IVOPT performance tuning patch. The main problem is a variant of maximal weight
[official-gcc.git] / gcc / graphite-clast-to-gimple.c
blobb6b8d3134b12b939fcf270a251d78e5e46e50283
1 /* Translation of CLAST (CLooG AST) to Gimple.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "basic-block.h"
29 #include "diagnostic.h"
30 #include "tree-flow.h"
31 #include "toplev.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "cfgloop.h"
35 #include "tree-chrec.h"
36 #include "tree-data-ref.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-pass.h"
39 #include "domwalk.h"
40 #include "value-prof.h"
41 #include "pointer-set.h"
42 #include "gimple.h"
43 #include "langhooks.h"
44 #include "sese.h"
46 #ifdef HAVE_cloog
47 #include "cloog/cloog.h"
48 #include "ppl_c.h"
49 #include "graphite-ppl.h"
50 #include "graphite.h"
51 #include "graphite-poly.h"
52 #include "graphite-scop-detection.h"
53 #include "graphite-clast-to-gimple.h"
54 #include "graphite-dependences.h"
56 /* This flag is set when an error occurred during the translation of
57 CLAST to Gimple. */
58 static bool gloog_error;
60 /* Verifies properties that GRAPHITE should maintain during translation. */
62 static inline void
63 graphite_verify (void)
65 #ifdef ENABLE_CHECKING
66 verify_loop_structure ();
67 verify_dominators (CDI_DOMINATORS);
68 verify_dominators (CDI_POST_DOMINATORS);
69 verify_loop_closed_ssa (true);
70 #endif
73 /* Stores the INDEX in a vector for a given clast NAME. */
75 typedef struct clast_name_index {
76 int index;
77 const char *name;
78 } *clast_name_index_p;
80 /* Returns a pointer to a new element of type clast_name_index_p built
81 from NAME and INDEX. */
83 static inline clast_name_index_p
84 new_clast_name_index (const char *name, int index)
86 clast_name_index_p res = XNEW (struct clast_name_index);
88 res->name = name;
89 res->index = index;
90 return res;
93 /* For a given clast NAME, returns -1 if it does not correspond to any
94 parameter, or otherwise, returns the index in the PARAMS or
95 SCATTERING_DIMENSIONS vector. */
97 static inline int
98 clast_name_to_index (const char *name, htab_t index_table)
100 struct clast_name_index tmp;
101 PTR *slot;
103 tmp.name = name;
104 slot = htab_find_slot (index_table, &tmp, NO_INSERT);
106 if (slot && *slot)
107 return ((struct clast_name_index *) *slot)->index;
109 return -1;
112 /* Records in INDEX_TABLE the INDEX for NAME. */
114 static inline void
115 save_clast_name_index (htab_t index_table, const char *name, int index)
117 struct clast_name_index tmp;
118 PTR *slot;
120 tmp.name = name;
121 slot = htab_find_slot (index_table, &tmp, INSERT);
123 if (slot)
125 if (*slot)
126 free (*slot);
128 *slot = new_clast_name_index (name, index);
132 /* Print to stderr the element ELT. */
134 static inline void
135 debug_clast_name_index (clast_name_index_p elt)
137 fprintf (stderr, "(index = %d, name = %s)\n", elt->index, elt->name);
140 /* Helper function for debug_rename_map. */
142 static inline int
143 debug_clast_name_indexes_1 (void **slot, void *s ATTRIBUTE_UNUSED)
145 struct clast_name_index *entry = (struct clast_name_index *) *slot;
146 debug_clast_name_index (entry);
147 return 1;
150 /* Print to stderr all the elements of MAP. */
152 DEBUG_FUNCTION void
153 debug_clast_name_indexes (htab_t map)
155 htab_traverse (map, debug_clast_name_indexes_1, NULL);
158 /* Computes a hash function for database element ELT. */
160 static inline hashval_t
161 clast_name_index_elt_info (const void *elt)
163 return htab_hash_pointer (((const struct clast_name_index *) elt)->name);
166 /* Compares database elements E1 and E2. */
168 static inline int
169 eq_clast_name_indexes (const void *e1, const void *e2)
171 const struct clast_name_index *elt1 = (const struct clast_name_index *) e1;
172 const struct clast_name_index *elt2 = (const struct clast_name_index *) e2;
174 return (elt1->name == elt2->name);
178 /* For a given loop DEPTH in the loop nest of the original black box
179 PBB, return the old induction variable associated to that loop. */
181 static inline tree
182 pbb_to_depth_to_oldiv (poly_bb_p pbb, int depth)
184 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
185 sese region = SCOP_REGION (PBB_SCOP (pbb));
186 loop_p loop = gbb_loop_at_index (gbb, region, depth);
188 return loop->single_iv;
191 /* For a given scattering dimension, return the new induction variable
192 associated to it. */
194 static inline tree
195 newivs_to_depth_to_newiv (VEC (tree, heap) *newivs, int depth)
197 return VEC_index (tree, newivs, depth);
202 /* Returns the tree variable from the name NAME that was given in
203 Cloog representation. */
205 static tree
206 clast_name_to_gcc (const char *name, sese region, VEC (tree, heap) *newivs,
207 htab_t newivs_index, htab_t params_index)
209 int index;
210 VEC (tree, heap) *params = SESE_PARAMS (region);
212 if (params && params_index)
214 index = clast_name_to_index (name, params_index);
216 if (index >= 0)
217 return VEC_index (tree, params, index);
220 gcc_assert (newivs && newivs_index);
221 index = clast_name_to_index (name, newivs_index);
222 gcc_assert (index >= 0);
224 return newivs_to_depth_to_newiv (newivs, index);
227 /* Returns the signed maximal precision type for expressions TYPE1 and TYPE2. */
229 static tree
230 max_signed_precision_type (tree type1, tree type2)
232 int p1 = TYPE_PRECISION (type1);
233 int p2 = TYPE_PRECISION (type2);
234 int precision;
235 tree type;
237 if (p1 > p2)
238 precision = TYPE_UNSIGNED (type1) ? p1 * 2 : p1;
239 else
240 precision = TYPE_UNSIGNED (type2) ? p2 * 2 : p2;
242 type = lang_hooks.types.type_for_size (precision, false);
244 if (!type)
246 gloog_error = true;
247 return integer_type_node;
