1 /* Building internal representation for IRA.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "insn-config.h"
35 #include "diagnostic-core.h"
39 #include "sparseset.h"
41 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
43 static ira_copy_t
find_allocno_copy (ira_allocno_t
, ira_allocno_t
, rtx
,
44 ira_loop_tree_node_t
);
46 /* The root of the loop tree corresponding to the all function. */
47 ira_loop_tree_node_t ira_loop_tree_root
;
49 /* Height of the loop tree. */
50 int ira_loop_tree_height
;
52 /* All nodes representing basic blocks are referred through the
53 following array. We can not use basic block member `aux' for this
54 because it is used for insertion of insns on edges. */
55 ira_loop_tree_node_t ira_bb_nodes
;
57 /* All nodes representing loops are referred through the following
59 ira_loop_tree_node_t ira_loop_nodes
;
61 /* Map regno -> allocnos with given regno (see comments for
62 allocno member `next_regno_allocno'). */
63 ira_allocno_t
*ira_regno_allocno_map
;
65 /* Array of references to all allocnos. The order number of the
66 allocno corresponds to the index in the array. Removed allocnos
67 have NULL element value. */
68 ira_allocno_t
*ira_allocnos
;
70 /* Sizes of the previous array. */
73 /* Count of conflict record structures we've created, used when creating
77 /* Map a conflict id to its conflict record. */
78 ira_object_t
*ira_object_id_map
;
80 /* Array of references to all copies. The order number of the copy
81 corresponds to the index in the array. Removed copies have NULL
83 ira_copy_t
*ira_copies
;
85 /* Size of the previous array. */
90 /* LAST_BASIC_BLOCK before generating additional insns because of live
91 range splitting. Emitting insns on a critical edge creates a new
93 static int last_basic_block_before_change
;
95 /* Initialize some members in loop tree node NODE. Use LOOP_NUM for
96 the member loop_num. */
98 init_loop_tree_node (struct ira_loop_tree_node
*node
, int loop_num
)
100 int max_regno
= max_reg_num ();
102 node
->regno_allocno_map
103 = (ira_allocno_t
*) ira_allocate (sizeof (ira_allocno_t
) * max_regno
);
104 memset (node
->regno_allocno_map
, 0, sizeof (ira_allocno_t
) * max_regno
);
105 memset (node
->reg_pressure
, 0, sizeof (node
->reg_pressure
));
106 node
->all_allocnos
= ira_allocate_bitmap ();
107 node
->modified_regnos
= ira_allocate_bitmap ();
108 node
->border_allocnos
= ira_allocate_bitmap ();
109 node
->local_copies
= ira_allocate_bitmap ();
110 node
->loop_num
= loop_num
;
111 node
->children
= NULL
;
112 node
->subloops
= NULL
;
116 /* The following function allocates the loop tree nodes. If
117 CURRENT_LOOPS is NULL, the nodes corresponding to the loops (except
118 the root which corresponds the all function) will be not allocated
119 but nodes will still be allocated for basic blocks. */
121 create_loop_tree_nodes (void)
127 VEC (edge
, heap
) *edges
;
131 = ((struct ira_loop_tree_node
*)
132 ira_allocate (sizeof (struct ira_loop_tree_node
) * last_basic_block
));
133 last_basic_block_before_change
= last_basic_block
;
134 for (i
= 0; i
< (unsigned int) last_basic_block
; i
++)
136 ira_bb_nodes
[i
].regno_allocno_map
= NULL
;
137 memset (ira_bb_nodes
[i
].reg_pressure
, 0,
138 sizeof (ira_bb_nodes
[i
].reg_pressure
));
139 ira_bb_nodes
[i
].all_allocnos
= NULL
;
140 ira_bb_nodes
[i
].modified_regnos
= NULL
;
141 ira_bb_nodes
[i
].border_allocnos
= NULL
;
142 ira_bb_nodes
[i
].local_copies
= NULL
;
144 if (current_loops
== NULL
)
146 ira_loop_nodes
= ((struct ira_loop_tree_node
*)
147 ira_allocate (sizeof (struct ira_loop_tree_node
)));
148 init_loop_tree_node (ira_loop_nodes
, 0);
151 ira_loop_nodes
= ((struct ira_loop_tree_node
*)
152 ira_allocate (sizeof (struct ira_loop_tree_node
)
153 * VEC_length (loop_p
, ira_loops
.larray
)));
154 FOR_EACH_VEC_ELT (loop_p
, ira_loops
.larray
, i
, loop
)
156 if (loop
!= ira_loops
.tree_root
)
158 ira_loop_nodes
[i
].regno_allocno_map
= NULL
;
160 FOR_EACH_EDGE (e
, ei
, loop
->header
->preds
)
161 if (e
->src
!= loop
->latch
162 && (e
->flags
& EDGE_ABNORMAL
) && EDGE_CRITICAL_P (e
))
169 edges
= get_loop_exit_edges (loop
);
170 FOR_EACH_VEC_ELT (edge
, edges
, j
, e
)
171 if ((e
->flags
& EDGE_ABNORMAL
) && EDGE_CRITICAL_P (e
))
176 VEC_free (edge
, heap
, edges
);
180 init_loop_tree_node (&ira_loop_nodes
[i
], loop
->num
);
184 /* The function returns TRUE if there are more one allocation
187 more_one_region_p (void)
192 if (current_loops
!= NULL
)
193 FOR_EACH_VEC_ELT (loop_p
, ira_loops
.larray
, i
, loop
)
194 if (ira_loop_nodes
[i
].regno_allocno_map
!= NULL
195 && ira_loop_tree_root
!= &ira_loop_nodes
[i
])
200 /* Free the loop tree node of a loop. */
202 finish_loop_tree_node (ira_loop_tree_node_t loop
)
204 if (loop
->regno_allocno_map
!= NULL
)
206 ira_assert (loop
->bb
== NULL
);
207 ira_free_bitmap (loop
->local_copies
);
208 ira_free_bitmap (loop
->border_allocnos
);
209 ira_free_bitmap (loop
->modified_regnos
);
210 ira_free_bitmap (loop
->all_allocnos
);
211 ira_free (loop
->regno_allocno_map
);
212 loop
->regno_allocno_map
= NULL
;
216 /* Free the loop tree nodes. */
218 finish_loop_tree_nodes (void)
223 if (current_loops
== NULL
)
224 finish_loop_tree_node (&ira_loop_nodes
[0]);
226 FOR_EACH_VEC_ELT (loop_p
, ira_loops
.larray
, i
, loop
)
227 finish_loop_tree_node (&ira_loop_nodes
[i
]);
228 ira_free (ira_loop_nodes
);
229 for (i
= 0; i
< (unsigned int) last_basic_block_before_change
; i
++)
231 if (ira_bb_nodes
[i
].local_copies
!= NULL
)
232 ira_free_bitmap (ira_bb_nodes
[i
].local_copies
);
233 if (ira_bb_nodes
[i
].border_allocnos
!= NULL
)
234 ira_free_bitmap (ira_bb_nodes
[i
].border_allocnos
);
235 if (ira_bb_nodes
[i
].modified_regnos
!= NULL
)
236 ira_free_bitmap (ira_bb_nodes
[i
].modified_regnos
);
237 if (ira_bb_nodes
[i
].all_allocnos
!= NULL
)
238 ira_free_bitmap (ira_bb_nodes
[i
].all_allocnos
);
239 if (ira_bb_nodes
[i
].regno_allocno_map
!= NULL
)
240 ira_free (ira_bb_nodes
[i
].regno_allocno_map
);
242 ira_free (ira_bb_nodes
);
247 /* The following recursive function adds LOOP to the loop tree
248 hierarchy. LOOP is added only once. If LOOP is NULL we adding
249 loop designating the whole function when CFG loops are not
252 add_loop_to_tree (struct loop
*loop
)
256 ira_loop_tree_node_t loop_node
, parent_node
;
258 /* We can not use loop node access macros here because of potential
259 checking and because the nodes are not initialized enough
261 if (loop
!= NULL
&& loop_outer (loop
) != NULL
)
262 add_loop_to_tree (loop_outer (loop
));
263 loop_num
= loop
!= NULL
? loop
->num
: 0;
264 if (ira_loop_nodes
[loop_num
].regno_allocno_map
!= NULL
265 && ira_loop_nodes
[loop_num
].children
== NULL
)
267 /* We have not added loop node to the tree yet. */
268 loop_node
= &ira_loop_nodes
[loop_num
];
269 loop_node
->loop
= loop
;
270 loop_node
->bb
= NULL
;
275 for (parent
= loop_outer (loop
);
277 parent
= loop_outer (parent
))
278 if (ira_loop_nodes
[parent
->num
].regno_allocno_map
!= NULL
)
283 loop_node
->next
= NULL
;
284 loop_node
->subloop_next
= NULL
;
285 loop_node
->parent
= NULL
;
289 parent_node
= &ira_loop_nodes
[parent
->num
];
290 loop_node
->next
= parent_node
->children
;
291 parent_node
->children
= loop_node
;
292 loop_node
->subloop_next
= parent_node
->subloops
;
293 parent_node
->subloops
= loop_node
;
294 loop_node
->parent
= parent_node
;
299 /* The following recursive function sets up levels of nodes of the
300 tree given its root LOOP_NODE. The enumeration starts with LEVEL.
301 The function returns maximal value of level in the tree + 1. */
303 setup_loop_tree_level (ira_loop_tree_node_t loop_node
, int level
)
305 int height
, max_height
;
306 ira_loop_tree_node_t subloop_node
;
308 ira_assert (loop_node
->bb
== NULL
);
309 loop_node
->level
= level
;
310 max_height
= level
+ 1;
311 for (subloop_node
= loop_node
->subloops
;
312 subloop_node
!= NULL
;
313 subloop_node
= subloop_node
->subloop_next
)
315 ira_assert (subloop_node
->bb
== NULL
);
316 height
= setup_loop_tree_level (subloop_node
, level
+ 1);
317 if (height
> max_height
)
323 /* Create the loop tree. The algorithm is designed to provide correct
324 order of loops (they are ordered by their last loop BB) and basic
325 blocks in the chain formed by member next. */
327 form_loop_tree (void)
331 ira_loop_tree_node_t bb_node
, loop_node
;
333 /* We can not use loop/bb node access macros because of potential
334 checking and because the nodes are not initialized enough
338 bb_node
= &ira_bb_nodes
[bb
->index
];
340 bb_node
->loop
= NULL
;
341 bb_node
->subloops
= NULL
;
342 bb_node
->children
= NULL
;
343 bb_node
->subloop_next
= NULL
;
344 bb_node
->next
= NULL
;
345 if (current_loops
== NULL
)
349 for (parent
= bb
->loop_father
;
351 parent
= loop_outer (parent
))
352 if (ira_loop_nodes
[parent
->num
].regno_allocno_map
!= NULL
)
355 add_loop_to_tree (parent
);
356 loop_node
= &ira_loop_nodes
[parent
== NULL
? 0 : parent
->num
];
357 bb_node
->next
= loop_node
->children
;
358 bb_node
->parent
= loop_node
;
359 loop_node
->children
= bb_node
;
361 ira_loop_tree_root
= IRA_LOOP_NODE_BY_INDEX (0);
362 ira_loop_tree_height
= setup_loop_tree_level (ira_loop_tree_root
, 0);
363 ira_assert (ira_loop_tree_root
->regno_allocno_map
!= NULL
);
368 /* Rebuild IRA_REGNO_ALLOCNO_MAP and REGNO_ALLOCNO_MAPs of the loop
371 rebuild_regno_allocno_maps (void)
374 int max_regno
, regno
;
376 ira_loop_tree_node_t loop_tree_node
;
378 ira_allocno_iterator ai
;
380 ira_assert (current_loops
!= NULL
);
381 max_regno
= max_reg_num ();
382 FOR_EACH_VEC_ELT (loop_p
, ira_loops
.larray
, l
, loop
)
383 if (ira_loop_nodes
[l
].regno_allocno_map
!= NULL
)
385 ira_free (ira_loop_nodes
[l
].regno_allocno_map
);
386 ira_loop_nodes
[l
].regno_allocno_map
387 = (ira_allocno_t
*) ira_allocate (sizeof (ira_allocno_t
)
389 memset (ira_loop_nodes
[l
].regno_allocno_map
, 0,
390 sizeof (ira_allocno_t
) * max_regno
);
392 ira_free (ira_regno_allocno_map
);
393 ira_regno_allocno_map
394 = (ira_allocno_t
*) ira_allocate (max_regno
* sizeof (ira_allocno_t
));
395 memset (ira_regno_allocno_map
, 0, max_regno
* sizeof (ira_allocno_t
));
396 FOR_EACH_ALLOCNO (a
, ai
)
398 if (ALLOCNO_CAP_MEMBER (a
) != NULL
)
399 /* Caps are not in the regno allocno maps. */
401 regno
= ALLOCNO_REGNO (a
);
402 loop_tree_node
= ALLOCNO_LOOP_TREE_NODE (a
);
403 ALLOCNO_NEXT_REGNO_ALLOCNO (a
) = ira_regno_allocno_map
[regno
];
404 ira_regno_allocno_map
[regno
] = a
;
405 if (loop_tree_node
->regno_allocno_map
[regno
] == NULL
)
406 /* Remember that we can create temporary allocnos to break
407 cycles in register shuffle. */
408 loop_tree_node
->regno_allocno_map
[regno
] = a
;
413 /* Pools for allocnos, allocno live ranges and objects. */
414 static alloc_pool allocno_pool
, live_range_pool
, object_pool
;
416 /* Vec containing references to all created allocnos. It is a
417 container of array allocnos. */
418 static VEC(ira_allocno_t
,heap
) *allocno_vec
;
420 /* Vec containing references to all created ira_objects. It is a
421 container of ira_object_id_map. */
422 static VEC(ira_object_t
,heap
