Daily bump.
[official-gcc.git] / gcc / ada / 5gmastop.adb
bloba66bec8f91f51aef50704c557a1c662a78bacc34
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- SYSTEM.MACHINE_STATE_OPERATIONS --
6 -- --
7 -- B o d y --
8 -- (Version for IRIX/MIPS) --
9 -- --
10 -- $Revision: 1.2 $
11 -- --
12 -- Copyright (C) 1999-2001 Free Software Foundation, Inc. --
13 -- --
14 -- GNAT is free software; you can redistribute it and/or modify it under --
15 -- terms of the GNU General Public License as published by the Free Soft- --
16 -- ware Foundation; either version 2, or (at your option) any later ver- --
17 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
18 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
19 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
20 -- for more details. You should have received a copy of the GNU General --
21 -- Public License distributed with GNAT; see file COPYING. If not, write --
22 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
23 -- MA 02111-1307, USA. --
24 -- --
25 -- As a special exception, if other files instantiate generics from this --
26 -- unit, or you link this unit with other files to produce an executable, --
27 -- this unit does not by itself cause the resulting executable to be --
28 -- covered by the GNU General Public License. This exception does not --
29 -- however invalidate any other reasons why the executable file might be --
30 -- covered by the GNU Public License. --
31 -- --
32 -- GNAT was originally developed by the GNAT team at New York University. --
33 -- Extensive contributions were provided by Ada Core Technologies Inc. --
34 -- --
35 ------------------------------------------------------------------------------
37 -- This version of Ada.Exceptions.Machine_State_Operations is for use on
38 -- SGI Irix systems. By means of compile time conditional calculations, it
39 -- can handle both n32/n64 and o32 modes.
41 with System.Machine_Code; use System.Machine_Code;
42 with System.Memory;
43 with System.Soft_Links; use System.Soft_Links;
44 with Unchecked_Conversion;
46 package body System.Machine_State_Operations is
48 use System.Storage_Elements;
49 use System.Exceptions;
51 -- The exc_unwind function in libexc operats on a Sigcontext
53 -- Type sigcontext_t is defined in /usr/include/sys/signal.h.
54 -- We define an equivalent Ada type here. From the comments in
55 -- signal.h:
57 -- sigcontext is not part of the ABI - so this version is used to
58 -- handle 32 and 64 bit applications - it is a constant size regardless
59 -- of compilation mode, and always returns 64 bit register values
61 type Uns32 is mod 2 ** 32;
62 type Uns64 is mod 2 ** 64;
64 type Uns32_Ptr is access all Uns32;
65 type Uns64_Array is array (Integer range <>) of Uns64;
67 type Reg_Array is array (0 .. 31) of Uns64;
69 type Sigcontext is
70 record
71 SC_Regmask : Uns32; -- 0
72 SC_Status : Uns32; -- 4
73 SC_PC : Uns64; -- 8
74 SC_Regs : Reg_Array; -- 16
75 SC_Fpregs : Reg_Array; -- 272
76 SC_Ownedfp : Uns32; -- 528
77 SC_Fpc_Csr : Uns32; -- 532
78 SC_Fpc_Eir : Uns32; -- 536
79 SC_Ssflags : Uns32; -- 540
80 SC_Mdhi : Uns64; -- 544
81 SC_Mdlo : Uns64; -- 552
82 SC_Cause : Uns64; -- 560
83 SC_Badvaddr : Uns64; -- 568
84 SC_Triggersave : Uns64; -- 576
85 SC_Sigset : Uns64; -- 584
86 SC_Fp_Rounded_Result : Uns64; -- 592
87 SC_Pancake : Uns64_Array (0 .. 5);
88 SC_Pad : Uns64_Array (0 .. 26);
89 end record;
91 type Sigcontext_Ptr is access all Sigcontext;
93 SC_Regs_Pos : constant String := "16";
94 SC_Fpregs_Pos : constant String := "272";
95 -- Byte offset of the Integer and Floating Point register save areas
96 -- within the Sigcontext.
