Daily bump.
[official-gcc.git] / gcc / ada / sem_ch3.adb
blobe3989e31a1dc9064cadd97632765ac29a7360100
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- $Revision: 1.13 $
10 -- --
11 -- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
12 -- --
13 -- GNAT is free software; you can redistribute it and/or modify it under --
14 -- terms of the GNU General Public License as published by the Free Soft- --
15 -- ware Foundation; either version 2, or (at your option) any later ver- --
16 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
17 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
18 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
19 -- for more details. You should have received a copy of the GNU General --
20 -- Public License distributed with GNAT; see file COPYING. If not, write --
21 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
22 -- MA 02111-1307, USA. --
23 -- --
24 -- GNAT was originally developed by the GNAT team at New York University. --
25 -- Extensive contributions were provided by Ada Core Technologies Inc. --
26 -- --
27 ------------------------------------------------------------------------------
29 with Atree; use Atree;
30 with Checks; use Checks;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Dist; use Exp_Dist;
37 with Exp_Util; use Exp_Util;
38 with Freeze; use Freeze;
39 with Itypes; use Itypes;
40 with Layout; use Layout;
41 with Lib; use Lib;
42 with Lib.Xref; use Lib.Xref;
43 with Namet; use Namet;
44 with Nmake; use Nmake;
45 with Opt; use Opt;
46 with Restrict; use Restrict;
47 with Rtsfind; use Rtsfind;
48 with Sem; use Sem;
49 with Sem_Case; use Sem_Case;
50 with Sem_Cat; use Sem_Cat;
51 with Sem_Ch6; use Sem_Ch6;
52 with Sem_Ch7; use Sem_Ch7;
53 with Sem_Ch8; use Sem_Ch8;
54 with Sem_Ch13; use Sem_Ch13;
55 with Sem_Disp; use Sem_Disp;
56 with Sem_Dist; use Sem_Dist;
57 with Sem_Elim; use Sem_Elim;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Mech; use Sem_Mech;
60 with Sem_Res; use Sem_Res;
61 with Sem_Smem; use Sem_Smem;
62 with Sem_Type; use Sem_Type;
63 with Sem_Util; use Sem_Util;
64 with Stand; use Stand;
65 with Sinfo; use Sinfo;
66 with Snames; use Snames;
67 with Tbuild; use Tbuild;
68 with Ttypes; use Ttypes;
69 with Uintp; use Uintp;
70 with Urealp; use Urealp;
72 package body Sem_Ch3 is
74 -----------------------
75 -- Local Subprograms --
76 -----------------------
78 procedure Build_Derived_Type
79 (N : Node_Id;
80 Parent_Type : Entity_Id;
81 Derived_Type : Entity_Id;
82 Is_Completion : Boolean;
83 Derive_Subps : Boolean := True);
84 -- Create and decorate a Derived_Type given the Parent_Type entity.
85 -- N is the N_Full_Type_Declaration node containing the derived type
86 -- definition. Parent_Type is the entity for the parent type in the derived
87 -- type definition and Derived_Type the actual derived type. Is_Completion
88 -- must be set to False if Derived_Type is the N_Defining_Identifier node
89 -- in N (ie Derived_Type = Defining_Identifier (N)). In this case N is not
90 -- the completion of a private type declaration. If Is_Completion is
91 -- set to True, N is the completion of a private type declaration and
92 -- Derived_Type is different from the defining identifier inside N (i.e.
93 -- Derived_Type /= Defining_Identifier (N)). Derive_Subps indicates whether
94 -- the parent subprograms should be derived. The only case where this
95 -- parameter is False is when Build_Derived_Type is recursively called to
96 -- process an implicit derived full type for a type derived from a private
97 -- type (in that case the subprograms must only be derived for the private
98 -- view of the type).
99 -- ??? These flags need a bit of re-examination and re-documentation:
100 -- ??? are they both necessary (both seem related to the recursion)?
102 procedure Build_Derived_Access_Type
103 (N : Node_Id;
104 Parent_Type : Entity_Id;
105 Derived_Type : Entity_Id);
106 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
107 -- create an implicit base if the parent type is constrained or if the
108 -- subtype indication has a constraint.
110 procedure Build_Derived_Array_Type
111 (N : Node_Id;
112 Parent_Type : Entity_Id;
113 Derived_Type : Entity_Id);
114 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
115 -- create an implicit base if the parent type is constrained or if the
116 -- subtype indication has a constraint.
118 procedure Build_Derived_Concurrent_Type
119 (N : Node_Id;
120 Parent_Type : Entity_Id;
121 Derived_Type : Entity_Id);
122 -- Subsidiary procedure to Build_Derived_Type. For a derived task or pro-
123 -- tected type, inherit entries and protected subprograms, check legality
124 -- of discriminant constraints if any.
126 procedure Build_Derived_Enumeration_Type
127 (N : Node_Id;
128 Parent_Type : Entity_Id;
129 Derived_Type : Entity_Id);
130 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
131 -- type, we must create a new list of literals. Types derived from
132 -- Character and Wide_Character are special-cased.
134 procedure Build_Derived_Numeric_Type
135 (N : Node_Id;
136 Parent_Type : Entity_Id;
137 Derived_Type : Entity_Id);
138 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
139 -- an anonymous base type, and propagate constraint to subtype if needed.
141 procedure Build_Derived_Private_Type
142 (N : Node_Id;
143 Parent_Type : Entity_Id;
144 Derived_Type : Entity_Id;
145 Is_Completion : Boolean;
146 Derive_Subps : Boolean := True);
147 -- Substidiary procedure to Build_Derived_Type. This procedure is complex
148 -- because the parent may or may not have a completion, and the derivation
149 -- may itself be a completion.
151 procedure Build_Derived_Record_Type
152 (N : Node_Id;
153 Parent_Type : Entity_Id;
154 Derived_Type : Entity_Id;
155 Derive_Subps : Boolean := True);
156 -- Subsidiary procedure to Build_Derived_Type and
157 -- Analyze_Private_Extension_Declaration used for tagged and untagged
158 -- record types. All parameters are as in Build_Derived_Type except that
159 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
160 -- N_Private_Extension_Declaration node. See the definition of this routine
161 -- for much more info. Derive_Subps indicates whether subprograms should
162 -- be derived from the parent type. The only case where Derive_Subps is
163 -- False is for an implicit derived full type for a type derived from a
164 -- private type (see Build_Derived_Type).
166 function Inherit_Components
167 (N : Node_Id;
168 Parent_Base : Entity_Id;
169 Derived_Base : Entity_Id;
170 Is_Tagged : Boolean;
171 Inherit_Discr : Boolean;
172 Discs : Elist_Id)
173 return Elist_Id;
174 -- Called from Build_Derived_Record_Type to inherit the components of
175 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
176 -- For more information on derived types and component inheritance please
177 -- consult the comment above the body of Build_Derived_Record_Type.
179 -- N is the original derived type declaration.
180 -- Is_Tagged is set if we are dealing with tagged types.
181 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
182 -- Parent_Base, otherwise no discriminants are inherited.
183 -- Discs gives the list of constraints that apply to Parent_Base in the
184 -- derived type declaration. If Discs is set to No_Elist, then we have the
185 -- following situation:
187 -- type Parent (D1..Dn : ..) is [tagged] record ...;
188 -- type Derived is new Parent [with ...];
190 -- which gets treated as
192 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
194 -- For untagged types the returned value is an association list:
195 -- (Old_Component => New_Component), where Old_Component is the Entity_Id
196 -- of a component in Parent_Base and New_Component is the Entity_Id of the
197 -- corresponding component in Derived_Base. For untagged records, this
198 -- association list is needed when copying the record declaration for the
199 -- derived base. In the tagged case the value returned is irrelevant.
201 procedure Build_Discriminal (Discrim : Entity_Id);
202 -- Create the discriminal corresponding to discriminant Discrim, that is
203 -- the parameter corresponding to Discrim to be used in initialization
204 -- procedures for the type where Discrim is a discriminant. Discriminals
205 -- are not used during semantic analysis, and are not fully defined
206 -- entities until expansion. Thus they are not given a scope until
207 -- initialization procedures are built.
209 function Build_Discriminant_Constraints
210 (T : Entity_Id;
211 Def : Node_Id;
212 Derived_Def : Boolean := False)
213 return Elist_Id;
214 -- Validate discriminant constraints, and return the list of the
215 -- constraints in order of discriminant declarations. T is the
216 -- discriminated unconstrained type. Def is the N_Subtype_Indication
217 -- node where the discriminants constraints for T are specified.
218 -- Derived_Def is True if we are building the discriminant constraints
219 -- in a derived type definition of the form "type D (...) is new T (xxx)".
220 -- In this case T is the parent type and Def is the constraint "(xxx)" on
221 -- T and this routine sets the Corresponding_Discriminant field of the
222 -- discriminants in the derived type D to point to the corresponding
223 -- discriminants in the parent type T.
225 procedure Build_Discriminated_Subtype
226 (T : Entity_Id;
227 Def_Id : Entity_Id;
228 Elist : Elist_Id;
229 Related_Nod : Node_Id;
230 For_Access : Boolean := False);
231 -- Subsidiary procedure to Constrain_Discriminated_Type and to
232 -- Process_Incomplete_Dependents. Given
234 -- T (a possibly discriminated base type)
235 -- Def_Id (a very partially built subtype for T),
237 -- the call completes Def_Id to be the appropriate E_*_Subtype.
239 -- The Elist is the list of discriminant constraints if any (it is set to
240 -- No_Elist if T is not a discriminated type, and to an empty list if
241 -- T has discriminants but there are no discriminant constraints). The
242 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
243 -- The For_Access says whether or not this subtype is really constraining
244 -- an access type. That is its sole purpose is the designated type of an
245 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
246 -- is built to avoid freezing T when the access subtype is frozen.
248 function Build_Scalar_Bound
249 (Bound : Node_Id;
250 Par_T : Entity_Id;
251 Der_T : Entity_Id;
252 Loc : Source_Ptr)
253 return Node_Id;
254 -- The bounds of a derived scalar type are conversions of the bounds of
255 -- the parent type. Optimize the representation if the bounds are literals.
256 -- Needs a more complete spec--what are the parameters exactly, and what
257 -- exactly is the returned value, and how is Bound affected???
259 procedure Build_Underlying_Full_View
260 (N : Node_Id;
261 Typ : Entity_Id;
262 Par : Entity_Id);
263 -- If the completion of a private type is itself derived from a private
264 -- type, or if the full view of a private subtype is itself private, the
265 -- back-end has no way to compute the actual size of this type. We build
266 -- an internal subtype declaration of the proper parent type to convey
267 -- this information. This extra mechanism is needed because a full
268 -- view cannot itself have a full view (it would get clobbered during
269 -- view exchanges).
271 procedure Check_Access_Discriminant_Requires_Limited
272 (D : Node_Id;
273 Loc : Node_Id);
274 -- Check the restriction that the type to which an access discriminant
275 -- belongs must be a concurrent type or a descendant of a type with
276 -- the reserved word 'limited' in its declaration.
278 procedure Check_Delta_Expression (E : Node_Id);
279 -- Check that the expression represented by E is suitable for use as
280 -- a delta expression, i.e. it is of real type and is static.
282 procedure Check_Digits_Expression (E : Node_Id);
283 -- Check that the expression represented by E is suitable for use as
284 -- a digits expression, i.e. it is of integer type, positive and static.
286 procedure Check_Incomplete (T : Entity_Id);
287 -- Called to verify that an incomplete type is not used prematurely
289 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
290 -- Validate the initialization of an object declaration. T is the
291 -- required type, and Exp is the initialization expression.
293 procedure Check_Or_Process_Discriminants (N : Node_Id; T : Entity_Id);
294 -- If T is the full declaration of an incomplete or private type, check
295 -- the conformance of the discriminants, otherwise process them.
297 procedure Check_Real_Bound (Bound : Node_Id);
298 -- Check given bound for being of real type and static. If not, post an
299 -- appropriate message, and rewrite the bound with the real literal zero.
301 procedure Constant_Redeclaration
302 (Id : Entity_Id;
303 N : Node_Id;
304 T : out Entity_Id);
305 -- Various checks on legality of full declaration of deferred constant.
306 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
307 -- node. The caller has not yet set any attributes of this entity.
309 procedure Convert_Scalar_Bounds
310 (N : Node_Id;
311 Parent_Type : Entity_Id;
312 Derived_Type : Entity_Id;
313 Loc : Source_Ptr);
314 -- For derived scalar types, convert the bounds in the type definition
315 -- to the derived type, and complete their analysis.
317 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
318 -- Copies attributes from array base type T2 to array base type T1.
319 -- Copies only attributes that apply to base types, but not subtypes.
321 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
322 -- Copies attributes from array subtype T2 to array subtype T1. Copies
323 -- attributes that apply to both subtypes and base types.
325 procedure Create_Constrained_Components
326 (Subt : Entity_Id;
327 Decl_Node : Node_Id;
328 Typ : Entity_Id;
329 Constraints : Elist_Id);
330 -- Build the list of entities for a constrained discriminated record
331 -- subtype. If a component depends on a discriminant, replace its subtype
332 -- using the discriminant values in the discriminant constraint.
333 -- Subt is the defining identifier for the subtype whose list of
334 -- constrained entities we will create. Decl_Node is the type declaration
335 -- node where we will attach all the itypes created. Typ is the base
336 -- discriminated type for the subtype Subt. Constraints is the list of
337 -- discriminant constraints for Typ.
339 function Constrain_Component_Type
340 (Compon_Type : Entity_Id;
341 Constrained_Typ : Entity_Id;
342 Related_Node : Node_Id;
343 Typ : Entity_Id;
344 Constraints : Elist_Id)
345 return Entity_Id;
346 -- Given a discriminated base type Typ, a list of discriminant constraint
347 -- Constraints for Typ and the type of a component of Typ, Compon_Type,
348 -- create and return the type corresponding to Compon_type where all
349 -- discriminant references are replaced with the corresponding
350 -- constraint. If no discriminant references occurr in Compon_Typ then
351 -- return it as is. Constrained_Typ is the final constrained subtype to
352 -- which the constrained Compon_Type belongs. Related_Node is the node
353 -- where we will attach all the itypes created.
355 procedure Constrain_Access
356 (Def_Id : in out Entity_Id;
357 S : Node_Id;
358 Related_Nod : Node_Id);
359 -- Apply a list of constraints to an access type. If Def_Id is empty,
360 -- it is an anonymous type created for a subtype indication. In that
361 -- case it is created in the procedure and attached to Related_Nod.
363 procedure Constrain_Array
364 (Def_Id : in out Entity_Id;
365 SI : Node_Id;
366 Related_Nod : Node_Id;
367 Related_Id : Entity_Id;
368 Suffix : Character);
369 -- Apply a list of index constraints to an unconstrained array type. The
370 -- first parameter is the entity for the resulting subtype. A value of
371 -- Empty for Def_Id indicates that an implicit type must be created, but
372 -- creation is delayed (and must be done by this procedure) because other
373 -- subsidiary implicit types must be created first (which is why Def_Id
374 -- is an in/out parameter). Related_Nod gives the place where this type has
375 -- to be inserted in the tree. The Related_Id and Suffix parameters are
376 -- used to build the associated Implicit type name.
378 procedure Constrain_Concurrent
379 (Def_Id : in out Entity_Id;
380 SI : Node_Id;
381 Related_Nod : Node_Id;
382 Related_Id : Entity_Id;
383 Suffix : Character);
384 -- Apply list of discriminant constraints to an unconstrained concurrent
385 -- type.
387 -- SI is the N_Subtype_Indication node containing the constraint and
388 -- the unconstrained type to constrain.
390 -- Def_Id is the entity for the resulting constrained subtype. A
391 -- value of Empty for Def_Id indicates that an implicit type must be
392 -- created, but creation is delayed (and must be done by this procedure)
393 -- because other subsidiary implicit types must be created first (which
394 -- is why Def_Id is an in/out parameter).
396 -- Related_Nod gives the place where this type has to be inserted
397 -- in the tree
399 -- The last two arguments are used to create its external name if needed.
401 function Constrain_Corresponding_Record
402 (Prot_Subt : Entity_Id;
403 Corr_Rec : Entity_Id;
404 Related_Nod : Node_Id;
405 Related_Id : Entity_Id)
406 return Entity_Id;
407 -- When constraining a protected type or task type with discriminants,
408 -- constrain the corresponding record with the same discriminant values.
410 procedure Constrain_Decimal
411 (Def_Id : Node_Id;
412 S : Node_Id;
413 Related_Nod : Node_Id);
414 -- Constrain a decimal fixed point type with a digits constraint and/or a
415 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
417 procedure Constrain_Discriminated_Type
418 (Def_Id : Entity_Id;
419 S : Node_Id;
420 Related_Nod : Node_Id;
421 For_Access : Boolean := False);
422 -- Process discriminant constraints of composite type. Verify that values
423 -- have been provided for all discriminants, that the original type is
424 -- unconstrained, and that the types of the supplied expressions match
425 -- the discriminant types. The first three parameters are like in routine
426 -- Constrain_Concurrent. See Build_Discrimated_Subtype for an explanation
427 -- of For_Access.
429 procedure Constrain_Enumeration
430 (Def_Id : Node_Id;
431 S : Node_Id;
432 Related_Nod : Node_Id);
433 -- Constrain an enumeration type with a range constraint. This is
434 -- identical to Constrain_Integer, but for the Ekind of the
435 -- resulting subtype.
437 procedure Constrain_Float
438 (Def_Id : Node_Id;
439 S : Node_Id;
440 Related_Nod : Node_Id);
441 -- Constrain a floating point type with either a digits constraint
442 -- and/or a range constraint, building a E_Floating_Point_Subtype.
444 procedure Constrain_Index
445 (Index : Node_Id;
446 S : Node_Id;
447 Related_Nod : Node_Id;
448 Related_Id : Entity_Id;
449 Suffix : Character;
450 Suffix_Index : Nat);
451 -- Process an index constraint in a constrained array declaration.
452 -- The constraint can be a subtype name, or a range with or without
453 -- an explicit subtype mark. The index is the corresponding index of the
454 -- unconstrained array. The Related_Id and Suffix parameters are used to
455 -- build the associated Implicit type name.
457 procedure Constrain_Integer
458 (Def_Id : Node_Id;
459 S : Node_Id;
460 Related_Nod : Node_Id);
461 -- Build subtype of a signed or modular integer type.
463 procedure Constrain_Ordinary_Fixed
464 (Def_Id : Node_Id;
465 S : Node_Id;
466 Related_Nod : Node_Id);
467 -- Constrain an ordinary fixed point type with a range constraint, and
468 -- build an E_Ordinary_Fixed_Point_Subtype entity.
470 procedure Copy_And_Swap (Privat, Full : Entity_Id);
471 -- Copy the Privat entity into the entity of its full declaration
472 -- then swap the two entities in such a manner that the former private
473 -- type is now seen as a full type.
475 procedure Copy_Private_To_Full (Priv, Full : Entity_Id);
476 -- Initialize the full view declaration with the relevant fields
477 -- from the private view.
479 procedure Decimal_Fixed_Point_Type_Declaration
480 (T : Entity_Id;
481 Def : Node_Id);
482 -- Create a new decimal fixed point type, and apply the constraint to
483 -- obtain a subtype of this new type.
485 procedure Complete_Private_Subtype
486 (Priv : Entity_Id;
487 Full : Entity_Id;
488 Full_Base : Entity_Id;
489 Related_Nod : Node_Id);
490 -- Complete the implicit full view of a private subtype by setting
491 -- the appropriate semantic fields. If the full view of the parent is
492 -- a record type, build constrained components of subtype.
494 procedure Derived_Standard_Character
495 (N : Node_Id;
496 Parent_Type : Entity_Id;
497 Derived_Type : Entity_Id);
498 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
499 -- derivations from types Standard.Character and Standard.Wide_Character.
501 procedure Derived_Type_Declaration
502 (T : Entity_Id;
503 N : Node_Id;
504 Is_Completion : Boolean);
505 -- Process a derived type declaration. This routine will invoke
506 -- Build_Derived_Type to process the actual derived type definition.
507 -- Parameters N and Is_Completion have the same meaning as in
508 -- Build_Derived_Type. T is the N_Defining_Identifier for the entity
509 -- defined in the N_Full_Type_Declaration node N, that is T is the
510 -- derived type.
512 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id;
513 -- Given a subtype indication S (which is really an N_Subtype_Indication
514 -- node or a plain N_Identifier), find the type of the subtype mark.
516 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
517 -- Insert each literal in symbol table, as an overloadable identifier
518 -- Each enumeration type is mapped into a sequence of integers, and
519 -- each literal is defined as a constant with integer value. If any
520 -- of the literals are character literals, the type is a character
521 -- type, which means that strings are legal aggregates for arrays of
522 -- components of the type.
524 procedure Expand_Others_Choice
525 (Case_Table : Choice_Table_Type;
526 Others_Choice : Node_Id;
527 Choice_Type : Entity_Id);
528 -- In the case of a variant part of a record type that has an OTHERS
529 -- choice, this procedure expands the OTHERS into the actual choices
530 -- that it represents. This new list of choice nodes is attached to
531 -- the OTHERS node via the Others_Discrete_Choices field. The Case_Table
532 -- contains all choices that have been given explicitly in the variant.
534 function Find_Type_Of_Object
535 (Obj_Def : Node_Id;
536 Related_Nod : Node_Id)
537 return Entity_Id;
538 -- Get type entity for object referenced by Obj_Def, attaching the
539 -- implicit types generated to Related_Nod
541 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
542 -- Create a new float, and apply the constraint to obtain subtype of it
544 function Has_Range_Constraint (N : Node_Id) return Boolean;
545 -- Given an N_Subtype_Indication node N, return True if a range constraint
546 -- is present, either directly, or as part of a digits or delta constraint.
547 -- In addition, a digits constraint in the decimal case returns True, since
548 -- it establishes a default range if no explicit range is present.
550 function Is_Valid_Constraint_Kind
551 (T_Kind : Type_Kind;
552 Constraint_Kind : Node_Kind)
553 return Boolean;
554 -- Returns True if it is legal to apply the given kind of constraint
555 -- to the given kind of type (index constraint to an array type,
556 -- for example).
558 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
559 -- Create new modular type. Verify that modulus is in bounds and is
560 -- a power of two (implementation restriction).
562 procedure New_Binary_Operator (Op_Name : Name_Id; Typ : Entity_Id);
563 -- Create an abbreviated declaration for an operator in order to
564 -- materialize minimally operators on derived types.
566 procedure Ordinary_Fixed_Point_Type_Declaration
567 (T : Entity_Id;
568 Def : Node_Id);
569 -- Create a new ordinary fixed point type, and apply the constraint
570 -- to obtain subtype of it.
572 procedure Prepare_Private_Subtype_Completion
573 (Id : Entity_Id;
574 Related_Nod : Node_Id);
575 -- Id is a subtype of some private type. Creates the full declaration
576 -- associated with Id whenever possible, i.e. when the full declaration
577 -- of the base type is already known. Records each subtype into
578 -- Private_Dependents of the base type.
580 procedure Process_Incomplete_Dependents
581 (N : Node_Id;
582 Full_T : Entity_Id;
583 Inc_T : Entity_Id);
584 -- Process all entities that depend on an incomplete type. There include
585 -- subtypes, subprogram types that mention the incomplete type in their
586 -- profiles, and subprogram with access parameters that designate the
587 -- incomplete type.
589 -- Inc_T is the defining identifier of an incomplete type declaration, its
590 -- Ekind is E_Incomplete_Type.
592 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
594 -- Full_T is N's defining identifier.
596 -- Subtypes of incomplete types with discriminants are completed when the
597 -- parent type is. This is simpler than private subtypes, because they can
598 -- only appear in the same scope, and there is no need to exchange views.
599 -- Similarly, access_to_subprogram types may have a parameter or a return
600 -- type that is an incomplete type, and that must be replaced with the
601 -- full type.
603 -- If the full type is tagged, subprogram with access parameters that
604 -- designated the incomplete may be primitive operations of the full type,
605 -- and have to be processed accordingly.
607 procedure Process_Real_Range_Specification (Def : Node_Id);
608 -- Given the type definition for a real type, this procedure processes
609 -- and checks the real range specification of this type definition if
610 -- one is present. If errors are found, error messages are posted, and
611 -- the Real_Range_Specification of Def is reset to Empty.
613 procedure Record_Type_Declaration (T : Entity_Id; N : Node_Id);
614 -- Process a record type declaration (for both untagged and tagged
615 -- records). Parameters T and N are exactly like in procedure
616 -- Derived_Type_Declaration, except that no flag Is_Completion is
617 -- needed for this routine.
619 procedure Record_Type_Definition (Def : Node_Id; T : Entity_Id);
620 -- This routine is used to process the actual record type definition
621 -- (both for untagged and tagged records). Def is a record type
622 -- definition node. This procedure analyzes the components in this
623 -- record type definition. T is the entity for the enclosing record
624 -- type. It is provided so that its Has_Task flag can be set if any of
625 -- the component have Has_Task set.
627 procedure Set_Fixed_Range
628 (E : Entity_Id;
629 Loc : Source_Ptr;
630 Lo : Ureal;
631 Hi : Ureal);
632 -- Build a range node with the given bounds and set it as the Scalar_Range
633 -- of the given fixed-point type entity. Loc is the source location used
634 -- for the constructed range. See body for further details.
636 procedure Set_Scalar_Range_For_Subtype
637 (Def_Id : Entity_Id;
638 R : Node_Id;
639 Subt : Entity_Id;
640 Related_Nod : Node_Id);
641 -- This routine is used to set the scalar range field for a subtype
642 -- given Def_Id, the entity for the subtype, and R, the range expression
643 -- for the scalar range. Subt provides the parent subtype to be used
644 -- to analyze, resolve, and check the given range.
646 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
647 -- Create a new signed integer entity, and apply the constraint to obtain
648 -- the required first named subtype of this type.
650 -----------------------
651 -- Access_Definition --
652 -----------------------
654 function Access_Definition
655 (Related_Nod : Node_Id;
656 N : Node_Id)
657 return Entity_Id
659 Anon_Type : constant Entity_Id :=
660 Create_Itype (E_Anonymous_Access_Type, Related_Nod,
661 Scope_Id => Scope (Current_Scope));
662 Desig_Type : Entity_Id;
664 begin
665 if Is_Entry (Current_Scope)
666 and then Is_Task_Type (Etype (Scope (Current_Scope)))
667 then
668 Error_Msg_N ("task entries cannot have access parameters", N);
669 end if;
671 Find_Type (Subtype_Mark (N));
672 Desig_Type := Entity (Subtype_Mark (N));
674 Set_Directly_Designated_Type
675 (Anon_Type, Desig_Type);
676 Set_Etype (Anon_Type, Anon_Type);
677 Init_Size_Align (Anon_Type);
678 Set_Depends_On_Private (Anon_Type, Has_Private_Component (Anon_Type));
680 -- The anonymous access type is as public as the discriminated type or
681 -- subprogram that defines it. It is imported (for back-end purposes)
682 -- if the designated type is.
684 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
685 Set_From_With_Type (Anon_Type, From_With_Type (Desig_Type));
687 -- The context is either a subprogram declaration or an access
688 -- discriminant, in a private or a full type declaration. In
689 -- the case of a subprogram, If the designated type is incomplete,
690 -- the operation will be a primitive operation of the full type, to
691 -- be updated subsequently.
693 if Ekind (Desig_Type) = E_Incomplete_Type
694 and then Is_Overloadable (Current_Scope)
695 then
696 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
697 Set_Has_Delayed_Freeze (Current_Scope);
698 end if;
700 return Anon_Type;
701 end Access_Definition;
703 -----------------------------------
704 -- Access_Subprogram_Declaration --
705 -----------------------------------
707 procedure Access_Subprogram_Declaration
708 (T_Name : Entity_Id;
709 T_Def : Node_Id)
711 Formals : constant List_Id := Parameter_Specifications (T_Def);
712 Formal : Entity_Id;
713 Desig_Type : constant Entity_Id :=
714 Create_Itype (E_Subprogram_Type, Parent (T_Def));
716 begin
717 if Nkind (T_Def) = N_Access_Function_Definition then
718 Analyze (Subtype_Mark (T_Def));
719 Set_Etype (Desig_Type, Entity (Subtype_Mark (T_Def)));
720 else
721 Set_Etype (Desig_Type, Standard_Void_Type);
722 end if;
724 if Present (Formals) then
725 New_Scope (Desig_Type);
726 Process_Formals (Desig_Type, Formals, Parent (T_Def));
728 -- A bit of a kludge here, End_Scope requires that the parent
729 -- pointer be set to something reasonable, but Itypes don't
730 -- have parent pointers. So we set it and then unset it ???
731 -- If and when Itypes have proper parent pointers to their
732 -- declarations, this kludge can be removed.
734 Set_Parent (Desig_Type, T_Name);
735 End_Scope;
736 Set_Parent (Desig_Type, Empty);
737 end if;
739 -- The return type and/or any parameter type may be incomplete. Mark
740 -- the subprogram_type as depending on the incomplete type, so that
741 -- it can be updated when the full type declaration is seen.
743 if Present (Formals) then
744 Formal := First_Formal (Desig_Type);
746 while Present (Formal) loop
748 if Ekind (Formal) /= E_In_Parameter
749 and then Nkind (T_Def) = N_Access_Function_Definition
750 then
751 Error_Msg_N ("functions can only have IN parameters", Formal);
752 end if;
754 if Ekind (Etype (Formal)) = E_Incomplete_Type then
755 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
756 Set_Has_Delayed_Freeze (Desig_Type);
757 end if;
759 Next_Formal (Formal);
760 end loop;
761 end if;
763 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
764 and then not Has_Delayed_Freeze (Desig_Type)
765 then
766 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
767 Set_Has_Delayed_Freeze (Desig_Type);
768 end if;
770 Check_Delayed_Subprogram (Desig_Type);
772 if Protected_Present (T_Def) then
773 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
774 Set_Convention (Desig_Type, Convention_Protected);
775 else
776 Set_Ekind (T_Name, E_Access_Subprogram_Type);
777 end if;
779 Set_Etype (T_Name, T_Name);
780 Init_Size_Align (T_Name);
781 Set_Directly_Designated_Type (T_Name, Desig_Type);
783 Check_Restriction (No_Access_Subprograms, T_Def);
784 end Access_Subprogram_Declaration;
786 ----------------------------
787 -- Access_Type_Declaration --
788 ----------------------------
790 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
791 S : constant Node_Id := Subtype_Indication (Def);
792 P : constant Node_Id := Parent (Def);
794 begin
795 -- Check for permissible use of incomplete type
797 if Nkind (S) /= N_Subtype_Indication then
798 Analyze (S);
800 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
801 Set_Directly_Designated_Type (T, Entity (S));
802 else
803 Set_Directly_Designated_Type (T,
804 Process_Subtype (S, P, T, 'P'));
805 end if;
807 else
808 Set_Directly_Designated_Type (T,
809 Process_Subtype (S, P, T, 'P'));
810 end if;
812 if All_Present (Def) or Constant_Present (Def) then
813 Set_Ekind (T, E_General_Access_Type);
814 else
815 Set_Ekind (T, E_Access_Type);
816 end if;
818 if Base_Type (Designated_Type (T)) = T then
819 Error_Msg_N ("access type cannot designate itself", S);
820 end if;
822 Set_Etype (T, T);
824 -- If the type has appeared already in a with_type clause, it is
825 -- frozen and the pointer size is already set. Else, initialize.
827 if not From_With_Type (T) then
828 Init_Size_Align (T);
829 end if;
831 Set_Is_Access_Constant (T, Constant_Present (Def));
833 -- If designated type is an imported tagged type, indicate that the
834 -- access type is also imported, and therefore restricted in its use.
835 -- The access type may already be imported, so keep setting otherwise.
837 if From_With_Type (Designated_Type (T)) then
838 Set_From_With_Type (T);
839 end if;
841 -- Note that Has_Task is always false, since the access type itself
842 -- is not a task type. See Einfo for more description on this point.
843 -- Exactly the same consideration applies to Has_Controlled_Component.
845 Set_Has_Task (T, False);
846 Set_Has_Controlled_Component (T, False);
847 end Access_Type_Declaration;
849 -----------------------------------
850 -- Analyze_Component_Declaration --
851 -----------------------------------
853 procedure Analyze_Component_Declaration (N : Node_Id) is
854 Id : constant Entity_Id := Defining_Identifier (N);
855 T : Entity_Id;
856 P : Entity_Id;
858 begin
859 Generate_Definition (Id);
860 Enter_Name (Id);
861 T := Find_Type_Of_Object (Subtype_Indication (N), N);
863 -- If the component declaration includes a default expression, then we
864 -- check that the component is not of a limited type (RM 3.7(5)),
865 -- and do the special preanalysis of the expression (see section on
866 -- "Handling of Default Expressions" in the spec of package Sem).
868 if Present (Expression (N)) then
869 Analyze_Default_Expression (Expression (N), T);
870 Check_Initialization (T, Expression (N));
871 end if;
873 -- The parent type may be a private view with unknown discriminants,
874 -- and thus unconstrained. Regular components must be constrained.
876 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
877 Error_Msg_N
878 ("unconstrained subtype in component declaration",
879 Subtype_Indication (N));
881 -- Components cannot be abstract, except for the special case of
882 -- the _Parent field (case of extending an abstract tagged type)
884 elsif Is_Abstract (T) and then Chars (Id) /= Name_uParent then
885 Error_Msg_N ("type of a component cannot be abstract", N);
886 end if;
888 Set_Etype (Id, T);
889 Set_Is_Aliased (Id, Aliased_Present (N));
891 -- If the this component is private (or depends on a private type),
892 -- flag the record type to indicate that some operations are not
893 -- available.
895 P := Private_Component (T);
897 if Present (P) then
898 -- Check for circular definitions.
900 if P = Any_Type then
901 Set_Etype (Id, Any_Type);
903 -- There is a gap in the visibility of operations only if the
904 -- component type is not defined in the scope of the record type.
906 elsif Scope (P) = Scope (Current_Scope) then
907 null;
909 elsif Is_Limited_Type (P) then
910 Set_Is_Limited_Composite (Current_Scope);
912 else
913 Set_Is_Private_Composite (Current_Scope);
914 end if;
915 end if;
917 if P /= Any_Type
918 and then Is_Limited_Type (T)
919 and then Chars (Id) /= Name_uParent
920 and then Is_Tagged_Type (Current_Scope)
921 then
922 if Is_Derived_Type (Current_Scope)
923 and then not Is_Limited_Record (Root_Type (Current_Scope))
924 then
925 Error_Msg_N
926 ("extension of nonlimited type cannot have limited components",
928 Set_Etype (Id, Any_Type);
929 Set_Is_Limited_Composite (Current_Scope, False);
931 elsif not Is_Derived_Type (Current_Scope)
932 and then not Is_Limited_Record (Current_Scope)
933 then
934 Error_Msg_N ("nonlimited type cannot have limited components", N);
935 Set_Etype (Id, Any_Type);
936 Set_Is_Limited_Composite (Current_Scope, False);
937 end if;
938 end if;
940 Set_Original_Record_Component (Id, Id);
941 end Analyze_Component_Declaration;
943 --------------------------
944 -- Analyze_Declarations --
945 --------------------------
947 procedure Analyze_Declarations (L : List_Id) is
948 D : Node_Id;
949 Next_Node : Node_Id;
950 Freeze_From : Entity_Id := Empty;
952 procedure Adjust_D;
953 -- Adjust D not to include implicit label declarations, since these
954 -- have strange Sloc values that result in elaboration check problems.
956 procedure Adjust_D is
957 begin
958 while Present (Prev (D))
959 and then Nkind (D) = N_Implicit_Label_Declaration
960 loop
961 Prev (D);
962 end loop;
963 end Adjust_D;
965 -- Start of processing for Analyze_Declarations
967 begin
968 D := First (L);
969 while Present (D) loop
971 -- Complete analysis of declaration
973 Analyze (D);
974 Next_Node := Next (D);
976 if No (Freeze_From) then
977 Freeze_From := First_Entity (Current_Scope);
978 end if;
980 -- At the end of a declarative part, freeze remaining entities
981 -- declared in it. The end of the visible declarations of a
982 -- package specification is not the end of a declarative part
983 -- if private declarations are present. The end of a package
984 -- declaration is a freezing point only if it a library package.
985 -- A task definition or protected type definition is not a freeze
986 -- point either. Finally, we do not freeze entities in generic
987 -- scopes, because there is no code generated for them and freeze
988 -- nodes will be generated for the instance.
990 -- The end of a package instantiation is not a freeze point, but
991 -- for now we make it one, because the generic body is inserted
992 -- (currently) immediately after. Generic instantiations will not
993 -- be a freeze point once delayed freezing of bodies is implemented.
994 -- (This is needed in any case for early instantiations ???).
996 if No (Next_Node) then
997 if Nkind (Parent (L)) = N_Component_List
998 or else Nkind (Parent (L)) = N_Task_Definition
999 or else Nkind (Parent (L)) = N_Protected_Definition
1000 then
1001 null;
1003 elsif Nkind (Parent (L)) /= N_Package_Specification then
1005 if Nkind (Parent (L)) = N_Package_Body then
1006 Freeze_From := First_Entity (Current_Scope);
1007 end if;
1009 Adjust_D;
1010 Freeze_All (Freeze_From, D);
1011 Freeze_From := Last_Entity (Current_Scope);
1013 elsif Scope (Current_Scope) /= Standard_Standard
1014 and then not Is_Child_Unit (Current_Scope)
1015 and then No (Generic_Parent (Parent (L)))
1016 then
1017 null;
1019 elsif L /= Visible_Declarations (Parent (L))
1020 or else No (Private_Declarations (Parent (L)))
1021 or else Is_Empty_List (Private_Declarations (Parent (L)))
1022 then
1023 Adjust_D;
1024 Freeze_All (Freeze_From, D);
1025 Freeze_From := Last_Entity (Current_Scope);
1026 end if;
1028 -- If next node is a body then freeze all types before the body.
1029 -- An exception occurs for expander generated bodies, which can
1030 -- be recognized by their already being analyzed. The expander
1031 -- ensures that all types needed by these bodies have been frozen
1032 -- but it is not necessary to freeze all types (and would be wrong
1033 -- since it would not correspond to an RM defined freeze point).
1035 elsif not Analyzed (Next_Node)
1036 and then (Nkind (Next_Node) = N_Subprogram_Body
1037 or else Nkind (Next_Node) = N_Entry_Body
1038 or else Nkind (Next_Node) = N_Package_Body
1039 or else Nkind (Next_Node) = N_Protected_Body
1040 or else Nkind (Next_Node) = N_Task_Body
1041 or else Nkind (Next_Node) in N_Body_Stub)
1042 then
1043 Adjust_D;
1044 Freeze_All (Freeze_From, D);
1045 Freeze_From := Last_Entity (Current_Scope);
1046 end if;
1048 D := Next_Node;
1049 end loop;
1051 end Analyze_Declarations;
1053 --------------------------------
1054 -- Analyze_Default_Expression --
1055 --------------------------------
1057 procedure Analyze_Default_Expression (N : Node_Id; T : Entity_Id) is
1058 Save_In_Default_Expression : constant Boolean := In_Default_Expression;
1060 begin
1061 In_Default_Expression := True;
1062 Pre_Analyze_And_Resolve (N, T);
1063 In_Default_Expression := Save_In_Default_Expression;
1064 end Analyze_Default_Expression;
1066 ----------------------------------
1067 -- Analyze_Incomplete_Type_Decl --
1068 ----------------------------------
1070 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
1071 F : constant Boolean := Is_Pure (Current_Scope);
1072 T : Entity_Id;
1074 begin
1075 Generate_Definition (Defining_Identifier (N));
1077 -- Process an incomplete declaration. The identifier must not have been
1078 -- declared already in the scope. However, an incomplete declaration may
1079 -- appear in the private part of a package, for a private type that has
1080 -- already been declared.
1082 -- In this case, the discriminants (if any) must match.
1084 T := Find_Type_Name (N);
1086 Set_Ekind (T, E_Incomplete_Type);
1087 Init_Size_Align (T);
1088 Set_Is_First_Subtype (T, True);
1089 Set_Etype (T, T);
1090 New_Scope (T);
1092 Set_Girder_Constraint (T, No_Elist);
1094 if Present (Discriminant_Specifications (N)) then
1095 Process_Discriminants (N);
1096 end if;
1098 End_Scope;
1100 -- If the type has discriminants, non-trivial subtypes may be
1101 -- be declared before the full view of the type. The full views
1102 -- of those subtypes will be built after the full view of the type.
1104 Set_Private_Dependents (T, New_Elmt_List);
1105 Set_Is_Pure (T, F);
1106 end Analyze_Incomplete_Type_Decl;
1108 -----------------------------
1109 -- Analyze_Itype_Reference --
1110 -----------------------------
1112 -- Nothing to do. This node is placed in the tree only for the benefit
1113 -- of Gigi processing, and has no effect on the semantic processing.
1115 procedure Analyze_Itype_Reference (N : Node_Id) is
1116 begin
1117 pragma Assert (Is_Itype (Itype (N)));
1118 null;
1119 end Analyze_Itype_Reference;
1121 --------------------------------
1122 -- Analyze_Number_Declaration --
1123 --------------------------------
1125 procedure Analyze_Number_Declaration (N : Node_Id) is
1126 Id : constant Entity_Id := Defining_Identifier (N);
1127 E : constant Node_Id := Expression (N);
1128 T : Entity_Id;
1129 Index : Interp_Index;
1130 It : Interp;
1132 begin
1133 Generate_Definition (Id);
1134 Enter_Name (Id);
1136 -- This is an optimization of a common case of an integer literal
1138 if Nkind (E) = N_Integer_Literal then
1139 Set_Is_Static_Expression (E, True);
1140 Set_Etype (E, Universal_Integer);
1142 Set_Etype (Id, Universal_Integer);
1143 Set_Ekind (Id, E_Named_Integer);
1144 Set_Is_Frozen (Id, True);
1145 return;
1146 end if;
1148 Set_Is_Pure (Id, Is_Pure (Current_Scope));
1150 -- Process expression, replacing error by integer zero, to avoid
1151 -- cascaded errors or aborts further along in the processing
1153 -- Replace Error by integer zero, which seems least likely to
1154 -- cause cascaded errors.
1156 if E = Error then
1157 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
1158 Set_Error_Posted (E);
1159 end if;
1161 Analyze (E);
1163 -- Verify that the expression is static and numeric. If
1164 -- the expression is overloaded, we apply the preference
1165 -- rule that favors root numeric types.
1167 if not Is_Overloaded (E) then
1168 T := Etype (E);
1170 else
1171 T := Any_Type;
1172 Get_First_Interp (E, Index, It);
1174 while Present (It.Typ) loop
1175 if (Is_Integer_Type (It.Typ)
1176 or else Is_Real_Type (It.Typ))
1177 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
1178 then
1179 if T = Any_Type then
1180 T := It.Typ;
1182 elsif It.Typ = Universal_Real
1183 or else It.Typ = Universal_Integer
1184 then
1185 -- Choose universal interpretation over any other.
1187 T := It.Typ;
1188 exit;
1189 end if;
1190 end if;
1192 Get_Next_Interp (Index, It);
1193 end loop;
1194 end if;
1196 if Is_Integer_Type (T) then
1197 Resolve (E, T);
1198 Set_Etype (Id, Universal_Integer);
1199 Set_Ekind (Id, E_Named_Integer);
1201 elsif Is_Real_Type (T) then
1203 -- Because the real value is converted to universal_real, this
1204 -- is a legal context for a universal fixed expression.
1206 if T = Universal_Fixed then
1207 declare
1208 Loc : constant Source_Ptr := Sloc (N);
1209 Conv : constant Node_Id := Make_Type_Conversion (Loc,
1210 Subtype_Mark =>
1211 New_Occurrence_Of (Universal_Real, Loc),
1212 Expression => Relocate_Node (E));
1214 begin
1215 Rewrite (E, Conv);
1216 Analyze (E);
1217 end;
1219 elsif T = Any_Fixed then
1220 Error_Msg_N ("illegal context for mixed mode operation", E);
1222 -- Expression is of the form : universal_fixed * integer.
1223 -- Try to resolve as universal_real.
1225 T := Universal_Real;
1226 Set_Etype (E, T);
1227 end if;
1229 Resolve (E, T);
1230 Set_Etype (Id, Universal_Real);
1231 Set_Ekind (Id, E_Named_Real);
1233 else
1234 Wrong_Type (E, Any_Numeric);
1235 Resolve (E, T);
1236 Set_Etype (Id, T);
1237 Set_Ekind (Id, E_Constant);
1238 Set_Not_Source_Assigned (Id, True);
1239 Set_Is_True_Constant (Id, True);
1240 return;
1241 end if;
1243 if Nkind (E) = N_Integer_Literal
1244 or else Nkind (E) = N_Real_Literal
1245 then
1246 Set_Etype (E, Etype (Id));
1247 end if;
1249 if not Is_OK_Static_Expression (E) then
1250 Error_Msg_N ("non-static expression used in number declaration", E);
1251 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
1252 Set_Etype (E, Any_Type);
1253 end if;
1255 end Analyze_Number_Declaration;
1257 --------------------------------
1258 -- Analyze_Object_Declaration --
1259 --------------------------------
1261 procedure Analyze_Object_Declaration (N : Node_Id) is
1262 Loc : constant Source_Ptr := Sloc (N);
1263 Id : constant Entity_Id := Defining_Identifier (N);
1264 T : Entity_Id;
1265 Act_T : Entity_Id;
1267 E : Node_Id := Expression (N);
1268 -- E is set to Expression (N) throughout this routine. When
1269 -- Expression (N) is modified, E is changed accordingly.
1271 Prev_Entity : Entity_Id := Empty;
1273 function Build_Default_Subtype return Entity_Id;
1274 -- If the object is limited or aliased, and if the type is unconstrained
1275 -- and there is no expression, the discriminants cannot be modified and
1276 -- the subtype of the object is constrained by the defaults, so it is
1277 -- worthile building the corresponding subtype.
1279 ---------------------------
1280 -- Build_Default_Subtype --
1281 ---------------------------
1283 function Build_Default_Subtype return Entity_Id is
1284 Act : Entity_Id;
1285 Constraints : List_Id := New_List;
1286 Decl : Node_Id;
1287 Disc : Entity_Id;
1289 begin
1290 Disc := First_Discriminant (T);
1292 if No (Discriminant_Default_Value (Disc)) then
1293 return T; -- previous error.
1294 end if;
1296 Act := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
1297 while Present (Disc) loop
1298 Append (
1299 New_Copy_Tree (
1300 Discriminant_Default_Value (Disc)), Constraints);
1301 Next_Discriminant (Disc);
1302 end loop;
1304 Decl :=
1305 Make_Subtype_Declaration (Loc,
1306 Defining_Identifier => Act,
1307 Subtype_Indication =>
1308 Make_Subtype_Indication (Loc,
1309 Subtype_Mark => New_Occurrence_Of (T, Loc),
1310 Constraint =>
1311 Make_Index_Or_Discriminant_Constraint
1312 (Loc, Constraints)));
1314 Insert_Before (N, Decl);
1315 Analyze (Decl);
1316 return Act;
1317 end Build_Default_Subtype;
1319 -- Start of processing for Analyze_Object_Declaration
1321 begin
1322 -- There are three kinds of implicit types generated by an
1323 -- object declaration:
1325 -- 1. Those for generated by the original Object Definition
1327 -- 2. Those generated by the Expression
1329 -- 3. Those used to constrained the Object Definition with the
1330 -- expression constraints when it is unconstrained
1332 -- They must be generated in this order to avoid order of elaboration
1333 -- issues. Thus the first step (after entering the name) is to analyze
1334 -- the object definition.
1336 if Constant_Present (N) then
1337 Prev_Entity := Current_Entity_In_Scope (Id);
1339 -- If homograph is an implicit subprogram, it is overridden by the
1340 -- current declaration.
1342 if Present (Prev_Entity)
1343 and then Is_Overloadable (Prev_Entity)
1344 and then Is_Inherited_Operation (Prev_Entity)
1345 then
1346 Prev_Entity := Empty;
1347 end if;
1348 end if;
1350 if Present (Prev_Entity) then
1351 Constant_Redeclaration (Id, N, T);
1353 Generate_Reference (Prev_Entity, Id, 'c');
1355 -- If in main unit, set as referenced, so we do not complain about
1356 -- the full declaration being an unreferenced entity.
1358 if In_Extended_Main_Source_Unit (Id) then
1359 Set_Referenced (Id);
1360 end if;
1362 if Error_Posted (N) then
1363 -- Type mismatch or illegal redeclaration, Do not analyze
1364 -- expression to avoid cascaded errors.
1366 T := Find_Type_Of_Object (Object_Definition (N), N);
1367 Set_Etype (Id, T);
1368 Set_Ekind (Id, E_Variable);
1369 return;
1370 end if;
1372 -- In the normal case, enter identifier at the start to catch
1373 -- premature usage in the initialization expression.
1375 else
1376 Generate_Definition (Id);
1377 Enter_Name (Id);
1379 T := Find_Type_Of_Object (Object_Definition (N), N);
1381 if Error_Posted (Id) then
1382 Set_Etype (Id, T);
1383 Set_Ekind (Id, E_Variable);
1384 return;
1385 end if;
1386 end if;
1388 Set_Is_Pure (Id, Is_Pure (Current_Scope));
1390 -- If deferred constant, make sure context is appropriate. We detect
1391 -- a deferred constant as a constant declaration with no expression.
1393 if Constant_Present (N)
1394 and then No (E)
1395 then
1396 if not Is_Package (Current_Scope)
1397 or else In_Private_Part (Current_Scope)
1398 then
1399 Error_Msg_N
1400 ("invalid context for deferred constant declaration", N);
1401 Set_Constant_Present (N, False);
1403 -- In Ada 83, deferred constant must be of private type
1405 elsif not Is_Private_Type (T) then
1406 if Ada_83 and then Comes_From_Source (N) then
1407 Error_Msg_N
1408 ("(Ada 83) deferred constant must be private type", N);
1409 end if;
1410 end if;
1412 -- If not a deferred constant, then object declaration freezes its type
1414 else
1415 Check_Fully_Declared (T, N);
1416 Freeze_Before (N, T);
1417 end if;
1419 -- If the object was created by a constrained array definition, then
1420 -- set the link in both the anonymous base type and anonymous subtype
1421 -- that are built to represent the array type to point to the object.
