[AArch64] Improve scheduling model for X-Gene
[official-gcc.git] / gcc / ada / sem_res.adb
blob024b879fd14895b9ef7d1090be8bc870c4cc9b5f
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Freeze; use Freeze;
39 with Ghost; use Ghost;
40 with Inline; use Inline;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Output; use Output;
49 with Par_SCO; use Par_SCO;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Aggr; use Sem_Aggr;
56 with Sem_Attr; use Sem_Attr;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch4; use Sem_Ch4;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Dim; use Sem_Dim;
64 with Sem_Disp; use Sem_Disp;
65 with Sem_Dist; use Sem_Dist;
66 with Sem_Elab; use Sem_Elab;
67 with Sem_Elim; use Sem_Elim;
68 with Sem_Eval; use Sem_Eval;
69 with Sem_Intr; use Sem_Intr;
70 with Sem_Util; use Sem_Util;
71 with Targparm; use Targparm;
72 with Sem_Type; use Sem_Type;
73 with Sem_Warn; use Sem_Warn;
74 with Sinfo; use Sinfo;
75 with Sinfo.CN; use Sinfo.CN;
76 with Snames; use Snames;
77 with Stand; use Stand;
78 with Stringt; use Stringt;
79 with Style; use Style;
80 with Tbuild; use Tbuild;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
84 package body Sem_Res is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
99 procedure Check_Discriminant_Use (N : Node_Id);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
103 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
109 procedure Check_Fully_Declared_Prefix
110 (Typ : Entity_Id;
111 Pref : Node_Id);
112 -- Check that the type of the prefix of a dereference is not incomplete
114 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
120 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
121 -- If the type of the object being initialized uses the secondary stack
122 -- directly or indirectly, create a transient scope for the call to the
123 -- init proc. This is because we do not create transient scopes for the
124 -- initialization of individual components within the init proc itself.
125 -- Could be optimized away perhaps?
127 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
128 -- N is the node for a logical operator. If the operator is predefined, and
129 -- the root type of the operands is Standard.Boolean, then a check is made
130 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
131 -- the style check for Style_Check_Boolean_And_Or.
133 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
134 -- N is either an indexed component or a selected component. This function
135 -- returns true if the prefix refers to an object that has an address
136 -- clause (the case in which we may want to issue a warning).
138 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
139 -- Determine whether E is an access type declared by an access declaration,
140 -- and not an (anonymous) allocator type.
142 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
143 -- Utility to check whether the entity for an operator is a predefined
144 -- operator, in which case the expression is left as an operator in the
145 -- tree (else it is rewritten into a call). An instance of an intrinsic
146 -- conversion operation may be given an operator name, but is not treated
147 -- like an operator. Note that an operator that is an imported back-end
148 -- builtin has convention Intrinsic, but is expected to be rewritten into
149 -- a call, so such an operator is not treated as predefined by this
150 -- predicate.
152 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
153 -- If a default expression in entry call N depends on the discriminants
154 -- of the task, it must be replaced with a reference to the discriminant
155 -- of the task being called.
157 procedure Resolve_Op_Concat_Arg
158 (N : Node_Id;
159 Arg : Node_Id;
160 Typ : Entity_Id;
161 Is_Comp : Boolean);
162 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
163 -- concatenation operator. The operand is either of the array type or of
164 -- the component type. If the operand is an aggregate, and the component
165 -- type is composite, this is ambiguous if component type has aggregates.
167 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
168 -- Does the first part of the work of Resolve_Op_Concat
170 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
171 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
172 -- has been resolved. See Resolve_Op_Concat for details.
174 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
209 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
211 function Operator_Kind
212 (Op_Name : Name_Id;
213 Is_Binary : Boolean) return Node_Kind;
214 -- Utility to map the name of an operator into the corresponding Node. Used
215 -- by other node rewriting procedures.
217 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
218 -- Resolve actuals of call, and add default expressions for missing ones.
219 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
220 -- called subprogram.
222 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
223 -- Called from Resolve_Call, when the prefix denotes an entry or element
224 -- of entry family. Actuals are resolved as for subprograms, and the node
225 -- is rebuilt as an entry call. Also called for protected operations. Typ
226 -- is the context type, which is used when the operation is a protected
227 -- function with no arguments, and the return value is indexed.
229 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
230 -- A call to a user-defined intrinsic operator is rewritten as a call to
231 -- the corresponding predefined operator, with suitable conversions. Note
232 -- that this applies only for intrinsic operators that denote predefined
233 -- operators, not ones that are intrinsic imports of back-end builtins.
235 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
236 -- Ditto, for arithmetic unary operators
238 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
242 procedure Make_Call_Into_Operator
243 (N : Node_Id;
244 Typ : Entity_Id;
245 Op_Id : Entity_Id);
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so that
248 -- operands are resolved properly. Recall that predefined operators do not
249 -- have a full signature and special resolution rules apply.
251 procedure Rewrite_Renamed_Operator
252 (N : Node_Id;
253 Op : Entity_Id;
254 Typ : Entity_Id);
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
258 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is not
261 -- a N_String_Literal node, then the call has no effect.
263 procedure Set_Slice_Subtype (N : Node_Id);
264 -- Build subtype of array type, with the range specified by the slice
266 procedure Simplify_Type_Conversion (N : Node_Id);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Rounding or Truncation attribute.
271 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
281 procedure Ambiguous_Character (C : Node_Id) is
282 E : Entity_Id;
284 begin
285 if Nkind (C) = N_Character_Literal then
286 Error_Msg_N ("ambiguous character literal", C);
288 -- First the ones in Standard
290 Error_Msg_N ("\\possible interpretation: Character!", C);
291 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
293 -- Include Wide_Wide_Character in Ada 2005 mode
295 if Ada_Version >= Ada_2005 then
296 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
297 end if;
299 -- Now any other types that match
301 E := Current_Entity (C);
302 while Present (E) loop
303 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
304 E := Homonym (E);
305 end loop;
306 end if;
307 end Ambiguous_Character;
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
313 procedure Analyze_And_Resolve (N : Node_Id) is
314 begin
315 Analyze (N);
316 Resolve (N);
317 end Analyze_And_Resolve;
319 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
320 begin
321 Analyze (N);
322 Resolve (N, Typ);
323 end Analyze_And_Resolve;
325 -- Versions with check(s) suppressed
327 procedure Analyze_And_Resolve
328 (N : Node_Id;
329 Typ : Entity_Id;
330 Suppress : Check_Id)
332 Scop : constant Entity_Id := Current_Scope;
334 begin
335 if Suppress = All_Checks then
336 declare
337 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
338 begin
339 Scope_Suppress.Suppress := (others => True);
340 Analyze_And_Resolve (N, Typ);
341 Scope_Suppress.Suppress := Sva;
342 end;
344 else
345 declare
346 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
347 begin
348 Scope_Suppress.Suppress (Suppress) := True;
349 Analyze_And_Resolve (N, Typ);
350 Scope_Suppress.Suppress (Suppress) := Svg;
351 end;
352 end if;
354 if Current_Scope /= Scop
355 and then Scope_Is_Transient
356 then
357 -- This can only happen if a transient scope was created for an inner
358 -- expression, which will be removed upon completion of the analysis
359 -- of an enclosing construct. The transient scope must have the
360 -- suppress status of the enclosing environment, not of this Analyze
361 -- call.
363 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
364 Scope_Suppress;
365 end if;
366 end Analyze_And_Resolve;
368 procedure Analyze_And_Resolve
369 (N : Node_Id;
370 Suppress : Check_Id)
372 Scop : constant Entity_Id := Current_Scope;
374 begin
375 if Suppress = All_Checks then
376 declare
377 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
378 begin
379 Scope_Suppress.Suppress := (others => True);
380 Analyze_And_Resolve (N);
381 Scope_Suppress.Suppress := Sva;
382 end;
384 else
385 declare
386 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
387 begin
388 Scope_Suppress.Suppress (Suppress) := True;
389 Analyze_And_Resolve (N);
390 Scope_Suppress.Suppress (Suppress) := Svg;
391 end;
392 end if;
394 if Current_Scope /= Scop and then Scope_Is_Transient then
395 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
396 Scope_Suppress;
397 end if;
398 end Analyze_And_Resolve;
400 ----------------------------
401 -- Check_Discriminant_Use --
402 ----------------------------
404 procedure Check_Discriminant_Use (N : Node_Id) is
405 PN : constant Node_Id := Parent (N);
406 Disc : constant Entity_Id := Entity (N);
407 P : Node_Id;
408 D : Node_Id;
410 begin
411 -- Any use in a spec-expression is legal
413 if In_Spec_Expression then
414 null;
416 elsif Nkind (PN) = N_Range then
418 -- Discriminant cannot be used to constrain a scalar type
420 P := Parent (PN);
422 if Nkind (P) = N_Range_Constraint
423 and then Nkind (Parent (P)) = N_Subtype_Indication
424 and then Nkind (Parent (Parent (P))) = N_Component_Definition
425 then
426 Error_Msg_N ("discriminant cannot constrain scalar type", N);
428 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
430 -- The following check catches the unusual case where a
431 -- discriminant appears within an index constraint that is part
432 -- of a larger expression within a constraint on a component,
433 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
434 -- check case of record components, and note that a similar check
435 -- should also apply in the case of discriminant constraints
436 -- below. ???
438 -- Note that the check for N_Subtype_Declaration below is to
439 -- detect the valid use of discriminants in the constraints of a
440 -- subtype declaration when this subtype declaration appears
441 -- inside the scope of a record type (which is syntactically
442 -- illegal, but which may be created as part of derived type
443 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
444 -- for more info.
446 if Ekind (Current_Scope) = E_Record_Type
447 and then Scope (Disc) = Current_Scope
448 and then not
449 (Nkind (Parent (P)) = N_Subtype_Indication
450 and then
451 Nkind_In (Parent (Parent (P)), N_Component_Definition,
452 N_Subtype_Declaration)
453 and then Paren_Count (N) = 0)
454 then
455 Error_Msg_N
456 ("discriminant must appear alone in component constraint", N);
457 return;
458 end if;
460 -- Detect a common error:
462 -- type R (D : Positive := 100) is record
463 -- Name : String (1 .. D);
464 -- end record;
466 -- The default value causes an object of type R to be allocated
467 -- with room for Positive'Last characters. The RM does not mandate
468 -- the allocation of the maximum size, but that is what GNAT does
469 -- so we should warn the programmer that there is a problem.
471 Check_Large : declare
472 SI : Node_Id;
473 T : Entity_Id;
474 TB : Node_Id;
475 CB : Entity_Id;
477 function Large_Storage_Type (T : Entity_Id) return Boolean;
478 -- Return True if type T has a large enough range that any
479 -- array whose index type covered the whole range of the type
480 -- would likely raise Storage_Error.
482 ------------------------
483 -- Large_Storage_Type --
484 ------------------------
486 function Large_Storage_Type (T : Entity_Id) return Boolean is
487 begin
488 -- The type is considered large if its bounds are known at
489 -- compile time and if it requires at least as many bits as
490 -- a Positive to store the possible values.
492 return Compile_Time_Known_Value (Type_Low_Bound (T))
493 and then Compile_Time_Known_Value (Type_High_Bound (T))
494 and then
495 Minimum_Size (T, Biased => True) >=
496 RM_Size (Standard_Positive);
497 end Large_Storage_Type;
499 -- Start of processing for Check_Large
501 begin
502 -- Check that the Disc has a large range
504 if not Large_Storage_Type (Etype (Disc)) then
505 goto No_Danger;
506 end if;
508 -- If the enclosing type is limited, we allocate only the
509 -- default value, not the maximum, and there is no need for
510 -- a warning.
512 if Is_Limited_Type (Scope (Disc)) then
513 goto No_Danger;
514 end if;
516 -- Check that it is the high bound
518 if N /= High_Bound (PN)
519 or else No (Discriminant_Default_Value (Disc))
520 then
521 goto No_Danger;
522 end if;
524 -- Check the array allows a large range at this bound. First
525 -- find the array
527 SI := Parent (P);
529 if Nkind (SI) /= N_Subtype_Indication then
530 goto No_Danger;
531 end if;
533 T := Entity (Subtype_Mark (SI));
535 if not Is_Array_Type (T) then
536 goto No_Danger;
537 end if;
539 -- Next, find the dimension
541 TB := First_Index (T);
542 CB := First (Constraints (P));
543 while True
544 and then Present (TB)
545 and then Present (CB)
546 and then CB /= PN
547 loop
548 Next_Index (TB);
549 Next (CB);
550 end loop;
552 if CB /= PN then
553 goto No_Danger;
554 end if;
556 -- Now, check the dimension has a large range
558 if not Large_Storage_Type (Etype (TB)) then
559 goto No_Danger;
560 end if;
562 -- Warn about the danger
564 Error_Msg_N
565 ("??creation of & object may raise Storage_Error!",
566 Scope (Disc));
568 <<No_Danger>>
569 null;
571 end Check_Large;
572 end if;
574 -- Legal case is in index or discriminant constraint
576 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
577 N_Discriminant_Association)
578 then
579 if Paren_Count (N) > 0 then
580 Error_Msg_N
581 ("discriminant in constraint must appear alone", N);
583 elsif Nkind (N) = N_Expanded_Name
584 and then Comes_From_Source (N)
585 then
586 Error_Msg_N
587 ("discriminant must appear alone as a direct name", N);
588 end if;
590 return;
592 -- Otherwise, context is an expression. It should not be within (i.e. a
593 -- subexpression of) a constraint for a component.
595 else
596 D := PN;
597 P := Parent (PN);
598 while not Nkind_In (P, N_Component_Declaration,
599 N_Subtype_Indication,
600 N_Entry_Declaration)
601 loop
602 D := P;
603 P := Parent (P);
604 exit when No (P);
605 end loop;
607 -- If the discriminant is used in an expression that is a bound of a
608 -- scalar type, an Itype is created and the bounds are attached to
609 -- its range, not to the original subtype indication. Such use is of
610 -- course a double fault.
612 if (Nkind (P) = N_Subtype_Indication
613 and then Nkind_In (Parent (P), N_Component_Definition,
614 N_Derived_Type_Definition)
615 and then D = Constraint (P))
617 -- The constraint itself may be given by a subtype indication,
618 -- rather than by a more common discrete range.
620 or else (Nkind (P) = N_Subtype_Indication
621 and then
622 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
623 or else Nkind (P) = N_Entry_Declaration
624 or else Nkind (D) = N_Defining_Identifier
625 then
626 Error_Msg_N
627 ("discriminant in constraint must appear alone", N);
628 end if;
629 end if;
630 end Check_Discriminant_Use;
632 --------------------------------
633 -- Check_For_Visible_Operator --
634 --------------------------------
636 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
637 begin
638 if Is_Invisible_Operator (N, T) then
639 Error_Msg_NE -- CODEFIX
640 ("operator for} is not directly visible!", N, First_Subtype (T));
641 Error_Msg_N -- CODEFIX
642 ("use clause would make operation legal!", N);
643 end if;
644 end Check_For_Visible_Operator;
646 ----------------------------------
647 -- Check_Fully_Declared_Prefix --
648 ----------------------------------
650 procedure Check_Fully_Declared_Prefix
651 (Typ : Entity_Id;
652 Pref : Node_Id)
654 begin
655 -- Check that the designated type of the prefix of a dereference is
656 -- not an incomplete type. This cannot be done unconditionally, because
657 -- dereferences of private types are legal in default expressions. This
658 -- case is taken care of in Check_Fully_Declared, called below. There
659 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
661 -- This consideration also applies to similar checks for allocators,
662 -- qualified expressions, and type conversions.
664 -- An additional exception concerns other per-object expressions that
665 -- are not directly related to component declarations, in particular
666 -- representation pragmas for tasks. These will be per-object
667 -- expressions if they depend on discriminants or some global entity.
668 -- If the task has access discriminants, the designated type may be
669 -- incomplete at the point the expression is resolved. This resolution
670 -- takes place within the body of the initialization procedure, where
671 -- the discriminant is replaced by its discriminal.
673 if Is_Entity_Name (Pref)
674 and then Ekind (Entity (Pref)) = E_In_Parameter
675 then
676 null;
678 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
679 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
680 -- Analyze_Object_Renaming, and Freeze_Entity.
682 elsif Ada_Version >= Ada_2005
683 and then Is_Entity_Name (Pref)
684 and then Is_Access_Type (Etype (Pref))
685 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
686 E_Incomplete_Type
687 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
688 then
689 null;
690 else
691 Check_Fully_Declared (Typ, Parent (Pref));
692 end if;
693 end Check_Fully_Declared_Prefix;
695 ------------------------------
696 -- Check_Infinite_Recursion --
697 ------------------------------
699 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
700 P : Node_Id;
701 C : Node_Id;
703 function Same_Argument_List return Boolean;
704 -- Check whether list of actuals is identical to list of formals of
705 -- called function (which is also the enclosing scope).
707 ------------------------
708 -- Same_Argument_List --
709 ------------------------
711 function Same_Argument_List return Boolean is
712 A : Node_Id;
713 F : Entity_Id;
714 Subp : Entity_Id;
716 begin
717 if not Is_Entity_Name (Name (N)) then
718 return False;
719 else
720 Subp := Entity (Name (N));
721 end if;
723 F := First_Formal (Subp);
724 A := First_Actual (N);
725 while Present (F) and then Present (A) loop
726 if not Is_Entity_Name (A) or else Entity (A) /= F then
727 return False;
728 end if;
730 Next_Actual (A);
731 Next_Formal (F);
732 end loop;
734 return True;
735 end Same_Argument_List;
737 -- Start of processing for Check_Infinite_Recursion
739 begin
740 -- Special case, if this is a procedure call and is a call to the
741 -- current procedure with the same argument list, then this is for
742 -- sure an infinite recursion and we insert a call to raise SE.
744 if Is_List_Member (N)
745 and then List_Length (List_Containing (N)) = 1
746 and then Same_Argument_List
747 then
748 declare
749 P : constant Node_Id := Parent (N);
750 begin
751 if Nkind (P) = N_Handled_Sequence_Of_Statements
752 and then Nkind (Parent (P)) = N_Subprogram_Body
753 and then Is_Empty_List (Declarations (Parent (P)))
754 then
755 Error_Msg_Warn := SPARK_Mode /= On;
756 Error_Msg_N ("!infinite recursion<<", N);
757 Error_Msg_N ("\!Storage_Error [<<", N);
758 Insert_Action (N,
759 Make_Raise_Storage_Error (Sloc (N),
760 Reason => SE_Infinite_Recursion));
761 return True;
762 end if;
763 end;
764 end if;
766 -- If not that special case, search up tree, quitting if we reach a
767 -- construct (e.g. a conditional) that tells us that this is not a
768 -- case for an infinite recursion warning.
770 C := N;
771 loop
772 P := Parent (C);
774 -- If no parent, then we were not inside a subprogram, this can for
775 -- example happen when processing certain pragmas in a spec. Just
776 -- return False in this case.
778 if No (P) then
779 return False;
780 end if;
782 -- Done if we get to subprogram body, this is definitely an infinite
783 -- recursion case if we did not find anything to stop us.
785 exit when Nkind (P) = N_Subprogram_Body;
787 -- If appearing in conditional, result is false
789 if Nkind_In (P, N_Or_Else,
790 N_And_Then,
791 N_Case_Expression,
792 N_Case_Statement,
793 N_If_Expression,
794 N_If_Statement)
795 then
796 return False;
798 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
799 and then C /= First (Statements (P))
800 then
801 -- If the call is the expression of a return statement and the
802 -- actuals are identical to the formals, it's worth a warning.
803 -- However, we skip this if there is an immediately preceding
804 -- raise statement, since the call is never executed.
806 -- Furthermore, this corresponds to a common idiom:
808 -- function F (L : Thing) return Boolean is
809 -- begin
810 -- raise Program_Error;
811 -- return F (L);
812 -- end F;
814 -- for generating a stub function
816 if Nkind (Parent (N)) = N_Simple_Return_Statement
817 and then Same_Argument_List
818 then
819 exit when not Is_List_Member (Parent (N));
821 -- OK, return statement is in a statement list, look for raise
823 declare
824 Nod : Node_Id;
826 begin
827 -- Skip past N_Freeze_Entity nodes generated by expansion
829 Nod := Prev (Parent (N));
830 while Present (Nod)
831 and then Nkind (Nod) = N_Freeze_Entity
832 loop
833 Prev (Nod);
834 end loop;
836 -- If no raise statement, give warning. We look at the
837 -- original node, because in the case of "raise ... with
838 -- ...", the node has been transformed into a call.
840 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
841 and then
842 (Nkind (Nod) not in N_Raise_xxx_Error
843 or else Present (Condition (Nod)));
844 end;
845 end if;
847 return False;
849 else
850 C := P;
851 end if;
852 end loop;
854 Error_Msg_Warn := SPARK_Mode /= On;
855 Error_Msg_N ("!possible infinite recursion<<", N);
856 Error_Msg_N ("\!??Storage_Error ]<<", N);
858 return True;
859 end Check_Infinite_Recursion;
861 -------------------------------
862 -- Check_Initialization_Call --
863 -------------------------------
865 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
866 Typ : constant Entity_Id := Etype (First_Formal (Nam));
868 function Uses_SS (T : Entity_Id) return Boolean;
869 -- Check whether the creation of an object of the type will involve
870 -- use of the secondary stack. If T is a record type, this is true
871 -- if the expression for some component uses the secondary stack, e.g.
872 -- through a call to a function that returns an unconstrained value.
873 -- False if T is controlled, because cleanups occur elsewhere.
875 -------------
876 -- Uses_SS --
877 -------------
879 function Uses_SS (T : Entity_Id) return Boolean is
880 Comp : Entity_Id;
881 Expr : Node_Id;
882 Full_Type : Entity_Id := Underlying_Type (T);
884 begin
885 -- Normally we want to use the underlying type, but if it's not set
886 -- then continue with T.
888 if not Present (Full_Type) then
889 Full_Type := T;
890 end if;
892 if Is_Controlled (Full_Type) then
893 return False;
895 elsif Is_Array_Type (Full_Type) then
896 return Uses_SS (Component_Type (Full_Type));
898 elsif Is_Record_Type (Full_Type) then
899 Comp := First_Component (Full_Type);
900 while Present (Comp) loop
901 if Ekind (Comp) = E_Component
902 and then Nkind (Parent (Comp)) = N_Component_Declaration
903 then
904 -- The expression for a dynamic component may be rewritten
905 -- as a dereference, so retrieve original node.
907 Expr := Original_Node (Expression (Parent (Comp)));
909 -- Return True if the expression is a call to a function
910 -- (including an attribute function such as Image, or a
911 -- user-defined operator) with a result that requires a
912 -- transient scope.
914 if (Nkind (Expr) = N_Function_Call
915 or else Nkind (Expr) in N_Op
916 or else (Nkind (Expr) = N_Attribute_Reference
917 and then Present (Expressions (Expr))))
918 and then Requires_Transient_Scope (Etype (Expr))
919 then
920 return True;
922 elsif Uses_SS (Etype (Comp)) then
923 return True;
924 end if;
925 end if;
927 Next_Component (Comp);
928 end loop;
930 return False;
932 else
933 return False;
934 end if;
935 end Uses_SS;
937 -- Start of processing for Check_Initialization_Call
939 begin
940 -- Establish a transient scope if the type needs it
942 if Uses_SS (Typ) then
943 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
944 end if;
945 end Check_Initialization_Call;
947 ---------------------------------------
948 -- Check_No_Direct_Boolean_Operators --
949 ---------------------------------------
951 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
952 begin
953 if Scope (Entity (N)) = Standard_Standard
954 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
955 then
956 -- Restriction only applies to original source code
958 if Comes_From_Source (N) then
959 Check_Restriction (No_Direct_Boolean_Operators, N);
960 end if;
961 end if;
963 -- Do style check (but skip if in instance, error is on template)
965 if Style_Check then
966 if not In_Instance then
967 Check_Boolean_Operator (N);
968 end if;
969 end if;
970 end Check_No_Direct_Boolean_Operators;
972 ------------------------------
973 -- Check_Parameterless_Call --
974 ------------------------------
976 procedure Check_Parameterless_Call (N : Node_Id) is
977 Nam : Node_Id;
979 function Prefix_Is_Access_Subp return Boolean;
980 -- If the prefix is of an access_to_subprogram type, the node must be
981 -- rewritten as a call. Ditto if the prefix is overloaded and all its
982 -- interpretations are access to subprograms.
984 ---------------------------
985 -- Prefix_Is_Access_Subp --
986 ---------------------------
988 function Prefix_Is_Access_Subp return Boolean is
989 I : Interp_Index;
990 It : Interp;
992 begin
993 -- If the context is an attribute reference that can apply to
994 -- functions, this is never a parameterless call (RM 4.1.4(6)).
996 if Nkind (Parent (N)) = N_Attribute_Reference
997 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
998 Name_Code_Address,
999 Name_Access)
1000 then
1001 return False;
1002 end if;
1004 if not Is_Overloaded (N) then
1005 return
1006 Ekind (Etype (N)) = E_Subprogram_Type
1007 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1008 else
1009 Get_First_Interp (N, I, It);
1010 while Present (It.Typ) loop
1011 if Ekind (It.Typ) /= E_Subprogram_Type
1012 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1013 then
1014 return False;
1015 end if;
1017 Get_Next_Interp (I, It);
1018 end loop;
1020 return True;
1021 end if;
1022 end Prefix_Is_Access_Subp;
1024 -- Start of processing for Check_Parameterless_Call
1026 begin
1027 -- Defend against junk stuff if errors already detected
1029 if Total_Errors_Detected /= 0 then
1030 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1031 return;
1032 elsif Nkind (N) in N_Has_Chars
1033 and then not Is_Valid_Name (Chars (N))
1034 then
1035 return;
1036 end if;
1038 Require_Entity (N);
1039 end if;
1041 -- If the context expects a value, and the name is a procedure, this is
1042 -- most likely a missing 'Access. Don't try to resolve the parameterless
1043 -- call, error will be caught when the outer call is analyzed.
1045 if Is_Entity_Name (N)
1046 and then Ekind (Entity (N)) = E_Procedure
1047 and then not Is_Overloaded (N)
1048 and then
1049 Nkind_In (Parent (N), N_Parameter_Association,
1050 N_Function_Call,
1051 N_Procedure_Call_Statement)
1052 then
1053 return;
1054 end if;
1056 -- Rewrite as call if overloadable entity that is (or could be, in the
1057 -- overloaded case) a function call. If we know for sure that the entity
1058 -- is an enumeration literal, we do not rewrite it.
1060 -- If the entity is the name of an operator, it cannot be a call because
1061 -- operators cannot have default parameters. In this case, this must be
1062 -- a string whose contents coincide with an operator name. Set the kind
1063 -- of the node appropriately.
1065 if (Is_Entity_Name (N)
1066 and then Nkind (N) /= N_Operator_Symbol
1067 and then Is_Overloadable (Entity (N))
1068 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1069 or else Is_Overloaded (N)))
1071 -- Rewrite as call if it is an explicit dereference of an expression of
1072 -- a subprogram access type, and the subprogram type is not that of a
1073 -- procedure or entry.
1075 or else
1076 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1078 -- Rewrite as call if it is a selected component which is a function,
1079 -- this is the case of a call to a protected function (which may be
1080 -- overloaded with other protected operations).
1082 or else
1083 (Nkind (N) = N_Selected_Component
1084 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1085 or else
1086 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1087 E_Procedure)
1088 and then Is_Overloaded (Selector_Name (N)))))
1090 -- If one of the above three conditions is met, rewrite as call. Apply
1091 -- the rewriting only once.
1093 then
1094 if Nkind (Parent (N)) /= N_Function_Call
1095 or else N /= Name (Parent (N))
1096 then
1098 -- This may be a prefixed call that was not fully analyzed, e.g.
1099 -- an actual in an instance.
1101 if Ada_Version >= Ada_2005
1102 and then Nkind (N) = N_Selected_Component
1103 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1104 then
1105 Analyze_Selected_Component (N);
1107 if Nkind (N) /= N_Selected_Component then
1108 return;
1109 end if;
1110 end if;
1112 -- The node is the name of the parameterless call. Preserve its
1113 -- descendants, which may be complex expressions.
1115 Nam := Relocate_Node (N);
1117 -- If overloaded, overload set belongs to new copy
1119 Save_Interps (N, Nam);
1121 -- Change node to parameterless function call (note that the
1122 -- Parameter_Associations associations field is left set to Empty,
1123 -- its normal default value since there are no parameters)
1125 Change_Node (N, N_Function_Call);
1126 Set_Name (N, Nam);
1127 Set_Sloc (N, Sloc (Nam));
1128 Analyze_Call (N);
1129 end if;
1131 elsif Nkind (N) = N_Parameter_Association then
1132 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1134 elsif Nkind (N) = N_Operator_Symbol then
1135 Change_Operator_Symbol_To_String_Literal (N);
1136 Set_Is_Overloaded (N, False);
1137 Set_Etype (N, Any_String);
1138 end if;
1139 end Check_Parameterless_Call;
1141 --------------------------------
1142 -- Is_Atomic_Ref_With_Address --
1143 --------------------------------
1145 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1146 Pref : constant Node_Id := Prefix (N);
1148 begin
1149 if not Is_Entity_Name (Pref) then
1150 return False;
1152 else
1153 declare
1154 Pent : constant Entity_Id := Entity (Pref);
1155 Ptyp : constant Entity_Id := Etype (Pent);
1156 begin
1157 return not Is_Access_Type (Ptyp)
1158 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1159 and then Present (Address_Clause (Pent));
1160 end;
1161 end if;
1162 end Is_Atomic_Ref_With_Address;
1164 -----------------------------
1165 -- Is_Definite_Access_Type --
1166 -----------------------------
1168 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1169 Btyp : constant Entity_Id := Base_Type (E);
1170 begin
1171 return Ekind (Btyp) = E_Access_Type
1172 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1173 and then Comes_From_Source (Btyp));
1174 end Is_Definite_Access_Type;
1176 ----------------------
1177 -- Is_Predefined_Op --
1178 ----------------------
1180 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1181 begin
1182 -- Predefined operators are intrinsic subprograms
1184 if not Is_Intrinsic_Subprogram (Nam) then
1185 return False;
1186 end if;
1188 -- A call to a back-end builtin is never a predefined operator
1190 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1191 return False;
1192 end if;
1194 return not Is_Generic_Instance (Nam)
1195 and then Chars (Nam) in Any_Operator_Name
1196 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1197 end Is_Predefined_Op;
1199 -----------------------------
1200 -- Make_Call_Into_Operator --
1201 -----------------------------
1203 procedure Make_Call_Into_Operator
1204 (N : Node_Id;
1205 Typ : Entity_Id;
1206 Op_Id : Entity_Id)
1208 Op_Name : constant Name_Id := Chars (Op_Id);
1209 Act1 : Node_Id := First_Actual (N);
1210 Act2 : Node_Id := Next_Actual (Act1);
1211 Error : Boolean := False;
1212 Func : constant Entity_Id := Entity (Name (N));
1213 Is_Binary : constant Boolean := Present (Act2);
1214 Op_Node : Node_Id;
1215 Opnd_Type : Entity_Id := Empty;
1216 Orig_Type : Entity_Id := Empty;
1217 Pack : Entity_Id;
1219 type Kind_Test is access function (E : Entity_Id) return Boolean;
1221 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1222 -- If the operand is not universal, and the operator is given by an
1223 -- expanded name, verify that the operand has an interpretation with a
1224 -- type defined in the given scope of the operator.
1226 function Type_In_P (Test : Kind_Test) return Entity_Id;
1227 -- Find a type of the given class in package Pack that contains the
1228 -- operator.
1230 ---------------------------
1231 -- Operand_Type_In_Scope --
1232 ---------------------------
1234 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1235 Nod : constant Node_Id := Right_Opnd (Op_Node);
1236 I : Interp_Index;
1237 It : Interp;
1239 begin
1240 if not Is_Overloaded (Nod) then
1241 return Scope (Base_Type (Etype (Nod))) = S;
1243 else
1244 Get_First_Interp (Nod, I, It);
1245 while Present (It.Typ) loop
1246 if Scope (Base_Type (It.Typ)) = S then
1247 return True;
1248 end if;
1250 Get_Next_Interp (I, It);
1251 end loop;
1253 return False;
1254 end if;
1255 end Operand_Type_In_Scope;
1257 ---------------
1258 -- Type_In_P --
1259 ---------------
1261 function Type_In_P (Test : Kind_Test) return Entity_Id is
1262 E : Entity_Id;
1264 function In_Decl return Boolean;
1265 -- Verify that node is not part of the type declaration for the
1266 -- candidate type, which would otherwise be invisible.
1268 -------------
1269 -- In_Decl --
1270 -------------
1272 function In_Decl return Boolean is
1273 Decl_Node : constant Node_Id := Parent (E);
1274 N2 : Node_Id;
1276 begin
1277 N2 := N;
1279 if Etype (E) = Any_Type then
1280 return True;
1282 elsif No (Decl_Node) then
1283 return False;
1285 else
1286 while Present (N2)
1287 and then Nkind (N2) /= N_Compilation_Unit
1288 loop
1289 if N2 = Decl_Node then
1290 return True;
1291 else
1292 N2 := Parent (N2);
1293 end if;
1294 end loop;
1296 return False;
1297 end if;
1298 end In_Decl;
1300 -- Start of processing for Type_In_P
1302 begin
1303 -- If the context type is declared in the prefix package, this is the
1304 -- desired base type.
1306 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1307 return Base_Type (Typ);
1309 else
1310 E := First_Entity (Pack);
1311 while Present (E) loop
1312 if Test (E) and then not In_Decl then
1313 return E;
1314 end if;
1316 Next_Entity (E);
1317 end loop;
1319 return Empty;
1320 end if;
1321 end Type_In_P;
1323 -- Start of processing for Make_Call_Into_Operator
1325 begin
1326 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1328 -- Ensure that the corresponding operator has the same parent as the
1329 -- original call. This guarantees that parent traversals performed by
1330 -- the ABE mechanism succeed.
1332 Set_Parent (Op_Node, Parent (N));
1334 -- Binary operator
1336 if Is_Binary then
1337 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1338 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1339 Save_Interps (Act1, Left_Opnd (Op_Node));
1340 Save_Interps (Act2, Right_Opnd (Op_Node));
1341 Act1 := Left_Opnd (Op_Node);
1342 Act2 := Right_Opnd (Op_Node);
1344 -- Unary operator
1346 else
1347 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1348 Save_Interps (Act1, Right_Opnd (Op_Node));
1349 Act1 := Right_Opnd (Op_Node);
1350 end if;
1352 -- If the operator is denoted by an expanded name, and the prefix is
1353 -- not Standard, but the operator is a predefined one whose scope is
1354 -- Standard, then this is an implicit_operator, inserted as an
1355 -- interpretation by the procedure of the same name. This procedure
1356 -- overestimates the presence of implicit operators, because it does
1357 -- not examine the type of the operands. Verify now that the operand
1358 -- type appears in the given scope. If right operand is universal,
1359 -- check the other operand. In the case of concatenation, either
1360 -- argument can be the component type, so check the type of the result.
1361 -- If both arguments are literals, look for a type of the right kind
1362 -- defined in the given scope. This elaborate nonsense is brought to
1363 -- you courtesy of b33302a. The type itself must be frozen, so we must
1364 -- find the type of the proper class in the given scope.
1366 -- A final wrinkle is the multiplication operator for fixed point types,
1367 -- which is defined in Standard only, and not in the scope of the
1368 -- fixed point type itself.
1370 if Nkind (Name (N)) = N_Expanded_Name then
1371 Pack := Entity (Prefix (Name (N)));
1373 -- If this is a package renaming, get renamed entity, which will be
1374 -- the scope of the operands if operaton is type-correct.
1376 if Present (Renamed_Entity (Pack)) then
1377 Pack := Renamed_Entity (Pack);
1378 end if;
1380 -- If the entity being called is defined in the given package, it is
1381 -- a renaming of a predefined operator, and known to be legal.
1383 if Scope (Entity (Name (N))) = Pack
1384 and then Pack /= Standard_Standard
1385 then
1386 null;
1388 -- Visibility does not need to be checked in an instance: if the
1389 -- operator was not visible in the generic it has been diagnosed
1390 -- already, else there is an implicit copy of it in the instance.
1392 elsif In_Instance then
1393 null;
1395 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1396 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1397 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1398 then
1399 if Pack /= Standard_Standard then
1400 Error := True;
1401 end if;
1403 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1404 -- available.
1406 elsif Ada_Version >= Ada_2005
1407 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1408 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1409 then
1410 null;
1412 else
1413 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1415 if Op_Name = Name_Op_Concat then
1416 Opnd_Type := Base_Type (Typ);
1418 elsif (Scope (Opnd_Type) = Standard_Standard
1419 and then Is_Binary)
1420 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1421 and then Is_Binary
1422 and then not Comes_From_Source (Opnd_Type))
1423 then
1424 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1425 end if;
1427 if Scope (Opnd_Type) = Standard_Standard then
1429 -- Verify that the scope contains a type that corresponds to
1430 -- the given literal. Optimize the case where Pack is Standard.
