159 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
3160 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
3162 if (temp)
3164 if (class != MODE_COMPLEX_INT)
3166 if (target == 0)
3167 target = gen_reg_rtx (submode);
3168 convert_move (target, temp, 0);
3169 return target;
3171 else
3172 return gen_lowpart (submode, temp);
3174 else
3175 delete_insns_since (last);
3179 /* Open-code the complex absolute-value operation
3180 if we can open-code sqrt. Otherwise it's not worth while. */
3181 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing
3182 && ! flag_trapv)
3184 rtx real, imag, total;
3186 real = gen_realpart (submode, op0);
3187 imag = gen_imagpart (submode, op0);
3189 /* Square both parts. */
3190 real = expand_mult (submode, real, real, NULL_RTX, 0);
3191 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
3193 /* Sum the parts. */
3194 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
3195 0, OPTAB_LIB_WIDEN);
3197 /* Get sqrt in TARGET. Set TARGET to where the result is. */
3198 target = expand_unop (submode, sqrt_optab, total, target, 0);
3199 if (target == 0)
3200 delete_insns_since (last);
3201 else
3202 return target;
3205 /* Now try a library call in this mode. */
3206 if (this_abs_optab->handlers[(int) mode].libfunc)
3208 rtx insns;
3209 rtx value;
3211 start_sequence ();
3213 /* Pass 1 for NO_QUEUE so we don't lose any increments
3214 if the libcall is cse'd or moved. */
3215 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
3216 NULL_RTX, LCT_CONST, submode, 1, op0, mode);
3217 insns = get_insns ();
3218 end_sequence ();
3220 target = gen_reg_rtx (submode);
3221 emit_libcall_block (insns, target, value,
3222 gen_rtx_fmt_e (this_abs_optab->code, mode, op0));
3224 return target;
3227 /* It can't be done in this mode. Can we do it in a wider mode? */
3229 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3230 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3232 if ((this_abs_optab->handlers[(int) wider_mode].insn_code
3233 != CODE_FOR_nothing)
3234 || this_abs_optab->handlers[(int) wider_mode].libfunc)
3236 rtx xop0 = op0;
3238 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
3240 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
3242 if (temp)
3244 if (class != MODE_COMPLEX_INT)
3246 if (target == 0)
3247 target = gen_reg_rtx (submode);
3248 convert_move (target, temp, 0);
3249 return target;
3251 else
3252 return gen_lowpart (submode, temp);
3254 else
3255 delete_insns_since (last);
3259 delete_insns_since (entry_last);
3260 return 0;
3263 /* Generate an instruction whose insn-code is INSN_CODE,
3264 with two operands: an output TARGET and an input OP0.
3265 TARGET *must* be nonzero, and the output is always stored there.
3266 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3267 the value that is stored into TARGET. */
3269 void
3270 emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
3272 rtx temp;
3273 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3274 rtx pat;
3276 temp = target;
3278 /* Sign and zero extension from memory is often done specially on
3279 RISC machines, so forcing into a register here can pessimize
3280 code. */
3281 if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
3282 op0 = force_not_mem (op0);
3284 /* Now, if insn does not accept our operands, put them into pseudos. */
3286 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
3287 op0 = copy_to_mode_reg (mode0, op0);
3289 if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
3290 || (flag_force_mem && MEM_P (temp)))
3291 temp = gen_reg_rtx (GET_MODE (temp));
3293 pat = GEN_FCN (icode) (temp, op0);
3295 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3296 add_equal_note (pat, temp, code, op0, NULL_RTX);
3298 emit_insn (pat);
3300 if (temp != target)
3301 emit_move_insn (target, temp);
3304 /* Emit code to perform a series of operations on a multi-word quantity, one
3305 word at a time.
3307 Such a block is preceded by a CLOBBER of the output, consists of multiple
3308 insns, each setting one word of the output, and followed by a SET copying
3309 the output to itself.
3311 Each of the insns setting words of the output receives a REG_NO_CONFLICT
3312 note indicating that it doesn't conflict with the (also multi-word)
3313 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
3314 notes.
3316 INSNS is a block of code generated to perform the operation, not including
3317 the CLOBBER and final copy. All insns that compute intermediate values
3318 are first emitted, followed by the block as described above.
3320 TARGET, OP0, and OP1 are the output and inputs of the operations,
3321 respectively. OP1 may be zero for a unary operation.
3323 EQUIV, if nonzero, is an expression to be placed into a REG_EQUAL note
3324 on the last insn.
3326 If TARGET is not a register, INSNS is simply emitted with no special
3327 processing. Likewise if anything in INSNS is not an INSN or if
3328 there is a libcall block inside INSNS.
3330 The final insn emitted is returned. */
3333 emit_no_conflict_block (rtx insns, rtx target, rtx op0, rtx op1, rtx equiv)
3335 rtx prev, next, first, last, insn;
3337 if (!REG_P (target) || reload_in_progress)
3338 return emit_insn (insns);
3339 else
3340 for (insn = insns; insn; insn = NEXT_INSN (insn))
3341 if (!NONJUMP_INSN_P (insn)
3342 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
3343 return emit_insn (insns);
3345 /* First emit all insns that do not store into words of the output and remove
3346 these from the list. */
3347 for (insn = insns; insn; insn = next)
3349 rtx set = 0, note;
3350 int i;
3352 next = NEXT_INSN (insn);
3354 /* Some ports (cris) create a libcall regions at their own. We must
3355 avoid any potential nesting of LIBCALLs. */
3356 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3357 remove_note (insn, note);
3358 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3359 remove_note (insn, note);
3361 if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
3362 || GET_CODE (PATTERN (insn)) == CLOBBER)
3363 set = PATTERN (insn);
3364 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3366 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
3367 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
3369 set = XVECEXP (PATTERN (insn), 0, i);
3370 break;
3374 if (set == 0)
3375 abort ();
3377 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
3379 if (PREV_INSN (insn))
3380 NEXT_INSN (PREV_INSN (insn)) = next;
3381 else
3382 insns = next;
3384 if (next)
3385 PREV_INSN (next) = PREV_INSN (insn);
3387 add_insn (insn);
3391 prev = get_last_insn ();
3393 /* Now write the CLOBBER of the output, followed by the setting of each
3394 of the words, followed by the final copy. */
3395 if (target != op0 && target != op1)
3396 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
3398 for (insn = insns; insn; insn = next)
3400 next = NEXT_INSN (insn);
3401 add_insn (insn);
3403 if (op1 && REG_P (op1))
3404 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
3405 REG_NOTES (insn));
3407 if (op0 && REG_P (op0))
3408 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
3409 REG_NOTES (insn));
3412 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3413 != CODE_FOR_nothing)
3415 last = emit_move_insn (target, target);
3416 if (equiv)
3417 set_unique_reg_note (last, REG_EQUAL, equiv);
3419 else
3421 last = get_last_insn ();
3423 /* Remove any existing REG_EQUAL note from "last", or else it will
3424 be mistaken for a note referring to the full contents of the
3425 alleged libcall value when found together with the REG_RETVAL
3426 note added below. An existing note can come from an insn
3427 expansion at "last". */
3428 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3431 if (prev == 0)
3432 first = get_insns ();
3433 else
3434 first = NEXT_INSN (prev);
3436 /* Encapsulate the block so it gets manipulated as a unit. */
3437 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3438 REG_NOTES (first));
3439 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
3441 return last;
3444 /* Emit code to make a call to a constant function or a library call.
3446 INSNS is a list containing all insns emitted in the call.
3447 These insns leave the result in RESULT. Our block is to copy RESULT
3448 to TARGET, which is logically equivalent to EQUIV.
3450 We first emit any insns that set a pseudo on the assumption that these are
3451 loading constants into registers; doing so allows them to be safely cse'ed
3452 between blocks. Then we emit all the other insns in the block, followed by
3453 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3454 note with an operand of EQUIV.
3456 Moving assignments to pseudos outside of the block is done to improve
3457 the generated code, but is not required to generate correct code,
3458 hence being unable to move an assignment is not grounds for not making
3459 a libcall block. There are two reasons why it is safe to leave these
3460 insns inside the block: First, we know that these pseudos cannot be
3461 used in generated RTL outside the block since they are created for
3462 temporary purposes within the block. Second, CSE will not record the
3463 values of anything set inside a libcall block, so we know they must
3464 be dead at the end of the block.
