* gcc_update: libjava/configure.in -> configure.ac.
[official-gcc.git] / gcc / function.c
blob699a009ee039535f8b451b1e78671212cb5adace
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
63 #ifndef LOCAL_ALIGNMENT
64 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
65 #endif
67 #ifndef STACK_ALIGNMENT_NEEDED
68 #define STACK_ALIGNMENT_NEEDED 1
69 #endif
71 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
73 /* Some systems use __main in a way incompatible with its use in gcc, in these
74 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
75 give the same symbol without quotes for an alternative entry point. You
76 must define both, or neither. */
77 #ifndef NAME__MAIN
78 #define NAME__MAIN "__main"
79 #endif
81 /* Round a value to the lowest integer less than it that is a multiple of
82 the required alignment. Avoid using division in case the value is
83 negative. Assume the alignment is a power of two. */
84 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
86 /* Similar, but round to the next highest integer that meets the
87 alignment. */
88 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
90 /* Nonzero if function being compiled doesn't contain any calls
91 (ignoring the prologue and epilogue). This is set prior to
92 local register allocation and is valid for the remaining
93 compiler passes. */
94 int current_function_is_leaf;
96 /* Nonzero if function being compiled doesn't modify the stack pointer
97 (ignoring the prologue and epilogue). This is only valid after
98 life_analysis has run. */
99 int current_function_sp_is_unchanging;
101 /* Nonzero if the function being compiled is a leaf function which only
102 uses leaf registers. This is valid after reload (specifically after
103 sched2) and is useful only if the port defines LEAF_REGISTERS. */
104 int current_function_uses_only_leaf_regs;
106 /* Nonzero once virtual register instantiation has been done.
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.c:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110 int virtuals_instantiated;
112 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
113 static GTY(()) int funcdef_no;
115 /* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
117 struct machine_function * (*init_machine_status) (void);
119 /* The currently compiled function. */
120 struct function *cfun = 0;
122 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
123 static GTY(()) varray_type prologue;
124 static GTY(()) varray_type epilogue;
126 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
127 in this function. */
128 static GTY(()) varray_type sibcall_epilogue;
130 /* In order to evaluate some expressions, such as function calls returning
131 structures in memory, we need to temporarily allocate stack locations.
132 We record each allocated temporary in the following structure.
134 Associated with each temporary slot is a nesting level. When we pop up
135 one level, all temporaries associated with the previous level are freed.
136 Normally, all temporaries are freed after the execution of the statement
137 in which they were created. However, if we are inside a ({...}) grouping,
138 the result may be in a temporary and hence must be preserved. If the
139 result could be in a temporary, we preserve it if we can determine which
140 one it is in. If we cannot determine which temporary may contain the
141 result, all temporaries are preserved. A temporary is preserved by
142 pretending it was allocated at the previous nesting level.
144 Automatic variables are also assigned temporary slots, at the nesting
145 level where they are defined. They are marked a "kept" so that
146 free_temp_slots will not free them. */
148 struct temp_slot GTY(())
150 /* Points to next temporary slot. */
151 struct temp_slot *next;
152 /* Points to previous temporary slot. */
153 struct temp_slot *prev;
155 /* The rtx to used to reference the slot. */
156 rtx slot;
157 /* The rtx used to represent the address if not the address of the
158 slot above. May be an EXPR_LIST if multiple addresses exist. */
159 rtx address;
160 /* The alignment (in bits) of the slot. */
161 unsigned int align;
162 /* The size, in units, of the slot. */
163 HOST_WIDE_INT size;
164 /* The type of the object in the slot, or zero if it doesn't correspond
165 to a type. We use this to determine whether a slot can be reused.
166 It can be reused if objects of the type of the new slot will always
167 conflict with objects of the type of the old slot. */
168 tree type;
169 /* Nonzero if this temporary is currently in use. */
170 char in_use;
171 /* Nonzero if this temporary has its address taken. */
172 char addr_taken;
173 /* Nesting level at which this slot is being used. */
174 int level;
175 /* Nonzero if this should survive a call to free_temp_slots. */
176 int keep;
177 /* The offset of the slot from the frame_pointer, including extra space
178 for alignment. This info is for combine_temp_slots. */
179 HOST_WIDE_INT base_offset;
180 /* The size of the slot, including extra space for alignment. This
181 info is for combine_temp_slots. */
182 HOST_WIDE_INT full_size;
185 /* Forward declarations. */
187 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
188 struct function *);
189 static struct temp_slot *find_temp_slot_from_address (rtx);
190 static void instantiate_decls (tree, int);
191 static void instantiate_decls_1 (tree, int);
192 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
193 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
194 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
195 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
196 static void pad_below (struct args_size *, enum machine_mode, tree);
197 static void reorder_blocks_1 (rtx, tree, varray_type *);
198 static void reorder_fix_fragments (tree);
199 static int all_blocks (tree, tree *);
200 static tree *get_block_vector (tree, int *);
201 extern tree debug_find_var_in_block_tree (tree, tree);
202 /* We always define `record_insns' even if it's not used so that we
203 can always export `prologue_epilogue_contains'. */
204 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
205 static int contains (rtx, varray_type);
206 #ifdef HAVE_return
207 static void emit_return_into_block (basic_block, rtx);
208 #endif
209 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
210 static rtx keep_stack_depressed (rtx);
211 #endif
212 static void prepare_function_start (tree);
213 static void do_clobber_return_reg (rtx, void *);
214 static void do_use_return_reg (rtx, void *);
215 static void instantiate_virtual_regs_lossage (rtx);
216 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
218 /* Pointer to chain of `struct function' for containing functions. */
219 struct function *outer_function_chain;
221 /* Given a function decl for a containing function,
222 return the `struct function' for it. */
224 struct function *
225 find_function_data (tree decl)
227 struct function *p;
229 for (p = outer_function_chain; p; p = p->outer)
230 if (p->decl == decl)
231 return p;
233 abort ();
236 /* Save the current context for compilation of a nested function.
237 This is called from language-specific code. The caller should use
238 the enter_nested langhook to save any language-specific state,
239 since this function knows only about language-independent
240 variables. */
242 void
243 push_function_context_to (tree context)
245 struct function *p;
247 if (context)
249 if (context == current_function_decl)
250 cfun->contains_functions = 1;
251 else
253 struct function *containing = find_function_data (context);
254 containing->contains_functions = 1;
258 if (cfun == 0)
259 init_dummy_function_start ();
260 p = cfun;
262 p->outer = outer_function_chain;
263 outer_function_chain = p;
265 lang_hooks.function.enter_nested (p);
267 cfun = 0;
270 void
271 push_function_context (void)
273 push_function_context_to (current_function_decl);
276 /* Restore the last saved context, at the end of a nested function.
277 This function is called from language-specific code. */
279 void
280 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
282 struct function *p = outer_function_chain;
284 cfun = p;
285 outer_function_chain = p->outer;
287 current_function_decl = p->decl;
288 reg_renumber = 0;
290 restore_emit_status (p);
292 lang_hooks.function.leave_nested (p);
294 /* Reset variables that have known state during rtx generation. */
295 virtuals_instantiated = 0;
296 generating_concat_p = 1;
299 void
300 pop_function_context (void)
302 pop_function_context_from (current_function_decl);
305 /* Clear out all parts of the state in F that can safely be discarded
306 after the function has been parsed, but not compiled, to let
307 garbage collection reclaim the memory. */
309 void
310 free_after_parsing (struct function *f)
312 /* f->expr->forced_labels is used by code generation. */
313 /* f->emit->regno_reg_rtx is used by code generation. */
314 /* f->varasm is used by code generation. */
315 /* f->eh->eh_return_stub_label is used by code generation. */
317 lang_hooks.function.final (f);
318 f->stmt = NULL;
321 /* Clear out all parts of the state in F that can safely be discarded
322 after the function has been compiled, to let garbage collection
323 reclaim the memory. */
325 void
326 free_after_compilation (struct function *f)
328 f->eh = NULL;
329 f->expr = NULL;
330 f->emit = NULL;
331 f->varasm = NULL;
332 f->machine = NULL;
334 f->x_avail_temp_slots = NULL;
335 f->x_used_temp_slots = NULL;
336 f->arg_offset_rtx = NULL;
337 f->return_rtx = NULL;
338 f->internal_arg_pointer = NULL;
339 f->x_nonlocal_goto_handler_labels = NULL;
340 f->x_return_label = NULL;
341 f->x_naked_return_label = NULL;
342 f->x_stack_slot_list = NULL;
343 f->x_tail_recursion_reentry = NULL;
344 f->x_arg_pointer_save_area = NULL;
345 f->x_parm_birth_insn = NULL;
346 f->original_arg_vector = NULL;
347 f->original_decl_initial = NULL;
348 f->epilogue_delay_list = NULL;
351 /* Allocate fixed slots in the stack frame of the current function. */
353 /* Return size needed for stack frame based on slots so far allocated in
354 function F.
355 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
356 the caller may have to do that. */
358 HOST_WIDE_INT
359 get_func_frame_size (struct function *f)
361 #ifdef FRAME_GROWS_DOWNWARD
362 return -f->x_frame_offset;
363 #else
364 return f->x_frame_offset;
365 #endif
368 /* Return size needed for stack frame based on slots so far allocated.
369 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
370 the caller may have to do that. */
371 HOST_WIDE_INT
372 get_frame_size (void)
374 return get_func_frame_size (cfun);
377 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
378 with machine mode MODE.
380 ALIGN controls the amount of alignment for the address of the slot:
381 0 means according to MODE,
382 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
383 -2 means use BITS_PER_UNIT,
384 positive specifies alignment boundary in bits.
386 We do not round to stack_boundary here.
388 FUNCTION specifies the function to allocate in. */
390 static rtx
391 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
392 struct function *function)
394 rtx x, addr;
395 int bigend_correction = 0;
396 unsigned int alignment;
397 int frame_off, frame_alignment, frame_phase;
399 if (align == 0)
401 tree type;
403 if (mode == BLKmode)
404 alignment = BIGGEST_ALIGNMENT;
405 else
406 alignment = GET_MODE_ALIGNMENT (mode);
408 /* Allow the target to (possibly) increase the alignment of this
409 stack slot. */
410 type = lang_hooks.types.type_for_mode (mode, 0);
411 if (type)
412 alignment = LOCAL_ALIGNMENT (type, alignment);
414 alignment /= BITS_PER_UNIT;
416 else if (align == -1)
418 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
419 size = CEIL_ROUND (size, alignment);
421 else if (align == -2)
422 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
423 else
424 alignment = align / BITS_PER_UNIT;
426 #ifdef FRAME_GROWS_DOWNWARD
427 function->x_frame_offset -= size;
428 #endif
430 /* Ignore alignment we can't do with expected alignment of the boundary. */
431 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
432 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
434 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
435 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
437 /* Calculate how many bytes the start of local variables is off from
438 stack alignment. */
439 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
440 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
441 frame_phase = frame_off ? frame_alignment - frame_off : 0;
443 /* Round the frame offset to the specified alignment. The default is
444 to always honor requests to align the stack but a port may choose to
445 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
446 if (STACK_ALIGNMENT_NEEDED
447 || mode != BLKmode
448 || size != 0)
450 /* We must be careful here, since FRAME_OFFSET might be negative and
451 division with a negative dividend isn't as well defined as we might
452 like. So we instead assume that ALIGNMENT is a power of two and
453 use logical operations which are unambiguous. */
454 #ifdef FRAME_GROWS_DOWNWARD
455 function->x_frame_offset
456 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
457 (unsigned HOST_WIDE_INT) alignment)
458 + frame_phase);
459 #else
460 function->x_frame_offset
461 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
462 (unsigned HOST_WIDE_INT) alignment)
463 + frame_phase);
464 #endif
467 /* On a big-endian machine, if we are allocating more space than we will use,
468 use the least significant bytes of those that are allocated. */
469 if (BYTES_BIG_ENDIAN && mode != BLKmode)
470 bigend_correction = size - GET_MODE_SIZE (mode);
472 /* If we have already instantiated virtual registers, return the actual
473 address relative to the frame pointer. */
474 if (function == cfun && virtuals_instantiated)
475 addr = plus_constant (frame_pointer_rtx,
476 trunc_int_for_mode
477 (frame_offset + bigend_correction
478 + STARTING_FRAME_OFFSET, Pmode));
479 else
480 addr = plus_constant (virtual_stack_vars_rtx,
481 trunc_int_for_mode
482 (function->x_frame_offset + bigend_correction,
483 Pmode));
485 #ifndef FRAME_GROWS_DOWNWARD
486 function->x_frame_offset += size;
487 #endif
489 x = gen_rtx_MEM (mode, addr);
491 function->x_stack_slot_list
492 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
494 return x;
497 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
498 current function. */
501 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
503 return assign_stack_local_1 (mode, size, align, cfun);
507 /* Removes temporary slot TEMP from LIST. */
509 static void
510 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
512 if (temp->next)
513 temp->next->prev = temp->prev;
514 if (temp->prev)
515 temp->prev->next = temp->next;
516 else
517 *list = temp->next;
519 temp->prev = temp->next = NULL;
522 /* Inserts temporary slot TEMP to LIST. */
524 static void
525 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
527 temp->next = *list;
528 if (*list)
529 (*list)->prev = temp;
530 temp->prev = NULL;
531 *list = temp;
534 /* Returns the list of used temp slots at LEVEL. */
536 static struct temp_slot **
537 temp_slots_at_level (int level)
539 level++;
541 if (!used_temp_slots)
542 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
544 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
545 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
547 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
550 /* Returns the maximal temporary slot level. */
552 static int
553 max_slot_level (void)
555 if (!used_temp_slots)
556 return -1;
558 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
561 /* Moves temporary slot TEMP to LEVEL. */
563 static void
564 move_slot_to_level (struct temp_slot *temp, int level)
566 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
567 insert_slot_to_list (temp, temp_slots_at_level (level));
568 temp->level = level;
571 /* Make temporary slot TEMP available. */
573 static void
574 make_slot_available (struct temp_slot *temp)
576 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
577 insert_slot_to_list (temp, &avail_temp_slots);
578 temp->in_use = 0;
579 temp->level = -1;
582 /* Allocate a temporary stack slot and record it for possible later
583 reuse.
585 MODE is the machine mode to be given to the returned rtx.
587 SIZE is the size in units of the space required. We do no rounding here
588 since assign_stack_local will do any required rounding.
590 KEEP is 1 if this slot is to be retained after a call to
591 free_temp_slots. Automatic variables for a block are allocated
592 with this flag. KEEP is 2 if we allocate a longer term temporary,
593 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
594 if we are to allocate something at an inner level to be treated as
595 a variable in the block (e.g., a SAVE_EXPR).
597 TYPE is the type that will be used for the stack slot. */
600 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
601 tree type)
603 unsigned int align;
604 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
605 rtx slot;
607 /* If SIZE is -1 it means that somebody tried to allocate a temporary
608 of a variable size. */
609 if (size == -1)
610 abort ();
612 if (mode == BLKmode)
613 align = BIGGEST_ALIGNMENT;
614 else
615 align = GET_MODE_ALIGNMENT (mode);
617 if (! type)
618 type = lang_hooks.types.type_for_mode (mode, 0);
620 if (type)
621 align = LOCAL_ALIGNMENT (type, align);
623 /* Try to find an available, already-allocated temporary of the proper
624 mode which meets the size and alignment requirements. Choose the
625 smallest one with the closest alignment. */
626 for (p = avail_temp_slots; p; p = p->next)
628 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
629 && objects_must_conflict_p (p->type, type)
630 && (best_p == 0 || best_p->size > p->size
631 || (best_p->size == p->size && best_p->align > p->align)))
633 if (p->align == align && p->size == size)
635 selected = p;
636 cut_slot_from_list (selected, &avail_temp_slots);
637 best_p = 0;
638 break;
640 best_p = p;
644 /* Make our best, if any, the one to use. */
645 if (best_p)
647 selected = best_p;
648 cut_slot_from_list (selected, &avail_temp_slots);
650 /* If there are enough aligned bytes left over, make them into a new
651 temp_slot so that the extra bytes don't get wasted. Do this only
652 for BLKmode slots, so that we can be sure of the alignment. */
653 if (GET_MODE (best_p->slot) == BLKmode)
655 int alignment = best_p->align / BITS_PER_UNIT;
656 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
658 if (best_p->size - rounded_size >= alignment)
660 p = ggc_alloc (sizeof (struct temp_slot));
661 p->in_use = p->addr_taken = 0;
662 p->size = best_p->size - rounded_size;
663 p->base_offset = best_p->base_offset + rounded_size;
664 p->full_size = best_p->full_size - rounded_size;
665 p->slot = gen_rtx_MEM (BLKmode,
666 plus_constant (XEXP (best_p->slot, 0),
667 rounded_size));
668 p->align = best_p->align;
669 p->address = 0;
670 p->type = best_p->type;
671 insert_slot_to_list (p, &avail_temp_slots);
673 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
674 stack_slot_list);
676 best_p->size = rounded_size;
677 best_p->full_size = rounded_size;
682 /* If we still didn't find one, make a new temporary. */
683 if (selected == 0)
685 HOST_WIDE_INT frame_offset_old = frame_offset;
687 p = ggc_alloc (sizeof (struct temp_slot));
689 /* We are passing an explicit alignment request to assign_stack_local.
690 One side effect of that is assign_stack_local will not round SIZE
691 to ensure the frame offset remains suitably aligned.
