IVOPT performance tuning patch. The main problem is a variant of maximal weight
[official-gcc.git] / gcc / ggc-page.c
blob8b41f404b4a97d04b2e0514e4ed5aa3dd26ed7e3
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "toplev.h" /* exact_log2 */
29 #include "diagnostic-core.h"
30 #include "flags.h"
31 #include "ggc.h"
32 #include "ggc-internal.h"
33 #include "timevar.h"
34 #include "params.h"
35 #include "tree-flow.h"
36 #include "cfgloop.h"
37 #include "plugin.h"
39 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
40 file open. Prefer either to valloc. */
41 #ifdef HAVE_MMAP_ANON
42 # undef HAVE_MMAP_DEV_ZERO
44 # include <sys/mman.h>
45 # ifndef MAP_FAILED
46 # define MAP_FAILED -1
47 # endif
48 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
49 # define MAP_ANONYMOUS MAP_ANON
50 # endif
51 # define USING_MMAP
53 #endif
55 #ifdef HAVE_MMAP_DEV_ZERO
57 # include <sys/mman.h>
58 # ifndef MAP_FAILED
59 # define MAP_FAILED -1
60 # endif
61 # define USING_MMAP
63 #endif
65 #ifndef USING_MMAP
66 #define USING_MALLOC_PAGE_GROUPS
67 #endif
69 /* Strategy:
71 This garbage-collecting allocator allocates objects on one of a set
72 of pages. Each page can allocate objects of a single size only;
73 available sizes are powers of two starting at four bytes. The size
74 of an allocation request is rounded up to the next power of two
75 (`order'), and satisfied from the appropriate page.
77 Each page is recorded in a page-entry, which also maintains an
78 in-use bitmap of object positions on the page. This allows the
79 allocation state of a particular object to be flipped without
80 touching the page itself.
82 Each page-entry also has a context depth, which is used to track
83 pushing and popping of allocation contexts. Only objects allocated
84 in the current (highest-numbered) context may be collected.
86 Page entries are arranged in an array of singly-linked lists. The
87 array is indexed by the allocation size, in bits, of the pages on
88 it; i.e. all pages on a list allocate objects of the same size.
89 Pages are ordered on the list such that all non-full pages precede
90 all full pages, with non-full pages arranged in order of decreasing
91 context depth.
93 Empty pages (of all orders) are kept on a single page cache list,
94 and are considered first when new pages are required; they are
95 deallocated at the start of the next collection if they haven't
96 been recycled by then. */
98 /* Define GGC_DEBUG_LEVEL to print debugging information.
99 0: No debugging output.
100 1: GC statistics only.
101 2: Page-entry allocations/deallocations as well.
102 3: Object allocations as well.
103 4: Object marks as well. */
104 #define GGC_DEBUG_LEVEL (0)
106 #ifndef HOST_BITS_PER_PTR
107 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
108 #endif
111 /* A two-level tree is used to look up the page-entry for a given
112 pointer. Two chunks of the pointer's bits are extracted to index
113 the first and second levels of the tree, as follows:
115 HOST_PAGE_SIZE_BITS
116 32 | |
117 msb +----------------+----+------+------+ lsb
118 | | |
119 PAGE_L1_BITS |
121 PAGE_L2_BITS
123 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
124 pages are aligned on system page boundaries. The next most
125 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
126 index values in the lookup table, respectively.
128 For 32-bit architectures and the settings below, there are no
129 leftover bits. For architectures with wider pointers, the lookup
130 tree points to a list of pages, which must be scanned to find the
131 correct one. */
133 #define PAGE_L1_BITS (8)
134 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
135 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
136 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
138 #define LOOKUP_L1(p) \
139 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
141 #define LOOKUP_L2(p) \
142 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
144 /* The number of objects per allocation page, for objects on a page of
145 the indicated ORDER. */
146 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
148 /* The number of objects in P. */
149 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
151 /* The size of an object on a page of the indicated ORDER. */
152 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
154 /* For speed, we avoid doing a general integer divide to locate the
155 offset in the allocation bitmap, by precalculating numbers M, S
156 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
157 within the page which is evenly divisible by the object size Z. */
158 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
159 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
160 #define OFFSET_TO_BIT(OFFSET, ORDER) \
161 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
163 /* We use this structure to determine the alignment required for
164 allocations. For power-of-two sized allocations, that's not a
165 problem, but it does matter for odd-sized allocations.
166 We do not care about alignment for floating-point types. */
168 struct max_alignment {
169 char c;
170 union {
171 HOST_WIDEST_INT i;
172 void *p;
173 } u;
176 /* The biggest alignment required. */
178 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
181 /* The number of extra orders, not corresponding to power-of-two sized
182 objects. */
184 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
186 #define RTL_SIZE(NSLOTS) \
187 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
189 #define TREE_EXP_SIZE(OPS) \
190 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
192 /* The Ith entry is the maximum size of an object to be stored in the
193 Ith extra order. Adding a new entry to this array is the *only*
194 thing you need to do to add a new special allocation size. */
196 static const size_t extra_order_size_table[] = {
197 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
198 There are a lot of structures with these sizes and explicitly
199 listing them risks orders being dropped because they changed size. */
200 MAX_ALIGNMENT * 3,
201 MAX_ALIGNMENT * 5,
202 MAX_ALIGNMENT * 6,
203 MAX_ALIGNMENT * 7,
204 MAX_ALIGNMENT * 9,
205 MAX_ALIGNMENT * 10,
206 MAX_ALIGNMENT * 11,
207 MAX_ALIGNMENT * 12,
208 MAX_ALIGNMENT * 13,
209 MAX_ALIGNMENT * 14,
210 MAX_ALIGNMENT * 15,
211 sizeof (struct tree_decl_non_common),
212 sizeof (struct tree_field_decl),
213 sizeof (struct tree_parm_decl),
214 sizeof (struct tree_var_decl),
215 sizeof (struct tree_type),
216 sizeof (struct function),
217 sizeof (struct basic_block_def),
218 sizeof (struct cgraph_node),
219 sizeof (struct loop),
222 /* The total number of orders. */
224 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
226 /* Compute the smallest nonnegative number which when added to X gives
227 a multiple of F. */
229 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
231 /* Compute the smallest multiple of F that is >= X. */
233 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
235 /* The Ith entry is the number of objects on a page or order I. */
237 static unsigned objects_per_page_table[NUM_ORDERS];
239 /* The Ith entry is the size of an object on a page of order I. */
241 static size_t object_size_table[NUM_ORDERS];
243 /* The Ith entry is a pair of numbers (mult, shift) such that
244 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
245 for all k evenly divisible by OBJECT_SIZE(I). */
247 static struct
249 size_t mult;
250 unsigned int shift;
252 inverse_table[NUM_ORDERS];
254 /* A page_entry records the status of an allocation page. This
255 structure is dynamically sized to fit the bitmap in_use_p. */
256 typedef struct page_entry
258 /* The next page-entry with objects of the same size, or NULL if
259 this is the last page-entry. */
260 struct page_entry *next;
262 /* The previous page-entry with objects of the same size, or NULL if
263 this is the first page-entry. The PREV pointer exists solely to
264 keep the cost of ggc_free manageable. */
265 struct page_entry *prev;
267 /* The number of bytes allocated. (This will always be a multiple
268 of the host system page size.) */
269 size_t bytes;
271 /* The address at which the memory is allocated. */
272 char *page;
274 #ifdef USING_MALLOC_PAGE_GROUPS
275 /* Back pointer to the page group this page came from. */
276 struct page_group *group;
277 #endif
279 /* This is the index in the by_depth varray where this page table
280 can be found. */
281 unsigned long index_by_depth;
283 /* Context depth of this page. */
284 unsigned short context_depth;
286 /* The number of free objects remaining on this page. */
287 unsigned short num_free_objects;
289 /* A likely candidate for the bit position of a free object for the
290 next allocation from this page. */
291 unsigned short next_bit_hint;
293 /* The lg of size of objects allocated from this page. */
294 unsigned char order;
296 /* A bit vector indicating whether or not objects are in use. The
297 Nth bit is one if the Nth object on this page is allocated. This
298 array is dynamically sized. */
299 unsigned long in_use_p[1];
300 } page_entry;
302 #ifdef USING_MALLOC_PAGE_GROUPS
303 /* A page_group describes a large allocation from malloc, from which
304 we parcel out aligned pages. */
305 typedef struct page_group
307 /* A linked list of all extant page groups. */
308 struct page_group *next;
310 /* The address we received from malloc. */
311 char *allocation;
313 /* The size of the block. */
314 size_t alloc_size;
316 /* A bitmask of pages in use. */
317 unsigned int in_use;
318 } page_group;
319 #endif
321 #if HOST_BITS_PER_PTR <= 32
323 /* On 32-bit hosts, we use a two level page table, as pictured above. */
324 typedef page_entry **page_table[PAGE_L1_SIZE];
326 #else
328 /* On 64-bit hosts, we use the same two level page tables plus a linked
329 list that disambiguates the top 32-bits. There will almost always be
330 exactly one entry in the list. */
331 typedef struct page_table_chain
333 struct page_table_chain *next;
334 size_t high_bits;
335 page_entry **table[PAGE_L1_SIZE];
336 } *page_table;
338 #endif
340 #ifdef ENABLE_GC_ALWAYS_COLLECT
341 /* List of free objects to be verified as actually free on the
342 next collection. */
343 struct free_object
345 void *object;
346 struct free_object *next;
348 #endif
350 /* The rest of the global variables. */
351 static struct globals
353 /* The Nth element in this array is a page with objects of size 2^N.