) *ira_object_id_map_vec
;
424 /* Initialize data concerning allocnos. */
426 initiate_allocnos (void)
429 = create_alloc_pool ("live ranges",
430 sizeof (struct live_range
), 100);
432 = create_alloc_pool ("allocnos", sizeof (struct ira_allocno
), 100);
434 = create_alloc_pool ("objects", sizeof (struct ira_object
), 100);
435 allocno_vec
= VEC_alloc (ira_allocno_t
, heap
, max_reg_num () * 2);
437 ira_allocnos_num
= 0;
439 ira_object_id_map_vec
440 = VEC_alloc (ira_object_t
, heap
, max_reg_num () * 2);
441 ira_object_id_map
= NULL
;
442 ira_regno_allocno_map
443 = (ira_allocno_t
*) ira_allocate (max_reg_num ()
444 * sizeof (ira_allocno_t
));
445 memset (ira_regno_allocno_map
, 0, max_reg_num () * sizeof (ira_allocno_t
));
448 /* Create and return an object corresponding to a new allocno A. */
450 ira_create_object (ira_allocno_t a
, int subword
)
452 enum reg_class aclass
= ALLOCNO_CLASS (a
);
453 ira_object_t obj
= (ira_object_t
) pool_alloc (object_pool
);
455 OBJECT_ALLOCNO (obj
) = a
;
456 OBJECT_SUBWORD (obj
) = subword
;
457 OBJECT_CONFLICT_ID (obj
) = ira_objects_num
;
458 OBJECT_CONFLICT_VEC_P (obj
) = false;
459 OBJECT_CONFLICT_ARRAY (obj
) = NULL
;
460 OBJECT_NUM_CONFLICTS (obj
) = 0;
461 COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj
), ira_no_alloc_regs
);
462 COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
), ira_no_alloc_regs
);
463 IOR_COMPL_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj
),
464 reg_class_contents
[aclass
]);
465 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
),
466 reg_class_contents
[aclass
]);
467 OBJECT_MIN (obj
) = INT_MAX
;
468 OBJECT_MAX (obj
) = -1;
469 OBJECT_LIVE_RANGES (obj
) = NULL
;
471 VEC_safe_push (ira_object_t
, heap
, ira_object_id_map_vec
, obj
);
473 = VEC_address (ira_object_t
, ira_object_id_map_vec
);
474 ira_objects_num
= VEC_length (ira_object_t
, ira_object_id_map_vec
);
479 /* Create and return the allocno corresponding to REGNO in
480 LOOP_TREE_NODE. Add the allocno to the list of allocnos with the
481 same regno if CAP_P is FALSE. */
483 ira_create_allocno (int regno
, bool cap_p
,
484 ira_loop_tree_node_t loop_tree_node
)
488 a
= (ira_allocno_t
) pool_alloc (allocno_pool
);
489 ALLOCNO_REGNO (a
) = regno
;
490 ALLOCNO_LOOP_TREE_NODE (a
) = loop_tree_node
;
493 ALLOCNO_NEXT_REGNO_ALLOCNO (a
) = ira_regno_allocno_map
[regno
];
494 ira_regno_allocno_map
[regno
] = a
;
495 if (loop_tree_node
->regno_allocno_map
[regno
] == NULL
)
496 /* Remember that we can create temporary allocnos to break
497 cycles in register shuffle on region borders (see
499 loop_tree_node
->regno_allocno_map
[regno
] = a
;
501 ALLOCNO_CAP (a
) = NULL
;
502 ALLOCNO_CAP_MEMBER (a
) = NULL
;
503 ALLOCNO_NUM (a
) = ira_allocnos_num
;
504 bitmap_set_bit (loop_tree_node
->all_allocnos
, ALLOCNO_NUM (a
));
505 ALLOCNO_NREFS (a
) = 0;
506 ALLOCNO_FREQ (a
) = 0;
507 ALLOCNO_HARD_REGNO (a
) = -1;
508 ALLOCNO_CALL_FREQ (a
) = 0;
509 ALLOCNO_CALLS_CROSSED_NUM (a
) = 0;
510 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a
) = 0;
512 ALLOCNO_NO_STACK_REG_P (a
) = false;
513 ALLOCNO_TOTAL_NO_STACK_REG_P (a
) = false;
515 ALLOCNO_DONT_REASSIGN_P (a
) = false;
516 ALLOCNO_BAD_SPILL_P (a
) = false;
517 ALLOCNO_ASSIGNED_P (a
) = false;
518 ALLOCNO_MODE (a
) = (regno
< 0 ? VOIDmode
: PSEUDO_REGNO_MODE (regno
));
519 ALLOCNO_COPIES (a
) = NULL
;
520 ALLOCNO_HARD_REG_COSTS (a
) = NULL
;
521 ALLOCNO_CONFLICT_HARD_REG_COSTS (a
) = NULL
;
522 ALLOCNO_UPDATED_HARD_REG_COSTS (a
) = NULL
;
523 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a
) = NULL
;
524 ALLOCNO_CLASS (a
) = NO_REGS
;
525 ALLOCNO_UPDATED_CLASS_COST (a
) = 0;
526 ALLOCNO_CLASS_COST (a
) = 0;
527 ALLOCNO_MEMORY_COST (a
) = 0;
528 ALLOCNO_UPDATED_MEMORY_COST (a
) = 0;
529 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a
) = 0;
530 ALLOCNO_NUM_OBJECTS (a
) = 0;
532 ALLOCNO_ADD_DATA (a
) = NULL
;
533 VEC_safe_push (ira_allocno_t
, heap
, allocno_vec
, a
);
534 ira_allocnos
= VEC_address (ira_allocno_t
, allocno_vec
);
535 ira_allocnos_num
= VEC_length (ira_allocno_t
, allocno_vec
);
540 /* Set up register class for A and update its conflict hard
543 ira_set_allocno_class (ira_allocno_t a
, enum reg_class aclass
)
545 ira_allocno_object_iterator oi
;
548 ALLOCNO_CLASS (a
) = aclass
;
549 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, oi
)
551 IOR_COMPL_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj
),
552 reg_class_contents
[aclass
]);
553 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
),
554 reg_class_contents
[aclass
]);
558 /* Determine the number of objects we should associate with allocno A
559 and allocate them. */
561 ira_create_allocno_objects (ira_allocno_t a
)
563 enum machine_mode mode
= ALLOCNO_MODE (a
);
564 enum reg_class aclass
= ALLOCNO_CLASS (a
);
565 int n
= ira_reg_class_max_nregs
[aclass
][mode
];
568 if (GET_MODE_SIZE (mode
) != 2 * UNITS_PER_WORD
|| n
!= 2)
571 ALLOCNO_NUM_OBJECTS (a
) = n
;
572 for (i
= 0; i
< n
; i
++)
573 ALLOCNO_OBJECT (a
, i
) = ira_create_object (a
, i
);
576 /* For each allocno, set ALLOCNO_NUM_OBJECTS and create the
577 ALLOCNO_OBJECT structures. This must be called after the allocno
578 classes are known. */
580 create_allocno_objects (void)
583 ira_allocno_iterator ai
;
585 FOR_EACH_ALLOCNO (a
, ai
)
586 ira_create_allocno_objects (a
);
589 /* Merge hard register conflict information for all objects associated with
590 allocno TO into the corresponding objects associated with FROM.
591 If TOTAL_ONLY is true, we only merge OBJECT_TOTAL_CONFLICT_HARD_REGS. */
593 merge_hard_reg_conflicts (ira_allocno_t from
, ira_allocno_t to
,
597 gcc_assert (ALLOCNO_NUM_OBJECTS (to
) == ALLOCNO_NUM_OBJECTS (from
));
598 for (i
= 0; i
< ALLOCNO_NUM_OBJECTS (to
); i
++)
600 ira_object_t from_obj
= ALLOCNO_OBJECT (from
, i
);
601 ira_object_t to_obj
= ALLOCNO_OBJECT (to
, i
);
604 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (to_obj
),
605 OBJECT_CONFLICT_HARD_REGS (from_obj
));
606 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (to_obj
),
607 OBJECT_TOTAL_CONFLICT_HARD_REGS (from_obj
));
610 if (!total_only
&& ALLOCNO_NO_STACK_REG_P (from
))
611 ALLOCNO_NO_STACK_REG_P (to
) = true;
612 if (ALLOCNO_TOTAL_NO_STACK_REG_P (from
))
613 ALLOCNO_TOTAL_NO_STACK_REG_P (to
) = true;
617 /* Update hard register conflict information for all objects associated with
618 A to include the regs in SET. */
620 ior_hard_reg_conflicts (ira_allocno_t a
, HARD_REG_SET
*set
)
622 ira_allocno_object_iterator i
;
625 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, i
)
627 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj
), *set
);
628 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
), *set
);
632 /* Return TRUE if a conflict vector with NUM elements is more
633 profitable than a conflict bit vector for OBJ. */
635 ira_conflict_vector_profitable_p (ira_object_t obj
, int num
)
638 int max
= OBJECT_MAX (obj
);
639 int min
= OBJECT_MIN (obj
);
642 /* We prefer a bit vector in such case because it does not result
646 nw
= (max
- min
+ IRA_INT_BITS
) / IRA_INT_BITS
;
647 return (2 * sizeof (ira_object_t
) * (num
+ 1)
648 < 3 * nw
* sizeof (IRA_INT_TYPE
));
651 /* Allocates and initialize the conflict vector of OBJ for NUM
652 conflicting objects. */
654 ira_allocate_conflict_vec (ira_object_t obj
, int num
)
659 ira_assert (OBJECT_CONFLICT_ARRAY (obj
) == NULL
);
660 num
++; /* for NULL end marker */
661 size
= sizeof (ira_object_t
) * num
;
662 OBJECT_CONFLICT_ARRAY (obj
) = ira_allocate (size
);
663 vec
= (ira_object_t
*) OBJECT_CONFLICT_ARRAY (obj
);
665 OBJECT_NUM_CONFLICTS (obj
) = 0;
666 OBJECT_CONFLICT_ARRAY_SIZE (obj
) = size
;
667 OBJECT_CONFLICT_VEC_P (obj
) = true;
670 /* Allocate and initialize the conflict bit vector of OBJ. */
672 allocate_conflict_bit_vec (ira_object_t obj
)
676 ira_assert (OBJECT_CONFLICT_ARRAY (obj
) == NULL
);
677 size
= ((OBJECT_MAX (obj
) - OBJECT_MIN (obj
) + IRA_INT_BITS
)
678 / IRA_INT_BITS
* sizeof (IRA_INT_TYPE
));
679 OBJECT_CONFLICT_ARRAY (obj
) = ira_allocate (size
);
680 memset (OBJECT_CONFLICT_ARRAY (obj
), 0, size
);
681 OBJECT_CONFLICT_ARRAY_SIZE (obj
) = size
;
682 OBJECT_CONFLICT_VEC_P (obj
) = false;
685 /* Allocate and initialize the conflict vector or conflict bit vector
686 of OBJ for NUM conflicting allocnos whatever is more profitable. */
688 ira_allocate_object_conflicts (ira_object_t obj
, int num
)
690 if (ira_conflict_vector_profitable_p (obj
, num
))
691 ira_allocate_conflict_vec (obj
, num
);
693 allocate_conflict_bit_vec (obj
);
696 /* Add OBJ2 to the conflicts of OBJ1. */
698 add_to_conflicts (ira_object_t obj1
, ira_object_t obj2
)
703 if (OBJECT_CONFLICT_VEC_P (obj1
))
705 ira_object_t
*vec
= OBJECT_CONFLICT_VEC (obj1
);
706 int curr_num
= OBJECT_NUM_CONFLICTS (obj1
);
708 if (OBJECT_CONFLICT_ARRAY_SIZE (obj1
) < num
* sizeof (ira_object_t
))
710 ira_object_t
*newvec
;
711 size
= (3 * num
/ 2 + 1) * sizeof (ira_allocno_t
);
712 newvec
= (ira_object_t
*) ira_allocate (size
);
713 memcpy (newvec
, vec
, curr_num
* sizeof (ira_object_t
));
716 OBJECT_CONFLICT_ARRAY (obj1
) = vec
;
717 OBJECT_CONFLICT_ARRAY_SIZE (obj1
) = size
;
721 OBJECT_NUM_CONFLICTS (obj1
)++;
725 int nw
, added_head_nw
, id
;
726 IRA_INT_TYPE
*vec
= OBJECT_CONFLICT_BITVEC (obj1
);
728 id
= OBJECT_CONFLICT_ID (obj2
);
729 if (OBJECT_MIN (obj1
) > id
)
731 /* Expand head of the bit vector. */
732 added_head_nw
= (OBJECT_MIN (obj1
) - id
- 1) / IRA_INT_BITS
+ 1;
733 nw
= (OBJECT_MAX (obj1
) - OBJECT_MIN (obj1
)) / IRA_INT_BITS
+ 1;
734 size
= (nw
+ added_head_nw
) * sizeof (IRA_INT_TYPE
);
735 if (OBJECT_CONFLICT_ARRAY_SIZE (obj1
) >= size
)
737 memmove ((char *) vec
+ added_head_nw
* sizeof (IRA_INT_TYPE
),
738 vec
, nw
* sizeof (IRA_INT_TYPE
));
739 memset (vec
, 0, added_head_nw
* sizeof (IRA_INT_TYPE
));
744 = (3 * (nw
+ added_head_nw
) / 2 + 1) * sizeof (IRA_INT_TYPE
);
745 vec
= (IRA_INT_TYPE
*) ira_allocate (size
);
746 memcpy ((char *) vec
+ added_head_nw
* sizeof (IRA_INT_TYPE
),
747 OBJECT_CONFLICT_ARRAY (obj1
), nw
* sizeof (IRA_INT_TYPE
));
748 memset (vec
, 0, added_head_nw
* sizeof (IRA_INT_TYPE
));
750 + (nw
+ added_head_nw
) * sizeof (IRA_INT_TYPE
),
751 0, size
- (nw
+ added_head_nw
) * sizeof (IRA_INT_TYPE
));
752 ira_free (OBJECT_CONFLICT_ARRAY (obj1
));
753 OBJECT_CONFLICT_ARRAY (obj1
) = vec
;
754 OBJECT_CONFLICT_ARRAY_SIZE (obj1
) = size
;
756 OBJECT_MIN (obj1
) -= added_head_nw
* IRA_INT_BITS
;
758 else if (OBJECT_MAX (obj1
) < id
)
760 nw
= (id
- OBJECT_MIN (obj1
)) / IRA_INT_BITS
+ 1;
761 size
= nw
* sizeof (IRA_INT_TYPE
);
762 if (OBJECT_CONFLICT_ARRAY_SIZE (obj1
) < size
)
764 /* Expand tail of the bit vector. */
765 size
= (3 * nw
/ 2 + 1) * sizeof (IRA_INT_TYPE
);
766 vec
= (IRA_INT_TYPE
*) ira_allocate (size
);
767 memcpy (vec
, OBJECT_CONFLICT_ARRAY (obj1
), OBJECT_CONFLICT_ARRAY_SIZE (obj1
));
768 memset ((char *) vec
+ OBJECT_CONFLICT_ARRAY_SIZE (obj1
),
769 0, size
- OBJECT_CONFLICT_ARRAY_SIZE (obj1
));
770 ira_free (OBJECT_CONFLICT_ARRAY (obj1
));
771 OBJECT_CONFLICT_ARRAY (obj1
) = vec
;
772 OBJECT_CONFLICT_ARRAY_SIZE (obj1