3466 Except for the first group of insns (the ones setting pseudos), the
3467 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
3469 void
3470 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3472 rtx final_dest = target;
3473 rtx prev, next, first, last, insn;
3475 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3476 into a MEM later. Protect the libcall block from this change. */
3477 if (! REG_P (target) || REG_USERVAR_P (target))
3478 target = gen_reg_rtx (GET_MODE (target));
3480 /* If we're using non-call exceptions, a libcall corresponding to an
3481 operation that may trap may also trap. */
3482 if (flag_non_call_exceptions && may_trap_p (equiv))
3484 for (insn = insns; insn; insn = NEXT_INSN (insn))
3485 if (CALL_P (insn))
3487 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3489 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
3490 remove_note (insn, note);
3493 else
3494 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3495 reg note to indicate that this call cannot throw or execute a nonlocal
3496 goto (unless there is already a REG_EH_REGION note, in which case
3497 we update it). */
3498 for (insn = insns; insn; insn = NEXT_INSN (insn))
3499 if (CALL_P (insn))
3501 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3503 if (note != 0)
3504 XEXP (note, 0) = constm1_rtx;
3505 else
3506 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, constm1_rtx,
3507 REG_NOTES (insn));
3510 /* First emit all insns that set pseudos. Remove them from the list as
3511 we go. Avoid insns that set pseudos which were referenced in previous
3512 insns. These can be generated by move_by_pieces, for example,
3513 to update an address. Similarly, avoid insns that reference things
3514 set in previous insns. */
3516 for (insn = insns; insn; insn = next)
3518 rtx set = single_set (insn);
3519 rtx note;
3521 /* Some ports (cris) create a libcall regions at their own. We must
3522 avoid any potential nesting of LIBCALLs. */
3523 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3524 remove_note (insn, note);
3525 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3526 remove_note (insn, note);
3528 next = NEXT_INSN (insn);
3530 if (set != 0 && REG_P (SET_DEST (set))
3531 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
3532 && (insn == insns
3533 || ((! INSN_P(insns)
3534 || ! reg_mentioned_p (SET_DEST (set), PATTERN (insns)))
3535 && ! reg_used_between_p (SET_DEST (set), insns, insn)
3536 && ! modified_in_p (SET_SRC (set), insns)
3537 && ! modified_between_p (SET_SRC (set), insns, insn))))
3539 if (PREV_INSN (insn))
3540 NEXT_INSN (PREV_INSN (insn)) = next;
3541 else
3542 insns = next;
3544 if (next)
3545 PREV_INSN (next) = PREV_INSN (insn);
3547 add_insn (insn);
3550 /* Some ports use a loop to copy large arguments onto the stack.
3551 Don't move anything outside such a loop. */
3552 if (LABEL_P (insn))
3553 break;
3556 prev = get_last_insn ();
3558 /* Write the remaining insns followed by the final copy. */
3560 for (insn = insns; insn; insn = next)
3562 next = NEXT_INSN (insn);
3564 add_insn (insn);
3567 last = emit_move_insn (target, result);
3568 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3569 != CODE_FOR_nothing)
3570 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
3571 else
3573 /* Remove any existing REG_EQUAL note from "last", or else it will
3574 be mistaken for a note referring to the full contents of the
3575 libcall value when found together with the REG_RETVAL note added
3576 below. An existing note can come from an insn expansion at
3577 "last". */
3578 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3581 if (final_dest != target)
3582 emit_move_insn (final_dest, target);
3584 if (prev == 0)
3585 first = get_insns ();
3586 else
3587 first = NEXT_INSN (prev);
3589 /* Encapsulate the block so it gets manipulated as a unit. */
3590 if (!flag_non_call_exceptions || !may_trap_p (equiv))
3592 /* We can't attach the REG_LIBCALL and REG_RETVAL notes
3593 when the encapsulated region would not be in one basic block,
3594 i.e. when there is a control_flow_insn_p insn between FIRST and LAST.
3596 bool attach_libcall_retval_notes = true;
3597 next = NEXT_INSN (last);
3598 for (insn = first; insn != next; insn = NEXT_INSN (insn))
3599 if (control_flow_insn_p (insn))
3601 attach_libcall_retval_notes = false;
3602 break;
3605 if (attach_libcall_retval_notes)
3607 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3608 REG_NOTES (first));
3609 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
3610 REG_NOTES (last));
3615 /* Generate code to store zero in X. */
3617 void
3618 emit_clr_insn (rtx x)
3620 emit_move_insn (x, const0_rtx);
3623 /* Generate code to store 1 in X
3624 assuming it contains zero beforehand. */
3626 void
3627 emit_0_to_1_insn (rtx x)
3629 emit_move_insn (x, const1_rtx);
3632 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3633 PURPOSE describes how this comparison will be used. CODE is the rtx
3634 comparison code we will be using.
3636 ??? Actually, CODE is slightly weaker than that. A target is still
3637 required to implement all of the normal bcc operations, but not
3638 required to implement all (or any) of the unordered bcc operations. */
3641 can_compare_p (enum rtx_code code, enum machine_mode mode,
3642 enum can_compare_purpose purpose)
3646 if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3648 if (purpose == ccp_jump)
3649 return bcc_gen_fctn[(int) code] != NULL;
3650 else if (purpose == ccp_store_flag)
3651 return setcc_gen_code[(int) code] != CODE_FOR_nothing;
3652 else
3653 /* There's only one cmov entry point, and it's allowed to fail. */
3654 return 1;
3656 if (purpose == ccp_jump
3657 && cbranch_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3658 return 1;
3659 if (purpose == ccp_cmov
3660 && cmov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3661 return 1;
3662 if (purpose == ccp_store_flag
3663 && cstore_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3664 return 1;
3666 mode = GET_MODE_WIDER_MODE (mode);
3668 while (mode != VOIDmode);
3670 return 0;
3673 /* This function is called when we are going to emit a compare instruction that
3674 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3676 *PMODE is the mode of the inputs (in case they are const_int).
3677 *PUNSIGNEDP nonzero says that the operands are unsigned;
3678 this matters if they need to be widened.
3680 If they have mode BLKmode, then SIZE specifies the size of both operands.
3682 This function performs all the setup necessary so that the caller only has
3683 to emit a single comparison insn. This setup can involve doing a BLKmode
3684 comparison or emitting a library call to perform the comparison if no insn
3685 is available to handle it.
3686 The values which are passed in through pointers can be modified; the caller
3687 should perform the comparison on the modified values. */
3689 static void
3690 prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size,
3691 enum machine_mode *pmode, int *punsignedp,
3692 enum can_compare_purpose purpose)
3694 enum machine_mode mode = *pmode;
3695 rtx x = *px, y = *py;
3696 int unsignedp = *punsignedp;
3697 enum mode_class class;
3699 class = GET_MODE_CLASS (mode);
3701 /* They could both be VOIDmode if both args are immediate constants,
3702 but we should fold that at an earlier stage.
3703 With no special code here, this will call abort,
3704 reminding the programmer to implement such folding. */
3706 if (mode != BLKmode && flag_force_mem)
3708 /* Load duplicate non-volatile operands once. */
3709 if (rtx_equal_p (x, y) && ! volatile_refs_p (x))
3711 x = force_not_mem (x);
3712 y = x;
3714 else
3716 x = force_not_mem (x);
3717 y = force_not_mem (y);
3721 /* If we are inside an appropriately-short loop and one operand is an
3722 expensive constant, force it into a register. */
3723 if (CONSTANT_P (x) && preserve_subexpressions_p ()
3724 && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
3725 x = force_reg (mode, x);
3727 if (CONSTANT_P (y) && preserve_subexpressions_p ()
3728 && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
3729 y = force_reg (mode, y);
3731 #ifdef HAVE_cc0
3732 /* Abort if we have a non-canonical comparison. The RTL documentation
3733 states that canonical comparisons are required only for targets which
3734 have cc0. */
3735 if (CONSTANT_P (x) && ! CONSTANT_P (y))
3736 abort ();
3737 #endif
3739 /* Don't let both operands fail to indicate the mode. */
3740 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3741 x = force_reg (mode, x);
3743 /* Handle all BLKmode compares. */
3745 if (mode == BLKmode)
3747 enum machine_mode cmp_mode, result_mode;
3748 enum insn_code cmp_code;
3749 tree length_type;
3750 rtx libfunc;
3751 rtx result;
3752 rtx opalign
3753 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
3755 if (size == 0)
3756 abort ();
3758 /* Try to use a memory block compare insn - either cmpstr
3759 or cmpmem will do. */
3760 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3761 cmp_mode != VOIDmode;
3762 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
3764 cmp_code = cmpmem_optab[cmp_mode];
3765 if (cmp_code == CODE_FOR_nothing)
3766 cmp_code = cmpstr_optab[cmp_mode];
3767 if (cmp_code == CODE_FOR_nothing)
3768 continue;
3770 /* Must make sure the size fits the insn's mode. */
3771 if ((GET_CODE (size) == CONST_INT
3772 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
3773 || (GET_MODE_BITSIZE (GET_MODE (size))
3774 > GET_MODE_BITSIZE (cmp_mode)))
3775 continue;
3777 result_mode = insn_data[cmp_code].operand[0].mode;
3778 result = gen_reg_rtx (result_mode);
3779 size = convert_to_mode (cmp_mode, size, 1);
3780 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
3782 *px = result;
3783 *py = const0_rtx;
3784 *pmode = result_mode;
3785 return;
3788 /* Otherwise call a library function, memcmp. */
3789 libfunc = memcmp_libfunc;
3790 length_type = sizetype;
3791 result_mode = TYPE_MODE (integer_type_node);
3792 cmp_mode = TYPE_MODE (length_type);
3793 size = convert_to_mode (TYPE_MODE (length_type), size,
3794 TYPE_UNSIGNED (length_type));
3796 result = emit_library_call_value (libfunc, 0, LCT_PURE_MAKE_BLOCK,
3797 result_mode, 3,
3798 XEXP (x, 0), Pmode,
3799 XEXP (y, 0), Pmode,
3800 size, cmp_mode);
3801 *px = result;
3802 *py = const0_rtx;
3803 *pmode = result_mode;
3804 return;
3807 /* Don't allow operands to the compare to trap, as that can put the
3808 compare and branch in different basic blocks. */
3809 if (flag_non_call_exceptions)
3811 if (may_trap_p (x))
3812 x = force_reg (mode, x);
3813 if (may_trap_p (y))
3814 y = force_reg (mode, y);
3817 *px = x;
3818 *py = y;
3819 if (can_compare_p (*pcomparison, mode, purpose))
3820 return;
3822 /* Handle a lib call just for the mode we are using. */
3824 if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
3826 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
3827 rtx result;
3829 /* If we want unsigned, and this mode has a distinct unsigned
3830 comparison routine, use that. */
3831 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
3832 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
3834 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
3835 word_mode, 2, x, mode, y, mode);
3837 /* Integer comparison returns a result that must be compared against 1,
3838 so that even if we do an unsigned compare afterward,
3839 there is still a value that can represent the result "less than". */
3840 *px = result;
3841 *py = const1_rtx;
3842 *pmode = word_mode;
3843 return;
3846 if (class == MODE_FLOAT)
3847 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3849 else
3850 abort ();
3853 /* Before emitting an insn with code ICODE, make sure that X, which is going
3854 to be used for operand OPNUM of the insn, is converted from mode MODE to
3855 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
3856 that it is accepted by the operand predicate. Return the new value. */
3859 prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode,
3860 enum machine_mode wider_mode, int unsignedp)
3862 if (mode != wider_mode)
3863 x = convert_modes (wider_mode, mode, x, unsignedp);
3865 if (! (*insn_data[icode].operand[opnum].predicate)
3866 (x, insn_data[icode].operand[opnum].mode))
3868 if (no_new_pseudos)
3869 return NULL_RTX;
3870 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
3873 return x;
3876 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3877 we can do the comparison.
