IVOPT performance tuning patch. The main problem is a variant of maximal weight
[official-gcc.git] / gcc / libgcc2.c
blob02828e3f640908c656becc02eda4e975e0d8528d
1 /* More subroutines needed by GCC output code on some machines. */
2 /* Compile this one with gcc. */
3 /* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 Under Section 7 of GPL version 3, you are granted additional
20 permissions described in the GCC Runtime Library Exception, version
21 3.1, as published by the Free Software Foundation.
23 You should have received a copy of the GNU General Public License and
24 a copy of the GCC Runtime Library Exception along with this program;
25 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
26 <http://www.gnu.org/licenses/>. */
28 #include "tconfig.h"
29 #include "tsystem.h"
30 #include "coretypes.h"
31 #include "tm.h"
33 #ifdef HAVE_GAS_HIDDEN
34 #define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden")))
35 #else
36 #define ATTRIBUTE_HIDDEN
37 #endif
39 /* Work out the largest "word" size that we can deal with on this target. */
40 #if MIN_UNITS_PER_WORD > 4
41 # define LIBGCC2_MAX_UNITS_PER_WORD 8
42 #elif (MIN_UNITS_PER_WORD > 2 \
43 || (MIN_UNITS_PER_WORD > 1 && LONG_LONG_TYPE_SIZE > 32))
44 # define LIBGCC2_MAX_UNITS_PER_WORD 4
45 #else
46 # define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
47 #endif
49 /* Work out what word size we are using for this compilation.
50 The value can be set on the command line. */
51 #ifndef LIBGCC2_UNITS_PER_WORD
52 #define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
53 #endif
55 #if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
57 #include "libgcc2.h"
59 #ifdef DECLARE_LIBRARY_RENAMES
60 DECLARE_LIBRARY_RENAMES
61 #endif
63 #if defined (L_negdi2)
64 DWtype
65 __negdi2 (DWtype u)
67 const DWunion uu = {.ll = u};
68 const DWunion w = { {.low = -uu.s.low,
69 .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };
71 return w.ll;
73 #endif
75 #ifdef L_addvsi3
76 Wtype
77 __addvSI3 (Wtype a, Wtype b)
79 const Wtype w = (UWtype) a + (UWtype) b;
81 if (b >= 0 ? w < a : w > a)
82 abort ();
84 return w;
86 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
87 SItype
88 __addvsi3 (SItype a, SItype b)
90 const SItype w = (USItype) a + (USItype) b;
92 if (b >= 0 ? w < a : w > a)
93 abort ();
95 return w;
97 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
98 #endif
100 #ifdef L_addvdi3
101 DWtype
102 __addvDI3 (DWtype a, DWtype b)
104 const DWtype w = (UDWtype) a + (UDWtype) b;
106 if (b >= 0 ? w < a : w > a)
107 abort ();
109 return w;
111 #endif
113 #ifdef L_subvsi3
114 Wtype
115 __subvSI3 (Wtype a, Wtype b)
117 const Wtype w = (UWtype) a - (UWtype) b;
119 if (b >= 0 ? w > a : w < a)
120 abort ();
122 return w;
124 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
125 SItype
126 __subvsi3 (SItype a, SItype b)
128 const SItype w = (USItype) a - (USItype) b;
130 if (b >= 0 ? w > a : w < a)
131 abort ();
133 return w;
135 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
136 #endif
138 #ifdef L_subvdi3
139 DWtype
140 __subvDI3 (DWtype a, DWtype b)
142 const DWtype w = (UDWtype) a - (UDWtype) b;
144 if (b >= 0 ? w > a : w < a)
145 abort ();
147 return w;
149 #endif
151 #ifdef L_mulvsi3
152 Wtype
153 __mulvSI3 (Wtype a, Wtype b)
155 const DWtype w = (DWtype) a * (DWtype) b;
157 if ((Wtype) (w >> W_TYPE_SIZE) != (Wtype) w >> (W_TYPE_SIZE - 1))
158 abort ();
160 return w;
162 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
163 #undef WORD_SIZE
164 #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT)
165 SItype
166 __mulvsi3 (SItype a, SItype b)
168 const DItype w = (DItype) a * (DItype) b;
170 if ((SItype) (w >> WORD_SIZE) != (SItype) w >> (WORD_SIZE-1))
171 abort ();
173 return w;
175 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
176 #endif
178 #ifdef L_negvsi2
179 Wtype
180 __negvSI2 (Wtype a)
182 const Wtype w = -(UWtype) a;
184 if (a >= 0 ? w > 0 : w < 0)
185 abort ();
187 return w;
189 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
190 SItype
191 __negvsi2 (SItype a)
193 const SItype w = -(USItype) a;
195 if (a >= 0 ? w > 0 : w < 0)
196 abort ();
198 return w;
200 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
201 #endif
203 #ifdef L_negvdi2
204 DWtype
205 __negvDI2 (DWtype a)
207 const DWtype w = -(UDWtype) a;
209 if (a >= 0 ? w > 0 : w < 0)
210 abort ();
212 return w;
214 #endif
216 #ifdef L_absvsi2
217 Wtype
218 __absvSI2 (Wtype a)
220 Wtype w = a;
222 if (a < 0)
223 #ifdef L_negvsi2
224 w = __negvSI2 (a);
225 #else
226 w = -(UWtype) a;
228 if (w < 0)
229 abort ();
230 #endif
232 return w;
234 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
235 SItype
236 __absvsi2 (SItype a)
238 SItype w = a;
240 if (a < 0)
241 #ifdef L_negvsi2
242 w = __negvsi2 (a);
243 #else
244 w = -(USItype) a;
246 if (w < 0)
247 abort ();
248 #endif
250 return w;
252 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
253 #endif
255 #ifdef L_absvdi2
256 DWtype
257 __absvDI2 (DWtype a)
259 DWtype w = a;
261 if (a < 0)
262 #ifdef L_negvdi2
263 w = __negvDI2 (a);
264 #else
265 w = -(UDWtype) a;
267 if (w < 0)
268 abort ();
269 #endif
271 return w;
273 #endif
275 #ifdef L_mulvdi3
276 DWtype
277 __mulvDI3 (DWtype u, DWtype v)
279 /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
280 but the checked multiplication needs only two. */
281 const DWunion uu = {.ll = u};
282 const DWunion vv = {.ll = v};
284 if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
286 /* u fits in a single Wtype. */
287 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
289 /* v fits in a single Wtype as well. */
290 /* A single multiplication. No overflow risk. */
291 return (DWtype) uu.s.low * (DWtype) vv.s.low;
293 else
295 /* Two multiplications. */
296 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
297 * (UDWtype) (UWtype) vv.s.low};
298 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
299 * (UDWtype) (UWtype) vv.s.high};
301 if (vv.s.high < 0)
302 w1.s.high -= uu.s.low;
303 if (uu.s.low < 0)
304 w1.ll -= vv.ll;
305 w1.ll += (UWtype) w0.s.high;
306 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