) = size
;
774 OBJECT_MAX (obj1
) = id
;
776 SET_MINMAX_SET_BIT (vec
, id
, OBJECT_MIN (obj1
), OBJECT_MAX (obj1
));
780 /* Add OBJ1 to the conflicts of OBJ2 and vice versa. */
782 ira_add_conflict (ira_object_t obj1
, ira_object_t obj2
)
784 add_to_conflicts (obj1
, obj2
);
785 add_to_conflicts (obj2
, obj1
);
788 /* Clear all conflicts of OBJ. */
790 clear_conflicts (ira_object_t obj
)
792 if (OBJECT_CONFLICT_VEC_P (obj
))
794 OBJECT_NUM_CONFLICTS (obj
) = 0;
795 OBJECT_CONFLICT_VEC (obj
)[0] = NULL
;
797 else if (OBJECT_CONFLICT_ARRAY_SIZE (obj
) != 0)
801 nw
= (OBJECT_MAX (obj
) - OBJECT_MIN (obj
)) / IRA_INT_BITS
+ 1;
802 memset (OBJECT_CONFLICT_BITVEC (obj
), 0, nw
* sizeof (IRA_INT_TYPE
));
806 /* The array used to find duplications in conflict vectors of
808 static int *conflict_check
;
810 /* The value used to mark allocation presence in conflict vector of
811 the current allocno. */
812 static int curr_conflict_check_tick
;
814 /* Remove duplications in conflict vector of OBJ. */
816 compress_conflict_vec (ira_object_t obj
)
818 ira_object_t
*vec
, conflict_obj
;
821 ira_assert (OBJECT_CONFLICT_VEC_P (obj
));
822 vec
= OBJECT_CONFLICT_VEC (obj
);
823 curr_conflict_check_tick
++;
824 for (i
= j
= 0; (conflict_obj
= vec
[i
]) != NULL
; i
++)
826 int id
= OBJECT_CONFLICT_ID (conflict_obj
);
827 if (conflict_check
[id
] != curr_conflict_check_tick
)
829 conflict_check
[id
] = curr_conflict_check_tick
;
830 vec
[j
++] = conflict_obj
;
833 OBJECT_NUM_CONFLICTS (obj
) = j
;
837 /* Remove duplications in conflict vectors of all allocnos. */
839 compress_conflict_vecs (void)
842 ira_object_iterator oi
;
844 conflict_check
= (int *) ira_allocate (sizeof (int) * ira_objects_num
);
845 memset (conflict_check
, 0, sizeof (int) * ira_objects_num
);
846 curr_conflict_check_tick
= 0;
847 FOR_EACH_OBJECT (obj
, oi
)
849 if (OBJECT_CONFLICT_VEC_P (obj
))
850 compress_conflict_vec (obj
);
852 ira_free (conflict_check
);
855 /* This recursive function outputs allocno A and if it is a cap the
856 function outputs its members. */
858 ira_print_expanded_allocno (ira_allocno_t a
)
862 fprintf (ira_dump_file
, " a%d(r%d", ALLOCNO_NUM (a
), ALLOCNO_REGNO (a
));
863 if ((bb
= ALLOCNO_LOOP_TREE_NODE (a
)->bb
) != NULL
)
864 fprintf (ira_dump_file
, ",b%d", bb
->index
);
866 fprintf (ira_dump_file
, ",l%d", ALLOCNO_LOOP_TREE_NODE (a
)->loop_num
);
867 if (ALLOCNO_CAP_MEMBER (a
) != NULL
)
869 fprintf (ira_dump_file
, ":");
870 ira_print_expanded_allocno (ALLOCNO_CAP_MEMBER (a
));
872 fprintf (ira_dump_file
, ")");
875 /* Create and return the cap representing allocno A in the
878 create_cap_allocno (ira_allocno_t a
)
881 ira_loop_tree_node_t parent
;
882 enum reg_class aclass
;
884 parent
= ALLOCNO_LOOP_TREE_NODE (a
)->parent
;
885 cap
= ira_create_allocno (ALLOCNO_REGNO (a
), true, parent
);
886 ALLOCNO_MODE (cap
) = ALLOCNO_MODE (a
);
887 aclass
= ALLOCNO_CLASS (a
);
888 ira_set_allocno_class (cap
, aclass
);
889 ira_create_allocno_objects (cap
);
890 ALLOCNO_CAP_MEMBER (cap
) = a
;
891 ALLOCNO_CAP (a
) = cap
;
892 ALLOCNO_CLASS_COST (cap
) = ALLOCNO_CLASS_COST (a
);
893 ALLOCNO_MEMORY_COST (cap
) = ALLOCNO_MEMORY_COST (a
);
894 ira_allocate_and_copy_costs
895 (&ALLOCNO_HARD_REG_COSTS (cap
), aclass
, ALLOCNO_HARD_REG_COSTS (a
));
896 ira_allocate_and_copy_costs
897 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (cap
), aclass
,
898 ALLOCNO_CONFLICT_HARD_REG_COSTS (a
));
899 ALLOCNO_BAD_SPILL_P (cap
) = ALLOCNO_BAD_SPILL_P (a
);
900 ALLOCNO_NREFS (cap
) = ALLOCNO_NREFS (a
);
901 ALLOCNO_FREQ (cap
) = ALLOCNO_FREQ (a
);
902 ALLOCNO_CALL_FREQ (cap
) = ALLOCNO_CALL_FREQ (a
);
904 merge_hard_reg_conflicts (a
, cap
, false);
906 ALLOCNO_CALLS_CROSSED_NUM (cap
) = ALLOCNO_CALLS_CROSSED_NUM (a
);
907 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (cap
) = ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a
);
908 if (internal_flag_ira_verbose
> 2 && ira_dump_file
!= NULL
)
910 fprintf (ira_dump_file
, " Creating cap ");
911 ira_print_expanded_allocno (cap
);
912 fprintf (ira_dump_file
, "\n");
917 /* Create and return a live range for OBJECT with given attributes. */
919 ira_create_live_range (ira_object_t obj
, int start
, int finish
,
924 p
= (live_range_t
) pool_alloc (live_range_pool
);
932 /* Create a new live range for OBJECT and queue it at the head of its
935 ira_add_live_range_to_object (ira_object_t object
, int start
, int finish
)
938 p
= ira_create_live_range (object
, start
, finish
,
939 OBJECT_LIVE_RANGES (object
));
940 OBJECT_LIVE_RANGES (object
) = p
;
943 /* Copy allocno live range R and return the result. */
945 copy_live_range (live_range_t r
)
949 p
= (live_range_t
) pool_alloc (live_range_pool
);
954 /* Copy allocno live range list given by its head R and return the
957 ira_copy_live_range_list (live_range_t r
)
959 live_range_t p
, first
, last
;
963 for (first
= last
= NULL
; r
!= NULL
; r
= r
->next
)
965 p
= copy_live_range (r
);
975 /* Merge ranges R1 and R2 and returns the result. The function
976 maintains the order of ranges and tries to minimize number of the
979 ira_merge_live_ranges (live_range_t r1
, live_range_t r2
)
981 live_range_t first
, last
, temp
;
987 for (first
= last
= NULL
; r1
!= NULL
&& r2
!= NULL
;)
989 if (r1
->start
< r2
->start
)
995 if (r1
->start
<= r2
->finish
+ 1)
997 /* Intersected ranges: merge r1 and r2 into r1. */
998 r1
->start
= r2
->start
;
999 if (r1
->finish
< r2
->finish
)
1000 r1
->finish
= r2
->finish
;
1003 ira_finish_live_range (temp
);
1006 /* To try to merge with subsequent ranges in r1. */
1013 /* Add r1 to the result. */
1024 /* To try to merge with subsequent ranges in r2. */
1036 ira_assert (r1
->next
== NULL
);
1038 else if (r2
!= NULL
)
1044 ira_assert (r2
->next
== NULL
);
1048 ira_assert (last
->next
== NULL
);
1053 /* Return TRUE if live ranges R1 and R2 intersect. */
1055 ira_live_ranges_intersect_p (live_range_t r1
, live_range_t r2
)
1057 /* Remember the live ranges are always kept ordered. */
1058 while (r1
!= NULL
&& r2
!= NULL
)
1060 if (r1
->start
> r2
->finish
)
1062 else if (r2
->start
> r1
->finish
)
1070 /* Free allocno live range R. */
1072 ira_finish_live_range (live_range_t r
)
1074 pool_free (live_range_pool
, r
);
1077 /* Free list of allocno live ranges starting with R. */
1079 ira_finish_live_range_list (live_range_t r
)
1081 live_range_t next_r
;
1083 for (; r
!= NULL
; r
= next_r
)
1086 ira_finish_live_range (r
);
1090 /* Free updated register costs of allocno A. */
1092 ira_free_allocno_updated_costs (ira_allocno_t a
)
1094 enum reg_class aclass
;
1096 aclass
= ALLOCNO_CLASS (a
);
1097 if (ALLOCNO_UPDATED_HARD_REG_COSTS (a
) != NULL
)
1098 ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a
), aclass
);
1099 ALLOCNO_UPDATED_HARD_REG_COSTS (a
) = NULL
;
1100 if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a
) != NULL
)
1101 ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a
),
1103 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a
) = NULL
;
1106 /* Free and nullify all cost vectors allocated earlier for allocno
1109 ira_free_allocno_costs (ira_allocno_t a
)
1111 enum reg_class aclass
= ALLOCNO_CLASS (a
);
1113 ira_allocno_object_iterator oi
;
1115 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, oi
)
1117 ira_finish_live_range_list (OBJECT_LIVE_RANGES (obj
));
1118 ira_object_id_map
[OBJECT_CONFLICT_ID (obj
)] = NULL
;
1119 if (OBJECT_CONFLICT_ARRAY (obj
) != NULL
)
1120 ira_free (OBJECT_CONFLICT_ARRAY (obj
));
1121 pool_free (object_pool
, obj
);
1124 ira_allocnos
[ALLOCNO_NUM (a
)] = NULL
;
1125 if (ALLOCNO_HARD_REG_COSTS (a
) != NULL
)
1126 ira_free_cost_vector (ALLOCNO_HARD_REG_COSTS (a
), aclass
);
1127 if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a
) != NULL
)
1128 ira_free_cost_vector (ALLOCNO_CONFLICT_HARD_REG_COSTS (a
), aclass
);
1129 if (ALLOCNO_UPDATED_HARD_REG_COSTS (a
) != NULL
)
1130 ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a
), aclass
);
1131 if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a
) != NULL
)
1132 ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a
),
1134 ALLOCNO_HARD_REG_COSTS (a
) = NULL
;
1135 ALLOCNO_CONFLICT_HARD_REG_COSTS (a
) = NULL
;
1136 ALLOCNO_UPDATED_HARD_REG_COSTS (a
) = NULL
;
1137 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a
) = NULL
;
1140 /* Free the memory allocated for allocno A. */
1142 finish_allocno (ira_allocno_t a
)
1144 ira_free_allocno_costs (a
);
1145 pool_free (allocno_pool
, a
);
1148 /* Free the memory allocated for all allocnos. */
1150 finish_allocnos (void)
1153 ira_allocno_iterator ai
;
1155 FOR_EACH_ALLOCNO (a
, ai
)
1157 ira_free (ira_regno_allocno_map
);
1158 VEC_free (ira_object_t
, heap
, ira_object_id_map_vec
);
1159 VEC_free (ira_allocno_t
, heap
, allocno_vec
);
1160 free_alloc_pool (allocno_pool
);
1161 free_alloc_pool (object_pool
);
1162 free_alloc_pool (live_range_pool
);
1167 /* Pools for copies. */
1168 static alloc_pool copy_pool
;
1170 /* Vec containing references to all created copies. It is a
1171 container of array ira_copies. */
1172 static VEC(ira_copy_t
,heap
) *copy_vec
;
1174 /* The function initializes data concerning allocno copies. */
1176 initiate_copies (void)
1179 = create_alloc_pool ("copies", sizeof (struct ira_allocno_copy
), 100);
1180 copy_vec
= VEC_alloc (ira_copy_t
, heap
, get_max_uid ());
1185 /* Return copy connecting A1 and A2 and originated from INSN of
1186 LOOP_TREE_NODE if any. */
1188 find_allocno_copy (ira_allocno_t a1
, ira_allocno_t a2
, rtx insn
,
1189 ira_loop_tree_node_t loop_tree_node
)
1191 ira_copy_t cp
, next_cp
;
1192 ira_allocno_t another_a
;
1194 for (cp
= ALLOCNO_COPIES (a1
); cp
!= NULL
; cp
= next_cp
)
1196 if (cp
->first
== a1
)
1198 next_cp
= cp
->next_first_allocno_copy
;
1199 another_a
= cp
->second
;
1201 else if (cp
->second
== a1
)
1203 next_cp
= cp
->next_second_allocno_copy
;
1204 another_a
= cp
->first
;
1208 if (another_a
== a2
&& cp
->insn
== insn
1209 && cp
->loop_tree_node
== loop_tree_node
)
1215 /* Create and return copy with given attributes LOOP_TREE_NODE, FIRST,
1216 SECOND, FREQ, CONSTRAINT_P, and INSN. */
1218 ira_create_copy (ira_allocno_t first
, ira_allocno_t second
, int freq
,
1219 bool constraint_p
, rtx insn
,
1220 ira_loop_tree_node_t loop_tree_node
)
1224 cp
= (ira_copy_t
) pool_alloc (copy_pool
);
1225 cp
->num
= ira_copies_num
;
1227 cp
->second
= second
;
1229 cp
->constraint_p
= constraint_p
;
1231 cp
->loop_tree_node
= loop_tree_node
;
1232 VEC_safe_push (ira_copy_t
, heap
, copy_vec
, cp
);
1233 ira_copies
= VEC_address (ira_copy_t
, copy_vec
);
1234 ira_copies_num
= VEC_length (ira_copy_t
, copy_vec
);
1238 /* Attach a copy CP to allocnos involved into the copy. */
1240 ira_add_allocno_copy_to_list (ira_copy_t cp
)
1242 ira_allocno_t first
= cp
->first
, second
= cp
->second
;
1244 cp
->prev_first_allocno_copy
= NULL
;
1245 cp
->prev_second_allocno_copy
= NULL
;
1246 cp
->next_first_allocno_copy
= ALLOCNO_COPIES (first
);
1247 if (cp
->next_first_allocno_copy
!= NULL
)
1249 if (cp
->next_first_allocno_copy
->first
== first
)
1250 cp
->next_first_allocno_copy