249 return type;
252 /* Returns the maximal precision type for expressions TYPE1 and TYPE2. */
254 static tree
255 max_precision_type (tree type1, tree type2)
257 if (POINTER_TYPE_P (type1))
258 return type1;
260 if (POINTER_TYPE_P (type2))
261 return type2;
263 if (!TYPE_UNSIGNED (type1)
264 || !TYPE_UNSIGNED (type2))
265 return max_signed_precision_type (type1, type2);
267 return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2;
270 static tree
271 clast_to_gcc_expression (tree, struct clast_expr *, sese, VEC (tree, heap) *,
272 htab_t, htab_t);
274 /* Converts a Cloog reduction expression R with reduction operation OP
275 to a GCC expression tree of type TYPE. */
277 static tree
278 clast_to_gcc_expression_red (tree type, enum tree_code op,
279 struct clast_reduction *r,
280 sese region, VEC (tree, heap) *newivs,
281 htab_t newivs_index, htab_t params_index)
283 int i;
284 tree res = clast_to_gcc_expression (type, r->elts[0], region, newivs,
285 newivs_index, params_index);
286 tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type;
288 for (i = 1; i < r->n; i++)
290 tree t = clast_to_gcc_expression (operand_type, r->elts[i], region,
291 newivs, newivs_index, params_index);
292 res = fold_build2 (op, type, res, t);
295 return res;
298 /* Converts a Cloog AST expression E back to a GCC expression tree of
299 type TYPE. */
301 static tree
302 clast_to_gcc_expression (tree type, struct clast_expr *e,
303 sese region, VEC (tree, heap) *newivs,
304 htab_t newivs_index, htab_t params_index)
306 switch (e->type)
308 case expr_term:
310 struct clast_term *t = (struct clast_term *) e;
312 if (t->var)
314 if (mpz_cmp_si (t->val, 1) == 0)
316 tree name = clast_name_to_gcc (t->var, region, newivs,
317 newivs_index, params_index);
319 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
320 name = fold_convert (sizetype, name);
322 name = fold_convert (type, name);
323 return name;
326 else if (mpz_cmp_si (t->val, -1) == 0)
328 tree name = clast_name_to_gcc (t->var, region, newivs,
329 newivs_index, params_index);
331 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
332 name = fold_convert (sizetype, name);
334 name = fold_convert (type, name);
336 return fold_build1 (NEGATE_EXPR, type, name);
338 else
340 tree name = clast_name_to_gcc (t->var, region, newivs,
341 newivs_index, params_index);
342 tree cst = gmp_cst_to_tree (type, t->val);
344 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
345 name = fold_convert (sizetype, name);
347 name = fold_convert (type, name);
349 if (!POINTER_TYPE_P (type))
350 return fold_build2 (MULT_EXPR, type, cst, name);
352 gloog_error = true;
353 return cst;
356 else
357 return gmp_cst_to_tree (type, t->val);
360 case expr_red:
362 struct clast_reduction *r = (struct clast_reduction *) e;
364 switch (r->type)
366 case clast_red_sum:
367 return clast_to_gcc_expression_red
368 (type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR,
369 r, region, newivs, newivs_index, params_index);
371 case clast_red_min:
372 return clast_to_gcc_expression_red (type, MIN_EXPR, r, region,
373 newivs, newivs_index,
374 params_index);
376 case clast_red_max:
377 return clast_to_gcc_expression_red (type, MAX_EXPR, r, region,
378 newivs, newivs_index,
379 params_index);
381 default:
382 gcc_unreachable ();
384 break;
387 case expr_bin:
389 struct clast_binary *b = (struct clast_binary *) e;
390 struct clast_expr *lhs = (struct clast_expr *) b->LHS;
391 tree tl = clast_to_gcc_expression (type, lhs, region, newivs,
392 newivs_index, params_index);
393 tree tr = gmp_cst_to_tree (type, b->RHS);
395 switch (b->type)
397 case clast_bin_fdiv:
398 return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr);
400 case clast_bin_cdiv:
401 return fold_build2 (CEIL_DIV_EXPR, type, tl, tr);
403 case clast_bin_div:
404 return fold_build2 (EXACT_DIV_EXPR, type, tl, tr);
406 case clast_bin_mod:
407 return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr);
409 default:
410 gcc_unreachable ();
414 default:
415 gcc_unreachable ();
418 return NULL_TREE;
421 /* Return the precision needed to represent the value VAL. */
423 static int
424 precision_for_value (mpz_t val)
426 mpz_t x, y, two;
427 int precision;
429 value_init (x);
430 value_init (y);
431 value_init (two);
432 value_set_si (x, 2);
433 value_assign (y, val);
434 value_set_si (two, 2);
435 precision = 1;
437 if (value_neg_p (y))
438 value_oppose (y, y);
440 while (value_gt (y, x))
442 value_multiply (x, x, two);
443 precision++;
446 value_clear (x);
447 value_clear (y);
448 value_clear (two);
450 return precision;
453 /* Return the precision needed to represent the values between LOW and
454 UP. */
456 static int
457 precision_for_interval (mpz_t low, mpz_t up)
459 mpz_t diff;
460 int precision;
462 gcc_assert (value_le (low, up));
464 value_init (diff);
465 value_subtract (diff, up, low);
466 precision = precision_for_value (diff);
467 value_clear (diff);
469 return precision;
472 /* Return a type that could represent the integer value VAL. */
474 static tree
475 gcc_type_for_interval (mpz_t low, mpz_t up)
477 bool unsigned_p = true;
478 int precision, prec_up, prec_int;
479 tree type;
480 enum machine_mode mode;
482 gcc_assert (value_le (low, up));
484 if (value_neg_p (low))
485 unsigned_p = false;
487 prec_up = precision_for_value (up);
488 prec_int = precision_for_interval (low, up);
489 precision = MAX (prec_up, prec_int);
491 if (precision > BITS_PER_WORD)
493 gloog_error = true;
494 return integer_type_node;
497 mode = smallest_mode_for_size (precision, MODE_INT);
498 precision = GET_MODE_PRECISION (mode);
499 type = build_nonstandard_integer_type (precision, unsigned_p);
501 if (!type)
503 gloog_error = true;