1432 if Pack /= Standard_Standard then
1433 if Opnd_Type = Universal_Integer then
1434 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1436 elsif Opnd_Type = Universal_Real then
1437 Orig_Type := Type_In_P (Is_Real_Type'Access);
1439 elsif Opnd_Type = Any_String then
1440 Orig_Type := Type_In_P (Is_String_Type'Access);
1442 elsif Opnd_Type = Any_Access then
1443 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1445 elsif Opnd_Type = Any_Composite then
1446 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1448 if Present (Orig_Type) then
1449 if Has_Private_Component (Orig_Type) then
1450 Orig_Type := Empty;
1451 else
1452 Set_Etype (Act1, Orig_Type);
1454 if Is_Binary then
1455 Set_Etype (Act2, Orig_Type);
1456 end if;
1457 end if;
1458 end if;
1460 else
1461 Orig_Type := Empty;
1462 end if;
1464 Error := No (Orig_Type);
1465 end if;
1467 elsif Ekind (Opnd_Type) = E_Allocator_Type
1468 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1469 then
1470 Error := True;
1472 -- If the type is defined elsewhere, and the operator is not
1473 -- defined in the given scope (by a renaming declaration, e.g.)
1474 -- then this is an error as well. If an extension of System is
1475 -- present, and the type may be defined there, Pack must be
1476 -- System itself.
1478 elsif Scope (Opnd_Type) /= Pack
1479 and then Scope (Op_Id) /= Pack
1480 and then (No (System_Aux_Id)
1481 or else Scope (Opnd_Type) /= System_Aux_Id
1482 or else Pack /= Scope (System_Aux_Id))
1483 then
1484 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1485 Error := True;
1486 else
1487 Error := not Operand_Type_In_Scope (Pack);
1488 end if;
1490 elsif Pack = Standard_Standard
1491 and then not Operand_Type_In_Scope (Standard_Standard)
1492 then
1493 Error := True;
1494 end if;
1495 end if;
1497 if Error then
1498 Error_Msg_Node_2 := Pack;
1499 Error_Msg_NE
1500 ("& not declared in&", N, Selector_Name (Name (N)));
1501 Set_Etype (N, Any_Type);
1502 return;
1504 -- Detect a mismatch between the context type and the result type
1505 -- in the named package, which is otherwise not detected if the
1506 -- operands are universal. Check is only needed if source entity is
1507 -- an operator, not a function that renames an operator.
1509 elsif Nkind (Parent (N)) /= N_Type_Conversion
1510 and then Ekind (Entity (Name (N))) = E_Operator
1511 and then Is_Numeric_Type (Typ)
1512 and then not Is_Universal_Numeric_Type (Typ)
1513 and then Scope (Base_Type (Typ)) /= Pack
1514 and then not In_Instance
1515 then
1516 if Is_Fixed_Point_Type (Typ)
1517 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1518 then
1519 -- Already checked above
1521 null;
1523 -- Operator may be defined in an extension of System
1525 elsif Present (System_Aux_Id)
1526 and then Present (Opnd_Type)
1527 and then Scope (Opnd_Type) = System_Aux_Id
1528 then
1529 null;
1531 else
1532 -- Could we use Wrong_Type here??? (this would require setting
1533 -- Etype (N) to the actual type found where Typ was expected).
1535 Error_Msg_NE ("expect }", N, Typ);
1536 end if;
1537 end if;
1538 end if;
1540 Set_Chars (Op_Node, Op_Name);
1542 if not Is_Private_Type (Etype (N)) then
1543 Set_Etype (Op_Node, Base_Type (Etype (N)));
1544 else
1545 Set_Etype (Op_Node, Etype (N));
1546 end if;
1548 -- If this is a call to a function that renames a predefined equality,
1549 -- the renaming declaration provides a type that must be used to
1550 -- resolve the operands. This must be done now because resolution of
1551 -- the equality node will not resolve any remaining ambiguity, and it
1552 -- assumes that the first operand is not overloaded.
1554 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1555 and then Ekind (Func) = E_Function
1556 and then Is_Overloaded (Act1)
1557 then
1558 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1559 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1560 end if;
1562 Set_Entity (Op_Node, Op_Id);
1563 Generate_Reference (Op_Id, N, ' ');
1565 -- Do rewrite setting Comes_From_Source on the result if the original
1566 -- call came from source. Although it is not strictly the case that the
1567 -- operator as such comes from the source, logically it corresponds
1568 -- exactly to the function call in the source, so it should be marked
1569 -- this way (e.g. to make sure that validity checks work fine).
1571 declare
1572 CS : constant Boolean := Comes_From_Source (N);
1573 begin
1574 Rewrite (N, Op_Node);
1575 Set_Comes_From_Source (N, CS);
1576 end;
1578 -- If this is an arithmetic operator and the result type is private,
1579 -- the operands and the result must be wrapped in conversion to
1580 -- expose the underlying numeric type and expand the proper checks,
1581 -- e.g. on division.
1583 if Is_Private_Type (Typ) then
1584 case Nkind (N) is
1585 when N_Op_Add
1586 | N_Op_Divide
1587 | N_Op_Expon
1588 | N_Op_Mod
1589 | N_Op_Multiply
1590 | N_Op_Rem
1591 | N_Op_Subtract
1593 Resolve_Intrinsic_Operator (N, Typ);
1595 when N_Op_Abs
1596 | N_Op_Minus
1597 | N_Op_Plus
1599 Resolve_Intrinsic_Unary_Operator (N, Typ);
1601 when others =>
1602 Resolve (N, Typ);
1603 end case;
1604 else
1605 Resolve (N, Typ);
1606 end if;
1608 -- If in ASIS_Mode, propagate operand types to original actuals of
1609 -- function call, which would otherwise not be fully resolved. If
1610 -- the call has already been constant-folded, nothing to do. We
1611 -- relocate the operand nodes rather than copy them, to preserve
1612 -- original_node pointers, given that the operands themselves may
1613 -- have been rewritten. If the call was itself a rewriting of an
1614 -- operator node, nothing to do.
1616 if ASIS_Mode
1617 and then Nkind (N) in N_Op
1618 and then Nkind (Original_Node (N)) = N_Function_Call
1619 then
1620 declare
1621 L : Node_Id;
1622 R : constant Node_Id := Right_Opnd (N);
1624 Old_First : constant Node_Id :=
1625 First (Parameter_Associations (Original_Node (N)));
1626 Old_Sec : Node_Id;
1628 begin
1629 if Is_Binary then
1630 L := Left_Opnd (N);
1631 Old_Sec := Next (Old_First);
1633 -- If the original call has named associations, replace the
1634 -- explicit actual parameter in the association with the proper
1635 -- resolved operand.
1637 if Nkind (Old_First) = N_Parameter_Association then
1638 if Chars (Selector_Name (Old_First)) =
1639 Chars (First_Entity (Op_Id))
1640 then
1641 Rewrite (Explicit_Actual_Parameter (Old_First),
1642 Relocate_Node (L));
1643 else
1644 Rewrite (Explicit_Actual_Parameter (Old_First),
1645 Relocate_Node (R));
1646 end if;
1648 else
1649 Rewrite (Old_First, Relocate_Node (L));
1650 end if;
1652 if Nkind (Old_Sec) = N_Parameter_Association then
1653 if Chars (Selector_Name (Old_Sec)) =
1654 Chars (First_Entity (Op_Id))
1655 then
1656 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1657 Relocate_Node (L));
1658 else
1659 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1660 Relocate_Node (R));
1661 end if;
1663 else
1664 Rewrite (Old_Sec, Relocate_Node (R));
1665 end if;
1667 else
1668 if Nkind (Old_First) = N_Parameter_Association then
1669 Rewrite (Explicit_Actual_Parameter (Old_First),
1670 Relocate_Node (R));
1671 else
1672 Rewrite (Old_First, Relocate_Node (R));
1673 end if;
1674 end if;
1675 end;
1677 Set_Parent (Original_Node (N), Parent (N));
1678 end if;
1679 end Make_Call_Into_Operator;
1681 -------------------
1682 -- Operator_Kind --
1683 -------------------
1685 function Operator_Kind
1686 (Op_Name : Name_Id;
1687 Is_Binary : Boolean) return Node_Kind
1689 Kind : Node_Kind;
1691 begin
1692 -- Use CASE statement or array???
1694 if Is_Binary then
1695 if Op_Name = Name_Op_And then
1696 Kind := N_Op_And;
1697 elsif Op_Name = Name_Op_Or then
1698 Kind := N_Op_Or;
1699 elsif Op_Name = Name_Op_Xor then
1700 Kind := N_Op_Xor;
1701 elsif Op_Name = Name_Op_Eq then
1702 Kind := N_Op_Eq;
1703 elsif Op_Name = Name_Op_Ne then
1704 Kind := N_Op_Ne;
1705 elsif Op_Name = Name_Op_Lt then
1706 Kind := N_Op_Lt;
1707 elsif Op_Name = Name_Op_Le then
1708 Kind := N_Op_Le;
1709 elsif Op_Name = Name_Op_Gt then
1710 Kind := N_Op_Gt;
1711 elsif Op_Name = Name_Op_Ge then
1712 Kind := N_Op_Ge;
1713 elsif Op_Name = Name_Op_Add then
1714 Kind := N_Op_Add;
1715 elsif Op_Name = Name_Op_Subtract then
1716 Kind := N_Op_Subtract;
1717 elsif Op_Name = Name_Op_Concat then
1718 Kind := N_Op_Concat;
1719 elsif Op_Name = Name_Op_Multiply then
1720 Kind := N_Op_Multiply;
1721 elsif Op_Name = Name_Op_Divide then
1722 Kind := N_Op_Divide;
1723 elsif Op_Name = Name_Op_Mod then
1724 Kind := N_Op_Mod;
1725 elsif Op_Name = Name_Op_Rem then
1726 Kind := N_Op_Rem;
1727 elsif Op_Name = Name_Op_Expon then
1728 Kind := N_Op_Expon;
1729 else
1730 raise Program_Error;
1731 end if;
1733 -- Unary operators
1735 else
1736 if Op_Name = Name_Op_Add then
1737 Kind := N_Op_Plus;
1738 elsif Op_Name = Name_Op_Subtract then
1739 Kind := N_Op_Minus;
1740 elsif Op_Name = Name_Op_Abs then
1741 Kind := N_Op_Abs;
1742 elsif Op_Name = Name_Op_Not then
1743 Kind := N_Op_Not;
1744 else
1745 raise Program_Error;
1746 end if;
1747 end if;
1749 return Kind;
1750 end Operator_Kind;
1752 ----------------------------
1753 -- Preanalyze_And_Resolve --
1754 ----------------------------
1756 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1757 Save_Full_Analysis : constant Boolean := Full_Analysis;
1759 begin
1760 Full_Analysis := False;
1761 Expander_Mode_Save_And_Set (False);
1763 -- Normally, we suppress all checks for this preanalysis. There is no
1764 -- point in processing them now, since they will be applied properly
1765 -- and in the proper location when the default expressions reanalyzed
1766 -- and reexpanded later on. We will also have more information at that
1767 -- point for possible suppression of individual checks.
1769 -- However, in SPARK mode, most expansion is suppressed, and this
1770 -- later reanalysis and reexpansion may not occur. SPARK mode does
1771 -- require the setting of checking flags for proof purposes, so we
1772 -- do the SPARK preanalysis without suppressing checks.
1774 -- This special handling for SPARK mode is required for example in the
1775 -- case of Ada 2012 constructs such as quantified expressions, which are
1776 -- expanded in two separate steps.
1778 if GNATprove_Mode then
1779 Analyze_And_Resolve (N, T);
1780 else
1781 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1782 end if;
1784 Expander_Mode_Restore;
1785 Full_Analysis := Save_Full_Analysis;
1786 end Preanalyze_And_Resolve;
1788 -- Version without context type
1790 procedure Preanalyze_And_Resolve (N : Node_Id) is
1791 Save_Full_Analysis : constant Boolean := Full_Analysis;
1793 begin
1794 Full_Analysis := False;
1795 Expander_Mode_Save_And_Set (False);
1797 Analyze (N);
1798 Resolve (N, Etype (N), Suppress => All_Checks);
1800 Expander_Mode_Restore;
1801 Full_Analysis := Save_Full_Analysis;
1802 end Preanalyze_And_Resolve;
1804 ----------------------------------
1805 -- Replace_Actual_Discriminants --
1806 ----------------------------------
1808 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1809 Loc : constant Source_Ptr := Sloc (N);
1810 Tsk : Node_Id := Empty;
1812 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1813 -- Comment needed???
1815 -------------------
1816 -- Process_Discr --
1817 -------------------
1819 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1820 Ent : Entity_Id;
1822 begin
1823 if Nkind (Nod) = N_Identifier then
1824 Ent := Entity (Nod);
1826 if Present (Ent)
1827 and then Ekind (Ent) = E_Discriminant
1828 then
1829 Rewrite (Nod,
1830 Make_Selected_Component (Loc,
1831 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1832 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1834 Set_Etype (Nod, Etype (Ent));
1835 end if;
1837 end if;
1839 return OK;
1840 end Process_Discr;
1842 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1844 -- Start of processing for Replace_Actual_Discriminants
1846 begin
1847 if Expander_Active then
1848 null;
1850 -- Allow the replacement of concurrent discriminants in GNATprove even
1851 -- though this is a light expansion activity. Note that generic units
1852 -- are not modified.
1854 elsif GNATprove_Mode and not Inside_A_Generic then
1855 null;
1857 else
1858 return;
1859 end if;
1861 if Nkind (Name (N)) = N_Selected_Component then
1862 Tsk := Prefix (Name (N));
1864 elsif Nkind (Name (N)) = N_Indexed_Component then
1865 Tsk := Prefix (Prefix (Name (N)));
1866 end if;
1868 if Present (Tsk) then
1869 Replace_Discrs (Default);
1870 end if;
1871 end Replace_Actual_Discriminants;
1873 -------------
1874 -- Resolve --
1875 -------------
1877 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1878 Ambiguous : Boolean := False;
1879 Ctx_Type : Entity_Id := Typ;
1880 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1881 Err_Type : Entity_Id := Empty;
1882 Found : Boolean := False;
1883 From_Lib : Boolean;
1884 I : Interp_Index;
1885 I1 : Interp_Index := 0; -- prevent junk warning
1886 It : Interp;
1887 It1 : Interp;
1888 Seen : Entity_Id := Empty; -- prevent junk warning
1890 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1891 -- Determine whether a node comes from a predefined library unit or
1892 -- Standard.
1894 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1895 -- Try and fix up a literal so that it matches its expected type. New
1896 -- literals are manufactured if necessary to avoid cascaded errors.
1898 procedure Report_Ambiguous_Argument;
1899 -- Additional diagnostics when an ambiguous call has an ambiguous
1900 -- argument (typically a controlling actual).
1902 procedure Resolution_Failed;
1903 -- Called when attempt at resolving current expression fails
1905 ------------------------------------
1906 -- Comes_From_Predefined_Lib_Unit --
1907 -------------------------------------
1909 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1910 begin
1911 return
1912 Sloc (Nod) = Standard_Location or else In_Predefined_Unit (Nod);
1913 end Comes_From_Predefined_Lib_Unit;
1915 --------------------
1916 -- Patch_Up_Value --
1917 --------------------
1919 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1920 begin
1921 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1922 Rewrite (N,
1923 Make_Real_Literal (Sloc (N),
1924 Realval => UR_From_Uint (Intval (N))));
1925 Set_Etype (N, Universal_Real);
1926 Set_Is_Static_Expression (N);
1928 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1929 Rewrite (N,
1930 Make_Integer_Literal (Sloc (N),
1931 Intval => UR_To_Uint (Realval (N))));
1932 Set_Etype (N, Universal_Integer);
1933 Set_Is_Static_Expression (N);
1935 elsif Nkind (N) = N_String_Literal
1936 and then Is_Character_Type (Typ)
1937 then
1938 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1939 Rewrite (N,
1940 Make_Character_Literal (Sloc (N),
1941 Chars => Name_Find,
1942 Char_Literal_Value =>
1943 UI_From_Int (Character'Pos ('A'))));
1944 Set_Etype (N, Any_Character);
1945 Set_Is_Static_Expression (N);
1947 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1948 Rewrite (N,
1949 Make_String_Literal (Sloc (N),
1950 Strval => End_String));
1952 elsif Nkind (N) = N_Range then
1953 Patch_Up_Value (Low_Bound (N), Typ);
1954 Patch_Up_Value (High_Bound (N), Typ);
1955 end if;
1956 end Patch_Up_Value;
1958 -------------------------------
1959 -- Report_Ambiguous_Argument --
1960 -------------------------------
1962 procedure Report_Ambiguous_Argument is
1963 Arg : constant Node_Id := First (Parameter_Associations (N));
1964 I : Interp_Index;
1965 It : Interp;
1967 begin
1968 if Nkind (Arg) = N_Function_Call
1969 and then Is_Entity_Name (Name (Arg))
1970 and then Is_Overloaded (Name (Arg))
1971 then
1972 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1974 -- Could use comments on what is going on here???
1976 Get_First_Interp (Name (Arg), I, It);
1977 while Present (It.Nam) loop
1978 Error_Msg_Sloc := Sloc (It.Nam);
1980 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1981 Error_Msg_N ("interpretation (inherited) #!", Arg);
1982 else
1983 Error_Msg_N ("interpretation #!", Arg);
1984 end if;
1986 Get_Next_Interp (I, It);
1987 end loop;
1988 end if;
1989 end Report_Ambiguous_Argument;
1991 -----------------------
1992 -- Resolution_Failed --
1993 -----------------------
1995 procedure Resolution_Failed is
1996 begin
1997 Patch_Up_Value (N, Typ);
1999 -- Set the type to the desired one to minimize cascaded errors. Note
2000 -- that this is an approximation and does not work in all cases.
2002 Set_Etype (N, Typ);
2004 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
2005 Set_Is_Overloaded (N, False);
2007 -- The caller will return without calling the expander, so we need
2008 -- to set the analyzed flag. Note that it is fine to set Analyzed
2009 -- to True even if we are in the middle of a shallow analysis,
2010 -- (see the spec of sem for more details) since this is an error
2011 -- situation anyway, and there is no point in repeating the
2012 -- analysis later (indeed it won't work to repeat it later, since
2013 -- we haven't got a clear resolution of which entity is being
2014 -- referenced.)
2016 Set_Analyzed (N, True);
2017 return;
2018 end Resolution_Failed;
2020 -- Start of processing for Resolve
2022 begin
2023 if N = Error then
2024 return;
2025 end if;
2027 -- Access attribute on remote subprogram cannot be used for a non-remote
2028 -- access-to-subprogram type.
2030 if Nkind (N) = N_Attribute_Reference
2031 and then Nam_In (Attribute_Name (N), Name_Access,
2032 Name_Unrestricted_Access,
2033 Name_Unchecked_Access)
2034 and then Comes_From_Source (N)
2035 and then Is_Entity_Name (Prefix (N))
2036 and then Is_Subprogram (Entity (Prefix (N)))
2037 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2038 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2039 then
2040 Error_Msg_N
2041 ("prefix must statically denote a non-remote subprogram", N);
2042 end if;
2044 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2046 -- If the context is a Remote_Access_To_Subprogram, access attributes
2047 -- must be resolved with the corresponding fat pointer. There is no need
2048 -- to check for the attribute name since the return type of an
2049 -- attribute is never a remote type.
2051 if Nkind (N) = N_Attribute_Reference
2052 and then Comes_From_Source (N)
2053 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2054 then
2055 declare
2056 Attr : constant Attribute_Id :=
2057 Get_Attribute_Id (Attribute_Name (N));
2058 Pref : constant Node_Id := Prefix (N);
2059 Decl : Node_Id;
2060 Spec : Node_Id;
2061 Is_Remote : Boolean := True;
2063 begin
2064 -- Check that Typ is a remote access-to-subprogram type
2066 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2068 -- Prefix (N) must statically denote a remote subprogram
2069 -- declared in a package specification.
2071 if Attr = Attribute_Access or else
2072 Attr = Attribute_Unchecked_Access or else
2073 Attr = Attribute_Unrestricted_Access
2074 then
2075 Decl := Unit_Declaration_Node (Entity (Pref));
2077 if Nkind (Decl) = N_Subprogram_Body then
2078 Spec := Corresponding_Spec (Decl);
2080 if Present (Spec) then
2081 Decl := Unit_Declaration_Node (Spec);
2082 end if;
2083 end if;
2085 Spec := Parent (Decl);
2087 if not Is_Entity_Name (Prefix (N))
2088 or else Nkind (Spec) /= N_Package_Specification
2089 or else
2090 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2091 then
2092 Is_Remote := False;
2093 Error_Msg_N
2094 ("prefix must statically denote a remote subprogram ",
2096 end if;
2098 -- If we are generating code in distributed mode, perform
2099 -- semantic checks against corresponding remote entities.
2101 if Expander_Active
2102 and then Get_PCS_Name /= Name_No_DSA
2103 then
2104 Check_Subtype_Conformant
2105 (New_Id => Entity (Prefix (N)),
2106 Old_Id => Designated_Type
2107 (Corresponding_Remote_Type (Typ)),
2108 Err_Loc => N);
2110 if Is_Remote then
2111 Process_Remote_AST_Attribute (N, Typ);
2112 end if;
2113 end if;
2114 end if;
2115 end if;
2116 end;
2117 end if;
2119 Debug_A_Entry ("resolving ", N);
2121 if Debug_Flag_V then
2122 Write_Overloads (N);
2123 end if;
2125 if Comes_From_Source (N) then
2126 if Is_Fixed_Point_Type (Typ) then
2127 Check_Restriction (No_Fixed_Point, N);
2129 elsif Is_Floating_Point_Type (Typ)
2130 and then Typ /= Universal_Real
2131 and then Typ /= Any_Real
2132 then
2133 Check_Restriction (No_Floating_Point, N);
2134 end if;
2135 end if;
2137 -- Return if already analyzed
2139 if Analyzed (N) then
2140 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2141 Analyze_Dimension (N);
2142 return;
2144 -- Any case of Any_Type as the Etype value means that we had a
2145 -- previous error.
2147 elsif Etype (N) = Any_Type then
2148 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2149 return;
2150 end if;
2152 Check_Parameterless_Call (N);
2154 -- The resolution of an Expression_With_Actions is determined by
2155 -- its Expression.
2157 if Nkind (N) = N_Expression_With_Actions then
2158 Resolve (Expression (N), Typ);
2160 Found := True;
2161 Expr_Type := Etype (Expression (N));
2163 -- If not overloaded, then we know the type, and all that needs doing
2164 -- is to check that this type is compatible with the context.
2166 elsif not Is_Overloaded (N) then
2167 Found := Covers (Typ, Etype (N));
2168 Expr_Type := Etype (N);
2170 -- In the overloaded case, we must select the interpretation that
2171 -- is compatible with the context (i.e. the type passed to Resolve)
2173 else
2174 -- Loop through possible interpretations
2176 Get_First_Interp (N, I, It);
2177 Interp_Loop : while Present (It.Typ) loop
2178 if Debug_Flag_V then
2179 Write_Str ("Interp: ");
2180 Write_Interp (It);
2181 end if;
2183 -- We are only interested in interpretations that are compatible
2184 -- with the expected type, any other interpretations are ignored.
2186 if not Covers (Typ, It.Typ) then
2187 if Debug_Flag_V then
2188 Write_Str (" interpretation incompatible with context");
2189 Write_Eol;
2190 end if;
2192 else
2193 -- Skip the current interpretation if it is disabled by an
2194 -- abstract operator. This action is performed only when the
2195 -- type against which we are resolving is the same as the
2196 -- type of the interpretation.
2198 if Ada_Version >= Ada_2005
2199 and then It.Typ = Typ
2200 and then Typ /= Universal_Integer
2201 and then Typ /= Universal_Real
2202 and then Present (It.Abstract_Op)
2203 then
2204 if Debug_Flag_V then
2205 Write_Line ("Skip.");
2206 end if;
2208 goto Continue;
2209 end if;
2211 -- First matching interpretation
2213 if not Found then
2214 Found := True;
2215 I1 := I;
2216 Seen := It.Nam;
2217 Expr_Type := It.Typ;
2219 -- Matching interpretation that is not the first, maybe an
2220 -- error, but there are some cases where preference rules are
2221 -- used to choose between the two possibilities. These and
2222 -- some more obscure cases are handled in Disambiguate.
2224 else
2225 -- If the current statement is part of a predefined library
2226 -- unit, then all interpretations which come from user level
2227 -- packages should not be considered. Check previous and
2228 -- current one.
2230 if From_Lib then
2231 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2232 goto Continue;
2234 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2236 -- Previous interpretation must be discarded
2238 I1 := I;
2239 Seen := It.Nam;
2240 Expr_Type := It.Typ;
2241 Set_Entity (N, Seen);
2242 goto Continue;
2243 end if;
2244 end if;
2246 -- Otherwise apply further disambiguation steps
2248 Error_Msg_Sloc := Sloc (Seen);
2249 It1 := Disambiguate (N, I1, I, Typ);
2251 -- Disambiguation has succeeded. Skip the remaining
2252 -- interpretations.
2254 if It1 /= No_Interp then
2255 Seen := It1.Nam;
2256 Expr_Type := It1.Typ;
2258 while Present (It.Typ) loop
2259 Get_Next_Interp (I, It);
2260 end loop;
2262 else
2263 -- Before we issue an ambiguity complaint, check for the
2264 -- case of a subprogram call where at least one of the
2265 -- arguments is Any_Type, and if so suppress the message,
2266 -- since it is a cascaded error. This can also happen for
2267 -- a generalized indexing operation.
2269 if Nkind (N) in N_Subprogram_Call
2270 or else (Nkind (N) = N_Indexed_Component
2271 and then Present (Generalized_Indexing (N)))
2272 then
2273 declare
2274 A : Node_Id;
2275 E : Node_Id;
2277 begin
2278 if Nkind (N) = N_Indexed_Component then
2279 Rewrite (N, Generalized_Indexing (N));
2280 end if;
2282 A := First_Actual (N);
2283 while Present (A) loop
2284 E := A;
2286 if Nkind (E) = N_Parameter_Association then
2287 E := Explicit_Actual_Parameter (E);
2288 end if;
2290 if Etype (E) = Any_Type then
2291 if Debug_Flag_V then
2292 Write_Str ("Any_Type in call");
2293 Write_Eol;
2294 end if;
2296 exit Interp_Loop;
2297 end if;
2299 Next_Actual (A);
2300 end loop;
2301 end;
2303 elsif Nkind (N) in N_Binary_Op
2304 and then (Etype (Left_Opnd (N)) = Any_Type
2305 or else Etype (Right_Opnd (N)) = Any_Type)
2306 then
2307 exit Interp_Loop;
2309 elsif Nkind (N) in N_Unary_Op
2310 and then Etype (Right_Opnd (N)) = Any_Type
2311 then
2312 exit Interp_Loop;
2313 end if;
2315 -- Not that special case, so issue message using the flag
2316 -- Ambiguous to control printing of the header message
2317 -- only at the start of an ambiguous set.
2319 if not Ambiguous then
2320 if Nkind (N) = N_Function_Call
2321 and then Nkind (Name (N)) = N_Explicit_Dereference
2322 then
2323 Error_Msg_N
2324 ("ambiguous expression (cannot resolve indirect "
2325 & "call)!", N);
2326 else
2327 Error_Msg_NE -- CODEFIX
2328 ("ambiguous expression (cannot resolve&)!",
2329 N, It.Nam);
2330 end if;
2332 Ambiguous := True;
2334 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2335 Error_Msg_N
2336 ("\\possible interpretation (inherited)#!", N);
2337 else
2338 Error_Msg_N -- CODEFIX
2339 ("\\possible interpretation#!", N);
2340 end if;
2342 if Nkind (N) in N_Subprogram_Call
2343 and then Present (Parameter_Associations (N))
2344 then
2345 Report_Ambiguous_Argument;
2346 end if;
2347 end if;
2349 Error_Msg_Sloc := Sloc (It.Nam);
2351 -- By default, the error message refers to the candidate
2352 -- interpretation. But if it is a predefined operator, it
2353 -- is implicitly declared at the declaration of the type
2354 -- of the operand. Recover the sloc of that declaration
2355 -- for the error message.
2357 if Nkind (N) in N_Op
2358 and then Scope (It.Nam) = Standard_Standard
2359 and then not Is_Overloaded (Right_Opnd (N))
2360 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2361 Standard_Standard
2362 then
2363 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2365 if Comes_From_Source (Err_Type)
2366 and then Present (Parent (Err_Type))
2367 then
2368 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2369 end if;
2371 elsif Nkind (N) in N_Binary_Op
2372 and then Scope (It.Nam) = Standard_Standard
2373 and then not Is_Overloaded (Left_Opnd (N))
2374 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2375 Standard_Standard
2376 then
2377 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2379 if Comes_From_Source (Err_Type)
2380 and then Present (Parent (Err_Type))
2381 then
2382 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2383 end if;
2385 -- If this is an indirect call, use the subprogram_type
2386 -- in the message, to have a meaningful location. Also
2387 -- indicate if this is an inherited operation, created
2388 -- by a type declaration.
2390 elsif Nkind (N) = N_Function_Call
2391 and then Nkind (Name (N)) = N_Explicit_Dereference
2392 and then Is_Type (It.Nam)
2393 then
2394 Err_Type := It.Nam;
2395 Error_Msg_Sloc :=
2396 Sloc (Associated_Node_For_Itype (Err_Type));
2397 else
2398 Err_Type := Empty;
2399 end if;
2401 if Nkind (N) in N_Op
2402 and then Scope (It.Nam) = Standard_Standard
2403 and then Present (Err_Type)
2404 then
2405 -- Special-case the message for universal_fixed
2406 -- operators, which are not declared with the type
2407 -- of the operand, but appear forever in Standard.
2409 if It.Typ = Universal_Fixed
2410 and then Scope (It.Nam) = Standard_Standard
2411 then
2412 Error_Msg_N
2413 ("\\possible interpretation as universal_fixed "
2414 & "operation (RM 4.5.5 (19))", N);
2415 else
2416 Error_Msg_N
2417 ("\\possible interpretation (predefined)#!", N);
2418 end if;
2420 elsif
2421 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2422 then
2423 Error_Msg_N
2424 ("\\possible interpretation (inherited)#!", N);
2425 else
2426 Error_Msg_N -- CODEFIX
2427 ("\\possible interpretation#!", N);
2428 end if;
2430 end if;
2431 end if;
2433 -- We have a matching interpretation, Expr_Type is the type
2434 -- from this interpretation, and Seen is the entity.
2436 -- For an operator, just set the entity name. The type will be
2437 -- set by the specific operator resolution routine.
2439 if Nkind (N) in N_Op then
2440 Set_Entity (N, Seen);
2441 Generate_Reference (Seen, N);
2443 elsif Nkind_In (N, N_Case_Expression,
2444 N_Character_Literal,
2445 N_Delta_Aggregate,
2446 N_If_Expression)
2447 then
2448 Set_Etype (N, Expr_Type);
2450 -- AI05-0139-2: Expression is overloaded because type has
2451 -- implicit dereference. If type matches context, no implicit
2452 -- dereference is involved. If the expression is an entity,
2453 -- generate a reference to it, as this is not done for an
2454 -- overloaded construct during analysis.
2456 elsif Has_Implicit_Dereference (Expr_Type) then
2457 Set_Etype (N, Expr_Type);
2458 Set_Is_Overloaded (N, False);
2460 if Is_Entity_Name (N) then
2461 Generate_Reference (Entity (N), N);
2462 end if;
2464 exit Interp_Loop;
2466 elsif Is_Overloaded (N)
2467 and then Present (It.Nam)
2468 and then Ekind (It.Nam) = E_Discriminant
2469 and then Has_Implicit_Dereference (It.Nam)
2470 then
2471 -- If the node is a general indexing, the dereference is
2472 -- is inserted when resolving the rewritten form, else
2473 -- insert it now.
2475 if Nkind (N) /= N_Indexed_Component
2476 or else No (Generalized_Indexing (N))
2477 then
2478 Build_Explicit_Dereference (N, It.Nam);
2479 end if;
2481 -- For an explicit dereference, attribute reference, range,
2482 -- short-circuit form (which is not an operator node), or call
2483 -- with a name that is an explicit dereference, there is
2484 -- nothing to be done at this point.
2486 elsif Nkind_In (N, N_Attribute_Reference,
2487 N_And_Then,
2488 N_Explicit_Dereference,
2489 N_Identifier,
2490 N_Indexed_Component,
2491 N_Or_Else,
2492 N_Range,
2493 N_Selected_Component,
2494 N_Slice)
2495 or else Nkind (Name (N)) = N_Explicit_Dereference
2496 then
2497 null;
2499 -- For procedure or function calls, set the type of the name,
2500 -- and also the entity pointer for the prefix.
2502 elsif Nkind (N) in N_Subprogram_Call
2503 and then Is_Entity_Name (Name (N))
2504 then
2505 Set_Etype (Name (N), Expr_Type);
2506 Set_Entity (Name (N), Seen);
2507 Generate_Reference (Seen, Name (N));
2509 elsif Nkind (N) = N_Function_Call
2510 and then Nkind (Name (N)) = N_Selected_Component
2511 then
2512 Set_Etype (Name (N), Expr_Type);
2513 Set_Entity (Selector_Name (Name (N)), Seen);
2514 Generate_Reference (Seen, Selector_Name (Name (N)));
2516 -- For all other cases, just set the type of the Name
2518 else
2519 Set_Etype (Name (N), Expr_Type);
2520 end if;
2522 end if;
2524 <<Continue>>
2526 -- Move to next interpretation
2528 exit Interp_Loop when No (It.Typ);
2530 Get_Next_Interp (I, It);
2531 end loop Interp_Loop;
2532 end if;
2534 -- At this stage Found indicates whether or not an acceptable
2535 -- interpretation exists. If not, then we have an error, except that if
2536 -- the context is Any_Type as a result of some other error, then we
2537 -- suppress the error report.
2539 if not Found then
2540 if Typ /= Any_Type then
2542 -- If type we are looking for is Void, then this is the procedure
2543 -- call case, and the error is simply that what we gave is not a
2544 -- procedure name (we think of procedure calls as expressions with
2545 -- types internally, but the user doesn't think of them this way).
2547 if Typ = Standard_Void_Type then
2549 -- Special case message if function used as a procedure
2551 if Nkind (N) = N_Procedure_Call_Statement
2552 and then Is_Entity_Name (Name (N))
2553 and then Ekind (Entity (Name (N))) = E_Function
2554 then
2555 Error_Msg_NE
2556 ("cannot use call to function & as a statement",
2557 Name (N), Entity (Name (N)));
2558 Error_Msg_N
2559 ("\return value of a function call cannot be ignored",
2560 Name (N));
2562 -- Otherwise give general message (not clear what cases this
2563 -- covers, but no harm in providing for them).
2565 else
2566 Error_Msg_N ("expect procedure name in procedure call", N);
2567 end if;
2569 Found := True;
2571 -- Otherwise we do have a subexpression with the wrong type
2573 -- Check for the case of an allocator which uses an access type
2574 -- instead of the designated type. This is a common error and we
2575 -- specialize the message, posting an error on the operand of the
2576 -- allocator, complaining that we expected the designated type of
2577 -- the allocator.
2579 elsif Nkind (N) = N_Allocator
2580 and then Is_Access_Type (Typ)
2581 and then Is_Access_Type (Etype (N))
2582 and then Designated_Type (Etype (N)) = Typ
2583 then
2584 Wrong_Type (Expression (N), Designated_Type (Typ));
2585 Found := True;
2587 -- Check for view mismatch on Null in instances, for which the
2588 -- view-swapping mechanism has no identifier.
2590 elsif (In_Instance or else In_Inlined_Body)
2591 and then (Nkind (N) = N_Null)
2592 and then Is_Private_Type (Typ)
2593 and then Is_Access_Type (Full_View (Typ))
2594 then
2595 Resolve (N, Full_View (Typ));
2596 Set_Etype (N, Typ);
2597 return;
2599 -- Check for an aggregate. Sometimes we can get bogus aggregates
2600 -- from misuse of parentheses, and we are about to complain about
2601 -- the aggregate without even looking inside it.
2603 -- Instead, if we have an aggregate of type Any_Composite, then
2604 -- analyze and resolve the component fields, and then only issue
2605 -- another message if we get no errors doing this (otherwise
2606 -- assume that the errors in the aggregate caused the problem).
2608 elsif Nkind (N) = N_Aggregate
2609 and then Etype (N) = Any_Composite
2610 then
2611 -- Disable expansion in any case. If there is a type mismatch
2612 -- it may be fatal to try to expand the aggregate. The flag
2613 -- would otherwise be set to false when the error is posted.
