Daily bump.
[official-gcc.git] / gcc / dwarfout.c
blob481d0c0441a34b3f77a55b10997842980b81af8c
1 /* Output Dwarf format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Ron Guilmette (rfg@monkeys.com) of Network Computing Devices.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
25 Notes on the GNU Implementation of DWARF Debugging Information
26 --------------------------------------------------------------
27 Last Major Update: Sun Jul 17 08:17:42 PDT 1994 by rfg@segfault.us.com
28 ------------------------------------------------------------
30 This file describes special and unique aspects of the GNU implementation of
31 the DWARF Version 1 debugging information language, as provided in the GNU
32 version 2.x compiler(s).
34 For general information about the DWARF debugging information language,
35 you should obtain the DWARF version 1.1 specification document (and perhaps
36 also the DWARF version 2 draft specification document) developed by the
37 (now defunct) UNIX International Programming Languages Special Interest Group.
39 To obtain a copy of the DWARF Version 1 and/or DWARF Version 2
40 specification, visit the web page for the DWARF Version 2 committee, at
42 http://www.eagercon.com/dwarf/dwarf2std.htm
44 The generation of DWARF debugging information by the GNU version 2.x C
45 compiler has now been tested rather extensively for m88k, i386, i860, and
46 Sparc targets. The DWARF output of the GNU C compiler appears to inter-
47 operate well with the standard SVR4 SDB debugger on these kinds of target
48 systems (but of course, there are no guarantees).
50 DWARF 1 generation for the GNU g++ compiler is implemented, but limited.
51 C++ users should definitely use DWARF 2 instead.
53 Future plans for the dwarfout.c module of the GNU compiler(s) includes the
54 addition of full support for GNU FORTRAN. (This should, in theory, be a
55 lot simpler to add than adding support for g++... but we'll see.)
57 Many features of the DWARF version 2 specification have been adapted to
58 (and used in) the GNU implementation of DWARF (version 1). In most of
59 these cases, a DWARF version 2 approach is used in place of (or in addition
60 to) DWARF version 1 stuff simply because it is apparent that DWARF version
61 1 is not sufficiently expressive to provide the kinds of information which
62 may be necessary to support really robust debugging. In all of these cases
63 however, the use of DWARF version 2 features should not interfere in any
64 way with the interoperability (of GNU compilers) with generally available
65 "classic" (pre version 1) DWARF consumer tools (e.g. SVR4 SDB).
67 The DWARF generation enhancement for the GNU compiler(s) was initially
68 donated to the Free Software Foundation by Network Computing Devices.
69 (Thanks NCD!) Additional development and maintenance of dwarfout.c has
70 been largely supported (i.e. funded) by Intel Corporation. (Thanks Intel!)
72 If you have questions or comments about the DWARF generation feature, please
73 send mail to me <rfg@netcom.com>. I will be happy to investigate any bugs
74 reported and I may even provide fixes (but of course, I can make no promises).
76 The DWARF debugging information produced by GCC may deviate in a few minor
77 (but perhaps significant) respects from the DWARF debugging information
78 currently produced by other C compilers. A serious attempt has been made
79 however to conform to the published specifications, to existing practice,
80 and to generally accepted norms in the GNU implementation of DWARF.
82 ** IMPORTANT NOTE ** ** IMPORTANT NOTE ** ** IMPORTANT NOTE **
84 Under normal circumstances, the DWARF information generated by the GNU
85 compilers (in an assembly language file) is essentially impossible for
86 a human being to read. This fact can make it very difficult to debug
87 certain DWARF-related problems. In order to overcome this difficulty,
88 a feature has been added to dwarfout.c (enabled by the -dA
89 option) which causes additional comments to be placed into the assembly
90 language output file, out to the right-hand side of most bits of DWARF
91 material. The comments indicate (far more clearly that the obscure
92 DWARF hex codes do) what is actually being encoded in DWARF. Thus, the
93 -dA option can be highly useful for those who must study the
94 DWARF output from the GNU compilers in detail.
96 ---------
98 (Footnote: Within this file, the term `Debugging Information Entry' will
99 be abbreviated as `DIE'.)
102 Release Notes (aka known bugs)
103 -------------------------------
105 In one very obscure case involving dynamically sized arrays, the DWARF
106 "location information" for such an array may make it appear that the
107 array has been totally optimized out of existence, when in fact it
108 *must* actually exist. (This only happens when you are using *both* -g
109 *and* -O.) This is due to aggressive dead store elimination in the
110 compiler, and to the fact that the DECL_RTL expressions associated with
111 variables are not always updated to correctly reflect the effects of
112 GCC's aggressive dead store elimination.
114 -------------------------------
116 When attempting to set a breakpoint at the "start" of a function compiled
117 with -g1, the debugger currently has no way of knowing exactly where the
118 end of the prologue code for the function is. Thus, for most targets,
119 all the debugger can do is to set the breakpoint at the AT_low_pc address
120 for the function. But if you stop there and then try to look at one or
121 more of the formal parameter values, they may not have been "homed" yet,
122 so you may get inaccurate answers (or perhaps even addressing errors).
124 Some people may consider this simply a non-feature, but I consider it a
125 bug, and I hope to provide some GNU-specific attributes (on function
126 DIEs) which will specify the address of the end of the prologue and the
127 address of the beginning of the epilogue in a future release.
129 -------------------------------
131 It is believed at this time that old bugs relating to the AT_bit_offset
132 values for bit-fields have been fixed.
134 There may still be some very obscure bugs relating to the DWARF description
135 of type `long long' bit-fields for target machines (e.g. 80x86 machines)
136 where the alignment of type `long long' data objects is different from
137 (and less than) the size of a type `long long' data object.
139 Please report any problems with the DWARF description of bit-fields as you
140 would any other GCC bug. (Procedures for bug reporting are given in the
141 GNU C compiler manual.)
143 --------------------------------
145 At this time, GCC does not know how to handle the GNU C "nested functions"
146 extension. (See the GCC manual for more info on this extension to ANSI C.)
148 --------------------------------
150 The GNU compilers now represent inline functions (and inlined instances
151 thereof) in exactly the manner described by the current DWARF version 2
152 (draft) specification. The version 1 specification for handling inline
153 functions (and inlined instances) was known to be brain-damaged (by the
154 PLSIG) when the version 1 spec was finalized, but it was simply too late
155 in the cycle to get it removed before the version 1 spec was formally
156 released to the public (by UI).
158 --------------------------------
160 At this time, GCC does not generate the kind of really precise information
161 about the exact declared types of entities with signed integral types which
162 is required by the current DWARF draft specification.
164 Specifically, the current DWARF draft specification seems to require that
165 the type of an non-unsigned integral bit-field member of a struct or union
166 type be represented as either a "signed" type or as a "plain" type,
167 depending upon the exact set of keywords that were used in the
168 type specification for the given bit-field member. It was felt (by the
169 UI/PLSIG) that this distinction between "plain" and "signed" integral types
170 could have some significance (in the case of bit-fields) because ANSI C
171 does not constrain the signedness of a plain bit-field, whereas it does
172 constrain the signedness of an explicitly "signed" bit-field. For this
173 reason, the current DWARF specification calls for compilers to produce
174 type information (for *all* integral typed entities... not just bit-fields)
175 which explicitly indicates the signedness of the relevant type to be
176 "signed" or "plain" or "unsigned".
178 Unfortunately, the GNU DWARF implementation is currently incapable of making
179 such distinctions.
181 --------------------------------
184 Known Interoperability Problems
185 -------------------------------
187 Although the GNU implementation of DWARF conforms (for the most part) with
188 the current UI/PLSIG DWARF version 1 specification (with many compatible
189 version 2 features added in as "vendor specific extensions" just for good
190 measure) there are a few known cases where GCC's DWARF output can cause
191 some confusion for "classic" (pre version 1) DWARF consumers such as the
192 System V Release 4 SDB debugger. These cases are described in this section.
194 --------------------------------
196 The DWARF version 1 specification includes the fundamental type codes
197 FT_ext_prec_float, FT_complex, FT_dbl_prec_complex, and FT_ext_prec_complex.
198 Since GNU C is only a C compiler (and since C doesn't provide any "complex"
199 data types) the only one of these fundamental type codes which GCC ever
200 generates is FT_ext_prec_float. This fundamental type code is generated
201 by GCC for the `long double' data type. Unfortunately, due to an apparent
202 bug in the SVR4 SDB debugger, SDB can become very confused wherever any
203 attempt is made to print a variable, parameter, or field whose type was
204 given in terms of FT_ext_prec_float.
206 (Actually, SVR4 SDB fails to understand *any* of the four fundamental type
207 codes mentioned here. This will fact will cause additional problems when
208 there is a GNU FORTRAN front-end.)
210 --------------------------------
212 In general, it appears that SVR4 SDB is not able to effectively ignore
213 fundamental type codes in the "implementation defined" range. This can
214 cause problems when a program being debugged uses the `long long' data
215 type (or the signed or unsigned varieties thereof) because these types
216 are not defined by ANSI C, and thus, GCC must use its own private fundamental
217 type codes (from the implementation-defined range) to represent these types.
219 --------------------------------
222 General GNU DWARF extensions
223 ----------------------------
225 In the current DWARF version 1 specification, no mechanism is specified by
226 which accurate information about executable code from include files can be
227 properly (and fully) described. (The DWARF version 2 specification *does*
228 specify such a mechanism, but it is about 10 times more complicated than
229 it needs to be so I'm not terribly anxious to try to implement it right
230 away.)
232 In the GNU implementation of DWARF version 1, a fully downward-compatible
233 extension has been implemented which permits the GNU compilers to specify
234 which executable lines come from which files. This extension places
235 additional information (about source file names) in GNU-specific sections
236 (which should be totally ignored by all non-GNU DWARF consumers) so that
237 this extended information can be provided (to GNU DWARF consumers) in a way
238 which is totally transparent (and invisible) to non-GNU DWARF consumers
239 (e.g. the SVR4 SDB debugger). The additional information is placed *only*
240 in specialized GNU-specific sections, where it should never even be seen
241 by non-GNU DWARF consumers.
243 To understand this GNU DWARF extension, imagine that the sequence of entries
244 in the .lines section is broken up into several subsections. Each contiguous
245 sequence of .line entries which relates to a sequence of lines (or statements)
246 from one particular file (either a `base' file or an `include' file) could
247 be called a `line entries chunk' (LEC).
249 For each LEC there is one entry in the .debug_srcinfo section.
251 Each normal entry in the .debug_srcinfo section consists of two 4-byte
252 words of data as follows:
254 (1) The starting address (relative to the entire .line section)
255 of the first .line entry in the relevant LEC.
257 (2) The starting address (relative to the entire .debug_sfnames
258 section) of a NUL terminated string representing the
259 relevant filename. (This filename name be either a
260 relative or an absolute filename, depending upon how the
261 given source file was located during compilation.)
263 Obviously, each .debug_srcinfo entry allows you to find the relevant filename,
264 and it also points you to the first .line entry that was generated as a result
265 of having compiled a given source line from the given source file.
267 Each subsequent .line entry should also be assumed to have been produced
268 as a result of compiling yet more lines from the same file. The end of
269 any given LEC is easily found by looking at the first 4-byte pointer in
270 the *next* .debug_srcinfo entry. That next .debug_srcinfo entry points
271 to a new and different LEC, so the preceding LEC (implicitly) must have
272 ended with the last .line section entry which occurs at the 2 1/2 words
273 just before the address given in the first pointer of the new .debug_srcinfo
274 entry.
276 The following picture may help to clarify this feature. Let's assume that
277 `LE' stands for `.line entry'. Also, assume that `* 'stands for a pointer.
280 .line section .debug_srcinfo section .debug_sfnames section
281 ----------------------------------------------------------------
283 LE <---------------------- *
284 LE * -----------------> "foobar.c" <---
285 LE |
286 LE |
287 LE <---------------------- * |
288 LE * -----------------> "foobar.h" <| |
289 LE | |
290 LE | |
291 LE <---------------------- * | |
292 LE * -----------------> "inner.h" | |
293 LE | |
294 LE <---------------------- * | |
295 LE * ------------------------------- |
296 LE |
297 LE |
298 LE |
299 LE |
300 LE <---------------------- * |
301 LE * -----------------------------------
306 In effect, each entry in the .debug_srcinfo section points to *both* a
307 filename (in the .debug_sfnames section) and to the start of a block of
308 consecutive LEs (in the .line section).
310 Note that just like in the .line section, there are specialized first and
311 last entries in the .debug_srcinfo section for each object file. These
312 special first and last entries for the .debug_srcinfo section are very
313 different from the normal .debug_srcinfo section entries. They provide
314 additional information which may be helpful to a debugger when it is
315 interpreting the data in the .debug_srcinfo, .debug_sfnames, and .line
316 sections.
318 The first entry in the .debug_srcinfo section for each compilation unit
319 consists of five 4-byte words of data. The contents of these five words
320 should be interpreted (by debuggers) as follows:
322 (1) The starting address (relative to the entire .line section)
323 of the .line section for this compilation unit.
325 (2) The starting address (relative to the entire .debug_sfnames
326 section) of the .debug_sfnames section for this compilation
327 unit.
329 (3) The starting address (in the execution virtual address space)
330 of the .text section for this compilation unit.
332 (4) The ending address plus one (in the execution virtual address
333 space) of the .text section for this compilation unit.
335 (5) The date/time (in seconds since midnight 1/1/70) at which the
336 compilation of this compilation unit occurred. This value
337 should be interpreted as an unsigned quantity because gcc
338 might be configured to generate a default value of 0xffffffff
339 in this field (in cases where it is desired to have object
340 files created at different times from identical source files
341 be byte-for-byte identical). By default, these timestamps
342 are *not* generated by dwarfout.c (so that object files
343 compiled at different times will be byte-for-byte identical).
344 If you wish to enable this "timestamp" feature however, you
345 can simply place a #define for the symbol `DWARF_TIMESTAMPS'
346 in your target configuration file and then rebuild the GNU
347 compiler(s).
349 Note that the first string placed into the .debug_sfnames section for each
350 compilation unit is the name of the directory in which compilation occurred.
351 This string ends with a `/' (to help indicate that it is the pathname of a
352 directory). Thus, the second word of each specialized initial .debug_srcinfo
353 entry for each compilation unit may be used as a pointer to the (string)
354 name of the compilation directory, and that string may in turn be used to
355 "absolutize" any relative pathnames which may appear later on in the
356 .debug_sfnames section entries for the same compilation unit.
358 The fifth and last word of each specialized starting entry for a compilation
359 unit in the .debug_srcinfo section may (depending upon your configuration)
360 indicate the date/time of compilation, and this may be used (by a debugger)
361 to determine if any of the source files which contributed code to this
362 compilation unit are newer than the object code for the compilation unit
363 itself. If so, the debugger may wish to print an "out-of-date" warning
364 about the compilation unit.
366 The .debug_srcinfo section associated with each compilation will also have
367 a specialized terminating entry. This terminating .debug_srcinfo section
368 entry will consist of the following two 4-byte words of data:
370 (1) The offset, measured from the start of the .line section to
371 the beginning of the terminating entry for the .line section.
373 (2) A word containing the value 0xffffffff.
375 --------------------------------
377 In the current DWARF version 1 specification, no mechanism is specified by
378 which information about macro definitions and un-definitions may be provided
379 to the DWARF consumer.
381 The DWARF version 2 (draft) specification does specify such a mechanism.
382 That specification was based on the GNU ("vendor specific extension")
383 which provided some support for macro definitions and un-definitions,
384 but the "official" DWARF version 2 (draft) specification mechanism for
385 handling macros and the GNU implementation have diverged somewhat. I
386 plan to update the GNU implementation to conform to the "official"
387 DWARF version 2 (draft) specification as soon as I get time to do that.
389 Note that in the GNU implementation, additional information about macro
390 definitions and un-definitions is *only* provided when the -g3 level of
391 debug-info production is selected. (The default level is -g2 and the
392 plain old -g option is considered to be identical to -g2.)
394 GCC records information about macro definitions and undefinitions primarily
395 in a section called the .debug_macinfo section. Normal entries in the
396 .debug_macinfo section consist of the following three parts:
398 (1) A special "type" byte.
400 (2) A 3-byte line-number/filename-offset field.
402 (3) A NUL terminated string.
404 The interpretation of the second and third parts is dependent upon the
405 value of the leading (type) byte.
407 The type byte may have one of four values depending upon the type of the
408 .debug_macinfo entry which follows. The 1-byte MACINFO type codes presently
409 used, and their meanings are as follows:
411 MACINFO_start A base file or an include file starts here.
412 MACINFO_resume The current base or include file ends here.
413 MACINFO_define A #define directive occurs here.
414 MACINFO_undef A #undef directive occur here.
416 (Note that the MACINFO_... codes mentioned here are simply symbolic names
417 for constants which are defined in the GNU dwarf.h file.)
419 For MACINFO_define and MACINFO_undef entries, the second (3-byte) field
420 contains the number of the source line (relative to the start of the current
421 base source file or the current include files) when the #define or #undef
422 directive appears. For a MACINFO_define entry, the following string field
423 contains the name of the macro which is defined, followed by its definition.
424 Note that the definition is always separated from the name of the macro
425 by at least one whitespace character. For a MACINFO_undef entry, the
426 string which follows the 3-byte line number field contains just the name
427 of the macro which is being undef'ed.
429 For a MACINFO_start entry, the 3-byte field following the type byte contains
430 the offset, relative to the start of the .debug_sfnames section for the
431 current compilation unit, of a string which names the new source file which
432 is beginning its inclusion at this point. Following that 3-byte field,
433 each MACINFO_start entry always contains a zero length NUL terminated
434 string.
436 For a MACINFO_resume entry, the 3-byte field following the type byte contains
437 the line number WITHIN THE INCLUDING FILE at which the inclusion of the
438 current file (whose inclusion ends here) was initiated. Following that
439 3-byte field, each MACINFO_resume entry always contains a zero length NUL
440 terminated string.
442 Each set of .debug_macinfo entries for each compilation unit is terminated
443 by a special .debug_macinfo entry consisting of a 4-byte zero value followed
444 by a single NUL byte.
446 --------------------------------
448 In the current DWARF draft specification, no provision is made for providing
449 a separate level of (limited) debugging information necessary to support
450 tracebacks (only) through fully-debugged code (e.g. code in system libraries).
452 A proposal to define such a level was submitted (by me) to the UI/PLSIG.
453 This proposal was rejected by the UI/PLSIG for inclusion into the DWARF
454 version 1 specification for two reasons. First, it was felt (by the PLSIG)
455 that the issues involved in supporting a "traceback only" subset of DWARF
456 were not well understood. Second, and perhaps more importantly, the PLSIG
457 is already having enough trouble agreeing on what it means to be "conforming"
458 to the DWARF specification, and it was felt that trying to specify multiple
459 different *levels* of conformance would only complicate our discussions of
460 this already divisive issue. Nonetheless, the GNU implementation of DWARF
461 provides an abbreviated "traceback only" level of debug-info production for
462 use with fully-debugged "system library" code. This level should only be
463 used for fully debugged system library code, and even then, it should only
464 be used where there is a very strong need to conserve disk space. This
465 abbreviated level of debug-info production can be used by specifying the
466 -g1 option on the compilation command line.
468 --------------------------------
470 As mentioned above, the GNU implementation of DWARF currently uses the DWARF
471 version 2 (draft) approach for inline functions (and inlined instances
472 thereof). This is used in preference to the version 1 approach because
473 (quite simply) the version 1 approach is highly brain-damaged and probably
474 unworkable.
476 --------------------------------
479 GNU DWARF Representation of GNU C Extensions to ANSI C
480 ------------------------------------------------------
482 The file dwarfout.c has been designed and implemented so as to provide
483 some reasonable DWARF representation for each and every declarative
484 construct which is accepted by the GNU C compiler. Since the GNU C
485 compiler accepts a superset of ANSI C, this means that there are some
486 cases in which the DWARF information produced by GCC must take some
487 liberties in improvising DWARF representations for declarations which
488 are only valid in (extended) GNU C.
490 In particular, GNU C provides at least three significant extensions to
491 ANSI C when it comes to declarations. These are (1) inline functions,
492 and (2) dynamic arrays, and (3) incomplete enum types. (See the GCC
493 manual for more information on these GNU extensions to ANSI C.) When
494 used, these GNU C extensions are represented (in the generated DWARF
495 output of GCC) in the most natural and intuitively obvious ways.
497 In the case of inline functions, the DWARF representation is exactly as
498 called for in the DWARF version 2 (draft) specification for an identical
499 function written in C++; i.e. we "reuse" the representation of inline
500 functions which has been defined for C++ to support this GNU C extension.
502 In the case of dynamic arrays, we use the most obvious representational
503 mechanism available; i.e. an array type in which the upper bound of
504 some dimension (usually the first and only dimension) is a variable
505 rather than a constant. (See the DWARF version 1 specification for more
506 details.)
508 In the case of incomplete enum types, such types are represented simply
509 as TAG_enumeration_type DIEs which DO NOT contain either AT_byte_size
510 attributes or AT_element_list attributes.
512 --------------------------------
515 Future Directions
516 -----------------
518 The codes, formats, and other paraphernalia necessary to provide proper
519 support for symbolic debugging for the C++ language are still being worked
520 on by the UI/PLSIG. The vast majority of the additions to DWARF which will
521 be needed to completely support C++ have already been hashed out and agreed
522 upon, but a few small issues (e.g. anonymous unions, access declarations)
523 are still being discussed. Also, we in the PLSIG are still discussing
524 whether or not we need to do anything special for C++ templates. (At this
525 time it is not yet clear whether we even need to do anything special for
526 these.)
528 With regard to FORTRAN, the UI/PLSIG has defined what is believed to be a
529 complete and sufficient set of codes and rules for adequately representing
530 all of FORTRAN 77, and most of Fortran 90 in DWARF. While some support for
531 this has been implemented in dwarfout.c, further implementation and testing
532 is needed.
534 GNU DWARF support for other languages (i.e. Pascal and Modula) is a moot
535 issue until there are GNU front-ends for these other languages.
537 As currently defined, DWARF only describes a (binary) language which can
538 be used to communicate symbolic debugging information from a compiler
539 through an assembler and a linker, to a debugger. There is no clear
540 specification of what processing should be (or must be) done by the
541 assembler and/or the linker. Fortunately, the role of the assembler
542 is easily inferred (by anyone knowledgeable about assemblers) just by
543 looking at examples of assembly-level DWARF code. Sadly though, the
544 allowable (or required) processing steps performed by a linker are
545 harder to infer and (perhaps) even harder to agree upon. There are
546 several forms of very useful `post-processing' steps which intelligent
547 linkers *could* (in theory) perform on object files containing DWARF,
548 but any and all such link-time transformations are currently both disallowed
549 and unspecified.
551 In particular, possible link-time transformations of DWARF code which could
552 provide significant benefits include (but are not limited to):
554 Commonization of duplicate DIEs obtained from multiple input
555 (object) files.
557 Cross-compilation type checking based upon DWARF type information
558 for objects and functions.
560 Other possible `compacting' transformations designed to save disk
561 space and to reduce linker & debugger I/O activity.
565 #include "config.h"
567 #ifdef DWARF_DEBUGGING_INFO
568 #include "system.h"
569 #include "dwarf.h"
570 #include "tree.h"
571 #include "flags.h"
572 #include "rtl.h"
573 #include "hard-reg-set.h"
574 #include "insn-config.h"
575 #include "reload.h"
576 #include "output.h"
577 #include "dwarf2asm.h"
578 #include "toplev.h"
579 #include "tm_p.h"
580 #include "debug.h"
581 #include "langhooks.h"
583 /* NOTE: In the comments in this file, many references are made to
584 so called "Debugging Information Entries". For the sake of brevity,
585 this term is abbreviated to `DIE' throughout the remainder of this
586 file. */
588 /* Note that the implementation of C++ support herein is (as yet) unfinished.
589 If you want to try to complete it, more power to you. */
591 /* How to start an assembler comment. */
592 #ifndef ASM_COMMENT_START
593 #define ASM_COMMENT_START ";#"
594 #endif
596 /* How to print out a register name. */
597 #ifndef PRINT_REG
598 #define PRINT_REG(RTX, CODE, FILE) \
599 fprintf ((FILE), "%s", reg_names[REGNO (RTX)])
600 #endif
602 /* Define a macro which returns non-zero for any tagged type which is
603 used (directly or indirectly) in the specification of either some
604 function's return type or some formal parameter of some function.
605 We use this macro when we are operating in "terse" mode to help us
606 know what tagged types have to be represented in Dwarf (even in
607 terse mode) and which ones don't.
609 A flag bit with this meaning really should be a part of the normal
610 GCC ..._TYPE nodes, but at the moment, there is no such bit defined
611 for these nodes. For now, we have to just fake it. It it safe for
612 us to simply return zero for all complete tagged types (which will
613 get forced out anyway if they were used in the specification of some
614 formal or return type) and non-zero for all incomplete tagged types.
617 #define TYPE_USED_FOR_FUNCTION(tagged_type) (TYPE_SIZE (tagged_type) == 0)
619 /* Define a macro which returns non-zero for a TYPE_DECL which was
620 implicitly generated for a tagged type.
622 Note that unlike the gcc front end (which generates a NULL named
623 TYPE_DECL node for each complete tagged type, each array type, and
624 each function type node created) the g++ front end generates a
625 _named_ TYPE_DECL node for each tagged type node created.
626 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
627 generate a DW_TAG_typedef DIE for them. */
628 #define TYPE_DECL_IS_STUB(decl) \
629 (DECL_NAME (decl) == NULL \
630 || (DECL_ARTIFICIAL (decl) \
631 && is_tagged_type (TREE_TYPE (decl)) \
632 && decl == TYPE_STUB_DECL (TREE_TYPE (decl))))
634 extern int flag_traditional;
636 /* Maximum size (in bytes) of an artificially generated label. */
638 #define MAX_ARTIFICIAL_LABEL_BYTES 30
640 /* Structure to keep track of source filenames. */
642 struct filename_entry {
643 unsigned number;
644 const char * name;
647 typedef struct filename_entry filename_entry;
649 /* Pointer to an array of elements, each one having the structure above. */
651 static filename_entry *filename_table;
653 /* Total number of entries in the table (i.e. array) pointed to by
654 `filename_table'. This is the *total* and includes both used and
655 unused slots. */
657 static unsigned ft_entries_allocated;
659 /* Number of entries in the filename_table which are actually in use. */
661 static unsigned ft_entries;
663 /* Size (in elements) of increments by which we may expand the filename
664 table. Actually, a single hunk of space of this size should be enough
665 for most typical programs. */
667 #define FT_ENTRIES_INCREMENT 64
669 /* Local pointer to the name of the main input file. Initialized in
670 dwarfout_init. */
672 static const char *primary_filename;
674 /* Counter to generate unique names for DIEs. */
676 static unsigned next_unused_dienum = 1;
678 /* Number of the DIE which is currently being generated. */
680 static unsigned current_dienum;
682 /* Number to use for the special "pubname" label on the next DIE which
683 represents a function or data object defined in this compilation
684 unit which has "extern" linkage. */
686 static int next_pubname_number = 0;
688 #define NEXT_DIE_NUM pending_sibling_stack[pending_siblings-1]
690 /* Pointer to a dynamically allocated list of pre-reserved and still
691 pending sibling DIE numbers. Note that this list will grow as needed. */
693 static unsigned *pending_sibling_stack;
695 /* Counter to keep track of the number of pre-reserved and still pending
696 sibling DIE numbers. */
698 static unsigned pending_siblings;
700 /* The currently allocated size of the above list (expressed in number of
701 list elements). */
703 static unsigned pending_siblings_allocated;
705 /* Size (in elements) of increments by which we may expand the pending
706 sibling stack. Actually, a single hunk of space of this size should
707 be enough for most typical programs. */
709 #define PENDING_SIBLINGS_INCREMENT 64
711 /* Non-zero if we are performing our file-scope finalization pass and if
712 we should force out Dwarf descriptions of any and all file-scope
713 tagged types which are still incomplete types. */
715 static int finalizing = 0;
717 /* A pointer to the base of a list of pending types which we haven't
718 generated DIEs for yet, but which we will have to come back to
719 later on. */
721 static tree *pending_types_list;
723 /* Number of elements currently allocated for the pending_types_list. */
725 static unsigned pending_types_allocated;
727 /* Number of elements of pending_types_list currently in use. */
729 static unsigned pending_types;
731 /* Size (in elements) of increments by which we may expand the pending
732 types list. Actually, a single hunk of space of this size should
733 be enough for most typical programs. */
735 #define PENDING_TYPES_INCREMENT 64
737 /* A pointer to the base of a list of incomplete types which might be
738 completed at some later time. */
740 static tree *incomplete_types_list;
742 /* Number of elements currently allocated for the incomplete_types_list. */
743 static unsigned incomplete_types_allocated;
745 /* Number of elements of incomplete_types_list currently in use. */
746 static unsigned incomplete_types;
748 /* Size (in elements) of increments by which we may expand the incomplete
749 types list. Actually, a single hunk of space of this size should
750 be enough for most typical programs. */
751 #define INCOMPLETE_TYPES_INCREMENT 64
753 /* Pointer to an artificial RECORD_TYPE which we create in dwarfout_init.