1423 if Nkind (Object_Definition (Declaration_Node (Id))) =
1424 N_Constrained_Array_Definition
1425 then
1426 Set_Related_Array_Object (T, Id);
1427 Set_Related_Array_Object (Base_Type (T), Id);
1428 end if;
1430 -- Special checks for protected objects not at library level
1432 if Is_Protected_Type (T)
1433 and then not Is_Library_Level_Entity (Id)
1434 then
1435 Check_Restriction (No_Local_Protected_Objects, Id);
1437 -- Protected objects with interrupt handlers must be at library level
1439 if Has_Interrupt_Handler (T) then
1440 Error_Msg_N
1441 ("interrupt object can only be declared at library level", Id);
1442 end if;
1443 end if;
1445 -- The actual subtype of the object is the nominal subtype, unless
1446 -- the nominal one is unconstrained and obtained from the expression.
1448 Act_T := T;
1450 -- Process initialization expression if present and not in error
1452 if Present (E) and then E /= Error then
1453 Analyze (E);
1455 if not Assignment_OK (N) then
1456 Check_Initialization (T, E);
1457 end if;
1459 Resolve (E, T);
1461 -- Check for library level object that will require implicit
1462 -- heap allocation.
1464 if Is_Array_Type (T)
1465 and then not Size_Known_At_Compile_Time (T)
1466 and then Is_Library_Level_Entity (Id)
1467 then
1468 -- String literals are always allowed
1470 if T = Standard_String
1471 and then Nkind (E) = N_String_Literal
1472 then
1473 null;
1475 -- Otherwise we do not allow this since it may cause an
1476 -- implicit heap allocation.
1478 else
1479 Check_Restriction
1480 (No_Implicit_Heap_Allocations, Object_Definition (N));
1481 end if;
1482 end if;
1484 -- Check incorrect use of dynamically tagged expressions. Note
1485 -- the use of Is_Tagged_Type (T) which seems redundant but is in
1486 -- fact important to avoid spurious errors due to expanded code
1487 -- for dispatching functions over an anonymous access type
1489 if (Is_Class_Wide_Type (Etype (E)) or else Is_Dynamically_Tagged (E))
1490 and then Is_Tagged_Type (T)
1491 and then not Is_Class_Wide_Type (T)
1492 then
1493 Error_Msg_N ("dynamically tagged expression not allowed!", E);
1494 end if;
1496 Apply_Scalar_Range_Check (E, T);
1497 Apply_Static_Length_Check (E, T);
1498 end if;
1500 -- Abstract type is never permitted for a variable or constant.
1501 -- Note: we inhibit this check for objects that do not come from
1502 -- source because there is at least one case (the expansion of
1503 -- x'class'input where x is abstract) where we legitimately
1504 -- generate an abstract object.
1506 if Is_Abstract (T) and then Comes_From_Source (N) then
1507 Error_Msg_N ("type of object cannot be abstract",
1508 Object_Definition (N));
1509 if Is_CPP_Class (T) then
1510 Error_Msg_NE ("\} may need a cpp_constructor",
1511 Object_Definition (N), T);
1512 end if;
1514 -- Case of unconstrained type
1516 elsif Is_Indefinite_Subtype (T) then
1518 -- Nothing to do in deferred constant case
1520 if Constant_Present (N) and then No (E) then
1521 null;
1523 -- Case of no initialization present
1525 elsif No (E) then
1526 if No_Initialization (N) then
1527 null;
1529 elsif Is_Class_Wide_Type (T) then
1530 Error_Msg_N
1531 ("initialization required in class-wide declaration ", N);
1533 else
1534 Error_Msg_N
1535 ("unconstrained subtype not allowed (need initialization)",
1536 Object_Definition (N));
1537 end if;
1539 -- Case of initialization present but in error. Set initial
1540 -- expression as absent (but do not make above complaints)
1542 elsif E = Error then
1543 Set_Expression (N, Empty);
1544 E := Empty;
1546 -- Case of initialization present
1548 else
1549 -- Not allowed in Ada 83
1551 if not Constant_Present (N) then
1552 if Ada_83
1553 and then Comes_From_Source (Object_Definition (N))
1554 then
1555 Error_Msg_N
1556 ("(Ada 83) unconstrained variable not allowed",
1557 Object_Definition (N));
1558 end if;
1559 end if;
1561 -- Now we constrain the variable from the initializing expression
1563 -- If the expression is an aggregate, it has been expanded into
1564 -- individual assignments. Retrieve the actual type from the
1565 -- expanded construct.
1567 if Is_Array_Type (T)
1568 and then No_Initialization (N)
1569 and then Nkind (Original_Node (E)) = N_Aggregate
1570 then
1571 Act_T := Etype (E);
1573 else
1574 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
1575 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
1576 end if;
1578 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
1580 if Aliased_Present (N) then
1581 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
1582 end if;
1584 Freeze_Before (N, Act_T);
1585 Freeze_Before (N, T);
1586 end if;
1588 elsif Is_Array_Type (T)
1589 and then No_Initialization (N)
1590 and then Nkind (Original_Node (E)) = N_Aggregate
1591 then
1592 if not Is_Entity_Name (Object_Definition (N)) then
1593 Act_T := Etype (E);
1595 if Aliased_Present (N) then
1596 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
1597 end if;
1598 end if;
1600 -- When the given object definition and the aggregate are specified
1601 -- independently, and their lengths might differ do a length check.
1602 -- This cannot happen if the aggregate is of the form (others =>...)
1604 if not Is_Constrained (T) then
1605 null;
1607 elsif Nkind (E) = N_Raise_Constraint_Error then
1609 -- Aggregate is statically illegal. Place back in declaration
1611 Set_Expression (N, E);
1612 Set_No_Initialization (N, False);
1614 elsif T = Etype (E) then
1615 null;
1617 elsif Nkind (E) = N_Aggregate
1618 and then Present (Component_Associations (E))
1619 and then Present (Choices (First (Component_Associations (E))))
1620 and then Nkind (First
1621 (Choices (First (Component_Associations (E))))) = N_Others_Choice
1622 then
1623 null;
1625 else
1626 Apply_Length_Check (E, T);
1627 end if;
1629 elsif (Is_Limited_Record (T)
1630 or else Is_Concurrent_Type (T))
1631 and then not Is_Constrained (T)
1632 and then Has_Discriminants (T)
1633 then
1634 Act_T := Build_Default_Subtype;
1635 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
1637 elsif not Is_Constrained (T)
1638 and then Has_Discriminants (T)
1639 and then Constant_Present (N)
1640 and then Nkind (E) = N_Function_Call
1641 then
1642 -- The back-end has problems with constants of a discriminated type
1643 -- with defaults, if the initial value is a function call. We
1644 -- generate an intermediate temporary for the result of the call.
1645 -- It is unclear why this should make it acceptable to gcc. ???
1647 Remove_Side_Effects (E);
1648 end if;
1650 if T = Standard_Wide_Character
1651 or else Root_Type (T) = Standard_Wide_String
1652 then
1653 Check_Restriction (No_Wide_Characters, Object_Definition (N));
1654 end if;
1656 -- Now establish the proper kind and type of the object
1658 if Constant_Present (N) then
1659 Set_Ekind (Id, E_Constant);
1660 Set_Not_Source_Assigned (Id, True);
1661 Set_Is_True_Constant (Id, True);
1663 else
1664 Set_Ekind (Id, E_Variable);
1666 -- A variable is set as shared passive if it appears in a shared
1667 -- passive package, and is at the outer level. This is not done
1668 -- for entities generated during expansion, because those are
1669 -- always manipulated locally.
1671 if Is_Shared_Passive (Current_Scope)
1672 and then Is_Library_Level_Entity (Id)
1673 and then Comes_From_Source (Id)
1674 then
1675 Set_Is_Shared_Passive (Id);
1676 Check_Shared_Var (Id, T, N);
1677 end if;
1679 -- If an initializing expression is present, then the variable
1680 -- is potentially a true constant if no further assignments are
1681 -- present. The code generator can use this for optimization.
1682 -- The flag will be reset if there are any assignments. We only
1683 -- set this flag for non library level entities, since for any
1684 -- library level entities, assignments could exist in other units.
1686 if Present (E) then
1687 if not Is_Library_Level_Entity (Id) then
1689 -- For now we omit this, because it seems to cause some
1690 -- problems. In particular, if you uncomment this out, then
1691 -- test case 4427-002 will fail for unclear reasons ???
1693 if False then
1694 Set_Is_True_Constant (Id);
1695 end if;
1696 end if;
1698 -- Case of no initializing expression present. If the type is not
1699 -- fully initialized, then we set Not_Source_Assigned, since this
1700 -- is a case of a potentially uninitialized object. Note that we
1701 -- do not consider access variables to be fully initialized for
1702 -- this purpose, since it still seems dubious if someone declares
1703 -- an access variable and never assigns to it.
1705 else
1706 if Is_Access_Type (T)
1707 or else not Is_Fully_Initialized_Type (T)
1708 then
1709 Set_Not_Source_Assigned (Id);
1710 end if;
1711 end if;
1712 end if;
1714 Init_Alignment (Id);
1715 Init_Esize (Id);
1717 if Aliased_Present (N) then
1718 Set_Is_Aliased (Id);
1720 if No (E)
1721 and then Is_Record_Type (T)
1722 and then not Is_Constrained (T)
1723 and then Has_Discriminants (T)
1724 then
1725 Set_Actual_Subtype (Id, Build_Default_Subtype);
1726 end if;
1727 end if;
1729 Set_Etype (Id, Act_T);
1731 if Has_Controlled_Component (Etype (Id))
1732 or else Is_Controlled (Etype (Id))
1733 then
1734 if not Is_Library_Level_Entity (Id) then
1735 Check_Restriction (No_Nested_Finalization, N);
1737 else
1738 Validate_Controlled_Object (Id);
1739 end if;
1741 -- Generate a warning when an initialization causes an obvious
1742 -- ABE violation. If the init expression is a simple aggregate
1743 -- there shouldn't be any initialize/adjust call generated. This
1744 -- will be true as soon as aggregates are built in place when
1745 -- possible. ??? at the moment we do not generate warnings for
1746 -- temporaries created for those aggregates although a
1747 -- Program_Error might be generated if compiled with -gnato
1749 if Is_Controlled (Etype (Id))
1750 and then Comes_From_Source (Id)
1751 then
1752 declare
1753 BT : constant Entity_Id := Base_Type (Etype (Id));
1754 Implicit_Call : Entity_Id;
1756 function Is_Aggr (N : Node_Id) return Boolean;
1757 -- Check that N is an aggregate
1759 function Is_Aggr (N : Node_Id) return Boolean is
1760 begin
1761 case Nkind (Original_Node (N)) is
1762 when N_Aggregate | N_Extension_Aggregate =>
1763 return True;
1765 when N_Qualified_Expression |
1766 N_Type_Conversion |
1767 N_Unchecked_Type_Conversion =>
1768 return Is_Aggr (Expression (Original_Node (N)));
1770 when others =>
1771 return False;
1772 end case;
1773 end Is_Aggr;
1775 begin
1776 -- If no underlying type, we already are in an error situation
1777 -- don't try to add a warning since we do not have access
1778 -- prim-op list.
1780 if No (Underlying_Type (BT)) then
1781 Implicit_Call := Empty;
1783 -- A generic type does not have usable primitive operators.
1784 -- Initialization calls are built for instances.
1786 elsif Is_Generic_Type (BT) then
1787 Implicit_Call := Empty;
1789 -- if the init expression is not an aggregate, an adjust
1790 -- call will be generated
1792 elsif Present (E) and then not Is_Aggr (E) then
1793 Implicit_Call := Find_Prim_Op (BT, Name_Adjust);
1795 -- if no init expression and we are not in the deferred
1796 -- constant case, an Initialize call will be generated
1798 elsif No (E) and then not Constant_Present (N) then
1799 Implicit_Call := Find_Prim_Op (BT, Name_Initialize);
1801 else
1802 Implicit_Call := Empty;
1803 end if;
1804 end;
1805 end if;
1806 end if;
1808 if Has_Task (Etype (Id)) then
1809 if not Is_Library_Level_Entity (Id) then
1810 Check_Restriction (No_Task_Hierarchy, N);
1811 Check_Potentially_Blocking_Operation (N);
1812 end if;
1813 end if;
1815 -- Some simple constant-propagation: if the expression is a constant
1816 -- string initialized with a literal, share the literal. This avoids
1817 -- a run-time copy.
1819 if Present (E)
1820 and then Is_Entity_Name (E)
1821 and then Ekind (Entity (E)) = E_Constant
1822 and then Base_Type (Etype (E)) = Standard_String
1823 then
1824 declare
1825 Val : constant Node_Id := Constant_Value (Entity (E));
1827 begin
1828 if Present (Val)
1829 and then Nkind (Val) = N_String_Literal
1830 then
1831 Rewrite (E, New_Copy (Val));
1832 end if;
1833 end;
1834 end if;
1836 -- Another optimization: if the nominal subtype is unconstrained and
1837 -- the expression is a function call that returns and unconstrained
1838 -- type, rewrite the declararation as a renaming of the result of the
1839 -- call. The exceptions below are cases where the copy is expected,
1840 -- either by the back end (Aliased case) or by the semantics, as for
1841 -- initializing controlled types or copying tags for classwide types.
1843 if Present (E)
1844 and then Nkind (E) = N_Explicit_Dereference
1845 and then Nkind (Original_Node (E)) = N_Function_Call
1846 and then not Is_Library_Level_Entity (Id)
1847 and then not Is_Constrained (T)
1848 and then not Is_Aliased (Id)
1849 and then not Is_Class_Wide_Type (T)
1850 and then not Is_Controlled (T)
1851 and then not Has_Controlled_Component (Base_Type (T))
1852 and then Expander_Active
1853 then
1854 Rewrite (N,
1855 Make_Object_Renaming_Declaration (Loc,
1856 Defining_Identifier => Id,
1857 Subtype_Mark => New_Occurrence_Of
1858 (Base_Type (Etype (Id)), Loc),
1859 Name => E));
1861 Set_Renamed_Object (Id, E);
1862 end if;
1864 if Present (Prev_Entity)
1865 and then Is_Frozen (Prev_Entity)
1866 and then not Error_Posted (Id)
1867 then
1868 Error_Msg_N ("full constant declaration appears too late", N);
1869 end if;
1871 Check_Eliminated (Id);
1872 end Analyze_Object_Declaration;
1874 ---------------------------
1875 -- Analyze_Others_Choice --
1876 ---------------------------
1878 -- Nothing to do for the others choice node itself, the semantic analysis
1879 -- of the others choice will occur as part of the processing of the parent
1881 procedure Analyze_Others_Choice (N : Node_Id) is
1882 begin
1883 null;
1884 end Analyze_Others_Choice;
1886 -------------------------------------------
1887 -- Analyze_Private_Extension_Declaration --
1888 -------------------------------------------
1890 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
1891 T : Entity_Id := Defining_Identifier (N);
1892 Indic : constant Node_Id := Subtype_Indication (N);
1893 Parent_Type : Entity_Id;
1894 Parent_Base : Entity_Id;
1896 begin
1897 Generate_Definition (T);
1898 Enter_Name (T);
1900 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
1901 Parent_Base := Base_Type (Parent_Type);
1903 if Parent_Type = Any_Type
1904 or else Etype (Parent_Type) = Any_Type
1905 then
1906 Set_Ekind (T, Ekind (Parent_Type));
1907 Set_Etype (T, Any_Type);
1908 return;
1910 elsif not Is_Tagged_Type (Parent_Type) then
1911 Error_Msg_N
1912 ("parent of type extension must be a tagged type ", Indic);
1913 return;
1915 elsif Ekind (Parent_Type) = E_Void
1916 or else Ekind (Parent_Type) = E_Incomplete_Type
1917 then
1918 Error_Msg_N ("premature derivation of incomplete type", Indic);
1919 return;
1920 end if;
1922 -- Perhaps the parent type should be changed to the class-wide type's
1923 -- specific type in this case to prevent cascading errors ???
1925 if Is_Class_Wide_Type (Parent_Type) then
1926 Error_Msg_N
1927 ("parent of type extension must not be a class-wide type", Indic);
1928 return;
1929 end if;
1931 if (not Is_Package (Current_Scope)
1932 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
1933 or else In_Private_Part (Current_Scope)
1935 then
1936 Error_Msg_N ("invalid context for private extension", N);
1937 end if;
1939 -- Set common attributes
1941 Set_Is_Pure (T, Is_Pure (Current_Scope));
1942 Set_Scope (T, Current_Scope);
1943 Set_Ekind (T, E_Record_Type_With_Private);
1944 Init_Size_Align (T);
1946 Set_Etype (T, Parent_Base);
1947 Set_Has_Task (T, Has_Task (Parent_Base));
1949 Set_Convention (T, Convention (Parent_Type));
1950 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
1951 Set_Is_First_Subtype (T);
1952 Make_Class_Wide_Type (T);
1954 Build_Derived_Record_Type (N, Parent_Type, T);
1955 end Analyze_Private_Extension_Declaration;
1957 ---------------------------------
1958 -- Analyze_Subtype_Declaration --
1959 ---------------------------------
1961 procedure Analyze_Subtype_Declaration (N : Node_Id) is
1962 Id : constant Entity_Id := Defining_Identifier (N);
1963 T : Entity_Id;
1964 R_Checks : Check_Result;
1966 begin
1967 Generate_Definition (Id);
1968 Set_Is_Pure (Id, Is_Pure (Current_Scope));
1969 Init_Size_Align (Id);
1971 -- The following guard condition on Enter_Name is to handle cases
1972 -- where the defining identifier has already been entered into the
1973 -- scope but the declaration as a whole needs to be analyzed.
1975 -- This case in particular happens for derived enumeration types.
1976 -- The derived enumeration type is processed as an inserted enumeration
1977 -- type declaration followed by a rewritten subtype declaration. The
1978 -- defining identifier, however, is entered into the name scope very
1979 -- early in the processing of the original type declaration and
1980 -- therefore needs to be avoided here, when the created subtype
1981 -- declaration is analyzed. (See Build_Derived_Types)
1983 -- This also happens when the full view of a private type is a
1984 -- derived type with constraints. In this case the entity has been
1985 -- introduced in the private declaration.
1987 if Present (Etype (Id))
1988 and then (Is_Private_Type (Etype (Id))
1989 or else Is_Task_Type (Etype (Id))
1990 or else Is_Rewrite_Substitution (N))
1991 then
1992 null;
1994 else
1995 Enter_Name (Id);
1996 end if;
1998 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
2000 -- Inherit common attributes
2002 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
2003 Set_Is_Volatile (Id, Is_Volatile (T));
2004 Set_Is_Atomic (Id, Is_Atomic (T));
2006 -- In the case where there is no constraint given in the subtype
2007 -- indication, Process_Subtype just returns the Subtype_Mark,
2008 -- so its semantic attributes must be established here.
2010 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
2011 Set_Etype (Id, Base_Type (T));
2013 case Ekind (T) is
2014 when Array_Kind =>
2015 Set_Ekind (Id, E_Array_Subtype);
2017 -- Shouldn't we call Copy_Array_Subtype_Attributes here???
2019 Set_First_Index (Id, First_Index (T));
2020 Set_Is_Aliased (Id, Is_Aliased (T));
2021 Set_Is_Constrained (Id, Is_Constrained (T));
2023 when Decimal_Fixed_Point_Kind =>
2024 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
2025 Set_Digits_Value (Id, Digits_Value (T));
2026 Set_Delta_Value (Id, Delta_Value (T));
2027 Set_Scale_Value (Id, Scale_Value (T));
2028 Set_Small_Value (Id, Small_Value (T));
2029 Set_Scalar_Range (Id, Scalar_Range (T));
2030 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
2031 Set_Is_Constrained (Id, Is_Constrained (T));
2032 Set_RM_Size (Id, RM_Size (T));
2034 when Enumeration_Kind =>
2035 Set_Ekind (Id, E_Enumeration_Subtype);
2036 Set_First_Literal (Id, First_Literal (Base_Type (T)));
2037 Set_Scalar_Range (Id, Scalar_Range (T));
2038 Set_Is_Character_Type (Id, Is_Character_Type (T));
2039 Set_Is_Constrained (Id, Is_Constrained (T));
2040 Set_RM_Size (Id, RM_Size (T));
2042 when Ordinary_Fixed_Point_Kind =>
2043 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
2044 Set_Scalar_Range (Id, Scalar_Range (T));
2045 Set_Small_Value (Id, Small_Value (T));
2046 Set_Delta_Value (Id, Delta_Value (T));
2047 Set_Is_Constrained (Id, Is_Constrained (T));
2048 Set_RM_Size (Id, RM_Size (T));
2050 when Float_Kind =>
2051 Set_Ekind (Id, E_Floating_Point_Subtype);
2052 Set_Scalar_Range (Id, Scalar_Range (T));
2053 Set_Digits_Value (Id, Digits_Value (T));
2054 Set_Is_Constrained (Id, Is_Constrained (T));
2056 when Signed_Integer_Kind =>
2057 Set_Ekind (Id, E_Signed_Integer_Subtype);
2058 Set_Scalar_Range (Id, Scalar_Range (T));
2059 Set_Is_Constrained (Id, Is_Constrained (T));
2060 Set_RM_Size (Id, RM_Size (T));
2062 when Modular_Integer_Kind =>
2063 Set_Ekind (Id, E_Modular_Integer_Subtype);
2064 Set_Scalar_Range (Id, Scalar_Range (T));
2065 Set_Is_Constrained (Id, Is_Constrained (T));
2066 Set_RM_Size (Id, RM_Size (T));
2068 when Class_Wide_Kind =>
2069 Set_Ekind (Id, E_Class_Wide_Subtype);
2070 Set_First_Entity (Id, First_Entity (T));
2071 Set_Last_Entity (Id, Last_Entity (T));
2072 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2073 Set_Cloned_Subtype (Id, T);
2074 Set_Is_Tagged_Type (Id, True);
2075 Set_Has_Unknown_Discriminants
2076 (Id, True);
2078 if Ekind (T) = E_Class_Wide_Subtype then
2079 Set_Equivalent_Type (Id, Equivalent_Type (T));
2080 end if;
2082 when E_Record_Type | E_Record_Subtype =>
2083 Set_Ekind (Id, E_Record_Subtype);
2085 if Ekind (T) = E_Record_Subtype
2086 and then Present (Cloned_Subtype (T))
2087 then
2088 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
2089 else
2090 Set_Cloned_Subtype (Id, T);
2091 end if;
2093 Set_First_Entity (Id, First_Entity (T));
2094 Set_Last_Entity (Id, Last_Entity (T));
2095 Set_Has_Discriminants (Id, Has_Discriminants (T));
2096 Set_Is_Constrained (Id, Is_Constrained (T));
2097 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
2098 Set_Has_Unknown_Discriminants
2099 (Id, Has_Unknown_Discriminants (T));
2101 if Has_Discriminants (T) then
2102 Set_Discriminant_Constraint
2103 (Id, Discriminant_Constraint (T));
2104 Set_Girder_Constraint_From_Discriminant_Constraint (Id);
2106 elsif Has_Unknown_Discriminants (Id) then
2107 Set_Discriminant_Constraint (Id, No_Elist);
2108 end if;
2110 if Is_Tagged_Type (T) then
2111 Set_Is_Tagged_Type (Id);
2112 Set_Is_Abstract (Id, Is_Abstract (T));
2113 Set_Primitive_Operations
2114 (Id, Primitive_Operations (T));
2115 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2116 end if;
2118 when Private_Kind =>
2119 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
2120 Set_Has_Discriminants (Id, Has_Discriminants (T));
2121 Set_Is_Constrained (Id, Is_Constrained (T));
2122 Set_First_Entity (Id, First_Entity (T));
2123 Set_Last_Entity (Id, Last_Entity (T));
2124 Set_Private_Dependents (Id, New_Elmt_List);
2125 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
2126 Set_Has_Unknown_Discriminants
2127 (Id, Has_Unknown_Discriminants (T));
2129 if Is_Tagged_Type (T) then
2130 Set_Is_Tagged_Type (Id);
2131 Set_Is_Abstract (Id, Is_Abstract (T));
2132 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2133 end if;
2135 -- In general the attributes of the subtype of a private
2136 -- type are the attributes of the partial view of parent.
2137 -- However, the full view may be a discriminated type,
2138 -- and the subtype must share the discriminant constraint
2139 -- to generate correct calls to initialization procedures.
2141 if Has_Discriminants (T) then
2142 Set_Discriminant_Constraint
2143 (Id, Discriminant_Constraint (T));
2144 Set_Girder_Constraint_From_Discriminant_Constraint (Id);
2146 elsif Present (Full_View (T))
2147 and then Has_Discriminants (Full_View (T))
2148 then
2149 Set_Discriminant_Constraint
2150 (Id, Discriminant_Constraint (Full_View (T)));
2151 Set_Girder_Constraint_From_Discriminant_Constraint (Id);
2153 -- This would seem semantically correct, but apparently
2154 -- confuses the back-end (4412-009). To be explained ???
2156 -- Set_Has_Discriminants (Id);
2157 end if;
2159 Prepare_Private_Subtype_Completion (Id, N);
2161 when Access_Kind =>
2162 Set_Ekind (Id, E_Access_Subtype);
2163 Set_Is_Constrained (Id, Is_Constrained (T));
2164 Set_Is_Access_Constant
2165 (Id, Is_Access_Constant (T));
2166 Set_Directly_Designated_Type
2167 (Id, Designated_Type (T));
2169 -- A Pure library_item must not contain the declaration of a
2170 -- named access type, except within a subprogram, generic
2171 -- subprogram, task unit, or protected unit (RM 10.2.1(16)).
2173 if Comes_From_Source (Id)
2174 and then In_Pure_Unit
2175 and then not In_Subprogram_Task_Protected_Unit
2176 then
2177 Error_Msg_N
2178 ("named access types not allowed in pure unit", N);
2179 end if;
2181 when Concurrent_Kind =>
2183 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
2184 Set_Corresponding_Record_Type (Id,
2185 Corresponding_Record_Type (T));
2186 Set_First_Entity (Id, First_Entity (T));
2187 Set_First_Private_Entity (Id, First_Private_Entity (T));
2188 Set_Has_Discriminants (Id, Has_Discriminants (T));
2189 Set_Is_Constrained (Id, Is_Constrained (T));
2190 Set_Last_Entity (Id, Last_Entity (T));
2192 if Has_Discriminants (T) then
2193 Set_Discriminant_Constraint (Id,
2194 Discriminant_Constraint (T));
2195 Set_Girder_Constraint_From_Discriminant_Constraint (Id);
2196 end if;
2198 -- If the subtype name denotes an incomplete type
2199 -- an error was already reported by Process_Subtype.
2201 when E_Incomplete_Type =>
2202 Set_Etype (Id, Any_Type);
2204 when others =>
2205 raise Program_Error;
2206 end case;
2207 end if;
2209 if Etype (Id) = Any_Type then
2210 return;
2211 end if;
2213 -- Some common processing on all types
2215 Set_Size_Info (Id, T);
2216 Set_First_Rep_Item (Id, First_Rep_Item (T));
2218 T := Etype (Id);
2220 Set_Is_Immediately_Visible (Id, True);
2221 Set_Depends_On_Private (Id, Has_Private_Component (T));
2223 if Present (Generic_Parent_Type (N))
2224 and then
2225 (Nkind
2226 (Parent (Generic_Parent_Type (N))) /= N_Formal_Type_Declaration
2227 or else Nkind
2228 (Formal_Type_Definition (Parent (Generic_Parent_Type (N))))
2229 /= N_Formal_Private_Type_Definition)
2230 then
2231 if Is_Tagged_Type (Id) then
2232 if Is_Class_Wide_Type (Id) then
2233 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
2234 else
2235 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
2236 end if;
2238 elsif Scope (Etype (Id)) /= Standard_Standard then
2239 Derive_Subprograms (Generic_Parent_Type (N), Id);
2240 end if;
2241 end if;
2243 if Is_Private_Type (T)
2244 and then Present (Full_View (T))
2245 then
2246 Conditional_Delay (Id, Full_View (T));
2248 -- The subtypes of components or subcomponents of protected types
2249 -- do not need freeze nodes, which would otherwise appear in the
2250 -- wrong scope (before the freeze node for the protected type). The
2251 -- proper subtypes are those of the subcomponents of the corresponding
2252 -- record.
2254 elsif Ekind (Scope (Id)) /= E_Protected_Type
2255 and then Present (Scope (Scope (Id))) -- error defense!
2256 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
2257 then
2258 Conditional_Delay (Id, T);
2259 end if;
2261 -- Check that constraint_error is raised for a scalar subtype
2262 -- indication when the lower or upper bound of a non-null range
2263 -- lies outside the range of the type mark.
2265 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
2266 if Is_Scalar_Type (Etype (Id))
2267 and then Scalar_Range (Id) /=
2268 Scalar_Range (Etype (Subtype_Mark
2269 (Subtype_Indication (N))))
2270 then
2271 Apply_Range_Check
2272 (Scalar_Range (Id),
2273 Etype (Subtype_Mark (Subtype_Indication (N))));
2275 elsif Is_Array_Type (Etype (Id))
2276 and then Present (First_Index (Id))
2277 then
2278 -- This really should be a subprogram that finds the indications
2279 -- to check???
2281 if ((Nkind (First_Index (Id)) = N_Identifier
2282 and then Ekind (Entity (First_Index (Id))) in Scalar_Kind)
2283 or else Nkind (First_Index (Id)) = N_Subtype_Indication)
2284 and then
2285 Nkind (Scalar_Range (Etype (First_Index (Id)))) = N_Range
2286 then
2287 declare
2288 Target_Typ : Entity_Id :=
2289 Etype
2290 (First_Index
2291 (Etype (Subtype_Mark (Subtype_Indication (N)))));
2292 begin
2293 R_Checks :=
2294 Range_Check
2295 (Scalar_Range (Etype (First_Index (Id))),
2296 Target_Typ,
2297 Etype (First_Index (Id)),
2298 Defining_Identifier (N));
2300 Insert_Range_Checks
2301 (R_Checks,
2303 Target_Typ,
2304 Sloc (Defining_Identifier (N)));
2305 end;
2306 end if;
2307 end if;
2308 end if;
2310 Check_Eliminated (Id);
2311 end Analyze_Subtype_Declaration;
2313 --------------------------------
2314 -- Analyze_Subtype_Indication --
2315 --------------------------------
2317 procedure Analyze_Subtype_Indication (N : Node_Id) is
2318 T : constant Entity_Id := Subtype_Mark (N);
2319 R : constant Node_Id := Range_Expression (Constraint (N));
2321 begin
2322 Analyze (T);
2324 if R /= Error then
2325 Analyze (R);
2326 Set_Etype (N, Etype (R));
2327 else
2328 Set_Error_Posted (R);
2329 Set_Error_Posted (T);
2330 end if;
2331 end Analyze_Subtype_Indication;
2333 ------------------------------
2334 -- Analyze_Type_Declaration --
2335 ------------------------------
2337 procedure Analyze_Type_Declaration (N : Node_Id) is
2338 Def : constant Node_Id := Type_Definition (N);
2339 Def_Id : constant Entity_Id := Defining_Identifier (N);
2340 T : Entity_Id;
2341 Prev : Entity_Id;
2343 begin
2344 Prev := Find_Type_Name (N);
2346 if Ekind (Prev) = E_Incomplete_Type then
2347 T := Full_View (Prev);
2348 else
2349 T := Prev;
2350 end if;
2352 Set_Is_Pure (T, Is_Pure (Current_Scope));
2354 -- We set the flag Is_First_Subtype here. It is needed to set the
2355 -- corresponding flag for the Implicit class-wide-type created
2356 -- during tagged types processing.
2358 Set_Is_First_Subtype (T, True);
2360 -- Only composite types other than array types are allowed to have
2361 -- discriminants.
2363 case Nkind (Def) is
2365 -- For derived types, the rule will be checked once we've figured
2366 -- out the parent type.
2368 when N_Derived_Type_Definition =>
2369 null;
2371 -- For record types, discriminants are allowed.
2373 when N_Record_Definition =>
2374 null;
2376 when others =>
2377 if Present (Discriminant_Specifications (N)) then
2378 Error_Msg_N
2379 ("elementary or array type cannot have discriminants",
2380 Defining_Identifier
2381 (First (Discriminant_Specifications (N))));
2382 end if;
2383 end case;
2385 -- Elaborate the type definition according to kind, and generate
2386 -- susbsidiary (implicit) subtypes where needed. We skip this if
2387 -- it was already done (this happens during the reanalysis that
2388 -- follows a call to the high level optimizer).
2390 if not Analyzed (T) then
2391 Set_Analyzed (T);
2393 case Nkind (Def) is
2395 when N_Access_To_Subprogram_Definition =>
2396 Access_Subprogram_Declaration (T, Def);
2398 -- If this is a remote access to subprogram, we must create
2399 -- the equivalent fat pointer type, and related subprograms.
2401 if Is_Remote_Types (Current_Scope)
2402 or else Is_Remote_Call_Interface (Current_Scope)
2403 then
2404 Validate_Remote_Access_To_Subprogram_Type (N);
2405 Process_Remote_AST_Declaration (N);
2406 end if;
2408 -- Validate categorization rule against access type declaration
2409 -- usually a violation in Pure unit, Shared_Passive unit.
2411 Validate_Access_Type_Declaration (T, N);
2413 when N_Access_To_Object_Definition =>
2414 Access_Type_Declaration (T, Def);
2416 -- Validate categorization rule against access type declaration
2417 -- usually a violation in Pure unit, Shared_Passive unit.
2419 Validate_Access_Type_Declaration (T, N);
2421 -- If we are in a Remote_Call_Interface package and define
2422 -- a RACW, Read and Write attribute must be added.
2424 if (Is_Remote_Call_Interface (Current_Scope)
2425 or else Is_Remote_Types (Current_Scope))
2426 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2427 then
2428 Add_RACW_Features (Def_Id);
2429 end if;
2431 when N_Array_Type_Definition =>
2432 Array_Type_Declaration (T, Def);
2434 when N_Derived_Type_Definition =>
2435 Derived_Type_Declaration (T, N, T /= Def_Id);
2437 when N_Enumeration_Type_Definition =>
2438 Enumeration_Type_Declaration (T, Def);
2440 when N_Floating_Point_Definition =>
2441 Floating_Point_Type_Declaration (T, Def);
2443 when N_Decimal_Fixed_Point_Definition =>
2444 Decimal_Fixed_Point_Type_Declaration (T, Def);
2446 when N_Ordinary_Fixed_Point_Definition =>
2447 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2449 when N_Signed_Integer_Type_Definition =>
2450 Signed_Integer_Type_Declaration (T, Def);
2452 when N_Modular_Type_Definition =>
2453 Modular_Type_Declaration (T, Def);
2455 when N_Record_Definition =>
2456 Record_Type_Declaration (T, N);
2458 when others =>
2459 raise Program_Error;
2461 end case;
2462 end if;
2464 if Etype (T) = Any_Type then
2465 return;
2466 end if;
2468 -- Some common processing for all types
2470 Set_Depends_On_Private (T, Has_Private_Component (T));
2472 -- Both the declared entity, and its anonymous base type if one
2473 -- was created, need freeze nodes allocated.
2475 declare
2476 B : constant Entity_Id := Base_Type (T);
2478 begin
2479 -- In the case where the base type is different from the first
2480 -- subtype, we pre-allocate a freeze node, and set the proper
2481 -- link to the first subtype. Freeze_Entity will use this
2482 -- preallocated freeze node when it freezes the entity.
2484 if B /= T then
2485 Ensure_Freeze_Node (B);
2486 Set_First_Subtype_Link (Freeze_Node (B), T);
2487 end if;
2489 if not From_With_Type (T) then
2490 Set_Has_Delayed_Freeze (T);
2491 end if;
2492 end;
2494 -- Case of T is the full declaration of some private type which has
2495 -- been swapped in Defining_Identifier (N).
2497 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2498 Process_Full_View (N, T, Def_Id);
2500 -- Record the reference. The form of this is a little strange,
2501 -- since the full declaration has been swapped in. So the first
2502 -- parameter here represents the entity to which a reference is
2503 -- made which is the "real" entity, i.e. the one swapped in,
2504 -- and the second parameter provides the reference location.
2506 Generate_Reference (T, T, 'c');
2508 -- If in main unit, set as referenced, so we do not complain about
2509 -- the full declaration being an unreferenced entity.
2511 if In_Extended_Main_Source_Unit (Def_Id) then
2512 Set_Referenced (Def_Id);
2513 end if;
2515 -- For completion of incomplete type, process incomplete dependents
2516 -- and always mark the full type as referenced (it is the incomplete
2517 -- type that we get for any real reference).
2519 elsif Ekind (Prev) = E_Incomplete_Type then
2520 Process_Incomplete_Dependents (N, T, Prev);
2521 Generate_Reference (Prev, Def_Id, 'c');
2523 -- If in main unit, set as referenced, so we do not complain about
2524 -- the full declaration being an unreferenced entity.
2526 if In_Extended_Main_Source_Unit (Def_Id) then
2527 Set_Referenced (Def_Id);
2528 end if;
2530 -- If not private type or incomplete type completion, this is a real
2531 -- definition of a new entity, so record it.
2533 else
2534 Generate_Definition (Def_Id);
2535 end if;
2537 Check_Eliminated (Def_Id);
2538 end Analyze_Type_Declaration;
2540 --------------------------
2541 -- Analyze_Variant_Part --
2542 --------------------------
2544 procedure Analyze_Variant_Part (N : Node_Id) is
2546 procedure Non_Static_Choice_Error (Choice : Node_Id);
2547 -- Error routine invoked by the generic instantiation below when
2548 -- the variant part has a non static choice.
2550 procedure Process_Declarations (Variant : Node_Id);
2551 -- Analyzes all the declarations associated with a Variant.
2552 -- Needed by the generic instantiation below.
2554 package Variant_Choices_Processing is new
2555 Generic_Choices_Processing
2556 (Get_Alternatives => Variants,
2557 Get_Choices => Discrete_Choices,
2558 Process_Empty_Choice => No_OP,
2559 Process_Non_Static_Choice => Non_Static_Choice_Error,
2560 Process_Associated_Node => Process_Declarations);
2561 use Variant_Choices_Processing;
2562 -- Instantiation of the generic choice processing package.
2564 -----------------------------
2565 -- Non_Static_Choice_Error --
2566 -----------------------------
2568 procedure Non_Static_Choice_Error (Choice : Node_Id) is
2569 begin
2570 Error_Msg_N ("choice given in variant part is not static", Choice);
2571 end Non_Static_Choice_Error;
2573 --------------------------
2574 -- Process_Declarations --
2575 --------------------------
2577 procedure Process_Declarations (Variant : Node_Id) is
2578 begin
2579 if not Null_Present (Component_List (Variant)) then
2580 Analyze_Declarations (Component_Items (Component_List (Variant)));
2582 if Present (Variant_Part (Component_List (Variant))) then
2583 Analyze (Variant_Part (Component_List (Variant)));
2584 end if;
2585 end if;
2586 end Process_Declarations;
2588 -- Variables local to Analyze_Case_Statement.
2590 Others_Choice : Node_Id;
2592 Discr_Name : Node_Id;
2593 Discr_Type : Entity_Id;
2595 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
2596 Last_Choice : Nat;
2597 Dont_Care : Boolean;
2598 Others_Present : Boolean := False;
2600 -- Start of processing for Analyze_Variant_Part
2602 begin
2603 Discr_Name := Name (N);
2604 Analyze (Discr_Name);
2606 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
2607 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
2608 end if;
2610 Discr_Type := Etype (Entity (Discr_Name));
2612 if not Is_Discrete_Type (Discr_Type) then
2613 Error_Msg_N
2614 ("discriminant in a variant part must be of a discrete type",
2615 Name (N));
2616 return;
2617 end if;
2619 -- Call the instantiated Analyze_Choices which does the rest of the work
2621 Analyze_Choices
2622 (N, Discr_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
2624 if Others_Present then
2625 -- Fill in Others_Discrete_Choices field of the OTHERS choice
2627 Others_Choice := First (Discrete_Choices (Last (Variants (N))));
2628 Expand_Others_Choice
2629 (Case_Table (1 .. Last_Choice), Others_Choice, Discr_Type);
2630 end if;
2632 end Analyze_Variant_Part;
2634 ----------------------------
2635 -- Array_Type_Declaration --
2636 ----------------------------
2638 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
2639 Component_Def : constant Node_Id := Subtype_Indication (Def);
2640 Element_Type : Entity_Id;
2641 Implicit_Base : Entity_Id;
2642 Index : Node_Id;
2643 Related_Id : Entity_Id := Empty;
2644 Nb_Index : Nat;
2645 P : constant Node_Id := Parent (Def);
2646 Priv : Entity_Id;
2648 begin
2649 if Nkind (Def) = N_Constrained_Array_Definition then
2651 Index := First (Discrete_Subtype_Definitions (Def));
2653 -- Find proper names for the implicit types which may be public.
2654 -- in case of anonymous arrays we use the name of the first object
2655 -- of that type as prefix.
2657 if No (T) then
2658 Related_Id := Defining_Identifier (P);
2659 else
2660 Related_Id := T;
2661 end if;
2663 else
2664 Index := First (Subtype_Marks (Def));
2665 end if;
2667 Nb_Index := 1;
2669 while Present (Index) loop
2670 Analyze (Index);
2671 Make_Index (Index, P, Related_Id, Nb_Index);
2672 Next_Index (Index);
2673 Nb_Index := Nb_Index + 1;
2674 end loop;
2676 Element_Type := Process_Subtype (Component_Def, P, Related_Id, 'C');
2678 -- Constrained array case
2680 if No (T) then
2681 T := Create_Itype (E_Void, P, Related_Id, 'T');
2682 end if;
2684 if Nkind (Def) = N_Constrained_Array_Definition then
2686 -- Establish Implicit_Base as unconstrained base type
2688 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
2690 Init_Size_Align (Implicit_Base);
2691 Set_Etype (Implicit_Base, Implicit_Base);
2692 Set_Scope (Implicit_Base, Current_Scope);
2693 Set_Has_Delayed_Freeze (Implicit_Base);
2695 -- The constrained array type is a subtype of the unconstrained one
2697 Set_Ekind (T, E_Array_Subtype);
2698 Init_Size_Align (T);
2699 Set_Etype (T, Implicit_Base);
2700 Set_Scope (T, Current_Scope);
2701 Set_Is_Constrained (T, True);
2702 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
2703 Set_Has_Delayed_Freeze (T);
2705 -- Complete setup of implicit base type
2707 Set_First_Index (Implicit_Base, First_Index (T));
2708 Set_Component_Type (Implicit_Base, Element_Type);
2709 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
2710 Set_Component_Size (Implicit_Base, Uint_0);
2711 Set_Has_Controlled_Component (Implicit_Base,
2712 Has_Controlled_Component (Element_Type)
2713 or else Is_Controlled (Element_Type));
2714 Set_Finalize_Storage_Only (Implicit_Base,
2715 Finalize_Storage_Only (Element_Type));
2717 -- Unconstrained array case
2719 else
2720 Set_Ekind (T, E_Array_Type);
2721 Init_Size_Align (T);
2722 Set_Etype (T, T);
2723 Set_Scope (T, Current_Scope);
2724 Set_Component_Size (T, Uint_0);
2725 Set_Is_Constrained (T, False);
2726 Set_First_Index (T, First (Subtype_Marks (Def)));
2727 Set_Has_Delayed_Freeze (T, True);
2728 Set_Has_Task (T, Has_Task (Element_Type));
2729 Set_Has_Controlled_Component (T,
2730 Has_Controlled_Component (Element_Type)
2731 or else Is_Controlled (Element_Type));
2732 Set_Finalize_Storage_Only (T,
2733 Finalize_Storage_Only (Element_Type));
2734 end if;
2736 Set_Component_Type (T, Element_Type);
2738 if Aliased_Present (Def) then
2739 Set_Has_Aliased_Components (Etype (T));
2740 end if;
2742 Priv := Private_Component (Element_Type);
2744 if Present (Priv) then
2745 -- Check for circular definitions.
2747 if Priv = Any_Type then
2748 Set_Component_Type (T, Any_Type);
2749 Set_Component_Type (Etype (T), Any_Type);
2751 -- There is a gap in the visiblity of operations on the composite
2752 -- type only if the component type is defined in a different scope.
2754 elsif Scope (Priv) = Current_Scope then
2755 null;
2757 elsif Is_Limited_Type (Priv) then
2758 Set_Is_Limited_Composite (Etype (T));
2759 Set_Is_Limited_Composite (T);
2760 else
2761 Set_Is_Private_Composite (Etype (T));
2762 Set_Is_Private_Composite (T);
2763 end if;
2764 end if;
2766 -- Create a concatenation operator for the new type. Internal
2767 -- array types created for packed entities do not need such, they
2768 -- are compatible with the user-defined type.
2770 if Number_Dimensions (T) = 1
2771 and then not Is_Packed_Array_Type (T)
2772 then
2773 New_Binary_Operator (Name_Op_Concat, T);
2774 end if;
2776 -- In the case of an unconstrained array the parser has already
2777 -- verified that all the indices are unconstrained but we still
2778 -- need to make sure that the element type is constrained.
2780 if Is_Indefinite_Subtype (Element_Type) then
2781 Error_Msg_N
2782 ("unconstrained element type in array declaration ",
2783 Component_Def);
2785 elsif Is_Abstract (Element_Type) then
2786 Error_Msg_N ("The type of a component cannot be abstract ",
2787 Component_Def);
2788 end if;
2790 end Array_Type_Declaration;
2792 -------------------------------
2793 -- Build_Derived_Access_Type --
2794 -------------------------------
2796 procedure Build_Derived_Access_Type
2797 (N : Node_Id;
2798 Parent_Type : Entity_Id;
2799 Derived_Type : Entity_Id)
2801 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
2803 Desig_Type : Entity_Id;
2804 Discr : Entity_Id;
2805 Discr_Con_Elist : Elist_Id;
2806 Discr_Con_El : Elmt_Id;
2808 Subt : Entity_Id;
2810 begin
2811 -- Set the designated type so it is available in case this is
2812 -- an access to a self-referential type, e.g. a standard list
2813 -- type with a next pointer. Will be reset after subtype is built.
2815 Set_Directly_Designated_Type (Derived_Type,
2816 Designated_Type (Parent_Type));
2818 Subt := Process_Subtype (S, N);
2820 if Nkind (S) /= N_Subtype_Indication
2821 and then Subt /= Base_Type (Subt)
2822 then
2823 Set_Ekind (Derived_Type, E_Access_Subtype);
2824 end if;
2826 if Ekind (Derived_Type) = E_Access_Subtype then
2827 declare
2828 Pbase : constant Entity_Id := Base_Type (Parent_Type);
2829 Ibase : constant Entity_Id :=
2830 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
2831 Svg_Chars : constant Name_Id := Chars (Ibase);
2832 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
2834 begin
2835 Copy_Node (Pbase, Ibase);
2837 Set_Chars (Ibase, Svg_Chars);
2838 Set_Next_Entity (Ibase, Svg_Next_E);
2839 Set_Sloc (Ibase, Sloc (Derived_Type));
2840 Set_Scope (Ibase, Scope (Derived_Type));
2841 Set_Freeze_Node (Ibase, Empty);
2842 Set_Is_Frozen (Ibase, False);
2844 Set_Etype (Ibase, Pbase);
2845 Set_Etype (Derived_Type, Ibase);
2846 end;
2847 end if;
2849 Set_Directly_Designated_Type
2850 (Derived_Type, Designated_Type (Subt));
2852 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
2853 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
2854 Set_Size_Info (Derived_Type, Parent_Type);
2855 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
2856 Set_Depends_On_Private (Derived_Type,
2857 Has_Private_Component (Derived_Type));
2858 Conditional_Delay (Derived_Type, Subt);
2860 -- Note: we do not copy the Storage_Size_Variable, since
2861 -- we always go to the root type for this information.
2863 -- Apply range checks to discriminants for derived record case
2864 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
2866 Desig_Type := Designated_Type (Derived_Type);
2867 if Is_Composite_Type (Desig_Type)
2868 and then (not Is_Array_Type (Desig_Type))
2869 and then Has_Discriminants (Desig_Type)
2870 and then Base_Type (Desig_Type) /= Desig_Type
2871 then
2872 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
2873 Discr_Con_El := First_Elmt (Discr_Con_Elist);
2875 Discr := First_Discriminant (Base_Type (Desig_Type));
2876 while Present (Discr_Con_El) loop
2877 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
2878 Next_Elmt (Discr_Con_El);
2879 Next_Discriminant (Discr);
2880 end loop;
2881 end if;
2882 end Build_Derived_Access_Type;
2884 ------------------------------
2885 -- Build_Derived_Array_Type --
2886 ------------------------------
2888 procedure Build_Derived_Array_Type
2889 (N : Node_Id;
2890 Parent_Type : Entity_Id;
2891 Derived_Type : Entity_Id)
2893 Loc : constant Source_Ptr := Sloc (N);
2894 Tdef : constant Node_Id := Type_Definition (N);
2895 Indic : constant Node_Id := Subtype_Indication (Tdef);
2896 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
2897 Implicit_Base : Entity_Id;
2898 New_Indic : Node_Id;
2900 procedure Make_Implicit_Base;
2901 -- If the parent subtype is constrained, the derived type is a
2902 -- subtype of an implicit base type derived from the parent base.