354 If there are any pages with free objects, they will be at the
355 head of the list. NULL if there are no page-entries for this
356 object size. */
357 page_entry *pages[NUM_ORDERS];
359 /* The Nth element in this array is the last page with objects of
360 size 2^N. NULL if there are no page-entries for this object
361 size. */
362 page_entry *page_tails[NUM_ORDERS];
364 /* Lookup table for associating allocation pages with object addresses. */
365 page_table lookup;
367 /* The system's page size. */
368 size_t pagesize;
369 size_t lg_pagesize;
371 /* Bytes currently allocated. */
372 size_t allocated;
374 /* Bytes currently allocated at the end of the last collection. */
375 size_t allocated_last_gc;
377 /* Total amount of memory mapped. */
378 size_t bytes_mapped;
380 /* Bit N set if any allocations have been done at context depth N. */
381 unsigned long context_depth_allocations;
383 /* Bit N set if any collections have been done at context depth N. */
384 unsigned long context_depth_collections;
386 /* The current depth in the context stack. */
387 unsigned short context_depth;
389 /* A file descriptor open to /dev/zero for reading. */
390 #if defined (HAVE_MMAP_DEV_ZERO)
391 int dev_zero_fd;
392 #endif
394 /* A cache of free system pages. */
395 page_entry *free_pages;
397 #ifdef USING_MALLOC_PAGE_GROUPS
398 page_group *page_groups;
399 #endif
401 /* The file descriptor for debugging output. */
402 FILE *debug_file;
404 /* Current number of elements in use in depth below. */
405 unsigned int depth_in_use;
407 /* Maximum number of elements that can be used before resizing. */
408 unsigned int depth_max;
410 /* Each element of this array is an index in by_depth where the given
411 depth starts. This structure is indexed by that given depth we
412 are interested in. */
413 unsigned int *depth;
415 /* Current number of elements in use in by_depth below. */
416 unsigned int by_depth_in_use;
418 /* Maximum number of elements that can be used before resizing. */
419 unsigned int by_depth_max;
421 /* Each element of this array is a pointer to a page_entry, all
422 page_entries can be found in here by increasing depth.
423 index_by_depth in the page_entry is the index into this data
424 structure where that page_entry can be found. This is used to
425 speed up finding all page_entries at a particular depth. */
426 page_entry **by_depth;
428 /* Each element is a pointer to the saved in_use_p bits, if any,
429 zero otherwise. We allocate them all together, to enable a
430 better runtime data access pattern. */
431 unsigned long **save_in_use;
433 #ifdef ENABLE_GC_ALWAYS_COLLECT
434 /* List of free objects to be verified as actually free on the
435 next collection. */
436 struct free_object *free_object_list;
437 #endif
439 #ifdef GATHER_STATISTICS
440 struct
442 /* Total GC-allocated memory. */
443 unsigned long long total_allocated;
444 /* Total overhead for GC-allocated memory. */
445 unsigned long long total_overhead;
447 /* Total allocations and overhead for sizes less than 32, 64 and 128.
448 These sizes are interesting because they are typical cache line
449 sizes. */
451 unsigned long long total_allocated_under32;
452 unsigned long long total_overhead_under32;
454 unsigned long long total_allocated_under64;
455 unsigned long long total_overhead_under64;
457 unsigned long long total_allocated_under128;
458 unsigned long long total_overhead_under128;
460 /* The allocations for each of the allocation orders. */
461 unsigned long long total_allocated_per_order[NUM_ORDERS];
463 /* The overhead for each of the allocation orders. */
464 unsigned long long total_overhead_per_order[NUM_ORDERS];
465 } stats;
466 #endif
467 } G;
469 /* The size in bytes required to maintain a bitmap for the objects
470 on a page-entry. */
471 #define BITMAP_SIZE(Num_objects) \
472 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
474 /* Allocate pages in chunks of this size, to throttle calls to memory
475 allocation routines. The first page is used, the rest go onto the
476 free list. This cannot be larger than HOST_BITS_PER_INT for the
477 in_use bitmask for page_group. Hosts that need a different value
478 can override this by defining GGC_QUIRE_SIZE explicitly. */
479 #ifndef GGC_QUIRE_SIZE
480 # ifdef USING_MMAP
481 # define GGC_QUIRE_SIZE 256
482 # else
483 # define GGC_QUIRE_SIZE 16
484 # endif
485 #endif
487 /* Initial guess as to how many page table entries we might need. */
488 #define INITIAL_PTE_COUNT 128
490 static int ggc_allocated_p (const void *);
491 static page_entry *lookup_page_table_entry (const void *);
492 static void set_page_table_entry (void *, page_entry *);
493 #ifdef USING_MMAP
494 static char *alloc_anon (char *, size_t);
495 #endif
496 #ifdef USING_MALLOC_PAGE_GROUPS
497 static size_t page_group_index (char *, char *);
498 static void set_page_group_in_use (page_group *, char *);
499 static void clear_page_group_in_use (page_group *, char *);
500 #endif
501 static struct page_entry * alloc_page (unsigned);
502 static void free_page (struct page_entry *);
503 static void release_pages (void);
504 static void clear_marks (void);
505 static void sweep_pages (void);
506 static void ggc_recalculate_in_use_p (page_entry *);
507 static void compute_inverse (unsigned);
508 static inline void adjust_depth (void);
509 static void move_ptes_to_front (int, int);
511 void debug_print_page_list (int);
512 static void push_depth (unsigned int);
513 static void push_by_depth (page_entry *, unsigned long *);
515 /* Push an entry onto G.depth. */
517 inline static void
518 push_depth (unsigned int i)
520 if (G.depth_in_use >= G.depth_max)
522 G.depth_max *= 2;
523 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
525 G.depth[G.depth_in_use++] = i;
528 /* Push an entry onto G.by_depth and G.save_in_use. */
530 inline static void
531 push_by_depth (page_entry *p, unsigned long *s)
533 if (G.by_depth_in_use >= G.by_depth_max)
535 G.by_depth_max *= 2;
536 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
537 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
538 G.by_depth_max);
540 G.by_depth[G.by_depth_in_use] = p;
541 G.save_in_use[G.by_depth_in_use++] = s;
544 #if (GCC_VERSION < 3001)
545 #define prefetch(X) ((void) X)
546 #else
547 #define prefetch(X) __builtin_prefetch (X)
548 #endif
550 #define save_in_use_p_i(__i) \
551 (G.save_in_use[__i])
552 #define save_in_use_p(__p) \
553 (save_in_use_p_i (__p->index_by_depth))
555 /* Returns nonzero if P was allocated in GC'able memory. */
557 static inline int
558 ggc_allocated_p (const void *p)
560 page_entry ***base;
561 size_t L1, L2;
563 #if HOST_BITS_PER_PTR <= 32
564 base = &G.lookup[0];
565 #else
566 page_table table = G.lookup;
567 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
568 while (1)
570 if (table == NULL)
571 return 0;
572 if (table->high_bits == high_bits)
573 break;
574 table = table->next;
576 base = &table->table[0];
577 #endif
579 /* Extract the level 1 and 2 indices. */
580 L1 = LOOKUP_L1 (p);
581 L2 = LOOKUP_L2 (p);
583 return base[L1] && base[L1][L2];
586 /* Traverse the page table and find the entry for a page.