2615 Expander_Active := False;
2617 declare
2618 procedure Check_Aggr (Aggr : Node_Id);
2619 -- Check one aggregate, and set Found to True if we have a
2620 -- definite error in any of its elements
2622 procedure Check_Elmt (Aelmt : Node_Id);
2623 -- Check one element of aggregate and set Found to True if
2624 -- we definitely have an error in the element.
2626 ----------------
2627 -- Check_Aggr --
2628 ----------------
2630 procedure Check_Aggr (Aggr : Node_Id) is
2631 Elmt : Node_Id;
2633 begin
2634 if Present (Expressions (Aggr)) then
2635 Elmt := First (Expressions (Aggr));
2636 while Present (Elmt) loop
2637 Check_Elmt (Elmt);
2638 Next (Elmt);
2639 end loop;
2640 end if;
2642 if Present (Component_Associations (Aggr)) then
2643 Elmt := First (Component_Associations (Aggr));
2644 while Present (Elmt) loop
2646 -- If this is a default-initialized component, then
2647 -- there is nothing to check. The box will be
2648 -- replaced by the appropriate call during late
2649 -- expansion.
2651 if Nkind (Elmt) /= N_Iterated_Component_Association
2652 and then not Box_Present (Elmt)
2653 then
2654 Check_Elmt (Expression (Elmt));
2655 end if;
2657 Next (Elmt);
2658 end loop;
2659 end if;
2660 end Check_Aggr;
2662 ----------------
2663 -- Check_Elmt --
2664 ----------------
2666 procedure Check_Elmt (Aelmt : Node_Id) is
2667 begin
2668 -- If we have a nested aggregate, go inside it (to
2669 -- attempt a naked analyze-resolve of the aggregate can
2670 -- cause undesirable cascaded errors). Do not resolve
2671 -- expression if it needs a type from context, as for
2672 -- integer * fixed expression.
2674 if Nkind (Aelmt) = N_Aggregate then
2675 Check_Aggr (Aelmt);
2677 else
2678 Analyze (Aelmt);
2680 if not Is_Overloaded (Aelmt)
2681 and then Etype (Aelmt) /= Any_Fixed
2682 then
2683 Resolve (Aelmt);
2684 end if;
2686 if Etype (Aelmt) = Any_Type then
2687 Found := True;
2688 end if;
2689 end if;
2690 end Check_Elmt;
2692 begin
2693 Check_Aggr (N);
2694 end;
2695 end if;
2697 -- Looks like we have a type error, but check for special case
2698 -- of Address wanted, integer found, with the configuration pragma
2699 -- Allow_Integer_Address active. If we have this case, introduce
2700 -- an unchecked conversion to allow the integer expression to be
2701 -- treated as an Address. The reverse case of integer wanted,
2702 -- Address found, is treated in an analogous manner.
2704 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2705 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2706 Analyze_And_Resolve (N, Typ);
2707 return;
2709 -- Under relaxed RM semantics silently replace occurrences of null
2710 -- by System.Address_Null.
2712 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2713 Replace_Null_By_Null_Address (N);
2714 Analyze_And_Resolve (N, Typ);
2715 return;
2716 end if;
2718 -- That special Allow_Integer_Address check did not apply, so we
2719 -- have a real type error. If an error message was issued already,
2720 -- Found got reset to True, so if it's still False, issue standard
2721 -- Wrong_Type message.
2723 if not Found then
2724 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2725 declare
2726 Subp_Name : Node_Id;
2728 begin
2729 if Is_Entity_Name (Name (N)) then
2730 Subp_Name := Name (N);
2732 elsif Nkind (Name (N)) = N_Selected_Component then
2734 -- Protected operation: retrieve operation name
2736 Subp_Name := Selector_Name (Name (N));
2738 else
2739 raise Program_Error;
2740 end if;
2742 Error_Msg_Node_2 := Typ;
2743 Error_Msg_NE
2744 ("no visible interpretation of& matches expected type&",
2745 N, Subp_Name);
2746 end;
2748 if All_Errors_Mode then
2749 declare
2750 Index : Interp_Index;
2751 It : Interp;
2753 begin
2754 Error_Msg_N ("\\possible interpretations:", N);
2756 Get_First_Interp (Name (N), Index, It);
2757 while Present (It.Nam) loop
2758 Error_Msg_Sloc := Sloc (It.Nam);
2759 Error_Msg_Node_2 := It.Nam;
2760 Error_Msg_NE
2761 ("\\ type& for & declared#", N, It.Typ);
2762 Get_Next_Interp (Index, It);
2763 end loop;
2764 end;
2766 else
2767 Error_Msg_N ("\use -gnatf for details", N);
2768 end if;
2770 else
2771 Wrong_Type (N, Typ);
2772 end if;
2773 end if;
2774 end if;
2776 Resolution_Failed;
2777 return;
2779 -- Test if we have more than one interpretation for the context
2781 elsif Ambiguous then
2782 Resolution_Failed;
2783 return;
2785 -- Only one intepretation
2787 else
2788 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2789 -- the "+" on T is abstract, and the operands are of universal type,
2790 -- the above code will have (incorrectly) resolved the "+" to the
2791 -- universal one in Standard. Therefore check for this case and give
2792 -- an error. We can't do this earlier, because it would cause legal
2793 -- cases to get errors (when some other type has an abstract "+").
2795 if Ada_Version >= Ada_2005
2796 and then Nkind (N) in N_Op
2797 and then Is_Overloaded (N)
2798 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2799 then
2800 Get_First_Interp (N, I, It);
2801 while Present (It.Typ) loop
2802 if Present (It.Abstract_Op) and then
2803 Etype (It.Abstract_Op) = Typ
2804 then
2805 Error_Msg_NE
2806 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2807 return;
2808 end if;
2810 Get_Next_Interp (I, It);
2811 end loop;
2812 end if;
2814 -- Here we have an acceptable interpretation for the context
2816 -- Propagate type information and normalize tree for various
2817 -- predefined operations. If the context only imposes a class of
2818 -- types, rather than a specific type, propagate the actual type
2819 -- downward.
2821 if Typ = Any_Integer or else
2822 Typ = Any_Boolean or else
2823 Typ = Any_Modular or else
2824 Typ = Any_Real or else
2825 Typ = Any_Discrete
2826 then
2827 Ctx_Type := Expr_Type;
2829 -- Any_Fixed is legal in a real context only if a specific fixed-
2830 -- point type is imposed. If Norman Cohen can be confused by this,
2831 -- it deserves a separate message.
2833 if Typ = Any_Real
2834 and then Expr_Type = Any_Fixed
2835 then
2836 Error_Msg_N ("illegal context for mixed mode operation", N);
2837 Set_Etype (N, Universal_Real);
2838 Ctx_Type := Universal_Real;
2839 end if;
2840 end if;
2842 -- A user-defined operator is transformed into a function call at
2843 -- this point, so that further processing knows that operators are
2844 -- really operators (i.e. are predefined operators). User-defined
2845 -- operators that are intrinsic are just renamings of the predefined
2846 -- ones, and need not be turned into calls either, but if they rename
2847 -- a different operator, we must transform the node accordingly.
2848 -- Instantiations of Unchecked_Conversion are intrinsic but are
2849 -- treated as functions, even if given an operator designator.
2851 if Nkind (N) in N_Op
2852 and then Present (Entity (N))
2853 and then Ekind (Entity (N)) /= E_Operator
2854 then
2855 if not Is_Predefined_Op (Entity (N)) then
2856 Rewrite_Operator_As_Call (N, Entity (N));
2858 elsif Present (Alias (Entity (N)))
2859 and then
2860 Nkind (Parent (Parent (Entity (N)))) =
2861 N_Subprogram_Renaming_Declaration
2862 then
2863 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2865 -- If the node is rewritten, it will be fully resolved in
2866 -- Rewrite_Renamed_Operator.
2868 if Analyzed (N) then
2869 return;
2870 end if;
2871 end if;
2872 end if;
2874 case N_Subexpr'(Nkind (N)) is
2875 when N_Aggregate =>
2876 Resolve_Aggregate (N, Ctx_Type);
2878 when N_Allocator =>
2879 Resolve_Allocator (N, Ctx_Type);
2881 when N_Short_Circuit =>
2882 Resolve_Short_Circuit (N, Ctx_Type);
2884 when N_Attribute_Reference =>
2885 Resolve_Attribute (N, Ctx_Type);
2887 when N_Case_Expression =>
2888 Resolve_Case_Expression (N, Ctx_Type);
2890 when N_Character_Literal =>
2891 Resolve_Character_Literal (N, Ctx_Type);
2893 when N_Delta_Aggregate =>
2894 Resolve_Delta_Aggregate (N, Ctx_Type);
2896 when N_Expanded_Name =>
2897 Resolve_Entity_Name (N, Ctx_Type);
2899 when N_Explicit_Dereference =>
2900 Resolve_Explicit_Dereference (N, Ctx_Type);
2902 when N_Expression_With_Actions =>
2903 Resolve_Expression_With_Actions (N, Ctx_Type);
2905 when N_Extension_Aggregate =>
2906 Resolve_Extension_Aggregate (N, Ctx_Type);
2908 when N_Function_Call =>
2909 Resolve_Call (N, Ctx_Type);
2911 when N_Identifier =>
2912 Resolve_Entity_Name (N, Ctx_Type);
2914 when N_If_Expression =>
2915 Resolve_If_Expression (N, Ctx_Type);
2917 when N_Indexed_Component =>
2918 Resolve_Indexed_Component (N, Ctx_Type);
2920 when N_Integer_Literal =>
2921 Resolve_Integer_Literal (N, Ctx_Type);
2923 when N_Membership_Test =>
2924 Resolve_Membership_Op (N, Ctx_Type);
2926 when N_Null =>
2927 Resolve_Null (N, Ctx_Type);
2929 when N_Op_And
2930 | N_Op_Or
2931 | N_Op_Xor
2933 Resolve_Logical_Op (N, Ctx_Type);
2935 when N_Op_Eq
2936 | N_Op_Ne
2938 Resolve_Equality_Op (N, Ctx_Type);
2940 when N_Op_Ge
2941 | N_Op_Gt
2942 | N_Op_Le
2943 | N_Op_Lt
2945 Resolve_Comparison_Op (N, Ctx_Type);
2947 when N_Op_Not =>
2948 Resolve_Op_Not (N, Ctx_Type);
2950 when N_Op_Add
2951 | N_Op_Divide
2952 | N_Op_Mod
2953 | N_Op_Multiply
2954 | N_Op_Rem
2955 | N_Op_Subtract
2957 Resolve_Arithmetic_Op (N, Ctx_Type);
2959 when N_Op_Concat =>
2960 Resolve_Op_Concat (N, Ctx_Type);
2962 when N_Op_Expon =>
2963 Resolve_Op_Expon (N, Ctx_Type);
2965 when N_Op_Abs
2966 | N_Op_Minus
2967 | N_Op_Plus
2969 Resolve_Unary_Op (N, Ctx_Type);
2971 when N_Op_Shift =>
2972 Resolve_Shift (N, Ctx_Type);
2974 when N_Procedure_Call_Statement =>
2975 Resolve_Call (N, Ctx_Type);
2977 when N_Operator_Symbol =>
2978 Resolve_Operator_Symbol (N, Ctx_Type);
2980 when N_Qualified_Expression =>
2981 Resolve_Qualified_Expression (N, Ctx_Type);
2983 -- Why is the following null, needs a comment ???
2985 when N_Quantified_Expression =>
2986 null;
2988 when N_Raise_Expression =>
2989 Resolve_Raise_Expression (N, Ctx_Type);
2991 when N_Raise_xxx_Error =>
2992 Set_Etype (N, Ctx_Type);
2994 when N_Range =>
2995 Resolve_Range (N, Ctx_Type);
2997 when N_Real_Literal =>
2998 Resolve_Real_Literal (N, Ctx_Type);
3000 when N_Reference =>
3001 Resolve_Reference (N, Ctx_Type);
3003 when N_Selected_Component =>
3004 Resolve_Selected_Component (N, Ctx_Type);
3006 when N_Slice =>
3007 Resolve_Slice (N, Ctx_Type);
3009 when N_String_Literal =>
3010 Resolve_String_Literal (N, Ctx_Type);
3012 when N_Target_Name =>
3013 Resolve_Target_Name (N, Ctx_Type);
3015 when N_Type_Conversion =>
3016 Resolve_Type_Conversion (N, Ctx_Type);
3018 when N_Unchecked_Expression =>
3019 Resolve_Unchecked_Expression (N, Ctx_Type);
3021 when N_Unchecked_Type_Conversion =>
3022 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
3023 end case;
3025 -- Mark relevant use-type and use-package clauses as effective using
3026 -- the original node because constant folding may have occured and
3027 -- removed references that need to be examined.
3029 if Nkind (Original_Node (N)) in N_Op then
3030 Mark_Use_Clauses (Original_Node (N));
3031 end if;
3033 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
3034 -- expression of an anonymous access type that occurs in the context
3035 -- of a named general access type, except when the expression is that
3036 -- of a membership test. This ensures proper legality checking in
3037 -- terms of allowed conversions (expressions that would be illegal to
3038 -- convert implicitly are allowed in membership tests).
3040 if Ada_Version >= Ada_2012
3041 and then Ekind (Ctx_Type) = E_General_Access_Type
3042 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
3043 and then Nkind (Parent (N)) not in N_Membership_Test
3044 then
3045 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
3046 Analyze_And_Resolve (N, Ctx_Type);
3047 end if;
3049 -- If the subexpression was replaced by a non-subexpression, then
3050 -- all we do is to expand it. The only legitimate case we know of
3051 -- is converting procedure call statement to entry call statements,
3052 -- but there may be others, so we are making this test general.
3054 if Nkind (N) not in N_Subexpr then
3055 Debug_A_Exit ("resolving ", N, " (done)");
3056 Expand (N);
3057 return;
3058 end if;
3060 -- The expression is definitely NOT overloaded at this point, so
3061 -- we reset the Is_Overloaded flag to avoid any confusion when
3062 -- reanalyzing the node.
3064 Set_Is_Overloaded (N, False);
3066 -- Freeze expression type, entity if it is a name, and designated
3067 -- type if it is an allocator (RM 13.14(10,11,13)).
3069 -- Now that the resolution of the type of the node is complete, and
3070 -- we did not detect an error, we can expand this node. We skip the
3071 -- expand call if we are in a default expression, see section
3072 -- "Handling of Default Expressions" in Sem spec.
3074 Debug_A_Exit ("resolving ", N, " (done)");
3076 -- We unconditionally freeze the expression, even if we are in
3077 -- default expression mode (the Freeze_Expression routine tests this
3078 -- flag and only freezes static types if it is set).
3080 -- Ada 2012 (AI05-177): The declaration of an expression function
3081 -- does not cause freezing, but we never reach here in that case.
3082 -- Here we are resolving the corresponding expanded body, so we do
3083 -- need to perform normal freezing.
3085 -- As elsewhere we do not emit freeze node within a generic. We make
3086 -- an exception for entities that are expressions, only to detect
3087 -- misuses of deferred constants and preserve the output of various
3088 -- tests.
3090 if not Inside_A_Generic or else Is_Entity_Name (N) then
3091 Freeze_Expression (N);
3092 end if;
3094 -- Now we can do the expansion
3096 Expand (N);
3097 end if;
3098 end Resolve;
3100 -------------
3101 -- Resolve --
3102 -------------
3104 -- Version with check(s) suppressed
3106 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3107 begin
3108 if Suppress = All_Checks then
3109 declare
3110 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3111 begin
3112 Scope_Suppress.Suppress := (others => True);
3113 Resolve (N, Typ);
3114 Scope_Suppress.Suppress := Sva;
3115 end;
3117 else
3118 declare
3119 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3120 begin
3121 Scope_Suppress.Suppress (Suppress) := True;
3122 Resolve (N, Typ);
3123 Scope_Suppress.Suppress (Suppress) := Svg;
3124 end;
3125 end if;
3126 end Resolve;
3128 -------------
3129 -- Resolve --
3130 -------------
3132 -- Version with implicit type
3134 procedure Resolve (N : Node_Id) is
3135 begin
3136 Resolve (N, Etype (N));
3137 end Resolve;
3139 ---------------------
3140 -- Resolve_Actuals --
3141 ---------------------
3143 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3144 Loc : constant Source_Ptr := Sloc (N);
3145 A : Node_Id;
3146 A_Id : Entity_Id;
3147 A_Typ : Entity_Id := Empty; -- init to avoid warning
3148 F : Entity_Id;
3149 F_Typ : Entity_Id;
3150 Prev : Node_Id := Empty;
3151 Orig_A : Node_Id;
3152 Real_F : Entity_Id := Empty; -- init to avoid warning
3154 Real_Subp : Entity_Id;
3155 -- If the subprogram being called is an inherited operation for
3156 -- a formal derived type in an instance, Real_Subp is the subprogram
3157 -- that will be called. It may have different formal names than the
3158 -- operation of the formal in the generic, so after actual is resolved
3159 -- the name of the actual in a named association must carry the name
3160 -- of the actual of the subprogram being called.
3162 procedure Check_Aliased_Parameter;
3163 -- Check rules on aliased parameters and related accessibility rules
3164 -- in (RM 3.10.2 (10.2-10.4)).
3166 procedure Check_Argument_Order;
3167 -- Performs a check for the case where the actuals are all simple
3168 -- identifiers that correspond to the formal names, but in the wrong
3169 -- order, which is considered suspicious and cause for a warning.
3171 procedure Check_Prefixed_Call;
3172 -- If the original node is an overloaded call in prefix notation,
3173 -- insert an 'Access or a dereference as needed over the first actual.
3174 -- Try_Object_Operation has already verified that there is a valid
3175 -- interpretation, but the form of the actual can only be determined
3176 -- once the primitive operation is identified.
3178 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3179 -- Emit an error concerning the illegal usage of an effectively volatile
3180 -- object in interfering context (SPARK RM 7.13(12)).
3182 procedure Insert_Default;
3183 -- If the actual is missing in a call, insert in the actuals list
3184 -- an instance of the default expression. The insertion is always
3185 -- a named association.
3187 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3188 -- Check whether T1 and T2, or their full views, are derived from a
3189 -- common type. Used to enforce the restrictions on array conversions
3190 -- of AI95-00246.
3192 function Static_Concatenation (N : Node_Id) return Boolean;
3193 -- Predicate to determine whether an actual that is a concatenation
3194 -- will be evaluated statically and does not need a transient scope.
3195 -- This must be determined before the actual is resolved and expanded
3196 -- because if needed the transient scope must be introduced earlier.
3198 -----------------------------
3199 -- Check_Aliased_Parameter --
3200 -----------------------------
3202 procedure Check_Aliased_Parameter is
3203 Nominal_Subt : Entity_Id;
3205 begin
3206 if Is_Aliased (F) then
3207 if Is_Tagged_Type (A_Typ) then
3208 null;
3210 elsif Is_Aliased_View (A) then
3211 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3212 Nominal_Subt := Base_Type (A_Typ);
3213 else
3214 Nominal_Subt := A_Typ;
3215 end if;
3217 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3218 null;
3220 -- In a generic body assume the worst for generic formals:
3221 -- they can have a constrained partial view (AI05-041).
3223 elsif Has_Discriminants (F_Typ)
3224 and then not Is_Constrained (F_Typ)
3225 and then not Has_Constrained_Partial_View (F_Typ)
3226 and then not Is_Generic_Type (F_Typ)
3227 then
3228 null;
3230 else
3231 Error_Msg_NE ("untagged actual does not match "
3232 & "aliased formal&", A, F);
3233 end if;
3235 else
3236 Error_Msg_NE ("actual for aliased formal& must be "
3237 & "aliased object", A, F);
3238 end if;
3240 if Ekind (Nam) = E_Procedure then
3241 null;
3243 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3244 if Nkind (Parent (N)) = N_Type_Conversion
3245 and then Type_Access_Level (Etype (Parent (N))) <
3246 Object_Access_Level (A)
3247 then
3248 Error_Msg_N ("aliased actual has wrong accessibility", A);
3249 end if;
3251 elsif Nkind (Parent (N)) = N_Qualified_Expression
3252 and then Nkind (Parent (Parent (N))) = N_Allocator
3253 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3254 Object_Access_Level (A)
3255 then
3256 Error_Msg_N
3257 ("aliased actual in allocator has wrong accessibility", A);
3258 end if;
3259 end if;
3260 end Check_Aliased_Parameter;
3262 --------------------------
3263 -- Check_Argument_Order --
3264 --------------------------
3266 procedure Check_Argument_Order is
3267 begin
3268 -- Nothing to do if no parameters, or original node is neither a
3269 -- function call nor a procedure call statement (happens in the
3270 -- operator-transformed-to-function call case), or the call does
3271 -- not come from source, or this warning is off.
3273 if not Warn_On_Parameter_Order
3274 or else No (Parameter_Associations (N))
3275 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3276 or else not Comes_From_Source (N)
3277 then
3278 return;
3279 end if;
3281 declare
3282 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3284 begin
3285 -- Nothing to do if only one parameter
3287 if Nargs < 2 then
3288 return;
3289 end if;
3291 -- Here if at least two arguments
3293 declare
3294 Actuals : array (1 .. Nargs) of Node_Id;
3295 Actual : Node_Id;
3296 Formal : Node_Id;
3298 Wrong_Order : Boolean := False;
3299 -- Set True if an out of order case is found
3301 begin
3302 -- Collect identifier names of actuals, fail if any actual is
3303 -- not a simple identifier, and record max length of name.
3305 Actual := First (Parameter_Associations (N));
3306 for J in Actuals'Range loop
3307 if Nkind (Actual) /= N_Identifier then
3308 return;
3309 else
3310 Actuals (J) := Actual;
3311 Next (Actual);
3312 end if;
3313 end loop;
3315 -- If we got this far, all actuals are identifiers and the list
3316 -- of their names is stored in the Actuals array.
3318 Formal := First_Formal (Nam);
3319 for J in Actuals'Range loop
3321 -- If we ran out of formals, that's odd, probably an error
3322 -- which will be detected elsewhere, but abandon the search.
3324 if No (Formal) then
3325 return;
3326 end if;
3328 -- If name matches and is in order OK
3330 if Chars (Formal) = Chars (Actuals (J)) then
3331 null;
3333 else
3334 -- If no match, see if it is elsewhere in list and if so
3335 -- flag potential wrong order if type is compatible.
3337 for K in Actuals'Range loop
3338 if Chars (Formal) = Chars (Actuals (K))
3339 and then
3340 Has_Compatible_Type (Actuals (K), Etype (Formal))
3341 then
3342 Wrong_Order := True;
3343 goto Continue;
3344 end if;
3345 end loop;
3347 -- No match
3349 return;
3350 end if;
3352 <<Continue>> Next_Formal (Formal);
3353 end loop;
3355 -- If Formals left over, also probably an error, skip warning
3357 if Present (Formal) then
3358 return;
3359 end if;
3361 -- Here we give the warning if something was out of order
3363 if Wrong_Order then
3364 Error_Msg_N
3365 ("?P?actuals for this call may be in wrong order", N);
3366 end if;
3367 end;
3368 end;
3369 end Check_Argument_Order;
3371 -------------------------
3372 -- Check_Prefixed_Call --
3373 -------------------------
3375 procedure Check_Prefixed_Call is
3376 Act : constant Node_Id := First_Actual (N);
3377 A_Type : constant Entity_Id := Etype (Act);
3378 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3379 Orig : constant Node_Id := Original_Node (N);
3380 New_A : Node_Id;
3382 begin
3383 -- Check whether the call is a prefixed call, with or without
3384 -- additional actuals.
3386 if Nkind (Orig) = N_Selected_Component
3387 or else
3388 (Nkind (Orig) = N_Indexed_Component
3389 and then Nkind (Prefix (Orig)) = N_Selected_Component
3390 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3391 and then Is_Entity_Name (Act)
3392 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3393 then
3394 if Is_Access_Type (A_Type)
3395 and then not Is_Access_Type (F_Type)
3396 then
3397 -- Introduce dereference on object in prefix
3399 New_A :=
3400 Make_Explicit_Dereference (Sloc (Act),
3401 Prefix => Relocate_Node (Act));
3402 Rewrite (Act, New_A);
3403 Analyze (Act);
3405 elsif Is_Access_Type (F_Type)
3406 and then not Is_Access_Type (A_Type)
3407 then
3408 -- Introduce an implicit 'Access in prefix
3410 if not Is_Aliased_View (Act) then
3411 Error_Msg_NE
3412 ("object in prefixed call to& must be aliased "
3413 & "(RM 4.1.3 (13 1/2))",
3414 Prefix (Act), Nam);
3415 end if;
3417 Rewrite (Act,
3418 Make_Attribute_Reference (Loc,
3419 Attribute_Name => Name_Access,
3420 Prefix => Relocate_Node (Act)));
3421 end if;
3423 Analyze (Act);
3424 end if;
3425 end Check_Prefixed_Call;
3427 ---------------------------------------
3428 -- Flag_Effectively_Volatile_Objects --
3429 ---------------------------------------
3431 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3432 function Flag_Object (N : Node_Id) return Traverse_Result;
3433 -- Determine whether arbitrary node N denotes an effectively volatile
3434 -- object and if it does, emit an error.
3436 -----------------
3437 -- Flag_Object --
3438 -----------------
3440 function Flag_Object (N : Node_Id) return Traverse_Result is
3441 Id : Entity_Id;
3443 begin
3444 -- Do not consider nested function calls because they have already
3445 -- been processed during their own resolution.
3447 if Nkind (N) = N_Function_Call then
3448 return Skip;
3450 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3451 Id := Entity (N);
3453 if Is_Object (Id)
3454 and then Is_Effectively_Volatile (Id)
3455 and then (Async_Writers_Enabled (Id)
3456 or else Effective_Reads_Enabled (Id))
3457 then
3458 Error_Msg_N
3459 ("volatile object cannot appear in this context (SPARK "
3460 & "RM 7.1.3(11))", N);
3461 return Skip;
3462 end if;
3463 end if;
3465 return OK;
3466 end Flag_Object;
3468 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3470 -- Start of processing for Flag_Effectively_Volatile_Objects
3472 begin
3473 Flag_Objects (Expr);
3474 end Flag_Effectively_Volatile_Objects;
3476 --------------------
3477 -- Insert_Default --
3478 --------------------
3480 procedure Insert_Default is
3481 Actval : Node_Id;
3482 Assoc : Node_Id;
3484 begin
3485 -- Missing argument in call, nothing to insert
3487 if No (Default_Value (F)) then
3488 return;
3490 else
3491 -- Note that we do a full New_Copy_Tree, so that any associated
3492 -- Itypes are properly copied. This may not be needed any more,
3493 -- but it does no harm as a safety measure. Defaults of a generic
3494 -- formal may be out of bounds of the corresponding actual (see
3495 -- cc1311b) and an additional check may be required.
3497 Actval :=
3498 New_Copy_Tree
3499 (Default_Value (F),
3500 New_Scope => Current_Scope,
3501 New_Sloc => Loc);
3503 -- Propagate dimension information, if any.
3505 Copy_Dimensions (Default_Value (F), Actval);
3507 if Is_Concurrent_Type (Scope (Nam))
3508 and then Has_Discriminants (Scope (Nam))
3509 then
3510 Replace_Actual_Discriminants (N, Actval);
3511 end if;
3513 if Is_Overloadable (Nam)
3514 and then Present (Alias (Nam))
3515 then
3516 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3517 and then not Is_Tagged_Type (Etype (F))
3518 then
3519 -- If default is a real literal, do not introduce a
3520 -- conversion whose effect may depend on the run-time
3521 -- size of universal real.
3523 if Nkind (Actval) = N_Real_Literal then
3524 Set_Etype (Actval, Base_Type (Etype (F)));
3525 else
3526 Actval := Unchecked_Convert_To (Etype (F), Actval);
3527 end if;
3528 end if;
3530 if Is_Scalar_Type (Etype (F)) then
3531 Enable_Range_Check (Actval);
3532 end if;
3534 Set_Parent (Actval, N);
3536 -- Resolve aggregates with their base type, to avoid scope
3537 -- anomalies: the subtype was first built in the subprogram
3538 -- declaration, and the current call may be nested.
3540 if Nkind (Actval) = N_Aggregate then
3541 Analyze_And_Resolve (Actval, Etype (F));
3542 else
3543 Analyze_And_Resolve (Actval, Etype (Actval));
3544 end if;
3546 else
3547 Set_Parent (Actval, N);
3549 -- See note above concerning aggregates
3551 if Nkind (Actval) = N_Aggregate
3552 and then Has_Discriminants (Etype (Actval))
3553 then
3554 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3556 -- Resolve entities with their own type, which may differ from
3557 -- the type of a reference in a generic context (the view
3558 -- swapping mechanism did not anticipate the re-analysis of
3559 -- default values in calls).
3561 elsif Is_Entity_Name (Actval) then
3562 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3564 else
3565 Analyze_And_Resolve (Actval, Etype (Actval));
3566 end if;
3567 end if;
3569 -- If default is a tag indeterminate function call, propagate tag
3570 -- to obtain proper dispatching.
3572 if Is_Controlling_Formal (F)
3573 and then Nkind (Default_Value (F)) = N_Function_Call
3574 then
3575 Set_Is_Controlling_Actual (Actval);
3576 end if;
3577 end if;
3579 -- If the default expression raises constraint error, then just
3580 -- silently replace it with an N_Raise_Constraint_Error node, since
3581 -- we already gave the warning on the subprogram spec. If node is
3582 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3583 -- the warnings removal machinery.
3585 if Raises_Constraint_Error (Actval)
3586 and then Nkind (Actval) /= N_Raise_Constraint_Error
3587 then
3588 Rewrite (Actval,
3589 Make_Raise_Constraint_Error (Loc,
3590 Reason => CE_Range_Check_Failed));
3592 Set_Raises_Constraint_Error (Actval);
3593 Set_Etype (Actval, Etype (F));
3594 end if;
3596 Assoc :=
3597 Make_Parameter_Association (Loc,
3598 Explicit_Actual_Parameter => Actval,
3599 Selector_Name => Make_Identifier (Loc, Chars (F)));
3601 -- Case of insertion is first named actual
3603 if No (Prev)
3604 or else Nkind (Parent (Prev)) /= N_Parameter_Association
3605 then
3606 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3607 Set_First_Named_Actual (N, Actval);
3609 if No (Prev) then
3610 if No (Parameter_Associations (N)) then
3611 Set_Parameter_Associations (N, New_List (Assoc));
3612 else
3613 Append (Assoc, Parameter_Associations (N));
3614 end if;
3616 else
3617 Insert_After (Prev, Assoc);
3618 end if;
3620 -- Case of insertion is not first named actual
3622 else
3623 Set_Next_Named_Actual
3624 (Assoc, Next_Named_Actual (Parent (Prev)));
3625 Set_Next_Named_Actual (Parent (Prev), Actval);
3626 Append (Assoc, Parameter_Associations (N));
3627 end if;
3629 Mark_Rewrite_Insertion (Assoc);
3630 Mark_Rewrite_Insertion (Actval);
3632 Prev := Actval;
3633 end Insert_Default;
3635 -------------------
3636 -- Same_Ancestor --
3637 -------------------
3639 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3640 FT1 : Entity_Id := T1;
3641 FT2 : Entity_Id := T2;
3643 begin
3644 if Is_Private_Type (T1)
3645 and then Present (Full_View (T1))
3646 then
3647 FT1 := Full_View (T1);
3648 end if;
3650 if Is_Private_Type (T2)
3651 and then Present (Full_View (T2))
3652 then
3653 FT2 := Full_View (T2);
3654 end if;
3656 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3657 end Same_Ancestor;
3659 --------------------------
3660 -- Static_Concatenation --
3661 --------------------------
3663 function Static_Concatenation (N : Node_Id) return Boolean is
3664 begin
3665 case Nkind (N) is
3666 when N_String_Literal =>
3667 return True;
3669 when N_Op_Concat =>
3671 -- Concatenation is static when both operands are static and
3672 -- the concatenation operator is a predefined one.
3674 return Scope (Entity (N)) = Standard_Standard
3675 and then
3676 Static_Concatenation (Left_Opnd (N))
3677 and then
3678 Static_Concatenation (Right_Opnd (N));
3680 when others =>
3681 if Is_Entity_Name (N) then
3682 declare
3683 Ent : constant Entity_Id := Entity (N);
3684 begin
3685 return Ekind (Ent) = E_Constant
3686 and then Present (Constant_Value (Ent))
3687 and then
3688 Is_OK_Static_Expression (Constant_Value (Ent));
3689 end;
3691 else
3692 return False;
3693 end if;
3694 end case;
3695 end Static_Concatenation;
3697 -- Start of processing for Resolve_Actuals
3699 begin
3700 Check_Argument_Order;
3702 if Is_Overloadable (Nam)
3703 and then Is_Inherited_Operation (Nam)
3704 and then In_Instance
3705 and then Present (Alias (Nam))
3706 and then Present (Overridden_Operation (Alias (Nam)))
3707 then
3708 Real_Subp := Alias (Nam);
3709 else
3710 Real_Subp := Empty;
3711 end if;
3713 if Present (First_Actual (N)) then
3714 Check_Prefixed_Call;
3715 end if;
3717 A := First_Actual (N);
3718 F := First_Formal (Nam);
3720 if Present (Real_Subp) then
3721 Real_F := First_Formal (Real_Subp);
3722 end if;
3724 while Present (F) loop
3725 if No (A) and then Needs_No_Actuals (Nam) then
3726 null;
3728 -- If we have an error in any actual or formal, indicated by a type
3729 -- of Any_Type, then abandon resolution attempt, and set result type
3730 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3731 -- type is imposed from context.
3733 elsif (Present (A) and then Etype (A) = Any_Type)
3734 or else Etype (F) = Any_Type
3735 then
3736 if Nkind (A) /= N_Raise_Expression then
3737 Set_Etype (N, Any_Type);
3738 return;
3739 end if;
3740 end if;
3742 -- Case where actual is present
3744 -- If the actual is an entity, generate a reference to it now. We
3745 -- do this before the actual is resolved, because a formal of some
3746 -- protected subprogram, or a task discriminant, will be rewritten
3747 -- during expansion, and the source entity reference may be lost.
3749 if Present (A)
3750 and then Is_Entity_Name (A)
3751 and then Comes_From_Source (A)
3752 then
3753 -- Annotate the tree by creating a variable reference marker when
3754 -- the actual denotes a variable reference, in case the reference
3755 -- is folded or optimized away. The variable reference marker is
3756 -- automatically saved for later examination by the ABE Processing
3757 -- phase. The status of the reference is set as follows:
3759 -- status mode
3760 -- read IN, IN OUT
3761 -- write IN OUT, OUT
3763 Build_Variable_Reference_Marker
3764 (N => A,
3765 Read => Ekind (F) /= E_Out_Parameter,
3766 Write => Ekind (F) /= E_In_Parameter);
3768 Orig_A := Entity (A);
3770 if Present (Orig_A) then
3771 if Is_Formal (Orig_A)
3772 and then Ekind (F) /= E_In_Parameter
3773 then
3774 Generate_Reference (Orig_A, A, 'm');
3776 elsif not Is_Overloaded (A) then
3777 if Ekind (F) /= E_Out_Parameter then
3778 Generate_Reference (Orig_A, A);
3780 -- RM 6.4.1(12): For an out parameter that is passed by
3781 -- copy, the formal parameter object is created, and:
3783 -- * For an access type, the formal parameter is initialized
3784 -- from the value of the actual, without checking that the
3785 -- value satisfies any constraint, any predicate, or any
3786 -- exclusion of the null value.
3788 -- * For a scalar type that has the Default_Value aspect
3789 -- specified, the formal parameter is initialized from the
3790 -- value of the actual, without checking that the value
3791 -- satisfies any constraint or any predicate.
3792 -- I do not understand why this case is included??? this is
3793 -- not a case where an OUT parameter is treated as IN OUT.
3795 -- * For a composite type with discriminants or that has
3796 -- implicit initial values for any subcomponents, the
3797 -- behavior is as for an in out parameter passed by copy.
3799 -- Hence for these cases we generate the read reference now
3800 -- (the write reference will be generated later by
3801 -- Note_Possible_Modification).