2904 ------------------------
2905 -- Make_Implicit_Base --
2906 ------------------------
2908 procedure Make_Implicit_Base is
2909 begin
2910 Implicit_Base :=
2911 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
2913 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
2914 Set_Etype (Implicit_Base, Parent_Base);
2916 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
2917 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
2919 Set_Has_Delayed_Freeze (Implicit_Base, True);
2920 end Make_Implicit_Base;
2922 -- Start of processing for Build_Derived_Array_Type
2924 begin
2925 if not Is_Constrained (Parent_Type) then
2926 if Nkind (Indic) /= N_Subtype_Indication then
2927 Set_Ekind (Derived_Type, E_Array_Type);
2929 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
2930 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
2932 Set_Has_Delayed_Freeze (Derived_Type, True);
2934 else
2935 Make_Implicit_Base;
2936 Set_Etype (Derived_Type, Implicit_Base);
2938 New_Indic :=
2939 Make_Subtype_Declaration (Loc,
2940 Defining_Identifier => Derived_Type,
2941 Subtype_Indication =>
2942 Make_Subtype_Indication (Loc,
2943 Subtype_Mark => New_Reference_To (Implicit_Base, Loc),
2944 Constraint => Constraint (Indic)));
2946 Rewrite (N, New_Indic);
2947 Analyze (N);
2948 end if;
2950 else
2951 if Nkind (Indic) /= N_Subtype_Indication then
2952 Make_Implicit_Base;
2954 Set_Ekind (Derived_Type, Ekind (Parent_Type));
2955 Set_Etype (Derived_Type, Implicit_Base);
2956 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
2958 else
2959 Error_Msg_N ("illegal constraint on constrained type", Indic);
2960 end if;
2961 end if;
2963 -- If the parent type is not a derived type itself, and is
2964 -- declared in a closed scope (e.g., a subprogram), then we
2965 -- need to explicitly introduce the new type's concatenation
2966 -- operator since Derive_Subprograms will not inherit the
2967 -- parent's operator.
2969 if Number_Dimensions (Parent_Type) = 1
2970 and then not Is_Limited_Type (Parent_Type)
2971 and then not Is_Derived_Type (Parent_Type)
2972 and then not Is_Package (Scope (Base_Type (Parent_Type)))
2973 then
2974 New_Binary_Operator (Name_Op_Concat, Derived_Type);
2975 end if;
2976 end Build_Derived_Array_Type;
2978 -----------------------------------
2979 -- Build_Derived_Concurrent_Type --
2980 -----------------------------------
2982 procedure Build_Derived_Concurrent_Type
2983 (N : Node_Id;
2984 Parent_Type : Entity_Id;
2985 Derived_Type : Entity_Id)
2987 D_Constraint : Node_Id;
2988 Disc_Spec : Node_Id;
2989 Old_Disc : Entity_Id;
2990 New_Disc : Entity_Id;
2992 Constraint_Present : constant Boolean :=
2993 Nkind (Subtype_Indication (Type_Definition (N)))
2994 = N_Subtype_Indication;
2996 begin
2997 Set_Girder_Constraint (Derived_Type, No_Elist);
2999 if Is_Task_Type (Parent_Type) then
3000 Set_Storage_Size_Variable (Derived_Type,
3001 Storage_Size_Variable (Parent_Type));
3002 end if;
3004 if Present (Discriminant_Specifications (N)) then
3005 New_Scope (Derived_Type);
3006 Check_Or_Process_Discriminants (N, Derived_Type);
3007 End_Scope;
3009 elsif Constraint_Present then
3011 -- Build constrained subtype and derive from it
3013 declare
3014 Loc : constant Source_Ptr := Sloc (N);
3015 Anon : Entity_Id :=
3016 Make_Defining_Identifier (Loc,
3017 New_External_Name (Chars (Derived_Type), 'T'));
3018 Decl : Node_Id;
3020 begin
3021 Decl :=
3022 Make_Subtype_Declaration (Loc,
3023 Defining_Identifier => Anon,
3024 Subtype_Indication =>
3025 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
3026 Insert_Before (N, Decl);
3027 Rewrite (Subtype_Indication (Type_Definition (N)),
3028 New_Occurrence_Of (Anon, Loc));
3029 Analyze (Decl);
3030 Set_Analyzed (Derived_Type, False);
3031 Analyze (N);
3032 return;
3033 end;
3034 end if;
3036 -- All attributes are inherited from parent. In particular,
3037 -- entries and the corresponding record type are the same.
3038 -- Discriminants may be renamed, and must be treated separately.
3040 Set_Has_Discriminants
3041 (Derived_Type, Has_Discriminants (Parent_Type));
3042 Set_Corresponding_Record_Type
3043 (Derived_Type, Corresponding_Record_Type (Parent_Type));
3045 if Constraint_Present then
3047 if not Has_Discriminants (Parent_Type) then
3048 Error_Msg_N ("untagged parent must have discriminants", N);
3050 elsif Present (Discriminant_Specifications (N)) then
3052 -- Verify that new discriminants are used to constrain
3053 -- the old ones.
3055 Old_Disc := First_Discriminant (Parent_Type);
3056 New_Disc := First_Discriminant (Derived_Type);
3057 Disc_Spec := First (Discriminant_Specifications (N));
3058 D_Constraint :=
3059 First
3060 (Constraints
3061 (Constraint (Subtype_Indication (Type_Definition (N)))));
3063 while Present (Old_Disc) and then Present (Disc_Spec) loop
3065 if Nkind (Discriminant_Type (Disc_Spec)) /=
3066 N_Access_Definition
3067 then
3068 Analyze (Discriminant_Type (Disc_Spec));
3070 if not Subtypes_Statically_Compatible (
3071 Etype (Discriminant_Type (Disc_Spec)),
3072 Etype (Old_Disc))
3073 then
3074 Error_Msg_N
3075 ("not statically compatible with parent discriminant",
3076 Discriminant_Type (Disc_Spec));
3077 end if;
3078 end if;
3080 if Nkind (D_Constraint) = N_Identifier
3081 and then Chars (D_Constraint) /=
3082 Chars (Defining_Identifier (Disc_Spec))
3083 then
3084 Error_Msg_N ("new discriminants must constrain old ones",
3085 D_Constraint);
3086 else
3087 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
3088 end if;
3090 Next_Discriminant (Old_Disc);
3091 Next_Discriminant (New_Disc);
3092 Next (Disc_Spec);
3093 end loop;
3095 if Present (Old_Disc) or else Present (Disc_Spec) then
3096 Error_Msg_N ("discriminant mismatch in derivation", N);
3097 end if;
3099 end if;
3101 elsif Present (Discriminant_Specifications (N)) then
3102 Error_Msg_N
3103 ("missing discriminant constraint in untagged derivation",
3105 end if;
3107 if Present (Discriminant_Specifications (N)) then
3109 Old_Disc := First_Discriminant (Parent_Type);
3111 while Present (Old_Disc) loop
3113 if No (Next_Entity (Old_Disc))
3114 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
3115 then
3116 Set_Next_Entity (Last_Entity (Derived_Type),
3117 Next_Entity (Old_Disc));
3118 exit;
3119 end if;
3121 Next_Discriminant (Old_Disc);
3122 end loop;
3124 else
3125 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
3126 if Has_Discriminants (Parent_Type) then
3127 Set_Discriminant_Constraint (
3128 Derived_Type, Discriminant_Constraint (Parent_Type));
3129 end if;
3130 end if;
3132 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
3134 Set_Has_Completion (Derived_Type);
3135 end Build_Derived_Concurrent_Type;
3137 ------------------------------------
3138 -- Build_Derived_Enumeration_Type --
3139 ------------------------------------
3141 procedure Build_Derived_Enumeration_Type
3142 (N : Node_Id;
3143 Parent_Type : Entity_Id;
3144 Derived_Type : Entity_Id)
3146 Loc : constant Source_Ptr := Sloc (N);
3147 Def : constant Node_Id := Type_Definition (N);
3148 Indic : constant Node_Id := Subtype_Indication (Def);
3149 Implicit_Base : Entity_Id;
3150 Literal : Entity_Id;
3151 New_Lit : Entity_Id;
3152 Literals_List : List_Id;
3153 Type_Decl : Node_Id;
3154 Hi, Lo : Node_Id;
3155 Rang_Expr : Node_Id;
3157 begin
3158 -- Since types Standard.Character and Standard.Wide_Character do
3159 -- not have explicit literals lists we need to process types derived
3160 -- from them specially. This is handled by Derived_Standard_Character.
3161 -- If the parent type is a generic type, there are no literals either,
3162 -- and we construct the same skeletal representation as for the generic
3163 -- parent type.
3165 if Root_Type (Parent_Type) = Standard_Character
3166 or else Root_Type (Parent_Type) = Standard_Wide_Character
3167 then
3168 Derived_Standard_Character (N, Parent_Type, Derived_Type);
3170 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
3171 declare
3172 Lo : Node_Id;
3173 Hi : Node_Id;
3175 begin
3176 Lo :=
3177 Make_Attribute_Reference (Loc,
3178 Attribute_Name => Name_First,
3179 Prefix => New_Reference_To (Derived_Type, Loc));
3180 Set_Etype (Lo, Derived_Type);
3182 Hi :=
3183 Make_Attribute_Reference (Loc,
3184 Attribute_Name => Name_Last,
3185 Prefix => New_Reference_To (Derived_Type, Loc));
3186 Set_Etype (Hi, Derived_Type);
3188 Set_Scalar_Range (Derived_Type,
3189 Make_Range (Loc,
3190 Low_Bound => Lo,
3191 High_Bound => Hi));
3192 end;
3194 else
3195 -- If a constraint is present, analyze the bounds to catch
3196 -- premature usage of the derived literals.
3198 if Nkind (Indic) = N_Subtype_Indication
3199 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
3200 then
3201 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
3202 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
3203 end if;
3205 -- Introduce an implicit base type for the derived type even
3206 -- if there is no constraint attached to it, since this seems
3207 -- closer to the Ada semantics. Build a full type declaration
3208 -- tree for the derived type using the implicit base type as
3209 -- the defining identifier. The build a subtype declaration
3210 -- tree which applies the constraint (if any) have it replace
3211 -- the derived type declaration.
3213 Literal := First_Literal (Parent_Type);
3214 Literals_List := New_List;
3216 while Present (Literal)
3217 and then Ekind (Literal) = E_Enumeration_Literal
3218 loop
3219 -- Literals of the derived type have the same representation as
3220 -- those of the parent type, but this representation can be
3221 -- overridden by an explicit representation clause. Indicate
3222 -- that there is no explicit representation given yet. These
3223 -- derived literals are implicit operations of the new type,
3224 -- and can be overriden by explicit ones.
3226 if Nkind (Literal) = N_Defining_Character_Literal then
3227 New_Lit :=
3228 Make_Defining_Character_Literal (Loc, Chars (Literal));
3229 else
3230 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
3231 end if;
3233 Set_Ekind (New_Lit, E_Enumeration_Literal);
3234 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
3235 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
3236 Set_Enumeration_Rep_Expr (New_Lit, Empty);
3237 Set_Alias (New_Lit, Literal);
3238 Set_Is_Known_Valid (New_Lit, True);
3240 Append (New_Lit, Literals_List);
3241 Next_Literal (Literal);
3242 end loop;
3244 Implicit_Base :=
3245 Make_Defining_Identifier (Sloc (Derived_Type),
3246 New_External_Name (Chars (Derived_Type), 'B'));
3248 -- Indicate the proper nature of the derived type. This must
3249 -- be done before analysis of the literals, to recognize cases
3250 -- when a literal may be hidden by a previous explicit function
3251 -- definition (cf. c83031a).
3253 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
3254 Set_Etype (Derived_Type, Implicit_Base);
3256 Type_Decl :=
3257 Make_Full_Type_Declaration (Loc,
3258 Defining_Identifier => Implicit_Base,
3259 Discriminant_Specifications => No_List,
3260 Type_Definition =>
3261 Make_Enumeration_Type_Definition (Loc, Literals_List));
3263 Mark_Rewrite_Insertion (Type_Decl);
3264 Insert_Before (N, Type_Decl);
3265 Analyze (Type_Decl);
3267 -- After the implicit base is analyzed its Etype needs to be
3268 -- changed to reflect the fact that it is derived from the
3269 -- parent type which was ignored during analysis. We also set
3270 -- the size at this point.
3272 Set_Etype (Implicit_Base, Parent_Type);
3274 Set_Size_Info (Implicit_Base, Parent_Type);
3275 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
3276 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
3278 Set_Has_Non_Standard_Rep
3279 (Implicit_Base, Has_Non_Standard_Rep
3280 (Parent_Type));
3281 Set_Has_Delayed_Freeze (Implicit_Base);
3283 -- Process the subtype indication including a validation check
3284 -- on the constraint, if any. If a constraint is given, its bounds
3285 -- must be implicitly converted to the new type.
3287 if Nkind (Indic) = N_Subtype_Indication then
3289 declare
3290 R : constant Node_Id :=
3291 Range_Expression (Constraint (Indic));
3293 begin
3294 if Nkind (R) = N_Range then
3295 Hi := Build_Scalar_Bound
3296 (High_Bound (R), Parent_Type, Implicit_Base, Loc);
3297 Lo := Build_Scalar_Bound
3298 (Low_Bound (R), Parent_Type, Implicit_Base, Loc);
3300 else
3301 -- Constraint is a Range attribute. Replace with the
3302 -- explicit mention of the bounds of the prefix, which
3303 -- must be a subtype.
3305 Analyze (Prefix (R));
3306 Hi :=
3307 Convert_To (Implicit_Base,
3308 Make_Attribute_Reference (Loc,
3309 Attribute_Name => Name_Last,
3310 Prefix =>
3311 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
3313 Lo :=
3314 Convert_To (Implicit_Base,
3315 Make_Attribute_Reference (Loc,
3316 Attribute_Name => Name_First,
3317 Prefix =>
3318 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
3319 end if;
3321 end;
3323 else
3324 Hi :=
3325 Build_Scalar_Bound
3326 (Type_High_Bound (Parent_Type),
3327 Parent_Type, Implicit_Base, Loc);
3328 Lo :=
3329 Build_Scalar_Bound
3330 (Type_Low_Bound (Parent_Type),
3331 Parent_Type, Implicit_Base, Loc);
3332 end if;
3334 Rang_Expr :=
3335 Make_Range (Loc,
3336 Low_Bound => Lo,
3337 High_Bound => Hi);
3339 -- If we constructed a default range for the case where no range
3340 -- was given, then the expressions in the range must not freeze
3341 -- since they do not correspond to expressions in the source.
3343 if Nkind (Indic) /= N_Subtype_Indication then
3344 Set_Must_Not_Freeze (Lo);
3345 Set_Must_Not_Freeze (Hi);
3346 Set_Must_Not_Freeze (Rang_Expr);
3347 end if;
3349 Rewrite (N,
3350 Make_Subtype_Declaration (Loc,
3351 Defining_Identifier => Derived_Type,
3352 Subtype_Indication =>
3353 Make_Subtype_Indication (Loc,
3354 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
3355 Constraint =>
3356 Make_Range_Constraint (Loc,
3357 Range_Expression => Rang_Expr))));
3359 Analyze (N);
3361 -- If pragma Discard_Names applies on the first subtype
3362 -- of the parent type, then it must be applied on this
3363 -- subtype as well.
3365 if Einfo.Discard_Names (First_Subtype (Parent_Type)) then
3366 Set_Discard_Names (Derived_Type);
3367 end if;
3369 -- Apply a range check. Since this range expression doesn't
3370 -- have an Etype, we have to specifically pass the Source_Typ
3371 -- parameter. Is this right???
3373 if Nkind (Indic) = N_Subtype_Indication then
3374 Apply_Range_Check (Range_Expression (Constraint (Indic)),
3375 Parent_Type,
3376 Source_Typ => Entity (Subtype_Mark (Indic)));
3377 end if;
3378 end if;
3380 end Build_Derived_Enumeration_Type;
3382 --------------------------------
3383 -- Build_Derived_Numeric_Type --
3384 --------------------------------
3386 procedure Build_Derived_Numeric_Type
3387 (N : Node_Id;
3388 Parent_Type : Entity_Id;
3389 Derived_Type : Entity_Id)
3391 Loc : constant Source_Ptr := Sloc (N);
3392 Tdef : constant Node_Id := Type_Definition (N);
3393 Indic : constant Node_Id := Subtype_Indication (Tdef);
3394 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
3395 No_Constraint : constant Boolean := Nkind (Indic) /=
3396 N_Subtype_Indication;
3397 Implicit_Base : Entity_Id;
3399 Lo : Node_Id;
3400 Hi : Node_Id;
3401 T : Entity_Id;
3403 begin
3404 -- Process the subtype indication including a validation check on
3405 -- the constraint if any.
3407 T := Process_Subtype (Indic, N);
3409 -- Introduce an implicit base type for the derived type even if
3410 -- there is no constraint attached to it, since this seems closer
3411 -- to the Ada semantics.
3413 Implicit_Base :=
3414 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
3416 Set_Etype (Implicit_Base, Parent_Base);
3417 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
3418 Set_Size_Info (Implicit_Base, Parent_Base);
3419 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
3420 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
3421 Set_Parent (Implicit_Base, Parent (Derived_Type));
3423 if Is_Discrete_Or_Fixed_Point_Type (Parent_Base) then
3424 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
3425 end if;
3427 Set_Has_Delayed_Freeze (Implicit_Base);
3429 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
3430 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
3432 Set_Scalar_Range (Implicit_Base,
3433 Make_Range (Loc,
3434 Low_Bound => Lo,
3435 High_Bound => Hi));
3437 if Has_Infinities (Parent_Base) then
3438 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
3439 end if;
3441 -- The Derived_Type, which is the entity of the declaration, is
3442 -- a subtype of the implicit base. Its Ekind is a subtype, even
3443 -- in the absence of an explicit constraint.
3445 Set_Etype (Derived_Type, Implicit_Base);
3447 -- If we did not have a constraint, then the Ekind is set from the
3448 -- parent type (otherwise Process_Subtype has set the bounds)
3450 if No_Constraint then
3451 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
3452 end if;
3454 -- If we did not have a range constraint, then set the range
3455 -- from the parent type. Otherwise, the call to Process_Subtype
3456 -- has set the bounds.
3458 if No_Constraint
3459 or else not Has_Range_Constraint (Indic)
3460 then
3461 Set_Scalar_Range (Derived_Type,
3462 Make_Range (Loc,
3463 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
3464 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
3465 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
3467 if Has_Infinities (Parent_Type) then
3468 Set_Includes_Infinities (Scalar_Range (Derived_Type));
3469 end if;
3470 end if;
3472 -- Set remaining type-specific fields, depending on numeric type
3474 if Is_Modular_Integer_Type (Parent_Type) then
3475 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
3477 Set_Non_Binary_Modulus
3478 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
3480 elsif Is_Floating_Point_Type (Parent_Type) then
3482 -- Digits of base type is always copied from the digits value of
3483 -- the parent base type, but the digits of the derived type will
3484 -- already have been set if there was a constraint present.
3486 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
3487 Set_Vax_Float (Implicit_Base, Vax_Float (Parent_Base));
3489 if No_Constraint then
3490 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
3491 end if;
3493 elsif Is_Fixed_Point_Type (Parent_Type) then
3495 -- Small of base type and derived type are always copied from
3496 -- the parent base type, since smalls never change. The delta
3497 -- of the base type is also copied from the parent base type.
3498 -- However the delta of the derived type will have been set
3499 -- already if a constraint was present.
3501 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
3502 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
3503 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
3505 if No_Constraint then
3506 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
3507 end if;
3509 -- The scale and machine radix in the decimal case are always
3510 -- copied from the parent base type.
3512 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
3513 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
3514 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
3516 Set_Machine_Radix_10
3517 (Derived_Type, Machine_Radix_10 (Parent_Base));
3518 Set_Machine_Radix_10
3519 (Implicit_Base, Machine_Radix_10 (Parent_Base));
3521 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
3523 if No_Constraint then
3524 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
3526 else
3527 -- the analysis of the subtype_indication sets the
3528 -- digits value of the derived type.
3530 null;
3531 end if;
3532 end if;
3533 end if;
3535 -- The type of the bounds is that of the parent type, and they
3536 -- must be converted to the derived type.
3538 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
3540 -- The implicit_base should be frozen when the derived type is frozen,
3541 -- but note that it is used in the conversions of the bounds. For
3542 -- fixed types we delay the determination of the bounds until the proper
3543 -- freezing point. For other numeric types this is rejected by GCC, for
3544 -- reasons that are currently unclear (???), so we choose to freeze the
3545 -- implicit base now. In the case of integers and floating point types
3546 -- this is harmless because subsequent representation clauses cannot
3547 -- affect anything, but it is still baffling that we cannot use the
3548 -- same mechanism for all derived numeric types.
3550 if Is_Fixed_Point_Type (Parent_Type) then
3551 Conditional_Delay (Implicit_Base, Parent_Type);
3552 else
3553 Freeze_Before (N, Implicit_Base);
3554 end if;
3556 end Build_Derived_Numeric_Type;
3558 --------------------------------
3559 -- Build_Derived_Private_Type --
3560 --------------------------------
3562 procedure Build_Derived_Private_Type
3563 (N : Node_Id;
3564 Parent_Type : Entity_Id;
3565 Derived_Type : Entity_Id;
3566 Is_Completion : Boolean;
3567 Derive_Subps : Boolean := True)
3569 Der_Base : Entity_Id;
3570 Discr : Entity_Id;
3571 Full_Decl : Node_Id := Empty;
3572 Full_Der : Entity_Id;
3573 Full_P : Entity_Id;
3574 Last_Discr : Entity_Id;
3575 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
3576 Swapped : Boolean := False;
3578 procedure Copy_And_Build;
3579 -- Copy derived type declaration, replace parent with its full view,
3580 -- and analyze new declaration.
3582 procedure Copy_And_Build is
3583 Full_N : Node_Id;
3585 begin
3586 if Ekind (Parent_Type) in Record_Kind
3587 or else (Ekind (Parent_Type) in Enumeration_Kind
3588 and then Root_Type (Parent_Type) /= Standard_Character
3589 and then Root_Type (Parent_Type) /= Standard_Wide_Character
3590 and then not Is_Generic_Type (Root_Type (Parent_Type)))
3591 then
3592 Full_N := New_Copy_Tree (N);
3593 Insert_After (N, Full_N);
3594 Build_Derived_Type (
3595 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
3597 else
3598 Build_Derived_Type (
3599 N, Parent_Type, Full_Der, True, Derive_Subps => False);
3600 end if;
3601 end Copy_And_Build;
3603 -- Start of processing for Build_Derived_Private_Type
3605 begin
3606 if Is_Tagged_Type (Parent_Type) then
3607 Build_Derived_Record_Type
3608 (N, Parent_Type, Derived_Type, Derive_Subps);
3609 return;
3611 elsif Has_Discriminants (Parent_Type) then
3613 if Present (Full_View (Parent_Type)) then
3614 if not Is_Completion then
3616 -- Copy declaration for subsequent analysis.
3618 Full_Decl := New_Copy_Tree (N);
3619 Full_Der := New_Copy (Derived_Type);
3620 Insert_After (N, Full_Decl);
3622 else
3623 -- If this is a completion, the full view being built is
3624 -- itself private. We build a subtype of the parent with
3625 -- the same constraints as this full view, to convey to the
3626 -- back end the constrained components and the size of this
3627 -- subtype. If the parent is constrained, its full view can
3628 -- serve as the underlying full view of the derived type.
3630 if No (Discriminant_Specifications (N)) then
3632 if Nkind (Subtype_Indication (Type_Definition (N)))
3633 = N_Subtype_Indication
3634 then
3635 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
3637 elsif Is_Constrained (Full_View (Parent_Type)) then
3638 Set_Underlying_Full_View (Derived_Type,
3639 Full_View (Parent_Type));
3640 end if;
3642 else
3643 -- If there are new discriminants, the parent subtype is
3644 -- constrained by them, but it is not clear how to build
3645 -- the underlying_full_view in this case ???
3647 null;
3648 end if;
3649 end if;
3650 end if;
3652 Build_Derived_Record_Type
3653 (N, Parent_Type, Derived_Type, Derive_Subps);
3655 if Present (Full_View (Parent_Type))
3656 and then not Is_Completion
3657 then
3658 if not In_Open_Scopes (Par_Scope)
3659 or else not In_Same_Source_Unit (N, Parent_Type)
3660 then
3661 -- Swap partial and full views temporarily
3663 Install_Private_Declarations (Par_Scope);
3664 Install_Visible_Declarations (Par_Scope);
3665 Swapped := True;
3666 end if;
3668 -- Subprograms have been derived on the private view,
3669 -- the completion does not derive them anew.
3671 Build_Derived_Record_Type
3672 (Full_Decl, Parent_Type, Full_Der, False);
3674 if Swapped then
3675 Uninstall_Declarations (Par_Scope);
3677 if In_Open_Scopes (Par_Scope) then
3678 Install_Visible_Declarations (Par_Scope);
3679 end if;
3680 end if;
3682 Der_Base := Base_Type (Derived_Type);
3683 Set_Full_View (Derived_Type, Full_Der);
3684 Set_Full_View (Der_Base, Base_Type (Full_Der));
3686 -- Copy the discriminant list from full view to
3687 -- the partial views (base type and its subtype).
3688 -- Gigi requires that the partial and full views
3689 -- have the same discriminants.
3690 -- ??? Note that since the partial view is pointing
3691 -- to discriminants in the full view, their scope
3692 -- will be that of the full view. This might
3693 -- cause some front end problems and need
3694 -- adustment?
3696 Discr := First_Discriminant (Base_Type (Full_Der));
3697 Set_First_Entity (Der_Base, Discr);
3699 loop
3700 Last_Discr := Discr;
3701 Next_Discriminant (Discr);
3702 exit when No (Discr);
3703 end loop;
3705 Set_Last_Entity (Der_Base, Last_Discr);
3707 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
3708 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
3710 else
3711 -- If this is a completion, the derived type stays private
3712 -- and there is no need to create a further full view, except
3713 -- in the unusual case when the derivation is nested within a
3714 -- child unit, see below.
3716 null;
3717 end if;
3719 elsif Present (Full_View (Parent_Type))
3720 and then Has_Discriminants (Full_View (Parent_Type))
3721 then
3722 if Has_Unknown_Discriminants (Parent_Type)
3723 and then Nkind (Subtype_Indication (Type_Definition (N)))
3724 = N_Subtype_Indication
3725 then
3726 Error_Msg_N
3727 ("cannot constrain type with unknown discriminants",
3728 Subtype_Indication (Type_Definition (N)));
3729 return;
3730 end if;
3732 -- Inherit the discriminants of the full view, but
3733 -- keep the proper parent type.
3735 -- ??? this looks wrong, we are replacing (and thus,
3736 -- erasing) the partial view!
3738 -- In any case, the primitive operations are inherited from
3739 -- the parent type, not from the internal full view.
3741 Build_Derived_Record_Type
3742 (N, Full_View (Parent_Type), Derived_Type,
3743 Derive_Subps => False);
3744 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
3746 if Derive_Subps then
3747 Derive_Subprograms (Parent_Type, Derived_Type);
3748 end if;
3750 else
3752 -- Untagged type, No discriminants on either view.
3754 if Nkind (Subtype_Indication (Type_Definition (N)))
3755 = N_Subtype_Indication
3756 then
3757 Error_Msg_N
3758 ("illegal constraint on type without discriminants", N);
3759 end if;
3761 if Present (Discriminant_Specifications (N))
3762 and then Present (Full_View (Parent_Type))
3763 and then not Is_Tagged_Type (Full_View (Parent_Type))
3764 then
3765 Error_Msg_N
3766 ("cannot add discriminants to untagged type", N);
3767 end if;
3769 Set_Girder_Constraint (Derived_Type, No_Elist);
3770 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
3771 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
3772 Set_Has_Controlled_Component (Derived_Type,
3773 Has_Controlled_Component (Parent_Type));
3775 -- Direct controlled types do not inherit the Finalize_Storage_Only
3776 -- flag.
3778 if not Is_Controlled (Parent_Type) then
3779 Set_Finalize_Storage_Only (Derived_Type,
3780 Finalize_Storage_Only (Parent_Type));
3781 end if;
3783 -- Construct the implicit full view by deriving from full
3784 -- view of the parent type. In order to get proper visiblity,
3785 -- we install the parent scope and its declarations.
3787 -- ??? if the parent is untagged private and its
3788 -- completion is tagged, this mechanism will not
3789 -- work because we cannot derive from the tagged
3790 -- full view unless we have an extension
3792 if Present (Full_View (Parent_Type))
3793 and then not Is_Tagged_Type (Full_View (Parent_Type))
3794 and then not Is_Completion
3795 then
3796 Full_Der := Make_Defining_Identifier (Sloc (Derived_Type),
3797 Chars (Derived_Type));
3798 Set_Is_Itype (Full_Der);
3799 Set_Has_Private_Declaration (Full_Der);
3800 Set_Has_Private_Declaration (Derived_Type);
3801 Set_Associated_Node_For_Itype (Full_Der, N);
3802 Set_Parent (Full_Der, Parent (Derived_Type));
3803 Set_Full_View (Derived_Type, Full_Der);
3805 if not In_Open_Scopes (Par_Scope) then
3806 Install_Private_Declarations (Par_Scope);
3807 Install_Visible_Declarations (Par_Scope);
3808 Copy_And_Build;
3809 Uninstall_Declarations (Par_Scope);
3811 -- If parent scope is open and in another unit, and
3812 -- parent has a completion, then the derivation is taking
3813 -- place in the visible part of a child unit. In that
3814 -- case retrieve the full view of the parent momentarily.
3816 elsif not In_Same_Source_Unit (N, Parent_Type) then
3817 Full_P := Full_View (Parent_Type);
3818 Exchange_Declarations (Parent_Type);
3819 Copy_And_Build;
3820 Exchange_Declarations (Full_P);
3822 -- Otherwise it is a local derivation.
3824 else
3825 Copy_And_Build;
3826 end if;
3828 Set_Scope (Full_Der, Current_Scope);
3829 Set_Is_First_Subtype (Full_Der,
3830 Is_First_Subtype (Derived_Type));
3831 Set_Has_Size_Clause (Full_Der, False);
3832 Set_Has_Alignment_Clause (Full_Der, False);
3833 Set_Next_Entity (Full_Der, Empty);
3834 Set_Has_Delayed_Freeze (Full_Der);
3835 Set_Is_Frozen (Full_Der, False);
3836 Set_Freeze_Node (Full_Der, Empty);
3837 Set_Depends_On_Private (Full_Der,
3838 Has_Private_Component (Full_Der));
3839 Set_Public_Status (Full_Der);
3840 end if;
3841 end if;
3843 Set_Has_Unknown_Discriminants (Derived_Type,
3844 Has_Unknown_Discriminants (Parent_Type));
3846 if Is_Private_Type (Derived_Type) then
3847 Set_Private_Dependents (Derived_Type, New_Elmt_List);
3848 end if;
3850 if Is_Private_Type (Parent_Type)
3851 and then Base_Type (Parent_Type) = Parent_Type
3852 and then In_Open_Scopes (Scope (Parent_Type))
3853 then
3854 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
3856 if Is_Child_Unit (Scope (Current_Scope))
3857 and then Is_Completion
3858 and then In_Private_Part (Current_Scope)
3859 and then Scope (Parent_Type) /= Current_Scope
3860 then
3861 -- This is the unusual case where a type completed by a private
3862 -- derivation occurs within a package nested in a child unit,
3863 -- and the parent is declared in an ancestor. In this case, the
3864 -- full view of the parent type will become visible in the body
3865 -- of the enclosing child, and only then will the current type
3866 -- be possibly non-private. We build a underlying full view that
3867 -- will be installed when the enclosing child body is compiled.
3869 declare
3870 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
3872 begin
3873 Full_Der :=
3874 Make_Defining_Identifier (Sloc (Derived_Type),
3875 Chars (Derived_Type));
3876 Set_Is_Itype (Full_Der);
3877 Set_Itype (IR, Full_Der);
3878 Insert_After (N, IR);
3880 -- The full view will be used to swap entities on entry/exit
3881 -- to the body, and must appear in the entity list for the
3882 -- package.
3884 Append_Entity (Full_Der, Scope (Derived_Type));
3885 Set_Has_Private_Declaration (Full_Der);
3886 Set_Has_Private_Declaration (Derived_Type);
3887 Set_Associated_Node_For_Itype (Full_Der, N);
3888 Set_Parent (Full_Der, Parent (Derived_Type));
3889 Full_P := Full_View (Parent_Type);
3890 Exchange_Declarations (Parent_Type);
3891 Copy_And_Build;
3892 Exchange_Declarations (Full_P);
3893 Set_Underlying_Full_View (Derived_Type, Full_Der);
3894 end;
3895 end if;
3896 end if;
3897 end Build_Derived_Private_Type;
3899 -------------------------------
3900 -- Build_Derived_Record_Type --
3901 -------------------------------
3903 -- 1. INTRODUCTION.
3905 -- Ideally we would like to use the same model of type derivation for
3906 -- tagged and untagged record types. Unfortunately this is not quite
3907 -- possible because the semantics of representation clauses is different
3908 -- for tagged and untagged records under inheritance. Consider the
3909 -- following:
3911 -- type R (...) is [tagged] record ... end record;
3912 -- type T (...) is new R (...) [with ...];
3914 -- The representation clauses of T can specify a completely different
3915 -- record layout from R's. Hence a same component can be placed in two very
3916 -- different positions in objects of type T and R. If R and T are tagged
3917 -- types, representation clauses for T can only specify the layout of non
3918 -- inherited components, thus components that are common in R and T have
3919 -- the same position in objects of type R or T.
3921 -- This has two implications. The first is that the entire tree for R's
3922 -- declaration needs to be copied for T in the untagged case, so that
3923 -- T can be viewd as a record type of its own with its own derivation
3924 -- clauses. The second implication is the way we handle discriminants.
3925 -- Specifically, in the untagged case we need a way to communicate to Gigi
3926 -- what are the real discriminants in the record, while for the semantics
3927 -- we need to consider those introduced by the user to rename the
3928 -- discriminants in the parent type. This is handled by introducing the
3929 -- notion of girder discriminants. See below for more.
3931 -- Fortunately the way regular components are inherited can be handled in
3932 -- the same way in tagged and untagged types.
3934 -- To complicate things a bit more the private view of a private extension
3935 -- cannot be handled in the same way as the full view (for one thing the
3936 -- semantic rules are somewhat different). We will explain what differs
3937 -- below.
3939 -- 2. DISCRIMINANTS UNDER INHERITANCE.
3941 -- The semantic rules governing the discriminants of derived types are
3942 -- quite subtle.
3944 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
3945 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
3947 -- If parent type has discriminants, then the discriminants that are
3948 -- declared in the derived type are [3.4 (11)]:
3950 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
3951 -- there is one;
3953 -- o Otherwise, each discriminant of the parent type (implicitly
3954 -- declared in the same order with the same specifications). In this
3955 -- case, the discriminants are said to be "inherited", or if unknown in
3956 -- the parent are also unknown in the derived type.
3958 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
3960 -- o The parent subtype shall be constrained;
3962 -- o If the parent type is not a tagged type, then each discriminant of
3963 -- the derived type shall be used in the constraint defining a parent
3964 -- subtype [Implementation note: this ensures that the new discriminant
3965 -- can share storage with an existing discriminant.].
3967 -- For the derived type each discriminant of the parent type is either
3968 -- inherited, constrained to equal some new discriminant of the derived
3969 -- type, or constrained to the value of an expression.
3971 -- When inherited or constrained to equal some new discriminant, the
3972 -- parent discriminant and the discriminant of the derived type are said
3973 -- to "correspond".
3975 -- If a discriminant of the parent type is constrained to a specific value
3976 -- in the derived type definition, then the discriminant is said to be
3977 -- "specified" by that derived type definition.
3979 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES.
3981 -- We have spoken about girder discriminants in the point 1 (introduction)
3982 -- above. There are two sort of girder discriminants: implicit and
3983 -- explicit. As long as the derived type inherits the same discriminants as
3984 -- the root record type, girder discriminants are the same as regular
3985 -- discriminants, and are said to be implicit. However, if any discriminant
3986 -- in the root type was renamed in the derived type, then the derived
3987 -- type will contain explicit girder discriminants. Explicit girder
3988 -- discriminants are discriminants in addition to the semantically visible
3989 -- discriminants defined for the derived type. Girder discriminants are
3990 -- used by Gigi to figure out what are the physical discriminants in
3991 -- objects of the derived type (see precise definition in einfo.ads).
3992 -- As an example, consider the following:
3994 -- type R (D1, D2, D3 : Int) is record ... end record;
3995 -- type T1 is new R;
3996 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
3997 -- type T3 is new T2;
3998 -- type T4 (Y : Int) is new T3 (Y, 99);
4000 -- The following table summarizes the discriminants and girder
4001 -- discriminants in R and T1 through T4.
4003 -- Type Discrim Girder Discrim Comment
4004 -- R (D1, D2, D3) (D1, D2, D3) Gider discrims are implicit in R
4005 -- T1 (D1, D2, D3) (D1, D2, D3) Gider discrims are implicit in T1
4006 -- T2 (X1, X2) (D1, D2, D3) Gider discrims are EXPLICIT in T2
4007 -- T3 (X1, X2) (D1, D2, D3) Gider discrims are EXPLICIT in T3
4008 -- T4 (Y) (D1, D2, D3) Gider discrims are EXPLICIT in T4
4010 -- Field Corresponding_Discriminant (abbreviated CD below) allows to find
4011 -- the corresponding discriminant in the parent type, while
4012 -- Original_Record_Component (abbreviated ORC below), the actual physical
4013 -- component that is renamed. Finally the field Is_Completely_Hidden
4014 -- (abbreaviated ICH below) is set for all explicit girder discriminants
4015 -- (see einfo.ads for more info). For the above example this gives:
4017 -- Discrim CD ORC ICH
4018 -- ^^^^^^^ ^^ ^^^ ^^^
4019 -- D1 in R empty itself no
4020 -- D2 in R empty itself no
4021 -- D3 in R empty itself no
4023 -- D1 in T1 D1 in R itself no
4024 -- D2 in T1 D2 in R itself no
4025 -- D3 in T1 D3 in R itself no
4027 -- X1 in T2 D3 in T1 D3 in T2 no
4028 -- X2 in T2 D1 in T1 D1 in T2 no
4029 -- D1 in T2 empty itself yes
4030 -- D2 in T2 empty itself yes
4031 -- D3 in T2 empty itself yes
4033 -- X1 in T3 X1 in T2 D3 in T3 no
4034 -- X2 in T3 X2 in T2 D1 in T3 no
4035 -- D1 in T3 empty itself yes
4036 -- D2 in T3 empty itself yes
4037 -- D3 in T3 empty itself yes
4039 -- Y in T4 X1 in T3 D3 in T3 no
4040 -- D1 in T3 empty itself yes
4041 -- D2 in T3 empty itself yes
4042 -- D3 in T3 empty itself yes
4044 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES.
4046 -- Type derivation for tagged types is fairly straightforward. if no
4047 -- discriminants are specified by the derived type, these are inherited
4048 -- from the parent. No explicit girder discriminants are ever necessary.
4049 -- The only manipulation that is done to the tree is that of adding a
4050 -- _parent field with parent type and constrained to the same constraint
4051 -- specified for the parent in the derived type definition. For instance:
4053 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
4054 -- type T1 is new R with null record;
4055 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
4057 -- are changed into :
4059 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
4060 -- _parent : R (D1, D2, D3);
4061 -- end record;
4063 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
4064 -- _parent : T1 (X2, 88, X1);
4065 -- end record;
4067 -- The discriminants actually present in R, T1 and T2 as well as their CD,
4068 -- ORC and ICH fields are:
4070 -- Discrim CD ORC ICH
4071 -- ^^^^^^^ ^^ ^^^ ^^^
4072 -- D1 in R empty itself no
4073 -- D2 in R empty itself no
4074 -- D3 in R empty itself no
4076 -- D1 in T1 D1 in R D1 in R no
4077 -- D2 in T1 D2 in R D2 in R no
4078 -- D3 in T1 D3 in R D3 in R no
4080 -- X1 in T2 D3 in T1 D3 in R no
4081 -- X2 in T2 D1 in T1 D1 in R no
4083 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS.
4085 -- Regardless of whether we dealing with a tagged or untagged type
4086 -- we will transform all derived type declarations of the form
4088 -- type T is new R (...) [with ...];
4089 -- or
4090 -- subtype S is R (...);
4091 -- type T is new S [with ...];
4092 -- into
4093 -- type BT is new R [with ...];
4094 -- subtype T is BT (...);
4096 -- That is, the base derived type is constrained only if it has no
4097 -- discriminants. The reason for doing this is that GNAT's semantic model
4098 -- assumes that a base type with discriminants is unconstrained.
4100 -- Note that, strictly speaking, the above transformation is not always
4101 -- correct. Consider for instance the following exercpt from ACVC b34011a:
4103 -- procedure B34011A is
4104 -- type REC (D : integer := 0) is record
4105 -- I : Integer;
4106 -- end record;
4108 -- package P is
4109 -- type T6 is new Rec;
4110 -- function F return T6;
4111 -- end P;
4113 -- use P;
4114 -- package Q6 is
4115 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
4116 -- end Q6;
4118 -- The definition of Q6.U is illegal. However transforming Q6.U into
4120 -- type BaseU is new T6;
4121 -- subtype U is BaseU (Q6.F.I)
4123 -- turns U into a legal subtype, which is incorrect. To avoid this problem
4124 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
4125 -- the transformation described above.
4127 -- There is another instance where the above transformation is incorrect.
4128 -- Consider:
4130 -- package Pack is
4131 -- type Base (D : Integer) is tagged null record;
4132 -- procedure P (X : Base);
4134 -- type Der is new Base (2) with null record;
4135 -- procedure P (X : Der);
4136 -- end Pack;
4138 -- Then the above transformation turns this into
4140 -- type Der_Base is new Base with null record;
4141 -- -- procedure P (X : Base) is implicitly inherited here
4142 -- -- as procedure P (X : Der_Base).
4144 -- subtype Der is Der_Base (2);
4145 -- procedure P (X : Der);
4146 -- -- The overriding of P (X : Der_Base) is illegal since we
4147 -- -- have a parameter conformance problem.
4149 -- To get around this problem, after having semantically processed Der_Base
4150 -- and the rewritten subtype declaration for Der, we copy Der_Base field
4151 -- Discriminant_Constraint from Der so that when parameter conformance is
4152 -- checked when P is overridden, no sematic errors are flagged.
4154 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS.
4156 -- Regardless of the fact that we dealing with a tagged or untagged type
4157 -- we will transform all derived type declarations of the form
4159 -- type R (D1, .., Dn : ...) is [tagged] record ...;
4160 -- type T is new R [with ...];
4161 -- into
4162 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
4164 -- The reason for such transformation is that it allows us to implement a
4165 -- very clean form of component inheritance as explained below.
4167 -- Note that this transformation is not achieved by direct tree rewriting
4168 -- and manipulation, but rather by redoing the semantic actions that the
4169 -- above transformation will entail. This is done directly in routine
4170 -- Inherit_Components.
4172 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE.
4174 -- In both tagged and untagged derived types, regular non discriminant
4175 -- components are inherited in the derived type from the parent type. In
4176 -- the absence of discriminants component, inheritance is straightforward
4177 -- as components can simply be copied from the parent.
4178 -- If the parent has discriminants, inheriting components constrained with
4179 -- these discriminants requires caution. Consider the following example:
4181 -- type R (D1, D2 : Positive) is [tagged] record
4182 -- S : String (D1 .. D2);
4183 -- end record;
4185 -- type T1 is new R [with null record];
4186 -- type T2 (X : positive) is new R (1, X) [with null record];
4188 -- As explained in 6. above, T1 is rewritten as
4190 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
4192 -- which makes the treatment for T1 and T2 identical.
4194 -- What we want when inheriting S, is that references to D1 and D2 in R are
4195 -- replaced with references to their correct constraints, ie D1 and D2 in
4196 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
4197 -- with either discriminant references in the derived type or expressions.
4198 -- This replacement is acheived as follows: before inheriting R's
4199 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
4200 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
4201 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
4202 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
4203 -- by String (1 .. X).
4205 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS.
4207 -- We explain here the rules governing private type extensions relevant to
4208 -- type derivation. These rules are explained on the following example:
4210 -- type D [(...)] is new A [(...)] with private; <-- partial view
4211 -- type D [(...)] is new P [(...)] with null record; <-- full view
4213 -- Type A is called the ancestor subtype of the private extension.
4214 -- Type P is the parent type of the full view of the private extension. It
4215 -- must be A or a type derived from A.
4217 -- The rules concerning the discriminants of private type extensions are
4218 -- [7.3(10-13)]:
4220 -- o If a private extension inherits known discriminants from the ancestor
4221 -- subtype, then the full view shall also inherit its discriminants from
4222 -- the ancestor subtype and the parent subtype of the full view shall be
4223 -- constrained if and only if the ancestor subtype is constrained.
4225 -- o If a partial view has unknown discriminants, then the full view may
4226 -- define a definite or an indefinite subtype, with or without
4227 -- discriminants.
4229 -- o If a partial view has neither known nor unknown discriminants, then
4230 -- the full view shall define a definite subtype.
4232 -- o If the ancestor subtype of a private extension has constrained
4233 -- discrimiants, then the parent subtype of the full view shall impose a
4234 -- statically matching constraint on those discriminants.
4236 -- This means that only the following forms of private extensions are
4237 -- allowed:
4239 -- type D is new A with private; <-- partial view
4240 -- type D is new P with null record; <-- full view
4242 -- If A has no discriminants than P has no discriminants, otherwise P must
4243 -- inherit A's discriminants.
4245 -- type D is new A (...) with private; <-- partial view
4246 -- type D is new P (:::) with null record; <-- full view
4248 -- P must inherit A's discriminants and (...) and (:::) must statically
4249 -- match.
4251 -- subtype A is R (...);
4252 -- type D is new A with private; <-- partial view
4253 -- type D is new P with null record; <-- full view
4255 -- P must have inherited R's discriminants and must be derived from A or
4256 -- any of its subtypes.
4258 -- type D (..) is new A with private; <-- partial view
4259 -- type D (..) is new P [(:::)] with null record; <-- full view
4261 -- No specific constraints on P's discriminants or constraint (:::).
4262 -- Note that A can be unconstrained, but the parent subtype P must either
4263 -- be constrained or (:::) must be present.
4265 -- type D (..) is new A [(...)] with private; <-- partial view
4266 -- type D (..) is new P [(:::)] with null record; <-- full view
4268 -- P's constraints on A's discriminants must statically match those
4269 -- imposed by (...).
4271 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS.
4273 -- The full view of a private extension is handled exactly as described
4274 -- above. The model chose for the private view of a private extension
4275 -- is the same for what concerns discriminants (ie they receive the same
4276 -- treatment as in the tagged case). However, the private view of the
4277 -- private extension always inherits the components of the parent base,
4278 -- without replacing any discriminant reference. Strictly speacking this
4279 -- is incorrect. However, Gigi never uses this view to generate code so
4280 -- this is a purely semantic issue. In theory, a set of transformations
4281 -- similar to those given in 5. and 6. above could be applied to private
4282 -- views of private extensions to have the same model of component
4283 -- inheritance as for non private extensions. However, this is not done
4284 -- because it would further complicate private type processing.
4285 -- Semantically speaking, this leaves us in an uncomfortable
4286 -- situation. As an example consider:
4288 -- package Pack is
4289 -- type R (D : integer) is tagged record
4290 -- S : String (1 .. D);
4291 -- end record;
4292 -- procedure P (X : R);
4293 -- type T is new R (1) with private;
4294 -- private
4295 -- type T is new R (1) with null record;
4296 -- end;
4298 -- This is transformed into:
4300 -- package Pack is
4301 -- type R (D : integer) is tagged record
4302 -- S : String (1 .. D);
4303 -- end record;
4304 -- procedure P (X : R);
4305 -- type T is new R (1) with private;
4306 -- private
4307 -- type BaseT is new R with null record;
4308 -- subtype T is BaseT (1);
4309 -- end;
4311 -- (strictly speaking the above is incorrect Ada).
4313 -- From the semantic standpoint the private view of private extension T
4314 -- should be flagged as constrained since one can clearly have
4316 -- Obj : T;
4318 -- in a unit withing Pack. However, when deriving subprograms for the
4319 -- private view of private extension T, T must be seen as unconstrained
4320 -- since T has discriminants (this is a constraint of the current
4321 -- subprogram derivation model). Thus, when processing the private view of
4322 -- a private extension such as T, we first mark T as unconstrained, we
4323 -- process it, we perform program derivation and just before returning from
4324 -- Build_Derived_Record_Type we mark T as constrained.
4325 -- ??? Are there are other unconfortable cases that we will have to
4326 -- deal with.
4328 -- 10. RECORD_TYPE_WITH_PRIVATE complications.
4330 -- Types that are derived from a visible record type and have a private
4331 -- extension present other peculiarities. They behave mostly like private
4332 -- types, but if they have primitive operations defined, these will not
4333 -- have the proper signatures for further inheritance, because other
4334 -- primitive operations will use the implicit base that we define for
4335 -- private derivations below. This affect subprogram inheritance (see
4336 -- Derive_Subprograms for details). We also derive the implicit base from
4337 -- the base type of the full view, so that the implicit base is a record
4338 -- type and not another private type, This avoids infinite loops.
4340 procedure Build_Derived_Record_Type
4341 (N : Node_Id;
4342 Parent_Type : Entity_Id;
4343 Derived_Type : Entity_Id;
4344 Derive_Subps : Boolean := True)
4346 Loc : constant Source_Ptr := Sloc (N);
4347 Parent_Base : Entity_Id;
4349 Type_Def : Node_Id;
4350 Indic : Node_Id;
4352 Discrim : Entity_Id;
4353 Last_Discrim : Entity_Id;
4354 Constrs : Elist_Id;
4355 Discs : Elist_Id := New_Elmt_List;
4356 -- An empty Discs list means that there were no constraints in the
4357 -- subtype indication or that there was an error processing it.