587 Die (probably) if the object wasn't allocated via GC. */
589 static inline page_entry *
590 lookup_page_table_entry (const void *p)
592 page_entry ***base;
593 size_t L1, L2;
595 #if HOST_BITS_PER_PTR <= 32
596 base = &G.lookup[0];
597 #else
598 page_table table = G.lookup;
599 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
600 while (table->high_bits != high_bits)
601 table = table->next;
602 base = &table->table[0];
603 #endif
605 /* Extract the level 1 and 2 indices. */
606 L1 = LOOKUP_L1 (p);
607 L2 = LOOKUP_L2 (p);
609 return base[L1][L2];
612 /* Set the page table entry for a page. */
614 static void
615 set_page_table_entry (void *p, page_entry *entry)
617 page_entry ***base;
618 size_t L1, L2;
620 #if HOST_BITS_PER_PTR <= 32
621 base = &G.lookup[0];
622 #else
623 page_table table;
624 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
625 for (table = G.lookup; table; table = table->next)
626 if (table->high_bits == high_bits)
627 goto found;
629 /* Not found -- allocate a new table. */
630 table = XCNEW (struct page_table_chain);
631 table->next = G.lookup;
632 table->high_bits = high_bits;
633 G.lookup = table;
634 found:
635 base = &table->table[0];
636 #endif
638 /* Extract the level 1 and 2 indices. */
639 L1 = LOOKUP_L1 (p);
640 L2 = LOOKUP_L2 (p);
642 if (base[L1] == NULL)
643 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
645 base[L1][L2] = entry;
648 /* Prints the page-entry for object size ORDER, for debugging. */
650 DEBUG_FUNCTION void
651 debug_print_page_list (int order)
653 page_entry *p;
654 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
655 (void *) G.page_tails[order]);
656 p = G.pages[order];
657 while (p != NULL)
659 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
660 p->num_free_objects);
661 p = p->next;
663 printf ("NULL\n");
664 fflush (stdout);
667 #ifdef USING_MMAP
668 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
669 (if non-null). The ifdef structure here is intended to cause a
670 compile error unless exactly one of the HAVE_* is defined. */
672 static inline char *
673 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
675 #ifdef HAVE_MMAP_ANON
676 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
677 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
678 #endif
679 #ifdef HAVE_MMAP_DEV_ZERO
680 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
681 MAP_PRIVATE, G.dev_zero_fd, 0);
682 #endif
684 if (page == (char *) MAP_FAILED)
686 perror ("virtual memory exhausted");
687 exit (FATAL_EXIT_CODE);
690 /* Remember that we allocated this memory. */
691 G.bytes_mapped += size;
693 /* Pretend we don't have access to the allocated pages. We'll enable
694 access to smaller pieces of the area in ggc_internal_alloc. Discard the
695 handle to avoid handle leak. */
696 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
698 return page;
700 #endif
701 #ifdef USING_MALLOC_PAGE_GROUPS
702 /* Compute the index for this page into the page group. */
704 static inline size_t
705 page_group_index (char *allocation, char *page)
707 return (size_t) (page - allocation) >> G.lg_pagesize;
710 /* Set and clear the in_use bit for this page in the page group. */
712 static inline void
713 set_page_group_in_use (page_group *group, char *page)
715 group->in_use |= 1 << page_group_index (group->allocation, page);
718 static inline void
719 clear_page_group_in_use (page_group *group, char *page)
721 group->in_use &= ~(1 << page_group_index (group->allocation, page));
723 #endif
725 /* Allocate a new page for allocating objects of size 2^ORDER,
726 and return an entry for it. The entry is not added to the
727 appropriate page_table list. */
729 static inline struct page_entry *
730 alloc_page (unsigned order)
732 struct page_entry *entry, *p, **pp;
733 char *page;
734 size_t num_objects;
735 size_t bitmap_size;
736 size_t page_entry_size;
737 size_t entry_size;
738 #ifdef USING_MALLOC_PAGE_GROUPS
739 page_group *group;
740 #endif
742 num_objects = OBJECTS_PER_PAGE (order);
743 bitmap_size = BITMAP_SIZE (num_objects + 1);
744 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
745 entry_size = num_objects * OBJECT_SIZE (order);
746 if (entry_size < G.pagesize)
747 entry_size = G.pagesize;
749 entry = NULL;
750 page = NULL;
752 /* Check the list of free pages for one we can use. */
753 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
754 if (p->bytes == entry_size)
755 break;
757 if (p != NULL)
759 /* Recycle the allocated memory from this page ... */
760 *pp = p->next;
761 page = p->page;
763 #ifdef USING_MALLOC_PAGE_GROUPS
764 group = p->group;
765 #endif
767 /* ... and, if possible, the page entry itself. */
768 if (p->order == order)
770 entry = p;
771 memset (entry, 0, page_entry_size);
773 else
774 free (p);
776 #ifdef USING_MMAP
777 else if (entry_size == G.pagesize)
779 /* We want just one page. Allocate a bunch of them and put the
780 extras on the freelist. (Can only do this optimization with
781 mmap for backing store.) */
782 struct page_entry *e, *f = G.free_pages;
783 int i;
785 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
787 /* This loop counts down so that the chain will be in ascending
788 memory order. */
789 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
791 e = XCNEWVAR (struct page_entry, page_entry_size);
792 e->order = order;
793 e->bytes = G.pagesize;
794 e->page = page + (i << G.lg_pagesize);
795 e->next = f;
796 f = e;
799 G.free_pages = f;
801 else
802 page = alloc_anon (NULL, entry_size);
803 #endif
804 #ifdef USING_MALLOC_PAGE_GROUPS
805 else
807 /* Allocate a large block of memory and serve out the aligned
808 pages therein. This results in much less memory wastage
809 than the traditional implementation of valloc. */
811 char *allocation, *a, *enda;
812 size_t alloc_size, head_slop, tail_slop;
813 int multiple_pages = (entry_size == G.pagesize);
815 if (multiple_pages)
816 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
817 else
818 alloc_size = entry_size + G.pagesize - 1;
819 allocation = XNEWVEC (char, alloc_size);
821 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
822 head_slop = page - allocation;
823 if (multiple_pages)
824 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
825 else
826 tail_slop = alloc_size - entry_size - head_slop;
827 enda = allocation + alloc_size - tail_slop;
829 /* We allocated N pages, which are likely not aligned, leaving
830 us with N-1 usable pages. We plan to place the page_group
831 structure somewhere in the slop. */
832 if (head_slop >= sizeof (page_group))
833 group = (page_group *)page - 1;
834 else
836 /* We magically got an aligned allocation. Too bad, we have
837 to waste a page anyway. */
838 if (tail_slop == 0)
840 enda -= G.pagesize;
841 tail_slop += G.pagesize;
843 gcc_assert (tail_slop >= sizeof (page_group));
844 group = (page_group *)enda;
845 tail_slop -= sizeof (page_group);
848 /* Remember that we allocated this memory. */
849 group->next = G.page_groups;
850 group->allocation = allocation;
851 group->alloc_size = alloc_size;
852 group->in_use = 0;
853 G.page_groups = group;
854 G.bytes_mapped += alloc_size;
856 /* If we allocated multiple pages, put the rest on the free list. */
857 if (multiple_pages)
859 struct page_entry *e, *f = G.free_pages;
860 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
862 e = XCNEWVAR (struct page_entry, page_entry_size);
863 e->order = order;
864 e->bytes = G.pagesize;
865 e->page = a;
866 e->group = group;
867 e->next = f;
868 f = e;
870 G.free_pages = f;
873 #endif
875 if (entry == NULL)
876 entry = XCNEWVAR (struct page_entry, page_entry_size);
878 entry->bytes = entry_size;
879 entry->page = page;
880 entry->context_depth = G.context_depth;
881 entry->order = order;
882 entry->num_free_objects = num_objects;
883 entry->next_bit_hint = 1;
885 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
887 #ifdef USING_MALLOC_PAGE_GROUPS
888 entry->group = group;
889 set_page_group_in_use (group, page);
890 #endif
892 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
893 increment the hint. */
894 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
895 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
897 set_page_table_entry (page, entry);
899 if (GGC_DEBUG_LEVEL >= 2)
900 fprintf (G.debug_file,
901 "Allocating page at %p, object size=%lu, data %p-%p\n",
902 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
903 page + entry_size - 1);
905 return entry;