308 w0.s.high = w1.s.low;
309 return w0.ll;
313 else
315 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
317 /* v fits into a single Wtype. */
318 /* Two multiplications. */
319 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
320 * (UDWtype) (UWtype) vv.s.low};
321 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
322 * (UDWtype) (UWtype) vv.s.low};
324 if (uu.s.high < 0)
325 w1.s.high -= vv.s.low;
326 if (vv.s.low < 0)
327 w1.ll -= uu.ll;
328 w1.ll += (UWtype) w0.s.high;
329 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
331 w0.s.high = w1.s.low;
332 return w0.ll;
335 else
337 /* A few sign checks and a single multiplication. */
338 if (uu.s.high >= 0)
340 if (vv.s.high >= 0)
342 if (uu.s.high == 0 && vv.s.high == 0)
344 const DWtype w = (UDWtype) (UWtype) uu.s.low
345 * (UDWtype) (UWtype) vv.s.low;
346 if (__builtin_expect (w >= 0, 1))
347 return w;
350 else
352 if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
354 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
355 * (UDWtype) (UWtype) vv.s.low};
357 ww.s.high -= uu.s.low;
358 if (__builtin_expect (ww.s.high < 0, 1))
359 return ww.ll;
363 else
365 if (vv.s.high >= 0)
367 if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
369 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
370 * (UDWtype) (UWtype) vv.s.low};
372 ww.s.high -= vv.s.low;
373 if (__builtin_expect (ww.s.high < 0, 1))
374 return ww.ll;
377 else
379 if (uu.s.high == (Wtype) -1 && vv.s.high == (Wtype) - 1)
381 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
382 * (UDWtype) (UWtype) vv.s.low};
384 ww.s.high -= uu.s.low;
385 ww.s.high -= vv.s.low;
386 if (__builtin_expect (ww.s.high >= 0, 1))
387 return ww.ll;
394 /* Overflow. */
395 abort ();
397 #endif
400 /* Unless shift functions are defined with full ANSI prototypes,
401 parameter b will be promoted to int if shift_count_type is smaller than an int. */
402 #ifdef L_lshrdi3
403 DWtype
404 __lshrdi3 (DWtype u, shift_count_type b)
406 if (b == 0)
407 return u;
409 const DWunion uu = {.ll = u};
410 const shift_count_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
411 DWunion w;
413 if (bm <= 0)
415 w.s.high = 0;
416 w.s.low = (UWtype) uu.s.high >> -bm;
418 else
420 const UWtype carries = (UWtype) uu.s.high << bm;
422 w.s.high = (UWtype) uu.s.high >> b;
423 w.s.low = ((UWtype) uu.s.low >> b) | carries;
426 return w.ll;
428 #endif
430 #ifdef L_ashldi3
431 DWtype
432 __ashldi3 (DWtype u, shift_count_type b)
434 if (b == 0)
435 return u;
437 const DWunion uu = {.ll = u};
438 const shift_count_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
439 DWunion w;
441 if (bm <= 0)
443 w.s.low = 0;
444 w.s.high = (UWtype) uu.s.low << -bm;
446 else
448 const UWtype carries = (UWtype) uu.s.low >> bm;
450 w.s.low = (UWtype) uu.s.low << b;
451 w.s.high = ((UWtype) uu.s.high << b) | carries;
454 return w.ll;
456 #endif
458 #ifdef L_ashrdi3
459 DWtype
460 __ashrdi3 (DWtype u, shift_count_type b)
462 if (b == 0)
463 return u;
465 const DWunion uu = {.ll = u};
466 const shift_count_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
467 DWunion w;
469 if (bm <= 0)
471 /* w.s.high = 1..1 or 0..0 */
472 w.s.high = uu.s.high >> (sizeof (Wtype) * BITS_PER_UNIT - 1);
473 w.s.low = uu.s.high >> -bm;
475 else
477 const UWtype carries = (UWtype) uu.s.high << bm;
479 w.s.high = uu.s.high >> b;
480 w.s.low = ((UWtype) uu.s.low >> b) | carries;
483 return w.ll;
485 #endif
487 #ifdef L_bswapsi2
488 SItype
489 __bswapsi2 (SItype u)
491 return ((((u) & 0xff000000) >> 24)
492 | (((u) & 0x00ff0000) >> 8)
493 | (((u) & 0x0000ff00) << 8)
494 | (((u) & 0x000000ff) << 24));
496 #endif
497 #ifdef L_bswapdi2
498 DItype
499 __bswapdi2 (DItype u)
501 return ((((u) & 0xff00000000000000ull) >> 56)
502 | (((u) & 0x00ff000000000000ull) >> 40)
503 | (((u) & 0x0000ff0000000000ull) >> 24)
504 | (((u) & 0x000000ff00000000ull) >> 8)
505 | (((u) & 0x00000000ff000000ull) << 8)
506 | (((u) & 0x0000000000ff0000ull) << 24)
507 | (((u) & 0x000000000000ff00ull) << 40)
508 | (((u) & 0x00000000000000ffull) << 56));
510 #endif
511 #ifdef L_ffssi2
512 #undef int
514 __ffsSI2 (UWtype u)
516 UWtype count;
518 if (u == 0)
519 return 0;
521 count_trailing_zeros (count, u);
522 return count + 1;
524 #endif
526 #ifdef L_ffsdi2
527 #undef int
529 __ffsDI2 (DWtype u)
531 const DWunion uu = {.ll = u};
532 UWtype word, count, add;
534 if (uu.s.low != 0)
535 word = uu.s.low, add = 0;
536 else if (uu.s.high != 0)
537 word = uu.s.high, add = BITS_PER_UNIT * sizeof (Wtype);
538 else
539 return 0;
541 count_trailing_zeros (count, word);
542 return count + add + 1;
544 #endif
546 #ifdef L_muldi3
547 DWtype
548 __muldi3 (DWtype u, DWtype v)
550 const DWunion uu = {.ll = u};
551 const DWunion vv = {.ll = v};
552 DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};
554 w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
555 + (UWtype) uu.s.high * (UWtype) vv.s.low);
557 return w.ll;
559 #endif
561 #if (defined (L_udivdi3) || defined (L_divdi3) || \
562 defined (L_umoddi3) || defined (L_moddi3))
563 #if defined (sdiv_qrnnd)
564 #define L_udiv_w_sdiv
565 #endif
566 #endif
568 #ifdef L_udiv_w_sdiv
569 #if defined (sdiv_qrnnd)
570 #if (defined (L_udivdi3) || defined (L_divdi3) || \
571 defined (L_umoddi3) || defined (L_moddi3))
572 static inline __attribute__ ((__always_inline__))
573 #endif
574 UWtype
575 __udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
577 UWtype q, r;
578 UWtype c0, c1, b1;
580 if ((Wtype) d >= 0)
582 if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
584 /* Dividend, divisor, and quotient are nonnegative. */
585 sdiv_qrnnd (q, r, a1, a0, d);
587 else
589 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */
590 sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
591 /* Divide (c1*2^32 + c0) by d. */
592 sdiv_qrnnd (q, r, c1, c0, d);
593 /* Add 2^31 to quotient. */
594 q += (UWtype) 1 << (W_TYPE_SIZE - 1);
597 else
599 b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */
600 c1 = a1 >> 1; /* A/2 */
601 c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
603 if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */
605 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
607 r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */
608 if ((d & 1) != 0)
610 if (r >= q)
611 r = r - q;
612 else if (q - r <= d)
614 r = r - q + d;
615 q--;
617 else
619 r = r - q + 2*d;
620 q -= 2;
624 else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */
626 c1 = (b1 - 1) - c1;
627 c0 = ~c0; /* logical NOT */
629 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
631 q = ~q; /* (A/2)/b1 */
632 r = (b1 - 1) - r;
634 r = 2*r + (a0 & 1); /* A/(2*b1) */
636 if ((d & 1) != 0)
638 if (r >= q)
639 r = r - q;
640 else if (q - r <= d)
642 r = r - q + d;
643 q--;
645 else
647 r = r - q + 2*d;
648 q -= 2;
652 else /* Implies c1 = b1 */
653 { /* Hence a1 = d - 1 = 2*b1 - 1 */
654 if (a0 >= -d)
656 q = -1;
657 r = a0 + d;
659 else
661 q = -2;
662 r = a0 + 2*d;
667 *rp = r;
668 return q;
670 #else
671 /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
672 UWtype
673 __udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
674 UWtype a1 __attribute__ ((__unused__)),
675 UWtype a0 __attribute__ ((__unused__)),
676 UWtype d __attribute__ ((__unused__)))
678 return 0;
680 #endif
681 #endif
683 #if (defined (L_udivdi3) || defined (L_divdi3) || \
684 defined (L_umoddi3) || defined (L_moddi3))
685 #define L_udivmoddi4
686 #endif
688 #ifdef L_clz
689 const UQItype __clz_tab[256] =
691 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
692 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
693 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
694 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
695 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
696 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
697 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
698 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
700 #endif
702 #ifdef L_clzsi2
703 #undef int
705 __clzSI2 (UWtype x)
707 Wtype ret;
709 count_leading_zeros (ret, x);
711 return ret;
713 #endif
715 #ifdef L_clzdi2
716 #undef int
718 __clzDI2 (UDWtype x)
720 const DWunion uu = {.ll = x};
721 UWtype word;
722 Wtype ret, add;
724 if (uu.s.high)
725 word = uu.s.high, add = 0;
726 else
727 word = uu.s.low, add = W_TYPE_SIZE;
729 count_leading_zeros (ret, word);
730 return ret + add;
732 #endif
734 #ifdef L_ctzsi2
735 #undef int
737 __ctzSI2 (UWtype x)
739 Wtype ret;
741 count_trailing_zeros (ret, x);
743 return ret;
745 #endif
747 #ifdef L_ctzdi2
748 #undef int
750 __ctzDI2 (UDWtype x)
752 const DWunion uu = {.ll = x};
753 UWtype word;
754 Wtype ret, add;
756 if (uu.s.low)
757 word = uu.s.low, add = 0;
758 else
759 word = uu.s.high, add = W_TYPE_SIZE;
761 count_trailing_zeros (ret, word);
762 return ret + add;
764 #endif
766 #ifdef L_popcount_tab
767 const UQItype __popcount_tab[256] =
769 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
770 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
771 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
772 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
773 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
774 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
775 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
776 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
778 #endif
780 #ifdef L_popcountsi2
781 #undef int
783 __popcountSI2 (UWtype x)
785 int i, ret = 0;
787 for (i = 0; i < W_TYPE_SIZE; i += 8)
788 ret += __popcount_tab[(x >> i) & 0xff];
790 return ret;
792 #endif
794 #ifdef L_popcountdi2
795 #undef int
797 __popcountDI2 (UDWtype x)
799 int i, ret = 0;
801 for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
802 ret += __popcount_tab[(x >> i) & 0xff];
804 return ret;
806 #endif
808 #ifdef L_paritysi2
809 #undef int
811 __paritySI2 (UWtype x)
813 #if W_TYPE_SIZE > 64
814 # error "fill out the table"
815 #endif
816 #if W_TYPE_SIZE > 32
817 x ^= x >> 32;
818 #endif
819 #if W_TYPE_SIZE > 16
820 x ^= x >> 16;
821 #endif
822 x ^= x >> 8;
823 x ^= x >> 4;
824 x &= 0xf;
825 return (0x6996 >> x) & 1;
827 #endif
829 #ifdef L_paritydi2
830 #undef int
832 __parityDI2 (UDWtype x)
834 const DWunion uu = {.ll = x};
835 UWtype nx = uu.s.low ^ uu.s.high;
837 #if W_TYPE_SIZE > 64
838 # error "fill out the table"
839 #endif
840 #if W_TYPE_SIZE > 32
841 nx ^= nx >> 32;
842 #endif
843 #if W_TYPE_SIZE > 16
844 nx ^= nx >> 16;
845 #endif
846 nx ^= nx >> 8;
847 nx ^= nx >> 4;
848 nx &= 0xf;
849 return (0x6996 >> nx) & 1;
851 #endif
853 #ifdef L_udivmoddi4
855 #if (defined (L_udivdi3) || defined (L_divdi3) || \
856 defined (L_umoddi3) || defined (L_moddi3))
857 static inline __attribute__ ((__always_inline__))
858 #endif
859 UDWtype
860 __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
862 const DWunion nn = {.ll = n};
863 const DWunion dd = {.ll = d};
864 DWunion rr;
865 UWtype d0, d1, n0, n1, n2;
866 UWtype q0, q1;
867 UWtype b, bm;
869 d0 = dd.s.low;
870 d1 = dd.s.high;
871 n0 = nn.s.low;
872 n1 = nn.s.high;
874 #if !UDIV_NEEDS_NORMALIZATION
875 if (d1 == 0)
877 if (d0 > n1)
879 /* 0q = nn / 0D */
881 udiv_qrnnd (q0, n0, n1, n0, d0);
882 q1 = 0;
884 /* Remainder in n0. */
886 else
888 /* qq = NN / 0d */
890 if (d0 == 0)
891 d0 = 1 / d0; /* Divide intentionally by zero. */
893 udiv_qrnnd (q1, n1, 0, n1, d0);
894 udiv_qrnnd (q0, n0, n1, n0, d0);
896 /* Remainder in n0. */
899 if (rp != 0)
901 rr.s.low = n0;
902 rr.s.high = 0;
903 *rp = rr.ll;
907 #else /* UDIV_NEEDS_NORMALIZATION */
909 if (d1 == 0)
911 if (d0 > n1)
913 /* 0q = nn / 0D */
915 count_leading_zeros (bm, d0);
917 if (bm != 0)
919 /* Normalize, i.e. make the most significant bit of the
920 denominator set. */
922 d0 = d0 << bm;
923 n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
924 n0 = n0 << bm;
927 udiv_qrnnd (q0, n0, n1, n0, d0);
928 q1 = 0;
930 /* Remainder in n0 >> bm. */
932 else
934 /* qq = NN / 0d */
936 if (d0 == 0)
937 d0 = 1 / d0; /* Divide intentionally by zero. */
939 count_leading_zeros (bm, d0);
941 if (bm == 0)
943 /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
944 conclude (the most significant bit of n1 is set) /\ (the
945 leading quotient digit q1 = 1).