4359 Assoc_List : Elist_Id;
4360 New_Discrs : Elist_Id;
4362 New_Base : Entity_Id;
4363 New_Decl : Node_Id;
4364 New_Indic : Node_Id;
4366 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
4367 Discriminant_Specs : constant Boolean
4368 := Present (Discriminant_Specifications (N));
4369 Private_Extension : constant Boolean
4370 := (Nkind (N) = N_Private_Extension_Declaration);
4372 Constraint_Present : Boolean;
4373 Inherit_Discrims : Boolean := False;
4375 Save_Etype : Entity_Id;
4376 Save_Discr_Constr : Elist_Id;
4377 Save_Next_Entity : Entity_Id;
4379 begin
4380 if Ekind (Parent_Type) = E_Record_Type_With_Private
4381 and then Present (Full_View (Parent_Type))
4382 and then Has_Discriminants (Parent_Type)
4383 then
4384 Parent_Base := Base_Type (Full_View (Parent_Type));
4385 else
4386 Parent_Base := Base_Type (Parent_Type);
4387 end if;
4389 -- Before we start the previously documented transformations, here is
4390 -- a little fix for size and alignment of tagged types. Normally when
4391 -- we derive type D from type P, we copy the size and alignment of P
4392 -- as the default for D, and in the absence of explicit representation
4393 -- clauses for D, the size and alignment are indeed the same as the
4394 -- parent.
4396 -- But this is wrong for tagged types, since fields may be added,
4397 -- and the default size may need to be larger, and the default
4398 -- alignment may need to be larger.
4400 -- We therefore reset the size and alignment fields in the tagged
4401 -- case. Note that the size and alignment will in any case be at
4402 -- least as large as the parent type (since the derived type has
4403 -- a copy of the parent type in the _parent field)
4405 if Is_Tagged then
4406 Init_Size_Align (Derived_Type);
4407 end if;
4409 -- STEP 0a: figure out what kind of derived type declaration we have.
4411 if Private_Extension then
4412 Type_Def := N;
4413 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
4415 else
4416 Type_Def := Type_Definition (N);
4418 -- Ekind (Parent_Base) in not necessarily E_Record_Type since
4419 -- Parent_Base can be a private type or private extension. However,
4420 -- for tagged types with an extension the newly added fields are
4421 -- visible and hence the Derived_Type is always an E_Record_Type.
4422 -- (except that the parent may have its own private fields).
4423 -- For untagged types we preserve the Ekind of the Parent_Base.
4425 if Present (Record_Extension_Part (Type_Def)) then
4426 Set_Ekind (Derived_Type, E_Record_Type);
4427 else
4428 Set_Ekind (Derived_Type, Ekind (Parent_Base));
4429 end if;
4430 end if;
4432 -- Indic can either be an N_Identifier if the subtype indication
4433 -- contains no constraint or an N_Subtype_Indication if the subtype
4434 -- indication has a constraint.
4436 Indic := Subtype_Indication (Type_Def);
4437 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
4439 if Constraint_Present then
4440 if not Has_Discriminants (Parent_Base) then
4441 Error_Msg_N
4442 ("invalid constraint: type has no discriminant",
4443 Constraint (Indic));
4445 Constraint_Present := False;
4446 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
4448 elsif Is_Constrained (Parent_Type) then
4449 Error_Msg_N
4450 ("invalid constraint: parent type is already constrained",
4451 Constraint (Indic));
4453 Constraint_Present := False;
4454 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
4455 end if;
4456 end if;
4458 -- STEP 0b: If needed, apply transformation given in point 5. above.
4460 if not Private_Extension
4461 and then Has_Discriminants (Parent_Type)
4462 and then not Discriminant_Specs
4463 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
4464 then
4465 -- First, we must analyze the constraint (see comment in point 5.).
4467 if Constraint_Present then
4468 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
4470 if Has_Discriminants (Derived_Type)
4471 and then Has_Private_Declaration (Derived_Type)
4472 and then Present (Discriminant_Constraint (Derived_Type))
4473 then
4474 -- Verify that constraints of the full view conform to those
4475 -- given in partial view.
4477 declare
4478 C1, C2 : Elmt_Id;
4480 begin
4481 C1 := First_Elmt (New_Discrs);
4482 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
4484 while Present (C1) and then Present (C2) loop
4485 if not
4486 Fully_Conformant_Expressions (Node (C1), Node (C2))
4487 then
4488 Error_Msg_N (
4489 "constraint not conformant to previous declaration",
4490 Node (C1));
4491 end if;
4492 Next_Elmt (C1);
4493 Next_Elmt (C2);
4494 end loop;
4495 end;
4496 end if;
4497 end if;
4499 -- Insert and analyze the declaration for the unconstrained base type
4501 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
4503 New_Decl :=
4504 Make_Full_Type_Declaration (Loc,
4505 Defining_Identifier => New_Base,
4506 Type_Definition =>
4507 Make_Derived_Type_Definition (Loc,
4508 Abstract_Present => Abstract_Present (Type_Def),
4509 Subtype_Indication =>
4510 New_Occurrence_Of (Parent_Base, Loc),
4511 Record_Extension_Part =>
4512 Relocate_Node (Record_Extension_Part (Type_Def))));
4514 Set_Parent (New_Decl, Parent (N));
4515 Mark_Rewrite_Insertion (New_Decl);
4516 Insert_Before (N, New_Decl);
4518 -- Note that this call passes False for the Derive_Subps
4519 -- parameter because subprogram derivation is deferred until
4520 -- after creating the subtype (see below).
4522 Build_Derived_Type
4523 (New_Decl, Parent_Base, New_Base,
4524 Is_Completion => True, Derive_Subps => False);
4526 -- ??? This needs re-examination to determine whether the
4527 -- above call can simply be replaced by a call to Analyze.
4529 Set_Analyzed (New_Decl);
4531 -- Insert and analyze the declaration for the constrained subtype
4533 if Constraint_Present then
4534 New_Indic :=
4535 Make_Subtype_Indication (Loc,
4536 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
4537 Constraint => Relocate_Node (Constraint (Indic)));
4539 else
4540 declare
4541 Expr : Node_Id;
4542 Constr_List : List_Id := New_List;
4543 C : Elmt_Id;
4545 begin
4546 C := First_Elmt (Discriminant_Constraint (Parent_Type));
4547 while Present (C) loop
4548 Expr := Node (C);
4550 -- It is safe here to call New_Copy_Tree since
4551 -- Force_Evaluation was called on each constraint in
4552 -- Build_Discriminant_Constraints.
4554 Append (New_Copy_Tree (Expr), To => Constr_List);
4556 Next_Elmt (C);
4557 end loop;
4559 New_Indic :=
4560 Make_Subtype_Indication (Loc,
4561 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
4562 Constraint =>
4563 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
4564 end;
4565 end if;
4567 Rewrite (N,
4568 Make_Subtype_Declaration (Loc,
4569 Defining_Identifier => Derived_Type,
4570 Subtype_Indication => New_Indic));
4572 Analyze (N);
4574 -- Derivation of subprograms must be delayed until the
4575 -- full subtype has been established to ensure proper
4576 -- overriding of subprograms inherited by full types.
4577 -- If the derivations occurred as part of the call to
4578 -- Build_Derived_Type above, then the check for type
4579 -- conformance would fail because earlier primitive
4580 -- subprograms could still refer to the full type prior
4581 -- the change to the new subtype and hence wouldn't
4582 -- match the new base type created here.
4584 Derive_Subprograms (Parent_Type, Derived_Type);
4586 -- For tagged types the Discriminant_Constraint of the new base itype
4587 -- is inherited from the first subtype so that no subtype conformance
4588 -- problem arise when the first subtype overrides primitive
4589 -- operations inherited by the implicit base type.
4591 if Is_Tagged then
4592 Set_Discriminant_Constraint
4593 (New_Base, Discriminant_Constraint (Derived_Type));
4594 end if;
4596 return;
4597 end if;
4599 -- If we get here Derived_Type will have no discriminants or it will be
4600 -- a discriminated unconstrained base type.
4602 -- STEP 1a: perform preliminary actions/checks for derived tagged types
4604 if Is_Tagged then
4605 -- The parent type is frozen for non-private extensions (RM 13.14(7))
4607 if not Private_Extension then
4608 Freeze_Before (N, Parent_Type);
4609 end if;
4611 if Type_Access_Level (Derived_Type) /= Type_Access_Level (Parent_Type)
4612 and then not Is_Generic_Type (Derived_Type)
4613 then
4614 if Is_Controlled (Parent_Type) then
4615 Error_Msg_N
4616 ("controlled type must be declared at the library level",
4617 Indic);
4618 else
4619 Error_Msg_N
4620 ("type extension at deeper accessibility level than parent",
4621 Indic);
4622 end if;
4624 else
4625 declare
4626 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
4628 begin
4629 if Present (GB)
4630 and then GB /= Enclosing_Generic_Body (Parent_Base)
4631 then
4632 Error_Msg_N
4633 ("parent type must not be outside generic body",
4634 Indic);
4635 end if;
4636 end;
4637 end if;
4638 end if;
4640 -- STEP 1b : preliminary cleanup of the full view of private types
4642 -- If the type is already marked as having discriminants, then it's the
4643 -- completion of a private type or private extension and we need to
4644 -- retain the discriminants from the partial view if the current
4645 -- declaration has Discriminant_Specifications so that we can verify
4646 -- conformance. However, we must remove any existing components that
4647 -- were inherited from the parent (and attached in Copy_Private_To_Full)
4648 -- because the full type inherits all appropriate components anyway, and
4649 -- we don't want the partial view's components interfering.
4651 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
4652 Discrim := First_Discriminant (Derived_Type);
4653 loop
4654 Last_Discrim := Discrim;
4655 Next_Discriminant (Discrim);
4656 exit when No (Discrim);
4657 end loop;
4659 Set_Last_Entity (Derived_Type, Last_Discrim);
4661 -- In all other cases wipe out the list of inherited components (even
4662 -- inherited discriminants), it will be properly rebuilt here.
4664 else
4665 Set_First_Entity (Derived_Type, Empty);
4666 Set_Last_Entity (Derived_Type, Empty);
4667 end if;
4669 -- STEP 1c: Initialize some flags for the Derived_Type
4671 -- The following flags must be initialized here so that
4672 -- Process_Discriminants can check that discriminants of tagged types
4673 -- do not have a default initial value and that access discriminants
4674 -- are only specified for limited records. For completeness, these
4675 -- flags are also initialized along with all the other flags below.
4677 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
4678 Set_Is_Limited_Record (Derived_Type, Is_Limited_Record (Parent_Type));
4680 -- STEP 2a: process discriminants of derived type if any.
4682 New_Scope (Derived_Type);
4684 if Discriminant_Specs then
4685 Set_Has_Unknown_Discriminants (Derived_Type, False);
4687 -- The following call initializes fields Has_Discriminants and
4688 -- Discriminant_Constraint, unless we are processing the completion
4689 -- of a private type declaration.
4691 Check_Or_Process_Discriminants (N, Derived_Type);
4693 -- For non-tagged types the constraint on the Parent_Type must be
4694 -- present and is used to rename the discriminants.
4696 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
4697 Error_Msg_N ("untagged parent must have discriminants", Indic);
4699 elsif not Is_Tagged and then not Constraint_Present then
4700 Error_Msg_N
4701 ("discriminant constraint needed for derived untagged records",
4702 Indic);
4704 -- Otherwise the parent subtype must be constrained unless we have a
4705 -- private extension.
4707 elsif not Constraint_Present
4708 and then not Private_Extension
4709 and then not Is_Constrained (Parent_Type)
4710 then
4711 Error_Msg_N
4712 ("unconstrained type not allowed in this context", Indic);
4714 elsif Constraint_Present then
4715 -- The following call sets the field Corresponding_Discriminant
4716 -- for the discriminants in the Derived_Type.
4718 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
4720 -- For untagged types all new discriminants must rename
4721 -- discriminants in the parent. For private extensions new
4722 -- discriminants cannot rename old ones (implied by [7.3(13)]).
4724 Discrim := First_Discriminant (Derived_Type);
4726 while Present (Discrim) loop
4727 if not Is_Tagged
4728 and then not Present (Corresponding_Discriminant (Discrim))
4729 then
4730 Error_Msg_N
4731 ("new discriminants must constrain old ones", Discrim);
4733 elsif Private_Extension
4734 and then Present (Corresponding_Discriminant (Discrim))
4735 then
4736 Error_Msg_N
4737 ("Only static constraints allowed for parent"
4738 & " discriminants in the partial view", Indic);
4740 exit;
4741 end if;
4743 -- If a new discriminant is used in the constraint,
4744 -- then its subtype must be statically compatible
4745 -- with the parent discriminant's subtype (3.7(15)).
4747 if Present (Corresponding_Discriminant (Discrim))
4748 and then
4749 not Subtypes_Statically_Compatible
4750 (Etype (Discrim),
4751 Etype (Corresponding_Discriminant (Discrim)))
4752 then
4753 Error_Msg_N
4754 ("subtype must be compatible with parent discriminant",
4755 Discrim);
4756 end if;
4758 Next_Discriminant (Discrim);
4759 end loop;
4760 end if;
4762 -- STEP 2b: No new discriminants, inherit discriminants if any
4764 else
4765 if Private_Extension then
4766 Set_Has_Unknown_Discriminants
4767 (Derived_Type, Has_Unknown_Discriminants (Parent_Type)
4768 or else Unknown_Discriminants_Present (N));
4769 else
4770 Set_Has_Unknown_Discriminants
4771 (Derived_Type, Has_Unknown_Discriminants (Parent_Type));
4772 end if;
4774 if not Has_Unknown_Discriminants (Derived_Type)
4775 and then Has_Discriminants (Parent_Type)
4776 then
4777 Inherit_Discrims := True;
4778 Set_Has_Discriminants
4779 (Derived_Type, True);
4780 Set_Discriminant_Constraint
4781 (Derived_Type, Discriminant_Constraint (Parent_Base));
4782 end if;
4784 -- The following test is true for private types (remember
4785 -- transformation 5. is not applied to those) and in an error
4786 -- situation.
4788 if Constraint_Present then
4789 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
4790 end if;
4792 -- For now mark a new derived type as cosntrained only if it has no
4793 -- discriminants. At the end of Build_Derived_Record_Type we properly
4794 -- set this flag in the case of private extensions. See comments in
4795 -- point 9. just before body of Build_Derived_Record_Type.
4797 Set_Is_Constrained
4798 (Derived_Type,
4799 not (Inherit_Discrims
4800 or else Has_Unknown_Discriminants (Derived_Type)));
4801 end if;
4803 -- STEP 3: initialize fields of derived type.
4805 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
4806 Set_Girder_Constraint (Derived_Type, No_Elist);
4808 -- Fields inherited from the Parent_Type
4810 Set_Discard_Names
4811 (Derived_Type, Einfo.Discard_Names (Parent_Type));
4812 Set_Has_Specified_Layout
4813 (Derived_Type, Has_Specified_Layout (Parent_Type));
4814 Set_Is_Limited_Composite
4815 (Derived_Type, Is_Limited_Composite (Parent_Type));
4816 Set_Is_Limited_Record
4817 (Derived_Type, Is_Limited_Record (Parent_Type));
4818 Set_Is_Private_Composite
4819 (Derived_Type, Is_Private_Composite (Parent_Type));
4821 -- Fields inherited from the Parent_Base
4823 Set_Has_Controlled_Component
4824 (Derived_Type, Has_Controlled_Component (Parent_Base));
4825 Set_Has_Non_Standard_Rep
4826 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
4827 Set_Has_Primitive_Operations
4828 (Derived_Type, Has_Primitive_Operations (Parent_Base));
4830 -- Direct controlled types do not inherit the Finalize_Storage_Only
4831 -- flag.
4833 if not Is_Controlled (Parent_Type) then
4834 Set_Finalize_Storage_Only (Derived_Type,
4835 Finalize_Storage_Only (Parent_Type));
4836 end if;
4838 -- Set fields for private derived types.
4840 if Is_Private_Type (Derived_Type) then
4841 Set_Depends_On_Private (Derived_Type, True);
4842 Set_Private_Dependents (Derived_Type, New_Elmt_List);
4844 -- Inherit fields from non private record types. If this is the
4845 -- completion of a derivation from a private type, the parent itself
4846 -- is private, and the attributes come from its full view, which must
4847 -- be present.
4849 else
4850 if Is_Private_Type (Parent_Base)
4851 and then not Is_Record_Type (Parent_Base)
4852 then
4853 Set_Component_Alignment
4854 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
4855 Set_C_Pass_By_Copy
4856 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
4857 else
4858 Set_Component_Alignment
4859 (Derived_Type, Component_Alignment (Parent_Base));
4861 Set_C_Pass_By_Copy
4862 (Derived_Type, C_Pass_By_Copy (Parent_Base));
4863 end if;
4864 end if;
4866 -- Set fields for tagged types.
4868 if Is_Tagged then
4869 Set_Primitive_Operations (Derived_Type, New_Elmt_List);
4871 -- All tagged types defined in Ada.Finalization are controlled
4873 if Chars (Scope (Derived_Type)) = Name_Finalization
4874 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
4875 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
4876 then
4877 Set_Is_Controlled (Derived_Type);
4878 else
4879 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
4880 end if;
4882 Make_Class_Wide_Type (Derived_Type);
4883 Set_Is_Abstract (Derived_Type, Abstract_Present (Type_Def));
4885 if Has_Discriminants (Derived_Type)
4886 and then Constraint_Present
4887 then
4888 Set_Girder_Constraint
4889 (Derived_Type, Expand_To_Girder_Constraint (Parent_Base, Discs));
4890 end if;
4892 else
4893 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
4894 Set_Has_Non_Standard_Rep
4895 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
4896 end if;
4898 -- STEP 4: Inherit components from the parent base and constrain them.
4899 -- Apply the second transformation described in point 6. above.
4901 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
4902 or else not Has_Discriminants (Parent_Type)
4903 or else not Is_Constrained (Parent_Type)
4904 then
4905 Constrs := Discs;
4906 else
4907 Constrs := Discriminant_Constraint (Parent_Type);
4908 end if;
4910 Assoc_List := Inherit_Components (N,
4911 Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
4913 -- STEP 5a: Copy the parent record declaration for untagged types
4915 if not Is_Tagged then
4917 -- Discriminant_Constraint (Derived_Type) has been properly
4918 -- constructed. Save it and temporarily set it to Empty because we do
4919 -- not want the call to New_Copy_Tree below to mess this list.
4921 if Has_Discriminants (Derived_Type) then
4922 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
4923 Set_Discriminant_Constraint (Derived_Type, No_Elist);
4924 else
4925 Save_Discr_Constr := No_Elist;
4926 end if;
4928 -- Save the Etype field of Derived_Type. It is correctly set now, but
4929 -- the call to New_Copy tree may remap it to point to itself, which
4930 -- is not what we want. Ditto for the Next_Entity field.
4932 Save_Etype := Etype (Derived_Type);
4933 Save_Next_Entity := Next_Entity (Derived_Type);
4935 -- Assoc_List maps all girder discriminants in the Parent_Base to
4936 -- girder discriminants in the Derived_Type. It is fundamental that
4937 -- no types or itypes with discriminants other than the girder
4938 -- discriminants appear in the entities declared inside
4939 -- Derived_Type. Gigi won't like it.
4941 New_Decl :=
4942 New_Copy_Tree
4943 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
4945 -- Restore the fields saved prior to the New_Copy_Tree call
4946 -- and compute the girder constraint.
4948 Set_Etype (Derived_Type, Save_Etype);
4949 Set_Next_Entity (Derived_Type, Save_Next_Entity);
4951 if Has_Discriminants (Derived_Type) then
4952 Set_Discriminant_Constraint
4953 (Derived_Type, Save_Discr_Constr);
4954 Set_Girder_Constraint
4955 (Derived_Type, Expand_To_Girder_Constraint (Parent_Base, Discs));
4956 end if;
4958 -- Insert the new derived type declaration
4960 Rewrite (N, New_Decl);
4962 -- STEP 5b: Complete the processing for record extensions in generics
4964 -- There is no completion for record extensions declared in the
4965 -- parameter part of a generic, so we need to complete processing for
4966 -- these generic record extensions here. The call to
4967 -- Record_Type_Definition will change the Ekind of the components
4968 -- from E_Void to E_Component.
4970 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
4971 Record_Type_Definition (Empty, Derived_Type);
4973 -- STEP 5c: Process the record extension for non private tagged types.
4975 elsif not Private_Extension then
4976 -- Add the _parent field in the derived type.
4978 Expand_Derived_Record (Derived_Type, Type_Def);
4980 -- Analyze the record extension
4982 Record_Type_Definition
4983 (Record_Extension_Part (Type_Def), Derived_Type);
4984 end if;
4986 End_Scope;
4988 if Etype (Derived_Type) = Any_Type then
4989 return;
4990 end if;
4992 -- Set delayed freeze and then derive subprograms, we need to do
4993 -- this in this order so that derived subprograms inherit the
4994 -- derived freeze if necessary.
4996 Set_Has_Delayed_Freeze (Derived_Type);
4997 if Derive_Subps then
4998 Derive_Subprograms (Parent_Type, Derived_Type);
4999 end if;
5001 -- If we have a private extension which defines a constrained derived
5002 -- type mark as constrained here after we have derived subprograms. See
5003 -- comment on point 9. just above the body of Build_Derived_Record_Type.
5005 if Private_Extension and then Inherit_Discrims then
5006 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
5007 Set_Is_Constrained (Derived_Type, True);
5008 Set_Discriminant_Constraint (Derived_Type, Discs);
5010 elsif Is_Constrained (Parent_Type) then
5011 Set_Is_Constrained
5012 (Derived_Type, True);
5013 Set_Discriminant_Constraint
5014 (Derived_Type, Discriminant_Constraint (Parent_Type));
5015 end if;
5016 end if;
5018 end Build_Derived_Record_Type;
5020 ------------------------
5021 -- Build_Derived_Type --
5022 ------------------------
5024 procedure Build_Derived_Type
5025 (N : Node_Id;
5026 Parent_Type : Entity_Id;
5027 Derived_Type : Entity_Id;
5028 Is_Completion : Boolean;
5029 Derive_Subps : Boolean := True)
5031 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5033 begin
5034 -- Set common attributes
5036 Set_Scope (Derived_Type, Current_Scope);
5038 Set_Ekind (Derived_Type, Ekind (Parent_Base));
5039 Set_Etype (Derived_Type, Parent_Base);
5040 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
5042 Set_Size_Info (Derived_Type, Parent_Type);
5043 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5044 Set_Convention (Derived_Type, Convention (Parent_Type));
5045 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
5046 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
5048 case Ekind (Parent_Type) is
5049 when Numeric_Kind =>
5050 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
5052 when Array_Kind =>
5053 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
5055 when E_Record_Type
5056 | E_Record_Subtype
5057 | Class_Wide_Kind =>
5058 Build_Derived_Record_Type
5059 (N, Parent_Type, Derived_Type, Derive_Subps);
5060 return;
5062 when Enumeration_Kind =>
5063 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
5065 when Access_Kind =>
5066 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
5068 when Incomplete_Or_Private_Kind =>
5069 Build_Derived_Private_Type
5070 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
5072 -- For discriminated types, the derivation includes deriving
5073 -- primitive operations. For others it is done below.
5075 if Is_Tagged_Type (Parent_Type)
5076 or else Has_Discriminants (Parent_Type)
5077 or else (Present (Full_View (Parent_Type))
5078 and then Has_Discriminants (Full_View (Parent_Type)))
5079 then
5080 return;
5081 end if;
5083 when Concurrent_Kind =>
5084 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
5086 when others =>
5087 raise Program_Error;
5088 end case;
5090 if Etype (Derived_Type) = Any_Type then
5091 return;
5092 end if;
5094 -- Set delayed freeze and then derive subprograms, we need to do
5095 -- this in this order so that derived subprograms inherit the
5096 -- derived freeze if necessary.
5098 Set_Has_Delayed_Freeze (Derived_Type);
5099 if Derive_Subps then
5100 Derive_Subprograms (Parent_Type, Derived_Type);
5101 end if;
5103 Set_Has_Primitive_Operations
5104 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
5105 end Build_Derived_Type;
5107 -----------------------
5108 -- Build_Discriminal --
5109 -----------------------
5111 procedure Build_Discriminal (Discrim : Entity_Id) is
5112 D_Minal : Entity_Id;
5113 CR_Disc : Entity_Id;
5115 begin
5116 -- A discriminal has the same names as the discriminant.
5118 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
5120 Set_Ekind (D_Minal, E_In_Parameter);
5121 Set_Mechanism (D_Minal, Default_Mechanism);
5122 Set_Etype (D_Minal, Etype (Discrim));
5124 Set_Discriminal (Discrim, D_Minal);
5125 Set_Discriminal_Link (D_Minal, Discrim);
5127 -- For task types, build at once the discriminants of the corresponding
5128 -- record, which are needed if discriminants are used in entry defaults
5129 -- and in family bounds.
5131 if Is_Concurrent_Type (Current_Scope)
5132 or else Is_Limited_Type (Current_Scope)
5133 then
5134 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
5136 Set_Ekind (CR_Disc, E_In_Parameter);
5137 Set_Mechanism (CR_Disc, Default_Mechanism);
5138 Set_Etype (CR_Disc, Etype (Discrim));
5139 Set_CR_Discriminant (Discrim, CR_Disc);
5140 end if;
5141 end Build_Discriminal;
5143 ------------------------------------
5144 -- Build_Discriminant_Constraints --
5145 ------------------------------------
5147 function Build_Discriminant_Constraints
5148 (T : Entity_Id;
5149 Def : Node_Id;
5150 Derived_Def : Boolean := False)
5151 return Elist_Id
5153 C : constant Node_Id := Constraint (Def);
5154 Nb_Discr : constant Nat := Number_Discriminants (T);
5155 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
5156 -- Saves the expression corresponding to a given discriminant in T.
5158 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
5159 -- Return the Position number within array Discr_Expr of a discriminant
5160 -- D within the discriminant list of the discriminated type T.
5162 ------------------
5163 -- Pos_Of_Discr --
5164 ------------------
5166 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
5167 Disc : Entity_Id;
5169 begin
5170 Disc := First_Discriminant (T);
5171 for J in Discr_Expr'Range loop
5172 if Disc = D then
5173 return J;
5174 end if;
5176 Next_Discriminant (Disc);
5177 end loop;
5179 -- Note: Since this function is called on discriminants that are
5180 -- known to belong to the discriminated type, falling through the
5181 -- loop with no match signals an internal compiler error.
5183 raise Program_Error;
5184 end Pos_Of_Discr;
5186 -- Variables local to Build_Discriminant_Constraints
5188 Discr : Entity_Id;
5189 E : Entity_Id;
5190 Elist : Elist_Id := New_Elmt_List;
5192 Constr : Node_Id;
5193 Expr : Node_Id;
5194 Id : Node_Id;
5195 Position : Nat;
5196 Found : Boolean;
5198 Discrim_Present : Boolean := False;
5200 -- Start of processing for Build_Discriminant_Constraints
5202 begin
5203 -- The following loop will process positional associations only.
5204 -- For a positional association, the (single) discriminant is
5205 -- implicitly specified by position, in textual order (RM 3.7.2).
5207 Discr := First_Discriminant (T);
5208 Constr := First (Constraints (C));
5210 for D in Discr_Expr'Range loop
5211 exit when Nkind (Constr) = N_Discriminant_Association;
5213 if No (Constr) then
5214 Error_Msg_N ("too few discriminants given in constraint", C);
5215 return New_Elmt_List;
5217 elsif Nkind (Constr) = N_Range
5218 or else (Nkind (Constr) = N_Attribute_Reference
5219 and then
5220 Attribute_Name (Constr) = Name_Range)
5221 then
5222 Error_Msg_N
5223 ("a range is not a valid discriminant constraint", Constr);
5224 Discr_Expr (D) := Error;
5226 else
5227 Analyze_And_Resolve (Constr, Base_Type (Etype (Discr)));
5228 Discr_Expr (D) := Constr;
5229 end if;
5231 Next_Discriminant (Discr);
5232 Next (Constr);
5233 end loop;
5235 if No (Discr) and then Present (Constr) then
5236 Error_Msg_N ("too many discriminants given in constraint", Constr);
5237 return New_Elmt_List;
5238 end if;
5240 -- Named associations can be given in any order, but if both positional
5241 -- and named associations are used in the same discriminant constraint,
5242 -- then positional associations must occur first, at their normal
5243 -- position. Hence once a named association is used, the rest of the
5244 -- discriminant constraint must use only named associations.
5246 while Present (Constr) loop
5248 -- Positional association forbidden after a named association.
5250 if Nkind (Constr) /= N_Discriminant_Association then
5251 Error_Msg_N ("positional association follows named one", Constr);
5252 return New_Elmt_List;
5254 -- Otherwise it is a named association
5256 else
5257 -- E records the type of the discriminants in the named
5258 -- association. All the discriminants specified in the same name
5259 -- association must have the same type.
5261 E := Empty;
5263 -- Search the list of discriminants in T to see if the simple name
5264 -- given in the constraint matches any of them.
5266 Id := First (Selector_Names (Constr));
5267 while Present (Id) loop
5268 Found := False;
5270 -- If Original_Discriminant is present, we are processing a
5271 -- generic instantiation and this is an instance node. We need
5272 -- to find the name of the corresponding discriminant in the
5273 -- actual record type T and not the name of the discriminant in
5274 -- the generic formal. Example:
5276 -- generic
5277 -- type G (D : int) is private;
5278 -- package P is
5279 -- subtype W is G (D => 1);
5280 -- end package;
5281 -- type Rec (X : int) is record ... end record;
5282 -- package Q is new P (G => Rec);
5284 -- At the point of the instantiation, formal type G is Rec
5285 -- and therefore when reanalyzing "subtype W is G (D => 1);"
5286 -- which really looks like "subtype W is Rec (D => 1);" at
5287 -- the point of instantiation, we want to find the discriminant
5288 -- that corresponds to D in Rec, ie X.
5290 if Present (Original_Discriminant (Id)) then
5291 Discr := Find_Corresponding_Discriminant (Id, T);
5292 Found := True;
5294 else
5295 Discr := First_Discriminant (T);
5296 while Present (Discr) loop
5297 if Chars (Discr) = Chars (Id) then
5298 Found := True;
5299 exit;
5300 end if;
5302 Next_Discriminant (Discr);
5303 end loop;
5305 if not Found then
5306 Error_Msg_N ("& does not match any discriminant", Id);
5307 return New_Elmt_List;
5309 -- The following is only useful for the benefit of generic
5310 -- instances but it does not interfere with other
5311 -- processing for the non-generic case so we do it in all
5312 -- cases (for generics this statement is executed when
5313 -- processing the generic definition, see comment at the
5314 -- begining of this if statement).
5316 else
5317 Set_Original_Discriminant (Id, Discr);
5318 end if;
5319 end if;
5321 Position := Pos_Of_Discr (T, Discr);
5323 if Present (Discr_Expr (Position)) then
5324 Error_Msg_N ("duplicate constraint for discriminant&", Id);
5326 else
5327 -- Each discriminant specified in the same named association
5328 -- must be associated with a separate copy of the
5329 -- corresponding expression.
5331 if Present (Next (Id)) then
5332 Expr := New_Copy_Tree (Expression (Constr));
5333 Set_Parent (Expr, Parent (Expression (Constr)));
5334 else
5335 Expr := Expression (Constr);
5336 end if;
5338 Discr_Expr (Position) := Expr;
5339 Analyze_And_Resolve (Expr, Base_Type (Etype (Discr)));
5340 end if;
5342 -- A discriminant association with more than one discriminant
5343 -- name is only allowed if the named discriminants are all of
5344 -- the same type (RM 3.7.1(8)).
5346 if E = Empty then
5347 E := Base_Type (Etype (Discr));
5349 elsif Base_Type (Etype (Discr)) /= E then
5350 Error_Msg_N
5351 ("all discriminants in an association " &
5352 "must have the same type", Id);
5353 end if;
5355 Next (Id);
5356 end loop;
5357 end if;
5359 Next (Constr);
5360 end loop;
5362 -- A discriminant constraint must provide exactly one value for each
5363 -- discriminant of the type (RM 3.7.1(8)).
5365 for J in Discr_Expr'Range loop
5366 if No (Discr_Expr (J)) then
5367 Error_Msg_N ("too few discriminants given in constraint", C);
5368 return New_Elmt_List;
5369 end if;
5370 end loop;
5372 -- Determine if there are discriminant expressions in the constraint.
5374 for J in Discr_Expr'Range loop
5375 if Denotes_Discriminant (Discr_Expr (J)) then
5376 Discrim_Present := True;
5377 end if;
5378 end loop;
5380 -- Build an element list consisting of the expressions given in the
5381 -- discriminant constraint and apply the appropriate range
5382 -- checks. The list is constructed after resolving any named
5383 -- discriminant associations and therefore the expressions appear in
5384 -- the textual order of the discriminants.
5386 Discr := First_Discriminant (T);
5387 for J in Discr_Expr'Range loop
5388 if Discr_Expr (J) /= Error then
5390 Append_Elmt (Discr_Expr (J), Elist);
5392 -- If any of the discriminant constraints is given by a
5393 -- discriminant and we are in a derived type declaration we
5394 -- have a discriminant renaming. Establish link between new
5395 -- and old discriminant.
5397 if Denotes_Discriminant (Discr_Expr (J)) then
5398 if Derived_Def then
5399 Set_Corresponding_Discriminant
5400 (Entity (Discr_Expr (J)), Discr);
5401 end if;
5403 -- Force the evaluation of non-discriminant expressions.
5404 -- If we have found a discriminant in the constraint 3.4(26)
5405 -- and 3.8(18) demand that no range checks are performed are
5406 -- after evaluation. In all other cases perform a range check.
5408 else
5409 if not Discrim_Present then
5410 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
5411 end if;
5413 Force_Evaluation (Discr_Expr (J));
5414 end if;
5416 -- Check that the designated type of an access discriminant's
5417 -- expression is not a class-wide type unless the discriminant's
5418 -- designated type is also class-wide.
5420 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
5421 and then not Is_Class_Wide_Type
5422 (Designated_Type (Etype (Discr)))
5423 and then Etype (Discr_Expr (J)) /= Any_Type
5424 and then Is_Class_Wide_Type
5425 (Designated_Type (Etype (Discr_Expr (J))))
5426 then
5427 Wrong_Type (Discr_Expr (J), Etype (Discr));
5428 end if;
5429 end if;
5431 Next_Discriminant (Discr);
5432 end loop;
5434 return Elist;
5435 end Build_Discriminant_Constraints;
5437 ---------------------------------
5438 -- Build_Discriminated_Subtype --
5439 ---------------------------------
5441 procedure Build_Discriminated_Subtype
5442 (T : Entity_Id;
5443 Def_Id : Entity_Id;
5444 Elist : Elist_Id;
5445 Related_Nod : Node_Id;
5446 For_Access : Boolean := False)
5448 Has_Discrs : constant Boolean := Has_Discriminants (T);
5449 Constrained : constant Boolean
5450 := (Has_Discrs and then not Is_Empty_Elmt_List (Elist))
5451 or else Is_Constrained (T);
5453 begin
5454 if Ekind (T) = E_Record_Type then
5455 if For_Access then
5456 Set_Ekind (Def_Id, E_Private_Subtype);
5457 Set_Is_For_Access_Subtype (Def_Id, True);
5458 else
5459 Set_Ekind (Def_Id, E_Record_Subtype);
5460 end if;
5462 elsif Ekind (T) = E_Task_Type then
5463 Set_Ekind (Def_Id, E_Task_Subtype);
5465 elsif Ekind (T) = E_Protected_Type then
5466 Set_Ekind (Def_Id, E_Protected_Subtype);
5468 elsif Is_Private_Type (T) then
5469 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
5471 elsif Is_Class_Wide_Type (T) then
5472 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
5474 else
5475 -- Incomplete type. Attach subtype to list of dependents, to be
5476 -- completed with full view of parent type.
5478 Set_Ekind (Def_Id, Ekind (T));
5479 Append_Elmt (Def_Id, Private_Dependents (T));
5480 end if;
5482 Set_Etype (Def_Id, T);
5483 Init_Size_Align (Def_Id);
5484 Set_Has_Discriminants (Def_Id, Has_Discrs);
5485 Set_Is_Constrained (Def_Id, Constrained);
5487 Set_First_Entity (Def_Id, First_Entity (T));
5488 Set_Last_Entity (Def_Id, Last_Entity (T));
5489 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
5491 if Is_Tagged_Type (T) then
5492 Set_Is_Tagged_Type (Def_Id);
5493 Make_Class_Wide_Type (Def_Id);
5494 end if;
5496 Set_Girder_Constraint (Def_Id, No_Elist);
5498 if Has_Discrs then
5499 Set_Discriminant_Constraint (Def_Id, Elist);
5500 Set_Girder_Constraint_From_Discriminant_Constraint (Def_Id);
5501 end if;
5503 if Is_Tagged_Type (T) then
5504 Set_Primitive_Operations (Def_Id, Primitive_Operations (T));
5505 Set_Is_Abstract (Def_Id, Is_Abstract (T));
5506 end if;
5508 -- Subtypes introduced by component declarations do not need to be
5509 -- marked as delayed, and do not get freeze nodes, because the semantics
5510 -- verifies that the parents of the subtypes are frozen before the
5511 -- enclosing record is frozen.
5513 if not Is_Type (Scope (Def_Id)) then
5514 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
5516 if Is_Private_Type (T)
5517 and then Present (Full_View (T))
5518 then
5519 Conditional_Delay (Def_Id, Full_View (T));
5520 else
5521 Conditional_Delay (Def_Id, T);
5522 end if;
5523 end if;
5525 if Is_Record_Type (T) then
5526 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
5528 if Has_Discrs
5529 and then not Is_Empty_Elmt_List (Elist)
5530 and then not For_Access
5531 then
5532 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
5533 elsif not For_Access then
5534 Set_Cloned_Subtype (Def_Id, T);
5535 end if;
5536 end if;
5538 end Build_Discriminated_Subtype;
5540 ------------------------
5541 -- Build_Scalar_Bound --
5542 ------------------------
5544 function Build_Scalar_Bound
5545 (Bound : Node_Id;
5546 Par_T : Entity_Id;
5547 Der_T : Entity_Id;
5548 Loc : Source_Ptr)
5549 return Node_Id
5551 New_Bound : Entity_Id;
5553 begin
5554 -- Note: not clear why this is needed, how can the original bound
5555 -- be unanalyzed at this point? and if it is, what business do we
5556 -- have messing around with it? and why is the base type of the
5557 -- parent type the right type for the resolution. It probably is
5558 -- not! It is OK for the new bound we are creating, but not for
5559 -- the old one??? Still if it never happens, no problem!
5561 Analyze_And_Resolve (Bound, Base_Type (Par_T));
5563 if Nkind (Bound) = N_Integer_Literal
5564 or else Nkind (Bound) = N_Real_Literal
5565 then
5566 New_Bound := New_Copy (Bound);
5567 Set_Etype (New_Bound, Der_T);
5568 Set_Analyzed (New_Bound);
5570 elsif Is_Entity_Name (Bound) then
5571 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
5573 -- The following is almost certainly wrong. What business do we have
5574 -- relocating a node (Bound) that is presumably still attached to
5575 -- the tree elsewhere???
5577 else
5578 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
5579 end if;
5581 Set_Etype (New_Bound, Der_T);
5582 return New_Bound;
5583 end Build_Scalar_Bound;
5585 --------------------------------
5586 -- Build_Underlying_Full_View --
5587 --------------------------------
5589 procedure Build_Underlying_Full_View
5590 (N : Node_Id;
5591 Typ : Entity_Id;
5592 Par : Entity_Id)
5594 Loc : constant Source_Ptr := Sloc (N);
5595 Subt : constant Entity_Id :=
5596 Make_Defining_Identifier
5597 (Loc, New_External_Name (Chars (Typ), 'S'));
5599 Constr : Node_Id;
5600 Indic : Node_Id;
5601 C : Node_Id;
5602 Id : Node_Id;
5604 begin
5605 if Nkind (N) = N_Full_Type_Declaration then
5606 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
5608 -- ??? ??? is this assert right, I assume so otherwise Constr
5609 -- would not be defined below (this used to be an elsif)
5611 else pragma Assert (Nkind (N) = N_Subtype_Declaration);
5612 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
5613 end if;
5615 -- If the constraint has discriminant associations, the discriminant
5616 -- entity is already set, but it denotes a discriminant of the new
5617 -- type, not the original parent, so it must be found anew.
5619 C := First (Constraints (Constr));
5621 while Present (C) loop
5623 if Nkind (C) = N_Discriminant_Association then
5624 Id := First (Selector_Names (C));
5626 while Present (Id) loop
5627 Set_Original_Discriminant (Id, Empty);
5628 Next (Id);
5629 end loop;
5630 end if;
5632 Next (C);
5633 end loop;
5635 Indic := Make_Subtype_Declaration (Loc,
5636 Defining_Identifier => Subt,
5637 Subtype_Indication =>
5638 Make_Subtype_Indication (Loc,
5639 Subtype_Mark => New_Reference_To (Par, Loc),
5640 Constraint => New_Copy_Tree (Constr)));
5642 Insert_Before (N, Indic);
5643 Analyze (Indic);
5644 Set_Underlying_Full_View (Typ, Full_View (Subt));
5645 end Build_Underlying_Full_View;
5647 -------------------------------
5648 -- Check_Abstract_Overriding --
5649 -------------------------------
5651 procedure Check_Abstract_Overriding (T : Entity_Id) is
5652 Op_List : Elist_Id;
5653 Elmt : Elmt_Id;
5654 Subp : Entity_Id;
5655 Type_Def : Node_Id;
5657 begin
5658 Op_List := Primitive_Operations (T);
5660 -- Loop to check primitive operations
5662 Elmt := First_Elmt (Op_List);
5663 while Present (Elmt) loop
5664 Subp := Node (Elmt);
5666 -- Special exception, do not complain about failure to
5667 -- override _Input and _Output, since we always provide
5668 -- automatic overridings for these subprograms.
5670 if Is_Abstract (Subp)
5671 and then Chars (Subp) /= Name_uInput
5672 and then Chars (Subp) /= Name_uOutput
5673 and then not Is_Abstract (T)
5674 then
5675 if Present (Alias (Subp)) then
5676 -- Only perform the check for a derived subprogram when
5677 -- the type has an explicit record extension. This avoids
5678 -- incorrectly flagging abstract subprograms for the case
5679 -- of a type without an extension derived from a formal type
5680 -- with a tagged actual (can occur within a private part).
5682 Type_Def := Type_Definition (Parent (T));
5683 if Nkind (Type_Def) = N_Derived_Type_Definition
5684 and then Present (Record_Extension_Part (Type_Def))
5685 then
5686 Error_Msg_NE
5687 ("type must be declared abstract or & overridden",
5688 T, Subp);
5689 end if;
5690 else
5691 Error_Msg_NE
5692 ("abstract subprogram not allowed for type&",
5693 Subp, T);
5694 Error_Msg_NE
5695 ("nonabstract type has abstract subprogram&",
5696 T, Subp);
5697 end if;
5698 end if;
5700 Next_Elmt (Elmt);
5701 end loop;
5702 end Check_Abstract_Overriding;
5704 ------------------------------------------------
5705 -- Check_Access_Discriminant_Requires_Limited --
5706 ------------------------------------------------
5708 procedure Check_Access_Discriminant_Requires_Limited
5709 (D : Node_Id;
5710 Loc : Node_Id)
5712 begin
5713 -- A discriminant_specification for an access discriminant
5714 -- shall appear only in the declaration for a task or protected
5715 -- type, or for a type with the reserved word 'limited' in
5716 -- its definition or in one of its ancestors. (RM 3.7(10))
5718 if Nkind (Discriminant_Type (D)) = N_Access_Definition
5719 and then not Is_Concurrent_Type (Current_Scope)
5720 and then not Is_Concurrent_Record_Type (Current_Scope)
5721 and then not Is_Limited_Record (Current_Scope)
5722 and then Ekind (Current_Scope) /= E_Limited_Private_Type
5723 then
5724 Error_Msg_N
5725 ("access discriminants allowed only for limited types", Loc);
5726 end if;
5727 end Check_Access_Discriminant_Requires_Limited;
5729 -----------------------------------
5730 -- Check_Aliased_Component_Types --
5731 -----------------------------------
5733 procedure Check_Aliased_Component_Types (T : Entity_Id) is
5734 C : Entity_Id;
5736 begin
5737 -- ??? Also need to check components of record extensions,
5738 -- but not components of protected types (which are always
5739 -- limited).
5741 if not Is_Limited_Type (T) then
5742 if Ekind (T) = E_Record_Type then
5743 C := First_Component (T);
5744 while Present (C) loop
5745 if Is_Aliased (C)
5746 and then Has_Discriminants (Etype (C))
5747 and then not Is_Constrained (Etype (C))
5748 and then not In_Instance
5749 then
5750 Error_Msg_N
5751 ("aliased component must be constrained ('R'M 3.6(11))",
5753 end if;
5755 Next_Component (C);
5756 end loop;
5758 elsif Ekind (T) = E_Array_Type then
5759 if Has_Aliased_Components (T)
5760 and then Has_Discriminants (Component_Type (T))
5761 and then not Is_Constrained (Component_Type (T))
5762 and then not In_Instance
5763 then
5764 Error_Msg_N
5765 ("aliased component type must be constrained ('R'M 3.6(11))",
5767 end if;
5768 end if;
5769 end if;
5770 end Check_Aliased_Component_Types;
5772 ----------------------
5773 -- Check_Completion --
5774 ----------------------
5776 procedure Check_Completion (Body_Id : Node_Id := Empty) is
5777 E : Entity_Id;
5779 procedure Post_Error;
5780 -- Post error message for lack of completion for entity E
5782 procedure Post_Error is
5783 begin
5784 if not Comes_From_Source (E) then
5786 if (Ekind (E) = E_Task_Type
5787 or else Ekind (E) = E_Protected_Type)
5788 then
5789 -- It may be an anonymous protected type created for a
5790 -- single variable. Post error on variable, if present.
5792 declare
5793 Var : Entity_Id;
5795 begin
5796 Var := First_Entity (Current_Scope);
5798 while Present (Var) loop
5799 exit when Etype (Var) = E
5800 and then Comes_From_Source (Var);
5802 Next_Entity (Var);
5803 end loop;
5805 if Present (Var) then
5806 E := Var;
5807 end if;
5808 end;
5809 end if;
5810 end if;
5812 -- If a generated entity has no completion, then either previous
5813 -- semantic errors have disabled the expansion phase, or else
5814 -- we had missing subunits, or else we are compiling without expan-
5815 -- sion, or else something is very wrong.
5817 if not Comes_From_Source (E) then
5818 pragma Assert
5819 (Errors_Detected > 0
5820 or else Subunits_Missing
5821 or else not Expander_Active);
5822 return;
5824 -- Here for source entity
5826 else
5827 -- Here if no body to post the error message, so we post the error
5828 -- on the declaration that has no completion. This is not really
5829 -- the right place to post it, think about this later ???
5831 if No (Body_Id) then
5832 if Is_Type (E) then
5833 Error_Msg_NE
5834 ("missing full declaration for }", Parent (E), E);
5835 else
5836 Error_Msg_NE
5837 ("missing body for &", Parent (E), E);
5838 end if;
5840 -- Package body has no completion for a declaration that appears
5841 -- in the corresponding spec. Post error on the body, with a
5842 -- reference to the non-completed declaration.
5844 else
5845 Error_Msg_Sloc := Sloc (E);
5847 if Is_Type (E) then
5848 Error_Msg_NE
5849 ("missing full declaration for }!", Body_Id, E);
5851 elsif Is_Overloadable (E)
5852 and then Current_Entity_In_Scope (E) /= E
5853 then
5854 -- It may be that the completion is mistyped and appears
5855 -- as a distinct overloading of the entity.
5857 declare
5858 Candidate : Entity_Id := Current_Entity_In_Scope (E);
5859 Decl : Node_Id := Unit_Declaration_Node (Candidate);
5861 begin
5862 if Is_Overloadable (Candidate)
5863 and then Ekind (Candidate) = Ekind (E)
5864 and then Nkind (Decl) = N_Subprogram_Body
5865 and then Acts_As_Spec (Decl)
5866 then
5867 Check_Type_Conformant (Candidate, E);
5869 else
5870 Error_Msg_NE ("missing body for & declared#!",
5871 Body_Id, E);
5872 end if;
5873 end;
5874 else
5875 Error_Msg_NE ("missing body for & declared#!",
5876 Body_Id, E);
5877 end if;
5878 end if;
5879 end if;
5880 end Post_Error;
5882 -- Start processing for Check_Completion
5884 begin
5885 E := First_Entity (Current_Scope);
5886 while Present (E) loop
5887 if Is_Intrinsic_Subprogram (E) then
5888 null;
5890 -- The following situation requires special handling: a child
5891 -- unit that appears in the context clause of the body of its
5892 -- parent:
5894 -- procedure Parent.Child (...);
5896 -- with Parent.Child;
5897 -- package body Parent is
5899 -- Here Parent.Child appears as a local entity, but should not
5900 -- be flagged as requiring completion, because it is a
5901 -- compilation unit.