504 return integer_type_node;
507 return type;
510 /* Return a type that could represent the integer value VAL, or
511 otherwise return NULL_TREE. */
513 static tree
514 gcc_type_for_value (mpz_t val)
516 return gcc_type_for_interval (val, val);
519 /* Return the type for the clast_term T used in STMT. */
521 static tree
522 gcc_type_for_clast_term (struct clast_term *t,
523 sese region, VEC (tree, heap) *newivs,
524 htab_t newivs_index, htab_t params_index)
526 gcc_assert (t->expr.type == expr_term);
528 if (!t->var)
529 return gcc_type_for_value (t->val);
531 return TREE_TYPE (clast_name_to_gcc (t->var, region, newivs,
532 newivs_index, params_index));
535 static tree
536 gcc_type_for_clast_expr (struct clast_expr *, sese,
537 VEC (tree, heap) *, htab_t, htab_t);
539 /* Return the type for the clast_reduction R used in STMT. */
541 static tree
542 gcc_type_for_clast_red (struct clast_reduction *r, sese region,
543 VEC (tree, heap) *newivs,
544 htab_t newivs_index, htab_t params_index)
546 int i;
547 tree type = NULL_TREE;
549 if (r->n == 1)
550 return gcc_type_for_clast_expr (r->elts[0], region, newivs,
551 newivs_index, params_index);
553 switch (r->type)
555 case clast_red_sum:
556 case clast_red_min:
557 case clast_red_max:
558 type = gcc_type_for_clast_expr (r->elts[0], region, newivs,
559 newivs_index, params_index);
560 for (i = 1; i < r->n; i++)
561 type = max_precision_type (type, gcc_type_for_clast_expr
562 (r->elts[i], region, newivs,
563 newivs_index, params_index));
565 return type;
567 default:
568 break;
571 gcc_unreachable ();
572 return NULL_TREE;
575 /* Return the type for the clast_binary B used in STMT. */
577 static tree
578 gcc_type_for_clast_bin (struct clast_binary *b,
579 sese region, VEC (tree, heap) *newivs,
580 htab_t newivs_index, htab_t params_index)
582 tree l = gcc_type_for_clast_expr ((struct clast_expr *) b->LHS, region,
583 newivs, newivs_index, params_index);
584 tree r = gcc_type_for_value (b->RHS);
585 return max_signed_precision_type (l, r);
588 /* Returns the type for the CLAST expression E when used in statement
589 STMT. */
591 static tree
592 gcc_type_for_clast_expr (struct clast_expr *e,
593 sese region, VEC (tree, heap) *newivs,
594 htab_t newivs_index, htab_t params_index)
596 switch (e->type)
598 case expr_term:
599 return gcc_type_for_clast_term ((struct clast_term *) e, region,
600 newivs, newivs_index, params_index);
602 case expr_red:
603 return gcc_type_for_clast_red ((struct clast_reduction *) e, region,
604 newivs, newivs_index, params_index);
606 case expr_bin:
607 return gcc_type_for_clast_bin ((struct clast_binary *) e, region,
608 newivs, newivs_index, params_index);
610 default:
611 gcc_unreachable ();
614 return NULL_TREE;
617 /* Returns the type for the equation CLEQ. */
619 static tree
620 gcc_type_for_clast_eq (struct clast_equation *cleq,
621 sese region, VEC (tree, heap) *newivs,
622 htab_t newivs_index, htab_t params_index)
624 tree l = gcc_type_for_clast_expr (cleq->LHS, region, newivs,
625 newivs_index, params_index);
626 tree r = gcc_type_for_clast_expr (cleq->RHS, region, newivs,
627 newivs_index, params_index);
628 return max_precision_type (l, r);
631 /* Translates a clast equation CLEQ to a tree. */
633 static tree
634 graphite_translate_clast_equation (sese region,
635 struct clast_equation *cleq,
636 VEC (tree, heap) *newivs,
637 htab_t newivs_index, htab_t params_index)
639 enum tree_code comp;
640 tree type = gcc_type_for_clast_eq (cleq, region, newivs, newivs_index,
641 params_index);
642 tree lhs = clast_to_gcc_expression (type, cleq->LHS, region, newivs,
643 newivs_index, params_index);
644 tree rhs = clast_to_gcc_expression (type, cleq->RHS, region, newivs,
645 newivs_index, params_index);
647 if (cleq->sign == 0)
648 comp = EQ_EXPR;
650 else if (cleq->sign > 0)
651 comp = GE_EXPR;
653 else
654 comp = LE_EXPR;
656 return fold_build2 (comp, boolean_type_node, lhs, rhs);
659 /* Creates the test for the condition in STMT. */
661 static tree
662 graphite_create_guard_cond_expr (sese region, struct clast_guard *stmt,
663 VEC (tree, heap) *newivs,
664 htab_t newivs_index, htab_t params_index)
666 tree cond = NULL;
667 int i;
669 for (i = 0; i < stmt->n; i++)
671 tree eq = graphite_translate_clast_equation (region, &stmt->eq[i],
672 newivs, newivs_index,
673 params_index);
675 if (cond)
676 cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq);
677 else
678 cond = eq;
681 return cond;
684 /* Creates a new if region corresponding to Cloog's guard. */
686 static edge
687 graphite_create_new_guard (sese region, edge entry_edge,
688 struct clast_guard *stmt,
689 VEC (tree, heap) *newivs,
690 htab_t newivs_index, htab_t params_index)
692 tree cond_expr = graphite_create_guard_cond_expr (region, stmt, newivs,
693 newivs_index, params_index);
694 edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
695 return exit_edge;
698 /* Compute the lower bound LOW and upper bound UP for the induction
699 variable at LEVEL for the statement PBB, based on the transformed
700 scattering of PBB: T|I|G|Cst, with T the scattering transform, I
701 the iteration domain, and G the context parameters. */
703 static void
704 compute_bounds_for_level (poly_bb_p pbb, int level, mpz_t low, mpz_t up)
706 ppl_Pointset_Powerset_C_Polyhedron_t ps;
707 ppl_Linear_Expression_t le;
709 combine_context_id_scat (&ps, pbb, false);
711 /* Prepare the linear expression corresponding to the level that we
712 want to maximize/minimize. */
714 ppl_dimension_type dim = pbb_nb_scattering_transform (pbb)
715 + pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
717 ppl_new_Linear_Expression_with_dimension (&le, dim);
718 ppl_set_coef (le, 2 * level + 1, 1);