908 /* Adjust the size of G.depth so that no index greater than the one
909 used by the top of the G.by_depth is used. */
911 static inline void
912 adjust_depth (void)
914 page_entry *top;
916 if (G.by_depth_in_use)
918 top = G.by_depth[G.by_depth_in_use-1];
920 /* Peel back indices in depth that index into by_depth, so that
921 as new elements are added to by_depth, we note the indices
922 of those elements, if they are for new context depths. */
923 while (G.depth_in_use > (size_t)top->context_depth+1)
924 --G.depth_in_use;
928 /* For a page that is no longer needed, put it on the free page list. */
930 static void
931 free_page (page_entry *entry)
933 if (GGC_DEBUG_LEVEL >= 2)
934 fprintf (G.debug_file,
935 "Deallocating page at %p, data %p-%p\n", (void *) entry,
936 entry->page, entry->page + entry->bytes - 1);
938 /* Mark the page as inaccessible. Discard the handle to avoid handle
939 leak. */
940 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
942 set_page_table_entry (entry->page, NULL);
944 #ifdef USING_MALLOC_PAGE_GROUPS
945 clear_page_group_in_use (entry->group, entry->page);
946 #endif
948 if (G.by_depth_in_use > 1)
950 page_entry *top = G.by_depth[G.by_depth_in_use-1];
951 int i = entry->index_by_depth;
953 /* We cannot free a page from a context deeper than the current
954 one. */
955 gcc_assert (entry->context_depth == top->context_depth);
957 /* Put top element into freed slot. */
958 G.by_depth[i] = top;
959 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
960 top->index_by_depth = i;
962 --G.by_depth_in_use;
964 adjust_depth ();
966 entry->next = G.free_pages;
967 G.free_pages = entry;
970 /* Release the free page cache to the system. */
972 static void
973 release_pages (void)
975 #ifdef USING_MMAP
976 page_entry *p, *next;
977 char *start;
978 size_t len;
980 /* Gather up adjacent pages so they are unmapped together. */
981 p = G.free_pages;
983 while (p)
985 start = p->page;
986 next = p->next;
987 len = p->bytes;
988 free (p);
989 p = next;
991 while (p && p->page == start + len)
993 next = p->next;
994 len += p->bytes;
995 free (p);
996 p = next;
999 munmap (start, len);
1000 G.bytes_mapped -= len;
1003 G.free_pages = NULL;
1004 #endif
1005 #ifdef USING_MALLOC_PAGE_GROUPS
1006 page_entry **pp, *p;
1007 page_group **gp, *g;
1009 /* Remove all pages from free page groups from the list. */
1010 pp = &G.free_pages;
1011 while ((p = *pp) != NULL)
1012 if (p->group->in_use == 0)
1014 *pp = p->next;
1015 free (p);
1017 else
1018 pp = &p->next;
1020 /* Remove all free page groups, and release the storage. */
1021 gp = &G.page_groups;
1022 while ((g = *gp) != NULL)
1023 if (g->in_use == 0)
1025 *gp = g->next;
1026 G.bytes_mapped -= g->alloc_size;
1027 free (g->allocation);
1029 else
1030 gp = &g->next;
1031 #endif
1034 /* This table provides a fast way to determine ceil(log_2(size)) for
1035 allocation requests. The minimum allocation size is eight bytes. */
1036 #define NUM_SIZE_LOOKUP 512
1037 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1039 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1040 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1041 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1042 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1043 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1044 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1045 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1046 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1047 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1048 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1049 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1050 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1051 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1052 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1053 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1054 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1055 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1056 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1057 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1058 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1059 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1060 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1061 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1062 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1063 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1064 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1065 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1066 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1067 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1068 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1069 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1070 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1073 /* Typed allocation function. Does nothing special in this collector. */
1075 void *
1076 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1077 MEM_STAT_DECL)
1079 return ggc_internal_alloc_stat (size PASS_MEM_STAT);
1082 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1084 void *
1085 ggc_internal_alloc_stat (size_t size MEM_STAT_DECL)
1087 size_t order, word, bit, object_offset, object_size;
1088 struct page_entry *entry;
1089 void *result;
1091 if (size < NUM_SIZE_LOOKUP)
1093 order = size_lookup[size];
1094 object_size = OBJECT_SIZE (order);
1096 else
1098 order = 10;
1099 while (size > (object_size = OBJECT_SIZE (order)))
1100 order++;
1103 /* If there are non-full pages for this size allocation, they are at
1104 the head of the list. */
1105 entry = G.pages[order];
1107 /* If there is no page for this object size, or all pages in this
1108 context are full, allocate a new page. */
1109 if (entry == NULL || entry->num_free_objects == 0)
1111 struct page_entry *new_entry;
1112 new_entry = alloc_page (order);
1114 new_entry->index_by_depth = G.by_depth_in_use;
1115 push_by_depth (new_entry, 0);
1117 /* We can skip context depths, if we do, make sure we go all the
1118 way to the new depth. */
1119 while (new_entry->context_depth >= G.depth_in_use)
1120 push_depth (G.by_depth_in_use-1);
1122 /* If this is the only entry, it's also the tail. If it is not
1123 the only entry, then we must update the PREV pointer of the
1124 ENTRY (G.pages[order]) to point to our new page entry. */
1125 if (entry == NULL)
1126 G.page_tails[order] = new_entry;
1127 else
1128 entry->prev = new_entry;
1130 /* Put new pages at the head of the page list. By definition the
1131 entry at the head of the list always has a NULL pointer. */
1132 new_entry->next = entry;
1133 new_entry->prev = NULL;
1134 entry = new_entry;
1135 G.pages[order] = new_entry;
1137 /* For a new page, we know the word and bit positions (in the
1138 in_use bitmap) of the first available object -- they're zero. */
1139 new_entry->next_bit_hint = 1;
1140 word = 0;
1141 bit = 0;
1142 object_offset = 0;
1144 else
1146 /* First try to use the hint left from the previous allocation
1147 to locate a clear bit in the in-use bitmap. We've made sure
1148 that the one-past-the-end bit is always set, so if the hint
1149 has run over, this test will fail. */
1150 unsigned hint = entry->next_bit_hint;
1151 word = hint / HOST_BITS_PER_LONG;
1152 bit = hint % HOST_BITS_PER_LONG;
1154 /* If the hint didn't work, scan the bitmap from the beginning. */
1155 if ((entry->in_use_p[word] >> bit) & 1)
1157 word = bit = 0;
1158 while (~entry->in_use_p[word] == 0)
1159 ++word;
1161 #if GCC_VERSION >= 3004
1162 bit = __builtin_ctzl (~entry->in_use_p[word]);
1163 #else
1164 while ((entry->in_use_p[word] >> bit) & 1)
1165 ++bit;
1166 #endif
1168 hint = word * HOST_BITS_PER_LONG + bit;
1171 /* Next time, try the next bit. */
1172 entry->next_bit_hint = hint + 1;
1174 object_offset = hint * object_size;
1177 /* Set the in-use bit. */
1178 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1180 /* Keep a running total of the number of free objects. If this page
1181 fills up, we may have to move it to the end of the list if the
1182 next page isn't full. If the next page is full, all subsequent
1183 pages are full, so there's no need to move it. */
1184 if (--entry->num_free_objects == 0
1185 && entry->next != NULL
1186 && entry->next->num_free_objects > 0)
1188 /* We have a new head for the list. */
1189 G.pages[order] = entry->next;
1191 /* We are moving ENTRY to the end of the page table list.