693 So for requests which depended on the rounding of SIZE, we go ahead
694 and round it now. We also make sure ALIGNMENT is at least
695 BIGGEST_ALIGNMENT. */
696 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
697 abort ();
698 p->slot = assign_stack_local (mode,
699 (mode == BLKmode
700 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
701 : size),
702 align);
704 p->align = align;
706 /* The following slot size computation is necessary because we don't
707 know the actual size of the temporary slot until assign_stack_local
708 has performed all the frame alignment and size rounding for the
709 requested temporary. Note that extra space added for alignment
710 can be either above or below this stack slot depending on which
711 way the frame grows. We include the extra space if and only if it
712 is above this slot. */
713 #ifdef FRAME_GROWS_DOWNWARD
714 p->size = frame_offset_old - frame_offset;
715 #else
716 p->size = size;
717 #endif
719 /* Now define the fields used by combine_temp_slots. */
720 #ifdef FRAME_GROWS_DOWNWARD
721 p->base_offset = frame_offset;
722 p->full_size = frame_offset_old - frame_offset;
723 #else
724 p->base_offset = frame_offset_old;
725 p->full_size = frame_offset - frame_offset_old;
726 #endif
727 p->address = 0;
729 selected = p;
732 p = selected;
733 p->in_use = 1;
734 p->addr_taken = 0;
735 p->type = type;
737 if (keep == 2)
739 p->level = target_temp_slot_level;
740 p->keep = 1;
742 else if (keep == 3)
744 p->level = var_temp_slot_level;
745 p->keep = 0;
747 else
749 p->level = temp_slot_level;
750 p->keep = keep;
753 pp = temp_slots_at_level (p->level);
754 insert_slot_to_list (p, pp);
756 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
757 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
758 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
760 /* If we know the alias set for the memory that will be used, use
761 it. If there's no TYPE, then we don't know anything about the
762 alias set for the memory. */
763 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
764 set_mem_align (slot, align);
766 /* If a type is specified, set the relevant flags. */
767 if (type != 0)
769 RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
770 && TYPE_READONLY (type));
771 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
772 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
775 return slot;
778 /* Allocate a temporary stack slot and record it for possible later
779 reuse. First three arguments are same as in preceding function. */
782 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
784 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
787 /* Assign a temporary.
788 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
789 and so that should be used in error messages. In either case, we
790 allocate of the given type.
791 KEEP is as for assign_stack_temp.
792 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
793 it is 0 if a register is OK.
794 DONT_PROMOTE is 1 if we should not promote values in register
795 to wider modes. */
798 assign_temp (tree type_or_decl, int keep, int memory_required,
799 int dont_promote ATTRIBUTE_UNUSED)
801 tree type, decl;
802 enum machine_mode mode;
803 #ifdef PROMOTE_MODE
804 int unsignedp;
805 #endif
807 if (DECL_P (type_or_decl))
808 decl = type_or_decl, type = TREE_TYPE (decl);
809 else
810 decl = NULL, type = type_or_decl;
812 mode = TYPE_MODE (type);
813 #ifdef PROMOTE_MODE
814 unsignedp = TYPE_UNSIGNED (type);
815 #endif
817 if (mode == BLKmode || memory_required)
819 HOST_WIDE_INT size = int_size_in_bytes (type);
820 tree size_tree;
821 rtx tmp;
823 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
824 problems with allocating the stack space. */
825 if (size == 0)
826 size = 1;
828 /* Unfortunately, we don't yet know how to allocate variable-sized
829 temporaries. However, sometimes we have a fixed upper limit on
830 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
831 instead. This is the case for Chill variable-sized strings. */
832 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
833 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
834 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
835 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
837 /* If we still haven't been able to get a size, see if the language
838 can compute a maximum size. */
839 if (size == -1
840 && (size_tree = lang_hooks.types.max_size (type)) != 0
841 && host_integerp (size_tree, 1))
842 size = tree_low_cst (size_tree, 1);
844 /* The size of the temporary may be too large to fit into an integer. */
845 /* ??? Not sure this should happen except for user silliness, so limit
846 this to things that aren't compiler-generated temporaries. The
847 rest of the time we'll abort in assign_stack_temp_for_type. */
848 if (decl && size == -1
849 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
851 error ("%Jsize of variable '%D' is too large", decl, decl);
852 size = 1;
855 tmp = assign_stack_temp_for_type (mode, size, keep, type);
856 return tmp;
859 #ifdef PROMOTE_MODE
860 if (! dont_promote)
861 mode = promote_mode (type, mode, &unsignedp, 0);
862 #endif
864 return gen_reg_rtx (mode);
867 /* Combine temporary stack slots which are adjacent on the stack.
869 This allows for better use of already allocated stack space. This is only
870 done for BLKmode slots because we can be sure that we won't have alignment
871 problems in this case. */
873 void
874 combine_temp_slots (void)
876 struct temp_slot *p, *q, *next, *next_q;
877 int num_slots;
879 /* We can't combine slots, because the information about which slot
880 is in which alias set will be lost. */
881 if (flag_strict_aliasing)
882 return;
884 /* If there are a lot of temp slots, don't do anything unless
885 high levels of optimization. */
886 if (! flag_expensive_optimizations)
887 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
888 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
889 return;
891 for (p = avail_temp_slots; p; p = next)
893 int delete_p = 0;
895 next = p->next;
897 if (GET_MODE (p->slot) != BLKmode)
898 continue;
900 for (q = p->next; q; q = next_q)
902 int delete_q = 0;
904 next_q = q->next;
906 if (GET_MODE (q->slot) != BLKmode)
907 continue;
909 if (p->base_offset + p->full_size == q->base_offset)
911 /* Q comes after P; combine Q into P. */
912 p->size += q->size;
913 p->full_size += q->full_size;
914 delete_q = 1;
916 else if (q->base_offset + q->full_size == p->base_offset)
918 /* P comes after Q; combine P into Q. */
919 q->size += p->size;
920 q->full_size += p->full_size;
921 delete_p = 1;
922 break;
924 if (delete_q)
925 cut_slot_from_list (q, &avail_temp_slots);
928 /* Either delete P or advance past it. */
929 if (delete_p)
930 cut_slot_from_list (p, &avail_temp_slots);
934 /* Find the temp slot corresponding to the object at address X. */
936 static struct temp_slot *
937 find_temp_slot_from_address (rtx x)
939 struct temp_slot *p;
940 rtx next;
941 int i;
943 for (i = max_slot_level (); i >= 0; i--)
944 for (p = *temp_slots_at_level (i); p; p = p->next)
946 if (XEXP (p->slot, 0) == x
947 || p->address == x
948 || (GET_CODE (x) == PLUS
949 && XEXP (x, 0) == virtual_stack_vars_rtx
950 && GET_CODE (XEXP (x, 1)) == CONST_INT
951 && INTVAL (XEXP (x, 1)) >= p->base_offset
952 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
953 return p;
955 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
956 for (next = p->address; next; next = XEXP (next, 1))
957 if (XEXP (next, 0) == x)
958 return p;
961 /* If we have a sum involving a register, see if it points to a temp
962 slot. */
963 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
964 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
965 return p;
966 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
967 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
968 return p;
970 return 0;
973 /* Indicate that NEW is an alternate way of referring to the temp slot
974 that previously was known by OLD. */
976 void
977 update_temp_slot_address (rtx old, rtx new)
979 struct temp_slot *p;
981 if (rtx_equal_p (old, new))
982 return;
984 p = find_temp_slot_from_address (old);
986 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
987 is a register, see if one operand of the PLUS is a temporary
988 location. If so, NEW points into it. Otherwise, if both OLD and
989 NEW are a PLUS and if there is a register in common between them.
990 If so, try a recursive call on those values. */
991 if (p == 0)
993 if (GET_CODE (old) != PLUS)
994 return;
996 if (REG_P (new))
998 update_temp_slot_address (XEXP (old, 0), new);
999 update_temp_slot_address (XEXP (old, 1), new);
1000 return;
1002 else if (GET_CODE (new) != PLUS)
1003 return;
1005 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1006 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1007 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1008 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1009 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1010 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1011 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1012 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1014 return;
1017 /* Otherwise add an alias for the temp's address. */
1018 else if (p->address == 0)
1019 p->address = new;
1020 else
1022 if (GET_CODE (p->address) != EXPR_LIST)
1023 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1025 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1029 /* If X could be a reference to a temporary slot, mark the fact that its
1030 address was taken. */
1032 void
1033 mark_temp_addr_taken (rtx x)
1035 struct temp_slot *p;
1037 if (x == 0)
1038 return;
1040 /* If X is not in memory or is at a constant address, it cannot be in
1041 a temporary slot. */
1042 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1043 return;
1045 p = find_temp_slot_from_address (XEXP (x, 0));
1046 if (p != 0)
1047 p->addr_taken = 1;
1050 /* If X could be a reference to a temporary slot, mark that slot as
1051 belonging to the to one level higher than the current level. If X
1052 matched one of our slots, just mark that one. Otherwise, we can't
1053 easily predict which it is, so upgrade all of them. Kept slots
1054 need not be touched.
1056 This is called when an ({...}) construct occurs and a statement
1057 returns a value in memory. */
1059 void
1060 preserve_temp_slots (rtx x)
1062 struct temp_slot *p = 0, *next;
1064 /* If there is no result, we still might have some objects whose address
1065 were taken, so we need to make sure they stay around. */
1066 if (x == 0)
1068 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1070 next = p->next;
1072 if (p->addr_taken)
1073 move_slot_to_level (p, temp_slot_level - 1);
1076 return;
1079 /* If X is a register that is being used as a pointer, see if we have
1080 a temporary slot we know it points to. To be consistent with
1081 the code below, we really should preserve all non-kept slots
1082 if we can't find a match, but that seems to be much too costly. */
1083 if (REG_P (x) && REG_POINTER (x))
1084 p = find_temp_slot_from_address (x);
1086 /* If X is not in memory or is at a constant address, it cannot be in
1087 a temporary slot, but it can contain something whose address was
1088 taken. */
1089 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1091 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1093 next = p->next;
1095 if (p->addr_taken)
1096 move_slot_to_level (p, temp_slot_level - 1);
1099 return;
1102 /* First see if we can find a match. */
1103 if (p == 0)
1104 p = find_temp_slot_from_address (XEXP (x, 0));
1106 if (p != 0)
1108 /* Move everything at our level whose address was taken to our new
1109 level in case we used its address. */
1110 struct temp_slot *q;
1112 if (p->level == temp_slot_level)
1114 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1116 next = q->next;
1118 if (p != q && q->addr_taken)
1119 move_slot_to_level (q, temp_slot_level - 1);
1122 move_slot_to_level (p, temp_slot_level - 1);
1123 p->addr_taken = 0;
1125 return;
1128 /* Otherwise, preserve all non-kept slots at this level. */
1129 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1131 next = p->next;
1133 if (!p->keep)
1134 move_slot_to_level (p, temp_slot_level - 1);
1138 /* Free all temporaries used so far. This is normally called at the
1139 end of generating code for a statement. */
1141 void
1142 free_temp_slots (void)
1144 struct temp_slot *p, *next;
1146 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1148 next = p->next;
1150 if (!p->keep)
1151 make_slot_available (p);
1154 combine_temp_slots ();
1157 /* Push deeper into the nesting level for stack temporaries. */
1159 void
1160 push_temp_slots (void)
1162 temp_slot_level++;
1165 /* Pop a temporary nesting level. All slots in use in the current level
1166 are freed. */
1168 void
1169 pop_temp_slots (void)
1171 struct temp_slot *p, *next;
1173 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1175 next = p->next;
1176 make_slot_available (p);
1179 combine_temp_slots ();
1181 temp_slot_level--;
1184 /* Initialize temporary slots. */
1186 void
1187 init_temp_slots (void)
1189 /* We have not allocated any temporaries yet. */
1190 avail_temp_slots = 0;
1191 used_temp_slots = 0;
1192 temp_slot_level = 0;
1193 var_temp_slot_level = 0;
1194 target_temp_slot_level = 0;
1197 /* These routines are responsible for converting virtual register references
1198 to the actual hard register references once RTL generation is complete.
1200 The following four variables are used for communication between the
1201 routines. They contain the offsets of the virtual registers from their
1202 respective hard registers. */
1204 static int in_arg_offset;
1205 static int var_offset;
1206 static int dynamic_offset;
1207 static int out_arg_offset;
1208 static int cfa_offset;
1210 /* In most machines, the stack pointer register is equivalent to the bottom
1211 of the stack. */
1213 #ifndef STACK_POINTER_OFFSET
1214 #define STACK_POINTER_OFFSET 0
1215 #endif
1217 /* If not defined, pick an appropriate default for the offset of dynamically
1218 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1219 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1221 #ifndef STACK_DYNAMIC_OFFSET
1223 /* The bottom of the stack points to the actual arguments. If
1224 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1225 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1226 stack space for register parameters is not pushed by the caller, but
1227 rather part of the fixed stack areas and hence not included in
1228 `current_function_outgoing_args_size'. Nevertheless, we must allow
1229 for it when allocating stack dynamic objects. */
1231 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1232 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1233 ((ACCUMULATE_OUTGOING_ARGS \
1234 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1235 + (STACK_POINTER_OFFSET)) \
1237 #else
1238 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1239 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1240 + (STACK_POINTER_OFFSET))
1241 #endif
1242 #endif
1244 /* On most machines, the CFA coincides with the first incoming parm. */
1246 #ifndef ARG_POINTER_CFA_OFFSET
1247 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1248 #endif
1251 /* Pass through the INSNS of function FNDECL and convert virtual register
1252 references to hard register references. */
1254 void
1255 instantiate_virtual_regs (void)
1257 rtx insn;
1259 /* Compute the offsets to use for this function. */
1260 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1261 var_offset = STARTING_FRAME_OFFSET;
1262 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1263 out_arg_offset = STACK_POINTER_OFFSET;
1264 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1266 /* Scan all variables and parameters of this function. For each that is
1267 in memory, instantiate all virtual registers if the result is a valid
1268 address. If not, we do it later. That will handle most uses of virtual
1269 regs on many machines. */
1270 instantiate_decls (current_function_decl, 1);
1272 /* Initialize recognition, indicating that volatile is OK. */
1273 init_recog ();
1275 /* Scan through all the insns, instantiating every virtual register still
1276 present. */
1277 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1278 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1279 || GET_CODE (insn) == CALL_INSN)
1281 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
1282 if (INSN_DELETED_P (insn))
1283 continue;
1284 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
1285 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1286 if (GET_CODE (insn) == CALL_INSN)
1287 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
1288 NULL_RTX, 0);
1290 /* Past this point all ASM statements should match. Verify that
1291 to avoid failures later in the compilation process. */
1292 if (asm_noperands (PATTERN (insn)) >= 0
1293 && ! check_asm_operands (PATTERN (insn)))
1294 instantiate_virtual_regs_lossage (insn);
1297 /* Now instantiate the remaining register equivalences for debugging info.
1298 These will not be valid addresses. */
1299 instantiate_decls (current_function_decl, 0);
1301 /* Indicate that, from now on, assign_stack_local should use
1302 frame_pointer_rtx. */
1303 virtuals_instantiated = 1;
1306 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1307 all virtual registers in their DECL_RTL's.
1309 If VALID_ONLY, do this only if the resulting address is still valid.
1310 Otherwise, always do it. */
1312 static void
1313 instantiate_decls (tree fndecl, int valid_only)
1315 tree decl;
1317 /* Process all parameters of the function. */
1318 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1320 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
1321 HOST_WIDE_INT size_rtl;
1323 instantiate_decl (DECL_RTL (decl), size, valid_only);
1325 /* If the parameter was promoted, then the incoming RTL mode may be
1326 larger than the declared type size. We must use the larger of
1327 the two sizes. */
1328 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
1329 size = MAX (size_rtl, size);
1330 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
1333 /* Now process all variables defined in the function or its subblocks. */
1334 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
1337 /* Subroutine of instantiate_decls: Process all decls in the given
1338 BLOCK node and all its subblocks. */
1340 static void
1341 instantiate_decls_1 (tree let, int valid_only)
1343 tree t;
1345 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1346 if (DECL_RTL_SET_P (t))
1347 instantiate_decl (DECL_RTL (t),
1348 int_size_in_bytes (TREE_TYPE (t)),
1349 valid_only);
1351 /* Process all subblocks. */
1352 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1353 instantiate_decls_1 (t, valid_only);
1356 /* Subroutine of the preceding procedures: Given RTL representing a
1357 decl and the size of the object, do any instantiation required.
1359 If VALID_ONLY is nonzero, it means that the RTL should only be
1360 changed if the new address is valid. */
1362 static void
1363 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
1365 enum machine_mode mode;
1366 rtx addr;
1368 /* If this is not a MEM, no need to do anything. Similarly if the
1369 address is a constant or a register that is not a virtual register. */
1371 if (x == 0 || !MEM_P (x))
1372 return;
1374 addr = XEXP (x, 0);
1375 if (CONSTANT_P (addr)
1376 || (REG_P (addr)
1377 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1378 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1379 return;
1381 /* If we should only do this if the address is valid, copy the address.
1382 We need to do this so we can undo any changes that might make the
1383 address invalid. This copy is unfortunate, but probably can't be
1384 avoided. */
1386 if (valid_only)
1387 addr = copy_rtx (addr);
1389 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
1391 if (valid_only && size >= 0)
1393 unsigned HOST_WIDE_INT decl_size = size;
1395 /* Now verify that the resulting address is valid for every integer or
1396 floating-point mode up to and including SIZE bytes long. We do this
1397 since the object might be accessed in any mode and frame addresses
1398 are shared. */
1400 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1401 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1402 mode = GET_MODE_WIDER_MODE (mode))
1403 if (! memory_address_p (mode, addr))
1404 return;
1406 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
1407 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1408 mode = GET_MODE_WIDER_MODE (mode))
1409 if (! memory_address_p (mode, addr))
1410 return;
1413 /* Put back the address now that we have updated it and we either know
1414 it is valid or we don't care whether it is valid. */
1416 XEXP (x, 0) = addr;
1419 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1420 is a virtual register, return the equivalent hard register and set the
1421 offset indirectly through the pointer. Otherwise, return 0. */
1423 static rtx
1424 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1426 rtx new;
1427 HOST_WIDE_INT offset;
1429 if (x == virtual_incoming_args_rtx)
1430 new = arg_pointer_rtx, offset = in_arg_offset;
1431 else if (x == virtual_stack_vars_rtx)
1432 new = frame_pointer_rtx, offset = var_offset;
1433 else if (x == virtual_stack_dynamic_rtx)
1434 new = stack_pointer_rtx, offset = dynamic_offset;
1435 else if (x == virtual_outgoing_args_rtx)
1436 new = stack_pointer_rtx, offset = out_arg_offset;
1437 else if (x == virtual_cfa_rtx)
1438 new = arg_pointer_rtx, offset = cfa_offset;
1439 else
1440 return 0;
1442 *poffset = offset;
1443 return new;
1447 /* Called when instantiate_virtual_regs has failed to update the instruction.