721 ppl_max_for_le_pointset (ps, le, up);
722 ppl_min_for_le_pointset (ps, le, low);
725 /* Compute the type for the induction variable at LEVEL for the
726 statement PBB, based on the transformed schedule of PBB. */
728 static tree
729 compute_type_for_level (poly_bb_p pbb, int level)
731 mpz_t low, up;
732 tree type;
734 value_init (low);
735 value_init (up);
737 compute_bounds_for_level (pbb, level, low, up);
738 type = gcc_type_for_interval (low, up);
740 value_clear (low);
741 value_clear (up);
742 return type;
745 /* Walks a CLAST and returns the first statement in the body of a
746 loop. */
748 static struct clast_user_stmt *
749 clast_get_body_of_loop (struct clast_stmt *stmt)
751 if (!stmt
752 || CLAST_STMT_IS_A (stmt, stmt_user))
753 return (struct clast_user_stmt *) stmt;
755 if (CLAST_STMT_IS_A (stmt, stmt_for))
756 return clast_get_body_of_loop (((struct clast_for *) stmt)->body);
758 if (CLAST_STMT_IS_A (stmt, stmt_guard))
759 return clast_get_body_of_loop (((struct clast_guard *) stmt)->then);
761 if (CLAST_STMT_IS_A (stmt, stmt_block))
762 return clast_get_body_of_loop (((struct clast_block *) stmt)->body);
764 gcc_unreachable ();
767 /* Returns the type for the induction variable for the loop translated
768 from STMT_FOR. */
770 static tree
771 gcc_type_for_iv_of_clast_loop (struct clast_for *stmt_for, int level,
772 tree lb_type, tree ub_type)
774 struct clast_stmt *stmt = (struct clast_stmt *) stmt_for;
775 struct clast_user_stmt *body = clast_get_body_of_loop (stmt);
776 CloogStatement *cs = body->statement;
777 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
779 return max_signed_precision_type (lb_type, max_precision_type
780 (ub_type, compute_type_for_level
781 (pbb, level - 1)));
784 /* Creates a new LOOP corresponding to Cloog's STMT. Inserts an
785 induction variable for the new LOOP. New LOOP is attached to CFG
786 starting at ENTRY_EDGE. LOOP is inserted into the loop tree and
787 becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds
788 CLooG's scattering name to the induction variable created for the
789 loop of STMT. The new induction variable is inserted in the NEWIVS
790 vector. */
792 static struct loop *
793 graphite_create_new_loop (sese region, edge entry_edge,
794 struct clast_for *stmt,
795 loop_p outer, VEC (tree, heap) **newivs,
796 htab_t newivs_index, htab_t params_index, int level)
798 tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, *newivs,
799 newivs_index, params_index);
800 tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, *newivs,
801 newivs_index, params_index);
802 tree type = gcc_type_for_iv_of_clast_loop (stmt, level, lb_type, ub_type);
803 tree lb = clast_to_gcc_expression (type, stmt->LB, region, *newivs,
804 newivs_index, params_index);
805 tree ub = clast_to_gcc_expression (type, stmt->UB, region, *newivs,
806 newivs_index, params_index);
807 tree stride = gmp_cst_to_tree (type, stmt->stride);
808 tree ivvar = create_tmp_var (type, "graphite_IV");
809 tree iv, iv_after_increment;
810 loop_p loop = create_empty_loop_on_edge
811 (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
812 outer ? outer : entry_edge->src->loop_father);
814 add_referenced_var (ivvar);
816 save_clast_name_index (newivs_index, stmt->iterator,
817 VEC_length (tree, *newivs));
818 VEC_safe_push (tree, heap, *newivs, iv);
819 return loop;
822 /* Inserts in MAP a tuple (OLD_NAME, NEW_NAME) for the induction
823 variables of the loops around GBB in SESE. */
825 static void
826 build_iv_mapping (htab_t map, sese region,
827 VEC (tree, heap) *newivs, htab_t newivs_index,
828 struct clast_user_stmt *user_stmt,
829 htab_t params_index)
831 struct clast_stmt *t;
832 int index = 0;
833 CloogStatement *cs = user_stmt->statement;
834 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
836 for (t = user_stmt->substitutions; t; t = t->next, index++)
838 struct clast_expr *expr = (struct clast_expr *)
839 ((struct clast_assignment *)t)->RHS;
840 tree type = gcc_type_for_clast_expr (expr, region, newivs,
841 newivs_index, params_index);
842 tree old_name = pbb_to_depth_to_oldiv (pbb, index);
843 tree e = clast_to_gcc_expression (type, expr, region, newivs,
844 newivs_index, params_index);
845 set_rename (map, old_name, e);
849 /* Helper function for htab_traverse. */
851 static int
852 copy_renames (void **slot, void *s)
854 struct rename_map_elt_s *entry = (struct rename_map_elt_s *) *slot;
855 htab_t res = (htab_t) s;
856 tree old_name = entry->old_name;
857 tree expr = entry->expr;
858 struct rename_map_elt_s tmp;
859 PTR *x;
861 tmp.old_name = old_name;
862 x = htab_find_slot (res, &tmp, INSERT);
864 if (x && !*x)
865 *x = new_rename_map_elt (old_name, expr);
867 return 1;
870 /* Construct bb_pbb_def with BB and PBB. */
872 static bb_pbb_def *
873 new_bb_pbb_def (basic_block bb, poly_bb_p pbb)
875 bb_pbb_def *bb_pbb_p;
877 bb_pbb_p = XNEW (bb_pbb_def);
878 bb_pbb_p->bb = bb;
879 bb_pbb_p->pbb = pbb;
881 return bb_pbb_p;
884 /* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */
886 static void
887 mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, htab_t bb_pbb_mapping)
889 bb_pbb_def tmp;
890 PTR *x;
892 tmp.bb = bb;
893 x = htab_find_slot (bb_pbb_mapping, &tmp, INSERT);
895 if (x && !*x)
896 *x = new_bb_pbb_def (bb, pbb);
899 /* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */
901 static poly_bb_p
902 find_pbb_via_hash (htab_t bb_pbb_mapping, basic_block bb)
904 bb_pbb_def tmp;
905 PTR *slot;
907 tmp.bb = bb;
908 slot = htab_find_slot (bb_pbb_mapping, &tmp, NO_INSERT);
910 if (slot && *slot)
911 return ((bb_pbb_def *) *slot)->pbb;
913 return NULL;
916 /* Check data dependency in LOOP at scattering level LEVEL.