->prev_first_allocno_copy
= cp
;
1252 cp
->next_first_allocno_copy
->prev_second_allocno_copy
= cp
;
1254 cp
->next_second_allocno_copy
= ALLOCNO_COPIES (second
);
1255 if (cp
->next_second_allocno_copy
!= NULL
)
1257 if (cp
->next_second_allocno_copy
->second
== second
)
1258 cp
->next_second_allocno_copy
->prev_second_allocno_copy
= cp
;
1260 cp
->next_second_allocno_copy
->prev_first_allocno_copy
= cp
;
1262 ALLOCNO_COPIES (first
) = cp
;
1263 ALLOCNO_COPIES (second
) = cp
;
1266 /* Make a copy CP a canonical copy where number of the
1267 first allocno is less than the second one. */
1269 ira_swap_allocno_copy_ends_if_necessary (ira_copy_t cp
)
1274 if (ALLOCNO_NUM (cp
->first
) <= ALLOCNO_NUM (cp
->second
))
1278 cp
->first
= cp
->second
;
1281 temp_cp
= cp
->prev_first_allocno_copy
;
1282 cp
->prev_first_allocno_copy
= cp
->prev_second_allocno_copy
;
1283 cp
->prev_second_allocno_copy
= temp_cp
;
1285 temp_cp
= cp
->next_first_allocno_copy
;
1286 cp
->next_first_allocno_copy
= cp
->next_second_allocno_copy
;
1287 cp
->next_second_allocno_copy
= temp_cp
;
1290 /* Create (or update frequency if the copy already exists) and return
1291 the copy of allocnos FIRST and SECOND with frequency FREQ
1292 corresponding to move insn INSN (if any) and originated from
1295 ira_add_allocno_copy (ira_allocno_t first
, ira_allocno_t second
, int freq
,
1296 bool constraint_p
, rtx insn
,
1297 ira_loop_tree_node_t loop_tree_node
)
1301 if ((cp
= find_allocno_copy (first
, second
, insn
, loop_tree_node
)) != NULL
)
1306 cp
= ira_create_copy (first
, second
, freq
, constraint_p
, insn
,
1308 ira_assert (first
!= NULL
&& second
!= NULL
);
1309 ira_add_allocno_copy_to_list (cp
);
1310 ira_swap_allocno_copy_ends_if_necessary (cp
);
1314 /* Print info about copy CP into file F. */
1316 print_copy (FILE *f
, ira_copy_t cp
)
1318 fprintf (f
, " cp%d:a%d(r%d)<->a%d(r%d)@%d:%s\n", cp
->num
,
1319 ALLOCNO_NUM (cp
->first
), ALLOCNO_REGNO (cp
->first
),
1320 ALLOCNO_NUM (cp
->second
), ALLOCNO_REGNO (cp
->second
), cp
->freq
,
1322 ? "move" : cp
->constraint_p
? "constraint" : "shuffle");
1325 /* Print info about copy CP into stderr. */
1327 ira_debug_copy (ira_copy_t cp
)
1329 print_copy (stderr
, cp
);
1332 /* Print info about all copies into file F. */
1334 print_copies (FILE *f
)
1337 ira_copy_iterator ci
;
1339 FOR_EACH_COPY (cp
, ci
)
1343 /* Print info about all copies into stderr. */
1345 ira_debug_copies (void)
1347 print_copies (stderr
);
1350 /* Print info about copies involving allocno A into file F. */
1352 print_allocno_copies (FILE *f
, ira_allocno_t a
)
1354 ira_allocno_t another_a
;
1355 ira_copy_t cp
, next_cp
;
1357 fprintf (f
, " a%d(r%d):", ALLOCNO_NUM (a
), ALLOCNO_REGNO (a
));
1358 for (cp
= ALLOCNO_COPIES (a
); cp
!= NULL
; cp
= next_cp
)
1362 next_cp
= cp
->next_first_allocno_copy
;
1363 another_a
= cp
->second
;
1365 else if (cp
->second
== a
)
1367 next_cp
= cp
->next_second_allocno_copy
;
1368 another_a
= cp
->first
;
1372 fprintf (f
, " cp%d:a%d(r%d)@%d", cp
->num
,
1373 ALLOCNO_NUM (another_a
), ALLOCNO_REGNO (another_a
), cp
->freq
);
1378 /* Print info about copies involving allocno A into stderr. */
1380 ira_debug_allocno_copies (ira_allocno_t a
)
1382 print_allocno_copies (stderr
, a
);
1385 /* The function frees memory allocated for copy CP. */
1387 finish_copy (ira_copy_t cp
)
1389 pool_free (copy_pool
, cp
);
1393 /* Free memory allocated for all copies. */
1395 finish_copies (void)
1398 ira_copy_iterator ci
;
1400 FOR_EACH_COPY (cp
, ci
)
1402 VEC_free (ira_copy_t
, heap
, copy_vec
);
1403 free_alloc_pool (copy_pool
);
1408 /* Pools for cost vectors. It is defined only for allocno classes. */
1409 static alloc_pool cost_vector_pool
[N_REG_CLASSES
];
1411 /* The function initiates work with hard register cost vectors. It
1412 creates allocation pool for each allocno class. */
1414 initiate_cost_vectors (void)
1417 enum reg_class aclass
;
1419 for (i
= 0; i
< ira_allocno_classes_num
; i
++)
1421 aclass
= ira_allocno_classes
[i
];
1422 cost_vector_pool
[aclass
]
1423 = create_alloc_pool ("cost vectors",
1424 sizeof (int) * ira_class_hard_regs_num
[aclass
],
1429 /* Allocate and return a cost vector VEC for ACLASS. */
1431 ira_allocate_cost_vector (reg_class_t aclass
)
1433 return (int *) pool_alloc (cost_vector_pool
[(int) aclass
]);
1436 /* Free a cost vector VEC for ACLASS. */
1438 ira_free_cost_vector (int *vec
, reg_class_t aclass
)
1440 ira_assert (vec
!= NULL
);
1441 pool_free (cost_vector_pool
[(int) aclass
], vec
);
1444 /* Finish work with hard register cost vectors. Release allocation
1445 pool for each allocno class. */
1447 finish_cost_vectors (void)
1450 enum reg_class aclass
;
1452 for (i
= 0; i
< ira_allocno_classes_num
; i
++)
1454 aclass
= ira_allocno_classes
[i
];
1455 free_alloc_pool (cost_vector_pool
[aclass
]);
1461 /* The current loop tree node and its regno allocno map. */
1462 ira_loop_tree_node_t ira_curr_loop_tree_node
;
1463 ira_allocno_t
*ira_curr_regno_allocno_map
;
1465 /* This recursive function traverses loop tree with root LOOP_NODE
1466 calling non-null functions PREORDER_FUNC and POSTORDER_FUNC
1467 correspondingly in preorder and postorder. The function sets up
1468 IRA_CURR_LOOP_TREE_NODE and IRA_CURR_REGNO_ALLOCNO_MAP. If BB_P,
1469 basic block nodes of LOOP_NODE is also processed (before its
1472 ira_traverse_loop_tree (bool bb_p
, ira_loop_tree_node_t loop_node
,
1473 void (*preorder_func
) (ira_loop_tree_node_t
),
1474 void (*postorder_func
) (ira_loop_tree_node_t
))
1476 ira_loop_tree_node_t subloop_node
;
1478 ira_assert (loop_node
->bb
== NULL
);
1479 ira_curr_loop_tree_node
= loop_node
;
1480 ira_curr_regno_allocno_map
= ira_curr_loop_tree_node
->regno_allocno_map
;
1482 if (preorder_func
!= NULL
)
1483 (*preorder_func
) (loop_node
);
1486 for (subloop_node
= loop_node
->children
;
1487 subloop_node
!= NULL
;
1488 subloop_node
= subloop_node
->next
)
1489 if (subloop_node
->bb
!= NULL
)
1491 if (preorder_func
!= NULL
)
1492 (*preorder_func
) (subloop_node
);
1494 if (postorder_func
!= NULL
)
1495 (*postorder_func
) (subloop_node
);
1498 for (subloop_node
= loop_node
->subloops
;
1499 subloop_node
!= NULL
;
1500 subloop_node
= subloop_node
->subloop_next
)
1502 ira_assert (subloop_node
->bb
== NULL
);
1503 ira_traverse_loop_tree (bb_p
, subloop_node
,
1504 preorder_func
, postorder_func
);
1507 ira_curr_loop_tree_node
= loop_node
;
1508 ira_curr_regno_allocno_map
= ira_curr_loop_tree_node
->regno_allocno_map
;
1510 if (postorder_func
!= NULL
)
1511 (*postorder_func
) (loop_node
);
1516 /* The basic block currently being processed. */
1517 static basic_block curr_bb
;
1519 /* This recursive function creates allocnos corresponding to
1520 pseudo-registers containing in X. True OUTPUT_P means that X is
1523 create_insn_allocnos (rtx x
, bool output_p
)
1527 enum rtx_code code
= GET_CODE (x
);
1533 if ((regno
= REGNO (x
)) >= FIRST_PSEUDO_REGISTER
)
1537 if ((a
= ira_curr_regno_allocno_map
[regno
]) == NULL
)
1538 a
= ira_create_allocno (regno
, false, ira_curr_loop_tree_node
);
1540 ALLOCNO_NREFS (a
)++;
1541 ALLOCNO_FREQ (a
) += REG_FREQ_FROM_BB (curr_bb
);
1543 bitmap_set_bit (ira_curr_loop_tree_node
->modified_regnos
, regno
);
1547 else if (code
== SET
)
1549 create_insn_allocnos (SET_DEST (x
), true);
1550 create_insn_allocnos (SET_SRC (x
), false);
1553 else if (code
== CLOBBER
)
1555 create_insn_allocnos (XEXP (x
, 0), true);
1558 else if (code
== MEM
)
1560 create_insn_allocnos (XEXP (x
, 0), false);
1563 else if (code
== PRE_DEC
|| code
== POST_DEC
|| code
== PRE_INC
||
1564 code
== POST_INC
|| code
== POST_MODIFY
|| code
== PRE_MODIFY
)
1566 create_insn_allocnos (XEXP (x
, 0), true);
1567 create_insn_allocnos (XEXP (x
, 0), false);
1571 fmt
= GET_RTX_FORMAT (code
);
1572 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1575 create_insn_allocnos (XEXP (x
, i
), output_p
);
1576 else if (fmt
[i
] == 'E')
1577 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1578 create_insn_allocnos (XVECEXP (x
, i
, j
), output_p
);
1582 /* Create allocnos corresponding to pseudo-registers living in the
1583 basic block represented by the corresponding loop tree node
1586 create_bb_allocnos (ira_loop_tree_node_t bb_node
)
1593 curr_bb
= bb
= bb_node
->bb
;
1594 ira_assert (bb
!= NULL
);
1595 FOR_BB_INSNS_REVERSE (bb
, insn
)
1596 if (NONDEBUG_INSN_P (insn
))
1597 create_insn_allocnos (PATTERN (insn
), false);
1598 /* It might be a allocno living through from one subloop to
1600 EXECUTE_IF_SET_IN_REG_SET (DF_LR_IN (bb
), FIRST_PSEUDO_REGISTER
, i
, bi
)
1601 if (ira_curr_regno_allocno_map
[i
] == NULL
)
1602 ira_create_allocno (i
, false, ira_curr_loop_tree_node
);
1605 /* Create allocnos corresponding to pseudo-registers living on edge E
1606 (a loop entry or exit). Also mark the allocnos as living on the
1609 create_loop_allocnos (edge e
)
1612 bitmap live_in_regs
, border_allocnos
;
1614 ira_loop_tree_node_t parent
;
1616 live_in_regs
= DF_LR_IN (e
->dest
);
1617 border_allocnos
= ira_curr_loop_tree_node
->border_allocnos
;
1618 EXECUTE_IF_SET_IN_REG_SET (DF_LR_OUT (e
->src
),
1619 FIRST_PSEUDO_REGISTER
, i
, bi
)
1620 if (bitmap_bit_p (live_in_regs
, i
))
1622 if (ira_curr_regno_allocno_map
[i
] == NULL
)
1624 /* The order of creations is important for right
1625 ira_regno_allocno_map. */
1626 if ((parent
= ira_curr_loop_tree_node
->parent
) != NULL
1627 && parent
->regno_allocno_map
[i
] == NULL
)
1628 ira_create_allocno (i
, false, parent
);
1629 ira_create_allocno (i
, false, ira_curr_loop_tree_node
);
1631 bitmap_set_bit (border_allocnos
,
1632 ALLOCNO_NUM (ira_curr_regno_allocno_map
[i
]));
1636 /* Create allocnos corresponding to pseudo-registers living in loop
1637 represented by the corresponding loop tree node LOOP_NODE. This
1638 function is called by ira_traverse_loop_tree. */
1640 create_loop_tree_node_allocnos (ira_loop_tree_node_t loop_node
)
1642 if (loop_node
->bb
!= NULL
)
1643 create_bb_allocnos (loop_node
);
1644 else if (loop_node
!= ira_loop_tree_root
)
1649 VEC (edge
, heap
) *edges
;
1651 ira_assert (current_loops
!= NULL
);
1652 FOR_EACH_EDGE (e
, ei
, loop_node
->loop
->header
->preds
)
1653 if (e
->src
!= loop_node
->loop
->latch
)
1654 create_loop_allocnos (e
);
1656 edges
= get_loop_exit_edges (loop_node
->loop
);
1657 FOR_EACH_VEC_ELT (edge
, edges
, i
, e
)
1658 create_loop_allocnos (e
);
1659 VEC_free (edge
, heap
, edges
);
1663 /* Propagate information about allocnos modified inside the loop given
1664 by its LOOP_TREE_NODE to its parent. */
1666 propagate_modified_regnos (ira_loop_tree_node_t loop_tree_node
)
1668 if (loop_tree_node
== ira_loop_tree_root
)
1670 ira_assert (loop_tree_node
->bb
== NULL
);
1671 bitmap_ior_into (loop_tree_node
->parent
->modified_regnos
,
1672 loop_tree_node
->modified_regnos
);
1675 /* Propagate new info about allocno A (see comments about accumulated
1676 info in allocno definition) to the corresponding allocno on upper
1677 loop tree level. So allocnos on upper levels accumulate
1678 information about the corresponding allocnos in nested regions.