3803 elsif Is_By_Copy_Type (Etype (F))
3804 and then
3805 (Is_Access_Type (Etype (F))
3806 or else
3807 (Is_Scalar_Type (Etype (F))
3808 and then
3809 Present (Default_Aspect_Value (Etype (F))))
3810 or else
3811 (Is_Composite_Type (Etype (F))
3812 and then (Has_Discriminants (Etype (F))
3813 or else Is_Partially_Initialized_Type
3814 (Etype (F)))))
3815 then
3816 Generate_Reference (Orig_A, A);
3817 end if;
3818 end if;
3819 end if;
3820 end if;
3822 if Present (A)
3823 and then (Nkind (Parent (A)) /= N_Parameter_Association
3824 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3825 then
3826 -- If style checking mode on, check match of formal name
3828 if Style_Check then
3829 if Nkind (Parent (A)) = N_Parameter_Association then
3830 Check_Identifier (Selector_Name (Parent (A)), F);
3831 end if;
3832 end if;
3834 -- If the formal is Out or In_Out, do not resolve and expand the
3835 -- conversion, because it is subsequently expanded into explicit
3836 -- temporaries and assignments. However, the object of the
3837 -- conversion can be resolved. An exception is the case of tagged
3838 -- type conversion with a class-wide actual. In that case we want
3839 -- the tag check to occur and no temporary will be needed (no
3840 -- representation change can occur) and the parameter is passed by
3841 -- reference, so we go ahead and resolve the type conversion.
3842 -- Another exception is the case of reference to component or
3843 -- subcomponent of a bit-packed array, in which case we want to
3844 -- defer expansion to the point the in and out assignments are
3845 -- performed.
3847 if Ekind (F) /= E_In_Parameter
3848 and then Nkind (A) = N_Type_Conversion
3849 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3850 then
3851 if Ekind (F) = E_In_Out_Parameter
3852 and then Is_Array_Type (Etype (F))
3853 then
3854 -- In a view conversion, the conversion must be legal in
3855 -- both directions, and thus both component types must be
3856 -- aliased, or neither (4.6 (8)).
3858 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3859 -- the privacy requirement should not apply to generic
3860 -- types, and should be checked in an instance. ARG query
3861 -- is in order ???
3863 if Has_Aliased_Components (Etype (Expression (A))) /=
3864 Has_Aliased_Components (Etype (F))
3865 then
3866 Error_Msg_N
3867 ("both component types in a view conversion must be"
3868 & " aliased, or neither", A);
3870 -- Comment here??? what set of cases???
3872 elsif
3873 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3874 then
3875 -- Check view conv between unrelated by ref array types
3877 if Is_By_Reference_Type (Etype (F))
3878 or else Is_By_Reference_Type (Etype (Expression (A)))
3879 then
3880 Error_Msg_N
3881 ("view conversion between unrelated by reference "
3882 & "array types not allowed (\'A'I-00246)", A);
3884 -- In Ada 2005 mode, check view conversion component
3885 -- type cannot be private, tagged, or volatile. Note
3886 -- that we only apply this to source conversions. The
3887 -- generated code can contain conversions which are
3888 -- not subject to this test, and we cannot extract the
3889 -- component type in such cases since it is not present.
3891 elsif Comes_From_Source (A)
3892 and then Ada_Version >= Ada_2005
3893 then
3894 declare
3895 Comp_Type : constant Entity_Id :=
3896 Component_Type
3897 (Etype (Expression (A)));
3898 begin
3899 if (Is_Private_Type (Comp_Type)
3900 and then not Is_Generic_Type (Comp_Type))
3901 or else Is_Tagged_Type (Comp_Type)
3902 or else Is_Volatile (Comp_Type)
3903 then
3904 Error_Msg_N
3905 ("component type of a view conversion cannot"
3906 & " be private, tagged, or volatile"
3907 & " (RM 4.6 (24))",
3908 Expression (A));
3909 end if;
3910 end;
3911 end if;
3912 end if;
3913 end if;
3915 -- Resolve expression if conversion is all OK
3917 if (Conversion_OK (A)
3918 or else Valid_Conversion (A, Etype (A), Expression (A)))
3919 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3920 then
3921 Resolve (Expression (A));
3922 end if;
3924 -- If the actual is a function call that returns a limited
3925 -- unconstrained object that needs finalization, create a
3926 -- transient scope for it, so that it can receive the proper
3927 -- finalization list.
3929 elsif Nkind (A) = N_Function_Call
3930 and then Is_Limited_Record (Etype (F))
3931 and then not Is_Constrained (Etype (F))
3932 and then Expander_Active
3933 and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3934 then
3935 Establish_Transient_Scope (A, Sec_Stack => False);
3936 Resolve (A, Etype (F));
3938 -- A small optimization: if one of the actuals is a concatenation
3939 -- create a block around a procedure call to recover stack space.
3940 -- This alleviates stack usage when several procedure calls in
3941 -- the same statement list use concatenation. We do not perform
3942 -- this wrapping for code statements, where the argument is a
3943 -- static string, and we want to preserve warnings involving
3944 -- sequences of such statements.
3946 elsif Nkind (A) = N_Op_Concat
3947 and then Nkind (N) = N_Procedure_Call_Statement
3948 and then Expander_Active
3949 and then
3950 not (Is_Intrinsic_Subprogram (Nam)
3951 and then Chars (Nam) = Name_Asm)
3952 and then not Static_Concatenation (A)
3953 then
3954 Establish_Transient_Scope (A, Sec_Stack => False);
3955 Resolve (A, Etype (F));
3957 else
3958 if Nkind (A) = N_Type_Conversion
3959 and then Is_Array_Type (Etype (F))
3960 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3961 and then
3962 (Is_Limited_Type (Etype (F))
3963 or else Is_Limited_Type (Etype (Expression (A))))
3964 then
3965 Error_Msg_N
3966 ("conversion between unrelated limited array types "
3967 & "not allowed ('A'I-00246)", A);
3969 if Is_Limited_Type (Etype (F)) then
3970 Explain_Limited_Type (Etype (F), A);
3971 end if;
3973 if Is_Limited_Type (Etype (Expression (A))) then
3974 Explain_Limited_Type (Etype (Expression (A)), A);
3975 end if;
3976 end if;
3978 -- (Ada 2005: AI-251): If the actual is an allocator whose
3979 -- directly designated type is a class-wide interface, we build
3980 -- an anonymous access type to use it as the type of the
3981 -- allocator. Later, when the subprogram call is expanded, if
3982 -- the interface has a secondary dispatch table the expander
3983 -- will add a type conversion to force the correct displacement
3984 -- of the pointer.
3986 if Nkind (A) = N_Allocator then
3987 declare
3988 DDT : constant Entity_Id :=
3989 Directly_Designated_Type (Base_Type (Etype (F)));
3991 New_Itype : Entity_Id;
3993 begin
3994 if Is_Class_Wide_Type (DDT)
3995 and then Is_Interface (DDT)
3996 then
3997 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3998 Set_Etype (New_Itype, Etype (A));
3999 Set_Directly_Designated_Type
4000 (New_Itype, Directly_Designated_Type (Etype (A)));
4001 Set_Etype (A, New_Itype);
4002 end if;
4004 -- Ada 2005, AI-162:If the actual is an allocator, the
4005 -- innermost enclosing statement is the master of the
4006 -- created object. This needs to be done with expansion
4007 -- enabled only, otherwise the transient scope will not
4008 -- be removed in the expansion of the wrapped construct.
4010 if (Is_Controlled (DDT) or else Has_Task (DDT))
4011 and then Expander_Active
4012 then
4013 Establish_Transient_Scope (A, Sec_Stack => False);
4014 end if;
4015 end;
4017 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4018 Check_Restriction (No_Access_Parameter_Allocators, A);
4019 end if;
4020 end if;
4022 -- (Ada 2005): The call may be to a primitive operation of a
4023 -- tagged synchronized type, declared outside of the type. In
4024 -- this case the controlling actual must be converted to its
4025 -- corresponding record type, which is the formal type. The
4026 -- actual may be a subtype, either because of a constraint or
4027 -- because it is a generic actual, so use base type to locate
4028 -- concurrent type.
4030 F_Typ := Base_Type (Etype (F));
4032 if Is_Tagged_Type (F_Typ)
4033 and then (Is_Concurrent_Type (F_Typ)
4034 or else Is_Concurrent_Record_Type (F_Typ))
4035 then
4036 -- If the actual is overloaded, look for an interpretation
4037 -- that has a synchronized type.
4039 if not Is_Overloaded (A) then
4040 A_Typ := Base_Type (Etype (A));
4042 else
4043 declare
4044 Index : Interp_Index;
4045 It : Interp;
4047 begin
4048 Get_First_Interp (A, Index, It);
4049 while Present (It.Typ) loop
4050 if Is_Concurrent_Type (It.Typ)
4051 or else Is_Concurrent_Record_Type (It.Typ)
4052 then
4053 A_Typ := Base_Type (It.Typ);
4054 exit;
4055 end if;
4057 Get_Next_Interp (Index, It);
4058 end loop;
4059 end;
4060 end if;
4062 declare
4063 Full_A_Typ : Entity_Id;
4065 begin
4066 if Present (Full_View (A_Typ)) then
4067 Full_A_Typ := Base_Type (Full_View (A_Typ));
4068 else
4069 Full_A_Typ := A_Typ;
4070 end if;
4072 -- Tagged synchronized type (case 1): the actual is a
4073 -- concurrent type.
4075 if Is_Concurrent_Type (A_Typ)
4076 and then Corresponding_Record_Type (A_Typ) = F_Typ
4077 then
4078 Rewrite (A,
4079 Unchecked_Convert_To
4080 (Corresponding_Record_Type (A_Typ), A));
4081 Resolve (A, Etype (F));
4083 -- Tagged synchronized type (case 2): the formal is a
4084 -- concurrent type.
4086 elsif Ekind (Full_A_Typ) = E_Record_Type
4087 and then Present
4088 (Corresponding_Concurrent_Type (Full_A_Typ))
4089 and then Is_Concurrent_Type (F_Typ)
4090 and then Present (Corresponding_Record_Type (F_Typ))
4091 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4092 then
4093 Resolve (A, Corresponding_Record_Type (F_Typ));
4095 -- Common case
4097 else
4098 Resolve (A, Etype (F));
4099 end if;
4100 end;
4102 -- Not a synchronized operation
4104 else
4105 Resolve (A, Etype (F));
4106 end if;
4107 end if;
4109 A_Typ := Etype (A);
4110 F_Typ := Etype (F);
4112 -- An actual cannot be an untagged formal incomplete type
4114 if Ekind (A_Typ) = E_Incomplete_Type
4115 and then not Is_Tagged_Type (A_Typ)
4116 and then Is_Generic_Type (A_Typ)
4117 then
4118 Error_Msg_N
4119 ("invalid use of untagged formal incomplete type", A);
4120 end if;
4122 if Comes_From_Source (Original_Node (N))
4123 and then Nkind_In (Original_Node (N), N_Function_Call,
4124 N_Procedure_Call_Statement)
4125 then
4126 -- In formal mode, check that actual parameters matching
4127 -- formals of tagged types are objects (or ancestor type
4128 -- conversions of objects), not general expressions.
4130 if Is_Actual_Tagged_Parameter (A) then
4131 if Is_SPARK_05_Object_Reference (A) then
4132 null;
4134 elsif Nkind (A) = N_Type_Conversion then
4135 declare
4136 Operand : constant Node_Id := Expression (A);
4137 Operand_Typ : constant Entity_Id := Etype (Operand);
4138 Target_Typ : constant Entity_Id := A_Typ;
4140 begin
4141 if not Is_SPARK_05_Object_Reference (Operand) then
4142 Check_SPARK_05_Restriction
4143 ("object required", Operand);
4145 -- In formal mode, the only view conversions are those
4146 -- involving ancestor conversion of an extended type.
4148 elsif not
4149 (Is_Tagged_Type (Target_Typ)
4150 and then not Is_Class_Wide_Type (Target_Typ)
4151 and then Is_Tagged_Type (Operand_Typ)
4152 and then not Is_Class_Wide_Type (Operand_Typ)
4153 and then Is_Ancestor (Target_Typ, Operand_Typ))
4154 then
4155 if Ekind_In
4156 (F, E_Out_Parameter, E_In_Out_Parameter)
4157 then
4158 Check_SPARK_05_Restriction
4159 ("ancestor conversion is the only permitted "
4160 & "view conversion", A);
4161 else
4162 Check_SPARK_05_Restriction
4163 ("ancestor conversion required", A);
4164 end if;
4166 else
4167 null;
4168 end if;
4169 end;
4171 else
4172 Check_SPARK_05_Restriction ("object required", A);
4173 end if;
4175 -- In formal mode, the only view conversions are those
4176 -- involving ancestor conversion of an extended type.
4178 elsif Nkind (A) = N_Type_Conversion
4179 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4180 then
4181 Check_SPARK_05_Restriction
4182 ("ancestor conversion is the only permitted view "
4183 & "conversion", A);
4184 end if;
4185 end if;
4187 -- has warnings suppressed, then we reset Never_Set_In_Source for
4188 -- the calling entity. The reason for this is to catch cases like
4189 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4190 -- uses trickery to modify an IN parameter.
4192 if Ekind (F) = E_In_Parameter
4193 and then Is_Entity_Name (A)
4194 and then Present (Entity (A))
4195 and then Ekind (Entity (A)) = E_Variable
4196 and then Has_Warnings_Off (F_Typ)
4197 then
4198 Set_Never_Set_In_Source (Entity (A), False);
4199 end if;
4201 -- Perform error checks for IN and IN OUT parameters
4203 if Ekind (F) /= E_Out_Parameter then
4205 -- Check unset reference. For scalar parameters, it is clearly
4206 -- wrong to pass an uninitialized value as either an IN or
4207 -- IN-OUT parameter. For composites, it is also clearly an
4208 -- error to pass a completely uninitialized value as an IN
4209 -- parameter, but the case of IN OUT is trickier. We prefer
4210 -- not to give a warning here. For example, suppose there is
4211 -- a routine that sets some component of a record to False.
4212 -- It is perfectly reasonable to make this IN-OUT and allow
4213 -- either initialized or uninitialized records to be passed
4214 -- in this case.
4216 -- For partially initialized composite values, we also avoid
4217 -- warnings, since it is quite likely that we are passing a
4218 -- partially initialized value and only the initialized fields
4219 -- will in fact be read in the subprogram.
4221 if Is_Scalar_Type (A_Typ)
4222 or else (Ekind (F) = E_In_Parameter
4223 and then not Is_Partially_Initialized_Type (A_Typ))
4224 then
4225 Check_Unset_Reference (A);
4226 end if;
4228 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4229 -- actual to a nested call, since this constitutes a reading of
4230 -- the parameter, which is not allowed.
4232 if Ada_Version = Ada_83
4233 and then Is_Entity_Name (A)
4234 and then Ekind (Entity (A)) = E_Out_Parameter
4235 then
4236 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4237 end if;
4238 end if;
4240 -- In -gnatd.q mode, forget that a given array is constant when
4241 -- it is passed as an IN parameter to a foreign-convention
4242 -- subprogram. This is in case the subprogram evilly modifies the
4243 -- object. Of course, correct code would use IN OUT.
4245 if Debug_Flag_Dot_Q
4246 and then Ekind (F) = E_In_Parameter
4247 and then Has_Foreign_Convention (Nam)
4248 and then Is_Array_Type (F_Typ)
4249 and then Nkind (A) in N_Has_Entity
4250 and then Present (Entity (A))
4251 then
4252 Set_Is_True_Constant (Entity (A), False);
4253 end if;
4255 -- Case of OUT or IN OUT parameter
4257 if Ekind (F) /= E_In_Parameter then
4259 -- For an Out parameter, check for useless assignment. Note
4260 -- that we can't set Last_Assignment this early, because we may
4261 -- kill current values in Resolve_Call, and that call would
4262 -- clobber the Last_Assignment field.
4264 -- Note: call Warn_On_Useless_Assignment before doing the check
4265 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4266 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4267 -- reflects the last assignment, not this one.
4269 if Ekind (F) = E_Out_Parameter then
4270 if Warn_On_Modified_As_Out_Parameter (F)
4271 and then Is_Entity_Name (A)
4272 and then Present (Entity (A))
4273 and then Comes_From_Source (N)
4274 then
4275 Warn_On_Useless_Assignment (Entity (A), A);
4276 end if;
4277 end if;
4279 -- Validate the form of the actual. Note that the call to
4280 -- Is_OK_Variable_For_Out_Formal generates the required
4281 -- reference in this case.
4283 -- A call to an initialization procedure for an aggregate
4284 -- component may initialize a nested component of a constant
4285 -- designated object. In this context the object is variable.
4287 if not Is_OK_Variable_For_Out_Formal (A)
4288 and then not Is_Init_Proc (Nam)
4289 then
4290 Error_Msg_NE ("actual for& must be a variable", A, F);
4292 if Is_Subprogram (Current_Scope) then
4293 if Is_Invariant_Procedure (Current_Scope)
4294 or else Is_Partial_Invariant_Procedure (Current_Scope)
4295 then
4296 Error_Msg_N
4297 ("function used in invariant cannot modify its "
4298 & "argument", F);
4300 elsif Is_Predicate_Function (Current_Scope) then
4301 Error_Msg_N
4302 ("function used in predicate cannot modify its "
4303 & "argument", F);
4304 end if;
4305 end if;
4306 end if;
4308 -- What's the following about???
4310 if Is_Entity_Name (A) then
4311 Kill_Checks (Entity (A));
4312 else
4313 Kill_All_Checks;
4314 end if;
4315 end if;
4317 if Etype (A) = Any_Type then
4318 Set_Etype (N, Any_Type);
4319 return;
4320 end if;
4322 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4324 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4326 -- Apply predicate tests except in certain special cases. Note
4327 -- that it might be more consistent to apply these only when
4328 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4329 -- for the outbound predicate tests ??? In any case indicate
4330 -- the function being called, for better warnings if the call
4331 -- leads to an infinite recursion.
4333 if Predicate_Tests_On_Arguments (Nam) then
4334 Apply_Predicate_Check (A, F_Typ, Nam);
4335 end if;
4337 -- Apply required constraint checks
4339 -- Gigi looks at the check flag and uses the appropriate types.
4340 -- For now since one flag is used there is an optimization
4341 -- which might not be done in the IN OUT case since Gigi does
4342 -- not do any analysis. More thought required about this ???
4344 -- In fact is this comment obsolete??? doesn't the expander now
4345 -- generate all these tests anyway???
4347 if Is_Scalar_Type (Etype (A)) then
4348 Apply_Scalar_Range_Check (A, F_Typ);
4350 elsif Is_Array_Type (Etype (A)) then
4351 Apply_Length_Check (A, F_Typ);
4353 elsif Is_Record_Type (F_Typ)
4354 and then Has_Discriminants (F_Typ)
4355 and then Is_Constrained (F_Typ)
4356 and then (not Is_Derived_Type (F_Typ)
4357 or else Comes_From_Source (Nam))
4358 then
4359 Apply_Discriminant_Check (A, F_Typ);
4361 -- For view conversions of a discriminated object, apply
4362 -- check to object itself, the conversion alreay has the
4363 -- proper type.
4365 if Nkind (A) = N_Type_Conversion
4366 and then Is_Constrained (Etype (Expression (A)))
4367 then
4368 Apply_Discriminant_Check (Expression (A), F_Typ);
4369 end if;
4371 elsif Is_Access_Type (F_Typ)
4372 and then Is_Array_Type (Designated_Type (F_Typ))
4373 and then Is_Constrained (Designated_Type (F_Typ))
4374 then
4375 Apply_Length_Check (A, F_Typ);
4377 elsif Is_Access_Type (F_Typ)
4378 and then Has_Discriminants (Designated_Type (F_Typ))
4379 and then Is_Constrained (Designated_Type (F_Typ))
4380 then
4381 Apply_Discriminant_Check (A, F_Typ);
4383 else
4384 Apply_Range_Check (A, F_Typ);
4385 end if;
4387 -- Ada 2005 (AI-231): Note that the controlling parameter case
4388 -- already existed in Ada 95, which is partially checked
4389 -- elsewhere (see Checks), and we don't want the warning
4390 -- message to differ.
4392 if Is_Access_Type (F_Typ)
4393 and then Can_Never_Be_Null (F_Typ)
4394 and then Known_Null (A)
4395 then
4396 if Is_Controlling_Formal (F) then
4397 Apply_Compile_Time_Constraint_Error
4398 (N => A,
4399 Msg => "null value not allowed here??",
4400 Reason => CE_Access_Check_Failed);
4402 elsif Ada_Version >= Ada_2005 then
4403 Apply_Compile_Time_Constraint_Error
4404 (N => A,
4405 Msg => "(Ada 2005) null not allowed in "
4406 & "null-excluding formal??",
4407 Reason => CE_Null_Not_Allowed);
4408 end if;
4409 end if;
4410 end if;
4412 -- Checks for OUT parameters and IN OUT parameters
4414 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4416 -- If there is a type conversion, make sure the return value
4417 -- meets the constraints of the variable before the conversion.
4419 if Nkind (A) = N_Type_Conversion then
4420 if Is_Scalar_Type (A_Typ) then
4421 Apply_Scalar_Range_Check
4422 (Expression (A), Etype (Expression (A)), A_Typ);
4424 -- In addition, the returned value of the parameter must
4425 -- satisfy the bounds of the object type (see comment
4426 -- below).
4428 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4430 else
4431 Apply_Range_Check
4432 (Expression (A), Etype (Expression (A)), A_Typ);
4433 end if;
4435 -- If no conversion, apply scalar range checks and length check
4436 -- based on the subtype of the actual (NOT that of the formal).
4437 -- This indicates that the check takes place on return from the
4438 -- call. During expansion the required constraint checks are
4439 -- inserted. In GNATprove mode, in the absence of expansion,
4440 -- the flag indicates that the returned value is valid.
4442 else
4443 if Is_Scalar_Type (F_Typ) then
4444 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4446 elsif Is_Array_Type (F_Typ)
4447 and then Ekind (F) = E_Out_Parameter
4448 then
4449 Apply_Length_Check (A, F_Typ);
4450 else
4451 Apply_Range_Check (A, A_Typ, F_Typ);
4452 end if;
4453 end if;
4455 -- Note: we do not apply the predicate checks for the case of
4456 -- OUT and IN OUT parameters. They are instead applied in the
4457 -- Expand_Actuals routine in Exp_Ch6.
4458 end if;
4460 -- An actual associated with an access parameter is implicitly
4461 -- converted to the anonymous access type of the formal and must
4462 -- satisfy the legality checks for access conversions.
4464 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4465 if not Valid_Conversion (A, F_Typ, A) then
4466 Error_Msg_N
4467 ("invalid implicit conversion for access parameter", A);
4468 end if;
4470 -- If the actual is an access selected component of a variable,
4471 -- the call may modify its designated object. It is reasonable
4472 -- to treat this as a potential modification of the enclosing
4473 -- record, to prevent spurious warnings that it should be
4474 -- declared as a constant, because intuitively programmers
4475 -- regard the designated subcomponent as part of the record.
4477 if Nkind (A) = N_Selected_Component
4478 and then Is_Entity_Name (Prefix (A))
4479 and then not Is_Constant_Object (Entity (Prefix (A)))
4480 then
4481 Note_Possible_Modification (A, Sure => False);
4482 end if;
4483 end if;
4485 -- Check bad case of atomic/volatile argument (RM C.6(12))
4487 if Is_By_Reference_Type (Etype (F))
4488 and then Comes_From_Source (N)
4489 then
4490 if Is_Atomic_Object (A)
4491 and then not Is_Atomic (Etype (F))
4492 then
4493 Error_Msg_NE
4494 ("cannot pass atomic argument to non-atomic formal&",
4495 A, F);
4497 elsif Is_Volatile_Object (A)
4498 and then not Is_Volatile (Etype (F))
4499 then
4500 Error_Msg_NE
4501 ("cannot pass volatile argument to non-volatile formal&",
4502 A, F);
4503 end if;
4504 end if;
4506 -- Check that subprograms don't have improper controlling
4507 -- arguments (RM 3.9.2 (9)).
4509 -- A primitive operation may have an access parameter of an
4510 -- incomplete tagged type, but a dispatching call is illegal
4511 -- if the type is still incomplete.
4513 if Is_Controlling_Formal (F) then
4514 Set_Is_Controlling_Actual (A);
4516 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4517 declare
4518 Desig : constant Entity_Id := Designated_Type (Etype (F));
4519 begin
4520 if Ekind (Desig) = E_Incomplete_Type
4521 and then No (Full_View (Desig))
4522 and then No (Non_Limited_View (Desig))
4523 then
4524 Error_Msg_NE
4525 ("premature use of incomplete type& "
4526 & "in dispatching call", A, Desig);
4527 end if;
4528 end;
4529 end if;
4531 elsif Nkind (A) = N_Explicit_Dereference then
4532 Validate_Remote_Access_To_Class_Wide_Type (A);
4533 end if;
4535 -- Apply legality rule 3.9.2 (9/1)
4537 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4538 and then not Is_Class_Wide_Type (F_Typ)
4539 and then not Is_Controlling_Formal (F)
4540 and then not In_Instance
4541 then
4542 Error_Msg_N ("class-wide argument not allowed here!", A);
4544 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4545 Error_Msg_Node_2 := F_Typ;
4546 Error_Msg_NE
4547 ("& is not a dispatching operation of &!", A, Nam);
4548 end if;
4550 -- Apply the checks described in 3.10.2(27): if the context is a
4551 -- specific access-to-object, the actual cannot be class-wide.
4552 -- Use base type to exclude access_to_subprogram cases.
4554 elsif Is_Access_Type (A_Typ)
4555 and then Is_Access_Type (F_Typ)
4556 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4557 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4558 or else (Nkind (A) = N_Attribute_Reference
4559 and then
4560 Is_Class_Wide_Type (Etype (Prefix (A)))))
4561 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4562 and then not Is_Controlling_Formal (F)
4564 -- Disable these checks for call to imported C++ subprograms
4566 and then not
4567 (Is_Entity_Name (Name (N))
4568 and then Is_Imported (Entity (Name (N)))
4569 and then Convention (Entity (Name (N))) = Convention_CPP)
4570 then
4571 Error_Msg_N
4572 ("access to class-wide argument not allowed here!", A);
4574 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4575 Error_Msg_Node_2 := Designated_Type (F_Typ);
4576 Error_Msg_NE
4577 ("& is not a dispatching operation of &!", A, Nam);
4578 end if;
4579 end if;
4581 Check_Aliased_Parameter;
4583 Eval_Actual (A);
4585 -- If it is a named association, treat the selector_name as a
4586 -- proper identifier, and mark the corresponding entity.
4588 if Nkind (Parent (A)) = N_Parameter_Association
4590 -- Ignore reference in SPARK mode, as it refers to an entity not
4591 -- in scope at the point of reference, so the reference should
4592 -- be ignored for computing effects of subprograms.
4594 and then not GNATprove_Mode
4595 then
4596 -- If subprogram is overridden, use name of formal that
4597 -- is being called.
4599 if Present (Real_Subp) then
4600 Set_Entity (Selector_Name (Parent (A)), Real_F);
4601 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4603 else
4604 Set_Entity (Selector_Name (Parent (A)), F);
4605 Generate_Reference (F, Selector_Name (Parent (A)));
4606 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4607 Generate_Reference (F_Typ, N, ' ');
4608 end if;
4609 end if;
4611 Prev := A;
4613 if Ekind (F) /= E_Out_Parameter then
4614 Check_Unset_Reference (A);
4615 end if;
4617 -- The following checks are only relevant when SPARK_Mode is on as
4618 -- they are not standard Ada legality rule. Internally generated
4619 -- temporaries are ignored.
4621 if SPARK_Mode = On and then Comes_From_Source (A) then
4623 -- An effectively volatile object may act as an actual when the
4624 -- corresponding formal is of a non-scalar effectively volatile
4625 -- type (SPARK RM 7.1.3(11)).
4627 if not Is_Scalar_Type (Etype (F))
4628 and then Is_Effectively_Volatile (Etype (F))
4629 then
4630 null;
4632 -- An effectively volatile object may act as an actual in a
4633 -- call to an instance of Unchecked_Conversion.
4634 -- (SPARK RM 7.1.3(11)).
4636 elsif Is_Unchecked_Conversion_Instance (Nam) then
4637 null;
4639 -- The actual denotes an object
4641 elsif Is_Effectively_Volatile_Object (A) then
4642 Error_Msg_N
4643 ("volatile object cannot act as actual in a call (SPARK "
4644 & "RM 7.1.3(11))", A);
4646 -- Otherwise the actual denotes an expression. Inspect the
4647 -- expression and flag each effectively volatile object with
4648 -- enabled property Async_Writers or Effective_Reads as illegal
4649 -- because it apprears within an interfering context. Note that
4650 -- this is usually done in Resolve_Entity_Name, but when the
4651 -- effectively volatile object appears as an actual in a call,
4652 -- the call must be resolved first.
4654 else
4655 Flag_Effectively_Volatile_Objects (A);
4656 end if;
4658 -- An effectively volatile variable cannot act as an actual
4659 -- parameter in a procedure call when the variable has enabled
4660 -- property Effective_Reads and the corresponding formal is of
4661 -- mode IN (SPARK RM 7.1.3(10)).
4663 if Ekind (Nam) = E_Procedure
4664 and then Ekind (F) = E_In_Parameter
4665 and then Is_Entity_Name (A)
4666 then
4667 A_Id := Entity (A);
4669 if Ekind (A_Id) = E_Variable
4670 and then Is_Effectively_Volatile (Etype (A_Id))
4671 and then Effective_Reads_Enabled (A_Id)
4672 then
4673 Error_Msg_NE
4674 ("effectively volatile variable & cannot appear as "
4675 & "actual in procedure call", A, A_Id);
4677 Error_Msg_Name_1 := Name_Effective_Reads;
4678 Error_Msg_N ("\\variable has enabled property %", A);
4679 Error_Msg_N ("\\corresponding formal has mode IN", A);
4680 end if;
4681 end if;
4682 end if;
4684 -- A formal parameter of a specific tagged type whose related
4685 -- subprogram is subject to pragma Extensions_Visible with value
4686 -- "False" cannot act as an actual in a subprogram with value
4687 -- "True" (SPARK RM 6.1.7(3)).
4689 if Is_EVF_Expression (A)
4690 and then Extensions_Visible_Status (Nam) =
4691 Extensions_Visible_True
4692 then
4693 Error_Msg_N
4694 ("formal parameter cannot act as actual parameter when "
4695 & "Extensions_Visible is False", A);
4696 Error_Msg_NE
4697 ("\subprogram & has Extensions_Visible True", A, Nam);
4698 end if;
4700 -- The actual parameter of a Ghost subprogram whose formal is of
4701 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4703 if Comes_From_Source (Nam)
4704 and then Is_Ghost_Entity (Nam)
4705 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4706 and then Is_Entity_Name (A)
4707 and then Present (Entity (A))
4708 and then not Is_Ghost_Entity (Entity (A))
4709 then
4710 Error_Msg_NE
4711 ("non-ghost variable & cannot appear as actual in call to "
4712 & "ghost procedure", A, Entity (A));
4714 if Ekind (F) = E_In_Out_Parameter then
4715 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4716 else
4717 Error_Msg_N ("\corresponding formal has mode OUT", A);
4718 end if;
4719 end if;
4721 Next_Actual (A);
4723 -- Case where actual is not present
4725 else
4726 Insert_Default;
4727 end if;
4729 Next_Formal (F);
4731 if Present (Real_Subp) then
4732 Next_Formal (Real_F);
4733 end if;
4734 end loop;
4735 end Resolve_Actuals;
4737 -----------------------
4738 -- Resolve_Allocator --
4739 -----------------------
4741 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4742 Desig_T : constant Entity_Id := Designated_Type (Typ);
4743 E : constant Node_Id := Expression (N);
4744 Subtyp : Entity_Id;
4745 Discrim : Entity_Id;
4746 Constr : Node_Id;
4747 Aggr : Node_Id;
4748 Assoc : Node_Id := Empty;
4749 Disc_Exp : Node_Id;
4751 procedure Check_Allocator_Discrim_Accessibility
4752 (Disc_Exp : Node_Id;
4753 Alloc_Typ : Entity_Id);
4754 -- Check that accessibility level associated with an access discriminant
4755 -- initialized in an allocator by the expression Disc_Exp is not deeper
4756 -- than the level of the allocator type Alloc_Typ. An error message is
4757 -- issued if this condition is violated. Specialized checks are done for
4758 -- the cases of a constraint expression which is an access attribute or
4759 -- an access discriminant.
4761 function In_Dispatching_Context return Boolean;
4762 -- If the allocator is an actual in a call, it is allowed to be class-
4763 -- wide when the context is not because it is a controlling actual.
4765 -------------------------------------------
4766 -- Check_Allocator_Discrim_Accessibility --
4767 -------------------------------------------
4769 procedure Check_Allocator_Discrim_Accessibility
4770 (Disc_Exp : Node_Id;
4771 Alloc_Typ : Entity_Id)
4773 begin
4774 if Type_Access_Level (Etype (Disc_Exp)) >
4775 Deepest_Type_Access_Level (Alloc_Typ)
4776 then
4777 Error_Msg_N
4778 ("operand type has deeper level than allocator type", Disc_Exp);
4780 -- When the expression is an Access attribute the level of the prefix
4781 -- object must not be deeper than that of the allocator's type.
4783 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4784 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4785 Attribute_Access
4786 and then Object_Access_Level (Prefix (Disc_Exp)) >
4787 Deepest_Type_Access_Level (Alloc_Typ)
4788 then
4789 Error_Msg_N
4790 ("prefix of attribute has deeper level than allocator type",
4791 Disc_Exp);
4793 -- When the expression is an access discriminant the check is against
4794 -- the level of the prefix object.
4796 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4797 and then Nkind (Disc_Exp) = N_Selected_Component
4798 and then Object_Access_Level (Prefix (Disc_Exp)) >
4799 Deepest_Type_Access_Level (Alloc_Typ)
4800 then
4801 Error_Msg_N
4802 ("access discriminant has deeper level than allocator type",
4803 Disc_Exp);
4805 -- All other cases are legal
4807 else
4808 null;
4809 end if;
4810 end Check_Allocator_Discrim_Accessibility;
4812 ----------------------------
4813 -- In_Dispatching_Context --
4814 ----------------------------
4816 function In_Dispatching_Context return Boolean is
4817 Par : constant Node_Id := Parent (N);
4819 begin
4820 return Nkind (Par) in N_Subprogram_Call
4821 and then Is_Entity_Name (Name (Par))
4822 and then Is_Dispatching_Operation (Entity (Name (Par)));
4823 end In_Dispatching_Context;
4825 -- Start of processing for Resolve_Allocator
4827 begin
4828 -- Replace general access with specific type
4830 if Ekind (Etype (N)) = E_Allocator_Type then
4831 Set_Etype (N, Base_Type (Typ));
4832 end if;
4834 if Is_Abstract_Type (Typ) then
4835 Error_Msg_N ("type of allocator cannot be abstract", N);
4836 end if;
4838 -- For qualified expression, resolve the expression using the given
4839 -- subtype (nothing to do for type mark, subtype indication)
4841 if Nkind (E) = N_Qualified_Expression then
4842 if Is_Class_Wide_Type (Etype (E))
4843 and then not Is_Class_Wide_Type (Desig_T)
4844 and then not In_Dispatching_Context
4845 then
4846 Error_Msg_N
4847 ("class-wide allocator not allowed for this access type", N);
4848 end if;
4850 Resolve (Expression (E), Etype (E));
4851 Check_Non_Static_Context (Expression (E));
4852 Check_Unset_Reference (Expression (E));
4854 -- Allocators generated by the build-in-place expansion mechanism
4855 -- are explicitly marked as coming from source but do not need to be
4856 -- checked for limited initialization. To exclude this case, ensure
4857 -- that the parent of the allocator is a source node.
4858 -- The return statement constructed for an Expression_Function does
4859 -- not come from source but requires a limited check.
4861 if Is_Limited_Type (Etype (E))
4862 and then Comes_From_Source (N)
4863 and then
4864 (Comes_From_Source (Parent (N))
4865 or else
4866 (Ekind (Current_Scope) = E_Function
4867 and then Nkind (Original_Node (Unit_Declaration_Node
4868 (Current_Scope))) = N_Expression_Function))
4869 and then not In_Instance_Body
4870 then
4871 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4872 if Nkind (Parent (N)) = N_Assignment_Statement then
4873 Error_Msg_N
4874 ("illegal expression for initialized allocator of a "
4875 & "limited type (RM 7.5 (2.7/2))", N);
4876 else
4877 Error_Msg_N
4878 ("initialization not allowed for limited types", N);
4879 end if;
4881 Explain_Limited_Type (Etype (E), N);
4882 end if;
4883 end if;
4885 -- A qualified expression requires an exact match of the type. Class-
4886 -- wide matching is not allowed.
4888 if (Is_Class_Wide_Type (Etype (Expression (E)))
4889 or else Is_Class_Wide_Type (Etype (E)))
4890 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4891 then
4892 Wrong_Type (Expression (E), Etype (E));
4893 end if;
4895 -- Calls to build-in-place functions are not currently supported in
4896 -- allocators for access types associated with a simple storage pool.
4897 -- Supporting such allocators may require passing additional implicit
4898 -- parameters to build-in-place functions (or a significant revision
4899 -- of the current b-i-p implementation to unify the handling for
4900 -- multiple kinds of storage pools). ???