1448 Usually this means that non-matching instruction has been emit, however for
1449 asm statements it may be the problem in the constraints. */
1450 static void
1451 instantiate_virtual_regs_lossage (rtx insn)
1453 if (asm_noperands (PATTERN (insn)) >= 0)
1455 error_for_asm (insn, "impossible constraint in `asm'");
1456 delete_insn (insn);
1458 else
1459 abort ();
1461 /* Given a pointer to a piece of rtx and an optional pointer to the
1462 containing object, instantiate any virtual registers present in it.
1464 If EXTRA_INSNS, we always do the replacement and generate
1465 any extra insns before OBJECT. If it zero, we do nothing if replacement
1466 is not valid.
1468 Return 1 if we either had nothing to do or if we were able to do the
1469 needed replacement. Return 0 otherwise; we only return zero if
1470 EXTRA_INSNS is zero.
1472 We first try some simple transformations to avoid the creation of extra
1473 pseudos. */
1475 static int
1476 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
1478 rtx x;
1479 RTX_CODE code;
1480 rtx new = 0;
1481 HOST_WIDE_INT offset = 0;
1482 rtx temp;
1483 rtx seq;
1484 int i, j;
1485 const char *fmt;
1487 /* Re-start here to avoid recursion in common cases. */
1488 restart:
1490 x = *loc;
1491 if (x == 0)
1492 return 1;
1494 /* We may have detected and deleted invalid asm statements. */
1495 if (object && INSN_P (object) && INSN_DELETED_P (object))
1496 return 1;
1498 code = GET_CODE (x);
1500 /* Check for some special cases. */
1501 switch (code)
1503 case CONST_INT:
1504 case CONST_DOUBLE:
1505 case CONST_VECTOR:
1506 case CONST:
1507 case SYMBOL_REF:
1508 case CODE_LABEL:
1509 case PC:
1510 case CC0:
1511 case ASM_INPUT:
1512 case ADDR_VEC:
1513 case ADDR_DIFF_VEC:
1514 case RETURN:
1515 return 1;
1517 case SET:
1518 /* We are allowed to set the virtual registers. This means that
1519 the actual register should receive the source minus the
1520 appropriate offset. This is used, for example, in the handling
1521 of non-local gotos. */
1522 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
1524 rtx src = SET_SRC (x);
1526 /* We are setting the register, not using it, so the relevant
1527 offset is the negative of the offset to use were we using
1528 the register. */
1529 offset = - offset;
1530 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
1532 /* The only valid sources here are PLUS or REG. Just do
1533 the simplest possible thing to handle them. */
1534 if (!REG_P (src) && GET_CODE (src) != PLUS)
1536 instantiate_virtual_regs_lossage (object);
1537 return 1;
1540 start_sequence ();
1541 if (!REG_P (src))
1542 temp = force_operand (src, NULL_RTX);
1543 else
1544 temp = src;
1545 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
1546 seq = get_insns ();
1547 end_sequence ();
1549 emit_insn_before (seq, object);
1550 SET_DEST (x) = new;
1552 if (! validate_change (object, &SET_SRC (x), temp, 0)
1553 || ! extra_insns)
1554 instantiate_virtual_regs_lossage (object);
1556 return 1;
1559 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
1560 loc = &SET_SRC (x);
1561 goto restart;
1563 case PLUS:
1564 /* Handle special case of virtual register plus constant. */
1565 if (CONSTANT_P (XEXP (x, 1)))
1567 rtx old, new_offset;
1569 /* Check for (plus (plus VIRT foo) (const_int)) first. */
1570 if (GET_CODE (XEXP (x, 0)) == PLUS)
1572 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
1574 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
1575 extra_insns);
1576 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
1578 else
1580 loc = &XEXP (x, 0);
1581 goto restart;
1585 #ifdef POINTERS_EXTEND_UNSIGNED
1586 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1587 we can commute the PLUS and SUBREG because pointers into the
1588 frame are well-behaved. */
1589 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
1590 && GET_CODE (XEXP (x, 1)) == CONST_INT
1591 && 0 != (new
1592 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
1593 &offset))
1594 && validate_change (object, loc,
1595 plus_constant (gen_lowpart (ptr_mode,
1596 new),
1597 offset
1598 + INTVAL (XEXP (x, 1))),
1600 return 1;
1601 #endif
1602 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
1604 /* We know the second operand is a constant. Unless the
1605 first operand is a REG (which has been already checked),
1606 it needs to be checked. */
1607 if (!REG_P (XEXP (x, 0)))
1609 loc = &XEXP (x, 0);
1610 goto restart;
1612 return 1;
1615 new_offset = plus_constant (XEXP (x, 1), offset);
1617 /* If the new constant is zero, try to replace the sum with just
1618 the register. */
1619 if (new_offset == const0_rtx
1620 && validate_change (object, loc, new, 0))
1621 return 1;
1623 /* Next try to replace the register and new offset.
1624 There are two changes to validate here and we can't assume that
1625 in the case of old offset equals new just changing the register
1626 will yield a valid insn. In the interests of a little efficiency,
1627 however, we only call validate change once (we don't queue up the
1628 changes and then call apply_change_group). */
1630 old = XEXP (x, 0);
1631 if (offset == 0
1632 ? ! validate_change (object, &XEXP (x, 0), new, 0)
1633 : (XEXP (x, 0) = new,
1634 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
1636 if (! extra_insns)
1638 XEXP (x, 0) = old;
1639 return 0;
1642 /* Otherwise copy the new constant into a register and replace
1643 constant with that register. */
1644 temp = gen_reg_rtx (Pmode);
1645 XEXP (x, 0) = new;
1646 if (validate_change (object, &XEXP (x, 1), temp, 0))
1647 emit_insn_before (gen_move_insn (temp, new_offset), object);
1648 else
1650 /* If that didn't work, replace this expression with a
1651 register containing the sum. */
1653 XEXP (x, 0) = old;
1654 new = gen_rtx_PLUS (Pmode, new, new_offset);
1656 start_sequence ();
1657 temp = force_operand (new, NULL_RTX);
1658 seq = get_insns ();
1659 end_sequence ();
1661 emit_insn_before (seq, object);
1662 if (! validate_change (object, loc, temp, 0)
1663 && ! validate_replace_rtx (x, temp, object))
1665 instantiate_virtual_regs_lossage (object);
1666 return 1;
1671 return 1;
1674 /* Fall through to generic two-operand expression case. */
1675 case EXPR_LIST:
1676 case CALL:
1677 case COMPARE:
1678 case MINUS:
1679 case MULT:
1680 case DIV: case UDIV:
1681 case MOD: case UMOD:
1682 case AND: case IOR: case XOR:
1683 case ROTATERT: case ROTATE:
1684 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
1685 case NE: case EQ:
1686 case GE: case GT: case GEU: case GTU:
1687 case LE: case LT: case LEU: case LTU:
1688 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
1689 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
1690 loc = &XEXP (x, 0);
1691 goto restart;
1693 case MEM:
1694 /* Most cases of MEM that convert to valid addresses have already been
1695 handled by our scan of decls. The only special handling we
1696 need here is to make a copy of the rtx to ensure it isn't being
1697 shared if we have to change it to a pseudo.
1699 If the rtx is a simple reference to an address via a virtual register,
1700 it can potentially be shared. In such cases, first try to make it
1701 a valid address, which can also be shared. Otherwise, copy it and
1702 proceed normally.
1704 First check for common cases that need no processing. These are
1705 usually due to instantiation already being done on a previous instance
1706 of a shared rtx. */
1708 temp = XEXP (x, 0);
1709 if (CONSTANT_ADDRESS_P (temp)
1710 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1711 || temp == arg_pointer_rtx
1712 #endif
1713 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1714 || temp == hard_frame_pointer_rtx
1715 #endif
1716 || temp == frame_pointer_rtx)
1717 return 1;
1719 if (GET_CODE (temp) == PLUS
1720 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1721 && (XEXP (temp, 0) == frame_pointer_rtx
1722 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1723 || XEXP (temp, 0) == hard_frame_pointer_rtx
1724 #endif
1725 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1726 || XEXP (temp, 0) == arg_pointer_rtx
1727 #endif
1729 return 1;
1731 if (temp == virtual_stack_vars_rtx
1732 || temp == virtual_incoming_args_rtx
1733 || (GET_CODE (temp) == PLUS
1734 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1735 && (XEXP (temp, 0) == virtual_stack_vars_rtx
1736 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
1738 /* This MEM may be shared. If the substitution can be done without
1739 the need to generate new pseudos, we want to do it in place
1740 so all copies of the shared rtx benefit. The call below will
1741 only make substitutions if the resulting address is still
1742 valid.
1744 Note that we cannot pass X as the object in the recursive call
1745 since the insn being processed may not allow all valid
1746 addresses. However, if we were not passed on object, we can
1747 only modify X without copying it if X will have a valid
1748 address.
1750 ??? Also note that this can still lose if OBJECT is an insn that
1751 has less restrictions on an address that some other insn.
1752 In that case, we will modify the shared address. This case
1753 doesn't seem very likely, though. One case where this could
1754 happen is in the case of a USE or CLOBBER reference, but we
1755 take care of that below. */
1757 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
1758 object ? object : x, 0))
1759 return 1;
1761 /* Otherwise make a copy and process that copy. We copy the entire
1762 RTL expression since it might be a PLUS which could also be
1763 shared. */
1764 *loc = x = copy_rtx (x);
1767 /* Fall through to generic unary operation case. */
1768 case PREFETCH:
1769 case SUBREG:
1770 case STRICT_LOW_PART:
1771 case NEG: case NOT:
1772 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
1773 case SIGN_EXTEND: case ZERO_EXTEND:
1774 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
1775 case FLOAT: case FIX:
1776 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
1777 case ABS:
1778 case SQRT:
1779 case FFS:
1780 case CLZ: case CTZ:
1781 case POPCOUNT: case PARITY:
1782 /* These case either have just one operand or we know that we need not
1783 check the rest of the operands. */
1784 loc = &XEXP (x, 0);
1785 goto restart;
1787 case USE:
1788 case CLOBBER:
1789 /* If the operand is a MEM, see if the change is a valid MEM. If not,
1790 go ahead and make the invalid one, but do it to a copy. For a REG,
1791 just make the recursive call, since there's no chance of a problem. */
1793 if ((MEM_P (XEXP (x, 0))
1794 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
1796 || (REG_P (XEXP (x, 0))
1797 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
1798 return 1;
1800 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
1801 loc = &XEXP (x, 0);
1802 goto restart;
1804 case REG:
1805 /* Try to replace with a PLUS. If that doesn't work, compute the sum
1806 in front of this insn and substitute the temporary. */
1807 if ((new = instantiate_new_reg (x, &offset)) != 0)
1809 temp = plus_constant (new, offset);
1810 if (!validate_change (object, loc, temp, 0))
1812 if (! extra_insns)
1813 return 0;
1815 start_sequence ();
1816 temp = force_operand (temp, NULL_RTX);
1817 seq = get_insns ();
1818 end_sequence ();
1820 emit_insn_before (seq, object);
1821 if (! validate_change (object, loc, temp, 0)
1822 && ! validate_replace_rtx (x, temp, object))
1823 instantiate_virtual_regs_lossage (object);
1827 return 1;
1829 default:
1830 break;
1833 /* Scan all subexpressions. */
1834 fmt = GET_RTX_FORMAT (code);
1835 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1836 if (*fmt == 'e')
1838 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
1839 return 0;
1841 else if (*fmt == 'E')
1842 for (j = 0; j < XVECLEN (x, i); j++)
1843 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
1844 extra_insns))
1845 return 0;
1847 return 1;
1850 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1851 This means a type for which function calls must pass an address to the
1852 function or get an address back from the function.
1853 EXP may be a type node or an expression (whose type is tested). */
1856 aggregate_value_p (tree exp, tree fntype)
1858 int i, regno, nregs;
1859 rtx reg;
1861 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1863 if (fntype)
1864 switch (TREE_CODE (fntype))
1866 case CALL_EXPR:
1867 fntype = get_callee_fndecl (fntype);
1868 fntype = fntype ? TREE_TYPE (fntype) : 0;
1869 break;
1870 case FUNCTION_DECL:
1871 fntype = TREE_TYPE (fntype);
1872 break;
1873 case FUNCTION_TYPE:
1874 case METHOD_TYPE:
1875 break;
1876 case IDENTIFIER_NODE:
1877 fntype = 0;
1878 break;
1879 default:
1880 /* We don't expect other rtl types here. */
1881 abort();
1884 if (TREE_CODE (type) == VOID_TYPE)
1885 return 0;
1886 if (targetm.calls.return_in_memory (type, fntype))
1887 return 1;
1888 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1889 and thus can't be returned in registers. */
1890 if (TREE_ADDRESSABLE (type))
1891 return 1;
1892 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1893 return 1;
1894 /* Make sure we have suitable call-clobbered regs to return
1895 the value in; if not, we must return it in memory. */
1896 reg = hard_function_value (type, 0, 0);
1898 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1899 it is OK. */
1900 if (!REG_P (reg))
1901 return 0;
1903 regno = REGNO (reg);
1904 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1905 for (i = 0; i < nregs; i++)
1906 if (! call_used_regs[regno + i])
1907 return 1;
1908 return 0;
1911 /* Return true if we should assign DECL a pseudo register; false if it
1912 should live on the local stack. */
1914 bool
1915 use_register_for_decl (tree decl)
1917 /* Honor volatile. */
1918 if (TREE_SIDE_EFFECTS (decl))
1919 return false;
1921 /* Honor addressability. */
1922 if (TREE_ADDRESSABLE (decl))
1923 return false;
1925 /* Only register-like things go in registers. */
1926 if (DECL_MODE (decl) == BLKmode)
1927 return false;
1929 /* If -ffloat-store specified, don't put explicit float variables
1930 into registers. */
1931 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1932 propagates values across these stores, and it probably shouldn't. */
1933 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1934 return false;
1936 /* Compiler-generated temporaries can always go in registers. */
1937 if (DECL_ARTIFICIAL (decl))
1938 return true;
1940 #ifdef NON_SAVING_SETJMP
1941 /* Protect variables not declared "register" from setjmp. */
1942 if (NON_SAVING_SETJMP
1943 && current_function_calls_setjmp
1944 && !DECL_REGISTER (decl))
1945 return false;
1946 #endif
1948 return (optimize || DECL_REGISTER (decl));
1951 /* Return true if TYPE should be passed by invisible reference. */
1953 bool
1954 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1955 tree type, bool named_arg)
1957 if (type)
1959 /* If this type contains non-trivial constructors, then it is
1960 forbidden for the middle-end to create any new copies. */
1961 if (TREE_ADDRESSABLE (type))
1962 return true;
1964 /* GCC post 3.4 passes *all* variable sized types by reference. */
1965 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1966 return true;
1969 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1972 /* Structures to communicate between the subroutines of assign_parms.
1973 The first holds data persistent across all parameters, the second
1974 is cleared out for each parameter. */
1976 struct assign_parm_data_all
1978 CUMULATIVE_ARGS args_so_far;
1979 struct args_size stack_args_size;
1980 tree function_result_decl;
1981 tree orig_fnargs;
1982 rtx conversion_insns;
1983 HOST_WIDE_INT pretend_args_size;
1984 HOST_WIDE_INT extra_pretend_bytes;
1985 int reg_parm_stack_space;
1988 struct assign_parm_data_one
1990 tree nominal_type;
1991 tree passed_type;
1992 rtx entry_parm;
1993 rtx stack_parm;
1994 enum machine_mode nominal_mode;
1995 enum machine_mode passed_mode;
1996 enum machine_mode promoted_mode;
1997 struct locate_and_pad_arg_data locate;
1998 int partial;
1999 BOOL_BITFIELD named_arg : 1;
2000 BOOL_BITFIELD last_named : 1;
2001 BOOL_BITFIELD passed_pointer : 1;
2002 BOOL_BITFIELD on_stack : 1;
2003 BOOL_BITFIELD loaded_in_reg : 1;
2006 /* A subroutine of assign_parms. Initialize ALL. */
2008 static void
2009 assign_parms_initialize_all (struct assign_parm_data_all *all)
2011 tree fntype;
2013 memset (all, 0, sizeof (*all));
2015 fntype = TREE_TYPE (current_function_decl);
2017 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2018 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2019 #else
2020 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2021 current_function_decl, -1);
2022 #endif
2024 #ifdef REG_PARM_STACK_SPACE
2025 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2026 #endif
2029 /* If ARGS contains entries with complex types, split the entry into two
2030 entries of the component type. Return a new list of substitutions are
2031 needed, else the old list. */
2033 static tree
2034 split_complex_args (tree args)
2036 tree p;
2038 /* Before allocating memory, check for the common case of no complex. */
2039 for (p = args; p; p = TREE_CHAIN (p))
2041 tree type = TREE_TYPE (p);
2042 if (TREE_CODE (type) == COMPLEX_TYPE
2043 && targetm.calls.split_complex_arg (type))
2044 goto found;
2046 return args;
2048 found:
2049 args = copy_list (args);
2051 for (p = args; p; p = TREE_CHAIN (p))
2053 tree type = TREE_TYPE (p);
2054 if (TREE_CODE (type) == COMPLEX_TYPE
2055 && targetm.calls.split_complex_arg (type))
2057 tree decl;
2058 tree subtype = TREE_TYPE (type);
2060 /* Rewrite the PARM_DECL's type with its component. */
2061 TREE_TYPE (p) = subtype;
2062 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2063 DECL_MODE (p) = VOIDmode;
2064 DECL_SIZE (p) = NULL;
2065 DECL_SIZE_UNIT (p) = NULL;
2066 layout_decl (p, 0);
2068 /* Build a second synthetic decl. */
2069 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2070 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2071 layout_decl (decl, 0);
2073 /* Splice it in; skip the new decl. */
2074 TREE_CHAIN (decl) = TREE_CHAIN (p);
2075 TREE_CHAIN (p) = decl;
2076 p = decl;
2080 return args;
2083 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2084 the hidden struct return argument, and (abi willing) complex args.