3878 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3879 be NULL_RTX which indicates that only a comparison is to be generated. */
3881 static void
3882 emit_cmp_and_jump_insn_1 (rtx x, rtx y, enum machine_mode mode,
3883 enum rtx_code comparison, int unsignedp, rtx label)
3885 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
3886 enum mode_class class = GET_MODE_CLASS (mode);
3887 enum machine_mode wider_mode = mode;
3889 /* Try combined insns first. */
3892 enum insn_code icode;
3893 PUT_MODE (test, wider_mode);
3895 if (label)
3897 icode = cbranch_optab->handlers[(int) wider_mode].insn_code;
3899 if (icode != CODE_FOR_nothing
3900 && (*insn_data[icode].operand[0].predicate) (test, wider_mode))
3902 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
3903 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
3904 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
3905 return;
3909 /* Handle some compares against zero. */
3910 icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
3911 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
3913 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3914 emit_insn (GEN_FCN (icode) (x));
3915 if (label)
3916 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3917 return;
3920 /* Handle compares for which there is a directly suitable insn. */
3922 icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
3923 if (icode != CODE_FOR_nothing)
3925 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3926 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
3927 emit_insn (GEN_FCN (icode) (x, y));
3928 if (label)
3929 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3930 return;
3933 if (class != MODE_INT && class != MODE_FLOAT
3934 && class != MODE_COMPLEX_FLOAT)
3935 break;
3937 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
3939 while (wider_mode != VOIDmode);
3941 abort ();
3944 /* Generate code to compare X with Y so that the condition codes are
3945 set and to jump to LABEL if the condition is true. If X is a
3946 constant and Y is not a constant, then the comparison is swapped to
3947 ensure that the comparison RTL has the canonical form.
3949 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3950 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
3951 the proper branch condition code.
3953 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
3955 MODE is the mode of the inputs (in case they are const_int).
3957 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
3958 be passed unchanged to emit_cmp_insn, then potentially converted into an
3959 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
3961 void
3962 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
3963 enum machine_mode mode, int unsignedp, rtx label)
3965 rtx op0 = x, op1 = y;
3967 /* Swap operands and condition to ensure canonical RTL. */
3968 if (swap_commutative_operands_p (x, y))
3970 /* If we're not emitting a branch, this means some caller
3971 is out of sync. */
3972 if (! label)
3973 abort ();
3975 op0 = y, op1 = x;
3976 comparison = swap_condition (comparison);
3979 #ifdef HAVE_cc0
3980 /* If OP0 is still a constant, then both X and Y must be constants. Force
3981 X into a register to avoid aborting in emit_cmp_insn due to non-canonical
3982 RTL. */
3983 if (CONSTANT_P (op0))
3984 op0 = force_reg (mode, op0);
3985 #endif
3987 if (unsignedp)
3988 comparison = unsigned_condition (comparison);
3990 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
3991 ccp_jump);
3992 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
3995 /* Like emit_cmp_and_jump_insns, but generate only the comparison. */
3997 void
3998 emit_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
3999 enum machine_mode mode, int unsignedp)
4001 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
4004 /* Emit a library call comparison between floating point X and Y.
4005 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4007 static void
4008 prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison,
4009 enum machine_mode *pmode, int *punsignedp)
4011 enum rtx_code comparison = *pcomparison;
4012 enum rtx_code swapped = swap_condition (comparison);
4013 rtx x = *px;
4014 rtx y = *py;
4015 enum machine_mode orig_mode = GET_MODE (x);
4016 enum machine_mode mode;
4017 rtx value, target, insns, equiv;
4018 rtx libfunc = 0;
4020 for (mode = orig_mode; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode))
4022 if ((libfunc = code_to_optab[comparison]->handlers[mode].libfunc))
4023 break;
4025 if ((libfunc = code_to_optab[swapped]->handlers[mode].libfunc))
4027 rtx tmp;
4028 tmp = x; x = y; y = tmp;
4029 comparison = swapped;
4030 break;
4034 if (mode == VOIDmode)
4035 abort ();
4037 if (mode != orig_mode)
4039 x = convert_to_mode (mode, x, 0);
4040 y = convert_to_mode (mode, y, 0);
4043 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4044 the RTL. The allows the RTL optimizers to delete the libcall if the
4045 condition can be determined at compile-time. */
4046 if (comparison == UNORDERED)
4048 rtx temp = simplify_gen_relational (NE, word_mode, mode, x, x);
4049 equiv = simplify_gen_relational (NE, word_mode, mode, y, y);
4050 equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
4051 temp, const_true_rtx, equiv);
4053 else
4055 equiv = simplify_gen_relational (comparison, word_mode, mode, x, y);
4056 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4058 rtx true_rtx, false_rtx;
4060 switch (comparison)
4062 case EQ:
4063 true_rtx = const0_rtx;
4064 false_rtx = const_true_rtx;
4065 break;
4067 case NE:
4068 true_rtx = const_true_rtx;
4069 false_rtx = const0_rtx;
4070 break;
4072 case GT:
4073 true_rtx = const1_rtx;
4074 false_rtx = const0_rtx;
4075 break;
4077 case GE:
4078 true_rtx = const0_rtx;
4079 false_rtx = constm1_rtx;
4080 break;
4082 case LT:
4083 true_rtx = constm1_rtx;
4084 false_rtx = const0_rtx;
4085 break;
4087 case LE:
4088 true_rtx = const0_rtx;
4089 false_rtx = const1_rtx;
4090 break;
4092 default:
4093 abort ();
4095 equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
4096 equiv, true_rtx, false_rtx);
4100 start_sequence ();
4101 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4102 word_mode, 2, x, mode, y, mode);
4103 insns = get_insns ();
4104 end_sequence ();
4106 target = gen_reg_rtx (word_mode);
4107 emit_libcall_block (insns, target, value, equiv);
4110 if (comparison == UNORDERED
4111 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4112 comparison = NE;
4114 *px = target;
4115 *py = const0_rtx;
4116 *pmode = word_mode;
4117 *pcomparison = comparison;
4118 *punsignedp = 0;
4121 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4123 void
4124 emit_indirect_jump (rtx loc)
4126 if (! ((*insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate)
4127 (loc, Pmode)))
4128 loc = copy_to_mode_reg (Pmode, loc);
4130 emit_jump_insn (gen_indirect_jump (loc));
4131 emit_barrier ();
4134 #ifdef HAVE_conditional_move
4136 /* Emit a conditional move instruction if the machine supports one for that
4137 condition and machine mode.
4139 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4140 the mode to use should they be constants. If it is VOIDmode, they cannot
4141 both be constants.
4143 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4144 should be stored there. MODE is the mode to use should they be constants.
4145 If it is VOIDmode, they cannot both be constants.
4147 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4148 is not supported. */
4151 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4152 enum machine_mode cmode, rtx op2, rtx op3,
4153 enum machine_mode mode, int unsignedp)
4155 rtx tem, subtarget, comparison, insn;
4156 enum insn_code icode;
4157 enum rtx_code reversed;
4159 /* If one operand is constant, make it the second one. Only do this
4160 if the other operand is not constant as well. */
4162 if (swap_commutative_operands_p (op0, op1))
4164 tem = op0;
4165 op0 = op1;
4166 op1 = tem;
4167 code = swap_condition (code);
4170 /* get_condition will prefer to generate LT and GT even if the old
4171 comparison was against zero, so undo that canonicalization here since
4172 comparisons against zero are cheaper. */
4173 if (code == LT && op1 == const1_rtx)
4174 code = LE, op1 = const0_rtx;
4175 else if (code == GT && op1 == constm1_rtx)
4176 code = GE, op1 = const0_rtx;
4178 if (cmode == VOIDmode)
4179 cmode = GET_MODE (op0);
4181 if (swap_commutative_operands_p (op2, op3)
4182 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4183 != UNKNOWN))
4185 tem = op2;
4186 op2 = op3;
4187 op3 = tem;
4188 code = reversed;
4191 if (mode == VOIDmode)
4192 mode = GET_MODE (op2);
4194 icode = movcc_gen_code[mode];
4196 if (icode == CODE_FOR_nothing)
4197 return 0;
4199 if (flag_force_mem)
4201 op2 = force_not_mem (op2);
4202 op3 = force_not_mem (op3);
4205 if (!target)
4206 target = gen_reg_rtx (mode);
4208 subtarget = target;
4210 /* If the insn doesn't accept these operands, put them in pseudos. */
4212 if (! (*insn_data[icode].operand[0].predicate)
4213 (subtarget, insn_data[icode].operand[0].mode))
4214 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4216 if (! (*insn_data[icode].operand[2].predicate)
4217 (op2, insn_data[icode].operand[2].mode))
4218 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4220 if (! (*insn_data[icode].operand[3].predicate)
4221 (op3, insn_data[icode].operand[3].mode))
4222 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4224 /* Everything should now be in the suitable form, so emit the compare insn
4225 and then the conditional move. */
4227 comparison
4228 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4230 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4231 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4232 return NULL and let the caller figure out how best to deal with this
4233 situation. */
4234 if (GET_CODE (comparison) != code)
4235 return NULL_RTX;
4237 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4239 /* If that failed, then give up. */
4240 if (insn == 0)
4241 return 0;
4243 emit_insn (insn);
4245 if (subtarget != target)
4246 convert_move (target, subtarget, 0);
4248 return target;
4251 /* Return nonzero if a conditional move of mode MODE is supported.