1192 The new page at the head of the list will have NULL in
1193 its PREV field and ENTRY will have NULL in its NEXT field. */
1194 entry->next->prev = NULL;
1195 entry->next = NULL;
1197 /* Append ENTRY to the tail of the list. */
1198 entry->prev = G.page_tails[order];
1199 G.page_tails[order]->next = entry;
1200 G.page_tails[order] = entry;
1203 /* Calculate the object's address. */
1204 result = entry->page + object_offset;
1205 #ifdef GATHER_STATISTICS
1206 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1207 result PASS_MEM_STAT);
1208 #endif
1210 #ifdef ENABLE_GC_CHECKING
1211 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1212 exact same semantics in presence of memory bugs, regardless of
1213 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1214 handle to avoid handle leak. */
1215 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1217 /* `Poison' the entire allocated object, including any padding at
1218 the end. */
1219 memset (result, 0xaf, object_size);
1221 /* Make the bytes after the end of the object unaccessible. Discard the
1222 handle to avoid handle leak. */
1223 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1224 object_size - size));
1225 #endif
1227 /* Tell Valgrind that the memory is there, but its content isn't
1228 defined. The bytes at the end of the object are still marked
1229 unaccessible. */
1230 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1232 /* Keep track of how many bytes are being allocated. This
1233 information is used in deciding when to collect. */
1234 G.allocated += object_size;
1236 /* For timevar statistics. */
1237 timevar_ggc_mem_total += object_size;
1239 #ifdef GATHER_STATISTICS
1241 size_t overhead = object_size - size;
1243 G.stats.total_overhead += overhead;
1244 G.stats.total_allocated += object_size;
1245 G.stats.total_overhead_per_order[order] += overhead;
1246 G.stats.total_allocated_per_order[order] += object_size;
1248 if (size <= 32)
1250 G.stats.total_overhead_under32 += overhead;
1251 G.stats.total_allocated_under32 += object_size;
1253 if (size <= 64)
1255 G.stats.total_overhead_under64 += overhead;
1256 G.stats.total_allocated_under64 += object_size;
1258 if (size <= 128)
1260 G.stats.total_overhead_under128 += overhead;
1261 G.stats.total_allocated_under128 += object_size;
1264 #endif
1266 if (GGC_DEBUG_LEVEL >= 3)
1267 fprintf (G.debug_file,
1268 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1269 (unsigned long) size, (unsigned long) object_size, result,
1270 (void *) entry);
1272 return result;
1275 /* Mark function for strings. */
1277 void
1278 gt_ggc_m_S (const void *p)
1280 page_entry *entry;
1281 unsigned bit, word;
1282 unsigned long mask;
1283 unsigned long offset;
1285 if (!p || !ggc_allocated_p (p))
1286 return;
1288 /* Look up the page on which the object is alloced. . */
1289 entry = lookup_page_table_entry (p);
1290 gcc_assert (entry);
1292 /* Calculate the index of the object on the page; this is its bit
1293 position in the in_use_p bitmap. Note that because a char* might
1294 point to the middle of an object, we need special code here to
1295 make sure P points to the start of an object. */
1296 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1297 if (offset)
1299 /* Here we've seen a char* which does not point to the beginning
1300 of an allocated object. We assume it points to the middle of
1301 a STRING_CST. */
1302 gcc_assert (offset == offsetof (struct tree_string, str));
1303 p = ((const char *) p) - offset;
1304 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
1305 return;
1308 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1309 word = bit / HOST_BITS_PER_LONG;
1310 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1312 /* If the bit was previously set, skip it. */
1313 if (entry->in_use_p[word] & mask)
1314 return;
1316 /* Otherwise set it, and decrement the free object count. */
1317 entry->in_use_p[word] |= mask;
1318 entry->num_free_objects -= 1;
1320 if (GGC_DEBUG_LEVEL >= 4)
1321 fprintf (G.debug_file, "Marking %p\n", p);
1323 return;
1326 /* If P is not marked, marks it and return false. Otherwise return true.
1327 P must have been allocated by the GC allocator; it mustn't point to
1328 static objects, stack variables, or memory allocated with malloc. */
1331 ggc_set_mark (const void *p)
1333 page_entry *entry;
1334 unsigned bit, word;
1335 unsigned long mask;
1337 /* Look up the page on which the object is alloced. If the object
1338 wasn't allocated by the collector, we'll probably die. */
1339 entry = lookup_page_table_entry (p);
1340 gcc_assert (entry);
1342 /* Calculate the index of the object on the page; this is its bit
1343 position in the in_use_p bitmap. */
1344 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1345 word = bit / HOST_BITS_PER_LONG;
1346 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1348 /* If the bit was previously set, skip it. */
1349 if (entry->in_use_p[word] & mask)
1350 return 1;
1352 /* Otherwise set it, and decrement the free object count. */
1353 entry->in_use_p[word] |= mask;
1354 entry->num_free_objects -= 1;
1356 if (GGC_DEBUG_LEVEL >= 4)
1357 fprintf (G.debug_file, "Marking %p\n", p);
1359 return 0;
1362 /* Return 1 if P has been marked, zero otherwise.
1363 P must have been allocated by the GC allocator; it mustn't point to
1364 static objects, stack variables, or memory allocated with malloc. */
1367 ggc_marked_p (const void *p)
1369 page_entry *entry;
1370 unsigned bit, word;
1371 unsigned long mask;
1373 /* Look up the page on which the object is alloced. If the object
1374 wasn't allocated by the collector, we'll probably die. */
1375 entry = lookup_page_table_entry (p);
1376 gcc_assert (entry);
1378 /* Calculate the index of the object on the page; this is its bit
1379 position in the in_use_p bitmap. */
1380 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1381 word = bit / HOST_BITS_PER_LONG;
1382 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1384 return (entry->in_use_p[word] & mask) != 0;
1387 /* Return the size of the gc-able object P. */
1389 size_t
1390 ggc_get_size (const void *p)
1392 page_entry *pe = lookup_page_table_entry (p);
1393 return OBJECT_SIZE (pe->order);
1396 /* Release the memory for object P. */
1398 void
1399 ggc_free (void *p)
1401 page_entry *pe = lookup_page_table_entry (p);
1402 size_t order = pe->order;
1403 size_t size = OBJECT_SIZE (order);
1405 #ifdef GATHER_STATISTICS
1406 ggc_free_overhead (p);
1407 #endif
1409 if (GGC_DEBUG_LEVEL >= 3)
1410 fprintf (G.debug_file,
1411 "Freeing object, actual size=%lu, at %p on %p\n",
1412 (unsigned long) size, p, (void *) pe);
1414 #ifdef ENABLE_GC_CHECKING
1415 /* Poison the data, to indicate the data is garbage. */
1416 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1417 memset (p, 0xa5, size);
1418 #endif
1419 /* Let valgrind know the object is free. */
1420 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1422 #ifdef ENABLE_GC_ALWAYS_COLLECT
1423 /* In the completely-anal-checking mode, we do *not* immediately free
1424 the data, but instead verify that the data is *actually* not
1425 reachable the next time we collect. */
1427 struct free_object *fo = XNEW (struct free_object);
1428 fo->object = p;
1429 fo->next = G.free_object_list;
1430 G.free_object_list = fo;
1432 #else
1434 unsigned int bit_offset, word, bit;
1436 G.allocated -= size;
1438 /* Mark the object not-in-use. */
1439 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1440 word = bit_offset / HOST_BITS_PER_LONG;
1441 bit = bit_offset % HOST_BITS_PER_LONG;
1442 pe->in_use_p[word] &= ~(1UL << bit);
1444 if (pe->num_free_objects++ == 0)
1446 page_entry *p, *q;
1448 /* If the page is completely full, then it's supposed to
1449 be after all pages that aren't. Since we've freed one
1450 object from a page that was full, we need to move the
1451 page to the head of the list.