754 This is used in a hack to help us get the DIEs describing types of
755 formal parameters to come *after* all of the DIEs describing the formal
756 parameters themselves. That's necessary in order to be compatible
757 with what the brain-damaged svr4 SDB debugger requires. */
759 static tree fake_containing_scope;
761 /* The number of the current function definition that we are generating
762 debugging information for. These numbers range from 1 up to the maximum
763 number of function definitions contained within the current compilation
764 unit. These numbers are used to create unique labels for various things
765 contained within various function definitions. */
767 static unsigned current_funcdef_number = 1;
769 /* A pointer to the ..._DECL node which we have most recently been working
770 on. We keep this around just in case something about it looks screwy
771 and we want to tell the user what the source coordinates for the actual
772 declaration are. */
774 static tree dwarf_last_decl;
776 /* A flag indicating that we are emitting the member declarations of a
777 class, so member functions and variables should not be entirely emitted.
778 This is a kludge to avoid passing a second argument to output_*_die. */
780 static int in_class;
782 /* Forward declarations for functions defined in this file. */
784 static void dwarfout_init PARAMS ((const char *));
785 static void dwarfout_finish PARAMS ((const char *));
786 static void dwarfout_define PARAMS ((unsigned int, const char *));
787 static void dwarfout_undef PARAMS ((unsigned int, const char *));
788 static void dwarfout_start_source_file PARAMS ((unsigned, const char *));
789 static void dwarfout_start_source_file_check PARAMS ((unsigned, const char *));
790 static void dwarfout_end_source_file PARAMS ((unsigned));
791 static void dwarfout_end_source_file_check PARAMS ((unsigned));
792 static void dwarfout_begin_block PARAMS ((unsigned, unsigned));
793 static void dwarfout_end_block PARAMS ((unsigned, unsigned));
794 static void dwarfout_end_epilogue PARAMS ((void));
795 static void dwarfout_source_line PARAMS ((unsigned int, const char *));
796 static void dwarfout_end_prologue PARAMS ((unsigned int));
797 static void dwarfout_end_function PARAMS ((unsigned int));
798 static void dwarfout_function_decl PARAMS ((tree));
799 static void dwarfout_global_decl PARAMS ((tree));
800 static void dwarfout_deferred_inline_function PARAMS ((tree));
801 static void dwarfout_file_scope_decl PARAMS ((tree , int));
802 static const char *dwarf_tag_name PARAMS ((unsigned));
803 static const char *dwarf_attr_name PARAMS ((unsigned));
804 static const char *dwarf_stack_op_name PARAMS ((unsigned));
805 static const char *dwarf_typemod_name PARAMS ((unsigned));
806 static const char *dwarf_fmt_byte_name PARAMS ((unsigned));
807 static const char *dwarf_fund_type_name PARAMS ((unsigned));
808 static tree decl_ultimate_origin PARAMS ((tree));
809 static tree block_ultimate_origin PARAMS ((tree));
810 static tree decl_class_context PARAMS ((tree));
811 #if 0
812 static void output_unsigned_leb128 PARAMS ((unsigned long));
813 static void output_signed_leb128 PARAMS ((long));
814 #endif
815 static int fundamental_type_code PARAMS ((tree));
816 static tree root_type_1 PARAMS ((tree, int));
817 static tree root_type PARAMS ((tree));
818 static void write_modifier_bytes_1 PARAMS ((tree, int, int, int));
819 static void write_modifier_bytes PARAMS ((tree, int, int));
820 static inline int type_is_fundamental PARAMS ((tree));
821 static void equate_decl_number_to_die_number PARAMS ((tree));
822 static inline void equate_type_number_to_die_number PARAMS ((tree));
823 static void output_reg_number PARAMS ((rtx));
824 static void output_mem_loc_descriptor PARAMS ((rtx));
825 static void output_loc_descriptor PARAMS ((rtx));
826 static void output_bound_representation PARAMS ((tree, unsigned, int));
827 static void output_enumeral_list PARAMS ((tree));
828 static inline HOST_WIDE_INT ceiling PARAMS ((HOST_WIDE_INT, unsigned int));
829 static inline tree field_type PARAMS ((tree));
830 static inline unsigned int simple_type_align_in_bits PARAMS ((tree));
831 static inline unsigned HOST_WIDE_INT simple_type_size_in_bits PARAMS ((tree));
832 static HOST_WIDE_INT field_byte_offset PARAMS ((tree));
833 static inline void sibling_attribute PARAMS ((void));
834 static void location_attribute PARAMS ((rtx));
835 static void data_member_location_attribute PARAMS ((tree));
836 static void const_value_attribute PARAMS ((rtx));
837 static void location_or_const_value_attribute PARAMS ((tree));
838 static inline void name_attribute PARAMS ((const char *));
839 static inline void fund_type_attribute PARAMS ((unsigned));
840 static void mod_fund_type_attribute PARAMS ((tree, int, int));
841 static inline void user_def_type_attribute PARAMS ((tree));
842 static void mod_u_d_type_attribute PARAMS ((tree, int, int));
843 #ifdef USE_ORDERING_ATTRIBUTE
844 static inline void ordering_attribute PARAMS ((unsigned));
845 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
846 static void subscript_data_attribute PARAMS ((tree));
847 static void byte_size_attribute PARAMS ((tree));
848 static inline void bit_offset_attribute PARAMS ((tree));
849 static inline void bit_size_attribute PARAMS ((tree));
850 static inline void element_list_attribute PARAMS ((tree));
851 static inline void stmt_list_attribute PARAMS ((const char *));
852 static inline void low_pc_attribute PARAMS ((const char *));
853 static inline void high_pc_attribute PARAMS ((const char *));
854 static inline void body_begin_attribute PARAMS ((const char *));
855 static inline void body_end_attribute PARAMS ((const char *));
856 static inline void language_attribute PARAMS ((unsigned));
857 static inline void member_attribute PARAMS ((tree));
858 #if 0
859 static inline void string_length_attribute PARAMS ((tree));
860 #endif
861 static inline void comp_dir_attribute PARAMS ((const char *));
862 static inline void sf_names_attribute PARAMS ((const char *));
863 static inline void src_info_attribute PARAMS ((const char *));
864 static inline void mac_info_attribute PARAMS ((const char *));
865 static inline void prototyped_attribute PARAMS ((tree));
866 static inline void producer_attribute PARAMS ((const char *));
867 static inline void inline_attribute PARAMS ((tree));
868 static inline void containing_type_attribute PARAMS ((tree));
869 static inline void abstract_origin_attribute PARAMS ((tree));
870 #ifdef DWARF_DECL_COORDINATES
871 static inline void src_coords_attribute PARAMS ((unsigned, unsigned));
872 #endif /* defined(DWARF_DECL_COORDINATES) */
873 static inline void pure_or_virtual_attribute PARAMS ((tree));
874 static void name_and_src_coords_attributes PARAMS ((tree));
875 static void type_attribute PARAMS ((tree, int, int));
876 static const char *type_tag PARAMS ((tree));
877 static inline void dienum_push PARAMS ((void));
878 static inline void dienum_pop PARAMS ((void));
879 static inline tree member_declared_type PARAMS ((tree));
880 static const char *function_start_label PARAMS ((tree));
881 static void output_array_type_die PARAMS ((void *));
882 static void output_set_type_die PARAMS ((void *));
883 #if 0
884 static void output_entry_point_die PARAMS ((void *));
885 #endif
886 static void output_inlined_enumeration_type_die PARAMS ((void *));
887 static void output_inlined_structure_type_die PARAMS ((void *));
888 static void output_inlined_union_type_die PARAMS ((void *));
889 static void output_enumeration_type_die PARAMS ((void *));
890 static void output_formal_parameter_die PARAMS ((void *));
891 static void output_global_subroutine_die PARAMS ((void *));
892 static void output_global_variable_die PARAMS ((void *));
893 static void output_label_die PARAMS ((void *));
894 static void output_lexical_block_die PARAMS ((void *));
895 static void output_inlined_subroutine_die PARAMS ((void *));
896 static void output_local_variable_die PARAMS ((void *));
897 static void output_member_die PARAMS ((void *));
898 #if 0
899 static void output_pointer_type_die PARAMS ((void *));
900 static void output_reference_type_die PARAMS ((void *));
901 #endif
902 static void output_ptr_to_mbr_type_die PARAMS ((void *));
903 static void output_compile_unit_die PARAMS ((void *));
904 static void output_string_type_die PARAMS ((void *));
905 static void output_inheritance_die PARAMS ((void *));
906 static void output_structure_type_die PARAMS ((void *));
907 static void output_local_subroutine_die PARAMS ((void *));
908 static void output_subroutine_type_die PARAMS ((void *));
909 static void output_typedef_die PARAMS ((void *));
910 static void output_union_type_die PARAMS ((void *));
911 static void output_unspecified_parameters_die PARAMS ((void *));
912 static void output_padded_null_die PARAMS ((void *));
913 static void output_die PARAMS ((void (*)(void *), void *));
914 static void end_sibling_chain PARAMS ((void));
915 static void output_formal_types PARAMS ((tree));
916 static void pend_type PARAMS ((tree));
917 static int type_ok_for_scope PARAMS ((tree, tree));
918 static void output_pending_types_for_scope PARAMS ((tree));
919 static void output_type PARAMS ((tree, tree));
920 static void output_tagged_type_instantiation PARAMS ((tree));
921 static void output_block PARAMS ((tree, int));
922 static void output_decls_for_scope PARAMS ((tree, int));
923 static void output_decl PARAMS ((tree, tree));
924 static void shuffle_filename_entry PARAMS ((filename_entry *));
925 static void generate_new_sfname_entry PARAMS ((void));
926 static unsigned lookup_filename PARAMS ((const char *));
927 static void generate_srcinfo_entry PARAMS ((unsigned, unsigned));
928 static void generate_macinfo_entry PARAMS ((unsigned int, rtx,
929 const char *));
930 static int is_pseudo_reg PARAMS ((rtx));
931 static tree type_main_variant PARAMS ((tree));
932 static int is_tagged_type PARAMS ((tree));
933 static int is_redundant_typedef PARAMS ((tree));
934 static void add_incomplete_type PARAMS ((tree));
935 static void retry_incomplete_types PARAMS ((void));
937 /* Definitions of defaults for assembler-dependent names of various
938 pseudo-ops and section names.
940 Theses may be overridden in your tm.h file (if necessary) for your
941 particular assembler. The default values provided here correspond to
942 what is expected by "standard" AT&T System V.4 assemblers. */
944 #ifndef FILE_ASM_OP
945 #define FILE_ASM_OP "\t.file\t"
946 #endif
947 #ifndef VERSION_ASM_OP
948 #define VERSION_ASM_OP "\t.version\t"
949 #endif
950 #ifndef SET_ASM_OP
951 #define SET_ASM_OP "\t.set\t"
952 #endif
954 /* Pseudo-ops for pushing the current section onto the section stack (and
955 simultaneously changing to a new section) and for poping back to the
956 section we were in immediately before this one. Note that most svr4
957 assemblers only maintain a one level stack... you can push all the
958 sections you want, but you can only pop out one level. (The sparc
959 svr4 assembler is an exception to this general rule.) That's
960 OK because we only use at most one level of the section stack herein. */
962 #ifndef PUSHSECTION_ASM_OP
963 #define PUSHSECTION_ASM_OP "\t.section\t"
964 #endif
965 #ifndef POPSECTION_ASM_OP
966 #define POPSECTION_ASM_OP "\t.previous"
967 #endif
969 /* The default format used by the ASM_OUTPUT_PUSH_SECTION macro (see below)
970 to print the PUSHSECTION_ASM_OP and the section name. The default here
971 works for almost all svr4 assemblers, except for the sparc, where the
972 section name must be enclosed in double quotes. (See sparcv4.h.) */
974 #ifndef PUSHSECTION_FORMAT
975 #define PUSHSECTION_FORMAT "%s%s\n"
976 #endif
978 #ifndef DEBUG_SECTION
979 #define DEBUG_SECTION ".debug"
980 #endif
981 #ifndef LINE_SECTION
982 #define LINE_SECTION ".line"
983 #endif
984 #ifndef DEBUG_SFNAMES_SECTION
985 #define DEBUG_SFNAMES_SECTION ".debug_sfnames"
986 #endif
987 #ifndef DEBUG_SRCINFO_SECTION
988 #define DEBUG_SRCINFO_SECTION ".debug_srcinfo"
989 #endif
990 #ifndef DEBUG_MACINFO_SECTION
991 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
992 #endif
993 #ifndef DEBUG_PUBNAMES_SECTION
994 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
995 #endif
996 #ifndef DEBUG_ARANGES_SECTION
997 #define DEBUG_ARANGES_SECTION ".debug_aranges"
998 #endif
999 #ifndef TEXT_SECTION_NAME
1000 #define TEXT_SECTION_NAME ".text"
1001 #endif
1002 #ifndef DATA_SECTION_NAME
1003 #define DATA_SECTION_NAME ".data"
1004 #endif
1005 #ifndef DATA1_SECTION_NAME
1006 #define DATA1_SECTION_NAME ".data1"
1007 #endif
1008 #ifndef RODATA_SECTION_NAME
1009 #define RODATA_SECTION_NAME ".rodata"
1010 #endif
1011 #ifndef RODATA1_SECTION_NAME
1012 #define RODATA1_SECTION_NAME ".rodata1"
1013 #endif
1014 #ifndef BSS_SECTION_NAME
1015 #define BSS_SECTION_NAME ".bss"
1016 #endif
1018 /* Definitions of defaults for formats and names of various special
1019 (artificial) labels which may be generated within this file (when
1020 the -g options is used and DWARF_DEBUGGING_INFO is in effect.
1022 If necessary, these may be overridden from within your tm.h file,
1023 but typically, you should never need to override these.
1025 These labels have been hacked (temporarily) so that they all begin with
1026 a `.L' sequence so as to appease the stock sparc/svr4 assembler and the
1027 stock m88k/svr4 assembler, both of which need to see .L at the start of
1028 a label in order to prevent that label from going into the linker symbol
1029 table). When I get time, I'll have to fix this the right way so that we
1030 will use ASM_GENERATE_INTERNAL_LABEL and ASM_OUTPUT_INTERNAL_LABEL herein,
1031 but that will require a rather massive set of changes. For the moment,
1032 the following definitions out to produce the right results for all svr4
1033 and svr3 assemblers. -- rfg
1036 #ifndef TEXT_BEGIN_LABEL
1037 #define TEXT_BEGIN_LABEL "*.L_text_b"
1038 #endif
1039 #ifndef TEXT_END_LABEL
1040 #define TEXT_END_LABEL "*.L_text_e"
1041 #endif
1043 #ifndef DATA_BEGIN_LABEL
1044 #define DATA_BEGIN_LABEL "*.L_data_b"
1045 #endif
1046 #ifndef DATA_END_LABEL
1047 #define DATA_END_LABEL "*.L_data_e"
1048 #endif
1050 #ifndef DATA1_BEGIN_LABEL
1051 #define DATA1_BEGIN_LABEL "*.L_data1_b"
1052 #endif
1053 #ifndef DATA1_END_LABEL
1054 #define DATA1_END_LABEL "*.L_data1_e"
1055 #endif
1057 #ifndef RODATA_BEGIN_LABEL
1058 #define RODATA_BEGIN_LABEL "*.L_rodata_b"
1059 #endif
1060 #ifndef RODATA_END_LABEL
1061 #define RODATA_END_LABEL "*.L_rodata_e"
1062 #endif
1064 #ifndef RODATA1_BEGIN_LABEL
1065 #define RODATA1_BEGIN_LABEL "*.L_rodata1_b"
1066 #endif
1067 #ifndef RODATA1_END_LABEL
1068 #define RODATA1_END_LABEL "*.L_rodata1_e"
1069 #endif
1071 #ifndef BSS_BEGIN_LABEL
1072 #define BSS_BEGIN_LABEL "*.L_bss_b"
1073 #endif
1074 #ifndef BSS_END_LABEL
1075 #define BSS_END_LABEL "*.L_bss_e"
1076 #endif
1078 #ifndef LINE_BEGIN_LABEL
1079 #define LINE_BEGIN_LABEL "*.L_line_b"
1080 #endif
1081 #ifndef LINE_LAST_ENTRY_LABEL
1082 #define LINE_LAST_ENTRY_LABEL "*.L_line_last"
1083 #endif
1084 #ifndef LINE_END_LABEL
1085 #define LINE_END_LABEL "*.L_line_e"
1086 #endif
1088 #ifndef DEBUG_BEGIN_LABEL
1089 #define DEBUG_BEGIN_LABEL "*.L_debug_b"
1090 #endif
1091 #ifndef SFNAMES_BEGIN_LABEL
1092 #define SFNAMES_BEGIN_LABEL "*.L_sfnames_b"
1093 #endif
1094 #ifndef SRCINFO_BEGIN_LABEL
1095 #define SRCINFO_BEGIN_LABEL "*.L_srcinfo_b"
1096 #endif
1097 #ifndef MACINFO_BEGIN_LABEL
1098 #define MACINFO_BEGIN_LABEL "*.L_macinfo_b"
1099 #endif
1101 #ifndef DEBUG_ARANGES_BEGIN_LABEL
1102 #define DEBUG_ARANGES_BEGIN_LABEL "*.L_debug_aranges_begin"
1103 #endif
1104 #ifndef DEBUG_ARANGES_END_LABEL
1105 #define DEBUG_ARANGES_END_LABEL "*.L_debug_aranges_end"
1106 #endif
1108 #ifndef DIE_BEGIN_LABEL_FMT
1109 #define DIE_BEGIN_LABEL_FMT "*.L_D%u"
1110 #endif
1111 #ifndef DIE_END_LABEL_FMT
1112 #define DIE_END_LABEL_FMT "*.L_D%u_e"
1113 #endif
1114 #ifndef PUB_DIE_LABEL_FMT
1115 #define PUB_DIE_LABEL_FMT "*.L_P%u"
1116 #endif
1117 #ifndef BLOCK_BEGIN_LABEL_FMT
1118 #define BLOCK_BEGIN_LABEL_FMT "*.L_B%u"
1119 #endif
1120 #ifndef BLOCK_END_LABEL_FMT
1121 #define BLOCK_END_LABEL_FMT "*.L_B%u_e"
1122 #endif
1123 #ifndef SS_BEGIN_LABEL_FMT
1124 #define SS_BEGIN_LABEL_FMT "*.L_s%u"
1125 #endif
1126 #ifndef SS_END_LABEL_FMT
1127 #define SS_END_LABEL_FMT "*.L_s%u_e"
1128 #endif
1129 #ifndef EE_BEGIN_LABEL_FMT
1130 #define EE_BEGIN_LABEL_FMT "*.L_e%u"
1131 #endif
1132 #ifndef EE_END_LABEL_FMT
1133 #define EE_END_LABEL_FMT "*.L_e%u_e"
1134 #endif
1135 #ifndef MT_BEGIN_LABEL_FMT
1136 #define MT_BEGIN_LABEL_FMT "*.L_t%u"
1137 #endif
1138 #ifndef MT_END_LABEL_FMT
1139 #define MT_END_LABEL_FMT "*.L_t%u_e"
1140 #endif
1141 #ifndef LOC_BEGIN_LABEL_FMT
1142 #define LOC_BEGIN_LABEL_FMT "*.L_l%u"
1143 #endif
1144 #ifndef LOC_END_LABEL_FMT
1145 #define LOC_END_LABEL_FMT "*.L_l%u_e"
1146 #endif
1147 #ifndef BOUND_BEGIN_LABEL_FMT
1148 #define BOUND_BEGIN_LABEL_FMT "*.L_b%u_%u_%c"
1149 #endif
1150 #ifndef BOUND_END_LABEL_FMT
1151 #define BOUND_END_LABEL_FMT "*.L_b%u_%u_%c_e"
1152 #endif
1153 #ifndef DERIV_BEGIN_LABEL_FMT
1154 #define DERIV_BEGIN_LABEL_FMT "*.L_d%u"
1155 #endif
1156 #ifndef DERIV_END_LABEL_FMT
1157 #define DERIV_END_LABEL_FMT "*.L_d%u_e"
1158 #endif
1159 #ifndef SL_BEGIN_LABEL_FMT
1160 #define SL_BEGIN_LABEL_FMT "*.L_sl%u"
1161 #endif
1162 #ifndef SL_END_LABEL_FMT
1163 #define SL_END_LABEL_FMT "*.L_sl%u_e"
1164 #endif
1165 #ifndef BODY_BEGIN_LABEL_FMT
1166 #define BODY_BEGIN_LABEL_FMT "*.L_b%u"
1167 #endif
1168 #ifndef BODY_END_LABEL_FMT
1169 #define BODY_END_LABEL_FMT "*.L_b%u_e"
1170 #endif
1171 #ifndef FUNC_END_LABEL_FMT
1172 #define FUNC_END_LABEL_FMT "*.L_f%u_e"
1173 #endif
1174 #ifndef TYPE_NAME_FMT
1175 #define TYPE_NAME_FMT "*.L_T%u"
1176 #endif
1177 #ifndef DECL_NAME_FMT
1178 #define DECL_NAME_FMT "*.L_E%u"
1179 #endif
1180 #ifndef LINE_CODE_LABEL_FMT
1181 #define LINE_CODE_LABEL_FMT "*.L_LC%u"
1182 #endif
1183 #ifndef SFNAMES_ENTRY_LABEL_FMT
1184 #define SFNAMES_ENTRY_LABEL_FMT "*.L_F%u"
1185 #endif
1186 #ifndef LINE_ENTRY_LABEL_FMT
1187 #define LINE_ENTRY_LABEL_FMT "*.L_LE%u"
1188 #endif
1190 /* Definitions of defaults for various types of primitive assembly language
1191 output operations.