4253 This function is for combine so it can tell whether an insn that looks
4254 like a conditional move is actually supported by the hardware. If we
4255 guess wrong we lose a bit on optimization, but that's it. */
4256 /* ??? sparc64 supports conditionally moving integers values based on fp
4257 comparisons, and vice versa. How do we handle them? */
4260 can_conditionally_move_p (enum machine_mode mode)
4262 if (movcc_gen_code[mode] != CODE_FOR_nothing)
4263 return 1;
4265 return 0;
4268 #endif /* HAVE_conditional_move */
4270 /* Emit a conditional addition instruction if the machine supports one for that
4271 condition and machine mode.
4273 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4274 the mode to use should they be constants. If it is VOIDmode, they cannot
4275 both be constants.
4277 OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
4278 should be stored there. MODE is the mode to use should they be constants.
4279 If it is VOIDmode, they cannot both be constants.
4281 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4282 is not supported. */
4285 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4286 enum machine_mode cmode, rtx op2, rtx op3,
4287 enum machine_mode mode, int unsignedp)
4289 rtx tem, subtarget, comparison, insn;
4290 enum insn_code icode;
4291 enum rtx_code reversed;
4293 /* If one operand is constant, make it the second one. Only do this
4294 if the other operand is not constant as well. */
4296 if (swap_commutative_operands_p (op0, op1))
4298 tem = op0;
4299 op0 = op1;
4300 op1 = tem;
4301 code = swap_condition (code);
4304 /* get_condition will prefer to generate LT and GT even if the old
4305 comparison was against zero, so undo that canonicalization here since
4306 comparisons against zero are cheaper. */
4307 if (code == LT && op1 == const1_rtx)
4308 code = LE, op1 = const0_rtx;
4309 else if (code == GT && op1 == constm1_rtx)
4310 code = GE, op1 = const0_rtx;
4312 if (cmode == VOIDmode)
4313 cmode = GET_MODE (op0);
4315 if (swap_commutative_operands_p (op2, op3)
4316 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4317 != UNKNOWN))
4319 tem = op2;
4320 op2 = op3;
4321 op3 = tem;
4322 code = reversed;
4325 if (mode == VOIDmode)
4326 mode = GET_MODE (op2);
4328 icode = addcc_optab->handlers[(int) mode].insn_code;
4330 if (icode == CODE_FOR_nothing)
4331 return 0;
4333 if (flag_force_mem)
4335 op2 = force_not_mem (op2);
4336 op3 = force_not_mem (op3);
4339 if (!target)
4340 target = gen_reg_rtx (mode);
4342 /* If the insn doesn't accept these operands, put them in pseudos. */
4344 if (! (*insn_data[icode].operand[0].predicate)
4345 (target, insn_data[icode].operand[0].mode))
4346 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4347 else
4348 subtarget = target;
4350 if (! (*insn_data[icode].operand[2].predicate)
4351 (op2, insn_data[icode].operand[2].mode))
4352 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4354 if (! (*insn_data[icode].operand[3].predicate)
4355 (op3, insn_data[icode].operand[3].mode))
4356 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4358 /* Everything should now be in the suitable form, so emit the compare insn
4359 and then the conditional move. */
4361 comparison
4362 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4364 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4365 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4366 return NULL and let the caller figure out how best to deal with this
4367 situation. */
4368 if (GET_CODE (comparison) != code)
4369 return NULL_RTX;
4371 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4373 /* If that failed, then give up. */
4374 if (insn == 0)
4375 return 0;
4377 emit_insn (insn);
4379 if (subtarget != target)
4380 convert_move (target, subtarget, 0);
4382 return target;
4385 /* These functions attempt to generate an insn body, rather than
4386 emitting the insn, but if the gen function already emits them, we
4387 make no attempt to turn them back into naked patterns. */
4389 /* Generate and return an insn body to add Y to X. */
4392 gen_add2_insn (rtx x, rtx y)
4394 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4396 if (! ((*insn_data[icode].operand[0].predicate)
4397 (x, insn_data[icode].operand[0].mode))
4398 || ! ((*insn_data[icode].operand[1].predicate)
4399 (x, insn_data[icode].operand[1].mode))
4400 || ! ((*insn_data[icode].operand[2].predicate)
4401 (y, insn_data[icode].operand[2].mode)))
4402 abort ();
4404 return (GEN_FCN (icode) (x, x, y));
4407 /* Generate and return an insn body to add r1 and c,
4408 storing the result in r0. */
4410 gen_add3_insn (rtx r0, rtx r1, rtx c)
4412 int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
4414 if (icode == CODE_FOR_nothing
4415 || ! ((*insn_data[icode].operand[0].predicate)
4416 (r0, insn_data[icode].operand[0].mode))
4417 || ! ((*insn_data[icode].operand[1].predicate)
4418 (r1, insn_data[icode].operand[1].mode))
4419 || ! ((*insn_data[icode].operand[2].predicate)
4420 (c, insn_data[icode].operand[2].mode)))
4421 return NULL_RTX;
4423 return (GEN_FCN (icode) (r0, r1, c));
4427 have_add2_insn (rtx x, rtx y)
4429 int icode;
4431 if (GET_MODE (x) == VOIDmode)
4432 abort ();
4434 icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4436 if (icode == CODE_FOR_nothing)
4437 return 0;
4439 if (! ((*insn_data[icode].operand[0].predicate)
4440 (x, insn_data[icode].operand[0].mode))
4441 || ! ((*insn_data[icode].operand[1].predicate)
4442 (x, insn_data[icode].operand[1].mode))
4443 || ! ((*insn_data[icode].operand[2].predicate)
4444 (y, insn_data[icode].operand[2].mode)))
4445 return 0;
4447 return 1;
4450 /* Generate and return an insn body to subtract Y from X. */
4453 gen_sub2_insn (rtx x, rtx y)
4455 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4457 if (! ((*insn_data[icode].operand[0].predicate)
4458 (x, insn_data[icode].operand[0].mode))
4459 || ! ((*insn_data[icode].operand[1].predicate)
4460 (x, insn_data[icode].operand[1].mode))
4461 || ! ((*insn_data[icode].operand[2].predicate)
4462 (y, insn_data[icode].operand[2].mode)))
4463 abort ();
4465 return (GEN_FCN (icode) (x, x, y));
4468 /* Generate and return an insn body to subtract r1 and c,
4469 storing the result in r0. */
4471 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4473 int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
4475 if (icode == CODE_FOR_nothing
4476 || ! ((*insn_data[icode].operand[0].predicate)
4477 (r0, insn_data[icode].operand[0].mode))
4478 || ! ((*insn_data[icode].operand[1].predicate)
4479 (r1, insn_data[icode].operand[1].mode))
4480 || ! ((*insn_data[icode].operand[2].predicate)
4481 (c, insn_data[icode].operand[2].mode)))
4482 return NULL_RTX;
4484 return (GEN_FCN (icode) (r0, r1, c));
4488 have_sub2_insn (rtx x, rtx y)
4490 int icode;
4492 if (GET_MODE (x) == VOIDmode)
4493 abort ();
4495 icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4497 if (icode == CODE_FOR_nothing)
4498 return 0;
4500 if (! ((*insn_data[icode].operand[0].predicate)
4501 (x, insn_data[icode].operand[0].mode))
4502 || ! ((*insn_data[icode].operand[1].predicate)
4503 (x, insn_data[icode].operand[1].mode))
4504 || ! ((*insn_data[icode].operand[2].predicate)
4505 (y, insn_data[icode].operand[2].mode)))
4506 return 0;
4508 return 1;
4511 /* Generate the body of an instruction to copy Y into X.
4512 It may be a list of insns, if one insn isn't enough. */
4515 gen_move_insn (rtx x, rtx y)
4517 rtx seq;
4519 start_sequence ();
4520 emit_move_insn_1 (x, y);
4521 seq = get_insns ();
4522 end_sequence ();
4523 return seq;
4526 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4527 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4528 no such operation exists, CODE_FOR_nothing will be returned. */
4530 enum insn_code
4531 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4532 int unsignedp)
4534 convert_optab tab;
4535 #ifdef HAVE_ptr_extend
4536 if (unsignedp < 0)
4537 return CODE_FOR_ptr_extend;
4538 #endif
4540 tab = unsignedp ? zext_optab : sext_optab;
4541 return tab->handlers[to_mode][from_mode].insn_code;
4544 /* Generate the body of an insn to extend Y (with mode MFROM)
4545 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4548 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4549 enum machine_mode mfrom, int unsignedp)
4551 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4552 return GEN_FCN (icode) (x, y);
4555 /* can_fix_p and can_float_p say whether the target machine
4556 can directly convert a given fixed point type to
4557 a given floating point type, or vice versa.