98 function To_Sigcontext_Ptr is
99 new Unchecked_Conversion (Machine_State, Sigcontext_Ptr);
101 type Addr_Int is mod 2 ** Long_Integer'Size;
102 -- An unsigned integer type whose size is the same as System.Address.
103 -- We rely on the fact that Long_Integer'Size = System.Address'Size in
104 -- all ABIs. Type Addr_Int can be converted to Uns64.
106 function To_Code_Loc is new Unchecked_Conversion (Addr_Int, Code_Loc);
107 function To_Addr_Int is new Unchecked_Conversion (System.Address, Addr_Int);
108 function To_Uns32_Ptr is new Unchecked_Conversion (Addr_Int, Uns32_Ptr);
110 --------------------------------
111 -- ABI-Dependent Declarations --
112 --------------------------------
114 o32 : constant Natural := Boolean'Pos (System.Word_Size = 32);
115 n32 : constant Natural := Boolean'Pos (System.Word_Size = 64);
116 -- Flags to indicate which ABI is in effect for this compilation. For the
117 -- purposes of this unit, the n32 and n64 ABI's are identical.
119 LSC : constant Character := Character'Val (o32 * Character'Pos ('w') +
120 n32 * Character'Pos ('d'));
121 -- This is 'w' for o32, and 'd' for n32/n64, used for constructing the
122 -- load/store instructions used to save/restore machine instructions.
124 Roff : constant Character := Character'Val (o32 * Character'Pos ('4') +
125 n32 * Character'Pos (' '));
126 -- Offset from first byte of a __uint64 register save location where
127 -- the register value is stored. For n32/64 we store the entire 64
128 -- bit register into the uint64. For o32, only 32 bits are stored
129 -- at an offset of 4 bytes.
131 procedure Update_GP (Scp : Sigcontext_Ptr);
133 ---------------
134 -- Update_GP --
135 ---------------
137 procedure Update_GP (Scp : Sigcontext_Ptr) is
139 type F_op is mod 2 ** 6;
140 type F_reg is mod 2 ** 5;
141 type F_imm is new Short_Integer;
143 type I_Type is record
144 op : F_op;
145 rs : F_reg;
146 rt : F_reg;
147 imm : F_imm;
148 end record;
150 pragma Pack (I_Type);
151 for I_Type'Size use 32;
153 type I_Type_Ptr is access all I_Type;
155 LW : constant F_op := 2#100011#;
156 Reg_GP : constant := 28;
158 type Address_Int is mod 2 ** Standard'Address_Size;
159 function To_I_Type_Ptr is new
160 Unchecked_Conversion (Address_Int, I_Type_Ptr);
162 Ret_Ins : I_Type_Ptr := To_I_Type_Ptr (Address_Int (Scp.SC_PC));
163 GP_Ptr : Uns32_Ptr;
165 begin
166 if Ret_Ins.op = LW and then Ret_Ins.rt = Reg_GP then
167 GP_Ptr := To_Uns32_Ptr
168 (Addr_Int (Scp.SC_Regs (Integer (Ret_Ins.rs)))
169 + Addr_Int (Ret_Ins.imm));
170 Scp.SC_Regs (Reg_GP) := Uns64 (GP_Ptr.all);
171 end if;
172 end Update_GP;
174 ----------------------------
175 -- Allocate_Machine_State --
176 ----------------------------
178 function Allocate_Machine_State return Machine_State is
179 begin
180 return Machine_State
181 (Memory.Alloc (Sigcontext'Max_Size_In_Storage_Elements));
182 end Allocate_Machine_State;
184 -------------------
185 -- Enter_Handler --
186 -------------------
188 procedure Enter_Handler (M : Machine_State; Handler : Handler_Loc) is
190 LOADI : constant String (1 .. 2) := 'l' & LSC;
191 -- This is "lw" in o32 mode, and "ld" in n32/n64 mode
193 LOADF : constant String (1 .. 4) := 'l' & LSC & "c1";
194 -- This is "lwc1" in o32 mode and "ldc1" in n32/n64 mode
196 begin
197 -- Restore integer registers from machine state. Note that we know
198 -- that $4 points to M, and $5 points to Handler, since this is
199 -- the standard calling sequence
201 Asm (LOADI & " $16, 16*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
202 Asm (LOADI & " $17, 17*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
203 Asm (LOADI & " $18, 18*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
204 Asm (LOADI & " $19, 19*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
205 Asm (LOADI & " $20, 20*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
206 Asm (LOADI & " $21, 21*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
207 Asm (LOADI & " $22, 22*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