1453 PE is the node we want to move. Q is the previous node
1454 and P is the next node in the list. */
1455 q = pe->prev;
1456 if (q && q->num_free_objects == 0)
1458 p = pe->next;
1460 q->next = p;
1462 /* If PE was at the end of the list, then Q becomes the
1463 new end of the list. If PE was not the end of the
1464 list, then we need to update the PREV field for P. */
1465 if (!p)
1466 G.page_tails[order] = q;
1467 else
1468 p->prev = q;
1470 /* Move PE to the head of the list. */
1471 pe->next = G.pages[order];
1472 pe->prev = NULL;
1473 G.pages[order]->prev = pe;
1474 G.pages[order] = pe;
1477 /* Reset the hint bit to point to the only free object. */
1478 pe->next_bit_hint = bit_offset;
1481 #endif
1484 /* Subroutine of init_ggc which computes the pair of numbers used to
1485 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1487 This algorithm is taken from Granlund and Montgomery's paper
1488 "Division by Invariant Integers using Multiplication"
1489 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1490 constants). */
1492 static void
1493 compute_inverse (unsigned order)
1495 size_t size, inv;
1496 unsigned int e;
1498 size = OBJECT_SIZE (order);
1499 e = 0;
1500 while (size % 2 == 0)
1502 e++;
1503 size >>= 1;
1506 inv = size;
1507 while (inv * size != 1)
1508 inv = inv * (2 - inv*size);
1510 DIV_MULT (order) = inv;
1511 DIV_SHIFT (order) = e;
1514 /* Initialize the ggc-mmap allocator. */
1515 void
1516 init_ggc (void)
1518 unsigned order;
1520 G.pagesize = getpagesize();
1521 G.lg_pagesize = exact_log2 (G.pagesize);
1523 #ifdef HAVE_MMAP_DEV_ZERO
1524 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1525 if (G.dev_zero_fd == -1)
1526 internal_error ("open /dev/zero: %m");
1527 #endif
1529 #if 0
1530 G.debug_file = fopen ("ggc-mmap.debug", "w");
1531 #else
1532 G.debug_file = stdout;
1533 #endif
1535 #ifdef USING_MMAP
1536 /* StunOS has an amazing off-by-one error for the first mmap allocation
1537 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1538 believe, is an unaligned page allocation, which would cause us to
1539 hork badly if we tried to use it. */
1541 char *p = alloc_anon (NULL, G.pagesize);
1542 struct page_entry *e;
1543 if ((size_t)p & (G.pagesize - 1))
1545 /* How losing. Discard this one and try another. If we still
1546 can't get something useful, give up. */
1548 p = alloc_anon (NULL, G.pagesize);
1549 gcc_assert (!((size_t)p & (G.pagesize - 1)));
1552 /* We have a good page, might as well hold onto it... */
1553 e = XCNEW (struct page_entry);
1554 e->bytes = G.pagesize;
1555 e->page = p;
1556 e->next = G.free_pages;
1557 G.free_pages = e;
1559 #endif
1561 /* Initialize the object size table. */
1562 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1563 object_size_table[order] = (size_t) 1 << order;
1564 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1566 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1568 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1569 so that we're sure of getting aligned memory. */
1570 s = ROUND_UP (s, MAX_ALIGNMENT);
1571 object_size_table[order] = s;
1574 /* Initialize the objects-per-page and inverse tables. */
1575 for (order = 0; order < NUM_ORDERS; ++order)
1577 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1578 if (objects_per_page_table[order] == 0)
1579 objects_per_page_table[order] = 1;
1580 compute_inverse (order);
1583 /* Reset the size_lookup array to put appropriately sized objects in
1584 the special orders. All objects bigger than the previous power
1585 of two, but no greater than the special size, should go in the
1586 new order. */
1587 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1589 int o;
1590 int i;
1592 i = OBJECT_SIZE (order);
1593 if (i >= NUM_SIZE_LOOKUP)
1594 continue;
1596 for (o = size_lookup[i]; o == size_lookup [i]; --i)
1597 size_lookup[i] = order;
1600 G.depth_in_use = 0;
1601 G.depth_max = 10;
1602 G.depth = XNEWVEC (unsigned int, G.depth_max);
1604 G.by_depth_in_use = 0;
1605 G.by_depth_max = INITIAL_PTE_COUNT;
1606 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1607 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1610 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1611 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1613 static void
1614 ggc_recalculate_in_use_p (page_entry *p)
1616 unsigned int i;
1617 size_t num_objects;
1619 /* Because the past-the-end bit in in_use_p is always set, we
1620 pretend there is one additional object. */
1621 num_objects = OBJECTS_IN_PAGE (p) + 1;
1623 /* Reset the free object count. */
1624 p->num_free_objects = num_objects;
1626 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1627 for (i = 0;
1628 i < CEIL (BITMAP_SIZE (num_objects),
1629 sizeof (*p->in_use_p));
1630 ++i)
1632 unsigned long j;
1634 /* Something is in use if it is marked, or if it was in use in a
1635 context further down the context stack. */
1636 p->in_use_p[i] |= save_in_use_p (p)[i];
1638 /* Decrement the free object count for every object allocated. */
1639 for (j = p->in_use_p[i]; j; j >>= 1)
1640 p->num_free_objects -= (j & 1);
1643 gcc_assert (p->num_free_objects < num_objects);
1646 /* Unmark all objects. */
1648 static void
1649 clear_marks (void)
1651 unsigned order;
1653 for (order = 2; order < NUM_ORDERS; order++)
1655 page_entry *p;
1657 for (p = G.pages[order]; p != NULL; p = p->next)
1659 size_t num_objects = OBJECTS_IN_PAGE (p);
1660 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1662 /* The data should be page-aligned. */
1663 gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
1665 /* Pages that aren't in the topmost context are not collected;
1666 nevertheless, we need their in-use bit vectors to store GC
1667 marks. So, back them up first. */
1668 if (p->context_depth < G.context_depth)
1670 if (! save_in_use_p (p))
1671 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
1672 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1675 /* Reset reset the number of free objects and clear the
1676 in-use bits. These will be adjusted by mark_obj. */
1677 p->num_free_objects = num_objects;
1678 memset (p->in_use_p, 0, bitmap_size);
1680 /* Make sure the one-past-the-end bit is always set. */
1681 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1682 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1687 /* Free all empty pages. Partially empty pages need no attention
1688 because the `mark' bit doubles as an `unused' bit. */
1690 static void
1691 sweep_pages (void)
1693 unsigned order;
1695 for (order = 2; order < NUM_ORDERS; order++)
1697 /* The last page-entry to consider, regardless of entries
1698 placed at the end of the list. */
1699 page_entry * const last = G.page_tails[order];
1701 size_t num_objects;
1702 size_t live_objects;
1703 page_entry *p, *previous;
1704 int done;
1706 p = G.pages[order];
1707 if (p == NULL)
1708 continue;
1710 previous = NULL;
1713 page_entry *next = p->next;
1715 /* Loop until all entries have been examined. */
1716 done = (p == last);
1718 num_objects = OBJECTS_IN_PAGE (p);
1720 /* Add all live objects on this page to the count of
1721 allocated memory. */
1722 live_objects = num_objects - p->num_free_objects;
1724 G.allocated += OBJECT_SIZE (order) * live_objects;
1726 /* Only objects on pages in the topmost context should get
1727 collected. */
1728 if (p->context_depth < G.context_depth)
1731 /* Remove the page if it's empty. */
1732 else if (live_objects == 0)
1734 /* If P was the first page in the list, then NEXT
1735 becomes the new first page in the list, otherwise
1736 splice P out of the forward pointers. */
1737 if (! previous)
1738 G.pages[order] = next;
1739 else
1740 previous->next = next;
1742 /* Splice P out of the back pointers too. */
1743 if (next)
1744 next->prev = previous;
1746 /* Are we removing the last element? */
1747 if (p == G.page_tails[order])
1748 G.page_tails[order] = previous;
1749 free_page (p);
1750 p = previous;
1753 /* If the page is full, move it to the end. */
1754 else if (p->num_free_objects == 0)
1756 /* Don't move it if it's already at the end. */
1757 if (p != G.page_tails[order])
1759 /* Move p to the end of the list. */
1760 p->next = NULL;
1761 p->prev = G.page_tails[order];
1762 G.page_tails[order]->next = p;
1764 /* Update the tail pointer... */
1765 G.page_tails[order] = p;