4558 The returned value is the CODE_FOR_... value to use,
4559 or CODE_FOR_nothing if these modes cannot be directly converted.
4561 *TRUNCP_PTR is set to 1 if it is necessary to output
4562 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4564 static enum insn_code
4565 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4566 int unsignedp, int *truncp_ptr)
4568 convert_optab tab;
4569 enum insn_code icode;
4571 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4572 icode = tab->handlers[fixmode][fltmode].insn_code;
4573 if (icode != CODE_FOR_nothing)
4575 *truncp_ptr = 0;
4576 return icode;
4579 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4580 for this to work. We need to rework the fix* and ftrunc* patterns
4581 and documentation. */
4582 tab = unsignedp ? ufix_optab : sfix_optab;
4583 icode = tab->handlers[fixmode][fltmode].insn_code;
4584 if (icode != CODE_FOR_nothing
4585 && ftrunc_optab->handlers[fltmode].insn_code != CODE_FOR_nothing)
4587 *truncp_ptr = 1;
4588 return icode;
4591 *truncp_ptr = 0;
4592 return CODE_FOR_nothing;
4595 static enum insn_code
4596 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4597 int unsignedp)
4599 convert_optab tab;
4601 tab = unsignedp ? ufloat_optab : sfloat_optab;
4602 return tab->handlers[fltmode][fixmode].insn_code;
4605 /* Generate code to convert FROM to floating point
4606 and store in TO. FROM must be fixed point and not VOIDmode.
4607 UNSIGNEDP nonzero means regard FROM as unsigned.
4608 Normally this is done by correcting the final value
4609 if it is negative. */
4611 void
4612 expand_float (rtx to, rtx from, int unsignedp)
4614 enum insn_code icode;
4615 rtx target = to;
4616 enum machine_mode fmode, imode;
4618 /* Crash now, because we won't be able to decide which mode to use. */
4619 if (GET_MODE (from) == VOIDmode)
4620 abort ();
4622 /* Look for an insn to do the conversion. Do it in the specified
4623 modes if possible; otherwise convert either input, output or both to
4624 wider mode. If the integer mode is wider than the mode of FROM,
4625 we can do the conversion signed even if the input is unsigned. */
4627 for (fmode = GET_MODE (to); fmode != VOIDmode;
4628 fmode = GET_MODE_WIDER_MODE (fmode))
4629 for (imode = GET_MODE (from); imode != VOIDmode;
4630 imode = GET_MODE_WIDER_MODE (imode))
4632 int doing_unsigned = unsignedp;
4634 if (fmode != GET_MODE (to)
4635 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4636 continue;
4638 icode = can_float_p (fmode, imode, unsignedp);
4639 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
4640 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
4642 if (icode != CODE_FOR_nothing)
4644 if (imode != GET_MODE (from))
4645 from = convert_to_mode (imode, from, unsignedp);
4647 if (fmode != GET_MODE (to))
4648 target = gen_reg_rtx (fmode);
4650 emit_unop_insn (icode, target, from,
4651 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4653 if (target != to)
4654 convert_move (to, target, 0);
4655 return;
4659 /* Unsigned integer, and no way to convert directly.
4660 Convert as signed, then conditionally adjust the result. */
4661 if (unsignedp)
4663 rtx label = gen_label_rtx ();
4664 rtx temp;
4665 REAL_VALUE_TYPE offset;
4667 if (flag_force_mem)
4668 from = force_not_mem (from);
4670 /* Look for a usable floating mode FMODE wider than the source and at
4671 least as wide as the target. Using FMODE will avoid rounding woes
4672 with unsigned values greater than the signed maximum value. */
4674 for (fmode = GET_MODE (to); fmode != VOIDmode;
4675 fmode = GET_MODE_WIDER_MODE (fmode))
4676 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4677 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4678 break;
4680 if (fmode == VOIDmode)
4682 /* There is no such mode. Pretend the target is wide enough. */
4683 fmode = GET_MODE (to);
4685 /* Avoid double-rounding when TO is narrower than FROM. */
4686 if ((significand_size (fmode) + 1)
4687 < GET_MODE_BITSIZE (GET_MODE (from)))
4689 rtx temp1;
4690 rtx neglabel = gen_label_rtx ();
4692 /* Don't use TARGET if it isn't a register, is a hard register,
4693 or is the wrong mode. */
4694 if (!REG_P (target)
4695 || REGNO (target) < FIRST_PSEUDO_REGISTER
4696 || GET_MODE (target) != fmode)
4697 target = gen_reg_rtx (fmode);
4699 imode = GET_MODE (from);
4700 do_pending_stack_adjust ();
4702 /* Test whether the sign bit is set. */
4703 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4704 0, neglabel);
4706 /* The sign bit is not set. Convert as signed. */
4707 expand_float (target, from, 0);
4708 emit_jump_insn (gen_jump (label));
4709 emit_barrier ();
4711 /* The sign bit is set.
4712 Convert to a usable (positive signed) value by shifting right
4713 one bit, while remembering if a nonzero bit was shifted
4714 out; i.e., compute (from & 1) | (from >> 1). */
4716 emit_label (neglabel);
4717 temp = expand_binop (imode, and_optab, from, const1_rtx,
4718 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4719 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
4720 NULL_RTX, 1);
4721 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4722 OPTAB_LIB_WIDEN);
4723 expand_float (target, temp, 0);
4725 /* Multiply by 2 to undo the shift above. */
4726 temp = expand_binop (fmode, add_optab, target, target,
4727 target, 0, OPTAB_LIB_WIDEN);
4728 if (temp != target)
4729 emit_move_insn (target, temp);
4731 do_pending_stack_adjust ();
4732 emit_label (label);
4733 goto done;
4737 /* If we are about to do some arithmetic to correct for an
4738 unsigned operand, do it in a pseudo-register. */
4740 if (GET_MODE (to) != fmode
4741 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
4742 target = gen_reg_rtx (fmode);
4744 /* Convert as signed integer to floating. */
4745 expand_float (target, from, 0);
4747 /* If FROM is negative (and therefore TO is negative),
4748 correct its value by 2**bitwidth. */
4750 do_pending_stack_adjust ();
4751 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
4752 0, label);
4755 real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)));
4756 temp = expand_binop (fmode, add_optab, target,
4757 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
4758 target, 0, OPTAB_LIB_WIDEN);
4759 if (temp != target)
4760 emit_move_insn (target, temp);
4762 do_pending_stack_adjust ();
4763 emit_label (label);
4764 goto done;
4767 /* No hardware instruction available; call a library routine. */
4769 rtx libfunc;
4770 rtx insns;
4771 rtx value;
4772 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
4774 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
4775 from = convert_to_mode (SImode, from, unsignedp);
4777 if (flag_force_mem)
4778 from = force_not_mem (from);
4780 libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
4781 if (!libfunc)
4782 abort ();
4784 start_sequence ();
4786 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4787 GET_MODE (to), 1, from,
4788 GET_MODE (from));
4789 insns = get_insns ();
4790 end_sequence ();
4792 emit_libcall_block (insns, target, value,
4793 gen_rtx_FLOAT (GET_MODE (to), from));
4796 done:
4798 /* Copy result to requested destination
4799 if we have been computing in a temp location. */
4801 if (target != to)
4803 if (GET_MODE (target) == GET_MODE (to))
4804 emit_move_insn (to, target);
4805 else
4806 convert_move (to, target, 0);
4810 /* Generate code to convert FROM to fixed point and store in TO. FROM
4811 must be floating point. */
4813 void
4814 expand_fix (rtx to, rtx from, int unsignedp)
4816 enum insn_code icode;
4817 rtx target = to;
4818 enum machine_mode fmode, imode;
4819 int must_trunc = 0;
4821 /* We first try to find a pair of modes, one real and one integer, at
4822 least as wide as FROM and TO, respectively, in which we can open-code
4823 this conversion. If the integer mode is wider than the mode of TO,
4824 we can do the conversion either signed or unsigned. */
4826 for (fmode = GET_MODE (from); fmode != VOIDmode;
4827 fmode = GET_MODE_WIDER_MODE (fmode))
4828 for (imode = GET_MODE (to); imode != VOIDmode;
4829 imode = GET_MODE_WIDER_MODE (imode))
4831 int doing_unsigned = unsignedp;
4833 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4834 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4835 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4837 if (icode != CODE_FOR_nothing)
4839 if (fmode != GET_MODE (from))
4840 from = convert_to_mode (fmode, from, 0);
4842 if (must_trunc)
4844 rtx temp = gen_reg_rtx (GET_MODE (from));
4845 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
4846 temp, 0);
4849 if (imode != GET_MODE (to))
4850 target = gen_reg_rtx (imode);
4852 emit_unop_insn (icode, target, from,
4853 doing_unsigned ? UNSIGNED_FIX : FIX);
4854 if (target != to)
4855 convert_move (to, target, unsignedp);
4856 return;
4860 /* For an unsigned conversion, there is one more way to do it.