947 This special case is necessary, not an optimization.
948 (Shifts counts of W_TYPE_SIZE are undefined.) */
950 n1 -= d0;
951 q1 = 1;
953 else
955 /* Normalize. */
957 b = W_TYPE_SIZE - bm;
959 d0 = d0 << bm;
960 n2 = n1 >> b;
961 n1 = (n1 << bm) | (n0 >> b);
962 n0 = n0 << bm;
964 udiv_qrnnd (q1, n1, n2, n1, d0);
967 /* n1 != d0... */
969 udiv_qrnnd (q0, n0, n1, n0, d0);
971 /* Remainder in n0 >> bm. */
974 if (rp != 0)
976 rr.s.low = n0 >> bm;
977 rr.s.high = 0;
978 *rp = rr.ll;
981 #endif /* UDIV_NEEDS_NORMALIZATION */
983 else
985 if (d1 > n1)
987 /* 00 = nn / DD */
989 q0 = 0;
990 q1 = 0;
992 /* Remainder in n1n0. */
993 if (rp != 0)
995 rr.s.low = n0;
996 rr.s.high = n1;
997 *rp = rr.ll;
1000 else
1002 /* 0q = NN / dd */
1004 count_leading_zeros (bm, d1);
1005 if (bm == 0)
1007 /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
1008 conclude (the most significant bit of n1 is set) /\ (the
1009 quotient digit q0 = 0 or 1).
1011 This special case is necessary, not an optimization. */
1013 /* The condition on the next line takes advantage of that
1014 n1 >= d1 (true due to program flow). */
1015 if (n1 > d1 || n0 >= d0)
1017 q0 = 1;
1018 sub_ddmmss (n1, n0, n1, n0, d1, d0);
1020 else
1021 q0 = 0;
1023 q1 = 0;
1025 if (rp != 0)
1027 rr.s.low = n0;
1028 rr.s.high = n1;
1029 *rp = rr.ll;
1032 else
1034 UWtype m1, m0;
1035 /* Normalize. */
1037 b = W_TYPE_SIZE - bm;
1039 d1 = (d1 << bm) | (d0 >> b);
1040 d0 = d0 << bm;
1041 n2 = n1 >> b;
1042 n1 = (n1 << bm) | (n0 >> b);
1043 n0 = n0 << bm;
1045 udiv_qrnnd (q0, n1, n2, n1, d1);
1046 umul_ppmm (m1, m0, q0, d0);
1048 if (m1 > n1 || (m1 == n1 && m0 > n0))
1050 q0--;
1051 sub_ddmmss (m1, m0, m1, m0, d1, d0);
1054 q1 = 0;
1056 /* Remainder in (n1n0 - m1m0) >> bm. */
1057 if (rp != 0)
1059 sub_ddmmss (n1, n0, n1, n0, m1, m0);
1060 rr.s.low = (n1 << b) | (n0 >> bm);
1061 rr.s.high = n1 >> bm;
1062 *rp = rr.ll;
1068 const DWunion ww = {{.low = q0, .high = q1}};
1069 return ww.ll;
1071 #endif
1073 #ifdef L_divdi3
1074 DWtype
1075 __divdi3 (DWtype u, DWtype v)
1077 Wtype c = 0;
1078 DWunion uu = {.ll = u};
1079 DWunion vv = {.ll = v};
1080 DWtype w;
1082 if (uu.s.high < 0)
1083 c = ~c,
1084 uu.ll = -uu.ll;
1085 if (vv.s.high < 0)
1086 c = ~c,
1087 vv.ll = -vv.ll;
1089 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
1090 if (c)
1091 w = -w;
1093 return w;
1095 #endif
1097 #ifdef L_moddi3
1098 DWtype
1099 __moddi3 (DWtype u, DWtype v)
1101 Wtype c = 0;
1102 DWunion uu = {.ll = u};
1103 DWunion vv = {.ll = v};
1104 DWtype w;
1106 if (uu.s.high < 0)
1107 c = ~c,
1108 uu.ll = -uu.ll;
1109 if (vv.s.high < 0)
1110 vv.ll = -vv.ll;
1112 (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
1113 if (c)
1114 w = -w;
1116 return w;
1118 #endif
1120 #ifdef L_umoddi3
1121 UDWtype
1122 __umoddi3 (UDWtype u, UDWtype v)
1124 UDWtype w;
1126 (void) __udivmoddi4 (u, v, &w);
1128 return w;
1130 #endif
1132 #ifdef L_udivdi3
1133 UDWtype
1134 __udivdi3 (UDWtype n, UDWtype d)
1136 return __udivmoddi4 (n, d, (UDWtype *) 0);
1138 #endif
1140 #ifdef L_cmpdi2
1141 cmp_return_type
1142 __cmpdi2 (DWtype a, DWtype b)
1144 const DWunion au = {.ll = a};
1145 const DWunion bu = {.ll = b};
1147 if (au.s.high < bu.s.high)
1148 return 0;
1149 else if (au.s.high > bu.s.high)
1150 return 2;
1151 if ((UWtype) au.s.low < (UWtype) bu.s.low)
1152 return 0;
1153 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1154 return 2;
1155 return 1;
1157 #endif
1159 #ifdef L_ucmpdi2
1160 cmp_return_type
1161 __ucmpdi2 (DWtype a, DWtype b)
1163 const DWunion au = {.ll = a};
1164 const DWunion bu = {.ll = b};
1166 if ((UWtype) au.s.high < (UWtype) bu.s.high)
1167 return 0;
1168 else if ((UWtype) au.s.high > (UWtype) bu.s.high)
1169 return 2;
1170 if ((UWtype) au.s.low < (UWtype) bu.s.low)
1171 return 0;
1172 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1173 return 2;
1174 return 1;
1176 #endif
1178 #if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
1179 UDWtype
1180 __fixunstfDI (TFtype a)
1182 if (a < 0)
1183 return 0;
1185 /* Compute high word of result, as a flonum. */
1186 const TFtype b = (a / Wtype_MAXp1_F);
1187 /* Convert that to fixed (but not to DWtype!),
1188 and shift it into the high word. */
1189 UDWtype v = (UWtype) b;
1190 v <<= W_TYPE_SIZE;
1191 /* Remove high part from the TFtype, leaving the low part as flonum. */
1192 a -= (TFtype)v;
1193 /* Convert that to fixed (but not to DWtype!) and add it in.
1194 Sometimes A comes out negative. This is significant, since
1195 A has more bits than a long int does. */
1196 if (a < 0)
1197 v -= (UWtype) (- a);
1198 else
1199 v += (UWtype) a;
1200 return v;
1202 #endif
1204 #if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
1205 DWtype
1206 __fixtfdi (TFtype a)
1208 if (a < 0)
1209 return - __fixunstfDI (-a);
1210 return __fixunstfDI (a);
1212 #endif
1214 #if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
1215 UDWtype
1216 __fixunsxfDI (XFtype a)
1218 if (a < 0)
1219 return 0;
1221 /* Compute high word of result, as a flonum. */
1222 const XFtype b = (a / Wtype_MAXp1_F);
1223 /* Convert that to fixed (but not to DWtype!),
1224 and shift it into the high word. */
1225 UDWtype v = (UWtype) b;
1226 v <<= W_TYPE_SIZE;
1227 /* Remove high part from the XFtype, leaving the low part as flonum. */
1228 a -= (XFtype)v;
1229 /* Convert that to fixed (but not to DWtype!) and add it in.
