1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
32 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "addresses.h"
40 #include "cfgcleanup.h"
42 #include "tree-pass.h"
44 #ifndef STACK_POP_CODE
45 #if STACK_GROWS_DOWNWARD
46 #define STACK_POP_CODE POST_INC
48 #define STACK_POP_CODE POST_DEC
52 static void validate_replace_rtx_1 (rtx
*, rtx
, rtx
, rtx_insn
*, bool);
53 static void validate_replace_src_1 (rtx
*, void *);
54 static rtx_insn
*split_insn (rtx_insn
*);
56 struct target_recog default_target_recog
;
58 struct target_recog
*this_target_recog
= &default_target_recog
;
61 /* Nonzero means allow operands to be volatile.
62 This should be 0 if you are generating rtl, such as if you are calling
63 the functions in optabs.c and expmed.c (most of the time).
64 This should be 1 if all valid insns need to be recognized,
65 such as in reginfo.c and final.c and reload.c.
67 init_recog and init_recog_no_volatile are responsible for setting this. */
71 struct recog_data_d recog_data
;
73 /* Contains a vector of operand_alternative structures, such that
74 operand OP of alternative A is at index A * n_operands + OP.
75 Set up by preprocess_constraints. */
76 const operand_alternative
*recog_op_alt
;
78 /* Used to provide recog_op_alt for asms. */
79 static operand_alternative asm_op_alt
[MAX_RECOG_OPERANDS
80 * MAX_RECOG_ALTERNATIVES
];
82 /* On return from `constrain_operands', indicate which alternative
85 int which_alternative
;
87 /* Nonzero after end of reload pass.
88 Set to 1 or 0 by toplev.c.
89 Controls the significance of (SUBREG (MEM)). */
93 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
94 int epilogue_completed
;
96 /* Initialize data used by the function `recog'.
97 This must be called once in the compilation of a function
98 before any insn recognition may be done in the function. */
101 init_recog_no_volatile (void)
113 /* Return true if labels in asm operands BODY are LABEL_REFs. */
116 asm_labels_ok (rtx body
)
121 asmop
= extract_asm_operands (body
);
122 if (asmop
== NULL_RTX
)
125 for (i
= 0; i
< ASM_OPERANDS_LABEL_LENGTH (asmop
); i
++)
126 if (GET_CODE (ASM_OPERANDS_LABEL (asmop
, i
)) != LABEL_REF
)
132 /* Check that X is an insn-body for an `asm' with operands
133 and that the operands mentioned in it are legitimate. */
136 check_asm_operands (rtx x
)
140 const char **constraints
;
143 if (!asm_labels_ok (x
))
146 /* Post-reload, be more strict with things. */
147 if (reload_completed
)
149 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
150 rtx_insn
*insn
= make_insn_raw (x
);
152 constrain_operands (1, get_enabled_alternatives (insn
));
153 return which_alternative
>= 0;
156 noperands
= asm_noperands (x
);
162 operands
= XALLOCAVEC (rtx
, noperands
);
163 constraints
= XALLOCAVEC (const char *, noperands
);
165 decode_asm_operands (x
, operands
, NULL
, constraints
, NULL
, NULL
);
167 for (i
= 0; i
< noperands
; i
++)
169 const char *c
= constraints
[i
];
172 if (! asm_operand_ok (operands
[i
], c
, constraints
))
179 /* Static data for the next two routines. */
190 static change_t
*changes
;
191 static int changes_allocated
;
193 static int num_changes
= 0;
195 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
196 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
197 the change is simply made.
199 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
200 will be called with the address and mode as parameters. If OBJECT is
201 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
204 IN_GROUP is nonzero if this is part of a group of changes that must be
205 performed as a group. In that case, the changes will be stored. The
206 function `apply_change_group' will validate and apply the changes.
208 If IN_GROUP is zero, this is a single change. Try to recognize the insn
209 or validate the memory reference with the change applied. If the result
210 is not valid for the machine, suppress the change and return zero.
211 Otherwise, perform the change and return 1. */
214 validate_change_1 (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
, bool unshare
)
218 if (old
== new_rtx
|| rtx_equal_p (old
, new_rtx
))
221 gcc_assert (in_group
!= 0 || num_changes
== 0);
225 /* Save the information describing this change. */
226 if (num_changes
>= changes_allocated
)
228 if (changes_allocated
== 0)
229 /* This value allows for repeated substitutions inside complex
230 indexed addresses, or changes in up to 5 insns. */
231 changes_allocated
= MAX_RECOG_OPERANDS
* 5;
233 changes_allocated
*= 2;
235 changes
= XRESIZEVEC (change_t
, changes
, changes_allocated
);
238 changes
[num_changes
].object
= object
;
239 changes
[num_changes
].loc
= loc
;
240 changes
[num_changes
].old
= old
;
241 changes
[num_changes
].unshare
= unshare
;
243 if (object
&& !MEM_P (object
))
245 /* Set INSN_CODE to force rerecognition of insn. Save old code in
247 changes
[num_changes
].old_code
= INSN_CODE (object
);
248 INSN_CODE (object
) = -1;
253 /* If we are making a group of changes, return 1. Otherwise, validate the
254 change group we made. */
259 return apply_change_group ();
262 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
266 validate_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
268 return validate_change_1 (object
, loc
, new_rtx
, in_group
, false);
271 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
275 validate_unshare_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
277 return validate_change_1 (object
, loc
, new_rtx
, in_group
, true);
281 /* Keep X canonicalized if some changes have made it non-canonical; only
282 modifies the operands of X, not (for example) its code. Simplifications
283 are not the job of this routine.
285 Return true if anything was changed. */
287 canonicalize_change_group (rtx_insn
*insn
, rtx x
)
289 if (COMMUTATIVE_P (x
)
290 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
292 /* Oops, the caller has made X no longer canonical.
293 Let's redo the changes in the correct order. */
294 rtx tem
= XEXP (x
, 0);
295 validate_unshare_change (insn
, &XEXP (x
, 0), XEXP (x
, 1), 1);
296 validate_unshare_change (insn
, &XEXP (x
, 1), tem
, 1);
304 /* This subroutine of apply_change_group verifies whether the changes to INSN
305 were valid; i.e. whether INSN can still be recognized.
307 If IN_GROUP is true clobbers which have to be added in order to
308 match the instructions will be added to the current change group.
309 Otherwise the changes will take effect immediately. */
312 insn_invalid_p (rtx_insn
*insn
, bool in_group
)
314 rtx pat
= PATTERN (insn
);
315 int num_clobbers
= 0;
316 /* If we are before reload and the pattern is a SET, see if we can add
318 int icode
= recog (pat
, insn
,
319 (GET_CODE (pat
) == SET
320 && ! reload_completed
321 && ! reload_in_progress
)
322 ? &num_clobbers
: 0);
323 int is_asm
= icode
< 0 && asm_noperands (PATTERN (insn
)) >= 0;
326 /* If this is an asm and the operand aren't legal, then fail. Likewise if
327 this is not an asm and the insn wasn't recognized. */
328 if ((is_asm
&& ! check_asm_operands (PATTERN (insn
)))
329 || (!is_asm
&& icode
< 0))
332 /* If we have to add CLOBBERs, fail if we have to add ones that reference
333 hard registers since our callers can't know if they are live or not.
334 Otherwise, add them. */
335 if (num_clobbers
> 0)
339 if (added_clobbers_hard_reg_p (icode
))
342 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (num_clobbers
+ 1));
343 XVECEXP (newpat
, 0, 0) = pat
;
344 add_clobbers (newpat
, icode
);
346 validate_change (insn
, &PATTERN (insn
), newpat
, 1);
348 PATTERN (insn
) = pat
= newpat
;
351 /* After reload, verify that all constraints are satisfied. */
352 if (reload_completed
)
356 if (! constrain_operands (1, get_preferred_alternatives (insn
)))
360 INSN_CODE (insn
) = icode
;
364 /* Return number of changes made and not validated yet. */
366 num_changes_pending (void)
371 /* Tentatively apply the changes numbered NUM and up.
372 Return 1 if all changes are valid, zero otherwise. */
375 verify_changes (int num
)
378 rtx last_validated
= NULL_RTX
;
380 /* The changes have been applied and all INSN_CODEs have been reset to force
383 The changes are valid if we aren't given an object, or if we are
384 given a MEM and it still is a valid address, or if this is in insn
385 and it is recognized. In the latter case, if reload has completed,
386 we also require that the operands meet the constraints for
389 for (i
= num
; i
< num_changes
; i
++)
391 rtx object
= changes
[i
].object
;
393 /* If there is no object to test or if it is the same as the one we
394 already tested, ignore it. */
395 if (object
== 0 || object
== last_validated
)
400 if (! memory_address_addr_space_p (GET_MODE (object
),
402 MEM_ADDR_SPACE (object
)))
405 else if (/* changes[i].old might be zero, e.g. when putting a
406 REG_FRAME_RELATED_EXPR into a previously empty list. */
408 && REG_P (changes
[i
].old
)
409 && asm_noperands (PATTERN (object
)) > 0
410 && REG_EXPR (changes
[i
].old
) != NULL_TREE
411 && HAS_DECL_ASSEMBLER_NAME_P (REG_EXPR (changes
[i
].old
))
412 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes
[i
].old
))
413 && DECL_REGISTER (REG_EXPR (changes
[i
].old
)))
415 /* Don't allow changes of hard register operands to inline
416 assemblies if they have been defined as register asm ("x"). */
419 else if (DEBUG_INSN_P (object
))
421 else if (insn_invalid_p (as_a
<rtx_insn
*> (object
), true))
423 rtx pat
= PATTERN (object
);
425 /* Perhaps we couldn't recognize the insn because there were
426 extra CLOBBERs at the end. If so, try to re-recognize
427 without the last CLOBBER (later iterations will cause each of
428 them to be eliminated, in turn). But don't do this if we
429 have an ASM_OPERAND. */
430 if (GET_CODE (pat
) == PARALLEL
431 && GET_CODE (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1)) == CLOBBER
432 && asm_noperands (PATTERN (object
)) < 0)
436 if (XVECLEN (pat
, 0) == 2)
437 newpat
= XVECEXP (pat
, 0, 0);
443 = gen_rtx_PARALLEL (VOIDmode
,
444 rtvec_alloc (XVECLEN (pat
, 0) - 1));
445 for (j
= 0; j
< XVECLEN (newpat
, 0); j
++)
446 XVECEXP (newpat
, 0, j
) = XVECEXP (pat
, 0, j
);
449 /* Add a new change to this group to replace the pattern
450 with this new pattern. Then consider this change
451 as having succeeded. The change we added will
452 cause the entire call to fail if things remain invalid.
454 Note that this can lose if a later change than the one
455 we are processing specified &XVECEXP (PATTERN (object), 0, X)
456 but this shouldn't occur. */
458 validate_change (object
, &PATTERN (object
), newpat
, 1);
461 else if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
462 || GET_CODE (pat
) == VAR_LOCATION
)
463 /* If this insn is a CLOBBER or USE, it is always valid, but is
469 last_validated
= object
;
472 return (i
== num_changes
);
475 /* A group of changes has previously been issued with validate_change
476 and verified with verify_changes. Call df_insn_rescan for each of
477 the insn changed and clear num_changes. */
480 confirm_change_group (void)
483 rtx last_object
= NULL
;
485 for (i
= 0; i
< num_changes
; i
++)
487 rtx object
= changes
[i
].object
;
489 if (changes
[i
].unshare
)
490 *changes
[i
].loc
= copy_rtx (*changes
[i
].loc
);
492 /* Avoid unnecessary rescanning when multiple changes to same instruction
496 if (object
!= last_object
&& last_object
&& INSN_P (last_object
))
497 df_insn_rescan (as_a
<rtx_insn
*> (last_object
));
498 last_object
= object
;
502 if (last_object
&& INSN_P (last_object
))
503 df_insn_rescan (as_a
<rtx_insn
*> (last_object
));
507 /* Apply a group of changes previously issued with `validate_change'.
508 If all changes are valid, call confirm_change_group and return 1,
509 otherwise, call cancel_changes and return 0. */
512 apply_change_group (void)
514 if (verify_changes (0))
516 confirm_change_group ();
527 /* Return the number of changes so far in the current group. */
530 num_validated_changes (void)
535 /* Retract the changes numbered NUM and up. */
538 cancel_changes (int num
)
542 /* Back out all the changes. Do this in the opposite order in which
544 for (i
= num_changes
- 1; i
>= num
; i
--)
546 *changes
[i
].loc
= changes
[i
].old
;
547 if (changes
[i
].object
&& !MEM_P (changes
[i
].object
))
548 INSN_CODE (changes
[i
].object
) = changes
[i
].old_code
;
553 /* Reduce conditional compilation elsewhere. */
554 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
558 simplify_while_replacing (rtx
*loc
, rtx to
, rtx_insn
*object
,
559 machine_mode op0_mode
)
562 enum rtx_code code
= GET_CODE (x
);
563 rtx new_rtx
= NULL_RTX
;
564 scalar_int_mode is_mode
;
566 if (SWAPPABLE_OPERANDS_P (x
)
567 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
569 validate_unshare_change (object
, loc
,
570 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x
) ? code
571 : swap_condition (code
),
572 GET_MODE (x
), XEXP (x
, 1),
578 /* Canonicalize arithmetics with all constant operands. */
579 switch (GET_RTX_CLASS (code
))
582 if (CONSTANT_P (XEXP (x
, 0)))
583 new_rtx
= simplify_unary_operation (code
, GET_MODE (x
), XEXP (x
, 0),
588 if (CONSTANT_P (XEXP (x
, 0)) && CONSTANT_P (XEXP (x
, 1)))
589 new_rtx
= simplify_binary_operation (code
, GET_MODE (x
), XEXP (x
, 0),
593 case RTX_COMM_COMPARE
:
594 if (CONSTANT_P (XEXP (x
, 0)) && CONSTANT_P (XEXP (x
, 1)))
595 new_rtx
= simplify_relational_operation (code
, GET_MODE (x
), op0_mode
,
596 XEXP (x
, 0), XEXP (x
, 1));
603 validate_change (object
, loc
, new_rtx
, 1);
610 /* If we have a PLUS whose second operand is now a CONST_INT, use
611 simplify_gen_binary to try to simplify it.