1193 If necessary, these may be overridden from within your tm.h file,
1194 but typically, you shouldn't need to override these. */
1196 #ifndef ASM_OUTPUT_PUSH_SECTION
1197 #define ASM_OUTPUT_PUSH_SECTION(FILE, SECTION) \
1198 fprintf ((FILE), PUSHSECTION_FORMAT, PUSHSECTION_ASM_OP, SECTION)
1199 #endif
1201 #ifndef ASM_OUTPUT_POP_SECTION
1202 #define ASM_OUTPUT_POP_SECTION(FILE) \
1203 fprintf ((FILE), "%s\n", POPSECTION_ASM_OP)
1204 #endif
1206 #ifndef ASM_OUTPUT_DWARF_DELTA2
1207 #define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2) \
1208 dw2_asm_output_delta (2, LABEL1, LABEL2, NULL)
1209 #endif
1211 #ifndef ASM_OUTPUT_DWARF_DELTA4
1212 #define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2) \
1213 dw2_asm_output_delta (4, LABEL1, LABEL2, NULL)
1214 #endif
1216 #ifndef ASM_OUTPUT_DWARF_TAG
1217 #define ASM_OUTPUT_DWARF_TAG(FILE,TAG) \
1218 dw2_asm_output_data (2, TAG, "%s", dwarf_tag_name (TAG));
1219 #endif
1221 #ifndef ASM_OUTPUT_DWARF_ATTRIBUTE
1222 #define ASM_OUTPUT_DWARF_ATTRIBUTE(FILE,ATTR) \
1223 dw2_asm_output_data (2, ATTR, "%s", dwarf_attr_name (ATTR))
1224 #endif
1226 #ifndef ASM_OUTPUT_DWARF_STACK_OP
1227 #define ASM_OUTPUT_DWARF_STACK_OP(FILE,OP) \
1228 dw2_asm_output_data (1, OP, "%s", dwarf_stack_op_name (OP))
1229 #endif
1231 #ifndef ASM_OUTPUT_DWARF_FUND_TYPE
1232 #define ASM_OUTPUT_DWARF_FUND_TYPE(FILE,FT) \
1233 dw2_asm_output_data (2, FT, "%s", dwarf_fund_type_name (FT))
1234 #endif
1236 #ifndef ASM_OUTPUT_DWARF_FMT_BYTE
1237 #define ASM_OUTPUT_DWARF_FMT_BYTE(FILE,FMT) \
1238 dw2_asm_output_data (1, FMT, "%s", dwarf_fmt_byte_name (FMT));
1239 #endif
1241 #ifndef ASM_OUTPUT_DWARF_TYPE_MODIFIER
1242 #define ASM_OUTPUT_DWARF_TYPE_MODIFIER(FILE,MOD) \
1243 dw2_asm_output_data (1, MOD, "%s", dwarf_typemod_name (MOD));
1244 #endif
1246 #ifndef ASM_OUTPUT_DWARF_ADDR
1247 #define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL) \
1248 dw2_asm_output_addr (4, LABEL, NULL)
1249 #endif
1251 #ifndef ASM_OUTPUT_DWARF_ADDR_CONST
1252 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,RTX) \
1253 dw2_asm_output_addr_rtx (4, RTX, NULL)
1254 #endif
1256 #ifndef ASM_OUTPUT_DWARF_REF
1257 #define ASM_OUTPUT_DWARF_REF(FILE,LABEL) \
1258 dw2_asm_output_addr (4, LABEL, NULL)
1259 #endif
1261 #ifndef ASM_OUTPUT_DWARF_DATA1
1262 #define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \
1263 dw2_asm_output_data (1, VALUE, NULL)
1264 #endif
1266 #ifndef ASM_OUTPUT_DWARF_DATA2
1267 #define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \
1268 dw2_asm_output_data (2, VALUE, NULL)
1269 #endif
1271 #ifndef ASM_OUTPUT_DWARF_DATA4
1272 #define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
1273 dw2_asm_output_data (4, VALUE, NULL)
1274 #endif
1276 #ifndef ASM_OUTPUT_DWARF_DATA8
1277 #define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE) \
1278 dw2_asm_output_data (8, VALUE, NULL)
1279 #endif
1281 /* ASM_OUTPUT_DWARF_STRING is defined to output an ascii string, but to
1282 NOT issue a trailing newline. We define ASM_OUTPUT_DWARF_STRING_NEWLINE
1283 based on whether ASM_OUTPUT_DWARF_STRING is defined or not. If it is
1284 defined, we call it, then issue the line feed. If not, we supply a
1285 default definition of calling ASM_OUTPUT_ASCII */
1287 #ifndef ASM_OUTPUT_DWARF_STRING
1288 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
1289 ASM_OUTPUT_ASCII ((FILE), P, strlen (P)+1)
1290 #else
1291 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
1292 ASM_OUTPUT_DWARF_STRING (FILE,P), ASM_OUTPUT_DWARF_STRING (FILE,"\n")
1293 #endif
1296 /* The debug hooks structure. */
1297 struct gcc_debug_hooks dwarf_debug_hooks =
1299 dwarfout_init,
1300 dwarfout_finish,
1301 dwarfout_define,
1302 dwarfout_undef,
1303 dwarfout_start_source_file_check,
1304 dwarfout_end_source_file_check,
1305 dwarfout_begin_block,
1306 dwarfout_end_block,
1307 debug_true_tree, /* ignore_block */
1308 dwarfout_source_line, /* source_line */
1309 dwarfout_source_line, /* begin_prologue */
1310 dwarfout_end_prologue,
1311 dwarfout_end_epilogue,
1312 debug_nothing_tree, /* begin_function */
1313 dwarfout_end_function,
1314 dwarfout_function_decl,
1315 dwarfout_global_decl,
1316 dwarfout_deferred_inline_function,
1317 debug_nothing_tree, /* outlining_inline_function */
1318 debug_nothing_rtx /* label */
1321 /************************ general utility functions **************************/
1323 static inline int
1324 is_pseudo_reg (rtl)
1325 rtx rtl;
1327 return (((GET_CODE (rtl) == REG) && (REGNO (rtl) >= FIRST_PSEUDO_REGISTER))
1328 || ((GET_CODE (rtl) == SUBREG)
1329 && (REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER)));
1332 static inline tree
1333 type_main_variant (type)
1334 tree type;
1336 type = TYPE_MAIN_VARIANT (type);
1338 /* There really should be only one main variant among any group of variants
1339 of a given type (and all of the MAIN_VARIANT values for all members of
1340 the group should point to that one type) but sometimes the C front-end
1341 messes this up for array types, so we work around that bug here. */
1343 if (TREE_CODE (type) == ARRAY_TYPE)
1345 while (type != TYPE_MAIN_VARIANT (type))
1346 type = TYPE_MAIN_VARIANT (type);
1349 return type;
1352 /* Return non-zero if the given type node represents a tagged type. */
1354 static inline int
1355 is_tagged_type (type)
1356 tree type;
1358 enum tree_code code = TREE_CODE (type);
1360 return (code == RECORD_TYPE || code == UNION_TYPE
1361 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
1364 static const char *
1365 dwarf_tag_name (tag)
1366 unsigned tag;
1368 switch (tag)
1370 case TAG_padding: return "TAG_padding";
1371 case TAG_array_type: return "TAG_array_type";
1372 case TAG_class_type: return "TAG_class_type";
1373 case TAG_entry_point: return "TAG_entry_point";
1374 case TAG_enumeration_type: return "TAG_enumeration_type";
1375 case TAG_formal_parameter: return "TAG_formal_parameter";
1376 case TAG_global_subroutine: return "TAG_global_subroutine";
1377 case TAG_global_variable: return "TAG_global_variable";
1378 case TAG_label: return "TAG_label";
1379 case TAG_lexical_block: return "TAG_lexical_block";
1380 case TAG_local_variable: return "TAG_local_variable";
1381 case TAG_member: return "TAG_member";
1382 case TAG_pointer_type: return "TAG_pointer_type";
1383 case TAG_reference_type: return "TAG_reference_type";
1384 case TAG_compile_unit: return "TAG_compile_unit";
1385 case TAG_string_type: return "TAG_string_type";
1386 case TAG_structure_type: return "TAG_structure_type";
1387 case TAG_subroutine: return "TAG_subroutine";
1388 case TAG_subroutine_type: return "TAG_subroutine_type";
1389 case TAG_typedef: return "TAG_typedef";
1390 case TAG_union_type: return "TAG_union_type";
1391 case TAG_unspecified_parameters: return "TAG_unspecified_parameters";
1392 case TAG_variant: return "TAG_variant";
1393 case TAG_common_block: return "TAG_common_block";
1394 case TAG_common_inclusion: return "TAG_common_inclusion";
1395 case TAG_inheritance: return "TAG_inheritance";
1396 case TAG_inlined_subroutine: return "TAG_inlined_subroutine";
1397 case TAG_module: return "TAG_module";
1398 case TAG_ptr_to_member_type: return "TAG_ptr_to_member_type";
1399 case TAG_set_type: return "TAG_set_type";
1400 case TAG_subrange_type: return "TAG_subrange_type";
1401 case TAG_with_stmt: return "TAG_with_stmt";
1403 /* GNU extensions. */
1405 case TAG_format_label: return "TAG_format_label";
1406 case TAG_namelist: return "TAG_namelist";
1407 case TAG_function_template: return "TAG_function_template";
1408 case TAG_class_template: return "TAG_class_template";
1410 default: return "TAG_<unknown>";
1414 static const char *
1415 dwarf_attr_name (attr)
1416 unsigned attr;
1418 switch (attr)
1420 case AT_sibling: return "AT_sibling";
1421 case AT_location: return "AT_location";
1422 case AT_name: return "AT_name";
1423 case AT_fund_type: return "AT_fund_type";
1424 case AT_mod_fund_type: return "AT_mod_fund_type";
1425 case AT_user_def_type: return "AT_user_def_type";
1426 case AT_mod_u_d_type: return "AT_mod_u_d_type";
1427 case AT_ordering: return "AT_ordering";
1428 case AT_subscr_data: return "AT_subscr_data";
1429 case AT_byte_size: return "AT_byte_size";
1430 case AT_bit_offset: return "AT_bit_offset";
1431 case AT_bit_size: return "AT_bit_size";
1432 case AT_element_list: return "AT_element_list";
1433 case AT_stmt_list: return "AT_stmt_list";
1434 case AT_low_pc: return "AT_low_pc";
1435 case AT_high_pc: return "AT_high_pc";
1436 case AT_language: return "AT_language";
1437 case AT_member: return "AT_member";
1438 case AT_discr: return "AT_discr";
1439 case AT_discr_value: return "AT_discr_value";
1440 case AT_string_length: return "AT_string_length";
1441 case AT_common_reference: return "AT_common_reference";
1442 case AT_comp_dir: return "AT_comp_dir";
1443 case AT_const_value_string: return "AT_const_value_string";
1444 case AT_const_value_data2: return "AT_const_value_data2";
1445 case AT_const_value_data4: return "AT_const_value_data4";
1446 case AT_const_value_data8: return "AT_const_value_data8";
1447 case AT_const_value_block2: return "AT_const_value_block2";
1448 case AT_const_value_block4: return "AT_const_value_block4";
1449 case AT_containing_type: return "AT_containing_type";
1450 case AT_default_value_addr: return "AT_default_value_addr";
1451 case AT_default_value_data2: return "AT_default_value_data2";
1452 case AT_default_value_data4: return "AT_default_value_data4";
1453 case AT_default_value_data8: return "AT_default_value_data8";
1454 case AT_default_value_string: return "AT_default_value_string";
1455 case AT_friends: return "AT_friends";
1456 case AT_inline: return "AT_inline";
1457 case AT_is_optional: return "AT_is_optional";
1458 case AT_lower_bound_ref: return "AT_lower_bound_ref";
1459 case AT_lower_bound_data2: return "AT_lower_bound_data2";
1460 case AT_lower_bound_data4: return "AT_lower_bound_data4";
1461 case AT_lower_bound_data8: return "AT_lower_bound_data8";
1462 case AT_private: return "AT_private";
1463 case AT_producer: return "AT_producer";
1464 case AT_program: return "AT_program";
1465 case AT_protected: return "AT_protected";
1466 case AT_prototyped: return "AT_prototyped";
1467 case AT_public: return "AT_public";
1468 case AT_pure_virtual: return "AT_pure_virtual";
1469 case AT_return_addr: return "AT_return_addr";
1470 case AT_abstract_origin: return "AT_abstract_origin";
1471 case AT_start_scope: return "AT_start_scope";
1472 case AT_stride_size: return "AT_stride_size";
1473 case AT_upper_bound_ref: return "AT_upper_bound_ref";
1474 case AT_upper_bound_data2: return "AT_upper_bound_data2";
1475 case AT_upper_bound_data4: return "AT_upper_bound_data4";
1476 case AT_upper_bound_data8: return "AT_upper_bound_data8";
1477 case AT_virtual: return "AT_virtual";
1479 /* GNU extensions */
1481 case AT_sf_names: return "AT_sf_names";
1482 case AT_src_info: return "AT_src_info";
1483 case AT_mac_info: return "AT_mac_info";
1484 case AT_src_coords: return "AT_src_coords";
1485 case AT_body_begin: return "AT_body_begin";
1486 case AT_body_end: return "AT_body_end";
1488 default: return "AT_<unknown>";
1492 static const char *
1493 dwarf_stack_op_name (op)
1494 unsigned op;
1496 switch (op)
1498 case OP_REG: return "OP_REG";
1499 case OP_BASEREG: return "OP_BASEREG";
1500 case OP_ADDR: return "OP_ADDR";
1501 case OP_CONST: return "OP_CONST";
1502 case OP_DEREF2: return "OP_DEREF2";
1503 case OP_DEREF4: return "OP_DEREF4";
1504 case OP_ADD: return "OP_ADD";
1505 default: return "OP_<unknown>";
1509 static const char *
1510 dwarf_typemod_name (mod)
1511 unsigned mod;
1513 switch (mod)
1515 case MOD_pointer_to: return "MOD_pointer_to";
1516 case MOD_reference_to: return "MOD_reference_to";
1517 case MOD_const: return "MOD_const";
1518 case MOD_volatile: return "MOD_volatile";
1519 default: return "MOD_<unknown>";
1523 static const char *
1524 dwarf_fmt_byte_name (fmt)
1525 unsigned fmt;
1527 switch (fmt)
1529 case FMT_FT_C_C: return "FMT_FT_C_C";
1530 case FMT_FT_C_X: return "FMT_FT_C_X";
1531 case FMT_FT_X_C: return "FMT_FT_X_C";
1532 case FMT_FT_X_X: return "FMT_FT_X_X";
1533 case FMT_UT_C_C: return "FMT_UT_C_C";
1534 case FMT_UT_C_X: return "FMT_UT_C_X";
1535 case FMT_UT_X_C: return "FMT_UT_X_C";
1536 case FMT_UT_X_X: return "FMT_UT_X_X";
1537 case FMT_ET: return "FMT_ET";
1538 default: return "FMT_<unknown>";
1542 static const char *
1543 dwarf_fund_type_name (ft)
1544 unsigned ft;
1546 switch (ft)
1548 case FT_char: return "FT_char";
1549 case FT_signed_char: return "FT_signed_char";
1550 case FT_unsigned_char: return "FT_unsigned_char";
1551 case FT_short: return "FT_short";
1552 case FT_signed_short: return "FT_signed_short";
1553 case FT_unsigned_short: return "FT_unsigned_short";
1554 case FT_integer: return "FT_integer";
1555 case FT_signed_integer: return "FT_signed_integer";
1556 case FT_unsigned_integer: return "FT_unsigned_integer";
1557 case FT_long: return "FT_long";
1558 case FT_signed_long: return "FT_signed_long";
1559 case FT_unsigned_long: return "FT_unsigned_long";
1560 case FT_pointer: return "FT_pointer";
1561 case FT_float: return "FT_float";
1562 case FT_dbl_prec_float: return "FT_dbl_prec_float";
1563 case FT_ext_prec_float: return "FT_ext_prec_float";
1564 case FT_complex: return "FT_complex";
1565 case FT_dbl_prec_complex: return "FT_dbl_prec_complex";
1566 case FT_void: return "FT_void";
1567 case FT_boolean: return "FT_boolean";
1568 case FT_ext_prec_complex: return "FT_ext_prec_complex";
1569 case FT_label: return "FT_label";
1571 /* GNU extensions. */
1573 case FT_long_long: return "FT_long_long";
1574 case FT_signed_long_long: return "FT_signed_long_long";
1575 case FT_unsigned_long_long: return "FT_unsigned_long_long";
1577 case FT_int8: return "FT_int8";
1578 case FT_signed_int8: return "FT_signed_int8";
1579 case FT_unsigned_int8: return "FT_unsigned_int8";
1580 case FT_int16: return "FT_int16";
1581 case FT_signed_int16: return "FT_signed_int16";
1582 case FT_unsigned_int16: return "FT_unsigned_int16";
1583 case FT_int32: return "FT_int32";
1584 case FT_signed_int32: return "FT_signed_int32";
1585 case FT_unsigned_int32: return "FT_unsigned_int32";
1586 case FT_int64: return "FT_int64";
1587 case FT_signed_int64: return "FT_signed_int64";
1588 case FT_unsigned_int64: return "FT_unsigned_int64";
1589 case FT_int128: return "FT_int128";
1590 case FT_signed_int128: return "FT_signed_int128";
1591 case FT_unsigned_int128: return "FT_unsigned_int128";
1593 case FT_real32: return "FT_real32";
1594 case FT_real64: return "FT_real64";
1595 case FT_real96: return "FT_real96";
1596 case FT_real128: return "FT_real128";
1598 default: return "FT_<unknown>";
1602 /* Determine the "ultimate origin" of a decl. The decl may be an
1603 inlined instance of an inlined instance of a decl which is local
1604 to an inline function, so we have to trace all of the way back
1605 through the origin chain to find out what sort of node actually
1606 served as the original seed for the given block. */
1608 static tree
1609 decl_ultimate_origin (decl)
1610 tree decl;
1612 #ifdef ENABLE_CHECKING
1613 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
1614 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
1615 most distant ancestor, this should never happen. */
1616 abort ();
1617 #endif
1619 return DECL_ABSTRACT_ORIGIN (decl);
1622 /* Determine the "ultimate origin" of a block. The block may be an
1623 inlined instance of an inlined instance of a block which is local
1624 to an inline function, so we have to trace all of the way back
1625 through the origin chain to find out what sort of node actually
1626 served as the original seed for the given block. */
1628 static tree
1629 block_ultimate_origin (block)
1630 tree block;
1632 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
1634 if (immediate_origin == NULL)
1635 return NULL;
1636 else
1638 tree ret_val;
1639 tree lookahead = immediate_origin;
1643 ret_val = lookahead;
1644 lookahead = (TREE_CODE (ret_val) == BLOCK)
1645 ? BLOCK_ABSTRACT_ORIGIN (ret_val)
1646 : NULL;
1648 while (lookahead != NULL && lookahead != ret_val);
1649 return ret_val;
1653 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
1654 of a virtual function may refer to a base class, so we check the 'this'
1655 parameter. */
1657 static tree
1658 decl_class_context (decl)
1659 tree decl;
1661 tree context = NULL_TREE;
1662 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
1663 context = DECL_CONTEXT (decl);
1664 else
1665 context = TYPE_MAIN_VARIANT
1666 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
1668 if (context && !TYPE_P (context))
1669 context = NULL_TREE;
1671 return context;
1674 #if 0
1675 static void
1676 output_unsigned_leb128 (value)
1677 unsigned long value;
1679 unsigned long orig_value = value;
1683 unsigned byte = (value & 0x7f);
1685 value >>= 7;
1686 if (value != 0) /* more bytes to follow */
1687 byte |= 0x80;
1688 dw2_asm_output_data (1, byte, "\t%s ULEB128 number - value = %lu",
1689 orig_value);
1691 while (value != 0);
1694 static void
1695 output_signed_leb128 (value)
1696 long value;
1698 long orig_value = value;
1699 int negative = (value < 0);
1700 int more;
1704 unsigned byte = (value & 0x7f);
1706 value >>= 7;
1707 if (negative)
1708 value |= 0xfe000000; /* manually sign extend */
1709 if (((value == 0) && ((byte & 0x40) == 0))
1710 || ((value == -1) && ((byte & 0x40) == 1)))
1711 more = 0;
1712 else
1714 byte |= 0x80;
1715 more = 1;
1717 dw2_asm_output_data (1, byte, "\t%s SLEB128 number - value = %ld",
1718 orig_value);
1720 while (more);
1722 #endif
1724 /**************** utility functions for attribute functions ******************/
1726 /* Given a pointer to a tree node for some type, return a Dwarf fundamental
1727 type code for the given type.
1729 This routine must only be called for GCC type nodes that correspond to
1730 Dwarf fundamental types.
1732 The current Dwarf draft specification calls for Dwarf fundamental types
1733 to accurately reflect the fact that a given type was either a "plain"
1734 integral type or an explicitly "signed" integral type. Unfortunately,
1735 we can't always do this, because GCC may already have thrown away the
1736 information about the precise way in which the type was originally
1737 specified, as in:
1739 typedef signed int my_type;
1741 struct s { my_type f; };
1743 Since we may be stuck here without enough information to do exactly
1744 what is called for in the Dwarf draft specification, we do the best
1745 that we can under the circumstances and always use the "plain" integral
1746 fundamental type codes for int, short, and long types. That's probably
1747 good enough. The additional accuracy called for in the current DWARF
1748 draft specification is probably never even useful in practice. */
1750 static int
1751 fundamental_type_code (type)
1752 tree type;
1754 if (TREE_CODE (type) == ERROR_MARK)
1755 return 0;
1757 switch (TREE_CODE (type))
1759 case ERROR_MARK:
1760 return FT_void;
1762 case VOID_TYPE:
1763 return FT_void;
1765 case INTEGER_TYPE:
1766 /* Carefully distinguish all the standard types of C,
1767 without messing up if the language is not C.
1768 Note that we check only for the names that contain spaces;
1769 other names might occur by coincidence in other languages. */
1770 if (TYPE_NAME (type) != 0
1771 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1772 && DECL_NAME (TYPE_NAME (type)) != 0
1773 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1775 const char *const name =
1776 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1778 if (!strcmp (name, "unsigned char"))
1779 return FT_unsigned_char;
1780 if (!strcmp (name, "signed char"))
1781 return FT_signed_char;
1782 if (!strcmp (name, "unsigned int"))
1783 return FT_unsigned_integer;
1784 if (!strcmp (name, "short int"))
1785 return FT_short;
1786 if (!strcmp (name, "short unsigned int"))
1787 return FT_unsigned_short;
1788 if (!strcmp (name, "long int"))
1789 return FT_long;
1790 if (!strcmp (name, "long unsigned int"))
1791 return FT_unsigned_long;
1792 if (!strcmp (name, "long long int"))
1793 return FT_long_long; /* Not grok'ed by svr4 SDB */
1794 if (!strcmp (name, "long long unsigned int"))
1795 return FT_unsigned_long_long; /* Not grok'ed by svr4 SDB */
1798 /* Most integer types will be sorted out above, however, for the
1799 sake of special `array index' integer types, the following code
1800 is also provided. */
1802 if (TYPE_PRECISION (type) == INT_TYPE_SIZE)
1803 return (TREE_UNSIGNED (type) ? FT_unsigned_integer : FT_integer);
1805 if (TYPE_PRECISION (type) == LONG_TYPE_SIZE)
1806 return (TREE_UNSIGNED (type) ? FT_unsigned_long : FT_long);
1808 if (TYPE_PRECISION (type) == LONG_LONG_TYPE_SIZE)
1809 return (TREE_UNSIGNED (type) ? FT_unsigned_long_long : FT_long_long);
1811 if (TYPE_PRECISION (type) == SHORT_TYPE_SIZE)
1812 return (TREE_UNSIGNED (type) ? FT_unsigned_short : FT_short);
1814 if (TYPE_PRECISION (type) == CHAR_TYPE_SIZE)
1815 return (TREE_UNSIGNED (type) ? FT_unsigned_char : FT_char);
1817 if (TYPE_MODE (type) == TImode)
1818 return (TREE_UNSIGNED (type) ? FT_unsigned_int128 : FT_int128);
1820 /* In C++, __java_boolean is an INTEGER_TYPE with precision == 1 */
1821 if (TYPE_PRECISION (type) == 1)
1822 return FT_boolean;
1824 abort ();
1826 case REAL_TYPE:
1827 /* Carefully distinguish all the standard types of C,
1828 without messing up if the language is not C. */
1829 if (TYPE_NAME (type) != 0
1830 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1831 && DECL_NAME (TYPE_NAME (type)) != 0
1832 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1834 const char *const name =
1835 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1837 /* Note that here we can run afoul of a serious bug in "classic"
1838 svr4 SDB debuggers. They don't seem to understand the
1839 FT_ext_prec_float type (even though they should). */
1841 if (!strcmp (name, "long double"))
1842 return FT_ext_prec_float;
1845 if (TYPE_PRECISION (type) == DOUBLE_TYPE_SIZE)
1847 /* On the SH, when compiling with -m3e or -m4-single-only, both
1848 float and double are 32 bits. But since the debugger doesn't
1849 know about the subtarget, it always thinks double is 64 bits.
1850 So we have to tell the debugger that the type is float to
1851 make the output of the 'print' command etc. readable. */
1852 if (DOUBLE_TYPE_SIZE == FLOAT_TYPE_SIZE && FLOAT_TYPE_SIZE == 32)
1853 return FT_float;
1854 return FT_dbl_prec_float;
1856 if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
1857 return FT_float;
1859 /* Note that here we can run afoul of a serious bug in "classic"
1860 svr4 SDB debuggers. They don't seem to understand the
1861 FT_ext_prec_float type (even though they should). */
1863 if (TYPE_PRECISION (type) == LONG_DOUBLE_TYPE_SIZE)
1864 return FT_ext_prec_float;
1865 abort ();
1867 case COMPLEX_TYPE:
1868 return FT_complex; /* GNU FORTRAN COMPLEX type. */
1870 case CHAR_TYPE:
1871 return FT_char; /* GNU Pascal CHAR type. Not used in C. */
1873 case BOOLEAN_TYPE:
1874 return FT_boolean; /* GNU FORTRAN BOOLEAN type. */
1876 default:
1877 abort (); /* No other TREE_CODEs are Dwarf fundamental types. */
1879 return 0;
1882 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
1883 the Dwarf "root" type for the given input type. The Dwarf "root" type
1884 of a given type is generally the same as the given type, except that if
1885 the given type is a pointer or reference type, then the root type of
1886 the given type is the root type of the "basis" type for the pointer or
1887 reference type. (This definition of the "root" type is recursive.)
1888 Also, the root type of a `const' qualified type or a `volatile'
1889 qualified type is the root type of the given type without the
1890 qualifiers. */
1892 static tree
1893 root_type_1 (type, count)
1894 tree type;
1895 int count;
1897 /* Give up after searching 1000 levels, in case this is a recursive
1898 pointer type. Such types are possible in Ada, but it is not possible
1899 to represent them in DWARF1 debug info. */
1900 if (count > 1000)
1901 return error_mark_node;
1903 switch (TREE_CODE (type))
1905 case ERROR_MARK:
1906 return error_mark_node;
1908 case POINTER_TYPE:
1909 case REFERENCE_TYPE:
1910 return root_type_1 (TREE_TYPE (type), count+1);
1912 default:
1913 return type;
1917 static tree
1918 root_type (type)
1919 tree type;
1921 type = root_type_1 (type, 0);
1922 if (type != error_mark_node)
1923 type = type_main_variant (type);
1924 return type;
1927 /* Given a pointer to an arbitrary ..._TYPE tree node, write out a sequence
1928 of zero or more Dwarf "type-modifier" bytes applicable to the type. */
1930 static void
1931 write_modifier_bytes_1 (type, decl_const, decl_volatile, count)
1932 tree type;
1933 int decl_const;
1934 int decl_volatile;
1935 int count;
1937 if (TREE_CODE (type) == ERROR_MARK)
1938 return;
1940 /* Give up after searching 1000 levels, in case this is a recursive
1941 pointer type. Such types are possible in Ada, but it is not possible
1942 to represent them in DWARF1 debug info. */
1943 if (count > 1000)
1944 return;
1946 if (TYPE_READONLY (type) || decl_const)
1947 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_const);
1948 if (TYPE_VOLATILE (type) || decl_volatile)
1949 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_volatile);
1950 switch (TREE_CODE (type))
1952 case POINTER_TYPE:
1953 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_pointer_to);
1954 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1955 return;
1957 case REFERENCE_TYPE:
1958 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_reference_to);
1959 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1960 return;
1962 case ERROR_MARK:
1963 default:
1964 return;
1968 static void
1969 write_modifier_bytes (type, decl_const, decl_volatile)
1970 tree type;
1971 int decl_const;
1972 int decl_volatile;
1974 write_modifier_bytes_1 (type, decl_const, decl_volatile, 0);
1977 /* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
1978 given input type is a Dwarf "fundamental" type. Otherwise return zero. */
1980 static inline int
1981 type_is_fundamental (type)
1982 tree type;
1984 switch (TREE_CODE (type))
1986 case ERROR_MARK:
1987 case VOID_TYPE:
1988 case INTEGER_TYPE:
1989 case REAL_TYPE:
1990 case COMPLEX_TYPE:
1991 case BOOLEAN_TYPE:
1992 case CHAR_TYPE:
1993 return 1;
1995 case SET_TYPE:
1996 case ARRAY_TYPE:
1997 case RECORD_TYPE:
1998 case UNION_TYPE:
1999 case QUAL_UNION_TYPE:
2000 case ENUMERAL_TYPE:
2001 case FUNCTION_TYPE:
2002 case METHOD_TYPE:
2003 case POINTER_TYPE:
2004 case REFERENCE_TYPE:
2005 case FILE_TYPE:
2006 case OFFSET_TYPE:
2007 case LANG_TYPE:
2008 case VECTOR_TYPE:
2009 return 0;
2011 default:
2012 abort ();
2014 return 0;
2017 /* Given a pointer to some ..._DECL tree node, generate an assembly language
2018 equate directive which will associate a symbolic name with the current DIE.
2020 The name used is an artificial label generated from the DECL_UID number
2021 associated with the given decl node. The name it gets equated to is the
2022 symbolic label that we (previously) output at the start of the DIE that
2023 we are currently generating.
2025 Calling this function while generating some "decl related" form of DIE
2026 makes it possible to later refer to the DIE which represents the given
2027 decl simply by re-generating the symbolic name from the ..._DECL node's
2028 UID number. */
2030 static void
2031 equate_decl_number_to_die_number (decl)
2032 tree decl;
2034 /* In the case where we are generating a DIE for some ..._DECL node
2035 which represents either some inline function declaration or some
2036 entity declared within an inline function declaration/definition,
2037 setup a symbolic name for the current DIE so that we have a name
2038 for this DIE that we can easily refer to later on within
2039 AT_abstract_origin attributes. */
2041 char decl_label[MAX_ARTIFICIAL_LABEL_BYTES];
2042 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
2044 sprintf (decl_label, DECL_NAME_FMT, DECL_UID (decl));
2045 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
2046 ASM_OUTPUT_DEF (asm_out_file, decl_label, die_label);
2049 /* Given a pointer to some ..._TYPE tree node, generate an assembly language
2050 equate directive which will associate a symbolic name with the current DIE.
2052 The name used is an artificial label generated from the TYPE_UID number
2053 associated with the given type node. The name it gets equated to is the
2054 symbolic label that we (previously) output at the start of the DIE that
2055 we are currently generating.
2057 Calling this function while generating some "type related" form of DIE
2058 makes it easy to later refer to the DIE which represents the given type
2059 simply by re-generating the alternative name from the ..._TYPE node's
2060 UID number. */
2062 static inline void
2063 equate_type_number_to_die_number (type)
2064 tree type;
2066 char type_label[MAX_ARTIFICIAL_LABEL_BYTES];
2067 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
2069 /* We are generating a DIE to represent the main variant of this type
2070 (i.e the type without any const or volatile qualifiers) so in order
2071 to get the equate to come out right, we need to get the main variant
2072 itself here. */
2074 type = type_main_variant (type);
2076 sprintf (type_label, TYPE_NAME_FMT, TYPE_UID (type));
2077 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
2078 ASM_OUTPUT_DEF (asm_out_file, type_label, die_label);
2081 static void
2082 output_reg_number (rtl)
2083 rtx rtl;
2085 unsigned regno = REGNO (rtl);
2087 if (regno >= DWARF_FRAME_REGISTERS)
2089 warning_with_decl (dwarf_last_decl,
2090 "internal regno botch: `%s' has regno = %d\n",
2091 regno);
2092 regno = 0;
2094 dw2_assemble_integer (4, GEN_INT (DBX_REGISTER_NUMBER (regno)));
2095 if (flag_debug_asm)
2097 fprintf (asm_out_file, "\t%s ", ASM_COMMENT_START);
2098 PRINT_REG (rtl, 0, asm_out_file);
2100 fputc ('\n', asm_out_file);
2103 /* The following routine is a nice and simple transducer. It converts the
2104 RTL for a variable or parameter (resident in memory) into an equivalent
2105 Dwarf representation of a mechanism for getting the address of that same
2106 variable onto the top of a hypothetical "address evaluation" stack.