1679 The new info means allocno info finally calculated in this
1682 propagate_allocno_info (void)
1685 ira_allocno_t a
, parent_a
;
1686 ira_loop_tree_node_t parent
;
1687 enum reg_class aclass
;
1689 if (flag_ira_region
!= IRA_REGION_ALL
1690 && flag_ira_region
!= IRA_REGION_MIXED
)
1692 for (i
= max_reg_num () - 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
1693 for (a
= ira_regno_allocno_map
[i
];
1695 a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
))
1696 if ((parent
= ALLOCNO_LOOP_TREE_NODE (a
)->parent
) != NULL
1697 && (parent_a
= parent
->regno_allocno_map
[i
]) != NULL
1698 /* There are no caps yet at this point. So use
1699 border_allocnos to find allocnos for the propagation. */
1700 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE (a
)->border_allocnos
,
1703 if (! ALLOCNO_BAD_SPILL_P (a
))
1704 ALLOCNO_BAD_SPILL_P (parent_a
) = false;
1705 ALLOCNO_NREFS (parent_a
) += ALLOCNO_NREFS (a
);
1706 ALLOCNO_FREQ (parent_a
) += ALLOCNO_FREQ (a
);
1707 ALLOCNO_CALL_FREQ (parent_a
) += ALLOCNO_CALL_FREQ (a
);
1708 merge_hard_reg_conflicts (a
, parent_a
, true);
1709 ALLOCNO_CALLS_CROSSED_NUM (parent_a
)
1710 += ALLOCNO_CALLS_CROSSED_NUM (a
);
1711 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a
)
1712 += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a
);
1713 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a
)
1714 += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a
);
1715 aclass
= ALLOCNO_CLASS (a
);
1716 ira_assert (aclass
== ALLOCNO_CLASS (parent_a
));
1717 ira_allocate_and_accumulate_costs
1718 (&ALLOCNO_HARD_REG_COSTS (parent_a
), aclass
,
1719 ALLOCNO_HARD_REG_COSTS (a
));
1720 ira_allocate_and_accumulate_costs
1721 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a
),
1723 ALLOCNO_CONFLICT_HARD_REG_COSTS (a
));
1724 ALLOCNO_CLASS_COST (parent_a
)
1725 += ALLOCNO_CLASS_COST (a
);
1726 ALLOCNO_MEMORY_COST (parent_a
) += ALLOCNO_MEMORY_COST (a
);
1730 /* Create allocnos corresponding to pseudo-registers in the current
1731 function. Traverse the loop tree for this. */
1733 create_allocnos (void)
1735 /* We need to process BB first to correctly link allocnos by member
1736 next_regno_allocno. */
1737 ira_traverse_loop_tree (true, ira_loop_tree_root
,
1738 create_loop_tree_node_allocnos
, NULL
);
1740 ira_traverse_loop_tree (false, ira_loop_tree_root
, NULL
,
1741 propagate_modified_regnos
);
1746 /* The page contains function to remove some regions from a separate
1747 register allocation. We remove regions whose separate allocation
1748 will hardly improve the result. As a result we speed up regional
1749 register allocation. */
1751 /* The function changes the object in range list given by R to OBJ. */
1753 change_object_in_range_list (live_range_t r
, ira_object_t obj
)
1755 for (; r
!= NULL
; r
= r
->next
)
1759 /* Move all live ranges associated with allocno FROM to allocno TO. */
1761 move_allocno_live_ranges (ira_allocno_t from
, ira_allocno_t to
)
1764 int n
= ALLOCNO_NUM_OBJECTS (from
);
1766 gcc_assert (n
== ALLOCNO_NUM_OBJECTS (to
));
1768 for (i
= 0; i
< n
; i
++)
1770 ira_object_t from_obj
= ALLOCNO_OBJECT (from
, i
);
1771 ira_object_t to_obj
= ALLOCNO_OBJECT (to
, i
);
1772 live_range_t lr
= OBJECT_LIVE_RANGES (from_obj
);
1774 if (internal_flag_ira_verbose
> 4 && ira_dump_file
!= NULL
)
1776 fprintf (ira_dump_file
,
1777 " Moving ranges of a%dr%d to a%dr%d: ",
1778 ALLOCNO_NUM (from
), ALLOCNO_REGNO (from
),
1779 ALLOCNO_NUM (to
), ALLOCNO_REGNO (to
));
1780 ira_print_live_range_list (ira_dump_file
, lr
);
1782 change_object_in_range_list (lr
, to_obj
);
1783 OBJECT_LIVE_RANGES (to_obj
)
1784 = ira_merge_live_ranges (lr
, OBJECT_LIVE_RANGES (to_obj
));
1785 OBJECT_LIVE_RANGES (from_obj
) = NULL
;
1790 copy_allocno_live_ranges (ira_allocno_t from
, ira_allocno_t to
)
1793 int n
= ALLOCNO_NUM_OBJECTS (from
);
1795 gcc_assert (n
== ALLOCNO_NUM_OBJECTS (to
));
1797 for (i
= 0; i
< n
; i
++)
1799 ira_object_t from_obj
= ALLOCNO_OBJECT (from
, i
);
1800 ira_object_t to_obj
= ALLOCNO_OBJECT (to
, i
);
1801 live_range_t lr
= OBJECT_LIVE_RANGES (from_obj
);
1803 if (internal_flag_ira_verbose
> 4 && ira_dump_file
!= NULL
)
1805 fprintf (ira_dump_file
, " Copying ranges of a%dr%d to a%dr%d: ",
1806 ALLOCNO_NUM (from
), ALLOCNO_REGNO (from
),
1807 ALLOCNO_NUM (to
), ALLOCNO_REGNO (to
));
1808 ira_print_live_range_list (ira_dump_file
, lr
);
1810 lr
= ira_copy_live_range_list (lr
);
1811 change_object_in_range_list (lr
, to_obj
);
1812 OBJECT_LIVE_RANGES (to_obj
)
1813 = ira_merge_live_ranges (lr
, OBJECT_LIVE_RANGES (to_obj
));
1817 /* Return TRUE if NODE represents a loop with low register
1820 low_pressure_loop_node_p (ira_loop_tree_node_t node
)
1823 enum reg_class pclass
;
1825 if (node
->bb
!= NULL
)
1828 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
1830 pclass
= ira_pressure_classes
[i
];
1831 if (node
->reg_pressure
[pclass
] > ira_class_hard_regs_num
[pclass
]
1832 && ira_class_hard_regs_num
[pclass
] > 1)
1839 /* Return TRUE if LOOP has a complex enter or exit edge. We don't
1840 form a region from such loop if the target use stack register
1841 because reg-stack.c can not deal with such edges. */
1843 loop_with_complex_edge_p (struct loop
*loop
)
1848 VEC (edge
, heap
) *edges
;
1850 FOR_EACH_EDGE (e
, ei
, loop
->header
->preds
)
1851 if (e
->flags
& EDGE_EH
)
1853 edges
= get_loop_exit_edges (loop
);
1854 FOR_EACH_VEC_ELT (edge
, edges
, i
, e
)
1855 if (e
->flags
& EDGE_COMPLEX
)
1861 /* Sort loops for marking them for removal. We put already marked
1862 loops first, then less frequent loops next, and then outer loops
1865 loop_compare_func (const void *v1p
, const void *v2p
)
1868 ira_loop_tree_node_t l1
= *(const ira_loop_tree_node_t
*) v1p
;
1869 ira_loop_tree_node_t l2
= *(const ira_loop_tree_node_t
*) v2p
;
1871 ira_assert (l1
->parent
!= NULL
&& l2
->parent
!= NULL
);
1872 if (l1
->to_remove_p
&& ! l2
->to_remove_p
)
1874 if (! l1
->to_remove_p
&& l2
->to_remove_p
)
1876 if ((diff
= l1
->loop
->header
->frequency
- l2
->loop
->header
->frequency
) != 0)
1878 if ((diff
= (int) loop_depth (l1
->loop
) - (int) loop_depth (l2
->loop
)) != 0)
1880 /* Make sorting stable. */
1881 return l1
->loop_num
- l2
->loop_num
;
1884 /* Mark loops which should be removed from regional allocation. We
1885 remove a loop with low register pressure inside another loop with
1886 register pressure. In this case a separate allocation of the loop
1887 hardly helps (for irregular register file architecture it could
1888 help by choosing a better hard register in the loop but we prefer
1889 faster allocation even in this case). We also remove cheap loops
1890 if there are more than IRA_MAX_LOOPS_NUM of them. Loop with EH
1891 exit or enter edges are removed too because the allocation might
1892 require put pseudo moves on the EH edges (we could still do this
1893 for pseudos with caller saved hard registers in some cases but it
1894 is impossible to say here or during top-down allocation pass what
1895 hard register the pseudos get finally). */
1897 mark_loops_for_removal (void)
1900 ira_loop_tree_node_t
*sorted_loops
;
1903 ira_assert (current_loops
!= NULL
);
1905 = (ira_loop_tree_node_t
*) ira_allocate (sizeof (ira_loop_tree_node_t
)
1906 * VEC_length (loop_p
,
1908 for (n
= i
= 0; VEC_iterate (loop_p
, ira_loops
.larray
, i
, loop
); i
++)
1909 if (ira_loop_nodes
[i
].regno_allocno_map
!= NULL
)
1911 if (ira_loop_nodes
[i
].parent
== NULL
)
1913 /* Don't remove the root. */
1914 ira_loop_nodes
[i
].to_remove_p
= false;
1917 sorted_loops
[n
++] = &ira_loop_nodes
[i
];
1918 ira_loop_nodes
[i
].to_remove_p
1919 = ((low_pressure_loop_node_p (ira_loop_nodes
[i
].parent
)
1920 && low_pressure_loop_node_p (&ira_loop_nodes
[i
]))
1922 || loop_with_complex_edge_p (ira_loop_nodes
[i
].loop
)
1926 qsort (sorted_loops
, n
, sizeof (ira_loop_tree_node_t
), loop_compare_func
);
1927 for (i
= 0; n
- i
+ 1 > IRA_MAX_LOOPS_NUM
; i
++)
1929 sorted_loops
[i
]->to_remove_p
= true;
1930 if (internal_flag_ira_verbose
> 1 && ira_dump_file
!= NULL
)
1933 " Mark loop %d (header %d, freq %d, depth %d) for removal (%s)\n",
1934 sorted_loops
[i
]->loop_num
, sorted_loops
[i
]->loop
->header
->index
,
1935 sorted_loops
[i
]->loop
->header
->frequency
,
1936 loop_depth (sorted_loops
[i
]->loop
),
1937 low_pressure_loop_node_p (sorted_loops
[i
]->parent
)
1938 && low_pressure_loop_node_p (sorted_loops
[i
])
1939 ? "low pressure" : "cheap loop");
1941 ira_free (sorted_loops
);
1944 /* Mark all loops but root for removing. */
1946 mark_all_loops_for_removal (void)
1951 ira_assert (current_loops
!= NULL
);
1952 FOR_EACH_VEC_ELT (loop_p
, ira_loops
.larray
, i
, loop
)
1953 if (ira_loop_nodes
[i
].regno_allocno_map
!= NULL
)
1955 if (ira_loop_nodes
[i
].parent
== NULL
)
1957 /* Don't remove the root. */
1958 ira_loop_nodes
[i
].to_remove_p
= false;
1961 ira_loop_nodes
[i
].to_remove_p
= true;
1962 if (internal_flag_ira_verbose
> 1 && ira_dump_file
!= NULL
)
1965 " Mark loop %d (header %d, freq %d, depth %d) for removal\n",
1966 ira_loop_nodes
[i
].loop_num
,
1967 ira_loop_nodes
[i
].loop
->header
->index
,
1968 ira_loop_nodes
[i
].loop
->header
->frequency
,
1969 loop_depth (ira_loop_nodes
[i
].loop
));
1973 /* Definition of vector of loop tree nodes. */
1974 DEF_VEC_P(ira_loop_tree_node_t
);
1975 DEF_VEC_ALLOC_P(ira_loop_tree_node_t
, heap
);
1977 /* Vec containing references to all removed loop tree nodes. */
1978 static VEC(ira_loop_tree_node_t
,heap
) *removed_loop_vec
;
1980 /* Vec containing references to all children of loop tree nodes. */
1981 static VEC(ira_loop_tree_node_t
,heap
) *children_vec
;
