[RS6000] lqarx and stqcx. registers
[official-gcc.git] / gcc / ada / sem_dim.adb
blob506769873678c749dea74c8c310dfa9d9e0572fb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ D I M --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2011-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Einfo; use Einfo;
29 with Errout; use Errout;
30 with Exp_Util; use Exp_Util;
31 with Lib; use Lib;
32 with Namet; use Namet;
33 with Nlists; use Nlists;
34 with Nmake; use Nmake;
35 with Opt; use Opt;
36 with Rtsfind; use Rtsfind;
37 with Sem; use Sem;
38 with Sem_Eval; use Sem_Eval;
39 with Sem_Res; use Sem_Res;
40 with Sem_Util; use Sem_Util;
41 with Sinfo; use Sinfo;
42 with Sinput; use Sinput;
43 with Snames; use Snames;
44 with Stand; use Stand;
45 with Stringt; use Stringt;
46 with Table;
47 with Tbuild; use Tbuild;
48 with Uintp; use Uintp;
49 with Urealp; use Urealp;
51 with GNAT.HTable;
53 package body Sem_Dim is
55 -------------------------
56 -- Rational Arithmetic --
57 -------------------------
59 type Whole is new Int;
60 subtype Positive_Whole is Whole range 1 .. Whole'Last;
62 type Rational is record
63 Numerator : Whole;
64 Denominator : Positive_Whole;
65 end record;
67 Zero : constant Rational := Rational'(Numerator => 0,
68 Denominator => 1);
70 No_Rational : constant Rational := Rational'(Numerator => 0,
71 Denominator => 2);
72 -- Used to indicate an expression that cannot be interpreted as a rational
73 -- Returned value of the Create_Rational_From routine when parameter Expr
74 -- is not a static representation of a rational.
76 -- Rational constructors
78 function "+" (Right : Whole) return Rational;
79 function GCD (Left, Right : Whole) return Int;
80 function Reduce (X : Rational) return Rational;
82 -- Unary operator for Rational
84 function "-" (Right : Rational) return Rational;
85 function "abs" (Right : Rational) return Rational;
87 -- Rational operations for Rationals
89 function "+" (Left, Right : Rational) return Rational;
90 function "-" (Left, Right : Rational) return Rational;
91 function "*" (Left, Right : Rational) return Rational;
92 function "/" (Left, Right : Rational) return Rational;
94 ------------------
95 -- System Types --
96 ------------------
98 Max_Number_Of_Dimensions : constant := 7;
99 -- Maximum number of dimensions in a dimension system
101 High_Position_Bound : constant := Max_Number_Of_Dimensions;
102 Invalid_Position : constant := 0;
103 Low_Position_Bound : constant := 1;
105 subtype Dimension_Position is
106 Nat range Invalid_Position .. High_Position_Bound;
108 type Name_Array is
109 array (Dimension_Position range
110 Low_Position_Bound .. High_Position_Bound) of Name_Id;
111 -- Store the names of all units within a system
113 No_Names : constant Name_Array := (others => No_Name);
115 type Symbol_Array is
116 array (Dimension_Position range
117 Low_Position_Bound .. High_Position_Bound) of String_Id;
118 -- Store the symbols of all units within a system
120 No_Symbols : constant Symbol_Array := (others => No_String);
122 -- The following record should be documented field by field
124 type System_Type is record
125 Type_Decl : Node_Id;
126 Unit_Names : Name_Array;
127 Unit_Symbols : Symbol_Array;
128 Dim_Symbols : Symbol_Array;
129 Count : Dimension_Position;
130 end record;
132 Null_System : constant System_Type :=
133 (Empty, No_Names, No_Symbols, No_Symbols, Invalid_Position);
135 subtype System_Id is Nat;
137 -- The following table maps types to systems
139 package System_Table is new Table.Table (
140 Table_Component_Type => System_Type,
141 Table_Index_Type => System_Id,
142 Table_Low_Bound => 1,
143 Table_Initial => 5,
144 Table_Increment => 5,
145 Table_Name => "System_Table");
147 --------------------
148 -- Dimension Type --
149 --------------------
151 type Dimension_Type is
152 array (Dimension_Position range
153 Low_Position_Bound .. High_Position_Bound) of Rational;
155 Null_Dimension : constant Dimension_Type := (others => Zero);
157 type Dimension_Table_Range is range 0 .. 510;
158 function Dimension_Table_Hash (Key : Node_Id) return Dimension_Table_Range;
160 -- The following table associates nodes with dimensions
162 package Dimension_Table is new
163 GNAT.HTable.Simple_HTable
164 (Header_Num => Dimension_Table_Range,
165 Element => Dimension_Type,
166 No_Element => Null_Dimension,
167 Key => Node_Id,
168 Hash => Dimension_Table_Hash,
169 Equal => "=");
171 ------------------
172 -- Symbol Types --
173 ------------------
175 type Symbol_Table_Range is range 0 .. 510;
176 function Symbol_Table_Hash (Key : Entity_Id) return Symbol_Table_Range;
178 -- Each subtype with a dimension has a symbolic representation of the
179 -- related unit. This table establishes a relation between the subtype
180 -- and the symbol.
182 package Symbol_Table is new
183 GNAT.HTable.Simple_HTable
184 (Header_Num => Symbol_Table_Range,
185 Element => String_Id,
186 No_Element => No_String,
187 Key => Entity_Id,
188 Hash => Symbol_Table_Hash,
189 Equal => "=");
191 -- The following array enumerates all contexts which may contain or
192 -- produce a dimension.
194 OK_For_Dimension : constant array (Node_Kind) of Boolean :=
195 (N_Attribute_Reference => True,
196 N_Expanded_Name => True,
197 N_Explicit_Dereference => True,
198 N_Defining_Identifier => True,
199 N_Function_Call => True,
200 N_Identifier => True,
201 N_Indexed_Component => True,
202 N_Integer_Literal => True,
203 N_Op_Abs => True,
204 N_Op_Add => True,
205 N_Op_Divide => True,
206 N_Op_Expon => True,
207 N_Op_Minus => True,
208 N_Op_Mod => True,
209 N_Op_Multiply => True,
210 N_Op_Plus => True,
211 N_Op_Rem => True,
212 N_Op_Subtract => True,
213 N_Qualified_Expression => True,
214 N_Real_Literal => True,
215 N_Selected_Component => True,
216 N_Slice => True,
217 N_Type_Conversion => True,
218 N_Unchecked_Type_Conversion => True,
220 others => False);
222 -----------------------
223 -- Local Subprograms --
224 -----------------------
226 procedure Analyze_Dimension_Assignment_Statement (N : Node_Id);
227 -- Subroutine of Analyze_Dimension for assignment statement. Check that the
228 -- dimensions of the left-hand side and the right-hand side of N match.
230 procedure Analyze_Dimension_Binary_Op (N : Node_Id);
231 -- Subroutine of Analyze_Dimension for binary operators. Check the
232 -- dimensions of the right and the left operand permit the operation.
233 -- Then, evaluate the resulting dimensions for each binary operator.
235 procedure Analyze_Dimension_Component_Declaration (N : Node_Id);
236 -- Subroutine of Analyze_Dimension for component declaration. Check that
237 -- the dimensions of the type of N and of the expression match.
239 procedure Analyze_Dimension_Extended_Return_Statement (N : Node_Id);
240 -- Subroutine of Analyze_Dimension for extended return statement. Check
241 -- that the dimensions of the returned type and of the returned object
242 -- match.
244 procedure Analyze_Dimension_Has_Etype (N : Node_Id);
245 -- Subroutine of Analyze_Dimension for a subset of N_Has_Etype denoted by
246 -- the list below:
247 -- N_Attribute_Reference
248 -- N_Identifier
249 -- N_Indexed_Component
250 -- N_Qualified_Expression
251 -- N_Selected_Component
252 -- N_Slice
253 -- N_Type_Conversion
254 -- N_Unchecked_Type_Conversion
256 procedure Analyze_Dimension_Number_Declaration (N : Node_Id);
257 -- Procedure to analyze dimension of expression in a number declaration.
258 -- This allows a named number to have nontrivial dimensions, while by
259 -- default a named number is dimensionless.
261 procedure Analyze_Dimension_Object_Declaration (N : Node_Id);
262 -- Subroutine of Analyze_Dimension for object declaration. Check that
263 -- the dimensions of the object type and the dimensions of the expression
264 -- (if expression is present) match. Note that when the expression is
265 -- a literal, no error is returned. This special case allows object
266 -- declaration such as: m : constant Length := 1.0;
268 procedure Analyze_Dimension_Object_Renaming_Declaration (N : Node_Id);
269 -- Subroutine of Analyze_Dimension for object renaming declaration. Check
270 -- the dimensions of the type and of the renamed object name of N match.
272 procedure Analyze_Dimension_Simple_Return_Statement (N : Node_Id);
273 -- Subroutine of Analyze_Dimension for simple return statement
274 -- Check that the dimensions of the returned type and of the returned
275 -- expression match.
277 procedure Analyze_Dimension_Subtype_Declaration (N : Node_Id);
278 -- Subroutine of Analyze_Dimension for subtype declaration. Propagate the
279 -- dimensions from the parent type to the identifier of N. Note that if
280 -- both the identifier and the parent type of N are not dimensionless,
281 -- return an error.
283 procedure Analyze_Dimension_Unary_Op (N : Node_Id);
284 -- Subroutine of Analyze_Dimension for unary operators. For Plus, Minus and
285 -- Abs operators, propagate the dimensions from the operand to N.
287 function Create_Rational_From
288 (Expr : Node_Id;
289 Complain : Boolean) return Rational;
290 -- Given an arbitrary expression Expr, return a valid rational if Expr can
291 -- be interpreted as a rational. Otherwise return No_Rational and also an
292 -- error message if Complain is set to True.
294 function Dimensions_Of (N : Node_Id) return Dimension_Type;
295 -- Return the dimension vector of node N
297 function Dimensions_Msg_Of
298 (N : Node_Id;
299 Description_Needed : Boolean := False) return String;
300 -- Given a node N, return the dimension symbols of N, preceded by "has
301 -- dimension" if Description_Needed. if N is dimensionless, return "'[']",
302 -- or "is dimensionless" if Description_Needed.
304 procedure Dim_Warning_For_Numeric_Literal (N : Node_Id; Typ : Entity_Id);
305 -- Issue a warning on the given numeric literal N to indicate that the
306 -- compiler made the assumption that the literal is not dimensionless
307 -- but has the dimension of Typ.
309 procedure Eval_Op_Expon_With_Rational_Exponent
310 (N : Node_Id;
311 Exponent_Value : Rational);
312 -- Evaluate the exponent it is a rational and the operand has a dimension
314 function Exists (Dim : Dimension_Type) return Boolean;
315 -- Returns True iff Dim does not denote the null dimension
317 function Exists (Str : String_Id) return Boolean;
318 -- Returns True iff Str does not denote No_String
320 function Exists (Sys : System_Type) return Boolean;
321 -- Returns True iff Sys does not denote the null system
323 function From_Dim_To_Str_Of_Dim_Symbols
324 (Dims : Dimension_Type;
325 System : System_Type;
326 In_Error_Msg : Boolean := False) return String_Id;
327 -- Given a dimension vector and a dimension system, return the proper
328 -- string of dimension symbols. If In_Error_Msg is True (i.e. the String_Id
329 -- will be used to issue an error message) then this routine has a special
330 -- handling for the insertion characters * or [ which must be preceded by
331 -- a quote ' to be placed literally into the message.
333 function From_Dim_To_Str_Of_Unit_Symbols
334 (Dims : Dimension_Type;
335 System : System_Type) return String_Id;
336 -- Given a dimension vector and a dimension system, return the proper
337 -- string of unit symbols.
339 function Is_Dim_IO_Package_Entity (E : Entity_Id) return Boolean;
340 -- Return True if E is the package entity of System.Dim.Float_IO or
341 -- System.Dim.Integer_IO.
343 function Is_Invalid (Position : Dimension_Position) return Boolean;
344 -- Return True if Pos denotes the invalid position
346 procedure Move_Dimensions (From : Node_Id; To : Node_Id);
347 -- Copy dimension vector of From to To and delete dimension vector of From
349 procedure Remove_Dimensions (N : Node_Id);
350 -- Remove the dimension vector of node N
352 procedure Set_Dimensions (N : Node_Id; Val : Dimension_Type);
353 -- Associate a dimension vector with a node
355 procedure Set_Symbol (E : Entity_Id; Val : String_Id);
356 -- Associate a symbol representation of a dimension vector with a subtype
358 function String_From_Numeric_Literal (N : Node_Id) return String_Id;
359 -- Return the string that corresponds to the numeric litteral N as it
360 -- appears in the source.
362 function Symbol_Of (E : Entity_Id) return String_Id;
363 -- E denotes a subtype with a dimension. Return the symbol representation
364 -- of the dimension vector.
366 function System_Of (E : Entity_Id) return System_Type;
367 -- E denotes a type, return associated system of the type if it has one
369 ---------
370 -- "+" --
371 ---------
373 function "+" (Right : Whole) return Rational is
374 begin
375 return Rational'(Numerator => Right, Denominator => 1);
376 end "+";
378 function "+" (Left, Right : Rational) return Rational is
379 R : constant Rational :=
380 Rational'(Numerator => Left.Numerator * Right.Denominator +
381 Left.Denominator * Right.Numerator,
382 Denominator => Left.Denominator * Right.Denominator);
383 begin
384 return Reduce (R);
385 end "+";
387 ---------
388 -- "-" --
389 ---------
391 function "-" (Right : Rational) return Rational is
392 begin
393 return Rational'(Numerator => -Right.Numerator,
394 Denominator => Right.Denominator);
395 end "-";
397 function "-" (Left, Right : Rational) return Rational is
398 R : constant Rational :=
399 Rational'(Numerator => Left.Numerator * Right.Denominator -
400 Left.Denominator * Right.Numerator,
401 Denominator => Left.Denominator * Right.Denominator);
403 begin
404 return Reduce (R);
405 end "-";
407 ---------
408 -- "*" --
409 ---------
411 function "*" (Left, Right : Rational) return Rational is
412 R : constant Rational :=
413 Rational'(Numerator => Left.Numerator * Right.Numerator,
414 Denominator => Left.Denominator * Right.Denominator);
415 begin
416 return Reduce (R);
417 end "*";
419 ---------
420 -- "/" --
421 ---------
423 function "/" (Left, Right : Rational) return Rational is
424 R : constant Rational := abs Right;
425 L : Rational := Left;
427 begin
428 if Right.Numerator < 0 then
429 L.Numerator := Whole (-Integer (L.Numerator));
430 end if;
432 return Reduce (Rational'(Numerator => L.Numerator * R.Denominator,
433 Denominator => L.Denominator * R.Numerator));
434 end "/";
436 -----------
437 -- "abs" --
438 -----------
440 function "abs" (Right : Rational) return Rational is
441 begin
442 return Rational'(Numerator => abs Right.Numerator,
443 Denominator => Right.Denominator);
444 end "abs";
446 ------------------------------
447 -- Analyze_Aspect_Dimension --
448 ------------------------------
450 -- with Dimension =>
451 -- ([Symbol =>] SYMBOL, DIMENSION_VALUE {, DIMENSION_Value})
453 -- SYMBOL ::= STRING_LITERAL | CHARACTER_LITERAL
455 -- DIMENSION_VALUE ::=
456 -- RATIONAL
457 -- | others => RATIONAL
458 -- | DISCRETE_CHOICE_LIST => RATIONAL
460 -- RATIONAL ::= [-] NUMERIC_LITERAL [/ NUMERIC_LITERAL]
462 -- Note that when the dimensioned type is an integer type, then any
463 -- dimension value must be an integer literal.