4861 If we have a signed conversion, we generate code that compares
4862 the real value to the largest representable positive number. If if
4863 is smaller, the conversion is done normally. Otherwise, subtract
4864 one plus the highest signed number, convert, and add it back.
4866 We only need to check all real modes, since we know we didn't find
4867 anything with a wider integer mode.
4869 This code used to extend FP value into mode wider than the destination.
4870 This is not needed. Consider, for instance conversion from SFmode
4871 into DImode.
4873 The hot path trought the code is dealing with inputs smaller than 2^63
4874 and doing just the conversion, so there is no bits to lose.
4876 In the other path we know the value is positive in the range 2^63..2^64-1
4877 inclusive. (as for other imput overflow happens and result is undefined)
4878 So we know that the most important bit set in mantissa corresponds to
4879 2^63. The subtraction of 2^63 should not generate any rounding as it
4880 simply clears out that bit. The rest is trivial. */
4882 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
4883 for (fmode = GET_MODE (from); fmode != VOIDmode;
4884 fmode = GET_MODE_WIDER_MODE (fmode))
4885 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
4886 &must_trunc))
4888 int bitsize;
4889 REAL_VALUE_TYPE offset;
4890 rtx limit, lab1, lab2, insn;
4892 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
4893 real_2expN (&offset, bitsize - 1);
4894 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
4895 lab1 = gen_label_rtx ();
4896 lab2 = gen_label_rtx ();
4898 if (flag_force_mem)
4899 from = force_not_mem (from);
4901 if (fmode != GET_MODE (from))
4902 from = convert_to_mode (fmode, from, 0);
4904 /* See if we need to do the subtraction. */
4905 do_pending_stack_adjust ();
4906 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
4907 0, lab1);
4909 /* If not, do the signed "fix" and branch around fixup code. */
4910 expand_fix (to, from, 0);
4911 emit_jump_insn (gen_jump (lab2));
4912 emit_barrier ();
4914 /* Otherwise, subtract 2**(N-1), convert to signed number,
4915 then add 2**(N-1). Do the addition using XOR since this
4916 will often generate better code. */
4917 emit_label (lab1);
4918 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
4919 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4920 expand_fix (to, target, 0);
4921 target = expand_binop (GET_MODE (to), xor_optab, to,
4922 gen_int_mode
4923 ((HOST_WIDE_INT) 1 << (bitsize - 1),
4924 GET_MODE (to)),
4925 to, 1, OPTAB_LIB_WIDEN);
4927 if (target != to)
4928 emit_move_insn (to, target);
4930 emit_label (lab2);
4932 if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
4933 != CODE_FOR_nothing)
4935 /* Make a place for a REG_NOTE and add it. */
4936 insn = emit_move_insn (to, to);
4937 set_unique_reg_note (insn,
4938 REG_EQUAL,
4939 gen_rtx_fmt_e (UNSIGNED_FIX,
4940 GET_MODE (to),
4941 copy_rtx (from)));
4944 return;
4947 /* We can't do it with an insn, so use a library call. But first ensure
4948 that the mode of TO is at least as wide as SImode, since those are the
4949 only library calls we know about. */
4951 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
4953 target = gen_reg_rtx (SImode);
4955 expand_fix (target, from, unsignedp);
4957 else
4959 rtx insns;
4960 rtx value;
4961 rtx libfunc;
4963 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
4964 libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
4965 if (!libfunc)
4966 abort ();
4968 if (flag_force_mem)
4969 from = force_not_mem (from);
4971 start_sequence ();
4973 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4974 GET_MODE (to), 1, from,
4975 GET_MODE (from));
4976 insns = get_insns ();
4977 end_sequence ();
4979 emit_libcall_block (insns, target, value,
4980 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
4981 GET_MODE (to), from));
4984 if (target != to)
4986 if (GET_MODE (to) == GET_MODE (target))
4987 emit_move_insn (to, target);
4988 else
4989 convert_move (to, target, 0);
4993 /* Report whether we have an instruction to perform the operation
4994 specified by CODE on operands of mode MODE. */
4996 have_insn_for (enum rtx_code code, enum machine_mode mode)
4998 return (code_to_optab[(int) code] != 0
4999 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
5000 != CODE_FOR_nothing));
5003 /* Create a blank optab. */
5004 static optab
5005 new_optab (void)
5007 int i;
5008 optab op = ggc_alloc (sizeof (struct optab));
5009 for (i = 0; i < NUM_MACHINE_MODES; i++)
5011 op->handlers[i].insn_code = CODE_FOR_nothing;
5012 op->handlers[i].libfunc = 0;
5015 return op;
5018 static convert_optab
5019 new_convert_optab (void)
5021 int i, j;
5022 convert_optab op = ggc_alloc (sizeof (struct convert_optab));
5023 for (i = 0; i < NUM_MACHINE_MODES; i++)
5024 for (j = 0; j < NUM_MACHINE_MODES; j++)
5026 op->handlers[i][j].insn_code = CODE_FOR_nothing;
5027 op->handlers[i][j].libfunc = 0;
5029 return op;
5032 /* Same, but fill in its code as CODE, and write it into the
5033 code_to_optab table. */
5034 static inline optab
5035 init_optab (enum rtx_code code)
5037 optab op = new_optab ();
5038 op->code = code;
5039 code_to_optab[(int) code] = op;
5040 return op;
5043 /* Same, but fill in its code as CODE, and do _not_ write it into
5044 the code_to_optab table. */
5045 static inline optab
5046 init_optabv (enum rtx_code code)
5048 optab op = new_optab ();
5049 op->code = code;
5050 return op;
5053 /* Conversion optabs never go in the code_to_optab table. */
5054 static inline convert_optab
5055 init_convert_optab (enum rtx_code code)
5057 convert_optab op = new_convert_optab ();
5058 op->code = code;
5059 return op;
5062 /* Initialize the libfunc fields of an entire group of entries in some
5063 optab. Each entry is set equal to a string consisting of a leading
5064 pair of underscores followed by a generic operation name followed by
5065 a mode name (downshifted to lowercase) followed by a single character
5066 representing the number of operands for the given operation (which is
5067 usually one of the characters '2', '3', or '4').
5069 OPTABLE is the table in which libfunc fields are to be initialized.
5070 FIRST_MODE is the first machine mode index in the given optab to
5071 initialize.
5072 LAST_MODE is the last machine mode index in the given optab to
5073 initialize.
5074 OPNAME is the generic (string) name of the operation.
5075 SUFFIX is the character which specifies the number of operands for
5076 the given generic operation.
5079 static void
5080 init_libfuncs (optab optable, int first_mode, int last_mode,
5081 const char *opname, int suffix)
5083 int mode;
5084 unsigned opname_len = strlen (opname);
5086 for (mode = first_mode; (int) mode <= (int) last_mode;
5087 mode = (enum machine_mode) ((int) mode + 1))
5089 const char *mname = GET_MODE_NAME (mode);
5090 unsigned mname_len = strlen (mname);
5091 char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
5092 char *p;
5093 const char *q;
5095 p = libfunc_name;
5096 *p++ = '_';
5097 *p++ = '_';
5098 for (q = opname; *q; )
5099 *p++ = *q++;
5100 for (q = mname; *q; q++)
5101 *p++ = TOLOWER (*q);
5102 *p++ = suffix;
5103 *p = '\0';
5105 optable->handlers[(int) mode].libfunc
5106 = init_one_libfunc (ggc_alloc_string (libfunc_name, p - libfunc_name));
5110 /* Initialize the libfunc fields of an entire group of entries in some
5111 optab which correspond to all integer mode operations. The parameters
5112 have the same meaning as similarly named ones for the `init_libfuncs'
5113 routine. (See above). */
5115 static void
5116 init_integral_libfuncs (optab optable, const char *opname, int suffix)
5118 int maxsize = 2*BITS_PER_WORD;
5119 if (maxsize < LONG_LONG_TYPE_SIZE)
5120 maxsize = LONG_LONG_TYPE_SIZE;
5121 init_libfuncs (optable, word_mode,
5122 mode_for_size (maxsize, MODE_INT, 0),
5123 opname, suffix);
5126 /* Initialize the libfunc fields of an entire group of entries in some
5127 optab which correspond to all real mode operations. The parameters
5128 have the same meaning as similarly named ones for the `init_libfuncs'
5129 routine. (See above). */
5131 static void
5132 init_floating_libfuncs (optab optable, const char *opname, int suffix)