5903 elsif Ekind (E) = E_Function
5904 or else Ekind (E) = E_Procedure
5905 or else Ekind (E) = E_Generic_Function
5906 or else Ekind (E) = E_Generic_Procedure
5907 then
5908 if not Has_Completion (E)
5909 and then not Is_Abstract (E)
5910 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
5911 N_Compilation_Unit
5912 and then Chars (E) /= Name_uSize
5913 then
5914 Post_Error;
5915 end if;
5917 elsif Is_Entry (E) then
5918 if not Has_Completion (E) and then
5919 (Ekind (Scope (E)) = E_Protected_Object
5920 or else Ekind (Scope (E)) = E_Protected_Type)
5921 then
5922 Post_Error;
5923 end if;
5925 elsif Is_Package (E) then
5926 if Unit_Requires_Body (E) then
5927 if not Has_Completion (E)
5928 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
5929 N_Compilation_Unit
5930 then
5931 Post_Error;
5932 end if;
5934 elsif not Is_Child_Unit (E) then
5935 May_Need_Implicit_Body (E);
5936 end if;
5938 elsif Ekind (E) = E_Incomplete_Type
5939 and then No (Underlying_Type (E))
5940 then
5941 Post_Error;
5943 elsif (Ekind (E) = E_Task_Type or else
5944 Ekind (E) = E_Protected_Type)
5945 and then not Has_Completion (E)
5946 then
5947 Post_Error;
5949 elsif Ekind (E) = E_Constant
5950 and then Ekind (Etype (E)) = E_Task_Type
5951 and then not Has_Completion (Etype (E))
5952 then
5953 Post_Error;
5955 elsif Ekind (E) = E_Protected_Object
5956 and then not Has_Completion (Etype (E))
5957 then
5958 Post_Error;
5960 elsif Ekind (E) = E_Record_Type then
5961 if Is_Tagged_Type (E) then
5962 Check_Abstract_Overriding (E);
5963 end if;
5965 Check_Aliased_Component_Types (E);
5967 elsif Ekind (E) = E_Array_Type then
5968 Check_Aliased_Component_Types (E);
5970 end if;
5972 Next_Entity (E);
5973 end loop;
5974 end Check_Completion;
5976 ----------------------------
5977 -- Check_Delta_Expression --
5978 ----------------------------
5980 procedure Check_Delta_Expression (E : Node_Id) is
5981 begin
5982 if not (Is_Real_Type (Etype (E))) then
5983 Wrong_Type (E, Any_Real);
5985 elsif not Is_OK_Static_Expression (E) then
5986 Error_Msg_N ("non-static expression used for delta value", E);
5988 elsif not UR_Is_Positive (Expr_Value_R (E)) then
5989 Error_Msg_N ("delta expression must be positive", E);
5991 else
5992 return;
5993 end if;
5995 -- If any of above errors occurred, then replace the incorrect
5996 -- expression by the real 0.1, which should prevent further errors.
5998 Rewrite (E,
5999 Make_Real_Literal (Sloc (E), Ureal_Tenth));
6000 Analyze_And_Resolve (E, Standard_Float);
6002 end Check_Delta_Expression;
6004 -----------------------------
6005 -- Check_Digits_Expression --
6006 -----------------------------
6008 procedure Check_Digits_Expression (E : Node_Id) is
6009 begin
6010 if not (Is_Integer_Type (Etype (E))) then
6011 Wrong_Type (E, Any_Integer);
6013 elsif not Is_OK_Static_Expression (E) then
6014 Error_Msg_N ("non-static expression used for digits value", E);
6016 elsif Expr_Value (E) <= 0 then
6017 Error_Msg_N ("digits value must be greater than zero", E);
6019 else
6020 return;
6021 end if;
6023 -- If any of above errors occurred, then replace the incorrect
6024 -- expression by the integer 1, which should prevent further errors.
6026 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
6027 Analyze_And_Resolve (E, Standard_Integer);
6029 end Check_Digits_Expression;
6031 ----------------------
6032 -- Check_Incomplete --
6033 ----------------------
6035 procedure Check_Incomplete (T : Entity_Id) is
6036 begin
6037 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type then
6038 Error_Msg_N ("invalid use of type before its full declaration", T);
6039 end if;
6040 end Check_Incomplete;
6042 --------------------------
6043 -- Check_Initialization --
6044 --------------------------
6046 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
6047 begin
6048 if (Is_Limited_Type (T)
6049 or else Is_Limited_Composite (T))
6050 and then not In_Instance
6051 then
6052 Error_Msg_N
6053 ("cannot initialize entities of limited type", Exp);
6054 end if;
6055 end Check_Initialization;
6057 ------------------------------------
6058 -- Check_Or_Process_Discriminants --
6059 ------------------------------------
6061 -- If an incomplete or private type declaration was already given for
6062 -- the type, the discriminants may have already been processed if they
6063 -- were present on the incomplete declaration. In this case a full
6064 -- conformance check is performed otherwise just process them.
6066 procedure Check_Or_Process_Discriminants (N : Node_Id; T : Entity_Id) is
6067 begin
6068 if Has_Discriminants (T) then
6070 -- Make the discriminants visible to component declarations.
6072 declare
6073 D : Entity_Id := First_Discriminant (T);
6074 Prev : Entity_Id;
6076 begin
6077 while Present (D) loop
6078 Prev := Current_Entity (D);
6079 Set_Current_Entity (D);
6080 Set_Is_Immediately_Visible (D);
6081 Set_Homonym (D, Prev);
6083 -- This restriction gets applied to the full type here; it
6084 -- has already been applied earlier to the partial view
6086 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
6088 Next_Discriminant (D);
6089 end loop;
6090 end;
6092 elsif Present (Discriminant_Specifications (N)) then
6093 Process_Discriminants (N);
6094 end if;
6095 end Check_Or_Process_Discriminants;
6097 ----------------------
6098 -- Check_Real_Bound --
6099 ----------------------
6101 procedure Check_Real_Bound (Bound : Node_Id) is
6102 begin
6103 if not Is_Real_Type (Etype (Bound)) then
6104 Error_Msg_N
6105 ("bound in real type definition must be of real type", Bound);
6107 elsif not Is_OK_Static_Expression (Bound) then
6108 Error_Msg_N
6109 ("non-static expression used for real type bound", Bound);
6111 else
6112 return;
6113 end if;
6115 Rewrite
6116 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
6117 Analyze (Bound);
6118 Resolve (Bound, Standard_Float);
6119 end Check_Real_Bound;
6121 ------------------------------
6122 -- Complete_Private_Subtype --
6123 ------------------------------
6125 procedure Complete_Private_Subtype
6126 (Priv : Entity_Id;
6127 Full : Entity_Id;
6128 Full_Base : Entity_Id;
6129 Related_Nod : Node_Id)
6131 Save_Next_Entity : Entity_Id;
6132 Save_Homonym : Entity_Id;
6134 begin
6135 -- Set semantic attributes for (implicit) private subtype completion.
6136 -- If the full type has no discriminants, then it is a copy of the full
6137 -- view of the base. Otherwise, it is a subtype of the base with a
6138 -- possible discriminant constraint. Save and restore the original
6139 -- Next_Entity field of full to ensure that the calls to Copy_Node
6140 -- do not corrupt the entity chain.
6142 -- Note that the type of the full view is the same entity as the
6143 -- type of the partial view. In this fashion, the subtype has
6144 -- access to the correct view of the parent.
6146 Save_Next_Entity := Next_Entity (Full);
6147 Save_Homonym := Homonym (Priv);
6149 case Ekind (Full_Base) is
6151 when E_Record_Type |
6152 E_Record_Subtype |
6153 Class_Wide_Kind |
6154 Private_Kind |
6155 Task_Kind |
6156 Protected_Kind =>
6157 Copy_Node (Priv, Full);
6159 Set_Has_Discriminants (Full, Has_Discriminants (Full_Base));
6160 Set_First_Entity (Full, First_Entity (Full_Base));
6161 Set_Last_Entity (Full, Last_Entity (Full_Base));
6163 when others =>
6164 Copy_Node (Full_Base, Full);
6165 Set_Chars (Full, Chars (Priv));
6166 Conditional_Delay (Full, Priv);
6167 Set_Sloc (Full, Sloc (Priv));
6169 end case;
6171 Set_Next_Entity (Full, Save_Next_Entity);
6172 Set_Homonym (Full, Save_Homonym);
6173 Set_Associated_Node_For_Itype (Full, Related_Nod);
6175 -- Set common attributes for all subtypes.
6177 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
6179 -- The Etype of the full view is inconsistent. Gigi needs to see the
6180 -- structural full view, which is what the current scheme gives:
6181 -- the Etype of the full view is the etype of the full base. However,
6182 -- if the full base is a derived type, the full view then looks like
6183 -- a subtype of the parent, not a subtype of the full base. If instead
6184 -- we write:
6186 -- Set_Etype (Full, Full_Base);
6188 -- then we get inconsistencies in the front-end (confusion between
6189 -- views). Several outstanding bugs are related to this.
6191 Set_Is_First_Subtype (Full, False);
6192 Set_Scope (Full, Scope (Priv));
6193 Set_Size_Info (Full, Full_Base);
6194 Set_RM_Size (Full, RM_Size (Full_Base));
6195 Set_Is_Itype (Full);
6197 -- A subtype of a private-type-without-discriminants, whose full-view
6198 -- has discriminants with default expressions, is not constrained!
6200 if not Has_Discriminants (Priv) then
6201 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
6202 end if;
6204 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
6205 Set_Depends_On_Private (Full, Has_Private_Component (Full));
6207 -- Freeze the private subtype entity if its parent is delayed,
6208 -- and not already frozen. We skip this processing if the type
6209 -- is an anonymous subtype of a record component, or is the
6210 -- corresponding record of a protected type, since ???
6212 if not Is_Type (Scope (Full)) then
6213 Set_Has_Delayed_Freeze (Full,
6214 Has_Delayed_Freeze (Full_Base)
6215 and then (not Is_Frozen (Full_Base)));
6216 end if;
6218 Set_Freeze_Node (Full, Empty);
6219 Set_Is_Frozen (Full, False);
6220 Set_Full_View (Priv, Full);
6222 if Has_Discriminants (Full) then
6223 Set_Girder_Constraint_From_Discriminant_Constraint (Full);
6224 Set_Girder_Constraint (Priv, Girder_Constraint (Full));
6225 if Has_Unknown_Discriminants (Full) then
6226 Set_Discriminant_Constraint (Full, No_Elist);
6227 end if;
6228 end if;
6230 if Ekind (Full_Base) = E_Record_Type
6231 and then Has_Discriminants (Full_Base)
6232 and then Has_Discriminants (Priv) -- might not, if errors
6233 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
6234 then
6235 Create_Constrained_Components
6236 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
6238 -- If the full base is itself derived from private, build a congruent
6239 -- subtype of its underlying type, for use by the back end.
6241 elsif Ekind (Full_Base) in Private_Kind
6242 and then Is_Derived_Type (Full_Base)
6243 and then Has_Discriminants (Full_Base)
6244 and then
6245 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
6246 then
6247 Build_Underlying_Full_View (Parent (Priv), Full, Etype (Full_Base));
6249 elsif Is_Record_Type (Full_Base) then
6251 -- Show Full is simply a renaming of Full_Base.
6253 Set_Cloned_Subtype (Full, Full_Base);
6254 end if;
6256 -- It is usafe to share to bounds of a scalar type, because the
6257 -- Itype is elaborated on demand, and if a bound is non-static
6258 -- then different orders of elaboration in different units will
6259 -- lead to different external symbols.
6261 if Is_Scalar_Type (Full_Base) then
6262 Set_Scalar_Range (Full,
6263 Make_Range (Sloc (Related_Nod),
6264 Low_Bound => Duplicate_Subexpr (Type_Low_Bound (Full_Base)),
6265 High_Bound => Duplicate_Subexpr (Type_High_Bound (Full_Base))));
6266 end if;
6268 -- ??? It seems that a lot of fields are missing that should be
6269 -- copied from Full_Base to Full. Here are some that are introduced
6270 -- in a non-disruptive way but a cleanup is necessary.
6272 if Is_Tagged_Type (Full_Base) then
6273 Set_Is_Tagged_Type (Full);
6274 Set_Primitive_Operations (Full, Primitive_Operations (Full_Base));
6276 elsif Is_Concurrent_Type (Full_Base) then
6278 if Has_Discriminants (Full)
6279 and then Present (Corresponding_Record_Type (Full_Base))
6280 then
6281 Set_Corresponding_Record_Type (Full,
6282 Constrain_Corresponding_Record
6283 (Full, Corresponding_Record_Type (Full_Base),
6284 Related_Nod, Full_Base));
6286 else
6287 Set_Corresponding_Record_Type (Full,
6288 Corresponding_Record_Type (Full_Base));
6289 end if;
6290 end if;
6292 end Complete_Private_Subtype;
6294 ----------------------------
6295 -- Constant_Redeclaration --
6296 ----------------------------
6298 procedure Constant_Redeclaration
6299 (Id : Entity_Id;
6300 N : Node_Id;
6301 T : out Entity_Id)
6303 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
6304 Obj_Def : constant Node_Id := Object_Definition (N);
6305 New_T : Entity_Id;
6307 begin
6308 if Nkind (Parent (Prev)) = N_Object_Declaration then
6309 if Nkind (Object_Definition
6310 (Parent (Prev))) = N_Subtype_Indication
6311 then
6312 -- Find type of new declaration. The constraints of the two
6313 -- views must match statically, but there is no point in
6314 -- creating an itype for the full view.
6316 if Nkind (Obj_Def) = N_Subtype_Indication then
6317 Find_Type (Subtype_Mark (Obj_Def));
6318 New_T := Entity (Subtype_Mark (Obj_Def));
6320 else
6321 Find_Type (Obj_Def);
6322 New_T := Entity (Obj_Def);
6323 end if;
6325 T := Etype (Prev);
6327 else
6328 -- The full view may impose a constraint, even if the partial
6329 -- view does not, so construct the subtype.
6331 New_T := Find_Type_Of_Object (Obj_Def, N);
6332 T := New_T;
6333 end if;
6335 else
6336 -- Current declaration is illegal, diagnosed below in Enter_Name.
6338 T := Empty;
6339 New_T := Any_Type;
6340 end if;
6342 -- If previous full declaration exists, or if a homograph is present,
6343 -- let Enter_Name handle it, either with an error, or with the removal
6344 -- of an overridden implicit subprogram.
6346 if Ekind (Prev) /= E_Constant
6347 or else Present (Expression (Parent (Prev)))
6348 then
6349 Enter_Name (Id);
6351 -- Verify that types of both declarations match.
6353 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T) then
6354 Error_Msg_Sloc := Sloc (Prev);
6355 Error_Msg_N ("type does not match declaration#", N);
6356 Set_Full_View (Prev, Id);
6357 Set_Etype (Id, Any_Type);
6359 -- If so, process the full constant declaration
6361 else
6362 Set_Full_View (Prev, Id);
6363 Set_Is_Public (Id, Is_Public (Prev));
6364 Set_Is_Internal (Id);
6365 Append_Entity (Id, Current_Scope);
6367 -- Check ALIASED present if present before (RM 7.4(7))
6369 if Is_Aliased (Prev)
6370 and then not Aliased_Present (N)
6371 then
6372 Error_Msg_Sloc := Sloc (Prev);
6373 Error_Msg_N ("ALIASED required (see declaration#)", N);
6374 end if;
6376 -- Check that placement is in private part
6378 if Ekind (Current_Scope) = E_Package
6379 and then not In_Private_Part (Current_Scope)
6380 then
6381 Error_Msg_Sloc := Sloc (Prev);
6382 Error_Msg_N ("full constant for declaration#"
6383 & " must be in private part", N);
6384 end if;
6385 end if;
6386 end Constant_Redeclaration;
6388 ----------------------
6389 -- Constrain_Access --
6390 ----------------------
6392 procedure Constrain_Access
6393 (Def_Id : in out Entity_Id;
6394 S : Node_Id;
6395 Related_Nod : Node_Id)
6397 T : constant Entity_Id := Entity (Subtype_Mark (S));
6398 Desig_Type : constant Entity_Id := Designated_Type (T);
6399 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
6400 Constraint_OK : Boolean := True;
6402 begin
6403 if Is_Array_Type (Desig_Type) then
6404 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
6406 elsif (Is_Record_Type (Desig_Type)
6407 or else Is_Incomplete_Or_Private_Type (Desig_Type))
6408 and then not Is_Constrained (Desig_Type)
6409 then
6410 -- ??? The following code is a temporary kludge to ignore
6411 -- discriminant constraint on access type if
6412 -- it is constraining the current record. Avoid creating the
6413 -- implicit subtype of the record we are currently compiling
6414 -- since right now, we cannot handle these.
6415 -- For now, just return the access type itself.
6417 if Desig_Type = Current_Scope
6418 and then No (Def_Id)
6419 then
6420 Set_Ekind (Desig_Subtype, E_Record_Subtype);
6421 Def_Id := Entity (Subtype_Mark (S));
6423 -- This call added to ensure that the constraint is
6424 -- analyzed (needed for a B test). Note that we
6425 -- still return early from this procedure to avoid
6426 -- recursive processing. ???
6428 Constrain_Discriminated_Type
6429 (Desig_Subtype, S, Related_Nod, For_Access => True);
6431 return;
6432 end if;
6434 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
6435 For_Access => True);
6437 elsif (Is_Task_Type (Desig_Type)
6438 or else Is_Protected_Type (Desig_Type))
6439 and then not Is_Constrained (Desig_Type)
6440 then
6441 Constrain_Concurrent
6442 (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
6444 else
6445 Error_Msg_N ("invalid constraint on access type", S);
6446 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
6447 Constraint_OK := False;
6448 end if;
6450 if No (Def_Id) then
6451 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
6452 else
6453 Set_Ekind (Def_Id, E_Access_Subtype);
6454 end if;
6456 if Constraint_OK then
6457 Set_Etype (Def_Id, Base_Type (T));
6459 if Is_Private_Type (Desig_Type) then
6460 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
6461 end if;
6462 else
6463 Set_Etype (Def_Id, Any_Type);
6464 end if;
6466 Set_Size_Info (Def_Id, T);
6467 Set_Is_Constrained (Def_Id, Constraint_OK);
6468 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
6469 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
6470 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
6472 -- Itypes created for constrained record components do not receive
6473 -- a freeze node, they are elaborated when first seen.
6475 if not Is_Record_Type (Current_Scope) then
6476 Conditional_Delay (Def_Id, T);
6477 end if;
6478 end Constrain_Access;
6480 ---------------------
6481 -- Constrain_Array --
6482 ---------------------
6484 procedure Constrain_Array
6485 (Def_Id : in out Entity_Id;
6486 SI : Node_Id;
6487 Related_Nod : Node_Id;
6488 Related_Id : Entity_Id;
6489 Suffix : Character)
6491 C : constant Node_Id := Constraint (SI);
6492 Number_Of_Constraints : Nat := 0;
6493 Index : Node_Id;
6494 S, T : Entity_Id;
6495 Constraint_OK : Boolean := True;
6497 begin
6498 T := Entity (Subtype_Mark (SI));
6500 if Ekind (T) in Access_Kind then
6501 T := Designated_Type (T);
6502 end if;
6504 -- If an index constraint follows a subtype mark in a subtype indication
6505 -- then the type or subtype denoted by the subtype mark must not already
6506 -- impose an index constraint. The subtype mark must denote either an
6507 -- unconstrained array type or an access type whose designated type
6508 -- is such an array type... (RM 3.6.1)
6510 if Is_Constrained (T) then
6511 Error_Msg_N
6512 ("array type is already constrained", Subtype_Mark (SI));
6513 Constraint_OK := False;
6515 else
6516 S := First (Constraints (C));
6518 while Present (S) loop
6519 Number_Of_Constraints := Number_Of_Constraints + 1;
6520 Next (S);
6521 end loop;
6523 -- In either case, the index constraint must provide a discrete
6524 -- range for each index of the array type and the type of each
6525 -- discrete range must be the same as that of the corresponding
6526 -- index. (RM 3.6.1)
6528 if Number_Of_Constraints /= Number_Dimensions (T) then
6529 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
6530 Constraint_OK := False;
6532 else
6533 S := First (Constraints (C));
6534 Index := First_Index (T);
6535 Analyze (Index);
6537 -- Apply constraints to each index type
6539 for J in 1 .. Number_Of_Constraints loop
6540 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
6541 Next (Index);
6542 Next (S);
6543 end loop;
6545 end if;
6546 end if;
6548 if No (Def_Id) then
6549 Def_Id :=
6550 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
6551 else
6552 Set_Ekind (Def_Id, E_Array_Subtype);
6553 end if;
6555 Set_Size_Info (Def_Id, (T));
6556 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
6557 Set_Etype (Def_Id, Base_Type (T));
6559 if Constraint_OK then
6560 Set_First_Index (Def_Id, First (Constraints (C)));
6561 end if;
6563 Set_Component_Type (Def_Id, Component_Type (T));
6564 Set_Is_Constrained (Def_Id, True);
6565 Set_Is_Aliased (Def_Id, Is_Aliased (T));
6566 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
6568 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
6569 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
6571 -- If the subtype is not that of a record component, build a freeze
6572 -- node if parent still needs one.
6574 -- If the subtype is not that of a record component, make sure
6575 -- that the Depends_On_Private status is set (explanation ???)
6576 -- and also that a conditional delay is set.
6578 if not Is_Type (Scope (Def_Id)) then
6579 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
6580 Conditional_Delay (Def_Id, T);
6581 end if;
6583 end Constrain_Array;
6585 ------------------------------
6586 -- Constrain_Component_Type --
6587 ------------------------------
6589 function Constrain_Component_Type
6590 (Compon_Type : Entity_Id;
6591 Constrained_Typ : Entity_Id;
6592 Related_Node : Node_Id;
6593 Typ : Entity_Id;
6594 Constraints : Elist_Id)
6595 return Entity_Id
6597 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
6599 function Build_Constrained_Array_Type
6600 (Old_Type : Entity_Id)
6601 return Entity_Id;
6602 -- If Old_Type is an array type, one of whose indices is
6603 -- constrained by a discriminant, build an Itype whose constraint
6604 -- replaces the discriminant with its value in the constraint.
6606 function Build_Constrained_Discriminated_Type
6607 (Old_Type : Entity_Id)
6608 return Entity_Id;
6609 -- Ditto for record components.
6611 function Build_Constrained_Access_Type
6612 (Old_Type : Entity_Id)
6613 return Entity_Id;
6614 -- Ditto for access types. Makes use of previous two functions, to
6615 -- constrain designated type.
6617 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
6618 -- T is an array or discriminated type, C is a list of constraints
6619 -- that apply to T. This routine builds the constrained subtype.
6621 function Is_Discriminant (Expr : Node_Id) return Boolean;
6622 -- Returns True if Expr is a discriminant.
6624 function Get_Value (Discrim : Entity_Id) return Node_Id;
6625 -- Find the value of discriminant Discrim in Constraint.
6627 -----------------------------------
6628 -- Build_Constrained_Access_Type --
6629 -----------------------------------
6631 function Build_Constrained_Access_Type
6632 (Old_Type : Entity_Id)
6633 return Entity_Id
6635 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
6636 Itype : Entity_Id;
6637 Desig_Subtype : Entity_Id;
6638 Scop : Entity_Id;
6640 begin
6641 -- if the original access type was not embedded in the enclosing
6642 -- type definition, there is no need to produce a new access
6643 -- subtype. In fact every access type with an explicit constraint
6644 -- generates an itype whose scope is the enclosing record.
6646 if not Is_Type (Scope (Old_Type)) then
6647 return Old_Type;
6649 elsif Is_Array_Type (Desig_Type) then
6650 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
6652 elsif Has_Discriminants (Desig_Type) then
6654 -- This may be an access type to an enclosing record type for
6655 -- which we are constructing the constrained components. Return
6656 -- the enclosing record subtype. This is not always correct,
6657 -- but avoids infinite recursion. ???
6659 Desig_Subtype := Any_Type;
6661 for J in reverse 0 .. Scope_Stack.Last loop
6662 Scop := Scope_Stack.Table (J).Entity;
6664 if Is_Type (Scop)
6665 and then Base_Type (Scop) = Base_Type (Desig_Type)
6666 then
6667 Desig_Subtype := Scop;
6668 end if;
6670 exit when not Is_Type (Scop);
6671 end loop;
6673 if Desig_Subtype = Any_Type then
6674 Desig_Subtype :=
6675 Build_Constrained_Discriminated_Type (Desig_Type);
6676 end if;
6678 else
6679 return Old_Type;
6680 end if;
6682 if Desig_Subtype /= Desig_Type then
6683 -- The Related_Node better be here or else we won't be able
6684 -- to attach new itypes to a node in the tree.
6686 pragma Assert (Present (Related_Node));
6688 Itype := Create_Itype (E_Access_Subtype, Related_Node);
6690 Set_Etype (Itype, Base_Type (Old_Type));
6691 Set_Size_Info (Itype, (Old_Type));
6692 Set_Directly_Designated_Type (Itype, Desig_Subtype);
6693 Set_Depends_On_Private (Itype, Has_Private_Component
6694 (Old_Type));
6695 Set_Is_Access_Constant (Itype, Is_Access_Constant
6696 (Old_Type));
6698 -- The new itype needs freezing when it depends on a not frozen
6699 -- type and the enclosing subtype needs freezing.
6701 if Has_Delayed_Freeze (Constrained_Typ)
6702 and then not Is_Frozen (Constrained_Typ)
6703 then
6704 Conditional_Delay (Itype, Base_Type (Old_Type));
6705 end if;
6707 return Itype;
6709 else
6710 return Old_Type;
6711 end if;
6712 end Build_Constrained_Access_Type;
6714 ----------------------------------
6715 -- Build_Constrained_Array_Type --
6716 ----------------------------------
6718 function Build_Constrained_Array_Type
6719 (Old_Type : Entity_Id)
6720 return Entity_Id
6722 Lo_Expr : Node_Id;
6723 Hi_Expr : Node_Id;
6724 Old_Index : Node_Id;
6725 Range_Node : Node_Id;
6726 Constr_List : List_Id;
6728 Need_To_Create_Itype : Boolean := False;
6730 begin
6731 Old_Index := First_Index (Old_Type);
6732 while Present (Old_Index) loop
6733 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
6735 if Is_Discriminant (Lo_Expr)
6736 or else Is_Discriminant (Hi_Expr)
6737 then
6738 Need_To_Create_Itype := True;
6739 end if;
6741 Next_Index (Old_Index);
6742 end loop;
6744 if Need_To_Create_Itype then
6745 Constr_List := New_List;
6747 Old_Index := First_Index (Old_Type);
6748 while Present (Old_Index) loop
6749 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
6751 if Is_Discriminant (Lo_Expr) then
6752 Lo_Expr := Get_Value (Lo_Expr);
6753 end if;
6755 if Is_Discriminant (Hi_Expr) then
6756 Hi_Expr := Get_Value (Hi_Expr);
6757 end if;
6759 Range_Node :=
6760 Make_Range
6761 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
6763 Append (Range_Node, To => Constr_List);
6765 Next_Index (Old_Index);
6766 end loop;
6768 return Build_Subtype (Old_Type, Constr_List);
6770 else
6771 return Old_Type;
6772 end if;
6773 end Build_Constrained_Array_Type;
6775 ------------------------------------------
6776 -- Build_Constrained_Discriminated_Type --
6777 ------------------------------------------
6779 function Build_Constrained_Discriminated_Type
6780 (Old_Type : Entity_Id)
6781 return Entity_Id
6783 Expr : Node_Id;
6784 Constr_List : List_Id;
6785 Old_Constraint : Elmt_Id;
6787 Need_To_Create_Itype : Boolean := False;
6789 begin
6790 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
6791 while Present (Old_Constraint) loop
6792 Expr := Node (Old_Constraint);
6794 if Is_Discriminant (Expr) then
6795 Need_To_Create_Itype := True;
6796 end if;
6798 Next_Elmt (Old_Constraint);
6799 end loop;
6801 if Need_To_Create_Itype then
6802 Constr_List := New_List;
6804 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
6805 while Present (Old_Constraint) loop
6806 Expr := Node (Old_Constraint);
6808 if Is_Discriminant (Expr) then
6809 Expr := Get_Value (Expr);
6810 end if;
6812 Append (New_Copy_Tree (Expr), To => Constr_List);
6814 Next_Elmt (Old_Constraint);
6815 end loop;
6817 return Build_Subtype (Old_Type, Constr_List);
6819 else
6820 return Old_Type;
6821 end if;
6822 end Build_Constrained_Discriminated_Type;
6824 -------------------
6825 -- Build_Subtype --
6826 -------------------
6828 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
6829 Indic : Node_Id;
6830 Subtyp_Decl : Node_Id;
6831 Def_Id : Entity_Id;
6832 Btyp : Entity_Id := Base_Type (T);
6834 begin
6835 -- The Related_Node better be here or else we won't be able
6836 -- to attach new itypes to a node in the tree.
6838 pragma Assert (Present (Related_Node));
6840 -- If the view of the component's type is incomplete or private
6841 -- with unknown discriminants, then the constraint must be applied
6842 -- to the full type.
6844 if Has_Unknown_Discriminants (Btyp)
6845 and then Present (Underlying_Type (Btyp))
6846 then
6847 Btyp := Underlying_Type (Btyp);
6848 end if;
6850 Indic :=
6851 Make_Subtype_Indication (Loc,
6852 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
6853 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
6855 Def_Id := Create_Itype (Ekind (T), Related_Node);
6857 Subtyp_Decl :=
6858 Make_Subtype_Declaration (Loc,
6859 Defining_Identifier => Def_Id,
6860 Subtype_Indication => Indic);
6861 Set_Parent (Subtyp_Decl, Parent (Related_Node));
6863 -- Itypes must be analyzed with checks off (see itypes.ads).
6865 Analyze (Subtyp_Decl, Suppress => All_Checks);
6867 return Def_Id;
6868 end Build_Subtype;
6870 ---------------
6871 -- Get_Value --
6872 ---------------
6874 function Get_Value (Discrim : Entity_Id) return Node_Id is
6875 D : Entity_Id := First_Discriminant (Typ);
6876 E : Elmt_Id := First_Elmt (Constraints);
6878 begin
6879 while Present (D) loop
6881 -- If we are constraining the subtype of a derived tagged type,
6882 -- recover the discriminant of the parent, which appears in
6883 -- the constraint of an inherited component.
6885 if D = Entity (Discrim)
6886 or else Corresponding_Discriminant (D) = Entity (Discrim)
6887 then
6888 return Node (E);
6889 end if;
6891 Next_Discriminant (D);
6892 Next_Elmt (E);
6893 end loop;
6895 -- Something is wrong if we did not find the value
6897 raise Program_Error;
6898 end Get_Value;
6900 ---------------------
6901 -- Is_Discriminant --
6902 ---------------------
6904 function Is_Discriminant (Expr : Node_Id) return Boolean is
6905 Discrim_Scope : Entity_Id;
6907 begin
6908 if Denotes_Discriminant (Expr) then
6909 Discrim_Scope := Scope (Entity (Expr));
6911 -- Either we have a reference to one of Typ's discriminants,
6913 pragma Assert (Discrim_Scope = Typ
6915 -- or to the discriminants of the parent type, in the case
6916 -- of a derivation of a tagged type with variants.
6918 or else Discrim_Scope = Etype (Typ)
6919 or else Full_View (Discrim_Scope) = Etype (Typ)
6921 -- or same as above for the case where the discriminants
6922 -- were declared in Typ's private view.
6924 or else (Is_Private_Type (Discrim_Scope)
6925 and then Chars (Discrim_Scope) = Chars (Typ))
6927 -- or else we are deriving from the full view and the
6928 -- discriminant is declared in the private entity.
6930 or else (Is_Private_Type (Typ)
6931 and then Chars (Discrim_Scope) = Chars (Typ))
6933 -- or we have a class-wide type, in which case make sure the
6934 -- discriminant found belongs to the root type.
6936 or else (Is_Class_Wide_Type (Typ)
6937 and then Etype (Typ) = Discrim_Scope));
6939 return True;
6940 end if;
6942 -- In all other cases we have something wrong.
6944 return False;
6945 end Is_Discriminant;
6947 -- Start of processing for Constrain_Component_Type
6949 begin
6950 if Is_Array_Type (Compon_Type) then
6951 return Build_Constrained_Array_Type (Compon_Type);
6953 elsif Has_Discriminants (Compon_Type) then
6954 return Build_Constrained_Discriminated_Type (Compon_Type);
6956 elsif Is_Access_Type (Compon_Type) then
6957 return Build_Constrained_Access_Type (Compon_Type);
6958 end if;
6960 return Compon_Type;
6961 end Constrain_Component_Type;
6963 --------------------------
6964 -- Constrain_Concurrent --
6965 --------------------------
6967 -- For concurrent types, the associated record value type carries the same
6968 -- discriminants, so when we constrain a concurrent type, we must constrain
6969 -- the value type as well.
6971 procedure Constrain_Concurrent
6972 (Def_Id : in out Entity_Id;
6973 SI : Node_Id;
6974 Related_Nod : Node_Id;
6975 Related_Id : Entity_Id;
6976 Suffix : Character)
6978 T_Ent : Entity_Id := Entity (Subtype_Mark (SI));
6979 T_Val : Entity_Id;
6981 begin
6982 if Ekind (T_Ent) in Access_Kind then
6983 T_Ent := Designated_Type (T_Ent);
6984 end if;
6986 T_Val := Corresponding_Record_Type (T_Ent);
6988 if Present (T_Val) then
6990 if No (Def_Id) then
6991 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
6992 end if;
6994 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
6996 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
6997 Set_Corresponding_Record_Type (Def_Id,
6998 Constrain_Corresponding_Record
6999 (Def_Id, T_Val, Related_Nod, Related_Id));
7001 else
7002 -- If there is no associated record, expansion is disabled and this
7003 -- is a generic context. Create a subtype in any case, so that
7004 -- semantic analysis can proceed.
7006 if No (Def_Id) then
7007 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
7008 end if;
7010 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
7011 end if;
7012 end Constrain_Concurrent;
7014 ------------------------------------
7015 -- Constrain_Corresponding_Record --
7016 ------------------------------------
7018 function Constrain_Corresponding_Record
7019 (Prot_Subt : Entity_Id;
7020 Corr_Rec : Entity_Id;
7021 Related_Nod : Node_Id;
7022 Related_Id : Entity_Id)
7023 return Entity_Id
7025 T_Sub : constant Entity_Id
7026 := Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
7028 begin
7029 Set_Etype (T_Sub, Corr_Rec);
7030 Init_Size_Align (T_Sub);
7031 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
7032 Set_Is_Constrained (T_Sub, True);
7033 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
7034 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
7036 Conditional_Delay (T_Sub, Corr_Rec);
7038 if Has_Discriminants (Prot_Subt) then -- False only if errors.
7039 Set_Discriminant_Constraint (T_Sub,
7040 Discriminant_Constraint (Prot_Subt));
7041 Set_Girder_Constraint_From_Discriminant_Constraint (T_Sub);
7042 Create_Constrained_Components (T_Sub, Related_Nod, Corr_Rec,
7043 Discriminant_Constraint (T_Sub));
7044 end if;
7046 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
7048 return T_Sub;
7049 end Constrain_Corresponding_Record;
7051 -----------------------
7052 -- Constrain_Decimal --
7053 -----------------------
7055 procedure Constrain_Decimal
7056 (Def_Id : Node_Id;
7057 S : Node_Id;
7058 Related_Nod : Node_Id)
7060 T : constant Entity_Id := Entity (Subtype_Mark (S));
7061 C : constant Node_Id := Constraint (S);
7062 Loc : constant Source_Ptr := Sloc (C);
7063 Range_Expr : Node_Id;
7064 Digits_Expr : Node_Id;
7065 Digits_Val : Uint;
7066 Bound_Val : Ureal;
7068 begin
7069 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
7071 if Nkind (C) = N_Range_Constraint then
7072 Range_Expr := Range_Expression (C);
7073 Digits_Val := Digits_Value (T);
7075 else
7076 pragma Assert (Nkind (C) = N_Digits_Constraint);
7077 Digits_Expr := Digits_Expression (C);
7078 Analyze_And_Resolve (Digits_Expr, Any_Integer);
7080 Check_Digits_Expression (Digits_Expr);
7081 Digits_Val := Expr_Value (Digits_Expr);
7083 if Digits_Val > Digits_Value (T) then
7084 Error_Msg_N
7085 ("digits expression is incompatible with subtype", C);
7086 Digits_Val := Digits_Value (T);
7087 end if;
7089 if Present (Range_Constraint (C)) then
7090 Range_Expr := Range_Expression (Range_Constraint (C));
7091 else
7092 Range_Expr := Empty;
7093 end if;
7094 end if;
7096 Set_Etype (Def_Id, Base_Type (T));
7097 Set_Size_Info (Def_Id, (T));
7098 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
7099 Set_Delta_Value (Def_Id, Delta_Value (T));
7100 Set_Scale_Value (Def_Id, Scale_Value (T));
7101 Set_Small_Value (Def_Id, Small_Value (T));
7102 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
7103 Set_Digits_Value (Def_Id, Digits_Val);
7105 -- Manufacture range from given digits value if no range present
7107 if No (Range_Expr) then
7108 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
7109 Range_Expr :=
7110 Make_Range (Loc,
7111 Low_Bound =>
7112 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
7113 High_Bound =>
7114 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
7116 end if;
7118 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T, Related_Nod);
7119 Set_Discrete_RM_Size (Def_Id);
7121 -- Unconditionally delay the freeze, since we cannot set size
7122 -- information in all cases correctly until the freeze point.
7124 Set_Has_Delayed_Freeze (Def_Id);
7125 end Constrain_Decimal;
7127 ----------------------------------
7128 -- Constrain_Discriminated_Type --
7129 ----------------------------------
7131 procedure Constrain_Discriminated_Type
7132 (Def_Id : Entity_Id;
7133 S : Node_Id;
7134 Related_Nod : Node_Id;
7135 For_Access : Boolean := False)
7137 T : Entity_Id;
7138 C : Node_Id;
7139 Elist : Elist_Id := New_Elmt_List;
7141 procedure Fixup_Bad_Constraint;
7142 -- This is called after finding a bad constraint, and after having
7143 -- posted an appropriate error message. The mission is to leave the
7144 -- entity T in as reasonable state as possible!
7146 procedure Fixup_Bad_Constraint is
7147 begin
7148 -- Set a reasonable Ekind for the entity. For an incomplete type,
7149 -- we can't do much, but for other types, we can set the proper
7150 -- corresponding subtype kind.
7152 if Ekind (T) = E_Incomplete_Type then
7153 Set_Ekind (Def_Id, Ekind (T));
7154 else
7155 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
7156 end if;
7158 Set_Etype (Def_Id, Any_Type);
7159 Set_Error_Posted (Def_Id);
7160 end Fixup_Bad_Constraint;
7162 -- Start of processing for Constrain_Discriminated_Type
7164 begin
7165 C := Constraint (S);
7167 -- A discriminant constraint is only allowed in a subtype indication,
7168 -- after a subtype mark. This subtype mark must denote either a type
7169 -- with discriminants, or an access type whose designated type is a
7170 -- type with discriminants. A discriminant constraint specifies the
7171 -- values of these discriminants (RM 3.7.2(5)).
7173 T := Base_Type (Entity (Subtype_Mark (S)));
7175 if Ekind (T) in Access_Kind then
7176 T := Designated_Type (T);
7177 end if;
7179 if not Has_Discriminants (T) then
7180 Error_Msg_N ("invalid constraint: type has no discriminant", C);
7181 Fixup_Bad_Constraint;
7182 return;
7184 elsif Is_Constrained (Entity (Subtype_Mark (S))) then
7185 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
7186 Fixup_Bad_Constraint;
7187 return;
7188 end if;
7190 -- T may be an unconstrained subtype (e.g. a generic actual).
7191 -- Constraint applies to the base type.
7193 T := Base_Type (T);
7195 Elist := Build_Discriminant_Constraints (T, S);
7197 -- If the list returned was empty we had an error in building the
7198 -- discriminant constraint. We have also already signalled an error
7199 -- in the incomplete type case
7201 if Is_Empty_Elmt_List (Elist) then
7202 Fixup_Bad_Constraint;
7203 return;
7204 end if;
7206 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
7207 end Constrain_Discriminated_Type;
7209 ---------------------------
7210 -- Constrain_Enumeration --
7211 ---------------------------
7213 procedure Constrain_Enumeration
7214 (Def_Id : Node_Id;
7215 S : Node_Id;
7216 Related_Nod : Node_Id)
7218 T : constant Entity_Id := Entity (Subtype_Mark (S));
7219 C : constant Node_Id := Constraint (S);
7221 begin
7222 Set_Ekind (Def_Id, E_Enumeration_Subtype);
7224 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
7226 Set_Etype (Def_Id, Base_Type (T));
7227 Set_Size_Info (Def_Id, (T));
7228 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
7229 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
7231 Set_Scalar_Range_For_Subtype
7232 (Def_Id, Range_Expression (C), T, Related_Nod);
7234 Set_Discrete_RM_Size (Def_Id);
7236 end Constrain_Enumeration;
7238 ----------------------
7239 -- Constrain_Float --
7240 ----------------------
7242 procedure Constrain_Float
7243 (Def_Id : Node_Id;
7244 S : Node_Id;
7245 Related_Nod : Node_Id)
7247 T : constant Entity_Id := Entity (Subtype_Mark (S));
7248 C : Node_Id;
7249 D : Node_Id;
7250 Rais : Node_Id;
7252 begin
7253 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
7255 Set_Etype (Def_Id, Base_Type (T));
7256 Set_Size_Info (Def_Id, (T));
7257 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
7259 -- Process the constraint
7261 C := Constraint (S);
7263 -- Digits constraint present
7265 if Nkind (C) = N_Digits_Constraint then
7266 D := Digits_Expression (C);
7267 Analyze_And_Resolve (D, Any_Integer);
7268 Check_Digits_Expression (D);
7269 Set_Digits_Value (Def_Id, Expr_Value (D));
7271 -- Check that digits value is in range. Obviously we can do this
7272 -- at compile time, but it is strictly a runtime check, and of
7273 -- course there is an ACVC test that checks this!
7275 if Digits_Value (Def_Id) > Digits_Value (T) then
7276 Error_Msg_Uint_1 := Digits_Value (T);
7277 Error_Msg_N ("?digits value is too large, maximum is ^", D);
7278 Rais := Make_Raise_Constraint_Error (Sloc (D));
7279 Insert_Action (Declaration_Node (Def_Id), Rais);
7280 end if;
7282 C := Range_Constraint (C);
7284 -- No digits constraint present
7286 else
7287 Set_Digits_Value (Def_Id, Digits_Value (T));
7288 end if;
7290 -- Range constraint present
7292 if Nkind (C) = N_Range_Constraint then
7293 Set_Scalar_Range_For_Subtype
7294 (Def_Id, Range_Expression (C), T, Related_Nod);
7296 -- No range constraint present
7298 else
7299 pragma Assert (No (C));
7300 Set_Scalar_Range (Def_Id, Scalar_Range (T));
7301 end if;
7303 Set_Is_Constrained (Def_Id);
7304 end Constrain_Float;
7306 ---------------------
7307 -- Constrain_Index --
7308 ---------------------
7310 procedure Constrain_Index
7311 (Index : Node_Id;
7312 S : Node_Id;
7313 Related_Nod : Node_Id;
7314 Related_Id : Entity_Id;
7315 Suffix : Character;
7316 Suffix_Index : Nat)
7318 Def_Id : Entity_Id;
7319 R : Node_Id := Empty;
7320 Checks_Off : Boolean := False;
7321 T : constant Entity_Id := Etype (Index);
7323 begin
7324 if Nkind (S) = N_Range
7325 or else Nkind (S) = N_Attribute_Reference
7326 then
7327 -- A Range attribute will transformed into N_Range by Resolve.
7329 Analyze (S);
7330 Set_Etype (S, T);
7331 R := S;
7333 -- ??? Why on earth do we turn checks of in this very specific case ?
7335 -- From the revision history: (Constrain_Index): Call
7336 -- Process_Range_Expr_In_Decl with range checking off for range
7337 -- bounds that are attributes. This avoids some horrible
7338 -- constraint error checks.
7340 if Nkind (R) = N_Range
7341 and then Nkind (Low_Bound (R)) = N_Attribute_Reference
7342 and then Nkind (High_Bound (R)) = N_Attribute_Reference
7343 then
7344 Checks_Off := True;
7345 end if;
7347 Process_Range_Expr_In_Decl
7348 (R, T, Related_Nod, Empty_List, Checks_Off);
7350 if not Error_Posted (S)
7351 and then
7352 (Nkind (S) /= N_Range
7353 or else Base_Type (T) /= Base_Type (Etype (Low_Bound (S)))
7354 or else Base_Type (T) /= Base_Type (Etype (High_Bound (S))))
7355 then
7356 if Base_Type (T) /= Any_Type
7357 and then Etype (Low_Bound (S)) /= Any_Type
7358 and then Etype (High_Bound (S)) /= Any_Type
7359 then
7360 Error_Msg_N ("range expected", S);
7361 end if;
7362 end if;
7364 elsif Nkind (S) = N_Subtype_Indication then
7365 -- the parser has verified that this is a discrete indication.
7367 Resolve_Discrete_Subtype_Indication (S, T);
7368 R := Range_Expression (Constraint (S));
7370 elsif Nkind (S) = N_Discriminant_Association then
7372 -- syntactically valid in subtype indication.
7374 Error_Msg_N ("invalid index constraint", S);
7375 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
7376 return;
7378 -- Subtype_Mark case, no anonymous subtypes to construct
7380 else
7381 Analyze (S);
7383 if Is_Entity_Name (S) then
7385 if not Is_Type (Entity (S)) then
7386 Error_Msg_N ("expect subtype mark for index constraint", S);
7388 elsif Base_Type (Entity (S)) /= Base_Type (T) then
7389 Wrong_Type (S, Base_Type (T));
7390 end if;
7392 return;
7394 else
7395 Error_Msg_N ("invalid index constraint", S);
7396 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
7397 return;
7398 end if;
7399 end if;
7401 Def_Id :=
7402 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
7404 Set_Etype (Def_Id, Base_Type (T));
7406 if Is_Modular_Integer_Type (T) then
7407 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
7409 elsif Is_Integer_Type (T) then
7410 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
7412 else
7413 Set_Ekind (Def_Id, E_Enumeration_Subtype);
7414 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
7415 end if;
7417 Set_Size_Info (Def_Id, (T));
7418 Set_RM_Size (Def_Id, RM_Size (T));
7419 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
7421 Set_Scalar_Range (Def_Id, R);
7423 Set_Etype (S, Def_Id);
7424 Set_Discrete_RM_Size (Def_Id);
7425 end Constrain_Index;
7427 -----------------------
7428 -- Constrain_Integer --
7429 -----------------------
7431 procedure Constrain_Integer
7432 (Def_Id : Node_Id;
7433 S : Node_Id;
7434 Related_Nod : Node_Id)
7436 T : constant Entity_Id := Entity (Subtype_Mark (S));
7437 C : constant Node_Id := Constraint (S);
7439 begin
7440 Set_Scalar_Range_For_Subtype
7441 (Def_Id, Range_Expression (C), T, Related_Nod);
7443 if Is_Modular_Integer_Type (T) then
7444 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
7445 else
7446 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
7447 end if;
7449 Set_Etype (Def_Id, Base_Type (T));
7450 Set_Size_Info (Def_Id, (T));
7451 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
7452 Set_Discrete_RM_Size (Def_Id);
7454 end Constrain_Integer;
7456 ------------------------------
7457 -- Constrain_Ordinary_Fixed --
7458 ------------------------------
7460 procedure Constrain_Ordinary_Fixed
7461 (Def_Id : Node_Id;
7462 S : Node_Id;
7463 Related_Nod : Node_Id)
7465 T : constant Entity_Id := Entity (Subtype_Mark (S));
7466 C : Node_Id;
7467 D : Node_Id;
7468 Rais : Node_Id;
7470 begin
7471 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
7472 Set_Etype (Def_Id, Base_Type (T));
7473 Set_Size_Info (Def_Id, (T));
7474 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
7475 Set_Small_Value (Def_Id, Small_Value (T));
7477 -- Process the constraint
7479 C := Constraint (S);
7481 -- Delta constraint present
7483 if Nkind (C) = N_Delta_Constraint then
7484 D := Delta_Expression (C);
7485 Analyze_And_Resolve (D, Any_Real);
7486 Check_Delta_Expression (D);
7487 Set_Delta_Value (Def_Id, Expr_Value_R (D));
7489 -- Check that delta value is in range. Obviously we can do this
7490 -- at compile time, but it is strictly a runtime check, and of
7491 -- course there is an ACVC test that checks this!
7493 if Delta_Value (Def_Id) < Delta_Value (T) then
7494 Error_Msg_N ("?delta value is too small", D);
7495 Rais := Make_Raise_Constraint_Error (Sloc (D));
7496 Insert_Action (Declaration_Node (Def_Id), Rais);
7497 end if;
7499 C := Range_Constraint (C);
7501 -- No delta constraint present
7503 else
7504 Set_Delta_Value (Def_Id, Delta_Value (T));
7505 end if;
7507 -- Range constraint present
7509 if Nkind (C) = N_Range_Constraint then
7510 Set_Scalar_Range_For_Subtype
7511 (Def_Id, Range_Expression (C), T, Related_Nod);
7513 -- No range constraint present
7515 else
7516 pragma Assert (No (C));
7517 Set_Scalar_Range (Def_Id, Scalar_Range (T));
7519 end if;
7521 Set_Discrete_RM_Size (Def_Id);
7523 -- Unconditionally delay the freeze, since we cannot set size
7524 -- information in all cases correctly until the freeze point.
7526 Set_Has_Delayed_Freeze (Def_Id);
7527 end Constrain_Ordinary_Fixed;
7529 ---------------------------
7530 -- Convert_Scalar_Bounds --
7531 ---------------------------
7533 procedure Convert_Scalar_Bounds
7534 (N : Node_Id;
7535 Parent_Type : Entity_Id;
7536 Derived_Type : Entity_Id;
7537 Loc : Source_Ptr)
7539 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
7541 Lo : Node_Id;
7542 Hi : Node_Id;
7543 Rng : Node_Id;
7545 begin
7546 Lo := Build_Scalar_Bound
7547 (Type_Low_Bound (Derived_Type),
7548 Parent_Type, Implicit_Base, Loc);
7550 Hi := Build_Scalar_Bound
7551 (Type_High_Bound (Derived_Type),
7552 Parent_Type, Implicit_Base, Loc);
7554 Rng :=
7555 Make_Range (Loc,
7556 Low_Bound => Lo,
7557 High_Bound => Hi);
7559 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
7561 Set_Parent (Rng, N);
7562 Set_Scalar_Range (Derived_Type, Rng);
7564 -- Analyze the bounds
7566 Analyze_And_Resolve (Lo, Implicit_Base);
7567 Analyze_And_Resolve (Hi, Implicit_Base);
7569 -- Analyze the range itself, except that we do not analyze it if
7570 -- the bounds are real literals, and we have a fixed-point type.
7571 -- The reason for this is that we delay setting the bounds in this
7572 -- case till we know the final Small and Size values (see circuit
7573 -- in Freeze.Freeze_Fixed_Point_Type for further details).