917 BB_PBB_MAPPING is a basic_block and it's related poly_bb_p
918 mapping. */
920 static bool
921 dependency_in_loop_p (loop_p loop, htab_t bb_pbb_mapping, int level)
923 unsigned i,j;
924 basic_block *bbs = get_loop_body_in_dom_order (loop);
926 for (i = 0; i < loop->num_nodes; i++)
928 poly_bb_p pbb1 = find_pbb_via_hash (bb_pbb_mapping, bbs[i]);
930 if (pbb1 == NULL)
931 continue;
933 for (j = 0; j < loop->num_nodes; j++)
935 poly_bb_p pbb2 = find_pbb_via_hash (bb_pbb_mapping, bbs[j]);
937 if (pbb2 == NULL)
938 continue;
940 if (dependency_between_pbbs_p (pbb1, pbb2, level))
942 free (bbs);
943 return true;
948 free (bbs);
950 return false;
953 static edge
954 translate_clast (sese, loop_p, struct clast_stmt *, edge, htab_t,
955 VEC (tree, heap) **, htab_t, htab_t, int, htab_t);
957 /* Translates a clast user statement STMT to gimple.
959 - REGION is the sese region we used to generate the scop.
960 - NEXT_E is the edge where new generated code should be attached.
961 - CONTEXT_LOOP is the loop in which the generated code will be placed
962 - RENAME_MAP contains a set of tuples of new names associated to
963 the original variables names.
964 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
965 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
966 the sese region. */
967 static edge
968 translate_clast_user (sese region, struct clast_user_stmt *stmt, edge next_e,
969 htab_t rename_map, VEC (tree, heap) **newivs,
970 htab_t newivs_index, htab_t bb_pbb_mapping,
971 htab_t params_index)
973 gimple_bb_p gbb;
974 basic_block new_bb;
975 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (stmt->statement);
976 gbb = PBB_BLACK_BOX (pbb);
978 if (GBB_BB (gbb) == ENTRY_BLOCK_PTR)
979 return next_e;
981 build_iv_mapping (rename_map, region, *newivs, newivs_index, stmt,
982 params_index);
983 next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), region,
984 next_e, rename_map);
985 new_bb = next_e->src;
986 mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping);
987 update_ssa (TODO_update_ssa);
989 return next_e;
992 /* Creates a new if region protecting the loop to be executed, if the execution
993 count is zero (lb > ub). */
995 static edge
996 graphite_create_new_loop_guard (sese region, edge entry_edge,
997 struct clast_for *stmt,
998 VEC (tree, heap) *newivs,
999 htab_t newivs_index, htab_t params_index)
1001 tree cond_expr;
1002 edge exit_edge;
1003 tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, newivs,
1004 newivs_index, params_index);
1005 tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, newivs,
1006 newivs_index, params_index);
1007 tree type = max_precision_type (lb_type, ub_type);
1008 tree lb = clast_to_gcc_expression (type, stmt->LB, region, newivs,
1009 newivs_index, params_index);
1010 tree ub = clast_to_gcc_expression (type, stmt->UB, region, newivs,
1011 newivs_index, params_index);
1012 tree one = POINTER_TYPE_P (type) ? size_one_node
1013 : fold_convert (type, integer_one_node);
1014 /* Adding +1 and using LT_EXPR helps with loop latches that have a
1015 loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes
1016 2^{32|64}, and the condition lb <= ub is true, even if we do not want this.
1017 However lb < ub + 1 is false, as expected. */
1018 tree ub_one = fold_build2 (POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR
1019 : PLUS_EXPR, type, ub, one);
1021 /* When ub + 1 wraps around, use lb <= ub. */
1022 if (integer_zerop (ub_one))
1023 cond_expr = fold_build2 (LE_EXPR, boolean_type_node, lb, ub);
1024 else
1025 cond_expr = fold_build2 (LT_EXPR, boolean_type_node, lb, ub_one);
1027 exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
1029 return exit_edge;
1033 /* Create the loop for a clast for statement.
1035 - REGION is the sese region we used to generate the scop.
1036 - NEXT_E is the edge where new generated code should be attached.
1037 - RENAME_MAP contains a set of tuples of new names associated to
1038 the original variables names.
1039 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1040 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1041 the sese region. */
1042 static edge
1043 translate_clast_for_loop (sese region, loop_p context_loop,
1044 struct clast_for *stmt, edge next_e,
1045 htab_t rename_map, VEC (tree, heap) **newivs,
1046 htab_t newivs_index, htab_t bb_pbb_mapping,
1047 int level, htab_t params_index)
1049 struct loop *loop = graphite_create_new_loop (region, next_e, stmt,
1050 context_loop, newivs,
1051 newivs_index, params_index,
1052 level);
1053 edge last_e = single_exit (loop);
1054 edge to_body = single_succ_edge (loop->header);
1055 basic_block after = to_body->dest;
1057 /* Create a basic block for loop close phi nodes. */
1058 last_e = single_succ_edge (split_edge (last_e));
1060 /* Translate the body of the loop. */
1061 next_e = translate_clast (region, loop, stmt->body, to_body, rename_map,
1062 newivs, newivs_index, bb_pbb_mapping, level + 1,
1063 params_index);
1064 redirect_edge_succ_nodup (next_e, after);
1065 set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);
1067 /* Remove from rename_map all the tuples containing variables
1068 defined in loop's body. */
1069 insert_loop_close_phis (rename_map, loop);
1071 if (flag_loop_parallelize_all
1072 && !dependency_in_loop_p (loop, bb_pbb_mapping,
1073 get_scattering_level (level)))
1074 loop->can_be_parallel = true;
1076 return last_e;
1079 /* Translates a clast for statement STMT to gimple. First a guard is created
1080 protecting the loop, if it is executed zero times. In this guard we create
1081 the real loop structure.
1083 - REGION is the sese region we used to generate the scop.
1084 - NEXT_E is the edge where new generated code should be attached.