2108 When creating memory location descriptors, we are effectively trans-
2109 forming the RTL for a memory-resident object into its Dwarf postfix
2110 expression equivalent. This routine just recursively descends an
2111 RTL tree, turning it into Dwarf postfix code as it goes. */
2113 static void
2114 output_mem_loc_descriptor (rtl)
2115 rtx rtl;
2117 /* Note that for a dynamically sized array, the location we will
2118 generate a description of here will be the lowest numbered location
2119 which is actually within the array. That's *not* necessarily the
2120 same as the zeroth element of the array. */
2122 #ifdef ASM_SIMPLIFY_DWARF_ADDR
2123 rtl = ASM_SIMPLIFY_DWARF_ADDR (rtl);
2124 #endif
2126 switch (GET_CODE (rtl))
2128 case SUBREG:
2130 /* The case of a subreg may arise when we have a local (register)
2131 variable or a formal (register) parameter which doesn't quite
2132 fill up an entire register. For now, just assume that it is
2133 legitimate to make the Dwarf info refer to the whole register
2134 which contains the given subreg. */
2136 rtl = SUBREG_REG (rtl);
2137 /* Drop thru. */
2139 case REG:
2141 /* Whenever a register number forms a part of the description of
2142 the method for calculating the (dynamic) address of a memory
2143 resident object, DWARF rules require the register number to
2144 be referred to as a "base register". This distinction is not
2145 based in any way upon what category of register the hardware
2146 believes the given register belongs to. This is strictly
2147 DWARF terminology we're dealing with here.
2149 Note that in cases where the location of a memory-resident data
2150 object could be expressed as:
2152 OP_ADD (OP_BASEREG (basereg), OP_CONST (0))
2154 the actual DWARF location descriptor that we generate may just
2155 be OP_BASEREG (basereg). This may look deceptively like the
2156 object in question was allocated to a register (rather than
2157 in memory) so DWARF consumers need to be aware of the subtle
2158 distinction between OP_REG and OP_BASEREG. */
2160 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_BASEREG);
2161 output_reg_number (rtl);
2162 break;
2164 case MEM:
2165 output_mem_loc_descriptor (XEXP (rtl, 0));
2166 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_DEREF4);
2167 break;
2169 case CONST:
2170 case SYMBOL_REF:
2171 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADDR);
2172 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2173 break;
2175 case PLUS:
2176 output_mem_loc_descriptor (XEXP (rtl, 0));
2177 output_mem_loc_descriptor (XEXP (rtl, 1));
2178 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
2179 break;
2181 case CONST_INT:
2182 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
2183 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, INTVAL (rtl));
2184 break;
2186 case MULT:
2187 /* If a pseudo-reg is optimized away, it is possible for it to
2188 be replaced with a MEM containing a multiply. Use a GNU extension
2189 to describe it. */
2190 output_mem_loc_descriptor (XEXP (rtl, 0));
2191 output_mem_loc_descriptor (XEXP (rtl, 1));
2192 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_MULT);
2193 break;
2195 default:
2196 abort ();
2200 /* Output a proper Dwarf location descriptor for a variable or parameter
2201 which is either allocated in a register or in a memory location. For
2202 a register, we just generate an OP_REG and the register number. For a
2203 memory location we provide a Dwarf postfix expression describing how to
2204 generate the (dynamic) address of the object onto the address stack. */
2206 static void
2207 output_loc_descriptor (rtl)
2208 rtx rtl;
2210 switch (GET_CODE (rtl))
2212 case SUBREG:
2214 /* The case of a subreg may arise when we have a local (register)
2215 variable or a formal (register) parameter which doesn't quite
2216 fill up an entire register. For now, just assume that it is
2217 legitimate to make the Dwarf info refer to the whole register
2218 which contains the given subreg. */
2220 rtl = SUBREG_REG (rtl);
2221 /* Drop thru. */
2223 case REG:
2224 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_REG);
2225 output_reg_number (rtl);
2226 break;
2228 case MEM:
2229 output_mem_loc_descriptor (XEXP (rtl, 0));
2230 break;
2232 default:
2233 abort (); /* Should never happen */
2237 /* Given a tree node describing an array bound (either lower or upper)
2238 output a representation for that bound. */
2240 static void
2241 output_bound_representation (bound, dim_num, u_or_l)
2242 tree bound;
2243 unsigned dim_num; /* For multi-dimensional arrays. */
2244 char u_or_l; /* Designates upper or lower bound. */
2246 switch (TREE_CODE (bound))
2249 case ERROR_MARK:
2250 return;
2252 /* All fixed-bounds are represented by INTEGER_CST nodes. */
2254 case INTEGER_CST:
2255 if (host_integerp (bound, 0))
2256 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, tree_low_cst (bound, 0));
2257 break;
2259 default:
2261 /* Dynamic bounds may be represented by NOP_EXPR nodes containing
2262 SAVE_EXPR nodes, in which case we can do something, or as
2263 an expression, which we cannot represent. */
2265 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2266 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2268 sprintf (begin_label, BOUND_BEGIN_LABEL_FMT,
2269 current_dienum, dim_num, u_or_l);
2271 sprintf (end_label, BOUND_END_LABEL_FMT,
2272 current_dienum, dim_num, u_or_l);
2274 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2275 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2277 /* If optimization is turned on, the SAVE_EXPRs that describe
2278 how to access the upper bound values are essentially bogus.
2279 They only describe (at best) how to get at these values at
2280 the points in the generated code right after they have just
2281 been computed. Worse yet, in the typical case, the upper
2282 bound values will not even *be* computed in the optimized
2283 code, so these SAVE_EXPRs are entirely bogus.
2285 In order to compensate for this fact, we check here to see
2286 if optimization is enabled, and if so, we effectively create
2287 an empty location description for the (unknown and unknowable)
2288 upper bound.
2290 This should not cause too much trouble for existing (stupid?)
2291 debuggers because they have to deal with empty upper bounds
2292 location descriptions anyway in order to be able to deal with
2293 incomplete array types.
2295 Of course an intelligent debugger (GDB?) should be able to
2296 comprehend that a missing upper bound specification in a
2297 array type used for a storage class `auto' local array variable
2298 indicates that the upper bound is both unknown (at compile-
2299 time) and unknowable (at run-time) due to optimization. */
2301 if (! optimize)
2303 while (TREE_CODE (bound) == NOP_EXPR
2304 || TREE_CODE (bound) == CONVERT_EXPR)
2305 bound = TREE_OPERAND (bound, 0);
2307 if (TREE_CODE (bound) == SAVE_EXPR
2308 && SAVE_EXPR_RTL (bound))
2309 output_loc_descriptor
2310 (eliminate_regs (SAVE_EXPR_RTL (bound), 0, NULL_RTX));
2313 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2315 break;
2320 /* Recursive function to output a sequence of value/name pairs for
2321 enumeration constants in reversed order. This is called from
2322 enumeration_type_die. */
2324 static void
2325 output_enumeral_list (link)
2326 tree link;
2328 if (link)
2330 output_enumeral_list (TREE_CHAIN (link));
2332 if (host_integerp (TREE_VALUE (link), 0))
2333 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
2334 tree_low_cst (TREE_VALUE (link), 0));
2336 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
2337 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
2341 /* Given an unsigned value, round it up to the lowest multiple of `boundary'
2342 which is not less than the value itself. */
2344 static inline HOST_WIDE_INT
2345 ceiling (value, boundary)
2346 HOST_WIDE_INT value;
2347 unsigned int boundary;
2349 return (((value + boundary - 1) / boundary) * boundary);
2352 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
2353 pointer to the declared type for the relevant field variable, or return
2354 `integer_type_node' if the given node turns out to be an ERROR_MARK node. */
2356 static inline tree
2357 field_type (decl)
2358 tree decl;
2360 tree type;
2362 if (TREE_CODE (decl) == ERROR_MARK)
2363 return integer_type_node;
2365 type = DECL_BIT_FIELD_TYPE (decl);
2366 if (type == NULL)
2367 type = TREE_TYPE (decl);
2368 return type;
2371 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
2372 node, return the alignment in bits for the type, or else return
2373 BITS_PER_WORD if the node actually turns out to be an ERROR_MARK node. */
2375 static inline unsigned int
2376 simple_type_align_in_bits (type)
2377 tree type;
2379 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
2382 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
2383 node, return the size in bits for the type if it is a constant, or
2384 else return the alignment for the type if the type's size is not
2385 constant, or else return BITS_PER_WORD if the type actually turns out
2386 to be an ERROR_MARK node. */
2388 static inline unsigned HOST_WIDE_INT
2389 simple_type_size_in_bits (type)
2390 tree type;
2392 tree type_size_tree;
2394 if (TREE_CODE (type) == ERROR_MARK)
2395 return BITS_PER_WORD;
2396 type_size_tree = TYPE_SIZE (type);
2398 if (type_size_tree == NULL_TREE)
2399 return 0;
2400 if (! host_integerp (type_size_tree, 1))
2401 return TYPE_ALIGN (type);
2402 return tree_low_cst (type_size_tree, 1);
2405 /* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
2406 return the byte offset of the lowest addressed byte of the "containing
2407 object" for the given FIELD_DECL, or return 0 if we are unable to deter-
2408 mine what that offset is, either because the argument turns out to be a
2409 pointer to an ERROR_MARK node, or because the offset is actually variable.
2410 (We can't handle the latter case just yet.) */
2412 static HOST_WIDE_INT
2413 field_byte_offset (decl)
2414 tree decl;
2416 unsigned int type_align_in_bytes;
2417 unsigned int type_align_in_bits;
2418 unsigned HOST_WIDE_INT type_size_in_bits;
2419 HOST_WIDE_INT object_offset_in_align_units;
2420 HOST_WIDE_INT object_offset_in_bits;
2421 HOST_WIDE_INT object_offset_in_bytes;
2422 tree type;
2423 tree field_size_tree;
2424 HOST_WIDE_INT bitpos_int;
2425 HOST_WIDE_INT deepest_bitpos;
2426 unsigned HOST_WIDE_INT field_size_in_bits;
2428 if (TREE_CODE (decl) == ERROR_MARK)
2429 return 0;
2431 if (TREE_CODE (decl) != FIELD_DECL)
2432 abort ();
2434 type = field_type (decl);
2435 field_size_tree = DECL_SIZE (decl);
2437 /* The size could be unspecified if there was an error, or for
2438 a flexible array member. */
2439 if (! field_size_tree)
2440 field_size_tree = bitsize_zero_node;
2442 /* We cannot yet cope with fields whose positions or sizes are variable,
2443 so for now, when we see such things, we simply return 0. Someday,
2444 we may be able to handle such cases, but it will be damn difficult. */
2446 if (! host_integerp (bit_position (decl), 0)
2447 || ! host_integerp (field_size_tree, 1))
2448 return 0;
2450 bitpos_int = int_bit_position (decl);
2451 field_size_in_bits = tree_low_cst (field_size_tree, 1);
2453 type_size_in_bits = simple_type_size_in_bits (type);
2454 type_align_in_bits = simple_type_align_in_bits (type);
2455 type_align_in_bytes = type_align_in_bits / BITS_PER_UNIT;
2457 /* Note that the GCC front-end doesn't make any attempt to keep track
2458 of the starting bit offset (relative to the start of the containing
2459 structure type) of the hypothetical "containing object" for a bit-
2460 field. Thus, when computing the byte offset value for the start of
2461 the "containing object" of a bit-field, we must deduce this infor-
2462 mation on our own.
2464 This can be rather tricky to do in some cases. For example, handling
2465 the following structure type definition when compiling for an i386/i486
2466 target (which only aligns long long's to 32-bit boundaries) can be very
2467 tricky:
2469 struct S {
2470 int field1;
2471 long long field2:31;
2474 Fortunately, there is a simple rule-of-thumb which can be used in such
2475 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for
2476 the structure shown above. It decides to do this based upon one simple
2477 rule for bit-field allocation. Quite simply, GCC allocates each "con-
2478 taining object" for each bit-field at the first (i.e. lowest addressed)
2479 legitimate alignment boundary (based upon the required minimum alignment
2480 for the declared type of the field) which it can possibly use, subject
2481 to the condition that there is still enough available space remaining
2482 in the containing object (when allocated at the selected point) to
2483 fully accommodate all of the bits of the bit-field itself.
2485 This simple rule makes it obvious why GCC allocates 8 bytes for each
2486 object of the structure type shown above. When looking for a place to
2487 allocate the "containing object" for `field2', the compiler simply tries
2488 to allocate a 64-bit "containing object" at each successive 32-bit
2489 boundary (starting at zero) until it finds a place to allocate that 64-
2490 bit field such that at least 31 contiguous (and previously unallocated)
2491 bits remain within that selected 64 bit field. (As it turns out, for
2492 the example above, the compiler finds that it is OK to allocate the
2493 "containing object" 64-bit field at bit-offset zero within the
2494 structure type.)
2496 Here we attempt to work backwards from the limited set of facts we're
2497 given, and we try to deduce from those facts, where GCC must have
2498 believed that the containing object started (within the structure type).
2500 The value we deduce is then used (by the callers of this routine) to
2501 generate AT_location and AT_bit_offset attributes for fields (both
2502 bit-fields and, in the case of AT_location, regular fields as well). */
2504 /* Figure out the bit-distance from the start of the structure to the
2505 "deepest" bit of the bit-field. */
2506 deepest_bitpos = bitpos_int + field_size_in_bits;
2508 /* This is the tricky part. Use some fancy footwork to deduce where the
2509 lowest addressed bit of the containing object must be. */
2510 object_offset_in_bits
2511 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2513 /* Compute the offset of the containing object in "alignment units". */
2514 object_offset_in_align_units = object_offset_in_bits / type_align_in_bits;
2516 /* Compute the offset of the containing object in bytes. */
2517 object_offset_in_bytes = object_offset_in_align_units * type_align_in_bytes;
2519 /* The above code assumes that the field does not cross an alignment
2520 boundary. This can happen if PCC_BITFIELD_TYPE_MATTERS is not defined,
2521 or if the structure is packed. If this happens, then we get an object
2522 which starts after the bitfield, which means that the bit offset is
2523 negative. Gdb fails when given negative bit offsets. We avoid this
2524 by recomputing using the first bit of the bitfield. This will give
2525 us an object which does not completely contain the bitfield, but it
2526 will be aligned, and it will contain the first bit of the bitfield.
2528 However, only do this for a BYTES_BIG_ENDIAN target. For a
2529 ! BYTES_BIG_ENDIAN target, bitpos_int + field_size_in_bits is the first
2530 first bit of the bitfield. If we recompute using bitpos_int + 1 below,
2531 then we end up computing the object byte offset for the wrong word of the
2532 desired bitfield, which in turn causes the field offset to be negative
2533 in bit_offset_attribute. */
2534 if (BYTES_BIG_ENDIAN
2535 && object_offset_in_bits > bitpos_int)
2537 deepest_bitpos = bitpos_int + 1;
2538 object_offset_in_bits
2539 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2540 object_offset_in_align_units = (object_offset_in_bits
2541 / type_align_in_bits);
2542 object_offset_in_bytes = (object_offset_in_align_units
2543 * type_align_in_bytes);
2546 return object_offset_in_bytes;
2549 /****************************** attributes *********************************/
2551 /* The following routines are responsible for writing out the various types
2552 of Dwarf attributes (and any following data bytes associated with them).
2553 These routines are listed in order based on the numerical codes of their
2554 associated attributes. */
2556 /* Generate an AT_sibling attribute. */
2558 static inline void
2559 sibling_attribute ()
2561 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2563 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sibling);
2564 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
2565 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2568 /* Output the form of location attributes suitable for whole variables and
2569 whole parameters. Note that the location attributes for struct fields
2570 are generated by the routine `data_member_location_attribute' below. */
2572 static void
2573 location_attribute (rtl)
2574 rtx rtl;
2576 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2577 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2579 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2580 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2581 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2582 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2583 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2585 /* Handle a special case. If we are about to output a location descriptor
2586 for a variable or parameter which has been optimized out of existence,
2587 don't do that. Instead we output a zero-length location descriptor
2588 value as part of the location attribute.
2590 A variable which has been optimized out of existence will have a
2591 DECL_RTL value which denotes a pseudo-reg.
2593 Currently, in some rare cases, variables can have DECL_RTL values
2594 which look like (MEM (REG pseudo-reg#)). These cases are due to
2595 bugs elsewhere in the compiler. We treat such cases
2596 as if the variable(s) in question had been optimized out of existence.
2598 Note that in all cases where we wish to express the fact that a
2599 variable has been optimized out of existence, we do not simply
2600 suppress the generation of the entire location attribute because
2601 the absence of a location attribute in certain kinds of DIEs is
2602 used to indicate something else entirely... i.e. that the DIE
2603 represents an object declaration, but not a definition. So saith
2604 the PLSIG.
2607 if (! is_pseudo_reg (rtl)
2608 && (GET_CODE (rtl) != MEM || ! is_pseudo_reg (XEXP (rtl, 0))))
2609 output_loc_descriptor (rtl);
2611 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2614 /* Output the specialized form of location attribute used for data members
2615 of struct and union types.
2617 In the special case of a FIELD_DECL node which represents a bit-field,
2618 the "offset" part of this special location descriptor must indicate the
2619 distance in bytes from the lowest-addressed byte of the containing
2620 struct or union type to the lowest-addressed byte of the "containing
2621 object" for the bit-field. (See the `field_byte_offset' function above.)
2623 For any given bit-field, the "containing object" is a hypothetical
2624 object (of some integral or enum type) within which the given bit-field
2625 lives. The type of this hypothetical "containing object" is always the
2626 same as the declared type of the individual bit-field itself (for GCC
2627 anyway... the DWARF spec doesn't actually mandate this).
2629 Note that it is the size (in bytes) of the hypothetical "containing
2630 object" which will be given in the AT_byte_size attribute for this
2631 bit-field. (See the `byte_size_attribute' function below.) It is
2632 also used when calculating the value of the AT_bit_offset attribute.
2633 (See the `bit_offset_attribute' function below.) */
2635 static void
2636 data_member_location_attribute (t)
2637 tree t;
2639 unsigned object_offset_in_bytes;
2640 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2641 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2643 if (TREE_CODE (t) == TREE_VEC)
2644 object_offset_in_bytes = tree_low_cst (BINFO_OFFSET (t), 0);
2645 else
2646 object_offset_in_bytes = field_byte_offset (t);
2648 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2649 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2650 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2651 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2652 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2653 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
2654 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, object_offset_in_bytes);
2655 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
2656 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2659 /* Output an AT_const_value attribute for a variable or a parameter which
2660 does not have a "location" either in memory or in a register. These
2661 things can arise in GNU C when a constant is passed as an actual
2662 parameter to an inlined function. They can also arise in C++ where
2663 declared constants do not necessarily get memory "homes". */
2665 static void
2666 const_value_attribute (rtl)
2667 rtx rtl;
2669 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2670 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2672 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_const_value_block4);
2673 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2674 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2675 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2676 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2678 switch (GET_CODE (rtl))
2680 case CONST_INT:
2681 /* Note that a CONST_INT rtx could represent either an integer or
2682 a floating-point constant. A CONST_INT is used whenever the
2683 constant will fit into a single word. In all such cases, the
2684 original mode of the constant value is wiped out, and the
2685 CONST_INT rtx is assigned VOIDmode. Since we no longer have
2686 precise mode information for these constants, we always just
2687 output them using 4 bytes. */
2689 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, (unsigned) INTVAL (rtl));
2690 break;
2692 case CONST_DOUBLE:
2693 /* Note that a CONST_DOUBLE rtx could represent either an integer
2694 or a floating-point constant. A CONST_DOUBLE is used whenever
2695 the constant requires more than one word in order to be adequately
2696 represented. In all such cases, the original mode of the constant
2697 value is preserved as the mode of the CONST_DOUBLE rtx, but for
2698 simplicity we always just output CONST_DOUBLEs using 8 bytes. */
2700 ASM_OUTPUT_DWARF_DATA8 (asm_out_file,
2701 (unsigned int) CONST_DOUBLE_HIGH (rtl),
2702 (unsigned int) CONST_DOUBLE_LOW (rtl));
2703 break;
2705 case CONST_STRING:
2706 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, XSTR (rtl, 0));
2707 break;
2709 case SYMBOL_REF:
2710 case LABEL_REF:
2711 case CONST:
2712 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2713 break;
2715 case PLUS:
2716 /* In cases where an inlined instance of an inline function is passed
2717 the address of an `auto' variable (which is local to the caller)
2718 we can get a situation where the DECL_RTL of the artificial
2719 local variable (for the inlining) which acts as a stand-in for
2720 the corresponding formal parameter (of the inline function)
2721 will look like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).
2722 This is not exactly a compile-time constant expression, but it
2723 isn't the address of the (artificial) local variable either.
2724 Rather, it represents the *value* which the artificial local
2725 variable always has during its lifetime. We currently have no
2726 way to represent such quasi-constant values in Dwarf, so for now
2727 we just punt and generate an AT_const_value attribute with form
2728 FORM_BLOCK4 and a length of zero. */
2729 break;
2731 default:
2732 abort (); /* No other kinds of rtx should be possible here. */
2735 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2738 /* Generate *either* an AT_location attribute or else an AT_const_value
2739 data attribute for a variable or a parameter. We generate the
2740 AT_const_value attribute only in those cases where the given
2741 variable or parameter does not have a true "location" either in
2742 memory or in a register. This can happen (for example) when a
2743 constant is passed as an actual argument in a call to an inline
2744 function. (It's possible that these things can crop up in other
2745 ways also.) Note that one type of constant value which can be
2746 passed into an inlined function is a constant pointer. This can
2747 happen for example if an actual argument in an inlined function
2748 call evaluates to a compile-time constant address. */
2750 static void
2751 location_or_const_value_attribute (decl)
2752 tree decl;
2754 rtx rtl;
2756 if (TREE_CODE (decl) == ERROR_MARK)
2757 return;
2759 if ((TREE_CODE (decl) != VAR_DECL) && (TREE_CODE (decl) != PARM_DECL))
2761 /* Should never happen. */
2762 abort ();
2763 return;
2766 /* Here we have to decide where we are going to say the parameter "lives"
2767 (as far as the debugger is concerned). We only have a couple of choices.
2768 GCC provides us with DECL_RTL and with DECL_INCOMING_RTL. DECL_RTL
2769 normally indicates where the parameter lives during most of the activa-
2770 tion of the function. If optimization is enabled however, this could
2771 be either NULL or else a pseudo-reg. Both of those cases indicate that
2772 the parameter doesn't really live anywhere (as far as the code generation
2773 parts of GCC are concerned) during most of the function's activation.
2774 That will happen (for example) if the parameter is never referenced
2775 within the function.
2777 We could just generate a location descriptor here for all non-NULL
2778 non-pseudo values of DECL_RTL and ignore all of the rest, but we can
2779 be a little nicer than that if we also consider DECL_INCOMING_RTL in
2780 cases where DECL_RTL is NULL or is a pseudo-reg.
2782 Note however that we can only get away with using DECL_INCOMING_RTL as
2783 a backup substitute for DECL_RTL in certain limited cases. In cases
2784 where DECL_ARG_TYPE(decl) indicates the same type as TREE_TYPE(decl)
2785 we can be sure that the parameter was passed using the same type as it
2786 is declared to have within the function, and that its DECL_INCOMING_RTL
2787 points us to a place where a value of that type is passed. In cases
2788 where DECL_ARG_TYPE(decl) and TREE_TYPE(decl) are different types
2789 however, we cannot (in general) use DECL_INCOMING_RTL as a backup
2790 substitute for DECL_RTL because in these cases, DECL_INCOMING_RTL
2791 points us to a value of some type which is *different* from the type
2792 of the parameter itself. Thus, if we tried to use DECL_INCOMING_RTL
2793 to generate a location attribute in such cases, the debugger would
2794 end up (for example) trying to fetch a `float' from a place which
2795 actually contains the first part of a `double'. That would lead to
2796 really incorrect and confusing output at debug-time, and we don't
2797 want that now do we?
2799 So in general, we DO NOT use DECL_INCOMING_RTL as a backup for DECL_RTL
2800 in cases where DECL_ARG_TYPE(decl) != TREE_TYPE(decl). There are a
2801 couple of cute exceptions however. On little-endian machines we can
2802 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE(decl) is
2803 not the same as TREE_TYPE(decl) but only when DECL_ARG_TYPE(decl) is
2804 an integral type which is smaller than TREE_TYPE(decl). These cases
2805 arise when (on a little-endian machine) a non-prototyped function has
2806 a parameter declared to be of type `short' or `char'. In such cases,
2807 TREE_TYPE(decl) will be `short' or `char', DECL_ARG_TYPE(decl) will be
2808 `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
2809 passed `int' value. If the debugger then uses that address to fetch a
2810 `short' or a `char' (on a little-endian machine) the result will be the
2811 correct data, so we allow for such exceptional cases below.
2813 Note that our goal here is to describe the place where the given formal
2814 parameter lives during most of the function's activation (i.e. between
2815 the end of the prologue and the start of the epilogue). We'll do that
2816 as best as we can. Note however that if the given formal parameter is
2817 modified sometime during the execution of the function, then a stack
2818 backtrace (at debug-time) will show the function as having been called
2819 with the *new* value rather than the value which was originally passed
2820 in. This happens rarely enough that it is not a major problem, but it
2821 *is* a problem, and I'd like to fix it. A future version of dwarfout.c
2822 may generate two additional attributes for any given TAG_formal_parameter
2823 DIE which will describe the "passed type" and the "passed location" for
2824 the given formal parameter in addition to the attributes we now generate
2825 to indicate the "declared type" and the "active location" for each
2826 parameter. This additional set of attributes could be used by debuggers
2827 for stack backtraces.
2829 Separately, note that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL
2830 can be NULL also. This happens (for example) for inlined-instances of
2831 inline function formal parameters which are never referenced. This really
2832 shouldn't be happening. All PARM_DECL nodes should get valid non-NULL
2833 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate
2834 these values for inlined instances of inline function parameters, so
2835 when we see such cases, we are just out-of-luck for the time
2836 being (until integrate.c gets fixed).
2839 /* Use DECL_RTL as the "location" unless we find something better. */
2840 rtl = DECL_RTL (decl);
2842 if (TREE_CODE (decl) == PARM_DECL)
2843 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
2845 /* This decl represents a formal parameter which was optimized out. */
2846 tree declared_type = type_main_variant (TREE_TYPE (decl));
2847 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
2849 /* Note that DECL_INCOMING_RTL may be NULL in here, but we handle
2850 *all* cases where (rtl == NULL_RTX) just below. */
2852 if (declared_type == passed_type)
2853 rtl = DECL_INCOMING_RTL (decl);
2854 else if (! BYTES_BIG_ENDIAN)
2855 if (TREE_CODE (declared_type) == INTEGER_TYPE)
2856 /* NMS WTF? */
2857 if (TYPE_SIZE (declared_type) <= TYPE_SIZE (passed_type))
2858 rtl = DECL_INCOMING_RTL (decl);
2861 if (rtl == NULL_RTX)
2862 return;
2864 rtl = eliminate_regs (rtl, 0, NULL_RTX);
2865 #ifdef LEAF_REG_REMAP
2866 if (current_function_uses_only_leaf_regs)
2867 leaf_renumber_regs_insn (rtl);
2868 #endif
2870 switch (GET_CODE (rtl))
2872 case ADDRESSOF:
2873 /* The address of a variable that was optimized away; don't emit
2874 anything. */
2875 break;
2877 case CONST_INT:
2878 case CONST_DOUBLE:
2879 case CONST_STRING:
2880 case SYMBOL_REF:
2881 case LABEL_REF:
2882 case CONST:
2883 case PLUS: /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
2884 const_value_attribute (rtl);
2885 break;
2887 case MEM:
2888 case REG:
2889 case SUBREG:
2890 location_attribute (rtl);
2891 break;
2893 case CONCAT:
2894 /* ??? CONCAT is used for complex variables, which may have the real
2895 part stored in one place and the imag part stored somewhere else.