208 Asm (LOADI & " $23, 23*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
209 Asm (LOADI & " $24, 24*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
210 Asm (LOADI & " $25, 25*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
211 Asm (LOADI & " $26, 26*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
212 Asm (LOADI & " $27, 27*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
213 Asm (LOADI & " $28, 28*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
214 Asm (LOADI & " $29, 29*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
215 Asm (LOADI & " $30, 30*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
216 Asm (LOADI & " $31, 31*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
218 -- Restore floating-point registers from machine state
220 Asm (LOADF & " $f16, 16*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
221 Asm (LOADF & " $f17, 17*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
222 Asm (LOADF & " $f18, 18*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
223 Asm (LOADF & " $f19, 19*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
224 Asm (LOADF & " $f20, 20*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
225 Asm (LOADF & " $f21, 21*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
226 Asm (LOADF & " $f22, 22*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
227 Asm (LOADF & " $f23, 23*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
228 Asm (LOADF & " $f24, 24*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
229 Asm (LOADF & " $f25, 25*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
230 Asm (LOADF & " $f26, 26*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
231 Asm (LOADF & " $f27, 27*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
232 Asm (LOADF & " $f28, 28*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
233 Asm (LOADF & " $f29, 29*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
234 Asm (LOADF & " $f30, 30*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
235 Asm (LOADF & " $f31, 31*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
237 -- Jump directly to the handler
239 Asm ("jr $5");
240 end Enter_Handler;
242 ----------------
243 -- Fetch_Code --
244 ----------------
246 function Fetch_Code (Loc : Code_Loc) return Code_Loc is
247 begin
248 return Loc;
249 end Fetch_Code;
251 ------------------------
252 -- Free_Machine_State --
253 ------------------------
255 procedure Free_Machine_State (M : in out Machine_State) is
256 procedure Gnat_Free (M : in Machine_State);
257 pragma Import (C, Gnat_Free, "__gnat_free");
259 begin
260 Gnat_Free (M);
261 M := Machine_State (Null_Address);
262 end Free_Machine_State;
264 ------------------
265 -- Get_Code_Loc --
266 ------------------
268 function Get_Code_Loc (M : Machine_State) return Code_Loc is
269 SC : constant Sigcontext_Ptr := To_Sigcontext_Ptr (M);
270 begin
271 return To_Code_Loc (Addr_Int (SC.SC_PC));
272 end Get_Code_Loc;
274 --------------------------
275 -- Machine_State_Length --
276 --------------------------
278 function Machine_State_Length return Storage_Offset is
279 begin
280 return Sigcontext'Max_Size_In_Storage_Elements;
281 end Machine_State_Length;
283 ---------------
284 -- Pop_Frame --
285 ---------------
287 procedure Pop_Frame
288 (M : Machine_State;
289 Info : Subprogram_Info_Type)
291 Scp : Sigcontext_Ptr := To_Sigcontext_Ptr (M);
293 procedure Exc_Unwind (Scp : Sigcontext_Ptr; Fde : Long_Integer := 0);
294 pragma Import (C, Exc_Unwind, "exc_unwind");
295 pragma Linker_Options ("-lexc");
297 begin
298 -- exc_unwind is apparently not thread-safe under IRIX, so protect it
299 -- against race conditions within the GNAT run time.
300 -- ??? Note that we might want to use a fine grained lock here since
301 -- Lock_Task is used in many other places.
303 Lock_Task.all;
304 Exc_Unwind (Scp);
305 Unlock_Task.all;
307 if Scp.SC_PC = 0 or else Scp.SC_PC = 1 then
309 -- A return value of 0 or 1 means exc_unwind couldn't find a parent
310 -- frame. Propagate_Exception expects a zero return address to
311 -- indicate TOS.