1230 Sometimes A comes out negative. This is significant, since
1231 A has more bits than a long int does. */
1232 if (a < 0)
1233 v -= (UWtype) (- a);
1234 else
1235 v += (UWtype) a;
1236 return v;
1238 #endif
1240 #if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
1241 DWtype
1242 __fixxfdi (XFtype a)
1244 if (a < 0)
1245 return - __fixunsxfDI (-a);
1246 return __fixunsxfDI (a);
1248 #endif
1250 #if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
1251 UDWtype
1252 __fixunsdfDI (DFtype a)
1254 /* Get high part of result. The division here will just moves the radix
1255 point and will not cause any rounding. Then the conversion to integral
1256 type chops result as desired. */
1257 const UWtype hi = a / Wtype_MAXp1_F;
1259 /* Get low part of result. Convert `hi' to floating type and scale it back,
1260 then subtract this from the number being converted. This leaves the low
1261 part. Convert that to integral type. */
1262 const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;
1264 /* Assemble result from the two parts. */
1265 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1267 #endif
1269 #if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
1270 DWtype
1271 __fixdfdi (DFtype a)
1273 if (a < 0)
1274 return - __fixunsdfDI (-a);
1275 return __fixunsdfDI (a);
1277 #endif
1279 #if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
1280 UDWtype
1281 __fixunssfDI (SFtype a)
1283 #if LIBGCC2_HAS_DF_MODE
1284 /* Convert the SFtype to a DFtype, because that is surely not going
1285 to lose any bits. Some day someone else can write a faster version
1286 that avoids converting to DFtype, and verify it really works right. */
1287 const DFtype dfa = a;
1289 /* Get high part of result. The division here will just moves the radix
1290 point and will not cause any rounding. Then the conversion to integral
1291 type chops result as desired. */
1292 const UWtype hi = dfa / Wtype_MAXp1_F;
1294 /* Get low part of result. Convert `hi' to floating type and scale it back,
1295 then subtract this from the number being converted. This leaves the low
1296 part. Convert that to integral type. */
1297 const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;
1299 /* Assemble result from the two parts. */
1300 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1301 #elif FLT_MANT_DIG < W_TYPE_SIZE
1302 if (a < 1)
1303 return 0;
1304 if (a < Wtype_MAXp1_F)
1305 return (UWtype)a;
1306 if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
1308 /* Since we know that there are fewer significant bits in the SFmode
1309 quantity than in a word, we know that we can convert out all the
1310 significant bits in one step, and thus avoid losing bits. */
1312 /* ??? This following loop essentially performs frexpf. If we could
1313 use the real libm function, or poke at the actual bits of the fp
1314 format, it would be significantly faster. */
1316 UWtype shift = 0, counter;
1317 SFtype msb;
1319 a /= Wtype_MAXp1_F;
1320 for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
1322 SFtype counterf = (UWtype)1 << counter;
1323 if (a >= counterf)
1325 shift |= counter;
1326 a /= counterf;
1330 /* Rescale into the range of one word, extract the bits of that
1331 one word, and shift the result into position. */
1332 a *= Wtype_MAXp1_F;
1333 counter = a;
1334 return (DWtype)counter << shift;
1336 return -1;
1337 #else
1338 # error
1339 #endif
1341 #endif
1343 #if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
1344 DWtype
1345 __fixsfdi (SFtype a)
1347 if (a < 0)
1348 return - __fixunssfDI (-a);
1349 return __fixunssfDI (a);
1351 #endif
1353 #if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
1354 XFtype
1355 __floatdixf (DWtype u)
1357 #if W_TYPE_SIZE > XF_SIZE
1358 # error
1359 #endif
1360 XFtype d = (Wtype) (u >> W_TYPE_SIZE);
1361 d *= Wtype_MAXp1_F;
1362 d += (UWtype)u;
1363 return d;
1365 #endif
1367 #if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
1368 XFtype
1369 __floatundixf (UDWtype u)
1371 #if W_TYPE_SIZE > XF_SIZE
1372 # error
1373 #endif
1374 XFtype d = (UWtype) (u >> W_TYPE_SIZE);
1375 d *= Wtype_MAXp1_F;
1376 d += (UWtype)u;
1377 return d;
1379 #endif
1381 #if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
1382 TFtype
1383 __floatditf (DWtype u)
1385 #if W_TYPE_SIZE > TF_SIZE
1386 # error
1387 #endif
1388 TFtype d = (Wtype) (u >> W_TYPE_SIZE);
1389 d *= Wtype_MAXp1_F;
1390 d += (UWtype)u;
1391 return d;
1393 #endif
1395 #if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
1396 TFtype
1397 __floatunditf (UDWtype u)
1399 #if W_TYPE_SIZE > TF_SIZE
1400 # error
1401 #endif
1402 TFtype d = (UWtype) (u >> W_TYPE_SIZE);
1403 d *= Wtype_MAXp1_F;
1404 d += (UWtype)u;
1405 return d;
1407 #endif
1409 #if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \
1410 || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
1411 #define DI_SIZE (W_TYPE_SIZE * 2)
1412 #define F_MODE_OK(SIZE) \
1413 (SIZE < DI_SIZE \
1414 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1415 && !AVOID_FP_TYPE_CONVERSION(SIZE))
1416 #if defined(L_floatdisf)
1417 #define FUNC __floatdisf
1418 #define FSTYPE SFtype
1419 #define FSSIZE SF_SIZE
1420 #else
1421 #define FUNC __floatdidf
1422 #define FSTYPE DFtype
1423 #define FSSIZE DF_SIZE
1424 #endif
1426 FSTYPE
1427 FUNC (DWtype u)
1429 #if FSSIZE >= W_TYPE_SIZE
1430 /* When the word size is small, we never get any rounding error. */
1431 FSTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1432 f *= Wtype_MAXp1_F;
1433 f += (UWtype)u;
1434 return f;
1435 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) \
1436 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) \
1437 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1439 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1440 # define FSIZE DF_SIZE
1441 # define FTYPE DFtype
1442 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1443 # define FSIZE XF_SIZE
1444 # define FTYPE XFtype
1445 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1446 # define FSIZE TF_SIZE
1447 # define FTYPE TFtype
1448 #else
1449 # error
1450 #endif
1452 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1454 /* Protect against double-rounding error.