7575 if Is_Fixed_Point_Type (Parent_Type)
7576 and then Nkind (Lo) = N_Real_Literal
7577 and then Nkind (Hi) = N_Real_Literal
7578 then
7579 return;
7581 -- Here we do the analysis of the range.
7583 -- Note: we do this manually, since if we do a normal Analyze and
7584 -- Resolve call, there are problems with the conversions used for
7585 -- the derived type range.
7587 else
7588 Set_Etype (Rng, Implicit_Base);
7589 Set_Analyzed (Rng, True);
7590 end if;
7591 end Convert_Scalar_Bounds;
7593 -------------------
7594 -- Copy_And_Swap --
7595 -------------------
7597 procedure Copy_And_Swap (Privat, Full : Entity_Id) is
7598 begin
7599 -- Initialize new full declaration entity by copying the pertinent
7600 -- fields of the corresponding private declaration entity.
7602 Copy_Private_To_Full (Privat, Full);
7604 -- Swap the two entities. Now Privat is the full type entity and
7605 -- Full is the private one. They will be swapped back at the end
7606 -- of the private part. This swapping ensures that the entity that
7607 -- is visible in the private part is the full declaration.
7609 Exchange_Entities (Privat, Full);
7610 Append_Entity (Full, Scope (Full));
7611 end Copy_And_Swap;
7613 -------------------------------------
7614 -- Copy_Array_Base_Type_Attributes --
7615 -------------------------------------
7617 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
7618 begin
7619 Set_Component_Alignment (T1, Component_Alignment (T2));
7620 Set_Component_Type (T1, Component_Type (T2));
7621 Set_Component_Size (T1, Component_Size (T2));
7622 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
7623 Set_Finalize_Storage_Only (T1, Finalize_Storage_Only (T2));
7624 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
7625 Set_Has_Task (T1, Has_Task (T2));
7626 Set_Is_Packed (T1, Is_Packed (T2));
7627 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
7628 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
7629 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
7630 end Copy_Array_Base_Type_Attributes;
7632 -----------------------------------
7633 -- Copy_Array_Subtype_Attributes --
7634 -----------------------------------
7636 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
7637 begin
7638 Set_Size_Info (T1, T2);
7640 Set_First_Index (T1, First_Index (T2));
7641 Set_Is_Aliased (T1, Is_Aliased (T2));
7642 Set_Is_Atomic (T1, Is_Atomic (T2));
7643 Set_Is_Volatile (T1, Is_Volatile (T2));
7644 Set_Is_Constrained (T1, Is_Constrained (T2));
7645 Set_Depends_On_Private (T1, Has_Private_Component (T2));
7646 Set_First_Rep_Item (T1, First_Rep_Item (T2));
7647 Set_Convention (T1, Convention (T2));
7648 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
7649 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
7650 end Copy_Array_Subtype_Attributes;
7652 --------------------------
7653 -- Copy_Private_To_Full --
7654 --------------------------
7656 procedure Copy_Private_To_Full (Priv, Full : Entity_Id) is
7657 begin
7658 -- We temporarily set Ekind to a value appropriate for a type to
7659 -- avoid assert failures in Einfo from checking for setting type
7660 -- attributes on something that is not a type. Ekind (Priv) is an
7661 -- appropriate choice, since it allowed the attributes to be set
7662 -- in the first place. This Ekind value will be modified later.
7664 Set_Ekind (Full, Ekind (Priv));
7666 -- Also set Etype temporarily to Any_Type, again, in the absence
7667 -- of errors, it will be properly reset, and if there are errors,
7668 -- then we want a value of Any_Type to remain.
7670 Set_Etype (Full, Any_Type);
7672 -- Now start copying attributes
7674 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
7676 if Has_Discriminants (Full) then
7677 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
7678 Set_Girder_Constraint (Full, Girder_Constraint (Priv));
7679 end if;
7681 Set_Homonym (Full, Homonym (Priv));
7682 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
7683 Set_Is_Public (Full, Is_Public (Priv));
7684 Set_Is_Pure (Full, Is_Pure (Priv));
7685 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
7687 Conditional_Delay (Full, Priv);
7689 if Is_Tagged_Type (Full) then
7690 Set_Primitive_Operations (Full, Primitive_Operations (Priv));
7692 if Priv = Base_Type (Priv) then
7693 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
7694 end if;
7695 end if;
7697 Set_Is_Volatile (Full, Is_Volatile (Priv));
7698 Set_Scope (Full, Scope (Priv));
7699 Set_Next_Entity (Full, Next_Entity (Priv));
7700 Set_First_Entity (Full, First_Entity (Priv));
7701 Set_Last_Entity (Full, Last_Entity (Priv));
7703 -- If access types have been recorded for later handling, keep them
7704 -- in the full view so that they get handled when the full view freeze
7705 -- node is expanded.
7707 if Present (Freeze_Node (Priv))
7708 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
7709 then
7710 Ensure_Freeze_Node (Full);
7711 Set_Access_Types_To_Process (Freeze_Node (Full),
7712 Access_Types_To_Process (Freeze_Node (Priv)));
7713 end if;
7714 end Copy_Private_To_Full;
7716 -----------------------------------
7717 -- Create_Constrained_Components --
7718 -----------------------------------
7720 procedure Create_Constrained_Components
7721 (Subt : Entity_Id;
7722 Decl_Node : Node_Id;
7723 Typ : Entity_Id;
7724 Constraints : Elist_Id)
7726 Loc : constant Source_Ptr := Sloc (Subt);
7727 Assoc_List : List_Id := New_List;
7728 Comp_List : Elist_Id := New_Elmt_List;
7729 Discr_Val : Elmt_Id;
7730 Errors : Boolean;
7731 New_C : Entity_Id;
7732 Old_C : Entity_Id;
7733 Is_Static : Boolean := True;
7734 Parent_Type : constant Entity_Id := Etype (Typ);
7736 procedure Collect_Fixed_Components (Typ : Entity_Id);
7737 -- Collect components of parent type that do not appear in a variant
7738 -- part.
7740 procedure Create_All_Components;
7741 -- Iterate over Comp_List to create the components of the subtype.
7743 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
7744 -- Creates a new component from Old_Compon, coppying all the fields from
7745 -- it, including its Etype, inserts the new component in the Subt entity
7746 -- chain and returns the new component.
7748 function Is_Variant_Record (T : Entity_Id) return Boolean;
7749 -- If true, and discriminants are static, collect only components from
7750 -- variants selected by discriminant values.
7752 ------------------------------
7753 -- Collect_Fixed_Components --
7754 ------------------------------
7756 procedure Collect_Fixed_Components (Typ : Entity_Id) is
7757 begin
7758 -- Build association list for discriminants, and find components of
7759 -- the variant part selected by the values of the discriminants.
7761 Old_C := First_Discriminant (Typ);
7762 Discr_Val := First_Elmt (Constraints);
7764 while Present (Old_C) loop
7765 Append_To (Assoc_List,
7766 Make_Component_Association (Loc,
7767 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
7768 Expression => New_Copy (Node (Discr_Val))));
7770 Next_Elmt (Discr_Val);
7771 Next_Discriminant (Old_C);
7772 end loop;
7774 -- The tag, and the possible parent and controller components
7775 -- are unconditionally in the subtype.
7777 if Is_Tagged_Type (Typ)
7778 or else Has_Controlled_Component (Typ)
7779 then
7780 Old_C := First_Component (Typ);
7782 while Present (Old_C) loop
7783 if Chars ((Old_C)) = Name_uTag
7784 or else Chars ((Old_C)) = Name_uParent
7785 or else Chars ((Old_C)) = Name_uController
7786 then
7787 Append_Elmt (Old_C, Comp_List);
7788 end if;
7790 Next_Component (Old_C);
7791 end loop;
7792 end if;
7793 end Collect_Fixed_Components;
7795 ---------------------------
7796 -- Create_All_Components --
7797 ---------------------------
7799 procedure Create_All_Components is
7800 Comp : Elmt_Id;
7802 begin
7803 Comp := First_Elmt (Comp_List);
7805 while Present (Comp) loop
7806 Old_C := Node (Comp);
7807 New_C := Create_Component (Old_C);
7809 Set_Etype
7810 (New_C,
7811 Constrain_Component_Type
7812 (Etype (Old_C), Subt, Decl_Node, Typ, Constraints));
7813 Set_Is_Public (New_C, Is_Public (Subt));
7815 Next_Elmt (Comp);
7816 end loop;
7817 end Create_All_Components;
7819 ----------------------
7820 -- Create_Component --
7821 ----------------------
7823 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
7824 New_Compon : Entity_Id := New_Copy (Old_Compon);
7826 begin
7827 -- Set the parent so we have a proper link for freezing etc. This
7828 -- is not a real parent pointer, since of course our parent does
7829 -- not own up to us and reference us, we are an illegitimate
7830 -- child of the original parent!
7832 Set_Parent (New_Compon, Parent (Old_Compon));
7834 -- We do not want this node marked as Comes_From_Source, since
7835 -- otherwise it would get first class status and a separate
7836 -- cross-reference line would be generated. Illegitimate
7837 -- children do not rate such recognition.
7839 Set_Comes_From_Source (New_Compon, False);
7841 -- But it is a real entity, and a birth certificate must be
7842 -- properly registered by entering it into the entity list.
7844 Enter_Name (New_Compon);
7845 return New_Compon;
7846 end Create_Component;
7848 -----------------------
7849 -- Is_Variant_Record --
7850 -----------------------
7852 function Is_Variant_Record (T : Entity_Id) return Boolean is
7853 begin
7854 return Nkind (Parent (T)) = N_Full_Type_Declaration
7855 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
7856 and then Present (Component_List (Type_Definition (Parent (T))))
7857 and then Present (
7858 Variant_Part (Component_List (Type_Definition (Parent (T)))));
7859 end Is_Variant_Record;
7861 -- Start of processing for Create_Constrained_Components
7863 begin
7864 pragma Assert (Subt /= Base_Type (Subt));
7865 pragma Assert (Typ = Base_Type (Typ));
7867 Set_First_Entity (Subt, Empty);
7868 Set_Last_Entity (Subt, Empty);
7870 -- Check whether constraint is fully static, in which case we can
7871 -- optimize the list of components.
7873 Discr_Val := First_Elmt (Constraints);
7875 while Present (Discr_Val) loop
7877 if not Is_OK_Static_Expression (Node (Discr_Val)) then
7878 Is_Static := False;
7879 exit;
7880 end if;
7882 Next_Elmt (Discr_Val);
7883 end loop;
7885 New_Scope (Subt);
7887 -- Inherit the discriminants of the parent type.
7889 Old_C := First_Discriminant (Typ);
7891 while Present (Old_C) loop
7892 New_C := Create_Component (Old_C);
7893 Set_Is_Public (New_C, Is_Public (Subt));
7894 Next_Discriminant (Old_C);
7895 end loop;
7897 if Is_Static
7898 and then Is_Variant_Record (Typ)
7899 then
7900 Collect_Fixed_Components (Typ);
7902 Gather_Components (
7903 Typ,
7904 Component_List (Type_Definition (Parent (Typ))),
7905 Governed_By => Assoc_List,
7906 Into => Comp_List,
7907 Report_Errors => Errors);
7908 pragma Assert (not Errors);
7910 Create_All_Components;
7912 -- If the subtype declaration is created for a tagged type derivation
7913 -- with constraints, we retrieve the record definition of the parent
7914 -- type to select the components of the proper variant.
7916 elsif Is_Static
7917 and then Is_Tagged_Type (Typ)
7918 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
7919 and then
7920 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
7921 and then Is_Variant_Record (Parent_Type)
7922 then
7923 Collect_Fixed_Components (Typ);
7925 Gather_Components (
7926 Typ,
7927 Component_List (Type_Definition (Parent (Parent_Type))),
7928 Governed_By => Assoc_List,
7929 Into => Comp_List,
7930 Report_Errors => Errors);
7931 pragma Assert (not Errors);
7933 -- If the tagged derivation has a type extension, collect all the
7934 -- new components therein.
7936 if Present (
7937 Record_Extension_Part (Type_Definition (Parent (Typ))))
7938 then
7939 Old_C := First_Component (Typ);
7941 while Present (Old_C) loop
7942 if Original_Record_Component (Old_C) = Old_C
7943 and then Chars (Old_C) /= Name_uTag
7944 and then Chars (Old_C) /= Name_uParent
7945 and then Chars (Old_C) /= Name_uController
7946 then
7947 Append_Elmt (Old_C, Comp_List);
7948 end if;
7950 Next_Component (Old_C);
7951 end loop;
7952 end if;
7954 Create_All_Components;
7956 else
7957 -- If the discriminants are not static, or if this is a multi-level
7958 -- type extension, we have to include all the components of the
7959 -- parent type.
7961 Old_C := First_Component (Typ);
7963 while Present (Old_C) loop
7964 New_C := Create_Component (Old_C);
7966 Set_Etype
7967 (New_C,
7968 Constrain_Component_Type
7969 (Etype (Old_C), Subt, Decl_Node, Typ, Constraints));
7970 Set_Is_Public (New_C, Is_Public (Subt));
7972 Next_Component (Old_C);
7973 end loop;
7974 end if;
7976 End_Scope;
7977 end Create_Constrained_Components;
7979 ------------------------------------------
7980 -- Decimal_Fixed_Point_Type_Declaration --
7981 ------------------------------------------
7983 procedure Decimal_Fixed_Point_Type_Declaration
7984 (T : Entity_Id;
7985 Def : Node_Id)
7987 Loc : constant Source_Ptr := Sloc (Def);
7988 Digs_Expr : constant Node_Id := Digits_Expression (Def);
7989 Delta_Expr : constant Node_Id := Delta_Expression (Def);
7990 Implicit_Base : Entity_Id;
7991 Digs_Val : Uint;
7992 Delta_Val : Ureal;
7993 Scale_Val : Uint;
7994 Bound_Val : Ureal;
7996 -- Start of processing for Decimal_Fixed_Point_Type_Declaration
7998 begin
7999 Check_Restriction (No_Fixed_Point, Def);
8001 -- Create implicit base type
8003 Implicit_Base :=
8004 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
8005 Set_Etype (Implicit_Base, Implicit_Base);
8007 -- Analyze and process delta expression
8009 Analyze_And_Resolve (Delta_Expr, Universal_Real);
8011 Check_Delta_Expression (Delta_Expr);
8012 Delta_Val := Expr_Value_R (Delta_Expr);
8014 -- Check delta is power of 10, and determine scale value from it
8016 declare
8017 Val : Ureal := Delta_Val;
8019 begin
8020 Scale_Val := Uint_0;
8022 if Val < Ureal_1 then
8023 while Val < Ureal_1 loop
8024 Val := Val * Ureal_10;
8025 Scale_Val := Scale_Val + 1;
8026 end loop;
8028 if Scale_Val > 18 then
8029 Error_Msg_N ("scale exceeds maximum value of 18", Def);
8030 Scale_Val := UI_From_Int (+18);
8031 end if;
8033 else
8034 while Val > Ureal_1 loop
8035 Val := Val / Ureal_10;
8036 Scale_Val := Scale_Val - 1;
8037 end loop;
8039 if Scale_Val < -18 then
8040 Error_Msg_N ("scale is less than minimum value of -18", Def);
8041 Scale_Val := UI_From_Int (-18);
8042 end if;
8043 end if;
8045 if Val /= Ureal_1 then
8046 Error_Msg_N ("delta expression must be a power of 10", Def);
8047 Delta_Val := Ureal_10 ** (-Scale_Val);
8048 end if;
8049 end;
8051 -- Set delta, scale and small (small = delta for decimal type)
8053 Set_Delta_Value (Implicit_Base, Delta_Val);
8054 Set_Scale_Value (Implicit_Base, Scale_Val);
8055 Set_Small_Value (Implicit_Base, Delta_Val);
8057 -- Analyze and process digits expression
8059 Analyze_And_Resolve (Digs_Expr, Any_Integer);
8060 Check_Digits_Expression (Digs_Expr);
8061 Digs_Val := Expr_Value (Digs_Expr);
8063 if Digs_Val > 18 then
8064 Digs_Val := UI_From_Int (+18);
8065 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
8066 end if;
8068 Set_Digits_Value (Implicit_Base, Digs_Val);
8069 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
8071 -- Set range of base type from digits value for now. This will be
8072 -- expanded to represent the true underlying base range by Freeze.
8074 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
8076 -- Set size to zero for now, size will be set at freeze time. We have
8077 -- to do this for ordinary fixed-point, because the size depends on
8078 -- the specified small, and we might as well do the same for decimal
8079 -- fixed-point.
8081 Init_Size_Align (Implicit_Base);
8083 -- Complete entity for first subtype
8085 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
8086 Set_Etype (T, Implicit_Base);
8087 Set_Size_Info (T, Implicit_Base);
8088 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
8089 Set_Digits_Value (T, Digs_Val);
8090 Set_Delta_Value (T, Delta_Val);
8091 Set_Small_Value (T, Delta_Val);
8092 Set_Scale_Value (T, Scale_Val);
8093 Set_Is_Constrained (T);
8095 -- If there are bounds given in the declaration use them as the
8096 -- bounds of the first named subtype.
8098 if Present (Real_Range_Specification (Def)) then
8099 declare
8100 RRS : constant Node_Id := Real_Range_Specification (Def);
8101 Low : constant Node_Id := Low_Bound (RRS);
8102 High : constant Node_Id := High_Bound (RRS);
8103 Low_Val : Ureal;
8104 High_Val : Ureal;
8106 begin
8107 Analyze_And_Resolve (Low, Any_Real);
8108 Analyze_And_Resolve (High, Any_Real);
8109 Check_Real_Bound (Low);
8110 Check_Real_Bound (High);
8111 Low_Val := Expr_Value_R (Low);
8112 High_Val := Expr_Value_R (High);
8114 if Low_Val < (-Bound_Val) then
8115 Error_Msg_N
8116 ("range low bound too small for digits value", Low);
8117 Low_Val := -Bound_Val;
8118 end if;
8120 if High_Val > Bound_Val then
8121 Error_Msg_N
8122 ("range high bound too large for digits value", High);
8123 High_Val := Bound_Val;
8124 end if;
8126 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
8127 end;
8129 -- If no explicit range, use range that corresponds to given
8130 -- digits value. This will end up as the final range for the
8131 -- first subtype.
8133 else
8134 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
8135 end if;
8137 end Decimal_Fixed_Point_Type_Declaration;
8139 -----------------------
8140 -- Derive_Subprogram --
8141 -----------------------
8143 procedure Derive_Subprogram
8144 (New_Subp : in out Entity_Id;
8145 Parent_Subp : Entity_Id;
8146 Derived_Type : Entity_Id;
8147 Parent_Type : Entity_Id;
8148 Actual_Subp : Entity_Id := Empty)
8150 Formal : Entity_Id;
8151 New_Formal : Entity_Id;
8152 Same_Subt : constant Boolean :=
8153 Is_Scalar_Type (Parent_Type)
8154 and then Subtypes_Statically_Compatible (Parent_Type, Derived_Type);
8156 function Is_Private_Overriding return Boolean;
8157 -- If Subp is a private overriding of a visible operation, the in-
8158 -- herited operation derives from the overridden op (even though
8159 -- its body is the overriding one) and the inherited operation is
8160 -- visible now. See sem_disp to see the details of the handling of
8161 -- the overridden subprogram, which is removed from the list of
8162 -- primitive operations of the type.
8164 procedure Replace_Type (Id, New_Id : Entity_Id);
8165 -- When the type is an anonymous access type, create a new access type
8166 -- designating the derived type.
8168 ---------------------------
8169 -- Is_Private_Overriding --
8170 ---------------------------
8172 function Is_Private_Overriding return Boolean is
8173 Prev : Entity_Id;
8175 begin
8176 Prev := Homonym (Parent_Subp);
8178 -- The visible operation that is overriden is a homonym of
8179 -- the parent subprogram. We scan the homonym chain to find
8180 -- the one whose alias is the subprogram we are deriving.
8182 while Present (Prev) loop
8183 if Is_Dispatching_Operation (Parent_Subp)
8184 and then Present (Prev)
8185 and then Ekind (Prev) = Ekind (Parent_Subp)
8186 and then Alias (Prev) = Parent_Subp
8187 and then Scope (Parent_Subp) = Scope (Prev)
8188 and then not Is_Hidden (Prev)
8189 then
8190 return True;
8191 end if;
8193 Prev := Homonym (Prev);
8194 end loop;
8196 return False;
8197 end Is_Private_Overriding;
8199 ------------------
8200 -- Replace_Type --
8201 ------------------
8203 procedure Replace_Type (Id, New_Id : Entity_Id) is
8204 Acc_Type : Entity_Id;
8205 IR : Node_Id;
8207 begin
8208 -- When the type is an anonymous access type, create a new access
8209 -- type designating the derived type. This itype must be elaborated
8210 -- at the point of the derivation, not on subsequent calls that may
8211 -- be out of the proper scope for Gigi, so we insert a reference to
8212 -- it after the derivation.
8214 if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
8215 declare
8216 Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
8218 begin
8219 if Ekind (Desig_Typ) = E_Record_Type_With_Private
8220 and then Present (Full_View (Desig_Typ))
8221 and then not Is_Private_Type (Parent_Type)
8222 then
8223 Desig_Typ := Full_View (Desig_Typ);
8224 end if;
8226 if Base_Type (Desig_Typ) = Base_Type (Parent_Type) then
8227 Acc_Type := New_Copy (Etype (Id));
8228 Set_Etype (Acc_Type, Acc_Type);
8229 Set_Scope (Acc_Type, New_Subp);
8231 -- Compute size of anonymous access type.
8233 if Is_Array_Type (Desig_Typ)
8234 and then not Is_Constrained (Desig_Typ)
8235 then
8236 Init_Size (Acc_Type, 2 * System_Address_Size);
8237 else
8238 Init_Size (Acc_Type, System_Address_Size);
8239 end if;
8241 Init_Alignment (Acc_Type);
8243 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
8245 Set_Etype (New_Id, Acc_Type);
8246 Set_Scope (New_Id, New_Subp);
8248 -- Create a reference to it.
8250 IR := Make_Itype_Reference (Sloc (Parent (Derived_Type)));
8251 Set_Itype (IR, Acc_Type);
8252 Insert_After (Parent (Derived_Type), IR);
8254 else
8255 Set_Etype (New_Id, Etype (Id));
8256 end if;
8257 end;
8258 elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
8259 or else
8260 (Ekind (Etype (Id)) = E_Record_Type_With_Private
8261 and then Present (Full_View (Etype (Id)))
8262 and then Base_Type (Full_View (Etype (Id))) =
8263 Base_Type (Parent_Type))
8264 then
8266 -- Constraint checks on formals are generated during expansion,
8267 -- based on the signature of the original subprogram. The bounds
8268 -- of the derived type are not relevant, and thus we can use
8269 -- the base type for the formals. However, the return type may be
8270 -- used in a context that requires that the proper static bounds
8271 -- be used (a case statement, for example) and for those cases
8272 -- we must use the derived type (first subtype), not its base.
8274 if Etype (Id) = Parent_Type
8275 and then Same_Subt
8276 then
8277 Set_Etype (New_Id, Derived_Type);
8278 else
8279 Set_Etype (New_Id, Base_Type (Derived_Type));
8280 end if;
8282 else
8283 Set_Etype (New_Id, Etype (Id));
8284 end if;
8285 end Replace_Type;
8287 -- Start of processing for Derive_Subprogram
8289 begin
8290 New_Subp :=
8291 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
8292 Set_Ekind (New_Subp, Ekind (Parent_Subp));
8294 -- Check whether the inherited subprogram is a private operation that
8295 -- should be inherited but not yet made visible. Such subprograms can
8296 -- become visible at a later point (e.g., the private part of a public
8297 -- child unit) via Declare_Inherited_Private_Subprograms. If the
8298 -- following predicate is true, then this is not such a private
8299 -- operation and the subprogram simply inherits the name of the parent
8300 -- subprogram. Note the special check for the names of controlled
8301 -- operations, which are currently exempted from being inherited with
8302 -- a hidden name because they must be findable for generation of
8303 -- implicit run-time calls.
8305 if not Is_Hidden (Parent_Subp)
8306 or else Is_Internal (Parent_Subp)
8307 or else Is_Private_Overriding
8308 or else Is_Internal_Name (Chars (Parent_Subp))
8309 or else Chars (Parent_Subp) = Name_Initialize
8310 or else Chars (Parent_Subp) = Name_Adjust
8311 or else Chars (Parent_Subp) = Name_Finalize
8312 then
8313 Set_Chars (New_Subp, Chars (Parent_Subp));
8315 -- If parent is hidden, this can be a regular derivation if the
8316 -- parent is immediately visible in a non-instantiating context,
8317 -- or if we are in the private part of an instance. This test
8318 -- should still be refined ???
8320 -- The test for In_Instance_Not_Visible avoids inheriting the
8321 -- derived operation as a non-visible operation in cases where
8322 -- the parent subprogram might not be visible now, but was
8323 -- visible within the original generic, so it would be wrong
8324 -- to make the inherited subprogram non-visible now. (Not
8325 -- clear if this test is fully correct; are there any cases
8326 -- where we should declare the inherited operation as not
8327 -- visible to avoid it being overridden, e.g., when the
8328 -- parent type is a generic actual with private primitives ???)
8330 -- (they should be treated the same as other private inherited
8331 -- subprograms, but it's not clear how to do this cleanly). ???
8333 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
8334 and then Is_Immediately_Visible (Parent_Subp)
8335 and then not In_Instance)
8336 or else In_Instance_Not_Visible
8337 then
8338 Set_Chars (New_Subp, Chars (Parent_Subp));
8340 -- The type is inheriting a private operation, so enter
8341 -- it with a special name so it can't be overridden.
8343 else
8344 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
8345 end if;
8347 Set_Parent (New_Subp, Parent (Derived_Type));
8348 Replace_Type (Parent_Subp, New_Subp);
8349 Conditional_Delay (New_Subp, Parent_Subp);
8351 Formal := First_Formal (Parent_Subp);
8352 while Present (Formal) loop
8353 New_Formal := New_Copy (Formal);
8355 -- Normally we do not go copying parents, but in the case of
8356 -- formals, we need to link up to the declaration (which is
8357 -- the parameter specification), and it is fine to link up to
8358 -- the original formal's parameter specification in this case.
8360 Set_Parent (New_Formal, Parent (Formal));
8362 Append_Entity (New_Formal, New_Subp);
8364 Replace_Type (Formal, New_Formal);
8365 Next_Formal (Formal);
8366 end loop;
8368 -- If this derivation corresponds to a tagged generic actual, then
8369 -- primitive operations rename those of the actual. Otherwise the
8370 -- primitive operations rename those of the parent type.
8372 if No (Actual_Subp) then
8373 Set_Alias (New_Subp, Parent_Subp);
8374 Set_Is_Intrinsic_Subprogram (New_Subp,
8375 Is_Intrinsic_Subprogram (Parent_Subp));
8377 else
8378 Set_Alias (New_Subp, Actual_Subp);
8379 end if;
8381 -- Derived subprograms of a tagged type must inherit the convention
8382 -- of the parent subprogram (a requirement of AI-117). Derived
8383 -- subprograms of untagged types simply get convention Ada by default.
8385 if Is_Tagged_Type (Derived_Type) then
8386 Set_Convention (New_Subp, Convention (Parent_Subp));
8387 end if;
8389 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
8390 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
8392 if Ekind (Parent_Subp) = E_Procedure then
8393 Set_Is_Valued_Procedure
8394 (New_Subp, Is_Valued_Procedure (Parent_Subp));
8395 end if;
8397 New_Overloaded_Entity (New_Subp, Derived_Type);
8399 -- Check for case of a derived subprogram for the instantiation
8400 -- of a formal derived tagged type, so mark the subprogram as
8401 -- dispatching and inherit the dispatching attributes of the
8402 -- parent subprogram. The derived subprogram is effectively a
8403 -- renaming of the actual subprogram, so it needs to have the
8404 -- same attributes as the actual.
8406 if Present (Actual_Subp)
8407 and then Is_Dispatching_Operation (Parent_Subp)
8408 then
8409 Set_Is_Dispatching_Operation (New_Subp);
8410 if Present (DTC_Entity (Parent_Subp)) then
8411 Set_DTC_Entity (New_Subp, DTC_Entity (Parent_Subp));
8412 Set_DT_Position (New_Subp, DT_Position (Parent_Subp));
8413 end if;
8414 end if;
8416 -- Indicate that a derived subprogram does not require a body
8417 -- and that it does not require processing of default expressions.
8419 Set_Has_Completion (New_Subp);
8420 Set_Default_Expressions_Processed (New_Subp);
8422 -- A derived function with a controlling result is abstract.
8423 -- If the Derived_Type is a nonabstract formal generic derived
8424 -- type, then inherited operations are not abstract: check is
8425 -- done at instantiation time. If the derivation is for a generic
8426 -- actual, the function is not abstract unless the actual is.
8428 if Is_Generic_Type (Derived_Type)
8429 and then not Is_Abstract (Derived_Type)
8430 then
8431 null;
8433 elsif Is_Abstract (Alias (New_Subp))
8434 or else (Is_Tagged_Type (Derived_Type)
8435 and then Etype (New_Subp) = Derived_Type
8436 and then No (Actual_Subp))
8437 then
8438 Set_Is_Abstract (New_Subp);
8439 end if;
8441 if Ekind (New_Subp) = E_Function then
8442 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
8443 end if;
8444 end Derive_Subprogram;
8446 ------------------------
8447 -- Derive_Subprograms --
8448 ------------------------
8450 procedure Derive_Subprograms
8451 (Parent_Type : Entity_Id;
8452 Derived_Type : Entity_Id;
8453 Generic_Actual : Entity_Id := Empty)
8455 Op_List : Elist_Id := Collect_Primitive_Operations (Parent_Type);
8456 Act_List : Elist_Id;
8457 Act_Elmt : Elmt_Id;
8458 Elmt : Elmt_Id;
8459 Subp : Entity_Id;
8460 New_Subp : Entity_Id := Empty;
8461 Parent_Base : Entity_Id;
8463 begin
8464 if Ekind (Parent_Type) = E_Record_Type_With_Private
8465 and then Has_Discriminants (Parent_Type)
8466 and then Present (Full_View (Parent_Type))
8467 then
8468 Parent_Base := Full_View (Parent_Type);
8469 else
8470 Parent_Base := Parent_Type;
8471 end if;
8473 Elmt := First_Elmt (Op_List);
8475 if Present (Generic_Actual) then
8476 Act_List := Collect_Primitive_Operations (Generic_Actual);
8477 Act_Elmt := First_Elmt (Act_List);
8478 else
8479 Act_Elmt := No_Elmt;
8480 end if;
8482 -- Literals are derived earlier in the process of building the
8483 -- derived type, and are skipped here.
8485 while Present (Elmt) loop
8486 Subp := Node (Elmt);
8488 if Ekind (Subp) /= E_Enumeration_Literal then
8489 if No (Generic_Actual) then
8490 Derive_Subprogram
8491 (New_Subp, Subp, Derived_Type, Parent_Base);
8493 else
8494 Derive_Subprogram (New_Subp, Subp,
8495 Derived_Type, Parent_Base, Node (Act_Elmt));
8496 Next_Elmt (Act_Elmt);
8497 end if;
8498 end if;
8500 Next_Elmt (Elmt);
8501 end loop;
8502 end Derive_Subprograms;
8504 --------------------------------
8505 -- Derived_Standard_Character --
8506 --------------------------------
8508 procedure Derived_Standard_Character
8509 (N : Node_Id;
8510 Parent_Type : Entity_Id;
8511 Derived_Type : Entity_Id)
8513 Loc : constant Source_Ptr := Sloc (N);
8514 Def : constant Node_Id := Type_Definition (N);
8515 Indic : constant Node_Id := Subtype_Indication (Def);
8516 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8517 Implicit_Base : constant Entity_Id :=
8518 Create_Itype
8519 (E_Enumeration_Type, N, Derived_Type, 'B');
8521 Lo : Node_Id;
8522 Hi : Node_Id;
8523 T : Entity_Id;
8525 begin
8526 T := Process_Subtype (Indic, N);
8528 Set_Etype (Implicit_Base, Parent_Base);
8529 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
8530 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
8532 Set_Is_Character_Type (Implicit_Base, True);
8533 Set_Has_Delayed_Freeze (Implicit_Base);
8535 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
8536 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
8538 Set_Scalar_Range (Implicit_Base,
8539 Make_Range (Loc,
8540 Low_Bound => Lo,
8541 High_Bound => Hi));
8543 Conditional_Delay (Derived_Type, Parent_Type);
8545 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
8546 Set_Etype (Derived_Type, Implicit_Base);
8547 Set_Size_Info (Derived_Type, Parent_Type);
8549 if Unknown_RM_Size (Derived_Type) then
8550 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8551 end if;
8553 Set_Is_Character_Type (Derived_Type, True);
8555 if Nkind (Indic) /= N_Subtype_Indication then
8556 Set_Scalar_Range (Derived_Type, Scalar_Range (Implicit_Base));
8557 end if;
8559 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
8561 -- Because the implicit base is used in the conversion of the bounds,
8562 -- we have to freeze it now. This is similar to what is done for
8563 -- numeric types, and it equally suspicious, but otherwise a non-
8564 -- static bound will have a reference to an unfrozen type, which is
8565 -- rejected by Gigi (???).
8567 Freeze_Before (N, Implicit_Base);
8569 end Derived_Standard_Character;
8571 ------------------------------
8572 -- Derived_Type_Declaration --
8573 ------------------------------
8575 procedure Derived_Type_Declaration
8576 (T : Entity_Id;
8577 N : Node_Id;
8578 Is_Completion : Boolean)
8580 Def : constant Node_Id := Type_Definition (N);
8581 Indic : constant Node_Id := Subtype_Indication (Def);
8582 Extension : constant Node_Id := Record_Extension_Part (Def);
8583 Parent_Type : Entity_Id;
8584 Parent_Scope : Entity_Id;
8585 Taggd : Boolean;
8587 begin
8588 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
8590 if Parent_Type = Any_Type
8591 or else Etype (Parent_Type) = Any_Type
8592 or else (Is_Class_Wide_Type (Parent_Type)
8593 and then Etype (Parent_Type) = T)
8594 then
8595 -- If Parent_Type is undefined or illegal, make new type into
8596 -- a subtype of Any_Type, and set a few attributes to prevent
8597 -- cascaded errors. If this is a self-definition, emit error now.
8599 if T = Parent_Type
8600 or else T = Etype (Parent_Type)
8601 then
8602 Error_Msg_N ("type cannot be used in its own definition", Indic);
8603 end if;
8605 Set_Ekind (T, Ekind (Parent_Type));
8606 Set_Etype (T, Any_Type);
8607 Set_Scalar_Range (T, Scalar_Range (Any_Type));
8609 if Is_Tagged_Type (T) then
8610 Set_Primitive_Operations (T, New_Elmt_List);
8611 end if;
8612 return;
8614 elsif Is_Unchecked_Union (Parent_Type) then
8615 Error_Msg_N ("cannot derive from Unchecked_Union type", N);
8616 end if;
8618 -- Only composite types other than array types are allowed to have
8619 -- discriminants.
8621 if Present (Discriminant_Specifications (N))
8622 and then (Is_Elementary_Type (Parent_Type)
8623 or else Is_Array_Type (Parent_Type))
8624 and then not Error_Posted (N)
8625 then
8626 Error_Msg_N
8627 ("elementary or array type cannot have discriminants",
8628 Defining_Identifier (First (Discriminant_Specifications (N))));
8629 Set_Has_Discriminants (T, False);
8630 end if;
8632 -- In Ada 83, a derived type defined in a package specification cannot
8633 -- be used for further derivation until the end of its visible part.
8634 -- Note that derivation in the private part of the package is allowed.
8636 if Ada_83
8637 and then Is_Derived_Type (Parent_Type)
8638 and then In_Visible_Part (Scope (Parent_Type))
8639 then
8640 if Ada_83 and then Comes_From_Source (Indic) then
8641 Error_Msg_N
8642 ("(Ada 83): premature use of type for derivation", Indic);
8643 end if;
8644 end if;
8646 -- Check for early use of incomplete or private type
8648 if Ekind (Parent_Type) = E_Void
8649 or else Ekind (Parent_Type) = E_Incomplete_Type
8650 then
8651 Error_Msg_N ("premature derivation of incomplete type", Indic);
8652 return;
8654 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
8655 and then not Is_Generic_Type (Parent_Type)
8656 and then not Is_Generic_Type (Root_Type (Parent_Type))
8657 and then not Is_Generic_Actual_Type (Parent_Type))
8658 or else Has_Private_Component (Parent_Type)
8659 then
8660 -- The ancestor type of a formal type can be incomplete, in which
8661 -- case only the operations of the partial view are available in
8662 -- the generic. Subsequent checks may be required when the full
8663 -- view is analyzed, to verify that derivation from a tagged type
8664 -- has an extension.
8666 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
8667 null;
8669 elsif No (Underlying_Type (Parent_Type))
8670 or else Has_Private_Component (Parent_Type)
8671 then
8672 Error_Msg_N
8673 ("premature derivation of derived or private type", Indic);
8675 -- Flag the type itself as being in error, this prevents some
8676 -- nasty problems with people looking at the malformed type.
8678 Set_Error_Posted (T);
8680 -- Check that within the immediate scope of an untagged partial
8681 -- view it's illegal to derive from the partial view if the
8682 -- full view is tagged. (7.3(7))
8684 -- We verify that the Parent_Type is a partial view by checking
8685 -- that it is not a Full_Type_Declaration (i.e. a private type or
8686 -- private extension declaration), to distinguish a partial view
8687 -- from a derivation from a private type which also appears as
8688 -- E_Private_Type.
8690 elsif Present (Full_View (Parent_Type))
8691 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
8692 and then not Is_Tagged_Type (Parent_Type)
8693 and then Is_Tagged_Type (Full_View (Parent_Type))
8694 then
8695 Parent_Scope := Scope (T);
8696 while Present (Parent_Scope)
8697 and then Parent_Scope /= Standard_Standard
8698 loop
8699 if Parent_Scope = Scope (Parent_Type) then
8700 Error_Msg_N
8701 ("premature derivation from type with tagged full view",
8702 Indic);
8703 end if;
8705 Parent_Scope := Scope (Parent_Scope);
8706 end loop;
8707 end if;
8708 end if;
8710 -- Check that form of derivation is appropriate
8712 Taggd := Is_Tagged_Type (Parent_Type);
8714 -- Perhaps the parent type should be changed to the class-wide type's
8715 -- specific type in this case to prevent cascading errors ???
8717 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
8718 Error_Msg_N ("parent type must not be a class-wide type", Indic);
8719 return;
8720 end if;
8722 if Present (Extension) and then not Taggd then
8723 Error_Msg_N
8724 ("type derived from untagged type cannot have extension", Indic);
8726 elsif No (Extension) and then Taggd then
8727 -- If this is within a private part (or body) of a generic
8728 -- instantiation then the derivation is allowed (the parent
8729 -- type can only appear tagged in this case if it's a generic
8730 -- actual type, since it would otherwise have been rejected
8731 -- in the analysis of the generic template).
8733 if not Is_Generic_Actual_Type (Parent_Type)
8734 or else In_Visible_Part (Scope (Parent_Type))
8735 then
8736 Error_Msg_N
8737 ("type derived from tagged type must have extension", Indic);
8738 end if;
8739 end if;
8741 Build_Derived_Type (N, Parent_Type, T, Is_Completion);
8742 end Derived_Type_Declaration;
8744 ----------------------------------
8745 -- Enumeration_Type_Declaration --
8746 ----------------------------------
8748 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
8749 Ev : Uint;
8750 L : Node_Id;
8751 R_Node : Node_Id;
8752 B_Node : Node_Id;
8754 begin
8755 -- Create identifier node representing lower bound
8757 B_Node := New_Node (N_Identifier, Sloc (Def));
8758 L := First (Literals (Def));
8759 Set_Chars (B_Node, Chars (L));
8760 Set_Entity (B_Node, L);
8761 Set_Etype (B_Node, T);
8762 Set_Is_Static_Expression (B_Node, True);
8764 R_Node := New_Node (N_Range, Sloc (Def));
8765 Set_Low_Bound (R_Node, B_Node);
8767 Set_Ekind (T, E_Enumeration_Type);
8768 Set_First_Literal (T, L);
8769 Set_Etype (T, T);
8770 Set_Is_Constrained (T);
8772 Ev := Uint_0;
8774 -- Loop through literals of enumeration type setting pos and rep values
8775 -- except that if the Ekind is already set, then it means that the
8776 -- literal was already constructed (case of a derived type declaration
8777 -- and we should not disturb the Pos and Rep values.
8779 while Present (L) loop
8780 if Ekind (L) /= E_Enumeration_Literal then
8781 Set_Ekind (L, E_Enumeration_Literal);
8782 Set_Enumeration_Pos (L, Ev);
8783 Set_Enumeration_Rep (L, Ev);
8784 Set_Is_Known_Valid (L, True);
8785 end if;
8787 Set_Etype (L, T);
8788 New_Overloaded_Entity (L);
8789 Generate_Definition (L);
8790 Set_Convention (L, Convention_Intrinsic);
8792 if Nkind (L) = N_Defining_Character_Literal then
8793 Set_Is_Character_Type (T, True);
8794 end if;
8796 Ev := Ev + 1;
8797 Next (L);
8798 end loop;
8800 -- Now create a node representing upper bound
8802 B_Node := New_Node (N_Identifier, Sloc (Def));
8803 Set_Chars (B_Node, Chars (Last (Literals (Def))));
8804 Set_Entity (B_Node, Last (Literals (Def)));
8805 Set_Etype (B_Node, T);
8806 Set_Is_Static_Expression (B_Node, True);
8808 Set_High_Bound (R_Node, B_Node);
8809 Set_Scalar_Range (T, R_Node);
8810 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
8811 Set_Enum_Esize (T);
8813 -- Set Discard_Names if configuration pragma setg, or if there is
8814 -- a parameterless pragma in the current declarative region
8816 if Global_Discard_Names
8817 or else Discard_Names (Scope (T))
8818 then
8819 Set_Discard_Names (T);
8820 end if;
8821 end Enumeration_Type_Declaration;
8823 --------------------------
8824 -- Expand_Others_Choice --
8825 --------------------------
8827 procedure Expand_Others_Choice
8828 (Case_Table : Choice_Table_Type;
8829 Others_Choice : Node_Id;
8830 Choice_Type : Entity_Id)
8832 Choice : Node_Id;
8833 Choice_List : List_Id := New_List;
8834 Exp_Lo : Node_Id;
8835 Exp_Hi : Node_Id;
8836 Hi : Uint;
8837 Lo : Uint;
8838 Loc : Source_Ptr := Sloc (Others_Choice);
8839 Previous_Hi : Uint;
8841 function Build_Choice (Value1, Value2 : Uint) return Node_Id;
8842 -- Builds a node representing the missing choices given by the
8843 -- Value1 and Value2. A N_Range node is built if there is more than
8844 -- one literal value missing. Otherwise a single N_Integer_Literal,
8845 -- N_Identifier or N_Character_Literal is built depending on what
8846 -- Choice_Type is.
8848 function Lit_Of (Value : Uint) return Node_Id;
8849 -- Returns the Node_Id for the enumeration literal corresponding to the
8850 -- position given by Value within the enumeration type Choice_Type.
8852 ------------------
8853 -- Build_Choice --
8854 ------------------
8856 function Build_Choice (Value1, Value2 : Uint) return Node_Id is
8857 Lit_Node : Node_Id;
8858 Lo, Hi : Node_Id;
8860 begin
8861 -- If there is only one choice value missing between Value1 and
8862 -- Value2, build an integer or enumeration literal to represent it.
8864 if (Value2 - Value1) = 0 then
8865 if Is_Integer_Type (Choice_Type) then
8866 Lit_Node := Make_Integer_Literal (Loc, Value1);
8867 Set_Etype (Lit_Node, Choice_Type);
8868 else
8869 Lit_Node := Lit_Of (Value1);
8870 end if;
8872 -- Otherwise is more that one choice value that is missing between
8873 -- Value1 and Value2, therefore build a N_Range node of either
8874 -- integer or enumeration literals.
8876 else
8877 if Is_Integer_Type (Choice_Type) then
8878 Lo := Make_Integer_Literal (Loc, Value1);
8879 Set_Etype (Lo, Choice_Type);
8880 Hi := Make_Integer_Literal (Loc, Value2);
8881 Set_Etype (Hi, Choice_Type);
8882 Lit_Node :=
8883 Make_Range (Loc,
8884 Low_Bound => Lo,
8885 High_Bound => Hi);
8887 else
8888 Lit_Node :=
8889 Make_Range (Loc,
8890 Low_Bound => Lit_Of (Value1),
8891 High_Bound => Lit_Of (Value2));
8892 end if;
8893 end if;
8895 return Lit_Node;
8896 end Build_Choice;
8898 ------------
8899 -- Lit_Of --
8900 ------------
8902 function Lit_Of (Value : Uint) return Node_Id is
8903 Lit : Entity_Id;
8905 begin
8906 -- In the case where the literal is of type Character, there needs
8907 -- to be some special handling since there is no explicit chain
8908 -- of literals to search. Instead, a N_Character_Literal node
8909 -- is created with the appropriate Char_Code and Chars fields.
8911 if Root_Type (Choice_Type) = Standard_Character then
8912 Set_Character_Literal_Name (Char_Code (UI_To_Int (Value)));
8913 Lit := New_Node (N_Character_Literal, Loc);
8914 Set_Chars (Lit, Name_Find);
8915 Set_Char_Literal_Value (Lit, Char_Code (UI_To_Int (Value)));
8916 Set_Etype (Lit, Choice_Type);
8917 Set_Is_Static_Expression (Lit, True);
8918 return Lit;
8920 -- Otherwise, iterate through the literals list of Choice_Type
8921 -- "Value" number of times until the desired literal is reached
8922 -- and then return an occurrence of it.
8924 else
8925 Lit := First_Literal (Choice_Type);
8926 for J in 1 .. UI_To_Int (Value) loop
8927 Next_Literal (Lit);
8928 end loop;
8930 return New_Occurrence_Of (Lit, Loc);
8931 end if;
8932 end Lit_Of;
8934 -- Start of processing for Expand_Others_Choice
8936 begin
8937 if Case_Table'Length = 0 then
8939 -- Pathological case: only an others case is present.
8940 -- The others case covers the full range of the type.
8942 if Is_Static_Subtype (Choice_Type) then
8943 Choice := New_Occurrence_Of (Choice_Type, Loc);
8944 else
8945 Choice := New_Occurrence_Of (Base_Type (Choice_Type), Loc);
8946 end if;
8948 Set_Others_Discrete_Choices (Others_Choice, New_List (Choice));
8949 return;
8950 end if;
8952 -- Establish the bound values for the variant depending upon whether
8953 -- the type of the discriminant name is static or not.
8955 if Is_OK_Static_Subtype (Choice_Type) then
8956 Exp_Lo := Type_Low_Bound (Choice_Type);
8957 Exp_Hi := Type_High_Bound (Choice_Type);
8958 else
8959 Exp_Lo := Type_Low_Bound (Base_Type (Choice_Type));
8960 Exp_Hi := Type_High_Bound (Base_Type (Choice_Type));
8961 end if;
8963 Lo := Expr_Value (Case_Table (Case_Table'First).Lo);
8964 Hi := Expr_Value (Case_Table (Case_Table'First).Hi);
8965 Previous_Hi := Expr_Value (Case_Table (Case_Table'First).Hi);
8967 -- Build the node for any missing choices that are smaller than any
8968 -- explicit choices given in the variant.
8970 if Expr_Value (Exp_Lo) < Lo then
8971 Append (Build_Choice (Expr_Value (Exp_Lo), Lo - 1), Choice_List);
8972 end if;
8974 -- Build the nodes representing any missing choices that lie between
8975 -- the explicit ones given in the variant.
8977 for J in Case_Table'First + 1 .. Case_Table'Last loop
8978 Lo := Expr_Value (Case_Table (J).Lo);
8979 Hi := Expr_Value (Case_Table (J).Hi);
8981 if Lo /= (Previous_Hi + 1) then
8982 Append_To (Choice_List, Build_Choice (Previous_Hi + 1, Lo - 1));
8983 end if;
8985 Previous_Hi := Hi;
8986 end loop;
8988 -- Build the node for any missing choices that are greater than any
8989 -- explicit choices given in the variant.
8991 if Expr_Value (Exp_Hi) > Hi then
8992 Append (Build_Choice (Hi + 1, Expr_Value (Exp_Hi)), Choice_List);
8993 end if;
8995 Set_Others_Discrete_Choices (Others_Choice, Choice_List);
8996 end Expand_Others_Choice;
8998 ---------------------------------
8999 -- Expand_To_Girder_Constraint --
9000 ---------------------------------
9002 function Expand_To_Girder_Constraint
9003 (Typ : Entity_Id;
9004 Constraint : Elist_Id)
9005 return Elist_Id
9007 Explicitly_Discriminated_Type : Entity_Id;
9008 Expansion : Elist_Id;
9009 Discriminant : Entity_Id;
9011 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
9012 -- Find the nearest type that actually specifies discriminants.