465 procedure Analyze_Aspect_Dimension
466 (N : Node_Id;
467 Id : Entity_Id;
468 Aggr : Node_Id)
470 Def_Id : constant Entity_Id := Defining_Identifier (N);
472 Processed : array (Dimension_Type'Range) of Boolean := (others => False);
473 -- This array is used when processing ranges or Others_Choice as part of
474 -- the dimension aggregate.
476 Dimensions : Dimension_Type := Null_Dimension;
478 procedure Extract_Power
479 (Expr : Node_Id;
480 Position : Dimension_Position);
481 -- Given an expression with denotes a rational number, read the number
482 -- and associate it with Position in Dimensions.
484 function Position_In_System
485 (Id : Node_Id;
486 System : System_Type) return Dimension_Position;
487 -- Given an identifier which denotes a dimension, return the position of
488 -- that dimension within System.
490 -------------------
491 -- Extract_Power --
492 -------------------
494 procedure Extract_Power
495 (Expr : Node_Id;
496 Position : Dimension_Position)
498 begin
499 -- Integer case
501 if Is_Integer_Type (Def_Id) then
503 -- Dimension value must be an integer literal
505 if Nkind (Expr) = N_Integer_Literal then
506 Dimensions (Position) := +Whole (UI_To_Int (Intval (Expr)));
507 else
508 Error_Msg_N ("integer literal expected", Expr);
509 end if;
511 -- Float case
513 else
514 Dimensions (Position) := Create_Rational_From (Expr, True);
515 end if;
517 Processed (Position) := True;
518 end Extract_Power;
520 ------------------------
521 -- Position_In_System --
522 ------------------------
524 function Position_In_System
525 (Id : Node_Id;
526 System : System_Type) return Dimension_Position
528 Dimension_Name : constant Name_Id := Chars (Id);
530 begin
531 for Position in System.Unit_Names'Range loop
532 if Dimension_Name = System.Unit_Names (Position) then
533 return Position;
534 end if;
535 end loop;
537 return Invalid_Position;
538 end Position_In_System;
540 -- Local variables
542 Assoc : Node_Id;
543 Choice : Node_Id;
544 Expr : Node_Id;
545 Num_Choices : Nat := 0;
546 Num_Dimensions : Nat := 0;
547 Others_Seen : Boolean := False;
548 Position : Nat := 0;
549 Sub_Ind : Node_Id;
550 Symbol : String_Id := No_String;
551 Symbol_Expr : Node_Id;
552 System : System_Type;
553 Typ : Entity_Id;
555 Errors_Count : Nat;
556 -- Errors_Count is a count of errors detected by the compiler so far
557 -- just before the extraction of symbol, names and values in the
558 -- aggregate (Step 2).
560 -- At the end of the analysis, there is a check to verify that this
561 -- count equals to Serious_Errors_Detected i.e. no erros have been
562 -- encountered during the process. Otherwise the Dimension_Table is
563 -- not filled.
565 -- Start of processing for Analyze_Aspect_Dimension
567 begin
568 -- STEP 1: Legality of aspect
570 if Nkind (N) /= N_Subtype_Declaration then
571 Error_Msg_NE ("aspect& must apply to subtype declaration", N, Id);
572 return;
573 end if;
575 Sub_Ind := Subtype_Indication (N);
576 Typ := Etype (Sub_Ind);
577 System := System_Of (Typ);
579 if Nkind (Sub_Ind) = N_Subtype_Indication then
580 Error_Msg_NE
581 ("constraint not allowed with aspect&", Constraint (Sub_Ind), Id);
582 return;
583 end if;
585 -- The dimension declarations are useless if the parent type does not
586 -- declare a valid system.
588 if not Exists (System) then
589 Error_Msg_NE
590 ("parent type of& lacks dimension system", Sub_Ind, Def_Id);
591 return;
592 end if;
594 if Nkind (Aggr) /= N_Aggregate then
595 Error_Msg_N ("aggregate expected", Aggr);
596 return;
597 end if;
599 -- STEP 2: Symbol, Names and values extraction
601 -- Get the number of errors detected by the compiler so far
603 Errors_Count := Serious_Errors_Detected;
605 -- STEP 2a: Symbol extraction
607 -- The first entry in the aggregate may be the symbolic representation
608 -- of the quantity.
610 -- Positional symbol argument
612 Symbol_Expr := First (Expressions (Aggr));
614 -- Named symbol argument
616 if No (Symbol_Expr)
617 or else not Nkind_In (Symbol_Expr, N_Character_Literal,
618 N_String_Literal)
619 then
620 Symbol_Expr := Empty;
622 -- Component associations present
624 if Present (Component_Associations (Aggr)) then
625 Assoc := First (Component_Associations (Aggr));
626 Choice := First (Choices (Assoc));
628 if No (Next (Choice)) and then Nkind (Choice) = N_Identifier then
630 -- Symbol component association is present
632 if Chars (Choice) = Name_Symbol then
633 Num_Choices := Num_Choices + 1;
634 Symbol_Expr := Expression (Assoc);
636 -- Verify symbol expression is a string or a character
638 if not Nkind_In (Symbol_Expr, N_Character_Literal,
639 N_String_Literal)
640 then
641 Symbol_Expr := Empty;
642 Error_Msg_N
643 ("symbol expression must be character or string",
644 Symbol_Expr);
645 end if;
647 -- Special error if no Symbol choice but expression is string
648 -- or character.
650 elsif Nkind_In (Expression (Assoc), N_Character_Literal,
651 N_String_Literal)
652 then
653 Num_Choices := Num_Choices + 1;
654 Error_Msg_N
655 ("optional component Symbol expected, found&", Choice);
656 end if;
657 end if;
658 end if;
659 end if;
661 -- STEP 2b: Names and values extraction
663 -- Positional elements
665 Expr := First (Expressions (Aggr));
667 -- Skip the symbol expression when present
669 if Present (Symbol_Expr) and then Num_Choices = 0 then
670 Expr := Next (Expr);
671 end if;
673 Position := Low_Position_Bound;
674 while Present (Expr) loop
675 if Position > High_Position_Bound then
676 Error_Msg_N
677 ("type& has more dimensions than system allows", Def_Id);
678 exit;
679 end if;
681 Extract_Power (Expr, Position);
683 Position := Position + 1;
684 Num_Dimensions := Num_Dimensions + 1;
686 Next (Expr);
687 end loop;
689 -- Named elements
691 Assoc := First (Component_Associations (Aggr));
693 -- Skip the symbol association when present
695 if Num_Choices = 1 then
696 Next (Assoc);
697 end if;
699 while Present (Assoc) loop
700 Expr := Expression (Assoc);
702 Choice := First (Choices (Assoc));
703 while Present (Choice) loop
705 -- Identifier case: NAME => EXPRESSION
707 if Nkind (Choice) = N_Identifier then
708 Position := Position_In_System (Choice, System);
710 if Is_Invalid (Position) then
711 Error_Msg_N ("dimension name& not part of system", Choice);
712 else
713 Extract_Power (Expr, Position);
714 end if;
716 -- Range case: NAME .. NAME => EXPRESSION
718 elsif Nkind (Choice) = N_Range then
719 declare
720 Low : constant Node_Id := Low_Bound (Choice);
721 High : constant Node_Id := High_Bound (Choice);
722 Low_Pos : Dimension_Position;
723 High_Pos : Dimension_Position;
725 begin
726 if Nkind (Low) /= N_Identifier then
727 Error_Msg_N ("bound must denote a dimension name", Low);
729 elsif Nkind (High) /= N_Identifier then
730 Error_Msg_N ("bound must denote a dimension name", High);
732 else
733 Low_Pos := Position_In_System (Low, System);
734 High_Pos := Position_In_System (High, System);
736 if Is_Invalid (Low_Pos) then
737 Error_Msg_N ("dimension name& not part of system",
738 Low);
740 elsif Is_Invalid (High_Pos) then
741 Error_Msg_N ("dimension name& not part of system",
742 High);
744 elsif Low_Pos > High_Pos then
745 Error_Msg_N ("expected low to high range", Choice);
747 else
748 for Position in Low_Pos .. High_Pos loop
749 Extract_Power (Expr, Position);
750 end loop;
751 end if;
752 end if;
753 end;
755 -- Others case: OTHERS => EXPRESSION
757 elsif Nkind (Choice) = N_Others_Choice then
758 if Present (Next (Choice)) or else Present (Prev (Choice)) then
759 Error_Msg_N
760 ("OTHERS must appear alone in a choice list", Choice);
762 elsif Present (Next (Assoc)) then
763 Error_Msg_N
764 ("OTHERS must appear last in an aggregate", Choice);
766 elsif Others_Seen then
767 Error_Msg_N ("multiple OTHERS not allowed", Choice);
769 else
770 -- Fill the non-processed dimensions with the default value
771 -- supplied by others.
773 for Position in Processed'Range loop
774 if not Processed (Position) then
775 Extract_Power (Expr, Position);
776 end if;
777 end loop;
778 end if;
780 Others_Seen := True;
782 -- All other cases are illegal declarations of dimension names
784 else
785 Error_Msg_NE ("wrong syntax for aspect&", Choice, Id);
786 end if;
788 Num_Choices := Num_Choices + 1;
789 Next (Choice);
790 end loop;
792 Num_Dimensions := Num_Dimensions + 1;
793 Next (Assoc);
794 end loop;
796 -- STEP 3: Consistency of system and dimensions
798 if Present (First (Expressions (Aggr)))
799 and then (First (Expressions (Aggr)) /= Symbol_Expr
800 or else Present (Next (Symbol_Expr)))
801 and then (Num_Choices > 1
802 or else (Num_Choices = 1 and then not Others_Seen))
803 then
804 Error_Msg_N
805 ("named associations cannot follow positional associations", Aggr);
806 end if;
808 if Num_Dimensions > System.Count then
809 Error_Msg_N ("type& has more dimensions than system allows", Def_Id);
811 elsif Num_Dimensions < System.Count and then not Others_Seen then
812 Error_Msg_N ("type& has less dimensions than system allows", Def_Id);
813 end if;
815 -- STEP 4: Dimension symbol extraction
817 if Present (Symbol_Expr) then
818 if Nkind (Symbol_Expr) = N_Character_Literal then
819 Start_String;
820 Store_String_Char (UI_To_CC (Char_Literal_Value (Symbol_Expr)));
821 Symbol := End_String;
823 else
824 Symbol := Strval (Symbol_Expr);
825 end if;
827 if String_Length (Symbol) = 0 then
828 Error_Msg_N ("empty string not allowed here", Symbol_Expr);
829 end if;
830 end if;
832 -- STEP 5: Storage of extracted values
834 -- Check that no errors have been detected during the analysis
836 if Errors_Count = Serious_Errors_Detected then
838 -- Check for useless declaration
840 if Symbol = No_String and then not Exists (Dimensions) then
841 Error_Msg_N ("useless dimension declaration", Aggr);
842 end if;
844 if Symbol /= No_String then
845 Set_Symbol (Def_Id, Symbol);
846 end if;
848 if Exists (Dimensions) then
849 Set_Dimensions (Def_Id, Dimensions);
850 end if;
851 end if;
852 end Analyze_Aspect_Dimension;
854 -------------------------------------
855 -- Analyze_Aspect_Dimension_System --
856 -------------------------------------
858 -- with Dimension_System => (DIMENSION {, DIMENSION});
860 -- DIMENSION ::= (
861 -- [Unit_Name =>] IDENTIFIER,
862 -- [Unit_Symbol =>] SYMBOL,
863 -- [Dim_Symbol =>] SYMBOL)
865 procedure Analyze_Aspect_Dimension_System
866 (N : Node_Id;
867 Id : Entity_Id;
868 Aggr : Node_Id)
870 function Is_Derived_Numeric_Type (N : Node_Id) return Boolean;
871 -- Determine whether type declaration N denotes a numeric derived type
873 -------------------------------
874 -- Is_Derived_Numeric_Type --
875 -------------------------------
877 function Is_Derived_Numeric_Type (N : Node_Id) return Boolean is
878 begin
879 return
880 Nkind (N) = N_Full_Type_Declaration
881 and then Nkind (Type_Definition (N)) = N_Derived_Type_Definition
882 and then Is_Numeric_Type
883 (Entity (Subtype_Indication (Type_Definition (N))));
884 end Is_Derived_Numeric_Type;
886 -- Local variables
888 Assoc : Node_Id;
889 Choice : Node_Id;
890 Dim_Aggr : Node_Id;
891 Dim_Symbol : Node_Id;
892 Dim_Symbols : Symbol_Array := No_Symbols;
893 Dim_System : System_Type := Null_System;
894 Position : Nat := 0;
895 Unit_Name : Node_Id;
896 Unit_Names : Name_Array := No_Names;
897 Unit_Symbol : Node_Id;
898 Unit_Symbols : Symbol_Array := No_Symbols;
900 Errors_Count : Nat;
901 -- Errors_Count is a count of errors detected by the compiler so far
902 -- just before the extraction of names and symbols in the aggregate
903 -- (Step 3).
905 -- At the end of the analysis, there is a check to verify that this
906 -- count equals Serious_Errors_Detected i.e. no errors have been
907 -- encountered during the process. Otherwise the System_Table is
908 -- not filled.
