1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
11 -- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
13 -- GNAT is free software; you can redistribute it and/or modify it under --
14 -- terms of the GNU General Public License as published by the Free Soft- --
15 -- ware Foundation; either version 2, or (at your option) any later ver- --
16 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
17 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
18 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
19 -- for more details. You should have received a copy of the GNU General --
20 -- Public License distributed with GNAT; see file COPYING. If not, write --
21 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
22 -- MA 02111-1307, USA. --
24 -- GNAT was originally developed by the GNAT team at New York University. --
25 -- Extensive contributions were provided by Ada Core Technologies Inc. --
27 ------------------------------------------------------------------------------
29 with Atree
; use Atree
;
30 with Checks
; use Checks
;
31 with Elists
; use Elists
;
32 with Einfo
; use Einfo
;
33 with Errout
; use Errout
;
34 with Eval_Fat
; use Eval_Fat
;
35 with Exp_Ch3
; use Exp_Ch3
;
36 with Exp_Dist
; use Exp_Dist
;
37 with Exp_Util
; use Exp_Util
;
38 with Freeze
; use Freeze
;
39 with Itypes
; use Itypes
;
40 with Layout
; use Layout
;
42 with Lib
.Xref
; use Lib
.Xref
;
43 with Namet
; use Namet
;
44 with Nmake
; use Nmake
;
46 with Restrict
; use Restrict
;
47 with Rtsfind
; use Rtsfind
;
49 with Sem_Case
; use Sem_Case
;
50 with Sem_Cat
; use Sem_Cat
;
51 with Sem_Ch6
; use Sem_Ch6
;
52 with Sem_Ch7
; use Sem_Ch7
;
53 with Sem_Ch8
; use Sem_Ch8
;
54 with Sem_Ch13
; use Sem_Ch13
;
55 with Sem_Disp
; use Sem_Disp
;
56 with Sem_Dist
; use Sem_Dist
;
57 with Sem_Elim
; use Sem_Elim
;
58 with Sem_Eval
; use Sem_Eval
;
59 with Sem_Mech
; use Sem_Mech
;
60 with Sem_Res
; use Sem_Res
;
61 with Sem_Smem
; use Sem_Smem
;
62 with Sem_Type
; use Sem_Type
;
63 with Sem_Util
; use Sem_Util
;
64 with Stand
; use Stand
;
65 with Sinfo
; use Sinfo
;
66 with Snames
; use Snames
;
67 with Tbuild
; use Tbuild
;
68 with Ttypes
; use Ttypes
;
69 with Uintp
; use Uintp
;
70 with Urealp
; use Urealp
;
72 package body Sem_Ch3
is
74 -----------------------
75 -- Local Subprograms --
76 -----------------------
78 procedure Build_Derived_Type
80 Parent_Type
: Entity_Id
;
81 Derived_Type
: Entity_Id
;
82 Is_Completion
: Boolean;
83 Derive_Subps
: Boolean := True);
84 -- Create and decorate a Derived_Type given the Parent_Type entity.
85 -- N is the N_Full_Type_Declaration node containing the derived type
86 -- definition. Parent_Type is the entity for the parent type in the derived
87 -- type definition and Derived_Type the actual derived type. Is_Completion
88 -- must be set to False if Derived_Type is the N_Defining_Identifier node
89 -- in N (ie Derived_Type = Defining_Identifier (N)). In this case N is not
90 -- the completion of a private type declaration. If Is_Completion is
91 -- set to True, N is the completion of a private type declaration and
92 -- Derived_Type is different from the defining identifier inside N (i.e.
93 -- Derived_Type /= Defining_Identifier (N)). Derive_Subps indicates whether
94 -- the parent subprograms should be derived. The only case where this
95 -- parameter is False is when Build_Derived_Type is recursively called to
96 -- process an implicit derived full type for a type derived from a private
97 -- type (in that case the subprograms must only be derived for the private
99 -- ??? These flags need a bit of re-examination and re-documentation:
100 -- ??? are they both necessary (both seem related to the recursion)?
102 procedure Build_Derived_Access_Type
104 Parent_Type
: Entity_Id
;
105 Derived_Type
: Entity_Id
);
106 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
107 -- create an implicit base if the parent type is constrained or if the
108 -- subtype indication has a constraint.
110 procedure Build_Derived_Array_Type
112 Parent_Type
: Entity_Id
;
113 Derived_Type
: Entity_Id
);
114 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
115 -- create an implicit base if the parent type is constrained or if the
116 -- subtype indication has a constraint.
118 procedure Build_Derived_Concurrent_Type
120 Parent_Type
: Entity_Id
;
121 Derived_Type
: Entity_Id
);
122 -- Subsidiary procedure to Build_Derived_Type. For a derived task or pro-
123 -- tected type, inherit entries and protected subprograms, check legality
124 -- of discriminant constraints if any.
126 procedure Build_Derived_Enumeration_Type
128 Parent_Type
: Entity_Id
;
129 Derived_Type
: Entity_Id
);
130 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
131 -- type, we must create a new list of literals. Types derived from
132 -- Character and Wide_Character are special-cased.
134 procedure Build_Derived_Numeric_Type
136 Parent_Type
: Entity_Id
;
137 Derived_Type
: Entity_Id
);
138 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
139 -- an anonymous base type, and propagate constraint to subtype if needed.
141 procedure Build_Derived_Private_Type
143 Parent_Type
: Entity_Id
;
144 Derived_Type
: Entity_Id
;
145 Is_Completion
: Boolean;
146 Derive_Subps
: Boolean := True);
147 -- Substidiary procedure to Build_Derived_Type. This procedure is complex
148 -- because the parent may or may not have a completion, and the derivation
149 -- may itself be a completion.
151 procedure Build_Derived_Record_Type
153 Parent_Type
: Entity_Id
;
154 Derived_Type
: Entity_Id
;
155 Derive_Subps
: Boolean := True);
156 -- Subsidiary procedure to Build_Derived_Type and
157 -- Analyze_Private_Extension_Declaration used for tagged and untagged
158 -- record types. All parameters are as in Build_Derived_Type except that
159 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
160 -- N_Private_Extension_Declaration node. See the definition of this routine
161 -- for much more info. Derive_Subps indicates whether subprograms should
162 -- be derived from the parent type. The only case where Derive_Subps is
163 -- False is for an implicit derived full type for a type derived from a
164 -- private type (see Build_Derived_Type).
166 function Inherit_Components
168 Parent_Base
: Entity_Id
;
169 Derived_Base
: Entity_Id
;
171 Inherit_Discr
: Boolean;
174 -- Called from Build_Derived_Record_Type to inherit the components of
175 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
176 -- For more information on derived types and component inheritance please
177 -- consult the comment above the body of Build_Derived_Record_Type.
179 -- N is the original derived type declaration.
180 -- Is_Tagged is set if we are dealing with tagged types.
181 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
182 -- Parent_Base, otherwise no discriminants are inherited.
183 -- Discs gives the list of constraints that apply to Parent_Base in the
184 -- derived type declaration. If Discs is set to No_Elist, then we have the
185 -- following situation:
187 -- type Parent (D1..Dn : ..) is [tagged] record ...;
188 -- type Derived is new Parent [with ...];
190 -- which gets treated as
192 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
194 -- For untagged types the returned value is an association list:
195 -- (Old_Component => New_Component), where Old_Component is the Entity_Id
196 -- of a component in Parent_Base and New_Component is the Entity_Id of the
197 -- corresponding component in Derived_Base. For untagged records, this
198 -- association list is needed when copying the record declaration for the
199 -- derived base. In the tagged case the value returned is irrelevant.
201 procedure Build_Discriminal
(Discrim
: Entity_Id
);
202 -- Create the discriminal corresponding to discriminant Discrim, that is
203 -- the parameter corresponding to Discrim to be used in initialization
204 -- procedures for the type where Discrim is a discriminant. Discriminals
205 -- are not used during semantic analysis, and are not fully defined
206 -- entities until expansion. Thus they are not given a scope until
207 -- initialization procedures are built.
209 function Build_Discriminant_Constraints
212 Derived_Def
: Boolean := False)
214 -- Validate discriminant constraints, and return the list of the
215 -- constraints in order of discriminant declarations. T is the
216 -- discriminated unconstrained type. Def is the N_Subtype_Indication
217 -- node where the discriminants constraints for T are specified.
218 -- Derived_Def is True if we are building the discriminant constraints
219 -- in a derived type definition of the form "type D (...) is new T (xxx)".
220 -- In this case T is the parent type and Def is the constraint "(xxx)" on
221 -- T and this routine sets the Corresponding_Discriminant field of the
222 -- discriminants in the derived type D to point to the corresponding
223 -- discriminants in the parent type T.
225 procedure Build_Discriminated_Subtype
229 Related_Nod
: Node_Id
;
230 For_Access
: Boolean := False);
231 -- Subsidiary procedure to Constrain_Discriminated_Type and to
232 -- Process_Incomplete_Dependents. Given
234 -- T (a possibly discriminated base type)
235 -- Def_Id (a very partially built subtype for T),
237 -- the call completes Def_Id to be the appropriate E_*_Subtype.
239 -- The Elist is the list of discriminant constraints if any (it is set to
240 -- No_Elist if T is not a discriminated type, and to an empty list if
241 -- T has discriminants but there are no discriminant constraints). The
242 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
243 -- The For_Access says whether or not this subtype is really constraining
244 -- an access type. That is its sole purpose is the designated type of an
245 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
246 -- is built to avoid freezing T when the access subtype is frozen.
248 function Build_Scalar_Bound
254 -- The bounds of a derived scalar type are conversions of the bounds of
255 -- the parent type. Optimize the representation if the bounds are literals.
256 -- Needs a more complete spec--what are the parameters exactly, and what
257 -- exactly is the returned value, and how is Bound affected???
259 procedure Build_Underlying_Full_View
263 -- If the completion of a private type is itself derived from a private
264 -- type, or if the full view of a private subtype is itself private, the
265 -- back-end has no way to compute the actual size of this type. We build
266 -- an internal subtype declaration of the proper parent type to convey
267 -- this information. This extra mechanism is needed because a full
268 -- view cannot itself have a full view (it would get clobbered during
271 procedure Check_Access_Discriminant_Requires_Limited
274 -- Check the restriction that the type to which an access discriminant
275 -- belongs must be a concurrent type or a descendant of a type with
276 -- the reserved word 'limited' in its declaration.
278 procedure Check_Delta_Expression
(E
: Node_Id
);
279 -- Check that the expression represented by E is suitable for use as
280 -- a delta expression, i.e. it is of real type and is static.
282 procedure Check_Digits_Expression
(E
: Node_Id
);
283 -- Check that the expression represented by E is suitable for use as
284 -- a digits expression, i.e. it is of integer type, positive and static.
286 procedure Check_Incomplete
(T
: Entity_Id
);
287 -- Called to verify that an incomplete type is not used prematurely
289 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
290 -- Validate the initialization of an object declaration. T is the
291 -- required type, and Exp is the initialization expression.
293 procedure Check_Or_Process_Discriminants
(N
: Node_Id
; T
: Entity_Id
);
294 -- If T is the full declaration of an incomplete or private type, check
295 -- the conformance of the discriminants, otherwise process them.
297 procedure Check_Real_Bound
(Bound
: Node_Id
);
298 -- Check given bound for being of real type and static. If not, post an
299 -- appropriate message, and rewrite the bound with the real literal zero.
301 procedure Constant_Redeclaration
305 -- Various checks on legality of full declaration of deferred constant.
306 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
307 -- node. The caller has not yet set any attributes of this entity.
309 procedure Convert_Scalar_Bounds
311 Parent_Type
: Entity_Id
;
312 Derived_Type
: Entity_Id
;
314 -- For derived scalar types, convert the bounds in the type definition
315 -- to the derived type, and complete their analysis.
317 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
318 -- Copies attributes from array base type T2 to array base type T1.
319 -- Copies only attributes that apply to base types, but not subtypes.
321 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
322 -- Copies attributes from array subtype T2 to array subtype T1. Copies
323 -- attributes that apply to both subtypes and base types.
325 procedure Create_Constrained_Components
329 Constraints
: Elist_Id
);
330 -- Build the list of entities for a constrained discriminated record
331 -- subtype. If a component depends on a discriminant, replace its subtype
332 -- using the discriminant values in the discriminant constraint.
333 -- Subt is the defining identifier for the subtype whose list of
334 -- constrained entities we will create. Decl_Node is the type declaration
335 -- node where we will attach all the itypes created. Typ is the base
336 -- discriminated type for the subtype Subt. Constraints is the list of
337 -- discriminant constraints for Typ.
339 function Constrain_Component_Type
340 (Compon_Type
: Entity_Id
;
341 Constrained_Typ
: Entity_Id
;
342 Related_Node
: Node_Id
;
344 Constraints
: Elist_Id
)
346 -- Given a discriminated base type Typ, a list of discriminant constraint
347 -- Constraints for Typ and the type of a component of Typ, Compon_Type,
348 -- create and return the type corresponding to Compon_type where all
349 -- discriminant references are replaced with the corresponding
350 -- constraint. If no discriminant references occurr in Compon_Typ then
351 -- return it as is. Constrained_Typ is the final constrained subtype to
352 -- which the constrained Compon_Type belongs. Related_Node is the node
353 -- where we will attach all the itypes created.
355 procedure Constrain_Access
356 (Def_Id
: in out Entity_Id
;
358 Related_Nod
: Node_Id
);
359 -- Apply a list of constraints to an access type. If Def_Id is empty,
360 -- it is an anonymous type created for a subtype indication. In that
361 -- case it is created in the procedure and attached to Related_Nod.
363 procedure Constrain_Array
364 (Def_Id
: in out Entity_Id
;
366 Related_Nod
: Node_Id
;
367 Related_Id
: Entity_Id
;
369 -- Apply a list of index constraints to an unconstrained array type. The
370 -- first parameter is the entity for the resulting subtype. A value of
371 -- Empty for Def_Id indicates that an implicit type must be created, but
372 -- creation is delayed (and must be done by this procedure) because other
373 -- subsidiary implicit types must be created first (which is why Def_Id
374 -- is an in/out parameter). Related_Nod gives the place where this type has
375 -- to be inserted in the tree. The Related_Id and Suffix parameters are
376 -- used to build the associated Implicit type name.
378 procedure Constrain_Concurrent
379 (Def_Id
: in out Entity_Id
;
381 Related_Nod
: Node_Id
;
382 Related_Id
: Entity_Id
;
384 -- Apply list of discriminant constraints to an unconstrained concurrent
387 -- SI is the N_Subtype_Indication node containing the constraint and
388 -- the unconstrained type to constrain.
390 -- Def_Id is the entity for the resulting constrained subtype. A
391 -- value of Empty for Def_Id indicates that an implicit type must be
392 -- created, but creation is delayed (and must be done by this procedure)
393 -- because other subsidiary implicit types must be created first (which
394 -- is why Def_Id is an in/out parameter).
396 -- Related_Nod gives the place where this type has to be inserted
399 -- The last two arguments are used to create its external name if needed.
401 function Constrain_Corresponding_Record
402 (Prot_Subt
: Entity_Id
;
403 Corr_Rec
: Entity_Id
;
404 Related_Nod
: Node_Id
;
405 Related_Id
: Entity_Id
)
407 -- When constraining a protected type or task type with discriminants,
408 -- constrain the corresponding record with the same discriminant values.
410 procedure Constrain_Decimal
413 Related_Nod
: Node_Id
);
414 -- Constrain a decimal fixed point type with a digits constraint and/or a
415 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
417 procedure Constrain_Discriminated_Type
420 Related_Nod
: Node_Id
;
421 For_Access
: Boolean := False);
422 -- Process discriminant constraints of composite type. Verify that values
423 -- have been provided for all discriminants, that the original type is
424 -- unconstrained, and that the types of the supplied expressions match
425 -- the discriminant types. The first three parameters are like in routine
426 -- Constrain_Concurrent. See Build_Discrimated_Subtype for an explanation
429 procedure Constrain_Enumeration
432 Related_Nod
: Node_Id
);
433 -- Constrain an enumeration type with a range constraint. This is
434 -- identical to Constrain_Integer, but for the Ekind of the
435 -- resulting subtype.
437 procedure Constrain_Float
440 Related_Nod
: Node_Id
);
441 -- Constrain a floating point type with either a digits constraint
442 -- and/or a range constraint, building a E_Floating_Point_Subtype.
444 procedure Constrain_Index
447 Related_Nod
: Node_Id
;
448 Related_Id
: Entity_Id
;
451 -- Process an index constraint in a constrained array declaration.
452 -- The constraint can be a subtype name, or a range with or without
453 -- an explicit subtype mark. The index is the corresponding index of the
454 -- unconstrained array. The Related_Id and Suffix parameters are used to
455 -- build the associated Implicit type name.
457 procedure Constrain_Integer
460 Related_Nod
: Node_Id
);
461 -- Build subtype of a signed or modular integer type.
463 procedure Constrain_Ordinary_Fixed
466 Related_Nod
: Node_Id
);
467 -- Constrain an ordinary fixed point type with a range constraint, and
468 -- build an E_Ordinary_Fixed_Point_Subtype entity.
470 procedure Copy_And_Swap
(Privat
, Full
: Entity_Id
);
471 -- Copy the Privat entity into the entity of its full declaration
472 -- then swap the two entities in such a manner that the former private
473 -- type is now seen as a full type.
475 procedure Copy_Private_To_Full
(Priv
, Full
: Entity_Id
);
476 -- Initialize the full view declaration with the relevant fields
477 -- from the private view.
479 procedure Decimal_Fixed_Point_Type_Declaration
482 -- Create a new decimal fixed point type, and apply the constraint to
483 -- obtain a subtype of this new type.
485 procedure Complete_Private_Subtype
488 Full_Base
: Entity_Id
;
489 Related_Nod
: Node_Id
);
490 -- Complete the implicit full view of a private subtype by setting
491 -- the appropriate semantic fields. If the full view of the parent is
492 -- a record type, build constrained components of subtype.
494 procedure Derived_Standard_Character
496 Parent_Type
: Entity_Id
;
497 Derived_Type
: Entity_Id
);
498 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
499 -- derivations from types Standard.Character and Standard.Wide_Character.
501 procedure Derived_Type_Declaration
504 Is_Completion
: Boolean);
505 -- Process a derived type declaration. This routine will invoke
506 -- Build_Derived_Type to process the actual derived type definition.
507 -- Parameters N and Is_Completion have the same meaning as in
508 -- Build_Derived_Type. T is the N_Defining_Identifier for the entity
509 -- defined in the N_Full_Type_Declaration node N, that is T is the
512 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
;
513 -- Given a subtype indication S (which is really an N_Subtype_Indication
514 -- node or a plain N_Identifier), find the type of the subtype mark.
516 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
517 -- Insert each literal in symbol table, as an overloadable identifier
518 -- Each enumeration type is mapped into a sequence of integers, and
519 -- each literal is defined as a constant with integer value. If any
520 -- of the literals are character literals, the type is a character
521 -- type, which means that strings are legal aggregates for arrays of
522 -- components of the type.
524 procedure Expand_Others_Choice
525 (Case_Table
: Choice_Table_Type
;
526 Others_Choice
: Node_Id
;
527 Choice_Type
: Entity_Id
);
528 -- In the case of a variant part of a record type that has an OTHERS
529 -- choice, this procedure expands the OTHERS into the actual choices
530 -- that it represents. This new list of choice nodes is attached to
531 -- the OTHERS node via the Others_Discrete_Choices field. The Case_Table
532 -- contains all choices that have been given explicitly in the variant.
534 function Find_Type_Of_Object
536 Related_Nod
: Node_Id
)
538 -- Get type entity for object referenced by Obj_Def, attaching the
539 -- implicit types generated to Related_Nod
541 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
542 -- Create a new float, and apply the constraint to obtain subtype of it
544 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
545 -- Given an N_Subtype_Indication node N, return True if a range constraint
546 -- is present, either directly, or as part of a digits or delta constraint.
547 -- In addition, a digits constraint in the decimal case returns True, since
548 -- it establishes a default range if no explicit range is present.
550 function Is_Valid_Constraint_Kind
552 Constraint_Kind
: Node_Kind
)
554 -- Returns True if it is legal to apply the given kind of constraint
555 -- to the given kind of type (index constraint to an array type,
558 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
559 -- Create new modular type. Verify that modulus is in bounds and is
560 -- a power of two (implementation restriction).
562 procedure New_Binary_Operator
(Op_Name
: Name_Id
; Typ
: Entity_Id
);
563 -- Create an abbreviated declaration for an operator in order to
564 -- materialize minimally operators on derived types.
566 procedure Ordinary_Fixed_Point_Type_Declaration
569 -- Create a new ordinary fixed point type, and apply the constraint
570 -- to obtain subtype of it.
572 procedure Prepare_Private_Subtype_Completion
574 Related_Nod
: Node_Id
);
575 -- Id is a subtype of some private type. Creates the full declaration
576 -- associated with Id whenever possible, i.e. when the full declaration
577 -- of the base type is already known. Records each subtype into
578 -- Private_Dependents of the base type.
580 procedure Process_Incomplete_Dependents
584 -- Process all entities that depend on an incomplete type. There include
585 -- subtypes, subprogram types that mention the incomplete type in their
586 -- profiles, and subprogram with access parameters that designate the
589 -- Inc_T is the defining identifier of an incomplete type declaration, its
590 -- Ekind is E_Incomplete_Type.
592 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
594 -- Full_T is N's defining identifier.
596 -- Subtypes of incomplete types with discriminants are completed when the
597 -- parent type is. This is simpler than private subtypes, because they can
598 -- only appear in the same scope, and there is no need to exchange views.
599 -- Similarly, access_to_subprogram types may have a parameter or a return
600 -- type that is an incomplete type, and that must be replaced with the
603 -- If the full type is tagged, subprogram with access parameters that
604 -- designated the incomplete may be primitive operations of the full type,
605 -- and have to be processed accordingly.
607 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
608 -- Given the type definition for a real type, this procedure processes
609 -- and checks the real range specification of this type definition if
610 -- one is present. If errors are found, error messages are posted, and
611 -- the Real_Range_Specification of Def is reset to Empty.
613 procedure Record_Type_Declaration
(T
: Entity_Id
; N
: Node_Id
);
614 -- Process a record type declaration (for both untagged and tagged
615 -- records). Parameters T and N are exactly like in procedure
616 -- Derived_Type_Declaration, except that no flag Is_Completion is
617 -- needed for this routine.
619 procedure Record_Type_Definition
(Def
: Node_Id
; T
: Entity_Id
);
620 -- This routine is used to process the actual record type definition
621 -- (both for untagged and tagged records). Def is a record type
622 -- definition node. This procedure analyzes the components in this
623 -- record type definition. T is the entity for the enclosing record
624 -- type. It is provided so that its Has_Task flag can be set if any of
625 -- the component have Has_Task set.
627 procedure Set_Fixed_Range
632 -- Build a range node with the given bounds and set it as the Scalar_Range
633 -- of the given fixed-point type entity. Loc is the source location used
634 -- for the constructed range. See body for further details.
636 procedure Set_Scalar_Range_For_Subtype
640 Related_Nod
: Node_Id
);
641 -- This routine is used to set the scalar range field for a subtype
642 -- given Def_Id, the entity for the subtype, and R, the range expression
643 -- for the scalar range. Subt provides the parent subtype to be used
644 -- to analyze, resolve, and check the given range.
646 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
647 -- Create a new signed integer entity, and apply the constraint to obtain
648 -- the required first named subtype of this type.
650 -----------------------
651 -- Access_Definition --
652 -----------------------
654 function Access_Definition
655 (Related_Nod
: Node_Id
;
659 Anon_Type
: constant Entity_Id
:=
660 Create_Itype
(E_Anonymous_Access_Type
, Related_Nod
,
661 Scope_Id
=> Scope
(Current_Scope
));
662 Desig_Type
: Entity_Id
;
665 if Is_Entry
(Current_Scope
)
666 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
668 Error_Msg_N
("task entries cannot have access parameters", N
);
671 Find_Type
(Subtype_Mark
(N
));
672 Desig_Type
:= Entity
(Subtype_Mark
(N
));
674 Set_Directly_Designated_Type
675 (Anon_Type
, Desig_Type
);
676 Set_Etype
(Anon_Type
, Anon_Type
);
677 Init_Size_Align
(Anon_Type
);
678 Set_Depends_On_Private
(Anon_Type
, Has_Private_Component
(Anon_Type
));
680 -- The anonymous access type is as public as the discriminated type or
681 -- subprogram that defines it. It is imported (for back-end purposes)
682 -- if the designated type is.
684 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
685 Set_From_With_Type
(Anon_Type
, From_With_Type
(Desig_Type
));
687 -- The context is either a subprogram declaration or an access
688 -- discriminant, in a private or a full type declaration. In
689 -- the case of a subprogram, If the designated type is incomplete,
690 -- the operation will be a primitive operation of the full type, to
691 -- be updated subsequently.
693 if Ekind
(Desig_Type
) = E_Incomplete_Type
694 and then Is_Overloadable
(Current_Scope
)
696 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
697 Set_Has_Delayed_Freeze
(Current_Scope
);
701 end Access_Definition
;
703 -----------------------------------
704 -- Access_Subprogram_Declaration --
705 -----------------------------------
707 procedure Access_Subprogram_Declaration
711 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
713 Desig_Type
: constant Entity_Id
:=
714 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
717 if Nkind
(T_Def
) = N_Access_Function_Definition
then
718 Analyze
(Subtype_Mark
(T_Def
));
719 Set_Etype
(Desig_Type
, Entity
(Subtype_Mark
(T_Def
)));
721 Set_Etype
(Desig_Type
, Standard_Void_Type
);
724 if Present
(Formals
) then
725 New_Scope
(Desig_Type
);
726 Process_Formals
(Desig_Type
, Formals
, Parent
(T_Def
));
728 -- A bit of a kludge here, End_Scope requires that the parent
729 -- pointer be set to something reasonable, but Itypes don't
730 -- have parent pointers. So we set it and then unset it ???
731 -- If and when Itypes have proper parent pointers to their
732 -- declarations, this kludge can be removed.
734 Set_Parent
(Desig_Type
, T_Name
);
736 Set_Parent
(Desig_Type
, Empty
);
739 -- The return type and/or any parameter type may be incomplete. Mark
740 -- the subprogram_type as depending on the incomplete type, so that
741 -- it can be updated when the full type declaration is seen.
743 if Present
(Formals
) then
744 Formal
:= First_Formal
(Desig_Type
);
746 while Present
(Formal
) loop
748 if Ekind
(Formal
) /= E_In_Parameter
749 and then Nkind
(T_Def
) = N_Access_Function_Definition
751 Error_Msg_N
("functions can only have IN parameters", Formal
);
754 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
then
755 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
756 Set_Has_Delayed_Freeze
(Desig_Type
);
759 Next_Formal
(Formal
);
763 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
764 and then not Has_Delayed_Freeze
(Desig_Type
)
766 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
767 Set_Has_Delayed_Freeze
(Desig_Type
);
770 Check_Delayed_Subprogram
(Desig_Type
);
772 if Protected_Present
(T_Def
) then
773 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
774 Set_Convention
(Desig_Type
, Convention_Protected
);
776 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
779 Set_Etype
(T_Name
, T_Name
);
780 Init_Size_Align
(T_Name
);
781 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
783 Check_Restriction
(No_Access_Subprograms
, T_Def
);
784 end Access_Subprogram_Declaration
;
786 ----------------------------
787 -- Access_Type_Declaration --
788 ----------------------------
790 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
791 S
: constant Node_Id
:= Subtype_Indication
(Def
);
792 P
: constant Node_Id
:= Parent
(Def
);
795 -- Check for permissible use of incomplete type
797 if Nkind
(S
) /= N_Subtype_Indication
then
800 if Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
then
801 Set_Directly_Designated_Type
(T
, Entity
(S
));
803 Set_Directly_Designated_Type
(T
,
804 Process_Subtype
(S
, P
, T
, 'P'));
808 Set_Directly_Designated_Type
(T
,
809 Process_Subtype
(S
, P
, T
, 'P'));
812 if All_Present
(Def
) or Constant_Present
(Def
) then
813 Set_Ekind
(T
, E_General_Access_Type
);
815 Set_Ekind
(T
, E_Access_Type
);
818 if Base_Type
(Designated_Type
(T
)) = T
then
819 Error_Msg_N
("access type cannot designate itself", S
);
824 -- If the type has appeared already in a with_type clause, it is
825 -- frozen and the pointer size is already set. Else, initialize.
827 if not From_With_Type
(T
) then
831 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
833 -- If designated type is an imported tagged type, indicate that the
834 -- access type is also imported, and therefore restricted in its use.
835 -- The access type may already be imported, so keep setting otherwise.
837 if From_With_Type
(Designated_Type
(T
)) then
838 Set_From_With_Type
(T
);
841 -- Note that Has_Task is always false, since the access type itself
842 -- is not a task type. See Einfo for more description on this point.
843 -- Exactly the same consideration applies to Has_Controlled_Component.
845 Set_Has_Task
(T
, False);
846 Set_Has_Controlled_Component
(T
, False);
847 end Access_Type_Declaration
;
849 -----------------------------------
850 -- Analyze_Component_Declaration --
851 -----------------------------------
853 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
854 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
859 Generate_Definition
(Id
);
861 T
:= Find_Type_Of_Object
(Subtype_Indication
(N
), N
);
863 -- If the component declaration includes a default expression, then we
864 -- check that the component is not of a limited type (RM 3.7(5)),
865 -- and do the special preanalysis of the expression (see section on
866 -- "Handling of Default Expressions" in the spec of package Sem).
868 if Present
(Expression
(N
)) then
869 Analyze_Default_Expression
(Expression
(N
), T
);
870 Check_Initialization
(T
, Expression
(N
));
873 -- The parent type may be a private view with unknown discriminants,
874 -- and thus unconstrained. Regular components must be constrained.
876 if Is_Indefinite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
878 ("unconstrained subtype in component declaration",
879 Subtype_Indication
(N
));
881 -- Components cannot be abstract, except for the special case of
882 -- the _Parent field (case of extending an abstract tagged type)
884 elsif Is_Abstract
(T
) and then Chars
(Id
) /= Name_uParent
then
885 Error_Msg_N
("type of a component cannot be abstract", N
);
889 Set_Is_Aliased
(Id
, Aliased_Present
(N
));
891 -- If the this component is private (or depends on a private type),
892 -- flag the record type to indicate that some operations are not
895 P
:= Private_Component
(T
);
898 -- Check for circular definitions.
901 Set_Etype
(Id
, Any_Type
);
903 -- There is a gap in the visibility of operations only if the
904 -- component type is not defined in the scope of the record type.
906 elsif Scope
(P
) = Scope
(Current_Scope
) then
909 elsif Is_Limited_Type
(P
) then
910 Set_Is_Limited_Composite
(Current_Scope
);
913 Set_Is_Private_Composite
(Current_Scope
);
918 and then Is_Limited_Type
(T
)
919 and then Chars
(Id
) /= Name_uParent
920 and then Is_Tagged_Type
(Current_Scope
)
922 if Is_Derived_Type
(Current_Scope
)
923 and then not Is_Limited_Record
(Root_Type
(Current_Scope
))
926 ("extension of nonlimited type cannot have limited components",
928 Set_Etype
(Id
, Any_Type
);
929 Set_Is_Limited_Composite
(Current_Scope
, False);
931 elsif not Is_Derived_Type
(Current_Scope
)
932 and then not Is_Limited_Record
(Current_Scope
)
934 Error_Msg_N
("nonlimited type cannot have limited components", N
);
935 Set_Etype
(Id
, Any_Type
);
936 Set_Is_Limited_Composite
(Current_Scope
, False);
940 Set_Original_Record_Component
(Id
, Id
);
941 end Analyze_Component_Declaration
;
943 --------------------------
944 -- Analyze_Declarations --
945 --------------------------
947 procedure Analyze_Declarations
(L
: List_Id
) is
950 Freeze_From
: Entity_Id
:= Empty
;
953 -- Adjust D not to include implicit label declarations, since these
954 -- have strange Sloc values that result in elaboration check problems.
956 procedure Adjust_D
is
958 while Present
(Prev
(D
))
959 and then Nkind
(D
) = N_Implicit_Label_Declaration
965 -- Start of processing for Analyze_Declarations
969 while Present
(D
) loop
971 -- Complete analysis of declaration
974 Next_Node
:= Next
(D
);
976 if No
(Freeze_From
) then
977 Freeze_From
:= First_Entity
(Current_Scope
);
980 -- At the end of a declarative part, freeze remaining entities
981 -- declared in it. The end of the visible declarations of a
982 -- package specification is not the end of a declarative part
983 -- if private declarations are present. The end of a package
984 -- declaration is a freezing point only if it a library package.
985 -- A task definition or protected type definition is not a freeze
986 -- point either. Finally, we do not freeze entities in generic
987 -- scopes, because there is no code generated for them and freeze
988 -- nodes will be generated for the instance.
990 -- The end of a package instantiation is not a freeze point, but
991 -- for now we make it one, because the generic body is inserted
992 -- (currently) immediately after. Generic instantiations will not
993 -- be a freeze point once delayed freezing of bodies is implemented.
994 -- (This is needed in any case for early instantiations ???).
996 if No
(Next_Node
) then
997 if Nkind
(Parent
(L
)) = N_Component_List
998 or else Nkind
(Parent
(L
)) = N_Task_Definition
999 or else Nkind
(Parent
(L
)) = N_Protected_Definition
1003 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
1005 if Nkind
(Parent
(L
)) = N_Package_Body
then
1006 Freeze_From
:= First_Entity
(Current_Scope
);
1010 Freeze_All
(Freeze_From
, D
);
1011 Freeze_From
:= Last_Entity
(Current_Scope
);
1013 elsif Scope
(Current_Scope
) /= Standard_Standard
1014 and then not Is_Child_Unit
(Current_Scope
)
1015 and then No
(Generic_Parent
(Parent
(L
)))
1019 elsif L
/= Visible_Declarations
(Parent
(L
))
1020 or else No
(Private_Declarations
(Parent
(L
)))
1021 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
1024 Freeze_All
(Freeze_From
, D
);
1025 Freeze_From
:= Last_Entity
(Current_Scope
);
1028 -- If next node is a body then freeze all types before the body.
1029 -- An exception occurs for expander generated bodies, which can
1030 -- be recognized by their already being analyzed. The expander
1031 -- ensures that all types needed by these bodies have been frozen
1032 -- but it is not necessary to freeze all types (and would be wrong
1033 -- since it would not correspond to an RM defined freeze point).
1035 elsif not Analyzed
(Next_Node
)
1036 and then (Nkind
(Next_Node
) = N_Subprogram_Body
1037 or else Nkind
(Next_Node
) = N_Entry_Body
1038 or else Nkind
(Next_Node
) = N_Package_Body
1039 or else Nkind
(Next_Node
) = N_Protected_Body
1040 or else Nkind
(Next_Node
) = N_Task_Body
1041 or else Nkind
(Next_Node
) in N_Body_Stub
)
1044 Freeze_All
(Freeze_From
, D
);
1045 Freeze_From
:= Last_Entity
(Current_Scope
);
1051 end Analyze_Declarations
;
1053 --------------------------------
1054 -- Analyze_Default_Expression --
1055 --------------------------------
1057 procedure Analyze_Default_Expression
(N
: Node_Id
; T
: Entity_Id
) is
1058 Save_In_Default_Expression
: constant Boolean := In_Default_Expression
;
1061 In_Default_Expression
:= True;
1062 Pre_Analyze_And_Resolve
(N
, T
);
1063 In_Default_Expression
:= Save_In_Default_Expression
;
1064 end Analyze_Default_Expression
;
1066 ----------------------------------
1067 -- Analyze_Incomplete_Type_Decl --
1068 ----------------------------------
1070 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
1071 F
: constant Boolean := Is_Pure
(Current_Scope
);
1075 Generate_Definition
(Defining_Identifier
(N
));
1077 -- Process an incomplete declaration. The identifier must not have been
1078 -- declared already in the scope. However, an incomplete declaration may
1079 -- appear in the private part of a package, for a private type that has
1080 -- already been declared.
1082 -- In this case, the discriminants (if any) must match.
1084 T
:= Find_Type_Name
(N
);
1086 Set_Ekind
(T
, E_Incomplete_Type
);
1087 Init_Size_Align
(T
);
1088 Set_Is_First_Subtype
(T
, True);
1092 Set_Girder_Constraint
(T
, No_Elist
);
1094 if Present
(Discriminant_Specifications
(N
)) then
1095 Process_Discriminants
(N
);
1100 -- If the type has discriminants, non-trivial subtypes may be
1101 -- be declared before the full view of the type. The full views
1102 -- of those subtypes will be built after the full view of the type.
1104 Set_Private_Dependents
(T
, New_Elmt_List
);
1106 end Analyze_Incomplete_Type_Decl
;
1108 -----------------------------
1109 -- Analyze_Itype_Reference --
1110 -----------------------------
1112 -- Nothing to do. This node is placed in the tree only for the benefit
1113 -- of Gigi processing, and has no effect on the semantic processing.
1115 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
1117 pragma Assert
(Is_Itype
(Itype
(N
)));
1119 end Analyze_Itype_Reference
;
1121 --------------------------------
1122 -- Analyze_Number_Declaration --
1123 --------------------------------
1125 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
1126 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1127 E
: constant Node_Id
:= Expression
(N
);
1129 Index
: Interp_Index
;
1133 Generate_Definition
(Id
);
1136 -- This is an optimization of a common case of an integer literal
1138 if Nkind
(E
) = N_Integer_Literal
then
1139 Set_Is_Static_Expression
(E
, True);
1140 Set_Etype
(E
, Universal_Integer
);
1142 Set_Etype
(Id
, Universal_Integer
);
1143 Set_Ekind
(Id
, E_Named_Integer
);
1144 Set_Is_Frozen
(Id
, True);
1148 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
1150 -- Process expression, replacing error by integer zero, to avoid
1151 -- cascaded errors or aborts further along in the processing
1153 -- Replace Error by integer zero, which seems least likely to
1154 -- cause cascaded errors.
1157 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
1158 Set_Error_Posted
(E
);
1163 -- Verify that the expression is static and numeric. If
1164 -- the expression is overloaded, we apply the preference
1165 -- rule that favors root numeric types.
1167 if not Is_Overloaded
(E
) then
1172 Get_First_Interp
(E
, Index
, It
);
1174 while Present
(It
.Typ
) loop
1175 if (Is_Integer_Type
(It
.Typ
)
1176 or else Is_Real_Type
(It
.Typ
))
1177 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
1179 if T
= Any_Type
then
1182 elsif It
.Typ
= Universal_Real
1183 or else It
.Typ
= Universal_Integer
1185 -- Choose universal interpretation over any other.
1192 Get_Next_Interp
(Index
, It
);
1196 if Is_Integer_Type
(T
) then
1198 Set_Etype
(Id
, Universal_Integer
);
1199 Set_Ekind
(Id
, E_Named_Integer
);
1201 elsif Is_Real_Type
(T
) then
1203 -- Because the real value is converted to universal_real, this
1204 -- is a legal context for a universal fixed expression.
1206 if T
= Universal_Fixed
then
1208 Loc
: constant Source_Ptr
:= Sloc
(N
);
1209 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
1211 New_Occurrence_Of
(Universal_Real
, Loc
),
1212 Expression
=> Relocate_Node
(E
));
1219 elsif T
= Any_Fixed
then
1220 Error_Msg_N
("illegal context for mixed mode operation", E
);
1222 -- Expression is of the form : universal_fixed * integer.
1223 -- Try to resolve as universal_real.
1225 T
:= Universal_Real
;
1230 Set_Etype
(Id
, Universal_Real
);
1231 Set_Ekind
(Id
, E_Named_Real
);
1234 Wrong_Type
(E
, Any_Numeric
);
1237 Set_Ekind
(Id
, E_Constant
);
1238 Set_Not_Source_Assigned
(Id
, True);
1239 Set_Is_True_Constant
(Id
, True);
1243 if Nkind
(E
) = N_Integer_Literal
1244 or else Nkind
(E
) = N_Real_Literal
1246 Set_Etype
(E
, Etype
(Id
));
1249 if not Is_OK_Static_Expression
(E
) then
1250 Error_Msg_N
("non-static expression used in number declaration", E
);
1251 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
1252 Set_Etype
(E
, Any_Type
);
1255 end Analyze_Number_Declaration
;
1257 --------------------------------
1258 -- Analyze_Object_Declaration --
1259 --------------------------------
1261 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
1262 Loc
: constant Source_Ptr
:= Sloc
(N
);
1263 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1267 E
: Node_Id
:= Expression
(N
);
1268 -- E is set to Expression (N) throughout this routine. When
1269 -- Expression (N) is modified, E is changed accordingly.
1271 Prev_Entity
: Entity_Id
:= Empty
;
1273 function Build_Default_Subtype
return Entity_Id
;
1274 -- If the object is limited or aliased, and if the type is unconstrained
1275 -- and there is no expression, the discriminants cannot be modified and
1276 -- the subtype of the object is constrained by the defaults, so it is
1277 -- worthile building the corresponding subtype.
1279 ---------------------------
1280 -- Build_Default_Subtype --
1281 ---------------------------
1283 function Build_Default_Subtype
return Entity_Id
is
1285 Constraints
: List_Id
:= New_List
;
1290 Disc
:= First_Discriminant
(T
);
1292 if No
(Discriminant_Default_Value
(Disc
)) then
1293 return T
; -- previous error.
1296 Act
:= Make_Defining_Identifier
(Loc
, New_Internal_Name
('S'));
1297 while Present
(Disc
) loop
1300 Discriminant_Default_Value
(Disc
)), Constraints
);
1301 Next_Discriminant
(Disc
);
1305 Make_Subtype_Declaration
(Loc
,
1306 Defining_Identifier
=> Act
,
1307 Subtype_Indication
=>
1308 Make_Subtype_Indication
(Loc
,
1309 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
1311 Make_Index_Or_Discriminant_Constraint
1312 (Loc
, Constraints
)));
1314 Insert_Before
(N
, Decl
);
1317 end Build_Default_Subtype
;
1319 -- Start of processing for Analyze_Object_Declaration
1322 -- There are three kinds of implicit types generated by an
1323 -- object declaration:
1325 -- 1. Those for generated by the original Object Definition
1327 -- 2. Those generated by the Expression
1329 -- 3. Those used to constrained the Object Definition with the
1330 -- expression constraints when it is unconstrained
1332 -- They must be generated in this order to avoid order of elaboration
1333 -- issues. Thus the first step (after entering the name) is to analyze
1334 -- the object definition.
1336 if Constant_Present
(N
) then
1337 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
1339 -- If homograph is an implicit subprogram, it is overridden by the
1340 -- current declaration.
1342 if Present
(Prev_Entity
)
1343 and then Is_Overloadable
(Prev_Entity
)
1344 and then Is_Inherited_Operation
(Prev_Entity
)
1346 Prev_Entity
:= Empty
;
1350 if Present
(Prev_Entity
) then
1351 Constant_Redeclaration
(Id
, N
, T
);
1353 Generate_Reference
(Prev_Entity
, Id
, 'c');
1355 -- If in main unit, set as referenced, so we do not complain about
1356 -- the full declaration being an unreferenced entity.
1358 if In_Extended_Main_Source_Unit
(Id
) then
1359 Set_Referenced
(Id
);
1362 if Error_Posted
(N
) then
1363 -- Type mismatch or illegal redeclaration, Do not analyze
1364 -- expression to avoid cascaded errors.
1366 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
1368 Set_Ekind
(Id
, E_Variable
);
1372 -- In the normal case, enter identifier at the start to catch
1373 -- premature usage in the initialization expression.
1376 Generate_Definition
(Id
);
1379 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
1381 if Error_Posted
(Id
) then
1383 Set_Ekind
(Id
, E_Variable
);
1388 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
1390 -- If deferred constant, make sure context is appropriate. We detect
1391 -- a deferred constant as a constant declaration with no expression.
1393 if Constant_Present
(N
)
1396 if not Is_Package
(Current_Scope
)
1397 or else In_Private_Part
(Current_Scope
)
1400 ("invalid context for deferred constant declaration", N
);
1401 Set_Constant_Present
(N
, False);
1403 -- In Ada 83, deferred constant must be of private type
1405 elsif not Is_Private_Type
(T
) then
1406 if Ada_83
and then Comes_From_Source
(N
) then
1408 ("(Ada 83) deferred constant must be private type", N
);
1412 -- If not a deferred constant, then object declaration freezes its type
1415 Check_Fully_Declared
(T
, N
);
1416 Freeze_Before
(N
, T
);
1419 -- If the object was created by a constrained array definition, then
1420 -- set the link in both the anonymous base type and anonymous subtype
1421 -- that are built to represent the array type to point to the object.
1423 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
1424 N_Constrained_Array_Definition
1426 Set_Related_Array_Object
(T
, Id
);
1427 Set_Related_Array_Object
(Base_Type
(T
), Id
);
1430 -- Special checks for protected objects not at library level
1432 if Is_Protected_Type
(T
)
1433 and then not Is_Library_Level_Entity
(Id
)
1435 Check_Restriction
(No_Local_Protected_Objects
, Id
);
1437 -- Protected objects with interrupt handlers must be at library level
1439 if Has_Interrupt_Handler
(T
) then
1441 ("interrupt object can only be declared at library level", Id
);
1445 -- The actual subtype of the object is the nominal subtype, unless
1446 -- the nominal one is unconstrained and obtained from the expression.
1450 -- Process initialization expression if present and not in error
1452 if Present
(E
) and then E
/= Error
then
1455 if not Assignment_OK
(N
) then
1456 Check_Initialization
(T
, E
);
1461 -- Check for library level object that will require implicit
1464 if Is_Array_Type
(T
)
1465 and then not Size_Known_At_Compile_Time
(T
)
1466 and then Is_Library_Level_Entity
(Id
)
1468 -- String literals are always allowed
1470 if T
= Standard_String
1471 and then Nkind
(E
) = N_String_Literal
1475 -- Otherwise we do not allow this since it may cause an
1476 -- implicit heap allocation.
1480 (No_Implicit_Heap_Allocations
, Object_Definition
(N
));
1484 -- Check incorrect use of dynamically tagged expressions. Note
1485 -- the use of Is_Tagged_Type (T) which seems redundant but is in
1486 -- fact important to avoid spurious errors due to expanded code
1487 -- for dispatching functions over an anonymous access type
1489 if (Is_Class_Wide_Type
(Etype
(E
)) or else Is_Dynamically_Tagged
(E
))
1490 and then Is_Tagged_Type
(T
)
1491 and then not Is_Class_Wide_Type
(T
)
1493 Error_Msg_N
("dynamically tagged expression not allowed!", E
);
1496 Apply_Scalar_Range_Check
(E
, T
);
1497 Apply_Static_Length_Check
(E
, T
);
1500 -- Abstract type is never permitted for a variable or constant.
1501 -- Note: we inhibit this check for objects that do not come from
1502 -- source because there is at least one case (the expansion of
1503 -- x'class'input where x is abstract) where we legitimately
1504 -- generate an abstract object.
1506 if Is_Abstract
(T
) and then Comes_From_Source
(N
) then
1507 Error_Msg_N
("type of object cannot be abstract",
1508 Object_Definition
(N
));
1509 if Is_CPP_Class
(T
) then
1510 Error_Msg_NE
("\} may need a cpp_constructor",
1511 Object_Definition
(N
), T
);
1514 -- Case of unconstrained type
1516 elsif Is_Indefinite_Subtype
(T
) then
1518 -- Nothing to do in deferred constant case
1520 if Constant_Present
(N
) and then No
(E
) then
1523 -- Case of no initialization present
1526 if No_Initialization
(N
) then
1529 elsif Is_Class_Wide_Type
(T
) then
1531 ("initialization required in class-wide declaration ", N
);
1535 ("unconstrained subtype not allowed (need initialization)",
1536 Object_Definition
(N
));
1539 -- Case of initialization present but in error. Set initial
1540 -- expression as absent (but do not make above complaints)
1542 elsif E
= Error
then
1543 Set_Expression
(N
, Empty
);
1546 -- Case of initialization present
1549 -- Not allowed in Ada 83
1551 if not Constant_Present
(N
) then
1553 and then Comes_From_Source
(Object_Definition
(N
))
1556 ("(Ada 83) unconstrained variable not allowed",
1557 Object_Definition
(N
));
1561 -- Now we constrain the variable from the initializing expression
1563 -- If the expression is an aggregate, it has been expanded into
1564 -- individual assignments. Retrieve the actual type from the
1565 -- expanded construct.
1567 if Is_Array_Type
(T
)
1568 and then No_Initialization
(N
)
1569 and then Nkind
(Original_Node
(E
)) = N_Aggregate
1574 Expand_Subtype_From_Expr
(N
, T
, Object_Definition
(N
), E
);
1575 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
1578 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
1580 if Aliased_Present
(N
) then
1581 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
1584 Freeze_Before
(N
, Act_T
);
1585 Freeze_Before
(N
, T
);
1588 elsif Is_Array_Type
(T
)
1589 and then No_Initialization
(N
)
1590 and then Nkind
(Original_Node
(E
)) = N_Aggregate
1592 if not Is_Entity_Name
(Object_Definition
(N
)) then
1595 if Aliased_Present
(N
) then
1596 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
1600 -- When the given object definition and the aggregate are specified
1601 -- independently, and their lengths might differ do a length check.
1602 -- This cannot happen if the aggregate is of the form (others =>...)
1604 if not Is_Constrained
(T
) then
1607 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
1609 -- Aggregate is statically illegal. Place back in declaration
1611 Set_Expression
(N
, E
);
1612 Set_No_Initialization
(N
, False);
1614 elsif T
= Etype
(E
) then
1617 elsif Nkind
(E
) = N_Aggregate
1618 and then Present
(Component_Associations
(E
))
1619 and then Present
(Choices
(First
(Component_Associations
(E
))))
1620 and then Nkind
(First
1621 (Choices
(First
(Component_Associations
(E
))))) = N_Others_Choice
1626 Apply_Length_Check
(E
, T
);
1629 elsif (Is_Limited_Record
(T
)
1630 or else Is_Concurrent_Type
(T
))
1631 and then not Is_Constrained
(T
)
1632 and then Has_Discriminants
(T
)
1634 Act_T
:= Build_Default_Subtype
;
1635 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
1637 elsif not Is_Constrained
(T
)
1638 and then Has_Discriminants
(T
)
1639 and then Constant_Present
(N
)
1640 and then Nkind
(E
) = N_Function_Call
1642 -- The back-end has problems with constants of a discriminated type
1643 -- with defaults, if the initial value is a function call. We
1644 -- generate an intermediate temporary for the result of the call.
1645 -- It is unclear why this should make it acceptable to gcc. ???
1647 Remove_Side_Effects
(E
);
1650 if T
= Standard_Wide_Character
1651 or else Root_Type
(T
) = Standard_Wide_String
1653 Check_Restriction
(No_Wide_Characters
, Object_Definition
(N
));
1656 -- Now establish the proper kind and type of the object
1658 if Constant_Present
(N
) then
1659 Set_Ekind
(Id
, E_Constant
);
1660 Set_Not_Source_Assigned
(Id
, True);
1661 Set_Is_True_Constant
(Id
, True);
1664 Set_Ekind
(Id
, E_Variable
);
1666 -- A variable is set as shared passive if it appears in a shared
1667 -- passive package, and is at the outer level. This is not done
1668 -- for entities generated during expansion, because those are
1669 -- always manipulated locally.
1671 if Is_Shared_Passive
(Current_Scope
)
1672 and then Is_Library_Level_Entity
(Id
)
1673 and then Comes_From_Source
(Id
)
1675 Set_Is_Shared_Passive
(Id
);
1676 Check_Shared_Var
(Id
, T
, N
);
1679 -- If an initializing expression is present, then the variable
1680 -- is potentially a true constant if no further assignments are
1681 -- present. The code generator can use this for optimization.
1682 -- The flag will be reset if there are any assignments. We only
1683 -- set this flag for non library level entities, since for any
1684 -- library level entities, assignments could exist in other units.
1687 if not Is_Library_Level_Entity
(Id
) then
1689 -- For now we omit this, because it seems to cause some
1690 -- problems. In particular, if you uncomment this out, then
1691 -- test case 4427-002 will fail for unclear reasons ???
1694 Set_Is_True_Constant
(Id
);
1698 -- Case of no initializing expression present. If the type is not
1699 -- fully initialized, then we set Not_Source_Assigned, since this
1700 -- is a case of a potentially uninitialized object. Note that we
1701 -- do not consider access variables to be fully initialized for
1702 -- this purpose, since it still seems dubious if someone declares
1703 -- an access variable and never assigns to it.
1706 if Is_Access_Type
(T
)
1707 or else not Is_Fully_Initialized_Type
(T
)
1709 Set_Not_Source_Assigned
(Id
);
1714 Init_Alignment
(Id
);
1717 if Aliased_Present
(N
) then
1718 Set_Is_Aliased
(Id
);
1721 and then Is_Record_Type
(T
)
1722 and then not Is_Constrained
(T
)
1723 and then Has_Discriminants
(T
)
1725 Set_Actual_Subtype
(Id
, Build_Default_Subtype
);
1729 Set_Etype
(Id
, Act_T
);
1731 if Has_Controlled_Component
(Etype
(Id
))
1732 or else Is_Controlled
(Etype
(Id
))
1734 if not Is_Library_Level_Entity
(Id
) then
1735 Check_Restriction
(No_Nested_Finalization
, N
);
1738 Validate_Controlled_Object
(Id
);
1741 -- Generate a warning when an initialization causes an obvious
1742 -- ABE violation. If the init expression is a simple aggregate
1743 -- there shouldn't be any initialize/adjust call generated. This
1744 -- will be true as soon as aggregates are built in place when
1745 -- possible. ??? at the moment we do not generate warnings for
1746 -- temporaries created for those aggregates although a
1747 -- Program_Error might be generated if compiled with -gnato
1749 if Is_Controlled
(Etype
(Id
))
1750 and then Comes_From_Source
(Id
)
1753 BT
: constant Entity_Id
:= Base_Type
(Etype
(Id
));
1754 Implicit_Call
: Entity_Id
;
1756 function Is_Aggr
(N
: Node_Id
) return Boolean;
1757 -- Check that N is an aggregate
1759 function Is_Aggr
(N
: Node_Id
) return Boolean is
1761 case Nkind
(Original_Node
(N
)) is
1762 when N_Aggregate | N_Extension_Aggregate
=>
1765 when N_Qualified_Expression |
1767 N_Unchecked_Type_Conversion
=>
1768 return Is_Aggr
(Expression
(Original_Node
(N
)));
1776 -- If no underlying type, we already are in an error situation
1777 -- don't try to add a warning since we do not have access
1780 if No
(Underlying_Type
(BT
)) then
1781 Implicit_Call
:= Empty
;
1783 -- A generic type does not have usable primitive operators.
1784 -- Initialization calls are built for instances.
1786 elsif Is_Generic_Type
(BT
) then
1787 Implicit_Call
:= Empty
;
1789 -- if the init expression is not an aggregate, an adjust
1790 -- call will be generated
1792 elsif Present
(E
) and then not Is_Aggr
(E
) then
1793 Implicit_Call
:= Find_Prim_Op
(BT
, Name_Adjust
);
1795 -- if no init expression and we are not in the deferred
1796 -- constant case, an Initialize call will be generated
1798 elsif No
(E
) and then not Constant_Present
(N
) then
1799 Implicit_Call
:= Find_Prim_Op
(BT
, Name_Initialize
);
1802 Implicit_Call
:= Empty
;
1808 if Has_Task
(Etype
(Id
)) then
1809 if not Is_Library_Level_Entity
(Id
) then
1810 Check_Restriction
(No_Task_Hierarchy
, N
);
1811 Check_Potentially_Blocking_Operation
(N
);
1815 -- Some simple constant-propagation: if the expression is a constant
1816 -- string initialized with a literal, share the literal. This avoids
1820 and then Is_Entity_Name
(E
)
1821 and then Ekind
(Entity
(E
)) = E_Constant
1822 and then Base_Type
(Etype
(E
)) = Standard_String
1825 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
1829 and then Nkind
(Val
) = N_String_Literal
1831 Rewrite
(E
, New_Copy
(Val
));
1836 -- Another optimization: if the nominal subtype is unconstrained and
1837 -- the expression is a function call that returns and unconstrained
1838 -- type, rewrite the declararation as a renaming of the result of the
1839 -- call. The exceptions below are cases where the copy is expected,
1840 -- either by the back end (Aliased case) or by the semantics, as for
1841 -- initializing controlled types or copying tags for classwide types.
1844 and then Nkind
(E
) = N_Explicit_Dereference
1845 and then Nkind
(Original_Node
(E
)) = N_Function_Call
1846 and then not Is_Library_Level_Entity
(Id
)
1847 and then not Is_Constrained
(T
)
1848 and then not Is_Aliased
(Id
)
1849 and then not Is_Class_Wide_Type
(T
)
1850 and then not Is_Controlled
(T
)
1851 and then not Has_Controlled_Component
(Base_Type
(T
))
1852 and then Expander_Active
1855 Make_Object_Renaming_Declaration
(Loc
,
1856 Defining_Identifier
=> Id
,
1857 Subtype_Mark
=> New_Occurrence_Of
1858 (Base_Type
(Etype
(Id
)), Loc
),
1861 Set_Renamed_Object
(Id
, E
);
1864 if Present
(Prev_Entity
)
1865 and then Is_Frozen
(Prev_Entity
)
1866 and then not Error_Posted
(Id
)
1868 Error_Msg_N
("full constant declaration appears too late", N
);
1871 Check_Eliminated
(Id
);
1872 end Analyze_Object_Declaration
;
1874 ---------------------------
1875 -- Analyze_Others_Choice --
1876 ---------------------------
1878 -- Nothing to do for the others choice node itself, the semantic analysis
1879 -- of the others choice will occur as part of the processing of the parent
1881 procedure Analyze_Others_Choice
(N
: Node_Id
) is
1884 end Analyze_Others_Choice
;
1886 -------------------------------------------
1887 -- Analyze_Private_Extension_Declaration --
1888 -------------------------------------------
1890 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
1891 T
: Entity_Id
:= Defining_Identifier
(N
);
1892 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
1893 Parent_Type
: Entity_Id
;
1894 Parent_Base
: Entity_Id
;
1897 Generate_Definition
(T
);
1900 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
1901 Parent_Base
:= Base_Type
(Parent_Type
);
1903 if Parent_Type
= Any_Type
1904 or else Etype
(Parent_Type
) = Any_Type
1906 Set_Ekind
(T
, Ekind
(Parent_Type
));
1907 Set_Etype
(T
, Any_Type
);
1910 elsif not Is_Tagged_Type
(Parent_Type
) then
1912 ("parent of type extension must be a tagged type ", Indic
);
1915 elsif Ekind
(Parent_Type
) = E_Void
1916 or else Ekind
(Parent_Type
) = E_Incomplete_Type
1918 Error_Msg_N
("premature derivation of incomplete type", Indic
);
1922 -- Perhaps the parent type should be changed to the class-wide type's
1923 -- specific type in this case to prevent cascading errors ???
1925 if Is_Class_Wide_Type
(Parent_Type
) then
1927 ("parent of type extension must not be a class-wide type", Indic
);
1931 if (not Is_Package
(Current_Scope
)
1932 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
1933 or else In_Private_Part
(Current_Scope
)
1936 Error_Msg_N
("invalid context for private extension", N
);
1939 -- Set common attributes
1941 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
1942 Set_Scope
(T
, Current_Scope
);
1943 Set_Ekind
(T
, E_Record_Type_With_Private
);
1944 Init_Size_Align
(T
);
1946 Set_Etype
(T
, Parent_Base
);
1947 Set_Has_Task
(T
, Has_Task
(Parent_Base
));
1949 Set_Convention
(T
, Convention
(Parent_Type
));
1950 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
1951 Set_Is_First_Subtype
(T
);
1952 Make_Class_Wide_Type
(T
);
1954 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
1955 end Analyze_Private_Extension_Declaration
;
1957 ---------------------------------
1958 -- Analyze_Subtype_Declaration --
1959 ---------------------------------
1961 procedure Analyze_Subtype_Declaration
(N
: Node_Id
) is
1962 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1964 R_Checks
: Check_Result
;
1967 Generate_Definition
(Id
);
1968 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
1969 Init_Size_Align
(Id
);
1971 -- The following guard condition on Enter_Name is to handle cases
1972 -- where the defining identifier has already been entered into the
1973 -- scope but the declaration as a whole needs to be analyzed.
1975 -- This case in particular happens for derived enumeration types.
1976 -- The derived enumeration type is processed as an inserted enumeration
1977 -- type declaration followed by a rewritten subtype declaration. The
1978 -- defining identifier, however, is entered into the name scope very
1979 -- early in the processing of the original type declaration and
1980 -- therefore needs to be avoided here, when the created subtype
1981 -- declaration is analyzed. (See Build_Derived_Types)
1983 -- This also happens when the full view of a private type is a
1984 -- derived type with constraints. In this case the entity has been
1985 -- introduced in the private declaration.
1987 if Present
(Etype
(Id
))
1988 and then (Is_Private_Type
(Etype
(Id
))
1989 or else Is_Task_Type
(Etype
(Id
))
1990 or else Is_Rewrite_Substitution
(N
))
1998 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
2000 -- Inherit common attributes
2002 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
2003 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
2004 Set_Is_Atomic
(Id
, Is_Atomic
(T
));
2006 -- In the case where there is no constraint given in the subtype
2007 -- indication, Process_Subtype just returns the Subtype_Mark,
2008 -- so its semantic attributes must be established here.
2010 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
2011 Set_Etype
(Id
, Base_Type
(T
));
2015 Set_Ekind
(Id
, E_Array_Subtype
);
2017 -- Shouldn't we call Copy_Array_Subtype_Attributes here???
2019 Set_First_Index
(Id
, First_Index
(T
));
2020 Set_Is_Aliased
(Id
, Is_Aliased
(T
));
2021 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2023 when Decimal_Fixed_Point_Kind
=>
2024 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
2025 Set_Digits_Value
(Id
, Digits_Value
(T
));
2026 Set_Delta_Value
(Id
, Delta_Value
(T
));
2027 Set_Scale_Value
(Id
, Scale_Value
(T
));
2028 Set_Small_Value
(Id
, Small_Value
(T
));
2029 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
2030 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
2031 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2032 Set_RM_Size
(Id
, RM_Size
(T
));
2034 when Enumeration_Kind
=>
2035 Set_Ekind
(Id
, E_Enumeration_Subtype
);
2036 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
2037 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
2038 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
2039 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2040 Set_RM_Size
(Id
, RM_Size
(T
));
2042 when Ordinary_Fixed_Point_Kind
=>
2043 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
2044 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
2045 Set_Small_Value
(Id
, Small_Value
(T
));
2046 Set_Delta_Value
(Id
, Delta_Value
(T
));
2047 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2048 Set_RM_Size
(Id
, RM_Size
(T
));
2051 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
2052 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
2053 Set_Digits_Value
(Id
, Digits_Value
(T
));
2054 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2056 when Signed_Integer_Kind
=>
2057 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
2058 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
2059 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2060 Set_RM_Size
(Id
, RM_Size
(T
));
2062 when Modular_Integer_Kind
=>
2063 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
2064 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
2065 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2066 Set_RM_Size
(Id
, RM_Size
(T
));
2068 when Class_Wide_Kind
=>
2069 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
2070 Set_First_Entity
(Id
, First_Entity
(T
));
2071 Set_Last_Entity
(Id
, Last_Entity
(T
));
2072 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
2073 Set_Cloned_Subtype
(Id
, T
);
2074 Set_Is_Tagged_Type
(Id
, True);
2075 Set_Has_Unknown_Discriminants
2078 if Ekind
(T
) = E_Class_Wide_Subtype
then
2079 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
2082 when E_Record_Type | E_Record_Subtype
=>
2083 Set_Ekind
(Id
, E_Record_Subtype
);
2085 if Ekind
(T
) = E_Record_Subtype
2086 and then Present
(Cloned_Subtype
(T
))
2088 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
2090 Set_Cloned_Subtype
(Id
, T
);
2093 Set_First_Entity
(Id
, First_Entity
(T
));
2094 Set_Last_Entity
(Id
, Last_Entity
(T
));
2095 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
2096 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2097 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
2098 Set_Has_Unknown_Discriminants
2099 (Id
, Has_Unknown_Discriminants
(T
));
2101 if Has_Discriminants
(T
) then
2102 Set_Discriminant_Constraint
2103 (Id
, Discriminant_Constraint
(T
));
2104 Set_Girder_Constraint_From_Discriminant_Constraint
(Id
);
2106 elsif Has_Unknown_Discriminants
(Id
) then
2107 Set_Discriminant_Constraint
(Id
, No_Elist
);
2110 if Is_Tagged_Type
(T
) then
2111 Set_Is_Tagged_Type
(Id
);
2112 Set_Is_Abstract
(Id
, Is_Abstract
(T
));
2113 Set_Primitive_Operations
2114 (Id
, Primitive_Operations
(T
));
2115 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
2118 when Private_Kind
=>
2119 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
2120 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
2121 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2122 Set_First_Entity
(Id
, First_Entity
(T
));
2123 Set_Last_Entity
(Id
, Last_Entity
(T
));
2124 Set_Private_Dependents
(Id
, New_Elmt_List
);
2125 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
2126 Set_Has_Unknown_Discriminants
2127 (Id
, Has_Unknown_Discriminants
(T
));
2129 if Is_Tagged_Type
(T
) then
2130 Set_Is_Tagged_Type
(Id
);
2131 Set_Is_Abstract
(Id
, Is_Abstract
(T
));
2132 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
2135 -- In general the attributes of the subtype of a private
2136 -- type are the attributes of the partial view of parent.
2137 -- However, the full view may be a discriminated type,
2138 -- and the subtype must share the discriminant constraint
2139 -- to generate correct calls to initialization procedures.
2141 if Has_Discriminants
(T
) then
2142 Set_Discriminant_Constraint
2143 (Id
, Discriminant_Constraint
(T
));
2144 Set_Girder_Constraint_From_Discriminant_Constraint
(Id
);
2146 elsif Present
(Full_View
(T
))
2147 and then Has_Discriminants
(Full_View
(T
))
2149 Set_Discriminant_Constraint
2150 (Id
, Discriminant_Constraint
(Full_View
(T
)));
2151 Set_Girder_Constraint_From_Discriminant_Constraint
(Id
);
2153 -- This would seem semantically correct, but apparently
2154 -- confuses the back-end (4412-009). To be explained ???
2156 -- Set_Has_Discriminants (Id);
2159 Prepare_Private_Subtype_Completion
(Id
, N
);
2162 Set_Ekind
(Id
, E_Access_Subtype
);
2163 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2164 Set_Is_Access_Constant
2165 (Id
, Is_Access_Constant
(T
));
2166 Set_Directly_Designated_Type
2167 (Id
, Designated_Type
(T
));
2169 -- A Pure library_item must not contain the declaration of a
2170 -- named access type, except within a subprogram, generic
2171 -- subprogram, task unit, or protected unit (RM 10.2.1(16)).
2173 if Comes_From_Source
(Id
)
2174 and then In_Pure_Unit
2175 and then not In_Subprogram_Task_Protected_Unit
2178 ("named access types not allowed in pure unit", N
);
2181 when Concurrent_Kind
=>
2183 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
2184 Set_Corresponding_Record_Type
(Id
,
2185 Corresponding_Record_Type
(T
));
2186 Set_First_Entity
(Id
, First_Entity
(T
));
2187 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
2188 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
2189 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2190 Set_Last_Entity
(Id
, Last_Entity
(T
));
2192 if Has_Discriminants
(T
) then
2193 Set_Discriminant_Constraint
(Id
,
2194 Discriminant_Constraint
(T
));
2195 Set_Girder_Constraint_From_Discriminant_Constraint
(Id
);
2198 -- If the subtype name denotes an incomplete type
2199 -- an error was already reported by Process_Subtype.
2201 when E_Incomplete_Type
=>
2202 Set_Etype
(Id
, Any_Type
);
2205 raise Program_Error
;
2209 if Etype
(Id
) = Any_Type
then
2213 -- Some common processing on all types
2215 Set_Size_Info
(Id
, T
);
2216 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
2220 Set_Is_Immediately_Visible
(Id
, True);
2221 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
2223 if Present
(Generic_Parent_Type
(N
))
2226 (Parent
(Generic_Parent_Type
(N
))) /= N_Formal_Type_Declaration
2228 (Formal_Type_Definition
(Parent
(Generic_Parent_Type
(N
))))
2229 /= N_Formal_Private_Type_Definition
)
2231 if Is_Tagged_Type
(Id
) then
2232 if Is_Class_Wide_Type
(Id
) then
2233 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
2235 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
2238 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
2239 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
2243 if Is_Private_Type
(T
)
2244 and then Present
(Full_View
(T
))
2246 Conditional_Delay
(Id
, Full_View
(T
));
2248 -- The subtypes of components or subcomponents of protected types
2249 -- do not need freeze nodes, which would otherwise appear in the
2250 -- wrong scope (before the freeze node for the protected type). The
2251 -- proper subtypes are those of the subcomponents of the corresponding
2254 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
2255 and then Present
(Scope
(Scope
(Id
))) -- error defense!
2256 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
2258 Conditional_Delay
(Id
, T
);
2261 -- Check that constraint_error is raised for a scalar subtype
2262 -- indication when the lower or upper bound of a non-null range
2263 -- lies outside the range of the type mark.
2265 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
2266 if Is_Scalar_Type
(Etype
(Id
))
2267 and then Scalar_Range
(Id
) /=
2268 Scalar_Range
(Etype
(Subtype_Mark
2269 (Subtype_Indication
(N
))))
2273 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
2275 elsif Is_Array_Type
(Etype
(Id
))
2276 and then Present
(First_Index
(Id
))
2278 -- This really should be a subprogram that finds the indications
2281 if ((Nkind
(First_Index
(Id
)) = N_Identifier
2282 and then Ekind
(Entity
(First_Index
(Id
))) in Scalar_Kind
)
2283 or else Nkind
(First_Index
(Id
)) = N_Subtype_Indication
)
2285 Nkind
(Scalar_Range
(Etype
(First_Index
(Id
)))) = N_Range
2288 Target_Typ
: Entity_Id
:=
2291 (Etype
(Subtype_Mark
(Subtype_Indication
(N
)))));
2295 (Scalar_Range
(Etype
(First_Index
(Id
))),
2297 Etype
(First_Index
(Id
)),
2298 Defining_Identifier
(N
));
2304 Sloc
(Defining_Identifier
(N
)));
2310 Check_Eliminated
(Id
);
2311 end Analyze_Subtype_Declaration
;
2313 --------------------------------
2314 -- Analyze_Subtype_Indication --
2315 --------------------------------
2317 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
2318 T
: constant Entity_Id
:= Subtype_Mark
(N
);
2319 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
2326 Set_Etype
(N
, Etype
(R
));
2328 Set_Error_Posted
(R
);
2329 Set_Error_Posted
(T
);
2331 end Analyze_Subtype_Indication
;
2333 ------------------------------
2334 -- Analyze_Type_Declaration --
2335 ------------------------------
2337 procedure Analyze_Type_Declaration
(N
: Node_Id
) is
2338 Def
: constant Node_Id
:= Type_Definition
(N
);
2339 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2344 Prev
:= Find_Type_Name
(N
);
2346 if Ekind
(Prev
) = E_Incomplete_Type
then
2347 T
:= Full_View
(Prev
);
2352 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
2354 -- We set the flag Is_First_Subtype here. It is needed to set the
2355 -- corresponding flag for the Implicit class-wide-type created
2356 -- during tagged types processing.
2358 Set_Is_First_Subtype
(T
, True);
2360 -- Only composite types other than array types are allowed to have
2365 -- For derived types, the rule will be checked once we've figured
2366 -- out the parent type.
2368 when N_Derived_Type_Definition
=>
2371 -- For record types, discriminants are allowed.
2373 when N_Record_Definition
=>
2377 if Present
(Discriminant_Specifications
(N
)) then
2379 ("elementary or array type cannot have discriminants",
2381 (First
(Discriminant_Specifications
(N
))));
2385 -- Elaborate the type definition according to kind, and generate
2386 -- susbsidiary (implicit) subtypes where needed. We skip this if
2387 -- it was already done (this happens during the reanalysis that
2388 -- follows a call to the high level optimizer).
2390 if not Analyzed
(T
) then
2395 when N_Access_To_Subprogram_Definition
=>
2396 Access_Subprogram_Declaration
(T
, Def
);
2398 -- If this is a remote access to subprogram, we must create
2399 -- the equivalent fat pointer type, and related subprograms.
2401 if Is_Remote_Types
(Current_Scope
)
2402 or else Is_Remote_Call_Interface
(Current_Scope
)
2404 Validate_Remote_Access_To_Subprogram_Type
(N
);
2405 Process_Remote_AST_Declaration
(N
);
2408 -- Validate categorization rule against access type declaration
2409 -- usually a violation in Pure unit, Shared_Passive unit.
2411 Validate_Access_Type_Declaration
(T
, N
);
2413 when N_Access_To_Object_Definition
=>
2414 Access_Type_Declaration
(T
, Def
);
2416 -- Validate categorization rule against access type declaration
2417 -- usually a violation in Pure unit, Shared_Passive unit.
2419 Validate_Access_Type_Declaration
(T
, N
);
2421 -- If we are in a Remote_Call_Interface package and define
2422 -- a RACW, Read and Write attribute must be added.
2424 if (Is_Remote_Call_Interface
(Current_Scope
)
2425 or else Is_Remote_Types
(Current_Scope
))
2426 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
2428 Add_RACW_Features
(Def_Id
);
2431 when N_Array_Type_Definition
=>
2432 Array_Type_Declaration
(T
, Def
);
2434 when N_Derived_Type_Definition
=>
2435 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
2437 when N_Enumeration_Type_Definition
=>
2438 Enumeration_Type_Declaration
(T
, Def
);
2440 when N_Floating_Point_Definition
=>
2441 Floating_Point_Type_Declaration
(T
, Def
);
2443 when N_Decimal_Fixed_Point_Definition
=>
2444 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
2446 when N_Ordinary_Fixed_Point_Definition
=>
2447 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
2449 when N_Signed_Integer_Type_Definition
=>
2450 Signed_Integer_Type_Declaration
(T
, Def
);
2452 when N_Modular_Type_Definition
=>
2453 Modular_Type_Declaration
(T
, Def
);
2455 when N_Record_Definition
=>
2456 Record_Type_Declaration
(T
, N
);
2459 raise Program_Error
;
2464 if Etype
(T
) = Any_Type
then
2468 -- Some common processing for all types
2470 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
2472 -- Both the declared entity, and its anonymous base type if one
2473 -- was created, need freeze nodes allocated.
2476 B
: constant Entity_Id
:= Base_Type
(T
);
2479 -- In the case where the base type is different from the first
2480 -- subtype, we pre-allocate a freeze node, and set the proper
2481 -- link to the first subtype. Freeze_Entity will use this
2482 -- preallocated freeze node when it freezes the entity.
2485 Ensure_Freeze_Node
(B
);
2486 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
2489 if not From_With_Type
(T
) then
2490 Set_Has_Delayed_Freeze
(T
);
2494 -- Case of T is the full declaration of some private type which has
2495 -- been swapped in Defining_Identifier (N).
2497 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
2498 Process_Full_View
(N
, T
, Def_Id
);
2500 -- Record the reference. The form of this is a little strange,
2501 -- since the full declaration has been swapped in. So the first
2502 -- parameter here represents the entity to which a reference is
2503 -- made which is the "real" entity, i.e. the one swapped in,
2504 -- and the second parameter provides the reference location.
2506 Generate_Reference
(T
, T
, 'c');
2508 -- If in main unit, set as referenced, so we do not complain about
2509 -- the full declaration being an unreferenced entity.
2511 if In_Extended_Main_Source_Unit
(Def_Id
) then
2512 Set_Referenced
(Def_Id
);
2515 -- For completion of incomplete type, process incomplete dependents
2516 -- and always mark the full type as referenced (it is the incomplete
2517 -- type that we get for any real reference).
2519 elsif Ekind
(Prev
) = E_Incomplete_Type
then
2520 Process_Incomplete_Dependents
(N
, T
, Prev
);
2521 Generate_Reference
(Prev
, Def_Id
, 'c');
2523 -- If in main unit, set as referenced, so we do not complain about
2524 -- the full declaration being an unreferenced entity.
2526 if In_Extended_Main_Source_Unit
(Def_Id
) then
2527 Set_Referenced
(Def_Id
);
2530 -- If not private type or incomplete type completion, this is a real
2531 -- definition of a new entity, so record it.
2534 Generate_Definition
(Def_Id
);
2537 Check_Eliminated
(Def_Id
);
2538 end Analyze_Type_Declaration
;
2540 --------------------------
2541 -- Analyze_Variant_Part --
2542 --------------------------
2544 procedure Analyze_Variant_Part
(N
: Node_Id
) is
2546 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
2547 -- Error routine invoked by the generic instantiation below when
2548 -- the variant part has a non static choice.
2550 procedure Process_Declarations
(Variant
: Node_Id
);
2551 -- Analyzes all the declarations associated with a Variant.
2552 -- Needed by the generic instantiation below.
2554 package Variant_Choices_Processing
is new
2555 Generic_Choices_Processing
2556 (Get_Alternatives
=> Variants
,
2557 Get_Choices
=> Discrete_Choices
,
2558 Process_Empty_Choice
=> No_OP
,
2559 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
2560 Process_Associated_Node
=> Process_Declarations
);
2561 use Variant_Choices_Processing
;
2562 -- Instantiation of the generic choice processing package.
2564 -----------------------------
2565 -- Non_Static_Choice_Error --
2566 -----------------------------
2568 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
2570 Error_Msg_N
("choice given in variant part is not static", Choice
);
2571 end Non_Static_Choice_Error
;
2573 --------------------------
2574 -- Process_Declarations --
2575 --------------------------
2577 procedure Process_Declarations
(Variant
: Node_Id
) is
2579 if not Null_Present
(Component_List
(Variant
)) then
2580 Analyze_Declarations
(Component_Items
(Component_List
(Variant
)));
2582 if Present
(Variant_Part
(Component_List
(Variant
))) then
2583 Analyze
(Variant_Part
(Component_List
(Variant
)));
2586 end Process_Declarations
;
2588 -- Variables local to Analyze_Case_Statement.
2590 Others_Choice
: Node_Id
;
2592 Discr_Name
: Node_Id
;
2593 Discr_Type
: Entity_Id
;
2595 Case_Table
: Choice_Table_Type
(1 .. Number_Of_Choices
(N
));
2597 Dont_Care
: Boolean;
2598 Others_Present
: Boolean := False;
2600 -- Start of processing for Analyze_Variant_Part
2603 Discr_Name
:= Name
(N
);
2604 Analyze
(Discr_Name
);
2606 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
2607 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
2610 Discr_Type
:= Etype
(Entity
(Discr_Name
));
2612 if not Is_Discrete_Type
(Discr_Type
) then
2614 ("discriminant in a variant part must be of a discrete type",
2619 -- Call the instantiated Analyze_Choices which does the rest of the work
2622 (N
, Discr_Type
, Case_Table
, Last_Choice
, Dont_Care
, Others_Present
);
2624 if Others_Present
then
2625 -- Fill in Others_Discrete_Choices field of the OTHERS choice
2627 Others_Choice
:= First
(Discrete_Choices
(Last
(Variants
(N
))));
2628 Expand_Others_Choice
2629 (Case_Table
(1 .. Last_Choice
), Others_Choice
, Discr_Type
);
2632 end Analyze_Variant_Part
;
2634 ----------------------------
2635 -- Array_Type_Declaration --
2636 ----------------------------
2638 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
2639 Component_Def
: constant Node_Id
:= Subtype_Indication
(Def
);
2640 Element_Type
: Entity_Id
;
2641 Implicit_Base
: Entity_Id
;
2643 Related_Id
: Entity_Id
:= Empty
;
2645 P
: constant Node_Id
:= Parent
(Def
);
2649 if Nkind
(Def
) = N_Constrained_Array_Definition
then
2651 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
2653 -- Find proper names for the implicit types which may be public.
2654 -- in case of anonymous arrays we use the name of the first object
2655 -- of that type as prefix.
2658 Related_Id
:= Defining_Identifier
(P
);
2664 Index
:= First
(Subtype_Marks
(Def
));
2669 while Present
(Index
) loop
2671 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
2673 Nb_Index
:= Nb_Index
+ 1;
2676 Element_Type
:= Process_Subtype
(Component_Def
, P
, Related_Id
, 'C');
2678 -- Constrained array case
2681 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
2684 if Nkind
(Def
) = N_Constrained_Array_Definition
then
2686 -- Establish Implicit_Base as unconstrained base type
2688 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
2690 Init_Size_Align
(Implicit_Base
);
2691 Set_Etype
(Implicit_Base
, Implicit_Base
);
2692 Set_Scope
(Implicit_Base
, Current_Scope
);
2693 Set_Has_Delayed_Freeze
(Implicit_Base
);
2695 -- The constrained array type is a subtype of the unconstrained one
2697 Set_Ekind
(T
, E_Array_Subtype
);
2698 Init_Size_Align
(T
);
2699 Set_Etype
(T
, Implicit_Base
);
2700 Set_Scope
(T
, Current_Scope
);
2701 Set_Is_Constrained
(T
, True);
2702 Set_First_Index
(T
, First
(Discrete_Subtype_Definitions
(Def
)));
2703 Set_Has_Delayed_Freeze
(T
);
2705 -- Complete setup of implicit base type
2707 Set_First_Index
(Implicit_Base
, First_Index
(T
));
2708 Set_Component_Type
(Implicit_Base
, Element_Type
);
2709 Set_Has_Task
(Implicit_Base
, Has_Task
(Element_Type
));
2710 Set_Component_Size
(Implicit_Base
, Uint_0
);
2711 Set_Has_Controlled_Component
(Implicit_Base
,
2712 Has_Controlled_Component
(Element_Type
)
2713 or else Is_Controlled
(Element_Type
));
2714 Set_Finalize_Storage_Only
(Implicit_Base
,
2715 Finalize_Storage_Only
(Element_Type
));
2717 -- Unconstrained array case
2720 Set_Ekind
(T
, E_Array_Type
);
2721 Init_Size_Align
(T
);
2723 Set_Scope
(T
, Current_Scope
);
2724 Set_Component_Size
(T
, Uint_0
);
2725 Set_Is_Constrained
(T
, False);
2726 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
2727 Set_Has_Delayed_Freeze
(T
, True);
2728 Set_Has_Task
(T
, Has_Task
(Element_Type
));
2729 Set_Has_Controlled_Component
(T
,
2730 Has_Controlled_Component
(Element_Type
)
2731 or else Is_Controlled
(Element_Type
));
2732 Set_Finalize_Storage_Only
(T
,
2733 Finalize_Storage_Only
(Element_Type
));
2736 Set_Component_Type
(T
, Element_Type
);
2738 if Aliased_Present
(Def
) then
2739 Set_Has_Aliased_Components
(Etype
(T
));
2742 Priv
:= Private_Component
(Element_Type
);
2744 if Present
(Priv
) then
2745 -- Check for circular definitions.
2747 if Priv
= Any_Type
then
2748 Set_Component_Type
(T
, Any_Type
);
2749 Set_Component_Type
(Etype
(T
), Any_Type
);
2751 -- There is a gap in the visiblity of operations on the composite
2752 -- type only if the component type is defined in a different scope.
2754 elsif Scope
(Priv
) = Current_Scope
then
2757 elsif Is_Limited_Type
(Priv
) then
2758 Set_Is_Limited_Composite
(Etype
(T
));
2759 Set_Is_Limited_Composite
(T
);
2761 Set_Is_Private_Composite
(Etype
(T
));
2762 Set_Is_Private_Composite
(T
);
2766 -- Create a concatenation operator for the new type. Internal
2767 -- array types created for packed entities do not need such, they
2768 -- are compatible with the user-defined type.
2770 if Number_Dimensions
(T
) = 1
2771 and then not Is_Packed_Array_Type
(T
)
2773 New_Binary_Operator
(Name_Op_Concat
, T
);
2776 -- In the case of an unconstrained array the parser has already
2777 -- verified that all the indices are unconstrained but we still
2778 -- need to make sure that the element type is constrained.
2780 if Is_Indefinite_Subtype
(Element_Type
) then
2782 ("unconstrained element type in array declaration ",
2785 elsif Is_Abstract
(Element_Type
) then
2786 Error_Msg_N
("The type of a component cannot be abstract ",
2790 end Array_Type_Declaration
;
2792 -------------------------------
2793 -- Build_Derived_Access_Type --
2794 -------------------------------
2796 procedure Build_Derived_Access_Type
2798 Parent_Type
: Entity_Id
;
2799 Derived_Type
: Entity_Id
)
2801 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
2803 Desig_Type
: Entity_Id
;
2805 Discr_Con_Elist
: Elist_Id
;
2806 Discr_Con_El
: Elmt_Id
;
2811 -- Set the designated type so it is available in case this is
2812 -- an access to a self-referential type, e.g. a standard list
2813 -- type with a next pointer. Will be reset after subtype is built.
2815 Set_Directly_Designated_Type
(Derived_Type
,
2816 Designated_Type
(Parent_Type
));
2818 Subt
:= Process_Subtype
(S
, N
);
2820 if Nkind
(S
) /= N_Subtype_Indication
2821 and then Subt
/= Base_Type
(Subt
)
2823 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
2826 if Ekind
(Derived_Type
) = E_Access_Subtype
then
2828 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
2829 Ibase
: constant Entity_Id
:=
2830 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
2831 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
2832 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
2835 Copy_Node
(Pbase
, Ibase
);
2837 Set_Chars
(Ibase
, Svg_Chars
);
2838 Set_Next_Entity
(Ibase
, Svg_Next_E
);
2839 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
2840 Set_Scope
(Ibase
, Scope
(Derived_Type
));
2841 Set_Freeze_Node
(Ibase
, Empty
);
2842 Set_Is_Frozen
(Ibase
, False);
2844 Set_Etype
(Ibase
, Pbase
);
2845 Set_Etype
(Derived_Type
, Ibase
);
2849 Set_Directly_Designated_Type
2850 (Derived_Type
, Designated_Type
(Subt
));
2852 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
2853 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
2854 Set_Size_Info
(Derived_Type
, Parent_Type
);
2855 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
2856 Set_Depends_On_Private
(Derived_Type
,
2857 Has_Private_Component
(Derived_Type
));
2858 Conditional_Delay
(Derived_Type
, Subt
);
2860 -- Note: we do not copy the Storage_Size_Variable, since
2861 -- we always go to the root type for this information.
2863 -- Apply range checks to discriminants for derived record case
2864 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
2866 Desig_Type
:= Designated_Type
(Derived_Type
);
2867 if Is_Composite_Type
(Desig_Type
)
2868 and then (not Is_Array_Type
(Desig_Type
))
2869 and then Has_Discriminants
(Desig_Type
)
2870 and then Base_Type
(Desig_Type
) /= Desig_Type
2872 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
2873 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
2875 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
2876 while Present
(Discr_Con_El
) loop
2877 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
2878 Next_Elmt
(Discr_Con_El
);
2879 Next_Discriminant
(Discr
);
2882 end Build_Derived_Access_Type
;
2884 ------------------------------
2885 -- Build_Derived_Array_Type --
2886 ------------------------------
2888 procedure Build_Derived_Array_Type
2890 Parent_Type
: Entity_Id
;
2891 Derived_Type
: Entity_Id
)
2893 Loc
: constant Source_Ptr
:= Sloc
(N
);
2894 Tdef
: constant Node_Id
:= Type_Definition
(N
);
2895 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
2896 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
2897 Implicit_Base
: Entity_Id
;
2898 New_Indic
: Node_Id
;
2900 procedure Make_Implicit_Base
;
2901 -- If the parent subtype is constrained, the derived type is a
2902 -- subtype of an implicit base type derived from the parent base.
2904 ------------------------
2905 -- Make_Implicit_Base --
2906 ------------------------
2908 procedure Make_Implicit_Base
is
2911 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
2913 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
2914 Set_Etype
(Implicit_Base
, Parent_Base
);
2916 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
2917 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
2919 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
2920 end Make_Implicit_Base
;
2922 -- Start of processing for Build_Derived_Array_Type
2925 if not Is_Constrained
(Parent_Type
) then
2926 if Nkind
(Indic
) /= N_Subtype_Indication
then
2927 Set_Ekind
(Derived_Type
, E_Array_Type
);
2929 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
2930 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
2932 Set_Has_Delayed_Freeze
(Derived_Type
, True);
2936 Set_Etype
(Derived_Type
, Implicit_Base
);
2939 Make_Subtype_Declaration
(Loc
,
2940 Defining_Identifier
=> Derived_Type
,
2941 Subtype_Indication
=>
2942 Make_Subtype_Indication
(Loc
,
2943 Subtype_Mark
=> New_Reference_To
(Implicit_Base
, Loc
),
2944 Constraint
=> Constraint
(Indic
)));
2946 Rewrite
(N
, New_Indic
);
2951 if Nkind
(Indic
) /= N_Subtype_Indication
then
2954 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
2955 Set_Etype
(Derived_Type
, Implicit_Base
);
2956 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
2959 Error_Msg_N
("illegal constraint on constrained type", Indic
);
2963 -- If the parent type is not a derived type itself, and is
2964 -- declared in a closed scope (e.g., a subprogram), then we
2965 -- need to explicitly introduce the new type's concatenation
2966 -- operator since Derive_Subprograms will not inherit the
2967 -- parent's operator.
2969 if Number_Dimensions
(Parent_Type
) = 1
2970 and then not Is_Limited_Type
(Parent_Type
)
2971 and then not Is_Derived_Type
(Parent_Type
)
2972 and then not Is_Package
(Scope
(Base_Type
(Parent_Type
)))
2974 New_Binary_Operator
(Name_Op_Concat
, Derived_Type
);
2976 end Build_Derived_Array_Type
;
2978 -----------------------------------
2979 -- Build_Derived_Concurrent_Type --
2980 -----------------------------------
2982 procedure Build_Derived_Concurrent_Type
2984 Parent_Type
: Entity_Id
;
2985 Derived_Type
: Entity_Id
)
2987 D_Constraint
: Node_Id
;
2988 Disc_Spec
: Node_Id
;
2989 Old_Disc
: Entity_Id
;
2990 New_Disc
: Entity_Id
;
2992 Constraint_Present
: constant Boolean :=
2993 Nkind
(Subtype_Indication
(Type_Definition
(N
)))
2994 = N_Subtype_Indication
;
2997 Set_Girder_Constraint
(Derived_Type
, No_Elist
);
2999 if Is_Task_Type
(Parent_Type
) then
3000 Set_Storage_Size_Variable
(Derived_Type
,
3001 Storage_Size_Variable
(Parent_Type
));
3004 if Present
(Discriminant_Specifications
(N
)) then
3005 New_Scope
(Derived_Type
);
3006 Check_Or_Process_Discriminants
(N
, Derived_Type
);
3009 elsif Constraint_Present
then
3011 -- Build constrained subtype and derive from it
3014 Loc
: constant Source_Ptr
:= Sloc
(N
);
3016 Make_Defining_Identifier
(Loc
,
3017 New_External_Name
(Chars
(Derived_Type
), 'T'));
3022 Make_Subtype_Declaration
(Loc
,
3023 Defining_Identifier
=> Anon
,
3024 Subtype_Indication
=>
3025 New_Copy_Tree
(Subtype_Indication
(Type_Definition
(N
))));
3026 Insert_Before
(N
, Decl
);
3027 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
3028 New_Occurrence_Of
(Anon
, Loc
));
3030 Set_Analyzed
(Derived_Type
, False);
3036 -- All attributes are inherited from parent. In particular,
3037 -- entries and the corresponding record type are the same.
3038 -- Discriminants may be renamed, and must be treated separately.
3040 Set_Has_Discriminants
3041 (Derived_Type
, Has_Discriminants
(Parent_Type
));
3042 Set_Corresponding_Record_Type
3043 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
3045 if Constraint_Present
then
3047 if not Has_Discriminants
(Parent_Type
) then
3048 Error_Msg_N
("untagged parent must have discriminants", N
);
3050 elsif Present
(Discriminant_Specifications
(N
)) then
3052 -- Verify that new discriminants are used to constrain
3055 Old_Disc
:= First_Discriminant
(Parent_Type
);
3056 New_Disc
:= First_Discriminant
(Derived_Type
);
3057 Disc_Spec
:= First
(Discriminant_Specifications
(N
));
3061 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
3063 while Present
(Old_Disc
) and then Present
(Disc_Spec
) loop
3065 if Nkind
(Discriminant_Type
(Disc_Spec
)) /=
3068 Analyze
(Discriminant_Type
(Disc_Spec
));
3070 if not Subtypes_Statically_Compatible
(
3071 Etype
(Discriminant_Type
(Disc_Spec
)),
3075 ("not statically compatible with parent discriminant",
3076 Discriminant_Type
(Disc_Spec
));
3080 if Nkind
(D_Constraint
) = N_Identifier
3081 and then Chars
(D_Constraint
) /=
3082 Chars
(Defining_Identifier
(Disc_Spec
))
3084 Error_Msg_N
("new discriminants must constrain old ones",
3087 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
3090 Next_Discriminant
(Old_Disc
);
3091 Next_Discriminant
(New_Disc
);
3095 if Present
(Old_Disc
) or else Present
(Disc_Spec
) then
3096 Error_Msg_N
("discriminant mismatch in derivation", N
);
3101 elsif Present
(Discriminant_Specifications
(N
)) then
3103 ("missing discriminant constraint in untagged derivation",
3107 if Present
(Discriminant_Specifications
(N
)) then
3109 Old_Disc
:= First_Discriminant
(Parent_Type
);
3111 while Present
(Old_Disc
) loop
3113 if No
(Next_Entity
(Old_Disc
))
3114 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
3116 Set_Next_Entity
(Last_Entity
(Derived_Type
),
3117 Next_Entity
(Old_Disc
));
3121 Next_Discriminant
(Old_Disc
);
3125 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
3126 if Has_Discriminants
(Parent_Type
) then
3127 Set_Discriminant_Constraint
(
3128 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
3132 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
3134 Set_Has_Completion
(Derived_Type
);
3135 end Build_Derived_Concurrent_Type
;
3137 ------------------------------------
3138 -- Build_Derived_Enumeration_Type --
3139 ------------------------------------
3141 procedure Build_Derived_Enumeration_Type
3143 Parent_Type
: Entity_Id
;
3144 Derived_Type
: Entity_Id
)
3146 Loc
: constant Source_Ptr
:= Sloc
(N
);
3147 Def
: constant Node_Id
:= Type_Definition
(N
);
3148 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
3149 Implicit_Base
: Entity_Id
;
3150 Literal
: Entity_Id
;
3151 New_Lit
: Entity_Id
;
3152 Literals_List
: List_Id
;
3153 Type_Decl
: Node_Id
;
3155 Rang_Expr
: Node_Id
;
3158 -- Since types Standard.Character and Standard.Wide_Character do
3159 -- not have explicit literals lists we need to process types derived
3160 -- from them specially. This is handled by Derived_Standard_Character.
3161 -- If the parent type is a generic type, there are no literals either,
3162 -- and we construct the same skeletal representation as for the generic
3165 if Root_Type
(Parent_Type
) = Standard_Character
3166 or else Root_Type
(Parent_Type
) = Standard_Wide_Character
3168 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
3170 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
3177 Make_Attribute_Reference
(Loc
,
3178 Attribute_Name
=> Name_First
,
3179 Prefix
=> New_Reference_To
(Derived_Type
, Loc
));
3180 Set_Etype
(Lo
, Derived_Type
);
3183 Make_Attribute_Reference
(Loc
,
3184 Attribute_Name
=> Name_Last
,
3185 Prefix
=> New_Reference_To
(Derived_Type
, Loc
));
3186 Set_Etype
(Hi
, Derived_Type
);
3188 Set_Scalar_Range
(Derived_Type
,
3195 -- If a constraint is present, analyze the bounds to catch
3196 -- premature usage of the derived literals.
3198 if Nkind
(Indic
) = N_Subtype_Indication
3199 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
3201 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
3202 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
3205 -- Introduce an implicit base type for the derived type even
3206 -- if there is no constraint attached to it, since this seems
3207 -- closer to the Ada semantics. Build a full type declaration
3208 -- tree for the derived type using the implicit base type as
3209 -- the defining identifier. The build a subtype declaration
3210 -- tree which applies the constraint (if any) have it replace
3211 -- the derived type declaration.
3213 Literal
:= First_Literal
(Parent_Type
);
3214 Literals_List
:= New_List
;
3216 while Present
(Literal
)
3217 and then Ekind
(Literal
) = E_Enumeration_Literal
3219 -- Literals of the derived type have the same representation as
3220 -- those of the parent type, but this representation can be
3221 -- overridden by an explicit representation clause. Indicate
3222 -- that there is no explicit representation given yet. These
3223 -- derived literals are implicit operations of the new type,
3224 -- and can be overriden by explicit ones.
3226 if Nkind
(Literal
) = N_Defining_Character_Literal
then
3228 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
3230 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
3233 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
3234 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
3235 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
3236 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
3237 Set_Alias
(New_Lit
, Literal
);
3238 Set_Is_Known_Valid
(New_Lit
, True);
3240 Append
(New_Lit
, Literals_List
);
3241 Next_Literal
(Literal
);
3245 Make_Defining_Identifier
(Sloc
(Derived_Type
),
3246 New_External_Name
(Chars
(Derived_Type
), 'B'));
3248 -- Indicate the proper nature of the derived type. This must
3249 -- be done before analysis of the literals, to recognize cases
3250 -- when a literal may be hidden by a previous explicit function
3251 -- definition (cf. c83031a).
3253 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
3254 Set_Etype
(Derived_Type
, Implicit_Base
);
3257 Make_Full_Type_Declaration
(Loc
,
3258 Defining_Identifier
=> Implicit_Base
,
3259 Discriminant_Specifications
=> No_List
,
3261 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
3263 Mark_Rewrite_Insertion
(Type_Decl
);
3264 Insert_Before
(N
, Type_Decl
);
3265 Analyze
(Type_Decl
);
3267 -- After the implicit base is analyzed its Etype needs to be
3268 -- changed to reflect the fact that it is derived from the
3269 -- parent type which was ignored during analysis. We also set
3270 -- the size at this point.
3272 Set_Etype
(Implicit_Base
, Parent_Type
);
3274 Set_Size_Info
(Implicit_Base
, Parent_Type
);
3275 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
3276 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
3278 Set_Has_Non_Standard_Rep
3279 (Implicit_Base
, Has_Non_Standard_Rep
3281 Set_Has_Delayed_Freeze
(Implicit_Base
);
3283 -- Process the subtype indication including a validation check
3284 -- on the constraint, if any. If a constraint is given, its bounds
3285 -- must be implicitly converted to the new type.
3287 if Nkind
(Indic
) = N_Subtype_Indication
then
3290 R
: constant Node_Id
:=
3291 Range_Expression
(Constraint
(Indic
));
3294 if Nkind
(R
) = N_Range
then
3295 Hi
:= Build_Scalar_Bound
3296 (High_Bound
(R
), Parent_Type
, Implicit_Base
, Loc
);
3297 Lo
:= Build_Scalar_Bound
3298 (Low_Bound
(R
), Parent_Type
, Implicit_Base
, Loc
);
3301 -- Constraint is a Range attribute. Replace with the
3302 -- explicit mention of the bounds of the prefix, which
3303 -- must be a subtype.
3305 Analyze
(Prefix
(R
));
3307 Convert_To
(Implicit_Base
,
3308 Make_Attribute_Reference
(Loc
,
3309 Attribute_Name
=> Name_Last
,
3311 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
3314 Convert_To
(Implicit_Base
,
3315 Make_Attribute_Reference
(Loc
,
3316 Attribute_Name
=> Name_First
,
3318 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
3326 (Type_High_Bound
(Parent_Type
),
3327 Parent_Type
, Implicit_Base
, Loc
);
3330 (Type_Low_Bound
(Parent_Type
),
3331 Parent_Type
, Implicit_Base
, Loc
);
3339 -- If we constructed a default range for the case where no range
3340 -- was given, then the expressions in the range must not freeze
3341 -- since they do not correspond to expressions in the source.
3343 if Nkind
(Indic
) /= N_Subtype_Indication
then
3344 Set_Must_Not_Freeze
(Lo
);
3345 Set_Must_Not_Freeze
(Hi
);
3346 Set_Must_Not_Freeze
(Rang_Expr
);
3350 Make_Subtype_Declaration
(Loc
,
3351 Defining_Identifier
=> Derived_Type
,
3352 Subtype_Indication
=>
3353 Make_Subtype_Indication
(Loc
,
3354 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
3356 Make_Range_Constraint
(Loc
,
3357 Range_Expression
=> Rang_Expr
))));
3361 -- If pragma Discard_Names applies on the first subtype
3362 -- of the parent type, then it must be applied on this
3365 if Einfo
.Discard_Names
(First_Subtype
(Parent_Type
)) then
3366 Set_Discard_Names
(Derived_Type
);
3369 -- Apply a range check. Since this range expression doesn't
3370 -- have an Etype, we have to specifically pass the Source_Typ
3371 -- parameter. Is this right???
3373 if Nkind
(Indic
) = N_Subtype_Indication
then
3374 Apply_Range_Check
(Range_Expression
(Constraint
(Indic
)),
3376 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
3380 end Build_Derived_Enumeration_Type
;
3382 --------------------------------
3383 -- Build_Derived_Numeric_Type --
3384 --------------------------------
3386 procedure Build_Derived_Numeric_Type
3388 Parent_Type
: Entity_Id
;
3389 Derived_Type
: Entity_Id
)
3391 Loc
: constant Source_Ptr
:= Sloc
(N
);
3392 Tdef
: constant Node_Id
:= Type_Definition
(N
);
3393 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
3394 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
3395 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
3396 N_Subtype_Indication
;
3397 Implicit_Base
: Entity_Id
;
3404 -- Process the subtype indication including a validation check on
3405 -- the constraint if any.
3407 T
:= Process_Subtype
(Indic
, N
);
3409 -- Introduce an implicit base type for the derived type even if
3410 -- there is no constraint attached to it, since this seems closer
3411 -- to the Ada semantics.
3414 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
3416 Set_Etype
(Implicit_Base
, Parent_Base
);
3417 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
3418 Set_Size_Info
(Implicit_Base
, Parent_Base
);
3419 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
3420 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
3421 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
3423 if Is_Discrete_Or_Fixed_Point_Type
(Parent_Base
) then
3424 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
3427 Set_Has_Delayed_Freeze
(Implicit_Base
);
3429 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
3430 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
3432 Set_Scalar_Range
(Implicit_Base
,
3437 if Has_Infinities
(Parent_Base
) then
3438 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
3441 -- The Derived_Type, which is the entity of the declaration, is
3442 -- a subtype of the implicit base. Its Ekind is a subtype, even
3443 -- in the absence of an explicit constraint.
3445 Set_Etype
(Derived_Type
, Implicit_Base
);
3447 -- If we did not have a constraint, then the Ekind is set from the
3448 -- parent type (otherwise Process_Subtype has set the bounds)
3450 if No_Constraint
then
3451 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
3454 -- If we did not have a range constraint, then set the range
3455 -- from the parent type. Otherwise, the call to Process_Subtype
3456 -- has set the bounds.
3459 or else not Has_Range_Constraint
(Indic
)
3461 Set_Scalar_Range
(Derived_Type
,
3463 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
3464 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
3465 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
3467 if Has_Infinities
(Parent_Type
) then
3468 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
3472 -- Set remaining type-specific fields, depending on numeric type
3474 if Is_Modular_Integer_Type
(Parent_Type
) then
3475 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
3477 Set_Non_Binary_Modulus
3478 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
3480 elsif Is_Floating_Point_Type
(Parent_Type
) then
3482 -- Digits of base type is always copied from the digits value of
3483 -- the parent base type, but the digits of the derived type will
3484 -- already have been set if there was a constraint present.
3486 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
3487 Set_Vax_Float
(Implicit_Base
, Vax_Float
(Parent_Base
));
3489 if No_Constraint
then
3490 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
3493 elsif Is_Fixed_Point_Type
(Parent_Type
) then
3495 -- Small of base type and derived type are always copied from
3496 -- the parent base type, since smalls never change. The delta
3497 -- of the base type is also copied from the parent base type.
3498 -- However the delta of the derived type will have been set
3499 -- already if a constraint was present.
3501 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
3502 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
3503 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
3505 if No_Constraint
then
3506 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
3509 -- The scale and machine radix in the decimal case are always
3510 -- copied from the parent base type.
3512 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
3513 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
3514 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
3516 Set_Machine_Radix_10
3517 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
3518 Set_Machine_Radix_10
3519 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
3521 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
3523 if No_Constraint
then
3524 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
3527 -- the analysis of the subtype_indication sets the
3528 -- digits value of the derived type.
3535 -- The type of the bounds is that of the parent type, and they
3536 -- must be converted to the derived type.
3538 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
3540 -- The implicit_base should be frozen when the derived type is frozen,
3541 -- but note that it is used in the conversions of the bounds. For
3542 -- fixed types we delay the determination of the bounds until the proper
3543 -- freezing point. For other numeric types this is rejected by GCC, for
3544 -- reasons that are currently unclear (???), so we choose to freeze the
3545 -- implicit base now. In the case of integers and floating point types
3546 -- this is harmless because subsequent representation clauses cannot
3547 -- affect anything, but it is still baffling that we cannot use the
3548 -- same mechanism for all derived numeric types.
3550 if Is_Fixed_Point_Type
(Parent_Type
) then
3551 Conditional_Delay
(Implicit_Base
, Parent_Type
);
3553 Freeze_Before
(N
, Implicit_Base
);
3556 end Build_Derived_Numeric_Type
;
3558 --------------------------------
3559 -- Build_Derived_Private_Type --
3560 --------------------------------
3562 procedure Build_Derived_Private_Type
3564 Parent_Type
: Entity_Id
;
3565 Derived_Type
: Entity_Id
;
3566 Is_Completion
: Boolean;
3567 Derive_Subps
: Boolean := True)
3569 Der_Base
: Entity_Id
;
3571 Full_Decl
: Node_Id
:= Empty
;
3572 Full_Der
: Entity_Id
;
3574 Last_Discr
: Entity_Id
;
3575 Par_Scope
: constant Entity_Id
:= Scope
(Base_Type
(Parent_Type
));
3576 Swapped
: Boolean := False;
3578 procedure Copy_And_Build
;
3579 -- Copy derived type declaration, replace parent with its full view,
3580 -- and analyze new declaration.
3582 procedure Copy_And_Build
is
3586 if Ekind
(Parent_Type
) in Record_Kind
3587 or else (Ekind
(Parent_Type
) in Enumeration_Kind
3588 and then Root_Type
(Parent_Type
) /= Standard_Character
3589 and then Root_Type
(Parent_Type
) /= Standard_Wide_Character
3590 and then not Is_Generic_Type
(Root_Type
(Parent_Type
)))
3592 Full_N
:= New_Copy_Tree
(N
);
3593 Insert_After
(N
, Full_N
);
3594 Build_Derived_Type
(
3595 Full_N
, Parent_Type
, Full_Der
, True, Derive_Subps
=> False);
3598 Build_Derived_Type
(
3599 N
, Parent_Type
, Full_Der
, True, Derive_Subps
=> False);
3603 -- Start of processing for Build_Derived_Private_Type
3606 if Is_Tagged_Type
(Parent_Type
) then
3607 Build_Derived_Record_Type
3608 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
3611 elsif Has_Discriminants
(Parent_Type
) then
3613 if Present
(Full_View
(Parent_Type
)) then
3614 if not Is_Completion
then
3616 -- Copy declaration for subsequent analysis.
3618 Full_Decl
:= New_Copy_Tree
(N
);
3619 Full_Der
:= New_Copy
(Derived_Type
);
3620 Insert_After
(N
, Full_Decl
);
3623 -- If this is a completion, the full view being built is
3624 -- itself private. We build a subtype of the parent with
3625 -- the same constraints as this full view, to convey to the
3626 -- back end the constrained components and the size of this
3627 -- subtype. If the parent is constrained, its full view can
3628 -- serve as the underlying full view of the derived type.
3630 if No
(Discriminant_Specifications
(N
)) then
3632 if Nkind
(Subtype_Indication
(Type_Definition
(N
)))
3633 = N_Subtype_Indication
3635 Build_Underlying_Full_View
(N
, Derived_Type
, Parent_Type
);
3637 elsif Is_Constrained
(Full_View
(Parent_Type
)) then
3638 Set_Underlying_Full_View
(Derived_Type
,
3639 Full_View
(Parent_Type
));
3643 -- If there are new discriminants, the parent subtype is
3644 -- constrained by them, but it is not clear how to build
3645 -- the underlying_full_view in this case ???
3652 Build_Derived_Record_Type
3653 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
3655 if Present
(Full_View
(Parent_Type
))
3656 and then not Is_Completion
3658 if not In_Open_Scopes
(Par_Scope
)
3659 or else not In_Same_Source_Unit
(N
, Parent_Type
)
3661 -- Swap partial and full views temporarily
3663 Install_Private_Declarations
(Par_Scope
);
3664 Install_Visible_Declarations
(Par_Scope
);
3668 -- Subprograms have been derived on the private view,
3669 -- the completion does not derive them anew.
3671 Build_Derived_Record_Type
3672 (Full_Decl
, Parent_Type
, Full_Der
, False);
3675 Uninstall_Declarations
(Par_Scope
);
3677 if In_Open_Scopes
(Par_Scope
) then
3678 Install_Visible_Declarations
(Par_Scope
);
3682 Der_Base
:= Base_Type
(Derived_Type
);
3683 Set_Full_View
(Derived_Type
, Full_Der
);
3684 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
3686 -- Copy the discriminant list from full view to
3687 -- the partial views (base type and its subtype).
3688 -- Gigi requires that the partial and full views
3689 -- have the same discriminants.
3690 -- ??? Note that since the partial view is pointing
3691 -- to discriminants in the full view, their scope
3692 -- will be that of the full view. This might
3693 -- cause some front end problems and need
3696 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
3697 Set_First_Entity
(Der_Base
, Discr
);
3700 Last_Discr
:= Discr
;
3701 Next_Discriminant
(Discr
);
3702 exit when No
(Discr
);
3705 Set_Last_Entity
(Der_Base
, Last_Discr
);
3707 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
3708 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
3711 -- If this is a completion, the derived type stays private
3712 -- and there is no need to create a further full view, except
3713 -- in the unusual case when the derivation is nested within a
3714 -- child unit, see below.
3719 elsif Present
(Full_View
(Parent_Type
))
3720 and then Has_Discriminants
(Full_View
(Parent_Type
))
3722 if Has_Unknown_Discriminants
(Parent_Type
)
3723 and then Nkind
(Subtype_Indication
(Type_Definition
(N
)))
3724 = N_Subtype_Indication
3727 ("cannot constrain type with unknown discriminants",
3728 Subtype_Indication
(Type_Definition
(N
)));
3732 -- Inherit the discriminants of the full view, but
3733 -- keep the proper parent type.
3735 -- ??? this looks wrong, we are replacing (and thus,
3736 -- erasing) the partial view!
3738 -- In any case, the primitive operations are inherited from
3739 -- the parent type, not from the internal full view.
3741 Build_Derived_Record_Type
3742 (N
, Full_View
(Parent_Type
), Derived_Type
,
3743 Derive_Subps
=> False);
3744 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
3746 if Derive_Subps
then
3747 Derive_Subprograms
(Parent_Type
, Derived_Type
);
3752 -- Untagged type, No discriminants on either view.
3754 if Nkind
(Subtype_Indication
(Type_Definition
(N
)))
3755 = N_Subtype_Indication
3758 ("illegal constraint on type without discriminants", N
);
3761 if Present
(Discriminant_Specifications
(N
))
3762 and then Present
(Full_View
(Parent_Type
))
3763 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
3766 ("cannot add discriminants to untagged type", N
);
3769 Set_Girder_Constraint
(Derived_Type
, No_Elist
);
3770 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
3771 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
3772 Set_Has_Controlled_Component
(Derived_Type
,
3773 Has_Controlled_Component
(Parent_Type
));
3775 -- Direct controlled types do not inherit the Finalize_Storage_Only
3778 if not Is_Controlled
(Parent_Type
) then
3779 Set_Finalize_Storage_Only
(Derived_Type
,
3780 Finalize_Storage_Only
(Parent_Type
));
3783 -- Construct the implicit full view by deriving from full
3784 -- view of the parent type. In order to get proper visiblity,
3785 -- we install the parent scope and its declarations.
3787 -- ??? if the parent is untagged private and its
3788 -- completion is tagged, this mechanism will not
3789 -- work because we cannot derive from the tagged
3790 -- full view unless we have an extension
3792 if Present
(Full_View
(Parent_Type
))
3793 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
3794 and then not Is_Completion
3796 Full_Der
:= Make_Defining_Identifier
(Sloc
(Derived_Type
),
3797 Chars
(Derived_Type
));
3798 Set_Is_Itype
(Full_Der
);
3799 Set_Has_Private_Declaration
(Full_Der
);
3800 Set_Has_Private_Declaration
(Derived_Type
);
3801 Set_Associated_Node_For_Itype
(Full_Der
, N
);
3802 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
3803 Set_Full_View
(Derived_Type
, Full_Der
);
3805 if not In_Open_Scopes
(Par_Scope
) then
3806 Install_Private_Declarations
(Par_Scope
);
3807 Install_Visible_Declarations
(Par_Scope
);
3809 Uninstall_Declarations
(Par_Scope
);
3811 -- If parent scope is open and in another unit, and
3812 -- parent has a completion, then the derivation is taking
3813 -- place in the visible part of a child unit. In that
3814 -- case retrieve the full view of the parent momentarily.
3816 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
3817 Full_P
:= Full_View
(Parent_Type
);
3818 Exchange_Declarations
(Parent_Type
);
3820 Exchange_Declarations
(Full_P
);
3822 -- Otherwise it is a local derivation.
3828 Set_Scope
(Full_Der
, Current_Scope
);
3829 Set_Is_First_Subtype
(Full_Der
,
3830 Is_First_Subtype
(Derived_Type
));
3831 Set_Has_Size_Clause
(Full_Der
, False);
3832 Set_Has_Alignment_Clause
(Full_Der
, False);
3833 Set_Next_Entity
(Full_Der
, Empty
);
3834 Set_Has_Delayed_Freeze
(Full_Der
);
3835 Set_Is_Frozen
(Full_Der
, False);
3836 Set_Freeze_Node
(Full_Der
, Empty
);
3837 Set_Depends_On_Private
(Full_Der
,
3838 Has_Private_Component
(Full_Der
));
3839 Set_Public_Status
(Full_Der
);
3843 Set_Has_Unknown_Discriminants
(Derived_Type
,
3844 Has_Unknown_Discriminants
(Parent_Type
));
3846 if Is_Private_Type
(Derived_Type
) then
3847 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
3850 if Is_Private_Type
(Parent_Type
)
3851 and then Base_Type
(Parent_Type
) = Parent_Type
3852 and then In_Open_Scopes
(Scope
(Parent_Type
))
3854 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
3856 if Is_Child_Unit
(Scope
(Current_Scope
))
3857 and then Is_Completion
3858 and then In_Private_Part
(Current_Scope
)
3859 and then Scope
(Parent_Type
) /= Current_Scope
3861 -- This is the unusual case where a type completed by a private
3862 -- derivation occurs within a package nested in a child unit,
3863 -- and the parent is declared in an ancestor. In this case, the
3864 -- full view of the parent type will become visible in the body
3865 -- of the enclosing child, and only then will the current type
3866 -- be possibly non-private. We build a underlying full view that
3867 -- will be installed when the enclosing child body is compiled.
3870 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(N
));
3874 Make_Defining_Identifier
(Sloc
(Derived_Type
),
3875 Chars
(Derived_Type
));
3876 Set_Is_Itype
(Full_Der
);
3877 Set_Itype
(IR
, Full_Der
);
3878 Insert_After
(N
, IR
);
3880 -- The full view will be used to swap entities on entry/exit
3881 -- to the body, and must appear in the entity list for the
3884 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
3885 Set_Has_Private_Declaration
(Full_Der
);
3886 Set_Has_Private_Declaration
(Derived_Type
);
3887 Set_Associated_Node_For_Itype
(Full_Der
, N
);
3888 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
3889 Full_P
:= Full_View
(Parent_Type
);
3890 Exchange_Declarations
(Parent_Type
);
3892 Exchange_Declarations
(Full_P
);
3893 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
3897 end Build_Derived_Private_Type
;
3899 -------------------------------
3900 -- Build_Derived_Record_Type --
3901 -------------------------------
3905 -- Ideally we would like to use the same model of type derivation for
3906 -- tagged and untagged record types. Unfortunately this is not quite
3907 -- possible because the semantics of representation clauses is different
3908 -- for tagged and untagged records under inheritance. Consider the
3911 -- type R (...) is [tagged] record ... end record;
3912 -- type T (...) is new R (...) [with ...];
3914 -- The representation clauses of T can specify a completely different
3915 -- record layout from R's. Hence a same component can be placed in two very
3916 -- different positions in objects of type T and R. If R and T are tagged
3917 -- types, representation clauses for T can only specify the layout of non
3918 -- inherited components, thus components that are common in R and T have
3919 -- the same position in objects of type R or T.
3921 -- This has two implications. The first is that the entire tree for R's
3922 -- declaration needs to be copied for T in the untagged case, so that
3923 -- T can be viewd as a record type of its own with its own derivation
3924 -- clauses. The second implication is the way we handle discriminants.
3925 -- Specifically, in the untagged case we need a way to communicate to Gigi
3926 -- what are the real discriminants in the record, while for the semantics
3927 -- we need to consider those introduced by the user to rename the
3928 -- discriminants in the parent type. This is handled by introducing the
3929 -- notion of girder discriminants. See below for more.
3931 -- Fortunately the way regular components are inherited can be handled in
3932 -- the same way in tagged and untagged types.
3934 -- To complicate things a bit more the private view of a private extension
3935 -- cannot be handled in the same way as the full view (for one thing the
3936 -- semantic rules are somewhat different). We will explain what differs
3939 -- 2. DISCRIMINANTS UNDER INHERITANCE.
3941 -- The semantic rules governing the discriminants of derived types are
3944 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
3945 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
3947 -- If parent type has discriminants, then the discriminants that are
3948 -- declared in the derived type are [3.4 (11)]:
3950 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
3953 -- o Otherwise, each discriminant of the parent type (implicitly
3954 -- declared in the same order with the same specifications). In this
3955 -- case, the discriminants are said to be "inherited", or if unknown in
3956 -- the parent are also unknown in the derived type.
3958 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
3960 -- o The parent subtype shall be constrained;
3962 -- o If the parent type is not a tagged type, then each discriminant of
3963 -- the derived type shall be used in the constraint defining a parent
3964 -- subtype [Implementation note: this ensures that the new discriminant
3965 -- can share storage with an existing discriminant.].
3967 -- For the derived type each discriminant of the parent type is either
3968 -- inherited, constrained to equal some new discriminant of the derived
3969 -- type, or constrained to the value of an expression.
3971 -- When inherited or constrained to equal some new discriminant, the
3972 -- parent discriminant and the discriminant of the derived type are said
3975 -- If a discriminant of the parent type is constrained to a specific value
3976 -- in the derived type definition, then the discriminant is said to be
3977 -- "specified" by that derived type definition.
3979 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES.
3981 -- We have spoken about girder discriminants in the point 1 (introduction)
3982 -- above. There are two sort of girder discriminants: implicit and
3983 -- explicit. As long as the derived type inherits the same discriminants as
3984 -- the root record type, girder discriminants are the same as regular
3985 -- discriminants, and are said to be implicit. However, if any discriminant
3986 -- in the root type was renamed in the derived type, then the derived
3987 -- type will contain explicit girder discriminants. Explicit girder
3988 -- discriminants are discriminants in addition to the semantically visible
3989 -- discriminants defined for the derived type. Girder discriminants are
3990 -- used by Gigi to figure out what are the physical discriminants in
3991 -- objects of the derived type (see precise definition in einfo.ads).
3992 -- As an example, consider the following:
3994 -- type R (D1, D2, D3 : Int) is record ... end record;
3995 -- type T1 is new R;
3996 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
3997 -- type T3 is new T2;
3998 -- type T4 (Y : Int) is new T3 (Y, 99);
4000 -- The following table summarizes the discriminants and girder
4001 -- discriminants in R and T1 through T4.
4003 -- Type Discrim Girder Discrim Comment
4004 -- R (D1, D2, D3) (D1, D2, D3) Gider discrims are implicit in R
4005 -- T1 (D1, D2, D3) (D1, D2, D3) Gider discrims are implicit in T1
4006 -- T2 (X1, X2) (D1, D2, D3) Gider discrims are EXPLICIT in T2
4007 -- T3 (X1, X2) (D1, D2, D3) Gider discrims are EXPLICIT in T3
4008 -- T4 (Y) (D1, D2, D3) Gider discrims are EXPLICIT in T4
4010 -- Field Corresponding_Discriminant (abbreviated CD below) allows to find
4011 -- the corresponding discriminant in the parent type, while
4012 -- Original_Record_Component (abbreviated ORC below), the actual physical
4013 -- component that is renamed. Finally the field Is_Completely_Hidden
4014 -- (abbreaviated ICH below) is set for all explicit girder discriminants
4015 -- (see einfo.ads for more info). For the above example this gives:
4017 -- Discrim CD ORC ICH
4018 -- ^^^^^^^ ^^ ^^^ ^^^
4019 -- D1 in R empty itself no
4020 -- D2 in R empty itself no
4021 -- D3 in R empty itself no
4023 -- D1 in T1 D1 in R itself no
4024 -- D2 in T1 D2 in R itself no
4025 -- D3 in T1 D3 in R itself no
4027 -- X1 in T2 D3 in T1 D3 in T2 no
4028 -- X2 in T2 D1 in T1 D1 in T2 no
4029 -- D1 in T2 empty itself yes
4030 -- D2 in T2 empty itself yes
4031 -- D3 in T2 empty itself yes
4033 -- X1 in T3 X1 in T2 D3 in T3 no
4034 -- X2 in T3 X2 in T2 D1 in T3 no
4035 -- D1 in T3 empty itself yes
4036 -- D2 in T3 empty itself yes
4037 -- D3 in T3 empty itself yes
4039 -- Y in T4 X1 in T3 D3 in T3 no
4040 -- D1 in T3 empty itself yes
4041 -- D2 in T3 empty itself yes
4042 -- D3 in T3 empty itself yes
4044 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES.
4046 -- Type derivation for tagged types is fairly straightforward. if no
4047 -- discriminants are specified by the derived type, these are inherited
4048 -- from the parent. No explicit girder discriminants are ever necessary.
4049 -- The only manipulation that is done to the tree is that of adding a
4050 -- _parent field with parent type and constrained to the same constraint
4051 -- specified for the parent in the derived type definition. For instance:
4053 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
4054 -- type T1 is new R with null record;
4055 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
4057 -- are changed into :
4059 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
4060 -- _parent : R (D1, D2, D3);
4063 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
4064 -- _parent : T1 (X2, 88, X1);
4067 -- The discriminants actually present in R, T1 and T2 as well as their CD,
4068 -- ORC and ICH fields are:
4070 -- Discrim CD ORC ICH
4071 -- ^^^^^^^ ^^ ^^^ ^^^
4072 -- D1 in R empty itself no
4073 -- D2 in R empty itself no
4074 -- D3 in R empty itself no
4076 -- D1 in T1 D1 in R D1 in R no
4077 -- D2 in T1 D2 in R D2 in R no
4078 -- D3 in T1 D3 in R D3 in R no
4080 -- X1 in T2 D3 in T1 D3 in R no
4081 -- X2 in T2 D1 in T1 D1 in R no
4083 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS.
4085 -- Regardless of whether we dealing with a tagged or untagged type
4086 -- we will transform all derived type declarations of the form
4088 -- type T is new R (...) [with ...];
4090 -- subtype S is R (...);
4091 -- type T is new S [with ...];
4093 -- type BT is new R [with ...];
4094 -- subtype T is BT (...);
4096 -- That is, the base derived type is constrained only if it has no
4097 -- discriminants. The reason for doing this is that GNAT's semantic model
4098 -- assumes that a base type with discriminants is unconstrained.
4100 -- Note that, strictly speaking, the above transformation is not always
4101 -- correct. Consider for instance the following exercpt from ACVC b34011a:
4103 -- procedure B34011A is
4104 -- type REC (D : integer := 0) is record
4109 -- type T6 is new Rec;
4110 -- function F return T6;
4115 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
4118 -- The definition of Q6.U is illegal. However transforming Q6.U into
4120 -- type BaseU is new T6;
4121 -- subtype U is BaseU (Q6.F.I)
4123 -- turns U into a legal subtype, which is incorrect. To avoid this problem
4124 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
4125 -- the transformation described above.
4127 -- There is another instance where the above transformation is incorrect.
4131 -- type Base (D : Integer) is tagged null record;
4132 -- procedure P (X : Base);
4134 -- type Der is new Base (2) with null record;
4135 -- procedure P (X : Der);
4138 -- Then the above transformation turns this into
4140 -- type Der_Base is new Base with null record;
4141 -- -- procedure P (X : Base) is implicitly inherited here
4142 -- -- as procedure P (X : Der_Base).
4144 -- subtype Der is Der_Base (2);
4145 -- procedure P (X : Der);
4146 -- -- The overriding of P (X : Der_Base) is illegal since we
4147 -- -- have a parameter conformance problem.
4149 -- To get around this problem, after having semantically processed Der_Base
4150 -- and the rewritten subtype declaration for Der, we copy Der_Base field
4151 -- Discriminant_Constraint from Der so that when parameter conformance is
4152 -- checked when P is overridden, no sematic errors are flagged.
4154 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS.
4156 -- Regardless of the fact that we dealing with a tagged or untagged type
4157 -- we will transform all derived type declarations of the form
4159 -- type R (D1, .., Dn : ...) is [tagged] record ...;
4160 -- type T is new R [with ...];
4162 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
4164 -- The reason for such transformation is that it allows us to implement a
4165 -- very clean form of component inheritance as explained below.
4167 -- Note that this transformation is not achieved by direct tree rewriting
4168 -- and manipulation, but rather by redoing the semantic actions that the
4169 -- above transformation will entail. This is done directly in routine
4170 -- Inherit_Components.
4172 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE.
4174 -- In both tagged and untagged derived types, regular non discriminant
4175 -- components are inherited in the derived type from the parent type. In
4176 -- the absence of discriminants component, inheritance is straightforward
4177 -- as components can simply be copied from the parent.
4178 -- If the parent has discriminants, inheriting components constrained with
4179 -- these discriminants requires caution. Consider the following example:
4181 -- type R (D1, D2 : Positive) is [tagged] record
4182 -- S : String (D1 .. D2);
4185 -- type T1 is new R [with null record];
4186 -- type T2 (X : positive) is new R (1, X) [with null record];
4188 -- As explained in 6. above, T1 is rewritten as
4190 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
4192 -- which makes the treatment for T1 and T2 identical.
4194 -- What we want when inheriting S, is that references to D1 and D2 in R are
4195 -- replaced with references to their correct constraints, ie D1 and D2 in
4196 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
4197 -- with either discriminant references in the derived type or expressions.
4198 -- This replacement is acheived as follows: before inheriting R's
4199 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
4200 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
4201 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
4202 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
4203 -- by String (1 .. X).
4205 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS.
4207 -- We explain here the rules governing private type extensions relevant to
4208 -- type derivation. These rules are explained on the following example:
4210 -- type D [(...)] is new A [(...)] with private; <-- partial view
4211 -- type D [(...)] is new P [(...)] with null record; <-- full view
4213 -- Type A is called the ancestor subtype of the private extension.
4214 -- Type P is the parent type of the full view of the private extension. It
4215 -- must be A or a type derived from A.
4217 -- The rules concerning the discriminants of private type extensions are
4220 -- o If a private extension inherits known discriminants from the ancestor
4221 -- subtype, then the full view shall also inherit its discriminants from
4222 -- the ancestor subtype and the parent subtype of the full view shall be
4223 -- constrained if and only if the ancestor subtype is constrained.
4225 -- o If a partial view has unknown discriminants, then the full view may
4226 -- define a definite or an indefinite subtype, with or without
4229 -- o If a partial view has neither known nor unknown discriminants, then
4230 -- the full view shall define a definite subtype.
4232 -- o If the ancestor subtype of a private extension has constrained
4233 -- discrimiants, then the parent subtype of the full view shall impose a
4234 -- statically matching constraint on those discriminants.
4236 -- This means that only the following forms of private extensions are
4239 -- type D is new A with private; <-- partial view
4240 -- type D is new P with null record; <-- full view
4242 -- If A has no discriminants than P has no discriminants, otherwise P must
4243 -- inherit A's discriminants.
4245 -- type D is new A (...) with private; <-- partial view
4246 -- type D is new P (:::) with null record; <-- full view
4248 -- P must inherit A's discriminants and (...) and (:::) must statically
4251 -- subtype A is R (...);
4252 -- type D is new A with private; <-- partial view
4253 -- type D is new P with null record; <-- full view
4255 -- P must have inherited R's discriminants and must be derived from A or
4256 -- any of its subtypes.
4258 -- type D (..) is new A with private; <-- partial view
4259 -- type D (..) is new P [(:::)] with null record; <-- full view
4261 -- No specific constraints on P's discriminants or constraint (:::).
4262 -- Note that A can be unconstrained, but the parent subtype P must either
4263 -- be constrained or (:::) must be present.
4265 -- type D (..) is new A [(...)] with private; <-- partial view
4266 -- type D (..) is new P [(:::)] with null record; <-- full view
4268 -- P's constraints on A's discriminants must statically match those
4269 -- imposed by (...).
4271 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS.
4273 -- The full view of a private extension is handled exactly as described
4274 -- above. The model chose for the private view of a private extension
4275 -- is the same for what concerns discriminants (ie they receive the same
4276 -- treatment as in the tagged case). However, the private view of the
4277 -- private extension always inherits the components of the parent base,
4278 -- without replacing any discriminant reference. Strictly speacking this
4279 -- is incorrect. However, Gigi never uses this view to generate code so
4280 -- this is a purely semantic issue. In theory, a set of transformations
4281 -- similar to those given in 5. and 6. above could be applied to private
4282 -- views of private extensions to have the same model of component
4283 -- inheritance as for non private extensions. However, this is not done
4284 -- because it would further complicate private type processing.
4285 -- Semantically speaking, this leaves us in an uncomfortable
4286 -- situation. As an example consider:
4289 -- type R (D : integer) is tagged record
4290 -- S : String (1 .. D);
4292 -- procedure P (X : R);
4293 -- type T is new R (1) with private;
4295 -- type T is new R (1) with null record;
4298 -- This is transformed into:
4301 -- type R (D : integer) is tagged record
4302 -- S : String (1 .. D);
4304 -- procedure P (X : R);
4305 -- type T is new R (1) with private;
4307 -- type BaseT is new R with null record;
4308 -- subtype T is BaseT (1);
4311 -- (strictly speaking the above is incorrect Ada).
4313 -- From the semantic standpoint the private view of private extension T
4314 -- should be flagged as constrained since one can clearly have
4318 -- in a unit withing Pack. However, when deriving subprograms for the
4319 -- private view of private extension T, T must be seen as unconstrained
4320 -- since T has discriminants (this is a constraint of the current
4321 -- subprogram derivation model). Thus, when processing the private view of
4322 -- a private extension such as T, we first mark T as unconstrained, we
4323 -- process it, we perform program derivation and just before returning from
4324 -- Build_Derived_Record_Type we mark T as constrained.
4325 -- ??? Are there are other unconfortable cases that we will have to
4328 -- 10. RECORD_TYPE_WITH_PRIVATE complications.
4330 -- Types that are derived from a visible record type and have a private
4331 -- extension present other peculiarities. They behave mostly like private
4332 -- types, but if they have primitive operations defined, these will not
4333 -- have the proper signatures for further inheritance, because other
4334 -- primitive operations will use the implicit base that we define for
4335 -- private derivations below. This affect subprogram inheritance (see
4336 -- Derive_Subprograms for details). We also derive the implicit base from
4337 -- the base type of the full view, so that the implicit base is a record
4338 -- type and not another private type, This avoids infinite loops.
4340 procedure Build_Derived_Record_Type
4342 Parent_Type
: Entity_Id
;
4343 Derived_Type
: Entity_Id
;
4344 Derive_Subps
: Boolean := True)
4346 Loc
: constant Source_Ptr
:= Sloc
(N
);
4347 Parent_Base
: Entity_Id
;
4352 Discrim
: Entity_Id
;
4353 Last_Discrim
: Entity_Id
;
4355 Discs
: Elist_Id
:= New_Elmt_List
;
4356 -- An empty Discs list means that there were no constraints in the
4357 -- subtype indication or that there was an error processing it.
4359 Assoc_List
: Elist_Id
;
4360 New_Discrs
: Elist_Id
;
4362 New_Base
: Entity_Id
;
4364 New_Indic
: Node_Id
;
4366 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
4367 Discriminant_Specs
: constant Boolean
4368 := Present
(Discriminant_Specifications
(N
));
4369 Private_Extension
: constant Boolean
4370 := (Nkind
(N
) = N_Private_Extension_Declaration
);
4372 Constraint_Present
: Boolean;
4373 Inherit_Discrims
: Boolean := False;
4375 Save_Etype
: Entity_Id
;
4376 Save_Discr_Constr
: Elist_Id
;
4377 Save_Next_Entity
: Entity_Id
;
4380 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
4381 and then Present
(Full_View
(Parent_Type
))
4382 and then Has_Discriminants
(Parent_Type
)
4384 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
4386 Parent_Base
:= Base_Type
(Parent_Type
);
4389 -- Before we start the previously documented transformations, here is
4390 -- a little fix for size and alignment of tagged types. Normally when
4391 -- we derive type D from type P, we copy the size and alignment of P
4392 -- as the default for D, and in the absence of explicit representation
4393 -- clauses for D, the size and alignment are indeed the same as the
4396 -- But this is wrong for tagged types, since fields may be added,
4397 -- and the default size may need to be larger, and the default
4398 -- alignment may need to be larger.
4400 -- We therefore reset the size and alignment fields in the tagged
4401 -- case. Note that the size and alignment will in any case be at
4402 -- least as large as the parent type (since the derived type has
4403 -- a copy of the parent type in the _parent field)
4406 Init_Size_Align
(Derived_Type
);
4409 -- STEP 0a: figure out what kind of derived type declaration we have.
4411 if Private_Extension
then
4413 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
4416 Type_Def
:= Type_Definition
(N
);
4418 -- Ekind (Parent_Base) in not necessarily E_Record_Type since
4419 -- Parent_Base can be a private type or private extension. However,
4420 -- for tagged types with an extension the newly added fields are
4421 -- visible and hence the Derived_Type is always an E_Record_Type.
4422 -- (except that the parent may have its own private fields).
4423 -- For untagged types we preserve the Ekind of the Parent_Base.
4425 if Present
(Record_Extension_Part
(Type_Def
)) then
4426 Set_Ekind
(Derived_Type
, E_Record_Type
);
4428 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
4432 -- Indic can either be an N_Identifier if the subtype indication
4433 -- contains no constraint or an N_Subtype_Indication if the subtype
4434 -- indication has a constraint.
4436 Indic
:= Subtype_Indication
(Type_Def
);
4437 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
4439 if Constraint_Present
then
4440 if not Has_Discriminants
(Parent_Base
) then
4442 ("invalid constraint: type has no discriminant",
4443 Constraint
(Indic
));
4445 Constraint_Present
:= False;
4446 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
4448 elsif Is_Constrained
(Parent_Type
) then
4450 ("invalid constraint: parent type is already constrained",
4451 Constraint
(Indic
));
4453 Constraint_Present
:= False;
4454 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
4458 -- STEP 0b: If needed, apply transformation given in point 5. above.
4460 if not Private_Extension
4461 and then Has_Discriminants
(Parent_Type
)
4462 and then not Discriminant_Specs
4463 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
4465 -- First, we must analyze the constraint (see comment in point 5.).
4467 if Constraint_Present
then
4468 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
4470 if Has_Discriminants
(Derived_Type
)
4471 and then Has_Private_Declaration
(Derived_Type
)
4472 and then Present
(Discriminant_Constraint
(Derived_Type
))
4474 -- Verify that constraints of the full view conform to those
4475 -- given in partial view.
4481 C1
:= First_Elmt
(New_Discrs
);
4482 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
4484 while Present
(C1
) and then Present
(C2
) loop
4486 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
4489 "constraint not conformant to previous declaration",
4499 -- Insert and analyze the declaration for the unconstrained base type
4501 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
4504 Make_Full_Type_Declaration
(Loc
,
4505 Defining_Identifier
=> New_Base
,
4507 Make_Derived_Type_Definition
(Loc
,
4508 Abstract_Present
=> Abstract_Present
(Type_Def
),
4509 Subtype_Indication
=>
4510 New_Occurrence_Of
(Parent_Base
, Loc
),
4511 Record_Extension_Part
=>
4512 Relocate_Node
(Record_Extension_Part
(Type_Def
))));
4514 Set_Parent
(New_Decl
, Parent
(N
));
4515 Mark_Rewrite_Insertion
(New_Decl
);
4516 Insert_Before
(N
, New_Decl
);
4518 -- Note that this call passes False for the Derive_Subps
4519 -- parameter because subprogram derivation is deferred until
4520 -- after creating the subtype (see below).
4523 (New_Decl
, Parent_Base
, New_Base
,
4524 Is_Completion
=> True, Derive_Subps
=> False);
4526 -- ??? This needs re-examination to determine whether the
4527 -- above call can simply be replaced by a call to Analyze.
4529 Set_Analyzed
(New_Decl
);
4531 -- Insert and analyze the declaration for the constrained subtype
4533 if Constraint_Present
then
4535 Make_Subtype_Indication
(Loc
,
4536 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
4537 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
4542 Constr_List
: List_Id
:= New_List
;
4546 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
4547 while Present
(C
) loop
4550 -- It is safe here to call New_Copy_Tree since
4551 -- Force_Evaluation was called on each constraint in
4552 -- Build_Discriminant_Constraints.
4554 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
4560 Make_Subtype_Indication
(Loc
,
4561 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
4563 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
4568 Make_Subtype_Declaration
(Loc
,
4569 Defining_Identifier
=> Derived_Type
,
4570 Subtype_Indication
=> New_Indic
));
4574 -- Derivation of subprograms must be delayed until the
4575 -- full subtype has been established to ensure proper
4576 -- overriding of subprograms inherited by full types.
4577 -- If the derivations occurred as part of the call to
4578 -- Build_Derived_Type above, then the check for type
4579 -- conformance would fail because earlier primitive
4580 -- subprograms could still refer to the full type prior
4581 -- the change to the new subtype and hence wouldn't
4582 -- match the new base type created here.
4584 Derive_Subprograms
(Parent_Type
, Derived_Type
);
4586 -- For tagged types the Discriminant_Constraint of the new base itype
4587 -- is inherited from the first subtype so that no subtype conformance
4588 -- problem arise when the first subtype overrides primitive
4589 -- operations inherited by the implicit base type.
4592 Set_Discriminant_Constraint
4593 (New_Base
, Discriminant_Constraint
(Derived_Type
));
4599 -- If we get here Derived_Type will have no discriminants or it will be
4600 -- a discriminated unconstrained base type.
4602 -- STEP 1a: perform preliminary actions/checks for derived tagged types
4605 -- The parent type is frozen for non-private extensions (RM 13.14(7))
4607 if not Private_Extension
then
4608 Freeze_Before
(N
, Parent_Type
);
4611 if Type_Access_Level
(Derived_Type
) /= Type_Access_Level
(Parent_Type
)
4612 and then not Is_Generic_Type
(Derived_Type
)
4614 if Is_Controlled
(Parent_Type
) then
4616 ("controlled type must be declared at the library level",
4620 ("type extension at deeper accessibility level than parent",
4626 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
4630 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
4633 ("parent type must not be outside generic body",
4640 -- STEP 1b : preliminary cleanup of the full view of private types
4642 -- If the type is already marked as having discriminants, then it's the
4643 -- completion of a private type or private extension and we need to
4644 -- retain the discriminants from the partial view if the current
4645 -- declaration has Discriminant_Specifications so that we can verify
4646 -- conformance. However, we must remove any existing components that
4647 -- were inherited from the parent (and attached in Copy_Private_To_Full)
4648 -- because the full type inherits all appropriate components anyway, and
4649 -- we don't want the partial view's components interfering.
4651 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
4652 Discrim
:= First_Discriminant
(Derived_Type
);
4654 Last_Discrim
:= Discrim
;
4655 Next_Discriminant
(Discrim
);
4656 exit when No
(Discrim
);
4659 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
4661 -- In all other cases wipe out the list of inherited components (even
4662 -- inherited discriminants), it will be properly rebuilt here.
4665 Set_First_Entity
(Derived_Type
, Empty
);
4666 Set_Last_Entity
(Derived_Type
, Empty
);
4669 -- STEP 1c: Initialize some flags for the Derived_Type
4671 -- The following flags must be initialized here so that
4672 -- Process_Discriminants can check that discriminants of tagged types
4673 -- do not have a default initial value and that access discriminants
4674 -- are only specified for limited records. For completeness, these
4675 -- flags are also initialized along with all the other flags below.
4677 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
4678 Set_Is_Limited_Record
(Derived_Type
, Is_Limited_Record
(Parent_Type
));
4680 -- STEP 2a: process discriminants of derived type if any.
4682 New_Scope
(Derived_Type
);
4684 if Discriminant_Specs
then
4685 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
4687 -- The following call initializes fields Has_Discriminants and
4688 -- Discriminant_Constraint, unless we are processing the completion
4689 -- of a private type declaration.
4691 Check_Or_Process_Discriminants
(N
, Derived_Type
);
4693 -- For non-tagged types the constraint on the Parent_Type must be
4694 -- present and is used to rename the discriminants.
4696 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
4697 Error_Msg_N
("untagged parent must have discriminants", Indic
);
4699 elsif not Is_Tagged
and then not Constraint_Present
then
4701 ("discriminant constraint needed for derived untagged records",
4704 -- Otherwise the parent subtype must be constrained unless we have a
4705 -- private extension.
4707 elsif not Constraint_Present
4708 and then not Private_Extension
4709 and then not Is_Constrained
(Parent_Type
)
4712 ("unconstrained type not allowed in this context", Indic
);
4714 elsif Constraint_Present
then
4715 -- The following call sets the field Corresponding_Discriminant
4716 -- for the discriminants in the Derived_Type.
4718 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
4720 -- For untagged types all new discriminants must rename
4721 -- discriminants in the parent. For private extensions new
4722 -- discriminants cannot rename old ones (implied by [7.3(13)]).
4724 Discrim
:= First_Discriminant
(Derived_Type
);
4726 while Present
(Discrim
) loop
4728 and then not Present
(Corresponding_Discriminant
(Discrim
))
4731 ("new discriminants must constrain old ones", Discrim
);
4733 elsif Private_Extension
4734 and then Present
(Corresponding_Discriminant
(Discrim
))
4737 ("Only static constraints allowed for parent"
4738 & " discriminants in the partial view", Indic
);
4743 -- If a new discriminant is used in the constraint,
4744 -- then its subtype must be statically compatible
4745 -- with the parent discriminant's subtype (3.7(15)).
4747 if Present
(Corresponding_Discriminant
(Discrim
))
4749 not Subtypes_Statically_Compatible
4751 Etype
(Corresponding_Discriminant
(Discrim
)))
4754 ("subtype must be compatible with parent discriminant",
4758 Next_Discriminant
(Discrim
);
4762 -- STEP 2b: No new discriminants, inherit discriminants if any
4765 if Private_Extension
then
4766 Set_Has_Unknown_Discriminants
4767 (Derived_Type
, Has_Unknown_Discriminants
(Parent_Type
)
4768 or else Unknown_Discriminants_Present
(N
));
4770 Set_Has_Unknown_Discriminants
4771 (Derived_Type
, Has_Unknown_Discriminants
(Parent_Type
));
4774 if not Has_Unknown_Discriminants
(Derived_Type
)
4775 and then Has_Discriminants
(Parent_Type
)
4777 Inherit_Discrims
:= True;
4778 Set_Has_Discriminants
4779 (Derived_Type
, True);
4780 Set_Discriminant_Constraint
4781 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
4784 -- The following test is true for private types (remember
4785 -- transformation 5. is not applied to those) and in an error
4788 if Constraint_Present
then
4789 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
4792 -- For now mark a new derived type as cosntrained only if it has no
4793 -- discriminants. At the end of Build_Derived_Record_Type we properly
4794 -- set this flag in the case of private extensions. See comments in
4795 -- point 9. just before body of Build_Derived_Record_Type.
4799 not (Inherit_Discrims
4800 or else Has_Unknown_Discriminants
(Derived_Type
)));
4803 -- STEP 3: initialize fields of derived type.
4805 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
4806 Set_Girder_Constraint
(Derived_Type
, No_Elist
);
4808 -- Fields inherited from the Parent_Type
4811 (Derived_Type
, Einfo
.Discard_Names
(Parent_Type
));
4812 Set_Has_Specified_Layout
4813 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
4814 Set_Is_Limited_Composite
4815 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
4816 Set_Is_Limited_Record
4817 (Derived_Type
, Is_Limited_Record
(Parent_Type
));
4818 Set_Is_Private_Composite
4819 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
4821 -- Fields inherited from the Parent_Base
4823 Set_Has_Controlled_Component
4824 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
4825 Set_Has_Non_Standard_Rep
4826 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
4827 Set_Has_Primitive_Operations
4828 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
4830 -- Direct controlled types do not inherit the Finalize_Storage_Only
4833 if not Is_Controlled
(Parent_Type
) then
4834 Set_Finalize_Storage_Only
(Derived_Type
,
4835 Finalize_Storage_Only
(Parent_Type
));
4838 -- Set fields for private derived types.
4840 if Is_Private_Type
(Derived_Type
) then
4841 Set_Depends_On_Private
(Derived_Type
, True);
4842 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
4844 -- Inherit fields from non private record types. If this is the
4845 -- completion of a derivation from a private type, the parent itself
4846 -- is private, and the attributes come from its full view, which must
4850 if Is_Private_Type
(Parent_Base
)
4851 and then not Is_Record_Type
(Parent_Base
)
4853 Set_Component_Alignment
4854 (Derived_Type
, Component_Alignment
(Full_View
(Parent_Base
)));
4856 (Derived_Type
, C_Pass_By_Copy
(Full_View
(Parent_Base
)));
4858 Set_Component_Alignment
4859 (Derived_Type
, Component_Alignment
(Parent_Base
));
4862 (Derived_Type
, C_Pass_By_Copy
(Parent_Base
));
4866 -- Set fields for tagged types.
4869 Set_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
4871 -- All tagged types defined in Ada.Finalization are controlled
4873 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
4874 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
4875 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
4877 Set_Is_Controlled
(Derived_Type
);
4879 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Base
));
4882 Make_Class_Wide_Type
(Derived_Type
);
4883 Set_Is_Abstract
(Derived_Type
, Abstract_Present
(Type_Def
));
4885 if Has_Discriminants
(Derived_Type
)
4886 and then Constraint_Present
4888 Set_Girder_Constraint
4889 (Derived_Type
, Expand_To_Girder_Constraint
(Parent_Base
, Discs
));
4893 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Base
));
4894 Set_Has_Non_Standard_Rep
4895 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
4898 -- STEP 4: Inherit components from the parent base and constrain them.
4899 -- Apply the second transformation described in point 6. above.
4901 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
4902 or else not Has_Discriminants
(Parent_Type
)
4903 or else not Is_Constrained
(Parent_Type
)
4907 Constrs
:= Discriminant_Constraint
(Parent_Type
);
4910 Assoc_List
:= Inherit_Components
(N
,
4911 Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
4913 -- STEP 5a: Copy the parent record declaration for untagged types
4915 if not Is_Tagged
then
4917 -- Discriminant_Constraint (Derived_Type) has been properly
4918 -- constructed. Save it and temporarily set it to Empty because we do
4919 -- not want the call to New_Copy_Tree below to mess this list.
4921 if Has_Discriminants
(Derived_Type
) then
4922 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
4923 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
4925 Save_Discr_Constr
:= No_Elist
;
4928 -- Save the Etype field of Derived_Type. It is correctly set now, but
4929 -- the call to New_Copy tree may remap it to point to itself, which
4930 -- is not what we want. Ditto for the Next_Entity field.
4932 Save_Etype
:= Etype
(Derived_Type
);
4933 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
4935 -- Assoc_List maps all girder discriminants in the Parent_Base to
4936 -- girder discriminants in the Derived_Type. It is fundamental that
4937 -- no types or itypes with discriminants other than the girder
4938 -- discriminants appear in the entities declared inside
4939 -- Derived_Type. Gigi won't like it.
4943 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
4945 -- Restore the fields saved prior to the New_Copy_Tree call
4946 -- and compute the girder constraint.
4948 Set_Etype
(Derived_Type
, Save_Etype
);
4949 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
4951 if Has_Discriminants
(Derived_Type
) then
4952 Set_Discriminant_Constraint
4953 (Derived_Type
, Save_Discr_Constr
);
4954 Set_Girder_Constraint
4955 (Derived_Type
, Expand_To_Girder_Constraint
(Parent_Base
, Discs
));
4958 -- Insert the new derived type declaration
4960 Rewrite
(N
, New_Decl
);
4962 -- STEP 5b: Complete the processing for record extensions in generics
4964 -- There is no completion for record extensions declared in the
4965 -- parameter part of a generic, so we need to complete processing for
4966 -- these generic record extensions here. The call to
4967 -- Record_Type_Definition will change the Ekind of the components
4968 -- from E_Void to E_Component.
4970 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
4971 Record_Type_Definition
(Empty
, Derived_Type
);
4973 -- STEP 5c: Process the record extension for non private tagged types.
4975 elsif not Private_Extension
then
4976 -- Add the _parent field in the derived type.
4978 Expand_Derived_Record
(Derived_Type
, Type_Def
);
4980 -- Analyze the record extension
4982 Record_Type_Definition
4983 (Record_Extension_Part
(Type_Def
), Derived_Type
);
4988 if Etype
(Derived_Type
) = Any_Type
then
4992 -- Set delayed freeze and then derive subprograms, we need to do
4993 -- this in this order so that derived subprograms inherit the
4994 -- derived freeze if necessary.
4996 Set_Has_Delayed_Freeze
(Derived_Type
);
4997 if Derive_Subps
then
4998 Derive_Subprograms
(Parent_Type
, Derived_Type
);
5001 -- If we have a private extension which defines a constrained derived
5002 -- type mark as constrained here after we have derived subprograms. See
5003 -- comment on point 9. just above the body of Build_Derived_Record_Type.
5005 if Private_Extension
and then Inherit_Discrims
then
5006 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
5007 Set_Is_Constrained
(Derived_Type
, True);
5008 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
5010 elsif Is_Constrained
(Parent_Type
) then
5012 (Derived_Type
, True);
5013 Set_Discriminant_Constraint
5014 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
5018 end Build_Derived_Record_Type
;
5020 ------------------------
5021 -- Build_Derived_Type --
5022 ------------------------
5024 procedure Build_Derived_Type
5026 Parent_Type
: Entity_Id
;
5027 Derived_Type
: Entity_Id
;
5028 Is_Completion
: Boolean;
5029 Derive_Subps
: Boolean := True)
5031 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5034 -- Set common attributes
5036 Set_Scope
(Derived_Type
, Current_Scope
);
5038 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
5039 Set_Etype
(Derived_Type
, Parent_Base
);
5040 Set_Has_Task
(Derived_Type
, Has_Task
(Parent_Base
));
5042 Set_Size_Info
(Derived_Type
, Parent_Type
);
5043 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
5044 Set_Convention
(Derived_Type
, Convention
(Parent_Type
));
5045 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
5046 Set_First_Rep_Item
(Derived_Type
, First_Rep_Item
(Parent_Type
));
5048 case Ekind
(Parent_Type
) is
5049 when Numeric_Kind
=>
5050 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
5053 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
5057 | Class_Wide_Kind
=>
5058 Build_Derived_Record_Type
5059 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
5062 when Enumeration_Kind
=>
5063 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
5066 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
5068 when Incomplete_Or_Private_Kind
=>
5069 Build_Derived_Private_Type
5070 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
5072 -- For discriminated types, the derivation includes deriving
5073 -- primitive operations. For others it is done below.
5075 if Is_Tagged_Type
(Parent_Type
)
5076 or else Has_Discriminants
(Parent_Type
)
5077 or else (Present
(Full_View
(Parent_Type
))
5078 and then Has_Discriminants
(Full_View
(Parent_Type
)))
5083 when Concurrent_Kind
=>
5084 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
5087 raise Program_Error
;
5090 if Etype
(Derived_Type
) = Any_Type
then
5094 -- Set delayed freeze and then derive subprograms, we need to do
5095 -- this in this order so that derived subprograms inherit the
5096 -- derived freeze if necessary.
5098 Set_Has_Delayed_Freeze
(Derived_Type
);
5099 if Derive_Subps
then
5100 Derive_Subprograms
(Parent_Type
, Derived_Type
);
5103 Set_Has_Primitive_Operations
5104 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
5105 end Build_Derived_Type
;
5107 -----------------------
5108 -- Build_Discriminal --
5109 -----------------------
5111 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
5112 D_Minal
: Entity_Id
;
5113 CR_Disc
: Entity_Id
;
5116 -- A discriminal has the same names as the discriminant.
5118 D_Minal
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
5120 Set_Ekind
(D_Minal
, E_In_Parameter
);
5121 Set_Mechanism
(D_Minal
, Default_Mechanism
);
5122 Set_Etype
(D_Minal
, Etype
(Discrim
));
5124 Set_Discriminal
(Discrim
, D_Minal
);
5125 Set_Discriminal_Link
(D_Minal
, Discrim
);
5127 -- For task types, build at once the discriminants of the corresponding
5128 -- record, which are needed if discriminants are used in entry defaults
5129 -- and in family bounds.
5131 if Is_Concurrent_Type
(Current_Scope
)
5132 or else Is_Limited_Type
(Current_Scope
)
5134 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
5136 Set_Ekind
(CR_Disc
, E_In_Parameter
);
5137 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
5138 Set_Etype
(CR_Disc
, Etype
(Discrim
));
5139 Set_CR_Discriminant
(Discrim
, CR_Disc
);
5141 end Build_Discriminal
;
5143 ------------------------------------
5144 -- Build_Discriminant_Constraints --
5145 ------------------------------------
5147 function Build_Discriminant_Constraints
5150 Derived_Def
: Boolean := False)
5153 C
: constant Node_Id
:= Constraint
(Def
);
5154 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
5155 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
5156 -- Saves the expression corresponding to a given discriminant in T.
5158 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
5159 -- Return the Position number within array Discr_Expr of a discriminant
5160 -- D within the discriminant list of the discriminated type T.
5166 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
5170 Disc
:= First_Discriminant
(T
);
5171 for J
in Discr_Expr
'Range loop
5176 Next_Discriminant
(Disc
);
5179 -- Note: Since this function is called on discriminants that are
5180 -- known to belong to the discriminated type, falling through the
5181 -- loop with no match signals an internal compiler error.
5183 raise Program_Error
;
5186 -- Variables local to Build_Discriminant_Constraints
5190 Elist
: Elist_Id
:= New_Elmt_List
;
5198 Discrim_Present
: Boolean := False;
5200 -- Start of processing for Build_Discriminant_Constraints
5203 -- The following loop will process positional associations only.
5204 -- For a positional association, the (single) discriminant is
5205 -- implicitly specified by position, in textual order (RM 3.7.2).
5207 Discr
:= First_Discriminant
(T
);
5208 Constr
:= First
(Constraints
(C
));
5210 for D
in Discr_Expr
'Range loop
5211 exit when Nkind
(Constr
) = N_Discriminant_Association
;
5214 Error_Msg_N
("too few discriminants given in constraint", C
);
5215 return New_Elmt_List
;
5217 elsif Nkind
(Constr
) = N_Range
5218 or else (Nkind
(Constr
) = N_Attribute_Reference
5220 Attribute_Name
(Constr
) = Name_Range
)
5223 ("a range is not a valid discriminant constraint", Constr
);
5224 Discr_Expr
(D
) := Error
;
5227 Analyze_And_Resolve
(Constr
, Base_Type
(Etype
(Discr
)));
5228 Discr_Expr
(D
) := Constr
;
5231 Next_Discriminant
(Discr
);
5235 if No
(Discr
) and then Present
(Constr
) then
5236 Error_Msg_N
("too many discriminants given in constraint", Constr
);
5237 return New_Elmt_List
;
5240 -- Named associations can be given in any order, but if both positional
5241 -- and named associations are used in the same discriminant constraint,
5242 -- then positional associations must occur first, at their normal
5243 -- position. Hence once a named association is used, the rest of the
5244 -- discriminant constraint must use only named associations.
5246 while Present
(Constr
) loop
5248 -- Positional association forbidden after a named association.
5250 if Nkind
(Constr
) /= N_Discriminant_Association
then
5251 Error_Msg_N
("positional association follows named one", Constr
);
5252 return New_Elmt_List
;
5254 -- Otherwise it is a named association
5257 -- E records the type of the discriminants in the named
5258 -- association. All the discriminants specified in the same name
5259 -- association must have the same type.
5263 -- Search the list of discriminants in T to see if the simple name
5264 -- given in the constraint matches any of them.
5266 Id
:= First
(Selector_Names
(Constr
));
5267 while Present
(Id
) loop
5270 -- If Original_Discriminant is present, we are processing a
5271 -- generic instantiation and this is an instance node. We need
5272 -- to find the name of the corresponding discriminant in the
5273 -- actual record type T and not the name of the discriminant in
5274 -- the generic formal. Example:
5277 -- type G (D : int) is private;
5279 -- subtype W is G (D => 1);
5281 -- type Rec (X : int) is record ... end record;
5282 -- package Q is new P (G => Rec);
5284 -- At the point of the instantiation, formal type G is Rec
5285 -- and therefore when reanalyzing "subtype W is G (D => 1);"
5286 -- which really looks like "subtype W is Rec (D => 1);" at
5287 -- the point of instantiation, we want to find the discriminant
5288 -- that corresponds to D in Rec, ie X.
5290 if Present
(Original_Discriminant
(Id
)) then
5291 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
5295 Discr
:= First_Discriminant
(T
);
5296 while Present
(Discr
) loop
5297 if Chars
(Discr
) = Chars
(Id
) then
5302 Next_Discriminant
(Discr
);
5306 Error_Msg_N
("& does not match any discriminant", Id
);
5307 return New_Elmt_List
;
5309 -- The following is only useful for the benefit of generic
5310 -- instances but it does not interfere with other
5311 -- processing for the non-generic case so we do it in all
5312 -- cases (for generics this statement is executed when
5313 -- processing the generic definition, see comment at the
5314 -- begining of this if statement).
5317 Set_Original_Discriminant
(Id
, Discr
);
5321 Position
:= Pos_Of_Discr
(T
, Discr
);
5323 if Present
(Discr_Expr
(Position
)) then
5324 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
5327 -- Each discriminant specified in the same named association
5328 -- must be associated with a separate copy of the
5329 -- corresponding expression.
5331 if Present
(Next
(Id
)) then
5332 Expr
:= New_Copy_Tree
(Expression
(Constr
));
5333 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
5335 Expr
:= Expression
(Constr
);
5338 Discr_Expr
(Position
) := Expr
;
5339 Analyze_And_Resolve
(Expr
, Base_Type
(Etype
(Discr
)));
5342 -- A discriminant association with more than one discriminant
5343 -- name is only allowed if the named discriminants are all of
5344 -- the same type (RM 3.7.1(8)).
5347 E
:= Base_Type
(Etype
(Discr
));
5349 elsif Base_Type
(Etype
(Discr
)) /= E
then
5351 ("all discriminants in an association " &
5352 "must have the same type", Id
);
5362 -- A discriminant constraint must provide exactly one value for each
5363 -- discriminant of the type (RM 3.7.1(8)).
5365 for J
in Discr_Expr
'Range loop
5366 if No
(Discr_Expr
(J
)) then
5367 Error_Msg_N
("too few discriminants given in constraint", C
);
5368 return New_Elmt_List
;
5372 -- Determine if there are discriminant expressions in the constraint.
5374 for J
in Discr_Expr
'Range loop
5375 if Denotes_Discriminant
(Discr_Expr
(J
)) then
5376 Discrim_Present
:= True;
5380 -- Build an element list consisting of the expressions given in the
5381 -- discriminant constraint and apply the appropriate range
5382 -- checks. The list is constructed after resolving any named
5383 -- discriminant associations and therefore the expressions appear in
5384 -- the textual order of the discriminants.
5386 Discr
:= First_Discriminant
(T
);
5387 for J
in Discr_Expr
'Range loop
5388 if Discr_Expr
(J
) /= Error
then
5390 Append_Elmt
(Discr_Expr
(J
), Elist
);
5392 -- If any of the discriminant constraints is given by a
5393 -- discriminant and we are in a derived type declaration we
5394 -- have a discriminant renaming. Establish link between new
5395 -- and old discriminant.
5397 if Denotes_Discriminant
(Discr_Expr
(J
)) then
5399 Set_Corresponding_Discriminant
5400 (Entity
(Discr_Expr
(J
)), Discr
);
5403 -- Force the evaluation of non-discriminant expressions.
5404 -- If we have found a discriminant in the constraint 3.4(26)
5405 -- and 3.8(18) demand that no range checks are performed are
5406 -- after evaluation. In all other cases perform a range check.
5409 if not Discrim_Present
then
5410 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
5413 Force_Evaluation
(Discr_Expr
(J
));
5416 -- Check that the designated type of an access discriminant's
5417 -- expression is not a class-wide type unless the discriminant's
5418 -- designated type is also class-wide.
5420 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
5421 and then not Is_Class_Wide_Type
5422 (Designated_Type
(Etype
(Discr
)))
5423 and then Etype
(Discr_Expr
(J
)) /= Any_Type
5424 and then Is_Class_Wide_Type
5425 (Designated_Type
(Etype
(Discr_Expr
(J
))))
5427 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
5431 Next_Discriminant
(Discr
);
5435 end Build_Discriminant_Constraints
;
5437 ---------------------------------
5438 -- Build_Discriminated_Subtype --
5439 ---------------------------------
5441 procedure Build_Discriminated_Subtype
5445 Related_Nod
: Node_Id
;
5446 For_Access
: Boolean := False)
5448 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
5449 Constrained
: constant Boolean
5450 := (Has_Discrs
and then not Is_Empty_Elmt_List
(Elist
))
5451 or else Is_Constrained
(T
);
5454 if Ekind
(T
) = E_Record_Type
then
5456 Set_Ekind
(Def_Id
, E_Private_Subtype
);
5457 Set_Is_For_Access_Subtype
(Def_Id
, True);
5459 Set_Ekind
(Def_Id
, E_Record_Subtype
);
5462 elsif Ekind
(T
) = E_Task_Type
then
5463 Set_Ekind
(Def_Id
, E_Task_Subtype
);
5465 elsif Ekind
(T
) = E_Protected_Type
then
5466 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
5468 elsif Is_Private_Type
(T
) then
5469 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
5471 elsif Is_Class_Wide_Type
(T
) then
5472 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
5475 -- Incomplete type. Attach subtype to list of dependents, to be
5476 -- completed with full view of parent type.
5478 Set_Ekind
(Def_Id
, Ekind
(T
));
5479 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
5482 Set_Etype
(Def_Id
, T
);
5483 Init_Size_Align
(Def_Id
);
5484 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
5485 Set_Is_Constrained
(Def_Id
, Constrained
);
5487 Set_First_Entity
(Def_Id
, First_Entity
(T
));
5488 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
5489 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
5491 if Is_Tagged_Type
(T
) then
5492 Set_Is_Tagged_Type
(Def_Id
);
5493 Make_Class_Wide_Type
(Def_Id
);
5496 Set_Girder_Constraint
(Def_Id
, No_Elist
);
5499 Set_Discriminant_Constraint
(Def_Id
, Elist
);
5500 Set_Girder_Constraint_From_Discriminant_Constraint
(Def_Id
);
5503 if Is_Tagged_Type
(T
) then
5504 Set_Primitive_Operations
(Def_Id
, Primitive_Operations
(T
));
5505 Set_Is_Abstract
(Def_Id
, Is_Abstract
(T
));
5508 -- Subtypes introduced by component declarations do not need to be
5509 -- marked as delayed, and do not get freeze nodes, because the semantics
5510 -- verifies that the parents of the subtypes are frozen before the
5511 -- enclosing record is frozen.
5513 if not Is_Type
(Scope
(Def_Id
)) then
5514 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
5516 if Is_Private_Type
(T
)
5517 and then Present
(Full_View
(T
))
5519 Conditional_Delay
(Def_Id
, Full_View
(T
));
5521 Conditional_Delay
(Def_Id
, T
);
5525 if Is_Record_Type
(T
) then
5526 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
5529 and then not Is_Empty_Elmt_List
(Elist
)
5530 and then not For_Access
5532 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
5533 elsif not For_Access
then
5534 Set_Cloned_Subtype
(Def_Id
, T
);
5538 end Build_Discriminated_Subtype
;
5540 ------------------------
5541 -- Build_Scalar_Bound --
5542 ------------------------
5544 function Build_Scalar_Bound
5551 New_Bound
: Entity_Id
;
5554 -- Note: not clear why this is needed, how can the original bound
5555 -- be unanalyzed at this point? and if it is, what business do we
5556 -- have messing around with it? and why is the base type of the
5557 -- parent type the right type for the resolution. It probably is
5558 -- not! It is OK for the new bound we are creating, but not for
5559 -- the old one??? Still if it never happens, no problem!
5561 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
5563 if Nkind
(Bound
) = N_Integer_Literal
5564 or else Nkind
(Bound
) = N_Real_Literal
5566 New_Bound
:= New_Copy
(Bound
);
5567 Set_Etype
(New_Bound
, Der_T
);
5568 Set_Analyzed
(New_Bound
);
5570 elsif Is_Entity_Name
(Bound
) then
5571 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
5573 -- The following is almost certainly wrong. What business do we have
5574 -- relocating a node (Bound) that is presumably still attached to
5575 -- the tree elsewhere???
5578 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
5581 Set_Etype
(New_Bound
, Der_T
);
5583 end Build_Scalar_Bound
;
5585 --------------------------------
5586 -- Build_Underlying_Full_View --
5587 --------------------------------
5589 procedure Build_Underlying_Full_View
5594 Loc
: constant Source_Ptr
:= Sloc
(N
);
5595 Subt
: constant Entity_Id
:=
5596 Make_Defining_Identifier
5597 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
5605 if Nkind
(N
) = N_Full_Type_Declaration
then
5606 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
5608 -- ??? ??? is this assert right, I assume so otherwise Constr
5609 -- would not be defined below (this used to be an elsif)
5611 else pragma Assert
(Nkind
(N
) = N_Subtype_Declaration
);
5612 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
5615 -- If the constraint has discriminant associations, the discriminant
5616 -- entity is already set, but it denotes a discriminant of the new
5617 -- type, not the original parent, so it must be found anew.
5619 C
:= First
(Constraints
(Constr
));
5621 while Present
(C
) loop
5623 if Nkind
(C
) = N_Discriminant_Association
then
5624 Id
:= First
(Selector_Names
(C
));
5626 while Present
(Id
) loop
5627 Set_Original_Discriminant
(Id
, Empty
);
5635 Indic
:= Make_Subtype_Declaration
(Loc
,
5636 Defining_Identifier
=> Subt
,
5637 Subtype_Indication
=>
5638 Make_Subtype_Indication
(Loc
,
5639 Subtype_Mark
=> New_Reference_To
(Par
, Loc
),
5640 Constraint
=> New_Copy_Tree
(Constr
)));
5642 Insert_Before
(N
, Indic
);
5644 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
5645 end Build_Underlying_Full_View
;
5647 -------------------------------
5648 -- Check_Abstract_Overriding --
5649 -------------------------------
5651 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
5658 Op_List
:= Primitive_Operations
(T
);
5660 -- Loop to check primitive operations
5662 Elmt
:= First_Elmt
(Op_List
);
5663 while Present
(Elmt
) loop
5664 Subp
:= Node
(Elmt
);
5666 -- Special exception, do not complain about failure to
5667 -- override _Input and _Output, since we always provide
5668 -- automatic overridings for these subprograms.
5670 if Is_Abstract
(Subp
)
5671 and then Chars
(Subp
) /= Name_uInput
5672 and then Chars
(Subp
) /= Name_uOutput
5673 and then not Is_Abstract
(T
)
5675 if Present
(Alias
(Subp
)) then
5676 -- Only perform the check for a derived subprogram when
5677 -- the type has an explicit record extension. This avoids
5678 -- incorrectly flagging abstract subprograms for the case
5679 -- of a type without an extension derived from a formal type
5680 -- with a tagged actual (can occur within a private part).
5682 Type_Def
:= Type_Definition
(Parent
(T
));
5683 if Nkind
(Type_Def
) = N_Derived_Type_Definition
5684 and then Present
(Record_Extension_Part
(Type_Def
))
5687 ("type must be declared abstract or & overridden",
5692 ("abstract subprogram not allowed for type&",
5695 ("nonabstract type has abstract subprogram&",
5702 end Check_Abstract_Overriding
;
5704 ------------------------------------------------
5705 -- Check_Access_Discriminant_Requires_Limited --
5706 ------------------------------------------------
5708 procedure Check_Access_Discriminant_Requires_Limited
5713 -- A discriminant_specification for an access discriminant
5714 -- shall appear only in the declaration for a task or protected
5715 -- type, or for a type with the reserved word 'limited' in
5716 -- its definition or in one of its ancestors. (RM 3.7(10))
5718 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
5719 and then not Is_Concurrent_Type
(Current_Scope
)
5720 and then not Is_Concurrent_Record_Type
(Current_Scope
)
5721 and then not Is_Limited_Record
(Current_Scope
)
5722 and then Ekind
(Current_Scope
) /= E_Limited_Private_Type
5725 ("access discriminants allowed only for limited types", Loc
);
5727 end Check_Access_Discriminant_Requires_Limited
;
5729 -----------------------------------
5730 -- Check_Aliased_Component_Types --
5731 -----------------------------------
5733 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
5737 -- ??? Also need to check components of record extensions,
5738 -- but not components of protected types (which are always
5741 if not Is_Limited_Type
(T
) then
5742 if Ekind
(T
) = E_Record_Type
then
5743 C
:= First_Component
(T
);
5744 while Present
(C
) loop
5746 and then Has_Discriminants
(Etype
(C
))
5747 and then not Is_Constrained
(Etype
(C
))
5748 and then not In_Instance
5751 ("aliased component must be constrained ('R'M 3.6(11))",
5758 elsif Ekind
(T
) = E_Array_Type
then
5759 if Has_Aliased_Components
(T
)
5760 and then Has_Discriminants
(Component_Type
(T
))
5761 and then not Is_Constrained
(Component_Type
(T
))
5762 and then not In_Instance
5765 ("aliased component type must be constrained ('R'M 3.6(11))",
5770 end Check_Aliased_Component_Types
;
5772 ----------------------
5773 -- Check_Completion --
5774 ----------------------
5776 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
5779 procedure Post_Error
;
5780 -- Post error message for lack of completion for entity E
5782 procedure Post_Error
is
5784 if not Comes_From_Source
(E
) then
5786 if (Ekind
(E
) = E_Task_Type
5787 or else Ekind
(E
) = E_Protected_Type
)
5789 -- It may be an anonymous protected type created for a
5790 -- single variable. Post error on variable, if present.
5796 Var
:= First_Entity
(Current_Scope
);
5798 while Present
(Var
) loop
5799 exit when Etype
(Var
) = E
5800 and then Comes_From_Source
(Var
);
5805 if Present
(Var
) then
5812 -- If a generated entity has no completion, then either previous
5813 -- semantic errors have disabled the expansion phase, or else
5814 -- we had missing subunits, or else we are compiling without expan-
5815 -- sion, or else something is very wrong.
5817 if not Comes_From_Source
(E
) then
5819 (Errors_Detected
> 0
5820 or else Subunits_Missing
5821 or else not Expander_Active
);
5824 -- Here for source entity
5827 -- Here if no body to post the error message, so we post the error
5828 -- on the declaration that has no completion. This is not really
5829 -- the right place to post it, think about this later ???
5831 if No
(Body_Id
) then
5834 ("missing full declaration for }", Parent
(E
), E
);
5837 ("missing body for &", Parent
(E
), E
);
5840 -- Package body has no completion for a declaration that appears
5841 -- in the corresponding spec. Post error on the body, with a
5842 -- reference to the non-completed declaration.
5845 Error_Msg_Sloc
:= Sloc
(E
);
5849 ("missing full declaration for }!", Body_Id
, E
);
5851 elsif Is_Overloadable
(E
)
5852 and then Current_Entity_In_Scope
(E
) /= E
5854 -- It may be that the completion is mistyped and appears
5855 -- as a distinct overloading of the entity.
5858 Candidate
: Entity_Id
:= Current_Entity_In_Scope
(E
);
5859 Decl
: Node_Id
:= Unit_Declaration_Node
(Candidate
);
5862 if Is_Overloadable
(Candidate
)
5863 and then Ekind
(Candidate
) = Ekind
(E
)
5864 and then Nkind
(Decl
) = N_Subprogram_Body
5865 and then Acts_As_Spec
(Decl
)
5867 Check_Type_Conformant
(Candidate
, E
);
5870 Error_Msg_NE
("missing body for & declared#!",
5875 Error_Msg_NE
("missing body for & declared#!",
5882 -- Start processing for Check_Completion
5885 E
:= First_Entity
(Current_Scope
);
5886 while Present
(E
) loop
5887 if Is_Intrinsic_Subprogram
(E
) then
5890 -- The following situation requires special handling: a child
5891 -- unit that appears in the context clause of the body of its
5894 -- procedure Parent.Child (...);
5896 -- with Parent.Child;
5897 -- package body Parent is
5899 -- Here Parent.Child appears as a local entity, but should not
5900 -- be flagged as requiring completion, because it is a
5901 -- compilation unit.
5903 elsif Ekind
(E
) = E_Function
5904 or else Ekind
(E
) = E_Procedure
5905 or else Ekind
(E
) = E_Generic_Function
5906 or else Ekind
(E
) = E_Generic_Procedure
5908 if not Has_Completion
(E
)
5909 and then not Is_Abstract
(E
)
5910 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
5912 and then Chars
(E
) /= Name_uSize
5917 elsif Is_Entry
(E
) then
5918 if not Has_Completion
(E
) and then
5919 (Ekind
(Scope
(E
)) = E_Protected_Object
5920 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
5925 elsif Is_Package
(E
) then
5926 if Unit_Requires_Body
(E
) then
5927 if not Has_Completion
(E
)
5928 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
5934 elsif not Is_Child_Unit
(E
) then
5935 May_Need_Implicit_Body
(E
);
5938 elsif Ekind
(E
) = E_Incomplete_Type
5939 and then No
(Underlying_Type
(E
))
5943 elsif (Ekind
(E
) = E_Task_Type
or else
5944 Ekind
(E
) = E_Protected_Type
)
5945 and then not Has_Completion
(E
)
5949 elsif Ekind
(E
) = E_Constant
5950 and then Ekind
(Etype
(E
)) = E_Task_Type
5951 and then not Has_Completion
(Etype
(E
))
5955 elsif Ekind
(E
) = E_Protected_Object
5956 and then not Has_Completion
(Etype
(E
))
5960 elsif Ekind
(E
) = E_Record_Type
then
5961 if Is_Tagged_Type
(E
) then
5962 Check_Abstract_Overriding
(E
);
5965 Check_Aliased_Component_Types
(E
);
5967 elsif Ekind
(E
) = E_Array_Type
then
5968 Check_Aliased_Component_Types
(E
);
5974 end Check_Completion
;
5976 ----------------------------
5977 -- Check_Delta_Expression --
5978 ----------------------------
5980 procedure Check_Delta_Expression
(E
: Node_Id
) is
5982 if not (Is_Real_Type
(Etype
(E
))) then
5983 Wrong_Type
(E
, Any_Real
);
5985 elsif not Is_OK_Static_Expression
(E
) then
5986 Error_Msg_N
("non-static expression used for delta value", E
);
5988 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
5989 Error_Msg_N
("delta expression must be positive", E
);
5995 -- If any of above errors occurred, then replace the incorrect
5996 -- expression by the real 0.1, which should prevent further errors.
5999 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
6000 Analyze_And_Resolve
(E
, Standard_Float
);
6002 end Check_Delta_Expression
;
6004 -----------------------------
6005 -- Check_Digits_Expression --
6006 -----------------------------
6008 procedure Check_Digits_Expression
(E
: Node_Id
) is
6010 if not (Is_Integer_Type
(Etype
(E
))) then
6011 Wrong_Type
(E
, Any_Integer
);
6013 elsif not Is_OK_Static_Expression
(E
) then
6014 Error_Msg_N
("non-static expression used for digits value", E
);
6016 elsif Expr_Value
(E
) <= 0 then
6017 Error_Msg_N
("digits value must be greater than zero", E
);
6023 -- If any of above errors occurred, then replace the incorrect
6024 -- expression by the integer 1, which should prevent further errors.
6026 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
6027 Analyze_And_Resolve
(E
, Standard_Integer
);
6029 end Check_Digits_Expression
;
6031 ----------------------
6032 -- Check_Incomplete --
6033 ----------------------
6035 procedure Check_Incomplete
(T
: Entity_Id
) is
6037 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
then
6038 Error_Msg_N
("invalid use of type before its full declaration", T
);
6040 end Check_Incomplete
;
6042 --------------------------
6043 -- Check_Initialization --
6044 --------------------------
6046 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
6048 if (Is_Limited_Type
(T
)
6049 or else Is_Limited_Composite
(T
))
6050 and then not In_Instance
6053 ("cannot initialize entities of limited type", Exp
);
6055 end Check_Initialization
;
6057 ------------------------------------
6058 -- Check_Or_Process_Discriminants --
6059 ------------------------------------
6061 -- If an incomplete or private type declaration was already given for
6062 -- the type, the discriminants may have already been processed if they
6063 -- were present on the incomplete declaration. In this case a full
6064 -- conformance check is performed otherwise just process them.
6066 procedure Check_Or_Process_Discriminants
(N
: Node_Id
; T
: Entity_Id
) is
6068 if Has_Discriminants
(T
) then
6070 -- Make the discriminants visible to component declarations.
6073 D
: Entity_Id
:= First_Discriminant
(T
);
6077 while Present
(D
) loop
6078 Prev
:= Current_Entity
(D
);
6079 Set_Current_Entity
(D
);
6080 Set_Is_Immediately_Visible
(D
);
6081 Set_Homonym
(D
, Prev
);
6083 -- This restriction gets applied to the full type here; it
6084 -- has already been applied earlier to the partial view
6086 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
6088 Next_Discriminant
(D
);
6092 elsif Present
(Discriminant_Specifications
(N
)) then
6093 Process_Discriminants
(N
);
6095 end Check_Or_Process_Discriminants
;
6097 ----------------------
6098 -- Check_Real_Bound --
6099 ----------------------
6101 procedure Check_Real_Bound
(Bound
: Node_Id
) is
6103 if not Is_Real_Type
(Etype
(Bound
)) then
6105 ("bound in real type definition must be of real type", Bound
);
6107 elsif not Is_OK_Static_Expression
(Bound
) then
6109 ("non-static expression used for real type bound", Bound
);
6116 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
6118 Resolve
(Bound
, Standard_Float
);
6119 end Check_Real_Bound
;
6121 ------------------------------
6122 -- Complete_Private_Subtype --
6123 ------------------------------
6125 procedure Complete_Private_Subtype
6128 Full_Base
: Entity_Id
;
6129 Related_Nod
: Node_Id
)
6131 Save_Next_Entity
: Entity_Id
;
6132 Save_Homonym
: Entity_Id
;
6135 -- Set semantic attributes for (implicit) private subtype completion.
6136 -- If the full type has no discriminants, then it is a copy of the full
6137 -- view of the base. Otherwise, it is a subtype of the base with a
6138 -- possible discriminant constraint. Save and restore the original
6139 -- Next_Entity field of full to ensure that the calls to Copy_Node
6140 -- do not corrupt the entity chain.
6142 -- Note that the type of the full view is the same entity as the
6143 -- type of the partial view. In this fashion, the subtype has
6144 -- access to the correct view of the parent.
6146 Save_Next_Entity
:= Next_Entity
(Full
);
6147 Save_Homonym
:= Homonym
(Priv
);
6149 case Ekind
(Full_Base
) is
6151 when E_Record_Type |
6157 Copy_Node
(Priv
, Full
);
6159 Set_Has_Discriminants
(Full
, Has_Discriminants
(Full_Base
));
6160 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
6161 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
6164 Copy_Node
(Full_Base
, Full
);
6165 Set_Chars
(Full
, Chars
(Priv
));
6166 Conditional_Delay
(Full
, Priv
);
6167 Set_Sloc
(Full
, Sloc
(Priv
));
6171 Set_Next_Entity
(Full
, Save_Next_Entity
);
6172 Set_Homonym
(Full
, Save_Homonym
);
6173 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
6175 -- Set common attributes for all subtypes.
6177 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
6179 -- The Etype of the full view is inconsistent. Gigi needs to see the
6180 -- structural full view, which is what the current scheme gives:
6181 -- the Etype of the full view is the etype of the full base. However,
6182 -- if the full base is a derived type, the full view then looks like
6183 -- a subtype of the parent, not a subtype of the full base. If instead
6186 -- Set_Etype (Full, Full_Base);
6188 -- then we get inconsistencies in the front-end (confusion between
6189 -- views). Several outstanding bugs are related to this.
6191 Set_Is_First_Subtype
(Full
, False);
6192 Set_Scope
(Full
, Scope
(Priv
));
6193 Set_Size_Info
(Full
, Full_Base
);
6194 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
6195 Set_Is_Itype
(Full
);
6197 -- A subtype of a private-type-without-discriminants, whose full-view
6198 -- has discriminants with default expressions, is not constrained!
6200 if not Has_Discriminants
(Priv
) then
6201 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
6204 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
6205 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
6207 -- Freeze the private subtype entity if its parent is delayed,
6208 -- and not already frozen. We skip this processing if the type
6209 -- is an anonymous subtype of a record component, or is the
6210 -- corresponding record of a protected type, since ???
6212 if not Is_Type
(Scope
(Full
)) then
6213 Set_Has_Delayed_Freeze
(Full
,
6214 Has_Delayed_Freeze
(Full_Base
)
6215 and then (not Is_Frozen
(Full_Base
)));
6218 Set_Freeze_Node
(Full
, Empty
);
6219 Set_Is_Frozen
(Full
, False);
6220 Set_Full_View
(Priv
, Full
);
6222 if Has_Discriminants
(Full
) then
6223 Set_Girder_Constraint_From_Discriminant_Constraint
(Full
);
6224 Set_Girder_Constraint
(Priv
, Girder_Constraint
(Full
));
6225 if Has_Unknown_Discriminants
(Full
) then
6226 Set_Discriminant_Constraint
(Full
, No_Elist
);
6230 if Ekind
(Full_Base
) = E_Record_Type
6231 and then Has_Discriminants
(Full_Base
)
6232 and then Has_Discriminants
(Priv
) -- might not, if errors
6233 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
6235 Create_Constrained_Components
6236 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
6238 -- If the full base is itself derived from private, build a congruent
6239 -- subtype of its underlying type, for use by the back end.
6241 elsif Ekind
(Full_Base
) in Private_Kind
6242 and then Is_Derived_Type
(Full_Base
)
6243 and then Has_Discriminants
(Full_Base
)
6245 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
6247 Build_Underlying_Full_View
(Parent
(Priv
), Full
, Etype
(Full_Base
));
6249 elsif Is_Record_Type
(Full_Base
) then
6251 -- Show Full is simply a renaming of Full_Base.
6253 Set_Cloned_Subtype
(Full
, Full_Base
);
6256 -- It is usafe to share to bounds of a scalar type, because the
6257 -- Itype is elaborated on demand, and if a bound is non-static
6258 -- then different orders of elaboration in different units will
6259 -- lead to different external symbols.
6261 if Is_Scalar_Type
(Full_Base
) then
6262 Set_Scalar_Range
(Full
,
6263 Make_Range
(Sloc
(Related_Nod
),
6264 Low_Bound
=> Duplicate_Subexpr
(Type_Low_Bound
(Full_Base
)),
6265 High_Bound
=> Duplicate_Subexpr
(Type_High_Bound
(Full_Base
))));
6268 -- ??? It seems that a lot of fields are missing that should be
6269 -- copied from Full_Base to Full. Here are some that are introduced
6270 -- in a non-disruptive way but a cleanup is necessary.
6272 if Is_Tagged_Type
(Full_Base
) then
6273 Set_Is_Tagged_Type
(Full
);
6274 Set_Primitive_Operations
(Full
, Primitive_Operations
(Full_Base
));
6276 elsif Is_Concurrent_Type
(Full_Base
) then
6278 if Has_Discriminants
(Full
)
6279 and then Present
(Corresponding_Record_Type
(Full_Base
))
6281 Set_Corresponding_Record_Type
(Full
,
6282 Constrain_Corresponding_Record
6283 (Full
, Corresponding_Record_Type
(Full_Base
),
6284 Related_Nod
, Full_Base
));
6287 Set_Corresponding_Record_Type
(Full
,
6288 Corresponding_Record_Type
(Full_Base
));
6292 end Complete_Private_Subtype
;
6294 ----------------------------
6295 -- Constant_Redeclaration --
6296 ----------------------------
6298 procedure Constant_Redeclaration
6303 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
6304 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
6308 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
6309 if Nkind
(Object_Definition
6310 (Parent
(Prev
))) = N_Subtype_Indication
6312 -- Find type of new declaration. The constraints of the two
6313 -- views must match statically, but there is no point in
6314 -- creating an itype for the full view.
6316 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
6317 Find_Type
(Subtype_Mark
(Obj_Def
));
6318 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
6321 Find_Type
(Obj_Def
);
6322 New_T
:= Entity
(Obj_Def
);
6328 -- The full view may impose a constraint, even if the partial
6329 -- view does not, so construct the subtype.
6331 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
6336 -- Current declaration is illegal, diagnosed below in Enter_Name.
6342 -- If previous full declaration exists, or if a homograph is present,
6343 -- let Enter_Name handle it, either with an error, or with the removal
6344 -- of an overridden implicit subprogram.
6346 if Ekind
(Prev
) /= E_Constant
6347 or else Present
(Expression
(Parent
(Prev
)))
6351 -- Verify that types of both declarations match.
6353 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
) then
6354 Error_Msg_Sloc
:= Sloc
(Prev
);
6355 Error_Msg_N
("type does not match declaration#", N
);
6356 Set_Full_View
(Prev
, Id
);
6357 Set_Etype
(Id
, Any_Type
);
6359 -- If so, process the full constant declaration
6362 Set_Full_View
(Prev
, Id
);
6363 Set_Is_Public
(Id
, Is_Public
(Prev
));
6364 Set_Is_Internal
(Id
);
6365 Append_Entity
(Id
, Current_Scope
);
6367 -- Check ALIASED present if present before (RM 7.4(7))
6369 if Is_Aliased
(Prev
)
6370 and then not Aliased_Present
(N
)
6372 Error_Msg_Sloc
:= Sloc
(Prev
);
6373 Error_Msg_N
("ALIASED required (see declaration#)", N
);
6376 -- Check that placement is in private part
6378 if Ekind
(Current_Scope
) = E_Package
6379 and then not In_Private_Part
(Current_Scope
)
6381 Error_Msg_Sloc
:= Sloc
(Prev
);
6382 Error_Msg_N
("full constant for declaration#"
6383 & " must be in private part", N
);
6386 end Constant_Redeclaration
;
6388 ----------------------
6389 -- Constrain_Access --
6390 ----------------------
6392 procedure Constrain_Access
6393 (Def_Id
: in out Entity_Id
;
6395 Related_Nod
: Node_Id
)
6397 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
6398 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
6399 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
6400 Constraint_OK
: Boolean := True;
6403 if Is_Array_Type
(Desig_Type
) then
6404 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
6406 elsif (Is_Record_Type
(Desig_Type
)
6407 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
6408 and then not Is_Constrained
(Desig_Type
)
6410 -- ??? The following code is a temporary kludge to ignore
6411 -- discriminant constraint on access type if
6412 -- it is constraining the current record. Avoid creating the
6413 -- implicit subtype of the record we are currently compiling
6414 -- since right now, we cannot handle these.
6415 -- For now, just return the access type itself.
6417 if Desig_Type
= Current_Scope
6418 and then No
(Def_Id
)
6420 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
6421 Def_Id
:= Entity
(Subtype_Mark
(S
));
6423 -- This call added to ensure that the constraint is
6424 -- analyzed (needed for a B test). Note that we
6425 -- still return early from this procedure to avoid
6426 -- recursive processing. ???
6428 Constrain_Discriminated_Type
6429 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
6434 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
6435 For_Access
=> True);
6437 elsif (Is_Task_Type
(Desig_Type
)
6438 or else Is_Protected_Type
(Desig_Type
))
6439 and then not Is_Constrained
(Desig_Type
)
6441 Constrain_Concurrent
6442 (Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
6445 Error_Msg_N
("invalid constraint on access type", S
);
6446 Desig_Subtype
:= Desig_Type
; -- Ignore invalid constraint.
6447 Constraint_OK
:= False;
6451 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
6453 Set_Ekind
(Def_Id
, E_Access_Subtype
);
6456 if Constraint_OK
then
6457 Set_Etype
(Def_Id
, Base_Type
(T
));
6459 if Is_Private_Type
(Desig_Type
) then
6460 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
6463 Set_Etype
(Def_Id
, Any_Type
);
6466 Set_Size_Info
(Def_Id
, T
);
6467 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
6468 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
6469 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
6470 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
6472 -- Itypes created for constrained record components do not receive
6473 -- a freeze node, they are elaborated when first seen.
6475 if not Is_Record_Type
(Current_Scope
) then
6476 Conditional_Delay
(Def_Id
, T
);
6478 end Constrain_Access
;
6480 ---------------------
6481 -- Constrain_Array --
6482 ---------------------
6484 procedure Constrain_Array
6485 (Def_Id
: in out Entity_Id
;
6487 Related_Nod
: Node_Id
;
6488 Related_Id
: Entity_Id
;
6491 C
: constant Node_Id
:= Constraint
(SI
);
6492 Number_Of_Constraints
: Nat
:= 0;
6495 Constraint_OK
: Boolean := True;
6498 T
:= Entity
(Subtype_Mark
(SI
));
6500 if Ekind
(T
) in Access_Kind
then
6501 T
:= Designated_Type
(T
);
6504 -- If an index constraint follows a subtype mark in a subtype indication
6505 -- then the type or subtype denoted by the subtype mark must not already
6506 -- impose an index constraint. The subtype mark must denote either an
6507 -- unconstrained array type or an access type whose designated type
6508 -- is such an array type... (RM 3.6.1)
6510 if Is_Constrained
(T
) then
6512 ("array type is already constrained", Subtype_Mark
(SI
));
6513 Constraint_OK
:= False;
6516 S
:= First
(Constraints
(C
));
6518 while Present
(S
) loop
6519 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
6523 -- In either case, the index constraint must provide a discrete
6524 -- range for each index of the array type and the type of each
6525 -- discrete range must be the same as that of the corresponding
6526 -- index. (RM 3.6.1)
6528 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
6529 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
6530 Constraint_OK
:= False;
6533 S
:= First
(Constraints
(C
));
6534 Index
:= First_Index
(T
);
6537 -- Apply constraints to each index type
6539 for J
in 1 .. Number_Of_Constraints
loop
6540 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
6550 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
6552 Set_Ekind
(Def_Id
, E_Array_Subtype
);
6555 Set_Size_Info
(Def_Id
, (T
));
6556 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
6557 Set_Etype
(Def_Id
, Base_Type
(T
));
6559 if Constraint_OK
then
6560 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
6563 Set_Component_Type
(Def_Id
, Component_Type
(T
));
6564 Set_Is_Constrained
(Def_Id
, True);
6565 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
6566 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
6568 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
6569 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
6571 -- If the subtype is not that of a record component, build a freeze
6572 -- node if parent still needs one.
6574 -- If the subtype is not that of a record component, make sure
6575 -- that the Depends_On_Private status is set (explanation ???)
6576 -- and also that a conditional delay is set.
6578 if not Is_Type
(Scope
(Def_Id
)) then
6579 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
6580 Conditional_Delay
(Def_Id
, T
);
6583 end Constrain_Array
;
6585 ------------------------------
6586 -- Constrain_Component_Type --
6587 ------------------------------
6589 function Constrain_Component_Type
6590 (Compon_Type
: Entity_Id
;
6591 Constrained_Typ
: Entity_Id
;
6592 Related_Node
: Node_Id
;
6594 Constraints
: Elist_Id
)
6597 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
6599 function Build_Constrained_Array_Type
6600 (Old_Type
: Entity_Id
)
6602 -- If Old_Type is an array type, one of whose indices is
6603 -- constrained by a discriminant, build an Itype whose constraint
6604 -- replaces the discriminant with its value in the constraint.
6606 function Build_Constrained_Discriminated_Type
6607 (Old_Type
: Entity_Id
)
6609 -- Ditto for record components.
6611 function Build_Constrained_Access_Type
6612 (Old_Type
: Entity_Id
)
6614 -- Ditto for access types. Makes use of previous two functions, to
6615 -- constrain designated type.
6617 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
6618 -- T is an array or discriminated type, C is a list of constraints
6619 -- that apply to T. This routine builds the constrained subtype.
6621 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
6622 -- Returns True if Expr is a discriminant.
6624 function Get_Value
(Discrim
: Entity_Id
) return Node_Id
;
6625 -- Find the value of discriminant Discrim in Constraint.
6627 -----------------------------------
6628 -- Build_Constrained_Access_Type --
6629 -----------------------------------
6631 function Build_Constrained_Access_Type
6632 (Old_Type
: Entity_Id
)
6635 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
6637 Desig_Subtype
: Entity_Id
;
6641 -- if the original access type was not embedded in the enclosing
6642 -- type definition, there is no need to produce a new access
6643 -- subtype. In fact every access type with an explicit constraint
6644 -- generates an itype whose scope is the enclosing record.
6646 if not Is_Type
(Scope
(Old_Type
)) then
6649 elsif Is_Array_Type
(Desig_Type
) then
6650 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
6652 elsif Has_Discriminants
(Desig_Type
) then
6654 -- This may be an access type to an enclosing record type for
6655 -- which we are constructing the constrained components. Return
6656 -- the enclosing record subtype. This is not always correct,
6657 -- but avoids infinite recursion. ???
6659 Desig_Subtype
:= Any_Type
;
6661 for J
in reverse 0 .. Scope_Stack
.Last
loop
6662 Scop
:= Scope_Stack
.Table
(J
).Entity
;
6665 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
6667 Desig_Subtype
:= Scop
;
6670 exit when not Is_Type
(Scop
);
6673 if Desig_Subtype
= Any_Type
then
6675 Build_Constrained_Discriminated_Type
(Desig_Type
);
6682 if Desig_Subtype
/= Desig_Type
then
6683 -- The Related_Node better be here or else we won't be able
6684 -- to attach new itypes to a node in the tree.
6686 pragma Assert
(Present
(Related_Node
));
6688 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
6690 Set_Etype
(Itype
, Base_Type
(Old_Type
));
6691 Set_Size_Info
(Itype
, (Old_Type
));
6692 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
6693 Set_Depends_On_Private
(Itype
, Has_Private_Component
6695 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
6698 -- The new itype needs freezing when it depends on a not frozen
6699 -- type and the enclosing subtype needs freezing.
6701 if Has_Delayed_Freeze
(Constrained_Typ
)
6702 and then not Is_Frozen
(Constrained_Typ
)
6704 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
6712 end Build_Constrained_Access_Type
;
6714 ----------------------------------
6715 -- Build_Constrained_Array_Type --
6716 ----------------------------------
6718 function Build_Constrained_Array_Type
6719 (Old_Type
: Entity_Id
)
6724 Old_Index
: Node_Id
;
6725 Range_Node
: Node_Id
;
6726 Constr_List
: List_Id
;
6728 Need_To_Create_Itype
: Boolean := False;
6731 Old_Index
:= First_Index
(Old_Type
);
6732 while Present
(Old_Index
) loop
6733 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
6735 if Is_Discriminant
(Lo_Expr
)
6736 or else Is_Discriminant
(Hi_Expr
)
6738 Need_To_Create_Itype
:= True;
6741 Next_Index
(Old_Index
);
6744 if Need_To_Create_Itype
then
6745 Constr_List
:= New_List
;
6747 Old_Index
:= First_Index
(Old_Type
);
6748 while Present
(Old_Index
) loop
6749 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
6751 if Is_Discriminant
(Lo_Expr
) then
6752 Lo_Expr
:= Get_Value
(Lo_Expr
);
6755 if Is_Discriminant
(Hi_Expr
) then
6756 Hi_Expr
:= Get_Value
(Hi_Expr
);
6761 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
6763 Append
(Range_Node
, To
=> Constr_List
);
6765 Next_Index
(Old_Index
);
6768 return Build_Subtype
(Old_Type
, Constr_List
);
6773 end Build_Constrained_Array_Type
;
6775 ------------------------------------------
6776 -- Build_Constrained_Discriminated_Type --
6777 ------------------------------------------
6779 function Build_Constrained_Discriminated_Type
6780 (Old_Type
: Entity_Id
)
6784 Constr_List
: List_Id
;
6785 Old_Constraint
: Elmt_Id
;
6787 Need_To_Create_Itype
: Boolean := False;
6790 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
6791 while Present
(Old_Constraint
) loop
6792 Expr
:= Node
(Old_Constraint
);
6794 if Is_Discriminant
(Expr
) then
6795 Need_To_Create_Itype
:= True;
6798 Next_Elmt
(Old_Constraint
);
6801 if Need_To_Create_Itype
then
6802 Constr_List
:= New_List
;
6804 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
6805 while Present
(Old_Constraint
) loop
6806 Expr
:= Node
(Old_Constraint
);
6808 if Is_Discriminant
(Expr
) then
6809 Expr
:= Get_Value
(Expr
);
6812 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
6814 Next_Elmt
(Old_Constraint
);
6817 return Build_Subtype
(Old_Type
, Constr_List
);
6822 end Build_Constrained_Discriminated_Type
;
6828 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
6830 Subtyp_Decl
: Node_Id
;
6832 Btyp
: Entity_Id
:= Base_Type
(T
);
6835 -- The Related_Node better be here or else we won't be able
6836 -- to attach new itypes to a node in the tree.
6838 pragma Assert
(Present
(Related_Node
));
6840 -- If the view of the component's type is incomplete or private
6841 -- with unknown discriminants, then the constraint must be applied
6842 -- to the full type.
6844 if Has_Unknown_Discriminants
(Btyp
)
6845 and then Present
(Underlying_Type
(Btyp
))
6847 Btyp
:= Underlying_Type
(Btyp
);
6851 Make_Subtype_Indication
(Loc
,
6852 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
6853 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
6855 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
6858 Make_Subtype_Declaration
(Loc
,
6859 Defining_Identifier
=> Def_Id
,
6860 Subtype_Indication
=> Indic
);
6861 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
6863 -- Itypes must be analyzed with checks off (see itypes.ads).
6865 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
6874 function Get_Value
(Discrim
: Entity_Id
) return Node_Id
is
6875 D
: Entity_Id
:= First_Discriminant
(Typ
);
6876 E
: Elmt_Id
:= First_Elmt
(Constraints
);
6879 while Present
(D
) loop
6881 -- If we are constraining the subtype of a derived tagged type,
6882 -- recover the discriminant of the parent, which appears in
6883 -- the constraint of an inherited component.
6885 if D
= Entity
(Discrim
)
6886 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
6891 Next_Discriminant
(D
);
6895 -- Something is wrong if we did not find the value
6897 raise Program_Error
;
6900 ---------------------
6901 -- Is_Discriminant --
6902 ---------------------
6904 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
6905 Discrim_Scope
: Entity_Id
;
6908 if Denotes_Discriminant
(Expr
) then
6909 Discrim_Scope
:= Scope
(Entity
(Expr
));
6911 -- Either we have a reference to one of Typ's discriminants,
6913 pragma Assert
(Discrim_Scope
= Typ
6915 -- or to the discriminants of the parent type, in the case
6916 -- of a derivation of a tagged type with variants.
6918 or else Discrim_Scope
= Etype
(Typ
)
6919 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
6921 -- or same as above for the case where the discriminants
6922 -- were declared in Typ's private view.
6924 or else (Is_Private_Type
(Discrim_Scope
)
6925 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
6927 -- or else we are deriving from the full view and the
6928 -- discriminant is declared in the private entity.
6930 or else (Is_Private_Type
(Typ
)
6931 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
6933 -- or we have a class-wide type, in which case make sure the
6934 -- discriminant found belongs to the root type.
6936 or else (Is_Class_Wide_Type
(Typ
)
6937 and then Etype
(Typ
) = Discrim_Scope
));
6942 -- In all other cases we have something wrong.
6945 end Is_Discriminant
;
6947 -- Start of processing for Constrain_Component_Type
6950 if Is_Array_Type
(Compon_Type
) then
6951 return Build_Constrained_Array_Type
(Compon_Type
);
6953 elsif Has_Discriminants
(Compon_Type
) then
6954 return Build_Constrained_Discriminated_Type
(Compon_Type
);
6956 elsif Is_Access_Type
(Compon_Type
) then
6957 return Build_Constrained_Access_Type
(Compon_Type
);
6961 end Constrain_Component_Type
;
6963 --------------------------
6964 -- Constrain_Concurrent --
6965 --------------------------
6967 -- For concurrent types, the associated record value type carries the same
6968 -- discriminants, so when we constrain a concurrent type, we must constrain
6969 -- the value type as well.
6971 procedure Constrain_Concurrent
6972 (Def_Id
: in out Entity_Id
;
6974 Related_Nod
: Node_Id
;
6975 Related_Id
: Entity_Id
;
6978 T_Ent
: Entity_Id
:= Entity
(Subtype_Mark
(SI
));
6982 if Ekind
(T_Ent
) in Access_Kind
then
6983 T_Ent
:= Designated_Type
(T_Ent
);
6986 T_Val
:= Corresponding_Record_Type
(T_Ent
);
6988 if Present
(T_Val
) then
6991 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
6994 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
6996 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
6997 Set_Corresponding_Record_Type
(Def_Id
,
6998 Constrain_Corresponding_Record
6999 (Def_Id
, T_Val
, Related_Nod
, Related_Id
));
7002 -- If there is no associated record, expansion is disabled and this
7003 -- is a generic context. Create a subtype in any case, so that
7004 -- semantic analysis can proceed.
7007 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
7010 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
7012 end Constrain_Concurrent
;
7014 ------------------------------------
7015 -- Constrain_Corresponding_Record --
7016 ------------------------------------
7018 function Constrain_Corresponding_Record
7019 (Prot_Subt
: Entity_Id
;
7020 Corr_Rec
: Entity_Id
;
7021 Related_Nod
: Node_Id
;
7022 Related_Id
: Entity_Id
)
7025 T_Sub
: constant Entity_Id
7026 := Create_Itype
(E_Record_Subtype
, Related_Nod
, Related_Id
, 'V');
7029 Set_Etype
(T_Sub
, Corr_Rec
);
7030 Init_Size_Align
(T_Sub
);
7031 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
7032 Set_Is_Constrained
(T_Sub
, True);
7033 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
7034 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
7036 Conditional_Delay
(T_Sub
, Corr_Rec
);
7038 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
7039 Set_Discriminant_Constraint
(T_Sub
,
7040 Discriminant_Constraint
(Prot_Subt
));
7041 Set_Girder_Constraint_From_Discriminant_Constraint
(T_Sub
);
7042 Create_Constrained_Components
(T_Sub
, Related_Nod
, Corr_Rec
,
7043 Discriminant_Constraint
(T_Sub
));
7046 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
7049 end Constrain_Corresponding_Record
;
7051 -----------------------
7052 -- Constrain_Decimal --
7053 -----------------------
7055 procedure Constrain_Decimal
7058 Related_Nod
: Node_Id
)
7060 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
7061 C
: constant Node_Id
:= Constraint
(S
);
7062 Loc
: constant Source_Ptr
:= Sloc
(C
);
7063 Range_Expr
: Node_Id
;
7064 Digits_Expr
: Node_Id
;
7069 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
7071 if Nkind
(C
) = N_Range_Constraint
then
7072 Range_Expr
:= Range_Expression
(C
);
7073 Digits_Val
:= Digits_Value
(T
);
7076 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
7077 Digits_Expr
:= Digits_Expression
(C
);
7078 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
7080 Check_Digits_Expression
(Digits_Expr
);
7081 Digits_Val
:= Expr_Value
(Digits_Expr
);
7083 if Digits_Val
> Digits_Value
(T
) then
7085 ("digits expression is incompatible with subtype", C
);
7086 Digits_Val
:= Digits_Value
(T
);
7089 if Present
(Range_Constraint
(C
)) then
7090 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
7092 Range_Expr
:= Empty
;
7096 Set_Etype
(Def_Id
, Base_Type
(T
));
7097 Set_Size_Info
(Def_Id
, (T
));
7098 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
7099 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
7100 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
7101 Set_Small_Value
(Def_Id
, Small_Value
(T
));
7102 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
7103 Set_Digits_Value
(Def_Id
, Digits_Val
);
7105 -- Manufacture range from given digits value if no range present
7107 if No
(Range_Expr
) then
7108 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
7112 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
7114 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
7118 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
, Related_Nod
);
7119 Set_Discrete_RM_Size
(Def_Id
);
7121 -- Unconditionally delay the freeze, since we cannot set size
7122 -- information in all cases correctly until the freeze point.
7124 Set_Has_Delayed_Freeze
(Def_Id
);
7125 end Constrain_Decimal
;
7127 ----------------------------------
7128 -- Constrain_Discriminated_Type --
7129 ----------------------------------
7131 procedure Constrain_Discriminated_Type
7132 (Def_Id
: Entity_Id
;
7134 Related_Nod
: Node_Id
;
7135 For_Access
: Boolean := False)
7139 Elist
: Elist_Id
:= New_Elmt_List
;
7141 procedure Fixup_Bad_Constraint
;
7142 -- This is called after finding a bad constraint, and after having
7143 -- posted an appropriate error message. The mission is to leave the
7144 -- entity T in as reasonable state as possible!
7146 procedure Fixup_Bad_Constraint
is
7148 -- Set a reasonable Ekind for the entity. For an incomplete type,
7149 -- we can't do much, but for other types, we can set the proper
7150 -- corresponding subtype kind.
7152 if Ekind
(T
) = E_Incomplete_Type
then
7153 Set_Ekind
(Def_Id
, Ekind
(T
));
7155 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
7158 Set_Etype
(Def_Id
, Any_Type
);
7159 Set_Error_Posted
(Def_Id
);
7160 end Fixup_Bad_Constraint
;
7162 -- Start of processing for Constrain_Discriminated_Type
7165 C
:= Constraint
(S
);
7167 -- A discriminant constraint is only allowed in a subtype indication,
7168 -- after a subtype mark. This subtype mark must denote either a type
7169 -- with discriminants, or an access type whose designated type is a
7170 -- type with discriminants. A discriminant constraint specifies the
7171 -- values of these discriminants (RM 3.7.2(5)).
7173 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
7175 if Ekind
(T
) in Access_Kind
then
7176 T
:= Designated_Type
(T
);
7179 if not Has_Discriminants
(T
) then
7180 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
7181 Fixup_Bad_Constraint
;
7184 elsif Is_Constrained
(Entity
(Subtype_Mark
(S
))) then
7185 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
7186 Fixup_Bad_Constraint
;
7190 -- T may be an unconstrained subtype (e.g. a generic actual).
7191 -- Constraint applies to the base type.
7195 Elist
:= Build_Discriminant_Constraints
(T
, S
);
7197 -- If the list returned was empty we had an error in building the
7198 -- discriminant constraint. We have also already signalled an error
7199 -- in the incomplete type case
7201 if Is_Empty_Elmt_List
(Elist
) then
7202 Fixup_Bad_Constraint
;
7206 Build_Discriminated_Subtype
(T
, Def_Id
, Elist
, Related_Nod
, For_Access
);
7207 end Constrain_Discriminated_Type
;
7209 ---------------------------
7210 -- Constrain_Enumeration --
7211 ---------------------------
7213 procedure Constrain_Enumeration
7216 Related_Nod
: Node_Id
)
7218 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
7219 C
: constant Node_Id
:= Constraint
(S
);
7222 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
7224 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
7226 Set_Etype
(Def_Id
, Base_Type
(T
));
7227 Set_Size_Info
(Def_Id
, (T
));
7228 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
7229 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
7231 Set_Scalar_Range_For_Subtype
7232 (Def_Id
, Range_Expression
(C
), T
, Related_Nod
);
7234 Set_Discrete_RM_Size
(Def_Id
);
7236 end Constrain_Enumeration
;
7238 ----------------------
7239 -- Constrain_Float --
7240 ----------------------
7242 procedure Constrain_Float
7245 Related_Nod
: Node_Id
)
7247 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
7253 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
7255 Set_Etype
(Def_Id
, Base_Type
(T
));
7256 Set_Size_Info
(Def_Id
, (T
));
7257 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
7259 -- Process the constraint
7261 C
:= Constraint
(S
);
7263 -- Digits constraint present
7265 if Nkind
(C
) = N_Digits_Constraint
then
7266 D
:= Digits_Expression
(C
);
7267 Analyze_And_Resolve
(D
, Any_Integer
);
7268 Check_Digits_Expression
(D
);
7269 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
7271 -- Check that digits value is in range. Obviously we can do this
7272 -- at compile time, but it is strictly a runtime check, and of
7273 -- course there is an ACVC test that checks this!
7275 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
7276 Error_Msg_Uint_1
:= Digits_Value
(T
);
7277 Error_Msg_N
("?digits value is too large, maximum is ^", D
);
7278 Rais
:= Make_Raise_Constraint_Error
(Sloc
(D
));
7279 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
7282 C
:= Range_Constraint
(C
);
7284 -- No digits constraint present
7287 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
7290 -- Range constraint present
7292 if Nkind
(C
) = N_Range_Constraint
then
7293 Set_Scalar_Range_For_Subtype
7294 (Def_Id
, Range_Expression
(C
), T
, Related_Nod
);
7296 -- No range constraint present
7299 pragma Assert
(No
(C
));
7300 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
7303 Set_Is_Constrained
(Def_Id
);
7304 end Constrain_Float
;
7306 ---------------------
7307 -- Constrain_Index --
7308 ---------------------
7310 procedure Constrain_Index
7313 Related_Nod
: Node_Id
;
7314 Related_Id
: Entity_Id
;
7319 R
: Node_Id
:= Empty
;
7320 Checks_Off
: Boolean := False;
7321 T
: constant Entity_Id
:= Etype
(Index
);
7324 if Nkind
(S
) = N_Range
7325 or else Nkind
(S
) = N_Attribute_Reference
7327 -- A Range attribute will transformed into N_Range by Resolve.
7333 -- ??? Why on earth do we turn checks of in this very specific case ?
7335 -- From the revision history: (Constrain_Index): Call
7336 -- Process_Range_Expr_In_Decl with range checking off for range
7337 -- bounds that are attributes. This avoids some horrible
7338 -- constraint error checks.
7340 if Nkind
(R
) = N_Range
7341 and then Nkind
(Low_Bound
(R
)) = N_Attribute_Reference
7342 and then Nkind
(High_Bound
(R
)) = N_Attribute_Reference
7347 Process_Range_Expr_In_Decl
7348 (R
, T
, Related_Nod
, Empty_List
, Checks_Off
);
7350 if not Error_Posted
(S
)
7352 (Nkind
(S
) /= N_Range
7353 or else Base_Type
(T
) /= Base_Type
(Etype
(Low_Bound
(S
)))
7354 or else Base_Type
(T
) /= Base_Type
(Etype
(High_Bound
(S
))))
7356 if Base_Type
(T
) /= Any_Type
7357 and then Etype
(Low_Bound
(S
)) /= Any_Type
7358 and then Etype
(High_Bound
(S
)) /= Any_Type
7360 Error_Msg_N
("range expected", S
);
7364 elsif Nkind
(S
) = N_Subtype_Indication
then
7365 -- the parser has verified that this is a discrete indication.
7367 Resolve_Discrete_Subtype_Indication
(S
, T
);
7368 R
:= Range_Expression
(Constraint
(S
));
7370 elsif Nkind
(S
) = N_Discriminant_Association
then
7372 -- syntactically valid in subtype indication.
7374 Error_Msg_N
("invalid index constraint", S
);
7375 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
7378 -- Subtype_Mark case, no anonymous subtypes to construct
7383 if Is_Entity_Name
(S
) then
7385 if not Is_Type
(Entity
(S
)) then
7386 Error_Msg_N
("expect subtype mark for index constraint", S
);
7388 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
7389 Wrong_Type
(S
, Base_Type
(T
));
7395 Error_Msg_N
("invalid index constraint", S
);
7396 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
7402 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
7404 Set_Etype
(Def_Id
, Base_Type
(T
));
7406 if Is_Modular_Integer_Type
(T
) then
7407 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
7409 elsif Is_Integer_Type
(T
) then
7410 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
7413 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
7414 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
7417 Set_Size_Info
(Def_Id
, (T
));
7418 Set_RM_Size
(Def_Id
, RM_Size
(T
));
7419 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
7421 Set_Scalar_Range
(Def_Id
, R
);
7423 Set_Etype
(S
, Def_Id
);
7424 Set_Discrete_RM_Size
(Def_Id
);
7425 end Constrain_Index
;
7427 -----------------------
7428 -- Constrain_Integer --
7429 -----------------------
7431 procedure Constrain_Integer
7434 Related_Nod
: Node_Id
)
7436 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
7437 C
: constant Node_Id
:= Constraint
(S
);
7440 Set_Scalar_Range_For_Subtype
7441 (Def_Id
, Range_Expression
(C
), T
, Related_Nod
);
7443 if Is_Modular_Integer_Type
(T
) then
7444 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
7446 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
7449 Set_Etype
(Def_Id
, Base_Type
(T
));
7450 Set_Size_Info
(Def_Id
, (T
));
7451 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
7452 Set_Discrete_RM_Size
(Def_Id
);
7454 end Constrain_Integer
;
7456 ------------------------------
7457 -- Constrain_Ordinary_Fixed --
7458 ------------------------------
7460 procedure Constrain_Ordinary_Fixed
7463 Related_Nod
: Node_Id
)
7465 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
7471 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
7472 Set_Etype
(Def_Id
, Base_Type
(T
));
7473 Set_Size_Info
(Def_Id
, (T
));
7474 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
7475 Set_Small_Value
(Def_Id
, Small_Value
(T
));
7477 -- Process the constraint
7479 C
:= Constraint
(S
);
7481 -- Delta constraint present
7483 if Nkind
(C
) = N_Delta_Constraint
then
7484 D
:= Delta_Expression
(C
);
7485 Analyze_And_Resolve
(D
, Any_Real
);
7486 Check_Delta_Expression
(D
);
7487 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
7489 -- Check that delta value is in range. Obviously we can do this
7490 -- at compile time, but it is strictly a runtime check, and of
7491 -- course there is an ACVC test that checks this!
7493 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
7494 Error_Msg_N
("?delta value is too small", D
);
7495 Rais
:= Make_Raise_Constraint_Error
(Sloc
(D
));
7496 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
7499 C
:= Range_Constraint
(C
);
7501 -- No delta constraint present
7504 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
7507 -- Range constraint present
7509 if Nkind
(C
) = N_Range_Constraint
then
7510 Set_Scalar_Range_For_Subtype
7511 (Def_Id
, Range_Expression
(C
), T
, Related_Nod
);
7513 -- No range constraint present
7516 pragma Assert
(No
(C
));
7517 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
7521 Set_Discrete_RM_Size
(Def_Id
);
7523 -- Unconditionally delay the freeze, since we cannot set size
7524 -- information in all cases correctly until the freeze point.
7526 Set_Has_Delayed_Freeze
(Def_Id
);
7527 end Constrain_Ordinary_Fixed
;
7529 ---------------------------
7530 -- Convert_Scalar_Bounds --
7531 ---------------------------
7533 procedure Convert_Scalar_Bounds
7535 Parent_Type
: Entity_Id
;
7536 Derived_Type
: Entity_Id
;
7539 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
7546 Lo
:= Build_Scalar_Bound
7547 (Type_Low_Bound
(Derived_Type
),
7548 Parent_Type
, Implicit_Base
, Loc
);
7550 Hi
:= Build_Scalar_Bound
7551 (Type_High_Bound
(Derived_Type
),
7552 Parent_Type
, Implicit_Base
, Loc
);
7559 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
7561 Set_Parent
(Rng
, N
);
7562 Set_Scalar_Range
(Derived_Type
, Rng
);
7564 -- Analyze the bounds
7566 Analyze_And_Resolve
(Lo
, Implicit_Base
);
7567 Analyze_And_Resolve
(Hi
, Implicit_Base
);
7569 -- Analyze the range itself, except that we do not analyze it if
7570 -- the bounds are real literals, and we have a fixed-point type.
7571 -- The reason for this is that we delay setting the bounds in this
7572 -- case till we know the final Small and Size values (see circuit
7573 -- in Freeze.Freeze_Fixed_Point_Type for further details).
7575 if Is_Fixed_Point_Type
(Parent_Type
)
7576 and then Nkind
(Lo
) = N_Real_Literal
7577 and then Nkind
(Hi
) = N_Real_Literal
7581 -- Here we do the analysis of the range.
7583 -- Note: we do this manually, since if we do a normal Analyze and
7584 -- Resolve call, there are problems with the conversions used for
7585 -- the derived type range.
7588 Set_Etype
(Rng
, Implicit_Base
);
7589 Set_Analyzed
(Rng
, True);
7591 end Convert_Scalar_Bounds
;
7597 procedure Copy_And_Swap
(Privat
, Full
: Entity_Id
) is
7599 -- Initialize new full declaration entity by copying the pertinent
7600 -- fields of the corresponding private declaration entity.
7602 Copy_Private_To_Full
(Privat
, Full
);
7604 -- Swap the two entities. Now Privat is the full type entity and
7605 -- Full is the private one. They will be swapped back at the end
7606 -- of the private part. This swapping ensures that the entity that
7607 -- is visible in the private part is the full declaration.
7609 Exchange_Entities
(Privat
, Full
);
7610 Append_Entity
(Full
, Scope
(Full
));
7613 -------------------------------------
7614 -- Copy_Array_Base_Type_Attributes --
7615 -------------------------------------
7617 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
7619 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
7620 Set_Component_Type
(T1
, Component_Type
(T2
));
7621 Set_Component_Size
(T1
, Component_Size
(T2
));
7622 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
7623 Set_Finalize_Storage_Only
(T1
, Finalize_Storage_Only
(T2
));
7624 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
7625 Set_Has_Task
(T1
, Has_Task
(T2
));
7626 Set_Is_Packed
(T1
, Is_Packed
(T2
));
7627 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
7628 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
7629 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
7630 end Copy_Array_Base_Type_Attributes
;
7632 -----------------------------------
7633 -- Copy_Array_Subtype_Attributes --
7634 -----------------------------------
7636 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
7638 Set_Size_Info
(T1
, T2
);
7640 Set_First_Index
(T1
, First_Index
(T2
));
7641 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
7642 Set_Is_Atomic
(T1
, Is_Atomic
(T2
));
7643 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
7644 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
7645 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
7646 Set_First_Rep_Item
(T1
, First_Rep_Item
(T2
));
7647 Set_Convention
(T1
, Convention
(T2
));
7648 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
7649 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
7650 end Copy_Array_Subtype_Attributes
;
7652 --------------------------
7653 -- Copy_Private_To_Full --
7654 --------------------------
7656 procedure Copy_Private_To_Full
(Priv
, Full
: Entity_Id
) is
7658 -- We temporarily set Ekind to a value appropriate for a type to
7659 -- avoid assert failures in Einfo from checking for setting type
7660 -- attributes on something that is not a type. Ekind (Priv) is an
7661 -- appropriate choice, since it allowed the attributes to be set
7662 -- in the first place. This Ekind value will be modified later.
7664 Set_Ekind
(Full
, Ekind
(Priv
));
7666 -- Also set Etype temporarily to Any_Type, again, in the absence
7667 -- of errors, it will be properly reset, and if there are errors,
7668 -- then we want a value of Any_Type to remain.
7670 Set_Etype
(Full
, Any_Type
);
7672 -- Now start copying attributes
7674 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
7676 if Has_Discriminants
(Full
) then
7677 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
7678 Set_Girder_Constraint
(Full
, Girder_Constraint
(Priv
));
7681 Set_Homonym
(Full
, Homonym
(Priv
));
7682 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
7683 Set_Is_Public
(Full
, Is_Public
(Priv
));
7684 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
7685 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
7687 Conditional_Delay
(Full
, Priv
);
7689 if Is_Tagged_Type
(Full
) then
7690 Set_Primitive_Operations
(Full
, Primitive_Operations
(Priv
));
7692 if Priv
= Base_Type
(Priv
) then
7693 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
7697 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
7698 Set_Scope
(Full
, Scope
(Priv
));
7699 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
7700 Set_First_Entity
(Full
, First_Entity
(Priv
));
7701 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
7703 -- If access types have been recorded for later handling, keep them
7704 -- in the full view so that they get handled when the full view freeze
7705 -- node is expanded.
7707 if Present
(Freeze_Node
(Priv
))
7708 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
7710 Ensure_Freeze_Node
(Full
);
7711 Set_Access_Types_To_Process
(Freeze_Node
(Full
),
7712 Access_Types_To_Process
(Freeze_Node
(Priv
)));
7714 end Copy_Private_To_Full
;
7716 -----------------------------------
7717 -- Create_Constrained_Components --
7718 -----------------------------------
7720 procedure Create_Constrained_Components
7722 Decl_Node
: Node_Id
;
7724 Constraints
: Elist_Id
)
7726 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
7727 Assoc_List
: List_Id
:= New_List
;
7728 Comp_List
: Elist_Id
:= New_Elmt_List
;
7729 Discr_Val
: Elmt_Id
;
7733 Is_Static
: Boolean := True;
7734 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
7736 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
7737 -- Collect components of parent type that do not appear in a variant
7740 procedure Create_All_Components
;
7741 -- Iterate over Comp_List to create the components of the subtype.
7743 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
7744 -- Creates a new component from Old_Compon, coppying all the fields from
7745 -- it, including its Etype, inserts the new component in the Subt entity
7746 -- chain and returns the new component.
7748 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
7749 -- If true, and discriminants are static, collect only components from
7750 -- variants selected by discriminant values.
7752 ------------------------------
7753 -- Collect_Fixed_Components --
7754 ------------------------------
7756 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
7758 -- Build association list for discriminants, and find components of
7759 -- the variant part selected by the values of the discriminants.
7761 Old_C
:= First_Discriminant
(Typ
);
7762 Discr_Val
:= First_Elmt
(Constraints
);
7764 while Present
(Old_C
) loop
7765 Append_To
(Assoc_List
,
7766 Make_Component_Association
(Loc
,
7767 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
7768 Expression
=> New_Copy
(Node
(Discr_Val
))));
7770 Next_Elmt
(Discr_Val
);
7771 Next_Discriminant
(Old_C
);
7774 -- The tag, and the possible parent and controller components
7775 -- are unconditionally in the subtype.
7777 if Is_Tagged_Type
(Typ
)
7778 or else Has_Controlled_Component
(Typ
)
7780 Old_C
:= First_Component
(Typ
);
7782 while Present
(Old_C
) loop
7783 if Chars
((Old_C
)) = Name_uTag
7784 or else Chars
((Old_C
)) = Name_uParent
7785 or else Chars
((Old_C
)) = Name_uController
7787 Append_Elmt
(Old_C
, Comp_List
);
7790 Next_Component
(Old_C
);
7793 end Collect_Fixed_Components
;
7795 ---------------------------
7796 -- Create_All_Components --
7797 ---------------------------
7799 procedure Create_All_Components
is
7803 Comp
:= First_Elmt
(Comp_List
);
7805 while Present
(Comp
) loop
7806 Old_C
:= Node
(Comp
);
7807 New_C
:= Create_Component
(Old_C
);
7811 Constrain_Component_Type
7812 (Etype
(Old_C
), Subt
, Decl_Node
, Typ
, Constraints
));
7813 Set_Is_Public
(New_C
, Is_Public
(Subt
));
7817 end Create_All_Components
;
7819 ----------------------
7820 -- Create_Component --
7821 ----------------------
7823 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
7824 New_Compon
: Entity_Id
:= New_Copy
(Old_Compon
);
7827 -- Set the parent so we have a proper link for freezing etc. This
7828 -- is not a real parent pointer, since of course our parent does
7829 -- not own up to us and reference us, we are an illegitimate
7830 -- child of the original parent!
7832 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
7834 -- We do not want this node marked as Comes_From_Source, since
7835 -- otherwise it would get first class status and a separate
7836 -- cross-reference line would be generated. Illegitimate
7837 -- children do not rate such recognition.
7839 Set_Comes_From_Source
(New_Compon
, False);
7841 -- But it is a real entity, and a birth certificate must be
7842 -- properly registered by entering it into the entity list.
7844 Enter_Name
(New_Compon
);
7846 end Create_Component
;
7848 -----------------------
7849 -- Is_Variant_Record --
7850 -----------------------
7852 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
7854 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
7855 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
7856 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
7858 Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
7859 end Is_Variant_Record
;
7861 -- Start of processing for Create_Constrained_Components
7864 pragma Assert
(Subt
/= Base_Type
(Subt
));
7865 pragma Assert
(Typ
= Base_Type
(Typ
));
7867 Set_First_Entity
(Subt
, Empty
);
7868 Set_Last_Entity
(Subt
, Empty
);
7870 -- Check whether constraint is fully static, in which case we can
7871 -- optimize the list of components.
7873 Discr_Val
:= First_Elmt
(Constraints
);
7875 while Present
(Discr_Val
) loop
7877 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
7882 Next_Elmt
(Discr_Val
);
7887 -- Inherit the discriminants of the parent type.
7889 Old_C
:= First_Discriminant
(Typ
);
7891 while Present
(Old_C
) loop
7892 New_C
:= Create_Component
(Old_C
);
7893 Set_Is_Public
(New_C
, Is_Public
(Subt
));
7894 Next_Discriminant
(Old_C
);
7898 and then Is_Variant_Record
(Typ
)
7900 Collect_Fixed_Components
(Typ
);
7904 Component_List
(Type_Definition
(Parent
(Typ
))),
7905 Governed_By
=> Assoc_List
,
7907 Report_Errors
=> Errors
);
7908 pragma Assert
(not Errors
);
7910 Create_All_Components
;
7912 -- If the subtype declaration is created for a tagged type derivation
7913 -- with constraints, we retrieve the record definition of the parent
7914 -- type to select the components of the proper variant.
7917 and then Is_Tagged_Type
(Typ
)
7918 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
7920 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
7921 and then Is_Variant_Record
(Parent_Type
)
7923 Collect_Fixed_Components
(Typ
);
7927 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
7928 Governed_By
=> Assoc_List
,
7930 Report_Errors
=> Errors
);
7931 pragma Assert
(not Errors
);
7933 -- If the tagged derivation has a type extension, collect all the
7934 -- new components therein.
7937 Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
7939 Old_C
:= First_Component
(Typ
);
7941 while Present
(Old_C
) loop
7942 if Original_Record_Component
(Old_C
) = Old_C
7943 and then Chars
(Old_C
) /= Name_uTag
7944 and then Chars
(Old_C
) /= Name_uParent
7945 and then Chars
(Old_C
) /= Name_uController
7947 Append_Elmt
(Old_C
, Comp_List
);
7950 Next_Component
(Old_C
);
7954 Create_All_Components
;
7957 -- If the discriminants are not static, or if this is a multi-level
7958 -- type extension, we have to include all the components of the
7961 Old_C
:= First_Component
(Typ
);
7963 while Present
(Old_C
) loop
7964 New_C
:= Create_Component
(Old_C
);
7968 Constrain_Component_Type
7969 (Etype
(Old_C
), Subt
, Decl_Node
, Typ
, Constraints
));
7970 Set_Is_Public
(New_C
, Is_Public
(Subt
));
7972 Next_Component
(Old_C
);
7977 end Create_Constrained_Components
;
7979 ------------------------------------------
7980 -- Decimal_Fixed_Point_Type_Declaration --
7981 ------------------------------------------
7983 procedure Decimal_Fixed_Point_Type_Declaration
7987 Loc
: constant Source_Ptr
:= Sloc
(Def
);
7988 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
7989 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
7990 Implicit_Base
: Entity_Id
;
7996 -- Start of processing for Decimal_Fixed_Point_Type_Declaration
7999 Check_Restriction
(No_Fixed_Point
, Def
);
8001 -- Create implicit base type
8004 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
8005 Set_Etype
(Implicit_Base
, Implicit_Base
);
8007 -- Analyze and process delta expression
8009 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
8011 Check_Delta_Expression
(Delta_Expr
);
8012 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
8014 -- Check delta is power of 10, and determine scale value from it
8017 Val
: Ureal
:= Delta_Val
;
8020 Scale_Val
:= Uint_0
;
8022 if Val
< Ureal_1
then
8023 while Val
< Ureal_1
loop
8024 Val
:= Val
* Ureal_10
;
8025 Scale_Val
:= Scale_Val
+ 1;
8028 if Scale_Val
> 18 then
8029 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
8030 Scale_Val
:= UI_From_Int
(+18);
8034 while Val
> Ureal_1
loop
8035 Val
:= Val
/ Ureal_10
;
8036 Scale_Val
:= Scale_Val
- 1;
8039 if Scale_Val
< -18 then
8040 Error_Msg_N
("scale is less than minimum value of -18", Def
);
8041 Scale_Val
:= UI_From_Int
(-18);
8045 if Val
/= Ureal_1
then
8046 Error_Msg_N
("delta expression must be a power of 10", Def
);
8047 Delta_Val
:= Ureal_10
** (-Scale_Val
);
8051 -- Set delta, scale and small (small = delta for decimal type)
8053 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
8054 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
8055 Set_Small_Value
(Implicit_Base
, Delta_Val
);
8057 -- Analyze and process digits expression
8059 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
8060 Check_Digits_Expression
(Digs_Expr
);
8061 Digs_Val
:= Expr_Value
(Digs_Expr
);
8063 if Digs_Val
> 18 then
8064 Digs_Val
:= UI_From_Int
(+18);
8065 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
8068 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
8069 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
8071 -- Set range of base type from digits value for now. This will be
8072 -- expanded to represent the true underlying base range by Freeze.
8074 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
8076 -- Set size to zero for now, size will be set at freeze time. We have
8077 -- to do this for ordinary fixed-point, because the size depends on
8078 -- the specified small, and we might as well do the same for decimal
8081 Init_Size_Align
(Implicit_Base
);
8083 -- Complete entity for first subtype
8085 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
8086 Set_Etype
(T
, Implicit_Base
);
8087 Set_Size_Info
(T
, Implicit_Base
);
8088 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
8089 Set_Digits_Value
(T
, Digs_Val
);
8090 Set_Delta_Value
(T
, Delta_Val
);
8091 Set_Small_Value
(T
, Delta_Val
);
8092 Set_Scale_Value
(T
, Scale_Val
);
8093 Set_Is_Constrained
(T
);
8095 -- If there are bounds given in the declaration use them as the
8096 -- bounds of the first named subtype.
8098 if Present
(Real_Range_Specification
(Def
)) then
8100 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
8101 Low
: constant Node_Id
:= Low_Bound
(RRS
);
8102 High
: constant Node_Id
:= High_Bound
(RRS
);
8107 Analyze_And_Resolve
(Low
, Any_Real
);
8108 Analyze_And_Resolve
(High
, Any_Real
);
8109 Check_Real_Bound
(Low
);
8110 Check_Real_Bound
(High
);
8111 Low_Val
:= Expr_Value_R
(Low
);
8112 High_Val
:= Expr_Value_R
(High
);
8114 if Low_Val
< (-Bound_Val
) then
8116 ("range low bound too small for digits value", Low
);
8117 Low_Val
:= -Bound_Val
;
8120 if High_Val
> Bound_Val
then
8122 ("range high bound too large for digits value", High
);
8123 High_Val
:= Bound_Val
;
8126 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
8129 -- If no explicit range, use range that corresponds to given
8130 -- digits value. This will end up as the final range for the
8134 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
8137 end Decimal_Fixed_Point_Type_Declaration
;
8139 -----------------------
8140 -- Derive_Subprogram --
8141 -----------------------
8143 procedure Derive_Subprogram
8144 (New_Subp
: in out Entity_Id
;
8145 Parent_Subp
: Entity_Id
;
8146 Derived_Type
: Entity_Id
;
8147 Parent_Type
: Entity_Id
;
8148 Actual_Subp
: Entity_Id
:= Empty
)
8151 New_Formal
: Entity_Id
;
8152 Same_Subt
: constant Boolean :=
8153 Is_Scalar_Type
(Parent_Type
)
8154 and then Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
);
8156 function Is_Private_Overriding
return Boolean;
8157 -- If Subp is a private overriding of a visible operation, the in-
8158 -- herited operation derives from the overridden op (even though
8159 -- its body is the overriding one) and the inherited operation is
8160 -- visible now. See sem_disp to see the details of the handling of
8161 -- the overridden subprogram, which is removed from the list of
8162 -- primitive operations of the type.
8164 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
8165 -- When the type is an anonymous access type, create a new access type
8166 -- designating the derived type.
8168 ---------------------------
8169 -- Is_Private_Overriding --
8170 ---------------------------
8172 function Is_Private_Overriding
return Boolean is
8176 Prev
:= Homonym
(Parent_Subp
);
8178 -- The visible operation that is overriden is a homonym of
8179 -- the parent subprogram. We scan the homonym chain to find
8180 -- the one whose alias is the subprogram we are deriving.
8182 while Present
(Prev
) loop
8183 if Is_Dispatching_Operation
(Parent_Subp
)
8184 and then Present
(Prev
)
8185 and then Ekind
(Prev
) = Ekind
(Parent_Subp
)
8186 and then Alias
(Prev
) = Parent_Subp
8187 and then Scope
(Parent_Subp
) = Scope
(Prev
)
8188 and then not Is_Hidden
(Prev
)
8193 Prev
:= Homonym
(Prev
);
8197 end Is_Private_Overriding
;
8203 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
8204 Acc_Type
: Entity_Id
;
8208 -- When the type is an anonymous access type, create a new access
8209 -- type designating the derived type. This itype must be elaborated
8210 -- at the point of the derivation, not on subsequent calls that may
8211 -- be out of the proper scope for Gigi, so we insert a reference to
8212 -- it after the derivation.
8214 if Ekind
(Etype
(Id
)) = E_Anonymous_Access_Type
then
8216 Desig_Typ
: Entity_Id
:= Designated_Type
(Etype
(Id
));
8219 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
8220 and then Present
(Full_View
(Desig_Typ
))
8221 and then not Is_Private_Type
(Parent_Type
)
8223 Desig_Typ
:= Full_View
(Desig_Typ
);
8226 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
) then
8227 Acc_Type
:= New_Copy
(Etype
(Id
));
8228 Set_Etype
(Acc_Type
, Acc_Type
);
8229 Set_Scope
(Acc_Type
, New_Subp
);
8231 -- Compute size of anonymous access type.
8233 if Is_Array_Type
(Desig_Typ
)
8234 and then not Is_Constrained
(Desig_Typ
)
8236 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
8238 Init_Size
(Acc_Type
, System_Address_Size
);
8241 Init_Alignment
(Acc_Type
);
8243 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
8245 Set_Etype
(New_Id
, Acc_Type
);
8246 Set_Scope
(New_Id
, New_Subp
);
8248 -- Create a reference to it.
8250 IR
:= Make_Itype_Reference
(Sloc
(Parent
(Derived_Type
)));
8251 Set_Itype
(IR
, Acc_Type
);
8252 Insert_After
(Parent
(Derived_Type
), IR
);
8255 Set_Etype
(New_Id
, Etype
(Id
));
8258 elsif Base_Type
(Etype
(Id
)) = Base_Type
(Parent_Type
)
8260 (Ekind
(Etype
(Id
)) = E_Record_Type_With_Private
8261 and then Present
(Full_View
(Etype
(Id
)))
8262 and then Base_Type
(Full_View
(Etype
(Id
))) =
8263 Base_Type
(Parent_Type
))
8266 -- Constraint checks on formals are generated during expansion,
8267 -- based on the signature of the original subprogram. The bounds
8268 -- of the derived type are not relevant, and thus we can use
8269 -- the base type for the formals. However, the return type may be
8270 -- used in a context that requires that the proper static bounds
8271 -- be used (a case statement, for example) and for those cases
8272 -- we must use the derived type (first subtype), not its base.
8274 if Etype
(Id
) = Parent_Type
8277 Set_Etype
(New_Id
, Derived_Type
);
8279 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
8283 Set_Etype
(New_Id
, Etype
(Id
));
8287 -- Start of processing for Derive_Subprogram
8291 New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
8292 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
8294 -- Check whether the inherited subprogram is a private operation that
8295 -- should be inherited but not yet made visible. Such subprograms can
8296 -- become visible at a later point (e.g., the private part of a public
8297 -- child unit) via Declare_Inherited_Private_Subprograms. If the
8298 -- following predicate is true, then this is not such a private
8299 -- operation and the subprogram simply inherits the name of the parent
8300 -- subprogram. Note the special check for the names of controlled
8301 -- operations, which are currently exempted from being inherited with
8302 -- a hidden name because they must be findable for generation of
8303 -- implicit run-time calls.
8305 if not Is_Hidden
(Parent_Subp
)
8306 or else Is_Internal
(Parent_Subp
)
8307 or else Is_Private_Overriding
8308 or else Is_Internal_Name
(Chars
(Parent_Subp
))
8309 or else Chars
(Parent_Subp
) = Name_Initialize
8310 or else Chars
(Parent_Subp
) = Name_Adjust
8311 or else Chars
(Parent_Subp
) = Name_Finalize
8313 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
8315 -- If parent is hidden, this can be a regular derivation if the
8316 -- parent is immediately visible in a non-instantiating context,
8317 -- or if we are in the private part of an instance. This test
8318 -- should still be refined ???
8320 -- The test for In_Instance_Not_Visible avoids inheriting the
8321 -- derived operation as a non-visible operation in cases where
8322 -- the parent subprogram might not be visible now, but was
8323 -- visible within the original generic, so it would be wrong
8324 -- to make the inherited subprogram non-visible now. (Not
8325 -- clear if this test is fully correct; are there any cases
8326 -- where we should declare the inherited operation as not
8327 -- visible to avoid it being overridden, e.g., when the
8328 -- parent type is a generic actual with private primitives ???)
8330 -- (they should be treated the same as other private inherited
8331 -- subprograms, but it's not clear how to do this cleanly). ???
8333 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
8334 and then Is_Immediately_Visible
(Parent_Subp
)
8335 and then not In_Instance
)
8336 or else In_Instance_Not_Visible
8338 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
8340 -- The type is inheriting a private operation, so enter
8341 -- it with a special name so it can't be overridden.
8344 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
8347 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
8348 Replace_Type
(Parent_Subp
, New_Subp
);
8349 Conditional_Delay
(New_Subp
, Parent_Subp
);
8351 Formal
:= First_Formal
(Parent_Subp
);
8352 while Present
(Formal
) loop
8353 New_Formal
:= New_Copy
(Formal
);
8355 -- Normally we do not go copying parents, but in the case of
8356 -- formals, we need to link up to the declaration (which is
8357 -- the parameter specification), and it is fine to link up to
8358 -- the original formal's parameter specification in this case.
8360 Set_Parent
(New_Formal
, Parent
(Formal
));
8362 Append_Entity
(New_Formal
, New_Subp
);
8364 Replace_Type
(Formal
, New_Formal
);
8365 Next_Formal
(Formal
);
8368 -- If this derivation corresponds to a tagged generic actual, then
8369 -- primitive operations rename those of the actual. Otherwise the
8370 -- primitive operations rename those of the parent type.
8372 if No
(Actual_Subp
) then
8373 Set_Alias
(New_Subp
, Parent_Subp
);
8374 Set_Is_Intrinsic_Subprogram
(New_Subp
,
8375 Is_Intrinsic_Subprogram
(Parent_Subp
));
8378 Set_Alias
(New_Subp
, Actual_Subp
);
8381 -- Derived subprograms of a tagged type must inherit the convention
8382 -- of the parent subprogram (a requirement of AI-117). Derived
8383 -- subprograms of untagged types simply get convention Ada by default.
8385 if Is_Tagged_Type
(Derived_Type
) then
8386 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
8389 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
8390 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
8392 if Ekind
(Parent_Subp
) = E_Procedure
then
8393 Set_Is_Valued_Procedure
8394 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
8397 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
8399 -- Check for case of a derived subprogram for the instantiation
8400 -- of a formal derived tagged type, so mark the subprogram as
8401 -- dispatching and inherit the dispatching attributes of the
8402 -- parent subprogram. The derived subprogram is effectively a
8403 -- renaming of the actual subprogram, so it needs to have the
8404 -- same attributes as the actual.
8406 if Present
(Actual_Subp
)
8407 and then Is_Dispatching_Operation
(Parent_Subp
)
8409 Set_Is_Dispatching_Operation
(New_Subp
);
8410 if Present
(DTC_Entity
(Parent_Subp
)) then
8411 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Parent_Subp
));
8412 Set_DT_Position
(New_Subp
, DT_Position
(Parent_Subp
));
8416 -- Indicate that a derived subprogram does not require a body
8417 -- and that it does not require processing of default expressions.
8419 Set_Has_Completion
(New_Subp
);
8420 Set_Default_Expressions_Processed
(New_Subp
);
8422 -- A derived function with a controlling result is abstract.
8423 -- If the Derived_Type is a nonabstract formal generic derived
8424 -- type, then inherited operations are not abstract: check is
8425 -- done at instantiation time. If the derivation is for a generic
8426 -- actual, the function is not abstract unless the actual is.
8428 if Is_Generic_Type
(Derived_Type
)
8429 and then not Is_Abstract
(Derived_Type
)
8433 elsif Is_Abstract
(Alias
(New_Subp
))
8434 or else (Is_Tagged_Type
(Derived_Type
)
8435 and then Etype
(New_Subp
) = Derived_Type
8436 and then No
(Actual_Subp
))
8438 Set_Is_Abstract
(New_Subp
);
8441 if Ekind
(New_Subp
) = E_Function
then
8442 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
8444 end Derive_Subprogram
;
8446 ------------------------
8447 -- Derive_Subprograms --
8448 ------------------------
8450 procedure Derive_Subprograms
8451 (Parent_Type
: Entity_Id
;
8452 Derived_Type
: Entity_Id
;
8453 Generic_Actual
: Entity_Id
:= Empty
)
8455 Op_List
: Elist_Id
:= Collect_Primitive_Operations
(Parent_Type
);
8456 Act_List
: Elist_Id
;
8460 New_Subp
: Entity_Id
:= Empty
;
8461 Parent_Base
: Entity_Id
;
8464 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
8465 and then Has_Discriminants
(Parent_Type
)
8466 and then Present
(Full_View
(Parent_Type
))
8468 Parent_Base
:= Full_View
(Parent_Type
);
8470 Parent_Base
:= Parent_Type
;
8473 Elmt
:= First_Elmt
(Op_List
);
8475 if Present
(Generic_Actual
) then
8476 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
8477 Act_Elmt
:= First_Elmt
(Act_List
);
8479 Act_Elmt
:= No_Elmt
;
8482 -- Literals are derived earlier in the process of building the
8483 -- derived type, and are skipped here.
8485 while Present
(Elmt
) loop
8486 Subp
:= Node
(Elmt
);
8488 if Ekind
(Subp
) /= E_Enumeration_Literal
then
8489 if No
(Generic_Actual
) then
8491 (New_Subp
, Subp
, Derived_Type
, Parent_Base
);
8494 Derive_Subprogram
(New_Subp
, Subp
,
8495 Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
8496 Next_Elmt
(Act_Elmt
);
8502 end Derive_Subprograms
;
8504 --------------------------------
8505 -- Derived_Standard_Character --
8506 --------------------------------
8508 procedure Derived_Standard_Character
8510 Parent_Type
: Entity_Id
;
8511 Derived_Type
: Entity_Id
)
8513 Loc
: constant Source_Ptr
:= Sloc
(N
);
8514 Def
: constant Node_Id
:= Type_Definition
(N
);
8515 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
8516 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
8517 Implicit_Base
: constant Entity_Id
:=
8519 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
8526 T
:= Process_Subtype
(Indic
, N
);
8528 Set_Etype
(Implicit_Base
, Parent_Base
);
8529 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
8530 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
8532 Set_Is_Character_Type
(Implicit_Base
, True);
8533 Set_Has_Delayed_Freeze
(Implicit_Base
);
8535 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
8536 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
8538 Set_Scalar_Range
(Implicit_Base
,
8543 Conditional_Delay
(Derived_Type
, Parent_Type
);
8545 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
8546 Set_Etype
(Derived_Type
, Implicit_Base
);
8547 Set_Size_Info
(Derived_Type
, Parent_Type
);
8549 if Unknown_RM_Size
(Derived_Type
) then
8550 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
8553 Set_Is_Character_Type
(Derived_Type
, True);
8555 if Nkind
(Indic
) /= N_Subtype_Indication
then
8556 Set_Scalar_Range
(Derived_Type
, Scalar_Range
(Implicit_Base
));
8559 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
8561 -- Because the implicit base is used in the conversion of the bounds,
8562 -- we have to freeze it now. This is similar to what is done for
8563 -- numeric types, and it equally suspicious, but otherwise a non-
8564 -- static bound will have a reference to an unfrozen type, which is
8565 -- rejected by Gigi (???).
8567 Freeze_Before
(N
, Implicit_Base
);
8569 end Derived_Standard_Character
;
8571 ------------------------------
8572 -- Derived_Type_Declaration --
8573 ------------------------------
8575 procedure Derived_Type_Declaration
8578 Is_Completion
: Boolean)
8580 Def
: constant Node_Id
:= Type_Definition
(N
);
8581 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
8582 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
8583 Parent_Type
: Entity_Id
;
8584 Parent_Scope
: Entity_Id
;
8588 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
8590 if Parent_Type
= Any_Type
8591 or else Etype
(Parent_Type
) = Any_Type
8592 or else (Is_Class_Wide_Type
(Parent_Type
)
8593 and then Etype
(Parent_Type
) = T
)
8595 -- If Parent_Type is undefined or illegal, make new type into
8596 -- a subtype of Any_Type, and set a few attributes to prevent
8597 -- cascaded errors. If this is a self-definition, emit error now.
8600 or else T
= Etype
(Parent_Type
)
8602 Error_Msg_N
("type cannot be used in its own definition", Indic
);
8605 Set_Ekind
(T
, Ekind
(Parent_Type
));
8606 Set_Etype
(T
, Any_Type
);
8607 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
8609 if Is_Tagged_Type
(T
) then
8610 Set_Primitive_Operations
(T
, New_Elmt_List
);
8614 elsif Is_Unchecked_Union
(Parent_Type
) then
8615 Error_Msg_N
("cannot derive from Unchecked_Union type", N
);
8618 -- Only composite types other than array types are allowed to have
8621 if Present
(Discriminant_Specifications
(N
))
8622 and then (Is_Elementary_Type
(Parent_Type
)
8623 or else Is_Array_Type
(Parent_Type
))
8624 and then not Error_Posted
(N
)
8627 ("elementary or array type cannot have discriminants",
8628 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
8629 Set_Has_Discriminants
(T
, False);
8632 -- In Ada 83, a derived type defined in a package specification cannot
8633 -- be used for further derivation until the end of its visible part.
8634 -- Note that derivation in the private part of the package is allowed.
8637 and then Is_Derived_Type
(Parent_Type
)
8638 and then In_Visible_Part
(Scope
(Parent_Type
))
8640 if Ada_83
and then Comes_From_Source
(Indic
) then
8642 ("(Ada 83): premature use of type for derivation", Indic
);
8646 -- Check for early use of incomplete or private type
8648 if Ekind
(Parent_Type
) = E_Void
8649 or else Ekind
(Parent_Type
) = E_Incomplete_Type
8651 Error_Msg_N
("premature derivation of incomplete type", Indic
);
8654 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
8655 and then not Is_Generic_Type
(Parent_Type
)
8656 and then not Is_Generic_Type
(Root_Type
(Parent_Type
))
8657 and then not Is_Generic_Actual_Type
(Parent_Type
))
8658 or else Has_Private_Component
(Parent_Type
)
8660 -- The ancestor type of a formal type can be incomplete, in which
8661 -- case only the operations of the partial view are available in
8662 -- the generic. Subsequent checks may be required when the full
8663 -- view is analyzed, to verify that derivation from a tagged type
8664 -- has an extension.
8666 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
8669 elsif No
(Underlying_Type
(Parent_Type
))
8670 or else Has_Private_Component
(Parent_Type
)
8673 ("premature derivation of derived or private type", Indic
);
8675 -- Flag the type itself as being in error, this prevents some
8676 -- nasty problems with people looking at the malformed type.
8678 Set_Error_Posted
(T
);
8680 -- Check that within the immediate scope of an untagged partial
8681 -- view it's illegal to derive from the partial view if the
8682 -- full view is tagged. (7.3(7))
8684 -- We verify that the Parent_Type is a partial view by checking
8685 -- that it is not a Full_Type_Declaration (i.e. a private type or
8686 -- private extension declaration), to distinguish a partial view
8687 -- from a derivation from a private type which also appears as
8690 elsif Present
(Full_View
(Parent_Type
))
8691 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
8692 and then not Is_Tagged_Type
(Parent_Type
)
8693 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
8695 Parent_Scope
:= Scope
(T
);
8696 while Present
(Parent_Scope
)
8697 and then Parent_Scope
/= Standard_Standard
8699 if Parent_Scope
= Scope
(Parent_Type
) then
8701 ("premature derivation from type with tagged full view",
8705 Parent_Scope
:= Scope
(Parent_Scope
);
8710 -- Check that form of derivation is appropriate
8712 Taggd
:= Is_Tagged_Type
(Parent_Type
);
8714 -- Perhaps the parent type should be changed to the class-wide type's
8715 -- specific type in this case to prevent cascading errors ???
8717 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
8718 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
8722 if Present
(Extension
) and then not Taggd
then
8724 ("type derived from untagged type cannot have extension", Indic
);
8726 elsif No
(Extension
) and then Taggd
then
8727 -- If this is within a private part (or body) of a generic
8728 -- instantiation then the derivation is allowed (the parent
8729 -- type can only appear tagged in this case if it's a generic
8730 -- actual type, since it would otherwise have been rejected
8731 -- in the analysis of the generic template).
8733 if not Is_Generic_Actual_Type
(Parent_Type
)
8734 or else In_Visible_Part
(Scope
(Parent_Type
))
8737 ("type derived from tagged type must have extension", Indic
);
8741 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
);
8742 end Derived_Type_Declaration
;
8744 ----------------------------------
8745 -- Enumeration_Type_Declaration --
8746 ----------------------------------
8748 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
8755 -- Create identifier node representing lower bound
8757 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
8758 L
:= First
(Literals
(Def
));
8759 Set_Chars
(B_Node
, Chars
(L
));
8760 Set_Entity
(B_Node
, L
);
8761 Set_Etype
(B_Node
, T
);
8762 Set_Is_Static_Expression
(B_Node
, True);
8764 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
8765 Set_Low_Bound
(R_Node
, B_Node
);
8767 Set_Ekind
(T
, E_Enumeration_Type
);
8768 Set_First_Literal
(T
, L
);
8770 Set_Is_Constrained
(T
);
8774 -- Loop through literals of enumeration type setting pos and rep values
8775 -- except that if the Ekind is already set, then it means that the
8776 -- literal was already constructed (case of a derived type declaration
8777 -- and we should not disturb the Pos and Rep values.
8779 while Present
(L
) loop
8780 if Ekind
(L
) /= E_Enumeration_Literal
then
8781 Set_Ekind
(L
, E_Enumeration_Literal
);
8782 Set_Enumeration_Pos
(L
, Ev
);
8783 Set_Enumeration_Rep
(L
, Ev
);
8784 Set_Is_Known_Valid
(L
, True);
8788 New_Overloaded_Entity
(L
);
8789 Generate_Definition
(L
);
8790 Set_Convention
(L
, Convention_Intrinsic
);
8792 if Nkind
(L
) = N_Defining_Character_Literal
then
8793 Set_Is_Character_Type
(T
, True);
8800 -- Now create a node representing upper bound
8802 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
8803 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
8804 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
8805 Set_Etype
(B_Node
, T
);
8806 Set_Is_Static_Expression
(B_Node
, True);
8808 Set_High_Bound
(R_Node
, B_Node
);
8809 Set_Scalar_Range
(T
, R_Node
);
8810 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
8813 -- Set Discard_Names if configuration pragma setg, or if there is
8814 -- a parameterless pragma in the current declarative region
8816 if Global_Discard_Names
8817 or else Discard_Names
(Scope
(T
))
8819 Set_Discard_Names
(T
);
8821 end Enumeration_Type_Declaration
;
8823 --------------------------
8824 -- Expand_Others_Choice --
8825 --------------------------
8827 procedure Expand_Others_Choice
8828 (Case_Table
: Choice_Table_Type
;
8829 Others_Choice
: Node_Id
;
8830 Choice_Type
: Entity_Id
)
8833 Choice_List
: List_Id
:= New_List
;
8838 Loc
: Source_Ptr
:= Sloc
(Others_Choice
);
8841 function Build_Choice
(Value1
, Value2
: Uint
) return Node_Id
;
8842 -- Builds a node representing the missing choices given by the
8843 -- Value1 and Value2. A N_Range node is built if there is more than
8844 -- one literal value missing. Otherwise a single N_Integer_Literal,
8845 -- N_Identifier or N_Character_Literal is built depending on what
8848 function Lit_Of
(Value
: Uint
) return Node_Id
;
8849 -- Returns the Node_Id for the enumeration literal corresponding to the
8850 -- position given by Value within the enumeration type Choice_Type.
8856 function Build_Choice
(Value1
, Value2
: Uint
) return Node_Id
is
8861 -- If there is only one choice value missing between Value1 and
8862 -- Value2, build an integer or enumeration literal to represent it.
8864 if (Value2
- Value1
) = 0 then
8865 if Is_Integer_Type
(Choice_Type
) then
8866 Lit_Node
:= Make_Integer_Literal
(Loc
, Value1
);
8867 Set_Etype
(Lit_Node
, Choice_Type
);
8869 Lit_Node
:= Lit_Of
(Value1
);
8872 -- Otherwise is more that one choice value that is missing between
8873 -- Value1 and Value2, therefore build a N_Range node of either
8874 -- integer or enumeration literals.
8877 if Is_Integer_Type
(Choice_Type
) then
8878 Lo
:= Make_Integer_Literal
(Loc
, Value1
);
8879 Set_Etype
(Lo
, Choice_Type
);
8880 Hi
:= Make_Integer_Literal
(Loc
, Value2
);
8881 Set_Etype
(Hi
, Choice_Type
);
8890 Low_Bound
=> Lit_Of
(Value1
),
8891 High_Bound
=> Lit_Of
(Value2
));
8902 function Lit_Of
(Value
: Uint
) return Node_Id
is
8906 -- In the case where the literal is of type Character, there needs
8907 -- to be some special handling since there is no explicit chain
8908 -- of literals to search. Instead, a N_Character_Literal node
8909 -- is created with the appropriate Char_Code and Chars fields.
8911 if Root_Type
(Choice_Type
) = Standard_Character
then
8912 Set_Character_Literal_Name
(Char_Code
(UI_To_Int
(Value
)));
8913 Lit
:= New_Node
(N_Character_Literal
, Loc
);
8914 Set_Chars
(Lit
, Name_Find
);
8915 Set_Char_Literal_Value
(Lit
, Char_Code
(UI_To_Int
(Value
)));
8916 Set_Etype
(Lit
, Choice_Type
);
8917 Set_Is_Static_Expression
(Lit
, True);
8920 -- Otherwise, iterate through the literals list of Choice_Type
8921 -- "Value" number of times until the desired literal is reached
8922 -- and then return an occurrence of it.
8925 Lit
:= First_Literal
(Choice_Type
);
8926 for J
in 1 .. UI_To_Int
(Value
) loop
8930 return New_Occurrence_Of
(Lit
, Loc
);
8934 -- Start of processing for Expand_Others_Choice
8937 if Case_Table
'Length = 0 then
8939 -- Pathological case: only an others case is present.
8940 -- The others case covers the full range of the type.
8942 if Is_Static_Subtype
(Choice_Type
) then
8943 Choice
:= New_Occurrence_Of
(Choice_Type
, Loc
);
8945 Choice
:= New_Occurrence_Of
(Base_Type
(Choice_Type
), Loc
);
8948 Set_Others_Discrete_Choices
(Others_Choice
, New_List
(Choice
));
8952 -- Establish the bound values for the variant depending upon whether
8953 -- the type of the discriminant name is static or not.
8955 if Is_OK_Static_Subtype
(Choice_Type
) then
8956 Exp_Lo
:= Type_Low_Bound
(Choice_Type
);
8957 Exp_Hi
:= Type_High_Bound
(Choice_Type
);
8959 Exp_Lo
:= Type_Low_Bound
(Base_Type
(Choice_Type
));
8960 Exp_Hi
:= Type_High_Bound
(Base_Type
(Choice_Type
));
8963 Lo
:= Expr_Value
(Case_Table
(Case_Table
'First).Lo
);
8964 Hi
:= Expr_Value
(Case_Table
(Case_Table
'First).Hi
);
8965 Previous_Hi
:= Expr_Value
(Case_Table
(Case_Table
'First).Hi
);
8967 -- Build the node for any missing choices that are smaller than any
8968 -- explicit choices given in the variant.
8970 if Expr_Value
(Exp_Lo
) < Lo
then
8971 Append
(Build_Choice
(Expr_Value
(Exp_Lo
), Lo
- 1), Choice_List
);
8974 -- Build the nodes representing any missing choices that lie between
8975 -- the explicit ones given in the variant.
8977 for J
in Case_Table
'First + 1 .. Case_Table
'Last loop
8978 Lo
:= Expr_Value
(Case_Table
(J
).Lo
);
8979 Hi
:= Expr_Value
(Case_Table
(J
).Hi
);
8981 if Lo
/= (Previous_Hi
+ 1) then
8982 Append_To
(Choice_List
, Build_Choice
(Previous_Hi
+ 1, Lo
- 1));
8988 -- Build the node for any missing choices that are greater than any
8989 -- explicit choices given in the variant.
8991 if Expr_Value
(Exp_Hi
) > Hi
then
8992 Append
(Build_Choice
(Hi
+ 1, Expr_Value
(Exp_Hi
)), Choice_List
);
8995 Set_Others_Discrete_Choices
(Others_Choice
, Choice_List
);
8996 end Expand_Others_Choice
;
8998 ---------------------------------
8999 -- Expand_To_Girder_Constraint --
9000 ---------------------------------
9002 function Expand_To_Girder_Constraint
9004 Constraint
: Elist_Id
)
9007 Explicitly_Discriminated_Type
: Entity_Id
;
9008 Expansion
: Elist_Id
;
9009 Discriminant
: Entity_Id
;
9011 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
9012 -- Find the nearest type that actually specifies discriminants.
9014 ---------------------------------
9015 -- Type_With_Explicit_Discrims --
9016 ---------------------------------
9018 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
9019 Typ
: constant E
:= Base_Type
(Id
);
9022 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
9023 if Present
(Full_View
(Typ
)) then
9024 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
9028 if Has_Discriminants
(Typ
) then
9033 if Etype
(Typ
) = Typ
then
9035 elsif Has_Discriminants
(Typ
) then
9038 return Type_With_Explicit_Discrims
(Etype
(Typ
));
9041 end Type_With_Explicit_Discrims
;
9043 -- Start of processing for Expand_To_Girder_Constraint
9047 or else Is_Empty_Elmt_List
(Constraint
)
9052 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
9054 if No
(Explicitly_Discriminated_Type
) then
9058 Expansion
:= New_Elmt_List
;
9061 First_Girder_Discriminant
(Explicitly_Discriminated_Type
);
9063 while Present
(Discriminant
) loop
9066 Get_Discriminant_Value
(
9067 Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
9070 Next_Girder_Discriminant
(Discriminant
);
9074 end Expand_To_Girder_Constraint
;
9076 --------------------
9077 -- Find_Type_Name --
9078 --------------------
9080 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
9081 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
9087 -- Find incomplete declaration, if some was given.
9089 Prev
:= Current_Entity_In_Scope
(Id
);
9091 if Present
(Prev
) then
9093 -- Previous declaration exists. Error if not incomplete/private case
9094 -- except if previous declaration is implicit, etc. Enter_Name will
9095 -- emit error if appropriate.
9097 Prev_Par
:= Parent
(Prev
);
9099 if not Is_Incomplete_Or_Private_Type
(Prev
) then
9103 elsif Nkind
(N
) /= N_Full_Type_Declaration
9104 and then Nkind
(N
) /= N_Task_Type_Declaration
9105 and then Nkind
(N
) /= N_Protected_Type_Declaration
9107 -- Completion must be a full type declarations (RM 7.3(4))
9109 Error_Msg_Sloc
:= Sloc
(Prev
);
9110 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
9112 -- Set scope of Id to avoid cascaded errors. Entity is never
9113 -- examined again, except when saving globals in generics.
9115 Set_Scope
(Id
, Current_Scope
);
9118 -- Case of full declaration of incomplete type
9120 elsif Ekind
(Prev
) = E_Incomplete_Type
then
9122 -- Indicate that the incomplete declaration has a matching
9123 -- full declaration. The defining occurrence of the incomplete
9124 -- declaration remains the visible one, and the procedure
9125 -- Get_Full_View dereferences it whenever the type is used.
9127 if Present
(Full_View
(Prev
)) then
9128 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
9131 Set_Full_View
(Prev
, Id
);
9132 Append_Entity
(Id
, Current_Scope
);
9133 Set_Is_Public
(Id
, Is_Public
(Prev
));
9134 Set_Is_Internal
(Id
);
9137 -- Case of full declaration of private type
9140 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
9141 if Etype
(Prev
) /= Prev
then
9143 -- Prev is a private subtype or a derived type, and needs
9146 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
9149 elsif Ekind
(Prev
) = E_Private_Type
9151 (Nkind
(N
) = N_Task_Type_Declaration
9152 or else Nkind
(N
) = N_Protected_Type_Declaration
)
9155 ("completion of nonlimited type cannot be limited", N
);
9158 elsif Nkind
(N
) /= N_Full_Type_Declaration
9159 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
9161 Error_Msg_N
("full view of private extension must be"
9162 & " an extension", N
);
9164 elsif not (Abstract_Present
(Parent
(Prev
)))
9165 and then Abstract_Present
(Type_Definition
(N
))
9167 Error_Msg_N
("full view of non-abstract extension cannot"
9168 & " be abstract", N
);
9171 if not In_Private_Part
(Current_Scope
) then
9173 ("declaration of full view must appear in private part", N
);
9176 Copy_And_Swap
(Prev
, Id
);
9177 Set_Full_View
(Id
, Prev
);
9178 Set_Has_Private_Declaration
(Prev
);
9179 Set_Has_Private_Declaration
(Id
);
9183 -- Verify that full declaration conforms to incomplete one
9185 if Is_Incomplete_Or_Private_Type
(Prev
)
9186 and then Present
(Discriminant_Specifications
(Prev_Par
))
9188 if Present
(Discriminant_Specifications
(N
)) then
9189 if Ekind
(Prev
) = E_Incomplete_Type
then
9190 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
9192 Check_Discriminant_Conformance
(N
, Prev
, Id
);
9197 ("missing discriminants in full type declaration", N
);
9199 -- To avoid cascaded errors on subsequent use, share the
9200 -- discriminants of the partial view.
9202 Set_Discriminant_Specifications
(N
,
9203 Discriminant_Specifications
(Prev_Par
));
9207 -- A prior untagged private type can have an associated
9208 -- class-wide type due to use of the class attribute,
9209 -- and in this case also the full type is required to
9213 and then (Is_Tagged_Type
(Prev
)
9214 or else Present
(Class_Wide_Type
(Prev
)))
9216 -- The full declaration is either a tagged record or an
9217 -- extension otherwise this is an error
9219 if Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
9220 if not Tagged_Present
(Type_Definition
(N
)) then
9222 ("full declaration of } must be tagged", Prev
, Id
);
9223 Set_Is_Tagged_Type
(Id
);
9224 Set_Primitive_Operations
(Id
, New_Elmt_List
);
9227 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
9228 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
9230 "full declaration of } must be a record extension",
9232 Set_Is_Tagged_Type
(Id
);
9233 Set_Primitive_Operations
(Id
, New_Elmt_List
);
9238 ("full declaration of } must be a tagged type", Prev
, Id
);
9246 -- New type declaration
9253 -------------------------
9254 -- Find_Type_Of_Object --
9255 -------------------------
9257 function Find_Type_Of_Object
9259 Related_Nod
: Node_Id
)
9262 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
9263 P
: constant Node_Id
:= Parent
(Obj_Def
);
9268 -- Case of an anonymous array subtype
9270 if Def_Kind
= N_Constrained_Array_Definition
9271 or else Def_Kind
= N_Unconstrained_Array_Definition
9274 Array_Type_Declaration
(T
, Obj_Def
);
9276 -- Create an explicit subtype whenever possible.
9278 elsif Nkind
(P
) /= N_Component_Declaration
9279 and then Def_Kind
= N_Subtype_Indication
9281 -- Base name of subtype on object name, which will be unique in
9282 -- the current scope.
9284 -- If this is a duplicate declaration, return base type, to avoid
9285 -- generating duplicate anonymous types.
9287 if Error_Posted
(P
) then
9288 Analyze
(Subtype_Mark
(Obj_Def
));
9289 return Entity
(Subtype_Mark
(Obj_Def
));
9294 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
9296 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
9298 Insert_Action
(Obj_Def
,
9299 Make_Subtype_Declaration
(Sloc
(P
),
9300 Defining_Identifier
=> T
,
9301 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
9303 -- This subtype may need freezing and it will not be done
9304 -- automatically if the object declaration is not in a
9305 -- declarative part. Since this is an object declaration, the
9306 -- type cannot always be frozen here. Deferred constants do not
9307 -- freeze their type (which often enough will be private).
9309 if Nkind
(P
) = N_Object_Declaration
9310 and then Constant_Present
(P
)
9311 and then No
(Expression
(P
))
9316 Insert_Actions
(Obj_Def
, Freeze_Entity
(T
, Sloc
(P
)));
9320 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
9324 end Find_Type_Of_Object
;
9326 --------------------------------
9327 -- Find_Type_Of_Subtype_Indic --
9328 --------------------------------
9330 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
9334 -- Case of subtype mark with a constraint
9336 if Nkind
(S
) = N_Subtype_Indication
then
9337 Find_Type
(Subtype_Mark
(S
));
9338 Typ
:= Entity
(Subtype_Mark
(S
));
9341 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
9344 ("incorrect constraint for this kind of type", Constraint
(S
));
9345 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
9348 -- Otherwise we have a subtype mark without a constraint
9350 elsif Error_Posted
(S
) then
9351 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
9359 if Typ
= Standard_Wide_Character
9360 or else Typ
= Standard_Wide_String
9362 Check_Restriction
(No_Wide_Characters
, S
);
9366 end Find_Type_Of_Subtype_Indic
;
9368 -------------------------------------
9369 -- Floating_Point_Type_Declaration --
9370 -------------------------------------
9372 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
9373 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
9375 Base_Typ
: Entity_Id
;
9376 Implicit_Base
: Entity_Id
;
9379 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
9380 -- Find if given digits value allows derivation from specified type
9382 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
9383 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
9386 if Digs_Val
> Digits_Value
(E
) then
9390 if Present
(Spec
) then
9391 if Expr_Value_R
(Type_Low_Bound
(E
)) >
9392 Expr_Value_R
(Low_Bound
(Spec
))
9397 if Expr_Value_R
(Type_High_Bound
(E
)) <
9398 Expr_Value_R
(High_Bound
(Spec
))
9405 end Can_Derive_From
;
9407 -- Start of processing for Floating_Point_Type_Declaration
9410 Check_Restriction
(No_Floating_Point
, Def
);
9412 -- Create an implicit base type
9415 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
9417 -- Analyze and verify digits value
9419 Analyze_And_Resolve
(Digs
, Any_Integer
);
9420 Check_Digits_Expression
(Digs
);
9421 Digs_Val
:= Expr_Value
(Digs
);
9423 -- Process possible range spec and find correct type to derive from
9425 Process_Real_Range_Specification
(Def
);
9427 if Can_Derive_From
(Standard_Short_Float
) then
9428 Base_Typ
:= Standard_Short_Float
;
9429 elsif Can_Derive_From
(Standard_Float
) then
9430 Base_Typ
:= Standard_Float
;
9431 elsif Can_Derive_From
(Standard_Long_Float
) then
9432 Base_Typ
:= Standard_Long_Float
;
9433 elsif Can_Derive_From
(Standard_Long_Long_Float
) then
9434 Base_Typ
:= Standard_Long_Long_Float
;
9436 -- If we can't derive from any existing type, use long long float
9437 -- and give appropriate message explaining the problem.
9440 Base_Typ
:= Standard_Long_Long_Float
;
9442 if Digs_Val
>= Digits_Value
(Standard_Long_Long_Float
) then
9443 Error_Msg_Uint_1
:= Digits_Value
(Standard_Long_Long_Float
);
9444 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
9448 ("range too large for any predefined type",
9449 Real_Range_Specification
(Def
));
9453 -- If there are bounds given in the declaration use them as the bounds
9454 -- of the type, otherwise use the bounds of the predefined base type
9455 -- that was chosen based on the Digits value.
9457 if Present
(Real_Range_Specification
(Def
)) then
9458 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
9459 Set_Is_Constrained
(T
);
9461 -- The bounds of this range must be converted to machine numbers
9462 -- in accordance with RM 4.9(38).
9464 Bound
:= Type_Low_Bound
(T
);
9466 if Nkind
(Bound
) = N_Real_Literal
then
9467 Set_Realval
(Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
));
9468 Set_Is_Machine_Number
(Bound
);
9471 Bound
:= Type_High_Bound
(T
);
9473 if Nkind
(Bound
) = N_Real_Literal
then
9474 Set_Realval
(Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
));
9475 Set_Is_Machine_Number
(Bound
);
9479 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
9482 -- Complete definition of implicit base and declared first subtype
9484 Set_Etype
(Implicit_Base
, Base_Typ
);
9486 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
9487 Set_Size_Info
(Implicit_Base
, (Base_Typ
));
9488 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
9489 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
9490 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
9491 Set_Vax_Float
(Implicit_Base
, Vax_Float
(Base_Typ
));
9493 Set_Ekind
(T
, E_Floating_Point_Subtype
);
9494 Set_Etype
(T
, Implicit_Base
);
9496 Set_Size_Info
(T
, (Implicit_Base
));
9497 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
9498 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
9499 Set_Digits_Value
(T
, Digs_Val
);
9501 end Floating_Point_Type_Declaration
;
9503 ----------------------------
9504 -- Get_Discriminant_Value --
9505 ----------------------------
9507 -- This is the situation...
9509 -- There is a non-derived type
9511 -- type T0 (Dx, Dy, Dz...)
9513 -- There are zero or more levels of derivation, with each
9514 -- derivation either purely inheriting the discriminants, or
9515 -- defining its own.
9517 -- type Ti is new Ti-1
9519 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
9521 -- subtype Ti is ...
9523 -- The subtype issue is avoided by the use of
9524 -- Original_Record_Component, and the fact that derived subtypes
9525 -- also derive the constraits.
9527 -- This chain leads back from
9529 -- Typ_For_Constraint
9531 -- Typ_For_Constraint has discriminants, and the value for each
9532 -- discriminant is given by its corresponding Elmt of Constraints.
9534 -- Discriminant is some discriminant in this hierarchy.
9536 -- We need to return its value.
9538 -- We do this by recursively searching each level, and looking for
9539 -- Discriminant. Once we get to the bottom, we start backing up
9540 -- returning the value for it which may in turn be a discriminant
9541 -- further up, so on the backup we continue the substitution.
9543 function Get_Discriminant_Value
9544 (Discriminant
: Entity_Id
;
9545 Typ_For_Constraint
: Entity_Id
;
9546 Constraint
: Elist_Id
)
9551 Discrim_Values
: Elist_Id
;
9552 Girder_Discrim_Values
: Boolean)
9553 return Node_Or_Entity_Id
;
9554 -- This is the routine that performs the recursive search of levels
9555 -- as described above.
9559 Discrim_Values
: Elist_Id
;
9560 Girder_Discrim_Values
: Boolean)
9561 return Node_Or_Entity_Id
9565 Result
: Node_Or_Entity_Id
;
9566 Result_Entity
: Node_Id
;
9569 -- If inappropriate type, return Error, this happens only in
9570 -- cascaded error situations, and we want to avoid a blow up.
9572 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
9576 -- Look deeper if possible. Use Girder_Constraints only for
9577 -- untagged types. For tagged types use the given constraint.
9578 -- This asymmetry needs explanation???
9580 if not Girder_Discrim_Values
9581 and then Present
(Girder_Constraint
(Ti
))
9582 and then not Is_Tagged_Type
(Ti
)
9584 Result
:= Recurse
(Ti
, Girder_Constraint
(Ti
), True);
9587 Td
: Entity_Id
:= Etype
(Ti
);
9591 Result
:= Discriminant
;
9594 if Present
(Girder_Constraint
(Ti
)) then
9596 Recurse
(Td
, Girder_Constraint
(Ti
), True);
9599 Recurse
(Td
, Discrim_Values
, Girder_Discrim_Values
);
9605 -- Extra underlying places to search, if not found above. For
9606 -- concurrent types, the relevant discriminant appears in the
9607 -- corresponding record. For a type derived from a private type
9608 -- without discriminant, the full view inherits the discriminants
9609 -- of the full view of the parent.
9611 if Result
= Discriminant
then
9612 if Is_Concurrent_Type
(Ti
)
9613 and then Present
(Corresponding_Record_Type
(Ti
))
9617 Corresponding_Record_Type
(Ti
),
9619 Girder_Discrim_Values
);
9621 elsif Is_Private_Type
(Ti
)
9622 and then not Has_Discriminants
(Ti
)
9623 and then Present
(Full_View
(Ti
))
9624 and then Etype
(Full_View
(Ti
)) /= Ti
9630 Girder_Discrim_Values
);
9634 -- If Result is not a (reference to a) discriminant,
9635 -- return it, otherwise set Result_Entity to the discriminant.
9637 if Nkind
(Result
) = N_Defining_Identifier
then
9639 pragma Assert
(Result
= Discriminant
);
9641 Result_Entity
:= Result
;
9644 if not Denotes_Discriminant
(Result
) then
9648 Result_Entity
:= Entity
(Result
);
9651 -- See if this level of derivation actually has discriminants
9652 -- because tagged derivations can add them, hence the lower
9653 -- levels need not have any.
9655 if not Has_Discriminants
(Ti
) then
9659 -- Scan Ti's discriminants for Result_Entity,
9660 -- and return its corresponding value, if any.
9662 Result_Entity
:= Original_Record_Component
(Result_Entity
);
9664 Assoc
:= First_Elmt
(Discrim_Values
);
9666 if Girder_Discrim_Values
then
9667 Disc
:= First_Girder_Discriminant
(Ti
);
9669 Disc
:= First_Discriminant
(Ti
);
9672 while Present
(Disc
) loop
9674 pragma Assert
(Present
(Assoc
));
9676 if Original_Record_Component
(Disc
) = Result_Entity
then
9677 return Node
(Assoc
);
9682 if Girder_Discrim_Values
then
9683 Next_Girder_Discriminant
(Disc
);
9685 Next_Discriminant
(Disc
);
9689 -- Could not find it
9694 Result
: Node_Or_Entity_Id
;
9696 -- Start of processing for Get_Discriminant_Value
9699 -- ??? this routine is a gigantic mess and will be deleted.
9700 -- for the time being just test for the trivial case before calling
9703 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
9705 D
: Entity_Id
:= First_Discriminant
(Typ_For_Constraint
);
9706 E
: Elmt_Id
:= First_Elmt
(Constraint
);
9708 while Present
(D
) loop
9709 if Chars
(D
) = Chars
(Discriminant
) then
9713 Next_Discriminant
(D
);
9719 Result
:= Recurse
(Typ_For_Constraint
, Constraint
, False);
9721 -- ??? hack to disappear when this routine is gone
9723 if Nkind
(Result
) = N_Defining_Identifier
then
9725 D
: Entity_Id
:= First_Discriminant
(Typ_For_Constraint
);
9726 E
: Elmt_Id
:= First_Elmt
(Constraint
);
9728 while Present
(D
) loop
9729 if Corresponding_Discriminant
(D
) = Discriminant
then
9733 Next_Discriminant
(D
);
9739 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
9741 end Get_Discriminant_Value
;
9743 --------------------------
9744 -- Has_Range_Constraint --
9745 --------------------------
9747 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
9748 C
: constant Node_Id
:= Constraint
(N
);
9751 if Nkind
(C
) = N_Range_Constraint
then
9754 elsif Nkind
(C
) = N_Digits_Constraint
then
9756 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
9758 Present
(Range_Constraint
(C
));
9760 elsif Nkind
(C
) = N_Delta_Constraint
then
9761 return Present
(Range_Constraint
(C
));
9766 end Has_Range_Constraint
;
9768 ------------------------
9769 -- Inherit_Components --
9770 ------------------------
9772 function Inherit_Components
9774 Parent_Base
: Entity_Id
;
9775 Derived_Base
: Entity_Id
;
9776 Is_Tagged
: Boolean;
9777 Inherit_Discr
: Boolean;
9781 Assoc_List
: Elist_Id
:= New_Elmt_List
;
9783 procedure Inherit_Component
9785 Plain_Discrim
: Boolean := False;
9786 Girder_Discrim
: Boolean := False);
9787 -- Inherits component Old_C from Parent_Base to the Derived_Base.
9788 -- If Plain_Discrim is True, Old_C is a discriminant.
9789 -- If Girder_Discrim is True, Old_C is a girder discriminant.
9790 -- If they are both false then Old_C is a regular component.
9792 -----------------------
9793 -- Inherit_Component --
9794 -----------------------
9796 procedure Inherit_Component
9798 Plain_Discrim
: Boolean := False;
9799 Girder_Discrim
: Boolean := False)
9801 New_C
: Entity_Id
:= New_Copy
(Old_C
);
9803 Discrim
: Entity_Id
;
9804 Corr_Discrim
: Entity_Id
;
9807 pragma Assert
(not Is_Tagged
or else not Girder_Discrim
);
9809 Set_Parent
(New_C
, Parent
(Old_C
));
9811 -- Regular discriminants and components must be inserted
9812 -- in the scope of the Derived_Base. Do it here.
9814 if not Girder_Discrim
then
9818 -- For tagged types the Original_Record_Component must point to
9819 -- whatever this field was pointing to in the parent type. This has
9820 -- already been achieved by the call to New_Copy above.
9822 if not Is_Tagged
then
9823 Set_Original_Record_Component
(New_C
, New_C
);
9826 -- If we have inherited a component then see if its Etype contains
9827 -- references to Parent_Base discriminants. In this case, replace
9828 -- these references with the constraints given in Discs. We do not
9829 -- do this for the partial view of private types because this is
9830 -- not needed (only the components of the full view will be used
9831 -- for code generation) and cause problem. We also avoid this
9832 -- transformation in some error situations.
9834 if Ekind
(New_C
) = E_Component
then
9835 if (Is_Private_Type
(Derived_Base
)
9836 and then not Is_Generic_Type
(Derived_Base
))
9837 or else (Is_Empty_Elmt_List
(Discs
)
9838 and then not Expander_Active
)
9840 Set_Etype
(New_C
, Etype
(Old_C
));
9842 Set_Etype
(New_C
, Constrain_Component_Type
(Etype
(Old_C
),
9843 Derived_Base
, N
, Parent_Base
, Discs
));
9847 -- In derived tagged types it is illegal to reference a non
9848 -- discriminant component in the parent type. To catch this, mark
9849 -- these components with an Ekind of E_Void. This will be reset in
9850 -- Record_Type_Definition after processing the record extension of
9851 -- the derived type.
9853 if Is_Tagged
and then Ekind
(New_C
) = E_Component
then
9854 Set_Ekind
(New_C
, E_Void
);
9857 if Plain_Discrim
then
9858 Set_Corresponding_Discriminant
(New_C
, Old_C
);
9859 Build_Discriminal
(New_C
);
9861 -- If we are explicitly inheriting a girder discriminant it will be
9862 -- completely hidden.
9864 elsif Girder_Discrim
then
9865 Set_Corresponding_Discriminant
(New_C
, Empty
);
9866 Set_Discriminal
(New_C
, Empty
);
9867 Set_Is_Completely_Hidden
(New_C
);
9869 -- Set the Original_Record_Component of each discriminant in the
9870 -- derived base to point to the corresponding girder that we just
9873 Discrim
:= First_Discriminant
(Derived_Base
);
9874 while Present
(Discrim
) loop
9875 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
9877 -- Corr_Discrimm could be missing in an error situation.
9879 if Present
(Corr_Discrim
)
9880 and then Original_Record_Component
(Corr_Discrim
) = Old_C
9882 Set_Original_Record_Component
(Discrim
, New_C
);
9885 Next_Discriminant
(Discrim
);
9888 Append_Entity
(New_C
, Derived_Base
);
9891 if not Is_Tagged
then
9892 Append_Elmt
(Old_C
, Assoc_List
);
9893 Append_Elmt
(New_C
, Assoc_List
);
9895 end Inherit_Component
;
9897 -- Variables local to Inherit_Components.
9899 Loc
: constant Source_Ptr
:= Sloc
(N
);
9901 Parent_Discrim
: Entity_Id
;
9902 Girder_Discrim
: Entity_Id
;
9905 Component
: Entity_Id
;
9907 -- Start of processing for Inherit_Components
9910 if not Is_Tagged
then
9911 Append_Elmt
(Parent_Base
, Assoc_List
);
9912 Append_Elmt
(Derived_Base
, Assoc_List
);
9915 -- Inherit parent discriminants if needed.
9917 if Inherit_Discr
then
9918 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
9919 while Present
(Parent_Discrim
) loop
9920 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
9921 Next_Discriminant
(Parent_Discrim
);
9925 -- Create explicit girder discrims for untagged types when necessary.
9927 if not Has_Unknown_Discriminants
(Derived_Base
)
9928 and then Has_Discriminants
(Parent_Base
)
9929 and then not Is_Tagged
9932 or else First_Discriminant
(Parent_Base
) /=
9933 First_Girder_Discriminant
(Parent_Base
))
9935 Girder_Discrim
:= First_Girder_Discriminant
(Parent_Base
);
9936 while Present
(Girder_Discrim
) loop
9937 Inherit_Component
(Girder_Discrim
, Girder_Discrim
=> True);
9938 Next_Girder_Discriminant
(Girder_Discrim
);
9942 -- See if we can apply the second transformation for derived types, as
9943 -- explained in point 6. in the comments above Build_Derived_Record_Type
9944 -- This is achieved by appending Derived_Base discriminants into
9945 -- Discs, which has the side effect of returning a non empty Discs
9946 -- list to the caller of Inherit_Components, which is what we want.
9949 and then Is_Empty_Elmt_List
(Discs
)
9950 and then (not Is_Private_Type
(Derived_Base
)
9951 or Is_Generic_Type
(Derived_Base
))
9953 D
:= First_Discriminant
(Derived_Base
);
9954 while Present
(D
) loop
9955 Append_Elmt
(New_Reference_To
(D
, Loc
), Discs
);
9956 Next_Discriminant
(D
);
9960 -- Finally, inherit non-discriminant components unless they are not
9961 -- visible because defined or inherited from the full view of the
9962 -- parent. Don't inherit the _parent field of the parent type.
9964 Component
:= First_Entity
(Parent_Base
);
9965 while Present
(Component
) loop
9966 if Ekind
(Component
) /= E_Component
9967 or else Chars
(Component
) = Name_uParent
9971 -- If the derived type is within the parent type's declarative
9972 -- region, then the components can still be inherited even though
9973 -- they aren't visible at this point. This can occur for cases
9974 -- such as within public child units where the components must
9975 -- become visible upon entering the child unit's private part.
9977 elsif not Is_Visible_Component
(Component
)
9978 and then not In_Open_Scopes
(Scope
(Parent_Base
))
9982 elsif Ekind
(Derived_Base
) = E_Private_Type
9983 or else Ekind
(Derived_Base
) = E_Limited_Private_Type
9988 Inherit_Component
(Component
);
9991 Next_Entity
(Component
);
9994 -- For tagged derived types, inherited discriminants cannot be used in
9995 -- component declarations of the record extension part. To achieve this
9996 -- we mark the inherited discriminants as not visible.
9998 if Is_Tagged
and then Inherit_Discr
then
9999 D
:= First_Discriminant
(Derived_Base
);
10000 while Present
(D
) loop
10001 Set_Is_Immediately_Visible
(D
, False);
10002 Next_Discriminant
(D
);
10007 end Inherit_Components
;
10009 ------------------------------
10010 -- Is_Valid_Constraint_Kind --
10011 ------------------------------
10013 function Is_Valid_Constraint_Kind
10014 (T_Kind
: Type_Kind
;
10015 Constraint_Kind
: Node_Kind
)
10021 when Enumeration_Kind |
10023 return Constraint_Kind
= N_Range_Constraint
;
10025 when Decimal_Fixed_Point_Kind
=>
10027 Constraint_Kind
= N_Digits_Constraint
10029 Constraint_Kind
= N_Range_Constraint
;
10031 when Ordinary_Fixed_Point_Kind
=>
10033 Constraint_Kind
= N_Delta_Constraint
10035 Constraint_Kind
= N_Range_Constraint
;
10039 Constraint_Kind
= N_Digits_Constraint
10041 Constraint_Kind
= N_Range_Constraint
;
10048 E_Incomplete_Type |
10051 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
10054 return True; -- Error will be detected later.
10057 end Is_Valid_Constraint_Kind
;
10059 --------------------------
10060 -- Is_Visible_Component --
10061 --------------------------
10063 function Is_Visible_Component
(C
: Entity_Id
) return Boolean is
10064 Original_Comp
: constant Entity_Id
:= Original_Record_Component
(C
);
10065 Original_Scope
: Entity_Id
;
10068 if No
(Original_Comp
) then
10070 -- Premature usage, or previous error
10075 Original_Scope
:= Scope
(Original_Comp
);
10078 -- This test only concern tagged types
10080 if not Is_Tagged_Type
(Original_Scope
) then
10083 -- If it is _Parent or _Tag, there is no visiblity issue
10085 elsif not Comes_From_Source
(Original_Comp
) then
10088 -- If we are in the body of an instantiation, the component is
10089 -- visible even when the parent type (possibly defined in an
10090 -- enclosing unit or in a parent unit) might not.
10092 elsif In_Instance_Body
then
10095 -- Discriminants are always visible.
10097 elsif Ekind
(Original_Comp
) = E_Discriminant
10098 and then not Has_Unknown_Discriminants
(Original_Scope
)
10102 -- If the component has been declared in an ancestor which is
10103 -- currently a private type, then it is not visible. The same
10104 -- applies if the component's containing type is not in an
10105 -- open scope and the original component's enclosing type
10106 -- is a visible full type of a private type (which can occur
10107 -- in cases where an attempt is being made to reference a
10108 -- component in a sibling package that is inherited from
10109 -- a visible component of a type in an ancestor package;
10110 -- the component in the sibling package should not be
10111 -- visible even though the component it inherited from
10112 -- is visible). This does not apply however in the case
10113 -- where the scope of the type is a private child unit.
10114 -- The latter suppression of visibility is needed for cases
10115 -- that are tested in B730006.
10117 elsif (Ekind
(Original_Comp
) /= E_Discriminant
10118 or else Has_Unknown_Discriminants
(Original_Scope
))
10120 (Is_Private_Type
(Original_Scope
)
10122 (not Is_Private_Descendant
(Scope
(Base_Type
(Scope
(C
))))
10123 and then not In_Open_Scopes
(Scope
(Base_Type
(Scope
(C
))))
10124 and then Has_Private_Declaration
(Original_Scope
)))
10128 -- There is another weird way in which a component may be invisible
10129 -- when the private and the full view are not derived from the same
10130 -- ancestor. Here is an example :
10132 -- type A1 is tagged record F1 : integer; end record;
10133 -- type A2 is new A1 with record F2 : integer; end record;
10134 -- type T is new A1 with private;
10136 -- type T is new A2 with private;
10138 -- In this case, the full view of T inherits F1 and F2 but the
10139 -- private view inherits only F1
10143 Ancestor
: Entity_Id
:= Scope
(C
);
10147 if Ancestor
= Original_Scope
then
10149 elsif Ancestor
= Etype
(Ancestor
) then
10153 Ancestor
:= Etype
(Ancestor
);
10159 end Is_Visible_Component
;
10161 --------------------------
10162 -- Make_Class_Wide_Type --
10163 --------------------------
10165 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
10166 CW_Type
: Entity_Id
;
10168 Next_E
: Entity_Id
;
10171 -- The class wide type can have been defined by the partial view in
10172 -- which case everything is already done
10174 if Present
(Class_Wide_Type
(T
)) then
10179 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
10181 -- Inherit root type characteristics
10183 CW_Name
:= Chars
(CW_Type
);
10184 Next_E
:= Next_Entity
(CW_Type
);
10185 Copy_Node
(T
, CW_Type
);
10186 Set_Comes_From_Source
(CW_Type
, False);
10187 Set_Chars
(CW_Type
, CW_Name
);
10188 Set_Parent
(CW_Type
, Parent
(T
));
10189 Set_Next_Entity
(CW_Type
, Next_E
);
10190 Set_Has_Delayed_Freeze
(CW_Type
);
10192 -- Customize the class-wide type: It has no prim. op., it cannot be
10193 -- abstract and its Etype points back to the root type
10195 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
10196 Set_Is_Tagged_Type
(CW_Type
, True);
10197 Set_Primitive_Operations
(CW_Type
, New_Elmt_List
);
10198 Set_Is_Abstract
(CW_Type
, False);
10199 Set_Etype
(CW_Type
, T
);
10200 Set_Is_Constrained
(CW_Type
, False);
10201 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
10202 Init_Size_Align
(CW_Type
);
10204 -- If this is the class_wide type of a constrained subtype, it does
10205 -- not have discriminants.
10207 Set_Has_Discriminants
(CW_Type
,
10208 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
10210 Set_Has_Unknown_Discriminants
(CW_Type
, True);
10211 Set_Class_Wide_Type
(T
, CW_Type
);
10212 Set_Equivalent_Type
(CW_Type
, Empty
);
10214 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
10216 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
10218 end Make_Class_Wide_Type
;
10224 procedure Make_Index
10226 Related_Nod
: Node_Id
;
10227 Related_Id
: Entity_Id
:= Empty
;
10228 Suffix_Index
: Nat
:= 1)
10232 Def_Id
: Entity_Id
:= Empty
;
10233 Found
: Boolean := False;
10236 -- For a discrete range used in a constrained array definition and
10237 -- defined by a range, an implicit conversion to the predefined type
10238 -- INTEGER is assumed if each bound is either a numeric literal, a named
10239 -- number, or an attribute, and the type of both bounds (prior to the
10240 -- implicit conversion) is the type universal_integer. Otherwise, both
10241 -- bounds must be of the same discrete type, other than universal
10242 -- integer; this type must be determinable independently of the
10243 -- context, but using the fact that the type must be discrete and that
10244 -- both bounds must have the same type.
10246 -- Character literals also have a universal type in the absence of
10247 -- of additional context, and are resolved to Standard_Character.
10249 if Nkind
(I
) = N_Range
then
10251 -- The index is given by a range constraint. The bounds are known
10252 -- to be of a consistent type.
10254 if not Is_Overloaded
(I
) then
10257 -- If the bounds are universal, choose the specific predefined
10260 if T
= Universal_Integer
then
10261 T
:= Standard_Integer
;
10263 elsif T
= Any_Character
then
10267 ("ambiguous character literals (could be Wide_Character)",
10271 T
:= Standard_Character
;
10278 Ind
: Interp_Index
;
10282 Get_First_Interp
(I
, Ind
, It
);
10284 while Present
(It
.Typ
) loop
10285 if Is_Discrete_Type
(It
.Typ
) then
10288 and then not Covers
(It
.Typ
, T
)
10289 and then not Covers
(T
, It
.Typ
)
10291 Error_Msg_N
("ambiguous bounds in discrete range", I
);
10299 Get_Next_Interp
(Ind
, It
);
10302 if T
= Any_Type
then
10303 Error_Msg_N
("discrete type required for range", I
);
10304 Set_Etype
(I
, Any_Type
);
10307 elsif T
= Universal_Integer
then
10308 T
:= Standard_Integer
;
10313 if not Is_Discrete_Type
(T
) then
10314 Error_Msg_N
("discrete type required for range", I
);
10315 Set_Etype
(I
, Any_Type
);
10320 Process_Range_Expr_In_Decl
(R
, T
, Related_Nod
);
10322 elsif Nkind
(I
) = N_Subtype_Indication
then
10324 -- The index is given by a subtype with a range constraint.
10326 T
:= Base_Type
(Entity
(Subtype_Mark
(I
)));
10328 if not Is_Discrete_Type
(T
) then
10329 Error_Msg_N
("discrete type required for range", I
);
10330 Set_Etype
(I
, Any_Type
);
10334 R
:= Range_Expression
(Constraint
(I
));
10337 Process_Range_Expr_In_Decl
(R
,
10338 Entity
(Subtype_Mark
(I
)), Related_Nod
);
10340 elsif Nkind
(I
) = N_Attribute_Reference
then
10342 -- The parser guarantees that the attribute is a RANGE attribute
10344 Analyze_And_Resolve
(I
);
10348 -- If none of the above, must be a subtype. We convert this to a
10349 -- range attribute reference because in the case of declared first
10350 -- named subtypes, the types in the range reference can be different
10351 -- from the type of the entity. A range attribute normalizes the
10352 -- reference and obtains the correct types for the bounds.
10354 -- This transformation is in the nature of an expansion, is only
10355 -- done if expansion is active. In particular, it is not done on
10356 -- formal generic types, because we need to retain the name of the
10357 -- original index for instantiation purposes.
10360 if not Is_Entity_Name
(I
) or else not Is_Type
(Entity
(I
)) then
10361 Error_Msg_N
("invalid subtype mark in discrete range ", I
);
10362 Set_Etype
(I
, Any_Integer
);
10365 -- The type mark may be that of an incomplete type. It is only
10366 -- now that we can get the full view, previous analysis does
10367 -- not look specifically for a type mark.
10369 Set_Entity
(I
, Get_Full_View
(Entity
(I
)));
10370 Set_Etype
(I
, Entity
(I
));
10371 Def_Id
:= Entity
(I
);
10373 if not Is_Discrete_Type
(Def_Id
) then
10374 Error_Msg_N
("discrete type required for index", I
);
10375 Set_Etype
(I
, Any_Type
);
10380 if Expander_Active
then
10382 Make_Attribute_Reference
(Sloc
(I
),
10383 Attribute_Name
=> Name_Range
,
10384 Prefix
=> Relocate_Node
(I
)));
10386 -- The original was a subtype mark that does not freeze. This
10387 -- means that the rewritten version must not freeze either.
10389 Set_Must_Not_Freeze
(I
);
10390 Set_Must_Not_Freeze
(Prefix
(I
));
10392 -- Is order critical??? if so, document why, if not
10393 -- use Analyze_And_Resolve
10401 -- Type is legal, nothing else to construct.
10406 if not Is_Discrete_Type
(T
) then
10407 Error_Msg_N
("discrete type required for range", I
);
10408 Set_Etype
(I
, Any_Type
);
10411 elsif T
= Any_Type
then
10412 Set_Etype
(I
, Any_Type
);
10416 -- We will now create the appropriate Itype to describe the
10417 -- range, but first a check. If we originally had a subtype,
10418 -- then we just label the range with this subtype. Not only
10419 -- is there no need to construct a new subtype, but it is wrong
10420 -- to do so for two reasons:
10422 -- 1. A legality concern, if we have a subtype, it must not
10423 -- freeze, and the Itype would cause freezing incorrectly
10425 -- 2. An efficiency concern, if we created an Itype, it would
10426 -- not be recognized as the same type for the purposes of
10427 -- eliminating checks in some circumstances.
10429 -- We signal this case by setting the subtype entity in Def_Id.
10431 -- It would be nice to also do this optimization for the cases
10432 -- of X'Range and also the explicit range X'First .. X'Last,
10433 -- but that is not done yet (it is just an efficiency concern) ???
10435 if No
(Def_Id
) then
10438 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
10439 Set_Etype
(Def_Id
, Base_Type
(T
));
10441 if Is_Signed_Integer_Type
(T
) then
10442 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
10444 elsif Is_Modular_Integer_Type
(T
) then
10445 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
10448 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
10449 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
10452 Set_Size_Info
(Def_Id
, (T
));
10453 Set_RM_Size
(Def_Id
, RM_Size
(T
));
10454 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
10456 Set_Scalar_Range
(Def_Id
, R
);
10457 Conditional_Delay
(Def_Id
, T
);
10459 -- In the subtype indication case, if the immediate parent of the
10460 -- new subtype is non-static, then the subtype we create is non-
10461 -- static, even if its bounds are static.
10463 if Nkind
(I
) = N_Subtype_Indication
10464 and then not Is_Static_Subtype
(Entity
(Subtype_Mark
(I
)))
10466 Set_Is_Non_Static_Subtype
(Def_Id
);
10470 -- Final step is to label the index with this constructed type
10472 Set_Etype
(I
, Def_Id
);
10475 ------------------------------
10476 -- Modular_Type_Declaration --
10477 ------------------------------
10479 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
10480 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
10483 procedure Set_Modular_Size
(Bits
: Int
);
10484 -- Sets RM_Size to Bits, and Esize to normal word size above this
10486 procedure Set_Modular_Size
(Bits
: Int
) is
10488 Set_RM_Size
(T
, UI_From_Int
(Bits
));
10493 elsif Bits
<= 16 then
10494 Init_Esize
(T
, 16);
10496 elsif Bits
<= 32 then
10497 Init_Esize
(T
, 32);
10500 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
10502 end Set_Modular_Size
;
10504 -- Start of processing for Modular_Type_Declaration
10507 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
10509 Set_Ekind
(T
, E_Modular_Integer_Type
);
10510 Init_Alignment
(T
);
10511 Set_Is_Constrained
(T
);
10513 if not Is_OK_Static_Expression
(Mod_Expr
) then
10515 ("non-static expression used for modular type bound", Mod_Expr
);
10516 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
10518 M_Val
:= Expr_Value
(Mod_Expr
);
10522 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
10523 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
10526 Set_Modulus
(T
, M_Val
);
10528 -- Create bounds for the modular type based on the modulus given in
10529 -- the type declaration and then analyze and resolve those bounds.
10531 Set_Scalar_Range
(T
,
10532 Make_Range
(Sloc
(Mod_Expr
),
10534 Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
10536 Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
10538 -- Properly analyze the literals for the range. We do this manually
10539 -- because we can't go calling Resolve, since we are resolving these
10540 -- bounds with the type, and this type is certainly not complete yet!
10542 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
10543 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
10544 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
10545 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
10547 -- Loop through powers of two to find number of bits required
10549 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
10553 if M_Val
= 2 ** Bits
then
10554 Set_Modular_Size
(Bits
);
10559 elsif M_Val
< 2 ** Bits
then
10560 Set_Non_Binary_Modulus
(T
);
10562 if Bits
> System_Max_Nonbinary_Modulus_Power
then
10563 Error_Msg_Uint_1
:=
10564 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
10566 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
10567 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
10571 -- In the non-binary case, set size as per RM 13.3(55).
10573 Set_Modular_Size
(Bits
);
10580 -- If we fall through, then the size exceed System.Max_Binary_Modulus
10581 -- so we just signal an error and set the maximum size.
10583 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
10584 Error_Msg_N
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
10586 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
10587 Init_Alignment
(T
);
10589 end Modular_Type_Declaration
;
10591 -------------------------
10592 -- New_Binary_Operator --
10593 -------------------------
10595 procedure New_Binary_Operator
(Op_Name
: Name_Id
; Typ
: Entity_Id
) is
10596 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
10599 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
10600 -- Create abbreviated declaration for the formal of a predefined
10601 -- Operator 'Op' of type 'Typ'
10603 --------------------
10604 -- Make_Op_Formal --
10605 --------------------
10607 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
10608 Formal
: Entity_Id
;
10611 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
10612 Set_Etype
(Formal
, Typ
);
10613 Set_Mechanism
(Formal
, Default_Mechanism
);
10615 end Make_Op_Formal
;
10617 -- Start of processing for New_Binary_Operator
10620 Op
:= Make_Defining_Operator_Symbol
(Loc
, Op_Name
);
10622 Set_Ekind
(Op
, E_Operator
);
10623 Set_Scope
(Op
, Current_Scope
);
10624 Set_Etype
(Op
, Typ
);
10625 Set_Homonym
(Op
, Get_Name_Entity_Id
(Op_Name
));
10626 Set_Is_Immediately_Visible
(Op
);
10627 Set_Is_Intrinsic_Subprogram
(Op
);
10628 Set_Has_Completion
(Op
);
10629 Append_Entity
(Op
, Current_Scope
);
10631 Set_Name_Entity_Id
(Op_Name
, Op
);
10633 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
10634 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
10636 end New_Binary_Operator
;
10638 -------------------------------------------
10639 -- Ordinary_Fixed_Point_Type_Declaration --
10640 -------------------------------------------
10642 procedure Ordinary_Fixed_Point_Type_Declaration
10646 Loc
: constant Source_Ptr
:= Sloc
(Def
);
10647 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
10648 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
10649 Implicit_Base
: Entity_Id
;
10656 Check_Restriction
(No_Fixed_Point
, Def
);
10658 -- Create implicit base type
10661 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
10662 Set_Etype
(Implicit_Base
, Implicit_Base
);
10664 -- Analyze and process delta expression
10666 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
10668 Check_Delta_Expression
(Delta_Expr
);
10669 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
10671 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
10673 -- Compute default small from given delta, which is the largest
10674 -- power of two that does not exceed the given delta value.
10677 Tmp
: Ureal
:= Ureal_1
;
10681 if Delta_Val
< Ureal_1
then
10682 while Delta_Val
< Tmp
loop
10683 Tmp
:= Tmp
/ Ureal_2
;
10684 Scale
:= Scale
+ 1;
10689 Tmp
:= Tmp
* Ureal_2
;
10690 exit when Tmp
> Delta_Val
;
10691 Scale
:= Scale
- 1;
10695 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
10698 Set_Small_Value
(Implicit_Base
, Small_Val
);
10700 -- If no range was given, set a dummy range
10702 if RRS
<= Empty_Or_Error
then
10703 Low_Val
:= -Small_Val
;
10704 High_Val
:= Small_Val
;
10706 -- Otherwise analyze and process given range
10710 Low
: constant Node_Id
:= Low_Bound
(RRS
);
10711 High
: constant Node_Id
:= High_Bound
(RRS
);
10714 Analyze_And_Resolve
(Low
, Any_Real
);
10715 Analyze_And_Resolve
(High
, Any_Real
);
10716 Check_Real_Bound
(Low
);
10717 Check_Real_Bound
(High
);
10719 -- Obtain and set the range
10721 Low_Val
:= Expr_Value_R
(Low
);
10722 High_Val
:= Expr_Value_R
(High
);
10724 if Low_Val
> High_Val
then
10725 Error_Msg_NE
("?fixed point type& has null range", Def
, T
);
10730 -- The range for both the implicit base and the declared first
10731 -- subtype cannot be set yet, so we use the special routine
10732 -- Set_Fixed_Range to set a temporary range in place. Note that
10733 -- the bounds of the base type will be widened to be symmetrical
10734 -- and to fill the available bits when the type is frozen.
10736 -- We could do this with all discrete types, and probably should, but
10737 -- we absolutely have to do it for fixed-point, since the end-points
10738 -- of the range and the size are determined by the small value, which
10739 -- could be reset before the freeze point.
10741 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
10742 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
10744 Init_Size_Align
(Implicit_Base
);
10746 -- Complete definition of first subtype
10748 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
10749 Set_Etype
(T
, Implicit_Base
);
10750 Init_Size_Align
(T
);
10751 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
10752 Set_Small_Value
(T
, Small_Val
);
10753 Set_Delta_Value
(T
, Delta_Val
);
10754 Set_Is_Constrained
(T
);
10756 end Ordinary_Fixed_Point_Type_Declaration
;
10758 ----------------------------------------
10759 -- Prepare_Private_Subtype_Completion --
10760 ----------------------------------------
10762 procedure Prepare_Private_Subtype_Completion
10764 Related_Nod
: Node_Id
)
10766 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
10767 Full_B
: constant Entity_Id
:= Full_View
(Id_B
);
10771 if Present
(Full_B
) then
10773 -- The Base_Type is already completed, we can complete the
10774 -- subtype now. We have to create a new entity with the same name,
10775 -- Thus we can't use Create_Itype.
10776 -- This is messy, should be fixed ???
10778 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
10779 Set_Is_Itype
(Full
);
10780 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
10781 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
10784 -- The parent subtype may be private, but the base might not, in some
10785 -- nested instances. In that case, the subtype does not need to be
10786 -- exchanged. It would still be nice to make private subtypes and their
10787 -- bases consistent at all times ???
10789 if Is_Private_Type
(Id_B
) then
10790 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
10793 end Prepare_Private_Subtype_Completion
;
10795 ---------------------------
10796 -- Process_Discriminants --
10797 ---------------------------
10799 procedure Process_Discriminants
(N
: Node_Id
) is
10802 Discr_Number
: Uint
;
10803 Discr_Type
: Entity_Id
;
10804 Default_Present
: Boolean := False;
10805 Default_Not_Present
: Boolean := False;
10806 Elist
: Elist_Id
:= New_Elmt_List
;
10809 -- A composite type other than an array type can have discriminants.
10810 -- Discriminants of non-limited types must have a discrete type.
10811 -- On entry, the current scope is the composite type.
10813 -- The discriminants are initially entered into the scope of the type
10814 -- via Enter_Name with the default Ekind of E_Void to prevent premature
10815 -- use, as explained at the end of this procedure.
10817 Discr
:= First
(Discriminant_Specifications
(N
));
10818 while Present
(Discr
) loop
10819 Enter_Name
(Defining_Identifier
(Discr
));
10821 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
10822 Discr_Type
:= Access_Definition
(N
, Discriminant_Type
(Discr
));
10825 Find_Type
(Discriminant_Type
(Discr
));
10826 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
10828 if Error_Posted
(Discriminant_Type
(Discr
)) then
10829 Discr_Type
:= Any_Type
;
10833 if Is_Access_Type
(Discr_Type
) then
10834 Check_Access_Discriminant_Requires_Limited
10835 (Discr
, Discriminant_Type
(Discr
));
10837 if Ada_83
and then Comes_From_Source
(Discr
) then
10839 ("(Ada 83) access discriminant not allowed", Discr
);
10842 elsif not Is_Discrete_Type
(Discr_Type
) then
10843 Error_Msg_N
("discriminants must have a discrete or access type",
10844 Discriminant_Type
(Discr
));
10847 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
10849 -- If a discriminant specification includes the assignment compound
10850 -- delimiter followed by an expression, the expression is the default
10851 -- expression of the discriminant; the default expression must be of
10852 -- the type of the discriminant. (RM 3.7.1) Since this expression is
10853 -- a default expression, we do the special preanalysis, since this
10854 -- expression does not freeze (see "Handling of Default Expressions"
10855 -- in spec of package Sem).
10857 if Present
(Expression
(Discr
)) then
10858 Analyze_Default_Expression
(Expression
(Discr
), Discr_Type
);
10860 if Nkind
(N
) = N_Formal_Type_Declaration
then
10862 ("discriminant defaults not allowed for formal type",
10863 Expression
(Discr
));
10865 elsif Is_Tagged_Type
(Current_Scope
) then
10867 ("discriminants of tagged type cannot have defaults",
10868 Expression
(Discr
));
10871 Default_Present
:= True;
10872 Append_Elmt
(Expression
(Discr
), Elist
);
10874 -- Tag the defining identifiers for the discriminants with
10875 -- their corresponding default expressions from the tree.
10877 Set_Discriminant_Default_Value
10878 (Defining_Identifier
(Discr
), Expression
(Discr
));
10882 Default_Not_Present
:= True;
10888 -- An element list consisting of the default expressions of the
10889 -- discriminants is constructed in the above loop and used to set
10890 -- the Discriminant_Constraint attribute for the type. If an object
10891 -- is declared of this (record or task) type without any explicit
10892 -- discriminant constraint given, this element list will form the
10893 -- actual parameters for the corresponding initialization procedure
10896 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
10897 Set_Girder_Constraint
(Current_Scope
, No_Elist
);
10899 -- Default expressions must be provided either for all or for none
10900 -- of the discriminants of a discriminant part. (RM 3.7.1)
10902 if Default_Present
and then Default_Not_Present
then
10904 ("incomplete specification of defaults for discriminants", N
);
10907 -- The use of the name of a discriminant is not allowed in default
10908 -- expressions of a discriminant part if the specification of the
10909 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
10911 -- To detect this, the discriminant names are entered initially with an
10912 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
10913 -- attempt to use a void entity (for example in an expression that is
10914 -- type-checked) produces the error message: premature usage. Now after
10915 -- completing the semantic analysis of the discriminant part, we can set
10916 -- the Ekind of all the discriminants appropriately.
10918 Discr
:= First
(Discriminant_Specifications
(N
));
10919 Discr_Number
:= Uint_1
;
10921 while Present
(Discr
) loop
10922 Id
:= Defining_Identifier
(Discr
);
10923 Set_Ekind
(Id
, E_Discriminant
);
10924 Init_Component_Location
(Id
);
10926 Set_Discriminant_Number
(Id
, Discr_Number
);
10928 -- Make sure this is always set, even in illegal programs
10930 Set_Corresponding_Discriminant
(Id
, Empty
);
10932 -- Initialize the Original_Record_Component to the entity itself.
10933 -- Inherit_Components will propagate the right value to
10934 -- discriminants in derived record types.
10936 Set_Original_Record_Component
(Id
, Id
);
10938 -- Create the discriminal for the discriminant.
10940 Build_Discriminal
(Id
);
10943 Discr_Number
:= Discr_Number
+ 1;
10946 Set_Has_Discriminants
(Current_Scope
);
10947 end Process_Discriminants
;
10949 -----------------------
10950 -- Process_Full_View --
10951 -----------------------
10953 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
10954 Priv_Parent
: Entity_Id
;
10955 Full_Parent
: Entity_Id
;
10956 Full_Indic
: Node_Id
;
10959 -- First some sanity checks that must be done after semantic
10960 -- decoration of the full view and thus cannot be placed with other
10961 -- similar checks in Find_Type_Name
10963 if not Is_Limited_Type
(Priv_T
)
10964 and then (Is_Limited_Type
(Full_T
)
10965 or else Is_Limited_Composite
(Full_T
))
10968 ("completion of nonlimited type cannot be limited", Full_T
);
10970 elsif Is_Abstract
(Full_T
) and then not Is_Abstract
(Priv_T
) then
10972 ("completion of nonabstract type cannot be abstract", Full_T
);
10974 elsif Is_Tagged_Type
(Priv_T
)
10975 and then Is_Limited_Type
(Priv_T
)
10976 and then not Is_Limited_Type
(Full_T
)
10978 -- GNAT allow its own definition of Limited_Controlled to disobey
10979 -- this rule in order in ease the implementation. The next test is
10980 -- safe because Root_Controlled is defined in a private system child
10982 if Etype
(Full_T
) = Full_View
(RTE
(RE_Root_Controlled
)) then
10983 Set_Is_Limited_Composite
(Full_T
);
10986 ("completion of limited tagged type must be limited", Full_T
);
10989 elsif Is_Generic_Type
(Priv_T
) then
10990 Error_Msg_N
("generic type cannot have a completion", Full_T
);
10993 if Is_Tagged_Type
(Priv_T
)
10994 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
10995 and then Is_Derived_Type
(Full_T
)
10997 Priv_Parent
:= Etype
(Priv_T
);
10999 -- The full view of a private extension may have been transformed
11000 -- into an unconstrained derived type declaration and a subtype
11001 -- declaration (see build_derived_record_type for details).
11003 if Nkind
(N
) = N_Subtype_Declaration
then
11004 Full_Indic
:= Subtype_Indication
(N
);
11005 Full_Parent
:= Etype
(Base_Type
(Full_T
));
11007 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
11008 Full_Parent
:= Etype
(Full_T
);
11011 -- Check that the parent type of the full type is a descendant of
11012 -- the ancestor subtype given in the private extension. If either
11013 -- entity has an Etype equal to Any_Type then we had some previous
11014 -- error situation [7.3(8)].
11016 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
11019 elsif not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
) then
11021 ("parent of full type must descend from parent"
11022 & " of private extension", Full_Indic
);
11024 -- Check the rules of 7.3(10): if the private extension inherits
11025 -- known discriminants, then the full type must also inherit those
11026 -- discriminants from the same (ancestor) type, and the parent
11027 -- subtype of the full type must be constrained if and only if
11028 -- the ancestor subtype of the private extension is constrained.
11030 elsif not Present
(Discriminant_Specifications
(Parent
(Priv_T
)))
11031 and then not Has_Unknown_Discriminants
(Priv_T
)
11032 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
11035 Priv_Indic
: constant Node_Id
:=
11036 Subtype_Indication
(Parent
(Priv_T
));
11038 Priv_Constr
: constant Boolean :=
11039 Is_Constrained
(Priv_Parent
)
11041 Nkind
(Priv_Indic
) = N_Subtype_Indication
11042 or else Is_Constrained
(Entity
(Priv_Indic
));
11044 Full_Constr
: constant Boolean :=
11045 Is_Constrained
(Full_Parent
)
11047 Nkind
(Full_Indic
) = N_Subtype_Indication
11048 or else Is_Constrained
(Entity
(Full_Indic
));
11050 Priv_Discr
: Entity_Id
;
11051 Full_Discr
: Entity_Id
;
11054 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
11055 Full_Discr
:= First_Discriminant
(Full_Parent
);
11057 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
11058 if Original_Record_Component
(Priv_Discr
) =
11059 Original_Record_Component
(Full_Discr
)
11061 Corresponding_Discriminant
(Priv_Discr
) =
11062 Corresponding_Discriminant
(Full_Discr
)
11069 Next_Discriminant
(Priv_Discr
);
11070 Next_Discriminant
(Full_Discr
);
11073 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
11075 ("full view must inherit discriminants of the parent type"
11076 & " used in the private extension", Full_Indic
);
11078 elsif Priv_Constr
and then not Full_Constr
then
11080 ("parent subtype of full type must be constrained",
11083 elsif Full_Constr
and then not Priv_Constr
then
11085 ("parent subtype of full type must be unconstrained",
11090 -- Check the rules of 7.3(12): if a partial view has neither known
11091 -- or unknown discriminants, then the full type declaration shall
11092 -- define a definite subtype.
11094 elsif not Has_Unknown_Discriminants
(Priv_T
)
11095 and then not Has_Discriminants
(Priv_T
)
11096 and then not Is_Constrained
(Full_T
)
11099 ("full view must define a constrained type if partial view"
11100 & " has no discriminants", Full_T
);
11103 -- ??????? Do we implement the following properly ?????
11104 -- If the ancestor subtype of a private extension has constrained
11105 -- discriminants, then the parent subtype of the full view shall
11106 -- impose a statically matching constraint on those discriminants
11110 -- For untagged types, verify that a type without discriminants
11111 -- is not completed with an unconstrained type.
11113 if not Is_Indefinite_Subtype
(Priv_T
)
11114 and then Is_Indefinite_Subtype
(Full_T
)
11116 Error_Msg_N
("full view of type must be definite subtype", Full_T
);
11120 -- Create a full declaration for all its subtypes recorded in
11121 -- Private_Dependents and swap them similarly to the base type.
11122 -- These are subtypes that have been define before the full
11123 -- declaration of the private type. We also swap the entry in
11124 -- Private_Dependents list so we can properly restore the
11125 -- private view on exit from the scope.
11128 Priv_Elmt
: Elmt_Id
;
11133 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
11134 while Present
(Priv_Elmt
) loop
11135 Priv
:= Node
(Priv_Elmt
);
11137 if Ekind
(Priv
) = E_Private_Subtype
11138 or else Ekind
(Priv
) = E_Limited_Private_Subtype
11139 or else Ekind
(Priv
) = E_Record_Subtype_With_Private
11141 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
11142 Set_Is_Itype
(Full
);
11143 Set_Parent
(Full
, Parent
(Priv
));
11144 Set_Associated_Node_For_Itype
(Full
, N
);
11146 -- Now we need to complete the private subtype, but since the
11147 -- base type has already been swapped, we must also swap the
11148 -- subtypes (and thus, reverse the arguments in the call to
11149 -- Complete_Private_Subtype).
11151 Copy_And_Swap
(Priv
, Full
);
11152 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
11153 Replace_Elmt
(Priv_Elmt
, Full
);
11156 Next_Elmt
(Priv_Elmt
);
11160 -- If the private view was tagged, copy the new Primitive
11161 -- operations from the private view to the full view.
11163 if Is_Tagged_Type
(Full_T
) then
11165 Priv_List
: Elist_Id
;
11166 Full_List
: constant Elist_Id
:= Primitive_Operations
(Full_T
);
11169 D_Type
: Entity_Id
;
11172 if Is_Tagged_Type
(Priv_T
) then
11173 Priv_List
:= Primitive_Operations
(Priv_T
);
11175 P1
:= First_Elmt
(Priv_List
);
11176 while Present
(P1
) loop
11179 -- Transfer explicit primitives, not those inherited from
11180 -- parent of partial view, which will be re-inherited on
11183 if Comes_From_Source
(Prim
) then
11184 P2
:= First_Elmt
(Full_List
);
11185 while Present
(P2
) and then Node
(P2
) /= Prim
loop
11189 -- If not found, that is a new one
11192 Append_Elmt
(Prim
, Full_List
);
11200 -- In this case the partial view is untagged, so here we
11201 -- locate all of the earlier primitives that need to be
11202 -- treated as dispatching (those that appear between the
11203 -- two views). Note that these additional operations must
11204 -- all be new operations (any earlier operations that
11205 -- override inherited operations of the full view will
11206 -- already have been inserted in the primitives list and
11207 -- marked as dispatching by Check_Operation_From_Private_View.
11208 -- Note that implicit "/=" operators are excluded from being
11209 -- added to the primitives list since they shouldn't be
11210 -- treated as dispatching (tagged "/=" is handled specially).
11212 Prim
:= Next_Entity
(Full_T
);
11213 while Present
(Prim
) and then Prim
/= Priv_T
loop
11214 if (Ekind
(Prim
) = E_Procedure
11215 or else Ekind
(Prim
) = E_Function
)
11218 D_Type
:= Find_Dispatching_Type
(Prim
);
11221 and then (Chars
(Prim
) /= Name_Op_Ne
11222 or else Comes_From_Source
(Prim
))
11224 Check_Controlling_Formals
(Full_T
, Prim
);
11226 if not Is_Dispatching_Operation
(Prim
) then
11227 Append_Elmt
(Prim
, Full_List
);
11228 Set_Is_Dispatching_Operation
(Prim
, True);
11229 Set_DT_Position
(Prim
, No_Uint
);
11232 elsif Is_Dispatching_Operation
(Prim
)
11233 and then D_Type
/= Full_T
11236 -- Verify that it is not otherwise controlled by
11237 -- a formal or a return value ot type T.
11239 Check_Controlling_Formals
(D_Type
, Prim
);
11243 Next_Entity
(Prim
);
11247 -- For the tagged case, the two views can share the same
11248 -- Primitive Operation list and the same class wide type.
11249 -- Update attributes of the class-wide type which depend on
11250 -- the full declaration.
11252 if Is_Tagged_Type
(Priv_T
) then
11253 Set_Primitive_Operations
(Priv_T
, Full_List
);
11254 Set_Class_Wide_Type
11255 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
11257 -- Any other attributes should be propagated to C_W ???
11259 Set_Has_Task
(Class_Wide_Type
(Priv_T
), Has_Task
(Full_T
));
11264 end Process_Full_View
;
11266 -----------------------------------
11267 -- Process_Incomplete_Dependents --
11268 -----------------------------------
11270 procedure Process_Incomplete_Dependents
11272 Full_T
: Entity_Id
;
11275 Inc_Elmt
: Elmt_Id
;
11276 Priv_Dep
: Entity_Id
;
11277 New_Subt
: Entity_Id
;
11279 Disc_Constraint
: Elist_Id
;
11282 if No
(Private_Dependents
(Inc_T
)) then
11286 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
11288 -- Itypes that may be generated by the completion of an incomplete
11289 -- subtype are not used by the back-end and not attached to the tree.
11290 -- They are created only for constraint-checking purposes.
11293 while Present
(Inc_Elmt
) loop
11294 Priv_Dep
:= Node
(Inc_Elmt
);
11296 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
11298 -- An Access_To_Subprogram type may have a return type or a
11299 -- parameter type that is incomplete. Replace with the full view.
11301 if Etype
(Priv_Dep
) = Inc_T
then
11302 Set_Etype
(Priv_Dep
, Full_T
);
11306 Formal
: Entity_Id
;
11309 Formal
:= First_Formal
(Priv_Dep
);
11311 while Present
(Formal
) loop
11313 if Etype
(Formal
) = Inc_T
then
11314 Set_Etype
(Formal
, Full_T
);
11317 Next_Formal
(Formal
);
11321 elsif Is_Overloadable
(Priv_Dep
) then
11323 if Is_Tagged_Type
(Full_T
) then
11325 -- Subprogram has an access parameter whose designated type
11326 -- was incomplete. Reexamine declaration now, because it may
11327 -- be a primitive operation of the full type.
11329 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
11330 Set_Is_Dispatching_Operation
(Priv_Dep
);
11331 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
11334 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
11336 -- Can happen during processing of a body before the completion
11337 -- of a TA type. Ignore, because spec is also on dependent list.
11341 -- Dependent is a subtype
11344 -- We build a new subtype indication using the full view of the
11345 -- incomplete parent. The discriminant constraints have been
11346 -- elaborated already at the point of the subtype declaration.
11348 New_Subt
:= Create_Itype
(E_Void
, N
);
11350 if Has_Discriminants
(Full_T
) then
11351 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
11353 Disc_Constraint
:= No_Elist
;
11356 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
11357 Set_Full_View
(Priv_Dep
, New_Subt
);
11360 Next_Elmt
(Inc_Elmt
);
11363 end Process_Incomplete_Dependents
;
11365 --------------------------------
11366 -- Process_Range_Expr_In_Decl --
11367 --------------------------------
11369 procedure Process_Range_Expr_In_Decl
11372 Related_Nod
: Node_Id
;
11373 Check_List
: List_Id
:= Empty_List
;
11374 R_Check_Off
: Boolean := False)
11377 R_Checks
: Check_Result
;
11378 Type_Decl
: Node_Id
;
11379 Def_Id
: Entity_Id
;
11382 Analyze_And_Resolve
(R
, Base_Type
(T
));
11384 if Nkind
(R
) = N_Range
then
11385 Lo
:= Low_Bound
(R
);
11386 Hi
:= High_Bound
(R
);
11388 -- If there were errors in the declaration, try and patch up some
11389 -- common mistakes in the bounds. The cases handled are literals
11390 -- which are Integer where the expected type is Real and vice versa.
11391 -- These corrections allow the compilation process to proceed further
11392 -- along since some basic assumptions of the format of the bounds
11395 if Etype
(R
) = Any_Type
then
11397 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
11399 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
11401 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
11403 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
11405 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
11407 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
11409 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
11411 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
11418 -- If the bounds of the range have been mistakenly given as
11419 -- string literals (perhaps in place of character literals),
11420 -- then an error has already been reported, but we rewrite
11421 -- the string literal as a bound of the range's type to
11422 -- avoid blowups in later processing that looks at static
11425 if Nkind
(Lo
) = N_String_Literal
then
11427 Make_Attribute_Reference
(Sloc
(Lo
),
11428 Attribute_Name
=> Name_First
,
11429 Prefix
=> New_Reference_To
(T
, Sloc
(Lo
))));
11430 Analyze_And_Resolve
(Lo
);
11433 if Nkind
(Hi
) = N_String_Literal
then
11435 Make_Attribute_Reference
(Sloc
(Hi
),
11436 Attribute_Name
=> Name_First
,
11437 Prefix
=> New_Reference_To
(T
, Sloc
(Hi
))));
11438 Analyze_And_Resolve
(Hi
);
11441 -- If bounds aren't scalar at this point then exit, avoiding
11442 -- problems with further processing of the range in this procedure.
11444 if not Is_Scalar_Type
(Etype
(Lo
)) then
11448 -- Resolve (actually Sem_Eval) has checked that the bounds are in
11449 -- then range of the base type. Here we check whether the bounds
11450 -- are in the range of the subtype itself. Note that if the bounds
11451 -- represent the null range the Constraint_Error exception should
11454 -- ??? The following code should be cleaned up as follows
11455 -- 1. The Is_Null_Range (Lo, Hi) test should disapper since it
11456 -- is done in the call to Range_Check (R, T); below
11457 -- 2. The use of R_Check_Off should be investigated and possibly
11458 -- removed, this would clean up things a bit.
11460 if Is_Null_Range
(Lo
, Hi
) then
11464 -- We use a flag here instead of suppressing checks on the
11465 -- type because the type we check against isn't necessarily the
11466 -- place where we put the check.
11468 if not R_Check_Off
then
11469 R_Checks
:= Range_Check
(R
, T
);
11470 Type_Decl
:= Parent
(R
);
11472 -- Look up tree to find an appropriate insertion point.
11473 -- This seems really junk code, and very brittle, couldn't
11474 -- we just use an insert actions call of some kind ???
11476 while Present
(Type_Decl
) and then not
11477 (Nkind
(Type_Decl
) = N_Full_Type_Declaration
11479 Nkind
(Type_Decl
) = N_Subtype_Declaration
11481 Nkind
(Type_Decl
) = N_Loop_Statement
11483 Nkind
(Type_Decl
) = N_Task_Type_Declaration
11485 Nkind
(Type_Decl
) = N_Single_Task_Declaration
11487 Nkind
(Type_Decl
) = N_Protected_Type_Declaration
11489 Nkind
(Type_Decl
) = N_Single_Protected_Declaration
)
11491 Type_Decl
:= Parent
(Type_Decl
);
11494 -- Why would Type_Decl not be present??? Without this test,
11495 -- short regression tests fail.
11497 if Present
(Type_Decl
) then
11498 if Nkind
(Type_Decl
) = N_Loop_Statement
then
11500 Indic
: Node_Id
:= Parent
(R
);
11502 while Present
(Indic
) and then not
11503 (Nkind
(Indic
) = N_Subtype_Indication
)
11505 Indic
:= Parent
(Indic
);
11508 if Present
(Indic
) then
11509 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
11511 Insert_Range_Checks
11517 Do_Before
=> True);
11521 Def_Id
:= Defining_Identifier
(Type_Decl
);
11523 if (Ekind
(Def_Id
) = E_Record_Type
11524 and then Depends_On_Discriminant
(R
))
11526 (Ekind
(Def_Id
) = E_Protected_Type
11527 and then Has_Discriminants
(Def_Id
))
11529 Append_Range_Checks
11530 (R_Checks
, Check_List
, Def_Id
, Sloc
(Type_Decl
), R
);
11533 Insert_Range_Checks
11534 (R_Checks
, Type_Decl
, Def_Id
, Sloc
(Type_Decl
), R
);
11543 Get_Index_Bounds
(R
, Lo
, Hi
);
11545 if Expander_Active
then
11546 Force_Evaluation
(Lo
);
11547 Force_Evaluation
(Hi
);
11550 end Process_Range_Expr_In_Decl
;
11552 --------------------------------------
11553 -- Process_Real_Range_Specification --
11554 --------------------------------------
11556 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
11557 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
11560 Err
: Boolean := False;
11562 procedure Analyze_Bound
(N
: Node_Id
);
11563 -- Analyze and check one bound
11565 procedure Analyze_Bound
(N
: Node_Id
) is
11567 Analyze_And_Resolve
(N
, Any_Real
);
11569 if not Is_OK_Static_Expression
(N
) then
11571 ("bound in real type definition is not static", N
);
11577 if Present
(Spec
) then
11578 Lo
:= Low_Bound
(Spec
);
11579 Hi
:= High_Bound
(Spec
);
11580 Analyze_Bound
(Lo
);
11581 Analyze_Bound
(Hi
);
11583 -- If error, clear away junk range specification
11586 Set_Real_Range_Specification
(Def
, Empty
);
11589 end Process_Real_Range_Specification
;
11591 ---------------------
11592 -- Process_Subtype --
11593 ---------------------
11595 function Process_Subtype
11597 Related_Nod
: Node_Id
;
11598 Related_Id
: Entity_Id
:= Empty
;
11599 Suffix
: Character := ' ')
11603 Def_Id
: Entity_Id
;
11604 Full_View_Id
: Entity_Id
;
11605 Subtype_Mark_Id
: Entity_Id
;
11606 N_Dynamic_Ityp
: Node_Id
:= Empty
;
11609 -- Case of constraint present, so that we have an N_Subtype_Indication
11610 -- node (this node is created only if constraints are present).
11612 if Nkind
(S
) = N_Subtype_Indication
then
11613 Find_Type
(Subtype_Mark
(S
));
11615 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
11617 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
11619 Is_Itype
(Defining_Identifier
(Parent
(S
))))
11621 Check_Incomplete
(Subtype_Mark
(S
));
11625 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
11627 if Is_Unchecked_Union
(Subtype_Mark_Id
)
11628 and then Comes_From_Source
(Related_Nod
)
11631 ("cannot create subtype of Unchecked_Union", Related_Nod
);
11634 -- Explicit subtype declaration case
11636 if Nkind
(P
) = N_Subtype_Declaration
then
11637 Def_Id
:= Defining_Identifier
(P
);
11639 -- Explicit derived type definition case
11641 elsif Nkind
(P
) = N_Derived_Type_Definition
then
11642 Def_Id
:= Defining_Identifier
(Parent
(P
));
11644 -- Implicit case, the Def_Id must be created as an implicit type.
11645 -- The one exception arises in the case of concurrent types,
11646 -- array and access types, where other subsidiary implicit types
11647 -- may be created and must appear before the main implicit type.
11648 -- In these cases we leave Def_Id set to Empty as a signal that
11649 -- Create_Itype has not yet been called to create Def_Id.
11652 if Is_Array_Type
(Subtype_Mark_Id
)
11653 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
11654 or else Is_Access_Type
(Subtype_Mark_Id
)
11658 -- For the other cases, we create a new unattached Itype,
11659 -- and set the indication to ensure it gets attached later.
11663 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
11666 N_Dynamic_Ityp
:= Related_Nod
;
11669 -- If the kind of constraint is invalid for this kind of type,
11670 -- then give an error, and then pretend no constraint was given.
11672 if not Is_Valid_Constraint_Kind
11673 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
11676 ("incorrect constraint for this kind of type", Constraint
(S
));
11678 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
11680 -- Make recursive call, having got rid of the bogus constraint
11682 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
11685 -- Remaining processing depends on type
11687 case Ekind
(Subtype_Mark_Id
) is
11689 when Access_Kind
=>
11690 Constrain_Access
(Def_Id
, S
, Related_Nod
);
11693 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
11695 when Decimal_Fixed_Point_Kind
=>
11696 Constrain_Decimal
(Def_Id
, S
, N_Dynamic_Ityp
);
11698 when Enumeration_Kind
=>
11699 Constrain_Enumeration
(Def_Id
, S
, N_Dynamic_Ityp
);
11701 when Ordinary_Fixed_Point_Kind
=>
11702 Constrain_Ordinary_Fixed
(Def_Id
, S
, N_Dynamic_Ityp
);
11705 Constrain_Float
(Def_Id
, S
, N_Dynamic_Ityp
);
11707 when Integer_Kind
=>
11708 Constrain_Integer
(Def_Id
, S
, N_Dynamic_Ityp
);
11710 when E_Record_Type |
11713 E_Incomplete_Type
=>
11714 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
11716 when Private_Kind
=>
11717 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
11718 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
11720 -- In case of an invalid constraint prevent further processing
11721 -- since the type constructed is missing expected fields.
11723 if Etype
(Def_Id
) = Any_Type
then
11727 -- If the full view is that of a task with discriminants,
11728 -- we must constrain both the concurrent type and its
11729 -- corresponding record type. Otherwise we will just propagate
11730 -- the constraint to the full view, if available.
11732 if Present
(Full_View
(Subtype_Mark_Id
))
11733 and then Has_Discriminants
(Subtype_Mark_Id
)
11734 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
11737 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
11739 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
11740 Constrain_Concurrent
(Full_View_Id
, S
,
11741 Related_Nod
, Related_Id
, Suffix
);
11742 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
11743 Set_Full_View
(Def_Id
, Full_View_Id
);
11746 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
11749 when Concurrent_Kind
=>
11750 Constrain_Concurrent
(Def_Id
, S
,
11751 Related_Nod
, Related_Id
, Suffix
);
11754 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
11757 -- Size and Convention are always inherited from the base type
11759 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
11760 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
11764 -- Case of no constraints present
11768 Check_Incomplete
(S
);
11771 end Process_Subtype
;
11773 -----------------------------
11774 -- Record_Type_Declaration --
11775 -----------------------------
11777 procedure Record_Type_Declaration
(T
: Entity_Id
; N
: Node_Id
) is
11778 Def
: constant Node_Id
:= Type_Definition
(N
);
11779 Range_Checks_Suppressed_Flag
: Boolean := False;
11781 Is_Tagged
: Boolean;
11782 Tag_Comp
: Entity_Id
;
11785 -- The flag Is_Tagged_Type might have already been set by Find_Type_Name
11786 -- if it detected an error for declaration T. This arises in the case of
11787 -- private tagged types where the full view omits the word tagged.
11789 Is_Tagged
:= Tagged_Present
(Def
)
11790 or else (Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
11792 -- Records constitute a scope for the component declarations within.
11793 -- The scope is created prior to the processing of these declarations.
11794 -- Discriminants are processed first, so that they are visible when
11795 -- processing the other components. The Ekind of the record type itself
11796 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
11798 -- Enter record scope
11802 -- These flags must be initialized before calling Process_Discriminants
11803 -- because this routine makes use of them.
11805 Set_Is_Tagged_Type
(T
, Is_Tagged
);
11806 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
11808 -- Type is abstract if full declaration carries keyword, or if
11809 -- previous partial view did.
11811 Set_Is_Abstract
(T
, Is_Abstract
(T
) or else Abstract_Present
(Def
));
11813 Set_Ekind
(T
, E_Record_Type
);
11815 Init_Size_Align
(T
);
11817 Set_Girder_Constraint
(T
, No_Elist
);
11819 -- If an incomplete or private type declaration was already given for
11820 -- the type, then this scope already exists, and the discriminants have
11821 -- been declared within. We must verify that the full declaration
11822 -- matches the incomplete one.
11824 Check_Or_Process_Discriminants
(N
, T
);
11826 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
11827 Set_Has_Delayed_Freeze
(T
, True);
11829 -- For tagged types add a manually analyzed component corresponding
11830 -- to the component _tag, the corresponding piece of tree will be
11831 -- expanded as part of the freezing actions if it is not a CPP_Class.
11834 -- Do not add the tag unless we are in expansion mode.
11836 if Expander_Active
then
11837 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
11838 Enter_Name
(Tag_Comp
);
11840 Set_Is_Tag
(Tag_Comp
);
11841 Set_Ekind
(Tag_Comp
, E_Component
);
11842 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
11843 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
11844 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
11845 Init_Component_Location
(Tag_Comp
);
11848 Make_Class_Wide_Type
(T
);
11849 Set_Primitive_Operations
(T
, New_Elmt_List
);
11852 -- We must suppress range checks when processing the components
11853 -- of a record in the presence of discriminants, since we don't
11854 -- want spurious checks to be generated during their analysis, but
11855 -- must reset the Suppress_Range_Checks flags after having procesed
11856 -- the record definition.
11858 if Has_Discriminants
(T
) and then not Suppress_Range_Checks
(T
) then
11859 Set_Suppress_Range_Checks
(T
, True);
11860 Range_Checks_Suppressed_Flag
:= True;
11863 Record_Type_Definition
(Def
, T
);
11865 if Range_Checks_Suppressed_Flag
then
11866 Set_Suppress_Range_Checks
(T
, False);
11867 Range_Checks_Suppressed_Flag
:= False;
11870 -- Exit from record scope
11873 end Record_Type_Declaration
;
11875 ----------------------------
11876 -- Record_Type_Definition --
11877 ----------------------------
11879 procedure Record_Type_Definition
(Def
: Node_Id
; T
: Entity_Id
) is
11880 Component
: Entity_Id
;
11881 Ctrl_Components
: Boolean := False;
11882 Final_Storage_Only
: Boolean := not Is_Controlled
(T
);
11885 -- If the component list of a record type is defined by the reserved
11886 -- word null and there is no discriminant part, then the record type has
11887 -- no components and all records of the type are null records (RM 3.7)
11888 -- This procedure is also called to process the extension part of a
11889 -- record extension, in which case the current scope may have inherited
11893 or else No
(Component_List
(Def
))
11894 or else Null_Present
(Component_List
(Def
))
11899 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
11901 if Present
(Variant_Part
(Component_List
(Def
))) then
11902 Analyze
(Variant_Part
(Component_List
(Def
)));
11906 -- After completing the semantic analysis of the record definition,
11907 -- record components, both new and inherited, are accessible. Set
11908 -- their kind accordingly.
11910 Component
:= First_Entity
(Current_Scope
);
11911 while Present
(Component
) loop
11913 if Ekind
(Component
) = E_Void
then
11914 Set_Ekind
(Component
, E_Component
);
11915 Init_Component_Location
(Component
);
11918 if Has_Task
(Etype
(Component
)) then
11922 if Ekind
(Component
) /= E_Component
then
11925 elsif Has_Controlled_Component
(Etype
(Component
))
11926 or else (Chars
(Component
) /= Name_uParent
11927 and then Is_Controlled
(Etype
(Component
)))
11929 Set_Has_Controlled_Component
(T
, True);
11930 Final_Storage_Only
:= Final_Storage_Only
11931 and then Finalize_Storage_Only
(Etype
(Component
));
11932 Ctrl_Components
:= True;
11935 Next_Entity
(Component
);
11938 -- A type is Finalize_Storage_Only only if all its controlled
11939 -- components are so.
11941 if Ctrl_Components
then
11942 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
11945 if Present
(Def
) then
11946 Process_End_Label
(Def
, 'e');
11948 end Record_Type_Definition
;
11950 ---------------------
11951 -- Set_Fixed_Range --
11952 ---------------------
11954 -- The range for fixed-point types is complicated by the fact that we
11955 -- do not know the exact end points at the time of the declaration. This
11956 -- is true for three reasons:
11958 -- A size clause may affect the fudging of the end-points
11959 -- A small clause may affect the values of the end-points
11960 -- We try to include the end-points if it does not affect the size
11962 -- This means that the actual end-points must be established at the
11963 -- point when the type is frozen. Meanwhile, we first narrow the range
11964 -- as permitted (so that it will fit if necessary in a small specified
11965 -- size), and then build a range subtree with these narrowed bounds.
11967 -- Set_Fixed_Range constructs the range from real literal values, and
11968 -- sets the range as the Scalar_Range of the given fixed-point type
11971 -- The parent of this range is set to point to the entity so that it
11972 -- is properly hooked into the tree (unlike normal Scalar_Range entries
11973 -- for other scalar types, which are just pointers to the range in the
11974 -- original tree, this would otherwise be an orphan).
11976 -- The tree is left unanalyzed. When the type is frozen, the processing
11977 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
11978 -- analyzed, and uses this as an indication that it should complete
11979 -- work on the range (it will know the final small and size values).
11981 procedure Set_Fixed_Range
11987 S
: constant Node_Id
:=
11989 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
11990 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
11993 Set_Scalar_Range
(E
, S
);
11995 end Set_Fixed_Range
;
11997 --------------------------------------------------------
11998 -- Set_Girder_Constraint_From_Discriminant_Constraint --
11999 --------------------------------------------------------
12001 procedure Set_Girder_Constraint_From_Discriminant_Constraint
12005 -- Make sure set if encountered during
12006 -- Expand_To_Girder_Constraint
12008 Set_Girder_Constraint
(E
, No_Elist
);
12010 -- Give it the right value
12012 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
12013 Set_Girder_Constraint
(E
,
12014 Expand_To_Girder_Constraint
(E
, Discriminant_Constraint
(E
)));
12017 end Set_Girder_Constraint_From_Discriminant_Constraint
;
12019 ----------------------------------
12020 -- Set_Scalar_Range_For_Subtype --
12021 ----------------------------------
12023 procedure Set_Scalar_Range_For_Subtype
12024 (Def_Id
: Entity_Id
;
12027 Related_Nod
: Node_Id
)
12029 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
12031 Set_Scalar_Range
(Def_Id
, R
);
12033 -- We need to link the range into the tree before resolving it so
12034 -- that types that are referenced, including importantly the subtype
12035 -- itself, are properly frozen (Freeze_Expression requires that the
12036 -- expression be properly linked into the tree). Of course if it is
12037 -- already linked in, then we do not disturb the current link.
12039 if No
(Parent
(R
)) then
12040 Set_Parent
(R
, Def_Id
);
12043 -- Reset the kind of the subtype during analysis of the range, to
12044 -- catch possible premature use in the bounds themselves.
12046 Set_Ekind
(Def_Id
, E_Void
);
12047 Process_Range_Expr_In_Decl
(R
, Subt
, Related_Nod
);
12048 Set_Ekind
(Def_Id
, Kind
);
12050 end Set_Scalar_Range_For_Subtype
;
12052 -------------------------------------
12053 -- Signed_Integer_Type_Declaration --
12054 -------------------------------------
12056 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
12057 Implicit_Base
: Entity_Id
;
12058 Base_Typ
: Entity_Id
;
12061 Errs
: Boolean := False;
12065 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
12066 -- Determine whether given bounds allow derivation from specified type
12068 procedure Check_Bound
(Expr
: Node_Id
);
12069 -- Check bound to make sure it is integral and static. If not, post
12070 -- appropriate error message and set Errs flag
12072 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
12073 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
12074 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
12077 -- Note we check both bounds against both end values, to deal with
12078 -- strange types like ones with a range of 0 .. -12341234.
12080 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
12082 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
12083 end Can_Derive_From
;
12085 procedure Check_Bound
(Expr
: Node_Id
) is
12087 -- If a range constraint is used as an integer type definition, each
12088 -- bound of the range must be defined by a static expression of some
12089 -- integer type, but the two bounds need not have the same integer
12090 -- type (Negative bounds are allowed.) (RM 3.5.4)
12092 if not Is_Integer_Type
(Etype
(Expr
)) then
12094 ("integer type definition bounds must be of integer type", Expr
);
12097 elsif not Is_OK_Static_Expression
(Expr
) then
12099 ("non-static expression used for integer type bound", Expr
);
12102 -- The bounds are folded into literals, and we set their type to be
12103 -- universal, to avoid typing difficulties: we cannot set the type
12104 -- of the literal to the new type, because this would be a forward
12105 -- reference for the back end, and if the original type is user-
12106 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
12109 if Is_Entity_Name
(Expr
) then
12110 Fold_Uint
(Expr
, Expr_Value
(Expr
));
12113 Set_Etype
(Expr
, Universal_Integer
);
12117 -- Start of processing for Signed_Integer_Type_Declaration
12120 -- Create an anonymous base type
12123 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
12125 -- Analyze and check the bounds, they can be of any integer type
12127 Lo
:= Low_Bound
(Def
);
12128 Hi
:= High_Bound
(Def
);
12130 -- Arbitrarily use Integer as the type if either bound had an error
12132 if Hi
= Error
or else Lo
= Error
then
12133 Base_Typ
:= Any_Integer
;
12134 Set_Error_Posted
(T
, True);
12136 -- Here both bounds are OK expressions
12139 Analyze_And_Resolve
(Lo
, Any_Integer
);
12140 Analyze_And_Resolve
(Hi
, Any_Integer
);
12146 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
12147 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
12150 -- Find type to derive from
12152 Lo_Val
:= Expr_Value
(Lo
);
12153 Hi_Val
:= Expr_Value
(Hi
);
12155 if Can_Derive_From
(Standard_Short_Short_Integer
) then
12156 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
12158 elsif Can_Derive_From
(Standard_Short_Integer
) then
12159 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
12161 elsif Can_Derive_From
(Standard_Integer
) then
12162 Base_Typ
:= Base_Type
(Standard_Integer
);
12164 elsif Can_Derive_From
(Standard_Long_Integer
) then
12165 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
12167 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
12168 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
12171 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
12172 Error_Msg_N
("integer type definition bounds out of range", Def
);
12173 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
12174 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
12178 -- Complete both implicit base and declared first subtype entities
12180 Set_Etype
(Implicit_Base
, Base_Typ
);
12181 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
12182 Set_Size_Info
(Implicit_Base
, (Base_Typ
));
12183 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
12184 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
12186 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
12187 Set_Etype
(T
, Implicit_Base
);
12189 Set_Size_Info
(T
, (Implicit_Base
));
12190 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
12191 Set_Scalar_Range
(T
, Def
);
12192 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
12193 Set_Is_Constrained
(T
);
12195 end Signed_Integer_Type_Declaration
;