9014 ---------------------------------
9015 -- Type_With_Explicit_Discrims --
9016 ---------------------------------
9018 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
9019 Typ : constant E := Base_Type (Id);
9021 begin
9022 if Ekind (Typ) in Incomplete_Or_Private_Kind then
9023 if Present (Full_View (Typ)) then
9024 return Type_With_Explicit_Discrims (Full_View (Typ));
9025 end if;
9027 else
9028 if Has_Discriminants (Typ) then
9029 return Typ;
9030 end if;
9031 end if;
9033 if Etype (Typ) = Typ then
9034 return Empty;
9035 elsif Has_Discriminants (Typ) then
9036 return Typ;
9037 else
9038 return Type_With_Explicit_Discrims (Etype (Typ));
9039 end if;
9041 end Type_With_Explicit_Discrims;
9043 -- Start of processing for Expand_To_Girder_Constraint
9045 begin
9046 if No (Constraint)
9047 or else Is_Empty_Elmt_List (Constraint)
9048 then
9049 return No_Elist;
9050 end if;
9052 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
9054 if No (Explicitly_Discriminated_Type) then
9055 return No_Elist;
9056 end if;
9058 Expansion := New_Elmt_List;
9060 Discriminant :=
9061 First_Girder_Discriminant (Explicitly_Discriminated_Type);
9063 while Present (Discriminant) loop
9065 Append_Elmt (
9066 Get_Discriminant_Value (
9067 Discriminant, Explicitly_Discriminated_Type, Constraint),
9068 Expansion);
9070 Next_Girder_Discriminant (Discriminant);
9071 end loop;
9073 return Expansion;
9074 end Expand_To_Girder_Constraint;
9076 --------------------
9077 -- Find_Type_Name --
9078 --------------------
9080 function Find_Type_Name (N : Node_Id) return Entity_Id is
9081 Id : constant Entity_Id := Defining_Identifier (N);
9082 Prev : Entity_Id;
9083 New_Id : Entity_Id;
9084 Prev_Par : Node_Id;
9086 begin
9087 -- Find incomplete declaration, if some was given.
9089 Prev := Current_Entity_In_Scope (Id);
9091 if Present (Prev) then
9093 -- Previous declaration exists. Error if not incomplete/private case
9094 -- except if previous declaration is implicit, etc. Enter_Name will
9095 -- emit error if appropriate.
9097 Prev_Par := Parent (Prev);
9099 if not Is_Incomplete_Or_Private_Type (Prev) then
9100 Enter_Name (Id);
9101 New_Id := Id;
9103 elsif Nkind (N) /= N_Full_Type_Declaration
9104 and then Nkind (N) /= N_Task_Type_Declaration
9105 and then Nkind (N) /= N_Protected_Type_Declaration
9106 then
9107 -- Completion must be a full type declarations (RM 7.3(4))
9109 Error_Msg_Sloc := Sloc (Prev);
9110 Error_Msg_NE ("invalid completion of }", Id, Prev);
9112 -- Set scope of Id to avoid cascaded errors. Entity is never
9113 -- examined again, except when saving globals in generics.
9115 Set_Scope (Id, Current_Scope);
9116 New_Id := Id;
9118 -- Case of full declaration of incomplete type
9120 elsif Ekind (Prev) = E_Incomplete_Type then
9122 -- Indicate that the incomplete declaration has a matching
9123 -- full declaration. The defining occurrence of the incomplete
9124 -- declaration remains the visible one, and the procedure
9125 -- Get_Full_View dereferences it whenever the type is used.
9127 if Present (Full_View (Prev)) then
9128 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
9129 end if;
9131 Set_Full_View (Prev, Id);
9132 Append_Entity (Id, Current_Scope);
9133 Set_Is_Public (Id, Is_Public (Prev));
9134 Set_Is_Internal (Id);
9135 New_Id := Prev;
9137 -- Case of full declaration of private type
9139 else
9140 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
9141 if Etype (Prev) /= Prev then
9143 -- Prev is a private subtype or a derived type, and needs
9144 -- no completion.
9146 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
9147 New_Id := Id;
9149 elsif Ekind (Prev) = E_Private_Type
9150 and then
9151 (Nkind (N) = N_Task_Type_Declaration
9152 or else Nkind (N) = N_Protected_Type_Declaration)
9153 then
9154 Error_Msg_N
9155 ("completion of nonlimited type cannot be limited", N);
9156 end if;
9158 elsif Nkind (N) /= N_Full_Type_Declaration
9159 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
9160 then
9161 Error_Msg_N ("full view of private extension must be"
9162 & " an extension", N);
9164 elsif not (Abstract_Present (Parent (Prev)))
9165 and then Abstract_Present (Type_Definition (N))
9166 then
9167 Error_Msg_N ("full view of non-abstract extension cannot"
9168 & " be abstract", N);
9169 end if;
9171 if not In_Private_Part (Current_Scope) then
9172 Error_Msg_N
9173 ("declaration of full view must appear in private part", N);
9174 end if;
9176 Copy_And_Swap (Prev, Id);
9177 Set_Full_View (Id, Prev);
9178 Set_Has_Private_Declaration (Prev);
9179 Set_Has_Private_Declaration (Id);
9180 New_Id := Prev;
9181 end if;
9183 -- Verify that full declaration conforms to incomplete one
9185 if Is_Incomplete_Or_Private_Type (Prev)
9186 and then Present (Discriminant_Specifications (Prev_Par))
9187 then
9188 if Present (Discriminant_Specifications (N)) then
9189 if Ekind (Prev) = E_Incomplete_Type then
9190 Check_Discriminant_Conformance (N, Prev, Prev);
9191 else
9192 Check_Discriminant_Conformance (N, Prev, Id);
9193 end if;
9195 else
9196 Error_Msg_N
9197 ("missing discriminants in full type declaration", N);
9199 -- To avoid cascaded errors on subsequent use, share the
9200 -- discriminants of the partial view.
9202 Set_Discriminant_Specifications (N,
9203 Discriminant_Specifications (Prev_Par));
9204 end if;
9205 end if;
9207 -- A prior untagged private type can have an associated
9208 -- class-wide type due to use of the class attribute,
9209 -- and in this case also the full type is required to
9210 -- be tagged.
9212 if Is_Type (Prev)
9213 and then (Is_Tagged_Type (Prev)
9214 or else Present (Class_Wide_Type (Prev)))
9215 then
9216 -- The full declaration is either a tagged record or an
9217 -- extension otherwise this is an error
9219 if Nkind (Type_Definition (N)) = N_Record_Definition then
9220 if not Tagged_Present (Type_Definition (N)) then
9221 Error_Msg_NE
9222 ("full declaration of } must be tagged", Prev, Id);
9223 Set_Is_Tagged_Type (Id);
9224 Set_Primitive_Operations (Id, New_Elmt_List);
9225 end if;
9227 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
9228 if No (Record_Extension_Part (Type_Definition (N))) then
9229 Error_Msg_NE (
9230 "full declaration of } must be a record extension",
9231 Prev, Id);
9232 Set_Is_Tagged_Type (Id);
9233 Set_Primitive_Operations (Id, New_Elmt_List);
9234 end if;
9236 else
9237 Error_Msg_NE
9238 ("full declaration of } must be a tagged type", Prev, Id);
9240 end if;
9241 end if;
9243 return New_Id;
9245 else
9246 -- New type declaration
9248 Enter_Name (Id);
9249 return Id;
9250 end if;
9251 end Find_Type_Name;
9253 -------------------------
9254 -- Find_Type_Of_Object --
9255 -------------------------
9257 function Find_Type_Of_Object
9258 (Obj_Def : Node_Id;
9259 Related_Nod : Node_Id)
9260 return Entity_Id
9262 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
9263 P : constant Node_Id := Parent (Obj_Def);
9264 T : Entity_Id;
9265 Nam : Name_Id;
9267 begin
9268 -- Case of an anonymous array subtype
9270 if Def_Kind = N_Constrained_Array_Definition
9271 or else Def_Kind = N_Unconstrained_Array_Definition
9272 then
9273 T := Empty;
9274 Array_Type_Declaration (T, Obj_Def);
9276 -- Create an explicit subtype whenever possible.
9278 elsif Nkind (P) /= N_Component_Declaration
9279 and then Def_Kind = N_Subtype_Indication
9280 then
9281 -- Base name of subtype on object name, which will be unique in
9282 -- the current scope.
9284 -- If this is a duplicate declaration, return base type, to avoid
9285 -- generating duplicate anonymous types.
9287 if Error_Posted (P) then
9288 Analyze (Subtype_Mark (Obj_Def));
9289 return Entity (Subtype_Mark (Obj_Def));
9290 end if;
9292 Nam :=
9293 New_External_Name
9294 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
9296 T := Make_Defining_Identifier (Sloc (P), Nam);
9298 Insert_Action (Obj_Def,
9299 Make_Subtype_Declaration (Sloc (P),
9300 Defining_Identifier => T,
9301 Subtype_Indication => Relocate_Node (Obj_Def)));
9303 -- This subtype may need freezing and it will not be done
9304 -- automatically if the object declaration is not in a
9305 -- declarative part. Since this is an object declaration, the
9306 -- type cannot always be frozen here. Deferred constants do not
9307 -- freeze their type (which often enough will be private).
9309 if Nkind (P) = N_Object_Declaration
9310 and then Constant_Present (P)
9311 and then No (Expression (P))
9312 then
9313 null;
9315 else
9316 Insert_Actions (Obj_Def, Freeze_Entity (T, Sloc (P)));
9317 end if;
9319 else
9320 T := Process_Subtype (Obj_Def, Related_Nod);
9321 end if;
9323 return T;
9324 end Find_Type_Of_Object;
9326 --------------------------------
9327 -- Find_Type_Of_Subtype_Indic --
9328 --------------------------------
9330 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
9331 Typ : Entity_Id;
9333 begin
9334 -- Case of subtype mark with a constraint
9336 if Nkind (S) = N_Subtype_Indication then
9337 Find_Type (Subtype_Mark (S));
9338 Typ := Entity (Subtype_Mark (S));
9340 if not
9341 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
9342 then
9343 Error_Msg_N
9344 ("incorrect constraint for this kind of type", Constraint (S));
9345 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
9346 end if;
9348 -- Otherwise we have a subtype mark without a constraint
9350 elsif Error_Posted (S) then
9351 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
9352 return Any_Type;
9354 else
9355 Find_Type (S);
9356 Typ := Entity (S);
9357 end if;
9359 if Typ = Standard_Wide_Character
9360 or else Typ = Standard_Wide_String
9361 then
9362 Check_Restriction (No_Wide_Characters, S);
9363 end if;
9365 return Typ;
9366 end Find_Type_Of_Subtype_Indic;
9368 -------------------------------------
9369 -- Floating_Point_Type_Declaration --
9370 -------------------------------------
9372 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
9373 Digs : constant Node_Id := Digits_Expression (Def);
9374 Digs_Val : Uint;
9375 Base_Typ : Entity_Id;
9376 Implicit_Base : Entity_Id;
9377 Bound : Node_Id;
9379 function Can_Derive_From (E : Entity_Id) return Boolean;
9380 -- Find if given digits value allows derivation from specified type
9382 function Can_Derive_From (E : Entity_Id) return Boolean is
9383 Spec : constant Entity_Id := Real_Range_Specification (Def);
9385 begin
9386 if Digs_Val > Digits_Value (E) then
9387 return False;
9388 end if;
9390 if Present (Spec) then
9391 if Expr_Value_R (Type_Low_Bound (E)) >
9392 Expr_Value_R (Low_Bound (Spec))
9393 then
9394 return False;
9395 end if;
9397 if Expr_Value_R (Type_High_Bound (E)) <
9398 Expr_Value_R (High_Bound (Spec))
9399 then
9400 return False;
9401 end if;
9402 end if;
9404 return True;
9405 end Can_Derive_From;
9407 -- Start of processing for Floating_Point_Type_Declaration
9409 begin
9410 Check_Restriction (No_Floating_Point, Def);
9412 -- Create an implicit base type
9414 Implicit_Base :=
9415 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
9417 -- Analyze and verify digits value
9419 Analyze_And_Resolve (Digs, Any_Integer);
9420 Check_Digits_Expression (Digs);
9421 Digs_Val := Expr_Value (Digs);
9423 -- Process possible range spec and find correct type to derive from
9425 Process_Real_Range_Specification (Def);
9427 if Can_Derive_From (Standard_Short_Float) then
9428 Base_Typ := Standard_Short_Float;
9429 elsif Can_Derive_From (Standard_Float) then
9430 Base_Typ := Standard_Float;
9431 elsif Can_Derive_From (Standard_Long_Float) then
9432 Base_Typ := Standard_Long_Float;
9433 elsif Can_Derive_From (Standard_Long_Long_Float) then
9434 Base_Typ := Standard_Long_Long_Float;
9436 -- If we can't derive from any existing type, use long long float
9437 -- and give appropriate message explaining the problem.
9439 else
9440 Base_Typ := Standard_Long_Long_Float;
9442 if Digs_Val >= Digits_Value (Standard_Long_Long_Float) then
9443 Error_Msg_Uint_1 := Digits_Value (Standard_Long_Long_Float);
9444 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
9446 else
9447 Error_Msg_N
9448 ("range too large for any predefined type",
9449 Real_Range_Specification (Def));
9450 end if;
9451 end if;
9453 -- If there are bounds given in the declaration use them as the bounds
9454 -- of the type, otherwise use the bounds of the predefined base type
9455 -- that was chosen based on the Digits value.
9457 if Present (Real_Range_Specification (Def)) then
9458 Set_Scalar_Range (T, Real_Range_Specification (Def));
9459 Set_Is_Constrained (T);
9461 -- The bounds of this range must be converted to machine numbers
9462 -- in accordance with RM 4.9(38).
9464 Bound := Type_Low_Bound (T);
9466 if Nkind (Bound) = N_Real_Literal then
9467 Set_Realval (Bound, Machine (Base_Typ, Realval (Bound), Round));
9468 Set_Is_Machine_Number (Bound);
9469 end if;
9471 Bound := Type_High_Bound (T);
9473 if Nkind (Bound) = N_Real_Literal then
9474 Set_Realval (Bound, Machine (Base_Typ, Realval (Bound), Round));
9475 Set_Is_Machine_Number (Bound);
9476 end if;
9478 else
9479 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
9480 end if;
9482 -- Complete definition of implicit base and declared first subtype
9484 Set_Etype (Implicit_Base, Base_Typ);
9486 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
9487 Set_Size_Info (Implicit_Base, (Base_Typ));
9488 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
9489 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
9490 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
9491 Set_Vax_Float (Implicit_Base, Vax_Float (Base_Typ));
9493 Set_Ekind (T, E_Floating_Point_Subtype);
9494 Set_Etype (T, Implicit_Base);
9496 Set_Size_Info (T, (Implicit_Base));
9497 Set_RM_Size (T, RM_Size (Implicit_Base));
9498 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
9499 Set_Digits_Value (T, Digs_Val);
9501 end Floating_Point_Type_Declaration;
9503 ----------------------------
9504 -- Get_Discriminant_Value --
9505 ----------------------------
9507 -- This is the situation...
9509 -- There is a non-derived type
9511 -- type T0 (Dx, Dy, Dz...)
9513 -- There are zero or more levels of derivation, with each
9514 -- derivation either purely inheriting the discriminants, or
9515 -- defining its own.
9517 -- type Ti is new Ti-1
9518 -- or
9519 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
9520 -- or
9521 -- subtype Ti is ...
9523 -- The subtype issue is avoided by the use of
9524 -- Original_Record_Component, and the fact that derived subtypes
9525 -- also derive the constraits.
9527 -- This chain leads back from
9529 -- Typ_For_Constraint
9531 -- Typ_For_Constraint has discriminants, and the value for each
9532 -- discriminant is given by its corresponding Elmt of Constraints.
9534 -- Discriminant is some discriminant in this hierarchy.
9536 -- We need to return its value.
9538 -- We do this by recursively searching each level, and looking for
9539 -- Discriminant. Once we get to the bottom, we start backing up
9540 -- returning the value for it which may in turn be a discriminant
9541 -- further up, so on the backup we continue the substitution.
9543 function Get_Discriminant_Value
9544 (Discriminant : Entity_Id;
9545 Typ_For_Constraint : Entity_Id;
9546 Constraint : Elist_Id)
9547 return Node_Id
9549 function Recurse
9550 (Ti : Entity_Id;
9551 Discrim_Values : Elist_Id;
9552 Girder_Discrim_Values : Boolean)
9553 return Node_Or_Entity_Id;
9554 -- This is the routine that performs the recursive search of levels
9555 -- as described above.
9557 function Recurse
9558 (Ti : Entity_Id;
9559 Discrim_Values : Elist_Id;
9560 Girder_Discrim_Values : Boolean)
9561 return Node_Or_Entity_Id
9563 Assoc : Elmt_Id;
9564 Disc : Entity_Id;
9565 Result : Node_Or_Entity_Id;
9566 Result_Entity : Node_Id;
9568 begin
9569 -- If inappropriate type, return Error, this happens only in
9570 -- cascaded error situations, and we want to avoid a blow up.
9572 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
9573 return Error;
9574 end if;
9576 -- Look deeper if possible. Use Girder_Constraints only for
9577 -- untagged types. For tagged types use the given constraint.
9578 -- This asymmetry needs explanation???
9580 if not Girder_Discrim_Values
9581 and then Present (Girder_Constraint (Ti))
9582 and then not Is_Tagged_Type (Ti)
9583 then
9584 Result := Recurse (Ti, Girder_Constraint (Ti), True);
9585 else
9586 declare
9587 Td : Entity_Id := Etype (Ti);
9588 begin
9590 if Td = Ti then
9591 Result := Discriminant;
9593 else
9594 if Present (Girder_Constraint (Ti)) then
9595 Result :=
9596 Recurse (Td, Girder_Constraint (Ti), True);
9597 else
9598 Result :=
9599 Recurse (Td, Discrim_Values, Girder_Discrim_Values);
9600 end if;
9601 end if;
9602 end;
9603 end if;
9605 -- Extra underlying places to search, if not found above. For
9606 -- concurrent types, the relevant discriminant appears in the
9607 -- corresponding record. For a type derived from a private type
9608 -- without discriminant, the full view inherits the discriminants
9609 -- of the full view of the parent.
9611 if Result = Discriminant then
9612 if Is_Concurrent_Type (Ti)
9613 and then Present (Corresponding_Record_Type (Ti))
9614 then
9615 Result :=
9616 Recurse (
9617 Corresponding_Record_Type (Ti),
9618 Discrim_Values,
9619 Girder_Discrim_Values);
9621 elsif Is_Private_Type (Ti)
9622 and then not Has_Discriminants (Ti)
9623 and then Present (Full_View (Ti))
9624 and then Etype (Full_View (Ti)) /= Ti
9625 then
9626 Result :=
9627 Recurse (
9628 Full_View (Ti),
9629 Discrim_Values,
9630 Girder_Discrim_Values);
9631 end if;
9632 end if;
9634 -- If Result is not a (reference to a) discriminant,
9635 -- return it, otherwise set Result_Entity to the discriminant.
9637 if Nkind (Result) = N_Defining_Identifier then
9639 pragma Assert (Result = Discriminant);
9641 Result_Entity := Result;
9643 else
9644 if not Denotes_Discriminant (Result) then
9645 return Result;
9646 end if;
9648 Result_Entity := Entity (Result);
9649 end if;
9651 -- See if this level of derivation actually has discriminants
9652 -- because tagged derivations can add them, hence the lower
9653 -- levels need not have any.
9655 if not Has_Discriminants (Ti) then
9656 return Result;
9657 end if;
9659 -- Scan Ti's discriminants for Result_Entity,
9660 -- and return its corresponding value, if any.
9662 Result_Entity := Original_Record_Component (Result_Entity);
9664 Assoc := First_Elmt (Discrim_Values);
9666 if Girder_Discrim_Values then
9667 Disc := First_Girder_Discriminant (Ti);
9668 else
9669 Disc := First_Discriminant (Ti);
9670 end if;
9672 while Present (Disc) loop
9674 pragma Assert (Present (Assoc));
9676 if Original_Record_Component (Disc) = Result_Entity then
9677 return Node (Assoc);
9678 end if;
9680 Next_Elmt (Assoc);
9682 if Girder_Discrim_Values then
9683 Next_Girder_Discriminant (Disc);
9684 else
9685 Next_Discriminant (Disc);
9686 end if;
9687 end loop;
9689 -- Could not find it
9691 return Result;
9692 end Recurse;
9694 Result : Node_Or_Entity_Id;
9696 -- Start of processing for Get_Discriminant_Value
9698 begin
9699 -- ??? this routine is a gigantic mess and will be deleted.
9700 -- for the time being just test for the trivial case before calling
9701 -- recurse.
9703 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
9704 declare
9705 D : Entity_Id := First_Discriminant (Typ_For_Constraint);
9706 E : Elmt_Id := First_Elmt (Constraint);
9707 begin
9708 while Present (D) loop
9709 if Chars (D) = Chars (Discriminant) then
9710 return Node (E);
9711 end if;
9713 Next_Discriminant (D);
9714 Next_Elmt (E);
9715 end loop;
9716 end;
9717 end if;
9719 Result := Recurse (Typ_For_Constraint, Constraint, False);
9721 -- ??? hack to disappear when this routine is gone
9723 if Nkind (Result) = N_Defining_Identifier then
9724 declare
9725 D : Entity_Id := First_Discriminant (Typ_For_Constraint);
9726 E : Elmt_Id := First_Elmt (Constraint);
9727 begin
9728 while Present (D) loop
9729 if Corresponding_Discriminant (D) = Discriminant then
9730 return Node (E);
9731 end if;
9733 Next_Discriminant (D);
9734 Next_Elmt (E);
9735 end loop;
9736 end;
9737 end if;
9739 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
9740 return Result;
9741 end Get_Discriminant_Value;
9743 --------------------------
9744 -- Has_Range_Constraint --
9745 --------------------------
9747 function Has_Range_Constraint (N : Node_Id) return Boolean is
9748 C : constant Node_Id := Constraint (N);
9750 begin
9751 if Nkind (C) = N_Range_Constraint then
9752 return True;
9754 elsif Nkind (C) = N_Digits_Constraint then
9755 return
9756 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
9757 or else
9758 Present (Range_Constraint (C));
9760 elsif Nkind (C) = N_Delta_Constraint then
9761 return Present (Range_Constraint (C));
9763 else
9764 return False;
9765 end if;
9766 end Has_Range_Constraint;
9768 ------------------------
9769 -- Inherit_Components --
9770 ------------------------
9772 function Inherit_Components
9773 (N : Node_Id;
9774 Parent_Base : Entity_Id;
9775 Derived_Base : Entity_Id;
9776 Is_Tagged : Boolean;
9777 Inherit_Discr : Boolean;
9778 Discs : Elist_Id)
9779 return Elist_Id
9781 Assoc_List : Elist_Id := New_Elmt_List;
9783 procedure Inherit_Component
9784 (Old_C : Entity_Id;
9785 Plain_Discrim : Boolean := False;
9786 Girder_Discrim : Boolean := False);
9787 -- Inherits component Old_C from Parent_Base to the Derived_Base.
9788 -- If Plain_Discrim is True, Old_C is a discriminant.
9789 -- If Girder_Discrim is True, Old_C is a girder discriminant.
9790 -- If they are both false then Old_C is a regular component.
9792 -----------------------
9793 -- Inherit_Component --
9794 -----------------------
9796 procedure Inherit_Component
9797 (Old_C : Entity_Id;
9798 Plain_Discrim : Boolean := False;
9799 Girder_Discrim : Boolean := False)
9801 New_C : Entity_Id := New_Copy (Old_C);
9803 Discrim : Entity_Id;
9804 Corr_Discrim : Entity_Id;
9806 begin
9807 pragma Assert (not Is_Tagged or else not Girder_Discrim);
9809 Set_Parent (New_C, Parent (Old_C));
9811 -- Regular discriminants and components must be inserted
9812 -- in the scope of the Derived_Base. Do it here.
9814 if not Girder_Discrim then
9815 Enter_Name (New_C);
9816 end if;
9818 -- For tagged types the Original_Record_Component must point to
9819 -- whatever this field was pointing to in the parent type. This has
9820 -- already been achieved by the call to New_Copy above.
9822 if not Is_Tagged then
9823 Set_Original_Record_Component (New_C, New_C);
9824 end if;
9826 -- If we have inherited a component then see if its Etype contains
9827 -- references to Parent_Base discriminants. In this case, replace
9828 -- these references with the constraints given in Discs. We do not
9829 -- do this for the partial view of private types because this is
9830 -- not needed (only the components of the full view will be used
9831 -- for code generation) and cause problem. We also avoid this
9832 -- transformation in some error situations.
9834 if Ekind (New_C) = E_Component then
9835 if (Is_Private_Type (Derived_Base)
9836 and then not Is_Generic_Type (Derived_Base))
9837 or else (Is_Empty_Elmt_List (Discs)
9838 and then not Expander_Active)
9839 then
9840 Set_Etype (New_C, Etype (Old_C));
9841 else
9842 Set_Etype (New_C, Constrain_Component_Type (Etype (Old_C),
9843 Derived_Base, N, Parent_Base, Discs));
9844 end if;
9845 end if;
9847 -- In derived tagged types it is illegal to reference a non
9848 -- discriminant component in the parent type. To catch this, mark
9849 -- these components with an Ekind of E_Void. This will be reset in
9850 -- Record_Type_Definition after processing the record extension of
9851 -- the derived type.
9853 if Is_Tagged and then Ekind (New_C) = E_Component then
9854 Set_Ekind (New_C, E_Void);
9855 end if;
9857 if Plain_Discrim then
9858 Set_Corresponding_Discriminant (New_C, Old_C);
9859 Build_Discriminal (New_C);
9861 -- If we are explicitly inheriting a girder discriminant it will be
9862 -- completely hidden.
9864 elsif Girder_Discrim then
9865 Set_Corresponding_Discriminant (New_C, Empty);
9866 Set_Discriminal (New_C, Empty);
9867 Set_Is_Completely_Hidden (New_C);
9869 -- Set the Original_Record_Component of each discriminant in the
9870 -- derived base to point to the corresponding girder that we just
9871 -- created.
9873 Discrim := First_Discriminant (Derived_Base);
9874 while Present (Discrim) loop
9875 Corr_Discrim := Corresponding_Discriminant (Discrim);
9877 -- Corr_Discrimm could be missing in an error situation.
9879 if Present (Corr_Discrim)
9880 and then Original_Record_Component (Corr_Discrim) = Old_C
9881 then
9882 Set_Original_Record_Component (Discrim, New_C);
9883 end if;
9885 Next_Discriminant (Discrim);
9886 end loop;
9888 Append_Entity (New_C, Derived_Base);
9889 end if;
9891 if not Is_Tagged then
9892 Append_Elmt (Old_C, Assoc_List);
9893 Append_Elmt (New_C, Assoc_List);
9894 end if;
9895 end Inherit_Component;
9897 -- Variables local to Inherit_Components.
9899 Loc : constant Source_Ptr := Sloc (N);
9901 Parent_Discrim : Entity_Id;
9902 Girder_Discrim : Entity_Id;
9903 D : Entity_Id;
9905 Component : Entity_Id;
9907 -- Start of processing for Inherit_Components
9909 begin
9910 if not Is_Tagged then
9911 Append_Elmt (Parent_Base, Assoc_List);
9912 Append_Elmt (Derived_Base, Assoc_List);
9913 end if;
9915 -- Inherit parent discriminants if needed.
9917 if Inherit_Discr then
9918 Parent_Discrim := First_Discriminant (Parent_Base);
9919 while Present (Parent_Discrim) loop
9920 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
9921 Next_Discriminant (Parent_Discrim);
9922 end loop;
9923 end if;
9925 -- Create explicit girder discrims for untagged types when necessary.
9927 if not Has_Unknown_Discriminants (Derived_Base)
9928 and then Has_Discriminants (Parent_Base)
9929 and then not Is_Tagged
9930 and then
9931 (not Inherit_Discr
9932 or else First_Discriminant (Parent_Base) /=
9933 First_Girder_Discriminant (Parent_Base))
9934 then
9935 Girder_Discrim := First_Girder_Discriminant (Parent_Base);
9936 while Present (Girder_Discrim) loop
9937 Inherit_Component (Girder_Discrim, Girder_Discrim => True);
9938 Next_Girder_Discriminant (Girder_Discrim);
9939 end loop;
9940 end if;
9942 -- See if we can apply the second transformation for derived types, as
9943 -- explained in point 6. in the comments above Build_Derived_Record_Type
9944 -- This is achieved by appending Derived_Base discriminants into
9945 -- Discs, which has the side effect of returning a non empty Discs
9946 -- list to the caller of Inherit_Components, which is what we want.
9948 if Inherit_Discr
9949 and then Is_Empty_Elmt_List (Discs)
9950 and then (not Is_Private_Type (Derived_Base)
9951 or Is_Generic_Type (Derived_Base))
9952 then
9953 D := First_Discriminant (Derived_Base);
9954 while Present (D) loop
9955 Append_Elmt (New_Reference_To (D, Loc), Discs);
9956 Next_Discriminant (D);
9957 end loop;
9958 end if;
9960 -- Finally, inherit non-discriminant components unless they are not
9961 -- visible because defined or inherited from the full view of the
9962 -- parent. Don't inherit the _parent field of the parent type.
9964 Component := First_Entity (Parent_Base);
9965 while Present (Component) loop
9966 if Ekind (Component) /= E_Component
9967 or else Chars (Component) = Name_uParent
9968 then
9969 null;
9971 -- If the derived type is within the parent type's declarative
9972 -- region, then the components can still be inherited even though
9973 -- they aren't visible at this point. This can occur for cases
9974 -- such as within public child units where the components must
9975 -- become visible upon entering the child unit's private part.
9977 elsif not Is_Visible_Component (Component)
9978 and then not In_Open_Scopes (Scope (Parent_Base))
9979 then
9980 null;
9982 elsif Ekind (Derived_Base) = E_Private_Type
9983 or else Ekind (Derived_Base) = E_Limited_Private_Type
9984 then
9985 null;
9987 else
9988 Inherit_Component (Component);
9989 end if;
9991 Next_Entity (Component);
9992 end loop;
9994 -- For tagged derived types, inherited discriminants cannot be used in
9995 -- component declarations of the record extension part. To achieve this
9996 -- we mark the inherited discriminants as not visible.
9998 if Is_Tagged and then Inherit_Discr then
9999 D := First_Discriminant (Derived_Base);
10000 while Present (D) loop
10001 Set_Is_Immediately_Visible (D, False);
10002 Next_Discriminant (D);
10003 end loop;
10004 end if;
10006 return Assoc_List;
10007 end Inherit_Components;
10009 ------------------------------
10010 -- Is_Valid_Constraint_Kind --
10011 ------------------------------
10013 function Is_Valid_Constraint_Kind
10014 (T_Kind : Type_Kind;
10015 Constraint_Kind : Node_Kind)
10016 return Boolean
10018 begin
10019 case T_Kind is
10021 when Enumeration_Kind |
10022 Integer_Kind =>
10023 return Constraint_Kind = N_Range_Constraint;
10025 when Decimal_Fixed_Point_Kind =>
10026 return
10027 Constraint_Kind = N_Digits_Constraint
10028 or else
10029 Constraint_Kind = N_Range_Constraint;
10031 when Ordinary_Fixed_Point_Kind =>
10032 return
10033 Constraint_Kind = N_Delta_Constraint
10034 or else
10035 Constraint_Kind = N_Range_Constraint;
10037 when Float_Kind =>
10038 return
10039 Constraint_Kind = N_Digits_Constraint
10040 or else
10041 Constraint_Kind = N_Range_Constraint;
10043 when Access_Kind |
10044 Array_Kind |
10045 E_Record_Type |
10046 E_Record_Subtype |
10047 Class_Wide_Kind |
10048 E_Incomplete_Type |
10049 Private_Kind |
10050 Concurrent_Kind =>
10051 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
10053 when others =>
10054 return True; -- Error will be detected later.
10055 end case;
10057 end Is_Valid_Constraint_Kind;
10059 --------------------------
10060 -- Is_Visible_Component --
10061 --------------------------
10063 function Is_Visible_Component (C : Entity_Id) return Boolean is
10064 Original_Comp : constant Entity_Id := Original_Record_Component (C);
10065 Original_Scope : Entity_Id;
10067 begin
10068 if No (Original_Comp) then
10070 -- Premature usage, or previous error
10072 return False;
10074 else
10075 Original_Scope := Scope (Original_Comp);
10076 end if;
10078 -- This test only concern tagged types
10080 if not Is_Tagged_Type (Original_Scope) then
10081 return True;
10083 -- If it is _Parent or _Tag, there is no visiblity issue
10085 elsif not Comes_From_Source (Original_Comp) then
10086 return True;
10088 -- If we are in the body of an instantiation, the component is
10089 -- visible even when the parent type (possibly defined in an
10090 -- enclosing unit or in a parent unit) might not.
10092 elsif In_Instance_Body then
10093 return True;
10095 -- Discriminants are always visible.
10097 elsif Ekind (Original_Comp) = E_Discriminant
10098 and then not Has_Unknown_Discriminants (Original_Scope)
10099 then
10100 return True;
10102 -- If the component has been declared in an ancestor which is
10103 -- currently a private type, then it is not visible. The same
10104 -- applies if the component's containing type is not in an
10105 -- open scope and the original component's enclosing type
10106 -- is a visible full type of a private type (which can occur
10107 -- in cases where an attempt is being made to reference a
10108 -- component in a sibling package that is inherited from
10109 -- a visible component of a type in an ancestor package;
10110 -- the component in the sibling package should not be
10111 -- visible even though the component it inherited from
10112 -- is visible). This does not apply however in the case
10113 -- where the scope of the type is a private child unit.
10114 -- The latter suppression of visibility is needed for cases
10115 -- that are tested in B730006.
10117 elsif (Ekind (Original_Comp) /= E_Discriminant
10118 or else Has_Unknown_Discriminants (Original_Scope))
10119 and then
10120 (Is_Private_Type (Original_Scope)
10121 or else
10122 (not Is_Private_Descendant (Scope (Base_Type (Scope (C))))
10123 and then not In_Open_Scopes (Scope (Base_Type (Scope (C))))
10124 and then Has_Private_Declaration (Original_Scope)))
10125 then
10126 return False;
10128 -- There is another weird way in which a component may be invisible
10129 -- when the private and the full view are not derived from the same
10130 -- ancestor. Here is an example :
10132 -- type A1 is tagged record F1 : integer; end record;
10133 -- type A2 is new A1 with record F2 : integer; end record;
10134 -- type T is new A1 with private;
10135 -- private
10136 -- type T is new A2 with private;
10138 -- In this case, the full view of T inherits F1 and F2 but the
10139 -- private view inherits only F1
10141 else
10142 declare
10143 Ancestor : Entity_Id := Scope (C);
10145 begin
10146 loop
10147 if Ancestor = Original_Scope then
10148 return True;
10149 elsif Ancestor = Etype (Ancestor) then
10150 return False;
10151 end if;
10153 Ancestor := Etype (Ancestor);
10154 end loop;
10156 return True;
10157 end;
10158 end if;
10159 end Is_Visible_Component;
10161 --------------------------
10162 -- Make_Class_Wide_Type --
10163 --------------------------
10165 procedure Make_Class_Wide_Type (T : Entity_Id) is
10166 CW_Type : Entity_Id;
10167 CW_Name : Name_Id;
10168 Next_E : Entity_Id;
10170 begin
10171 -- The class wide type can have been defined by the partial view in
10172 -- which case everything is already done
10174 if Present (Class_Wide_Type (T)) then
10175 return;
10176 end if;
10178 CW_Type :=
10179 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
10181 -- Inherit root type characteristics
10183 CW_Name := Chars (CW_Type);
10184 Next_E := Next_Entity (CW_Type);
10185 Copy_Node (T, CW_Type);
10186 Set_Comes_From_Source (CW_Type, False);
10187 Set_Chars (CW_Type, CW_Name);
10188 Set_Parent (CW_Type, Parent (T));
10189 Set_Next_Entity (CW_Type, Next_E);
10190 Set_Has_Delayed_Freeze (CW_Type);
10192 -- Customize the class-wide type: It has no prim. op., it cannot be
10193 -- abstract and its Etype points back to the root type
10195 Set_Ekind (CW_Type, E_Class_Wide_Type);
10196 Set_Is_Tagged_Type (CW_Type, True);
10197 Set_Primitive_Operations (CW_Type, New_Elmt_List);
10198 Set_Is_Abstract (CW_Type, False);
10199 Set_Etype (CW_Type, T);
10200 Set_Is_Constrained (CW_Type, False);
10201 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
10202 Init_Size_Align (CW_Type);
10204 -- If this is the class_wide type of a constrained subtype, it does
10205 -- not have discriminants.
10207 Set_Has_Discriminants (CW_Type,
10208 Has_Discriminants (T) and then not Is_Constrained (T));
10210 Set_Has_Unknown_Discriminants (CW_Type, True);
10211 Set_Class_Wide_Type (T, CW_Type);
10212 Set_Equivalent_Type (CW_Type, Empty);
10214 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
10216 Set_Class_Wide_Type (CW_Type, CW_Type);
10218 end Make_Class_Wide_Type;
10220 ----------------
10221 -- Make_Index --
10222 ----------------
10224 procedure Make_Index
10225 (I : Node_Id;
10226 Related_Nod : Node_Id;
10227 Related_Id : Entity_Id := Empty;
10228 Suffix_Index : Nat := 1)
10230 R : Node_Id;
10231 T : Entity_Id;
10232 Def_Id : Entity_Id := Empty;
10233 Found : Boolean := False;
10235 begin
10236 -- For a discrete range used in a constrained array definition and
10237 -- defined by a range, an implicit conversion to the predefined type
10238 -- INTEGER is assumed if each bound is either a numeric literal, a named
10239 -- number, or an attribute, and the type of both bounds (prior to the
10240 -- implicit conversion) is the type universal_integer. Otherwise, both
10241 -- bounds must be of the same discrete type, other than universal
10242 -- integer; this type must be determinable independently of the
10243 -- context, but using the fact that the type must be discrete and that
10244 -- both bounds must have the same type.
10246 -- Character literals also have a universal type in the absence of
10247 -- of additional context, and are resolved to Standard_Character.
10249 if Nkind (I) = N_Range then
10251 -- The index is given by a range constraint. The bounds are known
10252 -- to be of a consistent type.
10254 if not Is_Overloaded (I) then
10255 T := Etype (I);
10257 -- If the bounds are universal, choose the specific predefined
10258 -- type.
10260 if T = Universal_Integer then
10261 T := Standard_Integer;
10263 elsif T = Any_Character then
10265 if not Ada_83 then
10266 Error_Msg_N
10267 ("ambiguous character literals (could be Wide_Character)",
10269 end if;
10271 T := Standard_Character;
10272 end if;
10274 else
10275 T := Any_Type;
10277 declare
10278 Ind : Interp_Index;
10279 It : Interp;
10281 begin
10282 Get_First_Interp (I, Ind, It);
10284 while Present (It.Typ) loop
10285 if Is_Discrete_Type (It.Typ) then
10287 if Found
10288 and then not Covers (It.Typ, T)
10289 and then not Covers (T, It.Typ)
10290 then
10291 Error_Msg_N ("ambiguous bounds in discrete range", I);
10292 exit;
10293 else
10294 T := It.Typ;
10295 Found := True;
10296 end if;
10297 end if;
10299 Get_Next_Interp (Ind, It);
10300 end loop;
10302 if T = Any_Type then
10303 Error_Msg_N ("discrete type required for range", I);
10304 Set_Etype (I, Any_Type);
10305 return;
10307 elsif T = Universal_Integer then
10308 T := Standard_Integer;
10309 end if;
10310 end;
10311 end if;
10313 if not Is_Discrete_Type (T) then
10314 Error_Msg_N ("discrete type required for range", I);
10315 Set_Etype (I, Any_Type);
10316 return;
10317 end if;
10319 R := I;
10320 Process_Range_Expr_In_Decl (R, T, Related_Nod);
10322 elsif Nkind (I) = N_Subtype_Indication then
10324 -- The index is given by a subtype with a range constraint.
10326 T := Base_Type (Entity (Subtype_Mark (I)));
10328 if not Is_Discrete_Type (T) then
10329 Error_Msg_N ("discrete type required for range", I);
10330 Set_Etype (I, Any_Type);
10331 return;
10332 end if;
10334 R := Range_Expression (Constraint (I));
10336 Resolve (R, T);
10337 Process_Range_Expr_In_Decl (R,
10338 Entity (Subtype_Mark (I)), Related_Nod);
10340 elsif Nkind (I) = N_Attribute_Reference then
10342 -- The parser guarantees that the attribute is a RANGE attribute
10344 Analyze_And_Resolve (I);
10345 T := Etype (I);
10346 R := I;
10348 -- If none of the above, must be a subtype. We convert this to a
10349 -- range attribute reference because in the case of declared first
10350 -- named subtypes, the types in the range reference can be different
10351 -- from the type of the entity. A range attribute normalizes the
10352 -- reference and obtains the correct types for the bounds.
10354 -- This transformation is in the nature of an expansion, is only
10355 -- done if expansion is active. In particular, it is not done on
10356 -- formal generic types, because we need to retain the name of the
10357 -- original index for instantiation purposes.
10359 else
10360 if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
10361 Error_Msg_N ("invalid subtype mark in discrete range ", I);
10362 Set_Etype (I, Any_Integer);
10363 return;
10364 else
10365 -- The type mark may be that of an incomplete type. It is only
10366 -- now that we can get the full view, previous analysis does
10367 -- not look specifically for a type mark.
10369 Set_Entity (I, Get_Full_View (Entity (I)));
10370 Set_Etype (I, Entity (I));
10371 Def_Id := Entity (I);
10373 if not Is_Discrete_Type (Def_Id) then
10374 Error_Msg_N ("discrete type required for index", I);
10375 Set_Etype (I, Any_Type);
10376 return;
10377 end if;
10378 end if;
10380 if Expander_Active then
10381 Rewrite (I,
10382 Make_Attribute_Reference (Sloc (I),
10383 Attribute_Name => Name_Range,
10384 Prefix => Relocate_Node (I)));
10386 -- The original was a subtype mark that does not freeze. This
10387 -- means that the rewritten version must not freeze either.
10389 Set_Must_Not_Freeze (I);
10390 Set_Must_Not_Freeze (Prefix (I));
10392 -- Is order critical??? if so, document why, if not
10393 -- use Analyze_And_Resolve
10395 Analyze (I);
10396 T := Etype (I);
10397 Resolve (I, T);
10398 R := I;
10400 else
10401 -- Type is legal, nothing else to construct.
10402 return;
10403 end if;
10404 end if;
10406 if not Is_Discrete_Type (T) then
10407 Error_Msg_N ("discrete type required for range", I);
10408 Set_Etype (I, Any_Type);
10409 return;
10411 elsif T = Any_Type then
10412 Set_Etype (I, Any_Type);
10413 return;
10414 end if;
10416 -- We will now create the appropriate Itype to describe the
10417 -- range, but first a check. If we originally had a subtype,
10418 -- then we just label the range with this subtype. Not only
10419 -- is there no need to construct a new subtype, but it is wrong
10420 -- to do so for two reasons:
10422 -- 1. A legality concern, if we have a subtype, it must not
10423 -- freeze, and the Itype would cause freezing incorrectly
10425 -- 2. An efficiency concern, if we created an Itype, it would
10426 -- not be recognized as the same type for the purposes of
10427 -- eliminating checks in some circumstances.
10429 -- We signal this case by setting the subtype entity in Def_Id.
10431 -- It would be nice to also do this optimization for the cases
10432 -- of X'Range and also the explicit range X'First .. X'Last,
10433 -- but that is not done yet (it is just an efficiency concern) ???
10435 if No (Def_Id) then
10437 Def_Id :=
10438 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
10439 Set_Etype (Def_Id, Base_Type (T));
10441 if Is_Signed_Integer_Type (T) then
10442 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
10444 elsif Is_Modular_Integer_Type (T) then
10445 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
10447 else
10448 Set_Ekind (Def_Id, E_Enumeration_Subtype);
10449 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
10450 end if;
10452 Set_Size_Info (Def_Id, (T));
10453 Set_RM_Size (Def_Id, RM_Size (T));
10454 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10456 Set_Scalar_Range (Def_Id, R);
10457 Conditional_Delay (Def_Id, T);
10459 -- In the subtype indication case, if the immediate parent of the
10460 -- new subtype is non-static, then the subtype we create is non-
10461 -- static, even if its bounds are static.
10463 if Nkind (I) = N_Subtype_Indication
10464 and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
10465 then
10466 Set_Is_Non_Static_Subtype (Def_Id);
10467 end if;
10468 end if;
10470 -- Final step is to label the index with this constructed type
10472 Set_Etype (I, Def_Id);
10473 end Make_Index;
10475 ------------------------------
10476 -- Modular_Type_Declaration --
10477 ------------------------------
10479 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
10480 Mod_Expr : constant Node_Id := Expression (Def);
10481 M_Val : Uint;
10483 procedure Set_Modular_Size (Bits : Int);
10484 -- Sets RM_Size to Bits, and Esize to normal word size above this
10486 procedure Set_Modular_Size (Bits : Int) is
10487 begin
10488 Set_RM_Size (T, UI_From_Int (Bits));
10490 if Bits <= 8 then
10491 Init_Esize (T, 8);
10493 elsif Bits <= 16 then
10494 Init_Esize (T, 16);
10496 elsif Bits <= 32 then
10497 Init_Esize (T, 32);
10499 else
10500 Init_Esize (T, System_Max_Binary_Modulus_Power);
10501 end if;
10502 end Set_Modular_Size;
10504 -- Start of processing for Modular_Type_Declaration
10506 begin
10507 Analyze_And_Resolve (Mod_Expr, Any_Integer);
10508 Set_Etype (T, T);
10509 Set_Ekind (T, E_Modular_Integer_Type);
10510 Init_Alignment (T);
10511 Set_Is_Constrained (T);
10513 if not Is_OK_Static_Expression (Mod_Expr) then
10514 Error_Msg_N
10515 ("non-static expression used for modular type bound", Mod_Expr);
10516 M_Val := 2 ** System_Max_Binary_Modulus_Power;
10517 else
10518 M_Val := Expr_Value (Mod_Expr);
10519 end if;
10521 if M_Val < 1 then
10522 Error_Msg_N ("modulus value must be positive", Mod_Expr);
10523 M_Val := 2 ** System_Max_Binary_Modulus_Power;
10524 end if;
10526 Set_Modulus (T, M_Val);
10528 -- Create bounds for the modular type based on the modulus given in
10529 -- the type declaration and then analyze and resolve those bounds.
10531 Set_Scalar_Range (T,
10532 Make_Range (Sloc (Mod_Expr),
10533 Low_Bound =>
10534 Make_Integer_Literal (Sloc (Mod_Expr), 0),
10535 High_Bound =>
10536 Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
10538 -- Properly analyze the literals for the range. We do this manually
10539 -- because we can't go calling Resolve, since we are resolving these
10540 -- bounds with the type, and this type is certainly not complete yet!
10542 Set_Etype (Low_Bound (Scalar_Range (T)), T);
10543 Set_Etype (High_Bound (Scalar_Range (T)), T);
10544 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
10545 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
10547 -- Loop through powers of two to find number of bits required
10549 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
10551 -- Binary case
10553 if M_Val = 2 ** Bits then
10554 Set_Modular_Size (Bits);
10555 return;
10557 -- Non-binary case
10559 elsif M_Val < 2 ** Bits then
10560 Set_Non_Binary_Modulus (T);
10562 if Bits > System_Max_Nonbinary_Modulus_Power then
10563 Error_Msg_Uint_1 :=
10564 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
10565 Error_Msg_N
10566 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
10567 Set_Modular_Size (System_Max_Binary_Modulus_Power);
10568 return;
10570 else
10571 -- In the non-binary case, set size as per RM 13.3(55).
10573 Set_Modular_Size (Bits);
10574 return;
10575 end if;
10576 end if;
10578 end loop;
10580 -- If we fall through, then the size exceed System.Max_Binary_Modulus
10581 -- so we just signal an error and set the maximum size.
10583 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
10584 Error_Msg_N ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
10586 Set_Modular_Size (System_Max_Binary_Modulus_Power);
10587 Init_Alignment (T);
10589 end Modular_Type_Declaration;
10591 -------------------------
10592 -- New_Binary_Operator --
10593 -------------------------
10595 procedure New_Binary_Operator (Op_Name : Name_Id; Typ : Entity_Id) is
10596 Loc : constant Source_Ptr := Sloc (Typ);
10597 Op : Entity_Id;
10599 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
10600 -- Create abbreviated declaration for the formal of a predefined
10601 -- Operator 'Op' of type 'Typ'
10603 --------------------
10604 -- Make_Op_Formal --
10605 --------------------
10607 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
10608 Formal : Entity_Id;
10610 begin
10611 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
10612 Set_Etype (Formal, Typ);
10613 Set_Mechanism (Formal, Default_Mechanism);
10614 return Formal;
10615 end Make_Op_Formal;
10617 -- Start of processing for New_Binary_Operator
10619 begin
10620 Op := Make_Defining_Operator_Symbol (Loc, Op_Name);
10622 Set_Ekind (Op, E_Operator);
10623 Set_Scope (Op, Current_Scope);
10624 Set_Etype (Op, Typ);
10625 Set_Homonym (Op, Get_Name_Entity_Id (Op_Name));
10626 Set_Is_Immediately_Visible (Op);
10627 Set_Is_Intrinsic_Subprogram (Op);
10628 Set_Has_Completion (Op);
10629 Append_Entity (Op, Current_Scope);
10631 Set_Name_Entity_Id (Op_Name, Op);
10633 Append_Entity (Make_Op_Formal (Typ, Op), Op);
10634 Append_Entity (Make_Op_Formal (Typ, Op), Op);
10636 end New_Binary_Operator;
10638 -------------------------------------------
10639 -- Ordinary_Fixed_Point_Type_Declaration --
10640 -------------------------------------------
10642 procedure Ordinary_Fixed_Point_Type_Declaration
10643 (T : Entity_Id;
10644 Def : Node_Id)
10646 Loc : constant Source_Ptr := Sloc (Def);
10647 Delta_Expr : constant Node_Id := Delta_Expression (Def);
10648 RRS : constant Node_Id := Real_Range_Specification (Def);
10649 Implicit_Base : Entity_Id;
10650 Delta_Val : Ureal;
10651 Small_Val : Ureal;
10652 Low_Val : Ureal;
10653 High_Val : Ureal;
10655 begin
10656 Check_Restriction (No_Fixed_Point, Def);
10658 -- Create implicit base type
10660 Implicit_Base :=
10661 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
10662 Set_Etype (Implicit_Base, Implicit_Base);
10664 -- Analyze and process delta expression
10666 Analyze_And_Resolve (Delta_Expr, Any_Real);
10668 Check_Delta_Expression (Delta_Expr);
10669 Delta_Val := Expr_Value_R (Delta_Expr);
10671 Set_Delta_Value (Implicit_Base, Delta_Val);
10673 -- Compute default small from given delta, which is the largest
10674 -- power of two that does not exceed the given delta value.
10676 declare
10677 Tmp : Ureal := Ureal_1;
10678 Scale : Int := 0;
10680 begin
10681 if Delta_Val < Ureal_1 then
10682 while Delta_Val < Tmp loop
10683 Tmp := Tmp / Ureal_2;
10684 Scale := Scale + 1;
10685 end loop;
10687 else
10688 loop
10689 Tmp := Tmp * Ureal_2;
10690 exit when Tmp > Delta_Val;
10691 Scale := Scale - 1;
10692 end loop;
10693 end if;
10695 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
10696 end;
10698 Set_Small_Value (Implicit_Base, Small_Val);
10700 -- If no range was given, set a dummy range
10702 if RRS <= Empty_Or_Error then
10703 Low_Val := -Small_Val;
10704 High_Val := Small_Val;
10706 -- Otherwise analyze and process given range
10708 else
10709 declare
10710 Low : constant Node_Id := Low_Bound (RRS);
10711 High : constant Node_Id := High_Bound (RRS);
10713 begin
10714 Analyze_And_Resolve (Low, Any_Real);
10715 Analyze_And_Resolve (High, Any_Real);
10716 Check_Real_Bound (Low);
10717 Check_Real_Bound (High);
10719 -- Obtain and set the range
10721 Low_Val := Expr_Value_R (Low);
10722 High_Val := Expr_Value_R (High);
10724 if Low_Val > High_Val then
10725 Error_Msg_NE ("?fixed point type& has null range", Def, T);
10726 end if;
10727 end;
10728 end if;
10730 -- The range for both the implicit base and the declared first
10731 -- subtype cannot be set yet, so we use the special routine
10732 -- Set_Fixed_Range to set a temporary range in place. Note that
10733 -- the bounds of the base type will be widened to be symmetrical
10734 -- and to fill the available bits when the type is frozen.
10736 -- We could do this with all discrete types, and probably should, but
10737 -- we absolutely have to do it for fixed-point, since the end-points
10738 -- of the range and the size are determined by the small value, which
10739 -- could be reset before the freeze point.
10741 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
10742 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
10744 Init_Size_Align (Implicit_Base);
10746 -- Complete definition of first subtype
10748 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
10749 Set_Etype (T, Implicit_Base);
10750 Init_Size_Align (T);
10751 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
10752 Set_Small_Value (T, Small_Val);
10753 Set_Delta_Value (T, Delta_Val);
10754 Set_Is_Constrained (T);
10756 end Ordinary_Fixed_Point_Type_Declaration;
10758 ----------------------------------------
10759 -- Prepare_Private_Subtype_Completion --
10760 ----------------------------------------
10762 procedure Prepare_Private_Subtype_Completion
10763 (Id : Entity_Id;
10764 Related_Nod : Node_Id)
10766 Id_B : constant Entity_Id := Base_Type (Id);
10767 Full_B : constant Entity_Id := Full_View (Id_B);
10768 Full : Entity_Id;
10770 begin
10771 if Present (Full_B) then
10773 -- The Base_Type is already completed, we can complete the
10774 -- subtype now. We have to create a new entity with the same name,
10775 -- Thus we can't use Create_Itype.
10776 -- This is messy, should be fixed ???
10778 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
10779 Set_Is_Itype (Full);
10780 Set_Associated_Node_For_Itype (Full, Related_Nod);
10781 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
10782 end if;
10784 -- The parent subtype may be private, but the base might not, in some
10785 -- nested instances. In that case, the subtype does not need to be
10786 -- exchanged. It would still be nice to make private subtypes and their
10787 -- bases consistent at all times ???
10789 if Is_Private_Type (Id_B) then
10790 Append_Elmt (Id, Private_Dependents (Id_B));
10791 end if;
10793 end Prepare_Private_Subtype_Completion;
10795 ---------------------------
10796 -- Process_Discriminants --
10797 ---------------------------
10799 procedure Process_Discriminants (N : Node_Id) is
10800 Id : Node_Id;
10801 Discr : Node_Id;
10802 Discr_Number : Uint;
10803 Discr_Type : Entity_Id;
10804 Default_Present : Boolean := False;
10805 Default_Not_Present : Boolean := False;
10806 Elist : Elist_Id := New_Elmt_List;
10808 begin
10809 -- A composite type other than an array type can have discriminants.
10810 -- Discriminants of non-limited types must have a discrete type.
10811 -- On entry, the current scope is the composite type.
10813 -- The discriminants are initially entered into the scope of the type
10814 -- via Enter_Name with the default Ekind of E_Void to prevent premature
10815 -- use, as explained at the end of this procedure.
10817 Discr := First (Discriminant_Specifications (N));
10818 while Present (Discr) loop
10819 Enter_Name (Defining_Identifier (Discr));
10821 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
10822 Discr_Type := Access_Definition (N, Discriminant_Type (Discr));
10824 else
10825 Find_Type (Discriminant_Type (Discr));
10826 Discr_Type := Etype (Discriminant_Type (Discr));
10828 if Error_Posted (Discriminant_Type (Discr)) then
10829 Discr_Type := Any_Type;
10830 end if;
10831 end if;
10833 if Is_Access_Type (Discr_Type) then
10834 Check_Access_Discriminant_Requires_Limited
10835 (Discr, Discriminant_Type (Discr));
10837 if Ada_83 and then Comes_From_Source (Discr) then
10838 Error_Msg_N
10839 ("(Ada 83) access discriminant not allowed", Discr);
10840 end if;
10842 elsif not Is_Discrete_Type (Discr_Type) then
10843 Error_Msg_N ("discriminants must have a discrete or access type",
10844 Discriminant_Type (Discr));
10845 end if;
10847 Set_Etype (Defining_Identifier (Discr), Discr_Type);
10849 -- If a discriminant specification includes the assignment compound
10850 -- delimiter followed by an expression, the expression is the default
10851 -- expression of the discriminant; the default expression must be of
10852 -- the type of the discriminant. (RM 3.7.1) Since this expression is
10853 -- a default expression, we do the special preanalysis, since this
10854 -- expression does not freeze (see "Handling of Default Expressions"
10855 -- in spec of package Sem).
10857 if Present (Expression (Discr)) then
10858 Analyze_Default_Expression (Expression (Discr), Discr_Type);
10860 if Nkind (N) = N_Formal_Type_Declaration then
10861 Error_Msg_N
10862 ("discriminant defaults not allowed for formal type",
10863 Expression (Discr));
10865 elsif Is_Tagged_Type (Current_Scope) then
10866 Error_Msg_N
10867 ("discriminants of tagged type cannot have defaults",
10868 Expression (Discr));
10870 else
10871 Default_Present := True;
10872 Append_Elmt (Expression (Discr), Elist);
10874 -- Tag the defining identifiers for the discriminants with
10875 -- their corresponding default expressions from the tree.
10877 Set_Discriminant_Default_Value
10878 (Defining_Identifier (Discr), Expression (Discr));
10879 end if;
10881 else
10882 Default_Not_Present := True;
10883 end if;
10885 Next (Discr);
10886 end loop;
10888 -- An element list consisting of the default expressions of the
10889 -- discriminants is constructed in the above loop and used to set
10890 -- the Discriminant_Constraint attribute for the type. If an object
10891 -- is declared of this (record or task) type without any explicit
10892 -- discriminant constraint given, this element list will form the
10893 -- actual parameters for the corresponding initialization procedure
10894 -- for the type.
10896 Set_Discriminant_Constraint (Current_Scope, Elist);
10897 Set_Girder_Constraint (Current_Scope, No_Elist);
10899 -- Default expressions must be provided either for all or for none
10900 -- of the discriminants of a discriminant part. (RM 3.7.1)
10902 if Default_Present and then Default_Not_Present then
10903 Error_Msg_N
10904 ("incomplete specification of defaults for discriminants", N);
10905 end if;
10907 -- The use of the name of a discriminant is not allowed in default
10908 -- expressions of a discriminant part if the specification of the
10909 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
10911 -- To detect this, the discriminant names are entered initially with an
10912 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
10913 -- attempt to use a void entity (for example in an expression that is
10914 -- type-checked) produces the error message: premature usage. Now after
10915 -- completing the semantic analysis of the discriminant part, we can set
10916 -- the Ekind of all the discriminants appropriately.
10918 Discr := First (Discriminant_Specifications (N));
10919 Discr_Number := Uint_1;
10921 while Present (Discr) loop
10922 Id := Defining_Identifier (Discr);
10923 Set_Ekind (Id, E_Discriminant);
10924 Init_Component_Location (Id);
10925 Init_Esize (Id);
10926 Set_Discriminant_Number (Id, Discr_Number);
10928 -- Make sure this is always set, even in illegal programs
10930 Set_Corresponding_Discriminant (Id, Empty);
10932 -- Initialize the Original_Record_Component to the entity itself.
10933 -- Inherit_Components will propagate the right value to
10934 -- discriminants in derived record types.
10936 Set_Original_Record_Component (Id, Id);
10938 -- Create the discriminal for the discriminant.
10940 Build_Discriminal (Id);
10942 Next (Discr);
10943 Discr_Number := Discr_Number + 1;
10944 end loop;
10946 Set_Has_Discriminants (Current_Scope);
10947 end Process_Discriminants;
10949 -----------------------
10950 -- Process_Full_View --
10951 -----------------------
10953 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
10954 Priv_Parent : Entity_Id;
10955 Full_Parent : Entity_Id;
10956 Full_Indic : Node_Id;
10958 begin
10959 -- First some sanity checks that must be done after semantic
10960 -- decoration of the full view and thus cannot be placed with other
10961 -- similar checks in Find_Type_Name
10963 if not Is_Limited_Type (Priv_T)
10964 and then (Is_Limited_Type (Full_T)
10965 or else Is_Limited_Composite (Full_T))
10966 then
10967 Error_Msg_N
10968 ("completion of nonlimited type cannot be limited", Full_T);
10970 elsif Is_Abstract (Full_T) and then not Is_Abstract (Priv_T) then
10971 Error_Msg_N
10972 ("completion of nonabstract type cannot be abstract", Full_T);
10974 elsif Is_Tagged_Type (Priv_T)
10975 and then Is_Limited_Type (Priv_T)
10976 and then not Is_Limited_Type (Full_T)
10977 then
10978 -- GNAT allow its own definition of Limited_Controlled to disobey
10979 -- this rule in order in ease the implementation. The next test is
10980 -- safe because Root_Controlled is defined in a private system child
10982 if Etype (Full_T) = Full_View (RTE (RE_Root_Controlled)) then
10983 Set_Is_Limited_Composite (Full_T);
10984 else
10985 Error_Msg_N
10986 ("completion of limited tagged type must be limited", Full_T);
10987 end if;
10989 elsif Is_Generic_Type (Priv_T) then
10990 Error_Msg_N ("generic type cannot have a completion", Full_T);
10991 end if;
10993 if Is_Tagged_Type (Priv_T)
10994 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
10995 and then Is_Derived_Type (Full_T)
10996 then
10997 Priv_Parent := Etype (Priv_T);
10999 -- The full view of a private extension may have been transformed
11000 -- into an unconstrained derived type declaration and a subtype
11001 -- declaration (see build_derived_record_type for details).
11003 if Nkind (N) = N_Subtype_Declaration then
11004 Full_Indic := Subtype_Indication (N);
11005 Full_Parent := Etype (Base_Type (Full_T));
11006 else
11007 Full_Indic := Subtype_Indication (Type_Definition (N));
11008 Full_Parent := Etype (Full_T);
11009 end if;
11011 -- Check that the parent type of the full type is a descendant of
11012 -- the ancestor subtype given in the private extension. If either
11013 -- entity has an Etype equal to Any_Type then we had some previous
11014 -- error situation [7.3(8)].
11016 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
11017 return;
11019 elsif not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent) then
11020 Error_Msg_N
11021 ("parent of full type must descend from parent"
11022 & " of private extension", Full_Indic);
11024 -- Check the rules of 7.3(10): if the private extension inherits
11025 -- known discriminants, then the full type must also inherit those
11026 -- discriminants from the same (ancestor) type, and the parent
11027 -- subtype of the full type must be constrained if and only if
11028 -- the ancestor subtype of the private extension is constrained.
11030 elsif not Present (Discriminant_Specifications (Parent (Priv_T)))
11031 and then not Has_Unknown_Discriminants (Priv_T)
11032 and then Has_Discriminants (Base_Type (Priv_Parent))
11033 then
11034 declare
11035 Priv_Indic : constant Node_Id :=
11036 Subtype_Indication (Parent (Priv_T));
11038 Priv_Constr : constant Boolean :=
11039 Is_Constrained (Priv_Parent)
11040 or else
11041 Nkind (Priv_Indic) = N_Subtype_Indication
11042 or else Is_Constrained (Entity (Priv_Indic));
11044 Full_Constr : constant Boolean :=
11045 Is_Constrained (Full_Parent)
11046 or else
11047 Nkind (Full_Indic) = N_Subtype_Indication
11048 or else Is_Constrained (Entity (Full_Indic));
11050 Priv_Discr : Entity_Id;
11051 Full_Discr : Entity_Id;
11053 begin
11054 Priv_Discr := First_Discriminant (Priv_Parent);
11055 Full_Discr := First_Discriminant (Full_Parent);
11057 while Present (Priv_Discr) and then Present (Full_Discr) loop
11058 if Original_Record_Component (Priv_Discr) =
11059 Original_Record_Component (Full_Discr)
11060 or else
11061 Corresponding_Discriminant (Priv_Discr) =
11062 Corresponding_Discriminant (Full_Discr)
11063 then
11064 null;
11065 else
11066 exit;
11067 end if;
11069 Next_Discriminant (Priv_Discr);
11070 Next_Discriminant (Full_Discr);
11071 end loop;
11073 if Present (Priv_Discr) or else Present (Full_Discr) then
11074 Error_Msg_N
11075 ("full view must inherit discriminants of the parent type"
11076 & " used in the private extension", Full_Indic);
11078 elsif Priv_Constr and then not Full_Constr then
11079 Error_Msg_N
11080 ("parent subtype of full type must be constrained",
11081 Full_Indic);
11083 elsif Full_Constr and then not Priv_Constr then
11084 Error_Msg_N
11085 ("parent subtype of full type must be unconstrained",
11086 Full_Indic);
11087 end if;
11088 end;
11090 -- Check the rules of 7.3(12): if a partial view has neither known
11091 -- or unknown discriminants, then the full type declaration shall
11092 -- define a definite subtype.
11094 elsif not Has_Unknown_Discriminants (Priv_T)
11095 and then not Has_Discriminants (Priv_T)
11096 and then not Is_Constrained (Full_T)
11097 then
11098 Error_Msg_N
11099 ("full view must define a constrained type if partial view"
11100 & " has no discriminants", Full_T);
11101 end if;
11103 -- ??????? Do we implement the following properly ?????
11104 -- If the ancestor subtype of a private extension has constrained
11105 -- discriminants, then the parent subtype of the full view shall
11106 -- impose a statically matching constraint on those discriminants
11107 -- [7.3(13)].
11109 else
11110 -- For untagged types, verify that a type without discriminants
11111 -- is not completed with an unconstrained type.
11113 if not Is_Indefinite_Subtype (Priv_T)
11114 and then Is_Indefinite_Subtype (Full_T)
11115 then
11116 Error_Msg_N ("full view of type must be definite subtype", Full_T);
11117 end if;
11118 end if;
11120 -- Create a full declaration for all its subtypes recorded in
11121 -- Private_Dependents and swap them similarly to the base type.
11122 -- These are subtypes that have been define before the full
11123 -- declaration of the private type. We also swap the entry in
11124 -- Private_Dependents list so we can properly restore the
11125 -- private view on exit from the scope.
11127 declare
11128 Priv_Elmt : Elmt_Id;
11129 Priv : Entity_Id;
11130 Full : Entity_Id;
11132 begin
11133 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
11134 while Present (Priv_Elmt) loop
11135 Priv := Node (Priv_Elmt);
11137 if Ekind (Priv) = E_Private_Subtype
11138 or else Ekind (Priv) = E_Limited_Private_Subtype
11139 or else Ekind (Priv) = E_Record_Subtype_With_Private
11140 then
11141 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
11142 Set_Is_Itype (Full);
11143 Set_Parent (Full, Parent (Priv));
11144 Set_Associated_Node_For_Itype (Full, N);
11146 -- Now we need to complete the private subtype, but since the
11147 -- base type has already been swapped, we must also swap the
11148 -- subtypes (and thus, reverse the arguments in the call to
11149 -- Complete_Private_Subtype).
11151 Copy_And_Swap (Priv, Full);
11152 Complete_Private_Subtype (Full, Priv, Full_T, N);
11153 Replace_Elmt (Priv_Elmt, Full);
11154 end if;
11156 Next_Elmt (Priv_Elmt);
11157 end loop;
11158 end;
11160 -- If the private view was tagged, copy the new Primitive
11161 -- operations from the private view to the full view.
11163 if Is_Tagged_Type (Full_T) then
11164 declare
11165 Priv_List : Elist_Id;
11166 Full_List : constant Elist_Id := Primitive_Operations (Full_T);
11167 P1, P2 : Elmt_Id;
11168 Prim : Entity_Id;
11169 D_Type : Entity_Id;
11171 begin
11172 if Is_Tagged_Type (Priv_T) then
11173 Priv_List := Primitive_Operations (Priv_T);
11175 P1 := First_Elmt (Priv_List);
11176 while Present (P1) loop
11177 Prim := Node (P1);
11179 -- Transfer explicit primitives, not those inherited from
11180 -- parent of partial view, which will be re-inherited on
11181 -- the full view.
11183 if Comes_From_Source (Prim) then
11184 P2 := First_Elmt (Full_List);
11185 while Present (P2) and then Node (P2) /= Prim loop
11186 Next_Elmt (P2);
11187 end loop;
11189 -- If not found, that is a new one
11191 if No (P2) then
11192 Append_Elmt (Prim, Full_List);
11193 end if;
11194 end if;
11196 Next_Elmt (P1);
11197 end loop;
11199 else
11200 -- In this case the partial view is untagged, so here we
11201 -- locate all of the earlier primitives that need to be
11202 -- treated as dispatching (those that appear between the
11203 -- two views). Note that these additional operations must
11204 -- all be new operations (any earlier operations that
11205 -- override inherited operations of the full view will
11206 -- already have been inserted in the primitives list and
11207 -- marked as dispatching by Check_Operation_From_Private_View.
11208 -- Note that implicit "/=" operators are excluded from being
11209 -- added to the primitives list since they shouldn't be
11210 -- treated as dispatching (tagged "/=" is handled specially).
11212 Prim := Next_Entity (Full_T);
11213 while Present (Prim) and then Prim /= Priv_T loop
11214 if (Ekind (Prim) = E_Procedure
11215 or else Ekind (Prim) = E_Function)
11216 then
11218 D_Type := Find_Dispatching_Type (Prim);
11220 if D_Type = Full_T
11221 and then (Chars (Prim) /= Name_Op_Ne
11222 or else Comes_From_Source (Prim))
11223 then
11224 Check_Controlling_Formals (Full_T, Prim);
11226 if not Is_Dispatching_Operation (Prim) then
11227 Append_Elmt (Prim, Full_List);
11228 Set_Is_Dispatching_Operation (Prim, True);
11229 Set_DT_Position (Prim, No_Uint);
11230 end if;
11232 elsif Is_Dispatching_Operation (Prim)
11233 and then D_Type /= Full_T
11234 then
11236 -- Verify that it is not otherwise controlled by
11237 -- a formal or a return value ot type T.
11239 Check_Controlling_Formals (D_Type, Prim);
11240 end if;
11241 end if;
11243 Next_Entity (Prim);
11244 end loop;
11245 end if;
11247 -- For the tagged case, the two views can share the same
11248 -- Primitive Operation list and the same class wide type.
11249 -- Update attributes of the class-wide type which depend on
11250 -- the full declaration.
11252 if Is_Tagged_Type (Priv_T) then
11253 Set_Primitive_Operations (Priv_T, Full_List);
11254 Set_Class_Wide_Type
11255 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
11257 -- Any other attributes should be propagated to C_W ???
11259 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
11261 end if;
11262 end;
11263 end if;
11264 end Process_Full_View;
11266 -----------------------------------
11267 -- Process_Incomplete_Dependents --
11268 -----------------------------------
11270 procedure Process_Incomplete_Dependents
11271 (N : Node_Id;
11272 Full_T : Entity_Id;
11273 Inc_T : Entity_Id)
11275 Inc_Elmt : Elmt_Id;
11276 Priv_Dep : Entity_Id;
11277 New_Subt : Entity_Id;
11279 Disc_Constraint : Elist_Id;
11281 begin
11282 if No (Private_Dependents (Inc_T)) then
11283 return;
11285 else
11286 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
11288 -- Itypes that may be generated by the completion of an incomplete
11289 -- subtype are not used by the back-end and not attached to the tree.
11290 -- They are created only for constraint-checking purposes.
11291 end if;
11293 while Present (Inc_Elmt) loop
11294 Priv_Dep := Node (Inc_Elmt);
11296 if Ekind (Priv_Dep) = E_Subprogram_Type then
11298 -- An Access_To_Subprogram type may have a return type or a
11299 -- parameter type that is incomplete. Replace with the full view.
11301 if Etype (Priv_Dep) = Inc_T then
11302 Set_Etype (Priv_Dep, Full_T);
11303 end if;
11305 declare
11306 Formal : Entity_Id;
11308 begin
11309 Formal := First_Formal (Priv_Dep);
11311 while Present (Formal) loop
11313 if Etype (Formal) = Inc_T then
11314 Set_Etype (Formal, Full_T);
11315 end if;
11317 Next_Formal (Formal);
11318 end loop;
11319 end;
11321 elsif Is_Overloadable (Priv_Dep) then
11323 if Is_Tagged_Type (Full_T) then
11325 -- Subprogram has an access parameter whose designated type
11326 -- was incomplete. Reexamine declaration now, because it may
11327 -- be a primitive operation of the full type.
11329 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
11330 Set_Is_Dispatching_Operation (Priv_Dep);
11331 Check_Controlling_Formals (Full_T, Priv_Dep);
11332 end if;
11334 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
11336 -- Can happen during processing of a body before the completion
11337 -- of a TA type. Ignore, because spec is also on dependent list.
11339 return;
11341 -- Dependent is a subtype
11343 else
11344 -- We build a new subtype indication using the full view of the
11345 -- incomplete parent. The discriminant constraints have been
11346 -- elaborated already at the point of the subtype declaration.
11348 New_Subt := Create_Itype (E_Void, N);
11350 if Has_Discriminants (Full_T) then
11351 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
11352 else
11353 Disc_Constraint := No_Elist;
11354 end if;
11356 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
11357 Set_Full_View (Priv_Dep, New_Subt);
11358 end if;
11360 Next_Elmt (Inc_Elmt);
11361 end loop;
11363 end Process_Incomplete_Dependents;
11365 --------------------------------
11366 -- Process_Range_Expr_In_Decl --
11367 --------------------------------
11369 procedure Process_Range_Expr_In_Decl
11370 (R : Node_Id;
11371 T : Entity_Id;
11372 Related_Nod : Node_Id;
11373 Check_List : List_Id := Empty_List;
11374 R_Check_Off : Boolean := False)
11376 Lo, Hi : Node_Id;
11377 R_Checks : Check_Result;
11378 Type_Decl : Node_Id;
11379 Def_Id : Entity_Id;
11381 begin
11382 Analyze_And_Resolve (R, Base_Type (T));
11384 if Nkind (R) = N_Range then
11385 Lo := Low_Bound (R);
11386 Hi := High_Bound (R);
11388 -- If there were errors in the declaration, try and patch up some
11389 -- common mistakes in the bounds. The cases handled are literals
11390 -- which are Integer where the expected type is Real and vice versa.
11391 -- These corrections allow the compilation process to proceed further
11392 -- along since some basic assumptions of the format of the bounds
11393 -- are guaranteed.
11395 if Etype (R) = Any_Type then
11397 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
11398 Rewrite (Lo,
11399 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
11401 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
11402 Rewrite (Hi,
11403 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
11405 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
11406 Rewrite (Lo,
11407 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
11409 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
11410 Rewrite (Hi,
11411 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
11412 end if;
11414 Set_Etype (Lo, T);
11415 Set_Etype (Hi, T);
11416 end if;
11418 -- If the bounds of the range have been mistakenly given as
11419 -- string literals (perhaps in place of character literals),
11420 -- then an error has already been reported, but we rewrite
11421 -- the string literal as a bound of the range's type to
11422 -- avoid blowups in later processing that looks at static
11423 -- values.
11425 if Nkind (Lo) = N_String_Literal then
11426 Rewrite (Lo,
11427 Make_Attribute_Reference (Sloc (Lo),
11428 Attribute_Name => Name_First,
11429 Prefix => New_Reference_To (T, Sloc (Lo))));
11430 Analyze_And_Resolve (Lo);
11431 end if;
11433 if Nkind (Hi) = N_String_Literal then
11434 Rewrite (Hi,
11435 Make_Attribute_Reference (Sloc (Hi),
11436 Attribute_Name => Name_First,
11437 Prefix => New_Reference_To (T, Sloc (Hi))));
11438 Analyze_And_Resolve (Hi);
11439 end if;
11441 -- If bounds aren't scalar at this point then exit, avoiding
11442 -- problems with further processing of the range in this procedure.
11444 if not Is_Scalar_Type (Etype (Lo)) then
11445 return;
11446 end if;
11448 -- Resolve (actually Sem_Eval) has checked that the bounds are in
11449 -- then range of the base type. Here we check whether the bounds
11450 -- are in the range of the subtype itself. Note that if the bounds
11451 -- represent the null range the Constraint_Error exception should
11452 -- not be raised.
11454 -- ??? The following code should be cleaned up as follows
11455 -- 1. The Is_Null_Range (Lo, Hi) test should disapper since it
11456 -- is done in the call to Range_Check (R, T); below
11457 -- 2. The use of R_Check_Off should be investigated and possibly
11458 -- removed, this would clean up things a bit.
11460 if Is_Null_Range (Lo, Hi) then
11461 null;
11463 else
11464 -- We use a flag here instead of suppressing checks on the
11465 -- type because the type we check against isn't necessarily the
11466 -- place where we put the check.
11468 if not R_Check_Off then
11469 R_Checks := Range_Check (R, T);
11470 Type_Decl := Parent (R);
11472 -- Look up tree to find an appropriate insertion point.
11473 -- This seems really junk code, and very brittle, couldn't
11474 -- we just use an insert actions call of some kind ???
11476 while Present (Type_Decl) and then not
11477 (Nkind (Type_Decl) = N_Full_Type_Declaration
11478 or else
11479 Nkind (Type_Decl) = N_Subtype_Declaration
11480 or else
11481 Nkind (Type_Decl) = N_Loop_Statement
11482 or else
11483 Nkind (Type_Decl) = N_Task_Type_Declaration
11484 or else
11485 Nkind (Type_Decl) = N_Single_Task_Declaration
11486 or else
11487 Nkind (Type_Decl) = N_Protected_Type_Declaration
11488 or else
11489 Nkind (Type_Decl) = N_Single_Protected_Declaration)
11490 loop
11491 Type_Decl := Parent (Type_Decl);
11492 end loop;
11494 -- Why would Type_Decl not be present??? Without this test,
11495 -- short regression tests fail.
11497 if Present (Type_Decl) then
11498 if Nkind (Type_Decl) = N_Loop_Statement then
11499 declare
11500 Indic : Node_Id := Parent (R);
11501 begin
11502 while Present (Indic) and then not
11503 (Nkind (Indic) = N_Subtype_Indication)
11504 loop
11505 Indic := Parent (Indic);
11506 end loop;
11508 if Present (Indic) then
11509 Def_Id := Etype (Subtype_Mark (Indic));
11511 Insert_Range_Checks
11512 (R_Checks,
11513 Type_Decl,
11514 Def_Id,
11515 Sloc (Type_Decl),
11517 Do_Before => True);
11518 end if;
11519 end;
11520 else
11521 Def_Id := Defining_Identifier (Type_Decl);
11523 if (Ekind (Def_Id) = E_Record_Type
11524 and then Depends_On_Discriminant (R))
11525 or else
11526 (Ekind (Def_Id) = E_Protected_Type
11527 and then Has_Discriminants (Def_Id))
11528 then
11529 Append_Range_Checks
11530 (R_Checks, Check_List, Def_Id, Sloc (Type_Decl), R);
11532 else
11533 Insert_Range_Checks
11534 (R_Checks, Type_Decl, Def_Id, Sloc (Type_Decl), R);
11536 end if;
11537 end if;
11538 end if;
11539 end if;
11540 end if;
11541 end if;
11543 Get_Index_Bounds (R, Lo, Hi);
11545 if Expander_Active then
11546 Force_Evaluation (Lo);
11547 Force_Evaluation (Hi);
11548 end if;
11550 end Process_Range_Expr_In_Decl;
11552 --------------------------------------
11553 -- Process_Real_Range_Specification --
11554 --------------------------------------
11556 procedure Process_Real_Range_Specification (Def : Node_Id) is
11557 Spec : constant Node_Id := Real_Range_Specification (Def);
11558 Lo : Node_Id;
11559 Hi : Node_Id;
11560 Err : Boolean := False;
11562 procedure Analyze_Bound (N : Node_Id);
11563 -- Analyze and check one bound
11565 procedure Analyze_Bound (N : Node_Id) is
11566 begin
11567 Analyze_And_Resolve (N, Any_Real);
11569 if not Is_OK_Static_Expression (N) then
11570 Error_Msg_N
11571 ("bound in real type definition is not static", N);
11572 Err := True;
11573 end if;
11574 end Analyze_Bound;
11576 begin
11577 if Present (Spec) then
11578 Lo := Low_Bound (Spec);
11579 Hi := High_Bound (Spec);
11580 Analyze_Bound (Lo);
11581 Analyze_Bound (Hi);
11583 -- If error, clear away junk range specification
11585 if Err then
11586 Set_Real_Range_Specification (Def, Empty);
11587 end if;
11588 end if;
11589 end Process_Real_Range_Specification;
11591 ---------------------
11592 -- Process_Subtype --
11593 ---------------------
11595 function Process_Subtype
11596 (S : Node_Id;
11597 Related_Nod : Node_Id;
11598 Related_Id : Entity_Id := Empty;
11599 Suffix : Character := ' ')
11600 return Entity_Id
11602 P : Node_Id;
11603 Def_Id : Entity_Id;
11604 Full_View_Id : Entity_Id;
11605 Subtype_Mark_Id : Entity_Id;
11606 N_Dynamic_Ityp : Node_Id := Empty;
11608 begin
11609 -- Case of constraint present, so that we have an N_Subtype_Indication
11610 -- node (this node is created only if constraints are present).
11612 if Nkind (S) = N_Subtype_Indication then
11613 Find_Type (Subtype_Mark (S));
11615 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
11616 and then not
11617 (Nkind (Parent (S)) = N_Subtype_Declaration
11618 and then
11619 Is_Itype (Defining_Identifier (Parent (S))))
11620 then
11621 Check_Incomplete (Subtype_Mark (S));
11622 end if;
11624 P := Parent (S);
11625 Subtype_Mark_Id := Entity (Subtype_Mark (S));
11627 if Is_Unchecked_Union (Subtype_Mark_Id)
11628 and then Comes_From_Source (Related_Nod)
11629 then
11630 Error_Msg_N
11631 ("cannot create subtype of Unchecked_Union", Related_Nod);
11632 end if;
11634 -- Explicit subtype declaration case
11636 if Nkind (P) = N_Subtype_Declaration then
11637 Def_Id := Defining_Identifier (P);
11639 -- Explicit derived type definition case
11641 elsif Nkind (P) = N_Derived_Type_Definition then
11642 Def_Id := Defining_Identifier (Parent (P));
11644 -- Implicit case, the Def_Id must be created as an implicit type.
11645 -- The one exception arises in the case of concurrent types,
11646 -- array and access types, where other subsidiary implicit types
11647 -- may be created and must appear before the main implicit type.
11648 -- In these cases we leave Def_Id set to Empty as a signal that
11649 -- Create_Itype has not yet been called to create Def_Id.
11651 else
11652 if Is_Array_Type (Subtype_Mark_Id)
11653 or else Is_Concurrent_Type (Subtype_Mark_Id)
11654 or else Is_Access_Type (Subtype_Mark_Id)
11655 then
11656 Def_Id := Empty;
11658 -- For the other cases, we create a new unattached Itype,
11659 -- and set the indication to ensure it gets attached later.
11661 else
11662 Def_Id :=
11663 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
11664 end if;
11666 N_Dynamic_Ityp := Related_Nod;
11667 end if;
11669 -- If the kind of constraint is invalid for this kind of type,
11670 -- then give an error, and then pretend no constraint was given.
11672 if not Is_Valid_Constraint_Kind
11673 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
11674 then
11675 Error_Msg_N
11676 ("incorrect constraint for this kind of type", Constraint (S));
11678 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
11680 -- Make recursive call, having got rid of the bogus constraint
11682 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
11683 end if;
11685 -- Remaining processing depends on type
11687 case Ekind (Subtype_Mark_Id) is
11689 when Access_Kind =>
11690 Constrain_Access (Def_Id, S, Related_Nod);
11692 when Array_Kind =>
11693 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
11695 when Decimal_Fixed_Point_Kind =>
11696 Constrain_Decimal (Def_Id, S, N_Dynamic_Ityp);
11698 when Enumeration_Kind =>
11699 Constrain_Enumeration (Def_Id, S, N_Dynamic_Ityp);
11701 when Ordinary_Fixed_Point_Kind =>
11702 Constrain_Ordinary_Fixed (Def_Id, S, N_Dynamic_Ityp);
11704 when Float_Kind =>
11705 Constrain_Float (Def_Id, S, N_Dynamic_Ityp);
11707 when Integer_Kind =>
11708 Constrain_Integer (Def_Id, S, N_Dynamic_Ityp);
11710 when E_Record_Type |
11711 E_Record_Subtype |
11712 Class_Wide_Kind |
11713 E_Incomplete_Type =>
11714 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
11716 when Private_Kind =>
11717 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
11718 Set_Private_Dependents (Def_Id, New_Elmt_List);
11720 -- In case of an invalid constraint prevent further processing
11721 -- since the type constructed is missing expected fields.
11723 if Etype (Def_Id) = Any_Type then
11724 return Def_Id;
11725 end if;
11727 -- If the full view is that of a task with discriminants,
11728 -- we must constrain both the concurrent type and its
11729 -- corresponding record type. Otherwise we will just propagate
11730 -- the constraint to the full view, if available.
11732 if Present (Full_View (Subtype_Mark_Id))
11733 and then Has_Discriminants (Subtype_Mark_Id)
11734 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
11735 then
11736 Full_View_Id :=
11737 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
11739 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
11740 Constrain_Concurrent (Full_View_Id, S,
11741 Related_Nod, Related_Id, Suffix);
11742 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
11743 Set_Full_View (Def_Id, Full_View_Id);
11745 else
11746 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
11747 end if;
11749 when Concurrent_Kind =>
11750 Constrain_Concurrent (Def_Id, S,
11751 Related_Nod, Related_Id, Suffix);
11753 when others =>
11754 Error_Msg_N ("invalid subtype mark in subtype indication", S);
11755 end case;
11757 -- Size and Convention are always inherited from the base type
11759 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
11760 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
11762 return Def_Id;
11764 -- Case of no constraints present
11766 else
11767 Find_Type (S);
11768 Check_Incomplete (S);
11769 return Entity (S);
11770 end if;
11771 end Process_Subtype;
11773 -----------------------------
11774 -- Record_Type_Declaration --
11775 -----------------------------
11777 procedure Record_Type_Declaration (T : Entity_Id; N : Node_Id) is
11778 Def : constant Node_Id := Type_Definition (N);
11779 Range_Checks_Suppressed_Flag : Boolean := False;
11781 Is_Tagged : Boolean;
11782 Tag_Comp : Entity_Id;
11784 begin
11785 -- The flag Is_Tagged_Type might have already been set by Find_Type_Name
11786 -- if it detected an error for declaration T. This arises in the case of
11787 -- private tagged types where the full view omits the word tagged.
11789 Is_Tagged := Tagged_Present (Def)
11790 or else (Errors_Detected > 0 and then Is_Tagged_Type (T));
11792 -- Records constitute a scope for the component declarations within.
11793 -- The scope is created prior to the processing of these declarations.
11794 -- Discriminants are processed first, so that they are visible when
11795 -- processing the other components. The Ekind of the record type itself
11796 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
11798 -- Enter record scope
11800 New_Scope (T);
11802 -- These flags must be initialized before calling Process_Discriminants
11803 -- because this routine makes use of them.
11805 Set_Is_Tagged_Type (T, Is_Tagged);
11806 Set_Is_Limited_Record (T, Limited_Present (Def));
11808 -- Type is abstract if full declaration carries keyword, or if
11809 -- previous partial view did.
11811 Set_Is_Abstract (T, Is_Abstract (T) or else Abstract_Present (Def));
11813 Set_Ekind (T, E_Record_Type);
11814 Set_Etype (T, T);
11815 Init_Size_Align (T);
11817 Set_Girder_Constraint (T, No_Elist);
11819 -- If an incomplete or private type declaration was already given for
11820 -- the type, then this scope already exists, and the discriminants have
11821 -- been declared within. We must verify that the full declaration
11822 -- matches the incomplete one.
11824 Check_Or_Process_Discriminants (N, T);
11826 Set_Is_Constrained (T, not Has_Discriminants (T));
11827 Set_Has_Delayed_Freeze (T, True);
11829 -- For tagged types add a manually analyzed component corresponding
11830 -- to the component _tag, the corresponding piece of tree will be
11831 -- expanded as part of the freezing actions if it is not a CPP_Class.
11833 if Is_Tagged then
11834 -- Do not add the tag unless we are in expansion mode.
11836 if Expander_Active then
11837 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
11838 Enter_Name (Tag_Comp);
11840 Set_Is_Tag (Tag_Comp);
11841 Set_Ekind (Tag_Comp, E_Component);
11842 Set_Etype (Tag_Comp, RTE (RE_Tag));
11843 Set_DT_Entry_Count (Tag_Comp, No_Uint);
11844 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
11845 Init_Component_Location (Tag_Comp);
11846 end if;
11848 Make_Class_Wide_Type (T);
11849 Set_Primitive_Operations (T, New_Elmt_List);
11850 end if;
11852 -- We must suppress range checks when processing the components
11853 -- of a record in the presence of discriminants, since we don't
11854 -- want spurious checks to be generated during their analysis, but
11855 -- must reset the Suppress_Range_Checks flags after having procesed
11856 -- the record definition.
11858 if Has_Discriminants (T) and then not Suppress_Range_Checks (T) then
11859 Set_Suppress_Range_Checks (T, True);
11860 Range_Checks_Suppressed_Flag := True;
11861 end if;
11863 Record_Type_Definition (Def, T);
11865 if Range_Checks_Suppressed_Flag then
11866 Set_Suppress_Range_Checks (T, False);
11867 Range_Checks_Suppressed_Flag := False;
11868 end if;
11870 -- Exit from record scope
11872 End_Scope;
11873 end Record_Type_Declaration;
11875 ----------------------------
11876 -- Record_Type_Definition --
11877 ----------------------------
11879 procedure Record_Type_Definition (Def : Node_Id; T : Entity_Id) is
11880 Component : Entity_Id;
11881 Ctrl_Components : Boolean := False;
11882 Final_Storage_Only : Boolean := not Is_Controlled (T);
11884 begin
11885 -- If the component list of a record type is defined by the reserved
11886 -- word null and there is no discriminant part, then the record type has
11887 -- no components and all records of the type are null records (RM 3.7)
11888 -- This procedure is also called to process the extension part of a
11889 -- record extension, in which case the current scope may have inherited
11890 -- components.
11892 if No (Def)
11893 or else No (Component_List (Def))
11894 or else Null_Present (Component_List (Def))
11895 then
11896 null;
11898 else
11899 Analyze_Declarations (Component_Items (Component_List (Def)));
11901 if Present (Variant_Part (Component_List (Def))) then
11902 Analyze (Variant_Part (Component_List (Def)));
11903 end if;
11904 end if;
11906 -- After completing the semantic analysis of the record definition,
11907 -- record components, both new and inherited, are accessible. Set
11908 -- their kind accordingly.
11910 Component := First_Entity (Current_Scope);
11911 while Present (Component) loop
11913 if Ekind (Component) = E_Void then
11914 Set_Ekind (Component, E_Component);
11915 Init_Component_Location (Component);
11916 end if;
11918 if Has_Task (Etype (Component)) then
11919 Set_Has_Task (T);
11920 end if;
11922 if Ekind (Component) /= E_Component then
11923 null;
11925 elsif Has_Controlled_Component (Etype (Component))
11926 or else (Chars (Component) /= Name_uParent
11927 and then Is_Controlled (Etype (Component)))
11928 then
11929 Set_Has_Controlled_Component (T, True);
11930 Final_Storage_Only := Final_Storage_Only
11931 and then Finalize_Storage_Only (Etype (Component));
11932 Ctrl_Components := True;
11933 end if;
11935 Next_Entity (Component);
11936 end loop;
11938 -- A type is Finalize_Storage_Only only if all its controlled
11939 -- components are so.
11941 if Ctrl_Components then
11942 Set_Finalize_Storage_Only (T, Final_Storage_Only);
11943 end if;
11945 if Present (Def) then
11946 Process_End_Label (Def, 'e');
11947 end if;
11948 end Record_Type_Definition;
11950 ---------------------
11951 -- Set_Fixed_Range --
11952 ---------------------
11954 -- The range for fixed-point types is complicated by the fact that we
11955 -- do not know the exact end points at the time of the declaration. This
11956 -- is true for three reasons:
11958 -- A size clause may affect the fudging of the end-points
11959 -- A small clause may affect the values of the end-points
11960 -- We try to include the end-points if it does not affect the size
11962 -- This means that the actual end-points must be established at the
11963 -- point when the type is frozen. Meanwhile, we first narrow the range
11964 -- as permitted (so that it will fit if necessary in a small specified
11965 -- size), and then build a range subtree with these narrowed bounds.
11967 -- Set_Fixed_Range constructs the range from real literal values, and
11968 -- sets the range as the Scalar_Range of the given fixed-point type
11969 -- entity.
11971 -- The parent of this range is set to point to the entity so that it
11972 -- is properly hooked into the tree (unlike normal Scalar_Range entries
11973 -- for other scalar types, which are just pointers to the range in the
11974 -- original tree, this would otherwise be an orphan).
11976 -- The tree is left unanalyzed. When the type is frozen, the processing
11977 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
11978 -- analyzed, and uses this as an indication that it should complete
11979 -- work on the range (it will know the final small and size values).
11981 procedure Set_Fixed_Range
11982 (E : Entity_Id;
11983 Loc : Source_Ptr;
11984 Lo : Ureal;
11985 Hi : Ureal)
11987 S : constant Node_Id :=
11988 Make_Range (Loc,
11989 Low_Bound => Make_Real_Literal (Loc, Lo),
11990 High_Bound => Make_Real_Literal (Loc, Hi));
11992 begin
11993 Set_Scalar_Range (E, S);
11994 Set_Parent (S, E);
11995 end Set_Fixed_Range;
11997 --------------------------------------------------------
11998 -- Set_Girder_Constraint_From_Discriminant_Constraint --
11999 --------------------------------------------------------
12001 procedure Set_Girder_Constraint_From_Discriminant_Constraint
12002 (E : Entity_Id)
12004 begin
12005 -- Make sure set if encountered during
12006 -- Expand_To_Girder_Constraint
12008 Set_Girder_Constraint (E, No_Elist);
12010 -- Give it the right value
12012 if Is_Constrained (E) and then Has_Discriminants (E) then
12013 Set_Girder_Constraint (E,
12014 Expand_To_Girder_Constraint (E, Discriminant_Constraint (E)));
12015 end if;
12017 end Set_Girder_Constraint_From_Discriminant_Constraint;
12019 ----------------------------------
12020 -- Set_Scalar_Range_For_Subtype --
12021 ----------------------------------
12023 procedure Set_Scalar_Range_For_Subtype
12024 (Def_Id : Entity_Id;
12025 R : Node_Id;
12026 Subt : Entity_Id;
12027 Related_Nod : Node_Id)
12029 Kind : constant Entity_Kind := Ekind (Def_Id);
12030 begin
12031 Set_Scalar_Range (Def_Id, R);
12033 -- We need to link the range into the tree before resolving it so
12034 -- that types that are referenced, including importantly the subtype
12035 -- itself, are properly frozen (Freeze_Expression requires that the
12036 -- expression be properly linked into the tree). Of course if it is
12037 -- already linked in, then we do not disturb the current link.
12039 if No (Parent (R)) then
12040 Set_Parent (R, Def_Id);
12041 end if;
12043 -- Reset the kind of the subtype during analysis of the range, to
12044 -- catch possible premature use in the bounds themselves.
12046 Set_Ekind (Def_Id, E_Void);
12047 Process_Range_Expr_In_Decl (R, Subt, Related_Nod);
12048 Set_Ekind (Def_Id, Kind);
12050 end Set_Scalar_Range_For_Subtype;
12052 -------------------------------------
12053 -- Signed_Integer_Type_Declaration --
12054 -------------------------------------
12056 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
12057 Implicit_Base : Entity_Id;
12058 Base_Typ : Entity_Id;
12059 Lo_Val : Uint;
12060 Hi_Val : Uint;
12061 Errs : Boolean := False;
12062 Lo : Node_Id;
12063 Hi : Node_Id;
12065 function Can_Derive_From (E : Entity_Id) return Boolean;
12066 -- Determine whether given bounds allow derivation from specified type
12068 procedure Check_Bound (Expr : Node_Id);
12069 -- Check bound to make sure it is integral and static. If not, post
12070 -- appropriate error message and set Errs flag
12072 function Can_Derive_From (E : Entity_Id) return Boolean is
12073 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
12074 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
12076 begin
12077 -- Note we check both bounds against both end values, to deal with
12078 -- strange types like ones with a range of 0 .. -12341234.
12080 return Lo <= Lo_Val and then Lo_Val <= Hi
12081 and then
12082 Lo <= Hi_Val and then Hi_Val <= Hi;
12083 end Can_Derive_From;
12085 procedure Check_Bound (Expr : Node_Id) is
12086 begin
12087 -- If a range constraint is used as an integer type definition, each
12088 -- bound of the range must be defined by a static expression of some
12089 -- integer type, but the two bounds need not have the same integer
12090 -- type (Negative bounds are allowed.) (RM 3.5.4)
12092 if not Is_Integer_Type (Etype (Expr)) then
12093 Error_Msg_N
12094 ("integer type definition bounds must be of integer type", Expr);
12095 Errs := True;
12097 elsif not Is_OK_Static_Expression (Expr) then
12098 Error_Msg_N
12099 ("non-static expression used for integer type bound", Expr);
12100 Errs := True;
12102 -- The bounds are folded into literals, and we set their type to be
12103 -- universal, to avoid typing difficulties: we cannot set the type
12104 -- of the literal to the new type, because this would be a forward
12105 -- reference for the back end, and if the original type is user-
12106 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
12108 else
12109 if Is_Entity_Name (Expr) then
12110 Fold_Uint (Expr, Expr_Value (Expr));
12111 end if;
12113 Set_Etype (Expr, Universal_Integer);
12114 end if;
12115 end Check_Bound;
12117 -- Start of processing for Signed_Integer_Type_Declaration
12119 begin
12120 -- Create an anonymous base type
12122 Implicit_Base :=
12123 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
12125 -- Analyze and check the bounds, they can be of any integer type
12127 Lo := Low_Bound (Def);
12128 Hi := High_Bound (Def);
12130 -- Arbitrarily use Integer as the type if either bound had an error
12132 if Hi = Error or else Lo = Error then
12133 Base_Typ := Any_Integer;
12134 Set_Error_Posted (T, True);
12136 -- Here both bounds are OK expressions
12138 else
12139 Analyze_And_Resolve (Lo, Any_Integer);
12140 Analyze_And_Resolve (Hi, Any_Integer);
12142 Check_Bound (Lo);
12143 Check_Bound (Hi);
12145 if Errs then
12146 Hi := Type_High_Bound (Standard_Long_Long_Integer);
12147 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
12148 end if;
12150 -- Find type to derive from
12152 Lo_Val := Expr_Value (Lo);
12153 Hi_Val := Expr_Value (Hi);
12155 if Can_Derive_From (Standard_Short_Short_Integer) then
12156 Base_Typ := Base_Type (Standard_Short_Short_Integer);
12158 elsif Can_Derive_From (Standard_Short_Integer) then
12159 Base_Typ := Base_Type (Standard_Short_Integer);
12161 elsif Can_Derive_From (Standard_Integer) then
12162 Base_Typ := Base_Type (Standard_Integer);
12164 elsif Can_Derive_From (Standard_Long_Integer) then
12165 Base_Typ := Base_Type (Standard_Long_Integer);
12167 elsif Can_Derive_From (Standard_Long_Long_Integer) then
12168 Base_Typ := Base_Type (Standard_Long_Long_Integer);
12170 else
12171 Base_Typ := Base_Type (Standard_Long_Long_Integer);
12172 Error_Msg_N ("integer type definition bounds out of range", Def);
12173 Hi := Type_High_Bound (Standard_Long_Long_Integer);
12174 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
12175 end if;
12176 end if;
12178 -- Complete both implicit base and declared first subtype entities
12180 Set_Etype (Implicit_Base, Base_Typ);
12181 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
12182 Set_Size_Info (Implicit_Base, (Base_Typ));
12183 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
12184 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
12186 Set_Ekind (T, E_Signed_Integer_Subtype);
12187 Set_Etype (T, Implicit_Base);
12189 Set_Size_Info (T, (Implicit_Base));
12190 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
12191 Set_Scalar_Range (T, Def);
12192 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
12193 Set_Is_Constrained (T);
12195 end Signed_Integer_Type_Declaration;
12197 end Sem_Ch3;