612 ??? We may want later to remove this, once simplification is
613 separated from this function. */
614 if (CONST_INT_P (XEXP (x
, 1)) && XEXP (x
, 1) == to
)
615 validate_change (object
, loc
,
617 (PLUS
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1)), 1);
620 if (CONST_SCALAR_INT_P (XEXP (x
, 1)))
621 validate_change (object
, loc
,
623 (PLUS
, GET_MODE (x
), XEXP (x
, 0),
624 simplify_gen_unary (NEG
,
625 GET_MODE (x
), XEXP (x
, 1),
630 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
632 new_rtx
= simplify_gen_unary (code
, GET_MODE (x
), XEXP (x
, 0),
634 /* If any of the above failed, substitute in something that
635 we know won't be recognized. */
637 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
638 validate_change (object
, loc
, new_rtx
, 1);
642 /* All subregs possible to simplify should be simplified. */
643 new_rtx
= simplify_subreg (GET_MODE (x
), SUBREG_REG (x
), op0_mode
,
646 /* Subregs of VOIDmode operands are incorrect. */
647 if (!new_rtx
&& GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
648 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
650 validate_change (object
, loc
, new_rtx
, 1);
654 /* If we are replacing a register with memory, try to change the memory
655 to be the mode required for memory in extract operations (this isn't
656 likely to be an insertion operation; if it was, nothing bad will
657 happen, we might just fail in some cases). */
659 if (MEM_P (XEXP (x
, 0))
660 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &is_mode
)
661 && CONST_INT_P (XEXP (x
, 1))
662 && CONST_INT_P (XEXP (x
, 2))
663 && !mode_dependent_address_p (XEXP (XEXP (x
, 0), 0),
664 MEM_ADDR_SPACE (XEXP (x
, 0)))
665 && !MEM_VOLATILE_P (XEXP (x
, 0)))
667 int pos
= INTVAL (XEXP (x
, 2));
668 machine_mode new_mode
= is_mode
;
669 if (GET_CODE (x
) == ZERO_EXTRACT
&& targetm
.have_extzv ())
670 new_mode
= insn_data
[targetm
.code_for_extzv
].operand
[1].mode
;
671 else if (GET_CODE (x
) == SIGN_EXTRACT
&& targetm
.have_extv ())
672 new_mode
= insn_data
[targetm
.code_for_extv
].operand
[1].mode
;
673 scalar_int_mode wanted_mode
= (new_mode
== VOIDmode
675 : as_a
<scalar_int_mode
> (new_mode
));
677 /* If we have a narrower mode, we can do something. */
678 if (GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
680 int offset
= pos
/ BITS_PER_UNIT
;
683 /* If the bytes and bits are counted differently, we
684 must adjust the offset. */
685 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
687 (GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (wanted_mode
) -
690 gcc_assert (GET_MODE_PRECISION (wanted_mode
)
691 == GET_MODE_BITSIZE (wanted_mode
));
692 pos
%= GET_MODE_BITSIZE (wanted_mode
);
694 newmem
= adjust_address_nv (XEXP (x
, 0), wanted_mode
, offset
);
696 validate_change (object
, &XEXP (x
, 2), GEN_INT (pos
), 1);
697 validate_change (object
, &XEXP (x
, 0), newmem
, 1);
708 /* Replace every occurrence of FROM in X with TO. Mark each change with
709 validate_change passing OBJECT. */
712 validate_replace_rtx_1 (rtx
*loc
, rtx from
, rtx to
, rtx_insn
*object
,
719 machine_mode op0_mode
= VOIDmode
;
720 int prev_changes
= num_changes
;
726 fmt
= GET_RTX_FORMAT (code
);
728 op0_mode
= GET_MODE (XEXP (x
, 0));
730 /* X matches FROM if it is the same rtx or they are both referring to the
731 same register in the same mode. Avoid calling rtx_equal_p unless the
732 operands look similar. */
735 || (REG_P (x
) && REG_P (from
)
736 && GET_MODE (x
) == GET_MODE (from
)
737 && REGNO (x
) == REGNO (from
))
738 || (GET_CODE (x
) == GET_CODE (from
) && GET_MODE (x
) == GET_MODE (from
)
739 && rtx_equal_p (x
, from
)))
741 validate_unshare_change (object
, loc
, to
, 1);
745 /* Call ourself recursively to perform the replacements.
746 We must not replace inside already replaced expression, otherwise we
747 get infinite recursion for replacements like (reg X)->(subreg (reg X))
748 so we must special case shared ASM_OPERANDS. */
750 if (GET_CODE (x
) == PARALLEL
)
752 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
754 if (j
&& GET_CODE (XVECEXP (x
, 0, j
)) == SET
755 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == ASM_OPERANDS
)
757 /* Verify that operands are really shared. */
758 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x
, 0, 0)))
759 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
761 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x
, 0, j
)),
762 from
, to
, object
, simplify
);
765 validate_replace_rtx_1 (&XVECEXP (x
, 0, j
), from
, to
, object
,
770 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
773 validate_replace_rtx_1 (&XEXP (x
, i
), from
, to
, object
, simplify
);
774 else if (fmt
[i
] == 'E')
775 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
776 validate_replace_rtx_1 (&XVECEXP (x
, i
, j
), from
, to
, object
,
780 /* If we didn't substitute, there is nothing more to do. */
781 if (num_changes
== prev_changes
)
784 /* ??? The regmove is no more, so is this aberration still necessary? */
785 /* Allow substituted expression to have different mode. This is used by
786 regmove to change mode of pseudo register. */
787 if (fmt
[0] == 'e' && GET_MODE (XEXP (x
, 0)) != VOIDmode
)
788 op0_mode
= GET_MODE (XEXP (x
, 0));
790 /* Do changes needed to keep rtx consistent. Don't do any other
791 simplifications, as it is not our job. */
793 simplify_while_replacing (loc
, to
, object
, op0_mode
);
796 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
797 with TO. After all changes have been made, validate by seeing
798 if INSN is still valid. */
801 validate_replace_rtx_subexp (rtx from
, rtx to
, rtx_insn
*insn
, rtx
*loc
)
803 validate_replace_rtx_1 (loc
, from
, to
, insn
, true);
804 return apply_change_group ();
807 /* Try replacing every occurrence of FROM in INSN with TO. After all
808 changes have been made, validate by seeing if INSN is still valid. */
811 validate_replace_rtx (rtx from
, rtx to
, rtx_insn
*insn
)
813 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
814 return apply_change_group ();
817 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
818 is a part of INSN. After all changes have been made, validate by seeing if
820 validate_replace_rtx (from, to, insn) is equivalent to
821 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
824 validate_replace_rtx_part (rtx from
, rtx to
, rtx
*where
, rtx_insn
*insn
)
826 validate_replace_rtx_1 (where
, from
, to
, insn
, true);
827 return apply_change_group ();
830 /* Same as above, but do not simplify rtx afterwards. */
832 validate_replace_rtx_part_nosimplify (rtx from
, rtx to
, rtx
*where
,
835 validate_replace_rtx_1 (where
, from
, to
, insn
, false);
836 return apply_change_group ();
840 /* Try replacing every occurrence of FROM in INSN with TO. This also
841 will replace in REG_EQUAL and REG_EQUIV notes. */
844 validate_replace_rtx_group (rtx from
, rtx to
, rtx_insn
*insn
)
847 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
848 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
849 if (REG_NOTE_KIND (note
) == REG_EQUAL
850 || REG_NOTE_KIND (note
) == REG_EQUIV
)
851 validate_replace_rtx_1 (&XEXP (note
, 0), from
, to
, insn
, true);
854 /* Function called by note_uses to replace used subexpressions. */
855 struct validate_replace_src_data
857 rtx from
; /* Old RTX */
858 rtx to
; /* New RTX */
859 rtx_insn
*insn
; /* Insn in which substitution is occurring. */
863 validate_replace_src_1 (rtx
*x
, void *data
)
865 struct validate_replace_src_data
*d
866 = (struct validate_replace_src_data
*) data
;
868 validate_replace_rtx_1 (x
, d
->from
, d
->to
, d
->insn
, true);
871 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
875 validate_replace_src_group (rtx from
, rtx to
, rtx_insn
*insn
)
877 struct validate_replace_src_data d
;
882 note_uses (&PATTERN (insn
), validate_replace_src_1
, &d
);
885 /* Try simplify INSN.
886 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
887 pattern and return true if something was simplified. */
890 validate_simplify_insn (rtx_insn
*insn
)
896 pat
= PATTERN (insn
);
898 if (GET_CODE (pat
) == SET
)
900 newpat
= simplify_rtx (SET_SRC (pat
));
901 if (newpat
&& !rtx_equal_p (SET_SRC (pat
), newpat
))
902 validate_change (insn
, &SET_SRC (pat
), newpat
, 1);
903 newpat
= simplify_rtx (SET_DEST (pat
));
904 if (newpat
&& !rtx_equal_p (SET_DEST (pat
), newpat
))
905 validate_change (insn
, &SET_DEST (pat
), newpat
, 1);
907 else if (GET_CODE (pat
) == PARALLEL
)
908 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
910 rtx s
= XVECEXP (pat
, 0, i
);
912 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
)
914 newpat
= simplify_rtx (SET_SRC (s
));
915 if (newpat
&& !rtx_equal_p (SET_SRC (s
), newpat
))
916 validate_change (insn
, &SET_SRC (s
), newpat
, 1);
917 newpat
= simplify_rtx (SET_DEST (s
));
918 if (newpat
&& !rtx_equal_p (SET_DEST (s
), newpat
))
919 validate_change (insn
, &SET_DEST (s
), newpat
, 1);
922 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
925 /* Return 1 if the insn using CC0 set by INSN does not contain
926 any ordered tests applied to the condition codes.
927 EQ and NE tests do not count. */
930 next_insn_tests_no_inequality (rtx_insn
*insn
)
932 rtx_insn
*next
= next_cc0_user (insn
);
934 /* If there is no next insn, we have to take the conservative choice. */
938 return (INSN_P (next
)
939 && ! inequality_comparisons_p (PATTERN (next
)));
942 /* Return 1 if OP is a valid general operand for machine mode MODE.
943 This is either a register reference, a memory reference,
944 or a constant. In the case of a memory reference, the address
945 is checked for general validity for the target machine.
947 Register and memory references must have mode MODE in order to be valid,
948 but some constants have no machine mode and are valid for any mode.
950 If MODE is VOIDmode, OP is checked for validity for whatever mode
953 The main use of this function is as a predicate in match_operand
954 expressions in the machine description. */
957 general_operand (rtx op
, machine_mode mode
)
959 enum rtx_code code
= GET_CODE (op
);
961 if (mode
== VOIDmode
)
962 mode
= GET_MODE (op
);
964 /* Don't accept CONST_INT or anything similar
965 if the caller wants something floating. */
966 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
967 && GET_MODE_CLASS (mode
) != MODE_INT
968 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
973 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
977 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
979 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
980 && targetm
.legitimate_constant_p (mode
== VOIDmode
984 /* Except for certain constants with VOIDmode, already checked for,
985 OP's mode must match MODE if MODE specifies a mode. */
987 if (GET_MODE (op
) != mode
)
992 rtx sub
= SUBREG_REG (op
);
994 #ifdef INSN_SCHEDULING
995 /* On machines that have insn scheduling, we want all memory
996 reference to be explicit, so outlaw paradoxical SUBREGs.
997 However, we must allow them after reload so that they can
998 get cleaned up by cleanup_subreg_operands. */
999 if (!reload_completed
&& MEM_P (sub
)
1000 && paradoxical_subreg_p (op
))
1003 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1004 may result in incorrect reference. We should simplify all valid
1005 subregs of MEM anyway. But allow this after reload because we
1006 might be called from cleanup_subreg_operands.
1008 ??? This is a kludge. */
1009 if (!reload_completed
1010 && maybe_ne (SUBREG_BYTE (op
), 0)
1015 && REGNO (sub
) < FIRST_PSEUDO_REGISTER
1016 && !REG_CAN_CHANGE_MODE_P (REGNO (sub
), GET_MODE (sub
), mode
)
1017 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_INT
1018 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_FLOAT
1019 /* LRA can generate some invalid SUBREGS just for matched
1020 operand reload presentation. LRA needs to treat them as
1022 && ! LRA_SUBREG_P (op
))
1025 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1026 create such rtl, and we must reject it. */
1027 if (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
1028 /* LRA can use subreg to store a floating point value in an
1029 integer mode. Although the floating point and the
1030 integer modes need the same number of hard registers, the
1031 size of floating point mode can be less than the integer
1033 && ! lra_in_progress
1034 && paradoxical_subreg_p (op
))
1038 code
= GET_CODE (op
);
1042 return (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1043 || in_hard_reg_set_p (operand_reg_set
, GET_MODE (op
), REGNO (op
)));
1047 rtx y
= XEXP (op
, 0);
1049 if (! volatile_ok
&& MEM_VOLATILE_P (op
))
1052 /* Use the mem's mode, since it will be reloaded thus. LRA can
1053 generate move insn with invalid addresses which is made valid
1054 and efficiently calculated by LRA through further numerous
1057 || memory_address_addr_space_p (GET_MODE (op
), y
, MEM_ADDR_SPACE (op
)))
1064 /* Return 1 if OP is a valid memory address for a memory reference
1067 The main use of this function is as a predicate in match_operand
1068 expressions in the machine description. */
1071 address_operand (rtx op
, machine_mode mode
)
1073 return memory_address_p (mode
, op
);
1076 /* Return 1 if OP is a register reference of mode MODE.