4902 if Is_Limited_View (Desig_T)
4903 and then Nkind (Expression (E)) = N_Function_Call
4904 then
4905 declare
4906 Pool : constant Entity_Id :=
4907 Associated_Storage_Pool (Root_Type (Typ));
4908 begin
4909 if Present (Pool)
4910 and then
4911 Present (Get_Rep_Pragma
4912 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4913 then
4914 Error_Msg_N
4915 ("limited function calls not yet supported in simple "
4916 & "storage pool allocators", Expression (E));
4917 end if;
4918 end;
4919 end if;
4921 -- A special accessibility check is needed for allocators that
4922 -- constrain access discriminants. The level of the type of the
4923 -- expression used to constrain an access discriminant cannot be
4924 -- deeper than the type of the allocator (in contrast to access
4925 -- parameters, where the level of the actual can be arbitrary).
4927 -- We can't use Valid_Conversion to perform this check because in
4928 -- general the type of the allocator is unrelated to the type of
4929 -- the access discriminant.
4931 if Ekind (Typ) /= E_Anonymous_Access_Type
4932 or else Is_Local_Anonymous_Access (Typ)
4933 then
4934 Subtyp := Entity (Subtype_Mark (E));
4936 Aggr := Original_Node (Expression (E));
4938 if Has_Discriminants (Subtyp)
4939 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4940 then
4941 Discrim := First_Discriminant (Base_Type (Subtyp));
4943 -- Get the first component expression of the aggregate
4945 if Present (Expressions (Aggr)) then
4946 Disc_Exp := First (Expressions (Aggr));
4948 elsif Present (Component_Associations (Aggr)) then
4949 Assoc := First (Component_Associations (Aggr));
4951 if Present (Assoc) then
4952 Disc_Exp := Expression (Assoc);
4953 else
4954 Disc_Exp := Empty;
4955 end if;
4957 else
4958 Disc_Exp := Empty;
4959 end if;
4961 while Present (Discrim) and then Present (Disc_Exp) loop
4962 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4963 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4964 end if;
4966 Next_Discriminant (Discrim);
4968 if Present (Discrim) then
4969 if Present (Assoc) then
4970 Next (Assoc);
4971 Disc_Exp := Expression (Assoc);
4973 elsif Present (Next (Disc_Exp)) then
4974 Next (Disc_Exp);
4976 else
4977 Assoc := First (Component_Associations (Aggr));
4979 if Present (Assoc) then
4980 Disc_Exp := Expression (Assoc);
4981 else
4982 Disc_Exp := Empty;
4983 end if;
4984 end if;
4985 end if;
4986 end loop;
4987 end if;
4988 end if;
4990 -- For a subtype mark or subtype indication, freeze the subtype
4992 else
4993 Freeze_Expression (E);
4995 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4996 Error_Msg_N
4997 ("initialization required for access-to-constant allocator", N);
4998 end if;
5000 -- A special accessibility check is needed for allocators that
5001 -- constrain access discriminants. The level of the type of the
5002 -- expression used to constrain an access discriminant cannot be
5003 -- deeper than the type of the allocator (in contrast to access
5004 -- parameters, where the level of the actual can be arbitrary).
5005 -- We can't use Valid_Conversion to perform this check because
5006 -- in general the type of the allocator is unrelated to the type
5007 -- of the access discriminant.
5009 if Nkind (Original_Node (E)) = N_Subtype_Indication
5010 and then (Ekind (Typ) /= E_Anonymous_Access_Type
5011 or else Is_Local_Anonymous_Access (Typ))
5012 then
5013 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
5015 if Has_Discriminants (Subtyp) then
5016 Discrim := First_Discriminant (Base_Type (Subtyp));
5017 Constr := First (Constraints (Constraint (Original_Node (E))));
5018 while Present (Discrim) and then Present (Constr) loop
5019 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
5020 if Nkind (Constr) = N_Discriminant_Association then
5021 Disc_Exp := Original_Node (Expression (Constr));
5022 else
5023 Disc_Exp := Original_Node (Constr);
5024 end if;
5026 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
5027 end if;
5029 Next_Discriminant (Discrim);
5030 Next (Constr);
5031 end loop;
5032 end if;
5033 end if;
5034 end if;
5036 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
5037 -- check that the level of the type of the created object is not deeper
5038 -- than the level of the allocator's access type, since extensions can
5039 -- now occur at deeper levels than their ancestor types. This is a
5040 -- static accessibility level check; a run-time check is also needed in
5041 -- the case of an initialized allocator with a class-wide argument (see
5042 -- Expand_Allocator_Expression).
5044 if Ada_Version >= Ada_2005
5045 and then Is_Class_Wide_Type (Desig_T)
5046 then
5047 declare
5048 Exp_Typ : Entity_Id;
5050 begin
5051 if Nkind (E) = N_Qualified_Expression then
5052 Exp_Typ := Etype (E);
5053 elsif Nkind (E) = N_Subtype_Indication then
5054 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
5055 else
5056 Exp_Typ := Entity (E);
5057 end if;
5059 if Type_Access_Level (Exp_Typ) >
5060 Deepest_Type_Access_Level (Typ)
5061 then
5062 if In_Instance_Body then
5063 Error_Msg_Warn := SPARK_Mode /= On;
5064 Error_Msg_N
5065 ("type in allocator has deeper level than "
5066 & "designated class-wide type<<", E);
5067 Error_Msg_N ("\Program_Error [<<", E);
5068 Rewrite (N,
5069 Make_Raise_Program_Error (Sloc (N),
5070 Reason => PE_Accessibility_Check_Failed));
5071 Set_Etype (N, Typ);
5073 -- Do not apply Ada 2005 accessibility checks on a class-wide
5074 -- allocator if the type given in the allocator is a formal
5075 -- type. A run-time check will be performed in the instance.
5077 elsif not Is_Generic_Type (Exp_Typ) then
5078 Error_Msg_N ("type in allocator has deeper level than "
5079 & "designated class-wide type", E);
5080 end if;
5081 end if;
5082 end;
5083 end if;
5085 -- Check for allocation from an empty storage pool
5087 if No_Pool_Assigned (Typ) then
5088 Error_Msg_N ("allocation from empty storage pool!", N);
5090 -- If the context is an unchecked conversion, as may happen within an
5091 -- inlined subprogram, the allocator is being resolved with its own
5092 -- anonymous type. In that case, if the target type has a specific
5093 -- storage pool, it must be inherited explicitly by the allocator type.
5095 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5096 and then No (Associated_Storage_Pool (Typ))
5097 then
5098 Set_Associated_Storage_Pool
5099 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5100 end if;
5102 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5103 Check_Restriction (No_Anonymous_Allocators, N);
5104 end if;
5106 -- Check that an allocator with task parts isn't for a nested access
5107 -- type when restriction No_Task_Hierarchy applies.
5109 if not Is_Library_Level_Entity (Base_Type (Typ))
5110 and then Has_Task (Base_Type (Desig_T))
5111 then
5112 Check_Restriction (No_Task_Hierarchy, N);
5113 end if;
5115 -- An illegal allocator may be rewritten as a raise Program_Error
5116 -- statement.
5118 if Nkind (N) = N_Allocator then
5120 -- An anonymous access discriminant is the definition of a
5121 -- coextension.
5123 if Ekind (Typ) = E_Anonymous_Access_Type
5124 and then Nkind (Associated_Node_For_Itype (Typ)) =
5125 N_Discriminant_Specification
5126 then
5127 declare
5128 Discr : constant Entity_Id :=
5129 Defining_Identifier (Associated_Node_For_Itype (Typ));
5131 begin
5132 Check_Restriction (No_Coextensions, N);
5134 -- Ada 2012 AI05-0052: If the designated type of the allocator
5135 -- is limited, then the allocator shall not be used to define
5136 -- the value of an access discriminant unless the discriminated
5137 -- type is immutably limited.
5139 if Ada_Version >= Ada_2012
5140 and then Is_Limited_Type (Desig_T)
5141 and then not Is_Limited_View (Scope (Discr))
5142 then
5143 Error_Msg_N
5144 ("only immutably limited types can have anonymous "
5145 & "access discriminants designating a limited type", N);
5146 end if;
5147 end;
5149 -- Avoid marking an allocator as a dynamic coextension if it is
5150 -- within a static construct.
5152 if not Is_Static_Coextension (N) then
5153 Set_Is_Dynamic_Coextension (N);
5155 -- ??? We currently do not handle finalization and deallocation
5156 -- of coextensions properly so let's at least warn the user
5157 -- about it.
5159 if Is_Controlled_Active (Desig_T) then
5160 if Is_Controlled_Active
5161 (Defining_Identifier
5162 (Parent (Associated_Node_For_Itype (Typ))))
5163 then
5164 Error_Msg_N
5165 ("??coextension will not be finalized when its "
5166 & "associated owner is finalized", N);
5167 else
5168 Error_Msg_N
5169 ("??coextension will not be finalized when its "
5170 & "associated owner is deallocated", N);
5171 end if;
5172 else
5173 if Is_Controlled_Active
5174 (Defining_Identifier
5175 (Parent (Associated_Node_For_Itype (Typ))))
5176 then
5177 Error_Msg_N
5178 ("??coextension will not be deallocated when "
5179 & "its associated owner is finalized", N);
5180 else
5181 Error_Msg_N
5182 ("??coextension will not be deallocated when "
5183 & "its associated owner is deallocated", N);
5184 end if;
5185 end if;
5186 end if;
5188 -- Cleanup for potential static coextensions
5190 else
5191 Set_Is_Dynamic_Coextension (N, False);
5192 Set_Is_Static_Coextension (N, False);
5194 -- ??? It seems we also do not properly finalize anonymous
5195 -- access-to-controlled objects within their declared scope and
5196 -- instead finalize them with their associated unit. Warn the
5197 -- user about it here.
5199 if Ekind (Typ) = E_Anonymous_Access_Type
5200 and then Is_Controlled_Active (Desig_T)
5201 then
5202 Error_Msg_N
5203 ("??anonymous access-to-controlled object will be finalized "
5204 & "when its enclosing unit goes out of scope", N);
5205 end if;
5206 end if;
5207 end if;
5209 -- Report a simple error: if the designated object is a local task,
5210 -- its body has not been seen yet, and its activation will fail an
5211 -- elaboration check.
5213 if Is_Task_Type (Desig_T)
5214 and then Scope (Base_Type (Desig_T)) = Current_Scope
5215 and then Is_Compilation_Unit (Current_Scope)
5216 and then Ekind (Current_Scope) = E_Package
5217 and then not In_Package_Body (Current_Scope)
5218 then
5219 Error_Msg_Warn := SPARK_Mode /= On;
5220 Error_Msg_N ("cannot activate task before body seen<<", N);
5221 Error_Msg_N ("\Program_Error [<<", N);
5222 end if;
5224 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5225 -- type with a task component on a subpool. This action must raise
5226 -- Program_Error at runtime.
5228 if Ada_Version >= Ada_2012
5229 and then Nkind (N) = N_Allocator
5230 and then Present (Subpool_Handle_Name (N))
5231 and then Has_Task (Desig_T)
5232 then
5233 Error_Msg_Warn := SPARK_Mode /= On;
5234 Error_Msg_N ("cannot allocate task on subpool<<", N);
5235 Error_Msg_N ("\Program_Error [<<", N);
5237 Rewrite (N,
5238 Make_Raise_Program_Error (Sloc (N),
5239 Reason => PE_Explicit_Raise));
5240 Set_Etype (N, Typ);
5241 end if;
5242 end Resolve_Allocator;
5244 ---------------------------
5245 -- Resolve_Arithmetic_Op --
5246 ---------------------------
5248 -- Used for resolving all arithmetic operators except exponentiation
5250 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5251 L : constant Node_Id := Left_Opnd (N);
5252 R : constant Node_Id := Right_Opnd (N);
5253 TL : constant Entity_Id := Base_Type (Etype (L));
5254 TR : constant Entity_Id := Base_Type (Etype (R));
5255 T : Entity_Id;
5256 Rop : Node_Id;
5258 B_Typ : constant Entity_Id := Base_Type (Typ);
5259 -- We do the resolution using the base type, because intermediate values
5260 -- in expressions always are of the base type, not a subtype of it.
5262 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5263 -- Returns True if N is in a context that expects "any real type"
5265 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5266 -- Return True iff given type is Integer or universal real/integer
5268 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5269 -- Choose type of integer literal in fixed-point operation to conform
5270 -- to available fixed-point type. T is the type of the other operand,
5271 -- which is needed to determine the expected type of N.
5273 procedure Set_Operand_Type (N : Node_Id);
5274 -- Set operand type to T if universal
5276 -------------------------------
5277 -- Expected_Type_Is_Any_Real --
5278 -------------------------------
5280 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5281 begin
5282 -- N is the expression after "delta" in a fixed_point_definition;
5283 -- see RM-3.5.9(6):
5285 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5286 N_Decimal_Fixed_Point_Definition,
5288 -- N is one of the bounds in a real_range_specification;
5289 -- see RM-3.5.7(5):
5291 N_Real_Range_Specification,
5293 -- N is the expression of a delta_constraint;
5294 -- see RM-J.3(3):
5296 N_Delta_Constraint);
5297 end Expected_Type_Is_Any_Real;
5299 -----------------------------
5300 -- Is_Integer_Or_Universal --
5301 -----------------------------
5303 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5304 T : Entity_Id;
5305 Index : Interp_Index;
5306 It : Interp;
5308 begin
5309 if not Is_Overloaded (N) then
5310 T := Etype (N);
5311 return Base_Type (T) = Base_Type (Standard_Integer)
5312 or else T = Universal_Integer
5313 or else T = Universal_Real;
5314 else
5315 Get_First_Interp (N, Index, It);
5316 while Present (It.Typ) loop
5317 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5318 or else It.Typ = Universal_Integer
5319 or else It.Typ = Universal_Real
5320 then
5321 return True;
5322 end if;
5324 Get_Next_Interp (Index, It);
5325 end loop;
5326 end if;
5328 return False;
5329 end Is_Integer_Or_Universal;
5331 ----------------------------
5332 -- Set_Mixed_Mode_Operand --
5333 ----------------------------
5335 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5336 Index : Interp_Index;
5337 It : Interp;
5339 begin
5340 if Universal_Interpretation (N) = Universal_Integer then
5342 -- A universal integer literal is resolved as standard integer
5343 -- except in the case of a fixed-point result, where we leave it
5344 -- as universal (to be handled by Exp_Fixd later on)
5346 if Is_Fixed_Point_Type (T) then
5347 Resolve (N, Universal_Integer);
5348 else
5349 Resolve (N, Standard_Integer);
5350 end if;
5352 elsif Universal_Interpretation (N) = Universal_Real
5353 and then (T = Base_Type (Standard_Integer)
5354 or else T = Universal_Integer
5355 or else T = Universal_Real)
5356 then
5357 -- A universal real can appear in a fixed-type context. We resolve
5358 -- the literal with that context, even though this might raise an
5359 -- exception prematurely (the other operand may be zero).
5361 Resolve (N, B_Typ);
5363 elsif Etype (N) = Base_Type (Standard_Integer)
5364 and then T = Universal_Real
5365 and then Is_Overloaded (N)
5366 then
5367 -- Integer arg in mixed-mode operation. Resolve with universal
5368 -- type, in case preference rule must be applied.
5370 Resolve (N, Universal_Integer);
5372 elsif Etype (N) = T
5373 and then B_Typ /= Universal_Fixed
5374 then
5375 -- Not a mixed-mode operation, resolve with context
5377 Resolve (N, B_Typ);
5379 elsif Etype (N) = Any_Fixed then
5381 -- N may itself be a mixed-mode operation, so use context type
5383 Resolve (N, B_Typ);
5385 elsif Is_Fixed_Point_Type (T)
5386 and then B_Typ = Universal_Fixed
5387 and then Is_Overloaded (N)
5388 then
5389 -- Must be (fixed * fixed) operation, operand must have one
5390 -- compatible interpretation.
5392 Resolve (N, Any_Fixed);
5394 elsif Is_Fixed_Point_Type (B_Typ)
5395 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5396 and then Is_Overloaded (N)
5397 then
5398 -- C * F(X) in a fixed context, where C is a real literal or a
5399 -- fixed-point expression. F must have either a fixed type
5400 -- interpretation or an integer interpretation, but not both.
5402 Get_First_Interp (N, Index, It);
5403 while Present (It.Typ) loop
5404 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5405 if Analyzed (N) then
5406 Error_Msg_N ("ambiguous operand in fixed operation", N);
5407 else
5408 Resolve (N, Standard_Integer);
5409 end if;
5411 elsif Is_Fixed_Point_Type (It.Typ) then
5412 if Analyzed (N) then
5413 Error_Msg_N ("ambiguous operand in fixed operation", N);
5414 else
5415 Resolve (N, It.Typ);
5416 end if;
5417 end if;
5419 Get_Next_Interp (Index, It);
5420 end loop;
5422 -- Reanalyze the literal with the fixed type of the context. If
5423 -- context is Universal_Fixed, we are within a conversion, leave
5424 -- the literal as a universal real because there is no usable
5425 -- fixed type, and the target of the conversion plays no role in
5426 -- the resolution.
5428 declare
5429 Op2 : Node_Id;
5430 T2 : Entity_Id;
5432 begin
5433 if N = L then
5434 Op2 := R;
5435 else
5436 Op2 := L;
5437 end if;
5439 if B_Typ = Universal_Fixed
5440 and then Nkind (Op2) = N_Real_Literal
5441 then
5442 T2 := Universal_Real;
5443 else
5444 T2 := B_Typ;
5445 end if;
5447 Set_Analyzed (Op2, False);
5448 Resolve (Op2, T2);
5449 end;
5451 -- A universal real conditional expression can appear in a fixed-type
5452 -- context and must be resolved with that context to facilitate the
5453 -- code generation to the backend.
5455 elsif Nkind_In (N, N_Case_Expression, N_If_Expression)
5456 and then Etype (N) = Universal_Real
5457 and then Is_Fixed_Point_Type (B_Typ)
5458 then
5459 Resolve (N, B_Typ);
5461 else
5462 Resolve (N);
5463 end if;
5464 end Set_Mixed_Mode_Operand;
5466 ----------------------
5467 -- Set_Operand_Type --
5468 ----------------------
5470 procedure Set_Operand_Type (N : Node_Id) is
5471 begin
5472 if Etype (N) = Universal_Integer
5473 or else Etype (N) = Universal_Real
5474 then
5475 Set_Etype (N, T);
5476 end if;
5477 end Set_Operand_Type;
5479 -- Start of processing for Resolve_Arithmetic_Op
5481 begin
5482 if Comes_From_Source (N)
5483 and then Ekind (Entity (N)) = E_Function
5484 and then Is_Imported (Entity (N))
5485 and then Is_Intrinsic_Subprogram (Entity (N))
5486 then
5487 Resolve_Intrinsic_Operator (N, Typ);
5488 return;
5490 -- Special-case for mixed-mode universal expressions or fixed point type
5491 -- operation: each argument is resolved separately. The same treatment
5492 -- is required if one of the operands of a fixed point operation is
5493 -- universal real, since in this case we don't do a conversion to a
5494 -- specific fixed-point type (instead the expander handles the case).
5496 -- Set the type of the node to its universal interpretation because
5497 -- legality checks on an exponentiation operand need the context.
5499 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5500 and then Present (Universal_Interpretation (L))
5501 and then Present (Universal_Interpretation (R))
5502 then
5503 Set_Etype (N, B_Typ);
5504 Resolve (L, Universal_Interpretation (L));
5505 Resolve (R, Universal_Interpretation (R));
5507 elsif (B_Typ = Universal_Real
5508 or else Etype (N) = Universal_Fixed
5509 or else (Etype (N) = Any_Fixed
5510 and then Is_Fixed_Point_Type (B_Typ))
5511 or else (Is_Fixed_Point_Type (B_Typ)
5512 and then (Is_Integer_Or_Universal (L)
5513 or else
5514 Is_Integer_Or_Universal (R))))
5515 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5516 then
5517 if TL = Universal_Integer or else TR = Universal_Integer then
5518 Check_For_Visible_Operator (N, B_Typ);
5519 end if;
5521 -- If context is a fixed type and one operand is integer, the other
5522 -- is resolved with the type of the context.
5524 if Is_Fixed_Point_Type (B_Typ)
5525 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5526 or else TL = Universal_Integer)
5527 then
5528 Resolve (R, B_Typ);
5529 Resolve (L, TL);
5531 elsif Is_Fixed_Point_Type (B_Typ)
5532 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5533 or else TR = Universal_Integer)
5534 then
5535 Resolve (L, B_Typ);
5536 Resolve (R, TR);
5538 -- If both operands are universal and the context is a floating
5539 -- point type, the operands are resolved to the type of the context.
5541 elsif Is_Floating_Point_Type (B_Typ) then
5542 Resolve (L, B_Typ);
5543 Resolve (R, B_Typ);
5545 else
5546 Set_Mixed_Mode_Operand (L, TR);
5547 Set_Mixed_Mode_Operand (R, TL);
5548 end if;
5550 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5551 -- multiplying operators from being used when the expected type is
5552 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5553 -- some cases where the expected type is actually Any_Real;
5554 -- Expected_Type_Is_Any_Real takes care of that case.
5556 if Etype (N) = Universal_Fixed
5557 or else Etype (N) = Any_Fixed
5558 then
5559 if B_Typ = Universal_Fixed
5560 and then not Expected_Type_Is_Any_Real (N)
5561 and then not Nkind_In (Parent (N), N_Type_Conversion,
5562 N_Unchecked_Type_Conversion)
5563 then
5564 Error_Msg_N ("type cannot be determined from context!", N);
5565 Error_Msg_N ("\explicit conversion to result type required", N);
5567 Set_Etype (L, Any_Type);
5568 Set_Etype (R, Any_Type);
5570 else
5571 if Ada_Version = Ada_83
5572 and then Etype (N) = Universal_Fixed
5573 and then not
5574 Nkind_In (Parent (N), N_Type_Conversion,
5575 N_Unchecked_Type_Conversion)
5576 then
5577 Error_Msg_N
5578 ("(Ada 83) fixed-point operation needs explicit "
5579 & "conversion", N);
5580 end if;
5582 -- The expected type is "any real type" in contexts like
5584 -- type T is delta <universal_fixed-expression> ...
5586 -- in which case we need to set the type to Universal_Real
5587 -- so that static expression evaluation will work properly.
5589 if Expected_Type_Is_Any_Real (N) then
5590 Set_Etype (N, Universal_Real);
5591 else
5592 Set_Etype (N, B_Typ);
5593 end if;
5594 end if;
5596 elsif Is_Fixed_Point_Type (B_Typ)
5597 and then (Is_Integer_Or_Universal (L)
5598 or else Nkind (L) = N_Real_Literal
5599 or else Nkind (R) = N_Real_Literal
5600 or else Is_Integer_Or_Universal (R))
5601 then
5602 Set_Etype (N, B_Typ);
5604 elsif Etype (N) = Any_Fixed then
5606 -- If no previous errors, this is only possible if one operand is
5607 -- overloaded and the context is universal. Resolve as such.
5609 Set_Etype (N, B_Typ);
5610 end if;
5612 else
5613 if (TL = Universal_Integer or else TL = Universal_Real)
5614 and then
5615 (TR = Universal_Integer or else TR = Universal_Real)
5616 then
5617 Check_For_Visible_Operator (N, B_Typ);
5618 end if;
5620 -- If the context is Universal_Fixed and the operands are also
5621 -- universal fixed, this is an error, unless there is only one
5622 -- applicable fixed_point type (usually Duration).
5624 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5625 T := Unique_Fixed_Point_Type (N);
5627 if T = Any_Type then
5628 Set_Etype (N, T);
5629 return;
5630 else
5631 Resolve (L, T);
5632 Resolve (R, T);
5633 end if;
5635 else
5636 Resolve (L, B_Typ);
5637 Resolve (R, B_Typ);
5638 end if;
5640 -- If one of the arguments was resolved to a non-universal type.
5641 -- label the result of the operation itself with the same type.
5642 -- Do the same for the universal argument, if any.
5644 T := Intersect_Types (L, R);
5645 Set_Etype (N, Base_Type (T));
5646 Set_Operand_Type (L);
5647 Set_Operand_Type (R);
5648 end if;
5650 Generate_Operator_Reference (N, Typ);
5651 Analyze_Dimension (N);
5652 Eval_Arithmetic_Op (N);
5654 -- In SPARK, a multiplication or division with operands of fixed point
5655 -- types must be qualified or explicitly converted to identify the
5656 -- result type.
5658 if (Is_Fixed_Point_Type (Etype (L))
5659 or else Is_Fixed_Point_Type (Etype (R)))
5660 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5661 and then
5662 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5663 then
5664 Check_SPARK_05_Restriction
5665 ("operation should be qualified or explicitly converted", N);
5666 end if;
5668 -- Set overflow and division checking bit
5670 if Nkind (N) in N_Op then
5671 if not Overflow_Checks_Suppressed (Etype (N)) then
5672 Enable_Overflow_Check (N);
5673 end if;
5675 -- Give warning if explicit division by zero
5677 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5678 and then not Division_Checks_Suppressed (Etype (N))
5679 then
5680 Rop := Right_Opnd (N);
5682 if Compile_Time_Known_Value (Rop)
5683 and then ((Is_Integer_Type (Etype (Rop))
5684 and then Expr_Value (Rop) = Uint_0)
5685 or else
5686 (Is_Real_Type (Etype (Rop))
5687 and then Expr_Value_R (Rop) = Ureal_0))
5688 then
5689 -- Specialize the warning message according to the operation.
5690 -- When SPARK_Mode is On, force a warning instead of an error
5691 -- in that case, as this likely corresponds to deactivated
5692 -- code. The following warnings are for the case
5694 case Nkind (N) is
5695 when N_Op_Divide =>
5697 -- For division, we have two cases, for float division
5698 -- of an unconstrained float type, on a machine where
5699 -- Machine_Overflows is false, we don't get an exception
5700 -- at run-time, but rather an infinity or Nan. The Nan
5701 -- case is pretty obscure, so just warn about infinities.
5703 if Is_Floating_Point_Type (Typ)
5704 and then not Is_Constrained (Typ)
5705 and then not Machine_Overflows_On_Target
5706 then
5707 Error_Msg_N
5708 ("float division by zero, may generate "
5709 & "'+'/'- infinity??", Right_Opnd (N));
5711 -- For all other cases, we get a Constraint_Error
5713 else
5714 Apply_Compile_Time_Constraint_Error
5715 (N, "division by zero??", CE_Divide_By_Zero,
5716 Loc => Sloc (Right_Opnd (N)),
5717 Warn => SPARK_Mode = On);
5718 end if;
5720 when N_Op_Rem =>
5721 Apply_Compile_Time_Constraint_Error
5722 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5723 Loc => Sloc (Right_Opnd (N)),
5724 Warn => SPARK_Mode = On);
5726 when N_Op_Mod =>
5727 Apply_Compile_Time_Constraint_Error
5728 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5729 Loc => Sloc (Right_Opnd (N)),
5730 Warn => SPARK_Mode = On);
5732 -- Division by zero can only happen with division, rem,
5733 -- and mod operations.
5735 when others =>
5736 raise Program_Error;
5737 end case;
5739 -- In GNATprove mode, we enable the division check so that
5740 -- GNATprove will issue a message if it cannot be proved.
5742 if GNATprove_Mode then
5743 Activate_Division_Check (N);
5744 end if;
5746 -- Otherwise just set the flag to check at run time
5748 else
5749 Activate_Division_Check (N);
5750 end if;
5751 end if;
5753 -- If Restriction No_Implicit_Conditionals is active, then it is
5754 -- violated if either operand can be negative for mod, or for rem
5755 -- if both operands can be negative.
5757 if Restriction_Check_Required (No_Implicit_Conditionals)
5758 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5759 then
5760 declare
5761 Lo : Uint;
5762 Hi : Uint;
5763 OK : Boolean;
5765 LNeg : Boolean;
5766 RNeg : Boolean;
5767 -- Set if corresponding operand might be negative
5769 begin
5770 Determine_Range
5771 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5772 LNeg := (not OK) or else Lo < 0;
5774 Determine_Range
5775 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5776 RNeg := (not OK) or else Lo < 0;
5778 -- Check if we will be generating conditionals. There are two
5779 -- cases where that can happen, first for REM, the only case
5780 -- is largest negative integer mod -1, where the division can
5781 -- overflow, but we still have to give the right result. The
5782 -- front end generates a test for this annoying case. Here we
5783 -- just test if both operands can be negative (that's what the
5784 -- expander does, so we match its logic here).
5786 -- The second case is mod where either operand can be negative.
5787 -- In this case, the back end has to generate additional tests.
5789 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5790 or else
5791 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5792 then
5793 Check_Restriction (No_Implicit_Conditionals, N);
5794 end if;
5795 end;
5796 end if;
5797 end if;
5799 Check_Unset_Reference (L);
5800 Check_Unset_Reference (R);
5801 end Resolve_Arithmetic_Op;
5803 ------------------
5804 -- Resolve_Call --
5805 ------------------
5807 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5808 function Same_Or_Aliased_Subprograms
5809 (S : Entity_Id;
5810 E : Entity_Id) return Boolean;
5811 -- Returns True if the subprogram entity S is the same as E or else
5812 -- S is an alias of E.
5814 ---------------------------------
5815 -- Same_Or_Aliased_Subprograms --
5816 ---------------------------------
5818 function Same_Or_Aliased_Subprograms
5819 (S : Entity_Id;
5820 E : Entity_Id) return Boolean
5822 Subp_Alias : constant Entity_Id := Alias (S);
5823 begin
5824 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5825 end Same_Or_Aliased_Subprograms;
5827 -- Local variables
5829 Loc : constant Source_Ptr := Sloc (N);
5830 Subp : constant Node_Id := Name (N);
5831 Body_Id : Entity_Id;
5832 I : Interp_Index;
5833 It : Interp;
5834 Nam : Entity_Id;
5835 Nam_Decl : Node_Id;
5836 Nam_UA : Entity_Id;
5837 Norm_OK : Boolean;
5838 Rtype : Entity_Id;
5839 Scop : Entity_Id;
5841 -- Start of processing for Resolve_Call
5843 begin
5844 -- Preserve relevant elaboration-related attributes of the context which
5845 -- are no longer available or very expensive to recompute once analysis,
5846 -- resolution, and expansion are over.
5848 Mark_Elaboration_Attributes
5849 (N_Id => N,
5850 Checks => True,
5851 Modes => True);
5853 -- The context imposes a unique interpretation with type Typ on a
5854 -- procedure or function call. Find the entity of the subprogram that
5855 -- yields the expected type, and propagate the corresponding formal
5856 -- constraints on the actuals. The caller has established that an
5857 -- interpretation exists, and emitted an error if not unique.
5859 -- First deal with the case of a call to an access-to-subprogram,
5860 -- dereference made explicit in Analyze_Call.
5862 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5863 if not Is_Overloaded (Subp) then
5864 Nam := Etype (Subp);
5866 else
5867 -- Find the interpretation whose type (a subprogram type) has a
5868 -- return type that is compatible with the context. Analysis of
5869 -- the node has established that one exists.
5871 Nam := Empty;
5873 Get_First_Interp (Subp, I, It);
5874 while Present (It.Typ) loop
5875 if Covers (Typ, Etype (It.Typ)) then
5876 Nam := It.Typ;
5877 exit;
5878 end if;
5880 Get_Next_Interp (I, It);
5881 end loop;
5883 if No (Nam) then
5884 raise Program_Error;
5885 end if;
5886 end if;
5888 -- If the prefix is not an entity, then resolve it
5890 if not Is_Entity_Name (Subp) then
5891 Resolve (Subp, Nam);
5892 end if;
5894 -- For an indirect call, we always invalidate checks, since we do not
5895 -- know whether the subprogram is local or global. Yes we could do
5896 -- better here, e.g. by knowing that there are no local subprograms,
5897 -- but it does not seem worth the effort. Similarly, we kill all
5898 -- knowledge of current constant values.
5900 Kill_Current_Values;
5902 -- If this is a procedure call which is really an entry call, do
5903 -- the conversion of the procedure call to an entry call. Protected
5904 -- operations use the same circuitry because the name in the call
5905 -- can be an arbitrary expression with special resolution rules.
5907 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5908 or else (Is_Entity_Name (Subp)
5909 and then Ekind_In (Entity (Subp), E_Entry, E_Entry_Family))
5910 then
5911 Resolve_Entry_Call (N, Typ);
5913 -- Annotate the tree by creating a call marker in case the original
5914 -- call is transformed by expansion. The call marker is automatically
5915 -- saved for later examination by the ABE Processing phase.
5917 Build_Call_Marker (N);
5919 -- Kill checks and constant values, as above for indirect case
5920 -- Who knows what happens when another task is activated?
5922 Kill_Current_Values;
5923 return;
5925 -- Normal subprogram call with name established in Resolve
5927 elsif not (Is_Type (Entity (Subp))) then
5928 Nam := Entity (Subp);
5929 Set_Entity_With_Checks (Subp, Nam);
5931 -- Otherwise we must have the case of an overloaded call
5933 else
5934 pragma Assert (Is_Overloaded (Subp));
5936 -- Initialize Nam to prevent warning (we know it will be assigned
5937 -- in the loop below, but the compiler does not know that).
5939 Nam := Empty;
5941 Get_First_Interp (Subp, I, It);
5942 while Present (It.Typ) loop
5943 if Covers (Typ, It.Typ) then
5944 Nam := It.Nam;
5945 Set_Entity_With_Checks (Subp, Nam);
5946 exit;
5947 end if;
5949 Get_Next_Interp (I, It);
5950 end loop;
5951 end if;
5953 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5954 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5955 and then Nkind (Subp) /= N_Explicit_Dereference
5956 and then Present (Parameter_Associations (N))
5957 then
5958 -- The prefix is a parameterless function call that returns an access
5959 -- to subprogram. If parameters are present in the current call, add
5960 -- add an explicit dereference. We use the base type here because
5961 -- within an instance these may be subtypes.
5963 -- The dereference is added either in Analyze_Call or here. Should
5964 -- be consolidated ???
5966 Set_Is_Overloaded (Subp, False);
5967 Set_Etype (Subp, Etype (Nam));
5968 Insert_Explicit_Dereference (Subp);
5969 Nam := Designated_Type (Etype (Nam));
5970 Resolve (Subp, Nam);
5971 end if;
5973 -- Check that a call to Current_Task does not occur in an entry body
5975 if Is_RTE (Nam, RE_Current_Task) then
5976 declare
5977 P : Node_Id;
5979 begin
5980 P := N;
5981 loop
5982 P := Parent (P);
5984 -- Exclude calls that occur within the default of a formal
5985 -- parameter of the entry, since those are evaluated outside
5986 -- of the body.
5988 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5990 if Nkind (P) = N_Entry_Body
5991 or else (Nkind (P) = N_Subprogram_Body
5992 and then Is_Entry_Barrier_Function (P))
5993 then
5994 Rtype := Etype (N);
5995 Error_Msg_Warn := SPARK_Mode /= On;
5996 Error_Msg_NE
5997 ("& should not be used in entry body (RM C.7(17))<<",
5998 N, Nam);
5999 Error_Msg_NE ("\Program_Error [<<", N, Nam);
6000 Rewrite (N,
6001 Make_Raise_Program_Error (Loc,
6002 Reason => PE_Current_Task_In_Entry_Body));
6003 Set_Etype (N, Rtype);
6004 return;
6005 end if;
6006 end loop;
6007 end;
6008 end if;
6010 -- Check that a procedure call does not occur in the context of the
6011 -- entry call statement of a conditional or timed entry call. Note that
6012 -- the case of a call to a subprogram renaming of an entry will also be
6013 -- rejected. The test for N not being an N_Entry_Call_Statement is
6014 -- defensive, covering the possibility that the processing of entry
6015 -- calls might reach this point due to later modifications of the code
6016 -- above.
6018 if Nkind (Parent (N)) = N_Entry_Call_Alternative
6019 and then Nkind (N) /= N_Entry_Call_Statement
6020 and then Entry_Call_Statement (Parent (N)) = N
6021 then
6022 if Ada_Version < Ada_2005 then
6023 Error_Msg_N ("entry call required in select statement", N);
6025 -- Ada 2005 (AI-345): If a procedure_call_statement is used
6026 -- for a procedure_or_entry_call, the procedure_name or
6027 -- procedure_prefix of the procedure_call_statement shall denote
6028 -- an entry renamed by a procedure, or (a view of) a primitive
6029 -- subprogram of a limited interface whose first parameter is
6030 -- a controlling parameter.
6032 elsif Nkind (N) = N_Procedure_Call_Statement
6033 and then not Is_Renamed_Entry (Nam)
6034 and then not Is_Controlling_Limited_Procedure (Nam)
6035 then
6036 Error_Msg_N
6037 ("entry call or dispatching primitive of interface required", N);
6038 end if;
6039 end if;
6041 -- If the SPARK_05 restriction is active, we are not allowed
6042 -- to have a call to a subprogram before we see its completion.