2085 Return the new parameter list. */
2087 static tree
2088 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2090 tree fndecl = current_function_decl;
2091 tree fntype = TREE_TYPE (fndecl);
2092 tree fnargs = DECL_ARGUMENTS (fndecl);
2094 /* If struct value address is treated as the first argument, make it so. */
2095 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2096 && ! current_function_returns_pcc_struct
2097 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2099 tree type = build_pointer_type (TREE_TYPE (fntype));
2100 tree decl;
2102 decl = build_decl (PARM_DECL, NULL_TREE, type);
2103 DECL_ARG_TYPE (decl) = type;
2104 DECL_ARTIFICIAL (decl) = 1;
2106 TREE_CHAIN (decl) = fnargs;
2107 fnargs = decl;
2108 all->function_result_decl = decl;
2111 all->orig_fnargs = fnargs;
2113 /* If the target wants to split complex arguments into scalars, do so. */
2114 if (targetm.calls.split_complex_arg)
2115 fnargs = split_complex_args (fnargs);
2117 return fnargs;
2120 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2121 data for the parameter. Incorporate ABI specifics such as pass-by-
2122 reference and type promotion. */
2124 static void
2125 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2126 struct assign_parm_data_one *data)
2128 tree nominal_type, passed_type;
2129 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2131 memset (data, 0, sizeof (*data));
2133 /* Set LAST_NAMED if this is last named arg before last anonymous args. */
2134 if (current_function_stdarg)
2136 tree tem;
2137 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
2138 if (DECL_NAME (tem))
2139 break;
2140 if (tem == 0)
2141 data->last_named = true;
2144 /* Set NAMED_ARG if this arg should be treated as a named arg. For
2145 most machines, if this is a varargs/stdarg function, then we treat
2146 the last named arg as if it were anonymous too. */
2147 if (targetm.calls.strict_argument_naming (&all->args_so_far))
2148 data->named_arg = 1;
2149 else
2150 data->named_arg = !data->last_named;
2152 nominal_type = TREE_TYPE (parm);
2153 passed_type = DECL_ARG_TYPE (parm);
2155 /* Look out for errors propagating this far. Also, if the parameter's
2156 type is void then its value doesn't matter. */
2157 if (TREE_TYPE (parm) == error_mark_node
2158 /* This can happen after weird syntax errors
2159 or if an enum type is defined among the parms. */
2160 || TREE_CODE (parm) != PARM_DECL
2161 || passed_type == NULL
2162 || VOID_TYPE_P (nominal_type))
2164 nominal_type = passed_type = void_type_node;
2165 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2166 goto egress;
2169 /* Find mode of arg as it is passed, and mode of arg as it should be
2170 during execution of this function. */
2171 passed_mode = TYPE_MODE (passed_type);
2172 nominal_mode = TYPE_MODE (nominal_type);
2174 /* If the parm is to be passed as a transparent union, use the type of
2175 the first field for the tests below. We have already verified that
2176 the modes are the same. */
2177 if (DECL_TRANSPARENT_UNION (parm)
2178 || (TREE_CODE (passed_type) == UNION_TYPE
2179 && TYPE_TRANSPARENT_UNION (passed_type)))
2180 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2182 /* See if this arg was passed by invisible reference. */
2183 if (pass_by_reference (&all->args_so_far, passed_mode,
2184 passed_type, data->named_arg))
2186 passed_type = nominal_type = build_pointer_type (passed_type);
2187 data->passed_pointer = true;
2188 passed_mode = nominal_mode = Pmode;
2190 /* See if the frontend wants to pass this by invisible reference. */
2191 else if (passed_type != nominal_type
2192 && POINTER_TYPE_P (passed_type)
2193 && TREE_TYPE (passed_type) == nominal_type)
2195 nominal_type = passed_type;
2196 data->passed_pointer = 1;
2197 passed_mode = nominal_mode = Pmode;
2200 /* Find mode as it is passed by the ABI. */
2201 promoted_mode = passed_mode;
2202 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2204 int unsignedp = TYPE_UNSIGNED (passed_type);
2205 promoted_mode = promote_mode (passed_type, promoted_mode,
2206 &unsignedp, 1);
2209 egress:
2210 data->nominal_type = nominal_type;
2211 data->passed_type = passed_type;
2212 data->nominal_mode = nominal_mode;
2213 data->passed_mode = passed_mode;
2214 data->promoted_mode = promoted_mode;
2217 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2219 static void
2220 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2221 struct assign_parm_data_one *data, bool no_rtl)
2223 int varargs_pretend_bytes = 0;
2225 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2226 data->promoted_mode,
2227 data->passed_type,
2228 &varargs_pretend_bytes, no_rtl);
2230 /* If the back-end has requested extra stack space, record how much is
2231 needed. Do not change pretend_args_size otherwise since it may be
2232 nonzero from an earlier partial argument. */
2233 if (varargs_pretend_bytes > 0)
2234 all->pretend_args_size = varargs_pretend_bytes;
2237 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2238 the incoming location of the current parameter. */
2240 static void
2241 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2242 struct assign_parm_data_one *data)
2244 HOST_WIDE_INT pretend_bytes = 0;
2245 rtx entry_parm;
2246 bool in_regs;
2248 if (data->promoted_mode == VOIDmode)
2250 data->entry_parm = data->stack_parm = const0_rtx;
2251 return;
2254 #ifdef FUNCTION_INCOMING_ARG
2255 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2256 data->passed_type, data->named_arg);
2257 #else
2258 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2259 data->passed_type, data->named_arg);
2260 #endif
2262 if (entry_parm == 0)
2263 data->promoted_mode = data->passed_mode;
2265 /* Determine parm's home in the stack, in case it arrives in the stack
2266 or we should pretend it did. Compute the stack position and rtx where
2267 the argument arrives and its size.
2269 There is one complexity here: If this was a parameter that would
2270 have been passed in registers, but wasn't only because it is
2271 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2272 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2273 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2274 as it was the previous time. */
2275 in_regs = entry_parm != 0;
2276 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2277 in_regs = true;
2278 #endif
2279 if (!in_regs && !data->named_arg)
2281 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2283 rtx tem;
2284 #ifdef FUNCTION_INCOMING_ARG
2285 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2286 data->passed_type, true);
2287 #else
2288 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2289 data->passed_type, true);
2290 #endif
2291 in_regs = tem != NULL;
2295 /* If this parameter was passed both in registers and in the stack, use
2296 the copy on the stack. */
2297 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2298 data->passed_type))
2299 entry_parm = 0;
2301 if (entry_parm)
2303 int partial;
2305 partial = FUNCTION_ARG_PARTIAL_NREGS (all->args_so_far,
2306 data->promoted_mode,
2307 data->passed_type,
2308 data->named_arg);
2309 data->partial = partial;
2311 /* The caller might already have allocated stack space for the
2312 register parameters. */
2313 if (partial != 0 && all->reg_parm_stack_space == 0)
2315 /* Part of this argument is passed in registers and part
2316 is passed on the stack. Ask the prologue code to extend
2317 the stack part so that we can recreate the full value.
2319 PRETEND_BYTES is the size of the registers we need to store.
2320 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2321 stack space that the prologue should allocate.
2323 Internally, gcc assumes that the argument pointer is aligned
2324 to STACK_BOUNDARY bits. This is used both for alignment
2325 optimizations (see init_emit) and to locate arguments that are
2326 aligned to more than PARM_BOUNDARY bits. We must preserve this
2327 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2328 a stack boundary. */
2330 /* We assume at most one partial arg, and it must be the first
2331 argument on the stack. */
2332 if (all->extra_pretend_bytes || all->pretend_args_size)
2333 abort ();
2335 pretend_bytes = partial * UNITS_PER_WORD;
2336 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2338 /* We want to align relative to the actual stack pointer, so
2339 don't include this in the stack size until later. */
2340 all->extra_pretend_bytes = all->pretend_args_size;
2344 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2345 entry_parm ? data->partial : 0, current_function_decl,
2346 &all->stack_args_size, &data->locate);
2348 /* Adjust offsets to include the pretend args. */
2349 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2350 data->locate.slot_offset.constant += pretend_bytes;
2351 data->locate.offset.constant += pretend_bytes;
2353 data->entry_parm = entry_parm;
2356 /* A subroutine of assign_parms. If there is actually space on the stack
2357 for this parm, count it in stack_args_size and return true. */
2359 static bool
2360 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2361 struct assign_parm_data_one *data)
2363 /* Trivially true if we've no incomming register. */
2364 if (data->entry_parm == NULL)
2366 /* Also true if we're partially in registers and partially not,
2367 since we've arranged to drop the entire argument on the stack. */
2368 else if (data->partial != 0)
2370 /* Also true if the target says that it's passed in both registers
2371 and on the stack. */
2372 else if (GET_CODE (data->entry_parm) == PARALLEL
2373 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2375 /* Also true if the target says that there's stack allocated for
2376 all register parameters. */
2377 else if (all->reg_parm_stack_space > 0)
2379 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2380 else
2381 return false;
2383 all->stack_args_size.constant += data->locate.size.constant;
2384 if (data->locate.size.var)
2385 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2387 return true;
2390 /* A subroutine of assign_parms. Given that this parameter is allocated
2391 stack space by the ABI, find it. */
2393 static void
2394 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2396 rtx offset_rtx, stack_parm;
2397 unsigned int align, boundary;
2399 /* If we're passing this arg using a reg, make its stack home the
2400 aligned stack slot. */
2401 if (data->entry_parm)
2402 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2403 else
2404 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2406 stack_parm = current_function_internal_arg_pointer;
2407 if (offset_rtx != const0_rtx)
2408 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2409 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2411 set_mem_attributes (stack_parm, parm, 1);
2413 boundary = FUNCTION_ARG_BOUNDARY (data->promoted_mode, data->passed_type);
2414 align = 0;
2416 /* If we're padding upward, we know that the alignment of the slot
2417 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2418 intentionally forcing upward padding. Otherwise we have to come
2419 up with a guess at the alignment based on OFFSET_RTX. */
2420 if (data->locate.where_pad == upward || data->entry_parm)
2421 align = boundary;
2422 else if (GET_CODE (offset_rtx) == CONST_INT)
2424 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2425 align = align & -align;
2427 if (align > 0)
2428 set_mem_align (stack_parm, align);
2430 if (data->entry_parm)
2431 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2433 data->stack_parm = stack_parm;
2436 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2437 always valid and contiguous. */
2439 static void
2440 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2442 rtx entry_parm = data->entry_parm;
2443 rtx stack_parm = data->stack_parm;
2445 /* If this parm was passed part in regs and part in memory, pretend it
2446 arrived entirely in memory by pushing the register-part onto the stack.
2447 In the special case of a DImode or DFmode that is split, we could put
2448 it together in a pseudoreg directly, but for now that's not worth
2449 bothering with. */
2450 if (data->partial != 0)
2452 /* Handle calls that pass values in multiple non-contiguous
2453 locations. The Irix 6 ABI has examples of this. */
2454 if (GET_CODE (entry_parm) == PARALLEL)
2455 emit_group_store (validize_mem (stack_parm), entry_parm,
2456 data->passed_type,
2457 int_size_in_bytes (data->passed_type));
2458 else
2459 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2460 data->partial);
2462 entry_parm = stack_parm;
2465 /* If we didn't decide this parm came in a register, by default it came
2466 on the stack. */
2467 else if (entry_parm == NULL)
2468 entry_parm = stack_parm;
2470 /* When an argument is passed in multiple locations, we can't make use
2471 of this information, but we can save some copying if the whole argument
2472 is passed in a single register. */
2473 else if (GET_CODE (entry_parm) == PARALLEL
2474 && data->nominal_mode != BLKmode
2475 && data->passed_mode != BLKmode)
2477 size_t i, len = XVECLEN (entry_parm, 0);
2479 for (i = 0; i < len; i++)
2480 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2481 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2482 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2483 == data->passed_mode)
2484 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2486 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2487 break;
2491 data->entry_parm = entry_parm;
2494 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2495 always valid and properly aligned. */
2498 static void
2499 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2501 rtx stack_parm = data->stack_parm;
2503 /* If we can't trust the parm stack slot to be aligned enough for its
2504 ultimate type, don't use that slot after entry. We'll make another
2505 stack slot, if we need one. */
2506 if (STRICT_ALIGNMENT && stack_parm
2507 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2508 stack_parm = NULL;
2510 /* If parm was passed in memory, and we need to convert it on entry,
2511 don't store it back in that same slot. */
2512 else if (data->entry_parm == stack_parm
2513 && data->nominal_mode != BLKmode
2514 && data->nominal_mode != data->passed_mode)
2515 stack_parm = NULL;
2517 data->stack_parm = stack_parm;
2520 /* A subroutine of assign_parms. Return true if the current parameter
2521 should be stored as a BLKmode in the current frame. */
2523 static bool
2524 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2526 if (data->nominal_mode == BLKmode)
2527 return true;
2528 if (GET_CODE (data->entry_parm) == PARALLEL)
2529 return true;
2531 #ifdef BLOCK_REG_PADDING
2532 if (data->locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward)
2533 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD)
2534 return true;
2535 #endif
2537 return false;
2540 /* A subroutine of assign_parms. Arrange for the parameter to be
2541 present and valid in DATA->STACK_RTL. */
2543 static void
2544 assign_parm_setup_block (tree parm, struct assign_parm_data_one *data)
2546 rtx entry_parm = data->entry_parm;
2547 rtx stack_parm = data->stack_parm;
2549 /* If we've a non-block object that's nevertheless passed in parts,
2550 reconstitute it in register operations rather than on the stack. */
2551 if (GET_CODE (entry_parm) == PARALLEL
2552 && data->nominal_mode != BLKmode
2553 && XVECLEN (entry_parm, 0) > 1
2554 && optimize)
2556 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2558 emit_group_store (parmreg, entry_parm, data->nominal_type,
2559 int_size_in_bytes (data->nominal_type));
2560 SET_DECL_RTL (parm, parmreg);
2561 return;
2564 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2565 calls that pass values in multiple non-contiguous locations. */
2566 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2568 HOST_WIDE_INT size = int_size_in_bytes (data->passed_type);
2569 HOST_WIDE_INT size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2570 rtx mem;
2572 /* Note that we will be storing an integral number of words.
2573 So we have to be careful to ensure that we allocate an
2574 integral number of words. We do this below in the
2575 assign_stack_local if space was not allocated in the argument
2576 list. If it was, this will not work if PARM_BOUNDARY is not
2577 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2578 if it becomes a problem. Exception is when BLKmode arrives
2579 with arguments not conforming to word_mode. */
2581 if (stack_parm == 0)
2583 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
2584 data->stack_parm = stack_parm;
2585 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2586 set_mem_attributes (stack_parm, parm, 1);
2588 else if (GET_CODE (entry_parm) == PARALLEL)
2590 else if (size != 0 && PARM_BOUNDARY % BITS_PER_WORD != 0)
2591 abort ();
2593 mem = validize_mem (stack_parm);
2595 /* Handle values in multiple non-contiguous locations. */
2596 if (GET_CODE (entry_parm) == PARALLEL)
2597 emit_group_store (mem, entry_parm, data->passed_type, size);
2599 else if (size == 0)
2602 /* If SIZE is that of a mode no bigger than a word, just use
2603 that mode's store operation. */
2604 else if (size <= UNITS_PER_WORD)
2606 enum machine_mode mode
2607 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2609 if (mode != BLKmode
2610 #ifdef BLOCK_REG_PADDING
2611 && (size == UNITS_PER_WORD
2612 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2613 != (BYTES_BIG_ENDIAN ? upward : downward)))
2614 #endif
2617 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2618 emit_move_insn (change_address (mem, mode, 0), reg);
2621 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2622 machine must be aligned to the left before storing
2623 to memory. Note that the previous test doesn't
2624 handle all cases (e.g. SIZE == 3). */
2625 else if (size != UNITS_PER_WORD
2626 #ifdef BLOCK_REG_PADDING
2627 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2628 == downward)
2629 #else
2630 && BYTES_BIG_ENDIAN
2631 #endif
2634 rtx tem, x;
2635 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2636 rtx reg = gen_rtx_REG (word_mode, REGNO (data->entry_parm));
2638 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2639 build_int_2 (by, 0), NULL_RTX, 1);
2640 tem = change_address (mem, word_mode, 0);
2641 emit_move_insn (tem, x);
2643 else
2644 move_block_from_reg (REGNO (data->entry_parm), mem,
2645 size_stored / UNITS_PER_WORD);
2647 else
2648 move_block_from_reg (REGNO (data->entry_parm), mem,
2649 size_stored / UNITS_PER_WORD);
2652 SET_DECL_RTL (parm, stack_parm);
2655 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2656 parameter. Get it there. Perform all ABI specified conversions. */
2658 static void
2659 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2660 struct assign_parm_data_one *data)
2662 rtx parmreg;
2663 enum machine_mode promoted_nominal_mode;
2664 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2665 bool did_conversion = false;
2667 /* Store the parm in a pseudoregister during the function, but we may
2668 need to do it in a wider mode. */
2670 promoted_nominal_mode
2671 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2673 parmreg = gen_reg_rtx (promoted_nominal_mode);
2675 if (!DECL_ARTIFICIAL (parm))
2676 mark_user_reg (parmreg);
2678 /* If this was an item that we received a pointer to,
2679 set DECL_RTL appropriately. */
2680 if (data->passed_pointer)
2682 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2683 set_mem_attributes (x, parm, 1);
2684 SET_DECL_RTL (parm, x);
2686 else
2688 SET_DECL_RTL (parm, parmreg);
2689 maybe_set_unchanging (DECL_RTL (parm), parm);
2692 /* Copy the value into the register. */
2693 if (data->nominal_mode != data->passed_mode
2694 || promoted_nominal_mode != data->promoted_mode)
2696 int save_tree_used;
2698 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2699 mode, by the caller. We now have to convert it to
2700 NOMINAL_MODE, if different. However, PARMREG may be in
2701 a different mode than NOMINAL_MODE if it is being stored
2702 promoted.
2704 If ENTRY_PARM is a hard register, it might be in a register
2705 not valid for operating in its mode (e.g., an odd-numbered
2706 register for a DFmode). In that case, moves are the only
2707 thing valid, so we can't do a convert from there. This
2708 occurs when the calling sequence allow such misaligned
2709 usages.