1767 /* ... and the head pointer, if necessary. */
1768 if (! previous)
1769 G.pages[order] = next;
1770 else
1771 previous->next = next;
1773 /* And update the backpointer in NEXT if necessary. */
1774 if (next)
1775 next->prev = previous;
1777 p = previous;
1781 /* If we've fallen through to here, it's a page in the
1782 topmost context that is neither full nor empty. Such a
1783 page must precede pages at lesser context depth in the
1784 list, so move it to the head. */
1785 else if (p != G.pages[order])
1787 previous->next = p->next;
1789 /* Update the backchain in the next node if it exists. */
1790 if (p->next)
1791 p->next->prev = previous;
1793 /* Move P to the head of the list. */
1794 p->next = G.pages[order];
1795 p->prev = NULL;
1796 G.pages[order]->prev = p;
1798 /* Update the head pointer. */
1799 G.pages[order] = p;
1801 /* Are we moving the last element? */
1802 if (G.page_tails[order] == p)
1803 G.page_tails[order] = previous;
1804 p = previous;
1807 previous = p;
1808 p = next;
1810 while (! done);
1812 /* Now, restore the in_use_p vectors for any pages from contexts
1813 other than the current one. */
1814 for (p = G.pages[order]; p; p = p->next)
1815 if (p->context_depth != G.context_depth)
1816 ggc_recalculate_in_use_p (p);
1820 #ifdef ENABLE_GC_CHECKING
1821 /* Clobber all free objects. */
1823 static void
1824 poison_pages (void)
1826 unsigned order;
1828 for (order = 2; order < NUM_ORDERS; order++)
1830 size_t size = OBJECT_SIZE (order);
1831 page_entry *p;
1833 for (p = G.pages[order]; p != NULL; p = p->next)
1835 size_t num_objects;
1836 size_t i;
1838 if (p->context_depth != G.context_depth)
1839 /* Since we don't do any collection for pages in pushed
1840 contexts, there's no need to do any poisoning. And
1841 besides, the IN_USE_P array isn't valid until we pop
1842 contexts. */
1843 continue;
1845 num_objects = OBJECTS_IN_PAGE (p);
1846 for (i = 0; i < num_objects; i++)
1848 size_t word, bit;
1849 word = i / HOST_BITS_PER_LONG;
1850 bit = i % HOST_BITS_PER_LONG;
1851 if (((p->in_use_p[word] >> bit) & 1) == 0)
1853 char *object = p->page + i * size;
1855 /* Keep poison-by-write when we expect to use Valgrind,
1856 so the exact same memory semantics is kept, in case
1857 there are memory errors. We override this request
1858 below. */
1859 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
1860 size));
1861 memset (object, 0xa5, size);
1863 /* Drop the handle to avoid handle leak. */
1864 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
1870 #else
1871 #define poison_pages()
1872 #endif
1874 #ifdef ENABLE_GC_ALWAYS_COLLECT
1875 /* Validate that the reportedly free objects actually are. */
1877 static void
1878 validate_free_objects (void)
1880 struct free_object *f, *next, *still_free = NULL;
1882 for (f = G.free_object_list; f ; f = next)
1884 page_entry *pe = lookup_page_table_entry (f->object);
1885 size_t bit, word;
1887 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
1888 word = bit / HOST_BITS_PER_LONG;
1889 bit = bit % HOST_BITS_PER_LONG;
1890 next = f->next;
1892 /* Make certain it isn't visible from any root. Notice that we
1893 do this check before sweep_pages merges save_in_use_p. */
1894 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
1896 /* If the object comes from an outer context, then retain the
1897 free_object entry, so that we can verify that the address
1898 isn't live on the stack in some outer context. */
1899 if (pe->context_depth != G.context_depth)
1901 f->next = still_free;
1902 still_free = f;
1904 else
1905 free (f);
1908 G.free_object_list = still_free;
1910 #else
1911 #define validate_free_objects()
1912 #endif
1914 /* Top level mark-and-sweep routine. */
1916 void
1917 ggc_collect (void)
1919 /* Avoid frequent unnecessary work by skipping collection if the
1920 total allocations haven't expanded much since the last
1921 collection. */
1922 float allocated_last_gc =
1923 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
1925 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
1927 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
1928 return;
1930 timevar_push (TV_GC);
1931 if (!quiet_flag)
1932 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1933 if (GGC_DEBUG_LEVEL >= 2)
1934 fprintf (G.debug_file, "BEGIN COLLECTING\n");
1936 /* Zero the total allocated bytes. This will be recalculated in the
1937 sweep phase. */
1938 G.allocated = 0;
1940 /* Release the pages we freed the last time we collected, but didn't
1941 reuse in the interim. */
1942 release_pages ();
1944 /* Indicate that we've seen collections at this context depth. */
1945 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
1947 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
1949 clear_marks ();
1950 ggc_mark_roots ();
1951 #ifdef GATHER_STATISTICS
1952 ggc_prune_overhead_list ();
1953 #endif
1954 poison_pages ();
1955 validate_free_objects ();
1956 sweep_pages ();
1958 G.allocated_last_gc = G.allocated;
1960 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
1962 timevar_pop (TV_GC);
1964 if (!quiet_flag)
1965 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1966 if (GGC_DEBUG_LEVEL >= 2)
1967 fprintf (G.debug_file, "END COLLECTING\n");
1970 /* Print allocation statistics. */
1971 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1972 ? (x) \
1973 : ((x) < 1024*1024*10 \
1974 ? (x) / 1024 \
1975 : (x) / (1024*1024))))
1976 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1978 void
1979 ggc_print_statistics (void)
1981 struct ggc_statistics stats;
1982 unsigned int i;
1983 size_t total_overhead = 0;
1985 /* Clear the statistics. */
1986 memset (&stats, 0, sizeof (stats));
1988 /* Make sure collection will really occur. */
1989 G.allocated_last_gc = 0;
1991 /* Collect and print the statistics common across collectors. */
1992 ggc_print_common_statistics (stderr, &stats);
1994 /* Release free pages so that we will not count the bytes allocated
1995 there as part of the total allocated memory. */
1996 release_pages ();
1998 /* Collect some information about the various sizes of
1999 allocation. */
2000 fprintf (stderr,
2001 "Memory still allocated at the end of the compilation process\n");
2002 fprintf (stderr, "%-5s %10s %10s %10s\n",
2003 "Size", "Allocated", "Used", "Overhead");
2004 for (i = 0; i < NUM_ORDERS; ++i)
2006 page_entry *p;
2007 size_t allocated;
2008 size_t in_use;
2009 size_t overhead;
2011 /* Skip empty entries. */
2012 if (!G.pages[i])
2013 continue;
2015 overhead = allocated = in_use = 0;
2017 /* Figure out the total number of bytes allocated for objects of
2018 this size, and how many of them are actually in use. Also figure
2019 out how much memory the page table is using. */
2020 for (p = G.pages[i]; p; p = p->next)
2022 allocated += p->bytes;
2023 in_use +=
2024 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2026 overhead += (sizeof (page_entry) - sizeof (long)
2027 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2029 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2030 (unsigned long) OBJECT_SIZE (i),
2031 SCALE (allocated), STAT_LABEL (allocated),
2032 SCALE (in_use), STAT_LABEL (in_use),
2033 SCALE (overhead), STAT_LABEL (overhead));
2034 total_overhead += overhead;
2036 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2037 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2038 SCALE (G.allocated), STAT_LABEL(G.allocated),
2039 SCALE (total_overhead), STAT_LABEL (total_overhead));
2041 #ifdef GATHER_STATISTICS
2043 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2045 fprintf (stderr, "Total Overhead: %10lld\n",
2046 G.stats.total_overhead);
2047 fprintf (stderr, "Total Allocated: %10lld\n",
2048 G.stats.total_allocated);
2050 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
2051 G.stats.total_overhead_under32);
2052 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
2053 G.stats.total_allocated_under32);
2054 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
2055 G.stats.total_overhead_under64);
2056 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
2057 G.stats.total_allocated_under64);
2058 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
2059 G.stats.total_overhead_under128);
2060 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
2061 G.stats.total_allocated_under128);