910 -- Start of processing for Analyze_Aspect_Dimension_System
912 begin
913 -- STEP 1: Legality of aspect
915 if not Is_Derived_Numeric_Type (N) then
916 Error_Msg_NE
917 ("aspect& must apply to numeric derived type declaration", N, Id);
918 return;
919 end if;
921 if Nkind (Aggr) /= N_Aggregate then
922 Error_Msg_N ("aggregate expected", Aggr);
923 return;
924 end if;
926 -- STEP 2: Structural verification of the dimension aggregate
928 if Present (Component_Associations (Aggr)) then
929 Error_Msg_N ("expected positional aggregate", Aggr);
930 return;
931 end if;
933 -- STEP 3: Name and Symbol extraction
935 Dim_Aggr := First (Expressions (Aggr));
936 Errors_Count := Serious_Errors_Detected;
937 while Present (Dim_Aggr) loop
938 Position := Position + 1;
940 if Position > High_Position_Bound then
941 Error_Msg_N ("too many dimensions in system", Aggr);
942 exit;
943 end if;
945 if Nkind (Dim_Aggr) /= N_Aggregate then
946 Error_Msg_N ("aggregate expected", Dim_Aggr);
948 else
949 if Present (Component_Associations (Dim_Aggr))
950 and then Present (Expressions (Dim_Aggr))
951 then
952 Error_Msg_N
953 ("mixed positional/named aggregate not allowed here",
954 Dim_Aggr);
956 -- Verify each dimension aggregate has three arguments
958 elsif List_Length (Component_Associations (Dim_Aggr)) /= 3
959 and then List_Length (Expressions (Dim_Aggr)) /= 3
960 then
961 Error_Msg_N
962 ("three components expected in aggregate", Dim_Aggr);
964 else
965 -- Named dimension aggregate
967 if Present (Component_Associations (Dim_Aggr)) then
969 -- Check first argument denotes the unit name
971 Assoc := First (Component_Associations (Dim_Aggr));
972 Choice := First (Choices (Assoc));
973 Unit_Name := Expression (Assoc);
975 if Present (Next (Choice))
976 or else Nkind (Choice) /= N_Identifier
977 then
978 Error_Msg_NE ("wrong syntax for aspect&", Choice, Id);
980 elsif Chars (Choice) /= Name_Unit_Name then
981 Error_Msg_N ("expected Unit_Name, found&", Choice);
982 end if;
984 -- Check the second argument denotes the unit symbol
986 Next (Assoc);
987 Choice := First (Choices (Assoc));
988 Unit_Symbol := Expression (Assoc);
990 if Present (Next (Choice))
991 or else Nkind (Choice) /= N_Identifier
992 then
993 Error_Msg_NE ("wrong syntax for aspect&", Choice, Id);
995 elsif Chars (Choice) /= Name_Unit_Symbol then
996 Error_Msg_N ("expected Unit_Symbol, found&", Choice);
997 end if;
999 -- Check the third argument denotes the dimension symbol
1001 Next (Assoc);
1002 Choice := First (Choices (Assoc));
1003 Dim_Symbol := Expression (Assoc);
1005 if Present (Next (Choice))
1006 or else Nkind (Choice) /= N_Identifier
1007 then
1008 Error_Msg_NE ("wrong syntax for aspect&", Choice, Id);
1009 elsif Chars (Choice) /= Name_Dim_Symbol then
1010 Error_Msg_N ("expected Dim_Symbol, found&", Choice);
1011 end if;
1013 -- Positional dimension aggregate
1015 else
1016 Unit_Name := First (Expressions (Dim_Aggr));
1017 Unit_Symbol := Next (Unit_Name);
1018 Dim_Symbol := Next (Unit_Symbol);
1019 end if;
1021 -- Check the first argument for each dimension aggregate is
1022 -- a name.
1024 if Nkind (Unit_Name) = N_Identifier then
1025 Unit_Names (Position) := Chars (Unit_Name);
1026 else
1027 Error_Msg_N ("expected unit name", Unit_Name);
1028 end if;
1030 -- Check the second argument for each dimension aggregate is
1031 -- a string or a character.
1033 if not Nkind_In (Unit_Symbol, N_String_Literal,
1034 N_Character_Literal)
1035 then
1036 Error_Msg_N
1037 ("expected unit symbol (string or character)",
1038 Unit_Symbol);
1040 else
1041 -- String case
1043 if Nkind (Unit_Symbol) = N_String_Literal then
1044 Unit_Symbols (Position) := Strval (Unit_Symbol);
1046 -- Character case
1048 else
1049 Start_String;
1050 Store_String_Char
1051 (UI_To_CC (Char_Literal_Value (Unit_Symbol)));
1052 Unit_Symbols (Position) := End_String;
1053 end if;
1055 -- Verify that the string is not empty
1057 if String_Length (Unit_Symbols (Position)) = 0 then
1058 Error_Msg_N
1059 ("empty string not allowed here", Unit_Symbol);
1060 end if;
1061 end if;
1063 -- Check the third argument for each dimension aggregate is
1064 -- a string or a character.
1066 if not Nkind_In (Dim_Symbol, N_String_Literal,
1067 N_Character_Literal)
1068 then
1069 Error_Msg_N
1070 ("expected dimension symbol (string or character)",
1071 Dim_Symbol);
1073 else
1074 -- String case
1076 if Nkind (Dim_Symbol) = N_String_Literal then
1077 Dim_Symbols (Position) := Strval (Dim_Symbol);
1079 -- Character case
1081 else
1082 Start_String;
1083 Store_String_Char
1084 (UI_To_CC (Char_Literal_Value (Dim_Symbol)));
1085 Dim_Symbols (Position) := End_String;
1086 end if;
1088 -- Verify that the string is not empty
1090 if String_Length (Dim_Symbols (Position)) = 0 then
1091 Error_Msg_N ("empty string not allowed here", Dim_Symbol);
1092 end if;
1093 end if;
1094 end if;
1095 end if;
1097 Next (Dim_Aggr);
1098 end loop;
1100 -- STEP 4: Storage of extracted values
1102 -- Check that no errors have been detected during the analysis
1104 if Errors_Count = Serious_Errors_Detected then
1105 Dim_System.Type_Decl := N;
1106 Dim_System.Unit_Names := Unit_Names;
1107 Dim_System.Unit_Symbols := Unit_Symbols;
1108 Dim_System.Dim_Symbols := Dim_Symbols;
1109 Dim_System.Count := Position;
1110 System_Table.Append (Dim_System);
1111 end if;
1112 end Analyze_Aspect_Dimension_System;
1114 -----------------------
1115 -- Analyze_Dimension --
1116 -----------------------
1118 -- This dispatch routine propagates dimensions for each node
1120 procedure Analyze_Dimension (N : Node_Id) is
1121 begin
1122 -- Aspect is an Ada 2012 feature. Note that there is no need to check
1123 -- dimensions for nodes that don't come from source.
1125 if Ada_Version < Ada_2012 or else not Comes_From_Source (N) then
1126 return;
1127 end if;
1129 case Nkind (N) is
1130 when N_Assignment_Statement =>
1131 Analyze_Dimension_Assignment_Statement (N);
1133 when N_Binary_Op =>
1134 Analyze_Dimension_Binary_Op (N);
1136 when N_Component_Declaration =>
1137 Analyze_Dimension_Component_Declaration (N);
1139 when N_Extended_Return_Statement =>
1140 Analyze_Dimension_Extended_Return_Statement (N);
1142 when N_Attribute_Reference |
1143 N_Expanded_Name |
1144 N_Explicit_Dereference |
1145 N_Function_Call |
1146 N_Identifier |
1147 N_Indexed_Component |
1148 N_Qualified_Expression |
1149 N_Selected_Component |
1150 N_Slice |
1151 N_Type_Conversion |
1152 N_Unchecked_Type_Conversion =>
1153 Analyze_Dimension_Has_Etype (N);
1155 when N_Number_Declaration =>
1156 Analyze_Dimension_Number_Declaration (N);
1158 when N_Object_Declaration =>
1159 Analyze_Dimension_Object_Declaration (N);
1161 when N_Object_Renaming_Declaration =>
1162 Analyze_Dimension_Object_Renaming_Declaration (N);
1164 when N_Simple_Return_Statement =>
1165 if not Comes_From_Extended_Return_Statement (N) then
1166 Analyze_Dimension_Simple_Return_Statement (N);
1167 end if;
1169 when N_Subtype_Declaration =>
1170 Analyze_Dimension_Subtype_Declaration (N);
1172 when N_Unary_Op =>
1173 Analyze_Dimension_Unary_Op (N);
1175 when others => null;
1177 end case;
1178 end Analyze_Dimension;
1180 ---------------------------------------
1181 -- Analyze_Dimension_Array_Aggregate --
1182 ---------------------------------------
1184 procedure Analyze_Dimension_Array_Aggregate
1185 (N : Node_Id;
1186 Comp_Typ : Entity_Id)
1188 Comp_Ass : constant List_Id := Component_Associations (N);
1189 Dims_Of_Comp_Typ : constant Dimension_Type := Dimensions_Of (Comp_Typ);
1190 Exps : constant List_Id := Expressions (N);
1192 Comp : Node_Id;
1193 Expr : Node_Id;
1195 Error_Detected : Boolean := False;
1196 -- This flag is used in order to indicate if an error has been detected
1197 -- so far by the compiler in this routine.
1199 begin
1200 -- Aspect is an Ada 2012 feature. Nothing to do here if the component
1201 -- base type is not a dimensioned type.
1203 -- Note that here the original node must come from source since the
1204 -- original array aggregate may not have been entirely decorated.
1206 if Ada_Version < Ada_2012
1207 or else not Comes_From_Source (Original_Node (N))
1208 or else not Has_Dimension_System (Base_Type (Comp_Typ))
1209 then
1210 return;
1211 end if;
1213 -- Check whether there is any positional component association
1215 if Is_Empty_List (Exps) then
1216 Comp := First (Comp_Ass);
1217 else
1218 Comp := First (Exps);
1219 end if;
1221 while Present (Comp) loop
1223 -- Get the expression from the component
1225 if Nkind (Comp) = N_Component_Association then
1226 Expr := Expression (Comp);
1227 else
1228 Expr := Comp;
1229 end if;
1231 -- Issue an error if the dimensions of the component type and the
1232 -- dimensions of the component mismatch.
1234 -- Note that we must ensure the expression has been fully analyzed
1235 -- since it may not be decorated at this point. We also don't want to
1236 -- issue the same error message multiple times on the same expression
1237 -- (may happen when an aggregate is converted into a positional
1238 -- aggregate).
1240 if Comes_From_Source (Original_Node (Expr))
1241 and then Present (Etype (Expr))
1242 and then Dimensions_Of (Expr) /= Dims_Of_Comp_Typ
1243 and then Sloc (Comp) /= Sloc (Prev (Comp))
1244 then
1245 -- Check if an error has already been encountered so far
1247 if not Error_Detected then
1248 Error_Msg_N ("dimensions mismatch in array aggregate", N);
1249 Error_Detected := True;
1250 end if;
1252 Error_Msg_N
1253 ("\expected dimension " & Dimensions_Msg_Of (Comp_Typ)
1254 & ", found " & Dimensions_Msg_Of (Expr), Expr);
1255 end if;
1257 -- Look at the named components right after the positional components
1259 if not Present (Next (Comp))
1260 and then List_Containing (Comp) = Exps
1261 then
1262 Comp := First (Comp_Ass);
1263 else
1264 Next (Comp);
1265 end if;
1266 end loop;
1267 end Analyze_Dimension_Array_Aggregate;
1269 --------------------------------------------
1270 -- Analyze_Dimension_Assignment_Statement --
1271 --------------------------------------------
1273 procedure Analyze_Dimension_Assignment_Statement (N : Node_Id) is
1274 Lhs : constant Node_Id := Name (N);
1275 Dims_Of_Lhs : constant Dimension_Type := Dimensions_Of (Lhs);
1276 Rhs : constant Node_Id := Expression (N);
1277 Dims_Of_Rhs : constant Dimension_Type := Dimensions_Of (Rhs);
1279 procedure Error_Dim_Msg_For_Assignment_Statement
1280 (N : Node_Id;
1281 Lhs : Node_Id;
1282 Rhs : Node_Id);
1283 -- Error using Error_Msg_N at node N. Output the dimensions of left
1284 -- and right hand sides.
1286 --------------------------------------------
1287 -- Error_Dim_Msg_For_Assignment_Statement --
1288 --------------------------------------------
1290 procedure Error_Dim_Msg_For_Assignment_Statement
1291 (N : Node_Id;
1292 Lhs : Node_Id;
1293 Rhs : Node_Id)
1295 begin
1296 Error_Msg_N ("dimensions mismatch in assignment", N);
1297 Error_Msg_N ("\left-hand side " & Dimensions_Msg_Of (Lhs, True), N);
1298 Error_Msg_N ("\right-hand side " & Dimensions_Msg_Of (Rhs, True), N);
1299 end Error_Dim_Msg_For_Assignment_Statement;
1301 -- Start of processing for Analyze_Dimension_Assignment
1303 begin
1304 if Dims_Of_Lhs /= Dims_Of_Rhs then
1305 Error_Dim_Msg_For_Assignment_Statement (N, Lhs, Rhs);
1306 end if;
1307 end Analyze_Dimension_Assignment_Statement;
1309 ---------------------------------
1310 -- Analyze_Dimension_Binary_Op --
1311 ---------------------------------
1313 -- Check and propagate the dimensions for binary operators
1314 -- Note that when the dimensions mismatch, no dimension is propagated to N.
1316 procedure Analyze_Dimension_Binary_Op (N : Node_Id) is
1317 N_Kind : constant Node_Kind := Nkind (N);
1319 function Dimensions_Of_Operand (N : Node_Id) return Dimension_Type;
1320 -- If the operand is a numeric literal that comes from a declared
1321 -- constant, use the dimensions of the constant which were computed
1322 -- from the expression of the constant declaration.
1324 procedure Error_Dim_Msg_For_Binary_Op (N, L, R : Node_Id);
1325 -- Error using Error_Msg_NE and Error_Msg_N at node N. Output the
1326 -- dimensions of both operands.