2711 In addition, the conversion may involve a call, which could
2712 clobber parameters which haven't been copied to pseudo
2713 registers yet. Therefore, we must first copy the parm to
2714 a pseudo reg here, and save the conversion until after all
2715 parameters have been moved. */
2717 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2719 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2721 push_to_sequence (all->conversion_insns);
2722 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2724 if (GET_CODE (tempreg) == SUBREG
2725 && GET_MODE (tempreg) == data->nominal_mode
2726 && REG_P (SUBREG_REG (tempreg))
2727 && data->nominal_mode == data->passed_mode
2728 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2729 && GET_MODE_SIZE (GET_MODE (tempreg))
2730 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2732 /* The argument is already sign/zero extended, so note it
2733 into the subreg. */
2734 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2735 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2738 /* TREE_USED gets set erroneously during expand_assignment. */
2739 save_tree_used = TREE_USED (parm);
2740 expand_assignment (parm, make_tree (data->nominal_type, tempreg), 0);
2741 TREE_USED (parm) = save_tree_used;
2742 all->conversion_insns = get_insns ();
2743 end_sequence ();
2745 did_conversion = true;
2747 else
2748 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2750 /* If we were passed a pointer but the actual value can safely live
2751 in a register, put it in one. */
2752 if (data->passed_pointer
2753 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2754 /* If by-reference argument was promoted, demote it. */
2755 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2756 || use_register_for_decl (parm)))
2758 /* We can't use nominal_mode, because it will have been set to
2759 Pmode above. We must use the actual mode of the parm. */
2760 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2761 mark_user_reg (parmreg);
2763 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2765 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2766 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2768 push_to_sequence (all->conversion_insns);
2769 emit_move_insn (tempreg, DECL_RTL (parm));
2770 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2771 emit_move_insn (parmreg, tempreg);
2772 all->conversion_insns = get_insns();
2773 end_sequence ();
2775 did_conversion = true;
2777 else
2778 emit_move_insn (parmreg, DECL_RTL (parm));
2780 SET_DECL_RTL (parm, parmreg);
2782 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2783 now the parm. */
2784 data->stack_parm = NULL;
2787 /* If we are passed an arg by reference and it is our responsibility
2788 to make a copy, do it now.
2789 PASSED_TYPE and PASSED mode now refer to the pointer, not the
2790 original argument, so we must recreate them in the call to
2791 FUNCTION_ARG_CALLEE_COPIES. */
2792 /* ??? Later add code to handle the case that if the argument isn't
2793 modified, don't do the copy. */
2795 else if (data->passed_pointer)
2797 tree type = TREE_TYPE (data->passed_type);
2799 if (FUNCTION_ARG_CALLEE_COPIES (all->args_so_far, TYPE_MODE (type),
2800 type, data->named_arg)
2801 && !TREE_ADDRESSABLE (type))
2803 rtx copy;
2805 /* This sequence may involve a library call perhaps clobbering
2806 registers that haven't been copied to pseudos yet. */
2808 push_to_sequence (all->conversion_insns);
2810 if (!COMPLETE_TYPE_P (type)
2811 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2813 /* This is a variable sized object. */
2814 copy = allocate_dynamic_stack_space (expr_size (parm), NULL_RTX,
2815 TYPE_ALIGN (type));
2816 copy = gen_rtx_MEM (BLKmode, copy);
2818 else
2819 copy = assign_stack_temp (TYPE_MODE (type),
2820 int_size_in_bytes (type), 1);
2821 set_mem_attributes (copy, parm, 1);
2823 store_expr (parm, copy, 0);
2824 emit_move_insn (parmreg, XEXP (copy, 0));
2825 all->conversion_insns = get_insns ();
2826 end_sequence ();
2828 did_conversion = true;
2832 /* Mark the register as eliminable if we did no conversion and it was
2833 copied from memory at a fixed offset, and the arg pointer was not
2834 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2835 offset formed an invalid address, such memory-equivalences as we
2836 make here would screw up life analysis for it. */
2837 if (data->nominal_mode == data->passed_mode
2838 && !did_conversion
2839 && data->stack_parm != 0
2840 && MEM_P (data->stack_parm)
2841 && data->locate.offset.var == 0
2842 && reg_mentioned_p (virtual_incoming_args_rtx,
2843 XEXP (data->stack_parm, 0)))
2845 rtx linsn = get_last_insn ();
2846 rtx sinsn, set;
2848 /* Mark complex types separately. */
2849 if (GET_CODE (parmreg) == CONCAT)
2851 enum machine_mode submode
2852 = GET_MODE_INNER (GET_MODE (parmreg));
2853 int regnor = REGNO (gen_realpart (submode, parmreg));
2854 int regnoi = REGNO (gen_imagpart (submode, parmreg));
2855 rtx stackr = gen_realpart (submode, data->stack_parm);
2856 rtx stacki = gen_imagpart (submode, data->stack_parm);
2858 /* Scan backwards for the set of the real and
2859 imaginary parts. */
2860 for (sinsn = linsn; sinsn != 0;
2861 sinsn = prev_nonnote_insn (sinsn))
2863 set = single_set (sinsn);
2864 if (set == 0)
2865 continue;
2867 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2868 REG_NOTES (sinsn)
2869 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2870 REG_NOTES (sinsn));
2871 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2872 REG_NOTES (sinsn)
2873 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2874 REG_NOTES (sinsn));
2877 else if ((set = single_set (linsn)) != 0
2878 && SET_DEST (set) == parmreg)
2879 REG_NOTES (linsn)
2880 = gen_rtx_EXPR_LIST (REG_EQUIV,
2881 data->stack_parm, REG_NOTES (linsn));
2884 /* For pointer data type, suggest pointer register. */
2885 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2886 mark_reg_pointer (parmreg,
2887 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2890 /* A subroutine of assign_parms. Allocate stack space to hold the current
2891 parameter. Get it there. Perform all ABI specified conversions. */
2893 static void
2894 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2895 struct assign_parm_data_one *data)
2897 /* Value must be stored in the stack slot STACK_PARM during function
2898 execution. */
2900 if (data->promoted_mode != data->nominal_mode)
2902 /* Conversion is required. */
2903 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2905 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2907 push_to_sequence (all->conversion_insns);
2908 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2909 TYPE_UNSIGNED (TREE_TYPE (parm)));
2911 if (data->stack_parm)
2912 /* ??? This may need a big-endian conversion on sparc64. */
2913 data->stack_parm
2914 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2916 all->conversion_insns = get_insns ();
2917 end_sequence ();
2920 if (data->entry_parm != data->stack_parm)
2922 if (data->stack_parm == 0)
2924 data->stack_parm
2925 = assign_stack_local (GET_MODE (data->entry_parm),
2926 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2928 set_mem_attributes (data->stack_parm, parm, 1);
2931 if (data->promoted_mode != data->nominal_mode)
2933 push_to_sequence (all->conversion_insns);
2934 emit_move_insn (validize_mem (data->stack_parm),
2935 validize_mem (data->entry_parm));
2936 all->conversion_insns = get_insns ();
2937 end_sequence ();
2939 else
2940 emit_move_insn (validize_mem (data->stack_parm),
2941 validize_mem (data->entry_parm));
2944 SET_DECL_RTL (parm, data->stack_parm);
2947 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2948 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2950 static void
2951 assign_parms_unsplit_complex (tree orig_fnargs, tree fnargs)
2953 tree parm;
2955 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2957 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2958 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2960 rtx tmp, real, imag;
2961 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2963 real = DECL_RTL (fnargs);
2964 imag = DECL_RTL (TREE_CHAIN (fnargs));
2965 if (inner != GET_MODE (real))
2967 real = gen_lowpart_SUBREG (inner, real);
2968 imag = gen_lowpart_SUBREG (inner, imag);
2970 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2971 SET_DECL_RTL (parm, tmp);
2973 real = DECL_INCOMING_RTL (fnargs);
2974 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2975 if (inner != GET_MODE (real))
2977 real = gen_lowpart_SUBREG (inner, real);
2978 imag = gen_lowpart_SUBREG (inner, imag);
2980 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2981 set_decl_incoming_rtl (parm, tmp);
2982 fnargs = TREE_CHAIN (fnargs);
2984 else
2986 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2987 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2989 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2990 instead of the copy of decl, i.e. FNARGS. */
2991 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2992 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2995 fnargs = TREE_CHAIN (fnargs);
2999 /* Assign RTL expressions to the function's parameters. This may involve
3000 copying them into registers and using those registers as the DECL_RTL. */
3002 void
3003 assign_parms (tree fndecl)
3005 struct assign_parm_data_all all;
3006 tree fnargs, parm;
3007 rtx internal_arg_pointer;
3008 int varargs_setup = 0;
3010 /* If the reg that the virtual arg pointer will be translated into is
3011 not a fixed reg or is the stack pointer, make a copy of the virtual
3012 arg pointer, and address parms via the copy. The frame pointer is
3013 considered fixed even though it is not marked as such.
3015 The second time through, simply use ap to avoid generating rtx. */
3017 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
3018 || ! (fixed_regs[ARG_POINTER_REGNUM]
3019 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
3020 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
3021 else
3022 internal_arg_pointer = virtual_incoming_args_rtx;
3023 current_function_internal_arg_pointer = internal_arg_pointer;
3025 assign_parms_initialize_all (&all);
3026 fnargs = assign_parms_augmented_arg_list (&all);
3028 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3030 struct assign_parm_data_one data;
3032 /* Extract the type of PARM; adjust it according to ABI. */
3033 assign_parm_find_data_types (&all, parm, &data);
3035 /* Early out for errors and void parameters. */
3036 if (data.passed_mode == VOIDmode)
3038 SET_DECL_RTL (parm, const0_rtx);
3039 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3040 continue;
3043 /* Handle stdargs. LAST_NAMED is a slight mis-nomer; it's also true
3044 for the unnamed dummy argument following the last named argument.
3045 See ABI silliness wrt strict_argument_naming and NAMED_ARG. So
3046 we only want to do this when we get to the actual last named
3047 argument, which will be the first time LAST_NAMED gets set. */
3048 if (data.last_named && !varargs_setup)
3050 varargs_setup = true;
3051 assign_parms_setup_varargs (&all, &data, false);
3054 /* Find out where the parameter arrives in this function. */
3055 assign_parm_find_entry_rtl (&all, &data);
3057 /* Find out where stack space for this parameter might be. */
3058 if (assign_parm_is_stack_parm (&all, &data))
3060 assign_parm_find_stack_rtl (parm, &data);
3061 assign_parm_adjust_entry_rtl (&data);
3064 /* Record permanently how this parm was passed. */
3065 set_decl_incoming_rtl (parm, data.entry_parm);
3067 /* Update info on where next arg arrives in registers. */
3068 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3069 data.passed_type, data.named_arg);
3071 assign_parm_adjust_stack_rtl (&data);
3073 if (assign_parm_setup_block_p (&data))
3074 assign_parm_setup_block (parm, &data);
3075 else if (data.passed_pointer || use_register_for_decl (parm))
3076 assign_parm_setup_reg (&all, parm, &data);
3077 else
3078 assign_parm_setup_stack (&all, parm, &data);
3081 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3082 assign_parms_unsplit_complex (all.orig_fnargs, fnargs);
3084 /* Output all parameter conversion instructions (possibly including calls)
3085 now that all parameters have been copied out of hard registers. */
3086 emit_insn (all.conversion_insns);
3088 /* If we are receiving a struct value address as the first argument, set up
3089 the RTL for the function result. As this might require code to convert
3090 the transmitted address to Pmode, we do this here to ensure that possible
3091 preliminary conversions of the address have been emitted already. */
3092 if (all.function_result_decl)
3094 tree result = DECL_RESULT (current_function_decl);
3095 rtx addr = DECL_RTL (all.function_result_decl);
3096 rtx x;
3098 addr = convert_memory_address (Pmode, addr);
3099 x = gen_rtx_MEM (DECL_MODE (result), addr);
3100 set_mem_attributes (x, result, 1);
3101 SET_DECL_RTL (result, x);
3104 /* We have aligned all the args, so add space for the pretend args. */
3105 current_function_pretend_args_size = all.pretend_args_size;
3106 all.stack_args_size.constant += all.extra_pretend_bytes;
3107 current_function_args_size = all.stack_args_size.constant;
3109 /* Adjust function incoming argument size for alignment and
3110 minimum length. */
3112 #ifdef REG_PARM_STACK_SPACE
3113 current_function_args_size = MAX (current_function_args_size,
3114 REG_PARM_STACK_SPACE (fndecl));
3115 #endif
3117 current_function_args_size
3118 = ((current_function_args_size + STACK_BYTES - 1)
3119 / STACK_BYTES) * STACK_BYTES;
3121 #ifdef ARGS_GROW_DOWNWARD
3122 current_function_arg_offset_rtx
3123 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3124 : expand_expr (size_diffop (all.stack_args_size.var,
3125 size_int (-all.stack_args_size.constant)),
3126 NULL_RTX, VOIDmode, 0));
3127 #else
3128 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3129 #endif
3131 /* See how many bytes, if any, of its args a function should try to pop
3132 on return. */
3134 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3135 current_function_args_size);
3137 /* For stdarg.h function, save info about
3138 regs and stack space used by the named args. */
3140 current_function_args_info = all.args_so_far;
3142 /* Set the rtx used for the function return value. Put this in its
3143 own variable so any optimizers that need this information don't have
3144 to include tree.h. Do this here so it gets done when an inlined
3145 function gets output. */
3147 current_function_return_rtx
3148 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3149 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3151 /* If scalar return value was computed in a pseudo-reg, or was a named
3152 return value that got dumped to the stack, copy that to the hard
3153 return register. */
3154 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3156 tree decl_result = DECL_RESULT (fndecl);
3157 rtx decl_rtl = DECL_RTL (decl_result);
3159 if (REG_P (decl_rtl)
3160 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3161 : DECL_REGISTER (decl_result))
3163 rtx real_decl_rtl;
3165 #ifdef FUNCTION_OUTGOING_VALUE
3166 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
3167 fndecl);
3168 #else
3169 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
3170 fndecl);
3171 #endif
3172 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3173 /* The delay slot scheduler assumes that current_function_return_rtx
3174 holds the hard register containing the return value, not a
3175 temporary pseudo. */
3176 current_function_return_rtx = real_decl_rtl;
3181 /* Indicate whether REGNO is an incoming argument to the current function
3182 that was promoted to a wider mode. If so, return the RTX for the
3183 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3184 that REGNO is promoted from and whether the promotion was signed or
3185 unsigned. */
3188 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3190 tree arg;
3192 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3193 arg = TREE_CHAIN (arg))
3194 if (REG_P (DECL_INCOMING_RTL (arg))
3195 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3196 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3198 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3199 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3201 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3202 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3203 && mode != DECL_MODE (arg))
3205 *pmode = DECL_MODE (arg);
3206 *punsignedp = unsignedp;
3207 return DECL_INCOMING_RTL (arg);
3211 return 0;
3215 /* Compute the size and offset from the start of the stacked arguments for a
3216 parm passed in mode PASSED_MODE and with type TYPE.
3218 INITIAL_OFFSET_PTR points to the current offset into the stacked
3219 arguments.
3221 The starting offset and size for this parm are returned in
3222 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3223 nonzero, the offset is that of stack slot, which is returned in
3224 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3225 padding required from the initial offset ptr to the stack slot.
3227 IN_REGS is nonzero if the argument will be passed in registers. It will
3228 never be set if REG_PARM_STACK_SPACE is not defined.
3230 FNDECL is the function in which the argument was defined.
3232 There are two types of rounding that are done. The first, controlled by
3233 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3234 list to be aligned to the specific boundary (in bits). This rounding
3235 affects the initial and starting offsets, but not the argument size.
3237 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3238 optionally rounds the size of the parm to PARM_BOUNDARY. The
3239 initial offset is not affected by this rounding, while the size always
3240 is and the starting offset may be. */
3242 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3243 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3244 callers pass in the total size of args so far as
3245 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3247 void
3248 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3249 int partial, tree fndecl ATTRIBUTE_UNUSED,
3250 struct args_size *initial_offset_ptr,
3251 struct locate_and_pad_arg_data *locate)
3253 tree sizetree;
3254 enum direction where_pad;
3255 int boundary;
3256 int reg_parm_stack_space = 0;
3257 int part_size_in_regs;
3259 #ifdef REG_PARM_STACK_SPACE
3260 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3262 /* If we have found a stack parm before we reach the end of the
3263 area reserved for registers, skip that area. */
3264 if (! in_regs)
3266 if (reg_parm_stack_space > 0)
3268 if (initial_offset_ptr->var)
3270 initial_offset_ptr->var
3271 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3272 ssize_int (reg_parm_stack_space));
3273 initial_offset_ptr->constant = 0;
3275 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3276 initial_offset_ptr->constant = reg_parm_stack_space;
3279 #endif /* REG_PARM_STACK_SPACE */
3281 part_size_in_regs = 0;
3282 if (reg_parm_stack_space == 0)
3283 part_size_in_regs = ((partial * UNITS_PER_WORD)
3284 / (PARM_BOUNDARY / BITS_PER_UNIT)
3285 * (PARM_BOUNDARY / BITS_PER_UNIT));
3287 sizetree
3288 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3289 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3290 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3291 locate->where_pad = where_pad;
3293 #ifdef ARGS_GROW_DOWNWARD
3294 locate->slot_offset.constant = -initial_offset_ptr->constant;
3295 if (initial_offset_ptr->var)
3296 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3297 initial_offset_ptr->var);
3300 tree s2 = sizetree;
3301 if (where_pad != none
3302 && (!host_integerp (sizetree, 1)
3303 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3304 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3305 SUB_PARM_SIZE (locate->slot_offset, s2);
3308 locate->slot_offset.constant += part_size_in_regs;
3310 if (!in_regs
3311 #ifdef REG_PARM_STACK_SPACE
3312 || REG_PARM_STACK_SPACE (fndecl) > 0
3313 #endif
3315 pad_to_arg_alignment (&locate->slot_offset, boundary,
3316 &locate->alignment_pad);
3318 locate->size.constant = (-initial_offset_ptr->constant
3319 - locate->slot_offset.constant);
3320 if (initial_offset_ptr->var)
3321 locate->size.var = size_binop (MINUS_EXPR,
3322 size_binop (MINUS_EXPR,
3323 ssize_int (0),
3324 initial_offset_ptr->var),
3325 locate->slot_offset.var);
3327 /* Pad_below needs the pre-rounded size to know how much to pad
3328 below. */
3329 locate->offset = locate->slot_offset;
3330 if (where_pad == downward)
3331 pad_below (&locate->offset, passed_mode, sizetree);
3333 #else /* !ARGS_GROW_DOWNWARD */
3334 if (!in_regs
3335 #ifdef REG_PARM_STACK_SPACE
3336 || REG_PARM_STACK_SPACE (fndecl) > 0
3337 #endif
3339 pad_to_arg_alignment (initial_offset_ptr, boundary,
3340 &locate->alignment_pad);
3341 locate->slot_offset = *initial_offset_ptr;
3343 #ifdef PUSH_ROUNDING
3344 if (passed_mode != BLKmode)
3345 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3346 #endif
3348 /* Pad_below needs the pre-rounded size to know how much to pad below
3349 so this must be done before rounding up. */
3350 locate->offset = locate->slot_offset;
3351 if (where_pad == downward)
3352 pad_below (&locate->offset, passed_mode, sizetree);
3354 if (where_pad != none
3355 && (!host_integerp (sizetree, 1)
3356 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3357 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3359 ADD_PARM_SIZE (locate->size, sizetree);
3361 locate->size.constant -= part_size_in_regs;
3362 #endif /* ARGS_GROW_DOWNWARD */
3365 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3366 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3368 static void
3369 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3370 struct args_size *alignment_pad)
3372 tree save_var = NULL_TREE;
3373 HOST_WIDE_INT save_constant = 0;
3374 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3375 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3377 #ifdef SPARC_STACK_BOUNDARY_HACK
3378 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3379 higher than the real alignment of %sp. However, when it does this,
3380 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3381 This is a temporary hack while the sparc port is fixed. */
3382 if (SPARC_STACK_BOUNDARY_HACK)
3383 sp_offset = 0;
3384 #endif
3386 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3388 save_var = offset_ptr->var;
3389 save_constant = offset_ptr->constant;
3392 alignment_pad->var = NULL_TREE;
3393 alignment_pad->constant = 0;
3395 if (boundary > BITS_PER_UNIT)
3397 if (offset_ptr->var)
3399 tree sp_offset_tree = ssize_int (sp_offset);
3400 tree offset = size_binop (PLUS_EXPR,
3401 ARGS_SIZE_TREE (*offset_ptr),
3402 sp_offset_tree);
3403 #ifdef ARGS_GROW_DOWNWARD
3404 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3405 #else
3406 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3407 #endif
3409 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3410 /* ARGS_SIZE_TREE includes constant term. */
3411 offset_ptr->constant = 0;
3412 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3413 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3414 save_var);
3416 else
3418 offset_ptr->constant = -sp_offset +
3419 #ifdef ARGS_GROW_DOWNWARD
3420 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3421 #else
3422 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3423 #endif
3424 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3425 alignment_pad->constant = offset_ptr->constant - save_constant;
3430 static void
3431 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3433 if (passed_mode != BLKmode)
3435 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3436 offset_ptr->constant
3437 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3438 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3439 - GET_MODE_SIZE (passed_mode));
3441 else
3443 if (TREE_CODE (sizetree) != INTEGER_CST
3444 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3446 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3447 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3448 /* Add it in. */
3449 ADD_PARM_SIZE (*offset_ptr, s2);
3450 SUB_PARM_SIZE (*offset_ptr, sizetree);
3455 /* Walk the tree of blocks describing the binding levels within a function
3456 and warn about variables the might be killed by setjmp or vfork.