313 Scp.SC_PC := 0;
315 else
317 -- Set the GP to restore to the caller value (not callee value)
318 -- This is done only in o32 mode. In n32/n64 mode, GP is a normal
319 -- callee save register
321 if o32 = 1 then
322 Update_GP (Scp);
323 end if;
325 -- Adjust the return address to the call site, not the
326 -- instruction following the branch delay slot. This may
327 -- be necessary if the last instruction of a pragma No_Return
328 -- subprogram is a call. The first instruction following the
329 -- delay slot may be the start of another subprogram. We back
330 -- off the address by 8, which points safely into the middle
331 -- of the generated subprogram code, avoiding end effects.
333 Scp.SC_PC := Scp.SC_PC - 8;
334 end if;
335 end Pop_Frame;
337 -----------------------
338 -- Set_Machine_State --
339 -----------------------
341 procedure Set_Machine_State (M : Machine_State) is
343 STOREI : constant String (1 .. 2) := 's' & LSC;
344 -- This is "sw" in o32 mode, and "sd" in n32 mode
346 STOREF : constant String (1 .. 4) := 's' & LSC & "c1";
347 -- This is "swc1" in o32 mode and "sdc1" in n32 mode
349 Scp : Sigcontext_Ptr;
351 begin
352 -- Save the integer registers. Note that we know that $4 points
353 -- to M, since that is where the first parameter is passed.
354 -- Restore integer registers from machine state. Note that we know
355 -- that $4 points to M since this is the standard calling sequence
357 <<Past_Prolog>>
359 Asm (STOREI & " $16, 16*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
360 Asm (STOREI & " $17, 17*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
361 Asm (STOREI & " $18, 18*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
362 Asm (STOREI & " $19, 19*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
363 Asm (STOREI & " $20, 20*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
364 Asm (STOREI & " $21, 21*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
365 Asm (STOREI & " $22, 22*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
366 Asm (STOREI & " $23, 23*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
367 Asm (STOREI & " $24, 24*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
368 Asm (STOREI & " $25, 25*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
369 Asm (STOREI & " $26, 26*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
370 Asm (STOREI & " $27, 27*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
371 Asm (STOREI & " $28, 28*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
372 Asm (STOREI & " $29, 29*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
373 Asm (STOREI & " $30, 30*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
374 Asm (STOREI & " $31, 31*8+" & Roff & "+" & SC_Regs_Pos & "($4)");
376 -- Restore floating-point registers from machine state
378 Asm (STOREF & " $f16, 16*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
379 Asm (STOREF & " $f17, 17*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
380 Asm (STOREF & " $f18, 18*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
381 Asm (STOREF & " $f19, 19*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
382 Asm (STOREF & " $f20, 20*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
383 Asm (STOREF & " $f21, 21*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
384 Asm (STOREF & " $f22, 22*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
385 Asm (STOREF & " $f23, 23*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
386 Asm (STOREF & " $f24, 24*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
387 Asm (STOREF & " $f25, 25*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
388 Asm (STOREF & " $f26, 26*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
389 Asm (STOREF & " $f27, 27*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
390 Asm (STOREF & " $f28, 28*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
391 Asm (STOREF & " $f29, 29*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
392 Asm (STOREF & " $f30, 30*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
393 Asm (STOREF & " $f31, 31*8+" & Roff & "+" & SC_Fpregs_Pos & "($4)");
395 -- Set the PC value for the context to a location after the
396 -- prolog has been executed.
398 Scp := To_Sigcontext_Ptr (M);
399 Scp.SC_PC := Uns64 (To_Addr_Int (Past_Prolog'Address));
401 -- We saved the state *inside* this routine, but what we want is
402 -- the state at the call site. So we need to do one pop operation.
403 -- This pop operation will properly set the PC value in the machine
404 -- state, so there is no need to save PC in the above code.
406 Pop_Frame (M, Set_Machine_State'Address);
407 end Set_Machine_State;
409 ------------------------------
410 -- Set_Signal_Machine_State --
411 ------------------------------
413 procedure Set_Signal_Machine_State
414 (M : Machine_State;
415 Context : System.Address) is
416 begin
417 null;
418 end Set_Signal_Machine_State;
420 end System.Machine_State_Operations;