1328 ---------------------------
1329 -- Dimensions_Of_Operand --
1330 ---------------------------
1332 function Dimensions_Of_Operand (N : Node_Id) return Dimension_Type is
1333 begin
1334 if Nkind (N) = N_Real_Literal
1335 and then Present (Original_Entity (N))
1336 then
1337 return Dimensions_Of (Original_Entity (N));
1338 else
1339 return Dimensions_Of (N);
1340 end if;
1341 end Dimensions_Of_Operand;
1343 ---------------------------------
1344 -- Error_Dim_Msg_For_Binary_Op --
1345 ---------------------------------
1347 procedure Error_Dim_Msg_For_Binary_Op (N, L, R : Node_Id) is
1348 begin
1349 Error_Msg_NE
1350 ("both operands for operation& must have same dimensions",
1351 N, Entity (N));
1352 Error_Msg_N ("\left operand " & Dimensions_Msg_Of (L, True), N);
1353 Error_Msg_N ("\right operand " & Dimensions_Msg_Of (R, True), N);
1354 end Error_Dim_Msg_For_Binary_Op;
1356 -- Start of processing for Analyze_Dimension_Binary_Op
1358 begin
1359 if Nkind_In (N_Kind, N_Op_Add, N_Op_Expon, N_Op_Subtract)
1360 or else N_Kind in N_Multiplying_Operator
1361 or else N_Kind in N_Op_Compare
1362 then
1363 declare
1364 L : constant Node_Id := Left_Opnd (N);
1365 Dims_Of_L : constant Dimension_Type :=
1366 Dimensions_Of_Operand (L);
1367 L_Has_Dimensions : constant Boolean := Exists (Dims_Of_L);
1368 R : constant Node_Id := Right_Opnd (N);
1369 Dims_Of_R : constant Dimension_Type :=
1370 Dimensions_Of_Operand (R);
1371 R_Has_Dimensions : constant Boolean := Exists (Dims_Of_R);
1372 Dims_Of_N : Dimension_Type := Null_Dimension;
1374 begin
1375 -- N_Op_Add, N_Op_Mod, N_Op_Rem or N_Op_Subtract case
1377 if Nkind_In (N, N_Op_Add, N_Op_Mod, N_Op_Rem, N_Op_Subtract) then
1379 -- Check both operands have same dimension
1381 if Dims_Of_L /= Dims_Of_R then
1382 Error_Dim_Msg_For_Binary_Op (N, L, R);
1383 else
1384 -- Check both operands are not dimensionless
1386 if Exists (Dims_Of_L) then
1387 Set_Dimensions (N, Dims_Of_L);
1388 end if;
1389 end if;
1391 -- N_Op_Multiply or N_Op_Divide case
1393 elsif Nkind_In (N_Kind, N_Op_Multiply, N_Op_Divide) then
1395 -- Check at least one operand is not dimensionless
1397 if L_Has_Dimensions or R_Has_Dimensions then
1399 -- Multiplication case
1401 -- Get both operands dimensions and add them
1403 if N_Kind = N_Op_Multiply then
1404 for Position in Dimension_Type'Range loop
1405 Dims_Of_N (Position) :=
1406 Dims_Of_L (Position) + Dims_Of_R (Position);
1407 end loop;
1409 -- Division case
1411 -- Get both operands dimensions and subtract them
1413 else
1414 for Position in Dimension_Type'Range loop
1415 Dims_Of_N (Position) :=
1416 Dims_Of_L (Position) - Dims_Of_R (Position);
1417 end loop;
1418 end if;
1420 if Exists (Dims_Of_N) then
1421 Set_Dimensions (N, Dims_Of_N);
1422 end if;
1423 end if;
1425 -- Exponentiation case
1427 -- Note: a rational exponent is allowed for dimensioned operand
1429 elsif N_Kind = N_Op_Expon then
1431 -- Check the left operand is not dimensionless. Note that the
1432 -- value of the exponent must be known compile time. Otherwise,
1433 -- the exponentiation evaluation will return an error message.
1435 if L_Has_Dimensions then
1436 if not Compile_Time_Known_Value (R) then
1437 Error_Msg_N
1438 ("exponent of dimensioned operand must be "
1439 & "known at compile time", N);
1440 end if;
1442 declare
1443 Exponent_Value : Rational := Zero;
1445 begin
1446 -- Real operand case
1448 if Is_Real_Type (Etype (L)) then
1450 -- Define the exponent as a Rational number
1452 Exponent_Value := Create_Rational_From (R, False);
1454 -- Verify that the exponent cannot be interpreted
1455 -- as a rational, otherwise interpret the exponent
1456 -- as an integer.
1458 if Exponent_Value = No_Rational then
1459 Exponent_Value :=
1460 +Whole (UI_To_Int (Expr_Value (R)));
1461 end if;
1463 -- Integer operand case.
1465 -- For integer operand, the exponent cannot be
1466 -- interpreted as a rational.
1468 else
1469 Exponent_Value := +Whole (UI_To_Int (Expr_Value (R)));
1470 end if;
1472 for Position in Dimension_Type'Range loop
1473 Dims_Of_N (Position) :=
1474 Dims_Of_L (Position) * Exponent_Value;
1475 end loop;
1477 if Exists (Dims_Of_N) then
1478 Set_Dimensions (N, Dims_Of_N);
1479 end if;
1480 end;
1481 end if;
1483 -- Comparison cases
1485 -- For relational operations, only dimension checking is
1486 -- performed (no propagation). If one operand is the result
1487 -- of constant folding the dimensions may have been lost
1488 -- in a tree copy, so assume that pre-analysis has verified
1489 -- that dimensions are correct.
1491 elsif N_Kind in N_Op_Compare then
1492 if (L_Has_Dimensions or R_Has_Dimensions)
1493 and then Dims_Of_L /= Dims_Of_R
1494 then
1495 if Nkind (L) = N_Real_Literal
1496 and then not (Comes_From_Source (L))
1497 and then Expander_Active
1498 then
1499 null;
1501 elsif Nkind (R) = N_Real_Literal
1502 and then not (Comes_From_Source (R))
1503 and then Expander_Active
1504 then
1505 null;
1507 else
1508 Error_Dim_Msg_For_Binary_Op (N, L, R);
1509 end if;
1510 end if;
1511 end if;
1513 -- If expander is active, remove dimension information from each
1514 -- operand, as only dimensions of result are relevant.
1516 if Expander_Active then
1517 Remove_Dimensions (L);
1518 Remove_Dimensions (R);
1519 end if;
1520 end;
1521 end if;
1522 end Analyze_Dimension_Binary_Op;
1524 ----------------------------
1525 -- Analyze_Dimension_Call --
1526 ----------------------------
1528 procedure Analyze_Dimension_Call (N : Node_Id; Nam : Entity_Id) is
1529 Actuals : constant List_Id := Parameter_Associations (N);
1530 Actual : Node_Id;
1531 Dims_Of_Formal : Dimension_Type;
1532 Formal : Node_Id;
1533 Formal_Typ : Entity_Id;
1535 Error_Detected : Boolean := False;
1536 -- This flag is used in order to indicate if an error has been detected
1537 -- so far by the compiler in this routine.
1539 begin
1540 -- Aspect is an Ada 2012 feature. Note that there is no need to check
1541 -- dimensions for calls that don't come from source, or those that may
1542 -- have semantic errors.
1544 if Ada_Version < Ada_2012
1545 or else not Comes_From_Source (N)
1546 or else Error_Posted (N)
1547 then
1548 return;
1549 end if;
1551 -- Check the dimensions of the actuals, if any
1553 if not Is_Empty_List (Actuals) then
1555 -- Special processing for elementary functions
1557 -- For Sqrt call, the resulting dimensions equal to half the
1558 -- dimensions of the actual. For all other elementary calls, this
1559 -- routine check that every actual is dimensionless.
1561 if Nkind (N) = N_Function_Call then
1562 Elementary_Function_Calls : declare
1563 Dims_Of_Call : Dimension_Type;
1564 Ent : Entity_Id := Nam;
1566 function Is_Elementary_Function_Entity
1567 (Sub_Id : Entity_Id) return Boolean;
1568 -- Given Sub_Id, the original subprogram entity, return True
1569 -- if call is to an elementary function (see Ada.Numerics.
1570 -- Generic_Elementary_Functions).
1572 -----------------------------------
1573 -- Is_Elementary_Function_Entity --
1574 -----------------------------------
1576 function Is_Elementary_Function_Entity
1577 (Sub_Id : Entity_Id) return Boolean
1579 Loc : constant Source_Ptr := Sloc (Sub_Id);
1581 begin
1582 -- Is entity in Ada.Numerics.Generic_Elementary_Functions?
1584 return
1585 Loc > No_Location
1586 and then
1587 Is_RTU
1588 (Cunit_Entity (Get_Source_Unit (Loc)),
1589 Ada_Numerics_Generic_Elementary_Functions);
1590 end Is_Elementary_Function_Entity;
1592 -- Start of processing for Elementary_Function_Calls
1594 begin
1595 -- Get original subprogram entity following the renaming chain
1597 if Present (Alias (Ent)) then
1598 Ent := Alias (Ent);
1599 end if;
1601 -- Check the call is an Elementary function call
1603 if Is_Elementary_Function_Entity (Ent) then
1605 -- Sqrt function call case
1607 if Chars (Ent) = Name_Sqrt then
1608 Dims_Of_Call := Dimensions_Of (First_Actual (N));
1610 -- Evaluates the resulting dimensions (i.e. half the
1611 -- dimensions of the actual).
1613 if Exists (Dims_Of_Call) then
1614 for Position in Dims_Of_Call'Range loop
1615 Dims_Of_Call (Position) :=
1616 Dims_Of_Call (Position) *
1617 Rational'(Numerator => 1, Denominator => 2);
1618 end loop;
1620 Set_Dimensions (N, Dims_Of_Call);
1621 end if;
1623 -- All other elementary functions case. Note that every
1624 -- actual here should be dimensionless.
1626 else
1627 Actual := First_Actual (N);
1628 while Present (Actual) loop
1629 if Exists (Dimensions_Of (Actual)) then
1631 -- Check if error has already been encountered
1633 if not Error_Detected then
1634 Error_Msg_NE
1635 ("dimensions mismatch in call of&",
1636 N, Name (N));
1637 Error_Detected := True;
1638 end if;
1640 Error_Msg_N
1641 ("\expected dimension '['], found "
1642 & Dimensions_Msg_Of (Actual), Actual);
1643 end if;
1645 Next_Actual (Actual);
1646 end loop;
1647 end if;
1649 -- Nothing more to do for elementary functions
1651 return;
1652 end if;
1653 end Elementary_Function_Calls;
1654 end if;
1656 -- General case. Check, for each parameter, the dimensions of the
1657 -- actual and its corresponding formal match. Otherwise, complain.
1659 Actual := First_Actual (N);
1660 Formal := First_Formal (Nam);
1661 while Present (Formal) loop
1663 -- A missing corresponding actual indicates that the analysis of
1664 -- the call was aborted due to a previous error.
1666 if No (Actual) then
1667 Check_Error_Detected;
1668 return;
1669 end if;
1671 Formal_Typ := Etype (Formal);
1672 Dims_Of_Formal := Dimensions_Of (Formal_Typ);
1674 -- If the formal is not dimensionless, check dimensions of formal
1675 -- and actual match. Otherwise, complain.
1677 if Exists (Dims_Of_Formal)
1678 and then Dimensions_Of (Actual) /= Dims_Of_Formal
1679 then
1680 -- Check if an error has already been encountered so far
1682 if not Error_Detected then
1683 Error_Msg_NE ("dimensions mismatch in& call", N, Name (N));
1684 Error_Detected := True;
1685 end if;
1687 Error_Msg_N
1688 ("\expected dimension " & Dimensions_Msg_Of (Formal_Typ)
1689 & ", found " & Dimensions_Msg_Of (Actual), Actual);
1690 end if;
1692 Next_Actual (Actual);
1693 Next_Formal (Formal);
1694 end loop;
1695 end if;
1697 -- For function calls, propagate the dimensions from the returned type
1699 if Nkind (N) = N_Function_Call then
1700 Analyze_Dimension_Has_Etype (N);
1701 end if;
1702 end Analyze_Dimension_Call;
1704 ---------------------------------------------
1705 -- Analyze_Dimension_Component_Declaration --
1706 ---------------------------------------------
1708 procedure Analyze_Dimension_Component_Declaration (N : Node_Id) is
1709 Expr : constant Node_Id := Expression (N);
1710 Id : constant Entity_Id := Defining_Identifier (N);
1711 Etyp : constant Entity_Id := Etype (Id);
1712 Dims_Of_Etyp : constant Dimension_Type := Dimensions_Of (Etyp);
1713 Dims_Of_Expr : Dimension_Type;
1715 procedure Error_Dim_Msg_For_Component_Declaration
1716 (N : Node_Id;
1717 Etyp : Entity_Id;
1718 Expr : Node_Id);
1719 -- Error using Error_Msg_N at node N. Output the dimensions of the
1720 -- type Etyp and the expression Expr of N.
1722 ---------------------------------------------
1723 -- Error_Dim_Msg_For_Component_Declaration --
1724 ---------------------------------------------
1726 procedure Error_Dim_Msg_For_Component_Declaration
1727 (N : Node_Id;
1728 Etyp : Entity_Id;
1729 Expr : Node_Id) is
1730 begin
1731 Error_Msg_N ("dimensions mismatch in component declaration", N);
1732 Error_Msg_N
1733 ("\expected dimension " & Dimensions_Msg_Of (Etyp) & ", found "
1734 & Dimensions_Msg_Of (Expr), Expr);
1735 end Error_Dim_Msg_For_Component_Declaration;
1737 -- Start of processing for Analyze_Dimension_Component_Declaration
1739 begin
1740 -- Expression is present
1742 if Present (Expr) then
1743 Dims_Of_Expr := Dimensions_Of (Expr);
1745 -- Check dimensions match
1747 if Dims_Of_Etyp /= Dims_Of_Expr then
1749 -- Numeric literal case. Issue a warning if the object type is not
1750 -- dimensionless to indicate the literal is treated as if its
1751 -- dimension matches the type dimension.
1753 if Nkind_In (Original_Node (Expr), N_Real_Literal,
1754 N_Integer_Literal)
1755 then
1756 Dim_Warning_For_Numeric_Literal (Expr, Etyp);
1758 -- Issue a dimension mismatch error for all other cases
1760 else
1761 Error_Dim_Msg_For_Component_Declaration (N, Etyp, Expr);
1762 end if;
1763 end if;
1764 end if;
1765 end Analyze_Dimension_Component_Declaration;
1767 -------------------------------------------------
1768 -- Analyze_Dimension_Extended_Return_Statement --
1769 -------------------------------------------------
1771 procedure Analyze_Dimension_Extended_Return_Statement (N : Node_Id) is
1772 Return_Ent : constant Entity_Id := Return_Statement_Entity (N);
1773 Return_Etyp : constant Entity_Id :=
1774 Etype (Return_Applies_To (Return_Ent));
1775 Return_Obj_Decls : constant List_Id := Return_Object_Declarations (N);
1776 Return_Obj_Decl : Node_Id;
1777 Return_Obj_Id : Entity_Id;
1778 Return_Obj_Typ : Entity_Id;
1780 procedure Error_Dim_Msg_For_Extended_Return_Statement
1781 (N : Node_Id;
1782 Return_Etyp : Entity_Id;
1783 Return_Obj_Typ : Entity_Id);
1784 -- Error using Error_Msg_N at node N. Output dimensions of the returned
1785 -- type Return_Etyp and the returned object type Return_Obj_Typ of N.