5134 init_libfuncs (optable, MIN_MODE_FLOAT, MAX_MODE_FLOAT, opname, suffix);
5137 /* Initialize the libfunc fields of an entire group of entries of an
5138 inter-mode-class conversion optab. The string formation rules are
5139 similar to the ones for init_libfuncs, above, but instead of having
5140 a mode name and an operand count these functions have two mode names
5141 and no operand count. */
5142 static void
5143 init_interclass_conv_libfuncs (convert_optab tab, const char *opname,
5144 enum mode_class from_class,
5145 enum mode_class to_class)
5147 enum machine_mode first_from_mode = GET_CLASS_NARROWEST_MODE (from_class);
5148 enum machine_mode first_to_mode = GET_CLASS_NARROWEST_MODE (to_class);
5149 size_t opname_len = strlen (opname);
5150 size_t max_mname_len = 0;
5152 enum machine_mode fmode, tmode;
5153 const char *fname, *tname;
5154 const char *q;
5155 char *libfunc_name, *suffix;
5156 char *p;
5158 for (fmode = first_from_mode;
5159 fmode != VOIDmode;
5160 fmode = GET_MODE_WIDER_MODE (fmode))
5161 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (fmode)));
5163 for (tmode = first_to_mode;
5164 tmode != VOIDmode;
5165 tmode = GET_MODE_WIDER_MODE (tmode))
5166 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (tmode)));
5168 libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
5169 libfunc_name[0] = '_';
5170 libfunc_name[1] = '_';
5171 memcpy (&libfunc_name[2], opname, opname_len);
5172 suffix = libfunc_name + opname_len + 2;
5174 for (fmode = first_from_mode; fmode != VOIDmode;
5175 fmode = GET_MODE_WIDER_MODE (fmode))
5176 for (tmode = first_to_mode; tmode != VOIDmode;
5177 tmode = GET_MODE_WIDER_MODE (tmode))
5179 fname = GET_MODE_NAME (fmode);
5180 tname = GET_MODE_NAME (tmode);
5182 p = suffix;
5183 for (q = fname; *q; p++, q++)
5184 *p = TOLOWER (*q);
5185 for (q = tname; *q; p++, q++)
5186 *p = TOLOWER (*q);
5188 *p = '\0';
5190 tab->handlers[tmode][fmode].libfunc
5191 = init_one_libfunc (ggc_alloc_string (libfunc_name,
5192 p - libfunc_name));
5196 /* Initialize the libfunc fields of an entire group of entries of an
5197 intra-mode-class conversion optab. The string formation rules are
5198 similar to the ones for init_libfunc, above. WIDENING says whether
5199 the optab goes from narrow to wide modes or vice versa. These functions
5200 have two mode names _and_ an operand count. */
5201 static void
5202 init_intraclass_conv_libfuncs (convert_optab tab, const char *opname,
5203 enum mode_class class, bool widening)
5205 enum machine_mode first_mode = GET_CLASS_NARROWEST_MODE (class);
5206 size_t opname_len = strlen (opname);
5207 size_t max_mname_len = 0;
5209 enum machine_mode nmode, wmode;
5210 const char *nname, *wname;
5211 const char *q;
5212 char *libfunc_name, *suffix;
5213 char *p;
5215 for (nmode = first_mode; nmode != VOIDmode;
5216 nmode = GET_MODE_WIDER_MODE (nmode))
5217 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (nmode)));
5219 libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
5220 libfunc_name[0] = '_';
5221 libfunc_name[1] = '_';
5222 memcpy (&libfunc_name[2], opname, opname_len);
5223 suffix = libfunc_name + opname_len + 2;
5225 for (nmode = first_mode; nmode != VOIDmode;
5226 nmode = GET_MODE_WIDER_MODE (nmode))
5227 for (wmode = GET_MODE_WIDER_MODE (nmode); wmode != VOIDmode;
5228 wmode = GET_MODE_WIDER_MODE (wmode))
5230 nname = GET_MODE_NAME (nmode);
5231 wname = GET_MODE_NAME (wmode);
5233 p = suffix;
5234 for (q = widening ? nname : wname; *q; p++, q++)
5235 *p = TOLOWER (*q);
5236 for (q = widening ? wname : nname; *q; p++, q++)
5237 *p = TOLOWER (*q);
5239 *p++ = '2';
5240 *p = '\0';
5242 tab->handlers[widening ? wmode : nmode]
5243 [widening ? nmode : wmode].libfunc
5244 = init_one_libfunc (ggc_alloc_string (libfunc_name,
5245 p - libfunc_name));
5251 init_one_libfunc (const char *name)
5253 rtx symbol;
5255 /* Create a FUNCTION_DECL that can be passed to
5256 targetm.encode_section_info. */
5257 /* ??? We don't have any type information except for this is
5258 a function. Pretend this is "int foo()". */
5259 tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
5260 build_function_type (integer_type_node, NULL_TREE));
5261 DECL_ARTIFICIAL (decl) = 1;
5262 DECL_EXTERNAL (decl) = 1;
5263 TREE_PUBLIC (decl) = 1;
5265 symbol = XEXP (DECL_RTL (decl), 0);
5267 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
5268 are the flags assigned by targetm.encode_section_info. */
5269 SYMBOL_REF_DECL (symbol) = 0;
5271 return symbol;
5274 /* Call this to reset the function entry for one optab (OPTABLE) in mode
5275 MODE to NAME, which should be either 0 or a string constant. */
5276 void
5277 set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
5279 if (name)
5280 optable->handlers[mode].libfunc = init_one_libfunc (name);
5281 else
5282 optable->handlers[mode].libfunc = 0;
5285 /* Call this to reset the function entry for one conversion optab
5286 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
5287 either 0 or a string constant. */
5288 void
5289 set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
5290 enum machine_mode fmode, const char *name)
5292 if (name)
5293 optable->handlers[tmode][fmode].libfunc = init_one_libfunc (name);
5294 else
5295 optable->handlers[tmode][fmode].libfunc = 0;
5298 /* Call this once to initialize the contents of the optabs
5299 appropriately for the current target machine. */
5301 void
5302 init_optabs (void)
5304 unsigned int i;
5306 /* Start by initializing all tables to contain CODE_FOR_nothing. */
5308 for (i = 0; i < NUM_RTX_CODE; i++)
5309 setcc_gen_code[i] = CODE_FOR_nothing;
5311 #ifdef HAVE_conditional_move
5312 for (i = 0; i < NUM_MACHINE_MODES; i++)
5313 movcc_gen_code[i] = CODE_FOR_nothing;
5314 #endif
5316 add_optab = init_optab (PLUS);
5317 addv_optab = init_optabv (PLUS);
5318 sub_optab = init_optab (MINUS);
5319 subv_optab = init_optabv (MINUS);
5320 smul_optab = init_optab (MULT);
5321 smulv_optab = init_optabv (MULT);
5322 smul_highpart_optab = init_optab (UNKNOWN);
5323 umul_highpart_optab = init_optab (UNKNOWN);
5324 smul_widen_optab = init_optab (UNKNOWN);
5325 umul_widen_optab = init_optab (UNKNOWN);
5326 sdiv_optab = init_optab (DIV);
5327 sdivv_optab = init_optabv (DIV);
5328 sdivmod_optab = init_optab (UNKNOWN);
5329 udiv_optab = init_optab (UDIV);
5330 udivmod_optab = init_optab (UNKNOWN);
5331 smod_optab = init_optab (MOD);
5332 umod_optab = init_optab (UMOD);
5333 fmod_optab = init_optab (UNKNOWN);
5334 drem_optab = init_optab (UNKNOWN);
5335 ftrunc_optab = init_optab (UNKNOWN);
5336 and_optab = init_optab (AND);
5337 ior_optab = init_optab (IOR);
5338 xor_optab = init_optab (XOR);
5339 ashl_optab = init_optab (ASHIFT);
5340 ashr_optab = init_optab (ASHIFTRT);
5341 lshr_optab = init_optab (LSHIFTRT);
5342 rotl_optab = init_optab (ROTATE);
5343 rotr_optab = init_optab (ROTATERT);
5344 smin_optab = init_optab (SMIN);
5345 smax_optab = init_optab (SMAX);
5346 umin_optab = init_optab (UMIN);
5347 umax_optab = init_optab (UMAX);
5348 pow_optab = init_optab (UNKNOWN);
5349 atan2_optab = init_optab (UNKNOWN);
5351 /* These three have codes assigned exclusively for the sake of
5352 have_insn_for. */
5353 mov_optab = init_optab (SET);
5354 movstrict_optab = init_optab (STRICT_LOW_PART);
5355 cmp_optab = init_optab (COMPARE);
5357 ucmp_optab = init_optab (UNKNOWN);
5358 tst_optab = init_optab (UNKNOWN);
5360 eq_optab = init_optab (EQ);
5361 ne_optab = init_optab (NE);
5362 gt_optab = init_optab (GT);
5363 ge_optab = init_optab (GE);
5364 lt_optab = init_optab (LT);
5365 le_optab = init_optab (LE);
5366 unord_optab = init_optab (UNORDERED);
5368 neg_optab = init_optab (NEG);
5369 negv_optab = init_optabv (NEG);
5370 abs_optab = init_optab (ABS);
5371 absv_optab = init_optabv (ABS);
5372 addcc_optab = init_optab (UNKNOWN);
5373 one_cmpl_optab = init_optab (NOT);
5374 ffs_optab = init_optab (FFS);
5375 clz_optab = init_optab (CLZ);
5376 ctz_optab = init_optab (CTZ);
5377 popcount_optab = init_optab (POPCOUNT);
5378 parity_optab = init_optab (PARITY);
5379 sqrt_optab = init_optab (SQRT);
5380 floor_optab = init_optab (UNKNOWN);
5381 ceil_optab = init_optab (UNKNOWN);
5382 round_optab = init_optab (UNKNOWN);
5383 btrunc_optab = init_optab (UNKNOWN);