1455 Represent any low-order bits, that might be truncated by a bit that
1456 won't be lost. The bit can go in anywhere below the rounding position
1457 of the FSTYPE. A fixed mask and bit position handles all usual
1458 configurations. */
1459 if (! (- ((DWtype) 1 << FSIZE) < u
1460 && u < ((DWtype) 1 << FSIZE)))
1462 if ((UDWtype) u & (REP_BIT - 1))
1464 u &= ~ (REP_BIT - 1);
1465 u |= REP_BIT;
1469 /* Do the calculation in a wider type so that we don't lose any of
1470 the precision of the high word while multiplying it. */
1471 FTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1472 f *= Wtype_MAXp1_F;
1473 f += (UWtype)u;
1474 return (FSTYPE) f;
1475 #else
1476 #if FSSIZE >= W_TYPE_SIZE - 2
1477 # error
1478 #endif
1479 /* Finally, the word size is larger than the number of bits in the
1480 required FSTYPE, and we've got no suitable wider type. The only
1481 way to avoid double rounding is to special case the
1482 extraction. */
1484 /* If there are no high bits set, fall back to one conversion. */
1485 if ((Wtype)u == u)
1486 return (FSTYPE)(Wtype)u;
1488 /* Otherwise, find the power of two. */
1489 Wtype hi = u >> W_TYPE_SIZE;
1490 if (hi < 0)
1491 hi = -hi;
1493 UWtype count, shift;
1494 count_leading_zeros (count, hi);
1496 /* No leading bits means u == minimum. */
1497 if (count == 0)
1498 return -(Wtype_MAXp1_F * (Wtype_MAXp1_F / 2));
1500 shift = 1 + W_TYPE_SIZE - count;
1502 /* Shift down the most significant bits. */
1503 hi = u >> shift;
1505 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1506 if ((UWtype)u << (W_TYPE_SIZE - shift))
1507 hi |= 1;
1509 /* Convert the one word of data, and rescale. */
1510 FSTYPE f = hi, e;
1511 if (shift == W_TYPE_SIZE)
1512 e = Wtype_MAXp1_F;
1513 /* The following two cases could be merged if we knew that the target
1514 supported a native unsigned->float conversion. More often, we only
1515 have a signed conversion, and have to add extra fixup code. */
1516 else if (shift == W_TYPE_SIZE - 1)
1517 e = Wtype_MAXp1_F / 2;
1518 else
1519 e = (Wtype)1 << shift;
1520 return f * e;
1521 #endif
1523 #endif
1525 #if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \
1526 || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
1527 #define DI_SIZE (W_TYPE_SIZE * 2)
1528 #define F_MODE_OK(SIZE) \
1529 (SIZE < DI_SIZE \
1530 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1531 && !AVOID_FP_TYPE_CONVERSION(SIZE))
1532 #if defined(L_floatundisf)
1533 #define FUNC __floatundisf
1534 #define FSTYPE SFtype
1535 #define FSSIZE SF_SIZE
1536 #else
1537 #define FUNC __floatundidf
1538 #define FSTYPE DFtype
1539 #define FSSIZE DF_SIZE
1540 #endif
1542 FSTYPE
1543 FUNC (UDWtype u)
1545 #if FSSIZE >= W_TYPE_SIZE
1546 /* When the word size is small, we never get any rounding error. */
1547 FSTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1548 f *= Wtype_MAXp1_F;
1549 f += (UWtype)u;
1550 return f;
1551 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) \
1552 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) \
1553 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1555 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1556 # define FSIZE DF_SIZE
1557 # define FTYPE DFtype
1558 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1559 # define FSIZE XF_SIZE
1560 # define FTYPE XFtype
1561 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1562 # define FSIZE TF_SIZE
1563 # define FTYPE TFtype
1564 #else
1565 # error
1566 #endif
1568 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1570 /* Protect against double-rounding error.
1571 Represent any low-order bits, that might be truncated by a bit that
1572 won't be lost. The bit can go in anywhere below the rounding position
1573 of the FSTYPE. A fixed mask and bit position handles all usual
1574 configurations. */
1575 if (u >= ((UDWtype) 1 << FSIZE))
1577 if ((UDWtype) u & (REP_BIT - 1))
1579 u &= ~ (REP_BIT - 1);
1580 u |= REP_BIT;
1584 /* Do the calculation in a wider type so that we don't lose any of
1585 the precision of the high word while multiplying it. */
1586 FTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1587 f *= Wtype_MAXp1_F;
1588 f += (UWtype)u;
1589 return (FSTYPE) f;
1590 #else
1591 #if FSSIZE == W_TYPE_SIZE - 1
1592 # error
1593 #endif
1594 /* Finally, the word size is larger than the number of bits in the
1595 required FSTYPE, and we've got no suitable wider type. The only
1596 way to avoid double rounding is to special case the
1597 extraction. */
1599 /* If there are no high bits set, fall back to one conversion. */
1600 if ((UWtype)u == u)
1601 return (FSTYPE)(UWtype)u;
1603 /* Otherwise, find the power of two. */
1604 UWtype hi = u >> W_TYPE_SIZE;
1606 UWtype count, shift;
1607 count_leading_zeros (count, hi);
1609 shift = W_TYPE_SIZE - count;
1611 /* Shift down the most significant bits. */
1612 hi = u >> shift;
1614 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1615 if ((UWtype)u << (W_TYPE_SIZE - shift))
1616 hi |= 1;
1618 /* Convert the one word of data, and rescale. */
1619 FSTYPE f = hi, e;
1620 if (shift == W_TYPE_SIZE)
1621 e = Wtype_MAXp1_F;
1622 /* The following two cases could be merged if we knew that the target
1623 supported a native unsigned->float conversion. More often, we only
1624 have a signed conversion, and have to add extra fixup code. */
1625 else if (shift == W_TYPE_SIZE - 1)
1626 e = Wtype_MAXp1_F / 2;
1627 else
1628 e = (Wtype)1 << shift;
1629 return f * e;
1630 #endif
1632 #endif
1634 #if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
1635 /* Reenable the normal types, in case limits.h needs them. */
1636 #undef char
1637 #undef short
1638 #undef int
1639 #undef long
1640 #undef unsigned
1641 #undef float
1642 #undef double
1643 #undef MIN
1644 #undef MAX
1645 #include <limits.h>
1647 UWtype
1648 __fixunsxfSI (XFtype a)
1650 if (a >= - (DFtype) Wtype_MIN)
1651 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1652 return (Wtype) a;
1654 #endif
1656 #if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
1657 /* Reenable the normal types, in case limits.h needs them. */
1658 #undef char
1659 #undef short
1660 #undef int
1661 #undef long
1662 #undef unsigned
1663 #undef float
1664 #undef double
1665 #undef MIN
1666 #undef MAX
1667 #include <limits.h>
1669 UWtype
1670 __fixunsdfSI (DFtype a)
1672 if (a >= - (DFtype) Wtype_MIN)
1673 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1674 return (Wtype) a;
1676 #endif
1678 #if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
1679 /* Reenable the normal types, in case limits.h needs them. */
1680 #undef char
1681 #undef short
1682 #undef int
1683 #undef long
1684 #undef unsigned
1685 #undef float
1686 #undef double
1687 #undef MIN
1688 #undef MAX
1689 #include <limits.h>
1691 UWtype
1692 __fixunssfSI (SFtype a)
1694 if (a >= - (SFtype) Wtype_MIN)
1695 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1696 return (Wtype) a;
1698 #endif
1700 /* Integer power helper used from __builtin_powi for non-constant
1701 exponents. */
1703 #if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
1704 || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
1705 || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