1787 -------------------------------------------------
1788 -- Error_Dim_Msg_For_Extended_Return_Statement --
1789 -------------------------------------------------
1791 procedure Error_Dim_Msg_For_Extended_Return_Statement
1792 (N : Node_Id;
1793 Return_Etyp : Entity_Id;
1794 Return_Obj_Typ : Entity_Id)
1796 begin
1797 Error_Msg_N ("dimensions mismatch in extended return statement", N);
1798 Error_Msg_N
1799 ("\expected dimension " & Dimensions_Msg_Of (Return_Etyp)
1800 & ", found " & Dimensions_Msg_Of (Return_Obj_Typ), N);
1801 end Error_Dim_Msg_For_Extended_Return_Statement;
1803 -- Start of processing for Analyze_Dimension_Extended_Return_Statement
1805 begin
1806 if Present (Return_Obj_Decls) then
1807 Return_Obj_Decl := First (Return_Obj_Decls);
1808 while Present (Return_Obj_Decl) loop
1809 if Nkind (Return_Obj_Decl) = N_Object_Declaration then
1810 Return_Obj_Id := Defining_Identifier (Return_Obj_Decl);
1812 if Is_Return_Object (Return_Obj_Id) then
1813 Return_Obj_Typ := Etype (Return_Obj_Id);
1815 -- Issue an error message if dimensions mismatch
1817 if Dimensions_Of (Return_Etyp) /=
1818 Dimensions_Of (Return_Obj_Typ)
1819 then
1820 Error_Dim_Msg_For_Extended_Return_Statement
1821 (N, Return_Etyp, Return_Obj_Typ);
1822 return;
1823 end if;
1824 end if;
1825 end if;
1827 Next (Return_Obj_Decl);
1828 end loop;
1829 end if;
1830 end Analyze_Dimension_Extended_Return_Statement;
1832 -----------------------------------------------------
1833 -- Analyze_Dimension_Extension_Or_Record_Aggregate --
1834 -----------------------------------------------------
1836 procedure Analyze_Dimension_Extension_Or_Record_Aggregate (N : Node_Id) is
1837 Comp : Node_Id;
1838 Comp_Id : Entity_Id;
1839 Comp_Typ : Entity_Id;
1840 Expr : Node_Id;
1842 Error_Detected : Boolean := False;
1843 -- This flag is used in order to indicate if an error has been detected
1844 -- so far by the compiler in this routine.
1846 begin
1847 -- Aspect is an Ada 2012 feature. Note that there is no need to check
1848 -- dimensions for aggregates that don't come from source, or if we are
1849 -- within an initialization procedure, whose expressions have been
1850 -- checked at the point of record declaration.
1852 if Ada_Version < Ada_2012
1853 or else not Comes_From_Source (N)
1854 or else Inside_Init_Proc
1855 then
1856 return;
1857 end if;
1859 Comp := First (Component_Associations (N));
1860 while Present (Comp) loop
1861 Comp_Id := Entity (First (Choices (Comp)));
1862 Comp_Typ := Etype (Comp_Id);
1864 -- Check the component type is either a dimensioned type or a
1865 -- dimensioned subtype.
1867 if Has_Dimension_System (Base_Type (Comp_Typ)) then
1868 Expr := Expression (Comp);
1870 -- A box-initialized component needs no checking.
1872 if No (Expr) and then Box_Present (Comp) then
1873 null;
1875 -- Issue an error if the dimensions of the component type and the
1876 -- dimensions of the component mismatch.
1878 elsif Dimensions_Of (Expr) /= Dimensions_Of (Comp_Typ) then
1880 -- Check if an error has already been encountered so far
1882 if not Error_Detected then
1884 -- Extension aggregate case
1886 if Nkind (N) = N_Extension_Aggregate then
1887 Error_Msg_N
1888 ("dimensions mismatch in extension aggregate", N);
1890 -- Record aggregate case
1892 else
1893 Error_Msg_N
1894 ("dimensions mismatch in record aggregate", N);
1895 end if;
1897 Error_Detected := True;
1898 end if;
1900 Error_Msg_N
1901 ("\expected dimension " & Dimensions_Msg_Of (Comp_Typ)
1902 & ", found " & Dimensions_Msg_Of (Expr), Comp);
1903 end if;
1904 end if;
1906 Next (Comp);
1907 end loop;
1908 end Analyze_Dimension_Extension_Or_Record_Aggregate;
1910 -------------------------------
1911 -- Analyze_Dimension_Formals --
1912 -------------------------------
1914 procedure Analyze_Dimension_Formals (N : Node_Id; Formals : List_Id) is
1915 Dims_Of_Typ : Dimension_Type;
1916 Formal : Node_Id;
1917 Typ : Entity_Id;
1919 begin
1920 -- Aspect is an Ada 2012 feature. Note that there is no need to check
1921 -- dimensions for sub specs that don't come from source.
1923 if Ada_Version < Ada_2012 or else not Comes_From_Source (N) then
1924 return;
1925 end if;
1927 Formal := First (Formals);
1928 while Present (Formal) loop
1929 Typ := Parameter_Type (Formal);
1930 Dims_Of_Typ := Dimensions_Of (Typ);
1932 if Exists (Dims_Of_Typ) then
1933 declare
1934 Expr : constant Node_Id := Expression (Formal);
1936 begin
1937 -- Issue a warning if Expr is a numeric literal and if its
1938 -- dimensions differ with the dimensions of the formal type.
1940 if Present (Expr)
1941 and then Dims_Of_Typ /= Dimensions_Of (Expr)
1942 and then Nkind_In (Original_Node (Expr), N_Real_Literal,
1943 N_Integer_Literal)
1944 then
1945 Dim_Warning_For_Numeric_Literal (Expr, Etype (Typ));
1946 end if;
1947 end;
1948 end if;
1950 Next (Formal);
1951 end loop;
1952 end Analyze_Dimension_Formals;
1954 ---------------------------------
1955 -- Analyze_Dimension_Has_Etype --
1956 ---------------------------------
1958 procedure Analyze_Dimension_Has_Etype (N : Node_Id) is
1959 Etyp : constant Entity_Id := Etype (N);
1960 Dims_Of_Etyp : Dimension_Type := Dimensions_Of (Etyp);
1962 begin
1963 -- General case. Propagation of the dimensions from the type
1965 if Exists (Dims_Of_Etyp) then
1966 Set_Dimensions (N, Dims_Of_Etyp);
1968 -- Identifier case. Propagate the dimensions from the entity for
1969 -- identifier whose entity is a non-dimensionless constant.
1971 elsif Nkind (N) = N_Identifier then
1972 Analyze_Dimension_Identifier : declare
1973 Id : constant Entity_Id := Entity (N);
1975 begin
1976 -- If Id is missing, abnormal tree, assume previous error
1978 if No (Id) then
1979 Check_Error_Detected;
1980 return;
1982 elsif Ekind_In (Id, E_Constant, E_Named_Real)
1983 and then Exists (Dimensions_Of (Id))
1984 then
1985 Set_Dimensions (N, Dimensions_Of (Id));
1986 end if;
1987 end Analyze_Dimension_Identifier;
1989 -- Attribute reference case. Propagate the dimensions from the prefix.
1991 elsif Nkind (N) = N_Attribute_Reference
1992 and then Has_Dimension_System (Base_Type (Etyp))
1993 then
1994 Dims_Of_Etyp := Dimensions_Of (Prefix (N));
1996 -- Check the prefix is not dimensionless
1998 if Exists (Dims_Of_Etyp) then
1999 Set_Dimensions (N, Dims_Of_Etyp);
2000 end if;
2001 end if;
2003 -- Removal of dimensions in expression
2005 case Nkind (N) is
2006 when N_Attribute_Reference |
2007 N_Indexed_Component =>
2008 declare
2009 Expr : Node_Id;
2010 Exprs : constant List_Id := Expressions (N);
2011 begin
2012 if Present (Exprs) then
2013 Expr := First (Exprs);
2014 while Present (Expr) loop
2015 Remove_Dimensions (Expr);
2016 Next (Expr);
2017 end loop;
2018 end if;
2019 end;
2021 when N_Qualified_Expression |
2022 N_Type_Conversion |
2023 N_Unchecked_Type_Conversion =>
2024 Remove_Dimensions (Expression (N));
2026 when N_Selected_Component =>
2027 Remove_Dimensions (Selector_Name (N));
2029 when others => null;
2030 end case;
2031 end Analyze_Dimension_Has_Etype;
2033 ------------------------------------------
2034 -- Analyze_Dimension_Number_Declaration --
2035 ------------------------------------------
2037 procedure Analyze_Dimension_Number_Declaration (N : Node_Id) is
2038 Expr : constant Node_Id := Expression (N);
2039 Id : constant Entity_Id := Defining_Identifier (N);
2040 Dim_Of_Expr : constant Dimension_Type := Dimensions_Of (Expr);
2042 begin
2043 if Exists (Dim_Of_Expr) then
2044 Set_Dimensions (Id, Dim_Of_Expr);
2045 Set_Etype (Id, Etype (Expr));
2046 end if;
2047 end Analyze_Dimension_Number_Declaration;
2049 ------------------------------------------
2050 -- Analyze_Dimension_Object_Declaration --
2051 ------------------------------------------
2053 procedure Analyze_Dimension_Object_Declaration (N : Node_Id) is
2054 Expr : constant Node_Id := Expression (N);
2055 Id : constant Entity_Id := Defining_Identifier (N);
2056 Etyp : constant Entity_Id := Etype (Id);
2057 Dim_Of_Etyp : constant Dimension_Type := Dimensions_Of (Etyp);
2058 Dim_Of_Expr : Dimension_Type;
2060 procedure Error_Dim_Msg_For_Object_Declaration
2061 (N : Node_Id;
2062 Etyp : Entity_Id;
2063 Expr : Node_Id);
2064 -- Error using Error_Msg_N at node N. Output the dimensions of the
2065 -- type Etyp and of the expression Expr.
2067 ------------------------------------------
2068 -- Error_Dim_Msg_For_Object_Declaration --
2069 ------------------------------------------
2071 procedure Error_Dim_Msg_For_Object_Declaration
2072 (N : Node_Id;
2073 Etyp : Entity_Id;
2074 Expr : Node_Id) is
2075 begin
2076 Error_Msg_N ("dimensions mismatch in object declaration", N);
2077 Error_Msg_N
2078 ("\expected dimension " & Dimensions_Msg_Of (Etyp) & ", found "
2079 & Dimensions_Msg_Of (Expr), Expr);
2080 end Error_Dim_Msg_For_Object_Declaration;
2082 -- Start of processing for Analyze_Dimension_Object_Declaration
2084 begin
2085 -- Expression is present
2087 if Present (Expr) then
2088 Dim_Of_Expr := Dimensions_Of (Expr);
2090 -- Check dimensions match
2092 if Dim_Of_Expr /= Dim_Of_Etyp then
2094 -- Numeric literal case. Issue a warning if the object type is not
2095 -- dimensionless to indicate the literal is treated as if its
2096 -- dimension matches the type dimension.
2098 if Nkind_In (Original_Node (Expr), N_Real_Literal,
2099 N_Integer_Literal)
2100 then
2101 Dim_Warning_For_Numeric_Literal (Expr, Etyp);
2103 -- Case of object is a constant whose type is a dimensioned type
2105 elsif Constant_Present (N) and then not Exists (Dim_Of_Etyp) then
2107 -- Propagate dimension from expression to object entity
2109 Set_Dimensions (Id, Dim_Of_Expr);
2111 -- For all other cases, issue an error message
2113 else
2114 Error_Dim_Msg_For_Object_Declaration (N, Etyp, Expr);
2115 end if;
2116 end if;
2118 -- Removal of dimensions in expression
2120 Remove_Dimensions (Expr);
2121 end if;
2122 end Analyze_Dimension_Object_Declaration;
2124 ---------------------------------------------------
2125 -- Analyze_Dimension_Object_Renaming_Declaration --
2126 ---------------------------------------------------
2128 procedure Analyze_Dimension_Object_Renaming_Declaration (N : Node_Id) is
2129 Renamed_Name : constant Node_Id := Name (N);
2130 Sub_Mark : constant Node_Id := Subtype_Mark (N);
2132 procedure Error_Dim_Msg_For_Object_Renaming_Declaration
2133 (N : Node_Id;
2134 Sub_Mark : Node_Id;
2135 Renamed_Name : Node_Id);
2136 -- Error using Error_Msg_N at node N. Output the dimensions of
2137 -- Sub_Mark and of Renamed_Name.
2139 ---------------------------------------------------
2140 -- Error_Dim_Msg_For_Object_Renaming_Declaration --
2141 ---------------------------------------------------
2143 procedure Error_Dim_Msg_For_Object_Renaming_Declaration
2144 (N : Node_Id;
2145 Sub_Mark : Node_Id;
2146 Renamed_Name : Node_Id) is
2147 begin
2148 Error_Msg_N ("dimensions mismatch in object renaming declaration", N);
2149 Error_Msg_N
2150 ("\expected dimension " & Dimensions_Msg_Of (Sub_Mark) & ", found "
2151 & Dimensions_Msg_Of (Renamed_Name), Renamed_Name);
2152 end Error_Dim_Msg_For_Object_Renaming_Declaration;
2154 -- Start of processing for Analyze_Dimension_Object_Renaming_Declaration
2156 begin
2157 if Dimensions_Of (Renamed_Name) /= Dimensions_Of (Sub_Mark) then
2158 Error_Dim_Msg_For_Object_Renaming_Declaration
2159 (N, Sub_Mark, Renamed_Name);
2160 end if;
2161 end Analyze_Dimension_Object_Renaming_Declaration;
2163 -----------------------------------------------
2164 -- Analyze_Dimension_Simple_Return_Statement --
2165 -----------------------------------------------
2167 procedure Analyze_Dimension_Simple_Return_Statement (N : Node_Id) is
2168 Expr : constant Node_Id := Expression (N);
2169 Return_Ent : constant Entity_Id := Return_Statement_Entity (N);
2170 Return_Etyp : constant Entity_Id :=
2171 Etype (Return_Applies_To (Return_Ent));
2172 Dims_Of_Return_Etyp : constant Dimension_Type :=
2173 Dimensions_Of (Return_Etyp);
2175 procedure Error_Dim_Msg_For_Simple_Return_Statement
2176 (N : Node_Id;
2177 Return_Etyp : Entity_Id;
2178 Expr : Node_Id);
2179 -- Error using Error_Msg_N at node N. Output the dimensions of the
2180 -- returned type Return_Etyp and the returned expression Expr of N.