1077 If MODE is VOIDmode, accept a register in any mode.
1079 The main use of this function is as a predicate in match_operand
1080 expressions in the machine description. */
1083 register_operand (rtx op
, machine_mode mode
)
1085 if (GET_CODE (op
) == SUBREG
)
1087 rtx sub
= SUBREG_REG (op
);
1089 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1090 because it is guaranteed to be reloaded into one.
1091 Just make sure the MEM is valid in itself.
1092 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1093 but currently it does result from (SUBREG (REG)...) where the
1094 reg went on the stack.) */
1095 if (!REG_P (sub
) && (reload_completed
|| !MEM_P (sub
)))
1098 else if (!REG_P (op
))
1100 return general_operand (op
, mode
);
1103 /* Return 1 for a register in Pmode; ignore the tested mode. */
1106 pmode_register_operand (rtx op
, machine_mode mode ATTRIBUTE_UNUSED
)
1108 return register_operand (op
, Pmode
);
1111 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1112 or a hard register. */
1115 scratch_operand (rtx op
, machine_mode mode
)
1117 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1120 return (GET_CODE (op
) == SCRATCH
1123 || (REGNO (op
) < FIRST_PSEUDO_REGISTER
1124 && REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
))));
1127 /* Return 1 if OP is a valid immediate operand for mode MODE.
1129 The main use of this function is as a predicate in match_operand
1130 expressions in the machine description. */
1133 immediate_operand (rtx op
, machine_mode mode
)
1135 /* Don't accept CONST_INT or anything similar
1136 if the caller wants something floating. */
1137 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1138 && GET_MODE_CLASS (mode
) != MODE_INT
1139 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1142 if (CONST_INT_P (op
)
1144 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1147 return (CONSTANT_P (op
)
1148 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
1149 || GET_MODE (op
) == VOIDmode
)
1150 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1151 && targetm
.legitimate_constant_p (mode
== VOIDmode
1156 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1159 const_int_operand (rtx op
, machine_mode mode
)
1161 if (!CONST_INT_P (op
))
1164 if (mode
!= VOIDmode
1165 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1171 #if TARGET_SUPPORTS_WIDE_INT
1172 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1175 const_scalar_int_operand (rtx op
, machine_mode mode
)
1177 if (!CONST_SCALAR_INT_P (op
))
1180 if (CONST_INT_P (op
))
1181 return const_int_operand (op
, mode
);
1183 if (mode
!= VOIDmode
)
1185 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (mode
);
1186 int prec
= GET_MODE_PRECISION (int_mode
);
1187 int bitsize
= GET_MODE_BITSIZE (int_mode
);
1189 if (CONST_WIDE_INT_NUNITS (op
) * HOST_BITS_PER_WIDE_INT
> bitsize
)
1192 if (prec
== bitsize
)
1196 /* Multiword partial int. */
1198 = CONST_WIDE_INT_ELT (op
, CONST_WIDE_INT_NUNITS (op
) - 1);
1199 return (sext_hwi (x
, prec
& (HOST_BITS_PER_WIDE_INT
- 1)) == x
);
1205 /* Returns 1 if OP is an operand that is a constant integer or constant
1206 floating-point number of MODE. */
1209 const_double_operand (rtx op
, machine_mode mode
)
1211 return (GET_CODE (op
) == CONST_DOUBLE
)
1212 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
);
1215 /* Returns 1 if OP is an operand that is a constant integer or constant
1216 floating-point number of MODE. */
1219 const_double_operand (rtx op
, machine_mode mode
)
1221 /* Don't accept CONST_INT or anything similar
1222 if the caller wants something floating. */
1223 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1224 && GET_MODE_CLASS (mode
) != MODE_INT
1225 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1228 return ((CONST_DOUBLE_P (op
) || CONST_INT_P (op
))
1229 && (mode
== VOIDmode
|| GET_MODE (op
) == mode
1230 || GET_MODE (op
) == VOIDmode
));
1233 /* Return 1 if OP is a general operand that is not an immediate
1234 operand of mode MODE. */
1237 nonimmediate_operand (rtx op
, machine_mode mode
)
1239 return (general_operand (op
, mode
) && ! CONSTANT_P (op
));
1242 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1245 nonmemory_operand (rtx op
, machine_mode mode
)
1247 if (CONSTANT_P (op
))
1248 return immediate_operand (op
, mode
);
1249 return register_operand (op
, mode
);
1252 /* Return 1 if OP is a valid operand that stands for pushing a
1253 value of mode MODE onto the stack.
1255 The main use of this function is as a predicate in match_operand
1256 expressions in the machine description. */
1259 push_operand (rtx op
, machine_mode mode
)
1264 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1267 poly_int64 rounded_size
= GET_MODE_SIZE (mode
);
1269 #ifdef PUSH_ROUNDING
1270 rounded_size
= PUSH_ROUNDING (MACRO_INT (rounded_size
));
1275 if (known_eq (rounded_size
, GET_MODE_SIZE (mode
)))
1277 if (GET_CODE (op
) != STACK_PUSH_CODE
)
1283 if (GET_CODE (op
) != PRE_MODIFY
1284 || GET_CODE (XEXP (op
, 1)) != PLUS
1285 || XEXP (XEXP (op
, 1), 0) != XEXP (op
, 0)
1286 || !poly_int_rtx_p (XEXP (XEXP (op
, 1), 1), &offset
)
1287 || (STACK_GROWS_DOWNWARD
1288 ? maybe_ne (offset
, -rounded_size
)
1289 : maybe_ne (offset
, rounded_size
)))
1293 return XEXP (op
, 0) == stack_pointer_rtx
;
1296 /* Return 1 if OP is a valid operand that stands for popping a
1297 value of mode MODE off the stack.
1299 The main use of this function is as a predicate in match_operand
1300 expressions in the machine description. */
1303 pop_operand (rtx op
, machine_mode mode
)
1308 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1313 if (GET_CODE (op
) != STACK_POP_CODE
)
1316 return XEXP (op
, 0) == stack_pointer_rtx
;
1319 /* Return 1 if ADDR is a valid memory address
1320 for mode MODE in address space AS. */
1323 memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED
,
1324 rtx addr
, addr_space_t as
)
1326 #ifdef GO_IF_LEGITIMATE_ADDRESS
1327 gcc_assert (ADDR_SPACE_GENERIC_P (as
));
1328 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1334 return targetm
.addr_space
.legitimate_address_p (mode
, addr
, 0, as
);
1338 /* Return 1 if OP is a valid memory reference with mode MODE,
1339 including a valid address.
1341 The main use of this function is as a predicate in match_operand
1342 expressions in the machine description. */
1345 memory_operand (rtx op
, machine_mode mode
)
1349 if (! reload_completed
)
1350 /* Note that no SUBREG is a memory operand before end of reload pass,
1351 because (SUBREG (MEM...)) forces reloading into a register. */
1352 return MEM_P (op
) && general_operand (op
, mode
);
1354 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1358 if (GET_CODE (inner
) == SUBREG
)
1359 inner
= SUBREG_REG (inner
);
1361 return (MEM_P (inner
) && general_operand (op
, mode
));
1364 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1365 that is, a memory reference whose address is a general_operand. */
1368 indirect_operand (rtx op
, machine_mode mode
)
1370 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1371 if (! reload_completed
1372 && GET_CODE (op
) == SUBREG
&& MEM_P (SUBREG_REG (op
)))
1374 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1377 /* The only way that we can have a general_operand as the resulting
1378 address is if OFFSET is zero and the address already is an operand
1379 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1382 rtx addr
= strip_offset (XEXP (SUBREG_REG (op
), 0), &offset
);
1383 return (known_eq (offset
+ SUBREG_BYTE (op
), 0)
1384 && general_operand (addr
, Pmode
));
1388 && memory_operand (op
, mode
)
1389 && general_operand (XEXP (op
, 0), Pmode
));
1392 /* Return 1 if this is an ordered comparison operator (not including
1393 ORDERED and UNORDERED). */
1396 ordered_comparison_operator (rtx op
, machine_mode mode
)
1398 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1400 switch (GET_CODE (op
))
1418 /* Return 1 if this is a comparison operator. This allows the use of
1419 MATCH_OPERATOR to recognize all the branch insns. */
1422 comparison_operator (rtx op
, machine_mode mode
)
1424 return ((mode
== VOIDmode
|| GET_MODE (op
) == mode
)
1425 && COMPARISON_P (op
));
1428 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1431 extract_asm_operands (rtx body
)
1434 switch (GET_CODE (body
))
1440 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1441 tmp
= SET_SRC (body
);
1442 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1447 tmp
= XVECEXP (body
, 0, 0);
1448 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1450 if (GET_CODE (tmp
) == SET
)
1452 tmp
= SET_SRC (tmp
);
1453 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1464 /* If BODY is an insn body that uses ASM_OPERANDS,
1465 return the number of operands (both input and output) in the insn.
1466 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1468 Otherwise return -1. */
1471 asm_noperands (const_rtx body
)
1473 rtx asm_op
= extract_asm_operands (CONST_CAST_RTX (body
));
1478 if (GET_CODE (body
) == PARALLEL
&& XVECLEN (body
, 0) >= 2
1479 && GET_CODE (XVECEXP (body
, 0, 0)) == ASM_INPUT
)
1481 /* body is [(asm_input ...) (clobber (reg ...))...]. */
1482 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1483 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1490 if (GET_CODE (body
) == SET
)
1492 else if (GET_CODE (body
) == PARALLEL
)
1494 if (GET_CODE (XVECEXP (body
, 0, 0)) == SET
)
1496 /* Multiple output operands, or 1 output plus some clobbers:
1498 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1499 /* Count backwards through CLOBBERs to determine number of SETs. */
1500 for (i
= XVECLEN (body
, 0); i
> 0; i
--)
1502 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) == SET
)
1504 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) != CLOBBER
)
1508 /* N_SETS is now number of output operands. */
1511 /* Verify that all the SETs we have
1512 came from a single original asm_operands insn
1513 (so that invalid combinations are blocked). */
1514 for (i
= 0; i
< n_sets
; i
++)
1516 rtx elt
= XVECEXP (body
, 0, i
);
1517 if (GET_CODE (elt
) != SET
)
1519 if (GET_CODE (SET_SRC (elt
)) != ASM_OPERANDS
)
1521 /* If these ASM_OPERANDS rtx's came from different original insns
1522 then they aren't allowed together. */
1523 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt
))
1524 != ASM_OPERANDS_INPUT_VEC (asm_op
))
1530 /* 0 outputs, but some clobbers:
1531 body is [(asm_operands ...) (clobber (reg ...))...]. */
1532 /* Make sure all the other parallel things really are clobbers. */
1533 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1534 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1539 return (ASM_OPERANDS_INPUT_LENGTH (asm_op
)
1540 + ASM_OPERANDS_LABEL_LENGTH (asm_op
) + n_sets
);
1543 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1544 copy its operands (both input and output) into the vector OPERANDS,
1545 the locations of the operands within the insn into the vector OPERAND_LOCS,
1546 and the constraints for the operands into CONSTRAINTS.
1547 Write the modes of the operands into MODES.
1548 Write the location info into LOC.
1549 Return the assembler-template.
1550 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1551 return the basic assembly string.
1553 If LOC, MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1554 we don't store that info. */
1557 decode_asm_operands (rtx body
, rtx
*operands
, rtx
**operand_locs
,
1558 const char **constraints
, machine_mode
*modes
,
1561 int nbase
= 0, n
, i
;
1564 switch (GET_CODE (body
))
1567 /* Zero output asm: BODY is (asm_operands ...). */
1572 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1573 asmop
= SET_SRC (body
);
1575 /* The output is in the SET.
1576 Its constraint is in the ASM_OPERANDS itself. */
1578 operands
[0] = SET_DEST (body
);
1580 operand_locs
[0] = &SET_DEST (body
);
1582 constraints
[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop
);
1584 modes
[0] = GET_MODE (SET_DEST (body
));
1590 int nparallel
= XVECLEN (body
, 0); /* Includes CLOBBERs. */
1592 asmop
= XVECEXP (body
, 0, 0);
1593 if (GET_CODE (asmop
) == SET
)
1595 asmop
= SET_SRC (asmop
);
1597 /* At least one output, plus some CLOBBERs. The outputs are in
1598 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1599 for (i
= 0; i
< nparallel
; i
++)
1601 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
1602 break; /* Past last SET */
1604 operands
[i
] = SET_DEST (XVECEXP (body
, 0, i
));
1606 operand_locs
[i
] = &SET_DEST (XVECEXP (body
, 0, i
));
1608 constraints
[i
] = XSTR (SET_SRC (XVECEXP (body
, 0, i
)), 1);
1610 modes
[i
] = GET_MODE (SET_DEST (XVECEXP (body
, 0, i
)));
1614 else if (GET_CODE (asmop
) == ASM_INPUT
)
1617 *loc
= ASM_INPUT_SOURCE_LOCATION (asmop
);
1618 return XSTR (asmop
, 0);
1627 n
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1628 for (i
= 0; i
< n
; i
++)
1631 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1633 operands
[nbase
+ i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1635 constraints
[nbase
+ i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1637 modes
[nbase
+ i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1641 n
= ASM_OPERANDS_LABEL_LENGTH (asmop
);
1642 for (i
= 0; i
< n
; i
++)
1645 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_LABEL (asmop
, i
);
1647 operands
[nbase
+ i
] = ASM_OPERANDS_LABEL (asmop
, i
);
1649 constraints
[nbase
+ i
] = "";
1651 modes
[nbase
+ i
] = Pmode
;
1655 *loc
= ASM_OPERANDS_SOURCE_LOCATION (asmop
);
1657 return ASM_OPERANDS_TEMPLATE (asmop
);
1660 /* Parse inline assembly string STRING and determine which operands are
1661 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1662 to true if operand I is referenced.
