1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Analysis used by the inliner and other passes limiting code size growth.
23 We estimate for each function
25 - average function execution time
26 - inlining size benefit (that is how much of function body size
27 and its call sequence is expected to disappear by inlining)
28 - inlining time benefit
31 - call statement size and time
33 inlinie_summary datastructures store above information locally (i.e.
34 parameters of the function itself) and globally (i.e. parameters of
35 the function created by applying all the inline decisions already
36 present in the callgraph).
38 We provide accestor to the inline_summary datastructure and
39 basic logic updating the parameters when inlining is performed.
41 The summaries are context sensitive. Context means
42 1) partial assignment of known constant values of operands
43 2) whether function is inlined into the call or not.
44 It is easy to add more variants. To represent function size and time
45 that depends on context (i.e. it is known to be optimized away when
46 context is known either by inlining or from IP-CP and clonning),
47 we use predicates. Predicates are logical formulas in
48 conjunctive-disjunctive form consisting of clauses. Clauses are bitmaps
49 specifying what conditions must be true. Conditions are simple test
50 of the form described above.
52 In order to make predicate (possibly) true, all of its clauses must
53 be (possibly) true. To make clause (possibly) true, one of conditions
54 it mentions must be (possibly) true. There are fixed bounds on
55 number of clauses and conditions and all the manipulation functions
56 are conservative in positive direction. I.e. we may lose precision
57 by thinking that predicate may be true even when it is not.
59 estimate_edge_size and estimate_edge_growth can be used to query
60 function size/time in the given context. inline_merge_summary merges
61 properties of caller and callee after inlining.
63 Finally pass_inline_parameters is exported. This is used to drive
64 computation of function parameters used by the early inliner. IPA
65 inlined performs analysis via its analyze_function method. */
69 #include "coretypes.h"
72 #include "stor-layout.h"
73 #include "stringpool.h"
74 #include "print-tree.h"
75 #include "tree-inline.h"
76 #include "langhooks.h"
78 #include "diagnostic.h"
79 #include "gimple-pretty-print.h"
81 #include "tree-pass.h"
88 #include "hard-reg-set.h"
91 #include "dominance.h"
94 #include "basic-block.h"
95 #include "tree-ssa-alias.h"
96 #include "internal-fn.h"
97 #include "gimple-expr.h"
100 #include "gimple-iterator.h"
101 #include "gimple-ssa.h"
102 #include "tree-cfg.h"
103 #include "tree-phinodes.h"
104 #include "ssa-iterators.h"
105 #include "tree-ssanames.h"
106 #include "tree-ssa-loop-niter.h"
107 #include "tree-ssa-loop.h"
108 #include "hash-map.h"
109 #include "plugin-api.h"
112 #include "alloc-pool.h"
113 #include "ipa-prop.h"
114 #include "lto-streamer.h"
115 #include "data-streamer.h"
116 #include "tree-streamer.h"
117 #include "ipa-inline.h"
119 #include "tree-scalar-evolution.h"
120 #include "ipa-utils.h"
122 #include "cfgexpand.h"
124 /* Estimate runtime of function can easilly run into huge numbers with many
125 nested loops. Be sure we can compute time * INLINE_SIZE_SCALE * 2 in an
126 integer. For anything larger we use gcov_type. */
127 #define MAX_TIME 500000
129 /* Number of bits in integer, but we really want to be stable across different
131 #define NUM_CONDITIONS 32
133 enum predicate_conditions
135 predicate_false_condition
= 0,
136 predicate_not_inlined_condition
= 1,
137 predicate_first_dynamic_condition
= 2
140 /* Special condition code we use to represent test that operand is compile time
142 #define IS_NOT_CONSTANT ERROR_MARK
143 /* Special condition code we use to represent test that operand is not changed
144 across invocation of the function. When operand IS_NOT_CONSTANT it is always
145 CHANGED, however i.e. loop invariants can be NOT_CHANGED given percentage
146 of executions even when they are not compile time constants. */
147 #define CHANGED IDENTIFIER_NODE
149 /* Holders of ipa cgraph hooks: */
150 static struct cgraph_node_hook_list
*function_insertion_hook_holder
;
151 static struct cgraph_node_hook_list
*node_removal_hook_holder
;
152 static struct cgraph_2node_hook_list
*node_duplication_hook_holder
;
153 static struct cgraph_2edge_hook_list
*edge_duplication_hook_holder
;
154 static struct cgraph_edge_hook_list
*edge_removal_hook_holder
;
155 static void inline_node_removal_hook (struct cgraph_node
*, void *);
156 static void inline_node_duplication_hook (struct cgraph_node
*,
157 struct cgraph_node
*, void *);
158 static void inline_edge_removal_hook (struct cgraph_edge
*, void *);
159 static void inline_edge_duplication_hook (struct cgraph_edge
*,
160 struct cgraph_edge
*, void *);
162 /* VECtor holding inline summaries.
163 In GGC memory because conditions might point to constant trees. */
164 vec
<inline_summary_t
, va_gc
> *inline_summary_vec
;
165 vec
<inline_edge_summary_t
> inline_edge_summary_vec
;
167 /* Cached node/edge growths. */
168 vec
<int> node_growth_cache
;
169 vec
<edge_growth_cache_entry
> edge_growth_cache
;
171 /* Edge predicates goes here. */
172 static alloc_pool edge_predicate_pool
;
174 /* Return true predicate (tautology).
175 We represent it by empty list of clauses. */
177 static inline struct predicate
178 true_predicate (void)
186 /* Return predicate testing single condition number COND. */
188 static inline struct predicate
189 single_cond_predicate (int cond
)
192 p
.clause
[0] = 1 << cond
;
198 /* Return false predicate. First clause require false condition. */
200 static inline struct predicate
201 false_predicate (void)
203 return single_cond_predicate (predicate_false_condition
);
207 /* Return true if P is (true). */
210 true_predicate_p (struct predicate
*p
)
212 return !p
->clause
[0];
216 /* Return true if P is (false). */
219 false_predicate_p (struct predicate
*p
)
221 if (p
->clause
[0] == (1 << predicate_false_condition
))
223 gcc_checking_assert (!p
->clause
[1]
224 && p
->clause
[0] == 1 << predicate_false_condition
);
231 /* Return predicate that is set true when function is not inlined. */
233 static inline struct predicate
234 not_inlined_predicate (void)
236 return single_cond_predicate (predicate_not_inlined_condition
);
239 /* Simple description of whether a memory load or a condition refers to a load
240 from an aggregate and if so, how and where from in the aggregate.
241 Individual fields have the same meaning like fields with the same name in
244 struct agg_position_info
246 HOST_WIDE_INT offset
;
251 /* Add condition to condition list CONDS. AGGPOS describes whether the used
252 oprand is loaded from an aggregate and where in the aggregate it is. It can
253 be NULL, which means this not a load from an aggregate. */
255 static struct predicate
256 add_condition (struct inline_summary
*summary
, int operand_num
,
257 struct agg_position_info
*aggpos
,
258 enum tree_code code
, tree val
)
262 struct condition new_cond
;
263 HOST_WIDE_INT offset
;
264 bool agg_contents
, by_ref
;
268 offset
= aggpos
->offset
;
269 agg_contents
= aggpos
->agg_contents
;
270 by_ref
= aggpos
->by_ref
;
275 agg_contents
= false;
279 gcc_checking_assert (operand_num
>= 0);
280 for (i
= 0; vec_safe_iterate (summary
->conds
, i
, &c
); i
++)
282 if (c
->operand_num
== operand_num
285 && c
->agg_contents
== agg_contents
286 && (!agg_contents
|| (c
->offset
== offset
&& c
->by_ref
== by_ref
)))
287 return single_cond_predicate (i
+ predicate_first_dynamic_condition
);
289 /* Too many conditions. Give up and return constant true. */
290 if (i
== NUM_CONDITIONS
- predicate_first_dynamic_condition
)
291 return true_predicate ();
293 new_cond
.operand_num
= operand_num
;
294 new_cond
.code
= code
;
296 new_cond
.agg_contents
= agg_contents
;
297 new_cond
.by_ref
= by_ref
;
298 new_cond
.offset
= offset
;
299 vec_safe_push (summary
->conds
, new_cond
);
300 return single_cond_predicate (i
+ predicate_first_dynamic_condition
);
304 /* Add clause CLAUSE into the predicate P. */
307 add_clause (conditions conditions
, struct predicate
*p
, clause_t clause
)
311 int insert_here
= -1;
318 /* False clause makes the whole predicate false. Kill the other variants. */
319 if (clause
== (1 << predicate_false_condition
))
321 p
->clause
[0] = (1 << predicate_false_condition
);
325 if (false_predicate_p (p
))
328 /* No one should be silly enough to add false into nontrivial clauses. */
329 gcc_checking_assert (!(clause
& (1 << predicate_false_condition
)));
331 /* Look where to insert the clause. At the same time prune out
332 clauses of P that are implied by the new clause and thus
334 for (i
= 0, i2
= 0; i
<= MAX_CLAUSES
; i
++)
336 p
->clause
[i2
] = p
->clause
[i
];
341 /* If p->clause[i] implies clause, there is nothing to add. */
342 if ((p
->clause
[i
] & clause
) == p
->clause
[i
])
344 /* We had nothing to add, none of clauses should've become
346 gcc_checking_assert (i
== i2
);
350 if (p
->clause
[i
] < clause
&& insert_here
< 0)
353 /* If clause implies p->clause[i], then p->clause[i] becomes redundant.
354 Otherwise the p->clause[i] has to stay. */
355 if ((p
->clause
[i
] & clause
) != clause
)
359 /* Look for clauses that are obviously true. I.e.
360 op0 == 5 || op0 != 5. */
361 for (c1
= predicate_first_dynamic_condition
; c1
< NUM_CONDITIONS
; c1
++)
364 if (!(clause
& (1 << c1
)))
366 cc1
= &(*conditions
)[c1
- predicate_first_dynamic_condition
];
367 /* We have no way to represent !CHANGED and !IS_NOT_CONSTANT
368 and thus there is no point for looking for them. */
369 if (cc1
->code
== CHANGED
|| cc1
->code
== IS_NOT_CONSTANT
)
371 for (c2
= c1
+ 1; c2
< NUM_CONDITIONS
; c2
++)
372 if (clause
& (1 << c2
))
375 &(*conditions
)[c1
- predicate_first_dynamic_condition
];
377 &(*conditions
)[c2
- predicate_first_dynamic_condition
];
378 if (cc1
->operand_num
== cc2
->operand_num
379 && cc1
->val
== cc2
->val
380 && cc2
->code
!= IS_NOT_CONSTANT
381 && cc2
->code
!= CHANGED
382 && cc1
->code
== invert_tree_comparison
384 HONOR_NANS (TYPE_MODE (TREE_TYPE (cc1
->val
)))))
390 /* We run out of variants. Be conservative in positive direction. */
391 if (i2
== MAX_CLAUSES
)
393 /* Keep clauses in decreasing order. This makes equivalence testing easy. */
394 p
->clause
[i2
+ 1] = 0;
395 if (insert_here
>= 0)
396 for (; i2
> insert_here
; i2
--)
397 p
->clause
[i2
] = p
->clause
[i2
- 1];
400 p
->clause
[insert_here
] = clause
;
406 static struct predicate
407 and_predicates (conditions conditions
,
408 struct predicate
*p
, struct predicate
*p2
)
410 struct predicate out
= *p
;
413 /* Avoid busy work. */
414 if (false_predicate_p (p2
) || true_predicate_p (p
))
416 if (false_predicate_p (p
) || true_predicate_p (p2
))
419 /* See how far predicates match. */
420 for (i
= 0; p
->clause
[i
] && p
->clause
[i
] == p2
->clause
[i
]; i
++)
422 gcc_checking_assert (i
< MAX_CLAUSES
);
425 /* Combine the predicates rest. */
426 for (; p2
->clause
[i
]; i
++)
428 gcc_checking_assert (i
< MAX_CLAUSES
);
429 add_clause (conditions
, &out
, p2
->clause
[i
]);
435 /* Return true if predicates are obviously equal. */
438 predicates_equal_p (struct predicate
*p
, struct predicate
*p2
)
441 for (i
= 0; p
->clause
[i
]; i
++)
443 gcc_checking_assert (i
< MAX_CLAUSES
);
444 gcc_checking_assert (p
->clause
[i
] > p
->clause
[i
+ 1]);
445 gcc_checking_assert (!p2
->clause
[i
]
446 || p2
->clause
[i
] > p2
->clause
[i
+ 1]);
447 if (p
->clause
[i
] != p2
->clause
[i
])
450 return !p2
->clause
[i
];
456 static struct predicate
457 or_predicates (conditions conditions
,
458 struct predicate
*p
, struct predicate
*p2
)
460 struct predicate out
= true_predicate ();
463 /* Avoid busy work. */
464 if (false_predicate_p (p2
) || true_predicate_p (p
))
466 if (false_predicate_p (p
) || true_predicate_p (p2
))
468 if (predicates_equal_p (p
, p2
))
471 /* OK, combine the predicates. */
472 for (i
= 0; p
->clause
[i
]; i
++)
473 for (j
= 0; p2
->clause
[j
]; j
++)
475 gcc_checking_assert (i
< MAX_CLAUSES
&& j
< MAX_CLAUSES
);
476 add_clause (conditions
, &out
, p
->clause
[i
] | p2
->clause
[j
]);
482 /* Having partial truth assignment in POSSIBLE_TRUTHS, return false
483 if predicate P is known to be false. */
486 evaluate_predicate (struct predicate
*p
, clause_t possible_truths
)
490 /* True remains true. */
491 if (true_predicate_p (p
))
494 gcc_assert (!(possible_truths
& (1 << predicate_false_condition
)));
496 /* See if we can find clause we can disprove. */
497 for (i
= 0; p
->clause
[i
]; i
++)
499 gcc_checking_assert (i
< MAX_CLAUSES
);
500 if (!(p
->clause
[i
] & possible_truths
))
506 /* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
507 instruction will be recomputed per invocation of the inlined call. */
510 predicate_probability (conditions conds
,
511 struct predicate
*p
, clause_t possible_truths
,
512 vec
<inline_param_summary
> inline_param_summary
)
515 int combined_prob
= REG_BR_PROB_BASE
;
517 /* True remains true. */
518 if (true_predicate_p (p
))
519 return REG_BR_PROB_BASE
;
521 if (false_predicate_p (p
))
524 gcc_assert (!(possible_truths
& (1 << predicate_false_condition
)));
526 /* See if we can find clause we can disprove. */
527 for (i
= 0; p
->clause
[i
]; i
++)
529 gcc_checking_assert (i
< MAX_CLAUSES
);
530 if (!(p
->clause
[i
] & possible_truths
))
536 if (!inline_param_summary
.exists ())
537 return REG_BR_PROB_BASE
;
538 for (i2
= 0; i2
< NUM_CONDITIONS
; i2
++)
539 if ((p
->clause
[i
] & possible_truths
) & (1 << i2
))
541 if (i2
>= predicate_first_dynamic_condition
)
544 &(*conds
)[i2
- predicate_first_dynamic_condition
];
545 if (c
->code
== CHANGED
547 (int) inline_param_summary
.length ()))
550 inline_param_summary
[c
->operand_num
].change_prob
;
551 this_prob
= MAX (this_prob
, iprob
);
554 this_prob
= REG_BR_PROB_BASE
;
557 this_prob
= REG_BR_PROB_BASE
;
559 combined_prob
= MIN (this_prob
, combined_prob
);
564 return combined_prob
;
568 /* Dump conditional COND. */
571 dump_condition (FILE *f
, conditions conditions
, int cond
)
574 if (cond
== predicate_false_condition
)
575 fprintf (f
, "false");
576 else if (cond
== predicate_not_inlined_condition
)
577 fprintf (f
, "not inlined");
580 c
= &(*conditions
)[cond
- predicate_first_dynamic_condition
];
581 fprintf (f
, "op%i", c
->operand_num
);
583 fprintf (f
, "[%soffset: " HOST_WIDE_INT_PRINT_DEC
"]",
584 c
->by_ref
? "ref " : "", c
->offset
);
585 if (c
->code
== IS_NOT_CONSTANT
)
587 fprintf (f
, " not constant");
590 if (c
->code
== CHANGED
)
592 fprintf (f
, " changed");
595 fprintf (f
, " %s ", op_symbol_code (c
->code
));
596 print_generic_expr (f
, c
->val
, 1);
601 /* Dump clause CLAUSE. */
604 dump_clause (FILE *f
, conditions conds
, clause_t clause
)
611 for (i
= 0; i
< NUM_CONDITIONS
; i
++)
612 if (clause
& (1 << i
))
617 dump_condition (f
, conds
, i
);
623 /* Dump predicate PREDICATE. */
626 dump_predicate (FILE *f
, conditions conds
, struct predicate
*pred
)
629 if (true_predicate_p (pred
))
630 dump_clause (f
, conds
, 0);
632 for (i
= 0; pred
->clause
[i
]; i
++)
636 dump_clause (f
, conds
, pred
->clause
[i
]);
642 /* Dump inline hints. */
644 dump_inline_hints (FILE *f
, inline_hints hints
)
648 fprintf (f
, "inline hints:");
649 if (hints
& INLINE_HINT_indirect_call
)
651 hints
&= ~INLINE_HINT_indirect_call
;
652 fprintf (f
, " indirect_call");
654 if (hints
& INLINE_HINT_loop_iterations
)
656 hints
&= ~INLINE_HINT_loop_iterations
;
657 fprintf (f
, " loop_iterations");
659 if (hints
& INLINE_HINT_loop_stride
)
661 hints
&= ~INLINE_HINT_loop_stride
;
662 fprintf (f
, " loop_stride");
664 if (hints
& INLINE_HINT_same_scc
)
666 hints
&= ~INLINE_HINT_same_scc
;
667 fprintf (f
, " same_scc");
669 if (hints
& INLINE_HINT_in_scc
)
671 hints
&= ~INLINE_HINT_in_scc
;
672 fprintf (f
, " in_scc");
674 if (hints
& INLINE_HINT_cross_module
)
676 hints
&= ~INLINE_HINT_cross_module
;
677 fprintf (f
, " cross_module");
679 if (hints
& INLINE_HINT_declared_inline
)
681 hints
&= ~INLINE_HINT_declared_inline
;
682 fprintf (f
, " declared_inline");
684 if (hints
& INLINE_HINT_array_index
)
686 hints
&= ~INLINE_HINT_array_index
;
687 fprintf (f
, " array_index");
689 if (hints
& INLINE_HINT_known_hot
)
691 hints
&= ~INLINE_HINT_known_hot
;
692 fprintf (f
, " known_hot");
698 /* Record SIZE and TIME under condition PRED into the inline summary. */
701 account_size_time (struct inline_summary
*summary
, int size
, int time
,
702 struct predicate
*pred
)
708 if (false_predicate_p (pred
))
711 /* We need to create initial empty unconitional clause, but otherwie
712 we don't need to account empty times and sizes. */
713 if (!size
&& !time
&& summary
->entry
)
716 /* Watch overflow that might result from insane profiles. */
717 if (time
> MAX_TIME
* INLINE_TIME_SCALE
)
718 time
= MAX_TIME
* INLINE_TIME_SCALE
;
719 gcc_assert (time
>= 0);
721 for (i
= 0; vec_safe_iterate (summary
->entry
, i
, &e
); i
++)
722 if (predicates_equal_p (&e
->predicate
, pred
))
731 e
= &(*summary
->entry
)[0];
732 gcc_assert (!e
->predicate
.clause
[0]);
733 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
735 "\t\tReached limit on number of entries, "
736 "ignoring the predicate.");
738 if (dump_file
&& (dump_flags
& TDF_DETAILS
) && (time
|| size
))
741 "\t\tAccounting size:%3.2f, time:%3.2f on %spredicate:",
742 ((double) size
) / INLINE_SIZE_SCALE
,
743 ((double) time
) / INLINE_TIME_SCALE
, found
? "" : "new ");
744 dump_predicate (dump_file
, summary
->conds
, pred
);
748 struct size_time_entry new_entry
;
749 new_entry
.size
= size
;
750 new_entry
.time
= time
;
751 new_entry
.predicate
= *pred
;
752 vec_safe_push (summary
->entry
, new_entry
);
758 if (e
->time
> MAX_TIME
* INLINE_TIME_SCALE
)
759 e
->time
= MAX_TIME
* INLINE_TIME_SCALE
;
763 /* Set predicate for edge E. */
766 edge_set_predicate (struct cgraph_edge
*e
, struct predicate
*predicate
)
768 struct inline_edge_summary
*es
= inline_edge_summary (e
);
770 /* If the edge is determined to be never executed, redirect it
771 to BUILTIN_UNREACHABLE to save inliner from inlining into it. */
772 if (predicate
&& false_predicate_p (predicate
) && e
->callee
)
774 struct cgraph_node
*callee
= !e
->inline_failed
? e
->callee
: NULL
;
776 e
->redirect_callee (cgraph_node::get_create
777 (builtin_decl_implicit (BUILT_IN_UNREACHABLE
)));
778 e
->inline_failed
= CIF_UNREACHABLE
;
780 callee
->remove_symbol_and_inline_clones ();
782 if (predicate
&& !true_predicate_p (predicate
))
785 es
->predicate
= (struct predicate
*) pool_alloc (edge_predicate_pool
);
786 *es
->predicate
= *predicate
;
791 pool_free (edge_predicate_pool
, es
->predicate
);
792 es
->predicate
= NULL
;
796 /* Set predicate for hint *P. */
799 set_hint_predicate (struct predicate
**p
, struct predicate new_predicate
)
801 if (false_predicate_p (&new_predicate
) || true_predicate_p (&new_predicate
))
804 pool_free (edge_predicate_pool
, *p
);
810 *p
= (struct predicate
*) pool_alloc (edge_predicate_pool
);
816 /* KNOWN_VALS is partial mapping of parameters of NODE to constant values.