1085 - RENAME_MAP contains a set of tuples of new names associated to
1086 the original variables names.
1087 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1088 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1089 the sese region. */
1090 static edge
1091 translate_clast_for (sese region, loop_p context_loop, struct clast_for *stmt,
1092 edge next_e, htab_t rename_map, VEC (tree, heap) **newivs,
1093 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1094 htab_t params_index)
1096 edge last_e = graphite_create_new_loop_guard (region, next_e, stmt, *newivs,
1097 newivs_index, params_index);
1099 edge true_e = get_true_edge_from_guard_bb (next_e->dest);
1100 edge false_e = get_false_edge_from_guard_bb (next_e->dest);
1101 edge exit_true_e = single_succ_edge (true_e->dest);
1102 edge exit_false_e = single_succ_edge (false_e->dest);
1104 htab_t before_guard = htab_create (10, rename_map_elt_info,
1105 eq_rename_map_elts, free);
1106 htab_traverse (rename_map, copy_renames, before_guard);
1108 next_e = translate_clast_for_loop (region, context_loop, stmt, true_e,
1109 rename_map, newivs,
1110 newivs_index, bb_pbb_mapping, level,
1111 params_index);
1113 insert_guard_phis (last_e->src, exit_true_e, exit_false_e,
1114 before_guard, rename_map);
1116 htab_delete (before_guard);
1118 return last_e;
1121 /* Translates a clast guard statement STMT to gimple.
1123 - REGION is the sese region we used to generate the scop.
1124 - NEXT_E is the edge where new generated code should be attached.
1125 - CONTEXT_LOOP is the loop in which the generated code will be placed
1126 - RENAME_MAP contains a set of tuples of new names associated to
1127 the original variables names.
1128 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1129 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1130 the sese region. */
1131 static edge
1132 translate_clast_guard (sese region, loop_p context_loop,
1133 struct clast_guard *stmt, edge next_e,
1134 htab_t rename_map, VEC (tree, heap) **newivs,
1135 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1136 htab_t params_index)
1138 edge last_e = graphite_create_new_guard (region, next_e, stmt, *newivs,
1139 newivs_index, params_index);
1141 edge true_e = get_true_edge_from_guard_bb (next_e->dest);
1142 edge false_e = get_false_edge_from_guard_bb (next_e->dest);
1143 edge exit_true_e = single_succ_edge (true_e->dest);
1144 edge exit_false_e = single_succ_edge (false_e->dest);
1146 htab_t before_guard = htab_create (10, rename_map_elt_info,
1147 eq_rename_map_elts, free);
1148 htab_traverse (rename_map, copy_renames, before_guard);
1150 next_e = translate_clast (region, context_loop, stmt->then, true_e,
1151 rename_map, newivs, newivs_index, bb_pbb_mapping,
1152 level, params_index);
1154 insert_guard_phis (last_e->src, exit_true_e, exit_false_e,
1155 before_guard, rename_map);
1157 htab_delete (before_guard);
1159 return last_e;
1162 /* Translates a CLAST statement STMT to GCC representation in the
1163 context of a SESE.
1165 - NEXT_E is the edge where new generated code should be attached.
1166 - CONTEXT_LOOP is the loop in which the generated code will be placed
1167 - RENAME_MAP contains a set of tuples of new names associated to
1168 the original variables names.
1169 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
1170 static edge
1171 translate_clast (sese region, loop_p context_loop, struct clast_stmt *stmt,
1172 edge next_e, htab_t rename_map, VEC (tree, heap) **newivs,
1173 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1174 htab_t params_index)
1176 if (!stmt)
1177 return next_e;
1179 if (CLAST_STMT_IS_A (stmt, stmt_root))
1180 ; /* Do nothing. */
1182 else if (CLAST_STMT_IS_A (stmt, stmt_user))
1183 next_e = translate_clast_user (region, (struct clast_user_stmt *) stmt,
1184 next_e, rename_map, newivs, newivs_index,
1185 bb_pbb_mapping, params_index);
1187 else if (CLAST_STMT_IS_A (stmt, stmt_for))
1188 next_e = translate_clast_for (region, context_loop,
1189 (struct clast_for *) stmt, next_e,
1190 rename_map, newivs, newivs_index,
1191 bb_pbb_mapping, level, params_index);
1193 else if (CLAST_STMT_IS_A (stmt, stmt_guard))
1194 next_e = translate_clast_guard (region, context_loop,
1195 (struct clast_guard *) stmt, next_e,
1196 rename_map, newivs, newivs_index,
1197 bb_pbb_mapping, level, params_index);
1199 else if (CLAST_STMT_IS_A (stmt, stmt_block))
1200 next_e = translate_clast (region, context_loop,
1201 ((struct clast_block *) stmt)->body,
1202 next_e, rename_map, newivs, newivs_index,
1203 bb_pbb_mapping, level, params_index);
1204 else
1205 gcc_unreachable();
1207 recompute_all_dominators ();
1208 graphite_verify ();
1210 return translate_clast (region, context_loop, stmt->next, next_e,
1211 rename_map, newivs, newivs_index,
1212 bb_pbb_mapping, level, params_index);
1215 /* Free the SCATTERING domain list. */
1217 static void
1218 free_scattering (CloogDomainList *scattering)
1220 while (scattering)
1222 CloogDomain *dom = cloog_domain (scattering);
1223 CloogDomainList *next = cloog_next_domain (scattering);
1225 cloog_domain_free (dom);
1226 free (scattering);
1227 scattering = next;
1231 /* Initialize Cloog's parameter names from the names used in GIMPLE.