1706 || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
1707 # if defined(L_powisf2)
1708 # define TYPE SFtype
1709 # define NAME __powisf2
1710 # elif defined(L_powidf2)
1711 # define TYPE DFtype
1712 # define NAME __powidf2
1713 # elif defined(L_powixf2)
1714 # define TYPE XFtype
1715 # define NAME __powixf2
1716 # elif defined(L_powitf2)
1717 # define TYPE TFtype
1718 # define NAME __powitf2
1719 # endif
1721 #undef int
1722 #undef unsigned
1723 TYPE
1724 NAME (TYPE x, int m)
1726 unsigned int n = m < 0 ? -m : m;
1727 TYPE y = n % 2 ? x : 1;
1728 while (n >>= 1)
1730 x = x * x;
1731 if (n % 2)
1732 y = y * x;
1734 return m < 0 ? 1/y : y;
1737 #endif
1739 #if ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
1740 || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
1741 || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
1742 || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
1744 #undef float
1745 #undef double
1746 #undef long
1748 #if defined(L_mulsc3) || defined(L_divsc3)
1749 # define MTYPE SFtype
1750 # define CTYPE SCtype
1751 # define MODE sc
1752 # define CEXT f
1753 # define NOTRUNC __FLT_EVAL_METHOD__ == 0
1754 #elif defined(L_muldc3) || defined(L_divdc3)
1755 # define MTYPE DFtype
1756 # define CTYPE DCtype
1757 # define MODE dc
1758 # if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64
1759 # define CEXT l
1760 # define NOTRUNC 1
1761 # else
1762 # define CEXT
1763 # define NOTRUNC __FLT_EVAL_METHOD__ == 0 || __FLT_EVAL_METHOD__ == 1
1764 # endif
1765 #elif defined(L_mulxc3) || defined(L_divxc3)
1766 # define MTYPE XFtype
1767 # define CTYPE XCtype
1768 # define MODE xc
1769 # define CEXT l
1770 # define NOTRUNC 1
1771 #elif defined(L_multc3) || defined(L_divtc3)
1772 # define MTYPE TFtype
1773 # define CTYPE TCtype
1774 # define MODE tc
1775 # if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128
1776 # define CEXT l
1777 # else
1778 # define CEXT LIBGCC2_TF_CEXT
1779 # endif
1780 # define NOTRUNC 1
1781 #else
1782 # error
1783 #endif
1785 #define CONCAT3(A,B,C) _CONCAT3(A,B,C)
1786 #define _CONCAT3(A,B,C) A##B##C
1788 #define CONCAT2(A,B) _CONCAT2(A,B)
1789 #define _CONCAT2(A,B) A##B
1791 /* All of these would be present in a full C99 implementation of <math.h>
1792 and <complex.h>. Our problem is that only a few systems have such full
1793 implementations. Further, libgcc_s.so isn't currently linked against
1794 libm.so, and even for systems that do provide full C99, the extra overhead
1795 of all programs using libgcc having to link against libm. So avoid it. */
1797 #define isnan(x) __builtin_expect ((x) != (x), 0)
1798 #define isfinite(x) __builtin_expect (!isnan((x) - (x)), 1)
1799 #define isinf(x) __builtin_expect (!isnan(x) & !isfinite(x), 0)
1801 #define INFINITY CONCAT2(__builtin_huge_val, CEXT) ()
1802 #define I 1i
1804 /* Helpers to make the following code slightly less gross. */
1805 #define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
1806 #define FABS CONCAT2(__builtin_fabs, CEXT)
1808 /* Verify that MTYPE matches up with CEXT. */
1809 extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];
1811 /* Ensure that we've lost any extra precision. */
1812 #if NOTRUNC
1813 # define TRUNC(x)
1814 #else
1815 # define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
1816 #endif
1818 #if defined(L_mulsc3) || defined(L_muldc3) \
1819 || defined(L_mulxc3) || defined(L_multc3)
1821 CTYPE
1822 CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1824 MTYPE ac, bd, ad, bc, x, y;
1825 CTYPE res;
1827 ac = a * c;
1828 bd = b * d;
1829 ad = a * d;
1830 bc = b * c;
1832 TRUNC (ac);
1833 TRUNC (bd);
1834 TRUNC (ad);
1835 TRUNC (bc);
1837 x = ac - bd;
1838 y = ad + bc;
1840 if (isnan (x) && isnan (y))
1842 /* Recover infinities that computed as NaN + iNaN. */
1843 _Bool recalc = 0;
1844 if (isinf (a) || isinf (b))
1846 /* z is infinite. "Box" the infinity and change NaNs in
1847 the other factor to 0. */
1848 a = COPYSIGN (isinf (a) ? 1 : 0, a);
1849 b = COPYSIGN (isinf (b) ? 1 : 0, b);
1850 if (isnan (c)) c = COPYSIGN (0, c);
1851 if (isnan (d)) d = COPYSIGN (0, d);
1852 recalc = 1;
1854 if (isinf (c) || isinf (d))
1856 /* w is infinite. "Box" the infinity and change NaNs in
1857 the other factor to 0. */
1858 c = COPYSIGN (isinf (c) ? 1 : 0, c);
1859 d = COPYSIGN (isinf (d) ? 1 : 0, d);
1860 if (isnan (a)) a = COPYSIGN (0, a);
1861 if (isnan (b)) b = COPYSIGN (0, b);
1862 recalc = 1;
1864 if (!recalc
1865 && (isinf (ac) || isinf (bd)
1866 || isinf (ad) || isinf (bc)))
1868 /* Recover infinities from overflow by changing NaNs to 0. */
1869 if (isnan (a)) a = COPYSIGN (0, a);
1870 if (isnan (b)) b = COPYSIGN (0, b);
1871 if (isnan (c)) c = COPYSIGN (0, c);
1872 if (isnan (d)) d = COPYSIGN (0, d);
1873 recalc = 1;
1875 if (recalc)
1877 x = INFINITY * (a * c - b * d);
1878 y = INFINITY * (a * d + b * c);
1882 __real__ res = x;
1883 __imag__ res = y;
1884 return res;
1886 #endif /* complex multiply */
1888 #if defined(L_divsc3) || defined(L_divdc3) \
1889 || defined(L_divxc3) || defined(L_divtc3)
1891 CTYPE
1892 CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1894 MTYPE denom, ratio, x, y;
1895 CTYPE res;
1897 /* ??? We can get better behavior from logarithmic scaling instead of
1898 the division. But that would mean starting to link libgcc against
1899 libm. We could implement something akin to ldexp/frexp as gcc builtins
1900 fairly easily... */
1901 if (FABS (c) < FABS (d))
1903 ratio = c / d;
1904 denom = (c * ratio) + d;
1905 x = ((a * ratio) + b) / denom;
1906 y = ((b * ratio) - a) / denom;
1908 else
1910 ratio = d / c;
1911 denom = (d * ratio) + c;
1912 x = ((b * ratio) + a) / denom;
1913 y = (b - (a * ratio)) / denom;
1916 /* Recover infinities and zeros that computed as NaN+iNaN; the only cases
1917 are nonzero/zero, infinite/finite, and finite/infinite. */
1918 if (isnan (x) && isnan (y))
1920 if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b)))
1922 x = COPYSIGN (INFINITY, c) * a;
1923 y = COPYSIGN (INFINITY, c) * b;
1925 else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
1927 a = COPYSIGN (isinf (a) ? 1 : 0, a);
1928 b = COPYSIGN (isinf (b) ? 1 : 0, b);
1929 x = INFINITY * (a * c + b * d);
1930 y = INFINITY * (b * c - a * d);
1932 else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
1934 c = COPYSIGN (isinf (c) ? 1 : 0, c);
1935 d = COPYSIGN (isinf (d) ? 1 : 0, d);
1936 x = 0.0 * (a * c + b * d);
1937 y = 0.0 * (b * c - a * d);
1941 __real__ res = x;
1942 __imag__ res = y;
1943 return res;
1945 #endif /* complex divide */
1947 #endif /* all complex float routines */
1949 /* From here on down, the routines use normal data types. */
1951 #define SItype bogus_type
1952 #define USItype bogus_type
1953 #define DItype bogus_type
1954 #define UDItype bogus_type
1955 #define SFtype bogus_type
1956 #define DFtype bogus_type
1957 #undef Wtype
1958 #undef UWtype
1959 #undef HWtype
1960 #undef UHWtype
1961 #undef DWtype
1962 #undef UDWtype
1964 #undef char
1965 #undef short
1966 #undef int
1967 #undef long
1968 #undef unsigned
1969 #undef float
1970 #undef double
1972 #ifdef L__gcc_bcmp
1974 /* Like bcmp except the sign is meaningful.