817 KNOWN_AGGS is a vector of aggreggate jump functions for each parameter.
818 Return clause of possible truths. When INLINE_P is true, assume that we are
821 ERROR_MARK means compile time invariant. */
824 evaluate_conditions_for_known_args (struct cgraph_node
*node
,
826 vec
<tree
> known_vals
,
827 vec
<ipa_agg_jump_function_p
>
830 clause_t clause
= inline_p
? 0 : 1 << predicate_not_inlined_condition
;
831 struct inline_summary
*info
= inline_summary (node
);
835 for (i
= 0; vec_safe_iterate (info
->conds
, i
, &c
); i
++)
840 /* We allow call stmt to have fewer arguments than the callee function
841 (especially for K&R style programs). So bound check here (we assume
842 known_aggs vector, if non-NULL, has the same length as
844 gcc_checking_assert (!known_aggs
.exists ()
845 || (known_vals
.length () == known_aggs
.length ()));
846 if (c
->operand_num
>= (int) known_vals
.length ())
848 clause
|= 1 << (i
+ predicate_first_dynamic_condition
);
854 struct ipa_agg_jump_function
*agg
;
856 if (c
->code
== CHANGED
858 && (known_vals
[c
->operand_num
] == error_mark_node
))
861 if (known_aggs
.exists ())
863 agg
= known_aggs
[c
->operand_num
];
864 val
= ipa_find_agg_cst_for_param (agg
, c
->offset
, c
->by_ref
);
871 val
= known_vals
[c
->operand_num
];
872 if (val
== error_mark_node
&& c
->code
!= CHANGED
)
878 clause
|= 1 << (i
+ predicate_first_dynamic_condition
);
881 if (c
->code
== IS_NOT_CONSTANT
|| c
->code
== CHANGED
)
883 res
= fold_binary_to_constant (c
->code
, boolean_type_node
, val
, c
->val
);
884 if (res
&& integer_zerop (res
))
886 clause
|= 1 << (i
+ predicate_first_dynamic_condition
);
892 /* Work out what conditions might be true at invocation of E. */
895 evaluate_properties_for_edge (struct cgraph_edge
*e
, bool inline_p
,
896 clause_t
*clause_ptr
,
897 vec
<tree
> *known_vals_ptr
,
898 vec
<ipa_polymorphic_call_context
>
900 vec
<ipa_agg_jump_function_p
> *known_aggs_ptr
)
902 struct cgraph_node
*callee
= e
->callee
->ultimate_alias_target ();
903 struct inline_summary
*info
= inline_summary (callee
);
904 vec
<tree
> known_vals
= vNULL
;
905 vec
<ipa_agg_jump_function_p
> known_aggs
= vNULL
;
908 *clause_ptr
= inline_p
? 0 : 1 << predicate_not_inlined_condition
;
910 known_vals_ptr
->create (0);
911 if (known_contexts_ptr
)
912 known_contexts_ptr
->create (0);
914 if (ipa_node_params_vector
.exists ()
915 && !e
->call_stmt_cannot_inline_p
916 && ((clause_ptr
&& info
->conds
) || known_vals_ptr
|| known_contexts_ptr
))
918 struct ipa_node_params
*parms_info
;
919 struct ipa_edge_args
*args
= IPA_EDGE_REF (e
);
920 struct inline_edge_summary
*es
= inline_edge_summary (e
);
921 int i
, count
= ipa_get_cs_argument_count (args
);
923 if (e
->caller
->global
.inlined_to
)
924 parms_info
= IPA_NODE_REF (e
->caller
->global
.inlined_to
);
926 parms_info
= IPA_NODE_REF (e
->caller
);
928 if (count
&& (info
->conds
|| known_vals_ptr
))
929 known_vals
.safe_grow_cleared (count
);
930 if (count
&& (info
->conds
|| known_aggs_ptr
))
931 known_aggs
.safe_grow_cleared (count
);
932 if (count
&& known_contexts_ptr
)
933 known_contexts_ptr
->safe_grow_cleared (count
);
935 for (i
= 0; i
< count
; i
++)
937 struct ipa_jump_func
*jf
= ipa_get_ith_jump_func (args
, i
);
938 tree cst
= ipa_value_from_jfunc (parms_info
, jf
);
941 gcc_checking_assert (TREE_CODE (cst
) != TREE_BINFO
);
942 if (known_vals
.exists ())
945 else if (inline_p
&& !es
->param
[i
].change_prob
)
946 known_vals
[i
] = error_mark_node
;
948 if (known_contexts_ptr
)
949 (*known_contexts_ptr
)[i
] = ipa_context_from_jfunc (parms_info
, e
,
951 /* TODO: When IPA-CP starts propagating and merging aggregate jump
952 functions, use its knowledge of the caller too, just like the
953 scalar case above. */
954 known_aggs
[i
] = &jf
->agg
;
959 *clause_ptr
= evaluate_conditions_for_known_args (callee
, inline_p
,
960 known_vals
, known_aggs
);
963 *known_vals_ptr
= known_vals
;
965 known_vals
.release ();
968 *known_aggs_ptr
= known_aggs
;
970 known_aggs
.release ();
974 /* Allocate the inline summary vector or resize it to cover all cgraph nodes. */
977 inline_summary_alloc (void)
979 if (!node_removal_hook_holder
)
980 node_removal_hook_holder
=
981 symtab
->add_cgraph_removal_hook (&inline_node_removal_hook
, NULL
);
982 if (!edge_removal_hook_holder
)
983 edge_removal_hook_holder
=
984 symtab
->add_edge_removal_hook (&inline_edge_removal_hook
, NULL
);
985 if (!node_duplication_hook_holder
)
986 node_duplication_hook_holder
=
987 symtab
->add_cgraph_duplication_hook (&inline_node_duplication_hook
, NULL
);
988 if (!edge_duplication_hook_holder
)
989 edge_duplication_hook_holder
=
990 symtab
->add_edge_duplication_hook (&inline_edge_duplication_hook
, NULL
);
992 if (vec_safe_length (inline_summary_vec
) <= (unsigned) symtab
->cgraph_max_uid
)
993 vec_safe_grow_cleared (inline_summary_vec
, symtab
->cgraph_max_uid
+ 1);
994 if (inline_edge_summary_vec
.length () <= (unsigned) symtab
->edges_max_uid
)
995 inline_edge_summary_vec
.safe_grow_cleared (symtab
->edges_max_uid
+ 1);
996 if (!edge_predicate_pool
)
997 edge_predicate_pool
= create_alloc_pool ("edge predicates",
998 sizeof (struct predicate
), 10);
1001 /* We are called multiple time for given function; clear
1002 data from previous run so they are not cumulated. */
1005 reset_inline_edge_summary (struct cgraph_edge
*e
)
1007 if (e
->uid
< (int) inline_edge_summary_vec
.length ())
1009 struct inline_edge_summary
*es
= inline_edge_summary (e
);
1011 es
->call_stmt_size
= es
->call_stmt_time
= 0;
1013 pool_free (edge_predicate_pool
, es
->predicate
);
1014 es
->predicate
= NULL
;
1015 es
->param
.release ();
1019 /* We are called multiple time for given function; clear
1020 data from previous run so they are not cumulated. */
1023 reset_inline_summary (struct cgraph_node
*node
)
1025 struct inline_summary
*info
= inline_summary (node
);
1026 struct cgraph_edge
*e
;
1028 info
->self_size
= info
->self_time
= 0;
1029 info
->estimated_stack_size
= 0;
1030 info
->estimated_self_stack_size
= 0;
1031 info
->stack_frame_offset
= 0;
1036 if (info
->loop_iterations
)
1038 pool_free (edge_predicate_pool
, info
->loop_iterations
);
1039 info
->loop_iterations
= NULL
;
1041 if (info
->loop_stride
)
1043 pool_free (edge_predicate_pool
, info
->loop_stride
);
1044 info
->loop_stride
= NULL
;
1046 if (info
->array_index
)
1048 pool_free (edge_predicate_pool
, info
->array_index
);
1049 info
->array_index
= NULL
;
1051 vec_free (info
->conds
);
1052 vec_free (info
->entry
);
1053 for (e
= node
->callees
; e
; e
= e
->next_callee
)
1054 reset_inline_edge_summary (e
);
1055 for (e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
1056 reset_inline_edge_summary (e
);
1059 /* Hook that is called by cgraph.c when a node is removed. */
1062 inline_node_removal_hook (struct cgraph_node
*node
,
1063 void *data ATTRIBUTE_UNUSED
)
1065 struct inline_summary
*info
;
1066 if (vec_safe_length (inline_summary_vec
) <= (unsigned) node
->uid
)
1068 info
= inline_summary (node
);
1069 reset_inline_summary (node
);
1070 memset (info
, 0, sizeof (inline_summary_t
));
1073 /* Remap predicate P of former function to be predicate of duplicated function.
1074 POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
1075 INFO is inline summary of the duplicated node. */
1077 static struct predicate
1078 remap_predicate_after_duplication (struct predicate
*p
,
1079 clause_t possible_truths
,
1080 struct inline_summary
*info
)
1082 struct predicate new_predicate
= true_predicate ();
1084 for (j
= 0; p
->clause
[j
]; j
++)
1085 if (!(possible_truths
& p
->clause
[j
]))
1087 new_predicate
= false_predicate ();
1091 add_clause (info
->conds
, &new_predicate
,
1092 possible_truths
& p
->clause
[j
]);
1093 return new_predicate
;
1096 /* Same as remap_predicate_after_duplication but handle hint predicate *P.
1097 Additionally care about allocating new memory slot for updated predicate
1098 and set it to NULL when it becomes true or false (and thus uninteresting).
1102 remap_hint_predicate_after_duplication (struct predicate
**p
,
1103 clause_t possible_truths
,
1104 struct inline_summary
*info
)
1106 struct predicate new_predicate
;
1111 new_predicate
= remap_predicate_after_duplication (*p
,
1112 possible_truths
, info
);
1113 /* We do not want to free previous predicate; it is used by node origin. */
1115 set_hint_predicate (p
, new_predicate
);
1119 /* Hook that is called by cgraph.c when a node is duplicated. */
1122 inline_node_duplication_hook (struct cgraph_node
*src
,
1123 struct cgraph_node
*dst
,
1124 ATTRIBUTE_UNUSED
void *data
)
1126 struct inline_summary
*info
;
1127 inline_summary_alloc ();
1128 info
= inline_summary (dst
);
1129 memcpy (info
, inline_summary (src
), sizeof (struct inline_summary
));
1130 /* TODO: as an optimization, we may avoid copying conditions
1131 that are known to be false or true. */
1132 info
->conds
= vec_safe_copy (info
->conds
);
1134 /* When there are any replacements in the function body, see if we can figure
1135 out that something was optimized out. */
1136 if (ipa_node_params_vector
.exists () && dst
->clone
.tree_map
)
1138 vec
<size_time_entry
, va_gc
> *entry
= info
->entry
;
1139 /* Use SRC parm info since it may not be copied yet. */
1140 struct ipa_node_params
*parms_info
= IPA_NODE_REF (src
);
1141 vec
<tree
> known_vals
= vNULL
;
1142 int count
= ipa_get_param_count (parms_info
);
1144 clause_t possible_truths
;
1145 struct predicate true_pred
= true_predicate ();
1147 int optimized_out_size
= 0;
1148 bool inlined_to_p
= false;
1149 struct cgraph_edge
*edge
;
1152 known_vals
.safe_grow_cleared (count
);
1153 for (i
= 0; i
< count
; i
++)
1155 struct ipa_replace_map
*r
;
1157 for (j
= 0; vec_safe_iterate (dst
->clone
.tree_map
, j
, &r
); j
++)
1159 if (((!r
->old_tree
&& r
->parm_num
== i
)
1160 || (r
->old_tree
&& r
->old_tree
== ipa_get_param (parms_info
, i
)))
1161 && r
->replace_p
&& !r
->ref_p
)
1163 known_vals
[i
] = r
->new_tree
;
1168 possible_truths
= evaluate_conditions_for_known_args (dst
, false,
1171 known_vals
.release ();
1173 account_size_time (info
, 0, 0, &true_pred
);
1175 /* Remap size_time vectors.
1176 Simplify the predicate by prunning out alternatives that are known
1178 TODO: as on optimization, we can also eliminate conditions known
1180 for (i
= 0; vec_safe_iterate (entry
, i
, &e
); i
++)
1182 struct predicate new_predicate
;
1183 new_predicate
= remap_predicate_after_duplication (&e
->predicate
,
1186 if (false_predicate_p (&new_predicate
))
1187 optimized_out_size
+= e
->size
;
1189 account_size_time (info
, e
->size
, e
->time
, &new_predicate
);
1192 /* Remap edge predicates with the same simplification as above.