1983 /* Remove subregions of NODE if their separate allocation will not
1984 improve the result. */
1986 remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_node_t node
)
1990 ira_loop_tree_node_t subnode
;
1992 remove_p
= node
->to_remove_p
;
1994 VEC_safe_push (ira_loop_tree_node_t
, heap
, children_vec
, node
);
1995 start
= VEC_length (ira_loop_tree_node_t
, children_vec
);
1996 for (subnode
= node
->children
; subnode
!= NULL
; subnode
= subnode
->next
)
1997 if (subnode
->bb
== NULL
)
1998 remove_uneccesary_loop_nodes_from_loop_tree (subnode
);
2000 VEC_safe_push (ira_loop_tree_node_t
, heap
, children_vec
, subnode
);
2001 node
->children
= node
->subloops
= NULL
;
2004 VEC_safe_push (ira_loop_tree_node_t
, heap
, removed_loop_vec
, node
);
2007 while (VEC_length (ira_loop_tree_node_t
, children_vec
) > start
)
2009 subnode
= VEC_pop (ira_loop_tree_node_t
, children_vec
);
2010 subnode
->parent
= node
;
2011 subnode
->next
= node
->children
;
2012 node
->children
= subnode
;
2013 if (subnode
->bb
== NULL
)
2015 subnode
->subloop_next
= node
->subloops
;
2016 node
->subloops
= subnode
;
2021 /* Return TRUE if NODE is inside PARENT. */
2023 loop_is_inside_p (ira_loop_tree_node_t node
, ira_loop_tree_node_t parent
)
2025 for (node
= node
->parent
; node
!= NULL
; node
= node
->parent
)
2031 /* Sort allocnos according to their order in regno allocno list. */
2033 regno_allocno_order_compare_func (const void *v1p
, const void *v2p
)
2035 ira_allocno_t a1
= *(const ira_allocno_t
*) v1p
;
2036 ira_allocno_t a2
= *(const ira_allocno_t
*) v2p
;
2037 ira_loop_tree_node_t n1
= ALLOCNO_LOOP_TREE_NODE (a1
);
2038 ira_loop_tree_node_t n2
= ALLOCNO_LOOP_TREE_NODE (a2
);
2040 if (loop_is_inside_p (n1
, n2
))
2042 else if (loop_is_inside_p (n2
, n1
))
2044 /* If allocnos are equally good, sort by allocno numbers, so that
2045 the results of qsort leave nothing to chance. We put allocnos
2046 with higher number first in the list because it is the original
2047 order for allocnos from loops on the same levels. */
2048 return ALLOCNO_NUM (a2
) - ALLOCNO_NUM (a1
);
2051 /* This array is used to sort allocnos to restore allocno order in
2052 the regno allocno list. */
2053 static ira_allocno_t
*regno_allocnos
;
2055 /* Restore allocno order for REGNO in the regno allocno list. */
2057 ira_rebuild_regno_allocno_list (int regno
)
2062 for (n
= 0, a
= ira_regno_allocno_map
[regno
];
2064 a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
))
2065 regno_allocnos
[n
++] = a
;
2067 qsort (regno_allocnos
, n
, sizeof (ira_allocno_t
),
2068 regno_allocno_order_compare_func
);
2069 for (i
= 1; i
< n
; i
++)
2070 ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos
[i
- 1]) = regno_allocnos
[i
];
2071 ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos
[n
- 1]) = NULL
;
2072 ira_regno_allocno_map
[regno
] = regno_allocnos
[0];
2073 if (internal_flag_ira_verbose
> 1 && ira_dump_file
!= NULL
)
2074 fprintf (ira_dump_file
, " Rebuilding regno allocno list for %d\n", regno
);
2077 /* Propagate info from allocno FROM_A to allocno A. */
2079 propagate_some_info_from_allocno (ira_allocno_t a
, ira_allocno_t from_a
)
2081 enum reg_class aclass
;
2083 merge_hard_reg_conflicts (from_a
, a
, false);
2084 ALLOCNO_NREFS (a
) += ALLOCNO_NREFS (from_a
);
2085 ALLOCNO_FREQ (a
) += ALLOCNO_FREQ (from_a
);
2086 ALLOCNO_CALL_FREQ (a
) += ALLOCNO_CALL_FREQ (from_a
);
2087 ALLOCNO_CALLS_CROSSED_NUM (a
) += ALLOCNO_CALLS_CROSSED_NUM (from_a
);
2088 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a
)
2089 += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (from_a
);
2090 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a
)
2091 += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (from_a
);
2092 if (! ALLOCNO_BAD_SPILL_P (from_a
))
2093 ALLOCNO_BAD_SPILL_P (a
) = false;
2094 aclass
= ALLOCNO_CLASS (from_a
);
2095 ira_assert (aclass
== ALLOCNO_CLASS (a
));
2096 ira_allocate_and_accumulate_costs (&ALLOCNO_HARD_REG_COSTS (a
), aclass
,
2097 ALLOCNO_HARD_REG_COSTS (from_a
));
2098 ira_allocate_and_accumulate_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a
),
2100 ALLOCNO_CONFLICT_HARD_REG_COSTS (from_a
));
2101 ALLOCNO_CLASS_COST (a
) += ALLOCNO_CLASS_COST (from_a
);
2102 ALLOCNO_MEMORY_COST (a
) += ALLOCNO_MEMORY_COST (from_a
);
2105 /* Remove allocnos from loops removed from the allocation
2108 remove_unnecessary_allocnos (void)
2111 bool merged_p
, rebuild_p
;
2112 ira_allocno_t a
, prev_a
, next_a
, parent_a
;
2113 ira_loop_tree_node_t a_node
, parent
;
2116 regno_allocnos
= NULL
;
2117 for (regno
= max_reg_num () - 1; regno
>= FIRST_PSEUDO_REGISTER
; regno
--)
2120 for (prev_a
= NULL
, a
= ira_regno_allocno_map
[regno
];
2124 next_a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
);
2125 a_node
= ALLOCNO_LOOP_TREE_NODE (a
);
2126 if (! a_node
->to_remove_p
)
2130 for (parent
= a_node
->parent
;
2131 (parent_a
= parent
->regno_allocno_map
[regno
]) == NULL
2132 && parent
->to_remove_p
;
2133 parent
= parent
->parent
)
2135 if (parent_a
== NULL
)
2137 /* There are no allocnos with the same regno in
2138 upper region -- just move the allocno to the
2141 ALLOCNO_LOOP_TREE_NODE (a
) = parent
;
2142 parent
->regno_allocno_map
[regno
] = a
;
2143 bitmap_set_bit (parent
->all_allocnos
, ALLOCNO_NUM (a
));
2148 /* Remove the allocno and update info of allocno in
2149 the upper region. */
2151 ira_regno_allocno_map
[regno
] = next_a
;
2153 ALLOCNO_NEXT_REGNO_ALLOCNO (prev_a
) = next_a
;
2154 move_allocno_live_ranges (a
, parent_a
);
2156 propagate_some_info_from_allocno (parent_a
, a
);
2157 /* Remove it from the corresponding regno allocno
2158 map to avoid info propagation of subsequent
2159 allocno into this already removed allocno. */
2160 a_node
->regno_allocno_map
[regno
] = NULL
;
2166 /* We need to restore the order in regno allocno list. */
2168 if (regno_allocnos
== NULL
)
2170 = (ira_allocno_t
*) ira_allocate (sizeof (ira_allocno_t
)
2171 * ira_allocnos_num
);
2172 ira_rebuild_regno_allocno_list (regno
);
2176 ira_rebuild_start_finish_chains ();
2177 if (regno_allocnos
!= NULL
)
2178 ira_free (regno_allocnos
);
2181 /* Remove allocnos from all loops but the root. */
2183 remove_low_level_allocnos (void)
2186 bool merged_p
, propagate_p
;
2187 ira_allocno_t a
, top_a
;
2188 ira_loop_tree_node_t a_node
, parent
;
2189 ira_allocno_iterator ai
;
2192 FOR_EACH_ALLOCNO (a
, ai
)
2194 a_node
= ALLOCNO_LOOP_TREE_NODE (a
);
2195 if (a_node
== ira_loop_tree_root
|| ALLOCNO_CAP_MEMBER (a
) != NULL
)
2197 regno
= ALLOCNO_REGNO (a
);
2198 if ((top_a
= ira_loop_tree_root
->regno_allocno_map
[regno
]) == NULL
)
2200 ALLOCNO_LOOP_TREE_NODE (a
) = ira_loop_tree_root
;
2201 ira_loop_tree_root
->regno_allocno_map
[regno
] = a
;
2204 propagate_p
= a_node
->parent
->regno_allocno_map
[regno
] == NULL
;
2205 /* Remove the allocno and update info of allocno in the upper
2207 move_allocno_live_ranges (a
, top_a
);
2210 propagate_some_info_from_allocno (top_a
, a
);
2212 FOR_EACH_ALLOCNO (a
, ai
)
2214 a_node
= ALLOCNO_LOOP_TREE_NODE (a
);
2215 if (a_node
== ira_loop_tree_root
)
2217 parent
= a_node
->parent
;
2218 regno
= ALLOCNO_REGNO (a
);
2219 if (ALLOCNO_CAP_MEMBER (a
) != NULL
)
2220 ira_assert (ALLOCNO_CAP (a
) != NULL
);
2221 else if (ALLOCNO_CAP (a
) == NULL
)
2222 ira_assert (parent
->regno_allocno_map
[regno
] != NULL
);
2224 FOR_EACH_ALLOCNO (a
, ai
)
2226 regno
= ALLOCNO_REGNO (a
);
2227 if (ira_loop_tree_root
->regno_allocno_map
[regno
] == a
)
2230 ira_allocno_object_iterator oi
;
2232 ira_regno_allocno_map
[regno
] = a
;
2233 ALLOCNO_NEXT_REGNO_ALLOCNO (a
) = NULL
;
2234 ALLOCNO_CAP_MEMBER (a
) = NULL
;
2235 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, oi
)
2236 COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj
),
2237 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
));
2239 if (ALLOCNO_TOTAL_NO_STACK_REG_P (a
))
2240 ALLOCNO_NO_STACK_REG_P (a
) = true;
2247 ira_rebuild_start_finish_chains ();
2250 /* Remove loops from consideration. We remove all loops except for
2251 root if ALL_P or loops for which a separate allocation will not
2252 improve the result. We have to do this after allocno creation and
2253 their costs and allocno class evaluation because only after that
2254 the register pressure can be known and is calculated. */
2256 remove_unnecessary_regions (bool all_p
)
2258 if (current_loops
== NULL
)
2261 mark_all_loops_for_removal ();
2263 mark_loops_for_removal ();
2265 = VEC_alloc (ira_loop_tree_node_t
, heap
,
2266 last_basic_block
+ VEC_length (loop_p
, ira_loops
.larray
));
2268 = VEC_alloc (ira_loop_tree_node_t
, heap
,
2269 last_basic_block
+ VEC_length (loop_p
, ira_loops
.larray
));
2270 remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_root
) ;
2271 VEC_free (ira_loop_tree_node_t
, heap
, children_vec
);
2273 remove_low_level_allocnos ();
2275 remove_unnecessary_allocnos ();
2276 while (VEC_length (ira_loop_tree_node_t
, removed_loop_vec
) > 0)
2277 finish_loop_tree_node (VEC_pop (ira_loop_tree_node_t
, removed_loop_vec
));
2278 VEC_free (ira_loop_tree_node_t
, heap
, removed_loop_vec
);
2283 /* At this point true value of allocno attribute bad_spill_p means
2284 that there is an insn where allocno occurs and where the allocno
2285 can not be used as memory. The function updates the attribute, now
2286 it can be true only for allocnos which can not be used as memory in
2287 an insn and in whose live ranges there is other allocno deaths.
2288 Spilling allocnos with true value will not improve the code because
2289 it will not make other allocnos colorable and additional reloads
2290 for the corresponding pseudo will be generated in reload pass for
2291 each insn it occurs.