1664 This is intended to distinguish barrier-like asms such as:
1666 asm ("" : "=m" (...));
1668 from real references such as:
1670 asm ("sw\t$0, %0" : "=m" (...)); */
1673 get_referenced_operands (const char *string
, bool *used
,
1674 unsigned int noperands
)
1676 memset (used
, 0, sizeof (bool) * noperands
);
1677 const char *p
= string
;
1683 /* A letter followed by a digit indicates an operand number. */
1684 if (ISALPHA (p
[0]) && ISDIGIT (p
[1]))
1689 unsigned long opnum
= strtoul (p
, &endptr
, 10);
1690 if (endptr
!= p
&& opnum
< noperands
)
1704 /* Check if an asm_operand matches its constraints.
1705 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1708 asm_operand_ok (rtx op
, const char *constraint
, const char **constraints
)
1711 bool incdec_ok
= false;
1713 /* Use constrain_operands after reload. */
1714 gcc_assert (!reload_completed
);
1716 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1717 many alternatives as required to match the other operands. */
1718 if (*constraint
== '\0')
1723 enum constraint_num cn
;
1724 char c
= *constraint
;
1732 case '0': case '1': case '2': case '3': case '4':
1733 case '5': case '6': case '7': case '8': case '9':
1734 /* If caller provided constraints pointer, look up
1735 the matching constraint. Otherwise, our caller should have
1736 given us the proper matching constraint, but we can't
1737 actually fail the check if they didn't. Indicate that
1738 results are inconclusive. */
1742 unsigned long match
;
1744 match
= strtoul (constraint
, &end
, 10);
1746 result
= asm_operand_ok (op
, constraints
[match
], NULL
);
1747 constraint
= (const char *) end
;
1753 while (ISDIGIT (*constraint
));
1759 /* The rest of the compiler assumes that reloading the address
1760 of a MEM into a register will make it fit an 'o' constraint.
1761 That is, if it sees a MEM operand for an 'o' constraint,
1762 it assumes that (mem (base-reg)) will fit.
1764 That assumption fails on targets that don't have offsettable
1765 addresses at all. We therefore need to treat 'o' asm
1766 constraints as a special case and only accept operands that
1767 are already offsettable, thus proving that at least one
1768 offsettable address exists. */
1769 case 'o': /* offsettable */
1770 if (offsettable_nonstrict_memref_p (op
))
1775 if (general_operand (op
, VOIDmode
))
1781 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1782 to exist, excepting those that expand_call created. Further,
1783 on some machines which do not have generalized auto inc/dec,
1784 an inc/dec is not a memory_operand.
1786 Match any memory and hope things are resolved after reload. */
1790 cn
= lookup_constraint (constraint
);
1791 switch (get_constraint_type (cn
))
1795 && reg_class_for_constraint (cn
) != NO_REGS
1796 && GET_MODE (op
) != BLKmode
1797 && register_operand (op
, VOIDmode
))
1804 && insn_const_int_ok_for_constraint (INTVAL (op
), cn
))
1809 case CT_SPECIAL_MEMORY
:
1810 /* Every memory operand can be reloaded to fit. */
1811 result
= result
|| memory_operand (op
, VOIDmode
);
1815 /* Every address operand can be reloaded to fit. */
1816 result
= result
|| address_operand (op
, VOIDmode
);
1820 result
= result
|| constraint_satisfied_p (op
, cn
);
1825 len
= CONSTRAINT_LEN (c
, constraint
);
1828 while (--len
&& *constraint
&& *constraint
!= ',');
1833 /* For operands without < or > constraints reject side-effects. */
1834 if (AUTO_INC_DEC
&& !incdec_ok
&& result
&& MEM_P (op
))
1835 switch (GET_CODE (XEXP (op
, 0)))
1851 /* Given an rtx *P, if it is a sum containing an integer constant term,
1852 return the location (type rtx *) of the pointer to that constant term.
1853 Otherwise, return a null pointer. */
1856 find_constant_term_loc (rtx
*p
)
1859 enum rtx_code code
= GET_CODE (*p
);
1861 /* If *P IS such a constant term, P is its location. */
1863 if (code
== CONST_INT
|| code
== SYMBOL_REF
|| code
== LABEL_REF
1867 /* Otherwise, if not a sum, it has no constant term. */
1869 if (GET_CODE (*p
) != PLUS
)
1872 /* If one of the summands is constant, return its location. */
1874 if (XEXP (*p
, 0) && CONSTANT_P (XEXP (*p
, 0))
1875 && XEXP (*p
, 1) && CONSTANT_P (XEXP (*p
, 1)))
1878 /* Otherwise, check each summand for containing a constant term. */
1880 if (XEXP (*p
, 0) != 0)
1882 tem
= find_constant_term_loc (&XEXP (*p
, 0));
1887 if (XEXP (*p
, 1) != 0)
1889 tem
= find_constant_term_loc (&XEXP (*p
, 1));
1897 /* Return 1 if OP is a memory reference
1898 whose address contains no side effects
1899 and remains valid after the addition
1900 of a positive integer less than the
1901 size of the object being referenced.
1903 We assume that the original address is valid and do not check it.
1905 This uses strict_memory_address_p as a subroutine, so
1906 don't use it before reload. */
1909 offsettable_memref_p (rtx op
)
1911 return ((MEM_P (op
))
1912 && offsettable_address_addr_space_p (1, GET_MODE (op
), XEXP (op
, 0),
1913 MEM_ADDR_SPACE (op
)));
1916 /* Similar, but don't require a strictly valid mem ref:
1917 consider pseudo-regs valid as index or base regs. */
1920 offsettable_nonstrict_memref_p (rtx op
)
1922 return ((MEM_P (op
))
1923 && offsettable_address_addr_space_p (0, GET_MODE (op
), XEXP (op
, 0),
1924 MEM_ADDR_SPACE (op
)));
1927 /* Return 1 if Y is a memory address which contains no side effects
1928 and would remain valid for address space AS after the addition of
1929 a positive integer less than the size of that mode.
1931 We assume that the original address is valid and do not check it.
1932 We do check that it is valid for narrower modes.
1934 If STRICTP is nonzero, we require a strictly valid address,
1935 for the sake of use in reload.c. */
1938 offsettable_address_addr_space_p (int strictp
, machine_mode mode
, rtx y
,
1941 enum rtx_code ycode
= GET_CODE (y
);
1945 int (*addressp
) (machine_mode
, rtx
, addr_space_t
) =
1946 (strictp
? strict_memory_address_addr_space_p
1947 : memory_address_addr_space_p
);
1948 poly_int64 mode_sz
= GET_MODE_SIZE (mode
);
1950 if (CONSTANT_ADDRESS_P (y
))
1953 /* Adjusting an offsettable address involves changing to a narrower mode.
1954 Make sure that's OK. */
1956 if (mode_dependent_address_p (y
, as
))
1959 machine_mode address_mode
= GET_MODE (y
);
1960 if (address_mode
== VOIDmode
)
1961 address_mode
= targetm
.addr_space
.address_mode (as
);
1962 #ifdef POINTERS_EXTEND_UNSIGNED
1963 machine_mode pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
1966 /* ??? How much offset does an offsettable BLKmode reference need?
1967 Clearly that depends on the situation in which it's being used.
1968 However, the current situation in which we test 0xffffffff is
1969 less than ideal. Caveat user. */
1970 if (known_eq (mode_sz
, 0))
1971 mode_sz
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
1973 /* If the expression contains a constant term,
1974 see if it remains valid when max possible offset is added. */
1976 if ((ycode
== PLUS
) && (y2
= find_constant_term_loc (&y1
)))
1981 *y2
= plus_constant (address_mode
, *y2
, mode_sz
- 1);
1982 /* Use QImode because an odd displacement may be automatically invalid
1983 for any wider mode. But it should be valid for a single byte. */
1984 good
= (*addressp
) (QImode
, y
, as
);
1986 /* In any case, restore old contents of memory. */
1991 if (GET_RTX_CLASS (ycode
) == RTX_AUTOINC
)
1994 /* The offset added here is chosen as the maximum offset that
1995 any instruction could need to add when operating on something
1996 of the specified mode. We assume that if Y and Y+c are
1997 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1998 go inside a LO_SUM here, so we do so as well. */
1999 if (GET_CODE (y
) == LO_SUM
2001 && known_le (mode_sz
, GET_MODE_ALIGNMENT (mode
) / BITS_PER_UNIT
))
2002 z
= gen_rtx_LO_SUM (address_mode
, XEXP (y
, 0),
2003 plus_constant (address_mode
, XEXP (y
, 1),
2005 #ifdef POINTERS_EXTEND_UNSIGNED
2006 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2007 else if (POINTERS_EXTEND_UNSIGNED
> 0
2008 && GET_CODE (y
) == ZERO_EXTEND
2009 && GET_MODE (XEXP (y
, 0)) == pointer_mode
)
2010 z
= gen_rtx_ZERO_EXTEND (address_mode
,
2011 plus_constant (pointer_mode
, XEXP (y
, 0),
2015 z
= plus_constant (address_mode
, y
, mode_sz
- 1);
2017 /* Use QImode because an odd displacement may be automatically invalid
2018 for any wider mode. But it should be valid for a single byte. */
2019 return (*addressp
) (QImode
, z
, as
);
2022 /* Return 1 if ADDR is an address-expression whose effect depends
2023 on the mode of the memory reference it is used in.
2025 ADDRSPACE is the address space associated with the address.
2027 Autoincrement addressing is a typical example of mode-dependence
2028 because the amount of the increment depends on the mode. */
2031 mode_dependent_address_p (rtx addr
, addr_space_t addrspace
)
2033 /* Auto-increment addressing with anything other than post_modify
2034 or pre_modify always introduces a mode dependency. Catch such
2035 cases now instead of deferring to the target. */
2036 if (GET_CODE (addr
) == PRE_INC
2037 || GET_CODE (addr
) == POST_INC
2038 || GET_CODE (addr
) == PRE_DEC
2039 || GET_CODE (addr
) == POST_DEC
)
2042 return targetm
.mode_dependent_address_p (addr
, addrspace
);
2045 /* Return true if boolean attribute ATTR is supported. */
2048 have_bool_attr (bool_attr attr
)
2053 return HAVE_ATTR_enabled
;
2054 case BA_PREFERRED_FOR_SIZE
:
2055 return HAVE_ATTR_enabled
|| HAVE_ATTR_preferred_for_size
;
2056 case BA_PREFERRED_FOR_SPEED
:
2057 return HAVE_ATTR_enabled
|| HAVE_ATTR_preferred_for_speed
;
2062 /* Return the value of ATTR for instruction INSN. */
2065 get_bool_attr (rtx_insn
*insn
, bool_attr attr
)
2070 return get_attr_enabled (insn
);
2071 case BA_PREFERRED_FOR_SIZE
:
2072 return get_attr_enabled (insn
) && get_attr_preferred_for_size (insn
);
2073 case BA_PREFERRED_FOR_SPEED
:
2074 return get_attr_enabled (insn
) && get_attr_preferred_for_speed (insn
);
2079 /* Like get_bool_attr_mask, but don't use the cache. */
2081 static alternative_mask
2082 get_bool_attr_mask_uncached (rtx_insn
*insn
, bool_attr attr
)
2084 /* Temporarily install enough information for get_attr_<foo> to assume
2085 that the insn operands are already cached. As above, the attribute
2086 mustn't depend on the values of operands, so we don't provide their
2087 real values here. */
2088 rtx_insn
*old_insn
= recog_data
.insn
;
2089 int old_alternative
= which_alternative
;
2091 recog_data
.insn
= insn
;
2092 alternative_mask mask
= ALL_ALTERNATIVES
;
2093 int n_alternatives
= insn_data
[INSN_CODE (insn
)].n_alternatives
;
2094 for (int i
= 0; i
< n_alternatives
; i
++)
2096 which_alternative
= i
;
2097 if (!get_bool_attr (insn
, attr
))
2098 mask
&= ~ALTERNATIVE_BIT (i
);
2101 recog_data
.insn
= old_insn
;
2102 which_alternative
= old_alternative
;
2106 /* Return the mask of operand alternatives that are allowed for INSN
2107 by boolean attribute ATTR. This mask depends only on INSN and on
2108 the current target; it does not depend on things like the values of
2111 static alternative_mask
2112 get_bool_attr_mask (rtx_insn
*insn
, bool_attr attr
)
2114 /* Quick exit for asms and for targets that don't use these attributes. */
2115 int code
= INSN_CODE (insn
);
2116 if (code
< 0 || !have_bool_attr (attr
))
2117 return ALL_ALTERNATIVES
;
2119 /* Calling get_attr_<foo> can be expensive, so cache the mask
2121 if (!this_target_recog
->x_bool_attr_masks
[code
][attr
])
2122 this_target_recog
->x_bool_attr_masks
[code
][attr
]
2123 = get_bool_attr_mask_uncached (insn
, attr
);
2124 return this_target_recog
->x_bool_attr_masks
[code
][attr
];
2127 /* Return the set of alternatives of INSN that are allowed by the current
2131 get_enabled_alternatives (rtx_insn
*insn
)
2133 return get_bool_attr_mask (insn
, BA_ENABLED
);
2136 /* Return the set of alternatives of INSN that are allowed by the current
2137 target and are preferred for the current size/speed optimization
2141 get_preferred_alternatives (rtx_insn
*insn
)
2143 if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
)))
2144 return get_bool_attr_mask (insn
, BA_PREFERRED_FOR_SPEED
);
2146 return get_bool_attr_mask (insn
, BA_PREFERRED_FOR_SIZE
);
2149 /* Return the set of alternatives of INSN that are allowed by the current
2150 target and are preferred for the size/speed optimization choice
2151 associated with BB. Passing a separate BB is useful if INSN has not
2152 been emitted yet or if we are considering moving it to a different
2156 get_preferred_alternatives (rtx_insn
*insn
, basic_block bb
)
2158 if (optimize_bb_for_speed_p (bb
))
2159 return get_bool_attr_mask (insn
, BA_PREFERRED_FOR_SPEED
);
2161 return get_bool_attr_mask (insn
, BA_PREFERRED_FOR_SIZE
);
2164 /* Assert that the cached boolean attributes for INSN are still accurate.