1193 Also copy constantness arrays. */
1194 for (edge
= dst
->callees
; edge
; edge
= edge
->next_callee
)
1196 struct predicate new_predicate
;
1197 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
1199 if (!edge
->inline_failed
)
1200 inlined_to_p
= true;
1203 new_predicate
= remap_predicate_after_duplication (es
->predicate
,
1206 if (false_predicate_p (&new_predicate
)
1207 && !false_predicate_p (es
->predicate
))
1209 optimized_out_size
+= es
->call_stmt_size
* INLINE_SIZE_SCALE
;
1210 edge
->frequency
= 0;
1212 edge_set_predicate (edge
, &new_predicate
);
1215 /* Remap indirect edge predicates with the same simplificaiton as above.
1216 Also copy constantness arrays. */
1217 for (edge
= dst
->indirect_calls
; edge
; edge
= edge
->next_callee
)
1219 struct predicate new_predicate
;
1220 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
1222 gcc_checking_assert (edge
->inline_failed
);
1225 new_predicate
= remap_predicate_after_duplication (es
->predicate
,
1228 if (false_predicate_p (&new_predicate
)
1229 && !false_predicate_p (es
->predicate
))
1231 optimized_out_size
+= es
->call_stmt_size
* INLINE_SIZE_SCALE
;
1232 edge
->frequency
= 0;
1234 edge_set_predicate (edge
, &new_predicate
);
1236 remap_hint_predicate_after_duplication (&info
->loop_iterations
,
1237 possible_truths
, info
);
1238 remap_hint_predicate_after_duplication (&info
->loop_stride
,
1239 possible_truths
, info
);
1240 remap_hint_predicate_after_duplication (&info
->array_index
,
1241 possible_truths
, info
);
1243 /* If inliner or someone after inliner will ever start producing
1244 non-trivial clones, we will get trouble with lack of information
1245 about updating self sizes, because size vectors already contains
1246 sizes of the calees. */
1247 gcc_assert (!inlined_to_p
|| !optimized_out_size
);
1251 info
->entry
= vec_safe_copy (info
->entry
);
1252 if (info
->loop_iterations
)
1254 predicate p
= *info
->loop_iterations
;
1255 info
->loop_iterations
= NULL
;
1256 set_hint_predicate (&info
->loop_iterations
, p
);
1258 if (info
->loop_stride
)
1260 predicate p
= *info
->loop_stride
;
1261 info
->loop_stride
= NULL
;
1262 set_hint_predicate (&info
->loop_stride
, p
);
1264 if (info
->array_index
)
1266 predicate p
= *info
->array_index
;
1267 info
->array_index
= NULL
;
1268 set_hint_predicate (&info
->array_index
, p
);
1271 inline_update_overall_summary (dst
);
1275 /* Hook that is called by cgraph.c when a node is duplicated. */
1278 inline_edge_duplication_hook (struct cgraph_edge
*src
,
1279 struct cgraph_edge
*dst
,
1280 ATTRIBUTE_UNUSED
void *data
)
1282 struct inline_edge_summary
*info
;
1283 struct inline_edge_summary
*srcinfo
;
1284 inline_summary_alloc ();
1285 info
= inline_edge_summary (dst
);
1286 srcinfo
= inline_edge_summary (src
);
1287 memcpy (info
, srcinfo
, sizeof (struct inline_edge_summary
));
1288 info
->predicate
= NULL
;
1289 edge_set_predicate (dst
, srcinfo
->predicate
);
1290 info
->param
= srcinfo
->param
.copy ();
1294 /* Keep edge cache consistent across edge removal. */
1297 inline_edge_removal_hook (struct cgraph_edge
*edge
,
1298 void *data ATTRIBUTE_UNUSED
)
1300 if (edge_growth_cache
.exists ())
1301 reset_edge_growth_cache (edge
);
1302 reset_inline_edge_summary (edge
);
1306 /* Initialize growth caches. */
1309 initialize_growth_caches (void)
1311 if (symtab
->edges_max_uid
)
1312 edge_growth_cache
.safe_grow_cleared (symtab
->edges_max_uid
);
1313 if (symtab
->cgraph_max_uid
)
1314 node_growth_cache
.safe_grow_cleared (symtab
->cgraph_max_uid
);
1318 /* Free growth caches. */
1321 free_growth_caches (void)
1323 edge_growth_cache
.release ();
1324 node_growth_cache
.release ();
1328 /* Dump edge summaries associated to NODE and recursively to all clones.
1329 Indent by INDENT. */
1332 dump_inline_edge_summary (FILE *f
, int indent
, struct cgraph_node
*node
,
1333 struct inline_summary
*info
)
1335 struct cgraph_edge
*edge
;
1336 for (edge
= node
->callees
; edge
; edge
= edge
->next_callee
)
1338 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
1339 struct cgraph_node
*callee
= edge
->callee
->ultimate_alias_target ();
1343 "%*s%s/%i %s\n%*s loop depth:%2i freq:%4i size:%2i"
1344 " time: %2i callee size:%2i stack:%2i",
1345 indent
, "", callee
->name (), callee
->order
,
1346 !edge
->inline_failed
1347 ? "inlined" : cgraph_inline_failed_string (edge
-> inline_failed
),
1348 indent
, "", es
->loop_depth
, edge
->frequency
,
1349 es
->call_stmt_size
, es
->call_stmt_time
,
1350 (int) inline_summary (callee
)->size
/ INLINE_SIZE_SCALE
,
1351 (int) inline_summary (callee
)->estimated_stack_size
);
1355 fprintf (f
, " predicate: ");
1356 dump_predicate (f
, info
->conds
, es
->predicate
);
1360 if (es
->param
.exists ())
1361 for (i
= 0; i
< (int) es
->param
.length (); i
++)
1363 int prob
= es
->param
[i
].change_prob
;
1366 fprintf (f
, "%*s op%i is compile time invariant\n",
1368 else if (prob
!= REG_BR_PROB_BASE
)
1369 fprintf (f
, "%*s op%i change %f%% of time\n", indent
+ 2, "", i
,
1370 prob
* 100.0 / REG_BR_PROB_BASE
);
1372 if (!edge
->inline_failed
)
1374 fprintf (f
, "%*sStack frame offset %i, callee self size %i,"
1375 " callee size %i\n",
1377 (int) inline_summary (callee
)->stack_frame_offset
,
1378 (int) inline_summary (callee
)->estimated_self_stack_size
,
1379 (int) inline_summary (callee
)->estimated_stack_size
);
1380 dump_inline_edge_summary (f
, indent
+ 2, callee
, info
);
1383 for (edge
= node
->indirect_calls
; edge
; edge
= edge
->next_callee
)
1385 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
1386 fprintf (f
, "%*sindirect call loop depth:%2i freq:%4i size:%2i"
1390 edge
->frequency
, es
->call_stmt_size
, es
->call_stmt_time
);
1393 fprintf (f
, "predicate: ");
1394 dump_predicate (f
, info
->conds
, es
->predicate
);
1403 dump_inline_summary (FILE *f
, struct cgraph_node
*node
)
1405 if (node
->definition
)
1407 struct inline_summary
*s
= inline_summary (node
);
1410 fprintf (f
, "Inline summary for %s/%i", node
->name (),
1412 if (DECL_DISREGARD_INLINE_LIMITS (node
->decl
))
1413 fprintf (f
, " always_inline");
1415 fprintf (f
, " inlinable");
1416 fprintf (f
, "\n self time: %i\n", s
->self_time
);
1417 fprintf (f
, " global time: %i\n", s
->time
);
1418 fprintf (f
, " self size: %i\n", s
->self_size
);
1419 fprintf (f
, " global size: %i\n", s
->size
);
1420 fprintf (f
, " min size: %i\n", s
->min_size
);
1421 fprintf (f
, " self stack: %i\n",
1422 (int) s
->estimated_self_stack_size
);
1423 fprintf (f
, " global stack: %i\n", (int) s
->estimated_stack_size
);
1425 fprintf (f
, " estimated growth:%i\n", (int) s
->growth
);
1427 fprintf (f
, " In SCC: %i\n", (int) s
->scc_no
);
1428 for (i
= 0; vec_safe_iterate (s
->entry
, i
, &e
); i
++)
1430 fprintf (f
, " size:%f, time:%f, predicate:",
1431 (double) e
->size
/ INLINE_SIZE_SCALE
,
1432 (double) e
->time
/ INLINE_TIME_SCALE
);
1433 dump_predicate (f
, s
->conds
, &e
->predicate
);
1435 if (s
->loop_iterations
)
1437 fprintf (f
, " loop iterations:");
1438 dump_predicate (f
, s
->conds
, s
->loop_iterations
);
1442 fprintf (f
, " loop stride:");
1443 dump_predicate (f
, s
->conds
, s
->loop_stride
);
1447 fprintf (f
, " array index:");
1448 dump_predicate (f
, s
->conds
, s
->array_index
);
1450 fprintf (f
, " calls:\n");
1451 dump_inline_edge_summary (f
, 4, node
, s
);
1457 debug_inline_summary (struct cgraph_node
*node
)
1459 dump_inline_summary (stderr
, node
);
1463 dump_inline_summaries (FILE *f
)
1465 struct cgraph_node
*node
;
1467 FOR_EACH_DEFINED_FUNCTION (node
)
1468 if (!node
->global
.inlined_to
)
1469 dump_inline_summary (f
, node
);
1472 /* Give initial reasons why inlining would fail on EDGE. This gets either
1473 nullified or usually overwritten by more precise reasons later. */
1476 initialize_inline_failed (struct cgraph_edge
*e
)
1478 struct cgraph_node
*callee
= e
->callee
;
1480 if (e
->indirect_unknown_callee
)
1481 e
->inline_failed
= CIF_INDIRECT_UNKNOWN_CALL
;
1482 else if (!callee
->definition
)
1483 e
->inline_failed
= CIF_BODY_NOT_AVAILABLE
;
1484 else if (callee
->local
.redefined_extern_inline
)
1485 e
->inline_failed
= CIF_REDEFINED_EXTERN_INLINE
;
1486 else if (e
->call_stmt_cannot_inline_p
)
1487 e
->inline_failed
= CIF_MISMATCHED_ARGUMENTS
;
1488 else if (cfun
&& fn_contains_cilk_spawn_p (cfun
))
1489 /* We can't inline if the function is spawing a function. */
1490 e
->inline_failed
= CIF_FUNCTION_NOT_INLINABLE
;
1492 e
->inline_failed
= CIF_FUNCTION_NOT_CONSIDERED
;
1495 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
1496 boolean variable pointed to by DATA. */
1499 mark_modified (ao_ref
*ao ATTRIBUTE_UNUSED
, tree vdef ATTRIBUTE_UNUSED
,
1502 bool *b
= (bool *) data
;
1507 /* If OP refers to value of function parameter, return the corresponding
1511 unmodified_parm_1 (gimple stmt
, tree op
)
1513 /* SSA_NAME referring to parm default def? */
1514 if (TREE_CODE (op
) == SSA_NAME
1515 && SSA_NAME_IS_DEFAULT_DEF (op
)
1516 && TREE_CODE (SSA_NAME_VAR (op
)) == PARM_DECL
)
1517 return SSA_NAME_VAR (op
);
1518 /* Non-SSA parm reference? */
1519 if (TREE_CODE (op
) == PARM_DECL
)
1521 bool modified
= false;
1524 ao_ref_init (&refd
, op
);
1525 walk_aliased_vdefs (&refd
, gimple_vuse (stmt
), mark_modified
, &modified
,
1533 /* If OP refers to value of function parameter, return the corresponding
1534 parameter. Also traverse chains of SSA register assignments. */
1537 unmodified_parm (gimple stmt
, tree op
)
1539 tree res
= unmodified_parm_1 (stmt
, op
);
1543 if (TREE_CODE (op
) == SSA_NAME
1544 && !SSA_NAME_IS_DEFAULT_DEF (op
)
1545 && gimple_assign_single_p (SSA_NAME_DEF_STMT (op
)))
1546 return unmodified_parm (SSA_NAME_DEF_STMT (op
),
1547 gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op
)));
1551 /* If OP refers to a value of a function parameter or value loaded from an
1552 aggregate passed to a parameter (either by value or reference), return TRUE
1553 and store the number of the parameter to *INDEX_P and information whether
1554 and how it has been loaded from an aggregate into *AGGPOS. INFO describes
1555 the function parameters, STMT is the statement in which OP is used or
1559 unmodified_parm_or_parm_agg_item (struct ipa_node_params
*info
,
1560 gimple stmt
, tree op
, int *index_p
,
1561 struct agg_position_info
*aggpos
)
1563 tree res
= unmodified_parm_1 (stmt
, op
);
1565 gcc_checking_assert (aggpos
);
1568 *index_p
= ipa_get_param_decl_index (info
, res
);
1571 aggpos
->agg_contents
= false;
1572 aggpos
->by_ref
= false;
1576 if (TREE_CODE (op
) == SSA_NAME
)
1578 if (SSA_NAME_IS_DEFAULT_DEF (op
)
1579 || !gimple_assign_single_p (SSA_NAME_DEF_STMT (op
)))
1581 stmt
= SSA_NAME_DEF_STMT (op
);
1582 op
= gimple_assign_rhs1 (stmt
);
1583 if (!REFERENCE_CLASS_P (op
))
1584 return unmodified_parm_or_parm_agg_item (info
, stmt
, op
, index_p
,
1588 aggpos
->agg_contents
= true;
1589 return ipa_load_from_parm_agg (info
, stmt
, op
, index_p
, &aggpos
->offset
,
1593 /* See if statement might disappear after inlining.
1594 0 - means not eliminated
1595 1 - half of statements goes away
1596 2 - for sure it is eliminated.
1597 We are not terribly sophisticated, basically looking for simple abstraction
1598 penalty wrappers. */
1601 eliminated_by_inlining_prob (gimple stmt
)
1603 enum gimple_code code
= gimple_code (stmt
);
1604 enum tree_code rhs_code
;
1614 if (gimple_num_ops (stmt
) != 2)
1617 rhs_code
= gimple_assign_rhs_code (stmt
);
1619 /* Casts of parameters, loads from parameters passed by reference
1620 and stores to return value or parameters are often free after
1621 inlining dua to SRA and further combining.
1622 Assume that half of statements goes away. */
1623 if (CONVERT_EXPR_CODE_P (rhs_code
)
1624 || rhs_code
== VIEW_CONVERT_EXPR
1625 || rhs_code
== ADDR_EXPR
1626 || gimple_assign_rhs_class (stmt
) == GIMPLE_SINGLE_RHS
)
1628 tree rhs
= gimple_assign_rhs1 (stmt
);
1629 tree lhs
= gimple_assign_lhs (stmt
);
1630 tree inner_rhs
= get_base_address (rhs
);
1631 tree inner_lhs
= get_base_address (lhs
);
1632 bool rhs_free
= false;
1633 bool lhs_free
= false;
1640 /* Reads of parameter are expected to be free. */
1641 if (unmodified_parm (stmt
, inner_rhs
))
1643 /* Match expressions of form &this->field. Those will most likely
1644 combine with something upstream after inlining. */
1645 else if (TREE_CODE (inner_rhs
) == ADDR_EXPR
)
1647 tree op
= get_base_address (TREE_OPERAND (inner_rhs
, 0));
1648 if (TREE_CODE (op
) == PARM_DECL
)
1650 else if (TREE_CODE (op
) == MEM_REF
1651 && unmodified_parm (stmt
, TREE_OPERAND (op
, 0)))
1655 /* When parameter is not SSA register because its address is taken
1656 and it is just copied into one, the statement will be completely
1657 free after inlining (we will copy propagate backward). */
1658 if (rhs_free
&& is_gimple_reg (lhs
))
1661 /* Reads of parameters passed by reference
1662 expected to be free (i.e. optimized out after inlining). */
1663 if (TREE_CODE (inner_rhs
) == MEM_REF
1664 && unmodified_parm (stmt
, TREE_OPERAND (inner_rhs
, 0)))
1667 /* Copying parameter passed by reference into gimple register is
1668 probably also going to copy propagate, but we can't be quite
1670 if (rhs_free
&& is_gimple_reg (lhs
))
1673 /* Writes to parameters, parameters passed by value and return value
1674 (either dirrectly or passed via invisible reference) are free.