2293 This is a trick mentioned in one classic article of Chaitin etc
2294 which is frequently omitted in other implementations of RA based on
2297 update_bad_spill_attribute (void)
2301 ira_allocno_iterator ai
;
2302 ira_allocno_object_iterator aoi
;
2305 enum reg_class aclass
;
2306 bitmap_head dead_points
[N_REG_CLASSES
];
2308 for (i
= 0; i
< ira_allocno_classes_num
; i
++)
2310 aclass
= ira_allocno_classes
[i
];
2311 bitmap_initialize (&dead_points
[aclass
], ®_obstack
);
2313 FOR_EACH_ALLOCNO (a
, ai
)
2315 aclass
= ALLOCNO_CLASS (a
);
2316 if (aclass
== NO_REGS
)
2318 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, aoi
)
2319 for (r
= OBJECT_LIVE_RANGES (obj
); r
!= NULL
; r
= r
->next
)
2320 bitmap_set_bit (&dead_points
[aclass
], r
->finish
);
2322 FOR_EACH_ALLOCNO (a
, ai
)
2324 aclass
= ALLOCNO_CLASS (a
);
2325 if (aclass
== NO_REGS
)
2327 if (! ALLOCNO_BAD_SPILL_P (a
))
2329 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, aoi
)
2331 for (r
= OBJECT_LIVE_RANGES (obj
); r
!= NULL
; r
= r
->next
)
2333 for (i
= r
->start
+ 1; i
< r
->finish
; i
++)
2334 if (bitmap_bit_p (&dead_points
[aclass
], i
))
2341 ALLOCNO_BAD_SPILL_P (a
) = false;
2346 for (i
= 0; i
< ira_allocno_classes_num
; i
++)
2348 aclass
= ira_allocno_classes
[i
];
2349 bitmap_clear (&dead_points
[aclass
]);
2355 /* Set up minimal and maximal live range points for allocnos. */
2357 setup_min_max_allocno_live_range_point (void)
2360 ira_allocno_t a
, parent_a
, cap
;
2361 ira_allocno_iterator ai
;
2362 #ifdef ENABLE_IRA_CHECKING
2363 ira_object_iterator oi
;
2367 ira_loop_tree_node_t parent
;
2369 FOR_EACH_ALLOCNO (a
, ai
)
2371 int n
= ALLOCNO_NUM_OBJECTS (a
);
2373 for (i
= 0; i
< n
; i
++)
2375 ira_object_t obj
= ALLOCNO_OBJECT (a
, i
);
2376 r
= OBJECT_LIVE_RANGES (obj
);
2379 OBJECT_MAX (obj
) = r
->finish
;
2380 for (; r
->next
!= NULL
; r
= r
->next
)
2382 OBJECT_MIN (obj
) = r
->start
;
2385 for (i
= max_reg_num () - 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
2386 for (a
= ira_regno_allocno_map
[i
];
2388 a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
))
2391 int n
= ALLOCNO_NUM_OBJECTS (a
);
2393 for (j
= 0; j
< n
; j
++)
2395 ira_object_t obj
= ALLOCNO_OBJECT (a
, j
);
2396 ira_object_t parent_obj
;
2398 if (OBJECT_MAX (obj
) < 0)
2400 ira_assert (ALLOCNO_CAP_MEMBER (a
) == NULL
);
2401 /* Accumulation of range info. */
2402 if (ALLOCNO_CAP (a
) != NULL
)
2404 for (cap
= ALLOCNO_CAP (a
); cap
!= NULL
; cap
= ALLOCNO_CAP (cap
))
2406 ira_object_t cap_obj
= ALLOCNO_OBJECT (cap
, j
);
2407 if (OBJECT_MAX (cap_obj
) < OBJECT_MAX (obj
))
2408 OBJECT_MAX (cap_obj
) = OBJECT_MAX (obj
);
2409 if (OBJECT_MIN (cap_obj
) > OBJECT_MIN (obj
))
2410 OBJECT_MIN (cap_obj
) = OBJECT_MIN (obj
);
2414 if ((parent
= ALLOCNO_LOOP_TREE_NODE (a
)->parent
) == NULL
)
2416 parent_a
= parent
->regno_allocno_map
[i
];
2417 parent_obj
= ALLOCNO_OBJECT (parent_a
, j
);
2418 if (OBJECT_MAX (parent_obj
) < OBJECT_MAX (obj
))
2419 OBJECT_MAX (parent_obj
) = OBJECT_MAX (obj
);
2420 if (OBJECT_MIN (parent_obj
) > OBJECT_MIN (obj
))
2421 OBJECT_MIN (parent_obj
) = OBJECT_MIN (obj
);
2424 #ifdef ENABLE_IRA_CHECKING
2425 FOR_EACH_OBJECT (obj
, oi
)
2427 if ((0 <= OBJECT_MIN (obj
) && OBJECT_MIN (obj
) <= ira_max_point
)
2428 && (0 <= OBJECT_MAX (obj
) && OBJECT_MAX (obj
) <= ira_max_point
))
2435 /* Sort allocnos according to their live ranges. Allocnos with
2436 smaller allocno class are put first unless we use priority
2437 coloring. Allocnos with the same class are ordered according
2438 their start (min). Allocnos with the same start are ordered
2439 according their finish (max). */
2441 object_range_compare_func (const void *v1p
, const void *v2p
)
2444 ira_object_t obj1
= *(const ira_object_t
*) v1p
;
2445 ira_object_t obj2
= *(const ira_object_t
*) v2p
;
2446 ira_allocno_t a1
= OBJECT_ALLOCNO (obj1
);
2447 ira_allocno_t a2
= OBJECT_ALLOCNO (obj2
);
2449 if ((diff
= OBJECT_MIN (obj1
) - OBJECT_MIN (obj2
)) != 0)
2451 if ((diff
= OBJECT_MAX (obj1
) - OBJECT_MAX (obj2
)) != 0)
2453 return ALLOCNO_NUM (a1
) - ALLOCNO_NUM (a2
);
2456 /* Sort ira_object_id_map and set up conflict id of allocnos. */
2458 sort_conflict_id_map (void)
2462 ira_allocno_iterator ai
;
2465 FOR_EACH_ALLOCNO (a
, ai
)
2467 ira_allocno_object_iterator oi
;
2470 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, oi
)
2471 ira_object_id_map
[num
++] = obj
;
2473 qsort (ira_object_id_map
, num
, sizeof (ira_object_t
),
2474 object_range_compare_func
);
2475 for (i
= 0; i
< num
; i
++)
2477 ira_object_t obj
= ira_object_id_map
[i
];
2479 gcc_assert (obj
!= NULL
);
2480 OBJECT_CONFLICT_ID (obj
) = i
;
2482 for (i
= num
; i
< ira_objects_num
; i
++)
2483 ira_object_id_map
[i
] = NULL
;
2486 /* Set up minimal and maximal conflict ids of allocnos with which
2487 given allocno can conflict. */
2489 setup_min_max_conflict_allocno_ids (void)
2492 int i
, j
, min
, max
, start
, finish
, first_not_finished
, filled_area_start
;
2493 int *live_range_min
, *last_lived
;
2494 int word0_min
, word0_max
;
2496 ira_allocno_iterator ai
;
2498 live_range_min
= (int *) ira_allocate (sizeof (int) * ira_objects_num
);
2500 first_not_finished
= -1;
2501 for (i
= 0; i
< ira_objects_num
; i
++)
2503 ira_object_t obj
= ira_object_id_map
[i
];
2508 a
= OBJECT_ALLOCNO (obj
);
2512 aclass
= ALLOCNO_CLASS (a
);
2514 first_not_finished
= i
;
2518 start
= OBJECT_MIN (obj
);
2519 /* If we skip an allocno, the allocno with smaller ids will
2520 be also skipped because of the secondary sorting the
2521 range finishes (see function
2522 object_range_compare_func). */
2523 while (first_not_finished
< i
2524 && start
> OBJECT_MAX (ira_object_id_map
2525 [first_not_finished
]))
2526 first_not_finished
++;
2527 min
= first_not_finished
;
2530 /* We could increase min further in this case but it is good
2533 live_range_min
[i
] = OBJECT_MIN (obj
);
2534 OBJECT_MIN (obj
) = min
;
2536 last_lived
= (int *) ira_allocate (sizeof (int) * ira_max_point
);
2538 filled_area_start
= -1;
2539 for (i
= ira_objects_num
- 1; i
>= 0; i
--)
2541 ira_object_t obj
= ira_object_id_map
[i
];
2546 a
= OBJECT_ALLOCNO (obj
);
2549 aclass
= ALLOCNO_CLASS (a
);
2550 for (j
= 0; j
< ira_max_point
; j
++)
2552 filled_area_start
= ira_max_point
;
2554 min
= live_range_min
[i
];
2555 finish
= OBJECT_MAX (obj
);
2556 max
= last_lived
[finish
];
2558 /* We could decrease max further in this case but it is good
2560 max
= OBJECT_CONFLICT_ID (obj
) - 1;
2561 OBJECT_MAX (obj
) = max
;
2562 /* In filling, we can go further A range finish to recognize
2563 intersection quickly because if the finish of subsequently
2564 processed allocno (it has smaller conflict id) range is
2565 further A range finish than they are definitely intersected
2566 (the reason for this is the allocnos with bigger conflict id
2567 have their range starts not smaller than allocnos with
2569 for (j
= min
; j
< filled_area_start
; j
++)
2571 filled_area_start
= min
;
2573 ira_free (last_lived
);
2574 ira_free (live_range_min
);
2576 /* For allocnos with more than one object, we may later record extra conflicts in
2577 subobject 0 that we cannot really know about here.
2578 For now, simply widen the min/max range of these subobjects. */
2580 word0_min
= INT_MAX
;
2581 word0_max
= INT_MIN
;
2583 FOR_EACH_ALLOCNO (a
, ai
)
2585 int n
= ALLOCNO_NUM_OBJECTS (a
);
2590 obj0
= ALLOCNO_OBJECT (a
, 0);
2591 if (OBJECT_CONFLICT_ID (obj0
) < word0_min
)
2592 word0_min
= OBJECT_CONFLICT_ID (obj0
);
2593 if (OBJECT_CONFLICT_ID (obj0
) > word0_max
)
2594 word0_max
= OBJECT_CONFLICT_ID (obj0
);
2596 FOR_EACH_ALLOCNO (a
, ai
)
2598 int n
= ALLOCNO_NUM_OBJECTS (a
);
2603 obj0
= ALLOCNO_OBJECT (a
, 0);
2604 if (OBJECT_MIN (obj0
) > word0_min
)
2605 OBJECT_MIN (obj0
) = word0_min
;
2606 if (OBJECT_MAX (obj0
) < word0_max
)
2607 OBJECT_MAX (obj0
) = word0_max
;
2617 ira_allocno_iterator ai
;
2618 ira_loop_tree_node_t loop_tree_node
;
2620 FOR_EACH_ALLOCNO (a
, ai
)
2622 if (ALLOCNO_LOOP_TREE_NODE (a
) == ira_loop_tree_root
)
2624 if (ALLOCNO_CAP_MEMBER (a
) != NULL
)
2625 create_cap_allocno (a
);
2626 else if (ALLOCNO_CAP (a
) == NULL
)
2628 loop_tree_node
= ALLOCNO_LOOP_TREE_NODE (a
);
2629 if (!bitmap_bit_p (loop_tree_node
->border_allocnos
, ALLOCNO_NUM (a
)))
2630 create_cap_allocno (a
);
2637 /* The page contains code transforming more one region internal
2638 representation (IR) to one region IR which is necessary for reload.
2639 This transformation is called IR flattening. We might just rebuild
2640 the IR for one region but we don't do it because it takes a lot of
2643 /* Map: regno -> allocnos which will finally represent the regno for
2644 IR with one region. */
2645 static ira_allocno_t
*regno_top_level_allocno_map
;
2647 /* Find the allocno that corresponds to A at a level one higher up in the
2648 loop tree. Returns NULL if A is a cap, or if it has no parent. */
2650 ira_parent_allocno (ira_allocno_t a
)
2652 ira_loop_tree_node_t parent
;
2654 if (ALLOCNO_CAP (a
) != NULL
)
2657 parent
= ALLOCNO_LOOP_TREE_NODE (a
)->parent
;
2661 return parent
->regno_allocno_map
[ALLOCNO_REGNO (a
)];
2664 /* Find the allocno that corresponds to A at a level one higher up in the
2665 loop tree. If ALLOCNO_CAP is set for A, return that. */
2667 ira_parent_or_cap_allocno (ira_allocno_t a
)
2669 if (ALLOCNO_CAP (a
) != NULL
)
2670 return ALLOCNO_CAP (a
);
2672 return ira_parent_allocno (a
);
2675 /* Process all allocnos originated from pseudo REGNO and copy live
2676 ranges, hard reg conflicts, and allocno stack reg attributes from
2677 low level allocnos to final allocnos which are destinations of
2678 removed stores at a loop exit. Return true if we copied live
2681 copy_info_to_removed_store_destinations (int regno
)
2684 ira_allocno_t parent_a
= NULL
;
2685 ira_loop_tree_node_t parent
;
2689 for (a
= ira_regno_allocno_map
[regno
];
2691 a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
))
2693 if (a
!= regno_top_level_allocno_map
[REGNO (allocno_emit_reg (a
))])
2694 /* This allocno will be removed. */
2697 /* Caps will be removed. */
2698 ira_assert (ALLOCNO_CAP_MEMBER (a
) == NULL
);
2699 for (parent
= ALLOCNO_LOOP_TREE_NODE (a
)->parent
;
2701 parent
= parent
->parent
)
2702 if ((parent_a
= parent
->regno_allocno_map
[regno
]) == NULL
2704 == regno_top_level_allocno_map
[REGNO
2705 (allocno_emit_reg (parent_a
))]
2706 && ALLOCNO_EMIT_DATA (parent_a
)->mem_optimized_dest_p
))
2708 if (parent
== NULL
|| parent_a
== NULL
)
2711 copy_allocno_live_ranges (a
, parent_a
);
2712 merge_hard_reg_conflicts (a
, parent_a
, true);
2714 ALLOCNO_CALL_FREQ (parent_a
) += ALLOCNO_CALL_FREQ (a
);
2715 ALLOCNO_CALLS_CROSSED_NUM (parent_a
)
2716 += ALLOCNO_CALLS_CROSSED_NUM (a
);
2717 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a
)
2718 += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a
);
2719 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a
)
2720 += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a
);
2726 /* Flatten the IR. In other words, this function transforms IR as if
2727 it were built with one region (without loops). We could make it
2728 much simpler by rebuilding IR with one region, but unfortunately it
2729 takes a lot of time. MAX_REGNO_BEFORE_EMIT and
2730 IRA_MAX_POINT_BEFORE_EMIT are correspondingly MAX_REG_NUM () and
2731 IRA_MAX_POINT before emitting insns on the loop borders. */
2733 ira_flattening (int max_regno_before_emit
, int ira_max_point_before_emit
)
2738 bool new_pseudos_p
, merged_p
, mem_dest_p
;
2740 enum reg_class aclass
;
2741 ira_allocno_t a
, parent_a
, first
, second
, node_first
, node_second
;
2743 ira_loop_tree_node_t node
;
2745 ira_allocno_iterator ai
;
2746 ira_copy_iterator ci
;
2748 regno_top_level_allocno_map
2749 = (ira_allocno_t
*) ira_allocate (max_reg_num ()
2750 * sizeof (ira_allocno_t
));
2751 memset (regno_top_level_allocno_map
, 0,
2752 max_reg_num () * sizeof (ira_allocno_t
));
2753 new_pseudos_p
= merged_p
= false;
2754 FOR_EACH_ALLOCNO (a
, ai
)
2756 ira_allocno_object_iterator oi
;
2759 if (ALLOCNO_CAP_MEMBER (a
) != NULL
)
2760 /* Caps are not in the regno allocno maps and they are never