2165 The backend is required to define these attributes in a way that only
2166 depends on the current target (rather than operands, compiler phase,
2170 check_bool_attrs (rtx_insn
*insn
)
2172 int code
= INSN_CODE (insn
);
2174 for (int i
= 0; i
<= BA_LAST
; ++i
)
2176 enum bool_attr attr
= (enum bool_attr
) i
;
2177 if (this_target_recog
->x_bool_attr_masks
[code
][attr
])
2178 gcc_assert (this_target_recog
->x_bool_attr_masks
[code
][attr
]
2179 == get_bool_attr_mask_uncached (insn
, attr
));
2184 /* Like extract_insn, but save insn extracted and don't extract again, when
2185 called again for the same insn expecting that recog_data still contain the
2186 valid information. This is used primary by gen_attr infrastructure that
2187 often does extract insn again and again. */
2189 extract_insn_cached (rtx_insn
*insn
)
2191 if (recog_data
.insn
== insn
&& INSN_CODE (insn
) >= 0)
2193 extract_insn (insn
);
2194 recog_data
.insn
= insn
;
2197 /* Do uncached extract_insn, constrain_operands and complain about failures.
2198 This should be used when extracting a pre-existing constrained instruction
2199 if the caller wants to know which alternative was chosen. */
2201 extract_constrain_insn (rtx_insn
*insn
)
2203 extract_insn (insn
);
2204 if (!constrain_operands (reload_completed
, get_enabled_alternatives (insn
)))
2205 fatal_insn_not_found (insn
);
2208 /* Do cached extract_insn, constrain_operands and complain about failures.
2209 Used by insn_attrtab. */
2211 extract_constrain_insn_cached (rtx_insn
*insn
)
2213 extract_insn_cached (insn
);
2214 if (which_alternative
== -1
2215 && !constrain_operands (reload_completed
,
2216 get_enabled_alternatives (insn
)))
2217 fatal_insn_not_found (insn
);
2220 /* Do cached constrain_operands on INSN and complain about failures. */
2222 constrain_operands_cached (rtx_insn
*insn
, int strict
)
2224 if (which_alternative
== -1)
2225 return constrain_operands (strict
, get_enabled_alternatives (insn
));
2230 /* Analyze INSN and fill in recog_data. */
2233 extract_insn (rtx_insn
*insn
)
2238 rtx body
= PATTERN (insn
);
2240 recog_data
.n_operands
= 0;
2241 recog_data
.n_alternatives
= 0;
2242 recog_data
.n_dups
= 0;
2243 recog_data
.is_asm
= false;
2245 switch (GET_CODE (body
))
2257 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
2262 if ((GET_CODE (XVECEXP (body
, 0, 0)) == SET
2263 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
2264 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
2265 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_INPUT
)
2271 recog_data
.n_operands
= noperands
= asm_noperands (body
);
2274 /* This insn is an `asm' with operands. */
2276 /* expand_asm_operands makes sure there aren't too many operands. */
2277 gcc_assert (noperands
<= MAX_RECOG_OPERANDS
);
2279 /* Now get the operand values and constraints out of the insn. */
2280 decode_asm_operands (body
, recog_data
.operand
,
2281 recog_data
.operand_loc
,
2282 recog_data
.constraints
,
2283 recog_data
.operand_mode
, NULL
);
2284 memset (recog_data
.is_operator
, 0, sizeof recog_data
.is_operator
);
2287 const char *p
= recog_data
.constraints
[0];
2288 recog_data
.n_alternatives
= 1;
2290 recog_data
.n_alternatives
+= (*p
++ == ',');
2292 recog_data
.is_asm
= true;
2295 fatal_insn_not_found (insn
);
2299 /* Ordinary insn: recognize it, get the operands via insn_extract
2300 and get the constraints. */
2302 icode
= recog_memoized (insn
);
2304 fatal_insn_not_found (insn
);
2306 recog_data
.n_operands
= noperands
= insn_data
[icode
].n_operands
;
2307 recog_data
.n_alternatives
= insn_data
[icode
].n_alternatives
;
2308 recog_data
.n_dups
= insn_data
[icode
].n_dups
;
2310 insn_extract (insn
);
2312 for (i
= 0; i
< noperands
; i
++)
2314 recog_data
.constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2315 recog_data
.is_operator
[i
] = insn_data
[icode
].operand
[i
].is_operator
;
2316 recog_data
.operand_mode
[i
] = insn_data
[icode
].operand
[i
].mode
;
2317 /* VOIDmode match_operands gets mode from their real operand. */
2318 if (recog_data
.operand_mode
[i
] == VOIDmode
)
2319 recog_data
.operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2322 for (i
= 0; i
< noperands
; i
++)
2323 recog_data
.operand_type
[i
]
2324 = (recog_data
.constraints
[i
][0] == '=' ? OP_OUT
2325 : recog_data
.constraints
[i
][0] == '+' ? OP_INOUT
2328 gcc_assert (recog_data
.n_alternatives
<= MAX_RECOG_ALTERNATIVES
);
2330 recog_data
.insn
= NULL
;
2331 which_alternative
= -1;
2334 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS
2335 operands, N_ALTERNATIVES alternatives and constraint strings
2336 CONSTRAINTS. OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries
2337 and CONSTRAINTS has N_OPERANDS entries. OPLOC should be passed in
2338 if the insn is an asm statement and preprocessing should take the
2339 asm operands into account, e.g. to determine whether they could be
2340 addresses in constraints that require addresses; it should then
2341 point to an array of pointers to each operand. */
2344 preprocess_constraints (int n_operands
, int n_alternatives
,
2345 const char **constraints
,
2346 operand_alternative
*op_alt_base
,
2349 for (int i
= 0; i
< n_operands
; i
++)
2352 struct operand_alternative
*op_alt
;
2353 const char *p
= constraints
[i
];
2355 op_alt
= op_alt_base
;
2357 for (j
= 0; j
< n_alternatives
; j
++, op_alt
+= n_operands
)
2359 op_alt
[i
].cl
= NO_REGS
;
2360 op_alt
[i
].constraint
= p
;
2361 op_alt
[i
].matches
= -1;
2362 op_alt
[i
].matched
= -1;
2364 if (*p
== '\0' || *p
== ',')
2366 op_alt
[i
].anything_ok
= 1;
2376 while (c
!= ',' && c
!= '\0');
2377 if (c
== ',' || c
== '\0')
2386 op_alt
[i
].reject
+= 6;
2389 op_alt
[i
].reject
+= 600;
2392 op_alt
[i
].earlyclobber
= 1;
2395 case '0': case '1': case '2': case '3': case '4':
2396 case '5': case '6': case '7': case '8': case '9':
2399 op_alt
[i
].matches
= strtoul (p
, &end
, 10);
2400 op_alt
[op_alt
[i
].matches
].matched
= i
;
2406 op_alt
[i
].anything_ok
= 1;
2411 reg_class_subunion
[(int) op_alt
[i
].cl
][(int) GENERAL_REGS
];
2415 enum constraint_num cn
= lookup_constraint (p
);
2417 switch (get_constraint_type (cn
))
2420 cl
= reg_class_for_constraint (cn
);
2422 op_alt
[i
].cl
= reg_class_subunion
[op_alt
[i
].cl
][cl
];
2429 case CT_SPECIAL_MEMORY
:
2430 op_alt
[i
].memory_ok
= 1;
2434 if (oploc
&& !address_operand (*oploc
[i
], VOIDmode
))
2437 op_alt
[i
].is_address
= 1;
2439 = (reg_class_subunion
2440 [(int) op_alt
[i
].cl
]
2441 [(int) base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
2442 ADDRESS
, SCRATCH
)]);
2450 p
+= CONSTRAINT_LEN (c
, p
);
2456 /* Return an array of operand_alternative instructions for
2457 instruction ICODE. */
2459 const operand_alternative
*
2460 preprocess_insn_constraints (unsigned int icode
)
2462 gcc_checking_assert (IN_RANGE (icode
, 0, NUM_INSN_CODES
- 1));
2463 if (this_target_recog
->x_op_alt
[icode
])
2464 return this_target_recog
->x_op_alt
[icode
];
2466 int n_operands
= insn_data
[icode
].n_operands
;
2467 if (n_operands
== 0)
2469 /* Always provide at least one alternative so that which_op_alt ()
2470 works correctly. If the instruction has 0 alternatives (i.e. all
2471 constraint strings are empty) then each operand in this alternative
2472 will have anything_ok set. */
2473 int n_alternatives
= MAX (insn_data
[icode
].n_alternatives
, 1);
2474 int n_entries
= n_operands
* n_alternatives
;
2476 operand_alternative
*op_alt
= XCNEWVEC (operand_alternative
, n_entries
);
2477 const char **constraints
= XALLOCAVEC (const char *, n_operands
);
2479 for (int i
= 0; i
< n_operands
; ++i
)
2480 constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2481 preprocess_constraints (n_operands
, n_alternatives
, constraints
, op_alt
,
2484 this_target_recog
->x_op_alt
[icode
] = op_alt
;
2488 /* After calling extract_insn, you can use this function to extract some
2489 information from the constraint strings into a more usable form.
2490 The collected data is stored in recog_op_alt. */
2493 preprocess_constraints (rtx_insn
*insn
)
2495 int icode
= INSN_CODE (insn
);
2497 recog_op_alt
= preprocess_insn_constraints (icode
);
2500 int n_operands
= recog_data
.n_operands
;
2501 int n_alternatives
= recog_data
.n_alternatives
;
2502 int n_entries
= n_operands
* n_alternatives
;
2503 memset (asm_op_alt
, 0, n_entries
* sizeof (operand_alternative
));
2504 preprocess_constraints (n_operands
, n_alternatives
,
2505 recog_data
.constraints
, asm_op_alt
,
2507 recog_op_alt
= asm_op_alt
;
2511 /* Check the operands of an insn against the insn's operand constraints
2512 and return 1 if they match any of the alternatives in ALTERNATIVES.
2514 The information about the insn's operands, constraints, operand modes
2515 etc. is obtained from the global variables set up by extract_insn.
2517 WHICH_ALTERNATIVE is set to a number which indicates which
2518 alternative of constraints was matched: 0 for the first alternative,
2519 1 for the next, etc.
2521 In addition, when two operands are required to match
2522 and it happens that the output operand is (reg) while the
2523 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2524 make the output operand look like the input.
2525 This is because the output operand is the one the template will print.
2527 This is used in final, just before printing the assembler code and by
2528 the routines that determine an insn's attribute.