1676 TODO: We ought to handle testcase like
1677 struct a {int a,b;};
1679 retrurnsturct (void)
1685 This translate into:
1700 For that we either need to copy ipa-split logic detecting writes
1702 if (TREE_CODE (inner_lhs
) == PARM_DECL
1703 || TREE_CODE (inner_lhs
) == RESULT_DECL
1704 || (TREE_CODE (inner_lhs
) == MEM_REF
1705 && (unmodified_parm (stmt
, TREE_OPERAND (inner_lhs
, 0))
1706 || (TREE_CODE (TREE_OPERAND (inner_lhs
, 0)) == SSA_NAME
1707 && SSA_NAME_VAR (TREE_OPERAND (inner_lhs
, 0))
1708 && TREE_CODE (SSA_NAME_VAR (TREE_OPERAND
1710 0))) == RESULT_DECL
))))
1713 && (is_gimple_reg (rhs
) || is_gimple_min_invariant (rhs
)))
1715 if (lhs_free
&& rhs_free
)
1725 /* If BB ends by a conditional we can turn into predicates, attach corresponding
1726 predicates to the CFG edges. */
1729 set_cond_stmt_execution_predicate (struct ipa_node_params
*info
,
1730 struct inline_summary
*summary
,
1736 struct agg_position_info aggpos
;
1737 enum tree_code code
, inverted_code
;
1743 last
= last_stmt (bb
);
1744 if (!last
|| gimple_code (last
) != GIMPLE_COND
)
1746 if (!is_gimple_ip_invariant (gimple_cond_rhs (last
)))
1748 op
= gimple_cond_lhs (last
);
1749 /* TODO: handle conditionals like
1752 if (unmodified_parm_or_parm_agg_item (info
, last
, op
, &index
, &aggpos
))
1754 code
= gimple_cond_code (last
);
1756 = invert_tree_comparison (code
,
1757 HONOR_NANS (TYPE_MODE (TREE_TYPE (op
))));
1759 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1761 enum tree_code this_code
= (e
->flags
& EDGE_TRUE_VALUE
1762 ? code
: inverted_code
);
1763 /* invert_tree_comparison will return ERROR_MARK on FP
1764 comparsions that are not EQ/NE instead of returning proper
1765 unordered one. Be sure it is not confused with NON_CONSTANT. */
1766 if (this_code
!= ERROR_MARK
)
1768 struct predicate p
= add_condition (summary
, index
, &aggpos
,
1770 gimple_cond_rhs (last
));
1771 e
->aux
= pool_alloc (edge_predicate_pool
);
1772 *(struct predicate
*) e
->aux
= p
;
1777 if (TREE_CODE (op
) != SSA_NAME
)
1780 if (builtin_constant_p (op))
1784 Here we can predicate nonconstant_code. We can't
1785 really handle constant_code since we have no predicate
1786 for this and also the constant code is not known to be
1787 optimized away when inliner doen't see operand is constant.
1788 Other optimizers might think otherwise. */
1789 if (gimple_cond_code (last
) != NE_EXPR
1790 || !integer_zerop (gimple_cond_rhs (last
)))
1792 set_stmt
= SSA_NAME_DEF_STMT (op
);
1793 if (!gimple_call_builtin_p (set_stmt
, BUILT_IN_CONSTANT_P
)
1794 || gimple_call_num_args (set_stmt
) != 1)
1796 op2
= gimple_call_arg (set_stmt
, 0);
1797 if (!unmodified_parm_or_parm_agg_item
1798 (info
, set_stmt
, op2
, &index
, &aggpos
))
1800 FOR_EACH_EDGE (e
, ei
, bb
->succs
) if (e
->flags
& EDGE_FALSE_VALUE
)
1802 struct predicate p
= add_condition (summary
, index
, &aggpos
,
1803 IS_NOT_CONSTANT
, NULL_TREE
);
1804 e
->aux
= pool_alloc (edge_predicate_pool
);
1805 *(struct predicate
*) e
->aux
= p
;
1810 /* If BB ends by a switch we can turn into predicates, attach corresponding
1811 predicates to the CFG edges. */
1814 set_switch_stmt_execution_predicate (struct ipa_node_params
*info
,
1815 struct inline_summary
*summary
,
1821 struct agg_position_info aggpos
;
1827 last
= last_stmt (bb
);
1828 if (!last
|| gimple_code (last
) != GIMPLE_SWITCH
)
1830 op
= gimple_switch_index (last
);
1831 if (!unmodified_parm_or_parm_agg_item (info
, last
, op
, &index
, &aggpos
))
1834 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1836 e
->aux
= pool_alloc (edge_predicate_pool
);
1837 *(struct predicate
*) e
->aux
= false_predicate ();
1839 n
= gimple_switch_num_labels (last
);
1840 for (case_idx
= 0; case_idx
< n
; ++case_idx
)
1842 tree cl
= gimple_switch_label (last
, case_idx
);
1846 e
= find_edge (bb
, label_to_block (CASE_LABEL (cl
)));
1847 min
= CASE_LOW (cl
);
1848 max
= CASE_HIGH (cl
);
1850 /* For default we might want to construct predicate that none
1851 of cases is met, but it is bit hard to do not having negations
1852 of conditionals handy. */
1854 p
= true_predicate ();
1856 p
= add_condition (summary
, index
, &aggpos
, EQ_EXPR
, min
);
1859 struct predicate p1
, p2
;
1860 p1
= add_condition (summary
, index
, &aggpos
, GE_EXPR
, min
);
1861 p2
= add_condition (summary
, index
, &aggpos
, LE_EXPR
, max
);
1862 p
= and_predicates (summary
->conds
, &p1
, &p2
);
1864 *(struct predicate
*) e
->aux
1865 = or_predicates (summary
->conds
, &p
, (struct predicate
*) e
->aux
);
1870 /* For each BB in NODE attach to its AUX pointer predicate under
1871 which it is executable. */
1874 compute_bb_predicates (struct cgraph_node
*node
,
1875 struct ipa_node_params
*parms_info
,
1876 struct inline_summary
*summary
)
1878 struct function
*my_function
= DECL_STRUCT_FUNCTION (node
->decl
);
1882 FOR_EACH_BB_FN (bb
, my_function
)
1884 set_cond_stmt_execution_predicate (parms_info
, summary
, bb
);
1885 set_switch_stmt_execution_predicate (parms_info
, summary
, bb
);
1888 /* Entry block is always executable. */
1889 ENTRY_BLOCK_PTR_FOR_FN (my_function
)->aux
1890 = pool_alloc (edge_predicate_pool
);
1891 *(struct predicate
*) ENTRY_BLOCK_PTR_FOR_FN (my_function
)->aux
1892 = true_predicate ();
1894 /* A simple dataflow propagation of predicates forward in the CFG.
1895 TODO: work in reverse postorder. */
1899 FOR_EACH_BB_FN (bb
, my_function
)
1901 struct predicate p
= false_predicate ();
1904 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1908 struct predicate this_bb_predicate
1909 = *(struct predicate
*) e
->src
->aux
;
1912 = and_predicates (summary
->conds
, &this_bb_predicate
,
1913 (struct predicate
*) e
->aux
);
1914 p
= or_predicates (summary
->conds
, &p
, &this_bb_predicate
);
1915 if (true_predicate_p (&p
))
1919 if (false_predicate_p (&p
))
1920 gcc_assert (!bb
->aux
);
1926 bb
->aux
= pool_alloc (edge_predicate_pool
);
1927 *((struct predicate
*) bb
->aux
) = p
;
1929 else if (!predicates_equal_p (&p
, (struct predicate
*) bb
->aux
))
1931 /* This OR operation is needed to ensure monotonous data flow
1932 in the case we hit the limit on number of clauses and the
1933 and/or operations above give approximate answers. */
1934 p
= or_predicates (summary
->conds
, &p
, (struct predicate
*)bb
->aux
);
1935 if (!predicates_equal_p (&p
, (struct predicate
*) bb
->aux
))
1938 *((struct predicate
*) bb
->aux
) = p
;
1947 /* We keep info about constantness of SSA names. */
1949 typedef struct predicate predicate_t
;
1950 /* Return predicate specifying when the STMT might have result that is not
1951 a compile time constant. */
1953 static struct predicate
1954 will_be_nonconstant_expr_predicate (struct ipa_node_params
*info
,
1955 struct inline_summary
*summary
,
1957 vec
<predicate_t
> nonconstant_names
)
1962 while (UNARY_CLASS_P (expr
))
1963 expr
= TREE_OPERAND (expr
, 0);
1965 parm
= unmodified_parm (NULL
, expr
);
1966 if (parm
&& (index
= ipa_get_param_decl_index (info
, parm
)) >= 0)
1967 return add_condition (summary
, index
, NULL
, CHANGED
, NULL_TREE
);
1968 if (is_gimple_min_invariant (expr
))
1969 return false_predicate ();
1970 if (TREE_CODE (expr
) == SSA_NAME
)
1971 return nonconstant_names
[SSA_NAME_VERSION (expr
)];
1972 if (BINARY_CLASS_P (expr
) || COMPARISON_CLASS_P (expr
))
1974 struct predicate p1
= will_be_nonconstant_expr_predicate
1975 (info
, summary
, TREE_OPERAND (expr
, 0),
1977 struct predicate p2
;
1978 if (true_predicate_p (&p1
))
1980 p2
= will_be_nonconstant_expr_predicate (info
, summary
,
1981 TREE_OPERAND (expr
, 1),
1983 return or_predicates (summary
->conds
, &p1
, &p2
);
1985 else if (TREE_CODE (expr
) == COND_EXPR
)
1987 struct predicate p1
= will_be_nonconstant_expr_predicate
1988 (info
, summary
, TREE_OPERAND (expr
, 0),
1990 struct predicate p2
;
1991 if (true_predicate_p (&p1
))
1993 p2
= will_be_nonconstant_expr_predicate (info
, summary
,
1994 TREE_OPERAND (expr
, 1),
1996 if (true_predicate_p (&p2
))
1998 p1
= or_predicates (summary
->conds
, &p1
, &p2
);
1999 p2
= will_be_nonconstant_expr_predicate (info
, summary
,
2000 TREE_OPERAND (expr
, 2),
2002 return or_predicates (summary
->conds
, &p1
, &p2
);
2009 return false_predicate ();
2013 /* Return predicate specifying when the STMT might have result that is not
2014 a compile time constant. */
2016 static struct predicate
2017 will_be_nonconstant_predicate (struct ipa_node_params
*info
,
2018 struct inline_summary
*summary
,
2020 vec
<predicate_t
> nonconstant_names
)
2022 struct predicate p
= true_predicate ();
2025 struct predicate op_non_const
;
2028 struct agg_position_info aggpos
;
2030 /* What statments might be optimized away
2031 when their arguments are constant
2032 TODO: also trivial builtins.
2033 builtin_constant_p is already handled later. */
2034 if (gimple_code (stmt
) != GIMPLE_ASSIGN
2035 && gimple_code (stmt
) != GIMPLE_COND
2036 && gimple_code (stmt
) != GIMPLE_SWITCH
)
2039 /* Stores will stay anyway. */
2040 if (gimple_store_p (stmt
))
2043 is_load
= gimple_assign_load_p (stmt
);
2045 /* Loads can be optimized when the value is known. */
2049 gcc_assert (gimple_assign_single_p (stmt
));
2050 op
= gimple_assign_rhs1 (stmt
);
2051 if (!unmodified_parm_or_parm_agg_item (info
, stmt
, op
, &base_index
,
2058 /* See if we understand all operands before we start
2059 adding conditionals. */
2060 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
2062 tree parm
= unmodified_parm (stmt
, use
);
2063 /* For arguments we can build a condition. */
2064 if (parm
&& ipa_get_param_decl_index (info
, parm
) >= 0)
2066 if (TREE_CODE (use
) != SSA_NAME
)
2068 /* If we know when operand is constant,
2069 we still can say something useful. */
2070 if (!true_predicate_p (&nonconstant_names
[SSA_NAME_VERSION (use
)]))
2077 add_condition (summary
, base_index
, &aggpos
, CHANGED
, NULL
);
2079 op_non_const
= false_predicate ();
2080 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
2082 tree parm
= unmodified_parm (stmt
, use
);
2085 if (parm
&& (index
= ipa_get_param_decl_index (info
, parm
)) >= 0)
2087 if (index
!= base_index
)
2088 p
= add_condition (summary
, index
, NULL
, CHANGED
, NULL_TREE
);
2093 p
= nonconstant_names
[SSA_NAME_VERSION (use
)];
2094 op_non_const
= or_predicates (summary
->conds
, &p
, &op_non_const
);
2096 if (gimple_code (stmt
) == GIMPLE_ASSIGN
2097 && TREE_CODE (gimple_assign_lhs (stmt
)) == SSA_NAME
)
2098 nonconstant_names
[SSA_NAME_VERSION (gimple_assign_lhs (stmt
))]
2100 return op_non_const
;
2103 struct record_modified_bb_info
2109 /* Callback of walk_aliased_vdefs. Records basic blocks where the value may be
2110 set except for info->stmt. */
2113 record_modified (ao_ref
*ao ATTRIBUTE_UNUSED
, tree vdef
, void *data
)
2115 struct record_modified_bb_info
*info
=
2116 (struct record_modified_bb_info
*) data
;
2117 if (SSA_NAME_DEF_STMT (vdef
) == info
->stmt
)
2119 bitmap_set_bit (info
->bb_set
,
2120 SSA_NAME_IS_DEFAULT_DEF (vdef
)
2121 ? ENTRY_BLOCK_PTR_FOR_FN (cfun
)->index
2122 : gimple_bb (SSA_NAME_DEF_STMT (vdef
))->index
);
2126 /* Return probability (based on REG_BR_PROB_BASE) that I-th parameter of STMT
2127 will change since last invocation of STMT.
2129 Value 0 is reserved for compile time invariants.
2130 For common parameters it is REG_BR_PROB_BASE. For loop invariants it
2131 ought to be REG_BR_PROB_BASE / estimated_iters. */
2134 param_change_prob (gimple stmt
, int i
)
2136 tree op
= gimple_call_arg (stmt
, i
);
2137 basic_block bb
= gimple_bb (stmt
);
2140 /* Global invariants neve change. */
2141 if (is_gimple_min_invariant (op
))
2143 /* We would have to do non-trivial analysis to really work out what
2144 is the probability of value to change (i.e. when init statement
2145 is in a sibling loop of the call).
2147 We do an conservative estimate: when call is executed N times more often
2148 than the statement defining value, we take the frequency 1/N. */
2149 if (TREE_CODE (op
) == SSA_NAME
)
2154 return REG_BR_PROB_BASE
;
2156 if (SSA_NAME_IS_DEFAULT_DEF (op
))
2157 init_freq
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
;
2159 init_freq
= gimple_bb (SSA_NAME_DEF_STMT (op
))->frequency
;
2163 if (init_freq
< bb
->frequency
)
2164 return MAX (GCOV_COMPUTE_SCALE (init_freq
, bb
->frequency
), 1);
2166 return REG_BR_PROB_BASE
;
2169 base
= get_base_address (op
);
2174 struct record_modified_bb_info info
;
2177 tree init
= ctor_for_folding (base
);
2179 if (init
!= error_mark_node
)
2182 return REG_BR_PROB_BASE
;
2183 ao_ref_init (&refd
, op
);
2185 info
.bb_set
= BITMAP_ALLOC (NULL
);
2186 walk_aliased_vdefs (&refd
, gimple_vuse (stmt
), record_modified
, &info
,
2188 if (bitmap_bit_p (info
.bb_set
, bb
->index
))
2190 BITMAP_FREE (info
.bb_set
);
2191 return REG_BR_PROB_BASE
;
2194 /* Assume that every memory is initialized at entry.
2195 TODO: Can we easilly determine if value is always defined
2196 and thus we may skip entry block? */
2197 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
)
2198 max
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
;
2202 EXECUTE_IF_SET_IN_BITMAP (info
.bb_set
, 0, index
, bi
)
2203 max
= MIN (max
, BASIC_BLOCK_FOR_FN (cfun
, index
)->frequency
);
2205 BITMAP_FREE (info
.bb_set
);
2206 if (max
< bb
->frequency
)
2207 return MAX (GCOV_COMPUTE_SCALE (max
, bb
->frequency
), 1);
2209 return REG_BR_PROB_BASE
;
2211 return REG_BR_PROB_BASE
;
2214 /* Find whether a basic block BB is the final block of a (half) diamond CFG
2215 sub-graph and if the predicate the condition depends on is known. If so,
2216 return true and store the pointer the predicate in *P. */
2219 phi_result_unknown_predicate (struct ipa_node_params
*info
,
2220 struct inline_summary
*summary
, basic_block bb
,
2221 struct predicate
*p
,
2222 vec
<predicate_t
> nonconstant_names
)
2226 basic_block first_bb
= NULL
;
2229 if (single_pred_p (bb
))
2231 *p
= false_predicate ();
2235 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2237 if (single_succ_p (e
->src
))
2239 if (!single_pred_p (e
->src
))
2242 first_bb
= single_pred (e
->src
);
2243 else if (single_pred (e
->src
) != first_bb
)
2250 else if (e
->src
!= first_bb
)
2258 stmt
= last_stmt (first_bb
);
2260 || gimple_code (stmt
) != GIMPLE_COND
2261 || !is_gimple_ip_invariant (gimple_cond_rhs (stmt
)))
2264 *p
= will_be_nonconstant_expr_predicate (info
, summary
,
2265 gimple_cond_lhs (stmt
),
2267 if (true_predicate_p (p
))
2273 /* Given a PHI statement in a function described by inline properties SUMMARY
2274 and *P being the predicate describing whether the selected PHI argument is
2275 known, store a predicate for the result of the PHI statement into
2276 NONCONSTANT_NAMES, if possible. */
2279 predicate_for_phi_result (struct inline_summary
*summary
, gimple phi
,
2280 struct predicate
*p
,
2281 vec
<predicate_t
> nonconstant_names
)
2285 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2287 tree arg
= gimple_phi_arg (phi
, i
)->def
;
2288 if (!is_gimple_min_invariant (arg
))
2290 gcc_assert (TREE_CODE (arg
) == SSA_NAME
);
2291 *p
= or_predicates (summary
->conds
, p
,
2292 &nonconstant_names
[SSA_NAME_VERSION (arg
)]);
2293 if (true_predicate_p (p
))
2298 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2300 fprintf (dump_file
, "\t\tphi predicate: ");
2301 dump_predicate (dump_file
, summary
->conds
, p
);
2303 nonconstant_names
[SSA_NAME_VERSION (gimple_phi_result (phi
))] = *p
;
2306 /* Return predicate specifying when array index in access OP becomes non-constant. */
2308 static struct predicate
2309 array_index_predicate (struct inline_summary
*info
,
2310 vec
< predicate_t
> nonconstant_names
, tree op
)
2312 struct predicate p
= false_predicate ();
2313 while (handled_component_p (op
))
2315 if (TREE_CODE (op
) == ARRAY_REF
|| TREE_CODE (op
) == ARRAY_RANGE_REF
)
2317 if (TREE_CODE (TREE_OPERAND (op
, 1)) == SSA_NAME
)
2318 p
= or_predicates (info
->conds
, &p
,
2319 &nonconstant_names
[SSA_NAME_VERSION
2320 (TREE_OPERAND (op
, 1))]);
2322 op
= TREE_OPERAND (op
, 0);
2327 /* For a typical usage of __builtin_expect (a<b, 1), we
2328 may introduce an extra relation stmt:
2329 With the builtin, we have
2332 t3 = __builtin_expect (t2, 1);
2335 Without the builtin, we have
2338 This affects the size/time estimation and may have
2339 an impact on the earlier inlining.