2896 DWARF1 has no way to describe a variable that lives in two different
2897 places, so we just describe where the first part lives, and hope that
2898 the second part is stored after it. */
2899 location_attribute (XEXP (rtl, 0));
2900 break;
2902 default:
2903 abort (); /* Should never happen. */
2907 /* Generate an AT_name attribute given some string value to be included as
2908 the value of the attribute. */
2910 static inline void
2911 name_attribute (name_string)
2912 const char *name_string;
2914 if (name_string && *name_string)
2916 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_name);
2917 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, name_string);
2921 static inline void
2922 fund_type_attribute (ft_code)
2923 unsigned ft_code;
2925 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_fund_type);
2926 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, ft_code);
2929 static void
2930 mod_fund_type_attribute (type, decl_const, decl_volatile)
2931 tree type;
2932 int decl_const;
2933 int decl_volatile;
2935 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2936 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2938 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_fund_type);
2939 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2940 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2941 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2942 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2943 write_modifier_bytes (type, decl_const, decl_volatile);
2944 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2945 fundamental_type_code (root_type (type)));
2946 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2949 static inline void
2950 user_def_type_attribute (type)
2951 tree type;
2953 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2955 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_user_def_type);
2956 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (type));
2957 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2960 static void
2961 mod_u_d_type_attribute (type, decl_const, decl_volatile)
2962 tree type;
2963 int decl_const;
2964 int decl_volatile;
2966 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2967 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2968 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2970 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_u_d_type);
2971 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2972 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2973 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2974 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2975 write_modifier_bytes (type, decl_const, decl_volatile);
2976 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (root_type (type)));
2977 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2978 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2981 #ifdef USE_ORDERING_ATTRIBUTE
2982 static inline void
2983 ordering_attribute (ordering)
2984 unsigned ordering;
2986 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_ordering);
2987 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, ordering);
2989 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
2991 /* Note that the block of subscript information for an array type also
2992 includes information about the element type of type given array type. */
2994 static void
2995 subscript_data_attribute (type)
2996 tree type;
2998 unsigned dimension_number;
2999 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3000 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3002 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_subscr_data);
3003 sprintf (begin_label, SS_BEGIN_LABEL_FMT, current_dienum);
3004 sprintf (end_label, SS_END_LABEL_FMT, current_dienum);
3005 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
3006 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3008 /* The GNU compilers represent multidimensional array types as sequences
3009 of one dimensional array types whose element types are themselves array
3010 types. Here we squish that down, so that each multidimensional array
3011 type gets only one array_type DIE in the Dwarf debugging info. The
3012 draft Dwarf specification say that we are allowed to do this kind
3013 of compression in C (because there is no difference between an
3014 array or arrays and a multidimensional array in C) but for other
3015 source languages (e.g. Ada) we probably shouldn't do this. */
3017 for (dimension_number = 0;
3018 TREE_CODE (type) == ARRAY_TYPE;
3019 type = TREE_TYPE (type), dimension_number++)
3021 tree domain = TYPE_DOMAIN (type);
3023 /* Arrays come in three flavors. Unspecified bounds, fixed
3024 bounds, and (in GNU C only) variable bounds. Handle all
3025 three forms here. */
3027 if (domain)
3029 /* We have an array type with specified bounds. */
3031 tree lower = TYPE_MIN_VALUE (domain);
3032 tree upper = TYPE_MAX_VALUE (domain);
3034 /* Handle only fundamental types as index types for now. */
3035 if (! type_is_fundamental (domain))
3036 abort ();
3038 /* Output the representation format byte for this dimension. */
3039 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file,
3040 FMT_CODE (1, TREE_CODE (lower) == INTEGER_CST,
3041 upper && TREE_CODE (upper) == INTEGER_CST));
3043 /* Output the index type for this dimension. */
3044 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
3045 fundamental_type_code (domain));
3047 /* Output the representation for the lower bound. */
3048 output_bound_representation (lower, dimension_number, 'l');
3050 /* Output the representation for the upper bound. */
3051 if (upper)
3052 output_bound_representation (upper, dimension_number, 'u');
3053 else
3054 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
3056 else
3058 /* We have an array type with an unspecified length. For C and
3059 C++ we can assume that this really means that (a) the index
3060 type is an integral type, and (b) the lower bound is zero.
3061 Note that Dwarf defines the representation of an unspecified
3062 (upper) bound as being a zero-length location description. */
3064 /* Output the array-bounds format byte. */
3066 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_FT_C_X);
3068 /* Output the (assumed) index type. */
3070 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, FT_integer);
3072 /* Output the (assumed) lower bound (constant) value. */
3074 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
3076 /* Output the (empty) location description for the upper bound. */
3078 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
3082 /* Output the prefix byte that says that the element type is coming up. */
3084 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_ET);
3086 /* Output a representation of the type of the elements of this array type. */
3088 type_attribute (type, 0, 0);
3090 ASM_OUTPUT_LABEL (asm_out_file, end_label);
3093 static void
3094 byte_size_attribute (tree_node)
3095 tree tree_node;
3097 unsigned size;
3099 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_byte_size);
3100 switch (TREE_CODE (tree_node))
3102 case ERROR_MARK:
3103 size = 0;
3104 break;
3106 case ENUMERAL_TYPE:
3107 case RECORD_TYPE:
3108 case UNION_TYPE:
3109 case QUAL_UNION_TYPE:
3110 case ARRAY_TYPE:
3111 size = int_size_in_bytes (tree_node);
3112 break;
3114 case FIELD_DECL:
3115 /* For a data member of a struct or union, the AT_byte_size is
3116 generally given as the number of bytes normally allocated for
3117 an object of the *declared* type of the member itself. This
3118 is true even for bit-fields. */
3119 size = simple_type_size_in_bits (field_type (tree_node))
3120 / BITS_PER_UNIT;
3121 break;
3123 default:
3124 abort ();
3127 /* Note that `size' might be -1 when we get to this point. If it
3128 is, that indicates that the byte size of the entity in question
3129 is variable. We have no good way of expressing this fact in Dwarf
3130 at the present time, so just let the -1 pass on through. */
3132 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, size);
3135 /* For a FIELD_DECL node which represents a bit-field, output an attribute
3136 which specifies the distance in bits from the highest order bit of the
3137 "containing object" for the bit-field to the highest order bit of the
3138 bit-field itself.
3140 For any given bit-field, the "containing object" is a hypothetical
3141 object (of some integral or enum type) within which the given bit-field
3142 lives. The type of this hypothetical "containing object" is always the
3143 same as the declared type of the individual bit-field itself.
3145 The determination of the exact location of the "containing object" for
3146 a bit-field is rather complicated. It's handled by the `field_byte_offset'
3147 function (above).
3149 Note that it is the size (in bytes) of the hypothetical "containing
3150 object" which will be given in the AT_byte_size attribute for this
3151 bit-field. (See `byte_size_attribute' above.) */
3153 static inline void
3154 bit_offset_attribute (decl)
3155 tree decl;
3157 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
3158 tree type = DECL_BIT_FIELD_TYPE (decl);
3159 HOST_WIDE_INT bitpos_int;
3160 HOST_WIDE_INT highest_order_object_bit_offset;
3161 HOST_WIDE_INT highest_order_field_bit_offset;
3162 HOST_WIDE_INT bit_offset;
3164 /* Must be a bit field. */
3165 if (!type
3166 || TREE_CODE (decl) != FIELD_DECL)
3167 abort ();
3169 /* We can't yet handle bit-fields whose offsets or sizes are variable, so
3170 if we encounter such things, just return without generating any
3171 attribute whatsoever. */
3173 if (! host_integerp (bit_position (decl), 0)
3174 || ! host_integerp (DECL_SIZE (decl), 1))
3175 return;
3177 bitpos_int = int_bit_position (decl);
3179 /* Note that the bit offset is always the distance (in bits) from the
3180 highest-order bit of the "containing object" to the highest-order
3181 bit of the bit-field itself. Since the "high-order end" of any
3182 object or field is different on big-endian and little-endian machines,
3183 the computation below must take account of these differences. */
3185 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
3186 highest_order_field_bit_offset = bitpos_int;
3188 if (! BYTES_BIG_ENDIAN)
3190 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 1);
3191 highest_order_object_bit_offset += simple_type_size_in_bits (type);
3194 bit_offset =
3195 (! BYTES_BIG_ENDIAN
3196 ? highest_order_object_bit_offset - highest_order_field_bit_offset
3197 : highest_order_field_bit_offset - highest_order_object_bit_offset);
3199 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_offset);
3200 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, bit_offset);
3203 /* For a FIELD_DECL node which represents a bit field, output an attribute
3204 which specifies the length in bits of the given field. */
3206 static inline void
3207 bit_size_attribute (decl)
3208 tree decl;
3210 /* Must be a field and a bit field. */
3211 if (TREE_CODE (decl) != FIELD_DECL
3212 || ! DECL_BIT_FIELD_TYPE (decl))
3213 abort ();
3215 if (host_integerp (DECL_SIZE (decl), 1))
3217 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_size);
3218 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
3219 tree_low_cst (DECL_SIZE (decl), 1));
3223 /* The following routine outputs the `element_list' attribute for enumeration
3224 type DIEs. The element_lits attribute includes the names and values of
3225 all of the enumeration constants associated with the given enumeration
3226 type. */
3228 static inline void
3229 element_list_attribute (element)
3230 tree element;
3232 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3233 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3235 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_element_list);
3236 sprintf (begin_label, EE_BEGIN_LABEL_FMT, current_dienum);
3237 sprintf (end_label, EE_END_LABEL_FMT, current_dienum);
3238 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
3239 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3241 /* Here we output a list of value/name pairs for each enumeration constant
3242 defined for this enumeration type (as required), but we do it in REVERSE
3243 order. The order is the one required by the draft #5 Dwarf specification
3244 published by the UI/PLSIG. */
3246 output_enumeral_list (element); /* Recursively output the whole list. */
3248 ASM_OUTPUT_LABEL (asm_out_file, end_label);
3251 /* Generate an AT_stmt_list attribute. These are normally present only in
3252 DIEs with a TAG_compile_unit tag. */
3254 static inline void
3255 stmt_list_attribute (label)
3256 const char *label;
3258 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_stmt_list);
3259 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3260 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
3263 /* Generate an AT_low_pc attribute for a label DIE, a lexical_block DIE or
3264 for a subroutine DIE. */
3266 static inline void
3267 low_pc_attribute (asm_low_label)
3268 const char *asm_low_label;
3270 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_low_pc);
3271 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_low_label);
3274 /* Generate an AT_high_pc attribute for a lexical_block DIE or for a
3275 subroutine DIE. */
3277 static inline void
3278 high_pc_attribute (asm_high_label)
3279 const char *asm_high_label;
3281 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_high_pc);
3282 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_high_label);
3285 /* Generate an AT_body_begin attribute for a subroutine DIE. */
3287 static inline void
3288 body_begin_attribute (asm_begin_label)
3289 const char *asm_begin_label;
3291 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_begin);
3292 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_begin_label);
3295 /* Generate an AT_body_end attribute for a subroutine DIE. */
3297 static inline void
3298 body_end_attribute (asm_end_label)
3299 const char *asm_end_label;
3301 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_end);
3302 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_end_label);
3305 /* Generate an AT_language attribute given a LANG value. These attributes
3306 are used only within TAG_compile_unit DIEs. */
3308 static inline void
3309 language_attribute (language_code)
3310 unsigned language_code;
3312 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_language);
3313 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, language_code);
3316 static inline void
3317 member_attribute (context)
3318 tree context;
3320 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3322 /* Generate this attribute only for members in C++. */
3324 if (context != NULL && is_tagged_type (context))
3326 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_member);
3327 sprintf (label, TYPE_NAME_FMT, TYPE_UID (context));
3328 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3332 #if 0
3333 static inline void
3334 string_length_attribute (upper_bound)
3335 tree upper_bound;
3337 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3338 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3340 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_string_length);
3341 sprintf (begin_label, SL_BEGIN_LABEL_FMT, current_dienum);
3342 sprintf (end_label, SL_END_LABEL_FMT, current_dienum);
3343 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
3344 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3345 output_bound_representation (upper_bound, 0, 'u');
3346 ASM_OUTPUT_LABEL (asm_out_file, end_label);
3348 #endif
3350 static inline void
3351 comp_dir_attribute (dirname)
3352 const char *dirname;
3354 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_comp_dir);
3355 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
3358 static inline void
3359 sf_names_attribute (sf_names_start_label)
3360 const char *sf_names_start_label;
3362 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sf_names);
3363 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3364 ASM_OUTPUT_DWARF_ADDR (asm_out_file, sf_names_start_label);
3367 static inline void
3368 src_info_attribute (src_info_start_label)
3369 const char *src_info_start_label;
3371 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_info);
3372 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3373 ASM_OUTPUT_DWARF_ADDR (asm_out_file, src_info_start_label);
3376 static inline void
3377 mac_info_attribute (mac_info_start_label)
3378 const char *mac_info_start_label;
3380 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mac_info);
3381 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3382 ASM_OUTPUT_DWARF_ADDR (asm_out_file, mac_info_start_label);
3385 static inline void
3386 prototyped_attribute (func_type)
3387 tree func_type;
3389 if ((strcmp (lang_hooks.name, "GNU C") == 0)
3390 && (TYPE_ARG_TYPES (func_type) != NULL))
3392 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_prototyped);
3393 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3397 static inline void
3398 producer_attribute (producer)
3399 const char *producer;
3401 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_producer);
3402 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, producer);
3405 static inline void
3406 inline_attribute (decl)
3407 tree decl;
3409 if (DECL_INLINE (decl))
3411 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_inline);
3412 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3416 static inline void
3417 containing_type_attribute (containing_type)
3418 tree containing_type;
3420 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3422 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_containing_type);
3423 sprintf (label, TYPE_NAME_FMT, TYPE_UID (containing_type));
3424 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3427 static inline void
3428 abstract_origin_attribute (origin)
3429 tree origin;
3431 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3433 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_abstract_origin);
3434 switch (TREE_CODE_CLASS (TREE_CODE (origin)))
3436 case 'd':
3437 sprintf (label, DECL_NAME_FMT, DECL_UID (origin));
3438 break;
3440 case 't':
3441 sprintf (label, TYPE_NAME_FMT, TYPE_UID (origin));
3442 break;
3444 default:
3445 abort (); /* Should never happen. */
3448 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3451 #ifdef DWARF_DECL_COORDINATES
3452 static inline void
3453 src_coords_attribute (src_fileno, src_lineno)
3454 unsigned src_fileno;
3455 unsigned src_lineno;
3457 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_coords);
3458 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_fileno);
3459 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_lineno);
3461 #endif /* defined(DWARF_DECL_COORDINATES) */
3463 static inline void
3464 pure_or_virtual_attribute (func_decl)
3465 tree func_decl;
3467 if (DECL_VIRTUAL_P (func_decl))
3469 #if 0 /* DECL_ABSTRACT_VIRTUAL_P is C++-specific. */
3470 if (DECL_ABSTRACT_VIRTUAL_P (func_decl))
3471 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_pure_virtual);
3472 else
3473 #endif
3474 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
3475 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3479 /************************* end of attributes *****************************/
3481 /********************* utility routines for DIEs *************************/
3483 /* Output an AT_name attribute and an AT_src_coords attribute for the
3484 given decl, but only if it actually has a name. */
3486 static void
3487 name_and_src_coords_attributes (decl)
3488 tree decl;
3490 tree decl_name = DECL_NAME (decl);
3492 if (decl_name && IDENTIFIER_POINTER (decl_name))
3494 name_attribute (IDENTIFIER_POINTER (decl_name));
3495 #ifdef DWARF_DECL_COORDINATES
3497 register unsigned file_index;
3499 /* This is annoying, but we have to pop out of the .debug section
3500 for a moment while we call `lookup_filename' because calling it
3501 may cause a temporary switch into the .debug_sfnames section and
3502 most svr4 assemblers are not smart enough to be able to nest
3503 section switches to any depth greater than one. Note that we
3504 also can't skirt this issue by delaying all output to the
3505 .debug_sfnames section unit the end of compilation because that
3506 would cause us to have inter-section forward references and
3507 Fred Fish sez that m68k/svr4 assemblers botch those. */
3509 ASM_OUTPUT_POP_SECTION (asm_out_file);
3510 file_index = lookup_filename (DECL_SOURCE_FILE (decl));
3511 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
3513 src_coords_attribute (file_index, DECL_SOURCE_LINE (decl));
3515 #endif /* defined(DWARF_DECL_COORDINATES) */
3519 /* Many forms of DIEs contain a "type description" part. The following
3520 routine writes out these "type descriptor" parts. */
3522 static void
3523 type_attribute (type, decl_const, decl_volatile)
3524 tree type;
3525 int decl_const;
3526 int decl_volatile;
3528 enum tree_code code = TREE_CODE (type);
3529 int root_type_modified;
3531 if (code == ERROR_MARK)
3532 return;
3534 /* Handle a special case. For functions whose return type is void,
3535 we generate *no* type attribute. (Note that no object may have
3536 type `void', so this only applies to function return types. */
3538 if (code == VOID_TYPE)
3539 return;
3541 /* If this is a subtype, find the underlying type. Eventually,
3542 this should write out the appropriate subtype info. */
3543 while ((code == INTEGER_TYPE || code == REAL_TYPE)
3544 && TREE_TYPE (type) != 0)
3545 type = TREE_TYPE (type), code = TREE_CODE (type);
3547 root_type_modified = (code == POINTER_TYPE || code == REFERENCE_TYPE
3548 || decl_const || decl_volatile
3549 || TYPE_READONLY (type) || TYPE_VOLATILE (type));
3551 if (type_is_fundamental (root_type (type)))
3553 if (root_type_modified)
3554 mod_fund_type_attribute (type, decl_const, decl_volatile);
3555 else
3556 fund_type_attribute (fundamental_type_code (type));
3558 else
3560 if (root_type_modified)
3561 mod_u_d_type_attribute (type, decl_const, decl_volatile);
3562 else
3563 /* We have to get the type_main_variant here (and pass that to the
3564 `user_def_type_attribute' routine) because the ..._TYPE node we
3565 have might simply be a *copy* of some original type node (where
3566 the copy was created to help us keep track of typedef names)
3567 and that copy might have a different TYPE_UID from the original
3568 ..._TYPE node. (Note that when `equate_type_number_to_die_number'
3569 is labeling a given type DIE for future reference, it always and
3570 only creates labels for DIEs representing *main variants*, and it
3571 never even knows about non-main-variants.) */
3572 user_def_type_attribute (type_main_variant (type));
3576 /* Given a tree pointer to a struct, class, union, or enum type node, return
3577 a pointer to the (string) tag name for the given type, or zero if the
3578 type was declared without a tag. */
3580 static const char *
3581 type_tag (type)
3582 tree type;
3584 const char *name = 0;
3586 if (TYPE_NAME (type) != 0)
3588 tree t = 0;
3590 /* Find the IDENTIFIER_NODE for the type name. */
3591 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
3592 t = TYPE_NAME (type);
3594 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
3595 a TYPE_DECL node, regardless of whether or not a `typedef' was
3596 involved. */
3597 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
3598 && ! DECL_IGNORED_P (TYPE_NAME (type)))
3599 t = DECL_NAME (TYPE_NAME (type));
3601 /* Now get the name as a string, or invent one. */
3602 if (t != 0)
3603 name = IDENTIFIER_POINTER (t);
3606 return (name == 0 || *name == '\0') ? 0 : name;
3609 static inline void
3610 dienum_push ()
3612 /* Start by checking if the pending_sibling_stack needs to be expanded.
3613 If necessary, expand it. */
3615 if (pending_siblings == pending_siblings_allocated)
3617 pending_siblings_allocated += PENDING_SIBLINGS_INCREMENT;
3618 pending_sibling_stack
3619 = (unsigned *) xrealloc (pending_sibling_stack,
3620 pending_siblings_allocated * sizeof(unsigned));
3623 pending_siblings++;
3624 NEXT_DIE_NUM = next_unused_dienum++;
3627 /* Pop the sibling stack so that the most recently pushed DIEnum becomes the
3628 NEXT_DIE_NUM. */
3630 static inline void
3631 dienum_pop ()
3633 pending_siblings--;
3636 static inline tree
3637 member_declared_type (member)
3638 tree member;
3640 return (DECL_BIT_FIELD_TYPE (member))
3641 ? DECL_BIT_FIELD_TYPE (member)
3642 : TREE_TYPE (member);
3645 /* Get the function's label, as described by its RTL.
3646 This may be different from the DECL_NAME name used
3647 in the source file. */
3649 static const char *
3650 function_start_label (decl)
3651 tree decl;
3653 rtx x;
3654 const char *fnname;
3656 x = DECL_RTL (decl);
3657 if (GET_CODE (x) != MEM)
3658 abort ();
3659 x = XEXP (x, 0);
3660 if (GET_CODE (x) != SYMBOL_REF)
3661 abort ();
3662 fnname = XSTR (x, 0);
3663 return fnname;
3667 /******************************* DIEs ************************************/
3669 /* Output routines for individual types of DIEs. */
3671 /* Note that every type of DIE (except a null DIE) gets a sibling. */
3673 static void
3674 output_array_type_die (arg)
3675 void *arg;
3677 tree type = arg;
3679 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_array_type);
3680 sibling_attribute ();
3681 equate_type_number_to_die_number (type);
3682 member_attribute (TYPE_CONTEXT (type));
3684 /* I believe that we can default the array ordering. SDB will probably
3685 do the right things even if AT_ordering is not present. It's not
3686 even an issue until we start to get into multidimensional arrays
3687 anyway. If SDB is ever caught doing the Wrong Thing for multi-
3688 dimensional arrays, then we'll have to put the AT_ordering attribute
3689 back in. (But if and when we find out that we need to put these in,
3690 we will only do so for multidimensional arrays. After all, we don't
3691 want to waste space in the .debug section now do we?) */
3693 #ifdef USE_ORDERING_ATTRIBUTE
3694 ordering_attribute (ORD_row_major);
3695 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
3697 subscript_data_attribute (type);
3700 static void
3701 output_set_type_die (arg)
3702 void *arg;
3704 tree type = arg;
3706 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_set_type);
3707 sibling_attribute ();
3708 equate_type_number_to_die_number (type);
3709 member_attribute (TYPE_CONTEXT (type));
3710 type_attribute (TREE_TYPE (type), 0, 0);
3713 #if 0
3714 /* Implement this when there is a GNU FORTRAN or GNU Ada front end. */
3716 static void
3717 output_entry_point_die (arg)
3718 void *arg;
3720 tree decl = arg;
3721 tree origin = decl_ultimate_origin (decl);
3723 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_entry_point);
3724 sibling_attribute ();
3725 dienum_push ();
3726 if (origin != NULL)
3727 abstract_origin_attribute (origin);
3728 else
3730 name_and_src_coords_attributes (decl);
3731 member_attribute (DECL_CONTEXT (decl));
3732 type_attribute (TREE_TYPE (TREE_TYPE (decl)), 0, 0);
3734 if (DECL_ABSTRACT (decl))
3735 equate_decl_number_to_die_number (decl);
3736 else
3737 low_pc_attribute (function_start_label (decl));
3739 #endif
3741 /* Output a DIE to represent an inlined instance of an enumeration type. */
3743 static void
3744 output_inlined_enumeration_type_die (arg)
3745 void *arg;
3747 tree type = arg;
3749 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3750 sibling_attribute ();
3751 if (!TREE_ASM_WRITTEN (type))
3752 abort ();
3753 abstract_origin_attribute (type);
3756 /* Output a DIE to represent an inlined instance of a structure type. */
3758 static void
3759 output_inlined_structure_type_die (arg)
3760 void *arg;
3762 tree type = arg;
3764 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3765 sibling_attribute ();
3766 if (!TREE_ASM_WRITTEN (type))
3767 abort ();
3768 abstract_origin_attribute (type);
3771 /* Output a DIE to represent an inlined instance of a union type. */
3773 static void
3774 output_inlined_union_type_die (arg)
3775 void *arg;
3777 tree type = arg;
3779 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3780 sibling_attribute ();
3781 if (!TREE_ASM_WRITTEN (type))
3782 abort ();
3783 abstract_origin_attribute (type);
3786 /* Output a DIE to represent an enumeration type. Note that these DIEs
3787 include all of the information about the enumeration values also.
3788 This information is encoded into the element_list attribute. */
3790 static void
3791 output_enumeration_type_die (arg)
3792 void *arg;
3794 tree type = arg;
3796 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3797 sibling_attribute ();
3798 equate_type_number_to_die_number (type);
3799 name_attribute (type_tag (type));
3800 member_attribute (TYPE_CONTEXT (type));
3802 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
3803 given enum type is incomplete, do not generate the AT_byte_size
3804 attribute or the AT_element_list attribute. */
3806 if (COMPLETE_TYPE_P (type))
3808 byte_size_attribute (type);
3809 element_list_attribute (TYPE_FIELDS (type));
3813 /* Output a DIE to represent either a real live formal parameter decl or
3814 to represent just the type of some formal parameter position in some
3815 function type.
3817 Note that this routine is a bit unusual because its argument may be
3818 a ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
3819 represents an inlining of some PARM_DECL) or else some sort of a
3820 ..._TYPE node. If it's the former then this function is being called
3821 to output a DIE to represent a formal parameter object (or some inlining
3822 thereof). If it's the latter, then this function is only being called
3823 to output a TAG_formal_parameter DIE to stand as a placeholder for some
3824 formal argument type of some subprogram type. */
3826 static void
3827 output_formal_parameter_die (arg)
3828 void *arg;
3830 tree node = arg;
3832 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_formal_parameter);
3833 sibling_attribute ();
3835 switch (TREE_CODE_CLASS (TREE_CODE (node)))
3837 case 'd': /* We were called with some kind of a ..._DECL node. */
3839 register tree origin = decl_ultimate_origin (node);
3841 if (origin != NULL)
3842 abstract_origin_attribute (origin);
3843 else
3845 name_and_src_coords_attributes (node);
3846 type_attribute (TREE_TYPE (node),
3847 TREE_READONLY (node), TREE_THIS_VOLATILE (node));
3849 if (DECL_ABSTRACT (node))
3850 equate_decl_number_to_die_number (node);
3851 else
3852 location_or_const_value_attribute (node);
3854 break;
3856 case 't': /* We were called with some kind of a ..._TYPE node. */
3857 type_attribute (node, 0, 0);
3858 break;
3860 default:
3861 abort (); /* Should never happen. */
3865 /* Output a DIE to represent a declared function (either file-scope
3866 or block-local) which has "external linkage" (according to ANSI-C). */
3868 static void
3869 output_global_subroutine_die (arg)
3870 void *arg;
3872 tree decl = arg;
3873 tree origin = decl_ultimate_origin (decl);
3875 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_subroutine);
3876 sibling_attribute ();
3877 dienum_push ();
3878 if (origin != NULL)
3879 abstract_origin_attribute (origin);
3880 else
3882 tree type = TREE_TYPE (decl);
3884 name_and_src_coords_attributes (decl);
3885 inline_attribute (decl);
3886 prototyped_attribute (type);
3887 member_attribute (DECL_CONTEXT (decl));
3888 type_attribute (TREE_TYPE (type), 0, 0);
3889 pure_or_virtual_attribute (decl);
3891 if (DECL_ABSTRACT (decl))
3892 equate_decl_number_to_die_number (decl);
3893 else
3895 if (! DECL_EXTERNAL (decl) && ! in_class
3896 && decl == current_function_decl)
3898 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3900 low_pc_attribute (function_start_label (decl));
3901 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3902 high_pc_attribute (label);
3903 if (use_gnu_debug_info_extensions)
3905 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3906 body_begin_attribute (label);
3907 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3908 body_end_attribute (label);
3914 /* Output a DIE to represent a declared data object (either file-scope
3915 or block-local) which has "external linkage" (according to ANSI-C). */
3917 static void
3918 output_global_variable_die (arg)
3919 void *arg;
3921 tree decl = arg;
3922 tree origin = decl_ultimate_origin (decl);
3924 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_variable);
3925 sibling_attribute ();
3926 if (origin != NULL)
3927 abstract_origin_attribute (origin);
3928 else
3930 name_and_src_coords_attributes (decl);
3931 member_attribute (DECL_CONTEXT (decl));
3932 type_attribute (TREE_TYPE (decl),
3933 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3935 if (DECL_ABSTRACT (decl))
3936 equate_decl_number_to_die_number (decl);
3937 else
3939 if (! DECL_EXTERNAL (decl) && ! in_class
3940 && current_function_decl == decl_function_context (decl))
3941 location_or_const_value_attribute (decl);
3945 static void
3946 output_label_die (arg)
3947 void *arg;
3949 tree decl = arg;
3950 tree origin = decl_ultimate_origin (decl);
3952 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_label);
3953 sibling_attribute ();
3954 if (origin != NULL)
3955 abstract_origin_attribute (origin);
3956 else
3957 name_and_src_coords_attributes (decl);
3958 if (DECL_ABSTRACT (decl))
3959 equate_decl_number_to_die_number (decl);
3960 else
3962 rtx insn = DECL_RTL (decl);
3964 /* Deleted labels are programmer specified labels which have been
3965 eliminated because of various optimisations. We still emit them
3966 here so that it is possible to put breakpoints on them. */
3967 if (GET_CODE (insn) == CODE_LABEL
3968 || ((GET_CODE (insn) == NOTE
3969 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
3971 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3973 /* When optimization is enabled (via -O) some parts of the compiler
3974 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
3975 represent source-level labels which were explicitly declared by
3976 the user. This really shouldn't be happening though, so catch
3977 it if it ever does happen. */
3979 if (INSN_DELETED_P (insn))
3980 abort (); /* Should never happen. */
3982 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
3983 low_pc_attribute (label);
3988 static void
3989 output_lexical_block_die (arg)
3990 void *arg;
3992 tree stmt = arg;
3994 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_lexical_block);
3995 sibling_attribute ();
3996 dienum_push ();
3997 if (! BLOCK_ABSTRACT (stmt))
3999 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4000 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4002 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, BLOCK_NUMBER (stmt));
4003 low_pc_attribute (begin_label);
4004 sprintf (end_label, BLOCK_END_LABEL_FMT, BLOCK_NUMBER (stmt));
4005 high_pc_attribute (end_label);
4009 static void
4010 output_inlined_subroutine_die (arg)
4011 void *arg;
4013 tree stmt = arg;
4015 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inlined_subroutine);
4016 sibling_attribute ();
4017 dienum_push ();
4018 abstract_origin_attribute (block_ultimate_origin (stmt));
4019 if (! BLOCK_ABSTRACT (stmt))
4021 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4022 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4024 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, BLOCK_NUMBER (stmt));
4025 low_pc_attribute (begin_label);
4026 sprintf (end_label, BLOCK_END_LABEL_FMT, BLOCK_NUMBER (stmt));
4027 high_pc_attribute (end_label);
4031 /* Output a DIE to represent a declared data object (either file-scope
4032 or block-local) which has "internal linkage" (according to ANSI-C). */
4034 static void
4035 output_local_variable_die (arg)
4036 void *arg;
4038 tree decl = arg;
4039 tree origin = decl_ultimate_origin (decl);
4041 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_local_variable);
4042 sibling_attribute ();
4043 if (origin != NULL)
4044 abstract_origin_attribute (origin);
4045 else
4047 name_and_src_coords_attributes (decl);
4048 member_attribute (DECL_CONTEXT (decl));
4049 type_attribute (TREE_TYPE (decl),
4050 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
4052 if (DECL_ABSTRACT (decl))
4053 equate_decl_number_to_die_number (decl);
4054 else
4055 location_or_const_value_attribute (decl);
4058 static void
4059 output_member_die (arg)
4060 void *arg;
4062 tree decl = arg;
4064 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_member);
4065 sibling_attribute ();
4066 name_and_src_coords_attributes (decl);
4067 member_attribute (DECL_CONTEXT (decl));
4068 type_attribute (member_declared_type (decl),
4069 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
4070 if (DECL_BIT_FIELD_TYPE (decl)) /* If this is a bit field... */
4072 byte_size_attribute (decl);
4073 bit_size_attribute (decl);
4074 bit_offset_attribute (decl);
4076 data_member_location_attribute (decl);
4079 #if 0
4080 /* Don't generate either pointer_type DIEs or reference_type DIEs. Use
4081 modified types instead.