2761 will be transformed into allocnos existing after IR
2764 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, oi
)
2765 COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
),
2766 OBJECT_CONFLICT_HARD_REGS (obj
));
2768 ALLOCNO_TOTAL_NO_STACK_REG_P (a
) = ALLOCNO_NO_STACK_REG_P (a
);
2771 /* Fix final allocno attributes. */
2772 for (i
= max_regno_before_emit
- 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
2775 for (a
= ira_regno_allocno_map
[i
];
2777 a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
))
2779 ira_emit_data_t parent_data
, data
= ALLOCNO_EMIT_DATA (a
);
2781 ira_assert (ALLOCNO_CAP_MEMBER (a
) == NULL
);
2782 if (data
->somewhere_renamed_p
)
2783 new_pseudos_p
= true;
2784 parent_a
= ira_parent_allocno (a
);
2785 if (parent_a
== NULL
)
2787 ALLOCNO_COPIES (a
) = NULL
;
2788 regno_top_level_allocno_map
[REGNO (data
->reg
)] = a
;
2791 ira_assert (ALLOCNO_CAP_MEMBER (parent_a
) == NULL
);
2793 if (data
->mem_optimized_dest
!= NULL
)
2795 parent_data
= ALLOCNO_EMIT_DATA (parent_a
);
2796 if (REGNO (data
->reg
) == REGNO (parent_data
->reg
))
2798 merge_hard_reg_conflicts (a
, parent_a
, true);
2799 move_allocno_live_ranges (a
, parent_a
);
2801 parent_data
->mem_optimized_dest_p
2802 = (parent_data
->mem_optimized_dest_p
2803 || data
->mem_optimized_dest_p
);
2806 new_pseudos_p
= true;
2809 ALLOCNO_NREFS (parent_a
) -= ALLOCNO_NREFS (a
);
2810 ALLOCNO_FREQ (parent_a
) -= ALLOCNO_FREQ (a
);
2811 ALLOCNO_CALL_FREQ (parent_a
) -= ALLOCNO_CALL_FREQ (a
);
2812 ALLOCNO_CALLS_CROSSED_NUM (parent_a
)
2813 -= ALLOCNO_CALLS_CROSSED_NUM (a
);
2814 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a
)
2815 -= ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a
);
2816 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a
)
2817 -= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a
);
2818 ira_assert (ALLOCNO_CALLS_CROSSED_NUM (parent_a
) >= 0
2819 && ALLOCNO_NREFS (parent_a
) >= 0
2820 && ALLOCNO_FREQ (parent_a
) >= 0);
2821 aclass
= ALLOCNO_CLASS (parent_a
);
2822 hard_regs_num
= ira_class_hard_regs_num
[aclass
];
2823 if (ALLOCNO_HARD_REG_COSTS (a
) != NULL
2824 && ALLOCNO_HARD_REG_COSTS (parent_a
) != NULL
)
2825 for (j
= 0; j
< hard_regs_num
; j
++)
2826 ALLOCNO_HARD_REG_COSTS (parent_a
)[j
]
2827 -= ALLOCNO_HARD_REG_COSTS (a
)[j
];
2828 if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a
) != NULL
2829 && ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a
) != NULL
)
2830 for (j
= 0; j
< hard_regs_num
; j
++)
2831 ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a
)[j
]
2832 -= ALLOCNO_CONFLICT_HARD_REG_COSTS (a
)[j
];
2833 ALLOCNO_CLASS_COST (parent_a
)
2834 -= ALLOCNO_CLASS_COST (a
);
2835 ALLOCNO_MEMORY_COST (parent_a
) -= ALLOCNO_MEMORY_COST (a
);
2836 parent_a
= ira_parent_allocno (parent_a
);
2837 if (parent_a
== NULL
)
2840 ALLOCNO_COPIES (a
) = NULL
;
2841 regno_top_level_allocno_map
[REGNO (data
->reg
)] = a
;
2843 if (mem_dest_p
&& copy_info_to_removed_store_destinations (i
))
2846 ira_assert (new_pseudos_p
|| ira_max_point_before_emit
== ira_max_point
);
2847 if (merged_p
|| ira_max_point_before_emit
!= ira_max_point
)
2848 ira_rebuild_start_finish_chains ();
2851 sparseset objects_live
;
2853 /* Rebuild conflicts. */
2854 FOR_EACH_ALLOCNO (a
, ai
)
2856 ira_allocno_object_iterator oi
;
2859 if (a
!= regno_top_level_allocno_map
[REGNO (allocno_emit_reg (a
))]
2860 || ALLOCNO_CAP_MEMBER (a
) != NULL
)
2862 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, oi
)
2864 for (r
= OBJECT_LIVE_RANGES (obj
); r
!= NULL
; r
= r
->next
)
2865 ira_assert (r
->object
== obj
);
2866 clear_conflicts (obj
);
2869 objects_live
= sparseset_alloc (ira_objects_num
);
2870 for (i
= 0; i
< ira_max_point
; i
++)
2872 for (r
= ira_start_point_ranges
[i
]; r
!= NULL
; r
= r
->start_next
)
2874 ira_object_t obj
= r
->object
;
2876 a
= OBJECT_ALLOCNO (obj
);
2877 if (a
!= regno_top_level_allocno_map
[REGNO (allocno_emit_reg (a
))]
2878 || ALLOCNO_CAP_MEMBER (a
) != NULL
)
2881 aclass
= ALLOCNO_CLASS (a
);
2882 sparseset_set_bit (objects_live
, OBJECT_CONFLICT_ID (obj
));
2883 EXECUTE_IF_SET_IN_SPARSESET (objects_live
, n
)
2885 ira_object_t live_obj
= ira_object_id_map
[n
];
2886 ira_allocno_t live_a
= OBJECT_ALLOCNO (live_obj
);
2887 enum reg_class live_aclass
= ALLOCNO_CLASS (live_a
);
2889 if (ira_reg_classes_intersect_p
[aclass
][live_aclass
]
2890 /* Don't set up conflict for the allocno with itself. */
2892 ira_add_conflict (obj
, live_obj
);
2896 for (r
= ira_finish_point_ranges
[i
]; r
!= NULL
; r
= r
->finish_next
)
2897 sparseset_clear_bit (objects_live
, OBJECT_CONFLICT_ID (r
->object
));
2899 sparseset_free (objects_live
);
2900 compress_conflict_vecs ();
2902 /* Mark some copies for removing and change allocnos in the rest
2904 FOR_EACH_COPY (cp
, ci
)
2906 if (ALLOCNO_CAP_MEMBER (cp
->first
) != NULL
2907 || ALLOCNO_CAP_MEMBER (cp
->second
) != NULL
)
2909 if (internal_flag_ira_verbose
> 4 && ira_dump_file
!= NULL
)
2911 (ira_dump_file
, " Remove cp%d:%c%dr%d-%c%dr%d\n",
2912 cp
->num
, ALLOCNO_CAP_MEMBER (cp
->first
) != NULL
? 'c' : 'a',
2913 ALLOCNO_NUM (cp
->first
),
2914 REGNO (allocno_emit_reg (cp
->first
)),
2915 ALLOCNO_CAP_MEMBER (cp
->second
) != NULL
? 'c' : 'a',
2916 ALLOCNO_NUM (cp
->second
),
2917 REGNO (allocno_emit_reg (cp
->second
)));
2918 cp
->loop_tree_node
= NULL
;
2922 = regno_top_level_allocno_map
[REGNO (allocno_emit_reg (cp
->first
))];
2924 = regno_top_level_allocno_map
[REGNO (allocno_emit_reg (cp
->second
))];
2925 node
= cp
->loop_tree_node
;
2927 keep_p
= true; /* It copy generated in ira-emit.c. */
2930 /* Check that the copy was not propagated from level on
2931 which we will have different pseudos. */
2932 node_first
= node
->regno_allocno_map
[ALLOCNO_REGNO (cp
->first
)];
2933 node_second
= node
->regno_allocno_map
[ALLOCNO_REGNO (cp
->second
)];
2934 keep_p
= ((REGNO (allocno_emit_reg (first
))
2935 == REGNO (allocno_emit_reg (node_first
)))
2936 && (REGNO (allocno_emit_reg (second
))
2937 == REGNO (allocno_emit_reg (node_second
))));
2941 cp
->loop_tree_node
= ira_loop_tree_root
;
2943 cp
->second
= second
;
2947 cp
->loop_tree_node
= NULL
;
2948 if (internal_flag_ira_verbose
> 4 && ira_dump_file
!= NULL
)
2949 fprintf (ira_dump_file
, " Remove cp%d:a%dr%d-a%dr%d\n",
2950 cp
->num
, ALLOCNO_NUM (cp
->first
),
2951 REGNO (allocno_emit_reg (cp
->first
)),
2952 ALLOCNO_NUM (cp
->second
),
2953 REGNO (allocno_emit_reg (cp
->second
)));
2956 /* Remove unnecessary allocnos on lower levels of the loop tree. */
2957 FOR_EACH_ALLOCNO (a
, ai
)
2959 if (a
!= regno_top_level_allocno_map
[REGNO (allocno_emit_reg (a
))]
2960 || ALLOCNO_CAP_MEMBER (a
) != NULL
)
2962 if (internal_flag_ira_verbose
> 4 && ira_dump_file
!= NULL
)
2963 fprintf (ira_dump_file
, " Remove a%dr%d\n",
2964 ALLOCNO_NUM (a
), REGNO (allocno_emit_reg (a
)));
2968 ALLOCNO_LOOP_TREE_NODE (a
) = ira_loop_tree_root
;
2969 ALLOCNO_REGNO (a
) = REGNO (allocno_emit_reg (a
));
2970 ALLOCNO_CAP (a
) = NULL
;
2971 /* Restore updated costs for assignments from reload. */
2972 ALLOCNO_UPDATED_MEMORY_COST (a
) = ALLOCNO_MEMORY_COST (a
);
2973 ALLOCNO_UPDATED_CLASS_COST (a
) = ALLOCNO_CLASS_COST (a
);
2974 if (! ALLOCNO_ASSIGNED_P (a
))
2975 ira_free_allocno_updated_costs (a
);
2976 ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a
) == NULL
);
2977 ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a
) == NULL
);
2979 /* Remove unnecessary copies. */
2980 FOR_EACH_COPY (cp
, ci
)
2982 if (cp
->loop_tree_node
== NULL
)
2984 ira_copies
[cp
->num
] = NULL
;
2989 (ALLOCNO_LOOP_TREE_NODE (cp
->first
) == ira_loop_tree_root
2990 && ALLOCNO_LOOP_TREE_NODE (cp
->second
) == ira_loop_tree_root
);
2991 ira_add_allocno_copy_to_list (cp
);
2992 ira_swap_allocno_copy_ends_if_necessary (cp
);
2994 rebuild_regno_allocno_maps ();
2995 if (ira_max_point
!= ira_max_point_before_emit
)
2996 ira_compress_allocno_live_ranges ();
2997 ira_free (regno_top_level_allocno_map
);
3002 #ifdef ENABLE_IRA_CHECKING
3003 /* Check creation of all allocnos. Allocnos on lower levels should
3004 have allocnos or caps on all upper levels. */
3006 check_allocno_creation (void)
3009 ira_allocno_iterator ai
;
3010 ira_loop_tree_node_t loop_tree_node
;
3012 FOR_EACH_ALLOCNO (a
, ai
)
3014 loop_tree_node
= ALLOCNO_LOOP_TREE_NODE (a
);
3015 ira_assert (bitmap_bit_p (loop_tree_node
->all_allocnos
,
3017 if (loop_tree_node
== ira_loop_tree_root
)
3019 if (ALLOCNO_CAP_MEMBER (a
) != NULL
)
3020 ira_assert (ALLOCNO_CAP (a
) != NULL
);
3021 else if (ALLOCNO_CAP (a
) == NULL
)
3022 ira_assert (loop_tree_node
->parent
3023 ->regno_allocno_map
[ALLOCNO_REGNO (a
)] != NULL
3024 && bitmap_bit_p (loop_tree_node
->border_allocnos
,
3030 /* Identify allocnos which prefer a register class with a single hard register.
3031 Adjust ALLOCNO_CONFLICT_HARD_REG_COSTS so that conflicting allocnos are
3032 less likely to use the preferred singleton register. */
3034 update_conflict_hard_reg_costs (void)
3037 ira_allocno_iterator ai
;
3040 FOR_EACH_ALLOCNO (a
, ai
)
3042 reg_class_t aclass
= ALLOCNO_CLASS (a
);
3043 reg_class_t pref
= reg_preferred_class (ALLOCNO_REGNO (a
));
3045 if (reg_class_size
[(int) pref
] != 1)
3047 index
= ira_class_hard_reg_index
[(int) aclass
]
3048 [ira_class_hard_regs
[(int) pref
][0]];
3051 if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a
) == NULL
3052 || ALLOCNO_HARD_REG_COSTS (a
) == NULL
)
3055 for (i
= ira_class_hard_regs_num
[(int) aclass
] - 1; i
>= 0; i
--)
3056 if (ALLOCNO_HARD_REG_COSTS (a
)[i
] > ALLOCNO_CLASS_COST (a
)
3057 && min
> ALLOCNO_HARD_REG_COSTS (a
)[i
])
3058 min
= ALLOCNO_HARD_REG_COSTS (a
)[i
];
3061 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a
),
3063 ALLOCNO_CONFLICT_HARD_REG_COSTS (a
)[index
]
3064 -= min
- ALLOCNO_CLASS_COST (a
);
3068 /* Create a internal representation (IR) for IRA (allocnos, copies,
3069 loop tree nodes). The function returns TRUE if we generate loop
3070 structure (besides nodes representing all function and the basic
3071 blocks) for regional allocation. A true return means that we
3072 really need to flatten IR before the reload. */
3079 initiate_cost_vectors ();
3080 initiate_allocnos ();
3082 create_loop_tree_nodes ();
3086 create_allocno_objects ();
3087 ira_create_allocno_live_ranges ();
3088 remove_unnecessary_regions (false);
3089 ira_compress_allocno_live_ranges ();
3090 update_bad_spill_attribute ();
3091 loops_p
= more_one_region_p ();
3094 propagate_allocno_info ();
3097 ira_tune_allocno_costs ();
3098 #ifdef ENABLE_IRA_CHECKING
3099 check_allocno_creation ();
3101 setup_min_max_allocno_live_range_point ();
3102 sort_conflict_id_map ();
3103 setup_min_max_conflict_allocno_ids ();
3104 ira_build_conflicts ();
3105 update_conflict_hard_reg_costs ();
3106 if (! ira_conflicts_p
)
3109 ira_allocno_iterator ai
;
3111 /* Remove all regions but root one. */
3114 remove_unnecessary_regions (true);
3117 /* We don't save hard registers around calls for fast allocation
3118 -- add caller clobbered registers as conflicting ones to
3119 allocno crossing calls. */
3120 FOR_EACH_ALLOCNO (a
, ai
)
3121 if (ALLOCNO_CALLS_CROSSED_NUM (a
) != 0)
3122 ior_hard_reg_conflicts (a
, &call_used_reg_set
);
3124 if (internal_flag_ira_verbose
> 2 && ira_dump_file
!= NULL
)
3125 print_copies (ira_dump_file
);
3126 if (internal_flag_ira_verbose
> 0 && ira_dump_file
!= NULL
)
3131 ira_allocno_iterator ai
;
3136 FOR_EACH_ALLOCNO (a
, ai
)
3138 int j
, nobj
= ALLOCNO_NUM_OBJECTS (a
);
3142 for (j
= 0; j
< nobj
; j
++)
3144 ira_object_t obj
= ALLOCNO_OBJECT (a
, j
);
3145 n
+= OBJECT_NUM_CONFLICTS (obj
);
3146 for (r
= OBJECT_LIVE_RANGES (obj
); r
!= NULL
; r
= r
->next
)
3150 fprintf (ira_dump_file
, " regions=%d, blocks=%d, points=%d\n",
3151 current_loops
== NULL
? 1 : VEC_length (loop_p
, ira_loops
.larray
),
3152 n_basic_blocks
, ira_max_point
);
3153 fprintf (ira_dump_file
,
3154 " allocnos=%d (big %d), copies=%d, conflicts=%d, ranges=%d\n",
3155 ira_allocnos_num
, nr_big
, ira_copies_num
, n
, nr
);
3160 /* Release the data created by function ira_build. */
3164 finish_loop_tree_nodes ();
3167 finish_cost_vectors ();
3168 ira_finish_allocno_live_ranges ();