2063 for (i = 0; i < NUM_ORDERS; i++)
2064 if (G.stats.total_allocated_per_order[i])
2066 fprintf (stderr, "Total Overhead page size %7lu: %10lld\n",
2067 (unsigned long) OBJECT_SIZE (i),
2068 G.stats.total_overhead_per_order[i]);
2069 fprintf (stderr, "Total Allocated page size %7lu: %10lld\n",
2070 (unsigned long) OBJECT_SIZE (i),
2071 G.stats.total_allocated_per_order[i]);
2074 #endif
2077 struct ggc_pch_ondisk
2079 unsigned totals[NUM_ORDERS];
2082 struct ggc_pch_data
2084 struct ggc_pch_ondisk d;
2085 size_t base[NUM_ORDERS];
2086 size_t written[NUM_ORDERS];
2089 struct ggc_pch_data *
2090 init_ggc_pch (void)
2092 return XCNEW (struct ggc_pch_data);
2095 void
2096 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2097 size_t size, bool is_string ATTRIBUTE_UNUSED,
2098 enum gt_types_enum type ATTRIBUTE_UNUSED)
2100 unsigned order;
2102 if (size < NUM_SIZE_LOOKUP)
2103 order = size_lookup[size];
2104 else
2106 order = 10;
2107 while (size > OBJECT_SIZE (order))
2108 order++;
2111 d->d.totals[order]++;
2114 size_t
2115 ggc_pch_total_size (struct ggc_pch_data *d)
2117 size_t a = 0;
2118 unsigned i;
2120 for (i = 0; i < NUM_ORDERS; i++)
2121 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2122 return a;
2125 void
2126 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2128 size_t a = (size_t) base;
2129 unsigned i;
2131 for (i = 0; i < NUM_ORDERS; i++)
2133 d->base[i] = a;
2134 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2139 char *
2140 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2141 size_t size, bool is_string ATTRIBUTE_UNUSED,
2142 enum gt_types_enum type ATTRIBUTE_UNUSED)
2144 unsigned order;
2145 char *result;
2147 if (size < NUM_SIZE_LOOKUP)
2148 order = size_lookup[size];
2149 else
2151 order = 10;
2152 while (size > OBJECT_SIZE (order))
2153 order++;
2156 result = (char *) d->base[order];
2157 d->base[order] += OBJECT_SIZE (order);
2158 return result;
2161 void
2162 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2163 FILE *f ATTRIBUTE_UNUSED)
2165 /* Nothing to do. */
2168 void
2169 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2170 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2171 size_t size, bool is_string ATTRIBUTE_UNUSED)
2173 unsigned order;
2174 static const char emptyBytes[256] = { 0 };
2176 if (size < NUM_SIZE_LOOKUP)
2177 order = size_lookup[size];
2178 else
2180 order = 10;
2181 while (size > OBJECT_SIZE (order))
2182 order++;
2185 if (fwrite (x, size, 1, f) != 1)
2186 fatal_error ("can't write PCH file: %m");
2188 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2189 object out to OBJECT_SIZE(order). This happens for strings. */
2191 if (size != OBJECT_SIZE (order))
2193 unsigned padding = OBJECT_SIZE(order) - size;
2195 /* To speed small writes, we use a nulled-out array that's larger
2196 than most padding requests as the source for our null bytes. This
2197 permits us to do the padding with fwrite() rather than fseek(), and
2198 limits the chance the OS may try to flush any outstanding writes. */
2199 if (padding <= sizeof(emptyBytes))
2201 if (fwrite (emptyBytes, 1, padding, f) != padding)
2202 fatal_error ("can't write PCH file");
2204 else
2206 /* Larger than our buffer? Just default to fseek. */
2207 if (fseek (f, padding, SEEK_CUR) != 0)
2208 fatal_error ("can't write PCH file");
2212 d->written[order]++;
2213 if (d->written[order] == d->d.totals[order]
2214 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2215 G.pagesize),
2216 SEEK_CUR) != 0)
2217 fatal_error ("can't write PCH file: %m");
2220 void
2221 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2223 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2224 fatal_error ("can't write PCH file: %m");
2225 free (d);
2228 /* Move the PCH PTE entries just added to the end of by_depth, to the
2229 front. */
2231 static void
2232 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2234 unsigned i;
2236 /* First, we swap the new entries to the front of the varrays. */
2237 page_entry **new_by_depth;
2238 unsigned long **new_save_in_use;
2240 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2241 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2243 memcpy (&new_by_depth[0],
2244 &G.by_depth[count_old_page_tables],
2245 count_new_page_tables * sizeof (void *));
2246 memcpy (&new_by_depth[count_new_page_tables],
2247 &G.by_depth[0],
2248 count_old_page_tables * sizeof (void *));
2249 memcpy (&new_save_in_use[0],
2250 &G.save_in_use[count_old_page_tables],
2251 count_new_page_tables * sizeof (void *));
2252 memcpy (&new_save_in_use[count_new_page_tables],
2253 &G.save_in_use[0],
2254 count_old_page_tables * sizeof (void *));
2256 free (G.by_depth);
2257 free (G.save_in_use);
2259 G.by_depth = new_by_depth;
2260 G.save_in_use = new_save_in_use;
2262 /* Now update all the index_by_depth fields. */
2263 for (i = G.by_depth_in_use; i > 0; --i)
2265 page_entry *p = G.by_depth[i-1];
2266 p->index_by_depth = i-1;
2269 /* And last, we update the depth pointers in G.depth. The first
2270 entry is already 0, and context 0 entries always start at index
2271 0, so there is nothing to update in the first slot. We need a
2272 second slot, only if we have old ptes, and if we do, they start
2273 at index count_new_page_tables. */
2274 if (count_old_page_tables)
2275 push_depth (count_new_page_tables);
2278 void
2279 ggc_pch_read (FILE *f, void *addr)
2281 struct ggc_pch_ondisk d;
2282 unsigned i;
2283 char *offs = (char *) addr;
2284 unsigned long count_old_page_tables;
2285 unsigned long count_new_page_tables;
2287 count_old_page_tables = G.by_depth_in_use;
2289 /* We've just read in a PCH file. So, every object that used to be
2290 allocated is now free. */
2291 clear_marks ();
2292 #ifdef ENABLE_GC_CHECKING
2293 poison_pages ();
2294 #endif
2295 /* Since we free all the allocated objects, the free list becomes
2296 useless. Validate it now, which will also clear it. */
2297 validate_free_objects();
2299 /* No object read from a PCH file should ever be freed. So, set the
2300 context depth to 1, and set the depth of all the currently-allocated
2301 pages to be 1 too. PCH pages will have depth 0. */
2302 gcc_assert (!G.context_depth);
2303 G.context_depth = 1;
2304 for (i = 0; i < NUM_ORDERS; i++)
2306 page_entry *p;
2307 for (p = G.pages[i]; p != NULL; p = p->next)
2308 p->context_depth = G.context_depth;
2311 /* Allocate the appropriate page-table entries for the pages read from
2312 the PCH file. */
2313 if (fread (&d, sizeof (d), 1, f) != 1)
2314 fatal_error ("can't read PCH file: %m");
2316 for (i = 0; i < NUM_ORDERS; i++)
2318 struct page_entry *entry;
2319 char *pte;
2320 size_t bytes;
2321 size_t num_objs;
2322 size_t j;
2324 if (d.totals[i] == 0)
2325 continue;
2327 bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2328 num_objs = bytes / OBJECT_SIZE (i);
2329 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2330 - sizeof (long)
2331 + BITMAP_SIZE (num_objs + 1)));
2332 entry->bytes = bytes;
2333 entry->page = offs;
2334 entry->context_depth = 0;
2335 offs += bytes;
2336 entry->num_free_objects = 0;
2337 entry->order = i;
2339 for (j = 0;
2340 j + HOST_BITS_PER_LONG <= num_objs + 1;
2341 j += HOST_BITS_PER_LONG)
2342 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2343 for (; j < num_objs + 1; j++)
2344 entry->in_use_p[j / HOST_BITS_PER_LONG]
2345 |= 1L << (j % HOST_BITS_PER_LONG);
2347 for (pte = entry->page;
2348 pte < entry->page + entry->bytes;
2349 pte += G.pagesize)
2350 set_page_table_entry (pte, entry);
2352 if (G.page_tails[i] != NULL)
2353 G.page_tails[i]->next = entry;
2354 else
2355 G.pages[i] = entry;
2356 G.page_tails[i] = entry;
2358 /* We start off by just adding all the new information to the
2359 end of the varrays, later, we will move the new information
2360 to the front of the varrays, as the PCH page tables are at
2361 context 0. */
2362 push_by_depth (entry, 0);
2365 /* Now, we update the various data structures that speed page table
2366 handling. */
2367 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2369 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2371 /* Update the statistics. */
2372 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2375 struct alloc_zone
2377 int dummy;
2380 struct alloc_zone rtl_zone;
2381 struct alloc_zone tree_zone;
2382 struct alloc_zone tree_id_zone;