2182 -----------------------------------------------
2183 -- Error_Dim_Msg_For_Simple_Return_Statement --
2184 -----------------------------------------------
2186 procedure Error_Dim_Msg_For_Simple_Return_Statement
2187 (N : Node_Id;
2188 Return_Etyp : Entity_Id;
2189 Expr : Node_Id)
2191 begin
2192 Error_Msg_N ("dimensions mismatch in return statement", N);
2193 Error_Msg_N
2194 ("\expected dimension " & Dimensions_Msg_Of (Return_Etyp)
2195 & ", found " & Dimensions_Msg_Of (Expr), Expr);
2196 end Error_Dim_Msg_For_Simple_Return_Statement;
2198 -- Start of processing for Analyze_Dimension_Simple_Return_Statement
2200 begin
2201 if Dims_Of_Return_Etyp /= Dimensions_Of (Expr) then
2202 Error_Dim_Msg_For_Simple_Return_Statement (N, Return_Etyp, Expr);
2203 Remove_Dimensions (Expr);
2204 end if;
2205 end Analyze_Dimension_Simple_Return_Statement;
2207 -------------------------------------------
2208 -- Analyze_Dimension_Subtype_Declaration --
2209 -------------------------------------------
2211 procedure Analyze_Dimension_Subtype_Declaration (N : Node_Id) is
2212 Id : constant Entity_Id := Defining_Identifier (N);
2213 Dims_Of_Id : constant Dimension_Type := Dimensions_Of (Id);
2214 Dims_Of_Etyp : Dimension_Type;
2215 Etyp : Node_Id;
2217 begin
2218 -- No constraint case in subtype declaration
2220 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
2221 Etyp := Etype (Subtype_Indication (N));
2222 Dims_Of_Etyp := Dimensions_Of (Etyp);
2224 if Exists (Dims_Of_Etyp) then
2226 -- If subtype already has a dimension (from Aspect_Dimension),
2227 -- it cannot inherit a dimension from its subtype.
2229 if Exists (Dims_Of_Id) then
2230 Error_Msg_NE
2231 ("subtype& already " & Dimensions_Msg_Of (Id, True), N, Id);
2232 else
2233 Set_Dimensions (Id, Dims_Of_Etyp);
2234 Set_Symbol (Id, Symbol_Of (Etyp));
2235 end if;
2236 end if;
2238 -- Constraint present in subtype declaration
2240 else
2241 Etyp := Etype (Subtype_Mark (Subtype_Indication (N)));
2242 Dims_Of_Etyp := Dimensions_Of (Etyp);
2244 if Exists (Dims_Of_Etyp) then
2245 Set_Dimensions (Id, Dims_Of_Etyp);
2246 Set_Symbol (Id, Symbol_Of (Etyp));
2247 end if;
2248 end if;
2249 end Analyze_Dimension_Subtype_Declaration;
2251 --------------------------------
2252 -- Analyze_Dimension_Unary_Op --
2253 --------------------------------
2255 procedure Analyze_Dimension_Unary_Op (N : Node_Id) is
2256 begin
2257 case Nkind (N) is
2258 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
2260 -- Propagate the dimension if the operand is not dimensionless
2262 declare
2263 R : constant Node_Id := Right_Opnd (N);
2264 begin
2265 Move_Dimensions (R, N);
2266 end;
2268 when others => null;
2270 end case;
2271 end Analyze_Dimension_Unary_Op;
2273 ---------------------
2274 -- Copy_Dimensions --
2275 ---------------------
2277 procedure Copy_Dimensions (From, To : Node_Id) is
2278 Dims_Of_From : constant Dimension_Type := Dimensions_Of (From);
2280 begin
2281 -- Ignore if not Ada 2012 or beyond
2283 if Ada_Version < Ada_2012 then
2284 return;
2286 -- For Ada 2012, Copy the dimension of 'From to 'To'
2288 elsif Exists (Dims_Of_From) then
2289 Set_Dimensions (To, Dims_Of_From);
2290 end if;
2291 end Copy_Dimensions;
2293 --------------------------
2294 -- Create_Rational_From --
2295 --------------------------
2297 -- RATIONAL ::= [-] NUMERAL [/ NUMERAL]
2299 -- A rational number is a number that can be expressed as the quotient or
2300 -- fraction a/b of two integers, where b is non-zero positive.
2302 function Create_Rational_From
2303 (Expr : Node_Id;
2304 Complain : Boolean) return Rational
2306 Or_Node_Of_Expr : constant Node_Id := Original_Node (Expr);
2307 Result : Rational := No_Rational;
2309 function Process_Minus (N : Node_Id) return Rational;
2310 -- Create a rational from a N_Op_Minus node
2312 function Process_Divide (N : Node_Id) return Rational;
2313 -- Create a rational from a N_Op_Divide node
2315 function Process_Literal (N : Node_Id) return Rational;
2316 -- Create a rational from a N_Integer_Literal node
2318 -------------------
2319 -- Process_Minus --
2320 -------------------
2322 function Process_Minus (N : Node_Id) return Rational is
2323 Right : constant Node_Id := Original_Node (Right_Opnd (N));
2324 Result : Rational;
2326 begin
2327 -- Operand is an integer literal
2329 if Nkind (Right) = N_Integer_Literal then
2330 Result := -Process_Literal (Right);
2332 -- Operand is a divide operator
2334 elsif Nkind (Right) = N_Op_Divide then
2335 Result := -Process_Divide (Right);
2337 else
2338 Result := No_Rational;
2339 end if;
2341 -- Provide minimal semantic information on dimension expressions,
2342 -- even though they have no run-time existence. This is for use by
2343 -- ASIS tools, in particular pretty-printing. If generating code
2344 -- standard operator resolution will take place.
2346 if ASIS_Mode then
2347 Set_Entity (N, Standard_Op_Minus);
2348 Set_Etype (N, Standard_Integer);
2349 end if;
2351 return Result;
2352 end Process_Minus;
2354 --------------------
2355 -- Process_Divide --
2356 --------------------
2358 function Process_Divide (N : Node_Id) return Rational is
2359 Left : constant Node_Id := Original_Node (Left_Opnd (N));
2360 Right : constant Node_Id := Original_Node (Right_Opnd (N));
2361 Left_Rat : Rational;
2362 Result : Rational := No_Rational;
2363 Right_Rat : Rational;
2365 begin
2366 -- Both left and right operands are integer literals
2368 if Nkind (Left) = N_Integer_Literal
2369 and then
2370 Nkind (Right) = N_Integer_Literal
2371 then
2372 Left_Rat := Process_Literal (Left);
2373 Right_Rat := Process_Literal (Right);
2374 Result := Left_Rat / Right_Rat;
2375 end if;
2377 -- Provide minimal semantic information on dimension expressions,
2378 -- even though they have no run-time existence. This is for use by
2379 -- ASIS tools, in particular pretty-printing. If generating code
2380 -- standard operator resolution will take place.
2382 if ASIS_Mode then
2383 Set_Entity (N, Standard_Op_Divide);
2384 Set_Etype (N, Standard_Integer);
2385 end if;
2387 return Result;
2388 end Process_Divide;
2390 ---------------------
2391 -- Process_Literal --
2392 ---------------------
2394 function Process_Literal (N : Node_Id) return Rational is
2395 begin
2396 return +Whole (UI_To_Int (Intval (N)));
2397 end Process_Literal;
2399 -- Start of processing for Create_Rational_From
2401 begin
2402 -- Check the expression is either a division of two integers or an
2403 -- integer itself. Note that the check applies to the original node
2404 -- since the node could have already been rewritten.
2406 -- Integer literal case
2408 if Nkind (Or_Node_Of_Expr) = N_Integer_Literal then
2409 Result := Process_Literal (Or_Node_Of_Expr);
2411 -- Divide operator case
2413 elsif Nkind (Or_Node_Of_Expr) = N_Op_Divide then
2414 Result := Process_Divide (Or_Node_Of_Expr);
2416 -- Minus operator case
2418 elsif Nkind (Or_Node_Of_Expr) = N_Op_Minus then
2419 Result := Process_Minus (Or_Node_Of_Expr);
2420 end if;
2422 -- When Expr cannot be interpreted as a rational and Complain is true,
2423 -- generate an error message.
2425 if Complain and then Result = No_Rational then
2426 Error_Msg_N ("rational expected", Expr);
2427 end if;
2429 return Result;
2430 end Create_Rational_From;
2432 -------------------
2433 -- Dimensions_Of --
2434 -------------------
2436 function Dimensions_Of (N : Node_Id) return Dimension_Type is
2437 begin
2438 return Dimension_Table.Get (N);
2439 end Dimensions_Of;
2441 -----------------------
2442 -- Dimensions_Msg_Of --
2443 -----------------------
2445 function Dimensions_Msg_Of
2446 (N : Node_Id;
2447 Description_Needed : Boolean := False) return String
2449 Dims_Of_N : constant Dimension_Type := Dimensions_Of (N);
2450 Dimensions_Msg : Name_Id;
2451 System : System_Type;
2453 begin
2454 -- Initialization of Name_Buffer
2456 Name_Len := 0;
2458 -- N is not dimensionless
2460 if Exists (Dims_Of_N) then
2461 System := System_Of (Base_Type (Etype (N)));
2463 -- When Description_Needed, add to string "has dimension " before the
2464 -- actual dimension.
2466 if Description_Needed then
2467 Add_Str_To_Name_Buffer ("has dimension ");
2468 end if;
2470 Add_String_To_Name_Buffer
2471 (From_Dim_To_Str_Of_Dim_Symbols (Dims_Of_N, System, True));
2473 -- N is dimensionless
2475 -- When Description_Needed, return "is dimensionless"
2477 elsif Description_Needed then
2478 Add_Str_To_Name_Buffer ("is dimensionless");
2480 -- Otherwise, return "'[']"
2482 else
2483 Add_Str_To_Name_Buffer ("'[']");
2484 end if;
2486 Dimensions_Msg := Name_Find;
2487 return Get_Name_String (Dimensions_Msg);
2488 end Dimensions_Msg_Of;
2490 --------------------------
2491 -- Dimension_Table_Hash --
2492 --------------------------
2494 function Dimension_Table_Hash
2495 (Key : Node_Id) return Dimension_Table_Range
2497 begin
2498 return Dimension_Table_Range (Key mod 511);
2499 end Dimension_Table_Hash;
2501 -------------------------------------
2502 -- Dim_Warning_For_Numeric_Literal --
2503 -------------------------------------
2505 procedure Dim_Warning_For_Numeric_Literal (N : Node_Id; Typ : Entity_Id) is
2506 begin
2507 -- Initialize name buffer
2509 Name_Len := 0;
2511 Add_String_To_Name_Buffer (String_From_Numeric_Literal (N));
2513 -- Insert a blank between the literal and the symbol
2515 Add_Str_To_Name_Buffer (" ");
2516 Add_String_To_Name_Buffer (Symbol_Of (Typ));
2518 Error_Msg_Name_1 := Name_Find;
2519 Error_Msg_N ("assumed to be%%??", N);
2520 end Dim_Warning_For_Numeric_Literal;
2522 ----------------------------------------
2523 -- Eval_Op_Expon_For_Dimensioned_Type --
2524 ----------------------------------------
2526 -- Evaluate the expon operator for real dimensioned type.
2528 -- Note that if the exponent is an integer (denominator = 1) the node is
2529 -- evaluated by the regular Eval_Op_Expon routine (see Sem_Eval).
2531 procedure Eval_Op_Expon_For_Dimensioned_Type
2532 (N : Node_Id;
2533 Btyp : Entity_Id)
2535 R : constant Node_Id := Right_Opnd (N);
2536 R_Value : Rational := No_Rational;
2538 begin
2539 if Is_Real_Type (Btyp) then
2540 R_Value := Create_Rational_From (R, False);
2541 end if;
2543 -- Check that the exponent is not an integer
2545 if R_Value /= No_Rational and then R_Value.Denominator /= 1 then
2546 Eval_Op_Expon_With_Rational_Exponent (N, R_Value);
2547 else
2548 Eval_Op_Expon (N);
2549 end if;
2550 end Eval_Op_Expon_For_Dimensioned_Type;
2552 ------------------------------------------
2553 -- Eval_Op_Expon_With_Rational_Exponent --
2554 ------------------------------------------
2556 -- For dimensioned operand in exponentiation, exponent is allowed to be a
2557 -- Rational and not only an Integer like for dimensionless operands. For
2558 -- that particular case, the left operand is rewritten as a function call
2559 -- using the function Expon_LLF from s-llflex.ads.
2561 procedure Eval_Op_Expon_With_Rational_Exponent
2562 (N : Node_Id;
2563 Exponent_Value : Rational)
2565 Loc : constant Source_Ptr := Sloc (N);
2566 Dims_Of_N : constant Dimension_Type := Dimensions_Of (N);
2567 L : constant Node_Id := Left_Opnd (N);
2568 Etyp_Of_L : constant Entity_Id := Etype (L);
2569 Btyp_Of_L : constant Entity_Id := Base_Type (Etyp_Of_L);
2570 Actual_1 : Node_Id;
2571 Actual_2 : Node_Id;
2572 Dim_Power : Rational;
2573 List_Of_Dims : List_Id;
2574 New_Aspect : Node_Id;
2575 New_Aspects : List_Id;
2576 New_Id : Entity_Id;
2577 New_N : Node_Id;
2578 New_Subtyp_Decl_For_L : Node_Id;
2579 System : System_Type;
2581 begin
2582 -- Case when the operand is not dimensionless
2584 if Exists (Dims_Of_N) then
2586 -- Get the corresponding System_Type to know the exact number of
2587 -- dimensions in the system.
2589 System := System_Of (Btyp_Of_L);
2591 -- Generation of a new subtype with the proper dimensions
2593 -- In order to rewrite the operator as a type conversion, a new
2594 -- dimensioned subtype with the resulting dimensions of the
2595 -- exponentiation must be created.
2597 -- Generate:
2599 -- Btyp_Of_L : constant Entity_Id := Base_Type (Etyp_Of_L);
2600 -- System : constant System_Id :=
2601 -- Get_Dimension_System_Id (Btyp_Of_L);
2602 -- Num_Of_Dims : constant Number_Of_Dimensions :=
2603 -- Dimension_Systems.Table (System).Dimension_Count;
2605 -- subtype T is Btyp_Of_L
2606 -- with
2607 -- Dimension => (
2608 -- Dims_Of_N (1).Numerator / Dims_Of_N (1).Denominator,
2609 -- Dims_Of_N (2).Numerator / Dims_Of_N (2).Denominator,
2610 -- ...