4083 We keep this code here just in case these types of DIEs may be
4084 needed to represent certain things in other languages (e.g. Pascal)
4085 someday. */
4087 static void
4088 output_pointer_type_die (arg)
4089 void *arg;
4091 tree type = arg;
4093 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_pointer_type);
4094 sibling_attribute ();
4095 equate_type_number_to_die_number (type);
4096 member_attribute (TYPE_CONTEXT (type));
4097 type_attribute (TREE_TYPE (type), 0, 0);
4100 static void
4101 output_reference_type_die (arg)
4102 void *arg;
4104 tree type = arg;
4106 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_reference_type);
4107 sibling_attribute ();
4108 equate_type_number_to_die_number (type);
4109 member_attribute (TYPE_CONTEXT (type));
4110 type_attribute (TREE_TYPE (type), 0, 0);
4112 #endif
4114 static void
4115 output_ptr_to_mbr_type_die (arg)
4116 void *arg;
4118 tree type = arg;
4120 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_ptr_to_member_type);
4121 sibling_attribute ();
4122 equate_type_number_to_die_number (type);
4123 member_attribute (TYPE_CONTEXT (type));
4124 containing_type_attribute (TYPE_OFFSET_BASETYPE (type));
4125 type_attribute (TREE_TYPE (type), 0, 0);
4128 static void
4129 output_compile_unit_die (arg)
4130 void *arg;
4132 const char *main_input_filename = arg;
4133 const char *language_string = lang_hooks.name;
4135 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_compile_unit);
4136 sibling_attribute ();
4137 dienum_push ();
4138 name_attribute (main_input_filename);
4141 char producer[250];
4143 sprintf (producer, "%s %s", language_string, version_string);
4144 producer_attribute (producer);
4147 if (strcmp (language_string, "GNU C++") == 0)
4148 language_attribute (LANG_C_PLUS_PLUS);
4149 else if (strcmp (language_string, "GNU Ada") == 0)
4150 language_attribute (LANG_ADA83);
4151 else if (strcmp (language_string, "GNU F77") == 0)
4152 language_attribute (LANG_FORTRAN77);
4153 else if (strcmp (language_string, "GNU Pascal") == 0)
4154 language_attribute (LANG_PASCAL83);
4155 else if (strcmp (language_string, "GNU Java") == 0)
4156 language_attribute (LANG_JAVA);
4157 else if (flag_traditional)
4158 language_attribute (LANG_C);
4159 else
4160 language_attribute (LANG_C89);
4161 low_pc_attribute (TEXT_BEGIN_LABEL);
4162 high_pc_attribute (TEXT_END_LABEL);
4163 if (debug_info_level >= DINFO_LEVEL_NORMAL)
4164 stmt_list_attribute (LINE_BEGIN_LABEL);
4167 const char *wd = getpwd ();
4168 if (wd)
4169 comp_dir_attribute (wd);
4172 if (debug_info_level >= DINFO_LEVEL_NORMAL && use_gnu_debug_info_extensions)
4174 sf_names_attribute (SFNAMES_BEGIN_LABEL);
4175 src_info_attribute (SRCINFO_BEGIN_LABEL);
4176 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
4177 mac_info_attribute (MACINFO_BEGIN_LABEL);
4181 static void
4182 output_string_type_die (arg)
4183 void *arg;
4185 tree type = arg;
4187 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_string_type);
4188 sibling_attribute ();
4189 equate_type_number_to_die_number (type);
4190 member_attribute (TYPE_CONTEXT (type));
4191 /* this is a fixed length string */
4192 byte_size_attribute (type);
4195 static void
4196 output_inheritance_die (arg)
4197 void *arg;
4199 tree binfo = arg;
4201 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inheritance);
4202 sibling_attribute ();
4203 type_attribute (BINFO_TYPE (binfo), 0, 0);
4204 data_member_location_attribute (binfo);
4205 if (TREE_VIA_VIRTUAL (binfo))
4207 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
4208 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
4210 if (TREE_VIA_PUBLIC (binfo))
4212 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_public);
4213 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
4215 else if (TREE_VIA_PROTECTED (binfo))
4217 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_protected);
4218 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
4222 static void
4223 output_structure_type_die (arg)
4224 void *arg;
4226 tree type = arg;
4228 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
4229 sibling_attribute ();
4230 equate_type_number_to_die_number (type);
4231 name_attribute (type_tag (type));
4232 member_attribute (TYPE_CONTEXT (type));
4234 /* If this type has been completed, then give it a byte_size attribute
4235 and prepare to give a list of members. Otherwise, don't do either of
4236 these things. In the latter case, we will not be generating a list
4237 of members (since we don't have any idea what they might be for an
4238 incomplete type). */
4240 if (COMPLETE_TYPE_P (type))
4242 dienum_push ();
4243 byte_size_attribute (type);
4247 /* Output a DIE to represent a declared function (either file-scope
4248 or block-local) which has "internal linkage" (according to ANSI-C). */
4250 static void
4251 output_local_subroutine_die (arg)
4252 void *arg;
4254 tree decl = arg;
4255 tree origin = decl_ultimate_origin (decl);
4257 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine);
4258 sibling_attribute ();
4259 dienum_push ();
4260 if (origin != NULL)
4261 abstract_origin_attribute (origin);
4262 else
4264 tree type = TREE_TYPE (decl);
4266 name_and_src_coords_attributes (decl);
4267 inline_attribute (decl);
4268 prototyped_attribute (type);
4269 member_attribute (DECL_CONTEXT (decl));
4270 type_attribute (TREE_TYPE (type), 0, 0);
4271 pure_or_virtual_attribute (decl);
4273 if (DECL_ABSTRACT (decl))
4274 equate_decl_number_to_die_number (decl);
4275 else
4277 /* Avoid getting screwed up in cases where a function was declared
4278 static but where no definition was ever given for it. */
4280 if (TREE_ASM_WRITTEN (decl))
4282 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4283 low_pc_attribute (function_start_label (decl));
4284 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
4285 high_pc_attribute (label);
4286 if (use_gnu_debug_info_extensions)
4288 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
4289 body_begin_attribute (label);
4290 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
4291 body_end_attribute (label);
4297 static void
4298 output_subroutine_type_die (arg)
4299 void *arg;
4301 tree type = arg;
4302 tree return_type = TREE_TYPE (type);
4304 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine_type);
4305 sibling_attribute ();
4306 dienum_push ();
4307 equate_type_number_to_die_number (type);
4308 prototyped_attribute (type);
4309 member_attribute (TYPE_CONTEXT (type));
4310 type_attribute (return_type, 0, 0);
4313 static void
4314 output_typedef_die (arg)
4315 void *arg;
4317 tree decl = arg;
4318 tree origin = decl_ultimate_origin (decl);
4320 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_typedef);
4321 sibling_attribute ();
4322 if (origin != NULL)
4323 abstract_origin_attribute (origin);
4324 else
4326 name_and_src_coords_attributes (decl);
4327 member_attribute (DECL_CONTEXT (decl));
4328 type_attribute (TREE_TYPE (decl),
4329 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
4331 if (DECL_ABSTRACT (decl))
4332 equate_decl_number_to_die_number (decl);
4335 static void
4336 output_union_type_die (arg)
4337 void *arg;
4339 tree type = arg;
4341 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
4342 sibling_attribute ();
4343 equate_type_number_to_die_number (type);
4344 name_attribute (type_tag (type));
4345 member_attribute (TYPE_CONTEXT (type));
4347 /* If this type has been completed, then give it a byte_size attribute
4348 and prepare to give a list of members. Otherwise, don't do either of
4349 these things. In the latter case, we will not be generating a list
4350 of members (since we don't have any idea what they might be for an
4351 incomplete type). */
4353 if (COMPLETE_TYPE_P (type))
4355 dienum_push ();
4356 byte_size_attribute (type);
4360 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
4361 at the end of an (ANSI prototyped) formal parameters list. */
4363 static void
4364 output_unspecified_parameters_die (arg)
4365 void *arg;
4367 tree decl_or_type = arg;
4369 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_unspecified_parameters);
4370 sibling_attribute ();
4372 /* This kludge is here only for the sake of being compatible with what
4373 the USL CI5 C compiler does. The specification of Dwarf Version 1
4374 doesn't say that TAG_unspecified_parameters DIEs should contain any
4375 attributes other than the AT_sibling attribute, but they are certainly
4376 allowed to contain additional attributes, and the CI5 compiler
4377 generates AT_name, AT_fund_type, and AT_location attributes within
4378 TAG_unspecified_parameters DIEs which appear in the child lists for
4379 DIEs representing function definitions, so we do likewise here. */
4381 if (TREE_CODE (decl_or_type) == FUNCTION_DECL && DECL_INITIAL (decl_or_type))
4383 name_attribute ("...");
4384 fund_type_attribute (FT_pointer);
4385 /* location_attribute (?); */
4389 static void
4390 output_padded_null_die (arg)
4391 void *arg ATTRIBUTE_UNUSED;
4393 ASM_OUTPUT_ALIGN (asm_out_file, 2); /* 2**2 == 4 */
4396 /*************************** end of DIEs *********************************/
4398 /* Generate some type of DIE. This routine generates the generic outer
4399 wrapper stuff which goes around all types of DIE's (regardless of their
4400 TAGs. All forms of DIEs start with a DIE-specific label, followed by a
4401 DIE-length word, followed by the guts of the DIE itself. After the guts
4402 of the DIE, there must always be a terminator label for the DIE. */
4404 static void
4405 output_die (die_specific_output_function, param)
4406 void (*die_specific_output_function) PARAMS ((void *));
4407 void *param;
4409 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4410 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4412 current_dienum = NEXT_DIE_NUM;
4413 NEXT_DIE_NUM = next_unused_dienum;
4415 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
4416 sprintf (end_label, DIE_END_LABEL_FMT, current_dienum);
4418 /* Write a label which will act as the name for the start of this DIE. */
4420 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
4422 /* Write the DIE-length word. */
4424 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
4426 /* Fill in the guts of the DIE. */
4428 next_unused_dienum++;
4429 die_specific_output_function (param);
4431 /* Write a label which will act as the name for the end of this DIE. */
4433 ASM_OUTPUT_LABEL (asm_out_file, end_label);
4436 static void
4437 end_sibling_chain ()
4439 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4441 current_dienum = NEXT_DIE_NUM;
4442 NEXT_DIE_NUM = next_unused_dienum;
4444 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
4446 /* Write a label which will act as the name for the start of this DIE. */
4448 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
4450 /* Write the DIE-length word. */
4452 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 4);
4454 dienum_pop ();
4457 /* Generate a list of nameless TAG_formal_parameter DIEs (and perhaps a
4458 TAG_unspecified_parameters DIE) to represent the types of the formal
4459 parameters as specified in some function type specification (except
4460 for those which appear as part of a function *definition*).
4462 Note that we must be careful here to output all of the parameter
4463 DIEs *before* we output any DIEs needed to represent the types of
4464 the formal parameters. This keeps svr4 SDB happy because it
4465 (incorrectly) thinks that the first non-parameter DIE it sees ends
4466 the formal parameter list. */
4468 static void
4469 output_formal_types (function_or_method_type)
4470 tree function_or_method_type;
4472 tree link;
4473 tree formal_type = NULL;
4474 tree first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
4476 /* Set TREE_ASM_WRITTEN while processing the parameters, lest we
4477 get bogus recursion when outputting tagged types local to a
4478 function declaration. */
4479 int save_asm_written = TREE_ASM_WRITTEN (function_or_method_type);
4480 TREE_ASM_WRITTEN (function_or_method_type) = 1;
4482 /* In the case where we are generating a formal types list for a C++
4483 non-static member function type, skip over the first thing on the
4484 TYPE_ARG_TYPES list because it only represents the type of the
4485 hidden `this pointer'. The debugger should be able to figure
4486 out (without being explicitly told) that this non-static member
4487 function type takes a `this pointer' and should be able to figure
4488 what the type of that hidden parameter is from the AT_member
4489 attribute of the parent TAG_subroutine_type DIE. */
4491 if (TREE_CODE (function_or_method_type) == METHOD_TYPE)
4492 first_parm_type = TREE_CHAIN (first_parm_type);
4494 /* Make our first pass over the list of formal parameter types and output
4495 a TAG_formal_parameter DIE for each one. */
4497 for (link = first_parm_type; link; link = TREE_CHAIN (link))
4499 formal_type = TREE_VALUE (link);
4500 if (formal_type == void_type_node)
4501 break;
4503 /* Output a (nameless) DIE to represent the formal parameter itself. */
4505 output_die (output_formal_parameter_die, formal_type);
4508 /* If this function type has an ellipsis, add a TAG_unspecified_parameters
4509 DIE to the end of the parameter list. */
4511 if (formal_type != void_type_node)
4512 output_die (output_unspecified_parameters_die, function_or_method_type);
4514 /* Make our second (and final) pass over the list of formal parameter types
4515 and output DIEs to represent those types (as necessary). */
4517 for (link = TYPE_ARG_TYPES (function_or_method_type);
4518 link;
4519 link = TREE_CHAIN (link))
4521 formal_type = TREE_VALUE (link);
4522 if (formal_type == void_type_node)
4523 break;
4525 output_type (formal_type, function_or_method_type);
4528 TREE_ASM_WRITTEN (function_or_method_type) = save_asm_written;
4531 /* Remember a type in the pending_types_list. */
4533 static void
4534 pend_type (type)
4535 tree type;
4537 if (pending_types == pending_types_allocated)
4539 pending_types_allocated += PENDING_TYPES_INCREMENT;
4540 pending_types_list
4541 = (tree *) xrealloc (pending_types_list,
4542 sizeof (tree) * pending_types_allocated);
4544 pending_types_list[pending_types++] = type;
4546 /* Mark the pending type as having been output already (even though
4547 it hasn't been). This prevents the type from being added to the
4548 pending_types_list more than once. */
4550 TREE_ASM_WRITTEN (type) = 1;
4553 /* Return non-zero if it is legitimate to output DIEs to represent a
4554 given type while we are generating the list of child DIEs for some
4555 DIE (e.g. a function or lexical block DIE) associated with a given scope.
4557 See the comments within the function for a description of when it is
4558 considered legitimate to output DIEs for various kinds of types.
4560 Note that TYPE_CONTEXT(type) may be NULL (to indicate global scope)
4561 or it may point to a BLOCK node (for types local to a block), or to a
4562 FUNCTION_DECL node (for types local to the heading of some function
4563 definition), or to a FUNCTION_TYPE node (for types local to the
4564 prototyped parameter list of a function type specification), or to a
4565 RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE node
4566 (in the case of C++ nested types).
4568 The `scope' parameter should likewise be NULL or should point to a
4569 BLOCK node, a FUNCTION_DECL node, a FUNCTION_TYPE node, a RECORD_TYPE
4570 node, a UNION_TYPE node, or a QUAL_UNION_TYPE node.
4572 This function is used only for deciding when to "pend" and when to
4573 "un-pend" types to/from the pending_types_list.
4575 Note that we sometimes make use of this "type pending" feature in a
4576 rather twisted way to temporarily delay the production of DIEs for the
4577 types of formal parameters. (We do this just to make svr4 SDB happy.)
4578 It order to delay the production of DIEs representing types of formal
4579 parameters, callers of this function supply `fake_containing_scope' as
4580 the `scope' parameter to this function. Given that fake_containing_scope
4581 is a tagged type which is *not* the containing scope for *any* other type,
4582 the desired effect is achieved, i.e. output of DIEs representing types
4583 is temporarily suspended, and any type DIEs which would have otherwise
4584 been output are instead placed onto the pending_types_list. Later on,
4585 we force these (temporarily pended) types to be output simply by calling
4586 `output_pending_types_for_scope' with an actual argument equal to the
4587 true scope of the types we temporarily pended. */
4589 static inline int
4590 type_ok_for_scope (type, scope)
4591 tree type;
4592 tree scope;
4594 /* Tagged types (i.e. struct, union, and enum types) must always be
4595 output only in the scopes where they actually belong (or else the
4596 scoping of their own tag names and the scoping of their member
4597 names will be incorrect). Non-tagged-types on the other hand can
4598 generally be output anywhere, except that svr4 SDB really doesn't
4599 want to see them nested within struct or union types, so here we
4600 say it is always OK to immediately output any such a (non-tagged)
4601 type, so long as we are not within such a context. Note that the
4602 only kinds of non-tagged types which we will be dealing with here
4603 (for C and C++ anyway) will be array types and function types. */
4605 return is_tagged_type (type)
4606 ? (TYPE_CONTEXT (type) == scope
4607 /* Ignore namespaces for the moment. */
4608 || (scope == NULL_TREE
4609 && TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL)
4610 || (scope == NULL_TREE && is_tagged_type (TYPE_CONTEXT (type))
4611 && TREE_ASM_WRITTEN (TYPE_CONTEXT (type))))
4612 : (scope == NULL_TREE || ! is_tagged_type (scope));
4615 /* Output any pending types (from the pending_types list) which we can output
4616 now (taking into account the scope that we are working on now).
4618 For each type output, remove the given type from the pending_types_list
4619 *before* we try to output it.
4621 Note that we have to process the list in beginning-to-end order,
4622 because the call made here to output_type may cause yet more types
4623 to be added to the end of the list, and we may have to output some
4624 of them too. */
4626 static void
4627 output_pending_types_for_scope (containing_scope)
4628 tree containing_scope;
4630 unsigned i;
4632 for (i = 0; i < pending_types; )
4634 tree type = pending_types_list[i];
4636 if (type_ok_for_scope (type, containing_scope))
4638 tree *mover;
4639 tree *limit;
4641 pending_types--;
4642 limit = &pending_types_list[pending_types];
4643 for (mover = &pending_types_list[i]; mover < limit; mover++)
4644 *mover = *(mover+1);
4646 /* Un-mark the type as having been output already (because it
4647 hasn't been, really). Then call output_type to generate a
4648 Dwarf representation of it. */
4650 TREE_ASM_WRITTEN (type) = 0;
4651 output_type (type, containing_scope);
4653 /* Don't increment the loop counter in this case because we
4654 have shifted all of the subsequent pending types down one
4655 element in the pending_types_list array. */
4657 else
4658 i++;
4662 /* Remember a type in the incomplete_types_list. */
4664 static void
4665 add_incomplete_type (type)
4666 tree type;
4668 if (incomplete_types == incomplete_types_allocated)
4670 incomplete_types_allocated += INCOMPLETE_TYPES_INCREMENT;
4671 incomplete_types_list
4672 = (tree *) xrealloc (incomplete_types_list,
4673 sizeof (tree) * incomplete_types_allocated);
4676 incomplete_types_list[incomplete_types++] = type;
4679 /* Walk through the list of incomplete types again, trying once more to
4680 emit full debugging info for them. */
4682 static void
4683 retry_incomplete_types ()
4685 tree type;
4687 finalizing = 1;
4688 while (incomplete_types)
4690 --incomplete_types;
4691 type = incomplete_types_list[incomplete_types];
4692 output_type (type, NULL_TREE);
4696 static void
4697 output_type (type, containing_scope)
4698 tree type;
4699 tree containing_scope;
4701 if (type == 0 || type == error_mark_node)
4702 return;
4704 /* We are going to output a DIE to represent the unqualified version of
4705 this type (i.e. without any const or volatile qualifiers) so get
4706 the main variant (i.e. the unqualified version) of this type now. */
4708 type = type_main_variant (type);
4710 if (TREE_ASM_WRITTEN (type))
4712 if (finalizing && AGGREGATE_TYPE_P (type))
4714 tree member;
4716 /* Some of our nested types might not have been defined when we
4717 were written out before; force them out now. */
4719 for (member = TYPE_FIELDS (type); member;
4720 member = TREE_CHAIN (member))
4721 if (TREE_CODE (member) == TYPE_DECL
4722 && ! TREE_ASM_WRITTEN (TREE_TYPE (member)))
4723 output_type (TREE_TYPE (member), containing_scope);
4725 return;
4728 /* If this is a nested type whose containing class hasn't been
4729 written out yet, writing it out will cover this one, too. */
4731 if (TYPE_CONTEXT (type)
4732 && TYPE_P (TYPE_CONTEXT (type))
4733 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
4735 output_type (TYPE_CONTEXT (type), containing_scope);
4736 return;
4739 /* Don't generate any DIEs for this type now unless it is OK to do so
4740 (based upon what `type_ok_for_scope' tells us). */
4742 if (! type_ok_for_scope (type, containing_scope))
4744 pend_type (type);
4745 return;
4748 switch (TREE_CODE (type))
4750 case ERROR_MARK:
4751 break;
4753 case VECTOR_TYPE:
4754 output_type (TYPE_DEBUG_REPRESENTATION_TYPE (type), containing_scope);
4755 break;
4757 case POINTER_TYPE:
4758 case REFERENCE_TYPE:
4759 /* Prevent infinite recursion in cases where this is a recursive
4760 type. Recursive types are possible in Ada. */
4761 TREE_ASM_WRITTEN (type) = 1;
4762 /* For these types, all that is required is that we output a DIE
4763 (or a set of DIEs) to represent the "basis" type. */
4764 output_type (TREE_TYPE (type), containing_scope);
4765 break;
4767 case OFFSET_TYPE:
4768 /* This code is used for C++ pointer-to-data-member types. */
4769 /* Output a description of the relevant class type. */
4770 output_type (TYPE_OFFSET_BASETYPE (type), containing_scope);
4771 /* Output a description of the type of the object pointed to. */
4772 output_type (TREE_TYPE (type), containing_scope);
4773 /* Now output a DIE to represent this pointer-to-data-member type
4774 itself. */
4775 output_die (output_ptr_to_mbr_type_die, type);
4776 break;
4778 case SET_TYPE:
4779 output_type (TYPE_DOMAIN (type), containing_scope);
4780 output_die (output_set_type_die, type);
4781 break;
4783 case FILE_TYPE:
4784 output_type (TREE_TYPE (type), containing_scope);
4785 abort (); /* No way to represent these in Dwarf yet! */
4786 break;
4788 case FUNCTION_TYPE:
4789 /* Force out return type (in case it wasn't forced out already). */
4790 output_type (TREE_TYPE (type), containing_scope);
4791 output_die (output_subroutine_type_die, type);
4792 output_formal_types (type);
4793 end_sibling_chain ();
4794 break;
4796 case METHOD_TYPE:
4797 /* Force out return type (in case it wasn't forced out already). */
4798 output_type (TREE_TYPE (type), containing_scope);
4799 output_die (output_subroutine_type_die, type);
4800 output_formal_types (type);
4801 end_sibling_chain ();
4802 break;
4804 case ARRAY_TYPE:
4805 if (TYPE_STRING_FLAG (type) && TREE_CODE(TREE_TYPE(type)) == CHAR_TYPE)
4807 output_type (TREE_TYPE (type), containing_scope);
4808 output_die (output_string_type_die, type);
4810 else
4812 tree element_type;
4814 element_type = TREE_TYPE (type);
4815 while (TREE_CODE (element_type) == ARRAY_TYPE)
4816 element_type = TREE_TYPE (element_type);
4818 output_type (element_type, containing_scope);
4819 output_die (output_array_type_die, type);
4821 break;
4823 case ENUMERAL_TYPE:
4824 case RECORD_TYPE:
4825 case UNION_TYPE:
4826 case QUAL_UNION_TYPE:
4828 /* For a non-file-scope tagged type, we can always go ahead and
4829 output a Dwarf description of this type right now, even if
4830 the type in question is still incomplete, because if this
4831 local type *was* ever completed anywhere within its scope,
4832 that complete definition would already have been attached to
4833 this RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE or ENUMERAL_TYPE
4834 node by the time we reach this point. That's true because of the
4835 way the front-end does its processing of file-scope declarations (of
4836 functions and class types) within which other types might be
4837 nested. The C and C++ front-ends always gobble up such "local
4838 scope" things en-mass before they try to output *any* debugging
4839 information for any of the stuff contained inside them and thus,
4840 we get the benefit here of what is (in effect) a pre-resolution
4841 of forward references to tagged types in local scopes.
4843 Note however that for file-scope tagged types we cannot assume
4844 that such pre-resolution of forward references has taken place.
4845 A given file-scope tagged type may appear to be incomplete when
4846 we reach this point, but it may yet be given a full definition
4847 (at file-scope) later on during compilation. In order to avoid
4848 generating a premature (and possibly incorrect) set of Dwarf
4849 DIEs for such (as yet incomplete) file-scope tagged types, we
4850 generate nothing at all for as-yet incomplete file-scope tagged
4851 types here unless we are making our special "finalization" pass
4852 for file-scope things at the very end of compilation. At that
4853 time, we will certainly know as much about each file-scope tagged
4854 type as we are ever going to know, so at that point in time, we
4855 can safely generate correct Dwarf descriptions for these file-
4856 scope tagged types. */
4858 if (!COMPLETE_TYPE_P (type)
4859 && (TYPE_CONTEXT (type) == NULL
4860 || AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
4861 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL)
4862 && !finalizing)
4864 /* We don't need to do this for function-local types. */
4865 if (! decl_function_context (TYPE_STUB_DECL (type)))
4866 add_incomplete_type (type);
4867 return; /* EARLY EXIT! Avoid setting TREE_ASM_WRITTEN. */
4870 /* Prevent infinite recursion in cases where the type of some
4871 member of this type is expressed in terms of this type itself. */
4873 TREE_ASM_WRITTEN (type) = 1;
4875 /* Output a DIE to represent the tagged type itself. */
4877 switch (TREE_CODE (type))
4879 case ENUMERAL_TYPE:
4880 output_die (output_enumeration_type_die, type);
4881 return; /* a special case -- nothing left to do so just return */
4883 case RECORD_TYPE:
4884 output_die (output_structure_type_die, type);
4885 break;
4887 case UNION_TYPE:
4888 case QUAL_UNION_TYPE:
4889 output_die (output_union_type_die, type);
4890 break;
4892 default:
4893 abort (); /* Should never happen. */
4896 /* If this is not an incomplete type, output descriptions of
4897 each of its members.