3457 This is done after calling flow_analysis and before global_alloc
3458 clobbers the pseudo-regs to hard regs. */
3460 void
3461 setjmp_vars_warning (tree block)
3463 tree decl, sub;
3465 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3467 if (TREE_CODE (decl) == VAR_DECL
3468 && DECL_RTL_SET_P (decl)
3469 && REG_P (DECL_RTL (decl))
3470 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3471 warning ("%Jvariable '%D' might be clobbered by `longjmp' or `vfork'",
3472 decl, decl);
3475 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3476 setjmp_vars_warning (sub);
3479 /* Do the appropriate part of setjmp_vars_warning
3480 but for arguments instead of local variables. */
3482 void
3483 setjmp_args_warning (void)
3485 tree decl;
3486 for (decl = DECL_ARGUMENTS (current_function_decl);
3487 decl; decl = TREE_CHAIN (decl))
3488 if (DECL_RTL (decl) != 0
3489 && REG_P (DECL_RTL (decl))
3490 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3491 warning ("%Jargument '%D' might be clobbered by `longjmp' or `vfork'",
3492 decl, decl);
3496 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3497 and create duplicate blocks. */
3498 /* ??? Need an option to either create block fragments or to create
3499 abstract origin duplicates of a source block. It really depends
3500 on what optimization has been performed. */
3502 void
3503 reorder_blocks (void)
3505 tree block = DECL_INITIAL (current_function_decl);
3506 varray_type block_stack;
3508 if (block == NULL_TREE)
3509 return;
3511 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
3513 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3514 clear_block_marks (block);
3516 /* Prune the old trees away, so that they don't get in the way. */
3517 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3518 BLOCK_CHAIN (block) = NULL_TREE;
3520 /* Recreate the block tree from the note nesting. */
3521 reorder_blocks_1 (get_insns (), block, &block_stack);
3522 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3524 /* Remove deleted blocks from the block fragment chains. */
3525 reorder_fix_fragments (block);
3528 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3530 void
3531 clear_block_marks (tree block)
3533 while (block)
3535 TREE_ASM_WRITTEN (block) = 0;
3536 clear_block_marks (BLOCK_SUBBLOCKS (block));
3537 block = BLOCK_CHAIN (block);
3541 static void
3542 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
3544 rtx insn;
3546 for (insn = insns; insn; insn = NEXT_INSN (insn))
3548 if (NOTE_P (insn))
3550 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3552 tree block = NOTE_BLOCK (insn);
3554 /* If we have seen this block before, that means it now
3555 spans multiple address regions. Create a new fragment. */
3556 if (TREE_ASM_WRITTEN (block))
3558 tree new_block = copy_node (block);
3559 tree origin;
3561 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3562 ? BLOCK_FRAGMENT_ORIGIN (block)
3563 : block);
3564 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3565 BLOCK_FRAGMENT_CHAIN (new_block)
3566 = BLOCK_FRAGMENT_CHAIN (origin);
3567 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3569 NOTE_BLOCK (insn) = new_block;
3570 block = new_block;
3573 BLOCK_SUBBLOCKS (block) = 0;
3574 TREE_ASM_WRITTEN (block) = 1;
3575 /* When there's only one block for the entire function,
3576 current_block == block and we mustn't do this, it
3577 will cause infinite recursion. */
3578 if (block != current_block)
3580 BLOCK_SUPERCONTEXT (block) = current_block;
3581 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3582 BLOCK_SUBBLOCKS (current_block) = block;
3583 current_block = block;
3585 VARRAY_PUSH_TREE (*p_block_stack, block);
3587 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3589 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
3590 VARRAY_POP (*p_block_stack);
3591 BLOCK_SUBBLOCKS (current_block)
3592 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3593 current_block = BLOCK_SUPERCONTEXT (current_block);
3599 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3600 appears in the block tree, select one of the fragments to become
3601 the new origin block. */
3603 static void
3604 reorder_fix_fragments (tree block)
3606 while (block)
3608 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3609 tree new_origin = NULL_TREE;
3611 if (dup_origin)
3613 if (! TREE_ASM_WRITTEN (dup_origin))
3615 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3617 /* Find the first of the remaining fragments. There must
3618 be at least one -- the current block. */
3619 while (! TREE_ASM_WRITTEN (new_origin))
3620 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3621 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3624 else if (! dup_origin)
3625 new_origin = block;
3627 /* Re-root the rest of the fragments to the new origin. In the
3628 case that DUP_ORIGIN was null, that means BLOCK was the origin
3629 of a chain of fragments and we want to remove those fragments
3630 that didn't make it to the output. */
3631 if (new_origin)
3633 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3634 tree chain = *pp;
3636 while (chain)
3638 if (TREE_ASM_WRITTEN (chain))
3640 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3641 *pp = chain;
3642 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3644 chain = BLOCK_FRAGMENT_CHAIN (chain);
3646 *pp = NULL_TREE;
3649 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3650 block = BLOCK_CHAIN (block);
3654 /* Reverse the order of elements in the chain T of blocks,
3655 and return the new head of the chain (old last element). */
3657 tree
3658 blocks_nreverse (tree t)
3660 tree prev = 0, decl, next;
3661 for (decl = t; decl; decl = next)
3663 next = BLOCK_CHAIN (decl);
3664 BLOCK_CHAIN (decl) = prev;
3665 prev = decl;
3667 return prev;
3670 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3671 non-NULL, list them all into VECTOR, in a depth-first preorder
3672 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3673 blocks. */
3675 static int
3676 all_blocks (tree block, tree *vector)
3678 int n_blocks = 0;
3680 while (block)
3682 TREE_ASM_WRITTEN (block) = 0;
3684 /* Record this block. */
3685 if (vector)
3686 vector[n_blocks] = block;
3688 ++n_blocks;
3690 /* Record the subblocks, and their subblocks... */
3691 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3692 vector ? vector + n_blocks : 0);
3693 block = BLOCK_CHAIN (block);
3696 return n_blocks;
3699 /* Return a vector containing all the blocks rooted at BLOCK. The
3700 number of elements in the vector is stored in N_BLOCKS_P. The
3701 vector is dynamically allocated; it is the caller's responsibility
3702 to call `free' on the pointer returned. */
3704 static tree *
3705 get_block_vector (tree block, int *n_blocks_p)
3707 tree *block_vector;
3709 *n_blocks_p = all_blocks (block, NULL);
3710 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3711 all_blocks (block, block_vector);
3713 return block_vector;
3716 static GTY(()) int next_block_index = 2;
3718 /* Set BLOCK_NUMBER for all the blocks in FN. */
3720 void
3721 number_blocks (tree fn)
3723 int i;
3724 int n_blocks;
3725 tree *block_vector;
3727 /* For SDB and XCOFF debugging output, we start numbering the blocks
3728 from 1 within each function, rather than keeping a running
3729 count. */
3730 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3731 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3732 next_block_index = 1;
3733 #endif
3735 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3737 /* The top-level BLOCK isn't numbered at all. */
3738 for (i = 1; i < n_blocks; ++i)
3739 /* We number the blocks from two. */
3740 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3742 free (block_vector);
3744 return;
3747 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3749 tree
3750 debug_find_var_in_block_tree (tree var, tree block)
3752 tree t;
3754 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3755 if (t == var)
3756 return block;
3758 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3760 tree ret = debug_find_var_in_block_tree (var, t);
3761 if (ret)
3762 return ret;
3765 return NULL_TREE;
3768 /* Allocate a function structure for FNDECL and set its contents
3769 to the defaults. */
3771 void
3772 allocate_struct_function (tree fndecl)
3774 tree result;
3775 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3777 cfun = ggc_alloc_cleared (sizeof (struct function));
3779 cfun->stack_alignment_needed = STACK_BOUNDARY;
3780 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3782 current_function_funcdef_no = funcdef_no++;
3784 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3786 init_stmt_for_function ();
3787 init_eh_for_function ();
3789 lang_hooks.function.init (cfun);
3790 if (init_machine_status)
3791 cfun->machine = (*init_machine_status) ();
3793 if (fndecl == NULL)
3794 return;
3796 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3797 cfun->decl = fndecl;
3799 result = DECL_RESULT (fndecl);
3800 if (aggregate_value_p (result, fndecl))
3802 #ifdef PCC_STATIC_STRUCT_RETURN
3803 current_function_returns_pcc_struct = 1;
3804 #endif
3805 current_function_returns_struct = 1;
3808 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3810 current_function_stdarg
3811 = (fntype
3812 && TYPE_ARG_TYPES (fntype) != 0
3813 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3814 != void_type_node));
3817 /* Reset cfun, and other non-struct-function variables to defaults as
3818 appropriate for emitting rtl at the start of a function. */
3820 static void
3821 prepare_function_start (tree fndecl)
3823 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3824 cfun = DECL_STRUCT_FUNCTION (fndecl);
3825 else
3826 allocate_struct_function (fndecl);
3827 init_emit ();
3828 init_varasm_status (cfun);
3829 init_expr ();
3831 cse_not_expected = ! optimize;
3833 /* Caller save not needed yet. */
3834 caller_save_needed = 0;
3836 /* We haven't done register allocation yet. */
3837 reg_renumber = 0;
3839 /* Indicate that we have not instantiated virtual registers yet. */
3840 virtuals_instantiated = 0;
3842 /* Indicate that we want CONCATs now. */
3843 generating_concat_p = 1;
3845 /* Indicate we have no need of a frame pointer yet. */
3846 frame_pointer_needed = 0;
3849 /* Initialize the rtl expansion mechanism so that we can do simple things
3850 like generate sequences. This is used to provide a context during global
3851 initialization of some passes. */
3852 void
3853 init_dummy_function_start (void)
3855 prepare_function_start (NULL);
3858 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3859 and initialize static variables for generating RTL for the statements
3860 of the function. */
3862 void
3863 init_function_start (tree subr)
3865 prepare_function_start (subr);
3867 /* Prevent ever trying to delete the first instruction of a
3868 function. Also tell final how to output a linenum before the
3869 function prologue. Note linenums could be missing, e.g. when
3870 compiling a Java .class file. */
3871 if (! DECL_IS_BUILTIN (subr))
3872 emit_line_note (DECL_SOURCE_LOCATION (subr));
3874 /* Make sure first insn is a note even if we don't want linenums.
3875 This makes sure the first insn will never be deleted.
3876 Also, final expects a note to appear there. */
3877 emit_note (NOTE_INSN_DELETED);
3879 /* Warn if this value is an aggregate type,
3880 regardless of which calling convention we are using for it. */
3881 if (warn_aggregate_return
3882 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3883 warning ("function returns an aggregate");
3886 /* Make sure all values used by the optimization passes have sane
3887 defaults. */
3888 void
3889 init_function_for_compilation (void)
3891 reg_renumber = 0;
3893 /* No prologue/epilogue insns yet. */
3894 VARRAY_GROW (prologue, 0);
3895 VARRAY_GROW (epilogue, 0);
3896 VARRAY_GROW (sibcall_epilogue, 0);
3899 /* Expand a call to __main at the beginning of a possible main function. */
3901 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
3902 #undef HAS_INIT_SECTION
3903 #define HAS_INIT_SECTION
3904 #endif
3906 void
3907 expand_main_function (void)
3909 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
3910 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
3912 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
3913 rtx tmp, seq;
3915 start_sequence ();
3916 /* Forcibly align the stack. */
3917 #ifdef STACK_GROWS_DOWNWARD
3918 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
3919 stack_pointer_rtx, 1, OPTAB_WIDEN);
3920 #else
3921 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3922 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
3923 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
3924 stack_pointer_rtx, 1, OPTAB_WIDEN);
3925 #endif
3926 if (tmp != stack_pointer_rtx)
3927 emit_move_insn (stack_pointer_rtx, tmp);
3929 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
3930 tmp = force_reg (Pmode, const0_rtx);
3931 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
3932 seq = get_insns ();
3933 end_sequence ();
3935 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
3936 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
3937 break;
3938 if (tmp)
3939 emit_insn_before (seq, tmp);
3940 else
3941 emit_insn (seq);
3943 #endif
3945 #ifndef HAS_INIT_SECTION
3946 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3947 #endif
3950 /* The PENDING_SIZES represent the sizes of variable-sized types.
3951 Create RTL for the various sizes now (using temporary variables),
3952 so that we can refer to the sizes from the RTL we are generating
3953 for the current function. The PENDING_SIZES are a TREE_LIST. The
3954 TREE_VALUE of each node is a SAVE_EXPR. */
3956 void
3957 expand_pending_sizes (tree pending_sizes)
3959 tree tem;
3961 /* Evaluate now the sizes of any types declared among the arguments. */
3962 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
3963 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
3966 /* Start the RTL for a new function, and set variables used for
3967 emitting RTL.
3968 SUBR is the FUNCTION_DECL node.
3969 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
3970 the function's parameters, which must be run at any return statement. */
3972 void
3973 expand_function_start (tree subr)
3975 /* Make sure volatile mem refs aren't considered
3976 valid operands of arithmetic insns. */
3977 init_recog_no_volatile ();
3979 current_function_profile
3980 = (profile_flag
3981 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
3983 current_function_limit_stack
3984 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
3986 /* Make the label for return statements to jump to. Do not special
3987 case machines with special return instructions -- they will be
3988 handled later during jump, ifcvt, or epilogue creation. */
3989 return_label = gen_label_rtx ();
3991 /* Initialize rtx used to return the value. */
3992 /* Do this before assign_parms so that we copy the struct value address
3993 before any library calls that assign parms might generate. */
3995 /* Decide whether to return the value in memory or in a register. */
3996 if (aggregate_value_p (DECL_RESULT (subr), subr))
3998 /* Returning something that won't go in a register. */
3999 rtx value_address = 0;
4001 #ifdef PCC_STATIC_STRUCT_RETURN
4002 if (current_function_returns_pcc_struct)
4004 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4005 value_address = assemble_static_space (size);
4007 else
4008 #endif
4010 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4011 /* Expect to be passed the address of a place to store the value.
4012 If it is passed as an argument, assign_parms will take care of
4013 it. */
4014 if (sv)
4016 value_address = gen_reg_rtx (Pmode);
4017 emit_move_insn (value_address, sv);
4020 if (value_address)
4022 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
4023 set_mem_attributes (x, DECL_RESULT (subr), 1);
4024 SET_DECL_RTL (DECL_RESULT (subr), x);
4027 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4028 /* If return mode is void, this decl rtl should not be used. */
4029 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4030 else
4032 /* Compute the return values into a pseudo reg, which we will copy
4033 into the true return register after the cleanups are done. */
4035 /* In order to figure out what mode to use for the pseudo, we
4036 figure out what the mode of the eventual return register will
4037 actually be, and use that. */
4038 rtx hard_reg
4039 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
4040 subr, 1);
4042 /* Structures that are returned in registers are not aggregate_value_p,
4043 so we may see a PARALLEL or a REG. */
4044 if (REG_P (hard_reg))
4045 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
4046 else if (GET_CODE (hard_reg) == PARALLEL)
4047 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4048 else
4049 abort ();
4051 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4052 result to the real return register(s). */
4053 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4056 /* Initialize rtx for parameters and local variables.