6044 if not Has_Completion (Nam)
6045 and then Restriction_Check_Required (SPARK_05)
6047 -- Don't flag strange internal calls
6049 and then Comes_From_Source (N)
6050 and then Comes_From_Source (Nam)
6052 -- Only flag calls in extended main source
6054 and then In_Extended_Main_Source_Unit (Nam)
6055 and then In_Extended_Main_Source_Unit (N)
6057 -- Exclude enumeration literals from this processing
6059 and then Ekind (Nam) /= E_Enumeration_Literal
6060 then
6061 Check_SPARK_05_Restriction
6062 ("call to subprogram cannot appear before its body", N);
6063 end if;
6065 -- Check that this is not a call to a protected procedure or entry from
6066 -- within a protected function.
6068 Check_Internal_Protected_Use (N, Nam);
6070 -- Freeze the subprogram name if not in a spec-expression. Note that
6071 -- we freeze procedure calls as well as function calls. Procedure calls
6072 -- are not frozen according to the rules (RM 13.14(14)) because it is
6073 -- impossible to have a procedure call to a non-frozen procedure in
6074 -- pure Ada, but in the code that we generate in the expander, this
6075 -- rule needs extending because we can generate procedure calls that
6076 -- need freezing.
6078 -- In Ada 2012, expression functions may be called within pre/post
6079 -- conditions of subsequent functions or expression functions. Such
6080 -- calls do not freeze when they appear within generated bodies,
6081 -- (including the body of another expression function) which would
6082 -- place the freeze node in the wrong scope. An expression function
6083 -- is frozen in the usual fashion, by the appearance of a real body,
6084 -- or at the end of a declarative part.
6086 if Is_Entity_Name (Subp)
6087 and then not In_Spec_Expression
6088 and then not Is_Expression_Function_Or_Completion (Current_Scope)
6089 and then
6090 (not Is_Expression_Function_Or_Completion (Entity (Subp))
6091 or else Scope (Entity (Subp)) = Current_Scope)
6092 then
6093 Freeze_Expression (Subp);
6094 end if;
6096 -- For a predefined operator, the type of the result is the type imposed
6097 -- by context, except for a predefined operation on universal fixed.
6098 -- Otherwise The type of the call is the type returned by the subprogram
6099 -- being called.
6101 if Is_Predefined_Op (Nam) then
6102 if Etype (N) /= Universal_Fixed then
6103 Set_Etype (N, Typ);
6104 end if;
6106 -- If the subprogram returns an array type, and the context requires the
6107 -- component type of that array type, the node is really an indexing of
6108 -- the parameterless call. Resolve as such. A pathological case occurs
6109 -- when the type of the component is an access to the array type. In
6110 -- this case the call is truly ambiguous. If the call is to an intrinsic
6111 -- subprogram, it can't be an indexed component. This check is necessary
6112 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6113 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6114 -- pointers to the same array), the compiler gets confused and does an
6115 -- infinite recursion.
6117 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
6118 and then
6119 ((Is_Array_Type (Etype (Nam))
6120 and then Covers (Typ, Component_Type (Etype (Nam))))
6121 or else
6122 (Is_Access_Type (Etype (Nam))
6123 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6124 and then
6125 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
6126 and then not Is_Intrinsic_Subprogram (Entity (Subp))))
6127 then
6128 declare
6129 Index_Node : Node_Id;
6130 New_Subp : Node_Id;
6131 Ret_Type : constant Entity_Id := Etype (Nam);
6133 begin
6134 if Is_Access_Type (Ret_Type)
6135 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6136 then
6137 Error_Msg_N
6138 ("cannot disambiguate function call and indexing", N);
6139 else
6140 New_Subp := Relocate_Node (Subp);
6142 -- The called entity may be an explicit dereference, in which
6143 -- case there is no entity to set.
6145 if Nkind (New_Subp) /= N_Explicit_Dereference then
6146 Set_Entity (Subp, Nam);
6147 end if;
6149 if (Is_Array_Type (Ret_Type)
6150 and then Component_Type (Ret_Type) /= Any_Type)
6151 or else
6152 (Is_Access_Type (Ret_Type)
6153 and then
6154 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6155 then
6156 if Needs_No_Actuals (Nam) then
6158 -- Indexed call to a parameterless function
6160 Index_Node :=
6161 Make_Indexed_Component (Loc,
6162 Prefix =>
6163 Make_Function_Call (Loc, Name => New_Subp),
6164 Expressions => Parameter_Associations (N));
6165 else
6166 -- An Ada 2005 prefixed call to a primitive operation
6167 -- whose first parameter is the prefix. This prefix was
6168 -- prepended to the parameter list, which is actually a
6169 -- list of indexes. Remove the prefix in order to build
6170 -- the proper indexed component.
6172 Index_Node :=
6173 Make_Indexed_Component (Loc,
6174 Prefix =>
6175 Make_Function_Call (Loc,
6176 Name => New_Subp,
6177 Parameter_Associations =>
6178 New_List
6179 (Remove_Head (Parameter_Associations (N)))),
6180 Expressions => Parameter_Associations (N));
6181 end if;
6183 -- Preserve the parenthesis count of the node
6185 Set_Paren_Count (Index_Node, Paren_Count (N));
6187 -- Since we are correcting a node classification error made
6188 -- by the parser, we call Replace rather than Rewrite.
6190 Replace (N, Index_Node);
6192 Set_Etype (Prefix (N), Ret_Type);
6193 Set_Etype (N, Typ);
6194 Resolve_Indexed_Component (N, Typ);
6196 -- Annotate the tree by creating a call marker in case
6197 -- the original call is transformed by expansion. The call
6198 -- marker is automatically saved for later examination by
6199 -- the ABE Processing phase.
6201 Build_Call_Marker (Prefix (N));
6202 end if;
6203 end if;
6205 return;
6206 end;
6208 else
6209 -- If the called function is not declared in the main unit and it
6210 -- returns the limited view of type then use the available view (as
6211 -- is done in Try_Object_Operation) to prevent back-end confusion;
6212 -- for the function entity itself. The call must appear in a context
6213 -- where the nonlimited view is available. If the function entity is
6214 -- in the extended main unit then no action is needed, because the
6215 -- back end handles this case. In either case the type of the call
6216 -- is the nonlimited view.
6218 if From_Limited_With (Etype (Nam))
6219 and then Present (Available_View (Etype (Nam)))
6220 then
6221 Set_Etype (N, Available_View (Etype (Nam)));
6223 if not In_Extended_Main_Code_Unit (Nam) then
6224 Set_Etype (Nam, Available_View (Etype (Nam)));
6225 end if;
6227 else
6228 Set_Etype (N, Etype (Nam));
6229 end if;
6230 end if;
6232 -- In the case where the call is to an overloaded subprogram, Analyze
6233 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6234 -- such a case Normalize_Actuals needs to be called once more to order
6235 -- the actuals correctly. Otherwise the call will have the ordering
6236 -- given by the last overloaded subprogram whether this is the correct
6237 -- one being called or not.
6239 if Is_Overloaded (Subp) then
6240 Normalize_Actuals (N, Nam, False, Norm_OK);
6241 pragma Assert (Norm_OK);
6242 end if;
6244 -- In any case, call is fully resolved now. Reset Overload flag, to
6245 -- prevent subsequent overload resolution if node is analyzed again
6247 Set_Is_Overloaded (Subp, False);
6248 Set_Is_Overloaded (N, False);
6250 -- A Ghost entity must appear in a specific context
6252 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6253 Check_Ghost_Context (Nam, N);
6254 end if;
6256 -- If we are calling the current subprogram from immediately within its
6257 -- body, then that is the case where we can sometimes detect cases of
6258 -- infinite recursion statically. Do not try this in case restriction
6259 -- No_Recursion is in effect anyway, and do it only for source calls.
6261 if Comes_From_Source (N) then
6262 Scop := Current_Scope;
6264 -- Check violation of SPARK_05 restriction which does not permit
6265 -- a subprogram body to contain a call to the subprogram directly.
6267 if Restriction_Check_Required (SPARK_05)
6268 and then Same_Or_Aliased_Subprograms (Nam, Scop)
6269 then
6270 Check_SPARK_05_Restriction
6271 ("subprogram may not contain direct call to itself", N);
6272 end if;
6274 -- Issue warning for possible infinite recursion in the absence
6275 -- of the No_Recursion restriction.
6277 if Same_Or_Aliased_Subprograms (Nam, Scop)
6278 and then not Restriction_Active (No_Recursion)
6279 and then Check_Infinite_Recursion (N)
6280 then
6281 -- Here we detected and flagged an infinite recursion, so we do
6282 -- not need to test the case below for further warnings. Also we
6283 -- are all done if we now have a raise SE node.
6285 if Nkind (N) = N_Raise_Storage_Error then
6286 return;
6287 end if;
6289 -- If call is to immediately containing subprogram, then check for
6290 -- the case of a possible run-time detectable infinite recursion.
6292 else
6293 Scope_Loop : while Scop /= Standard_Standard loop
6294 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6296 -- Although in general case, recursion is not statically
6297 -- checkable, the case of calling an immediately containing
6298 -- subprogram is easy to catch.
6300 Check_Restriction (No_Recursion, N);
6302 -- If the recursive call is to a parameterless subprogram,
6303 -- then even if we can't statically detect infinite
6304 -- recursion, this is pretty suspicious, and we output a
6305 -- warning. Furthermore, we will try later to detect some
6306 -- cases here at run time by expanding checking code (see
6307 -- Detect_Infinite_Recursion in package Exp_Ch6).
6309 -- If the recursive call is within a handler, do not emit a
6310 -- warning, because this is a common idiom: loop until input
6311 -- is correct, catch illegal input in handler and restart.
6313 if No (First_Formal (Nam))
6314 and then Etype (Nam) = Standard_Void_Type
6315 and then not Error_Posted (N)
6316 and then Nkind (Parent (N)) /= N_Exception_Handler
6317 then
6318 -- For the case of a procedure call. We give the message
6319 -- only if the call is the first statement in a sequence
6320 -- of statements, or if all previous statements are
6321 -- simple assignments. This is simply a heuristic to
6322 -- decrease false positives, without losing too many good
6323 -- warnings. The idea is that these previous statements
6324 -- may affect global variables the procedure depends on.
6325 -- We also exclude raise statements, that may arise from
6326 -- constraint checks and are probably unrelated to the
6327 -- intended control flow.
6329 if Nkind (N) = N_Procedure_Call_Statement
6330 and then Is_List_Member (N)
6331 then
6332 declare
6333 P : Node_Id;
6334 begin
6335 P := Prev (N);
6336 while Present (P) loop
6337 if not Nkind_In (P, N_Assignment_Statement,
6338 N_Raise_Constraint_Error)
6339 then
6340 exit Scope_Loop;
6341 end if;
6343 Prev (P);
6344 end loop;
6345 end;
6346 end if;
6348 -- Do not give warning if we are in a conditional context
6350 declare
6351 K : constant Node_Kind := Nkind (Parent (N));
6352 begin
6353 if (K = N_Loop_Statement
6354 and then Present (Iteration_Scheme (Parent (N))))
6355 or else K = N_If_Statement
6356 or else K = N_Elsif_Part
6357 or else K = N_Case_Statement_Alternative
6358 then
6359 exit Scope_Loop;
6360 end if;
6361 end;
6363 -- Here warning is to be issued
6365 Set_Has_Recursive_Call (Nam);
6366 Error_Msg_Warn := SPARK_Mode /= On;
6367 Error_Msg_N ("possible infinite recursion<<!", N);
6368 Error_Msg_N ("\Storage_Error ]<<!", N);
6369 end if;
6371 exit Scope_Loop;
6372 end if;
6374 Scop := Scope (Scop);
6375 end loop Scope_Loop;
6376 end if;
6377 end if;
6379 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6381 Check_Obsolescent_2005_Entity (Nam, Subp);
6383 -- If subprogram name is a predefined operator, it was given in
6384 -- functional notation. Replace call node with operator node, so
6385 -- that actuals can be resolved appropriately.
6387 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6388 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6389 return;
6391 elsif Present (Alias (Nam))
6392 and then Is_Predefined_Op (Alias (Nam))
6393 then
6394 Resolve_Actuals (N, Nam);
6395 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6396 return;
6397 end if;
6399 -- Create a transient scope if the resulting type requires it
6401 -- There are several notable exceptions:
6403 -- a) In init procs, the transient scope overhead is not needed, and is
6404 -- even incorrect when the call is a nested initialization call for a
6405 -- component whose expansion may generate adjust calls. However, if the
6406 -- call is some other procedure call within an initialization procedure
6407 -- (for example a call to Create_Task in the init_proc of the task
6408 -- run-time record) a transient scope must be created around this call.
6410 -- b) Enumeration literal pseudo-calls need no transient scope
6412 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6413 -- functions) do not use the secondary stack even though the return
6414 -- type may be unconstrained.
6416 -- d) Calls to a build-in-place function, since such functions may
6417 -- allocate their result directly in a target object, and cases where
6418 -- the result does get allocated in the secondary stack are checked for
6419 -- within the specialized Exp_Ch6 procedures for expanding those
6420 -- build-in-place calls.
6422 -- e) Calls to inlinable expression functions do not use the secondary
6423 -- stack (since the call will be replaced by its returned object).
6425 -- f) If the subprogram is marked Inline_Always, then even if it returns
6426 -- an unconstrained type the call does not require use of the secondary
6427 -- stack. However, inlining will only take place if the body to inline
6428 -- is already present. It may not be available if e.g. the subprogram is
6429 -- declared in a child instance.
6431 -- If this is an initialization call for a type whose construction
6432 -- uses the secondary stack, and it is not a nested call to initialize
6433 -- a component, we do need to create a transient scope for it. We
6434 -- check for this by traversing the type in Check_Initialization_Call.
6436 if Is_Inlined (Nam)
6437 and then Has_Pragma_Inline (Nam)
6438 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6439 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6440 then
6441 null;
6443 elsif Ekind (Nam) = E_Enumeration_Literal
6444 or else Is_Build_In_Place_Function (Nam)
6445 or else Is_Intrinsic_Subprogram (Nam)
6446 or else Is_Inlinable_Expression_Function (Nam)
6447 then
6448 null;
6450 elsif Expander_Active
6451 and then Is_Type (Etype (Nam))
6452 and then Requires_Transient_Scope (Etype (Nam))
6453 and then
6454 (not Within_Init_Proc
6455 or else
6456 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
6457 then
6458 Establish_Transient_Scope (N, Sec_Stack => True);
6460 -- If the call appears within the bounds of a loop, it will
6461 -- be rewritten and reanalyzed, nothing left to do here.
6463 if Nkind (N) /= N_Function_Call then
6464 return;
6465 end if;
6467 elsif Is_Init_Proc (Nam)
6468 and then not Within_Init_Proc
6469 then
6470 Check_Initialization_Call (N, Nam);
6471 end if;
6473 -- A protected function cannot be called within the definition of the
6474 -- enclosing protected type, unless it is part of a pre/postcondition
6475 -- on another protected operation. This may appear in the entry wrapper
6476 -- created for an entry with preconditions.
6478 if Is_Protected_Type (Scope (Nam))
6479 and then In_Open_Scopes (Scope (Nam))
6480 and then not Has_Completion (Scope (Nam))
6481 and then not In_Spec_Expression
6482 and then not Is_Entry_Wrapper (Current_Scope)
6483 then
6484 Error_Msg_NE
6485 ("& cannot be called before end of protected definition", N, Nam);
6486 end if;
6488 -- Propagate interpretation to actuals, and add default expressions
6489 -- where needed.
6491 if Present (First_Formal (Nam)) then
6492 Resolve_Actuals (N, Nam);
6494 -- Overloaded literals are rewritten as function calls, for purpose of
6495 -- resolution. After resolution, we can replace the call with the
6496 -- literal itself.
6498 elsif Ekind (Nam) = E_Enumeration_Literal then
6499 Copy_Node (Subp, N);
6500 Resolve_Entity_Name (N, Typ);
6502 -- Avoid validation, since it is a static function call
6504 Generate_Reference (Nam, Subp);
6505 return;
6506 end if;
6508 -- If the subprogram is not global, then kill all saved values and
6509 -- checks. This is a bit conservative, since in many cases we could do
6510 -- better, but it is not worth the effort. Similarly, we kill constant
6511 -- values. However we do not need to do this for internal entities
6512 -- (unless they are inherited user-defined subprograms), since they
6513 -- are not in the business of molesting local values.
6515 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6516 -- kill all checks and values for calls to global subprograms. This
6517 -- takes care of the case where an access to a local subprogram is
6518 -- taken, and could be passed directly or indirectly and then called
6519 -- from almost any context.
6521 -- Note: we do not do this step till after resolving the actuals. That
6522 -- way we still take advantage of the current value information while
6523 -- scanning the actuals.
6525 -- We suppress killing values if we are processing the nodes associated
6526 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6527 -- type kills all the values as part of analyzing the code that
6528 -- initializes the dispatch tables.
6530 if Inside_Freezing_Actions = 0
6531 and then (not Is_Library_Level_Entity (Nam)
6532 or else Suppress_Value_Tracking_On_Call
6533 (Nearest_Dynamic_Scope (Current_Scope)))
6534 and then (Comes_From_Source (Nam)
6535 or else (Present (Alias (Nam))
6536 and then Comes_From_Source (Alias (Nam))))
6537 then
6538 Kill_Current_Values;
6539 end if;
6541 -- If we are warning about unread OUT parameters, this is the place to
6542 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6543 -- after the above call to Kill_Current_Values (since that call clears
6544 -- the Last_Assignment field of all local variables).
6546 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6547 and then Comes_From_Source (N)
6548 and then In_Extended_Main_Source_Unit (N)
6549 then
6550 declare
6551 F : Entity_Id;
6552 A : Node_Id;
6554 begin
6555 F := First_Formal (Nam);
6556 A := First_Actual (N);
6557 while Present (F) and then Present (A) loop
6558 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6559 and then Warn_On_Modified_As_Out_Parameter (F)
6560 and then Is_Entity_Name (A)
6561 and then Present (Entity (A))
6562 and then Comes_From_Source (N)
6563 and then Safe_To_Capture_Value (N, Entity (A))
6564 then
6565 Set_Last_Assignment (Entity (A), A);
6566 end if;
6568 Next_Formal (F);
6569 Next_Actual (A);
6570 end loop;
6571 end;
6572 end if;
6574 -- If the subprogram is a primitive operation, check whether or not
6575 -- it is a correct dispatching call.
6577 if Is_Overloadable (Nam)
6578 and then Is_Dispatching_Operation (Nam)
6579 then
6580 Check_Dispatching_Call (N);
6582 elsif Ekind (Nam) /= E_Subprogram_Type
6583 and then Is_Abstract_Subprogram (Nam)
6584 and then not In_Instance
6585 then
6586 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6587 end if;
6589 -- If this is a dispatching call, generate the appropriate reference,
6590 -- for better source navigation in GPS.
6592 if Is_Overloadable (Nam)
6593 and then Present (Controlling_Argument (N))
6594 then
6595 Generate_Reference (Nam, Subp, 'R');
6597 -- Normal case, not a dispatching call: generate a call reference
6599 else
6600 Generate_Reference (Nam, Subp, 's');
6601 end if;
6603 if Is_Intrinsic_Subprogram (Nam) then
6604 Check_Intrinsic_Call (N);
6605 end if;
6607 -- Check for violation of restriction No_Specific_Termination_Handlers
6608 -- and warn on a potentially blocking call to Abort_Task.
6610 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6611 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6612 or else
6613 Is_RTE (Nam, RE_Specific_Handler))
6614 then
6615 Check_Restriction (No_Specific_Termination_Handlers, N);
6617 elsif Is_RTE (Nam, RE_Abort_Task) then
6618 Check_Potentially_Blocking_Operation (N);
6619 end if;
6621 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6622 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6623 -- need to check the second argument to determine whether it is an
6624 -- absolute or relative timing event.
6626 if Restriction_Check_Required (No_Relative_Delay)
6627 and then Is_RTE (Nam, RE_Set_Handler)
6628 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6629 then
6630 Check_Restriction (No_Relative_Delay, N);
6631 end if;
6633 -- Issue an error for a call to an eliminated subprogram. This routine
6634 -- will not perform the check if the call appears within a default
6635 -- expression.
6637 Check_For_Eliminated_Subprogram (Subp, Nam);
6639 -- In formal mode, the primitive operations of a tagged type or type
6640 -- extension do not include functions that return the tagged type.
6642 if Nkind (N) = N_Function_Call
6643 and then Is_Tagged_Type (Etype (N))
6644 and then Is_Entity_Name (Name (N))
6645 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6646 then
6647 Check_SPARK_05_Restriction ("function not inherited", N);
6648 end if;
6650 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6651 -- class-wide and the call dispatches on result in a context that does
6652 -- not provide a tag, the call raises Program_Error.
6654 if Nkind (N) = N_Function_Call
6655 and then In_Instance
6656 and then Is_Generic_Actual_Type (Typ)
6657 and then Is_Class_Wide_Type (Typ)
6658 and then Has_Controlling_Result (Nam)
6659 and then Nkind (Parent (N)) = N_Object_Declaration
6660 then
6661 -- Verify that none of the formals are controlling
6663 declare
6664 Call_OK : Boolean := False;
6665 F : Entity_Id;
6667 begin
6668 F := First_Formal (Nam);
6669 while Present (F) loop
6670 if Is_Controlling_Formal (F) then
6671 Call_OK := True;
6672 exit;
6673 end if;
6675 Next_Formal (F);
6676 end loop;
6678 if not Call_OK then
6679 Error_Msg_Warn := SPARK_Mode /= On;
6680 Error_Msg_N ("!cannot determine tag of result<<", N);
6681 Error_Msg_N ("\Program_Error [<<!", N);
6682 Insert_Action (N,
6683 Make_Raise_Program_Error (Sloc (N),
6684 Reason => PE_Explicit_Raise));
6685 end if;
6686 end;
6687 end if;
6689 -- Check for calling a function with OUT or IN OUT parameter when the
6690 -- calling context (us right now) is not Ada 2012, so does not allow
6691 -- OUT or IN OUT parameters in function calls. Functions declared in
6692 -- a predefined unit are OK, as they may be called indirectly from a
6693 -- user-declared instantiation.
6695 if Ada_Version < Ada_2012
6696 and then Ekind (Nam) = E_Function
6697 and then Has_Out_Or_In_Out_Parameter (Nam)
6698 and then not In_Predefined_Unit (Nam)
6699 then
6700 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6701 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6702 end if;
6704 -- Check the dimensions of the actuals in the call. For function calls,
6705 -- propagate the dimensions from the returned type to N.
6707 Analyze_Dimension_Call (N, Nam);
6709 -- All done, evaluate call and deal with elaboration issues
6711 Eval_Call (N);
6713 -- Annotate the tree by creating a call marker in case the original call
6714 -- is transformed by expansion. The call marker is automatically saved
6715 -- for later examination by the ABE Processing phase.
6717 Build_Call_Marker (N);
6719 -- In GNATprove mode, expansion is disabled, but we want to inline some
6720 -- subprograms to facilitate formal verification. Indirect calls through
6721 -- a subprogram type or within a generic cannot be inlined. Inlining is
6722 -- performed only for calls subject to SPARK_Mode on.
6724 if GNATprove_Mode
6725 and then SPARK_Mode = On
6726 and then Is_Overloadable (Nam)
6727 and then not Inside_A_Generic
6728 then
6729 Nam_UA := Ultimate_Alias (Nam);
6730 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6732 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6733 Body_Id := Corresponding_Body (Nam_Decl);
6735 -- Nothing to do if the subprogram is not eligible for inlining in
6736 -- GNATprove mode, or inlining is disabled with switch -gnatdm
6738 if not Is_Inlined_Always (Nam_UA)
6739 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6740 or else Debug_Flag_M
6741 then
6742 null;
6744 -- Calls cannot be inlined inside assertions, as GNATprove treats
6745 -- assertions as logic expressions. Only issue a message when the
6746 -- body has been seen, otherwise this leads to spurious messages
6747 -- on expression functions.
6749 elsif In_Assertion_Expr /= 0 then
6750 if Present (Body_Id) then
6751 Cannot_Inline
6752 ("cannot inline & (in assertion expression)?", N, Nam_UA);
6753 end if;
6755 -- Calls cannot be inlined inside default expressions
6757 elsif In_Default_Expr then
6758 Cannot_Inline
6759 ("cannot inline & (in default expression)?", N, Nam_UA);
6761 -- Inlining should not be performed during pre-analysis
6763 elsif Full_Analysis then
6765 -- Do not inline calls inside expression functions, as this
6766 -- would prevent interpreting them as logical formulas in
6767 -- GNATprove. Only issue a message when the body has been seen,
6768 -- otherwise this leads to spurious messages on callees that
6769 -- are themselves expression functions.
6771 if Present (Current_Subprogram)
6772 and then Is_Expression_Function_Or_Completion
6773 (Current_Subprogram)
6774 then
6775 if Present (Body_Id)
6776 and then Present (Body_To_Inline (Nam_Decl))
6777 then
6778 Cannot_Inline
6779 ("cannot inline & (inside expression function)?",
6780 N, Nam_UA);
6781 end if;
6783 -- With the one-pass inlining technique, a call cannot be
6784 -- inlined if the corresponding body has not been seen yet.
6786 elsif No (Body_Id) then
6787 Cannot_Inline
6788 ("cannot inline & (body not seen yet)?", N, Nam_UA);
6790 -- Nothing to do if there is no body to inline, indicating that
6791 -- the subprogram is not suitable for inlining in GNATprove
6792 -- mode.
6794 elsif No (Body_To_Inline (Nam_Decl)) then
6795 null;
6797 -- Calls cannot be inlined inside potentially unevaluated
6798 -- expressions, as this would create complex actions inside
6799 -- expressions, that are not handled by GNATprove.
6801 elsif Is_Potentially_Unevaluated (N) then
6802 Cannot_Inline
6803 ("cannot inline & (in potentially unevaluated context)?",
6804 N, Nam_UA);
6806 -- Do not inline calls which would possibly lead to missing a
6807 -- type conversion check on an input parameter.
6809 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
6810 Cannot_Inline
6811 ("cannot inline & (possible check on input parameters)?",
6812 N, Nam_UA);
6814 -- Otherwise, inline the call
6816 else
6817 Expand_Inlined_Call (N, Nam_UA, Nam);
6818 end if;
6819 end if;
6820 end if;
6821 end if;
6823 Mark_Use_Clauses (Subp);
6825 Warn_On_Overlapping_Actuals (Nam, N);
6826 end Resolve_Call;
6828 -----------------------------
6829 -- Resolve_Case_Expression --
6830 -----------------------------
6832 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6833 Alt : Node_Id;
6834 Alt_Expr : Node_Id;
6835 Alt_Typ : Entity_Id;
6836 Is_Dyn : Boolean;
6838 begin
6839 Alt := First (Alternatives (N));
6840 while Present (Alt) loop
6841 Alt_Expr := Expression (Alt);
6843 if Error_Posted (Alt_Expr) then
6844 return;
6845 end if;
6847 Resolve (Alt_Expr, Typ);
6848 Alt_Typ := Etype (Alt_Expr);
6850 -- When the expression is of a scalar subtype different from the
6851 -- result subtype, then insert a conversion to ensure the generation
6852 -- of a constraint check.
6854 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6855 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6856 Analyze_And_Resolve (Alt_Expr, Typ);
6857 end if;
6859 Next (Alt);
6860 end loop;
6862 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6863 -- dynamically tagged must be known statically.
6865 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6866 Alt := First (Alternatives (N));
6867 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6869 while Present (Alt) loop
6870 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6871 Error_Msg_N
6872 ("all or none of the dependent expressions can be "
6873 & "dynamically tagged", N);
6874 end if;
6876 Next (Alt);
6877 end loop;
6878 end if;
6880 Set_Etype (N, Typ);
6881 Eval_Case_Expression (N);
6882 Analyze_Dimension (N);
6883 end Resolve_Case_Expression;
6885 -------------------------------
6886 -- Resolve_Character_Literal --
6887 -------------------------------
6889 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6890 B_Typ : constant Entity_Id := Base_Type (Typ);
6891 C : Entity_Id;
6893 begin
6894 -- Verify that the character does belong to the type of the context
6896 Set_Etype (N, B_Typ);
6897 Eval_Character_Literal (N);
6899 -- Wide_Wide_Character literals must always be defined, since the set
6900 -- of wide wide character literals is complete, i.e. if a character
6901 -- literal is accepted by the parser, then it is OK for wide wide
6902 -- character (out of range character literals are rejected).
6904 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6905 return;
6907 -- Always accept character literal for type Any_Character, which
6908 -- occurs in error situations and in comparisons of literals, both
6909 -- of which should accept all literals.
6911 elsif B_Typ = Any_Character then
6912 return;
6914 -- For Standard.Character or a type derived from it, check that the
6915 -- literal is in range.
6917 elsif Root_Type (B_Typ) = Standard_Character then
6918 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6919 return;
6920 end if;
6922 -- For Standard.Wide_Character or a type derived from it, check that the
6923 -- literal is in range.
6925 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6926 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6927 return;
6928 end if;
6930 -- If the entity is already set, this has already been resolved in a
6931 -- generic context, or comes from expansion. Nothing else to do.
6933 elsif Present (Entity (N)) then
6934 return;
6936 -- Otherwise we have a user defined character type, and we can use the
6937 -- standard visibility mechanisms to locate the referenced entity.
6939 else
6940 C := Current_Entity (N);
6941 while Present (C) loop
6942 if Etype (C) = B_Typ then
6943 Set_Entity_With_Checks (N, C);
6944 Generate_Reference (C, N);
6945 return;
6946 end if;
6948 C := Homonym (C);
6949 end loop;
6950 end if;
6952 -- If we fall through, then the literal does not match any of the
6953 -- entries of the enumeration type. This isn't just a constraint error
6954 -- situation, it is an illegality (see RM 4.2).
6956 Error_Msg_NE
6957 ("character not defined for }", N, First_Subtype (B_Typ));
6958 end Resolve_Character_Literal;
6960 ---------------------------
6961 -- Resolve_Comparison_Op --
6962 ---------------------------
6964 -- Context requires a boolean type, and plays no role in resolution.
6965 -- Processing identical to that for equality operators. The result type is
6966 -- the base type, which matters when pathological subtypes of booleans with
6967 -- limited ranges are used.
6969 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6970 L : constant Node_Id := Left_Opnd (N);
6971 R : constant Node_Id := Right_Opnd (N);
6972 T : Entity_Id;
6974 begin
6975 -- If this is an intrinsic operation which is not predefined, use the
6976 -- types of its declared arguments to resolve the possibly overloaded
6977 -- operands. Otherwise the operands are unambiguous and specify the
6978 -- expected type.
6980 if Scope (Entity (N)) /= Standard_Standard then
6981 T := Etype (First_Entity (Entity (N)));
6983 else
6984 T := Find_Unique_Type (L, R);
6986 if T = Any_Fixed then
6987 T := Unique_Fixed_Point_Type (L);
6988 end if;
6989 end if;
6991 Set_Etype (N, Base_Type (Typ));
6992 Generate_Reference (T, N, ' ');
6994 -- Skip remaining processing if already set to Any_Type
6996 if T = Any_Type then
6997 return;
6998 end if;
7000 -- Deal with other error cases
7002 if T = Any_String or else
7003 T = Any_Composite or else
7004 T = Any_Character
7005 then
7006 if T = Any_Character then
7007 Ambiguous_Character (L);
7008 else
7009 Error_Msg_N ("ambiguous operands for comparison", N);
7010 end if;
7012 Set_Etype (N, Any_Type);
7013 return;
7014 end if;
7016 -- Resolve the operands if types OK
7018 Resolve (L, T);
7019 Resolve (R, T);
7020 Check_Unset_Reference (L);
7021 Check_Unset_Reference (R);
7022 Generate_Operator_Reference (N, T);
7023 Check_Low_Bound_Tested (N);
7025 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
7026 -- types or array types except String.
7028 if Is_Boolean_Type (T) then
7029 Check_SPARK_05_Restriction
7030 ("comparison is not defined on Boolean type", N);
7032 elsif Is_Array_Type (T)
7033 and then Base_Type (T) /= Standard_String
7034 then
7035 Check_SPARK_05_Restriction
7036 ("comparison is not defined on array types other than String", N);
7037 end if;
7039 -- Check comparison on unordered enumeration
7041 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
7042 Error_Msg_Sloc := Sloc (Etype (L));
7043 Error_Msg_NE
7044 ("comparison on unordered enumeration type& declared#?U?",
7045 N, Etype (L));
7046 end if;
7048 Analyze_Dimension (N);
7050 -- Evaluate the relation (note we do this after the above check since
7051 -- this Eval call may change N to True/False. Skip this evaluation
7052 -- inside assertions, in order to keep assertions as written by users
7053 -- for tools that rely on these, e.g. GNATprove for loop invariants.
7054 -- Except evaluation is still performed even inside assertions for
7055 -- comparisons between values of universal type, which are useless
7056 -- for static analysis tools, and not supported even by GNATprove.
7058 if In_Assertion_Expr = 0
7059 or else (Is_Universal_Numeric_Type (Etype (L))
7060 and then
7061 Is_Universal_Numeric_Type (Etype (R)))
7062 then
7063 Eval_Relational_Op (N);
7064 end if;
7065 end Resolve_Comparison_Op;
7067 -----------------------------------------
7068 -- Resolve_Discrete_Subtype_Indication --
7069 -----------------------------------------
7071 procedure Resolve_Discrete_Subtype_Indication
7072 (N : Node_Id;
7073 Typ : Entity_Id)
7075 R : Node_Id;
7076 S : Entity_Id;
7078 begin
7079 Analyze (Subtype_Mark (N));
7080 S := Entity (Subtype_Mark (N));
7082 if Nkind (Constraint (N)) /= N_Range_Constraint then
7083 Error_Msg_N ("expect range constraint for discrete type", N);
7084 Set_Etype (N, Any_Type);
7086 else
7087 R := Range_Expression (Constraint (N));
7089 if R = Error then
7090 return;
7091 end if;
7093 Analyze (R);
7095 if Base_Type (S) /= Base_Type (Typ) then
7096 Error_Msg_NE
7097 ("expect subtype of }", N, First_Subtype (Typ));
7099 -- Rewrite the constraint as a range of Typ
7100 -- to allow compilation to proceed further.
7102 Set_Etype (N, Typ);
7103 Rewrite (Low_Bound (R),
7104 Make_Attribute_Reference (Sloc (Low_Bound (R)),
7105 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7106 Attribute_Name => Name_First));
7107 Rewrite (High_Bound (R),
7108 Make_Attribute_Reference (Sloc (High_Bound (R)),
7109 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7110 Attribute_Name => Name_First));
7112 else
7113 Resolve (R, Typ);
7114 Set_Etype (N, Etype (R));
7116 -- Additionally, we must check that the bounds are compatible
7117 -- with the given subtype, which might be different from the
7118 -- type of the context.
7120 Apply_Range_Check (R, S);
7122 -- ??? If the above check statically detects a Constraint_Error
7123 -- it replaces the offending bound(s) of the range R with a
7124 -- Constraint_Error node. When the itype which uses these bounds
7125 -- is frozen the resulting call to Duplicate_Subexpr generates
7126 -- a new temporary for the bounds.
7128 -- Unfortunately there are other itypes that are also made depend
7129 -- on these bounds, so when Duplicate_Subexpr is called they get
7130 -- a forward reference to the newly created temporaries and Gigi
7131 -- aborts on such forward references. This is probably sign of a
7132 -- more fundamental problem somewhere else in either the order of
7133 -- itype freezing or the way certain itypes are constructed.
7135 -- To get around this problem we call Remove_Side_Effects right
7136 -- away if either bounds of R are a Constraint_Error.
7138 declare
7139 L : constant Node_Id := Low_Bound (R);
7140 H : constant Node_Id := High_Bound (R);
7142 begin
7143 if Nkind (L) = N_Raise_Constraint_Error then
7144 Remove_Side_Effects (L);
7145 end if;
7147 if Nkind (H) = N_Raise_Constraint_Error then
7148 Remove_Side_Effects (H);
7149 end if;
7150 end;
7152 Check_Unset_Reference (Low_Bound (R));
7153 Check_Unset_Reference (High_Bound (R));
7154 end if;
7155 end if;
7156 end Resolve_Discrete_Subtype_Indication;
7158 -------------------------
7159 -- Resolve_Entity_Name --
7160 -------------------------
7162 -- Used to resolve identifiers and expanded names
7164 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
7165 function Is_Assignment_Or_Object_Expression
7166 (Context : Node_Id;
7167 Expr : Node_Id) return Boolean;
7168 -- Determine whether node Context denotes an assignment statement or an
7169 -- object declaration whose expression is node Expr.