2611 -- Dims_Of_N (Num_Of_Dims).Numerator /
2612 -- Dims_Of_N (Num_Of_Dims).Denominator);
2614 -- Step 1: Generate the new aggregate for the aspect Dimension
2616 New_Aspects := Empty_List;
2618 List_Of_Dims := New_List;
2619 for Position in Dims_Of_N'First .. System.Count loop
2620 Dim_Power := Dims_Of_N (Position);
2621 Append_To (List_Of_Dims,
2622 Make_Op_Divide (Loc,
2623 Left_Opnd =>
2624 Make_Integer_Literal (Loc, Int (Dim_Power.Numerator)),
2625 Right_Opnd =>
2626 Make_Integer_Literal (Loc, Int (Dim_Power.Denominator))));
2627 end loop;
2629 -- Step 2: Create the new Aspect Specification for Aspect Dimension
2631 New_Aspect :=
2632 Make_Aspect_Specification (Loc,
2633 Identifier => Make_Identifier (Loc, Name_Dimension),
2634 Expression => Make_Aggregate (Loc, Expressions => List_Of_Dims));
2636 -- Step 3: Make a temporary identifier for the new subtype
2638 New_Id := Make_Temporary (Loc, 'T');
2639 Set_Is_Internal (New_Id);
2641 -- Step 4: Declaration of the new subtype
2643 New_Subtyp_Decl_For_L :=
2644 Make_Subtype_Declaration (Loc,
2645 Defining_Identifier => New_Id,
2646 Subtype_Indication => New_Occurrence_Of (Btyp_Of_L, Loc));
2648 Append (New_Aspect, New_Aspects);
2649 Set_Parent (New_Aspects, New_Subtyp_Decl_For_L);
2650 Set_Aspect_Specifications (New_Subtyp_Decl_For_L, New_Aspects);
2652 Analyze (New_Subtyp_Decl_For_L);
2654 -- Case where the operand is dimensionless
2656 else
2657 New_Id := Btyp_Of_L;
2658 end if;
2660 -- Replacement of N by New_N
2662 -- Generate:
2664 -- Actual_1 := Long_Long_Float (L),
2666 -- Actual_2 := Long_Long_Float (Exponent_Value.Numerator) /
2667 -- Long_Long_Float (Exponent_Value.Denominator);
2669 -- (T (Expon_LLF (Actual_1, Actual_2)));
2671 -- where T is the subtype declared in step 1
2673 -- The node is rewritten as a type conversion
2675 -- Step 1: Creation of the two parameters of Expon_LLF function call
2677 Actual_1 :=
2678 Make_Type_Conversion (Loc,
2679 Subtype_Mark => New_Occurrence_Of (Standard_Long_Long_Float, Loc),
2680 Expression => Relocate_Node (L));
2682 Actual_2 :=
2683 Make_Op_Divide (Loc,
2684 Left_Opnd =>
2685 Make_Real_Literal (Loc,
2686 UR_From_Uint (UI_From_Int (Int (Exponent_Value.Numerator)))),
2687 Right_Opnd =>
2688 Make_Real_Literal (Loc,
2689 UR_From_Uint (UI_From_Int (Int (Exponent_Value.Denominator)))));
2691 -- Step 2: Creation of New_N
2693 New_N :=
2694 Make_Type_Conversion (Loc,
2695 Subtype_Mark => New_Occurrence_Of (New_Id, Loc),
2696 Expression =>
2697 Make_Function_Call (Loc,
2698 Name => New_Occurrence_Of (RTE (RE_Expon_LLF), Loc),
2699 Parameter_Associations => New_List (
2700 Actual_1, Actual_2)));
2702 -- Step 3: Rewrite N with the result
2704 Rewrite (N, New_N);
2705 Set_Etype (N, New_Id);
2706 Analyze_And_Resolve (N, New_Id);
2707 end Eval_Op_Expon_With_Rational_Exponent;
2709 ------------
2710 -- Exists --
2711 ------------
2713 function Exists (Dim : Dimension_Type) return Boolean is
2714 begin
2715 return Dim /= Null_Dimension;
2716 end Exists;
2718 function Exists (Str : String_Id) return Boolean is
2719 begin
2720 return Str /= No_String;
2721 end Exists;
2723 function Exists (Sys : System_Type) return Boolean is
2724 begin
2725 return Sys /= Null_System;
2726 end Exists;
2728 ---------------------------------
2729 -- Expand_Put_Call_With_Symbol --
2730 ---------------------------------
2732 -- For procedure Put (resp. Put_Dim_Of) and function Image, defined in
2733 -- System.Dim.Float_IO or System.Dim.Integer_IO, the default string
2734 -- parameter is rewritten to include the unit symbol (or the dimension
2735 -- symbols if not a defined quantity) in the output of a dimensioned
2736 -- object. If a value is already supplied by the user for the parameter
2737 -- Symbol, it is used as is.
2739 -- Case 1. Item is dimensionless
2741 -- * Put : Item appears without a suffix
2743 -- * Put_Dim_Of : the output is []
2745 -- Obj : Mks_Type := 2.6;
2746 -- Put (Obj, 1, 1, 0);
2747 -- Put_Dim_Of (Obj);
2749 -- The corresponding outputs are:
2750 -- $2.6
2751 -- $[]
2753 -- Case 2. Item has a dimension
2755 -- * Put : If the type of Item is a dimensioned subtype whose
2756 -- symbol is not empty, then the symbol appears as a
2757 -- suffix. Otherwise, a new string is created and appears
2758 -- as a suffix of Item. This string results in the
2759 -- successive concatanations between each unit symbol
2760 -- raised by its corresponding dimension power from the
2761 -- dimensions of Item.
2763 -- * Put_Dim_Of : The output is a new string resulting in the successive
2764 -- concatanations between each dimension symbol raised by
2765 -- its corresponding dimension power from the dimensions of
2766 -- Item.
2768 -- subtype Random is Mks_Type
2769 -- with
2770 -- Dimension => (
2771 -- Meter => 3,
2772 -- Candela => -1,
2773 -- others => 0);
2775 -- Obj : Random := 5.0;
2776 -- Put (Obj);
2777 -- Put_Dim_Of (Obj);
2779 -- The corresponding outputs are:
2780 -- $5.0 m**3.cd**(-1)
2781 -- $[l**3.J**(-1)]
2783 -- The function Image returns the string identical to that produced by
2784 -- a call to Put whose first parameter is a string.
2786 procedure Expand_Put_Call_With_Symbol (N : Node_Id) is
2787 Actuals : constant List_Id := Parameter_Associations (N);
2788 Loc : constant Source_Ptr := Sloc (N);
2789 Name_Call : constant Node_Id := Name (N);
2790 New_Actuals : constant List_Id := New_List;
2791 Actual : Node_Id;
2792 Dims_Of_Actual : Dimension_Type;
2793 Etyp : Entity_Id;
2794 New_Str_Lit : Node_Id := Empty;
2795 Symbols : String_Id;
2797 Is_Put_Dim_Of : Boolean := False;
2798 -- This flag is used in order to differentiate routines Put and
2799 -- Put_Dim_Of. Set to True if the procedure is one of the Put_Dim_Of
2800 -- defined in System.Dim.Float_IO or System.Dim.Integer_IO.
2802 function Has_Symbols return Boolean;
2803 -- Return True if the current Put call already has a parameter
2804 -- association for parameter "Symbols" with the correct string of
2805 -- symbols.
2807 function Is_Procedure_Put_Call return Boolean;
2808 -- Return True if the current call is a call of an instantiation of a
2809 -- procedure Put defined in the package System.Dim.Float_IO and
2810 -- System.Dim.Integer_IO.
2812 function Item_Actual return Node_Id;
2813 -- Return the item actual parameter node in the output call
2815 -----------------
2816 -- Has_Symbols --
2817 -----------------
2819 function Has_Symbols return Boolean is
2820 Actual : Node_Id;
2821 Actual_Str : Node_Id;
2823 begin
2824 -- Look for a symbols parameter association in the list of actuals
2826 Actual := First (Actuals);
2827 while Present (Actual) loop
2829 -- Positional parameter association case when the actual is a
2830 -- string literal.
2832 if Nkind (Actual) = N_String_Literal then
2833 Actual_Str := Actual;
2835 -- Named parameter association case when selector name is Symbol
2837 elsif Nkind (Actual) = N_Parameter_Association
2838 and then Chars (Selector_Name (Actual)) = Name_Symbol
2839 then
2840 Actual_Str := Explicit_Actual_Parameter (Actual);
2842 -- Ignore all other cases
2844 else
2845 Actual_Str := Empty;
2846 end if;
2848 if Present (Actual_Str) then
2850 -- Return True if the actual comes from source or if the string
2851 -- of symbols doesn't have the default value (i.e. it is ""),
2852 -- in which case it is used as suffix of the generated string.
2854 if Comes_From_Source (Actual)
2855 or else String_Length (Strval (Actual_Str)) /= 0
2856 then
2857 return True;
2859 else
2860 return False;
2861 end if;
2862 end if;
2864 Next (Actual);
2865 end loop;
2867 -- At this point, the call has no parameter association. Look to the
2868 -- last actual since the symbols parameter is the last one.
2870 return Nkind (Last (Actuals)) = N_String_Literal;
2871 end Has_Symbols;
2873 ---------------------------
2874 -- Is_Procedure_Put_Call --
2875 ---------------------------
2877 function Is_Procedure_Put_Call return Boolean is
2878 Ent : Entity_Id;
2879 Loc : Source_Ptr;
2881 begin
2882 -- There are three different Put (resp. Put_Dim_Of) routines in each
2883 -- generic dim IO package. Verify the current procedure call is one
2884 -- of them.
2886 if Is_Entity_Name (Name_Call) then
2887 Ent := Entity (Name_Call);
2889 -- Get the original subprogram entity following the renaming chain
2891 if Present (Alias (Ent)) then
2892 Ent := Alias (Ent);
2893 end if;
2895 Loc := Sloc (Ent);
2897 -- Check the name of the entity subprogram is Put (resp.
2898 -- Put_Dim_Of) and verify this entity is located in either
2899 -- System.Dim.Float_IO or System.Dim.Integer_IO.
2901 if Loc > No_Location
2902 and then Is_Dim_IO_Package_Entity
2903 (Cunit_Entity (Get_Source_Unit (Loc)))
2904 then
2905 if Chars (Ent) = Name_Put_Dim_Of then
2906 Is_Put_Dim_Of := True;
2907 return True;
2909 elsif Chars (Ent) = Name_Put
2910 or else Chars (Ent) = Name_Image
2911 then
2912 return True;
2913 end if;
2914 end if;
2915 end if;
2917 return False;
2918 end Is_Procedure_Put_Call;
2920 -----------------
2921 -- Item_Actual --
2922 -----------------
2924 function Item_Actual return Node_Id is
2925 Actual : Node_Id;
2927 begin
2928 -- Look for the item actual as a parameter association
2930 Actual := First (Actuals);
2931 while Present (Actual) loop
2932 if Nkind (Actual) = N_Parameter_Association
2933 and then Chars (Selector_Name (Actual)) = Name_Item
2934 then
2935 return Explicit_Actual_Parameter (Actual);
2936 end if;
2938 Next (Actual);
2939 end loop;
2941 -- Case where the item has been defined without an association
2943 Actual := First (Actuals);
2945 -- Depending on the procedure Put, Item actual could be first or
2946 -- second in the list of actuals.
2948 if Has_Dimension_System (Base_Type (Etype (Actual))) then
2949 return Actual;
2950 else
2951 return Next (Actual);
2952 end if;
2953 end Item_Actual;
2955 -- Start of processing for Expand_Put_Call_With_Symbol
2957 begin
2958 if Is_Procedure_Put_Call and then not Has_Symbols then
2959 Actual := Item_Actual;
2960 Dims_Of_Actual := Dimensions_Of (Actual);
2961 Etyp := Etype (Actual);
2963 -- Put_Dim_Of case
2965 if Is_Put_Dim_Of then
2967 -- Check that the item is not dimensionless
2969 -- Create the new String_Literal with the new String_Id generated
2970 -- by the routine From_Dim_To_Str_Of_Dim_Symbols.
2972 if Exists (Dims_Of_Actual) then
2973 New_Str_Lit :=
2974 Make_String_Literal (Loc,
2975 From_Dim_To_Str_Of_Dim_Symbols
2976 (Dims_Of_Actual, System_Of (Base_Type (Etyp))));
2978 -- If dimensionless, the output is []
2980 else
2981 New_Str_Lit :=
2982 Make_String_Literal (Loc, "[]");
2983 end if;
2985 -- Put case
2987 else
2988 -- Add the symbol as a suffix of the value if the subtype has a
2989 -- unit symbol or if the parameter is not dimensionless.
2991 if Exists (Symbol_Of (Etyp)) then
2992 Symbols := Symbol_Of (Etyp);
2993 else
2994 Symbols := From_Dim_To_Str_Of_Unit_Symbols
2995 (Dims_Of_Actual, System_Of (Base_Type (Etyp)));
2996 end if;
2998 -- Check Symbols exists
3000 if Exists (Symbols) then
3001 Start_String;
3003 -- Put a space between the value and the dimension
3005 Store_String_Char (' ');
3006 Store_String_Chars (Symbols);
3007 New_Str_Lit := Make_String_Literal (Loc, End_String);
3008 end if;
3009 end if;
3011 if Present (New_Str_Lit) then
3013 -- Insert all actuals in New_Actuals
3015 Actual := First (Actuals);
3016 while Present (Actual) loop
3018 -- Copy every actuals in New_Actuals except the Symbols
3019 -- parameter association.
3021 if Nkind (Actual) = N_Parameter_Association
3022 and then Chars (Selector_Name (Actual)) /= Name_Symbol
3023 then
3024 Append_To (New_Actuals,
3025 Make_Parameter_Association (Loc,
3026 Selector_Name => New_Copy (Selector_Name (Actual)),
3027 Explicit_Actual_Parameter =>
3028 New_Copy (Explicit_Actual_Parameter (Actual))));
3030 elsif Nkind (Actual) /= N_Parameter_Association then
3031 Append_To (New_Actuals, New_Copy (Actual));
3032 end if;
3034 Next (Actual);
3035 end loop;
3037 -- Create new Symbols param association and append to New_Actuals
3039 Append_To (New_Actuals,
3040 Make_Parameter_Association (Loc,
3041 Selector_Name => Make_Identifier (Loc, Name_Symbol),
3042 Explicit_Actual_Parameter => New_Str_Lit));
3044 -- Rewrite and analyze the procedure call
3046 if Chars (Name_Call) = Name_Image then
3047 Rewrite (N,
3048 Make_Function_Call (Loc,
3049 Name => New_Copy (Name_Call),
3050 Parameter_Associations => New_Actuals));
3051 Analyze_And_Resolve (N);
3052 else
3053 Rewrite (N,
3054 Make_Procedure_Call_Statement (Loc,
3055 Name => New_Copy (Name_Call),
3056 Parameter_Associations => New_Actuals));
3057 Analyze (N);
3058 end if;
3060 end if;
3061 end if;
3062 end Expand_Put_Call_With_Symbol;
3064 ------------------------------------
3065 -- From_Dim_To_Str_Of_Dim_Symbols --
3066 ------------------------------------
3068 -- Given a dimension vector and the corresponding dimension system, create
3069 -- a String_Id to output dimension symbols corresponding to the dimensions
3070 -- Dims. If In_Error_Msg is True, there is a special handling for character
3071 -- asterisk * which is an insertion character in error messages.