1232 Initialize Cloog's iterator names, using 'graphite_iterator_%d'
1233 from 0 to scop_nb_loops (scop). */
1235 static void
1236 initialize_cloog_names (scop_p scop, CloogProgram *prog)
1238 sese region = SCOP_REGION (scop);
1239 int i;
1240 int nb_iterators = scop_max_loop_depth (scop);
1241 int nb_scattering = cloog_program_nb_scattdims (prog);
1242 int nb_parameters = VEC_length (tree, SESE_PARAMS (region));
1243 char **iterators = XNEWVEC (char *, nb_iterators * 2);
1244 char **scattering = XNEWVEC (char *, nb_scattering);
1245 char **parameters= XNEWVEC (char *, nb_parameters);
1247 cloog_program_set_names (prog, cloog_names_malloc ());
1249 for (i = 0; i < nb_parameters; i++)
1251 tree param = VEC_index (tree, SESE_PARAMS(region), i);
1252 const char *name = get_name (param);
1253 int len;
1255 if (!name)
1256 name = "T";
1258 len = strlen (name);
1259 len += 17;
1260 parameters[i] = XNEWVEC (char, len + 1);
1261 snprintf (parameters[i], len, "%s_%d", name, SSA_NAME_VERSION (param));
1264 cloog_names_set_nb_parameters (cloog_program_names (prog), nb_parameters);
1265 cloog_names_set_parameters (cloog_program_names (prog), parameters);
1267 for (i = 0; i < nb_iterators; i++)
1269 int len = 4 + 16;
1270 iterators[i] = XNEWVEC (char, len);
1271 snprintf (iterators[i], len, "git_%d", i);
1274 cloog_names_set_nb_iterators (cloog_program_names (prog),
1275 nb_iterators);
1276 cloog_names_set_iterators (cloog_program_names (prog),
1277 iterators);
1279 for (i = 0; i < nb_scattering; i++)
1281 int len = 5 + 16;
1282 scattering[i] = XNEWVEC (char, len);
1283 snprintf (scattering[i], len, "scat_%d", i);
1286 cloog_names_set_nb_scattering (cloog_program_names (prog),
1287 nb_scattering);
1288 cloog_names_set_scattering (cloog_program_names (prog),
1289 scattering);
1292 /* Build cloog program for SCoP. */
1294 static void
1295 build_cloog_prog (scop_p scop, CloogProgram *prog)
1297 int i;
1298 int max_nb_loops = scop_max_loop_depth (scop);
1299 poly_bb_p pbb;
1300 CloogLoop *loop_list = NULL;
1301 CloogBlockList *block_list = NULL;
1302 CloogDomainList *scattering = NULL;
1303 int nbs = 2 * max_nb_loops + 1;
1304 int *scaldims;
1306 cloog_program_set_context
1307 (prog, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop)));
1308 nbs = unify_scattering_dimensions (scop);
1309 scaldims = (int *) xmalloc (nbs * (sizeof (int)));
1310 cloog_program_set_nb_scattdims (prog, nbs);
1311 initialize_cloog_names (scop, prog);
1313 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
1315 CloogStatement *stmt;
1316 CloogBlock *block;
1318 /* Dead code elimination: when the domain of a PBB is empty,
1319 don't generate code for the PBB. */
1320 if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (PBB_DOMAIN (pbb)))
1321 continue;
1323 /* Build the new statement and its block. */
1324 stmt = cloog_statement_alloc (pbb_index (pbb));
1325 block = cloog_block_alloc (stmt, 0, NULL, pbb_dim_iter_domain (pbb));
1326 cloog_statement_set_usr (stmt, pbb);
1328 /* Build loop list. */
1330 CloogLoop *new_loop_list = cloog_loop_malloc ();
1331 cloog_loop_set_next (new_loop_list, loop_list);
1332 cloog_loop_set_domain
1333 (new_loop_list,
1334 new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb)));
1335 cloog_loop_set_block (new_loop_list, block);
1336 loop_list = new_loop_list;
1339 /* Build block list. */
1341 CloogBlockList *new_block_list = cloog_block_list_malloc ();
1343 cloog_block_list_set_next (new_block_list, block_list);
1344 cloog_block_list_set_block (new_block_list, block);
1345 block_list = new_block_list;
1348 /* Build scattering list. */
1350 /* XXX: Replace with cloog_domain_list_alloc(), when available. */
1351 CloogDomainList *new_scattering
1352 = (CloogDomainList *) xmalloc (sizeof (CloogDomainList));
1353 ppl_Polyhedron_t scat;
1354 CloogDomain *dom;
1356 scat = PBB_TRANSFORMED_SCATTERING (pbb);
1357 dom = new_Cloog_Domain_from_ppl_Polyhedron (scat);
1359 cloog_set_next_domain (new_scattering, scattering);
1360 cloog_set_domain (new_scattering, dom);
1361 scattering = new_scattering;
1365 cloog_program_set_loop (prog, loop_list);
1366 cloog_program_set_blocklist (prog, block_list);
1368 for (i = 0; i < nbs; i++)
1369 scaldims[i] = 0 ;
1371 cloog_program_set_scaldims (prog, scaldims);
1373 /* Extract scalar dimensions to simplify the code generation problem. */
1374 cloog_program_extract_scalars (prog, scattering);
1376 /* Apply scattering. */
1377 cloog_program_scatter (prog, scattering);
1378 free_scattering (scattering);
1380 /* Iterators corresponding to scalar dimensions have to be extracted. */
1381 cloog_names_scalarize (cloog_program_names (prog), nbs,
1382 cloog_program_scaldims (prog));
1384 /* Free blocklist. */
1386 CloogBlockList *next = cloog_program_blocklist (prog);
1388 while (next)
1390 CloogBlockList *toDelete = next;
1391 next = cloog_block_list_next (next);
1392 cloog_block_list_set_next (toDelete, NULL);
1393 cloog_block_list_set_block (toDelete, NULL);
1394 cloog_block_list_free (toDelete);
1396 cloog_program_set_blocklist (prog, NULL);
1400 /* Return the options that will be used in GLOOG. */
1402 static CloogOptions *
1403 set_cloog_options (void)
1405 CloogOptions *options = cloog_options_malloc ();
1407 /* Change cloog output language to C. If we do use FORTRAN instead, cloog
1408 will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if
1409 we pass an incomplete program to cloog. */
1410 options->language = LANGUAGE_C;
1412 /* Enable complex equality spreading: removes dummy statements
1413 (assignments) in the generated code which repeats the
1414 substitution equations for statements. This is useless for
1415 GLooG. */
1416 options->esp = 1;
1418 /* Enable C pretty-printing mode: normalizes the substitution
1419 equations for statements. */
1420 options->cpp = 1;
1422 /* Allow cloog to build strides with a stride width different to one.
1423 This example has stride = 4:
1425 for (i = 0; i < 20; i += 4)
1426 A */
1427 options->strides = 1;
1429 /* Disable optimizations and make cloog generate source code closer to the
1430 input. This is useful for debugging, but later we want the optimized
1431 code.
