* doc/tm.texi (MALLOC_ABI_ALIGNMENT): New macro. Alignment, in bits,
[official-gcc.git] / libgfortran / generated / matmul_l8.c
blob26baad3213660fa6c490e6cdb7ae6b715a061444
1 /* Implementation of the MATMUL intrinsic
2 Copyright 2002, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "libgfortran.h"
32 #include <stdlib.h>
33 #include <assert.h>
36 #if defined (HAVE_GFC_LOGICAL_8)
38 /* Dimensions: retarray(x,y) a(x, count) b(count,y).
39 Either a or b can be rank 1. In this case x or y is 1. */
41 extern void matmul_l8 (gfc_array_l8 * const restrict,
42 gfc_array_l1 * const restrict, gfc_array_l1 * const restrict);
43 export_proto(matmul_l8);
45 void
46 matmul_l8 (gfc_array_l8 * const restrict retarray,
47 gfc_array_l1 * const restrict a, gfc_array_l1 * const restrict b)
49 const GFC_LOGICAL_1 * restrict abase;
50 const GFC_LOGICAL_1 * restrict bbase;
51 GFC_LOGICAL_8 * restrict dest;
52 index_type rxstride;
53 index_type rystride;
54 index_type xcount;
55 index_type ycount;
56 index_type xstride;
57 index_type ystride;
58 index_type x;
59 index_type y;
60 int a_kind;
61 int b_kind;
63 const GFC_LOGICAL_1 * restrict pa;
64 const GFC_LOGICAL_1 * restrict pb;
65 index_type astride;
66 index_type bstride;
67 index_type count;
68 index_type n;
70 assert (GFC_DESCRIPTOR_RANK (a) == 2
71 || GFC_DESCRIPTOR_RANK (b) == 2);
73 if (retarray->data == NULL)
75 if (GFC_DESCRIPTOR_RANK (a) == 1)
77 retarray->dim[0].lbound = 0;
78 retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
79 retarray->dim[0].stride = 1;
81 else if (GFC_DESCRIPTOR_RANK (b) == 1)
83 retarray->dim[0].lbound = 0;
84 retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
85 retarray->dim[0].stride = 1;
87 else
89 retarray->dim[0].lbound = 0;
90 retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
91 retarray->dim[0].stride = 1;
93 retarray->dim[1].lbound = 0;
94 retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
95 retarray->dim[1].stride = retarray->dim[0].ubound+1;
98 retarray->data
99 = internal_malloc_size (sizeof (GFC_LOGICAL_8) * size0 ((array_t *) retarray));
100 retarray->offset = 0;
102 else if (compile_options.bounds_check)
104 index_type ret_extent, arg_extent;
106 if (GFC_DESCRIPTOR_RANK (a) == 1)
108 arg_extent = b->dim[1].ubound + 1 - b->dim[1].lbound;
109 ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
110 if (arg_extent != ret_extent)
111 runtime_error ("Incorrect extent in return array in"
112 " MATMUL intrinsic: is %ld, should be %ld",
113 (long int) ret_extent, (long int) arg_extent);
115 else if (GFC_DESCRIPTOR_RANK (b) == 1)
117 arg_extent = a->dim[0].ubound + 1 - a->dim[0].lbound;
118 ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
119 if (arg_extent != ret_extent)
120 runtime_error ("Incorrect extent in return array in"
121 " MATMUL intrinsic: is %ld, should be %ld",
122 (long int) ret_extent, (long int) arg_extent);
124 else
126 arg_extent = a->dim[0].ubound + 1 - a->dim[0].lbound;
127 ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
128 if (arg_extent != ret_extent)
129 runtime_error ("Incorrect extent in return array in"
130 " MATMUL intrinsic for dimension 1:"
131 " is %ld, should be %ld",
132 (long int) ret_extent, (long int) arg_extent);
134 arg_extent = b->dim[1].ubound + 1 - b->dim[1].lbound;
135 ret_extent = retarray->dim[1].ubound + 1 - retarray->dim[1].lbound;
136 if (arg_extent != ret_extent)
137 runtime_error ("Incorrect extent in return array in"
138 " MATMUL intrinsic for dimension 2:"
139 " is %ld, should be %ld",
140 (long int) ret_extent, (long int) arg_extent);
144 abase = a->data;
145 a_kind = GFC_DESCRIPTOR_SIZE (a);
147 if (a_kind == 1 || a_kind == 2 || a_kind == 4 || a_kind == 8
148 #ifdef HAVE_GFC_LOGICAL_16
149 || a_kind == 16
150 #endif
152 abase = GFOR_POINTER_TO_L1 (abase, a_kind);
153 else
154 internal_error (NULL, "Funny sized logical array");
156 bbase = b->data;
157 b_kind = GFC_DESCRIPTOR_SIZE (b);
159 if (b_kind == 1 || b_kind == 2 || b_kind == 4 || b_kind == 8
160 #ifdef HAVE_GFC_LOGICAL_16
161 || b_kind == 16
162 #endif
164 bbase = GFOR_POINTER_TO_L1 (bbase, b_kind);
165 else
166 internal_error (NULL, "Funny sized logical array");
168 dest = retarray->data;
171 if (GFC_DESCRIPTOR_RANK (retarray) == 1)
173 rxstride = retarray->dim[0].stride;
174 rystride = rxstride;
176 else
178 rxstride = retarray->dim[0].stride;
179 rystride = retarray->dim[1].stride;
182 /* If we have rank 1 parameters, zero the absent stride, and set the size to
183 one. */
184 if (GFC_DESCRIPTOR_RANK (a) == 1)
186 astride = a->dim[0].stride * a_kind;
187 count = a->dim[0].ubound + 1 - a->dim[0].lbound;
188 xstride = 0;
189 rxstride = 0;
190 xcount = 1;
192 else
194 astride = a->dim[1].stride * a_kind;
195 count = a->dim[1].ubound + 1 - a->dim[1].lbound;
196 xstride = a->dim[0].stride * a_kind;
197 xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
199 if (GFC_DESCRIPTOR_RANK (b) == 1)
201 bstride = b->dim[0].stride * b_kind;
202 assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
203 ystride = 0;
204 rystride = 0;
205 ycount = 1;
207 else
209 bstride = b->dim[0].stride * b_kind;
210 assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
211 ystride = b->dim[1].stride * b_kind;
212 ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
215 for (y = 0; y < ycount; y++)
217 for (x = 0; x < xcount; x++)
219 /* Do the summation for this element. For real and integer types
220 this is the same as DOT_PRODUCT. For complex types we use do
221 a*b, not conjg(a)*b. */
222 pa = abase;
223 pb = bbase;
224 *dest = 0;
226 for (n = 0; n < count; n++)
228 if (*pa && *pb)
230 *dest = 1;
231 break;
233 pa += astride;
234 pb += bstride;
237 dest += rxstride;
238 abase += xstride;
240 abase -= xstride * xcount;
241 bbase += ystride;
242 dest += rystride - (rxstride * xcount);
246 #endif