2530 If STRICT is a positive nonzero value, it means that we have been
2531 called after reload has been completed. In that case, we must
2532 do all checks strictly. If it is zero, it means that we have been called
2533 before reload has completed. In that case, we first try to see if we can
2534 find an alternative that matches strictly. If not, we try again, this
2535 time assuming that reload will fix up the insn. This provides a "best
2536 guess" for the alternative and is used to compute attributes of insns prior
2537 to reload. A negative value of STRICT is used for this internal call. */
2545 constrain_operands (int strict
, alternative_mask alternatives
)
2547 const char *constraints
[MAX_RECOG_OPERANDS
];
2548 int matching_operands
[MAX_RECOG_OPERANDS
];
2549 int earlyclobber
[MAX_RECOG_OPERANDS
];
2552 struct funny_match funny_match
[MAX_RECOG_OPERANDS
];
2553 int funny_match_index
;
2555 which_alternative
= 0;
2556 if (recog_data
.n_operands
== 0 || recog_data
.n_alternatives
== 0)
2559 for (c
= 0; c
< recog_data
.n_operands
; c
++)
2561 constraints
[c
] = recog_data
.constraints
[c
];
2562 matching_operands
[c
] = -1;
2567 int seen_earlyclobber_at
= -1;
2570 funny_match_index
= 0;
2572 if (!TEST_BIT (alternatives
, which_alternative
))
2576 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2577 constraints
[i
] = skip_alternative (constraints
[i
]);
2579 which_alternative
++;
2583 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2585 rtx op
= recog_data
.operand
[opno
];
2586 machine_mode mode
= GET_MODE (op
);
2587 const char *p
= constraints
[opno
];
2593 earlyclobber
[opno
] = 0;
2595 /* A unary operator may be accepted by the predicate, but it
2596 is irrelevant for matching constraints. */
2600 if (GET_CODE (op
) == SUBREG
)
2602 if (REG_P (SUBREG_REG (op
))
2603 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
)
2604 offset
= subreg_regno_offset (REGNO (SUBREG_REG (op
)),
2605 GET_MODE (SUBREG_REG (op
)),
2608 op
= SUBREG_REG (op
);
2611 /* An empty constraint or empty alternative
2612 allows anything which matched the pattern. */
2613 if (*p
== 0 || *p
== ',')
2617 switch (c
= *p
, len
= CONSTRAINT_LEN (c
, p
), c
)
2627 /* Ignore rest of this alternative as far as
2628 constraint checking is concerned. */
2631 while (*p
&& *p
!= ',');
2636 earlyclobber
[opno
] = 1;
2637 if (seen_earlyclobber_at
< 0)
2638 seen_earlyclobber_at
= opno
;
2641 case '0': case '1': case '2': case '3': case '4':
2642 case '5': case '6': case '7': case '8': case '9':
2644 /* This operand must be the same as a previous one.
2645 This kind of constraint is used for instructions such
2646 as add when they take only two operands.
2648 Note that the lower-numbered operand is passed first.
2650 If we are not testing strictly, assume that this
2651 constraint will be satisfied. */
2656 match
= strtoul (p
, &end
, 10);
2663 rtx op1
= recog_data
.operand
[match
];
2664 rtx op2
= recog_data
.operand
[opno
];
2666 /* A unary operator may be accepted by the predicate,
2667 but it is irrelevant for matching constraints. */
2669 op1
= XEXP (op1
, 0);
2671 op2
= XEXP (op2
, 0);
2673 val
= operands_match_p (op1
, op2
);
2676 matching_operands
[opno
] = match
;
2677 matching_operands
[match
] = opno
;
2682 /* If output is *x and input is *--x, arrange later
2683 to change the output to *--x as well, since the
2684 output op is the one that will be printed. */
2685 if (val
== 2 && strict
> 0)
2687 funny_match
[funny_match_index
].this_op
= opno
;
2688 funny_match
[funny_match_index
++].other
= match
;
2695 /* p is used for address_operands. When we are called by
2696 gen_reload, no one will have checked that the address is
2697 strictly valid, i.e., that all pseudos requiring hard regs
2698 have gotten them. */
2700 || (strict_memory_address_p (recog_data
.operand_mode
[opno
],
2705 /* No need to check general_operand again;
2706 it was done in insn-recog.c. Well, except that reload
2707 doesn't check the validity of its replacements, but
2708 that should only matter when there's a bug. */
2710 /* Anything goes unless it is a REG and really has a hard reg
2711 but the hard reg is not in the class GENERAL_REGS. */
2715 || GENERAL_REGS
== ALL_REGS
2716 || (reload_in_progress
2717 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2718 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
))
2721 else if (strict
< 0 || general_operand (op
, mode
))
2727 enum constraint_num cn
= lookup_constraint (p
);
2728 enum reg_class cl
= reg_class_for_constraint (cn
);
2734 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2735 || (strict
== 0 && GET_CODE (op
) == SCRATCH
)
2737 && reg_fits_class_p (op
, cl
, offset
, mode
)))
2741 else if (constraint_satisfied_p (op
, cn
))
2744 else if (insn_extra_memory_constraint (cn
)
2745 /* Every memory operand can be reloaded to fit. */
2746 && ((strict
< 0 && MEM_P (op
))
2747 /* Before reload, accept what reload can turn
2749 || (strict
< 0 && CONSTANT_P (op
))
2750 /* Before reload, accept a pseudo,
2751 since LRA can turn it into a mem. */
2752 || (strict
< 0 && targetm
.lra_p () && REG_P (op
)
2753 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2754 /* During reload, accept a pseudo */
2755 || (reload_in_progress
&& REG_P (op
)
2756 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)))
2758 else if (insn_extra_address_constraint (cn
)
2759 /* Every address operand can be reloaded to fit. */
2762 /* Cater to architectures like IA-64 that define extra memory
2763 constraints without using define_memory_constraint. */
2764 else if (reload_in_progress
2766 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
2767 && reg_renumber
[REGNO (op
)] < 0
2768 && reg_equiv_mem (REGNO (op
)) != 0
2769 && constraint_satisfied_p
2770 (reg_equiv_mem (REGNO (op
)), cn
))
2775 while (p
+= len
, c
);
2777 constraints
[opno
] = p
;
2778 /* If this operand did not win somehow,
2779 this alternative loses. */
2783 /* This alternative won; the operands are ok.
2784 Change whichever operands this alternative says to change. */
2789 /* See if any earlyclobber operand conflicts with some other
2792 if (strict
> 0 && seen_earlyclobber_at
>= 0)
2793 for (eopno
= seen_earlyclobber_at
;
2794 eopno
< recog_data
.n_operands
;
2796 /* Ignore earlyclobber operands now in memory,
2797 because we would often report failure when we have
2798 two memory operands, one of which was formerly a REG. */
2799 if (earlyclobber
[eopno
]
2800 && REG_P (recog_data
.operand
[eopno
]))
2801 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2802 if ((MEM_P (recog_data
.operand
[opno
])
2803 || recog_data
.operand_type
[opno
] != OP_OUT
)
2805 /* Ignore things like match_operator operands. */
2806 && *recog_data
.constraints
[opno
] != 0
2807 && ! (matching_operands
[opno
] == eopno
2808 && operands_match_p (recog_data
.operand
[opno
],
2809 recog_data
.operand
[eopno
]))
2810 && ! safe_from_earlyclobber (recog_data
.operand
[opno
],
2811 recog_data
.operand
[eopno
]))
2816 while (--funny_match_index
>= 0)
2818 recog_data
.operand
[funny_match
[funny_match_index
].other
]
2819 = recog_data
.operand
[funny_match
[funny_match_index
].this_op
];
2822 /* For operands without < or > constraints reject side-effects. */
2823 if (AUTO_INC_DEC
&& recog_data
.is_asm
)
2825 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2826 if (MEM_P (recog_data
.operand
[opno
]))
2827 switch (GET_CODE (XEXP (recog_data
.operand
[opno
], 0)))
2835 if (strchr (recog_data
.constraints
[opno
], '<') == NULL
2836 && strchr (recog_data
.constraints
[opno
], '>')
2849 which_alternative
++;
2851 while (which_alternative
< recog_data
.n_alternatives
);
2853 which_alternative
= -1;
2854 /* If we are about to reject this, but we are not to test strictly,
2855 try a very loose test. Only return failure if it fails also. */
2857 return constrain_operands (-1, alternatives
);
2862 /* Return true iff OPERAND (assumed to be a REG rtx)
2863 is a hard reg in class CLASS when its regno is offset by OFFSET
2864 and changed to mode MODE.
2865 If REG occupies multiple hard regs, all of them must be in CLASS. */
2868 reg_fits_class_p (const_rtx operand
, reg_class_t cl
, int offset
,
2871 unsigned int regno
= REGNO (operand
);
2876 /* Regno must not be a pseudo register. Offset may be negative. */
2877 return (HARD_REGISTER_NUM_P (regno
)
2878 && HARD_REGISTER_NUM_P (regno
+ offset
)
2879 && in_hard_reg_set_p (reg_class_contents
[(int) cl
], mode
,
2883 /* Split single instruction. Helper function for split_all_insns and
2884 split_all_insns_noflow. Return last insn in the sequence if successful,
2885 or NULL if unsuccessful. */
2888 split_insn (rtx_insn
*insn
)
2890 /* Split insns here to get max fine-grain parallelism. */
2891 rtx_insn
*first
= PREV_INSN (insn
);
2892 rtx_insn
*last
= try_split (PATTERN (insn
), insn
, 1);
2893 rtx insn_set
, last_set
, note
;
2898 /* If the original instruction was a single set that was known to be
2899 equivalent to a constant, see if we can say the same about the last
2900 instruction in the split sequence. The two instructions must set
2901 the same destination. */
2902 insn_set
= single_set (insn
);
2905 last_set
= single_set (last
);
2906 if (last_set
&& rtx_equal_p (SET_DEST (last_set
), SET_DEST (insn_set
)))
2908 note
= find_reg_equal_equiv_note (insn
);
2909 if (note
&& CONSTANT_P (XEXP (note
, 0)))
2910 set_unique_reg_note (last
, REG_EQUAL
, XEXP (note
, 0));
2911 else if (CONSTANT_P (SET_SRC (insn_set
)))
2912 set_unique_reg_note (last
, REG_EQUAL
,
2913 copy_rtx (SET_SRC (insn_set
)));
2917 /* try_split returns the NOTE that INSN became. */
2918 SET_INSN_DELETED (insn
);
2920 /* ??? Coddle to md files that generate subregs in post-reload
2921 splitters instead of computing the proper hard register. */
2922 if (reload_completed
&& first
!= last
)
2924 first
= NEXT_INSN (first
);
2928 cleanup_subreg_operands (first
);
2931 first
= NEXT_INSN (first
);
2938 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2941 split_all_insns (void)
2944 bool need_cfg_cleanup
= false;
2947 auto_sbitmap
blocks (last_basic_block_for_fn (cfun
));
2948 bitmap_clear (blocks
);
2951 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
2953 rtx_insn
*insn
, *next
;
2954 bool finish
= false;
2956 rtl_profile_for_bb (bb
);
2957 for (insn
= BB_HEAD (bb
); !finish
; insn
= next
)
2959 /* Can't use `next_real_insn' because that might go across
2960 CODE_LABELS and short-out basic blocks. */
2961 next
= NEXT_INSN (insn
);
2962 finish
= (insn
== BB_END (bb
));
2964 /* If INSN has a REG_EH_REGION note and we split INSN, the
2965 resulting split may not have/need REG_EH_REGION notes.
2967 If that happens and INSN was the last reference to the
2968 given EH region, then the EH region will become unreachable.
2969 We can not leave the unreachable blocks in the CFG as that
2970 will trigger a checking failure.
2972 So track if INSN has a REG_EH_REGION note. If so and we
2973 split INSN, then trigger a CFG cleanup. */
2974 rtx note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
);
2977 rtx set
= single_set (insn
);
2979 /* Don't split no-op move insns. These should silently
2980 disappear later in final. Splitting such insns would
2981 break the code that handles LIBCALL blocks. */
2982 if (set
&& set_noop_p (set
))
2984 /* Nops get in the way while scheduling, so delete them
2985 now if register allocation has already been done. It
2986 is too risky to try to do this before register
2987 allocation, and there are unlikely to be very many
2988 nops then anyways. */
2989 if (reload_completed
)
2990 delete_insn_and_edges (insn
);
2992 need_cfg_cleanup
= true;
2996 if (split_insn (insn
))
2998 bitmap_set_bit (blocks
, bb
->index
);
3001 need_cfg_cleanup
= true;
3008 default_rtl_profile ();
3011 find_many_sub_basic_blocks (blocks
);
3013 /* Splitting could drop an REG_EH_REGION if it potentially
3014 trapped in its original form, but does not in its split
3015 form. Consider a FLOAT_TRUNCATE which splits into a memory
3016 store/load pair and -fnon-call-exceptions. */
3017 if (need_cfg_cleanup
)
3021 checking_verify_flow_info ();
3024 /* Same as split_all_insns, but do not expect CFG to be available.
3025 Used by machine dependent reorg passes. */
3028 split_all_insns_noflow (void)
3030 rtx_insn
*next
, *insn
;
3032 for (insn
= get_insns (); insn
; insn
= next
)
3034 next
= NEXT_INSN (insn
);
3037 /* Don't split no-op move insns. These should silently
3038 disappear later in final. Splitting such insns would
3039 break the code that handles LIBCALL blocks. */
3040 rtx set
= single_set (insn
);
3041 if (set
&& set_noop_p (set
))
3043 /* Nops get in the way while scheduling, so delete them
3044 now if register allocation has already been done. It
3045 is too risky to try to do this before register
3046 allocation, and there are unlikely to be very many
3049 ??? Should we use delete_insn when the CFG isn't valid? */
3050 if (reload_completed
)
3051 delete_insn_and_edges (insn
);
3060 struct peep2_insn_data
3066 static struct peep2_insn_data peep2_insn_data
[MAX_INSNS_PER_PEEP2
+ 1];
3067 static int peep2_current
;
3069 static bool peep2_do_rebuild_jump_labels
;
3070 static bool peep2_do_cleanup_cfg
;
3072 /* The number of instructions available to match a peep2. */
3073 int peep2_current_count
;
3075 /* A marker indicating the last insn of the block. The live_before regset
3076 for this element is correct, indicating DF_LIVE_OUT for the block. */
3077 #define PEEP2_EOB invalid_insn_rtx
3079 /* Wrap N to fit into the peep2_insn_data buffer. */
3082 peep2_buf_position (int n
)
3084 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
3085 n
-= MAX_INSNS_PER_PEEP2
+ 1;
3089 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3090 does not exist. Used by the recognizer to find the next insn to match
3091 in a multi-insn pattern. */
3094 peep2_next_insn (int n
)
3096 gcc_assert (n
<= peep2_current_count
);
3098 n
= peep2_buf_position (peep2_current
+ n
);
3100 return peep2_insn_data
[n
].insn
;
3103 /* Return true if REGNO is dead before the Nth non-note insn
3107 peep2_regno_dead_p (int ofs
, int regno
)
3109 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
3111 ofs
= peep2_buf_position (peep2_current
+ ofs
);
3113 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
3115 return ! REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
);
3118 /* Similarly for a REG. */
3121 peep2_reg_dead_p (int ofs
, rtx reg
)
3123 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
3125 ofs
= peep2_buf_position (peep2_current
+ ofs
);
3127 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
3129 unsigned int end_regno
= END_REGNO (reg
);
3130 for (unsigned int regno
= REGNO (reg
); regno
< end_regno
; ++regno
)
3131 if (REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
))
3136 /* Regno offset to be used in the register search. */
3137 static int search_ofs
;
3139 /* Try to find a hard register of mode MODE, matching the register class in
3140 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3141 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3142 in which case the only condition is that the register must be available
3143 before CURRENT_INSN.