2340 Here find this pattern and fix it up later. */
2343 find_foldable_builtin_expect (basic_block bb
)
2345 gimple_stmt_iterator bsi
;
2347 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2349 gimple stmt
= gsi_stmt (bsi
);
2350 if (gimple_call_builtin_p (stmt
, BUILT_IN_EXPECT
)
2351 || (is_gimple_call (stmt
)
2352 && gimple_call_internal_p (stmt
)
2353 && gimple_call_internal_fn (stmt
) == IFN_BUILTIN_EXPECT
))
2355 tree var
= gimple_call_lhs (stmt
);
2356 tree arg
= gimple_call_arg (stmt
, 0);
2357 use_operand_p use_p
;
2364 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
2366 while (TREE_CODE (arg
) == SSA_NAME
)
2368 gimple stmt_tmp
= SSA_NAME_DEF_STMT (arg
);
2369 if (!is_gimple_assign (stmt_tmp
))
2371 switch (gimple_assign_rhs_code (stmt_tmp
))
2390 arg
= gimple_assign_rhs1 (stmt_tmp
);
2393 if (match
&& single_imm_use (var
, &use_p
, &use_stmt
)
2394 && gimple_code (use_stmt
) == GIMPLE_COND
)
2401 /* Return true when the basic blocks contains only clobbers followed by RESX.
2402 Such BBs are kept around to make removal of dead stores possible with
2403 presence of EH and will be optimized out by optimize_clobbers later in the
2406 NEED_EH is used to recurse in case the clobber has non-EH predecestors
2407 that can be clobber only, too.. When it is false, the RESX is not necessary
2408 on the end of basic block. */
2411 clobber_only_eh_bb_p (basic_block bb
, bool need_eh
= true)
2413 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
2419 if (gsi_end_p (gsi
))
2421 if (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RESX
)
2425 else if (!single_succ_p (bb
))
2428 for (; !gsi_end_p (gsi
); gsi_prev (&gsi
))
2430 gimple stmt
= gsi_stmt (gsi
);
2431 if (is_gimple_debug (stmt
))
2433 if (gimple_clobber_p (stmt
))
2435 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2440 /* See if all predecestors are either throws or clobber only BBs. */
2441 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2442 if (!(e
->flags
& EDGE_EH
)
2443 && !clobber_only_eh_bb_p (e
->src
, false))
2449 /* Compute function body size parameters for NODE.
2450 When EARLY is true, we compute only simple summaries without
2451 non-trivial predicates to drive the early inliner. */
2454 estimate_function_body_sizes (struct cgraph_node
*node
, bool early
)
2457 /* Estimate static overhead for function prologue/epilogue and alignment. */
2459 /* Benefits are scaled by probability of elimination that is in range
2462 gimple_stmt_iterator bsi
;
2463 struct function
*my_function
= DECL_STRUCT_FUNCTION (node
->decl
);
2465 struct inline_summary
*info
= inline_summary (node
);
2466 struct predicate bb_predicate
;
2467 struct ipa_node_params
*parms_info
= NULL
;
2468 vec
<predicate_t
> nonconstant_names
= vNULL
;
2471 predicate array_index
= true_predicate ();
2472 gimple fix_builtin_expect_stmt
;
2477 if (optimize
&& !early
)
2479 calculate_dominance_info (CDI_DOMINATORS
);
2480 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
2482 if (ipa_node_params_vector
.exists ())
2484 parms_info
= IPA_NODE_REF (node
);
2485 nonconstant_names
.safe_grow_cleared
2486 (SSANAMES (my_function
)->length ());
2491 fprintf (dump_file
, "\nAnalyzing function body size: %s\n",
2494 /* When we run into maximal number of entries, we assign everything to the
2495 constant truth case. Be sure to have it in list. */
2496 bb_predicate
= true_predicate ();
2497 account_size_time (info
, 0, 0, &bb_predicate
);
2499 bb_predicate
= not_inlined_predicate ();
2500 account_size_time (info
, 2 * INLINE_SIZE_SCALE
, 0, &bb_predicate
);
2502 gcc_assert (my_function
&& my_function
->cfg
);
2504 compute_bb_predicates (node
, parms_info
, info
);
2505 gcc_assert (cfun
== my_function
);
2506 order
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
));
2507 nblocks
= pre_and_rev_post_order_compute (NULL
, order
, false);
2508 for (n
= 0; n
< nblocks
; n
++)
2510 bb
= BASIC_BLOCK_FOR_FN (cfun
, order
[n
]);
2511 freq
= compute_call_stmt_bb_frequency (node
->decl
, bb
);
2512 if (clobber_only_eh_bb_p (bb
))
2514 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2515 fprintf (dump_file
, "\n Ignoring BB %i;"
2516 " it will be optimized away by cleanup_clobbers\n",
2521 /* TODO: Obviously predicates can be propagated down across CFG. */
2525 bb_predicate
= *(struct predicate
*) bb
->aux
;
2527 bb_predicate
= false_predicate ();
2530 bb_predicate
= true_predicate ();
2532 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2534 fprintf (dump_file
, "\n BB %i predicate:", bb
->index
);
2535 dump_predicate (dump_file
, info
->conds
, &bb_predicate
);
2538 if (parms_info
&& nonconstant_names
.exists ())
2540 struct predicate phi_predicate
;
2541 bool first_phi
= true;
2543 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2546 && !phi_result_unknown_predicate (parms_info
, info
, bb
,
2551 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2553 fprintf (dump_file
, " ");
2554 print_gimple_stmt (dump_file
, gsi_stmt (bsi
), 0, 0);
2556 predicate_for_phi_result (info
, gsi_stmt (bsi
), &phi_predicate
,
2561 fix_builtin_expect_stmt
= find_foldable_builtin_expect (bb
);
2563 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2565 gimple stmt
= gsi_stmt (bsi
);
2566 int this_size
= estimate_num_insns (stmt
, &eni_size_weights
);
2567 int this_time
= estimate_num_insns (stmt
, &eni_time_weights
);
2569 struct predicate will_be_nonconstant
;
2571 /* This relation stmt should be folded after we remove
2572 buildin_expect call. Adjust the cost here. */
2573 if (stmt
== fix_builtin_expect_stmt
)
2579 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2581 fprintf (dump_file
, " ");
2582 print_gimple_stmt (dump_file
, stmt
, 0, 0);
2583 fprintf (dump_file
, "\t\tfreq:%3.2f size:%3i time:%3i\n",
2584 ((double) freq
) / CGRAPH_FREQ_BASE
, this_size
,
2588 if (gimple_assign_load_p (stmt
) && nonconstant_names
.exists ())
2590 struct predicate this_array_index
;
2592 array_index_predicate (info
, nonconstant_names
,
2593 gimple_assign_rhs1 (stmt
));
2594 if (!false_predicate_p (&this_array_index
))
2596 and_predicates (info
->conds
, &array_index
,
2599 if (gimple_store_p (stmt
) && nonconstant_names
.exists ())
2601 struct predicate this_array_index
;
2603 array_index_predicate (info
, nonconstant_names
,
2604 gimple_get_lhs (stmt
));
2605 if (!false_predicate_p (&this_array_index
))
2607 and_predicates (info
->conds
, &array_index
,
2612 if (is_gimple_call (stmt
)
2613 && !gimple_call_internal_p (stmt
))
2615 struct cgraph_edge
*edge
= node
->get_edge (stmt
);
2616 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
2618 /* Special case: results of BUILT_IN_CONSTANT_P will be always
2619 resolved as constant. We however don't want to optimize
2620 out the cgraph edges. */
2621 if (nonconstant_names
.exists ()
2622 && gimple_call_builtin_p (stmt
, BUILT_IN_CONSTANT_P
)
2623 && gimple_call_lhs (stmt
)
2624 && TREE_CODE (gimple_call_lhs (stmt
)) == SSA_NAME
)
2626 struct predicate false_p
= false_predicate ();
2627 nonconstant_names
[SSA_NAME_VERSION (gimple_call_lhs (stmt
))]
2630 if (ipa_node_params_vector
.exists ())
2632 int count
= gimple_call_num_args (stmt
);
2636 es
->param
.safe_grow_cleared (count
);
2637 for (i
= 0; i
< count
; i
++)
2639 int prob
= param_change_prob (stmt
, i
);
2640 gcc_assert (prob
>= 0 && prob
<= REG_BR_PROB_BASE
);
2641 es
->param
[i
].change_prob
= prob
;
2645 es
->call_stmt_size
= this_size
;
2646 es
->call_stmt_time
= this_time
;
2647 es
->loop_depth
= bb_loop_depth (bb
);
2648 edge_set_predicate (edge
, &bb_predicate
);
2651 /* TODO: When conditional jump or swithc is known to be constant, but
2652 we did not translate it into the predicates, we really can account
2653 just maximum of the possible paths. */
2656 = will_be_nonconstant_predicate (parms_info
, info
,
2657 stmt
, nonconstant_names
);
2658 if (this_time
|| this_size
)
2664 prob
= eliminated_by_inlining_prob (stmt
);
2665 if (prob
== 1 && dump_file
&& (dump_flags
& TDF_DETAILS
))
2667 "\t\t50%% will be eliminated by inlining\n");
2668 if (prob
== 2 && dump_file
&& (dump_flags
& TDF_DETAILS
))
2669 fprintf (dump_file
, "\t\tWill be eliminated by inlining\n");
2672 p
= and_predicates (info
->conds
, &bb_predicate
,
2673 &will_be_nonconstant
);
2675 p
= true_predicate ();
2677 if (!false_predicate_p (&p
))
2681 if (time
> MAX_TIME
* INLINE_TIME_SCALE
)
2682 time
= MAX_TIME
* INLINE_TIME_SCALE
;
2685 /* We account everything but the calls. Calls have their own
2686 size/time info attached to cgraph edges. This is necessary
2687 in order to make the cost disappear after inlining. */
2688 if (!is_gimple_call (stmt
))
2692 struct predicate ip
= not_inlined_predicate ();
2693 ip
= and_predicates (info
->conds
, &ip
, &p
);
2694 account_size_time (info
, this_size
* prob
,
2695 this_time
* prob
, &ip
);
2698 account_size_time (info
, this_size
* (2 - prob
),
2699 this_time
* (2 - prob
), &p
);
2702 gcc_assert (time
>= 0);
2703 gcc_assert (size
>= 0);
2707 set_hint_predicate (&inline_summary (node
)->array_index
, array_index
);
2708 time
= (time
+ CGRAPH_FREQ_BASE
/ 2) / CGRAPH_FREQ_BASE
;
2709 if (time
> MAX_TIME
)
2713 if (!early
&& nonconstant_names
.exists ())
2716 predicate loop_iterations
= true_predicate ();
2717 predicate loop_stride
= true_predicate ();
2719 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2720 flow_loops_dump (dump_file
, NULL
, 0);
2722 FOR_EACH_LOOP (loop
, 0)
2727 struct tree_niter_desc niter_desc
;
2728 basic_block
*body
= get_loop_body (loop
);
2729 bb_predicate
= *(struct predicate
*) loop
->header
->aux
;
2731 exits
= get_loop_exit_edges (loop
);
2732 FOR_EACH_VEC_ELT (exits
, j
, ex
)
2733 if (number_of_iterations_exit (loop
, ex
, &niter_desc
, false)
2734 && !is_gimple_min_invariant (niter_desc
.niter
))
2736 predicate will_be_nonconstant
2737 = will_be_nonconstant_expr_predicate (parms_info
, info
,
2740 if (!true_predicate_p (&will_be_nonconstant
))
2741 will_be_nonconstant
= and_predicates (info
->conds
,
2743 &will_be_nonconstant
);
2744 if (!true_predicate_p (&will_be_nonconstant
)
2745 && !false_predicate_p (&will_be_nonconstant
))
2746 /* This is slightly inprecise. We may want to represent each
2747 loop with independent predicate. */
2749 and_predicates (info
->conds
, &loop_iterations
,
2750 &will_be_nonconstant
);
2754 for (i
= 0; i
< loop
->num_nodes
; i
++)
2756 gimple_stmt_iterator gsi
;
2757 bb_predicate
= *(struct predicate
*) body
[i
]->aux
;
2758 for (gsi
= gsi_start_bb (body
[i
]); !gsi_end_p (gsi
);
2761 gimple stmt
= gsi_stmt (gsi
);
2766 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
2768 predicate will_be_nonconstant
;
2771 (loop
, loop_containing_stmt (stmt
), use
, &iv
, true)
2772 || is_gimple_min_invariant (iv
.step
))
2775 = will_be_nonconstant_expr_predicate (parms_info
, info
,
2778 if (!true_predicate_p (&will_be_nonconstant
))
2780 = and_predicates (info
->conds
,
2782 &will_be_nonconstant
);
2783 if (!true_predicate_p (&will_be_nonconstant
)
2784 && !false_predicate_p (&will_be_nonconstant
))
2785 /* This is slightly inprecise. We may want to represent
2786 each loop with independent predicate. */
2788 and_predicates (info
->conds
, &loop_stride
,
2789 &will_be_nonconstant
);
2795 set_hint_predicate (&inline_summary (node
)->loop_iterations
,
2797 set_hint_predicate (&inline_summary (node
)->loop_stride
, loop_stride
);
2800 FOR_ALL_BB_FN (bb
, my_function
)
2806 pool_free (edge_predicate_pool
, bb
->aux
);
2808 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2811 pool_free (edge_predicate_pool
, e
->aux
);
2815 inline_summary (node
)->self_time
= time
;
2816 inline_summary (node
)->self_size
= size
;
2817 nonconstant_names
.release ();
2818 if (optimize
&& !early
)
2820 loop_optimizer_finalize ();
2821 free_dominance_info (CDI_DOMINATORS
);
2825 fprintf (dump_file
, "\n");
2826 dump_inline_summary (dump_file
, node
);
2831 /* Compute parameters of functions used by inliner.
2832 EARLY is true when we compute parameters for the early inliner */
2835 compute_inline_parameters (struct cgraph_node
*node
, bool early
)
2837 HOST_WIDE_INT self_stack_size
;
2838 struct cgraph_edge
*e
;
2839 struct inline_summary
*info
;
2841 gcc_assert (!node
->global
.inlined_to
);
2843 inline_summary_alloc ();
2845 info
= inline_summary (node
);
2846 reset_inline_summary (node
);
2848 /* FIXME: Thunks are inlinable, but tree-inline don't know how to do that.