3073 function From_Dim_To_Str_Of_Dim_Symbols
3074 (Dims : Dimension_Type;
3075 System : System_Type;
3076 In_Error_Msg : Boolean := False) return String_Id
3078 Dim_Power : Rational;
3079 First_Dim : Boolean := True;
3081 procedure Store_String_Oexpon;
3082 -- Store the expon operator symbol "**" in the string. In error
3083 -- messages, asterisk * is a special character and must be quoted
3084 -- to be placed literally into the message.
3086 -------------------------
3087 -- Store_String_Oexpon --
3088 -------------------------
3090 procedure Store_String_Oexpon is
3091 begin
3092 if In_Error_Msg then
3093 Store_String_Chars ("'*'*");
3094 else
3095 Store_String_Chars ("**");
3096 end if;
3097 end Store_String_Oexpon;
3099 -- Start of processing for From_Dim_To_Str_Of_Dim_Symbols
3101 begin
3102 -- Initialization of the new String_Id
3104 Start_String;
3106 -- Store the dimension symbols inside boxes
3108 if In_Error_Msg then
3109 Store_String_Chars ("'[");
3110 else
3111 Store_String_Char ('[');
3112 end if;
3114 for Position in Dimension_Type'Range loop
3115 Dim_Power := Dims (Position);
3116 if Dim_Power /= Zero then
3118 if First_Dim then
3119 First_Dim := False;
3120 else
3121 Store_String_Char ('.');
3122 end if;
3124 Store_String_Chars (System.Dim_Symbols (Position));
3126 -- Positive dimension case
3128 if Dim_Power.Numerator > 0 then
3130 -- Integer case
3132 if Dim_Power.Denominator = 1 then
3133 if Dim_Power.Numerator /= 1 then
3134 Store_String_Oexpon;
3135 Store_String_Int (Int (Dim_Power.Numerator));
3136 end if;
3138 -- Rational case when denominator /= 1
3140 else
3141 Store_String_Oexpon;
3142 Store_String_Char ('(');
3143 Store_String_Int (Int (Dim_Power.Numerator));
3144 Store_String_Char ('/');
3145 Store_String_Int (Int (Dim_Power.Denominator));
3146 Store_String_Char (')');
3147 end if;
3149 -- Negative dimension case
3151 else
3152 Store_String_Oexpon;
3153 Store_String_Char ('(');
3154 Store_String_Char ('-');
3155 Store_String_Int (Int (-Dim_Power.Numerator));
3157 -- Integer case
3159 if Dim_Power.Denominator = 1 then
3160 Store_String_Char (')');
3162 -- Rational case when denominator /= 1
3164 else
3165 Store_String_Char ('/');
3166 Store_String_Int (Int (Dim_Power.Denominator));
3167 Store_String_Char (')');
3168 end if;
3169 end if;
3170 end if;
3171 end loop;
3173 if In_Error_Msg then
3174 Store_String_Chars ("']");
3175 else
3176 Store_String_Char (']');
3177 end if;
3179 return End_String;
3180 end From_Dim_To_Str_Of_Dim_Symbols;
3182 -------------------------------------
3183 -- From_Dim_To_Str_Of_Unit_Symbols --
3184 -------------------------------------
3186 -- Given a dimension vector and the corresponding dimension system,
3187 -- create a String_Id to output the unit symbols corresponding to the
3188 -- dimensions Dims.
3190 function From_Dim_To_Str_Of_Unit_Symbols
3191 (Dims : Dimension_Type;
3192 System : System_Type) return String_Id
3194 Dim_Power : Rational;
3195 First_Dim : Boolean := True;
3197 begin
3198 -- Return No_String if dimensionless
3200 if not Exists (Dims) then
3201 return No_String;
3202 end if;
3204 -- Initialization of the new String_Id
3206 Start_String;
3208 for Position in Dimension_Type'Range loop
3209 Dim_Power := Dims (Position);
3211 if Dim_Power /= Zero then
3212 if First_Dim then
3213 First_Dim := False;
3214 else
3215 Store_String_Char ('.');
3216 end if;
3218 Store_String_Chars (System.Unit_Symbols (Position));
3220 -- Positive dimension case
3222 if Dim_Power.Numerator > 0 then
3224 -- Integer case
3226 if Dim_Power.Denominator = 1 then
3227 if Dim_Power.Numerator /= 1 then
3228 Store_String_Chars ("**");
3229 Store_String_Int (Int (Dim_Power.Numerator));
3230 end if;
3232 -- Rational case when denominator /= 1
3234 else
3235 Store_String_Chars ("**");
3236 Store_String_Char ('(');
3237 Store_String_Int (Int (Dim_Power.Numerator));
3238 Store_String_Char ('/');
3239 Store_String_Int (Int (Dim_Power.Denominator));
3240 Store_String_Char (')');
3241 end if;
3243 -- Negative dimension case
3245 else
3246 Store_String_Chars ("**");
3247 Store_String_Char ('(');
3248 Store_String_Char ('-');
3249 Store_String_Int (Int (-Dim_Power.Numerator));
3251 -- Integer case
3253 if Dim_Power.Denominator = 1 then
3254 Store_String_Char (')');
3256 -- Rational case when denominator /= 1
3258 else
3259 Store_String_Char ('/');
3260 Store_String_Int (Int (Dim_Power.Denominator));
3261 Store_String_Char (')');
3262 end if;
3263 end if;
3264 end if;
3265 end loop;
3267 return End_String;
3268 end From_Dim_To_Str_Of_Unit_Symbols;
3270 ---------
3271 -- GCD --
3272 ---------
3274 function GCD (Left, Right : Whole) return Int is
3275 L : Whole;
3276 R : Whole;
3278 begin
3279 L := Left;
3280 R := Right;
3281 while R /= 0 loop
3282 L := L mod R;
3284 if L = 0 then
3285 return Int (R);
3286 end if;
3288 R := R mod L;
3289 end loop;
3291 return Int (L);
3292 end GCD;
3294 --------------------------
3295 -- Has_Dimension_System --
3296 --------------------------
3298 function Has_Dimension_System (Typ : Entity_Id) return Boolean is
3299 begin
3300 return Exists (System_Of (Typ));
3301 end Has_Dimension_System;
3303 ------------------------------
3304 -- Is_Dim_IO_Package_Entity --
3305 ------------------------------
3307 function Is_Dim_IO_Package_Entity (E : Entity_Id) return Boolean is
3308 begin
3309 -- Check the package entity corresponds to System.Dim.Float_IO or
3310 -- System.Dim.Integer_IO.
3312 return
3313 Is_RTU (E, System_Dim_Float_IO)
3314 or else
3315 Is_RTU (E, System_Dim_Integer_IO);
3316 end Is_Dim_IO_Package_Entity;
3318 -------------------------------------
3319 -- Is_Dim_IO_Package_Instantiation --
3320 -------------------------------------
3322 function Is_Dim_IO_Package_Instantiation (N : Node_Id) return Boolean is
3323 Gen_Id : constant Node_Id := Name (N);
3325 begin
3326 -- Check that the instantiated package is either System.Dim.Float_IO
3327 -- or System.Dim.Integer_IO.
3329 return
3330 Is_Entity_Name (Gen_Id)
3331 and then Is_Dim_IO_Package_Entity (Entity (Gen_Id));
3332 end Is_Dim_IO_Package_Instantiation;
3334 ----------------
3335 -- Is_Invalid --
3336 ----------------
3338 function Is_Invalid (Position : Dimension_Position) return Boolean is
3339 begin
3340 return Position = Invalid_Position;
3341 end Is_Invalid;
3343 ---------------------
3344 -- Move_Dimensions --
3345 ---------------------
3347 procedure Move_Dimensions (From, To : Node_Id) is
3348 begin
3349 if Ada_Version < Ada_2012 then
3350 return;
3351 end if;
3353 -- Copy the dimension of 'From to 'To' and remove dimension of 'From'
3355 Copy_Dimensions (From, To);
3356 Remove_Dimensions (From);
3357 end Move_Dimensions;
3359 ------------
3360 -- Reduce --
3361 ------------
3363 function Reduce (X : Rational) return Rational is
3364 begin
3365 if X.Numerator = 0 then
3366 return Zero;
3367 end if;
3369 declare
3370 G : constant Int := GCD (X.Numerator, X.Denominator);
3371 begin
3372 return Rational'(Numerator => Whole (Int (X.Numerator) / G),
3373 Denominator => Whole (Int (X.Denominator) / G));
3374 end;
3375 end Reduce;
3377 -----------------------
3378 -- Remove_Dimensions --
3379 -----------------------
3381 procedure Remove_Dimensions (N : Node_Id) is
3382 Dims_Of_N : constant Dimension_Type := Dimensions_Of (N);
3383 begin
3384 if Exists (Dims_Of_N) then
3385 Dimension_Table.Remove (N);
3386 end if;
3387 end Remove_Dimensions;
3389 -----------------------------------
3390 -- Remove_Dimension_In_Statement --
3391 -----------------------------------
3393 -- Removal of dimension in statement as part of the Analyze_Statements
3394 -- routine (see package Sem_Ch5).
3396 procedure Remove_Dimension_In_Statement (Stmt : Node_Id) is
3397 begin
3398 if Ada_Version < Ada_2012 then
3399 return;
3400 end if;
3402 -- Remove dimension in parameter specifications for accept statement
3404 if Nkind (Stmt) = N_Accept_Statement then
3405 declare
3406 Param : Node_Id := First (Parameter_Specifications (Stmt));
3407 begin
3408 while Present (Param) loop
3409 Remove_Dimensions (Param);
3410 Next (Param);
3411 end loop;
3412 end;
3414 -- Remove dimension of name and expression in assignments
3416 elsif Nkind (Stmt) = N_Assignment_Statement then
3417 Remove_Dimensions (Expression (Stmt));
3418 Remove_Dimensions (Name (Stmt));
3419 end if;
3420 end Remove_Dimension_In_Statement;
3422 --------------------
3423 -- Set_Dimensions --
3424 --------------------
3426 procedure Set_Dimensions (N : Node_Id; Val : Dimension_Type) is
3427 begin
3428 pragma Assert (OK_For_Dimension (Nkind (N)));
3429 pragma Assert (Exists (Val));
3431 Dimension_Table.Set (N, Val);
3432 end Set_Dimensions;
3434 ----------------
3435 -- Set_Symbol --
3436 ----------------
3438 procedure Set_Symbol (E : Entity_Id; Val : String_Id) is
3439 begin
3440 Symbol_Table.Set (E, Val);
3441 end Set_Symbol;
3443 ---------------------------------
3444 -- String_From_Numeric_Literal --
3445 ---------------------------------
3447 function String_From_Numeric_Literal (N : Node_Id) return String_Id is
3448 Loc : constant Source_Ptr := Sloc (N);
3449 Sbuffer : constant Source_Buffer_Ptr :=
3450 Source_Text (Get_Source_File_Index (Loc));
3451 Src_Ptr : Source_Ptr := Loc;
3453 C : Character := Sbuffer (Src_Ptr);
3454 -- Current source program character
3456 function Belong_To_Numeric_Literal (C : Character) return Boolean;
3457 -- Return True if C belongs to a numeric literal
3459 -------------------------------
3460 -- Belong_To_Numeric_Literal --
3461 -------------------------------
3463 function Belong_To_Numeric_Literal (C : Character) return Boolean is
3464 begin
3465 case C is
3466 when '0' .. '9' |
3467 '_' |
3468 '.' |
3469 'e' |
3470 '#' |
3471 'A' |
3472 'B' |
3473 'C' |
3474 'D' |
3475 'E' |
3476 'F' =>
3477 return True;
3479 -- Make sure '+' or '-' is part of an exponent.
3481 when '+' | '-' =>
3482 declare
3483 Prev_C : constant Character := Sbuffer (Src_Ptr - 1);
3484 begin
3485 return Prev_C = 'e' or else Prev_C = 'E';
3486 end;
3488 -- All other character doesn't belong to a numeric literal
3490 when others =>
3491 return False;
3492 end case;
3493 end Belong_To_Numeric_Literal;
3495 -- Start of processing for String_From_Numeric_Literal
3497 begin
3498 Start_String;
3499 while Belong_To_Numeric_Literal (C) loop
3500 Store_String_Char (C);
3501 Src_Ptr := Src_Ptr + 1;
3502 C := Sbuffer (Src_Ptr);
3503 end loop;
3505 return End_String;
3506 end String_From_Numeric_Literal;
3508 ---------------
3509 -- Symbol_Of --
3510 ---------------
3512 function Symbol_Of (E : Entity_Id) return String_Id is
3513 Subtype_Symbol : constant String_Id := Symbol_Table.Get (E);
3514 begin
3515 if Subtype_Symbol /= No_String then
3516 return Subtype_Symbol;
3517 else
3518 return From_Dim_To_Str_Of_Unit_Symbols
3519 (Dimensions_Of (E), System_Of (Base_Type (E)));
3520 end if;
3521 end Symbol_Of;
3523 -----------------------
3524 -- Symbol_Table_Hash --
3525 -----------------------
3527 function Symbol_Table_Hash (Key : Entity_Id) return Symbol_Table_Range is
3528 begin
3529 return Symbol_Table_Range (Key mod 511);
3530 end Symbol_Table_Hash;
3532 ---------------
3533 -- System_Of --
3534 ---------------
3536 function System_Of (E : Entity_Id) return System_Type is
3537 Type_Decl : constant Node_Id := Parent (E);
3539 begin
3540 -- Look for Type_Decl in System_Table
3542 for Dim_Sys in 1 .. System_Table.Last loop
3543 if Type_Decl = System_Table.Table (Dim_Sys).Type_Decl then
3544 return System_Table.Table (Dim_Sys);
3545 end if;
3546 end loop;
3548 return Null_System;
3549 end System_Of;
3551 end Sem_Dim;