3144 Registers that already have bits set in REG_SET will not be considered.
3146 If an appropriate register is available, it will be returned and the
3147 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3151 peep2_find_free_register (int from
, int to
, const char *class_str
,
3152 machine_mode mode
, HARD_REG_SET
*reg_set
)
3159 gcc_assert (from
< MAX_INSNS_PER_PEEP2
+ 1);
3160 gcc_assert (to
< MAX_INSNS_PER_PEEP2
+ 1);
3162 from
= peep2_buf_position (peep2_current
+ from
);
3163 to
= peep2_buf_position (peep2_current
+ to
);
3165 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3166 REG_SET_TO_HARD_REG_SET (live
, peep2_insn_data
[from
].live_before
);
3170 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3172 /* Don't use registers set or clobbered by the insn. */
3173 FOR_EACH_INSN_DEF (def
, peep2_insn_data
[from
].insn
)
3174 SET_HARD_REG_BIT (live
, DF_REF_REGNO (def
));
3176 from
= peep2_buf_position (from
+ 1);
3179 cl
= reg_class_for_constraint (lookup_constraint (class_str
));
3181 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3183 int raw_regno
, regno
, success
, j
;
3185 /* Distribute the free registers as much as possible. */
3186 raw_regno
= search_ofs
+ i
;
3187 if (raw_regno
>= FIRST_PSEUDO_REGISTER
)
3188 raw_regno
-= FIRST_PSEUDO_REGISTER
;
3189 #ifdef REG_ALLOC_ORDER
3190 regno
= reg_alloc_order
[raw_regno
];
3195 /* Can it support the mode we need? */
3196 if (!targetm
.hard_regno_mode_ok (regno
, mode
))
3200 for (j
= 0; success
&& j
< hard_regno_nregs (regno
, mode
); j
++)
3202 /* Don't allocate fixed registers. */
3203 if (fixed_regs
[regno
+ j
])
3208 /* Don't allocate global registers. */
3209 if (global_regs
[regno
+ j
])
3214 /* Make sure the register is of the right class. */
3215 if (! TEST_HARD_REG_BIT (reg_class_contents
[cl
], regno
+ j
))
3220 /* And that we don't create an extra save/restore. */
3221 if (! call_used_regs
[regno
+ j
] && ! df_regs_ever_live_p (regno
+ j
))
3227 if (! targetm
.hard_regno_scratch_ok (regno
+ j
))
3233 /* And we don't clobber traceback for noreturn functions. */
3234 if ((regno
+ j
== FRAME_POINTER_REGNUM
3235 || regno
+ j
== HARD_FRAME_POINTER_REGNUM
)
3236 && (! reload_completed
|| frame_pointer_needed
))
3242 if (TEST_HARD_REG_BIT (*reg_set
, regno
+ j
)
3243 || TEST_HARD_REG_BIT (live
, regno
+ j
))
3252 add_to_hard_reg_set (reg_set
, mode
, regno
);
3254 /* Start the next search with the next register. */
3255 if (++raw_regno
>= FIRST_PSEUDO_REGISTER
)
3257 search_ofs
= raw_regno
;
3259 return gen_rtx_REG (mode
, regno
);
3267 /* Forget all currently tracked instructions, only remember current
3271 peep2_reinit_state (regset live
)
3275 /* Indicate that all slots except the last holds invalid data. */
3276 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
; ++i
)
3277 peep2_insn_data
[i
].insn
= NULL
;
3278 peep2_current_count
= 0;
3280 /* Indicate that the last slot contains live_after data. */
3281 peep2_insn_data
[MAX_INSNS_PER_PEEP2
].insn
= PEEP2_EOB
;
3282 peep2_current
= MAX_INSNS_PER_PEEP2
;
3284 COPY_REG_SET (peep2_insn_data
[MAX_INSNS_PER_PEEP2
].live_before
, live
);
3287 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3288 starting at INSN. Perform the replacement, removing the old insns and
3289 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3290 if the replacement is rejected. */
3293 peep2_attempt (basic_block bb
, rtx_insn
*insn
, int match_len
, rtx_insn
*attempt
)
3296 rtx_insn
*last
, *before_try
, *x
;
3297 rtx eh_note
, as_note
;
3300 bool was_call
= false;
3302 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3303 match more than one insn, or to be split into more than one insn. */
3304 old_insn
= peep2_insn_data
[peep2_current
].insn
;
3305 if (RTX_FRAME_RELATED_P (old_insn
))
3307 bool any_note
= false;
3313 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3314 may be in the stream for the purpose of register allocation. */
3315 if (active_insn_p (attempt
))
3318 new_insn
= next_active_insn (attempt
);
3319 if (next_active_insn (new_insn
))
3322 /* We have a 1-1 replacement. Copy over any frame-related info. */
3323 RTX_FRAME_RELATED_P (new_insn
) = 1;
3325 /* Allow the backend to fill in a note during the split. */
3326 for (note
= REG_NOTES (new_insn
); note
; note
= XEXP (note
, 1))
3327 switch (REG_NOTE_KIND (note
))
3329 case REG_FRAME_RELATED_EXPR
:
3330 case REG_CFA_DEF_CFA
:
3331 case REG_CFA_ADJUST_CFA
:
3332 case REG_CFA_OFFSET
:
3333 case REG_CFA_REGISTER
:
3334 case REG_CFA_EXPRESSION
:
3335 case REG_CFA_RESTORE
:
3336 case REG_CFA_SET_VDRAP
:
3343 /* If the backend didn't supply a note, copy one over. */
3345 for (note
= REG_NOTES (old_insn
); note
; note
= XEXP (note
, 1))
3346 switch (REG_NOTE_KIND (note
))
3348 case REG_FRAME_RELATED_EXPR
:
3349 case REG_CFA_DEF_CFA
:
3350 case REG_CFA_ADJUST_CFA
:
3351 case REG_CFA_OFFSET
:
3352 case REG_CFA_REGISTER
:
3353 case REG_CFA_EXPRESSION
:
3354 case REG_CFA_RESTORE
:
3355 case REG_CFA_SET_VDRAP
:
3356 add_reg_note (new_insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3363 /* If there still isn't a note, make sure the unwind info sees the
3364 same expression as before the split. */
3367 rtx old_set
, new_set
;
3369 /* The old insn had better have been simple, or annotated. */
3370 old_set
= single_set (old_insn
);
3371 gcc_assert (old_set
!= NULL
);
3373 new_set
= single_set (new_insn
);
3374 if (!new_set
|| !rtx_equal_p (new_set
, old_set
))
3375 add_reg_note (new_insn
, REG_FRAME_RELATED_EXPR
, old_set
);
3378 /* Copy prologue/epilogue status. This is required in order to keep
3379 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3380 maybe_copy_prologue_epilogue_insn (old_insn
, new_insn
);
3383 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3384 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3385 cfg-related call notes. */
3386 for (i
= 0; i
<= match_len
; ++i
)
3391 j
= peep2_buf_position (peep2_current
+ i
);
3392 old_insn
= peep2_insn_data
[j
].insn
;
3393 if (!CALL_P (old_insn
))
3398 while (new_insn
!= NULL_RTX
)
3400 if (CALL_P (new_insn
))
3402 new_insn
= NEXT_INSN (new_insn
);
3405 gcc_assert (new_insn
!= NULL_RTX
);
3407 CALL_INSN_FUNCTION_USAGE (new_insn
)
3408 = CALL_INSN_FUNCTION_USAGE (old_insn
);
3409 SIBLING_CALL_P (new_insn
) = SIBLING_CALL_P (old_insn
);
3411 for (note
= REG_NOTES (old_insn
);
3413 note
= XEXP (note
, 1))
3414 switch (REG_NOTE_KIND (note
))
3419 case REG_CALL_NOCF_CHECK
:
3420 add_reg_note (new_insn
, REG_NOTE_KIND (note
),
3424 /* Discard all other reg notes. */
3428 /* Croak if there is another call in the sequence. */
3429 while (++i
<= match_len
)
3431 j
= peep2_buf_position (peep2_current
+ i
);
3432 old_insn
= peep2_insn_data
[j
].insn
;
3433 gcc_assert (!CALL_P (old_insn
));
3438 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3439 move those notes over to the new sequence. */
3441 for (i
= match_len
; i
>= 0; --i
)
3443 int j
= peep2_buf_position (peep2_current
+ i
);
3444 old_insn
= peep2_insn_data
[j
].insn
;
3446 as_note
= find_reg_note (old_insn
, REG_ARGS_SIZE
, NULL
);
3451 i
= peep2_buf_position (peep2_current
+ match_len
);
3452 eh_note
= find_reg_note (peep2_insn_data
[i
].insn
, REG_EH_REGION
, NULL_RTX
);
3454 /* Replace the old sequence with the new. */
3455 rtx_insn
*peepinsn
= peep2_insn_data
[i
].insn
;
3456 last
= emit_insn_after_setloc (attempt
,
3457 peep2_insn_data
[i
].insn
,
3458 INSN_LOCATION (peepinsn
));
3459 if (JUMP_P (peepinsn
) && JUMP_P (last
))
3460 CROSSING_JUMP_P (last
) = CROSSING_JUMP_P (peepinsn
);
3461 before_try
= PREV_INSN (insn
);
3462 delete_insn_chain (insn
, peep2_insn_data
[i
].insn
, false);
3464 /* Re-insert the EH_REGION notes. */
3465 if (eh_note
|| (was_call
&& nonlocal_goto_handler_labels
))
3470 FOR_EACH_EDGE (eh_edge
, ei
, bb
->succs
)
3471 if (eh_edge
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
))
3475 copy_reg_eh_region_note_backward (eh_note
, last
, before_try
);
3478 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
3479 if (x
!= BB_END (bb
)
3480 && (can_throw_internal (x
)
3481 || can_nonlocal_goto (x
)))
3486 nfte
= split_block (bb
, x
);
3487 flags
= (eh_edge
->flags
3488 & (EDGE_EH
| EDGE_ABNORMAL
));
3490 flags
|= EDGE_ABNORMAL_CALL
;
3491 nehe
= make_edge (nfte
->src
, eh_edge
->dest
,
3494 nehe
->probability
= eh_edge
->probability
;
3495 nfte
->probability
= nehe
->probability
.invert ();
3497 peep2_do_cleanup_cfg
|= purge_dead_edges (nfte
->dest
);
3502 /* Converting possibly trapping insn to non-trapping is
3503 possible. Zap dummy outgoing edges. */
3504 peep2_do_cleanup_cfg
|= purge_dead_edges (bb
);
3507 /* Re-insert the ARGS_SIZE notes. */
3509 fixup_args_size_notes (before_try
, last
, get_args_size (as_note
));
3511 /* If we generated a jump instruction, it won't have
3512 JUMP_LABEL set. Recompute after we're done. */
3513 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
3516 peep2_do_rebuild_jump_labels
= true;
3523 /* After performing a replacement in basic block BB, fix up the life
3524 information in our buffer. LAST is the last of the insns that we
3525 emitted as a replacement. PREV is the insn before the start of
3526 the replacement. MATCH_LEN is the number of instructions that were
3527 matched, and which now need to be replaced in the buffer. */
3530 peep2_update_life (basic_block bb
, int match_len
, rtx_insn
*last
,
3533 int i
= peep2_buf_position (peep2_current
+ match_len
+ 1);
3537 INIT_REG_SET (&live
);
3538 COPY_REG_SET (&live
, peep2_insn_data
[i
].live_before
);
3540 gcc_assert (peep2_current_count
>= match_len
+ 1);
3541 peep2_current_count
-= match_len
+ 1;
3549 if (peep2_current_count
< MAX_INSNS_PER_PEEP2
)
3551 peep2_current_count
++;
3553 i
= MAX_INSNS_PER_PEEP2
;
3554 peep2_insn_data
[i
].insn
= x
;
3555 df_simulate_one_insn_backwards (bb
, x
, &live
);
3556 COPY_REG_SET (peep2_insn_data
[i
].live_before
, &live
);
3562 CLEAR_REG_SET (&live
);
3567 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3568 Return true if we added it, false otherwise. The caller will try to match
3569 peepholes against the buffer if we return false; otherwise it will try to
3570 add more instructions to the buffer. */
3573 peep2_fill_buffer (basic_block bb
, rtx_insn
*insn
, regset live
)
3577 /* Once we have filled the maximum number of insns the buffer can hold,
3578 allow the caller to match the insns against peepholes. We wait until
3579 the buffer is full in case the target has similar peepholes of different
3580 length; we always want to match the longest if possible. */
3581 if (peep2_current_count
== MAX_INSNS_PER_PEEP2
)
3584 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3585 any other pattern, lest it change the semantics of the frame info. */
3586 if (RTX_FRAME_RELATED_P (insn
))
3588 /* Let the buffer drain first. */
3589 if (peep2_current_count
> 0)
3591 /* Now the insn will be the only thing in the buffer. */
3594 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
3595 peep2_insn_data
[pos
].insn
= insn
;
3596 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
3597 peep2_current_count
++;
3599 df_simulate_one_insn_forwards (bb