4057 In some cases this requires emitting insns. */
4058 assign_parms (subr);
4060 /* If function gets a static chain arg, store it. */
4061 if (cfun->static_chain_decl)
4063 tree parm = cfun->static_chain_decl;
4064 rtx local = gen_reg_rtx (Pmode);
4066 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4067 SET_DECL_RTL (parm, local);
4068 maybe_set_unchanging (local, parm);
4069 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4071 emit_move_insn (local, static_chain_incoming_rtx);
4074 /* If the function receives a non-local goto, then store the
4075 bits we need to restore the frame pointer. */
4076 if (cfun->nonlocal_goto_save_area)
4078 tree t_save;
4079 rtx r_save;
4081 /* ??? We need to do this save early. Unfortunately here is
4082 before the frame variable gets declared. Help out... */
4083 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4085 t_save = build4 (ARRAY_REF, ptr_type_node,
4086 cfun->nonlocal_goto_save_area,
4087 integer_zero_node, NULL_TREE, NULL_TREE);
4088 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4089 r_save = convert_memory_address (Pmode, r_save);
4091 emit_move_insn (r_save, virtual_stack_vars_rtx);
4092 update_nonlocal_goto_save_area ();
4095 /* The following was moved from init_function_start.
4096 The move is supposed to make sdb output more accurate. */
4097 /* Indicate the beginning of the function body,
4098 as opposed to parm setup. */
4099 emit_note (NOTE_INSN_FUNCTION_BEG);
4101 if (!NOTE_P (get_last_insn ()))
4102 emit_note (NOTE_INSN_DELETED);
4103 parm_birth_insn = get_last_insn ();
4105 if (current_function_profile)
4107 #ifdef PROFILE_HOOK
4108 PROFILE_HOOK (current_function_funcdef_no);
4109 #endif
4112 /* After the display initializations is where the tail-recursion label
4113 should go, if we end up needing one. Ensure we have a NOTE here
4114 since some things (like trampolines) get placed before this. */
4115 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4117 /* Evaluate now the sizes of any types declared among the arguments. */
4118 expand_pending_sizes (nreverse (get_pending_sizes ()));
4120 /* Make sure there is a line number after the function entry setup code. */
4121 force_next_line_note ();
4124 /* Undo the effects of init_dummy_function_start. */
4125 void
4126 expand_dummy_function_end (void)
4128 /* End any sequences that failed to be closed due to syntax errors. */
4129 while (in_sequence_p ())
4130 end_sequence ();
4132 /* Outside function body, can't compute type's actual size
4133 until next function's body starts. */
4135 free_after_parsing (cfun);
4136 free_after_compilation (cfun);
4137 cfun = 0;
4140 /* Call DOIT for each hard register used as a return value from
4141 the current function. */
4143 void
4144 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4146 rtx outgoing = current_function_return_rtx;
4148 if (! outgoing)
4149 return;
4151 if (REG_P (outgoing))
4152 (*doit) (outgoing, arg);
4153 else if (GET_CODE (outgoing) == PARALLEL)
4155 int i;
4157 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4159 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4161 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4162 (*doit) (x, arg);
4167 static void
4168 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4170 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4173 void
4174 clobber_return_register (void)
4176 diddle_return_value (do_clobber_return_reg, NULL);
4178 /* In case we do use pseudo to return value, clobber it too. */
4179 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4181 tree decl_result = DECL_RESULT (current_function_decl);
4182 rtx decl_rtl = DECL_RTL (decl_result);
4183 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4185 do_clobber_return_reg (decl_rtl, NULL);
4190 static void
4191 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4193 emit_insn (gen_rtx_USE (VOIDmode, reg));
4196 void
4197 use_return_register (void)
4199 diddle_return_value (do_use_return_reg, NULL);
4202 /* Possibly warn about unused parameters. */
4203 void
4204 do_warn_unused_parameter (tree fn)
4206 tree decl;
4208 for (decl = DECL_ARGUMENTS (fn);
4209 decl; decl = TREE_CHAIN (decl))
4210 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4211 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4212 warning ("%Junused parameter '%D'", decl, decl);
4215 static GTY(()) rtx initial_trampoline;
4217 /* Generate RTL for the end of the current function. */
4219 void
4220 expand_function_end (void)
4222 rtx clobber_after;
4224 /* If arg_pointer_save_area was referenced only from a nested
4225 function, we will not have initialized it yet. Do that now. */
4226 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4227 get_arg_pointer_save_area (cfun);
4229 /* If we are doing stack checking and this function makes calls,
4230 do a stack probe at the start of the function to ensure we have enough
4231 space for another stack frame. */
4232 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4234 rtx insn, seq;
4236 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4237 if (CALL_P (insn))
4239 start_sequence ();
4240 probe_stack_range (STACK_CHECK_PROTECT,
4241 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4242 seq = get_insns ();
4243 end_sequence ();
4244 emit_insn_before (seq, tail_recursion_reentry);
4245 break;
4249 /* Possibly warn about unused parameters.
4250 When frontend does unit-at-a-time, the warning is already
4251 issued at finalization time. */
4252 if (warn_unused_parameter
4253 && !lang_hooks.callgraph.expand_function)
4254 do_warn_unused_parameter (current_function_decl);
4256 /* End any sequences that failed to be closed due to syntax errors. */
4257 while (in_sequence_p ())
4258 end_sequence ();
4260 clear_pending_stack_adjust ();
4261 do_pending_stack_adjust ();
4263 /* @@@ This is a kludge. We want to ensure that instructions that
4264 may trap are not moved into the epilogue by scheduling, because
4265 we don't always emit unwind information for the epilogue.
4266 However, not all machine descriptions define a blockage insn, so
4267 emit an ASM_INPUT to act as one. */
4268 if (flag_non_call_exceptions)
4269 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4271 /* Mark the end of the function body.
4272 If control reaches this insn, the function can drop through
4273 without returning a value. */
4274 emit_note (NOTE_INSN_FUNCTION_END);
4276 /* Must mark the last line number note in the function, so that the test
4277 coverage code can avoid counting the last line twice. This just tells
4278 the code to ignore the immediately following line note, since there
4279 already exists a copy of this note somewhere above. This line number
4280 note is still needed for debugging though, so we can't delete it. */
4281 if (flag_test_coverage)
4282 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4284 /* Output a linenumber for the end of the function.
4285 SDB depends on this. */
4286 force_next_line_note ();
4287 emit_line_note (input_location);
4289 /* Before the return label (if any), clobber the return
4290 registers so that they are not propagated live to the rest of
4291 the function. This can only happen with functions that drop
4292 through; if there had been a return statement, there would
4293 have either been a return rtx, or a jump to the return label.
4295 We delay actual code generation after the current_function_value_rtx
4296 is computed. */
4297 clobber_after = get_last_insn ();
4299 /* Output the label for the actual return from the function,
4300 if one is expected. This happens either because a function epilogue
4301 is used instead of a return instruction, or because a return was done
4302 with a goto in order to run local cleanups, or because of pcc-style
4303 structure returning. */
4304 if (return_label)
4305 emit_label (return_label);
4307 /* Let except.c know where it should emit the call to unregister
4308 the function context for sjlj exceptions. */
4309 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4310 sjlj_emit_function_exit_after (get_last_insn ());
4312 /* If we had calls to alloca, and this machine needs
4313 an accurate stack pointer to exit the function,
4314 insert some code to save and restore the stack pointer. */
4315 if (! EXIT_IGNORE_STACK
4316 && current_function_calls_alloca)
4318 rtx tem = 0;
4320 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4321 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4324 /* If scalar return value was computed in a pseudo-reg, or was a named
4325 return value that got dumped to the stack, copy that to the hard
4326 return register. */
4327 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4329 tree decl_result = DECL_RESULT (current_function_decl);
4330 rtx decl_rtl = DECL_RTL (decl_result);
4332 if (REG_P (decl_rtl)
4333 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4334 : DECL_REGISTER (decl_result))
4336 rtx real_decl_rtl = current_function_return_rtx;
4338 /* This should be set in assign_parms. */
4339 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
4340 abort ();
4342 /* If this is a BLKmode structure being returned in registers,
4343 then use the mode computed in expand_return. Note that if
4344 decl_rtl is memory, then its mode may have been changed,
4345 but that current_function_return_rtx has not. */
4346 if (GET_MODE (real_decl_rtl) == BLKmode)
4347 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4349 /* If a named return value dumped decl_return to memory, then
4350 we may need to re-do the PROMOTE_MODE signed/unsigned
4351 extension. */
4352 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4354 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4356 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4357 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4358 &unsignedp, 1);
4360 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4362 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4364 /* If expand_function_start has created a PARALLEL for decl_rtl,
4365 move the result to the real return registers. Otherwise, do
4366 a group load from decl_rtl for a named return. */
4367 if (GET_CODE (decl_rtl) == PARALLEL)
4368 emit_group_move (real_decl_rtl, decl_rtl);
4369 else
4370 emit_group_load (real_decl_rtl, decl_rtl,
4371 TREE_TYPE (decl_result),
4372 int_size_in_bytes (TREE_TYPE (decl_result)));
4374 else
4375 emit_move_insn (real_decl_rtl, decl_rtl);
4379 /* If returning a structure, arrange to return the address of the value
4380 in a place where debuggers expect to find it.
4382 If returning a structure PCC style,
4383 the caller also depends on this value.
4384 And current_function_returns_pcc_struct is not necessarily set. */
4385 if (current_function_returns_struct
4386 || current_function_returns_pcc_struct)
4388 rtx value_address
4389 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
4390 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4391 #ifdef FUNCTION_OUTGOING_VALUE
4392 rtx outgoing
4393 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4394 current_function_decl);
4395 #else
4396 rtx outgoing
4397 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
4398 #endif
4400 /* Mark this as a function return value so integrate will delete the
4401 assignment and USE below when inlining this function. */
4402 REG_FUNCTION_VALUE_P (outgoing) = 1;
4404 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4405 value_address = convert_memory_address (GET_MODE (outgoing),
4406 value_address);
4408 emit_move_insn (outgoing, value_address);
4410 /* Show return register used to hold result (in this case the address
4411 of the result. */
4412 current_function_return_rtx = outgoing;
4415 /* If this is an implementation of throw, do what's necessary to
4416 communicate between __builtin_eh_return and the epilogue. */
4417 expand_eh_return ();
4419 /* Emit the actual code to clobber return register. */
4421 rtx seq, after;
4423 start_sequence ();
4424 clobber_return_register ();
4425 seq = get_insns ();
4426 end_sequence ();
4428 after = emit_insn_after (seq, clobber_after);
4431 /* Output the label for the naked return from the function, if one is
4432 expected. This is currently used only by __builtin_return. */
4433 if (naked_return_label)
4434 emit_label (naked_return_label);
4436 /* ??? This should no longer be necessary since stupid is no longer with
4437 us, but there are some parts of the compiler (eg reload_combine, and
4438 sh mach_dep_reorg) that still try and compute their own lifetime info
4439 instead of using the general framework. */
4440 use_return_register ();
4444 get_arg_pointer_save_area (struct function *f)
4446 rtx ret = f->x_arg_pointer_save_area;
4448 if (! ret)
4450 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4451 f->x_arg_pointer_save_area = ret;
4454 if (f == cfun && ! f->arg_pointer_save_area_init)
4456 rtx seq;
4458 /* Save the arg pointer at the beginning of the function. The
4459 generated stack slot may not be a valid memory address, so we
4460 have to check it and fix it if necessary. */
4461 start_sequence ();
4462 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4463 seq = get_insns ();
4464 end_sequence ();
4466 push_topmost_sequence ();
4467 emit_insn_after (seq, get_insns ());
4468 pop_topmost_sequence ();
4471 return ret;
4474 /* Extend a vector that records the INSN_UIDs of INSNS
4475 (a list of one or more insns). */
4477 static void
4478 record_insns (rtx insns, varray_type *vecp)
4480 int i, len;
4481 rtx tmp;
4483 tmp = insns;
4484 len = 0;
4485 while (tmp != NULL_RTX)
4487 len++;
4488 tmp = NEXT_INSN (tmp);
4491 i = VARRAY_SIZE (*vecp);
4492 VARRAY_GROW (*vecp, i + len);
4493 tmp = insns;
4494 while (tmp != NULL_RTX)
4496 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
4497 i++;
4498 tmp = NEXT_INSN (tmp);
4502 /* Set the locator of the insn chain starting at INSN to LOC. */
4503 static void
4504 set_insn_locators (rtx insn, int loc)
4506 while (insn != NULL_RTX)
4508 if (INSN_P (insn))
4509 INSN_LOCATOR (insn) = loc;
4510 insn = NEXT_INSN (insn);
4514 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4515 be running after reorg, SEQUENCE rtl is possible. */
4517 static int
4518 contains (rtx insn, varray_type vec)
4520 int i, j;
4522 if (NONJUMP_INSN_P (insn)
4523 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4525 int count = 0;
4526 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4527 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4528 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
4529 count++;
4530 return count;
4532 else
4534 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4535 if (INSN_UID (insn) == VARRAY_INT (vec, j))
4536 return 1;
4538 return 0;
4542 prologue_epilogue_contains (rtx insn)
4544 if (contains (insn, prologue))
4545 return 1;
4546 if (contains (insn, epilogue))
4547 return 1;
4548 return 0;
4552 sibcall_epilogue_contains (rtx insn)
4554 if (sibcall_epilogue)
4555 return contains (insn, sibcall_epilogue);
4556 return 0;
4559 #ifdef HAVE_return
4560 /* Insert gen_return at the end of block BB. This also means updating
4561 block_for_insn appropriately. */
4563 static void
4564 emit_return_into_block (basic_block bb, rtx line_note)
4566 emit_jump_insn_after (gen_return (), BB_END (bb));
4567 if (line_note)
4568 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4570 #endif /* HAVE_return */
4572 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4574 /* These functions convert the epilogue into a variant that does not modify the
4575 stack pointer. This is used in cases where a function returns an object
4576 whose size is not known until it is computed. The called function leaves the
4577 object on the stack, leaves the stack depressed, and returns a pointer to
4578 the object.
4580 What we need to do is track all modifications and references to the stack
4581 pointer, deleting the modifications and changing the references to point to
4582 the location the stack pointer would have pointed to had the modifications
4583 taken place.
4585 These functions need to be portable so we need to make as few assumptions
4586 about the epilogue as we can. However, the epilogue basically contains
4587 three things: instructions to reset the stack pointer, instructions to
4588 reload registers, possibly including the frame pointer, and an
4589 instruction to return to the caller.
4591 If we can't be sure of what a relevant epilogue insn is doing, we abort.
4592 We also make no attempt to validate the insns we make since if they are
4593 invalid, we probably can't do anything valid. The intent is that these
4594 routines get "smarter" as more and more machines start to use them and
4595 they try operating on different epilogues.
4597 We use the following structure to track what the part of the epilogue that
4598 we've already processed has done. We keep two copies of the SP equivalence,
4599 one for use during the insn we are processing and one for use in the next
4600 insn. The difference is because one part of a PARALLEL may adjust SP
4601 and the other may use it. */
4603 struct epi_info
4605 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4606 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4607 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4608 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4609 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4610 should be set to once we no longer need
4611 its value. */
4612 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4613 for registers. */
4616 static void handle_epilogue_set (rtx, struct epi_info *);
4617 static void update_epilogue_consts (rtx, rtx, void *);
4618 static void emit_equiv_load (struct epi_info *);
4620 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4621 no modifications to the stack pointer. Return the new list of insns. */
4623 static rtx
4624 keep_stack_depressed (rtx insns)
4626 int j;
4627 struct epi_info info;
4628 rtx insn, next;
4630 /* If the epilogue is just a single instruction, it must be OK as is. */
4631 if (NEXT_INSN (insns) == NULL_RTX)
4632 return insns;
4634 /* Otherwise, start a sequence, initialize the information we have, and
4635 process all the insns we were given. */
4636 start_sequence ();
4638 info.sp_equiv_reg = stack_pointer_rtx;
4639 info.sp_offset = 0;
4640 info.equiv_reg_src = 0;
4642 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4643 info.const_equiv[j] = 0;
4645 insn = insns;
4646 next = NULL_RTX;
4647 while (insn != NULL_RTX)
4649 next = NEXT_INSN (insn);
4651 if (!INSN_P (insn))
4653 add_insn (insn);
4654 insn = next;
4655 continue;
4658 /* If this insn references the register that SP is equivalent to and
4659 we have a pending load to that register, we must force out the load
4660 first and then indicate we no longer know what SP's equivalent is. */
4661 if (info.equiv_reg_src != 0
4662 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4664 emit_equiv_load (&info);
4665 info.sp_equiv_reg = 0;
4668 info.new_sp_equiv_reg = info.sp_equiv_reg;
4669 info.new_sp_offset = info.sp_offset;
4671 /* If this is a (RETURN) and the return address is on the stack,
4672 update the address and change to an indirect jump. */
4673 if (GET_CODE (PATTERN (insn)) == RETURN
4674 || (GET_CODE (PATTERN (insn)) == PARALLEL
4675 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4677 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4678 rtx base = 0;
4679 HOST_WIDE_INT offset = 0;
4680 rtx jump_insn, jump_set;
4682 /* If the return address is in a register, we can emit the insn
4683 unchanged. Otherwise, it must be a MEM and we see what the
4684 base register and offset are. In any case, we have to emit any
4685 pending load to the equivalent reg of SP, if any. */
4686 if (REG_P (retaddr))
4688 emit_equiv_load (&info);
4689 add_insn (insn);
4690 insn = next;
4691 continue;
4693 else if (MEM_P (retaddr)
4694 && REG_P (XEXP (retaddr, 0)))
4695 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
4696 else if (MEM_P (retaddr)
4697 && GET_CODE (XEXP (retaddr, 0)) == PLUS
4698 && REG_P (XEXP (XEXP (retaddr, 0), 0))
4699 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
4701 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
4702 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
4704 else
4705 abort ();
4707 /* If the base of the location containing the return pointer
4708 is SP, we must update it with the replacement address. Otherwise,
4709 just build the necessary MEM. */
4710 retaddr = plus_constant (base, offset);
4711 if (base == stack_pointer_rtx)
4712 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4713 plus_constant (info.sp_equiv_reg,
4714 info.sp_offset));
4716 retaddr = gen_rtx_MEM (Pmode, retaddr);
4718 /* If there is a pending load to the equivalent register for SP
4719 and we reference that register, we must load our address into
4720 a scratch register and then do that load. */
4721 if (info.equiv_reg_src
4722 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4724 unsigned int regno;
4725 rtx reg;
4727 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4728 if (HARD_REGNO_MODE_OK (regno, Pmode)
4729 && !fixed_regs[regno]
4730 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4731 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
4732 regno)
4733 && !refers_to_regno_p (regno,
4734 regno + hard_regno_nregs[regno]
4735 [Pmode],
4736 info.equiv_reg_src, NULL)
4737 && info.const_equiv[regno] == 0)
4738 break;
4740 if (regno == FIRST_PSEUDO_REGISTER)
4741 abort ();
4743 reg = gen_rtx_REG (Pmode, regno);
4744 emit_move_insn (reg, retaddr);
4745 retaddr = reg;
4748 emit_equiv_load (&info);
4749 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4751 /* Show the SET in the above insn is a RETURN. */
4752 jump_set = single_set (jump_insn);
4753 if (jump_set == 0)
4754 abort ();
4755 else
4756 SET_IS_RETURN_P (jump_set) = 1;
4759 /* If SP is not mentioned in the pattern and its equivalent register, if
4760 any, is not modified, just emit it. Otherwise, if neither is set,
4761 replace the reference to SP and emit the insn. If none of those are
4762 true, handle each SET individually. */
4763 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4764 && (info.sp_equiv_reg == stack_pointer_rtx
4765 || !reg_set_p (info.sp_equiv_reg, insn)))
4766 add_insn (insn);
4767 else if (! reg_set_p (stack_pointer_rtx, insn)
4768 && (info.sp_equiv_reg == stack_pointer_rtx
4769 || !reg_set_p (info.sp_equiv_reg, insn)))
4771 if (! validate_replace_rtx (stack_pointer_rtx,
4772 plus_constant (info.sp_equiv_reg,
4773 info.sp_offset),
4774 insn))
4775 abort ();
4777 add_insn (insn);
4779 else if (GET_CODE (PATTERN (insn)) == SET)
4780 handle_epilogue_set (PATTERN (insn), &info);
4781 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4783 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4784 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4785 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4787 else
4788 add_insn (insn);
4790 info.sp_equiv_reg = info.new_sp_equiv_reg;
4791 info.sp_offset = info.new_sp_offset;
4793 /* Now update any constants this insn sets. */
4794 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4795 insn = next;
4798 insns = get_insns ();
4799 end_sequence ();
4800 return insns;
4803 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4804 structure that contains information about what we've seen so far. We
4805 process this SET by either updating that data or by emitting one or
4806 more insns. */
4808 static void
4809 handle_epilogue_set (rtx set, struct epi_info *p)
4811 /* First handle the case where we are setting SP. Record what it is being
4812 set from. If unknown, abort. */
4813 if (reg_set_p (stack_pointer_rtx, set))
4815 if (SET_DEST (set) != stack_pointer_rtx)
4816 abort ();
4818 if (GET_CODE (SET_SRC (set)) == PLUS)
4820 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4821 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4822 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4823 else if (REG_P (XEXP (SET_SRC (set), 1))
4824 && REGNO (XEXP (SET_SRC (set), 1)) < FIRST_PSEUDO_REGISTER
4825 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))] != 0)
4826 p->new_sp_offset
4827 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4828 else
4829 abort ();
4831 else
4832 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4834 /* If we are adjusting SP, we adjust from the old data. */
4835 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4837 p->new_sp_equiv_reg = p->sp_equiv_reg;
4838 p->new_sp_offset += p->sp_offset;
4841 if (p->new_sp_equiv_reg == 0 || !REG_P (p->new_sp_equiv_reg))
4842 abort ();
4844 return;
4847 /* Next handle the case where we are setting SP's equivalent register.