2849 Once this happen, we will need to more curefully predict call
2851 if (node
->thunk
.thunk_p
)
2853 struct inline_edge_summary
*es
= inline_edge_summary (node
->callees
);
2854 struct predicate t
= true_predicate ();
2856 info
->inlinable
= 0;
2857 node
->callees
->call_stmt_cannot_inline_p
= true;
2858 node
->local
.can_change_signature
= false;
2859 es
->call_stmt_time
= 1;
2860 es
->call_stmt_size
= 1;
2861 account_size_time (info
, 0, 0, &t
);
2865 /* Even is_gimple_min_invariant rely on current_function_decl. */
2866 push_cfun (DECL_STRUCT_FUNCTION (node
->decl
));
2868 /* Estimate the stack size for the function if we're optimizing. */
2869 self_stack_size
= optimize
? estimated_stack_frame_size (node
) : 0;
2870 info
->estimated_self_stack_size
= self_stack_size
;
2871 info
->estimated_stack_size
= self_stack_size
;
2872 info
->stack_frame_offset
= 0;
2874 /* Can this function be inlined at all? */
2875 if (!optimize
&& !lookup_attribute ("always_inline",
2876 DECL_ATTRIBUTES (node
->decl
)))
2877 info
->inlinable
= false;
2879 info
->inlinable
= tree_inlinable_function_p (node
->decl
);
2881 /* Type attributes can use parameter indices to describe them. */
2882 if (TYPE_ATTRIBUTES (TREE_TYPE (node
->decl
)))
2883 node
->local
.can_change_signature
= false;
2886 /* Otherwise, inlinable functions always can change signature. */
2887 if (info
->inlinable
)
2888 node
->local
.can_change_signature
= true;
2891 /* Functions calling builtin_apply can not change signature. */
2892 for (e
= node
->callees
; e
; e
= e
->next_callee
)
2894 tree
cdecl = e
->callee
->decl
;
2895 if (DECL_BUILT_IN (cdecl)
2896 && DECL_BUILT_IN_CLASS (cdecl) == BUILT_IN_NORMAL
2897 && (DECL_FUNCTION_CODE (cdecl) == BUILT_IN_APPLY_ARGS
2898 || DECL_FUNCTION_CODE (cdecl) == BUILT_IN_VA_START
))
2901 node
->local
.can_change_signature
= !e
;
2904 estimate_function_body_sizes (node
, early
);
2906 for (e
= node
->callees
; e
; e
= e
->next_callee
)
2907 if (e
->callee
->comdat_local_p ())
2909 node
->calls_comdat_local
= (e
!= NULL
);
2911 /* Inlining characteristics are maintained by the cgraph_mark_inline. */
2912 info
->time
= info
->self_time
;
2913 info
->size
= info
->self_size
;
2914 info
->stack_frame_offset
= 0;
2915 info
->estimated_stack_size
= info
->estimated_self_stack_size
;
2916 #ifdef ENABLE_CHECKING
2917 inline_update_overall_summary (node
);
2918 gcc_assert (info
->time
== info
->self_time
&& info
->size
== info
->self_size
);
2925 /* Compute parameters of functions used by inliner using
2926 current_function_decl. */
2929 compute_inline_parameters_for_current (void)
2931 compute_inline_parameters (cgraph_node::get (current_function_decl
), true);
2937 const pass_data pass_data_inline_parameters
=
2939 GIMPLE_PASS
, /* type */
2940 "inline_param", /* name */
2941 OPTGROUP_INLINE
, /* optinfo_flags */
2942 TV_INLINE_PARAMETERS
, /* tv_id */
2943 0, /* properties_required */
2944 0, /* properties_provided */
2945 0, /* properties_destroyed */
2946 0, /* todo_flags_start */
2947 0, /* todo_flags_finish */
2950 class pass_inline_parameters
: public gimple_opt_pass
2953 pass_inline_parameters (gcc::context
*ctxt
)
2954 : gimple_opt_pass (pass_data_inline_parameters
, ctxt
)
2957 /* opt_pass methods: */
2958 opt_pass
* clone () { return new pass_inline_parameters (m_ctxt
); }
2959 virtual unsigned int execute (function
*)
2961 return compute_inline_parameters_for_current ();
2964 }; // class pass_inline_parameters
2969 make_pass_inline_parameters (gcc::context
*ctxt
)
2971 return new pass_inline_parameters (ctxt
);
2975 /* Estimate benefit devirtualizing indirect edge IE, provided KNOWN_VALS,
2976 KNOWN_CONTEXTS and KNOWN_AGGS. */
2979 estimate_edge_devirt_benefit (struct cgraph_edge
*ie
,
2980 int *size
, int *time
,
2981 vec
<tree
> known_vals
,
2982 vec
<ipa_polymorphic_call_context
> known_contexts
,
2983 vec
<ipa_agg_jump_function_p
> known_aggs
)
2986 struct cgraph_node
*callee
;
2987 struct inline_summary
*isummary
;
2988 enum availability avail
;
2991 if (!known_vals
.exists () && !known_contexts
.exists ())
2993 if (!flag_indirect_inlining
)
2996 target
= ipa_get_indirect_edge_target (ie
, known_vals
, known_contexts
,
2997 known_aggs
, &speculative
);
2998 if (!target
|| speculative
)
3001 /* Account for difference in cost between indirect and direct calls. */
3002 *size
-= (eni_size_weights
.indirect_call_cost
- eni_size_weights
.call_cost
);
3003 *time
-= (eni_time_weights
.indirect_call_cost
- eni_time_weights
.call_cost
);
3004 gcc_checking_assert (*time
>= 0);
3005 gcc_checking_assert (*size
>= 0);
3007 callee
= cgraph_node::get (target
);
3008 if (!callee
|| !callee
->definition
)
3010 callee
= callee
->function_symbol (&avail
);
3011 if (avail
< AVAIL_AVAILABLE
)
3013 isummary
= inline_summary (callee
);
3014 return isummary
->inlinable
;
3017 /* Increase SIZE, MIN_SIZE (if non-NULL) and TIME for size and time needed to
3018 handle edge E with probability PROB.
3019 Set HINTS if edge may be devirtualized.
3020 KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS describe context of the call
3024 estimate_edge_size_and_time (struct cgraph_edge
*e
, int *size
, int *min_size
,
3027 vec
<tree
> known_vals
,
3028 vec
<ipa_polymorphic_call_context
> known_contexts
,
3029 vec
<ipa_agg_jump_function_p
> known_aggs
,
3030 inline_hints
*hints
)
3032 struct inline_edge_summary
*es
= inline_edge_summary (e
);
3033 int call_size
= es
->call_stmt_size
;
3034 int call_time
= es
->call_stmt_time
;
3037 && estimate_edge_devirt_benefit (e
, &call_size
, &call_time
,
3038 known_vals
, known_contexts
, known_aggs
)
3039 && hints
&& e
->maybe_hot_p ())
3040 *hints
|= INLINE_HINT_indirect_call
;
3041 cur_size
= call_size
* INLINE_SIZE_SCALE
;
3044 *min_size
+= cur_size
;
3045 *time
+= apply_probability ((gcov_type
) call_time
, prob
)
3046 * e
->frequency
* (INLINE_TIME_SCALE
/ CGRAPH_FREQ_BASE
);
3047 if (*time
> MAX_TIME
* INLINE_TIME_SCALE
)
3048 *time
= MAX_TIME
* INLINE_TIME_SCALE
;
3053 /* Increase SIZE, MIN_SIZE and TIME for size and time needed to handle all
3054 calls in NODE. POSSIBLE_TRUTHS, KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
3055 describe context of the call site. */
3058 estimate_calls_size_and_time (struct cgraph_node
*node
, int *size
,
3059 int *min_size
, int *time
,
3060 inline_hints
*hints
,
3061 clause_t possible_truths
,
3062 vec
<tree
> known_vals
,
3063 vec
<ipa_polymorphic_call_context
> known_contexts
,
3064 vec
<ipa_agg_jump_function_p
> known_aggs
)
3066 struct cgraph_edge
*e
;
3067 for (e
= node
->callees
; e
; e
= e
->next_callee
)
3069 struct inline_edge_summary
*es
= inline_edge_summary (e
);
3071 || evaluate_predicate (es
->predicate
, possible_truths
))
3073 if (e
->inline_failed
)
3075 /* Predicates of calls shall not use NOT_CHANGED codes,
3076 sowe do not need to compute probabilities. */
3077 estimate_edge_size_and_time (e
, size
,
3078 es
->predicate
? NULL
: min_size
,
3079 time
, REG_BR_PROB_BASE
,
3080 known_vals
, known_contexts
,
3084 estimate_calls_size_and_time (e
->callee
, size
, min_size
, time
,
3087 known_vals
, known_contexts
,
3091 for (e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
3093 struct inline_edge_summary
*es
= inline_edge_summary (e
);
3095 || evaluate_predicate (es
->predicate
, possible_truths
))
3096 estimate_edge_size_and_time (e
, size
,
3097 es
->predicate
? NULL
: min_size
,
3098 time
, REG_BR_PROB_BASE
,
3099 known_vals
, known_contexts
, known_aggs
,
3105 /* Estimate size and time needed to execute NODE assuming
3106 POSSIBLE_TRUTHS clause, and KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
3107 information about NODE's arguments. If non-NULL use also probability
3108 information present in INLINE_PARAM_SUMMARY vector.
3109 Additionally detemine hints determined by the context. Finally compute
3110 minimal size needed for the call that is independent on the call context and
3111 can be used for fast estimates. Return the values in RET_SIZE,
3112 RET_MIN_SIZE, RET_TIME and RET_HINTS. */
3115 estimate_node_size_and_time (struct cgraph_node
*node
,
3116 clause_t possible_truths
,
3117 vec
<tree
> known_vals
,
3118 vec
<ipa_polymorphic_call_context
> known_contexts
,
3119 vec
<ipa_agg_jump_function_p
> known_aggs
,
3120 int *ret_size
, int *ret_min_size
, int *ret_time
,
3121 inline_hints
*ret_hints
,
3122 vec
<inline_param_summary
>
3123 inline_param_summary
)
3125 struct inline_summary
*info
= inline_summary (node
);
3130 inline_hints hints
= 0;
3133 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3136 fprintf (dump_file
, " Estimating body: %s/%i\n"
3137 " Known to be false: ", node
->name (),
3140 for (i
= predicate_not_inlined_condition
;
3141 i
< (predicate_first_dynamic_condition
3142 + (int) vec_safe_length (info
->conds
)); i
++)
3143 if (!(possible_truths
& (1 << i
)))
3146 fprintf (dump_file
, ", ");
3148 dump_condition (dump_file
, info
->conds
, i
);
3152 for (i
= 0; vec_safe_iterate (info
->entry
, i
, &e
); i
++)
3153 if (evaluate_predicate (&e
->predicate
, possible_truths
))
3156 gcc_checking_assert (e
->time
>= 0);
3157 gcc_checking_assert (time
>= 0);
3158 if (!inline_param_summary
.exists ())
3162 int prob
= predicate_probability (info
->conds
,
3165 inline_param_summary
);
3166 gcc_checking_assert (prob
>= 0);
3167 gcc_checking_assert (prob
<= REG_BR_PROB_BASE
);
3168 time
+= apply_probability ((gcov_type
) e
->time
, prob
);
3170 if (time
> MAX_TIME
* INLINE_TIME_SCALE
)
3171 time
= MAX_TIME
* INLINE_TIME_SCALE
;
3172 gcc_checking_assert (time
>= 0);
3175 gcc_checking_assert (true_predicate_p (&(*info
->entry
)[0].predicate
));
3176 min_size
= (*info
->entry
)[0].size
;
3177 gcc_checking_assert (size
>= 0);
3178 gcc_checking_assert (time
>= 0);
3180 if (info
->loop_iterations
3181 && !evaluate_predicate (info
->loop_iterations
, possible_truths
))
3182 hints
|= INLINE_HINT_loop_iterations
;
3183 if (info
->loop_stride
3184 && !evaluate_predicate (info
->loop_stride
, possible_truths
))
3185 hints
|= INLINE_HINT_loop_stride
;
3186 if (info
->array_index
3187 && !evaluate_predicate (info
->array_index
, possible_truths
))
3188 hints
|= INLINE_HINT_array_index
;
3190 hints
|= INLINE_HINT_in_scc
;
3191 if (DECL_DECLARED_INLINE_P (node
->decl
))
3192 hints
|= INLINE_HINT_declared_inline
;
3194 estimate_calls_size_and_time (node
, &size
, &min_size
, &time
, &hints
, possible_truths
,
3195 known_vals
, known_contexts
, known_aggs
);
3196 gcc_checking_assert (size
>= 0);
3197 gcc_checking_assert (time
>= 0);
3198 time
= RDIV (time
, INLINE_TIME_SCALE
);
3199 size
= RDIV (size
, INLINE_SIZE_SCALE
);
3200 min_size
= RDIV (min_size
, INLINE_SIZE_SCALE
);
3202 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3203 fprintf (dump_file
, "\n size:%i time:%i\n", (int) size
, (int) time
);
3209 *ret_min_size
= min_size
;
3216 /* Estimate size and time needed to execute callee of EDGE assuming that
3217 parameters known to be constant at caller of EDGE are propagated.
3218 KNOWN_VALS and KNOWN_CONTEXTS are vectors of assumed known constant values
3219 and types for parameters. */
3222 estimate_ipcp_clone_size_and_time (struct cgraph_node
*node
,
3223 vec
<tree
> known_vals
,
3224 vec
<ipa_polymorphic_call_context
>
3226 vec
<ipa_agg_jump_function_p
> known_aggs
,
3227 int *ret_size
, int *ret_time
,
3228 inline_hints
*hints
)
3232 clause
= evaluate_conditions_for_known_args (node
, false, known_vals
,
3234 estimate_node_size_and_time (node
, clause
, known_vals
, known_contexts
,
3235 known_aggs
, ret_size
, NULL
, ret_time
, hints
, vNULL
);
3238 /* Translate all conditions from callee representation into caller
3239 representation and symbolically evaluate predicate P into new predicate.
3241 INFO is inline_summary of function we are adding predicate into, CALLEE_INFO
3242 is summary of function predicate P is from. OPERAND_MAP is array giving
3243 callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clausule of all
3244 callee conditions that may be true in caller context. TOPLEV_PREDICATE is
3245 predicate under which callee is executed. OFFSET_MAP is an array of of
3246 offsets that need to be added to conditions, negative offset means that
3247 conditions relying on values passed by reference have to be discarded
3248 because they might not be preserved (and should be considered offset zero
3249 for other purposes). */
3251 static struct predicate
3252 remap_predicate (struct inline_summary
*info
,
3253 struct inline_summary
*callee_info
,
3254 struct predicate
*p
,
3255 vec
<int> operand_map
,
3256 vec
<int> offset_map
,
3257 clause_t possible_truths
, struct predicate
*toplev_predicate
)
3260 struct predicate out
= true_predicate ();
3262 /* True predicate is easy. */
3263 if (true_predicate_p (p
))
3264 return *toplev_predicate
;
3265 for (i
= 0; p
->clause
[i
]; i
++)
3267 clause_t clause
= p
->clause
[i
];
3269 struct predicate clause_predicate
= false_predicate ();
3271 gcc_assert (i
< MAX_CLAUSES
);
3273 for (cond
= 0; cond
< NUM_CONDITIONS
; cond
++)
3274 /* Do we have condition we can't disprove? */
3275 if (clause
& possible_truths
& (1 << cond
))
3277 struct predicate cond_predicate
;
3278 /* Work out if the condition can translate to predicate in the
3279 inlined function. */
3280 if (cond
>= predicate_first_dynamic_condition
)
3282 struct condition
*c
;
3284 c
= &(*callee_info
->conds
)[cond
3286 predicate_first_dynamic_condition
];
3287 /* See if we can remap condition operand to caller's operand.
3288 Otherwise give up. */
3289 if (!operand_map
.exists ()
3290 || (int) operand_map
.length () <= c
->operand_num
3291 || operand_map
[c
->operand_num
] == -1
3292 /* TODO: For non-aggregate conditions, adding an offset is
3293 basically an arithmetic jump function processing which
3294 we should support in future. */
3295 || ((!c
->agg_contents
|| !c
->by_ref
)
3296 && offset_map
[c
->operand_num
] > 0)
3297 || (c
->agg_contents
&& c
->by_ref
3298 && offset_map
[c
->operand_num
] < 0))
3299 cond_predicate
= true_predicate ();
3302 struct agg_position_info ap
;
3303 HOST_WIDE_INT offset_delta
= offset_map
[c
->operand_num
];
3304 if (offset_delta
< 0)
3306 gcc_checking_assert (!c
->agg_contents
|| !c
->by_ref
);
3309 gcc_assert (!c
->agg_contents
3310 || c
->by_ref
|| offset_delta
== 0);
3311 ap
.offset
= c
->offset
+ offset_delta
;
3312 ap
.agg_contents
= c
->agg_contents
;
3313 ap
.by_ref
= c
->by_ref
;
3314 cond_predicate
= add_condition (info
,
3315 operand_map
[c
->operand_num
],
3316 &ap
, c
->code
, c
->val
);
3319 /* Fixed conditions remains same, construct single
3320 condition predicate. */
3323 cond_predicate
.clause
[0] = 1 << cond
;
3324 cond_predicate
.clause
[1] = 0;
3326 clause_predicate
= or_predicates (info
->conds
, &clause_predicate
,
3329 out
= and_predicates (info
->conds
, &out
, &clause_predicate
);
3331 return and_predicates (info
->conds
, &out
, toplev_predicate
);
3335 /* Update summary information of inline clones after inlining.
3336 Compute peak stack usage. */
3339 inline_update_callee_summaries (struct cgraph_node
*node
, int depth
)
3341 struct cgraph_edge
*e
;
3342 struct inline_summary
*callee_info
= inline_summary (node
);
3343 struct inline_summary
*caller_info
= inline_summary (node
->callers
->caller
);
3346 callee_info
->stack_frame_offset
3347 = caller_info
->stack_frame_offset
3348 + caller_info
->estimated_self_stack_size
;
3349 peak
= callee_info
->stack_frame_offset
3350 + callee_info
->estimated_self_stack_size
;
3351 if (inline_summary (node
->global
.inlined_to
)->estimated_stack_size
< peak
)
3352 inline_summary (node
->global
.inlined_to
)->estimated_stack_size
= peak
;
3353 ipa_propagate_frequency (node
);
3354 for (e
= node
->callees
; e
; e
= e
->next_callee
)
3356 if (!e
->inline_failed
)
3357 inline_update_callee_summaries (e
->callee
, depth
);
3358 inline_edge_summary (e
)->loop_depth
+= depth
;
3360 for (e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
3361 inline_edge_summary (e
)->loop_depth
+= depth
;
3364 /* Update change_prob of EDGE after INLINED_EDGE has been inlined.