7171 ----------------------------------------
7172 -- Is_Assignment_Or_Object_Expression --
7173 ----------------------------------------
7175 function Is_Assignment_Or_Object_Expression
7176 (Context : Node_Id;
7177 Expr : Node_Id) return Boolean
7179 begin
7180 if Nkind_In (Context, N_Assignment_Statement,
7181 N_Object_Declaration)
7182 and then Expression (Context) = Expr
7183 then
7184 return True;
7186 -- Check whether a construct that yields a name is the expression of
7187 -- an assignment statement or an object declaration.
7189 elsif (Nkind_In (Context, N_Attribute_Reference,
7190 N_Explicit_Dereference,
7191 N_Indexed_Component,
7192 N_Selected_Component,
7193 N_Slice)
7194 and then Prefix (Context) = Expr)
7195 or else
7196 (Nkind_In (Context, N_Type_Conversion,
7197 N_Unchecked_Type_Conversion)
7198 and then Expression (Context) = Expr)
7199 then
7200 return
7201 Is_Assignment_Or_Object_Expression
7202 (Context => Parent (Context),
7203 Expr => Context);
7205 -- Otherwise the context is not an assignment statement or an object
7206 -- declaration.
7208 else
7209 return False;
7210 end if;
7211 end Is_Assignment_Or_Object_Expression;
7213 -- Local variables
7215 E : constant Entity_Id := Entity (N);
7216 Par : Node_Id;
7218 -- Start of processing for Resolve_Entity_Name
7220 begin
7221 -- If garbage from errors, set to Any_Type and return
7223 if No (E) and then Total_Errors_Detected /= 0 then
7224 Set_Etype (N, Any_Type);
7225 return;
7226 end if;
7228 -- Replace named numbers by corresponding literals. Note that this is
7229 -- the one case where Resolve_Entity_Name must reset the Etype, since
7230 -- it is currently marked as universal.
7232 if Ekind (E) = E_Named_Integer then
7233 Set_Etype (N, Typ);
7234 Eval_Named_Integer (N);
7236 elsif Ekind (E) = E_Named_Real then
7237 Set_Etype (N, Typ);
7238 Eval_Named_Real (N);
7240 -- For enumeration literals, we need to make sure that a proper style
7241 -- check is done, since such literals are overloaded, and thus we did
7242 -- not do a style check during the first phase of analysis.
7244 elsif Ekind (E) = E_Enumeration_Literal then
7245 Set_Entity_With_Checks (N, E);
7246 Eval_Entity_Name (N);
7248 -- Case of (sub)type name appearing in a context where an expression
7249 -- is expected. This is legal if occurrence is a current instance.
7250 -- See RM 8.6 (17/3).
7252 elsif Is_Type (E) then
7253 if Is_Current_Instance (N) then
7254 null;
7256 -- Any other use is an error
7258 else
7259 Error_Msg_N
7260 ("invalid use of subtype mark in expression or call", N);
7261 end if;
7263 -- Check discriminant use if entity is discriminant in current scope,
7264 -- i.e. discriminant of record or concurrent type currently being
7265 -- analyzed. Uses in corresponding body are unrestricted.
7267 elsif Ekind (E) = E_Discriminant
7268 and then Scope (E) = Current_Scope
7269 and then not Has_Completion (Current_Scope)
7270 then
7271 Check_Discriminant_Use (N);
7273 -- A parameterless generic function cannot appear in a context that
7274 -- requires resolution.
7276 elsif Ekind (E) = E_Generic_Function then
7277 Error_Msg_N ("illegal use of generic function", N);
7279 -- In Ada 83 an OUT parameter cannot be read, but attributes of
7280 -- array types (i.e. bounds and length) are legal.
7282 elsif Ekind (E) = E_Out_Parameter
7283 and then (Nkind (Parent (N)) /= N_Attribute_Reference
7284 or else Is_Scalar_Type (Etype (E)))
7286 and then (Nkind (Parent (N)) in N_Op
7287 or else Nkind (Parent (N)) = N_Explicit_Dereference
7288 or else Is_Assignment_Or_Object_Expression
7289 (Context => Parent (N),
7290 Expr => N))
7291 then
7292 if Ada_Version = Ada_83 then
7293 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7294 end if;
7296 -- In all other cases, just do the possible static evaluation
7298 else
7299 -- A deferred constant that appears in an expression must have a
7300 -- completion, unless it has been removed by in-place expansion of
7301 -- an aggregate. A constant that is a renaming does not need
7302 -- initialization.
7304 if Ekind (E) = E_Constant
7305 and then Comes_From_Source (E)
7306 and then No (Constant_Value (E))
7307 and then Is_Frozen (Etype (E))
7308 and then not In_Spec_Expression
7309 and then not Is_Imported (E)
7310 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7311 then
7312 if No_Initialization (Parent (E))
7313 or else (Present (Full_View (E))
7314 and then No_Initialization (Parent (Full_View (E))))
7315 then
7316 null;
7317 else
7318 Error_Msg_N
7319 ("deferred constant is frozen before completion", N);
7320 end if;
7321 end if;
7323 Eval_Entity_Name (N);
7324 end if;
7326 Par := Parent (N);
7328 -- When the entity appears in a parameter association, retrieve the
7329 -- related subprogram call.
7331 if Nkind (Par) = N_Parameter_Association then
7332 Par := Parent (Par);
7333 end if;
7335 if Comes_From_Source (N) then
7337 -- The following checks are only relevant when SPARK_Mode is on as
7338 -- they are not standard Ada legality rules.
7340 if SPARK_Mode = On then
7342 -- An effectively volatile object subject to enabled properties
7343 -- Async_Writers or Effective_Reads must appear in non-interfering
7344 -- context (SPARK RM 7.1.3(12)).
7346 if Is_Object (E)
7347 and then Is_Effectively_Volatile (E)
7348 and then (Async_Writers_Enabled (E)
7349 or else Effective_Reads_Enabled (E))
7350 and then not Is_OK_Volatile_Context (Par, N)
7351 then
7352 SPARK_Msg_N
7353 ("volatile object cannot appear in this context "
7354 & "(SPARK RM 7.1.3(12))", N);
7355 end if;
7357 -- The variable may eventually become a constituent of a single
7358 -- protected/task type. Record the reference now and verify its
7359 -- legality when analyzing the contract of the variable
7360 -- (SPARK RM 9.3).
7362 if Ekind (E) = E_Variable then
7363 Record_Possible_Part_Of_Reference (E, N);
7364 end if;
7365 end if;
7367 -- A Ghost entity must appear in a specific context
7369 if Is_Ghost_Entity (E) then
7370 Check_Ghost_Context (E, N);
7371 end if;
7372 end if;
7374 Mark_Use_Clauses (E);
7375 end Resolve_Entity_Name;
7377 -------------------
7378 -- Resolve_Entry --
7379 -------------------
7381 procedure Resolve_Entry (Entry_Name : Node_Id) is
7382 Loc : constant Source_Ptr := Sloc (Entry_Name);
7383 Nam : Entity_Id;
7384 New_N : Node_Id;
7385 S : Entity_Id;
7386 Tsk : Entity_Id;
7387 E_Name : Node_Id;
7388 Index : Node_Id;
7390 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7391 -- If the bounds of the entry family being called depend on task
7392 -- discriminants, build a new index subtype where a discriminant is
7393 -- replaced with the value of the discriminant of the target task.
7394 -- The target task is the prefix of the entry name in the call.
7396 -----------------------
7397 -- Actual_Index_Type --
7398 -----------------------
7400 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7401 Typ : constant Entity_Id := Entry_Index_Type (E);
7402 Tsk : constant Entity_Id := Scope (E);
7403 Lo : constant Node_Id := Type_Low_Bound (Typ);
7404 Hi : constant Node_Id := Type_High_Bound (Typ);
7405 New_T : Entity_Id;
7407 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7408 -- If the bound is given by a discriminant, replace with a reference
7409 -- to the discriminant of the same name in the target task. If the
7410 -- entry name is the target of a requeue statement and the entry is
7411 -- in the current protected object, the bound to be used is the
7412 -- discriminal of the object (see Apply_Range_Checks for details of
7413 -- the transformation).
7415 -----------------------------
7416 -- Actual_Discriminant_Ref --
7417 -----------------------------
7419 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7420 Typ : constant Entity_Id := Etype (Bound);
7421 Ref : Node_Id;
7423 begin
7424 Remove_Side_Effects (Bound);
7426 if not Is_Entity_Name (Bound)
7427 or else Ekind (Entity (Bound)) /= E_Discriminant
7428 then
7429 return Bound;
7431 elsif Is_Protected_Type (Tsk)
7432 and then In_Open_Scopes (Tsk)
7433 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7434 then
7435 -- Note: here Bound denotes a discriminant of the corresponding
7436 -- record type tskV, whose discriminal is a formal of the
7437 -- init-proc tskVIP. What we want is the body discriminal,
7438 -- which is associated to the discriminant of the original
7439 -- concurrent type tsk.
7441 return New_Occurrence_Of
7442 (Find_Body_Discriminal (Entity (Bound)), Loc);
7444 else
7445 Ref :=
7446 Make_Selected_Component (Loc,
7447 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7448 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7449 Analyze (Ref);
7450 Resolve (Ref, Typ);
7451 return Ref;
7452 end if;
7453 end Actual_Discriminant_Ref;
7455 -- Start of processing for Actual_Index_Type
7457 begin
7458 if not Has_Discriminants (Tsk)
7459 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7460 then
7461 return Entry_Index_Type (E);
7463 else
7464 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7465 Set_Etype (New_T, Base_Type (Typ));
7466 Set_Size_Info (New_T, Typ);
7467 Set_RM_Size (New_T, RM_Size (Typ));
7468 Set_Scalar_Range (New_T,
7469 Make_Range (Sloc (Entry_Name),
7470 Low_Bound => Actual_Discriminant_Ref (Lo),
7471 High_Bound => Actual_Discriminant_Ref (Hi)));
7473 return New_T;
7474 end if;
7475 end Actual_Index_Type;
7477 -- Start of processing for Resolve_Entry
7479 begin
7480 -- Find name of entry being called, and resolve prefix of name with its
7481 -- own type. The prefix can be overloaded, and the name and signature of
7482 -- the entry must be taken into account.
7484 if Nkind (Entry_Name) = N_Indexed_Component then
7486 -- Case of dealing with entry family within the current tasks
7488 E_Name := Prefix (Entry_Name);
7490 else
7491 E_Name := Entry_Name;
7492 end if;
7494 if Is_Entity_Name (E_Name) then
7496 -- Entry call to an entry (or entry family) in the current task. This
7497 -- is legal even though the task will deadlock. Rewrite as call to
7498 -- current task.
7500 -- This can also be a call to an entry in an enclosing task. If this
7501 -- is a single task, we have to retrieve its name, because the scope
7502 -- of the entry is the task type, not the object. If the enclosing
7503 -- task is a task type, the identity of the task is given by its own
7504 -- self variable.
7506 -- Finally this can be a requeue on an entry of the same task or
7507 -- protected object.
7509 S := Scope (Entity (E_Name));
7511 for J in reverse 0 .. Scope_Stack.Last loop
7512 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7513 and then not Comes_From_Source (S)
7514 then
7515 -- S is an enclosing task or protected object. The concurrent
7516 -- declaration has been converted into a type declaration, and
7517 -- the object itself has an object declaration that follows
7518 -- the type in the same declarative part.
7520 Tsk := Next_Entity (S);
7521 while Etype (Tsk) /= S loop
7522 Next_Entity (Tsk);
7523 end loop;
7525 S := Tsk;
7526 exit;
7528 elsif S = Scope_Stack.Table (J).Entity then
7530 -- Call to current task. Will be transformed into call to Self
7532 exit;
7534 end if;
7535 end loop;
7537 New_N :=
7538 Make_Selected_Component (Loc,
7539 Prefix => New_Occurrence_Of (S, Loc),
7540 Selector_Name =>
7541 New_Occurrence_Of (Entity (E_Name), Loc));
7542 Rewrite (E_Name, New_N);
7543 Analyze (E_Name);
7545 elsif Nkind (Entry_Name) = N_Selected_Component
7546 and then Is_Overloaded (Prefix (Entry_Name))
7547 then
7548 -- Use the entry name (which must be unique at this point) to find
7549 -- the prefix that returns the corresponding task/protected type.
7551 declare
7552 Pref : constant Node_Id := Prefix (Entry_Name);
7553 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7554 I : Interp_Index;
7555 It : Interp;
7557 begin
7558 Get_First_Interp (Pref, I, It);
7559 while Present (It.Typ) loop
7560 if Scope (Ent) = It.Typ then
7561 Set_Etype (Pref, It.Typ);
7562 exit;
7563 end if;
7565 Get_Next_Interp (I, It);
7566 end loop;
7567 end;
7568 end if;
7570 if Nkind (Entry_Name) = N_Selected_Component then
7571 Resolve (Prefix (Entry_Name));
7573 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7574 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7575 Resolve (Prefix (Prefix (Entry_Name)));
7576 Index := First (Expressions (Entry_Name));
7577 Resolve (Index, Entry_Index_Type (Nam));
7579 -- Generate a reference for the index when it denotes an entity
7581 if Is_Entity_Name (Index) then
7582 Generate_Reference (Entity (Index), Nam);
7583 end if;
7585 -- Up to this point the expression could have been the actual in a
7586 -- simple entry call, and be given by a named association.
7588 if Nkind (Index) = N_Parameter_Association then
7589 Error_Msg_N ("expect expression for entry index", Index);
7590 else
7591 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7592 end if;
7593 end if;
7594 end Resolve_Entry;
7596 ------------------------
7597 -- Resolve_Entry_Call --
7598 ------------------------
7600 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7601 Entry_Name : constant Node_Id := Name (N);
7602 Loc : constant Source_Ptr := Sloc (Entry_Name);
7604 Nam : Entity_Id;
7605 Norm_OK : Boolean;
7606 Obj : Node_Id;
7607 Was_Over : Boolean;
7609 begin
7610 -- We kill all checks here, because it does not seem worth the effort to
7611 -- do anything better, an entry call is a big operation.
7613 Kill_All_Checks;
7615 -- Processing of the name is similar for entry calls and protected
7616 -- operation calls. Once the entity is determined, we can complete
7617 -- the resolution of the actuals.
7619 -- The selector may be overloaded, in the case of a protected object
7620 -- with overloaded functions. The type of the context is used for
7621 -- resolution.
7623 if Nkind (Entry_Name) = N_Selected_Component
7624 and then Is_Overloaded (Selector_Name (Entry_Name))
7625 and then Typ /= Standard_Void_Type
7626 then
7627 declare
7628 I : Interp_Index;
7629 It : Interp;
7631 begin
7632 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7633 while Present (It.Typ) loop
7634 if Covers (Typ, It.Typ) then
7635 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7636 Set_Etype (Entry_Name, It.Typ);
7638 Generate_Reference (It.Typ, N, ' ');
7639 end if;
7641 Get_Next_Interp (I, It);
7642 end loop;
7643 end;
7644 end if;
7646 Resolve_Entry (Entry_Name);
7648 if Nkind (Entry_Name) = N_Selected_Component then
7650 -- Simple entry or protected operation call
7652 Nam := Entity (Selector_Name (Entry_Name));
7653 Obj := Prefix (Entry_Name);
7655 if Is_Subprogram (Nam) then
7656 Check_For_Eliminated_Subprogram (Entry_Name, Nam);
7657 end if;
7659 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7661 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7663 -- Call to member of entry family
7665 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7666 Obj := Prefix (Prefix (Entry_Name));
7667 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7668 end if;
7670 -- We cannot in general check the maximum depth of protected entry calls
7671 -- at compile time. But we can tell that any protected entry call at all
7672 -- violates a specified nesting depth of zero.
7674 if Is_Protected_Type (Scope (Nam)) then
7675 Check_Restriction (Max_Entry_Queue_Length, N);
7676 end if;
7678 -- Use context type to disambiguate a protected function that can be
7679 -- called without actuals and that returns an array type, and where the
7680 -- argument list may be an indexing of the returned value.
7682 if Ekind (Nam) = E_Function
7683 and then Needs_No_Actuals (Nam)
7684 and then Present (Parameter_Associations (N))
7685 and then
7686 ((Is_Array_Type (Etype (Nam))
7687 and then Covers (Typ, Component_Type (Etype (Nam))))
7689 or else (Is_Access_Type (Etype (Nam))
7690 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7691 and then
7692 Covers
7693 (Typ,
7694 Component_Type (Designated_Type (Etype (Nam))))))
7695 then
7696 declare
7697 Index_Node : Node_Id;
7699 begin
7700 Index_Node :=
7701 Make_Indexed_Component (Loc,
7702 Prefix =>
7703 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7704 Expressions => Parameter_Associations (N));
7706 -- Since we are correcting a node classification error made by the
7707 -- parser, we call Replace rather than Rewrite.
7709 Replace (N, Index_Node);
7710 Set_Etype (Prefix (N), Etype (Nam));
7711 Set_Etype (N, Typ);
7712 Resolve_Indexed_Component (N, Typ);
7713 return;
7714 end;
7715 end if;
7717 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7718 and then Present (Contract_Wrapper (Nam))
7719 and then Current_Scope /= Contract_Wrapper (Nam)
7720 then
7721 -- Note the entity being called before rewriting the call, so that
7722 -- it appears used at this point.
7724 Generate_Reference (Nam, Entry_Name, 'r');
7726 -- Rewrite as call to the precondition wrapper, adding the task
7727 -- object to the list of actuals. If the call is to a member of an
7728 -- entry family, include the index as well.
7730 declare
7731 New_Call : Node_Id;
7732 New_Actuals : List_Id;
7734 begin
7735 New_Actuals := New_List (Obj);
7737 if Nkind (Entry_Name) = N_Indexed_Component then
7738 Append_To (New_Actuals,
7739 New_Copy_Tree (First (Expressions (Entry_Name))));
7740 end if;
7742 Append_List (Parameter_Associations (N), New_Actuals);
7743 New_Call :=
7744 Make_Procedure_Call_Statement (Loc,
7745 Name =>
7746 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7747 Parameter_Associations => New_Actuals);
7748 Rewrite (N, New_Call);
7750 -- Preanalyze and resolve new call. Current procedure is called
7751 -- from Resolve_Call, after which expansion will take place.
7753 Preanalyze_And_Resolve (N);
7754 return;
7755 end;
7756 end if;
7758 -- The operation name may have been overloaded. Order the actuals
7759 -- according to the formals of the resolved entity, and set the return
7760 -- type to that of the operation.
7762 if Was_Over then
7763 Normalize_Actuals (N, Nam, False, Norm_OK);
7764 pragma Assert (Norm_OK);
7765 Set_Etype (N, Etype (Nam));
7767 -- Reset the Is_Overloaded flag, since resolution is now completed
7769 -- Simple entry call
7771 if Nkind (Entry_Name) = N_Selected_Component then
7772 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7774 -- Call to a member of an entry family
7776 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7777 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7778 end if;
7779 end if;
7781 Resolve_Actuals (N, Nam);
7782 Check_Internal_Protected_Use (N, Nam);
7784 -- Create a call reference to the entry
7786 Generate_Reference (Nam, Entry_Name, 's');
7788 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7789 Check_Potentially_Blocking_Operation (N);
7790 end if;
7792 -- Verify that a procedure call cannot masquerade as an entry
7793 -- call where an entry call is expected.
7795 if Ekind (Nam) = E_Procedure then
7796 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7797 and then N = Entry_Call_Statement (Parent (N))
7798 then
7799 Error_Msg_N ("entry call required in select statement", N);
7801 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7802 and then N = Triggering_Statement (Parent (N))
7803 then
7804 Error_Msg_N ("triggering statement cannot be procedure call", N);
7806 elsif Ekind (Scope (Nam)) = E_Task_Type
7807 and then not In_Open_Scopes (Scope (Nam))
7808 then
7809 Error_Msg_N ("task has no entry with this name", Entry_Name);
7810 end if;
7811 end if;
7813 -- After resolution, entry calls and protected procedure calls are
7814 -- changed into entry calls, for expansion. The structure of the node
7815 -- does not change, so it can safely be done in place. Protected
7816 -- function calls must keep their structure because they are
7817 -- subexpressions.
7819 if Ekind (Nam) /= E_Function then
7821 -- A protected operation that is not a function may modify the
7822 -- corresponding object, and cannot apply to a constant. If this
7823 -- is an internal call, the prefix is the type itself.
7825 if Is_Protected_Type (Scope (Nam))
7826 and then not Is_Variable (Obj)
7827 and then (not Is_Entity_Name (Obj)
7828 or else not Is_Type (Entity (Obj)))
7829 then
7830 Error_Msg_N
7831 ("prefix of protected procedure or entry call must be variable",
7832 Entry_Name);
7833 end if;
7835 declare
7836 Entry_Call : Node_Id;
7838 begin
7839 Entry_Call :=
7840 Make_Entry_Call_Statement (Loc,
7841 Name => Entry_Name,
7842 Parameter_Associations => Parameter_Associations (N));
7844 -- Inherit relevant attributes from the original call
7846 Set_First_Named_Actual
7847 (Entry_Call, First_Named_Actual (N));
7849 Set_Is_Elaboration_Checks_OK_Node
7850 (Entry_Call, Is_Elaboration_Checks_OK_Node (N));
7852 Set_Is_SPARK_Mode_On_Node
7853 (Entry_Call, Is_SPARK_Mode_On_Node (N));
7855 Rewrite (N, Entry_Call);
7856 Set_Analyzed (N, True);
7857 end;
7859 -- Protected functions can return on the secondary stack, in which
7860 -- case we must trigger the transient scope mechanism.
7862 elsif Expander_Active
7863 and then Requires_Transient_Scope (Etype (Nam))
7864 then
7865 Establish_Transient_Scope (N, Sec_Stack => True);
7866 end if;
7867 end Resolve_Entry_Call;
7869 -------------------------
7870 -- Resolve_Equality_Op --
7871 -------------------------
7873 -- Both arguments must have the same type, and the boolean context does
7874 -- not participate in the resolution. The first pass verifies that the
7875 -- interpretation is not ambiguous, and the type of the left argument is
7876 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7877 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7878 -- though they carry a single (universal) type. Diagnose this case here.
7880 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7881 L : constant Node_Id := Left_Opnd (N);
7882 R : constant Node_Id := Right_Opnd (N);
7883 T : Entity_Id := Find_Unique_Type (L, R);
7885 procedure Check_If_Expression (Cond : Node_Id);
7886 -- The resolution rule for if expressions requires that each such must
7887 -- have a unique type. This means that if several dependent expressions
7888 -- are of a non-null anonymous access type, and the context does not
7889 -- impose an expected type (as can be the case in an equality operation)
7890 -- the expression must be rejected.
7892 procedure Explain_Redundancy (N : Node_Id);
7893 -- Attempt to explain the nature of a redundant comparison with True. If
7894 -- the expression N is too complex, this routine issues a general error
7895 -- message.
7897 function Find_Unique_Access_Type return Entity_Id;
7898 -- In the case of allocators and access attributes, the context must
7899 -- provide an indication of the specific access type to be used. If
7900 -- one operand is of such a "generic" access type, check whether there
7901 -- is a specific visible access type that has the same designated type.
7902 -- This is semantically dubious, and of no interest to any real code,
7903 -- but c48008a makes it all worthwhile.
7905 -------------------------
7906 -- Check_If_Expression --
7907 -------------------------
7909 procedure Check_If_Expression (Cond : Node_Id) is
7910 Then_Expr : Node_Id;
7911 Else_Expr : Node_Id;
7913 begin
7914 if Nkind (Cond) = N_If_Expression then
7915 Then_Expr := Next (First (Expressions (Cond)));
7916 Else_Expr := Next (Then_Expr);
7918 if Nkind (Then_Expr) /= N_Null
7919 and then Nkind (Else_Expr) /= N_Null
7920 then
7921 Error_Msg_N ("cannot determine type of if expression", Cond);
7922 end if;
7923 end if;
7924 end Check_If_Expression;
7926 ------------------------
7927 -- Explain_Redundancy --
7928 ------------------------
7930 procedure Explain_Redundancy (N : Node_Id) is
7931 Error : Name_Id;
7932 Val : Node_Id;
7933 Val_Id : Entity_Id;
7935 begin
7936 Val := N;
7938 -- Strip the operand down to an entity
7940 loop
7941 if Nkind (Val) = N_Selected_Component then
7942 Val := Selector_Name (Val);
7943 else
7944 exit;
7945 end if;
7946 end loop;
7948 -- The construct denotes an entity
7950 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7951 Val_Id := Entity (Val);
7953 -- Do not generate an error message when the comparison is done
7954 -- against the enumeration literal Standard.True.
7956 if Ekind (Val_Id) /= E_Enumeration_Literal then
7958 -- Build a customized error message
7960 Name_Len := 0;
7961 Add_Str_To_Name_Buffer ("?r?");
7963 if Ekind (Val_Id) = E_Component then
7964 Add_Str_To_Name_Buffer ("component ");
7966 elsif Ekind (Val_Id) = E_Constant then
7967 Add_Str_To_Name_Buffer ("constant ");
7969 elsif Ekind (Val_Id) = E_Discriminant then
7970 Add_Str_To_Name_Buffer ("discriminant ");
7972 elsif Is_Formal (Val_Id) then
7973 Add_Str_To_Name_Buffer ("parameter ");
7975 elsif Ekind (Val_Id) = E_Variable then
7976 Add_Str_To_Name_Buffer ("variable ");
7977 end if;
7979 Add_Str_To_Name_Buffer ("& is always True!");
7980 Error := Name_Find;
7982 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7983 end if;
7985 -- The construct is too complex to disect, issue a general message
7987 else
7988 Error_Msg_N ("?r?expression is always True!", Val);
7989 end if;
7990 end Explain_Redundancy;
7992 -----------------------------
7993 -- Find_Unique_Access_Type --
7994 -----------------------------
7996 function Find_Unique_Access_Type return Entity_Id is
7997 Acc : Entity_Id;
7998 E : Entity_Id;
7999 S : Entity_Id;
8001 begin
8002 if Ekind_In (Etype (R), E_Allocator_Type,
8003 E_Access_Attribute_Type)
8004 then
8005 Acc := Designated_Type (Etype (R));
8007 elsif Ekind_In (Etype (L), E_Allocator_Type,
8008 E_Access_Attribute_Type)
8009 then
8010 Acc := Designated_Type (Etype (L));
8011 else
8012 return Empty;
8013 end if;
8015 S := Current_Scope;
8016 while S /= Standard_Standard loop
8017 E := First_Entity (S);
8018 while Present (E) loop
8019 if Is_Type (E)
8020 and then Is_Access_Type (E)
8021 and then Ekind (E) /= E_Allocator_Type
8022 and then Designated_Type (E) = Base_Type (Acc)
8023 then
8024 return E;
8025 end if;
8027 Next_Entity (E);
8028 end loop;
8030 S := Scope (S);
8031 end loop;
8033 return Empty;
8034 end Find_Unique_Access_Type;
8036 -- Start of processing for Resolve_Equality_Op
8038 begin
8039 Set_Etype (N, Base_Type (Typ));
8040 Generate_Reference (T, N, ' ');
8042 if T = Any_Fixed then
8043 T := Unique_Fixed_Point_Type (L);
8044 end if;
8046 if T /= Any_Type then
8047 if T = Any_String or else
8048 T = Any_Composite or else
8049 T = Any_Character
8050 then
8051 if T = Any_Character then
8052 Ambiguous_Character (L);
8053 else
8054 Error_Msg_N ("ambiguous operands for equality", N);
8055 end if;
8057 Set_Etype (N, Any_Type);
8058 return;
8060 elsif T = Any_Access
8061 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
8062 then
8063 T := Find_Unique_Access_Type;
8065 if No (T) then
8066 Error_Msg_N ("ambiguous operands for equality", N);
8067 Set_Etype (N, Any_Type);
8068 return;
8069 end if;
8071 -- If expressions must have a single type, and if the context does
8072 -- not impose one the dependent expressions cannot be anonymous
8073 -- access types.
8075 -- Why no similar processing for case expressions???
8077 elsif Ada_Version >= Ada_2012
8078 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
8079 E_Anonymous_Access_Subprogram_Type)
8080 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
8081 E_Anonymous_Access_Subprogram_Type)
8082 then
8083 Check_If_Expression (L);
8084 Check_If_Expression (R);
8085 end if;
8087 Resolve (L, T);
8088 Resolve (R, T);
8090 -- In SPARK, equality operators = and /= for array types other than
8091 -- String are only defined when, for each index position, the
8092 -- operands have equal static bounds.
8094 if Is_Array_Type (T) then
8096 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8097 -- operation if not needed.
8099 if Restriction_Check_Required (SPARK_05)
8100 and then Base_Type (T) /= Standard_String
8101 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
8102 and then Etype (L) /= Any_Composite -- or else L in error
8103 and then Etype (R) /= Any_Composite -- or else R in error
8104 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
8105 then
8106 Check_SPARK_05_Restriction
8107 ("array types should have matching static bounds", N);
8108 end if;
8109 end if;
8111 -- If the unique type is a class-wide type then it will be expanded
8112 -- into a dispatching call to the predefined primitive. Therefore we
8113 -- check here for potential violation of such restriction.
8115 if Is_Class_Wide_Type (T) then
8116 Check_Restriction (No_Dispatching_Calls, N);
8117 end if;
8119 -- Only warn for redundant equality comparison to True for objects
8120 -- (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For
8121 -- other expressions, it may be a matter of preference to write
8122 -- "Expr = True" or "Expr".
8124 if Warn_On_Redundant_Constructs
8125 and then Comes_From_Source (N)
8126 and then Comes_From_Source (R)
8127 and then Is_Entity_Name (R)
8128 and then Entity (R) = Standard_True
8129 and then
8130 ((Is_Entity_Name (L) and then Is_Object (Entity (L)))
8131 or else
8132 Nkind (L) in N_Op)
8133 then
8134 Error_Msg_N -- CODEFIX
8135 ("?r?comparison with True is redundant!", N);
8136 Explain_Redundancy (Original_Node (R));
8137 end if;
8139 Check_Unset_Reference (L);
8140 Check_Unset_Reference (R);
8141 Generate_Operator_Reference (N, T);
8142 Check_Low_Bound_Tested (N);
8144 -- If this is an inequality, it may be the implicit inequality
8145 -- created for a user-defined operation, in which case the corres-
8146 -- ponding equality operation is not intrinsic, and the operation
8147 -- cannot be constant-folded. Else fold.
8149 if Nkind (N) = N_Op_Eq
8150 or else Comes_From_Source (Entity (N))
8151 or else Ekind (Entity (N)) = E_Operator
8152 or else Is_Intrinsic_Subprogram
8153 (Corresponding_Equality (Entity (N)))
8154 then
8155 Analyze_Dimension (N);
8156 Eval_Relational_Op (N);
8158 elsif Nkind (N) = N_Op_Ne
8159 and then Is_Abstract_Subprogram (Entity (N))
8160 then
8161 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
8162 end if;
8164 -- Ada 2005: If one operand is an anonymous access type, convert the
8165 -- other operand to it, to ensure that the underlying types match in
8166 -- the back-end. Same for access_to_subprogram, and the conversion
8167 -- verifies that the types are subtype conformant.
8169 -- We apply the same conversion in the case one of the operands is a
8170 -- private subtype of the type of the other.
8172 -- Why the Expander_Active test here ???
8174 if Expander_Active
8175 and then
8176 (Ekind_In (T, E_Anonymous_Access_Type,
8177 E_Anonymous_Access_Subprogram_Type)
8178 or else Is_Private_Type (T))
8179 then
8180 if Etype (L) /= T then
8181 Rewrite (L,
8182 Make_Unchecked_Type_Conversion (Sloc (L),
8183 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
8184 Expression => Relocate_Node (L)));
8185 Analyze_And_Resolve (L, T);
8186 end if;
8188 if (Etype (R)) /= T then
8189 Rewrite (R,
8190 Make_Unchecked_Type_Conversion (Sloc (R),
8191 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
8192 Expression => Relocate_Node (R)));
8193 Analyze_And_Resolve (R, T);
8194 end if;
8195 end if;
8196 end if;
8197 end Resolve_Equality_Op;
8199 ----------------------------------
8200 -- Resolve_Explicit_Dereference --
8201 ----------------------------------
8203 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8204 Loc : constant Source_Ptr := Sloc (N);
8205 New_N : Node_Id;
8206 P : constant Node_Id := Prefix (N);
8208 P_Typ : Entity_Id;
8209 -- The candidate prefix type, if overloaded
8211 I : Interp_Index;
8212 It : Interp;
8214 begin
8215 Check_Fully_Declared_Prefix (Typ, P);
8216 P_Typ := Empty;
8218 -- A useful optimization: check whether the dereference denotes an
8219 -- element of a container, and if so rewrite it as a call to the
8220 -- corresponding Element function.
8222 -- Disabled for now, on advice of ARG. A more restricted form of the
8223 -- predicate might be acceptable ???
8225 -- if Is_Container_Element (N) then
8226 -- return;
8227 -- end if;
8229 if Is_Overloaded (P) then
8231 -- Use the context type to select the prefix that has the correct
8232 -- designated type. Keep the first match, which will be the inner-
8233 -- most.
8235 Get_First_Interp (P, I, It);
8237 while Present (It.Typ) loop
8238 if Is_Access_Type (It.Typ)
8239 and then Covers (Typ, Designated_Type (It.Typ))
8240 then
8241 if No (P_Typ) then
8242 P_Typ := It.Typ;
8243 end if;
8245 -- Remove access types that do not match, but preserve access
8246 -- to subprogram interpretations, in case a further dereference
8247 -- is needed (see below).
8249 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8250 Remove_Interp (I);
8251 end if;
8253 Get_Next_Interp (I, It);
8254 end loop;
8256 if Present (P_Typ) then
8257 Resolve (P, P_Typ);
8258 Set_Etype (N, Designated_Type (P_Typ));
8260 else
8261 -- If no interpretation covers the designated type of the prefix,
8262 -- this is the pathological case where not all implementations of
8263 -- the prefix allow the interpretation of the node as a call. Now
8264 -- that the expected type is known, Remove other interpretations
8265 -- from prefix, rewrite it as a call, and resolve again, so that
8266 -- the proper call node is generated.
8268 Get_First_Interp (P, I, It);
8269 while Present (It.Typ) loop
8270 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8271 Remove_Interp (I);
8272 end if;
8274 Get_Next_Interp (I, It);
8275 end loop;
8277 New_N :=
8278 Make_Function_Call (Loc,
8279 Name =>
8280 Make_Explicit_Dereference (Loc,
8281 Prefix => P),
8282 Parameter_Associations => New_List);
8284 Save_Interps (N, New_N);
8285 Rewrite (N, New_N);
8286 Analyze_And_Resolve (N, Typ);
8287 return;
8288 end if;
8290 -- If not overloaded, resolve P with its own type
8292 else
8293 Resolve (P);
8294 end if;
8296 -- If the prefix might be null, add an access check
8298 if Is_Access_Type (Etype (P))
8299 and then not Can_Never_Be_Null (Etype (P))
8300 then
8301 Apply_Access_Check (N);
8302 end if;
8304 -- If the designated type is a packed unconstrained array type, and the
8305 -- explicit dereference is not in the context of an attribute reference,
8306 -- then we must compute and set the actual subtype, since it is needed
8307 -- by Gigi. The reason we exclude the attribute case is that this is
8308 -- handled fine by Gigi, and in fact we use such attributes to build the
8309 -- actual subtype. We also exclude generated code (which builds actual
8310 -- subtypes directly if they are needed).
8312 if Is_Array_Type (Etype (N))
8313 and then Is_Packed (Etype (N))
8314 and then not Is_Constrained (Etype (N))
8315 and then Nkind (Parent (N)) /= N_Attribute_Reference
8316 and then Comes_From_Source (N)
8317 then
8318 Set_Etype (N, Get_Actual_Subtype (N));
8319 end if;
8321 Analyze_Dimension (N);
8323 -- Note: No Eval processing is required for an explicit dereference,
8324 -- because such a name can never be static.
8326 end Resolve_Explicit_Dereference;
8328 -------------------------------------
8329 -- Resolve_Expression_With_Actions --
8330 -------------------------------------
8332 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8333 begin
8334 Set_Etype (N, Typ);
8336 -- If N has no actions, and its expression has been constant folded,
8337 -- then rewrite N as just its expression. Note, we can't do this in
8338 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8339 -- Expression (N) to be expanded again.
8341 if Is_Empty_List (Actions (N))
8342 and then Compile_Time_Known_Value (Expression (N))
8343 then
8344 Rewrite (N, Expression (N));
8345 end if;
8346 end Resolve_Expression_With_Actions;
8348 ----------------------------------
8349 -- Resolve_Generalized_Indexing --
8350 ----------------------------------
8352 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8353 Indexing : constant Node_Id := Generalized_Indexing (N);
8354 Call : Node_Id;
8355 Indexes : List_Id;
8356 Pref : Node_Id;
8358 begin
8359 -- In ASIS mode, propagate the information about the indexes back to
8360 -- to the original indexing node. The generalized indexing is either
8361 -- a function call, or a dereference of one. The actuals include the
8362 -- prefix of the original node, which is the container expression.