1975 Result is negative if S1 is less than S2,
1976 positive if S1 is greater, 0 if S1 and S2 are equal. */
1979 __gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
1981 while (size > 0)
1983 const unsigned char c1 = *s1++, c2 = *s2++;
1984 if (c1 != c2)
1985 return c1 - c2;
1986 size--;
1988 return 0;
1991 #endif
1993 /* __eprintf used to be used by GCC's private version of <assert.h>.
1994 We no longer provide that header, but this routine remains in libgcc.a
1995 for binary backward compatibility. Note that it is not included in
1996 the shared version of libgcc. */
1997 #ifdef L_eprintf
1998 #ifndef inhibit_libc
2000 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
2001 #include <stdio.h>
2003 void
2004 __eprintf (const char *string, const char *expression,
2005 unsigned int line, const char *filename)
2007 fprintf (stderr, string, expression, line, filename);
2008 fflush (stderr);
2009 abort ();
2012 #endif
2013 #endif
2016 #ifdef L_clear_cache
2017 /* Clear part of an instruction cache. */
2019 void
2020 __clear_cache (char *beg __attribute__((__unused__)),
2021 char *end __attribute__((__unused__)))
2023 #ifdef CLEAR_INSN_CACHE
2024 CLEAR_INSN_CACHE (beg, end);
2025 #endif /* CLEAR_INSN_CACHE */
2028 #endif /* L_clear_cache */
2030 #ifdef L_enable_execute_stack
2031 /* Attempt to turn on execute permission for the stack. */
2033 #ifdef ENABLE_EXECUTE_STACK
2034 ENABLE_EXECUTE_STACK
2035 #else
2036 void
2037 __enable_execute_stack (void *addr __attribute__((__unused__)))
2039 #endif /* ENABLE_EXECUTE_STACK */
2041 #endif /* L_enable_execute_stack */
2043 #ifdef L_trampoline
2045 /* Jump to a trampoline, loading the static chain address. */
2047 #if defined(WINNT) && ! defined(__CYGWIN__)
2048 int getpagesize (void);
2049 int mprotect (char *,int, int);
2052 getpagesize (void)
2054 #ifdef _ALPHA_
2055 return 8192;
2056 #else
2057 return 4096;
2058 #endif
2062 mprotect (char *addr, int len, int prot)
2064 DWORD np, op;
2066 if (prot == 7)
2067 np = 0x40;
2068 else if (prot == 5)
2069 np = 0x20;
2070 else if (prot == 4)
2071 np = 0x10;
2072 else if (prot == 3)
2073 np = 0x04;
2074 else if (prot == 1)
2075 np = 0x02;
2076 else if (prot == 0)
2077 np = 0x01;
2078 else
2079 return -1;
2081 if (VirtualProtect (addr, len, np, &op))
2082 return 0;
2083 else
2084 return -1;
2087 #endif /* WINNT && ! __CYGWIN__ */
2089 #ifdef TRANSFER_FROM_TRAMPOLINE
2090 TRANSFER_FROM_TRAMPOLINE
2091 #endif
2092 #endif /* L_trampoline */
2094 #ifndef __CYGWIN__
2095 #ifdef L__main
2097 #include "gbl-ctors.h"
2099 /* Some systems use __main in a way incompatible with its use in gcc, in these
2100 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
2101 give the same symbol without quotes for an alternative entry point. You
2102 must define both, or neither. */
2103 #ifndef NAME__MAIN
2104 #define NAME__MAIN "__main"
2105 #define SYMBOL__MAIN __main
2106 #endif
2108 #if defined (INIT_SECTION_ASM_OP) || defined (INIT_ARRAY_SECTION_ASM_OP)
2109 #undef HAS_INIT_SECTION
2110 #define HAS_INIT_SECTION
2111 #endif
2113 #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
2115 /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
2116 code to run constructors. In that case, we need to handle EH here, too. */
2118 #ifdef EH_FRAME_SECTION_NAME
2119 #include "unwind-dw2-fde.h"
2120 extern unsigned char __EH_FRAME_BEGIN__[];
2121 #endif
2123 /* Run all the global destructors on exit from the program. */
2125 void
2126 __do_global_dtors (void)
2128 #ifdef DO_GLOBAL_DTORS_BODY
2129 DO_GLOBAL_DTORS_BODY;
2130 #else
2131 static func_ptr *p = __DTOR_LIST__ + 1;
2132 while (*p)
2134 p++;
2135 (*(p-1)) ();
2137 #endif
2138 #if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION)
2140 static int completed = 0;
2141 if (! completed)
2143 completed = 1;
2144 __deregister_frame_info (__EH_FRAME_BEGIN__);
2147 #endif
2149 #endif
2151 #ifndef HAS_INIT_SECTION
2152 /* Run all the global constructors on entry to the program. */
2154 void
2155 __do_global_ctors (void)
2157 #ifdef EH_FRAME_SECTION_NAME
2159 static struct object object;
2160 __register_frame_info (__EH_FRAME_BEGIN__, &object);
2162 #endif
2163 DO_GLOBAL_CTORS_BODY;
2164 atexit (__do_global_dtors);
2166 #endif /* no HAS_INIT_SECTION */
2168 #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
2169 /* Subroutine called automatically by `main'.
2170 Compiling a global function named `main'
2171 produces an automatic call to this function at the beginning.
2173 For many systems, this routine calls __do_global_ctors.
2174 For systems which support a .init section we use the .init section
2175 to run __do_global_ctors, so we need not do anything here. */
2177 extern void SYMBOL__MAIN (void);
2178 void
2179 SYMBOL__MAIN (void)
2181 /* Support recursive calls to `main': run initializers just once. */
2182 static int initialized;
2183 if (! initialized)
2185 initialized = 1;
2186 __do_global_ctors ();
2189 #endif /* no HAS_INIT_SECTION or INVOKE__main */
2191 #endif /* L__main */
2192 #endif /* __CYGWIN__ */
2194 #ifdef L_ctors
2196 #include "gbl-ctors.h"
2198 /* Provide default definitions for the lists of constructors and
2199 destructors, so that we don't get linker errors. These symbols are
2200 intentionally bss symbols, so that gld and/or collect will provide
2201 the right values. */
2203 /* We declare the lists here with two elements each,
2204 so that they are valid empty lists if no other definition is loaded.
2206 If we are using the old "set" extensions to have the gnu linker
2207 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
2208 must be in the bss/common section.
2210 Long term no port should use those extensions. But many still do. */
2211 #if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY)
2212 #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
2213 func_ptr __CTOR_LIST__[2] = {0, 0};
2214 func_ptr __DTOR_LIST__[2] = {0, 0};
2215 #else
2216 func_ptr __CTOR_LIST__[2];
2217 func_ptr __DTOR_LIST__[2];
2218 #endif
2219 #endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
2220 #endif /* L_ctors */
2221 #endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */