Daily bump.
[official-gcc.git] / gcc / ada / s-expgen.adb
bloba27ee808e434bf1d1cb15a9d235e74715da50abf
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUNTIME COMPONENTS --
4 -- --
5 -- S Y S T E M . E X P _ G E N --
6 -- --
7 -- B o d y --
8 -- --
9 -- $Revision: 1.1 $
10 -- --
11 -- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
12 -- --
13 -- GNAT is free software; you can redistribute it and/or modify it under --
14 -- terms of the GNU General Public License as published by the Free Soft- --
15 -- ware Foundation; either version 2, or (at your option) any later ver- --
16 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
17 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
18 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
19 -- for more details. You should have received a copy of the GNU General --
20 -- Public License distributed with GNAT; see file COPYING. If not, write --
21 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
22 -- MA 02111-1307, USA. --
23 -- --
24 -- As a special exception, if other files instantiate generics from this --
25 -- unit, or you link this unit with other files to produce an executable, --
26 -- this unit does not by itself cause the resulting executable to be --
27 -- covered by the GNU General Public License. This exception does not --
28 -- however invalidate any other reasons why the executable file might be --
29 -- covered by the GNU Public License. --
30 -- --
31 -- GNAT was originally developed by the GNAT team at New York University. --
32 -- Extensive contributions were provided by Ada Core Technologies Inc. --
33 -- --
34 ------------------------------------------------------------------------------
36 package body System.Exp_Gen is
38 --------------------
39 -- Exp_Float_Type --
40 --------------------
42 function Exp_Float_Type
43 (Left : Type_Of_Base;
44 Right : Integer)
45 return Type_Of_Base
47 Result : Type_Of_Base := 1.0;
48 Factor : Type_Of_Base := Left;
49 Exp : Integer := Right;
51 begin
52 -- We use the standard logarithmic approach, Exp gets shifted right
53 -- testing successive low order bits and Factor is the value of the
54 -- base raised to the next power of 2. For positive exponents we
55 -- multiply the result by this factor, for negative exponents, we
56 -- divide by this factor.
58 if Exp >= 0 then
60 -- For a positive exponent, if we get a constraint error during
61 -- this loop, it is an overflow, and the constraint error will
62 -- simply be passed on to the caller.
64 loop
65 if Exp rem 2 /= 0 then
66 declare
67 pragma Unsuppress (All_Checks);
68 begin
69 Result := Result * Factor;
70 end;
71 end if;
73 Exp := Exp / 2;
74 exit when Exp = 0;
76 declare
77 pragma Unsuppress (All_Checks);
78 begin
79 Factor := Factor * Factor;
80 end;
81 end loop;
83 return Result;
85 -- Now we know that the exponent is negative, check for case of
86 -- base of 0.0 which always generates a constraint error.
88 elsif Factor = 0.0 then
89 raise Constraint_Error;
91 -- Here we have a negative exponent with a non-zero base
93 else
95 -- For the negative exponent case, a constraint error during this
96 -- calculation happens if Factor gets too large, and the proper
97 -- response is to return 0.0, since what we essenmtially have is
98 -- 1.0 / infinity, and the closest model number will be zero.
100 begin
101 loop
102 if Exp rem 2 /= 0 then
103 declare
104 pragma Unsuppress (All_Checks);
105 begin
106 Result := Result * Factor;
107 end;
108 end if;
110 Exp := Exp / 2;
111 exit when Exp = 0;
113 declare
114 pragma Unsuppress (All_Checks);
115 begin
116 Factor := Factor * Factor;
117 end;
118 end loop;
120 declare
121 pragma Unsuppress (All_Checks);
122 begin
123 return 1.0 / Result;
124 end;
126 exception
128 when Constraint_Error =>
129 return 0.0;
130 end;
131 end if;
132 end Exp_Float_Type;
134 ----------------------
135 -- Exp_Integer_Type --
136 ----------------------
138 -- Note that negative exponents get a constraint error because the
139 -- subtype of the Right argument (the exponent) is Natural.
141 function Exp_Integer_Type
142 (Left : Type_Of_Base;
143 Right : Natural)
144 return Type_Of_Base
146 Result : Type_Of_Base := 1;
147 Factor : Type_Of_Base := Left;
148 Exp : Natural := Right;
150 begin
151 -- We use the standard logarithmic approach, Exp gets shifted right
152 -- testing successive low order bits and Factor is the value of the
153 -- base raised to the next power of 2.
155 -- Note: it is not worth special casing the cases of base values -1,0,+1
156 -- since the expander does this when the base is a literal, and other
157 -- cases will be extremely rare.
159 if Exp /= 0 then
160 loop
161 if Exp rem 2 /= 0 then
162 declare
163 pragma Unsuppress (All_Checks);
164 begin
165 Result := Result * Factor;
166 end;
167 end if;
169 Exp := Exp / 2;
170 exit when Exp = 0;
172 declare
173 pragma Unsuppress (All_Checks);
174 begin
175 Factor := Factor * Factor;
176 end;
177 end loop;
178 end if;
180 return Result;
181 end Exp_Integer_Type;
183 end System.Exp_Gen;