4899 Note that as we output the DIEs necessary to represent the
4900 members of this record or union type, we will also be trying
4901 to output DIEs to represent the *types* of those members.
4902 However the `output_type' function (above) will specifically
4903 avoid generating type DIEs for member types *within* the list
4904 of member DIEs for this (containing) type except for those
4905 types (of members) which are explicitly marked as also being
4906 members of this (containing) type themselves. The g++ front-
4907 end can force any given type to be treated as a member of some
4908 other (containing) type by setting the TYPE_CONTEXT of the
4909 given (member) type to point to the TREE node representing the
4910 appropriate (containing) type.
4913 if (COMPLETE_TYPE_P (type))
4915 /* First output info about the base classes. */
4916 if (TYPE_BINFO (type) && TYPE_BINFO_BASETYPES (type))
4918 register tree bases = TYPE_BINFO_BASETYPES (type);
4919 register int n_bases = TREE_VEC_LENGTH (bases);
4920 register int i;
4922 for (i = 0; i < n_bases; i++)
4924 tree binfo = TREE_VEC_ELT (bases, i);
4925 output_type (BINFO_TYPE (binfo), containing_scope);
4926 output_die (output_inheritance_die, binfo);
4930 ++in_class;
4933 tree normal_member;
4935 /* Now output info about the data members and type members. */
4937 for (normal_member = TYPE_FIELDS (type);
4938 normal_member;
4939 normal_member = TREE_CHAIN (normal_member))
4940 output_decl (normal_member, type);
4944 tree func_member;
4946 /* Now output info about the function members (if any). */
4948 for (func_member = TYPE_METHODS (type);
4949 func_member;
4950 func_member = TREE_CHAIN (func_member))
4952 /* Don't include clones in the member list. */
4953 if (DECL_ABSTRACT_ORIGIN (func_member))
4954 continue;
4956 output_decl (func_member, type);
4960 --in_class;
4962 /* RECORD_TYPEs, UNION_TYPEs, and QUAL_UNION_TYPEs are themselves
4963 scopes (at least in C++) so we must now output any nested
4964 pending types which are local just to this type. */
4966 output_pending_types_for_scope (type);
4968 end_sibling_chain (); /* Terminate member chain. */
4971 break;
4973 case VOID_TYPE:
4974 case INTEGER_TYPE:
4975 case REAL_TYPE:
4976 case COMPLEX_TYPE:
4977 case BOOLEAN_TYPE:
4978 case CHAR_TYPE:
4979 break; /* No DIEs needed for fundamental types. */
4981 case LANG_TYPE: /* No Dwarf representation currently defined. */
4982 break;
4984 default:
4985 abort ();
4988 TREE_ASM_WRITTEN (type) = 1;
4991 static void
4992 output_tagged_type_instantiation (type)
4993 tree type;
4995 if (type == 0 || type == error_mark_node)
4996 return;
4998 /* We are going to output a DIE to represent the unqualified version of
4999 this type (i.e. without any const or volatile qualifiers) so make
5000 sure that we have the main variant (i.e. the unqualified version) of
5001 this type now. */
5003 if (type != type_main_variant (type))
5004 abort ();
5006 if (!TREE_ASM_WRITTEN (type))
5007 abort ();
5009 switch (TREE_CODE (type))
5011 case ERROR_MARK:
5012 break;
5014 case ENUMERAL_TYPE:
5015 output_die (output_inlined_enumeration_type_die, type);
5016 break;
5018 case RECORD_TYPE:
5019 output_die (output_inlined_structure_type_die, type);
5020 break;
5022 case UNION_TYPE:
5023 case QUAL_UNION_TYPE:
5024 output_die (output_inlined_union_type_die, type);
5025 break;
5027 default:
5028 abort (); /* Should never happen. */
5032 /* Output a TAG_lexical_block DIE followed by DIEs to represent all of
5033 the things which are local to the given block. */
5035 static void
5036 output_block (stmt, depth)
5037 tree stmt;
5038 int depth;
5040 int must_output_die = 0;
5041 tree origin;
5042 enum tree_code origin_code;
5044 /* Ignore blocks never really used to make RTL. */
5046 if (! stmt || ! TREE_USED (stmt)
5047 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
5048 return;
5050 /* Determine the "ultimate origin" of this block. This block may be an
5051 inlined instance of an inlined instance of inline function, so we
5052 have to trace all of the way back through the origin chain to find
5053 out what sort of node actually served as the original seed for the
5054 creation of the current block. */
5056 origin = block_ultimate_origin (stmt);
5057 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
5059 /* Determine if we need to output any Dwarf DIEs at all to represent this
5060 block. */
5062 if (origin_code == FUNCTION_DECL)
5063 /* The outer scopes for inlinings *must* always be represented. We
5064 generate TAG_inlined_subroutine DIEs for them. (See below.) */
5065 must_output_die = 1;
5066 else
5068 /* In the case where the current block represents an inlining of the
5069 "body block" of an inline function, we must *NOT* output any DIE
5070 for this block because we have already output a DIE to represent
5071 the whole inlined function scope and the "body block" of any
5072 function doesn't really represent a different scope according to
5073 ANSI C rules. So we check here to make sure that this block does
5074 not represent a "body block inlining" before trying to set the
5075 `must_output_die' flag. */
5077 if (! is_body_block (origin ? origin : stmt))
5079 /* Determine if this block directly contains any "significant"
5080 local declarations which we will need to output DIEs for. */
5082 if (debug_info_level > DINFO_LEVEL_TERSE)
5083 /* We are not in terse mode so *any* local declaration counts
5084 as being a "significant" one. */
5085 must_output_die = (BLOCK_VARS (stmt) != NULL);
5086 else
5088 tree decl;
5090 /* We are in terse mode, so only local (nested) function
5091 definitions count as "significant" local declarations. */
5093 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
5094 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
5096 must_output_die = 1;
5097 break;
5103 /* It would be a waste of space to generate a Dwarf TAG_lexical_block
5104 DIE for any block which contains no significant local declarations
5105 at all. Rather, in such cases we just call `output_decls_for_scope'
5106 so that any needed Dwarf info for any sub-blocks will get properly
5107 generated. Note that in terse mode, our definition of what constitutes
5108 a "significant" local declaration gets restricted to include only
5109 inlined function instances and local (nested) function definitions. */
5111 if (origin_code == FUNCTION_DECL && BLOCK_ABSTRACT (stmt))
5112 /* We don't care about an abstract inlined subroutine. */;
5113 else if (must_output_die)
5115 output_die ((origin_code == FUNCTION_DECL)
5116 ? output_inlined_subroutine_die
5117 : output_lexical_block_die,
5118 stmt);
5119 output_decls_for_scope (stmt, depth);
5120 end_sibling_chain ();
5122 else
5123 output_decls_for_scope (stmt, depth);
5126 /* Output all of the decls declared within a given scope (also called
5127 a `binding contour') and (recursively) all of it's sub-blocks. */
5129 static void
5130 output_decls_for_scope (stmt, depth)
5131 tree stmt;
5132 int depth;
5134 /* Ignore blocks never really used to make RTL. */
5136 if (! stmt || ! TREE_USED (stmt))
5137 return;
5139 /* Output the DIEs to represent all of the data objects, functions,
5140 typedefs, and tagged types declared directly within this block
5141 but not within any nested sub-blocks. */
5144 tree decl;
5146 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
5147 output_decl (decl, stmt);
5150 output_pending_types_for_scope (stmt);
5152 /* Output the DIEs to represent all sub-blocks (and the items declared
5153 therein) of this block. */
5156 tree subblocks;
5158 for (subblocks = BLOCK_SUBBLOCKS (stmt);
5159 subblocks;
5160 subblocks = BLOCK_CHAIN (subblocks))
5161 output_block (subblocks, depth + 1);
5165 /* Is this a typedef we can avoid emitting? */
5167 static inline int
5168 is_redundant_typedef (decl)
5169 tree decl;
5171 if (TYPE_DECL_IS_STUB (decl))
5172 return 1;
5173 if (DECL_ARTIFICIAL (decl)
5174 && DECL_CONTEXT (decl)
5175 && is_tagged_type (DECL_CONTEXT (decl))
5176 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
5177 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
5178 /* Also ignore the artificial member typedef for the class name. */
5179 return 1;
5180 return 0;
5183 /* Output Dwarf .debug information for a decl described by DECL. */
5185 static void
5186 output_decl (decl, containing_scope)
5187 tree decl;
5188 tree containing_scope;
5190 /* Make a note of the decl node we are going to be working on. We may
5191 need to give the user the source coordinates of where it appeared in
5192 case we notice (later on) that something about it looks screwy. */
5194 dwarf_last_decl = decl;
5196 if (TREE_CODE (decl) == ERROR_MARK)
5197 return;
5199 /* If a structure is declared within an initialization, e.g. as the
5200 operand of a sizeof, then it will not have a name. We don't want
5201 to output a DIE for it, as the tree nodes are in the temporary obstack */
5203 if ((TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5204 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
5205 && ((DECL_NAME (decl) == 0 && TYPE_NAME (TREE_TYPE (decl)) == 0)
5206 || (TYPE_FIELDS (TREE_TYPE (decl))
5207 && (TREE_CODE (TYPE_FIELDS (TREE_TYPE (decl))) == ERROR_MARK))))
5208 return;
5210 /* If this ..._DECL node is marked to be ignored, then ignore it. */
5212 if (DECL_IGNORED_P (decl))
5213 return;
5215 switch (TREE_CODE (decl))
5217 case CONST_DECL:
5218 /* The individual enumerators of an enum type get output when we
5219 output the Dwarf representation of the relevant enum type itself. */
5220 break;
5222 case FUNCTION_DECL:
5223 /* If we are in terse mode, don't output any DIEs to represent
5224 mere function declarations. Also, if we are conforming
5225 to the DWARF version 1 specification, don't output DIEs for
5226 mere function declarations. */
5228 if (DECL_INITIAL (decl) == NULL_TREE)
5229 #if (DWARF_VERSION > 1)
5230 if (debug_info_level <= DINFO_LEVEL_TERSE)
5231 #endif
5232 break;
5234 /* Before we describe the FUNCTION_DECL itself, make sure that we
5235 have described its return type. */
5237 output_type (TREE_TYPE (TREE_TYPE (decl)), containing_scope);
5240 /* And its containing type. */
5241 register tree origin = decl_class_context (decl);
5242 if (origin)
5243 output_type (origin, containing_scope);
5246 /* If we're emitting an out-of-line copy of an inline function,
5247 set up to refer to the abstract instance emitted from
5248 dwarfout_deferred_inline_function. */
5249 if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
5250 && ! (containing_scope && TYPE_P (containing_scope)))
5251 set_decl_origin_self (decl);
5253 /* If the following DIE will represent a function definition for a
5254 function with "extern" linkage, output a special "pubnames" DIE
5255 label just ahead of the actual DIE. A reference to this label
5256 was already generated in the .debug_pubnames section sub-entry
5257 for this function definition. */
5259 if (TREE_PUBLIC (decl))
5261 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5263 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
5264 ASM_OUTPUT_LABEL (asm_out_file, label);
5267 /* Now output a DIE to represent the function itself. */
5269 output_die (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl)
5270 ? output_global_subroutine_die
5271 : output_local_subroutine_die,
5272 decl);
5274 /* Now output descriptions of the arguments for this function.
5275 This gets (unnecessarily?) complex because of the fact that
5276 the DECL_ARGUMENT list for a FUNCTION_DECL doesn't indicate
5277 cases where there was a trailing `...' at the end of the formal
5278 parameter list. In order to find out if there was a trailing
5279 ellipsis or not, we must instead look at the type associated
5280 with the FUNCTION_DECL. This will be a node of type FUNCTION_TYPE.
5281 If the chain of type nodes hanging off of this FUNCTION_TYPE node
5282 ends with a void_type_node then there should *not* be an ellipsis
5283 at the end. */
5285 /* In the case where we are describing a mere function declaration, all
5286 we need to do here (and all we *can* do here) is to describe
5287 the *types* of its formal parameters. */
5289 if (decl != current_function_decl || in_class)
5290 output_formal_types (TREE_TYPE (decl));
5291 else
5293 /* Generate DIEs to represent all known formal parameters */
5295 tree arg_decls = DECL_ARGUMENTS (decl);
5296 tree parm;
5298 /* WARNING! Kludge zone ahead! Here we have a special
5299 hack for svr4 SDB compatibility. Instead of passing the
5300 current FUNCTION_DECL node as the second parameter (i.e.
5301 the `containing_scope' parameter) to `output_decl' (as
5302 we ought to) we instead pass a pointer to our own private
5303 fake_containing_scope node. That node is a RECORD_TYPE
5304 node which NO OTHER TYPE may ever actually be a member of.
5306 This pointer will ultimately get passed into `output_type'
5307 as its `containing_scope' parameter. `Output_type' will
5308 then perform its part in the hack... i.e. it will pend
5309 the type of the formal parameter onto the pending_types
5310 list. Later on, when we are done generating the whole
5311 sequence of formal parameter DIEs for this function
5312 definition, we will un-pend all previously pended types
5313 of formal parameters for this function definition.
5315 This whole kludge prevents any type DIEs from being
5316 mixed in with the formal parameter DIEs. That's good
5317 because svr4 SDB believes that the list of formal
5318 parameter DIEs for a function ends wherever the first
5319 non-formal-parameter DIE appears. Thus, we have to
5320 keep the formal parameter DIEs segregated. They must
5321 all appear (consecutively) at the start of the list of
5322 children for the DIE representing the function definition.
5323 Then (and only then) may we output any additional DIEs
5324 needed to represent the types of these formal parameters.
5328 When generating DIEs, generate the unspecified_parameters
5329 DIE instead if we come across the arg "__builtin_va_alist"
5332 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
5333 if (TREE_CODE (parm) == PARM_DECL)
5335 if (DECL_NAME(parm) &&
5336 !strcmp(IDENTIFIER_POINTER(DECL_NAME(parm)),
5337 "__builtin_va_alist") )
5338 output_die (output_unspecified_parameters_die, decl);
5339 else
5340 output_decl (parm, fake_containing_scope);
5344 Now that we have finished generating all of the DIEs to
5345 represent the formal parameters themselves, force out
5346 any DIEs needed to represent their types. We do this
5347 simply by un-pending all previously pended types which
5348 can legitimately go into the chain of children DIEs for
5349 the current FUNCTION_DECL.
5352 output_pending_types_for_scope (decl);
5355 Decide whether we need an unspecified_parameters DIE at the end.
5356 There are 2 more cases to do this for:
5357 1) the ansi ... declaration - this is detectable when the end
5358 of the arg list is not a void_type_node
5359 2) an unprototyped function declaration (not a definition). This
5360 just means that we have no info about the parameters at all.
5364 tree fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
5366 if (fn_arg_types)
5368 /* this is the prototyped case, check for ... */
5369 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
5370 output_die (output_unspecified_parameters_die, decl);
5372 else
5374 /* this is unprototyped, check for undefined (just declaration) */
5375 if (!DECL_INITIAL (decl))
5376 output_die (output_unspecified_parameters_die, decl);
5380 /* Output Dwarf info for all of the stuff within the body of the
5381 function (if it has one - it may be just a declaration). */
5384 tree outer_scope = DECL_INITIAL (decl);
5386 if (outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
5388 /* Note that here, `outer_scope' is a pointer to the outermost
5389 BLOCK node created to represent a function.
5390 This outermost BLOCK actually represents the outermost
5391 binding contour for the function, i.e. the contour in which
5392 the function's formal parameters and labels get declared.
5394 Curiously, it appears that the front end doesn't actually
5395 put the PARM_DECL nodes for the current function onto the
5396 BLOCK_VARS list for this outer scope. (They are strung
5397 off of the DECL_ARGUMENTS list for the function instead.)
5398 The BLOCK_VARS list for the `outer_scope' does provide us
5399 with a list of the LABEL_DECL nodes for the function however,
5400 and we output DWARF info for those here.
5402 Just within the `outer_scope' there will be a BLOCK node
5403 representing the function's outermost pair of curly braces,
5404 and any blocks used for the base and member initializers of
5405 a C++ constructor function. */
5407 output_decls_for_scope (outer_scope, 0);
5409 /* Finally, force out any pending types which are local to the
5410 outermost block of this function definition. These will
5411 all have a TYPE_CONTEXT which points to the FUNCTION_DECL
5412 node itself. */
5414 output_pending_types_for_scope (decl);
5419 /* Generate a terminator for the list of stuff `owned' by this
5420 function. */
5422 end_sibling_chain ();
5424 break;
5426 case TYPE_DECL:
5427 /* If we are in terse mode, don't generate any DIEs to represent
5428 any actual typedefs. Note that even when we are in terse mode,
5429 we must still output DIEs to represent those tagged types which
5430 are used (directly or indirectly) in the specification of either
5431 a return type or a formal parameter type of some function. */
5433 if (debug_info_level <= DINFO_LEVEL_TERSE)
5434 if (! TYPE_DECL_IS_STUB (decl)
5435 || (! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)) && ! in_class))
5436 return;
5438 /* In the special case of a TYPE_DECL node representing
5439 the declaration of some type tag, if the given TYPE_DECL is
5440 marked as having been instantiated from some other (original)
5441 TYPE_DECL node (e.g. one which was generated within the original
5442 definition of an inline function) we have to generate a special
5443 (abbreviated) TAG_structure_type, TAG_union_type, or
5444 TAG_enumeration-type DIE here. */
5446 if (TYPE_DECL_IS_STUB (decl) && DECL_ABSTRACT_ORIGIN (decl))
5448 output_tagged_type_instantiation (TREE_TYPE (decl));
5449 return;
5452 output_type (TREE_TYPE (decl), containing_scope);
5454 if (! is_redundant_typedef (decl))
5455 /* Output a DIE to represent the typedef itself. */
5456 output_die (output_typedef_die, decl);
5457 break;
5459 case LABEL_DECL:
5460 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5461 output_die (output_label_die, decl);
5462 break;
5464 case VAR_DECL:
5465 /* If we are conforming to the DWARF version 1 specification, don't
5466 generated any DIEs to represent mere external object declarations. */
5468 #if (DWARF_VERSION <= 1)
5469 if (DECL_EXTERNAL (decl) && ! TREE_PUBLIC (decl))
5470 break;
5471 #endif
5473 /* If we are in terse mode, don't generate any DIEs to represent
5474 any variable declarations or definitions. */
5476 if (debug_info_level <= DINFO_LEVEL_TERSE)
5477 break;
5479 /* Output any DIEs that are needed to specify the type of this data
5480 object. */
5482 output_type (TREE_TYPE (decl), containing_scope);
5485 /* And its containing type. */
5486 register tree origin = decl_class_context (decl);
5487 if (origin)
5488 output_type (origin, containing_scope);
5491 /* If the following DIE will represent a data object definition for a
5492 data object with "extern" linkage, output a special "pubnames" DIE
5493 label just ahead of the actual DIE. A reference to this label
5494 was already generated in the .debug_pubnames section sub-entry
5495 for this data object definition. */
5497 if (TREE_PUBLIC (decl) && ! DECL_ABSTRACT (decl))
5499 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5501 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
5502 ASM_OUTPUT_LABEL (asm_out_file, label);
5505 /* Now output the DIE to represent the data object itself. This gets
5506 complicated because of the possibility that the VAR_DECL really
5507 represents an inlined instance of a formal parameter for an inline
5508 function. */
5511 void (*func) PARAMS ((void *));
5512 register tree origin = decl_ultimate_origin (decl);
5514 if (origin != NULL && TREE_CODE (origin) == PARM_DECL)
5515 func = output_formal_parameter_die;
5516 else
5518 if (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
5519 func = output_global_variable_die;
5520 else
5521 func = output_local_variable_die;
5523 output_die (func, decl);
5525 break;
5527 case FIELD_DECL:
5528 /* Ignore the nameless fields that are used to skip bits. */
5529 if (DECL_NAME (decl) != 0)
5531 output_type (member_declared_type (decl), containing_scope);
5532 output_die (output_member_die, decl);
5534 break;
5536 case PARM_DECL:
5537 /* Force out the type of this formal, if it was not forced out yet.
5538 Note that here we can run afoul of a bug in "classic" svr4 SDB.
5539 It should be able to grok the presence of type DIEs within a list
5540 of TAG_formal_parameter DIEs, but it doesn't. */
5542 output_type (TREE_TYPE (decl), containing_scope);
5543 output_die (output_formal_parameter_die, decl);
5544 break;
5546 case NAMESPACE_DECL:
5547 /* Ignore for now. */
5548 break;
5550 default:
5551 abort ();
5555 /* Output debug information for a function. */
5556 static void
5557 dwarfout_function_decl (decl)
5558 tree decl;
5560 dwarfout_file_scope_decl (decl, 0);
5563 /* Debug information for a global DECL. Called from toplev.c after
5564 compilation proper has finished. */
5565 static void
5566 dwarfout_global_decl (decl)
5567 tree decl;
5569 /* Output DWARF information for file-scope tentative data object
5570 declarations, file-scope (extern) function declarations (which
5571 had no corresponding body) and file-scope tagged type
5572 declarations and definitions which have not yet been forced out. */
5574 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
5575 dwarfout_file_scope_decl (decl, 1);
5578 /* DECL is an inline function, whose body is present, but which is not
5579 being output at this point. (We're putting that off until we need
5580 to do it.) */
5581 static void
5582 dwarfout_deferred_inline_function (decl)
5583 tree decl;
5585 /* Generate the DWARF info for the "abstract" instance of a function
5586 which we may later generate inlined and/or out-of-line instances
5587 of. */
5588 if ((DECL_INLINE (decl) || DECL_ABSTRACT (decl))
5589 && ! DECL_ABSTRACT_ORIGIN (decl))
5591 /* The front-end may not have set CURRENT_FUNCTION_DECL, but the
5592 DWARF code expects it to be set in this case. Intuitively,
5593 DECL is the function we just finished defining, so setting
5594 CURRENT_FUNCTION_DECL is sensible. */
5595 tree saved_cfd = current_function_decl;
5596 int was_abstract = DECL_ABSTRACT (decl);
5597 current_function_decl = decl;
5599 /* Let the DWARF code do its work. */
5600 set_decl_abstract_flags (decl, 1);
5601 dwarfout_file_scope_decl (decl, 0);
5602 if (! was_abstract)
5603 set_decl_abstract_flags (decl, 0);
5605 /* Reset CURRENT_FUNCTION_DECL. */
5606 current_function_decl = saved_cfd;
5610 static void
5611 dwarfout_file_scope_decl (decl, set_finalizing)
5612 tree decl;
5613 int set_finalizing;
5615 if (TREE_CODE (decl) == ERROR_MARK)
5616 return;
5618 /* If this ..._DECL node is marked to be ignored, then ignore it. */
5620 if (DECL_IGNORED_P (decl))
5621 return;
5623 switch (TREE_CODE (decl))
5625 case FUNCTION_DECL:
5627 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of
5628 a builtin function. Explicit programmer-supplied declarations of
5629 these same functions should NOT be ignored however. */
5631 if (DECL_EXTERNAL (decl) && DECL_FUNCTION_CODE (decl))
5632 return;
5634 /* What we would really like to do here is to filter out all mere
5635 file-scope declarations of file-scope functions which are never
5636 referenced later within this translation unit (and keep all of
5637 ones that *are* referenced later on) but we aren't clairvoyant,
5638 so we have no idea which functions will be referenced in the
5639 future (i.e. later on within the current translation unit).
5640 So here we just ignore all file-scope function declarations
5641 which are not also definitions. If and when the debugger needs
5642 to know something about these functions, it will have to hunt
5643 around and find the DWARF information associated with the
5644 *definition* of the function.
5646 Note that we can't just check `DECL_EXTERNAL' to find out which
5647 FUNCTION_DECL nodes represent definitions and which ones represent
5648 mere declarations. We have to check `DECL_INITIAL' instead. That's
5649 because the C front-end supports some weird semantics for "extern
5650 inline" function definitions. These can get inlined within the
5651 current translation unit (an thus, we need to generate DWARF info
5652 for their abstract instances so that the DWARF info for the
5653 concrete inlined instances can have something to refer to) but
5654 the compiler never generates any out-of-lines instances of such
5655 things (despite the fact that they *are* definitions). The
5656 important point is that the C front-end marks these "extern inline"
5657 functions as DECL_EXTERNAL, but we need to generate DWARF for them
5658 anyway.
5660 Note that the C++ front-end also plays some similar games for inline
5661 function definitions appearing within include files which also
5662 contain `#pragma interface' pragmas. */
5664 if (DECL_INITIAL (decl) == NULL_TREE)
5665 return;
5667 if (TREE_PUBLIC (decl)
5668 && ! DECL_EXTERNAL (decl)
5669 && ! DECL_ABSTRACT (decl))
5671 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5673 /* Output a .debug_pubnames entry for a public function
5674 defined in this compilation unit. */
5676 fputc ('\n', asm_out_file);
5677 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
5678 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5679 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5680 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5681 IDENTIFIER_POINTER (DECL_NAME (decl)));
5682 ASM_OUTPUT_POP_SECTION (asm_out_file);
5685 break;
5687 case VAR_DECL:
5689 /* Ignore this VAR_DECL if it refers to a file-scope extern data
5690 object declaration and if the declaration was never even
5691 referenced from within this entire compilation unit. We
5692 suppress these DIEs in order to save space in the .debug section
5693 (by eliminating entries which are probably useless). Note that
5694 we must not suppress block-local extern declarations (whether
5695 used or not) because that would screw-up the debugger's name
5696 lookup mechanism and cause it to miss things which really ought
5697 to be in scope at a given point. */
5699 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
5700 return;
5702 if (TREE_PUBLIC (decl)
5703 && ! DECL_EXTERNAL (decl)
5704 && GET_CODE (DECL_RTL (decl)) == MEM
5705 && ! DECL_ABSTRACT (decl))
5707 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5709 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5711 /* Output a .debug_pubnames entry for a public variable
5712 defined in this compilation unit. */
5714 fputc ('\n', asm_out_file);
5715 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
5716 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5717 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5718 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5719 IDENTIFIER_POINTER (DECL_NAME (decl)));
5720 ASM_OUTPUT_POP_SECTION (asm_out_file);
5723 if (DECL_INITIAL (decl) == NULL)
5725 /* Output a .debug_aranges entry for a public variable
5726 which is tentatively defined in this compilation unit. */
5728 fputc ('\n', asm_out_file);
5729 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_ARANGES_SECTION);
5730 ASM_OUTPUT_DWARF_ADDR (asm_out_file,
5731 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
5732 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
5733 (unsigned) int_size_in_bytes (TREE_TYPE (decl)));
5734 ASM_OUTPUT_POP_SECTION (asm_out_file);
5738 /* If we are in terse mode, don't generate any DIEs to represent
5739 any variable declarations or definitions. */
5741 if (debug_info_level <= DINFO_LEVEL_TERSE)
5742 return;
5744 break;
5746 case TYPE_DECL:
5747 /* Don't bother trying to generate any DIEs to represent any of the
5748 normal built-in types for the language we are compiling, except
5749 in cases where the types in question are *not* DWARF fundamental
5750 types. We make an exception in the case of non-fundamental types
5751 for the sake of objective C (and perhaps C++) because the GNU
5752 front-ends for these languages may in fact create certain "built-in"
5753 types which are (for example) RECORD_TYPEs. In such cases, we
5754 really need to output these (non-fundamental) types because other
5755 DIEs may contain references to them. */
5757 /* Also ignore language dependent types here, because they are probably
5758 also built-in types. If we didn't ignore them, then we would get
5759 references to undefined labels because output_type doesn't support
5760 them. So, for now, we need to ignore them to avoid assembler
5761 errors. */
5763 /* ??? This code is different than the equivalent code in dwarf2out.c.