3365 When functoin A is inlined in B and A calls C with parameter that
3366 changes with probability PROB1 and C is known to be passthroug
3367 of argument if B that change with probability PROB2, the probability
3368 of change is now PROB1*PROB2. */
3371 remap_edge_change_prob (struct cgraph_edge
*inlined_edge
,
3372 struct cgraph_edge
*edge
)
3374 if (ipa_node_params_vector
.exists ())
3377 struct ipa_edge_args
*args
= IPA_EDGE_REF (edge
);
3378 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
3379 struct inline_edge_summary
*inlined_es
3380 = inline_edge_summary (inlined_edge
);
3382 for (i
= 0; i
< ipa_get_cs_argument_count (args
); i
++)
3384 struct ipa_jump_func
*jfunc
= ipa_get_ith_jump_func (args
, i
);
3385 if (jfunc
->type
== IPA_JF_PASS_THROUGH
3386 && (ipa_get_jf_pass_through_formal_id (jfunc
)
3387 < (int) inlined_es
->param
.length ()))
3389 int jf_formal_id
= ipa_get_jf_pass_through_formal_id (jfunc
);
3390 int prob1
= es
->param
[i
].change_prob
;
3391 int prob2
= inlined_es
->param
[jf_formal_id
].change_prob
;
3392 int prob
= combine_probabilities (prob1
, prob2
);
3394 if (prob1
&& prob2
&& !prob
)
3397 es
->param
[i
].change_prob
= prob
;
3403 /* Update edge summaries of NODE after INLINED_EDGE has been inlined.
3405 Remap predicates of callees of NODE. Rest of arguments match
3408 Also update change probabilities. */
3411 remap_edge_summaries (struct cgraph_edge
*inlined_edge
,
3412 struct cgraph_node
*node
,
3413 struct inline_summary
*info
,
3414 struct inline_summary
*callee_info
,
3415 vec
<int> operand_map
,
3416 vec
<int> offset_map
,
3417 clause_t possible_truths
,
3418 struct predicate
*toplev_predicate
)
3420 struct cgraph_edge
*e
;
3421 for (e
= node
->callees
; e
; e
= e
->next_callee
)
3423 struct inline_edge_summary
*es
= inline_edge_summary (e
);
3426 if (e
->inline_failed
)
3428 remap_edge_change_prob (inlined_edge
, e
);
3432 p
= remap_predicate (info
, callee_info
,
3433 es
->predicate
, operand_map
, offset_map
,
3434 possible_truths
, toplev_predicate
);
3435 edge_set_predicate (e
, &p
);
3436 /* TODO: We should remove the edge for code that will be
3437 optimized out, but we need to keep verifiers and tree-inline
3438 happy. Make it cold for now. */
3439 if (false_predicate_p (&p
))
3446 edge_set_predicate (e
, toplev_predicate
);
3449 remap_edge_summaries (inlined_edge
, e
->callee
, info
, callee_info
,
3450 operand_map
, offset_map
, possible_truths
,
3453 for (e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
3455 struct inline_edge_summary
*es
= inline_edge_summary (e
);
3458 remap_edge_change_prob (inlined_edge
, e
);
3461 p
= remap_predicate (info
, callee_info
,
3462 es
->predicate
, operand_map
, offset_map
,
3463 possible_truths
, toplev_predicate
);
3464 edge_set_predicate (e
, &p
);
3465 /* TODO: We should remove the edge for code that will be optimized
3466 out, but we need to keep verifiers and tree-inline happy.
3467 Make it cold for now. */
3468 if (false_predicate_p (&p
))
3475 edge_set_predicate (e
, toplev_predicate
);
3479 /* Same as remap_predicate, but set result into hint *HINT. */
3482 remap_hint_predicate (struct inline_summary
*info
,
3483 struct inline_summary
*callee_info
,
3484 struct predicate
**hint
,
3485 vec
<int> operand_map
,
3486 vec
<int> offset_map
,
3487 clause_t possible_truths
,
3488 struct predicate
*toplev_predicate
)
3494 p
= remap_predicate (info
, callee_info
,
3496 operand_map
, offset_map
,
3497 possible_truths
, toplev_predicate
);
3498 if (!false_predicate_p (&p
) && !true_predicate_p (&p
))
3501 set_hint_predicate (hint
, p
);
3503 **hint
= and_predicates (info
->conds
, *hint
, &p
);
3507 /* We inlined EDGE. Update summary of the function we inlined into. */
3510 inline_merge_summary (struct cgraph_edge
*edge
)
3512 struct inline_summary
*callee_info
= inline_summary (edge
->callee
);
3513 struct cgraph_node
*to
= (edge
->caller
->global
.inlined_to
3514 ? edge
->caller
->global
.inlined_to
: edge
->caller
);
3515 struct inline_summary
*info
= inline_summary (to
);
3516 clause_t clause
= 0; /* not_inline is known to be false. */
3518 vec
<int> operand_map
= vNULL
;
3519 vec
<int> offset_map
= vNULL
;
3521 struct predicate toplev_predicate
;
3522 struct predicate true_p
= true_predicate ();
3523 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
3526 toplev_predicate
= *es
->predicate
;
3528 toplev_predicate
= true_predicate ();
3530 if (ipa_node_params_vector
.exists () && callee_info
->conds
)
3532 struct ipa_edge_args
*args
= IPA_EDGE_REF (edge
);
3533 int count
= ipa_get_cs_argument_count (args
);
3536 evaluate_properties_for_edge (edge
, true, &clause
, NULL
, NULL
, NULL
);
3539 operand_map
.safe_grow_cleared (count
);
3540 offset_map
.safe_grow_cleared (count
);
3542 for (i
= 0; i
< count
; i
++)
3544 struct ipa_jump_func
*jfunc
= ipa_get_ith_jump_func (args
, i
);
3547 /* TODO: handle non-NOPs when merging. */
3548 if (jfunc
->type
== IPA_JF_PASS_THROUGH
)
3550 if (ipa_get_jf_pass_through_operation (jfunc
) == NOP_EXPR
)
3551 map
= ipa_get_jf_pass_through_formal_id (jfunc
);
3552 if (!ipa_get_jf_pass_through_agg_preserved (jfunc
))
3555 else if (jfunc
->type
== IPA_JF_ANCESTOR
)
3557 HOST_WIDE_INT offset
= ipa_get_jf_ancestor_offset (jfunc
);
3558 if (offset
>= 0 && offset
< INT_MAX
)
3560 map
= ipa_get_jf_ancestor_formal_id (jfunc
);
3561 if (!ipa_get_jf_ancestor_agg_preserved (jfunc
))
3563 offset_map
[i
] = offset
;
3566 operand_map
[i
] = map
;
3567 gcc_assert (map
< ipa_get_param_count (IPA_NODE_REF (to
)));
3570 for (i
= 0; vec_safe_iterate (callee_info
->entry
, i
, &e
); i
++)
3572 struct predicate p
= remap_predicate (info
, callee_info
,
3573 &e
->predicate
, operand_map
,
3576 if (!false_predicate_p (&p
))
3578 gcov_type add_time
= ((gcov_type
) e
->time
* edge
->frequency
3579 + CGRAPH_FREQ_BASE
/ 2) / CGRAPH_FREQ_BASE
;
3580 int prob
= predicate_probability (callee_info
->conds
,
3583 add_time
= apply_probability ((gcov_type
) add_time
, prob
);
3584 if (add_time
> MAX_TIME
* INLINE_TIME_SCALE
)
3585 add_time
= MAX_TIME
* INLINE_TIME_SCALE
;
3586 if (prob
!= REG_BR_PROB_BASE
3587 && dump_file
&& (dump_flags
& TDF_DETAILS
))
3589 fprintf (dump_file
, "\t\tScaling time by probability:%f\n",
3590 (double) prob
/ REG_BR_PROB_BASE
);
3592 account_size_time (info
, e
->size
, add_time
, &p
);
3595 remap_edge_summaries (edge
, edge
->callee
, info
, callee_info
, operand_map
,
3596 offset_map
, clause
, &toplev_predicate
);
3597 remap_hint_predicate (info
, callee_info
,
3598 &callee_info
->loop_iterations
,
3599 operand_map
, offset_map
, clause
, &toplev_predicate
);
3600 remap_hint_predicate (info
, callee_info
,
3601 &callee_info
->loop_stride
,
3602 operand_map
, offset_map
, clause
, &toplev_predicate
);
3603 remap_hint_predicate (info
, callee_info
,
3604 &callee_info
->array_index
,
3605 operand_map
, offset_map
, clause
, &toplev_predicate
);
3607 inline_update_callee_summaries (edge
->callee
,
3608 inline_edge_summary (edge
)->loop_depth
);
3610 /* We do not maintain predicates of inlined edges, free it. */
3611 edge_set_predicate (edge
, &true_p
);
3612 /* Similarly remove param summaries. */
3613 es
->param
.release ();
3614 operand_map
.release ();
3615 offset_map
.release ();
3618 /* For performance reasons inline_merge_summary is not updating overall size
3619 and time. Recompute it. */
3622 inline_update_overall_summary (struct cgraph_node
*node
)
3624 struct inline_summary
*info
= inline_summary (node
);
3630 for (i
= 0; vec_safe_iterate (info
->entry
, i
, &e
); i
++)
3632 info
->size
+= e
->size
, info
->time
+= e
->time
;
3633 if (info
->time
> MAX_TIME
* INLINE_TIME_SCALE
)
3634 info
->time
= MAX_TIME
* INLINE_TIME_SCALE
;
3636 estimate_calls_size_and_time (node
, &info
->size
, &info
->min_size
,
3638 ~(clause_t
) (1 << predicate_false_condition
),
3639 vNULL
, vNULL
, vNULL
);
3640 info
->time
= (info
->time
+ INLINE_TIME_SCALE
/ 2) / INLINE_TIME_SCALE
;
3641 info
->size
= (info
->size
+ INLINE_SIZE_SCALE
/ 2) / INLINE_SIZE_SCALE
;
3644 /* Return hints derrived from EDGE. */
3646 simple_edge_hints (struct cgraph_edge
*edge
)
3649 struct cgraph_node
*to
= (edge
->caller
->global
.inlined_to
3650 ? edge
->caller
->global
.inlined_to
: edge
->caller
);
3651 if (inline_summary (to
)->scc_no
3652 && inline_summary (to
)->scc_no
== inline_summary (edge
->callee
)->scc_no
3653 && !edge
->recursive_p ())
3654 hints
|= INLINE_HINT_same_scc
;
3656 if (to
->lto_file_data
&& edge
->callee
->lto_file_data
3657 && to
->lto_file_data
!= edge
->callee
->lto_file_data
)
3658 hints
|= INLINE_HINT_cross_module
;
3663 /* Estimate the time cost for the caller when inlining EDGE.
3664 Only to be called via estimate_edge_time, that handles the
3667 When caching, also update the cache entry. Compute both time and
3668 size, since we always need both metrics eventually. */
3671 do_estimate_edge_time (struct cgraph_edge
*edge
)
3676 struct cgraph_node
*callee
;
3678 vec
<tree
> known_vals
;
3679 vec
<ipa_polymorphic_call_context
> known_contexts
;
3680 vec
<ipa_agg_jump_function_p
> known_aggs
;
3681 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
3684 callee
= edge
->callee
->ultimate_alias_target ();
3686 gcc_checking_assert (edge
->inline_failed
);
3687 evaluate_properties_for_edge (edge
, true,
3688 &clause
, &known_vals
, &known_contexts
,
3690 estimate_node_size_and_time (callee
, clause
, known_vals
, known_contexts
,
3691 known_aggs
, &size
, &min_size
, &time
, &hints
, es
->param
);
3693 /* When we have profile feedback, we can quite safely identify hot
3694 edges and for those we disable size limits. Don't do that when
3695 probability that caller will call the callee is low however, since it
3696 may hurt optimization of the caller's hot path. */
3697 if (edge
->count
&& edge
->maybe_hot_p ()
3699 > (edge
->caller
->global
.inlined_to
3700 ? edge
->caller
->global
.inlined_to
->count
: edge
->caller
->count
)))
3701 hints
|= INLINE_HINT_known_hot
;
3703 known_vals
.release ();
3704 known_contexts
.release ();
3705 known_aggs
.release ();
3706 gcc_checking_assert (size
>= 0);
3707 gcc_checking_assert (time
>= 0);
3709 /* When caching, update the cache entry. */
3710 if (edge_growth_cache
.exists ())
3712 inline_summary (edge
->callee
)->min_size
= min_size
;
3713 if ((int) edge_growth_cache
.length () <= edge
->uid
)
3714 edge_growth_cache
.safe_grow_cleared (symtab
->edges_max_uid
);
3715 edge_growth_cache
[edge
->uid
].time
= time
+ (time
>= 0);
3717 edge_growth_cache
[edge
->uid
].size
= size
+ (size
>= 0);
3718 hints
|= simple_edge_hints (edge
);
3719 edge_growth_cache
[edge
->uid
].hints
= hints
+ 1;
3725 /* Return estimated callee growth after inlining EDGE.
3726 Only to be called via estimate_edge_size. */
3729 do_estimate_edge_size (struct cgraph_edge
*edge
)
3732 struct cgraph_node
*callee
;
3734 vec
<tree
> known_vals
;
3735 vec
<ipa_polymorphic_call_context
> known_contexts
;
3736 vec
<ipa_agg_jump_function_p
> known_aggs
;
3738 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3740 if (edge_growth_cache
.exists ())
3742 do_estimate_edge_time (edge
);
3743 size
= edge_growth_cache
[edge
->uid
].size
;
3744 gcc_checking_assert (size
);
3745 return size
- (size
> 0);
3748 callee
= edge
->callee
->ultimate_alias_target ();
3750 /* Early inliner runs without caching, go ahead and do the dirty work. */
3751 gcc_checking_assert (edge
->inline_failed
);
3752 evaluate_properties_for_edge (edge
, true,
3753 &clause
, &known_vals
, &known_contexts
,
3755 estimate_node_size_and_time (callee
, clause
, known_vals
, known_contexts
,
3756 known_aggs
, &size
, NULL
, NULL
, NULL
, vNULL
);
3757 known_vals
.release ();
3758 known_contexts
.release ();
3759 known_aggs
.release ();
3764 /* Estimate the growth of the caller when inlining EDGE.
3765 Only to be called via estimate_edge_size. */
3768 do_estimate_edge_hints (struct cgraph_edge
*edge
)
3771 struct cgraph_node
*callee
;
3773 vec
<tree
> known_vals
;
3774 vec
<ipa_polymorphic_call_context
> known_contexts
;
3775 vec
<ipa_agg_jump_function_p
> known_aggs
;
3777 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3779 if (edge_growth_cache
.exists ())
3781 do_estimate_edge_time (edge
);
3782 hints
= edge_growth_cache
[edge
->uid
].hints
;
3783 gcc_checking_assert (hints
);
3787 callee
= edge
->callee
->ultimate_alias_target ();
3789 /* Early inliner runs without caching, go ahead and do the dirty work. */
3790 gcc_checking_assert (edge
->inline_failed
);
3791 evaluate_properties_for_edge (edge
, true,
3792 &clause
, &known_vals
, &known_contexts
,
3794 estimate_node_size_and_time (callee
, clause
, known_vals
, known_contexts
,
3795 known_aggs
, NULL
, NULL
, NULL
, &hints
, vNULL
);
3796 known_vals
.release ();
3797 known_contexts
.release ();
3798 known_aggs
.release ();
3799 hints
|= simple_edge_hints (edge
);
3804 /* Estimate self time of the function NODE after inlining EDGE. */
3807 estimate_time_after_inlining (struct cgraph_node
*node
,
3808 struct cgraph_edge
*edge
)
3810 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
3811 if (!es
->predicate
|| !false_predicate_p (es
->predicate
))
3814 inline_summary (node
)->time
+ estimate_edge_time (edge
);
3817 if (time
> MAX_TIME
)
3821 return inline_summary (node
)->time
;
3825 /* Estimate the size of NODE after inlining EDGE which should be an
3826 edge to either NODE or a call inlined into NODE. */
3829 estimate_size_after_inlining (struct cgraph_node
*node
,
3830 struct cgraph_edge
*edge
)
3832 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
3833 if (!es
->predicate
|| !false_predicate_p (es
->predicate
))
3835 int size
= inline_summary (node
)->size
+ estimate_edge_growth (edge
);
3836 gcc_assert (size
>= 0);
3839 return inline_summary (node
)->size
;
3845 struct cgraph_node
*node
;
3846 bool self_recursive
;
3851 /* Worker for do_estimate_growth. Collect growth for all callers. */
3854 do_estimate_growth_1 (struct cgraph_node
*node
, void *data
)
3856 struct cgraph_edge
*e
;
3857 struct growth_data
*d
= (struct growth_data
*) data
;
3859 for (e
= node
->callers
; e
; e
= e
->next_caller
)
3861 gcc_checking_assert (e
->inline_failed
);
3863 if (e
->caller
== d
->node
3864 || (e
->caller
->global
.inlined_to
3865 && e
->caller
->global
.inlined_to
== d
->node
))
3866 d
->self_recursive
= true;
3867 d
->growth
+= estimate_edge_growth (e
);
3873 /* Estimate the growth caused by inlining NODE into all callees. */
3876 do_estimate_growth (struct cgraph_node
*node
)
3878 struct growth_data d
= { node
, 0, false };
3879 struct inline_summary
*info
= inline_summary (node
);
3881 node
->call_for_symbol_thunks_and_aliases (do_estimate_growth_1
, &d
, true);
3883 /* For self recursive functions the growth estimation really should be
3884 infinity. We don't want to return very large values because the growth
3885 plays various roles in badness computation fractions. Be sure to not
3886 return zero or negative growths. */
3887 if (d
.self_recursive
)
3888 d
.growth
= d
.growth
< info
->size
? info
->size
: d
.growth
;
3889 else if (DECL_EXTERNAL (node
->decl
))
3893 if (node
->will_be_removed_from_program_if_no_direct_calls_p ())
3894 d
.growth
-= info
->size
;
3895 /* COMDAT functions are very often not shared across multiple units
3896 since they come from various template instantiations.