4848 If we already have a value to set it to, abort. We could update, but
4849 there seems little point in handling that case. Note that we have
4850 to allow for the case where we are setting the register set in
4851 the previous part of a PARALLEL inside a single insn. But use the
4852 old offset for any updates within this insn. We must allow for the case
4853 where the register is being set in a different (usually wider) mode than
4854 Pmode). */
4855 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4857 if (p->equiv_reg_src != 0
4858 || !REG_P (p->new_sp_equiv_reg)
4859 || !REG_P (SET_DEST (set))
4860 || GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) > BITS_PER_WORD
4861 || REGNO (p->new_sp_equiv_reg) != REGNO (SET_DEST (set)))
4862 abort ();
4863 else
4864 p->equiv_reg_src
4865 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4866 plus_constant (p->sp_equiv_reg,
4867 p->sp_offset));
4870 /* Otherwise, replace any references to SP in the insn to its new value
4871 and emit the insn. */
4872 else
4874 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4875 plus_constant (p->sp_equiv_reg,
4876 p->sp_offset));
4877 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4878 plus_constant (p->sp_equiv_reg,
4879 p->sp_offset));
4880 emit_insn (set);
4884 /* Update the tracking information for registers set to constants. */
4886 static void
4887 update_epilogue_consts (rtx dest, rtx x, void *data)
4889 struct epi_info *p = (struct epi_info *) data;
4890 rtx new;
4892 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4893 return;
4895 /* If we are either clobbering a register or doing a partial set,
4896 show we don't know the value. */
4897 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
4898 p->const_equiv[REGNO (dest)] = 0;
4900 /* If we are setting it to a constant, record that constant. */
4901 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
4902 p->const_equiv[REGNO (dest)] = SET_SRC (x);
4904 /* If this is a binary operation between a register we have been tracking
4905 and a constant, see if we can compute a new constant value. */
4906 else if (ARITHMETIC_P (SET_SRC (x))
4907 && REG_P (XEXP (SET_SRC (x), 0))
4908 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
4909 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
4910 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4911 && 0 != (new = simplify_binary_operation
4912 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
4913 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
4914 XEXP (SET_SRC (x), 1)))
4915 && GET_CODE (new) == CONST_INT)
4916 p->const_equiv[REGNO (dest)] = new;
4918 /* Otherwise, we can't do anything with this value. */
4919 else
4920 p->const_equiv[REGNO (dest)] = 0;
4923 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
4925 static void
4926 emit_equiv_load (struct epi_info *p)
4928 if (p->equiv_reg_src != 0)
4930 rtx dest = p->sp_equiv_reg;
4932 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
4933 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
4934 REGNO (p->sp_equiv_reg));
4936 emit_move_insn (dest, p->equiv_reg_src);
4937 p->equiv_reg_src = 0;
4940 #endif
4942 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4943 this into place with notes indicating where the prologue ends and where
4944 the epilogue begins. Update the basic block information when possible. */
4946 void
4947 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
4949 int inserted = 0;
4950 edge e;
4951 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4952 rtx seq;
4953 #endif
4954 #ifdef HAVE_prologue
4955 rtx prologue_end = NULL_RTX;
4956 #endif
4957 #if defined (HAVE_epilogue) || defined(HAVE_return)
4958 rtx epilogue_end = NULL_RTX;
4959 #endif
4961 #ifdef HAVE_prologue
4962 if (HAVE_prologue)
4964 start_sequence ();
4965 seq = gen_prologue ();
4966 emit_insn (seq);
4968 /* Retain a map of the prologue insns. */
4969 record_insns (seq, &prologue);
4970 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
4972 seq = get_insns ();
4973 end_sequence ();
4974 set_insn_locators (seq, prologue_locator);
4976 /* Can't deal with multiple successors of the entry block
4977 at the moment. Function should always have at least one
4978 entry point. */
4979 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
4980 abort ();
4982 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
4983 inserted = 1;
4985 #endif
4987 /* If the exit block has no non-fake predecessors, we don't need
4988 an epilogue. */
4989 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
4990 if ((e->flags & EDGE_FAKE) == 0)
4991 break;
4992 if (e == NULL)
4993 goto epilogue_done;
4995 #ifdef HAVE_return
4996 if (optimize && HAVE_return)
4998 /* If we're allowed to generate a simple return instruction,
4999 then by definition we don't need a full epilogue. Examine
5000 the block that falls through to EXIT. If it does not
5001 contain any code, examine its predecessors and try to
5002 emit (conditional) return instructions. */
5004 basic_block last;
5005 edge e_next;
5006 rtx label;
5008 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
5009 if (e->flags & EDGE_FALLTHRU)
5010 break;
5011 if (e == NULL)
5012 goto epilogue_done;
5013 last = e->src;
5015 /* Verify that there are no active instructions in the last block. */
5016 label = BB_END (last);
5017 while (label && !LABEL_P (label))
5019 if (active_insn_p (label))
5020 break;
5021 label = PREV_INSN (label);
5024 if (BB_HEAD (last) == label && LABEL_P (label))
5026 rtx epilogue_line_note = NULL_RTX;
5028 /* Locate the line number associated with the closing brace,
5029 if we can find one. */
5030 for (seq = get_last_insn ();
5031 seq && ! active_insn_p (seq);
5032 seq = PREV_INSN (seq))
5033 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5035 epilogue_line_note = seq;
5036 break;
5039 for (e = last->pred; e; e = e_next)
5041 basic_block bb = e->src;
5042 rtx jump;
5044 e_next = e->pred_next;
5045 if (bb == ENTRY_BLOCK_PTR)
5046 continue;
5048 jump = BB_END (bb);
5049 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5050 continue;
5052 /* If we have an unconditional jump, we can replace that
5053 with a simple return instruction. */
5054 if (simplejump_p (jump))
5056 emit_return_into_block (bb, epilogue_line_note);
5057 delete_insn (jump);
5060 /* If we have a conditional jump, we can try to replace
5061 that with a conditional return instruction. */
5062 else if (condjump_p (jump))
5064 if (! redirect_jump (jump, 0, 0))
5065 continue;
5067 /* If this block has only one successor, it both jumps
5068 and falls through to the fallthru block, so we can't
5069 delete the edge. */
5070 if (bb->succ->succ_next == NULL)
5071 continue;
5073 else
5074 continue;
5076 /* Fix up the CFG for the successful change we just made. */
5077 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5080 /* Emit a return insn for the exit fallthru block. Whether
5081 this is still reachable will be determined later. */
5083 emit_barrier_after (BB_END (last));
5084 emit_return_into_block (last, epilogue_line_note);
5085 epilogue_end = BB_END (last);
5086 last->succ->flags &= ~EDGE_FALLTHRU;
5087 goto epilogue_done;
5090 #endif
5091 /* Find the edge that falls through to EXIT. Other edges may exist
5092 due to RETURN instructions, but those don't need epilogues.
5093 There really shouldn't be a mixture -- either all should have
5094 been converted or none, however... */
5096 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
5097 if (e->flags & EDGE_FALLTHRU)
5098 break;
5099 if (e == NULL)
5100 goto epilogue_done;
5102 #ifdef HAVE_epilogue
5103 if (HAVE_epilogue)
5105 start_sequence ();
5106 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5108 seq = gen_epilogue ();
5110 #ifdef INCOMING_RETURN_ADDR_RTX
5111 /* If this function returns with the stack depressed and we can support
5112 it, massage the epilogue to actually do that. */
5113 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5114 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5115 seq = keep_stack_depressed (seq);
5116 #endif
5118 emit_jump_insn (seq);
5120 /* Retain a map of the epilogue insns. */
5121 record_insns (seq, &epilogue);
5122 set_insn_locators (seq, epilogue_locator);
5124 seq = get_insns ();
5125 end_sequence ();
5127 insert_insn_on_edge (seq, e);
5128 inserted = 1;
5130 else
5131 #endif
5133 basic_block cur_bb;
5135 if (! next_active_insn (BB_END (e->src)))
5136 goto epilogue_done;
5137 /* We have a fall-through edge to the exit block, the source is not
5138 at the end of the function, and there will be an assembler epilogue
5139 at the end of the function.
5140 We can't use force_nonfallthru here, because that would try to
5141 use return. Inserting a jump 'by hand' is extremely messy, so
5142 we take advantage of cfg_layout_finalize using
5143 fixup_fallthru_exit_predecessor. */
5144 cfg_layout_initialize (0);
5145 FOR_EACH_BB (cur_bb)
5146 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5147 cur_bb->rbi->next = cur_bb->next_bb;
5148 cfg_layout_finalize ();
5150 epilogue_done:
5152 if (inserted)
5153 commit_edge_insertions ();
5155 #ifdef HAVE_sibcall_epilogue
5156 /* Emit sibling epilogues before any sibling call sites. */
5157 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
5159 basic_block bb = e->src;
5160 rtx insn = BB_END (bb);
5161 rtx i;
5162 rtx newinsn;
5164 if (!CALL_P (insn)
5165 || ! SIBLING_CALL_P (insn))
5166 continue;
5168 start_sequence ();
5169 emit_insn (gen_sibcall_epilogue ());
5170 seq = get_insns ();
5171 end_sequence ();
5173 /* Retain a map of the epilogue insns. Used in life analysis to
5174 avoid getting rid of sibcall epilogue insns. Do this before we
5175 actually emit the sequence. */
5176 record_insns (seq, &sibcall_epilogue);
5177 set_insn_locators (seq, epilogue_locator);
5179 i = PREV_INSN (insn);
5180 newinsn = emit_insn_before (seq, insn);
5182 #endif
5184 #ifdef HAVE_prologue
5185 /* This is probably all useless now that we use locators. */
5186 if (prologue_end)
5188 rtx insn, prev;
5190 /* GDB handles `break f' by setting a breakpoint on the first
5191 line note after the prologue. Which means (1) that if
5192 there are line number notes before where we inserted the
5193 prologue we should move them, and (2) we should generate a
5194 note before the end of the first basic block, if there isn't
5195 one already there.
5197 ??? This behavior is completely broken when dealing with
5198 multiple entry functions. We simply place the note always
5199 into first basic block and let alternate entry points
5200 to be missed.
5203 for (insn = prologue_end; insn; insn = prev)
5205 prev = PREV_INSN (insn);
5206 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5208 /* Note that we cannot reorder the first insn in the
5209 chain, since rest_of_compilation relies on that
5210 remaining constant. */
5211 if (prev == NULL)
5212 break;
5213 reorder_insns (insn, insn, prologue_end);
5217 /* Find the last line number note in the first block. */
5218 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5219 insn != prologue_end && insn;
5220 insn = PREV_INSN (insn))
5221 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5222 break;
5224 /* If we didn't find one, make a copy of the first line number
5225 we run across. */
5226 if (! insn)
5228 for (insn = next_active_insn (prologue_end);
5229 insn;
5230 insn = PREV_INSN (insn))
5231 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5233 emit_note_copy_after (insn, prologue_end);
5234 break;
5238 #endif
5239 #ifdef HAVE_epilogue
5240 if (epilogue_end)
5242 rtx insn, next;
5244 /* Similarly, move any line notes that appear after the epilogue.
5245 There is no need, however, to be quite so anal about the existence
5246 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5247 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5248 info generation. */
5249 for (insn = epilogue_end; insn; insn = next)
5251 next = NEXT_INSN (insn);
5252 if (NOTE_P (insn)
5253 && (NOTE_LINE_NUMBER (insn) > 0
5254 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5255 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5256 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5259 #endif
5262 /* Reposition the prologue-end and epilogue-begin notes after instruction
5263 scheduling and delayed branch scheduling. */
5265 void
5266 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5268 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5269 rtx insn, last, note;
5270 int len;
5272 if ((len = VARRAY_SIZE (prologue)) > 0)
5274 last = 0, note = 0;
5276 /* Scan from the beginning until we reach the last prologue insn.
5277 We apparently can't depend on basic_block_{head,end} after
5278 reorg has run. */
5279 for (insn = f; insn; insn = NEXT_INSN (insn))
5281 if (NOTE_P (insn))
5283 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5284 note = insn;
5286 else if (contains (insn, prologue))
5288 last = insn;
5289 if (--len == 0)
5290 break;
5294 if (last)
5296 /* Find the prologue-end note if we haven't already, and
5297 move it to just after the last prologue insn. */
5298 if (note == 0)
5300 for (note = last; (note = NEXT_INSN (note));)
5301 if (NOTE_P (note)
5302 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5303 break;
5306 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5307 if (LABEL_P (last))
5308 last = NEXT_INSN (last);
5309 reorder_insns (note, note, last);
5313 if ((len = VARRAY_SIZE (epilogue)) > 0)
5315 last = 0, note = 0;
5317 /* Scan from the end until we reach the first epilogue insn.
5318 We apparently can't depend on basic_block_{head,end} after
5319 reorg has run. */
5320 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5322 if (NOTE_P (insn))
5324 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5325 note = insn;
5327 else if (contains (insn, epilogue))
5329 last = insn;
5330 if (--len == 0)
5331 break;
5335 if (last)
5337 /* Find the epilogue-begin note if we haven't already, and
5338 move it to just before the first epilogue insn. */
5339 if (note == 0)
5341 for (note = insn; (note = PREV_INSN (note));)
5342 if (NOTE_P (note)
5343 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5344 break;
5347 if (PREV_INSN (last) != note)
5348 reorder_insns (note, note, PREV_INSN (last));
5351 #endif /* HAVE_prologue or HAVE_epilogue */
5354 /* Called once, at initialization, to initialize function.c. */
5356 void
5357 init_function_once (void)
5359 VARRAY_INT_INIT (prologue, 0, "prologue");
5360 VARRAY_INT_INIT (epilogue, 0, "epilogue");
5361 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
5364 /* Resets insn_block_boundaries array. */
5366 void
5367 reset_block_changes (void)
5369 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5370 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5373 /* Record the boundary for BLOCK. */
5374 void
5375 record_block_change (tree block)
5377 int i, n;
5378 tree last_block;
5380 if (!block)
5381 return;
5383 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5384 VARRAY_POP (cfun->ib_boundaries_block);
5385 n = get_max_uid ();
5386 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5387 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5389 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5392 /* Finishes record of boundaries. */
5393 void finalize_block_changes (void)
5395 record_block_change (DECL_INITIAL (current_function_decl));
5398 /* For INSN return the BLOCK it belongs to. */
5399 void
5400 check_block_change (rtx insn, tree *block)
5402 unsigned uid = INSN_UID (insn);
5404 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5405 return;
5407 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5410 /* Releases the ib_boundaries_block records. */
5411 void
5412 free_block_changes (void)
5414 cfun->ib_boundaries_block = NULL;
5417 /* Returns the name of the current function. */
5418 const char *
5419 current_function_name (void)
5421 return lang_hooks.decl_printable_name (cfun->decl, 2);
5424 #include "gt-function.h"