5764 The dwarf2out.c code is probably more correct. */
5766 if (DECL_SOURCE_LINE (decl) == 0
5767 && (type_is_fundamental (TREE_TYPE (decl))
5768 || TREE_CODE (TREE_TYPE (decl)) == LANG_TYPE))
5769 return;
5771 /* If we are in terse mode, don't generate any DIEs to represent
5772 any actual typedefs. Note that even when we are in terse mode,
5773 we must still output DIEs to represent those tagged types which
5774 are used (directly or indirectly) in the specification of either
5775 a return type or a formal parameter type of some function. */
5777 if (debug_info_level <= DINFO_LEVEL_TERSE)
5778 if (! TYPE_DECL_IS_STUB (decl)
5779 || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)))
5780 return;
5782 break;
5784 default:
5785 return;
5788 fputc ('\n', asm_out_file);
5789 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5790 finalizing = set_finalizing;
5791 output_decl (decl, NULL_TREE);
5793 /* NOTE: The call above to `output_decl' may have caused one or more
5794 file-scope named types (i.e. tagged types) to be placed onto the
5795 pending_types_list. We have to get those types off of that list
5796 at some point, and this is the perfect time to do it. If we didn't
5797 take them off now, they might still be on the list when cc1 finally
5798 exits. That might be OK if it weren't for the fact that when we put
5799 types onto the pending_types_list, we set the TREE_ASM_WRITTEN flag
5800 for these types, and that causes them never to be output unless
5801 `output_pending_types_for_scope' takes them off of the list and un-sets
5802 their TREE_ASM_WRITTEN flags. */
5804 output_pending_types_for_scope (NULL_TREE);
5806 /* The above call should have totally emptied the pending_types_list
5807 if this is not a nested function or class. If this is a nested type,
5808 then the remaining pending_types will be emitted when the containing type
5809 is handled. */
5811 if (! DECL_CONTEXT (decl))
5813 if (pending_types != 0)
5814 abort ();
5817 ASM_OUTPUT_POP_SECTION (asm_out_file);
5819 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
5820 current_funcdef_number++;
5823 /* Output a marker (i.e. a label) for the beginning of the generated code
5824 for a lexical block. */
5826 static void
5827 dwarfout_begin_block (line, blocknum)
5828 unsigned int line ATTRIBUTE_UNUSED;
5829 unsigned int blocknum;
5831 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5833 function_section (current_function_decl);
5834 sprintf (label, BLOCK_BEGIN_LABEL_FMT, blocknum);
5835 ASM_OUTPUT_LABEL (asm_out_file, label);
5838 /* Output a marker (i.e. a label) for the end of the generated code
5839 for a lexical block. */
5841 static void
5842 dwarfout_end_block (line, blocknum)
5843 unsigned int line ATTRIBUTE_UNUSED;
5844 unsigned int blocknum;
5846 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5848 function_section (current_function_decl);
5849 sprintf (label, BLOCK_END_LABEL_FMT, blocknum);
5850 ASM_OUTPUT_LABEL (asm_out_file, label);
5853 /* Output a marker (i.e. a label) for the point in the generated code where
5854 the real body of the function begins (after parameters have been moved
5855 to their home locations). */
5857 static void
5858 dwarfout_end_prologue (line)
5859 unsigned int line ATTRIBUTE_UNUSED;
5861 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5863 if (! use_gnu_debug_info_extensions)
5864 return;
5866 function_section (current_function_decl);
5867 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
5868 ASM_OUTPUT_LABEL (asm_out_file, label);
5871 /* Output a marker (i.e. a label) for the point in the generated code where
5872 the real body of the function ends (just before the epilogue code). */
5874 static void
5875 dwarfout_end_function (line)
5876 unsigned int line ATTRIBUTE_UNUSED;
5878 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5880 if (! use_gnu_debug_info_extensions)
5881 return;
5882 function_section (current_function_decl);
5883 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
5884 ASM_OUTPUT_LABEL (asm_out_file, label);
5887 /* Output a marker (i.e. a label) for the absolute end of the generated code
5888 for a function definition. This gets called *after* the epilogue code
5889 has been generated. */
5891 static void
5892 dwarfout_end_epilogue ()
5894 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5896 /* Output a label to mark the endpoint of the code generated for this
5897 function. */
5899 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
5900 ASM_OUTPUT_LABEL (asm_out_file, label);
5903 static void
5904 shuffle_filename_entry (new_zeroth)
5905 filename_entry *new_zeroth;
5907 filename_entry temp_entry;
5908 filename_entry *limit_p;
5909 filename_entry *move_p;
5911 if (new_zeroth == &filename_table[0])
5912 return;
5914 temp_entry = *new_zeroth;
5916 /* Shift entries up in the table to make room at [0]. */
5918 limit_p = &filename_table[0];
5919 for (move_p = new_zeroth; move_p > limit_p; move_p--)
5920 *move_p = *(move_p-1);
5922 /* Install the found entry at [0]. */
5924 filename_table[0] = temp_entry;
5927 /* Create a new (string) entry for the .debug_sfnames section. */
5929 static void
5930 generate_new_sfname_entry ()
5932 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5934 fputc ('\n', asm_out_file);
5935 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SFNAMES_SECTION);
5936 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, filename_table[0].number);
5937 ASM_OUTPUT_LABEL (asm_out_file, label);
5938 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5939 filename_table[0].name
5940 ? filename_table[0].name
5941 : "");
5942 ASM_OUTPUT_POP_SECTION (asm_out_file);
5945 /* Lookup a filename (in the list of filenames that we know about here in
5946 dwarfout.c) and return its "index". The index of each (known) filename
5947 is just a unique number which is associated with only that one filename.
5948 We need such numbers for the sake of generating labels (in the
5949 .debug_sfnames section) and references to those unique labels (in the
5950 .debug_srcinfo and .debug_macinfo sections).
5952 If the filename given as an argument is not found in our current list,
5953 add it to the list and assign it the next available unique index number.
5955 Whatever we do (i.e. whether we find a pre-existing filename or add a new
5956 one), we shuffle the filename found (or added) up to the zeroth entry of
5957 our list of filenames (which is always searched linearly). We do this so
5958 as to optimize the most common case for these filename lookups within
5959 dwarfout.c. The most common case by far is the case where we call
5960 lookup_filename to lookup the very same filename that we did a lookup
5961 on the last time we called lookup_filename. We make sure that this
5962 common case is fast because such cases will constitute 99.9% of the
5963 lookups we ever do (in practice).
5965 If we add a new filename entry to our table, we go ahead and generate
5966 the corresponding entry in the .debug_sfnames section right away.
5967 Doing so allows us to avoid tickling an assembler bug (present in some
5968 m68k assemblers) which yields assembly-time errors in cases where the
5969 difference of two label addresses is taken and where the two labels
5970 are in a section *other* than the one where the difference is being
5971 calculated, and where at least one of the two symbol references is a
5972 forward reference. (This bug could be tickled by our .debug_srcinfo
5973 entries if we don't output their corresponding .debug_sfnames entries
5974 before them.) */
5976 static unsigned
5977 lookup_filename (file_name)
5978 const char *file_name;
5980 filename_entry *search_p;
5981 filename_entry *limit_p = &filename_table[ft_entries];
5983 for (search_p = filename_table; search_p < limit_p; search_p++)
5984 if (!strcmp (file_name, search_p->name))
5986 /* When we get here, we have found the filename that we were
5987 looking for in the filename_table. Now we want to make sure
5988 that it gets moved to the zero'th entry in the table (if it
5989 is not already there) so that subsequent attempts to find the
5990 same filename will find it as quickly as possible. */
5992 shuffle_filename_entry (search_p);
5993 return filename_table[0].number;
5996 /* We come here whenever we have a new filename which is not registered
5997 in the current table. Here we add it to the table. */
5999 /* Prepare to add a new table entry by making sure there is enough space
6000 in the table to do so. If not, expand the current table. */
6002 if (ft_entries == ft_entries_allocated)
6004 ft_entries_allocated += FT_ENTRIES_INCREMENT;
6005 filename_table
6006 = (filename_entry *)
6007 xrealloc (filename_table,
6008 ft_entries_allocated * sizeof (filename_entry));
6011 /* Initially, add the new entry at the end of the filename table. */
6013 filename_table[ft_entries].number = ft_entries;
6014 filename_table[ft_entries].name = xstrdup (file_name);
6016 /* Shuffle the new entry into filename_table[0]. */
6018 shuffle_filename_entry (&filename_table[ft_entries]);
6020 if (debug_info_level >= DINFO_LEVEL_NORMAL)
6021 generate_new_sfname_entry ();
6023 ft_entries++;
6024 return filename_table[0].number;
6027 static void
6028 generate_srcinfo_entry (line_entry_num, files_entry_num)
6029 unsigned line_entry_num;
6030 unsigned files_entry_num;
6032 char label[MAX_ARTIFICIAL_LABEL_BYTES];
6034 fputc ('\n', asm_out_file);
6035 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SRCINFO_SECTION);
6036 sprintf (label, LINE_ENTRY_LABEL_FMT, line_entry_num);
6037 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, LINE_BEGIN_LABEL);
6038 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, files_entry_num);
6039 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, SFNAMES_BEGIN_LABEL);
6040 ASM_OUTPUT_POP_SECTION (asm_out_file);
6043 static void
6044 dwarfout_source_line (line, filename)
6045 unsigned int line;
6046 const char *filename;
6048 if (debug_info_level >= DINFO_LEVEL_NORMAL
6049 /* We can't emit line number info for functions in separate sections,
6050 because the assembler can't subtract labels in different sections. */
6051 && DECL_SECTION_NAME (current_function_decl) == NULL_TREE)
6053 char label[MAX_ARTIFICIAL_LABEL_BYTES];
6054 static unsigned last_line_entry_num = 0;
6055 static unsigned prev_file_entry_num = (unsigned) -1;
6056 unsigned this_file_entry_num;
6058 function_section (current_function_decl);
6059 sprintf (label, LINE_CODE_LABEL_FMT, ++last_line_entry_num);
6060 ASM_OUTPUT_LABEL (asm_out_file, label);
6062 fputc ('\n', asm_out_file);
6064 if (use_gnu_debug_info_extensions)
6065 this_file_entry_num = lookup_filename (filename);
6066 else
6067 this_file_entry_num = (unsigned) -1;
6069 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
6070 if (this_file_entry_num != prev_file_entry_num)
6072 char line_entry_label[MAX_ARTIFICIAL_LABEL_BYTES];
6074 sprintf (line_entry_label, LINE_ENTRY_LABEL_FMT, last_line_entry_num);
6075 ASM_OUTPUT_LABEL (asm_out_file, line_entry_label);
6079 const char *tail = strrchr (filename, '/');
6081 if (tail != NULL)
6082 filename = tail;
6085 dw2_asm_output_data (4, line, "%s:%u", filename, line);
6086 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
6087 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, TEXT_BEGIN_LABEL);
6088 ASM_OUTPUT_POP_SECTION (asm_out_file);
6090 if (this_file_entry_num != prev_file_entry_num)
6091 generate_srcinfo_entry (last_line_entry_num, this_file_entry_num);
6092 prev_file_entry_num = this_file_entry_num;
6096 /* Generate an entry in the .debug_macinfo section. */
6098 static void
6099 generate_macinfo_entry (type, offset, string)
6100 unsigned int type;
6101 rtx offset;
6102 const char *string;
6104 if (! use_gnu_debug_info_extensions)
6105 return;
6107 fputc ('\n', asm_out_file);
6108 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
6109 assemble_integer (gen_rtx_PLUS (SImode, GEN_INT (type << 24), offset),
6110 4, BITS_PER_UNIT, 1);
6111 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, string);
6112 ASM_OUTPUT_POP_SECTION (asm_out_file);
6115 /* Wrapper for toplev.c callback to check debug info level. */
6116 static void
6117 dwarfout_start_source_file_check (line, filename)
6118 unsigned int line;
6119 const char *filename;
6121 if (debug_info_level == DINFO_LEVEL_VERBOSE)
6122 dwarfout_start_source_file (line, filename);
6125 static void
6126 dwarfout_start_source_file (line, filename)
6127 unsigned int line ATTRIBUTE_UNUSED;
6128 const char *filename;
6130 char label[MAX_ARTIFICIAL_LABEL_BYTES];
6131 const char *label1, *label2;
6133 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, lookup_filename (filename));
6134 label1 = (*label == '*') + label;
6135 label2 = (*SFNAMES_BEGIN_LABEL == '*') + SFNAMES_BEGIN_LABEL;
6136 generate_macinfo_entry (MACINFO_start,
6137 gen_rtx_MINUS (Pmode,
6138 gen_rtx_SYMBOL_REF (Pmode, label1),
6139 gen_rtx_SYMBOL_REF (Pmode, label2)),
6140 "");
6143 /* Wrapper for toplev.c callback to check debug info level. */
6144 static void
6145 dwarfout_end_source_file_check (lineno)
6146 unsigned lineno;
6148 if (debug_info_level == DINFO_LEVEL_VERBOSE)
6149 dwarfout_end_source_file (lineno);
6152 static void
6153 dwarfout_end_source_file (lineno)
6154 unsigned lineno;
6156 generate_macinfo_entry (MACINFO_resume, GEN_INT (lineno), "");
6159 /* Called from check_newline in c-parse.y. The `buffer' parameter
6160 contains the tail part of the directive line, i.e. the part which
6161 is past the initial whitespace, #, whitespace, directive-name,
6162 whitespace part. */
6164 static void
6165 dwarfout_define (lineno, buffer)
6166 unsigned lineno;
6167 const char *buffer;
6169 static int initialized = 0;
6171 if (!initialized)
6173 dwarfout_start_source_file (0, primary_filename);
6174 initialized = 1;
6176 generate_macinfo_entry (MACINFO_define, GEN_INT (lineno), buffer);
6179 /* Called from check_newline in c-parse.y. The `buffer' parameter
6180 contains the tail part of the directive line, i.e. the part which
6181 is past the initial whitespace, #, whitespace, directive-name,
6182 whitespace part. */
6184 static void
6185 dwarfout_undef (lineno, buffer)
6186 unsigned lineno;
6187 const char *buffer;
6189 generate_macinfo_entry (MACINFO_undef, GEN_INT (lineno), buffer);
6192 /* Set up for Dwarf output at the start of compilation. */
6194 static void
6195 dwarfout_init (main_input_filename)
6196 const char *main_input_filename;
6198 /* Remember the name of the primary input file. */
6200 primary_filename = main_input_filename;
6202 /* Allocate the initial hunk of the pending_sibling_stack. */
6204 pending_sibling_stack
6205 = (unsigned *)
6206 xmalloc (PENDING_SIBLINGS_INCREMENT * sizeof (unsigned));
6207 pending_siblings_allocated = PENDING_SIBLINGS_INCREMENT;
6208 pending_siblings = 1;
6210 /* Allocate the initial hunk of the filename_table. */
6212 filename_table
6213 = (filename_entry *)
6214 xmalloc (FT_ENTRIES_INCREMENT * sizeof (filename_entry));
6215 ft_entries_allocated = FT_ENTRIES_INCREMENT;
6216 ft_entries = 0;
6218 /* Allocate the initial hunk of the pending_types_list. */
6220 pending_types_list
6221 = (tree *) xmalloc (PENDING_TYPES_INCREMENT * sizeof (tree));
6222 pending_types_allocated = PENDING_TYPES_INCREMENT;
6223 pending_types = 0;
6225 /* Create an artificial RECORD_TYPE node which we can use in our hack
6226 to get the DIEs representing types of formal parameters to come out
6227 only *after* the DIEs for the formal parameters themselves. */
6229 fake_containing_scope = make_node (RECORD_TYPE);
6231 /* Output a starting label for the .text section. */
6233 fputc ('\n', asm_out_file);
6234 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION_NAME);
6235 ASM_OUTPUT_LABEL (asm_out_file, TEXT_BEGIN_LABEL);
6236 ASM_OUTPUT_POP_SECTION (asm_out_file);
6238 /* Output a starting label for the .data section. */
6240 fputc ('\n', asm_out_file);
6241 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION_NAME);
6242 ASM_OUTPUT_LABEL (asm_out_file, DATA_BEGIN_LABEL);
6243 ASM_OUTPUT_POP_SECTION (asm_out_file);
6245 #if 0 /* GNU C doesn't currently use .data1. */
6246 /* Output a starting label for the .data1 section. */
6248 fputc ('\n', asm_out_file);
6249 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION_NAME);
6250 ASM_OUTPUT_LABEL (asm_out_file, DATA1_BEGIN_LABEL);
6251 ASM_OUTPUT_POP_SECTION (asm_out_file);
6252 #endif
6254 /* Output a starting label for the .rodata section. */
6256 fputc ('\n', asm_out_file);
6257 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION_NAME);
6258 ASM_OUTPUT_LABEL (asm_out_file, RODATA_BEGIN_LABEL);
6259 ASM_OUTPUT_POP_SECTION (asm_out_file);
6261 #if 0 /* GNU C doesn't currently use .rodata1. */
6262 /* Output a starting label for the .rodata1 section. */
6264 fputc ('\n', asm_out_file);
6265 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION_NAME);
6266 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_BEGIN_LABEL);
6267 ASM_OUTPUT_POP_SECTION (asm_out_file);
6268 #endif
6270 /* Output a starting label for the .bss section. */
6272 fputc ('\n', asm_out_file);
6273 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION_NAME);
6274 ASM_OUTPUT_LABEL (asm_out_file, BSS_BEGIN_LABEL);
6275 ASM_OUTPUT_POP_SECTION (asm_out_file);
6277 if (debug_info_level >= DINFO_LEVEL_NORMAL)
6279 if (use_gnu_debug_info_extensions)
6281 /* Output a starting label and an initial (compilation directory)
6282 entry for the .debug_sfnames section. The starting label will be
6283 referenced by the initial entry in the .debug_srcinfo section. */
6285 fputc ('\n', asm_out_file);
6286 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SFNAMES_SECTION);
6287 ASM_OUTPUT_LABEL (asm_out_file, SFNAMES_BEGIN_LABEL);
6289 const char *pwd = getpwd ();
6290 char *dirname;
6292 if (!pwd)
6293 fatal_io_error ("can't get current directory");
6295 dirname = concat (pwd, "/", NULL);
6296 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
6297 free (dirname);
6299 ASM_OUTPUT_POP_SECTION (asm_out_file);
6302 if (debug_info_level >= DINFO_LEVEL_VERBOSE
6303 && use_gnu_debug_info_extensions)
6305 /* Output a starting label for the .debug_macinfo section. This
6306 label will be referenced by the AT_mac_info attribute in the
6307 TAG_compile_unit DIE. */
6309 fputc ('\n', asm_out_file);
6310 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
6311 ASM_OUTPUT_LABEL (asm_out_file, MACINFO_BEGIN_LABEL);
6312 ASM_OUTPUT_POP_SECTION (asm_out_file);
6315 /* Generate the initial entry for the .line section. */
6317 fputc ('\n', asm_out_file);
6318 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
6319 ASM_OUTPUT_LABEL (asm_out_file, LINE_BEGIN_LABEL);
6320 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, LINE_END_LABEL, LINE_BEGIN_LABEL);
6321 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6322 ASM_OUTPUT_POP_SECTION (asm_out_file);
6324 if (use_gnu_debug_info_extensions)
6326 /* Generate the initial entry for the .debug_srcinfo section. */
6328 fputc ('\n', asm_out_file);
6329 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SRCINFO_SECTION);
6330 ASM_OUTPUT_LABEL (asm_out_file, SRCINFO_BEGIN_LABEL);
6331 ASM_OUTPUT_DWARF_ADDR (asm_out_file, LINE_BEGIN_LABEL);
6332 ASM_OUTPUT_DWARF_ADDR (asm_out_file, SFNAMES_BEGIN_LABEL);
6333 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6334 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_END_LABEL);
6335 #ifdef DWARF_TIMESTAMPS
6336 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, time (NULL));
6337 #else
6338 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
6339 #endif
6340 ASM_OUTPUT_POP_SECTION (asm_out_file);
6343 /* Generate the initial entry for the .debug_pubnames section. */
6345 fputc ('\n', asm_out_file);
6346 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
6347 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
6348 ASM_OUTPUT_POP_SECTION (asm_out_file);
6350 /* Generate the initial entry for the .debug_aranges section. */
6352 fputc ('\n', asm_out_file);
6353 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_ARANGES_SECTION);
6354 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
6355 DEBUG_ARANGES_END_LABEL,
6356 DEBUG_ARANGES_BEGIN_LABEL);
6357 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_ARANGES_BEGIN_LABEL);
6358 ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 1);
6359 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
6360 ASM_OUTPUT_POP_SECTION (asm_out_file);
6363 /* Setup first DIE number == 1. */
6364 NEXT_DIE_NUM = next_unused_dienum++;
6366 /* Generate the initial DIE for the .debug section. Note that the
6367 (string) value given in the AT_name attribute of the TAG_compile_unit
6368 DIE will (typically) be a relative pathname and that this pathname
6369 should be taken as being relative to the directory from which the
6370 compiler was invoked when the given (base) source file was compiled. */
6372 fputc ('\n', asm_out_file);
6373 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
6374 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_BEGIN_LABEL);
6375 output_die (output_compile_unit_die, (PTR) main_input_filename);
6376 ASM_OUTPUT_POP_SECTION (asm_out_file);
6378 fputc ('\n', asm_out_file);
6381 /* Output stuff that dwarf requires at the end of every file. */
6383 static void
6384 dwarfout_finish (main_input_filename)
6385 const char *main_input_filename ATTRIBUTE_UNUSED;
6387 char label[MAX_ARTIFICIAL_LABEL_BYTES];
6389 fputc ('\n', asm_out_file);
6390 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
6391 retry_incomplete_types ();
6392 fputc ('\n', asm_out_file);
6394 /* Mark the end of the chain of siblings which represent all file-scope
6395 declarations in this compilation unit. */
6397 /* The (null) DIE which represents the terminator for the (sibling linked)
6398 list of file-scope items is *special*. Normally, we would just call
6399 end_sibling_chain at this point in order to output a word with the
6400 value `4' and that word would act as the terminator for the list of
6401 DIEs describing file-scope items. Unfortunately, if we were to simply
6402 do that, the label that would follow this DIE in the .debug section
6403 (i.e. `..D2') would *not* be properly aligned (as it must be on some
6404 machines) to a 4 byte boundary.
6406 In order to force the label `..D2' to get aligned to a 4 byte boundary,
6407 the trick used is to insert extra (otherwise useless) padding bytes
6408 into the (null) DIE that we know must precede the ..D2 label in the
6409 .debug section. The amount of padding required can be anywhere between
6410 0 and 3 bytes. The length word at the start of this DIE (i.e. the one
6411 with the padding) would normally contain the value 4, but now it will
6412 also have to include the padding bytes, so it will instead have some
6413 value in the range 4..7.
6415 Fortunately, the rules of Dwarf say that any DIE whose length word
6416 contains *any* value less than 8 should be treated as a null DIE, so
6417 this trick works out nicely. Clever, eh? Don't give me any credit
6418 (or blame). I didn't think of this scheme. I just conformed to it.
6421 output_die (output_padded_null_die, (void *) 0);
6422 dienum_pop ();
6424 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
6425 ASM_OUTPUT_LABEL (asm_out_file, label); /* should be ..D2 */
6426 ASM_OUTPUT_POP_SECTION (asm_out_file);
6428 /* Output a terminator label for the .text section. */
6430 fputc ('\n', asm_out_file);
6431 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION_NAME);
6432 ASM_OUTPUT_LABEL (asm_out_file, TEXT_END_LABEL);
6433 ASM_OUTPUT_POP_SECTION (asm_out_file);
6435 /* Output a terminator label for the .data section. */
6437 fputc ('\n', asm_out_file);
6438 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION_NAME);
6439 ASM_OUTPUT_LABEL (asm_out_file, DATA_END_LABEL);
6440 ASM_OUTPUT_POP_SECTION (asm_out_file);
6442 #if 0 /* GNU C doesn't currently use .data1. */
6443 /* Output a terminator label for the .data1 section. */
6445 fputc ('\n', asm_out_file);
6446 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION_NAME);
6447 ASM_OUTPUT_LABEL (asm_out_file, DATA1_END_LABEL);
6448 ASM_OUTPUT_POP_SECTION (asm_out_file);
6449 #endif
6451 /* Output a terminator label for the .rodata section. */
6453 fputc ('\n', asm_out_file);
6454 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION_NAME);
6455 ASM_OUTPUT_LABEL (asm_out_file, RODATA_END_LABEL);
6456 ASM_OUTPUT_POP_SECTION (asm_out_file);
6458 #if 0 /* GNU C doesn't currently use .rodata1. */
6459 /* Output a terminator label for the .rodata1 section. */
6461 fputc ('\n', asm_out_file);
6462 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION_NAME);
6463 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_END_LABEL);
6464 ASM_OUTPUT_POP_SECTION (asm_out_file);
6465 #endif
6467 /* Output a terminator label for the .bss section. */
6469 fputc ('\n', asm_out_file);
6470 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION_NAME);
6471 ASM_OUTPUT_LABEL (asm_out_file, BSS_END_LABEL);
6472 ASM_OUTPUT_POP_SECTION (asm_out_file);
6474 if (debug_info_level >= DINFO_LEVEL_NORMAL)
6476 /* Output a terminating entry for the .line section. */
6478 fputc ('\n', asm_out_file);
6479 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
6480 ASM_OUTPUT_LABEL (asm_out_file, LINE_LAST_ENTRY_LABEL);
6481 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6482 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
6483 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
6484 ASM_OUTPUT_LABEL (asm_out_file, LINE_END_LABEL);
6485 ASM_OUTPUT_POP_SECTION (asm_out_file);
6487 if (use_gnu_debug_info_extensions)
6489 /* Output a terminating entry for the .debug_srcinfo section. */
6491 fputc ('\n', asm_out_file);
6492 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SRCINFO_SECTION);
6493 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
6494 LINE_LAST_ENTRY_LABEL, LINE_BEGIN_LABEL);
6495 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
6496 ASM_OUTPUT_POP_SECTION (asm_out_file);
6499 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
6501 /* Output terminating entries for the .debug_macinfo section. */
6503 dwarfout_end_source_file (0);
6505 fputc ('\n', asm_out_file);
6506 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
6507 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6508 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
6509 ASM_OUTPUT_POP_SECTION (asm_out_file);
6512 /* Generate the terminating entry for the .debug_pubnames section. */
6514 fputc ('\n', asm_out_file);
6515 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
6516 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6517 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
6518 ASM_OUTPUT_POP_SECTION (asm_out_file);
6520 /* Generate the terminating entries for the .debug_aranges section.
6522 Note that we want to do this only *after* we have output the end
6523 labels (for the various program sections) which we are going to
6524 refer to here. This allows us to work around a bug in the m68k
6525 svr4 assembler. That assembler gives bogus assembly-time errors
6526 if (within any given section) you try to take the difference of
6527 two relocatable symbols, both of which are located within some
6528 other section, and if one (or both?) of the symbols involved is
6529 being forward-referenced. By generating the .debug_aranges
6530 entries at this late point in the assembly output, we skirt the
6531 issue simply by avoiding forward-references.
6534 fputc ('\n', asm_out_file);
6535 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_ARANGES_SECTION);
6537 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6538 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
6540 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA_BEGIN_LABEL);
6541 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA_END_LABEL, DATA_BEGIN_LABEL);
6543 #if 0 /* GNU C doesn't currently use .data1. */
6544 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA1_BEGIN_LABEL);
6545 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA1_END_LABEL,
6546 DATA1_BEGIN_LABEL);
6547 #endif
6549 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA_BEGIN_LABEL);
6550 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA_END_LABEL,
6551 RODATA_BEGIN_LABEL);
6553 #if 0 /* GNU C doesn't currently use .rodata1. */
6554 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA1_BEGIN_LABEL);
6555 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA1_END_LABEL,
6556 RODATA1_BEGIN_LABEL);
6557 #endif
6559 ASM_OUTPUT_DWARF_ADDR (asm_out_file, BSS_BEGIN_LABEL);
6560 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, BSS_END_LABEL, BSS_BEGIN_LABEL);
6562 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6563 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6565 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_ARANGES_END_LABEL);
6566 ASM_OUTPUT_POP_SECTION (asm_out_file);
6569 /* There should not be any pending types left at the end. We need
6570 this now because it may not have been checked on the last call to
6571 dwarfout_file_scope_decl. */
6572 if (pending_types != 0)
6573 abort ();
6576 #endif /* DWARF_DEBUGGING_INFO */