3897 Take this into account. */
3898 else if (DECL_COMDAT (node
->decl
)
3899 && node
->can_remove_if_no_direct_calls_p ())
3900 d
.growth
-= (info
->size
3901 * (100 - PARAM_VALUE (PARAM_COMDAT_SHARING_PROBABILITY
))
3905 if (node_growth_cache
.exists ())
3907 if ((int) node_growth_cache
.length () <= node
->uid
)
3908 node_growth_cache
.safe_grow_cleared (symtab
->cgraph_max_uid
);
3909 node_growth_cache
[node
->uid
] = d
.growth
+ (d
.growth
>= 0);
3915 /* Make cheap estimation if growth of NODE is likely positive knowing
3916 EDGE_GROWTH of one particular edge.
3917 We assume that most of other edges will have similar growth
3918 and skip computation if there are too many callers. */
3921 growth_likely_positive (struct cgraph_node
*node
, int edge_growth ATTRIBUTE_UNUSED
)
3925 struct cgraph_edge
*e
;
3926 gcc_checking_assert (edge_growth
> 0);
3928 /* Unlike for functions called once, we play unsafe with
3929 COMDATs. We can allow that since we know functions
3930 in consideration are small (and thus risk is small) and
3931 moreover grow estimates already accounts that COMDAT
3932 functions may or may not disappear when eliminated from
3933 current unit. With good probability making aggressive
3934 choice in all units is going to make overall program
3937 Consequently we ask cgraph_can_remove_if_no_direct_calls_p
3939 cgraph_will_be_removed_from_program_if_no_direct_calls */
3940 if (DECL_EXTERNAL (node
->decl
)
3941 || !node
->can_remove_if_no_direct_calls_p ())
3944 /* If there is cached value, just go ahead. */
3945 if ((int)node_growth_cache
.length () > node
->uid
3946 && (ret
= node_growth_cache
[node
->uid
]))
3948 if (!node
->will_be_removed_from_program_if_no_direct_calls_p ()
3949 && (!DECL_COMDAT (node
->decl
)
3950 || !node
->can_remove_if_no_direct_calls_p ()))
3952 max_callers
= inline_summary (node
)->size
* 4 / edge_growth
+ 2;
3954 for (e
= node
->callers
; e
; e
= e
->next_caller
)
3960 return estimate_growth (node
) > 0;
3964 /* This function performs intraprocedural analysis in NODE that is required to
3965 inline indirect calls. */
3968 inline_indirect_intraprocedural_analysis (struct cgraph_node
*node
)
3970 ipa_analyze_node (node
);
3971 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3973 ipa_print_node_params (dump_file
, node
);
3974 ipa_print_node_jump_functions (dump_file
, node
);
3979 /* Note function body size. */
3982 inline_analyze_function (struct cgraph_node
*node
)
3984 push_cfun (DECL_STRUCT_FUNCTION (node
->decl
));
3987 fprintf (dump_file
, "\nAnalyzing function: %s/%u\n",
3988 node
->name (), node
->order
);
3989 if (optimize
&& !node
->thunk
.thunk_p
)
3990 inline_indirect_intraprocedural_analysis (node
);
3991 compute_inline_parameters (node
, false);
3994 struct cgraph_edge
*e
;
3995 for (e
= node
->callees
; e
; e
= e
->next_callee
)
3997 if (e
->inline_failed
== CIF_FUNCTION_NOT_CONSIDERED
)
3998 e
->inline_failed
= CIF_FUNCTION_NOT_OPTIMIZED
;
3999 e
->call_stmt_cannot_inline_p
= true;
4001 for (e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
4003 if (e
->inline_failed
== CIF_FUNCTION_NOT_CONSIDERED
)
4004 e
->inline_failed
= CIF_FUNCTION_NOT_OPTIMIZED
;
4005 e
->call_stmt_cannot_inline_p
= true;
4013 /* Called when new function is inserted to callgraph late. */
4016 add_new_function (struct cgraph_node
*node
, void *data ATTRIBUTE_UNUSED
)
4018 inline_analyze_function (node
);
4022 /* Note function body size. */
4025 inline_generate_summary (void)
4027 struct cgraph_node
*node
;
4029 /* When not optimizing, do not bother to analyze. Inlining is still done
4030 because edge redirection needs to happen there. */
4031 if (!optimize
&& !flag_generate_lto
&& !flag_wpa
)
4034 function_insertion_hook_holder
=
4035 symtab
->add_cgraph_insertion_hook (&add_new_function
, NULL
);
4037 ipa_register_cgraph_hooks ();
4038 inline_free_summary ();
4040 FOR_EACH_DEFINED_FUNCTION (node
)
4042 inline_analyze_function (node
);
4046 /* Read predicate from IB. */
4048 static struct predicate
4049 read_predicate (struct lto_input_block
*ib
)
4051 struct predicate out
;
4057 gcc_assert (k
<= MAX_CLAUSES
);
4058 clause
= out
.clause
[k
++] = streamer_read_uhwi (ib
);
4062 /* Zero-initialize the remaining clauses in OUT. */
4063 while (k
<= MAX_CLAUSES
)
4064 out
.clause
[k
++] = 0;
4070 /* Write inline summary for edge E to OB. */
4073 read_inline_edge_summary (struct lto_input_block
*ib
, struct cgraph_edge
*e
)
4075 struct inline_edge_summary
*es
= inline_edge_summary (e
);
4079 es
->call_stmt_size
= streamer_read_uhwi (ib
);
4080 es
->call_stmt_time
= streamer_read_uhwi (ib
);
4081 es
->loop_depth
= streamer_read_uhwi (ib
);
4082 p
= read_predicate (ib
);
4083 edge_set_predicate (e
, &p
);
4084 length
= streamer_read_uhwi (ib
);
4087 es
->param
.safe_grow_cleared (length
);
4088 for (i
= 0; i
< length
; i
++)
4089 es
->param
[i
].change_prob
= streamer_read_uhwi (ib
);
4094 /* Stream in inline summaries from the section. */
4097 inline_read_section (struct lto_file_decl_data
*file_data
, const char *data
,
4100 const struct lto_function_header
*header
=
4101 (const struct lto_function_header
*) data
;
4102 const int cfg_offset
= sizeof (struct lto_function_header
);
4103 const int main_offset
= cfg_offset
+ header
->cfg_size
;
4104 const int string_offset
= main_offset
+ header
->main_size
;
4105 struct data_in
*data_in
;
4106 unsigned int i
, count2
, j
;
4107 unsigned int f_count
;
4109 lto_input_block
ib ((const char *) data
+ main_offset
, header
->main_size
);
4112 lto_data_in_create (file_data
, (const char *) data
+ string_offset
,
4113 header
->string_size
, vNULL
);
4114 f_count
= streamer_read_uhwi (&ib
);
4115 for (i
= 0; i
< f_count
; i
++)
4118 struct cgraph_node
*node
;
4119 struct inline_summary
*info
;
4120 lto_symtab_encoder_t encoder
;
4121 struct bitpack_d bp
;
4122 struct cgraph_edge
*e
;
4125 index
= streamer_read_uhwi (&ib
);
4126 encoder
= file_data
->symtab_node_encoder
;
4127 node
= dyn_cast
<cgraph_node
*> (lto_symtab_encoder_deref (encoder
,
4129 info
= inline_summary (node
);
4131 info
->estimated_stack_size
4132 = info
->estimated_self_stack_size
= streamer_read_uhwi (&ib
);
4133 info
->size
= info
->self_size
= streamer_read_uhwi (&ib
);
4134 info
->time
= info
->self_time
= streamer_read_uhwi (&ib
);
4136 bp
= streamer_read_bitpack (&ib
);
4137 info
->inlinable
= bp_unpack_value (&bp
, 1);
4139 count2
= streamer_read_uhwi (&ib
);
4140 gcc_assert (!info
->conds
);
4141 for (j
= 0; j
< count2
; j
++)
4144 c
.operand_num
= streamer_read_uhwi (&ib
);
4145 c
.code
= (enum tree_code
) streamer_read_uhwi (&ib
);
4146 c
.val
= stream_read_tree (&ib
, data_in
);
4147 bp
= streamer_read_bitpack (&ib
);
4148 c
.agg_contents
= bp_unpack_value (&bp
, 1);
4149 c
.by_ref
= bp_unpack_value (&bp
, 1);
4151 c
.offset
= streamer_read_uhwi (&ib
);
4152 vec_safe_push (info
->conds
, c
);
4154 count2
= streamer_read_uhwi (&ib
);
4155 gcc_assert (!info
->entry
);
4156 for (j
= 0; j
< count2
; j
++)
4158 struct size_time_entry e
;
4160 e
.size
= streamer_read_uhwi (&ib
);
4161 e
.time
= streamer_read_uhwi (&ib
);
4162 e
.predicate
= read_predicate (&ib
);
4164 vec_safe_push (info
->entry
, e
);
4167 p
= read_predicate (&ib
);
4168 set_hint_predicate (&info
->loop_iterations
, p
);
4169 p
= read_predicate (&ib
);
4170 set_hint_predicate (&info
->loop_stride
, p
);
4171 p
= read_predicate (&ib
);
4172 set_hint_predicate (&info
->array_index
, p
);
4173 for (e
= node
->callees
; e
; e
= e
->next_callee
)
4174 read_inline_edge_summary (&ib
, e
);
4175 for (e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
4176 read_inline_edge_summary (&ib
, e
);
4179 lto_free_section_data (file_data
, LTO_section_inline_summary
, NULL
, data
,
4181 lto_data_in_delete (data_in
);
4185 /* Read inline summary. Jump functions are shared among ipa-cp
4186 and inliner, so when ipa-cp is active, we don't need to write them
4190 inline_read_summary (void)
4192 struct lto_file_decl_data
**file_data_vec
= lto_get_file_decl_data ();
4193 struct lto_file_decl_data
*file_data
;
4196 inline_summary_alloc ();
4198 while ((file_data
= file_data_vec
[j
++]))
4201 const char *data
= lto_get_section_data (file_data
,
4202 LTO_section_inline_summary
,
4205 inline_read_section (file_data
, data
, len
);
4207 /* Fatal error here. We do not want to support compiling ltrans units
4208 with different version of compiler or different flags than the WPA
4209 unit, so this should never happen. */
4210 fatal_error ("ipa inline summary is missing in input file");
4214 ipa_register_cgraph_hooks ();
4216 ipa_prop_read_jump_functions ();
4218 function_insertion_hook_holder
=
4219 symtab
->add_cgraph_insertion_hook (&add_new_function
, NULL
);
4223 /* Write predicate P to OB. */
4226 write_predicate (struct output_block
*ob
, struct predicate
*p
)
4230 for (j
= 0; p
->clause
[j
]; j
++)
4232 gcc_assert (j
< MAX_CLAUSES
);
4233 streamer_write_uhwi (ob
, p
->clause
[j
]);
4235 streamer_write_uhwi (ob
, 0);
4239 /* Write inline summary for edge E to OB. */
4242 write_inline_edge_summary (struct output_block
*ob
, struct cgraph_edge
*e
)
4244 struct inline_edge_summary
*es
= inline_edge_summary (e
);
4247 streamer_write_uhwi (ob
, es
->call_stmt_size
);
4248 streamer_write_uhwi (ob
, es
->call_stmt_time
);
4249 streamer_write_uhwi (ob
, es
->loop_depth
);
4250 write_predicate (ob
, es
->predicate
);
4251 streamer_write_uhwi (ob
, es
->param
.length ());
4252 for (i
= 0; i
< (int) es
->param
.length (); i
++)
4253 streamer_write_uhwi (ob
, es
->param
[i
].change_prob
);
4257 /* Write inline summary for node in SET.
4258 Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
4259 active, we don't need to write them twice. */
4262 inline_write_summary (void)
4264 struct cgraph_node
*node
;
4265 struct output_block
*ob
= create_output_block (LTO_section_inline_summary
);
4266 lto_symtab_encoder_t encoder
= ob
->decl_state
->symtab_node_encoder
;
4267 unsigned int count
= 0;
4270 for (i
= 0; i
< lto_symtab_encoder_size (encoder
); i
++)
4272 symtab_node
*snode
= lto_symtab_encoder_deref (encoder
, i
);
4273 cgraph_node
*cnode
= dyn_cast
<cgraph_node
*> (snode
);
4274 if (cnode
&& cnode
->definition
&& !cnode
->alias
)
4277 streamer_write_uhwi (ob
, count
);
4279 for (i
= 0; i
< lto_symtab_encoder_size (encoder
); i
++)
4281 symtab_node
*snode
= lto_symtab_encoder_deref (encoder
, i
);
4282 cgraph_node
*cnode
= dyn_cast
<cgraph_node
*> (snode
);
4283 if (cnode
&& (node
= cnode
)->definition
&& !node
->alias
)
4285 struct inline_summary
*info
= inline_summary (node
);
4286 struct bitpack_d bp
;
4287 struct cgraph_edge
*edge
;
4290 struct condition
*c
;
4292 streamer_write_uhwi (ob
,
4293 lto_symtab_encoder_encode (encoder
,
4296 streamer_write_hwi (ob
, info
->estimated_self_stack_size
);
4297 streamer_write_hwi (ob
, info
->self_size
);
4298 streamer_write_hwi (ob
, info
->self_time
);
4299 bp
= bitpack_create (ob
->main_stream
);
4300 bp_pack_value (&bp
, info
->inlinable
, 1);
4301 streamer_write_bitpack (&bp
);
4302 streamer_write_uhwi (ob
, vec_safe_length (info
->conds
));
4303 for (i
= 0; vec_safe_iterate (info
->conds
, i
, &c
); i
++)
4305 streamer_write_uhwi (ob
, c
->operand_num
);
4306 streamer_write_uhwi (ob
, c
->code
);
4307 stream_write_tree (ob
, c
->val
, true);
4308 bp
= bitpack_create (ob
->main_stream
);
4309 bp_pack_value (&bp
, c
->agg_contents
, 1);
4310 bp_pack_value (&bp
, c
->by_ref
, 1);
4311 streamer_write_bitpack (&bp
);
4312 if (c
->agg_contents
)
4313 streamer_write_uhwi (ob
, c
->offset
);
4315 streamer_write_uhwi (ob
, vec_safe_length (info
->entry
));
4316 for (i
= 0; vec_safe_iterate (info
->entry
, i
, &e
); i
++)
4318 streamer_write_uhwi (ob
, e
->size
);
4319 streamer_write_uhwi (ob
, e
->time
);
4320 write_predicate (ob
, &e
->predicate
);
4322 write_predicate (ob
, info
->loop_iterations
);
4323 write_predicate (ob
, info
->loop_stride
);
4324 write_predicate (ob
, info
->array_index
);
4325 for (edge
= node
->callees
; edge
; edge
= edge
->next_callee
)
4326 write_inline_edge_summary (ob
, edge
);
4327 for (edge
= node
->indirect_calls
; edge
; edge
= edge
->next_callee
)
4328 write_inline_edge_summary (ob
, edge
);
4331 streamer_write_char_stream (ob
->main_stream
, 0);
4332 produce_asm (ob
, NULL
);
4333 destroy_output_block (ob
);
4335 if (optimize
&& !flag_ipa_cp
)
4336 ipa_prop_write_jump_functions ();
4340 /* Release inline summary. */
4343 inline_free_summary (void)
4345 struct cgraph_node
*node
;
4346 if (function_insertion_hook_holder
)
4347 symtab
->remove_cgraph_insertion_hook (function_insertion_hook_holder
);
4348 function_insertion_hook_holder
= NULL
;
4349 if (node_removal_hook_holder
)
4350 symtab
->remove_cgraph_removal_hook (node_removal_hook_holder
);
4351 node_removal_hook_holder
= NULL
;
4352 if (edge_removal_hook_holder
)
4353 symtab
->remove_edge_removal_hook (edge_removal_hook_holder
);
4354 edge_removal_hook_holder
= NULL
;
4355 if (node_duplication_hook_holder
)
4356 symtab
->remove_cgraph_duplication_hook (node_duplication_hook_holder
);
4357 node_duplication_hook_holder
= NULL
;
4358 if (edge_duplication_hook_holder
)
4359 symtab
->remove_edge_duplication_hook (edge_duplication_hook_holder
);
4360 edge_duplication_hook_holder
= NULL
;
4361 if (!inline_edge_summary_vec
.exists ())
4363 FOR_EACH_DEFINED_FUNCTION (node
)
4365 reset_inline_summary (node
);
4366 vec_free (inline_summary_vec
);
4367 inline_edge_summary_vec
.release ();
4368 if (edge_predicate_pool
)
4369 free_alloc_pool (edge_predicate_pool
);
4370 edge_predicate_pool
= 0;