, insn
, live
);
3603 /* Perform the peephole2 optimization pass. */
3606 peephole2_optimize (void)
3613 peep2_do_cleanup_cfg
= false;
3614 peep2_do_rebuild_jump_labels
= false;
3616 df_set_flags (DF_LR_RUN_DCE
);
3617 df_note_add_problem ();
3620 /* Initialize the regsets we're going to use. */
3621 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3622 peep2_insn_data
[i
].live_before
= BITMAP_ALLOC (®_obstack
);
3624 live
= BITMAP_ALLOC (®_obstack
);
3626 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
3628 bool past_end
= false;
3631 rtl_profile_for_bb (bb
);
3633 /* Start up propagation. */
3634 bitmap_copy (live
, DF_LR_IN (bb
));
3635 df_simulate_initialize_forwards (bb
, live
);
3636 peep2_reinit_state (live
);
3638 insn
= BB_HEAD (bb
);
3641 rtx_insn
*attempt
, *head
;
3644 if (!past_end
&& !NONDEBUG_INSN_P (insn
))
3647 insn
= NEXT_INSN (insn
);
3648 if (insn
== NEXT_INSN (BB_END (bb
)))
3652 if (!past_end
&& peep2_fill_buffer (bb
, insn
, live
))
3655 /* If we did not fill an empty buffer, it signals the end of the
3657 if (peep2_current_count
== 0)
3660 /* The buffer filled to the current maximum, so try to match. */
3662 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
3663 peep2_insn_data
[pos
].insn
= PEEP2_EOB
;
3664 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
3666 /* Match the peephole. */
3667 head
= peep2_insn_data
[peep2_current
].insn
;
3668 attempt
= peephole2_insns (PATTERN (head
), head
, &match_len
);
3669 if (attempt
!= NULL
)
3671 rtx_insn
*last
= peep2_attempt (bb
, head
, match_len
, attempt
);
3674 peep2_update_life (bb
, match_len
, last
, PREV_INSN (attempt
));
3679 /* No match: advance the buffer by one insn. */
3680 peep2_current
= peep2_buf_position (peep2_current
+ 1);
3681 peep2_current_count
--;
3685 default_rtl_profile ();
3686 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3687 BITMAP_FREE (peep2_insn_data
[i
].live_before
);
3689 if (peep2_do_rebuild_jump_labels
)
3690 rebuild_jump_labels (get_insns ());
3691 if (peep2_do_cleanup_cfg
)
3692 cleanup_cfg (CLEANUP_CFG_CHANGED
);
3695 /* Common predicates for use with define_bypass. */
3697 /* Helper function for store_data_bypass_p, handle just a single SET
3701 store_data_bypass_p_1 (rtx_insn
*out_insn
, rtx in_set
)
3703 if (!MEM_P (SET_DEST (in_set
)))
3706 rtx out_set
= single_set (out_insn
);
3708 return !reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_set
));
3710 rtx out_pat
= PATTERN (out_insn
);
3711 if (GET_CODE (out_pat
) != PARALLEL
)
3714 for (int i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3716 rtx out_exp
= XVECEXP (out_pat
, 0, i
);
3718 if (GET_CODE (out_exp
) == CLOBBER
|| GET_CODE (out_exp
) == USE
)
3721 gcc_assert (GET_CODE (out_exp
) == SET
);
3723 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_set
)))
3730 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3731 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3732 must be either a single_set or a PARALLEL with SETs inside. */
3735 store_data_bypass_p (rtx_insn
*out_insn
, rtx_insn
*in_insn
)
3737 rtx in_set
= single_set (in_insn
);
3739 return store_data_bypass_p_1 (out_insn
, in_set
);
3741 rtx in_pat
= PATTERN (in_insn
);
3742 if (GET_CODE (in_pat
) != PARALLEL
)
3745 for (int i
= 0; i
< XVECLEN (in_pat
, 0); i
++)
3747 rtx in_exp
= XVECEXP (in_pat
, 0, i
);
3749 if (GET_CODE (in_exp
) == CLOBBER
|| GET_CODE (in_exp
) == USE
)
3752 gcc_assert (GET_CODE (in_exp
) == SET
);
3754 if (!store_data_bypass_p_1 (out_insn
, in_exp
))
3761 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3762 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3763 or multiple set; IN_INSN should be single_set for truth, but for convenience
3764 of insn categorization may be any JUMP or CALL insn. */
3767 if_test_bypass_p (rtx_insn
*out_insn
, rtx_insn
*in_insn
)
3769 rtx out_set
, in_set
;
3771 in_set
= single_set (in_insn
);
3774 gcc_assert (JUMP_P (in_insn
) || CALL_P (in_insn
));
3778 if (GET_CODE (SET_SRC (in_set
)) != IF_THEN_ELSE
)
3780 in_set
= SET_SRC (in_set
);
3782 out_set
= single_set (out_insn
);
3785 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3786 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3794 out_pat
= PATTERN (out_insn
);
3795 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3797 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3799 rtx exp
= XVECEXP (out_pat
, 0, i
);
3801 if (GET_CODE (exp
) == CLOBBER
)
3804 gcc_assert (GET_CODE (exp
) == SET
);
3806 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3807 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3816 rest_of_handle_peephole2 (void)
3819 peephole2_optimize ();
3826 const pass_data pass_data_peephole2
=
3828 RTL_PASS
, /* type */
3829 "peephole2", /* name */
3830 OPTGROUP_NONE
, /* optinfo_flags */
3831 TV_PEEPHOLE2
, /* tv_id */
3832 0, /* properties_required */
3833 0, /* properties_provided */
3834 0, /* properties_destroyed */
3835 0, /* todo_flags_start */
3836 TODO_df_finish
, /* todo_flags_finish */
3839 class pass_peephole2
: public rtl_opt_pass
3842 pass_peephole2 (gcc::context
*ctxt
)
3843 : rtl_opt_pass (pass_data_peephole2
, ctxt
)
3846 /* opt_pass methods: */
3847 /* The epiphany backend creates a second instance of this pass, so we need
3849 opt_pass
* clone () { return new pass_peephole2 (m_ctxt
); }
3850 virtual bool gate (function
*) { return (optimize
> 0 && flag_peephole2
); }
3851 virtual unsigned int execute (function
*)
3853 return rest_of_handle_peephole2 ();
3856 }; // class pass_peephole2
3861 make_pass_peephole2 (gcc::context
*ctxt
)
3863 return new pass_peephole2 (ctxt
);
3868 const pass_data pass_data_split_all_insns
=
3870 RTL_PASS
, /* type */
3871 "split1", /* name */
3872 OPTGROUP_NONE
, /* optinfo_flags */
3873 TV_NONE
, /* tv_id */
3874 0, /* properties_required */
3875 PROP_rtl_split_insns
, /* properties_provided */
3876 0, /* properties_destroyed */
3877 0, /* todo_flags_start */
3878 0, /* todo_flags_finish */
3881 class pass_split_all_insns
: public rtl_opt_pass
3884 pass_split_all_insns (gcc::context
*ctxt
)
3885 : rtl_opt_pass (pass_data_split_all_insns
, ctxt
)
3888 /* opt_pass methods: */
3889 /* The epiphany backend creates a second instance of this pass, so
3890 we need a clone method. */
3891 opt_pass
* clone () { return new pass_split_all_insns (m_ctxt
); }
3892 virtual unsigned int execute (function
*)
3898 }; // class pass_split_all_insns
3903 make_pass_split_all_insns (gcc::context
*ctxt
)
3905 return new pass_split_all_insns (ctxt
);
3910 const pass_data pass_data_split_after_reload
=
3912 RTL_PASS
, /* type */
3913 "split2", /* name */
3914 OPTGROUP_NONE
, /* optinfo_flags */
3915 TV_NONE
, /* tv_id */
3916 0, /* properties_required */
3917 0, /* properties_provided */
3918 0, /* properties_destroyed */
3919 0, /* todo_flags_start */
3920 0, /* todo_flags_finish */
3923 class pass_split_after_reload
: public rtl_opt_pass
3926 pass_split_after_reload (gcc::context
*ctxt
)
3927 : rtl_opt_pass (pass_data_split_after_reload
, ctxt
)
3930 /* opt_pass methods: */
3931 virtual bool gate (function
*)
3933 /* If optimizing, then go ahead and split insns now. */
3944 virtual unsigned int execute (function
*)
3950 }; // class pass_split_after_reload
3955 make_pass_split_after_reload (gcc::context
*ctxt
)
3957 return new pass_split_after_reload (ctxt
);
3962 const pass_data pass_data_split_before_regstack
=
3964 RTL_PASS
, /* type */
3965 "split3", /* name */
3966 OPTGROUP_NONE
, /* optinfo_flags */
3967 TV_NONE
, /* tv_id */
3968 0, /* properties_required */
3969 0, /* properties_provided */
3970 0, /* properties_destroyed */
3971 0, /* todo_flags_start */
3972 0, /* todo_flags_finish */
3975 class pass_split_before_regstack
: public rtl_opt_pass
3978 pass_split_before_regstack (gcc::context
*ctxt
)
3979 : rtl_opt_pass (pass_data_split_before_regstack
, ctxt
)
3982 /* opt_pass methods: */
3983 virtual bool gate (function
*);
3984 virtual unsigned int execute (function
*)
3990 }; // class pass_split_before_regstack
3993 pass_split_before_regstack::gate (function
*)
3995 #if HAVE_ATTR_length && defined (STACK_REGS)
3996 /* If flow2 creates new instructions which need splitting
3997 and scheduling after reload is not done, they might not be
3998 split until final which doesn't allow splitting
3999 if HAVE_ATTR_length. */
4000 # ifdef INSN_SCHEDULING
4001 return (optimize
&& !flag_schedule_insns_after_reload
);
4013 make_pass_split_before_regstack (gcc::context
*ctxt
)
4015 return new pass_split_before_regstack (ctxt
);
4019 rest_of_handle_split_before_sched2 (void)
4021 #ifdef INSN_SCHEDULING
4029 const pass_data pass_data_split_before_sched2
=
4031 RTL_PASS
, /* type */
4032 "split4", /* name */
4033 OPTGROUP_NONE
, /* optinfo_flags */
4034 TV_NONE
, /* tv_id */
4035 0, /* properties_required */
4036 0, /* properties_provided */
4037 0, /* properties_destroyed */
4038 0, /* todo_flags_start */
4039 0, /* todo_flags_finish */
4042 class pass_split_before_sched2
: public rtl_opt_pass
4045 pass_split_before_sched2 (gcc::context
*ctxt
)
4046 : rtl_opt_pass (pass_data_split_before_sched2
, ctxt
)
4049 /* opt_pass methods: */
4050 virtual bool gate (function
*)
4052 #ifdef INSN_SCHEDULING
4053 return optimize
> 0 && flag_schedule_insns_after_reload
;
4059 virtual unsigned int execute (function
*)
4061 return rest_of_handle_split_before_sched2 ();
4064 }; // class pass_split_before_sched2
4069 make_pass_split_before_sched2 (gcc::context
*ctxt
)
4071 return new pass_split_before_sched2 (ctxt
);
4076 const pass_data pass_data_split_for_shorten_branches
=
4078 RTL_PASS
, /* type */
4079 "split5", /* name */
4080 OPTGROUP_NONE
, /* optinfo_flags */
4081 TV_NONE
, /* tv_id */
4082 0, /* properties_required */
4083 0, /* properties_provided */
4084 0, /* properties_destroyed */
4085 0, /* todo_flags_start */
4086 0, /* todo_flags_finish */
4089 class pass_split_for_shorten_branches
: public rtl_opt_pass
4092 pass_split_for_shorten_branches (gcc::context
*ctxt
)
4093 : rtl_opt_pass (pass_data_split_for_shorten_branches
, ctxt
)
4096 /* opt_pass methods: */
4097 virtual bool gate (function
*)
4099 /* The placement of the splitting that we do for shorten_branches
4100 depends on whether regstack is used by the target or not. */
4101 #if HAVE_ATTR_length && !defined (STACK_REGS)
4108 virtual unsigned int execute (function
*)
4110 return split_all_insns_noflow ();
4113 }; // class pass_split_for_shorten_branches
4118 make_pass_split_for_shorten_branches (gcc::context
*ctxt
)
4120 return new pass_split_for_shorten_branches (ctxt
);
4123 /* (Re)initialize the target information after a change in target. */
4128 /* The information is zero-initialized, so we don't need to do anything
4129 first time round. */
4130 if (!this_target_recog
->x_initialized
)
4132 this_target_recog
->x_initialized
= true;
4135 memset (this_target_recog
->x_bool_attr_masks
, 0,
4136 sizeof (this_target_recog
->x_bool_attr_masks
));
4137 for (unsigned int i
= 0; i
< NUM_INSN_CODES
; ++i
)
4138 if (this_target_recog
->x_op_alt
[i
])
4140 free (this_target_recog
->x_op_alt
[i
]);
4141 this_target_recog
->x_op_alt
[i
] = 0;