1433 XXX: We can not disable optimizations, as loop blocking is not working
1434 without them. */
1435 if (0)
1437 options->f = -1;
1438 options->l = INT_MAX;
1441 return options;
1444 /* Prints STMT to STDERR. */
1446 void
1447 print_clast_stmt (FILE *file, struct clast_stmt *stmt)
1449 CloogOptions *options = set_cloog_options ();
1451 pprint (file, stmt, 0, options);
1452 cloog_options_free (options);
1455 /* Prints STMT to STDERR. */
1457 DEBUG_FUNCTION void
1458 debug_clast_stmt (struct clast_stmt *stmt)
1460 print_clast_stmt (stderr, stmt);
1463 /* Translate SCOP to a CLooG program and clast. These two
1464 representations should be freed together: a clast cannot be used
1465 without a program. */
1467 cloog_prog_clast
1468 scop_to_clast (scop_p scop)
1470 CloogOptions *options = set_cloog_options ();
1471 cloog_prog_clast pc;
1473 /* Connect new cloog prog generation to graphite. */
1474 pc.prog = cloog_program_malloc ();
1475 build_cloog_prog (scop, pc.prog);
1476 pc.prog = cloog_program_generate (pc.prog, options);
1477 pc.stmt = cloog_clast_create (pc.prog, options);
1479 cloog_options_free (options);
1480 return pc;
1483 /* Prints to FILE the code generated by CLooG for SCOP. */
1485 void
1486 print_generated_program (FILE *file, scop_p scop)
1488 CloogOptions *options = set_cloog_options ();
1489 cloog_prog_clast pc = scop_to_clast (scop);
1491 fprintf (file, " (prog: \n");
1492 cloog_program_print (file, pc.prog);
1493 fprintf (file, " )\n");
1495 fprintf (file, " (clast: \n");
1496 pprint (file, pc.stmt, 0, options);
1497 fprintf (file, " )\n");
1499 cloog_options_free (options);
1500 cloog_clast_free (pc.stmt);
1501 cloog_program_free (pc.prog);
1504 /* Prints to STDERR the code generated by CLooG for SCOP. */
1506 DEBUG_FUNCTION void
1507 debug_generated_program (scop_p scop)
1509 print_generated_program (stderr, scop);
1512 /* Add CLooG names to parameter index. The index is used to translate
1513 back from CLooG names to GCC trees. */
1515 static void
1516 create_params_index (htab_t index_table, CloogProgram *prog) {
1517 CloogNames* names = cloog_program_names (prog);
1518 int nb_parameters = cloog_names_nb_parameters (names);
1519 char **parameters = cloog_names_parameters (names);
1520 int i;
1522 for (i = 0; i < nb_parameters; i++)
1523 save_clast_name_index (index_table, parameters[i], i);
1526 /* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
1527 the given SCOP. Return true if code generation succeeded.
1528 BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping.
1531 bool
1532 gloog (scop_p scop, VEC (scop_p, heap) *scops, htab_t bb_pbb_mapping)
1534 VEC (tree, heap) *newivs = VEC_alloc (tree, heap, 10);
1535 loop_p context_loop;
1536 sese region = SCOP_REGION (scop);
1537 ifsese if_region = NULL;
1538 htab_t rename_map, newivs_index, params_index;
1539 cloog_prog_clast pc;
1540 int i;
1542 timevar_push (TV_GRAPHITE_CODE_GEN);
1543 gloog_error = false;
1545 pc = scop_to_clast (scop);
1547 if (dump_file && (dump_flags & TDF_DETAILS))
1549 fprintf (dump_file, "\nCLAST generated by CLooG: \n");
1550 print_clast_stmt (dump_file, pc.stmt);
1551 fprintf (dump_file, "\n");
1554 recompute_all_dominators ();
1555 graphite_verify ();
1557 if_region = move_sese_in_condition (region);
1558 sese_insert_phis_for_liveouts (region,
1559 if_region->region->exit->src,
1560 if_region->false_region->exit,
1561 if_region->true_region->exit);
1562 recompute_all_dominators ();
1563 graphite_verify ();
1565 context_loop = SESE_ENTRY (region)->src->loop_father;
1566 rename_map = htab_create (10, rename_map_elt_info, eq_rename_map_elts, free);
1567 newivs_index = htab_create (10, clast_name_index_elt_info,
1568 eq_clast_name_indexes, free);
1569 params_index = htab_create (10, clast_name_index_elt_info,
1570 eq_clast_name_indexes, free);
1572 create_params_index (params_index, pc.prog);
1574 translate_clast (region, context_loop, pc.stmt,
1575 if_region->true_region->entry,
1576 rename_map, &newivs, newivs_index,
1577 bb_pbb_mapping, 1, params_index);
1578 graphite_verify ();
1579 sese_adjust_liveout_phis (region, rename_map,
1580 if_region->region->exit->src,
1581 if_region->false_region->exit,
1582 if_region->true_region->exit);
1583 scev_reset_htab ();
1584 rename_nb_iterations (rename_map);
1586 for (i = 0; VEC_iterate (scop_p, scops, i, scop); i++)
1587 rename_sese_parameters (rename_map, SCOP_REGION (scop));
1589 recompute_all_dominators ();
1590 graphite_verify ();
1592 if (gloog_error)
1593 set_ifsese_condition (if_region, integer_zero_node);
1595 free (if_region->true_region);
1596 free (if_region->region);
1597 free (if_region);
1599 htab_delete (rename_map);
1600 htab_delete (newivs_index);
1601 htab_delete (params_index);
1602 VEC_free (tree, heap, newivs);
1603 cloog_clast_free (pc.stmt);
1604 cloog_program_free (pc.prog);
1605 timevar_pop (TV_GRAPHITE_CODE_GEN);
1607 if (dump_file && (dump_flags & TDF_DETAILS))
1609 loop_p loop;
1610 loop_iterator li;
1611 int num_no_dependency = 0;
1613 FOR_EACH_LOOP (li, loop, 0)
1614 if (loop->can_be_parallel)
1615 num_no_dependency++;
1617 fprintf (dump_file, "\n%d loops carried no dependency.\n",
1618 num_no_dependency);
1621 return !gloog_error;
1624 #endif