5384 nearbyint_optab = init_optab (UNKNOWN);
5385 sincos_optab = init_optab (UNKNOWN);
5386 sin_optab = init_optab (UNKNOWN);
5387 asin_optab = init_optab (UNKNOWN);
5388 cos_optab = init_optab (UNKNOWN);
5389 acos_optab = init_optab (UNKNOWN);
5390 exp_optab = init_optab (UNKNOWN);
5391 exp10_optab = init_optab (UNKNOWN);
5392 exp2_optab = init_optab (UNKNOWN);
5393 expm1_optab = init_optab (UNKNOWN);
5394 logb_optab = init_optab (UNKNOWN);
5395 ilogb_optab = init_optab (UNKNOWN);
5396 log_optab = init_optab (UNKNOWN);
5397 log10_optab = init_optab (UNKNOWN);
5398 log2_optab = init_optab (UNKNOWN);
5399 log1p_optab = init_optab (UNKNOWN);
5400 tan_optab = init_optab (UNKNOWN);
5401 atan_optab = init_optab (UNKNOWN);
5402 strlen_optab = init_optab (UNKNOWN);
5403 cbranch_optab = init_optab (UNKNOWN);
5404 cmov_optab = init_optab (UNKNOWN);
5405 cstore_optab = init_optab (UNKNOWN);
5406 push_optab = init_optab (UNKNOWN);
5408 vec_extract_optab = init_optab (UNKNOWN);
5409 vec_set_optab = init_optab (UNKNOWN);
5410 vec_init_optab = init_optab (UNKNOWN);
5411 /* Conversions. */
5412 sext_optab = init_convert_optab (SIGN_EXTEND);
5413 zext_optab = init_convert_optab (ZERO_EXTEND);
5414 trunc_optab = init_convert_optab (TRUNCATE);
5415 sfix_optab = init_convert_optab (FIX);
5416 ufix_optab = init_convert_optab (UNSIGNED_FIX);
5417 sfixtrunc_optab = init_convert_optab (UNKNOWN);
5418 ufixtrunc_optab = init_convert_optab (UNKNOWN);
5419 sfloat_optab = init_convert_optab (FLOAT);
5420 ufloat_optab = init_convert_optab (UNSIGNED_FLOAT);
5422 for (i = 0; i < NUM_MACHINE_MODES; i++)
5424 movmem_optab[i] = CODE_FOR_nothing;
5425 clrmem_optab[i] = CODE_FOR_nothing;
5426 cmpstr_optab[i] = CODE_FOR_nothing;
5427 cmpmem_optab[i] = CODE_FOR_nothing;
5429 #ifdef HAVE_SECONDARY_RELOADS
5430 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
5431 #endif
5434 /* Fill in the optabs with the insns we support. */
5435 init_all_optabs ();
5437 /* Initialize the optabs with the names of the library functions. */
5438 init_integral_libfuncs (add_optab, "add", '3');
5439 init_floating_libfuncs (add_optab, "add", '3');
5440 init_integral_libfuncs (addv_optab, "addv", '3');
5441 init_floating_libfuncs (addv_optab, "add", '3');
5442 init_integral_libfuncs (sub_optab, "sub", '3');
5443 init_floating_libfuncs (sub_optab, "sub", '3');
5444 init_integral_libfuncs (subv_optab, "subv", '3');
5445 init_floating_libfuncs (subv_optab, "sub", '3');
5446 init_integral_libfuncs (smul_optab, "mul", '3');
5447 init_floating_libfuncs (smul_optab, "mul", '3');
5448 init_integral_libfuncs (smulv_optab, "mulv", '3');
5449 init_floating_libfuncs (smulv_optab, "mul", '3');
5450 init_integral_libfuncs (sdiv_optab, "div", '3');
5451 init_floating_libfuncs (sdiv_optab, "div", '3');
5452 init_integral_libfuncs (sdivv_optab, "divv", '3');
5453 init_integral_libfuncs (udiv_optab, "udiv", '3');
5454 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
5455 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
5456 init_integral_libfuncs (smod_optab, "mod", '3');
5457 init_integral_libfuncs (umod_optab, "umod", '3');
5458 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
5459 init_integral_libfuncs (and_optab, "and", '3');
5460 init_integral_libfuncs (ior_optab, "ior", '3');
5461 init_integral_libfuncs (xor_optab, "xor", '3');
5462 init_integral_libfuncs (ashl_optab, "ashl", '3');
5463 init_integral_libfuncs (ashr_optab, "ashr", '3');
5464 init_integral_libfuncs (lshr_optab, "lshr", '3');
5465 init_integral_libfuncs (smin_optab, "min", '3');
5466 init_floating_libfuncs (smin_optab, "min", '3');
5467 init_integral_libfuncs (smax_optab, "max", '3');
5468 init_floating_libfuncs (smax_optab, "max", '3');
5469 init_integral_libfuncs (umin_optab, "umin", '3');
5470 init_integral_libfuncs (umax_optab, "umax", '3');
5471 init_integral_libfuncs (neg_optab, "neg", '2');
5472 init_floating_libfuncs (neg_optab, "neg", '2');
5473 init_integral_libfuncs (negv_optab, "negv", '2');
5474 init_floating_libfuncs (negv_optab, "neg", '2');
5475 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
5476 init_integral_libfuncs (ffs_optab, "ffs", '2');
5477 init_integral_libfuncs (clz_optab, "clz", '2');
5478 init_integral_libfuncs (ctz_optab, "ctz", '2');
5479 init_integral_libfuncs (popcount_optab, "popcount", '2');
5480 init_integral_libfuncs (parity_optab, "parity", '2');
5482 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
5483 init_integral_libfuncs (cmp_optab, "cmp", '2');
5484 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
5485 init_floating_libfuncs (cmp_optab, "cmp", '2');
5487 /* EQ etc are floating point only. */
5488 init_floating_libfuncs (eq_optab, "eq", '2');
5489 init_floating_libfuncs (ne_optab, "ne", '2');
5490 init_floating_libfuncs (gt_optab, "gt", '2');
5491 init_floating_libfuncs (ge_optab, "ge", '2');
5492 init_floating_libfuncs (lt_optab, "lt", '2');
5493 init_floating_libfuncs (le_optab, "le", '2');
5494 init_floating_libfuncs (unord_optab, "unord", '2');
5496 /* Conversions. */
5497 init_interclass_conv_libfuncs (sfloat_optab, "float", MODE_INT, MODE_FLOAT);
5498 init_interclass_conv_libfuncs (sfix_optab, "fix", MODE_FLOAT, MODE_INT);
5499 init_interclass_conv_libfuncs (ufix_optab, "fixuns", MODE_FLOAT, MODE_INT);
5501 /* sext_optab is also used for FLOAT_EXTEND. */
5502 init_intraclass_conv_libfuncs (sext_optab, "extend", MODE_FLOAT, true);
5503 init_intraclass_conv_libfuncs (trunc_optab, "trunc", MODE_FLOAT, false);
5505 /* Use cabs for double complex abs, since systems generally have cabs.
5506 Don't define any libcall for float complex, so that cabs will be used. */
5507 if (complex_double_type_node)
5508 abs_optab->handlers[TYPE_MODE (complex_double_type_node)].libfunc
5509 = init_one_libfunc ("cabs");
5511 /* The ffs function operates on `int'. */
5512 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
5513 = init_one_libfunc ("ffs");
5515 abort_libfunc = init_one_libfunc ("abort");
5516 memcpy_libfunc = init_one_libfunc ("memcpy");
5517 memmove_libfunc = init_one_libfunc ("memmove");
5518 memcmp_libfunc = init_one_libfunc ("memcmp");
5519 memset_libfunc = init_one_libfunc ("memset");
5520 setbits_libfunc = init_one_libfunc ("__setbits");
5522 unwind_resume_libfunc = init_one_libfunc (USING_SJLJ_EXCEPTIONS
5523 ? "_Unwind_SjLj_Resume"
5524 : "_Unwind_Resume");
5525 #ifndef DONT_USE_BUILTIN_SETJMP
5526 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
5527 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
5528 #else
5529 setjmp_libfunc = init_one_libfunc ("setjmp");
5530 longjmp_libfunc = init_one_libfunc ("longjmp");
5531 #endif
5532 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
5533 unwind_sjlj_unregister_libfunc
5534 = init_one_libfunc ("_Unwind_SjLj_Unregister");
5536 /* For function entry/exit instrumentation. */
5537 profile_function_entry_libfunc
5538 = init_one_libfunc ("__cyg_profile_func_enter");
5539 profile_function_exit_libfunc
5540 = init_one_libfunc ("__cyg_profile_func_exit");
5542 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
5544 if (HAVE_conditional_trap)
5545 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
5547 /* Allow the target to add more libcalls or rename some, etc. */
5548 targetm.init_libfuncs ();
5551 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5552 CODE. Return 0 on failure. */
5555 gen_cond_trap (enum rtx_code code ATTRIBUTE_UNUSED, rtx op1,
5556 rtx op2 ATTRIBUTE_UNUSED, rtx tcode ATTRIBUTE_UNUSED)
5558 enum machine_mode mode = GET_MODE (op1);
5559 enum insn_code icode;
5560 rtx insn;
5562 if (!HAVE_conditional_trap)
5563 return 0;
5565 if (mode == VOIDmode)
5566 return 0;
5568 icode = cmp_optab->handlers[(int) mode].insn_code;
5569 if (icode == CODE_FOR_nothing)
5570 return 0;
5572 start_sequence ();
5573 op1 = prepare_operand (icode, op1, 0, mode, mode, 0);
5574 op2 = prepare_operand (icode, op2, 1, mode, mode, 0);
5575 if (!op1 || !op2)
5577 end_sequence ();
5578 return 0;
5580 emit_insn (GEN_FCN (icode) (op1, op2));
5582 PUT_CODE (trap_rtx, code);
5583 insn = gen_conditional_trap (trap_rtx, tcode);
5584 if (insn)
5586 emit_insn (insn);
5587 insn = get_insns ();
5589 end_sequence ();
5591 return insn;
5594 #include "gt-optabs.h"