8364 if ASIS_Mode then
8365 Resolve (Indexing, Typ);
8366 Set_Etype (N, Etype (Indexing));
8367 Set_Is_Overloaded (N, False);
8369 Call := Indexing;
8370 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8371 loop
8372 Call := Prefix (Call);
8373 end loop;
8375 if Nkind (Call) = N_Function_Call then
8376 Indexes := New_Copy_List (Parameter_Associations (Call));
8377 Pref := Remove_Head (Indexes);
8378 Set_Expressions (N, Indexes);
8380 -- If expression is to be reanalyzed, reset Generalized_Indexing
8381 -- to recreate call node, as is the case when the expression is
8382 -- part of an expression function.
8384 if In_Spec_Expression then
8385 Set_Generalized_Indexing (N, Empty);
8386 end if;
8388 Set_Prefix (N, Pref);
8389 end if;
8391 else
8392 Rewrite (N, Indexing);
8393 Resolve (N, Typ);
8394 end if;
8395 end Resolve_Generalized_Indexing;
8397 ---------------------------
8398 -- Resolve_If_Expression --
8399 ---------------------------
8401 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8402 Condition : constant Node_Id := First (Expressions (N));
8403 Then_Expr : Node_Id;
8404 Else_Expr : Node_Id;
8405 Else_Typ : Entity_Id;
8406 Then_Typ : Entity_Id;
8408 begin
8409 -- Defend against malformed expressions
8411 if No (Condition) then
8412 return;
8413 end if;
8415 Then_Expr := Next (Condition);
8417 if No (Then_Expr) then
8418 return;
8419 end if;
8421 Else_Expr := Next (Then_Expr);
8423 Resolve (Condition, Any_Boolean);
8424 Resolve (Then_Expr, Typ);
8425 Then_Typ := Etype (Then_Expr);
8427 -- When the "then" expression is of a scalar subtype different from the
8428 -- result subtype, then insert a conversion to ensure the generation of
8429 -- a constraint check. The same is done for the else part below, again
8430 -- comparing subtypes rather than base types.
8432 if Is_Scalar_Type (Then_Typ) and then Then_Typ /= Typ then
8433 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8434 Analyze_And_Resolve (Then_Expr, Typ);
8435 end if;
8437 -- If ELSE expression present, just resolve using the determined type
8438 -- If type is universal, resolve to any member of the class.
8440 if Present (Else_Expr) then
8441 if Typ = Universal_Integer then
8442 Resolve (Else_Expr, Any_Integer);
8444 elsif Typ = Universal_Real then
8445 Resolve (Else_Expr, Any_Real);
8447 else
8448 Resolve (Else_Expr, Typ);
8449 end if;
8451 Else_Typ := Etype (Else_Expr);
8453 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8454 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8455 Analyze_And_Resolve (Else_Expr, Typ);
8457 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8458 -- dynamically tagged must be known statically.
8460 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8461 if Is_Dynamically_Tagged (Then_Expr) /=
8462 Is_Dynamically_Tagged (Else_Expr)
8463 then
8464 Error_Msg_N ("all or none of the dependent expressions "
8465 & "can be dynamically tagged", N);
8466 end if;
8467 end if;
8469 -- If no ELSE expression is present, root type must be Standard.Boolean
8470 -- and we provide a Standard.True result converted to the appropriate
8471 -- Boolean type (in case it is a derived boolean type).
8473 elsif Root_Type (Typ) = Standard_Boolean then
8474 Else_Expr :=
8475 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8476 Analyze_And_Resolve (Else_Expr, Typ);
8477 Append_To (Expressions (N), Else_Expr);
8479 else
8480 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8481 Append_To (Expressions (N), Error);
8482 end if;
8484 Set_Etype (N, Typ);
8486 if not Error_Posted (N) then
8487 Eval_If_Expression (N);
8488 end if;
8490 Analyze_Dimension (N);
8491 end Resolve_If_Expression;
8493 -------------------------------
8494 -- Resolve_Indexed_Component --
8495 -------------------------------
8497 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8498 Name : constant Node_Id := Prefix (N);
8499 Expr : Node_Id;
8500 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8501 Index : Node_Id;
8503 begin
8504 if Present (Generalized_Indexing (N)) then
8505 Resolve_Generalized_Indexing (N, Typ);
8506 return;
8507 end if;
8509 if Is_Overloaded (Name) then
8511 -- Use the context type to select the prefix that yields the correct
8512 -- component type.
8514 declare
8515 I : Interp_Index;
8516 It : Interp;
8517 I1 : Interp_Index := 0;
8518 P : constant Node_Id := Prefix (N);
8519 Found : Boolean := False;
8521 begin
8522 Get_First_Interp (P, I, It);
8523 while Present (It.Typ) loop
8524 if (Is_Array_Type (It.Typ)
8525 and then Covers (Typ, Component_Type (It.Typ)))
8526 or else (Is_Access_Type (It.Typ)
8527 and then Is_Array_Type (Designated_Type (It.Typ))
8528 and then
8529 Covers
8530 (Typ,
8531 Component_Type (Designated_Type (It.Typ))))
8532 then
8533 if Found then
8534 It := Disambiguate (P, I1, I, Any_Type);
8536 if It = No_Interp then
8537 Error_Msg_N ("ambiguous prefix for indexing", N);
8538 Set_Etype (N, Typ);
8539 return;
8541 else
8542 Found := True;
8543 Array_Type := It.Typ;
8544 I1 := I;
8545 end if;
8547 else
8548 Found := True;
8549 Array_Type := It.Typ;
8550 I1 := I;
8551 end if;
8552 end if;
8554 Get_Next_Interp (I, It);
8555 end loop;
8556 end;
8558 else
8559 Array_Type := Etype (Name);
8560 end if;
8562 Resolve (Name, Array_Type);
8563 Array_Type := Get_Actual_Subtype_If_Available (Name);
8565 -- If prefix is access type, dereference to get real array type.
8566 -- Note: we do not apply an access check because the expander always
8567 -- introduces an explicit dereference, and the check will happen there.
8569 if Is_Access_Type (Array_Type) then
8570 Array_Type := Designated_Type (Array_Type);
8571 end if;
8573 -- If name was overloaded, set component type correctly now
8574 -- If a misplaced call to an entry family (which has no index types)
8575 -- return. Error will be diagnosed from calling context.
8577 if Is_Array_Type (Array_Type) then
8578 Set_Etype (N, Component_Type (Array_Type));
8579 else
8580 return;
8581 end if;
8583 Index := First_Index (Array_Type);
8584 Expr := First (Expressions (N));
8586 -- The prefix may have resolved to a string literal, in which case its
8587 -- etype has a special representation. This is only possible currently
8588 -- if the prefix is a static concatenation, written in functional
8589 -- notation.
8591 if Ekind (Array_Type) = E_String_Literal_Subtype then
8592 Resolve (Expr, Standard_Positive);
8594 else
8595 while Present (Index) and Present (Expr) loop
8596 Resolve (Expr, Etype (Index));
8597 Check_Unset_Reference (Expr);
8599 if Is_Scalar_Type (Etype (Expr)) then
8600 Apply_Scalar_Range_Check (Expr, Etype (Index));
8601 else
8602 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8603 end if;
8605 Next_Index (Index);
8606 Next (Expr);
8607 end loop;
8608 end if;
8610 Analyze_Dimension (N);
8612 -- Do not generate the warning on suspicious index if we are analyzing
8613 -- package Ada.Tags; otherwise we will report the warning with the
8614 -- Prims_Ptr field of the dispatch table.
8616 if Scope (Etype (Prefix (N))) = Standard_Standard
8617 or else not
8618 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8619 Ada_Tags)
8620 then
8621 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8622 Eval_Indexed_Component (N);
8623 end if;
8625 -- If the array type is atomic, and the component is not atomic, then
8626 -- this is worth a warning, since we have a situation where the access
8627 -- to the component may cause extra read/writes of the atomic array
8628 -- object, or partial word accesses, which could be unexpected.
8630 if Nkind (N) = N_Indexed_Component
8631 and then Is_Atomic_Ref_With_Address (N)
8632 and then not (Has_Atomic_Components (Array_Type)
8633 or else (Is_Entity_Name (Prefix (N))
8634 and then Has_Atomic_Components
8635 (Entity (Prefix (N)))))
8636 and then not Is_Atomic (Component_Type (Array_Type))
8637 then
8638 Error_Msg_N
8639 ("??access to non-atomic component of atomic array", Prefix (N));
8640 Error_Msg_N
8641 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8642 end if;
8643 end Resolve_Indexed_Component;
8645 -----------------------------
8646 -- Resolve_Integer_Literal --
8647 -----------------------------
8649 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8650 begin
8651 Set_Etype (N, Typ);
8652 Eval_Integer_Literal (N);
8653 end Resolve_Integer_Literal;
8655 --------------------------------
8656 -- Resolve_Intrinsic_Operator --
8657 --------------------------------
8659 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8660 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8661 Op : Entity_Id;
8662 Arg1 : Node_Id;
8663 Arg2 : Node_Id;
8665 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8666 -- If the operand is a literal, it cannot be the expression in a
8667 -- conversion. Use a qualified expression instead.
8669 ---------------------
8670 -- Convert_Operand --
8671 ---------------------
8673 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8674 Loc : constant Source_Ptr := Sloc (Opnd);
8675 Res : Node_Id;
8677 begin
8678 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8679 Res :=
8680 Make_Qualified_Expression (Loc,
8681 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8682 Expression => Relocate_Node (Opnd));
8683 Analyze (Res);
8685 else
8686 Res := Unchecked_Convert_To (Btyp, Opnd);
8687 end if;
8689 return Res;
8690 end Convert_Operand;
8692 -- Start of processing for Resolve_Intrinsic_Operator
8694 begin
8695 -- We must preserve the original entity in a generic setting, so that
8696 -- the legality of the operation can be verified in an instance.
8698 if not Expander_Active then
8699 return;
8700 end if;
8702 Op := Entity (N);
8703 while Scope (Op) /= Standard_Standard loop
8704 Op := Homonym (Op);
8705 pragma Assert (Present (Op));
8706 end loop;
8708 Set_Entity (N, Op);
8709 Set_Is_Overloaded (N, False);
8711 -- If the result or operand types are private, rewrite with unchecked
8712 -- conversions on the operands and the result, to expose the proper
8713 -- underlying numeric type.
8715 if Is_Private_Type (Typ)
8716 or else Is_Private_Type (Etype (Left_Opnd (N)))
8717 or else Is_Private_Type (Etype (Right_Opnd (N)))
8718 then
8719 Arg1 := Convert_Operand (Left_Opnd (N));
8721 if Nkind (N) = N_Op_Expon then
8722 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8723 else
8724 Arg2 := Convert_Operand (Right_Opnd (N));
8725 end if;
8727 if Nkind (Arg1) = N_Type_Conversion then
8728 Save_Interps (Left_Opnd (N), Expression (Arg1));
8729 end if;
8731 if Nkind (Arg2) = N_Type_Conversion then
8732 Save_Interps (Right_Opnd (N), Expression (Arg2));
8733 end if;
8735 Set_Left_Opnd (N, Arg1);
8736 Set_Right_Opnd (N, Arg2);
8738 Set_Etype (N, Btyp);
8739 Rewrite (N, Unchecked_Convert_To (Typ, N));
8740 Resolve (N, Typ);
8742 elsif Typ /= Etype (Left_Opnd (N))
8743 or else Typ /= Etype (Right_Opnd (N))
8744 then
8745 -- Add explicit conversion where needed, and save interpretations in
8746 -- case operands are overloaded.
8748 Arg1 := Convert_To (Typ, Left_Opnd (N));
8749 Arg2 := Convert_To (Typ, Right_Opnd (N));
8751 if Nkind (Arg1) = N_Type_Conversion then
8752 Save_Interps (Left_Opnd (N), Expression (Arg1));
8753 else
8754 Save_Interps (Left_Opnd (N), Arg1);
8755 end if;
8757 if Nkind (Arg2) = N_Type_Conversion then
8758 Save_Interps (Right_Opnd (N), Expression (Arg2));
8759 else
8760 Save_Interps (Right_Opnd (N), Arg2);
8761 end if;
8763 Rewrite (Left_Opnd (N), Arg1);
8764 Rewrite (Right_Opnd (N), Arg2);
8765 Analyze (Arg1);
8766 Analyze (Arg2);
8767 Resolve_Arithmetic_Op (N, Typ);
8769 else
8770 Resolve_Arithmetic_Op (N, Typ);
8771 end if;
8772 end Resolve_Intrinsic_Operator;
8774 --------------------------------------
8775 -- Resolve_Intrinsic_Unary_Operator --
8776 --------------------------------------
8778 procedure Resolve_Intrinsic_Unary_Operator
8779 (N : Node_Id;
8780 Typ : Entity_Id)
8782 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8783 Op : Entity_Id;
8784 Arg2 : Node_Id;
8786 begin
8787 Op := Entity (N);
8788 while Scope (Op) /= Standard_Standard loop
8789 Op := Homonym (Op);
8790 pragma Assert (Present (Op));
8791 end loop;
8793 Set_Entity (N, Op);
8795 if Is_Private_Type (Typ) then
8796 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8797 Save_Interps (Right_Opnd (N), Expression (Arg2));
8799 Set_Right_Opnd (N, Arg2);
8801 Set_Etype (N, Btyp);
8802 Rewrite (N, Unchecked_Convert_To (Typ, N));
8803 Resolve (N, Typ);
8805 else
8806 Resolve_Unary_Op (N, Typ);
8807 end if;
8808 end Resolve_Intrinsic_Unary_Operator;
8810 ------------------------
8811 -- Resolve_Logical_Op --
8812 ------------------------
8814 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8815 B_Typ : Entity_Id;
8817 begin
8818 Check_No_Direct_Boolean_Operators (N);
8820 -- Predefined operations on scalar types yield the base type. On the
8821 -- other hand, logical operations on arrays yield the type of the
8822 -- arguments (and the context).
8824 if Is_Array_Type (Typ) then
8825 B_Typ := Typ;
8826 else
8827 B_Typ := Base_Type (Typ);
8828 end if;
8830 -- The following test is required because the operands of the operation
8831 -- may be literals, in which case the resulting type appears to be
8832 -- compatible with a signed integer type, when in fact it is compatible
8833 -- only with modular types. If the context itself is universal, the
8834 -- operation is illegal.
8836 if not Valid_Boolean_Arg (Typ) then
8837 Error_Msg_N ("invalid context for logical operation", N);
8838 Set_Etype (N, Any_Type);
8839 return;
8841 elsif Typ = Any_Modular then
8842 Error_Msg_N
8843 ("no modular type available in this context", N);
8844 Set_Etype (N, Any_Type);
8845 return;
8847 elsif Is_Modular_Integer_Type (Typ)
8848 and then Etype (Left_Opnd (N)) = Universal_Integer
8849 and then Etype (Right_Opnd (N)) = Universal_Integer
8850 then
8851 Check_For_Visible_Operator (N, B_Typ);
8852 end if;
8854 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8855 -- is active and the result type is standard Boolean (do not mess with
8856 -- ops that return a nonstandard Boolean type, because something strange
8857 -- is going on).
8859 -- Note: you might expect this replacement to be done during expansion,
8860 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8861 -- is used, no part of the right operand of an "and" or "or" operator
8862 -- should be executed if the left operand would short-circuit the
8863 -- evaluation of the corresponding "and then" or "or else". If we left
8864 -- the replacement to expansion time, then run-time checks associated
8865 -- with such operands would be evaluated unconditionally, due to being
8866 -- before the condition prior to the rewriting as short-circuit forms
8867 -- during expansion.
8869 if Short_Circuit_And_Or
8870 and then B_Typ = Standard_Boolean
8871 and then Nkind_In (N, N_Op_And, N_Op_Or)
8872 then
8873 -- Mark the corresponding putative SCO operator as truly a logical
8874 -- (and short-circuit) operator.
8876 if Generate_SCO and then Comes_From_Source (N) then
8877 Set_SCO_Logical_Operator (N);
8878 end if;
8880 if Nkind (N) = N_Op_And then
8881 Rewrite (N,
8882 Make_And_Then (Sloc (N),
8883 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8884 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8885 Analyze_And_Resolve (N, B_Typ);
8887 -- Case of OR changed to OR ELSE
8889 else
8890 Rewrite (N,
8891 Make_Or_Else (Sloc (N),
8892 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8893 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8894 Analyze_And_Resolve (N, B_Typ);
8895 end if;
8897 -- Return now, since analysis of the rewritten ops will take care of
8898 -- other reference bookkeeping and expression folding.
8900 return;
8901 end if;
8903 Resolve (Left_Opnd (N), B_Typ);
8904 Resolve (Right_Opnd (N), B_Typ);
8906 Check_Unset_Reference (Left_Opnd (N));
8907 Check_Unset_Reference (Right_Opnd (N));
8909 Set_Etype (N, B_Typ);
8910 Generate_Operator_Reference (N, B_Typ);
8911 Eval_Logical_Op (N);
8913 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8914 -- only when both operands have same static lower and higher bounds. Of
8915 -- course the types have to match, so only check if operands are
8916 -- compatible and the node itself has no errors.
8918 if Is_Array_Type (B_Typ)
8919 and then Nkind (N) in N_Binary_Op
8920 then
8921 declare
8922 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8923 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8925 begin
8926 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8927 -- operation if not needed.
8929 if Restriction_Check_Required (SPARK_05)
8930 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8931 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8932 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8933 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8934 then
8935 Check_SPARK_05_Restriction
8936 ("array types should have matching static bounds", N);
8937 end if;
8938 end;
8939 end if;
8940 end Resolve_Logical_Op;
8942 ---------------------------
8943 -- Resolve_Membership_Op --
8944 ---------------------------
8946 -- The context can only be a boolean type, and does not determine the
8947 -- arguments. Arguments should be unambiguous, but the preference rule for
8948 -- universal types applies.
8950 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8951 pragma Warnings (Off, Typ);
8953 L : constant Node_Id := Left_Opnd (N);
8954 R : constant Node_Id := Right_Opnd (N);
8955 T : Entity_Id;
8957 procedure Resolve_Set_Membership;
8958 -- Analysis has determined a unique type for the left operand. Use it to
8959 -- resolve the disjuncts.
8961 ----------------------------
8962 -- Resolve_Set_Membership --
8963 ----------------------------
8965 procedure Resolve_Set_Membership is
8966 Alt : Node_Id;
8967 Ltyp : Entity_Id;
8969 begin
8970 -- If the left operand is overloaded, find type compatible with not
8971 -- overloaded alternative of the right operand.
8973 if Is_Overloaded (L) then
8974 Ltyp := Empty;
8975 Alt := First (Alternatives (N));
8976 while Present (Alt) loop
8977 if not Is_Overloaded (Alt) then
8978 Ltyp := Intersect_Types (L, Alt);
8979 exit;
8980 else
8981 Next (Alt);
8982 end if;
8983 end loop;
8985 -- Unclear how to resolve expression if all alternatives are also
8986 -- overloaded.
8988 if No (Ltyp) then
8989 Error_Msg_N ("ambiguous expression", N);
8990 end if;
8992 else
8993 Ltyp := Etype (L);
8994 end if;
8996 Resolve (L, Ltyp);
8998 Alt := First (Alternatives (N));
8999 while Present (Alt) loop
9001 -- Alternative is an expression, a range
9002 -- or a subtype mark.
9004 if not Is_Entity_Name (Alt)
9005 or else not Is_Type (Entity (Alt))
9006 then
9007 Resolve (Alt, Ltyp);
9008 end if;
9010 Next (Alt);
9011 end loop;
9013 -- Check for duplicates for discrete case
9015 if Is_Discrete_Type (Ltyp) then
9016 declare
9017 type Ent is record
9018 Alt : Node_Id;
9019 Val : Uint;
9020 end record;
9022 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
9023 Nalts : Nat;
9025 begin
9026 -- Loop checking duplicates. This is quadratic, but giant sets
9027 -- are unlikely in this context so it's a reasonable choice.
9029 Nalts := 0;
9030 Alt := First (Alternatives (N));
9031 while Present (Alt) loop
9032 if Is_OK_Static_Expression (Alt)
9033 and then (Nkind_In (Alt, N_Integer_Literal,
9034 N_Character_Literal)
9035 or else Nkind (Alt) in N_Has_Entity)
9036 then
9037 Nalts := Nalts + 1;
9038 Alts (Nalts) := (Alt, Expr_Value (Alt));
9040 for J in 1 .. Nalts - 1 loop
9041 if Alts (J).Val = Alts (Nalts).Val then
9042 Error_Msg_Sloc := Sloc (Alts (J).Alt);
9043 Error_Msg_N ("duplicate of value given#??", Alt);
9044 end if;
9045 end loop;
9046 end if;
9048 Alt := Next (Alt);
9049 end loop;
9050 end;
9051 end if;
9052 end Resolve_Set_Membership;
9054 -- Start of processing for Resolve_Membership_Op
9056 begin
9057 if L = Error or else R = Error then
9058 return;
9059 end if;
9061 if Present (Alternatives (N)) then
9062 Resolve_Set_Membership;
9063 goto SM_Exit;
9065 elsif not Is_Overloaded (R)
9066 and then
9067 (Etype (R) = Universal_Integer
9068 or else
9069 Etype (R) = Universal_Real)
9070 and then Is_Overloaded (L)
9071 then
9072 T := Etype (R);
9074 -- Ada 2005 (AI-251): Support the following case:
9076 -- type I is interface;
9077 -- type T is tagged ...
9079 -- function Test (O : I'Class) is
9080 -- begin
9081 -- return O in T'Class.
9082 -- end Test;
9084 -- In this case we have nothing else to do. The membership test will be
9085 -- done at run time.
9087 elsif Ada_Version >= Ada_2005
9088 and then Is_Class_Wide_Type (Etype (L))
9089 and then Is_Interface (Etype (L))
9090 and then Is_Class_Wide_Type (Etype (R))
9091 and then not Is_Interface (Etype (R))
9092 then
9093 return;
9094 else
9095 T := Intersect_Types (L, R);
9096 end if;
9098 -- If mixed-mode operations are present and operands are all literal,
9099 -- the only interpretation involves Duration, which is probably not
9100 -- the intention of the programmer.
9102 if T = Any_Fixed then
9103 T := Unique_Fixed_Point_Type (N);
9105 if T = Any_Type then
9106 return;
9107 end if;
9108 end if;
9110 Resolve (L, T);
9111 Check_Unset_Reference (L);
9113 if Nkind (R) = N_Range
9114 and then not Is_Scalar_Type (T)
9115 then
9116 Error_Msg_N ("scalar type required for range", R);
9117 end if;
9119 if Is_Entity_Name (R) then
9120 Freeze_Expression (R);
9121 else
9122 Resolve (R, T);
9123 Check_Unset_Reference (R);
9124 end if;
9126 -- Here after resolving membership operation
9128 <<SM_Exit>>
9130 Eval_Membership_Op (N);
9131 end Resolve_Membership_Op;
9133 ------------------
9134 -- Resolve_Null --
9135 ------------------
9137 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
9138 Loc : constant Source_Ptr := Sloc (N);
9140 begin
9141 -- Handle restriction against anonymous null access values This
9142 -- restriction can be turned off using -gnatdj.
9144 -- Ada 2005 (AI-231): Remove restriction
9146 if Ada_Version < Ada_2005
9147 and then not Debug_Flag_J
9148 and then Ekind (Typ) = E_Anonymous_Access_Type
9149 and then Comes_From_Source (N)
9150 then
9151 -- In the common case of a call which uses an explicitly null value
9152 -- for an access parameter, give specialized error message.
9154 if Nkind (Parent (N)) in N_Subprogram_Call then
9155 Error_Msg_N
9156 ("null is not allowed as argument for an access parameter", N);
9158 -- Standard message for all other cases (are there any?)
9160 else
9161 Error_Msg_N
9162 ("null cannot be of an anonymous access type", N);
9163 end if;
9164 end if;
9166 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
9167 -- assignment to a null-excluding object
9169 if Ada_Version >= Ada_2005
9170 and then Can_Never_Be_Null (Typ)
9171 and then Nkind (Parent (N)) = N_Assignment_Statement
9172 then
9173 if not Inside_Init_Proc then
9174 Insert_Action
9175 (Compile_Time_Constraint_Error (N,
9176 "(Ada 2005) null not allowed in null-excluding objects??"),
9177 Make_Raise_Constraint_Error (Loc,
9178 Reason => CE_Access_Check_Failed));
9179 else
9180 Insert_Action (N,
9181 Make_Raise_Constraint_Error (Loc,
9182 Reason => CE_Access_Check_Failed));
9183 end if;
9184 end if;
9186 -- In a distributed context, null for a remote access to subprogram may
9187 -- need to be replaced with a special record aggregate. In this case,
9188 -- return after having done the transformation.
9190 if (Ekind (Typ) = E_Record_Type
9191 or else Is_Remote_Access_To_Subprogram_Type (Typ))
9192 and then Remote_AST_Null_Value (N, Typ)
9193 then
9194 return;
9195 end if;
9197 -- The null literal takes its type from the context
9199 Set_Etype (N, Typ);
9200 end Resolve_Null;
9202 -----------------------
9203 -- Resolve_Op_Concat --
9204 -----------------------
9206 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
9208 -- We wish to avoid deep recursion, because concatenations are often
9209 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9210 -- operands nonrecursively until we find something that is not a simple
9211 -- concatenation (A in this case). We resolve that, and then walk back
9212 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9213 -- to do the rest of the work at each level. The Parent pointers allow
9214 -- us to avoid recursion, and thus avoid running out of memory. See also
9215 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9217 NN : Node_Id := N;
9218 Op1 : Node_Id;
9220 begin
9221 -- The following code is equivalent to:
9223 -- Resolve_Op_Concat_First (NN, Typ);
9224 -- Resolve_Op_Concat_Arg (N, ...);
9225 -- Resolve_Op_Concat_Rest (N, Typ);
9227 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9228 -- operand is a concatenation.
9230 -- Walk down left operands
9232 loop
9233 Resolve_Op_Concat_First (NN, Typ);
9234 Op1 := Left_Opnd (NN);
9235 exit when not (Nkind (Op1) = N_Op_Concat
9236 and then not Is_Array_Type (Component_Type (Typ))
9237 and then Entity (Op1) = Entity (NN));
9238 NN := Op1;
9239 end loop;
9241 -- Now (given the above example) NN is A&B and Op1 is A
9243 -- First resolve Op1 ...
9245 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
9247 -- ... then walk NN back up until we reach N (where we started), calling
9248 -- Resolve_Op_Concat_Rest along the way.
9250 loop
9251 Resolve_Op_Concat_Rest (NN, Typ);
9252 exit when NN = N;
9253 NN := Parent (NN);
9254 end loop;
9256 if Base_Type (Etype (N)) /= Standard_String then
9257 Check_SPARK_05_Restriction
9258 ("result of concatenation should have type String", N);
9259 end if;
9260 end Resolve_Op_Concat;
9262 ---------------------------
9263 -- Resolve_Op_Concat_Arg --
9264 ---------------------------
9266 procedure Resolve_Op_Concat_Arg
9267 (N : Node_Id;
9268 Arg : Node_Id;
9269 Typ : Entity_Id;
9270 Is_Comp : Boolean)
9272 Btyp : constant Entity_Id := Base_Type (Typ);
9273 Ctyp : constant Entity_Id := Component_Type (Typ);
9275 begin
9276 if In_Instance then
9277 if Is_Comp
9278 or else (not Is_Overloaded (Arg)
9279 and then Etype (Arg) /= Any_Composite
9280 and then Covers (Ctyp, Etype (Arg)))
9281 then
9282 Resolve (Arg, Ctyp);
9283 else
9284 Resolve (Arg, Btyp);
9285 end if;
9287 -- If both Array & Array and Array & Component are visible, there is a
9288 -- potential ambiguity that must be reported.
9290 elsif Has_Compatible_Type (Arg, Ctyp) then
9291 if Nkind (Arg) = N_Aggregate
9292 and then Is_Composite_Type (Ctyp)
9293 then
9294 if Is_Private_Type (Ctyp) then
9295 Resolve (Arg, Btyp);
9297 -- If the operation is user-defined and not overloaded use its
9298 -- profile. The operation may be a renaming, in which case it has
9299 -- been rewritten, and we want the original profile.
9301 elsif not Is_Overloaded (N)
9302 and then Comes_From_Source (Entity (Original_Node (N)))
9303 and then Ekind (Entity (Original_Node (N))) = E_Function
9304 then
9305 Resolve (Arg,
9306 Etype
9307 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9308 return;
9310 -- Otherwise an aggregate may match both the array type and the
9311 -- component type.
9313 else
9314 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9315 Set_Etype (Arg, Any_Type);
9316 end if;
9318 else
9319 if Is_Overloaded (Arg)
9320 and then Has_Compatible_Type (Arg, Typ)
9321 and then Etype (Arg) /= Any_Type
9322 then
9323 declare
9324 I : Interp_Index;
9325 It : Interp;
9326 Func : Entity_Id;
9328 begin
9329 Get_First_Interp (Arg, I, It);
9330 Func := It.Nam;
9331 Get_Next_Interp (I, It);
9333 -- Special-case the error message when the overloading is
9334 -- caused by a function that yields an array and can be
9335 -- called without parameters.
9337 if It.Nam = Func then
9338 Error_Msg_Sloc := Sloc (Func);
9339 Error_Msg_N ("ambiguous call to function#", Arg);
9340 Error_Msg_NE
9341 ("\\interpretation as call yields&", Arg, Typ);
9342 Error_Msg_NE
9343 ("\\interpretation as indexing of call yields&",
9344 Arg, Component_Type (Typ));
9346 else
9347 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9349 Get_First_Interp (Arg, I, It);
9350 while Present (It.Nam) loop
9351 Error_Msg_Sloc := Sloc (It.Nam);
9353 if Base_Type (It.Typ) = Btyp
9354 or else
9355 Base_Type (It.Typ) = Base_Type (Ctyp)
9356 then
9357 Error_Msg_N -- CODEFIX
9358 ("\\possible interpretation#", Arg);
9359 end if;
9361 Get_Next_Interp (I, It);
9362 end loop;
9363 end if;
9364 end;
9365 end if;
9367 Resolve (Arg, Component_Type (Typ));
9369 if Nkind (Arg) = N_String_Literal then
9370 Set_Etype (Arg, Component_Type (Typ));
9371 end if;
9373 if Arg = Left_Opnd (N) then
9374 Set_Is_Component_Left_Opnd (N);
9375 else
9376 Set_Is_Component_Right_Opnd (N);
9377 end if;
9378 end if;
9380 else
9381 Resolve (Arg, Btyp);
9382 end if;
9384 -- Concatenation is restricted in SPARK: each operand must be either a
9385 -- string literal, the name of a string constant, a static character or
9386 -- string expression, or another concatenation. Arg cannot be a
9387 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9388 -- separately on each final operand, past concatenation operations.
9390 if Is_Character_Type (Etype (Arg)) then
9391 if not Is_OK_Static_Expression (Arg) then
9392 Check_SPARK_05_Restriction
9393 ("character operand for concatenation should be static", Arg);
9394 end if;
9396 elsif Is_String_Type (Etype (Arg)) then
9397 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9398 and then Is_Constant_Object (Entity (Arg)))
9399 and then not Is_OK_Static_Expression (Arg)
9400 then
9401 Check_SPARK_05_Restriction
9402 ("string operand for concatenation should be static", Arg);
9403 end if;
9405 -- Do not issue error on an operand that is neither a character nor a
9406 -- string, as the error is issued in Resolve_Op_Concat.
9408 else
9409 null;
9410 end if;
9412 Check_Unset_Reference (Arg);
9413 end Resolve_Op_Concat_Arg;
9415 -----------------------------
9416 -- Resolve_Op_Concat_First --
9417 -----------------------------
9419 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9420 Btyp : constant Entity_Id := Base_Type (Typ);
9421 Op1 : constant Node_Id := Left_Opnd (N);
9422 Op2 : constant Node_Id := Right_Opnd (N);
9424 begin
9425 -- The parser folds an enormous sequence of concatenations of string
9426 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9427 -- in the right operand. If the expression resolves to a predefined "&"
9428 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9429 -- we give an error. See P_Simple_Expression in Par.Ch4.
9431 if Nkind (Op2) = N_String_Literal
9432 and then Is_Folded_In_Parser (Op2)
9433 and then Ekind (Entity (N)) = E_Function
9434 then
9435 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9436 and then String_Length (Strval (Op1)) = 0);
9437 Error_Msg_N ("too many user-defined concatenations", N);
9438 return;
9439 end if;
9441 Set_Etype (N, Btyp);
9443 if Is_Limited_Composite (Btyp) then
9444 Error_Msg_N ("concatenation not available for limited array", N);
9445 Explain_Limited_Type (Btyp, N);
9446 end if;
9447 end Resolve_Op_Concat_First;
9449 ----------------------------
9450 -- Resolve_Op_Concat_Rest --
9451 ----------------------------
9453 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9454 Op1 : constant Node_Id := Left_Opnd (N);
9455 Op2 : constant Node_Id := Right_Opnd (N);
9457 begin
9458 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9460 Generate_Operator_Reference (N, Typ);
9462 if Is_String_Type (Typ) then
9463 Eval_Concatenation (N);
9464 end if;
9466 -- If this is not a static concatenation, but the result is a string
9467 -- type (and not an array of strings) ensure that static string operands
9468 -- have their subtypes properly constructed.
9470 if Nkind (N) /= N_String_Literal
9471 and then Is_Character_Type (Component_Type (Typ))
9472 then
9473 Set_String_Literal_Subtype (Op1, Typ);
9474 Set_String_Literal_Subtype (Op2, Typ);
9475 end if;
9476 end Resolve_Op_Concat_Rest;
9478 ----------------------
9479 -- Resolve_Op_Expon --
9480 ----------------------
9482 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9483 B_Typ : constant Entity_Id := Base_Type (Typ);
9485 begin
9486 -- Catch attempts to do fixed-point exponentiation with universal
9487 -- operands, which is a case where the illegality is not caught during
9488 -- normal operator analysis. This is not done in preanalysis mode
9489 -- since the tree is not fully decorated during preanalysis.
9491 if Full_Analysis then
9492 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9493 Error_Msg_N ("exponentiation not available for fixed point", N);
9494 return;
9496 elsif Nkind (Parent (N)) in N_Op
9497 and then Present (Etype (Parent (N)))
9498 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9499 and then Etype (N) = Universal_Real
9500 and then Comes_From_Source (N)
9501 then
9502 Error_Msg_N ("exponentiation not available for fixed point", N);
9503 return;
9504 end if;
9505 end if;
9507 if Comes_From_Source (N)
9508 and then Ekind (Entity (N)) = E_Function
9509 and then Is_Imported (Entity (N))
9510 and then Is_Intrinsic_Subprogram (Entity (N))
9511 then
9512 Resolve_Intrinsic_Operator (N, Typ);
9513 return;
9514 end if;
9516 if Etype (Left_Opnd (N)) = Universal_Integer
9517 or else Etype (Left_Opnd (N)) = Universal_Real
9518 then
9519 Check_For_Visible_Operator (N, B_Typ);
9520 end if;
9522 -- We do the resolution using the base type, because intermediate values
9523 -- in expressions are always of the base type, not a subtype of it.
9525 Resolve (Left_Opnd (N), B_Typ);
9526 Resolve (Right_Opnd (N), Standard_Integer);
9528 -- For integer types, right argument must be in Natural range
9530 if Is_Integer_Type (Typ) then
9531 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9532 end if;
9534 Check_Unset_Reference (Left_Opnd (N));
9535 Check_Unset_Reference (Right_Opnd (N));
9537 Set_Etype (N, B_Typ);
9538 Generate_Operator_Reference (N, B_Typ);
9540 Analyze_Dimension (N);
9542 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9543 -- Evaluate the exponentiation operator for dimensioned type
9545 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9546 else
9547 Eval_Op_Expon (N);
9548 end if;
9550 -- Set overflow checking bit. Much cleverer code needed here eventually
9551 -- and perhaps the Resolve routines should be separated for the various
9552 -- arithmetic operations, since they will need different processing. ???
9554 if Nkind (N) in N_Op then
9555 if not Overflow_Checks_Suppressed (Etype (N)) then
9556 Enable_Overflow_Check (N);
9557 end if;
9558 end if;
9559 end Resolve_Op_Expon;
9561 --------------------
9562 -- Resolve_Op_Not --
9563 --------------------
9565 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9566 B_Typ : Entity_Id;
9568 function Parent_Is_Boolean return Boolean;
9569 -- This function determines if the parent node is a boolean operator or
9570 -- operation (comparison op, membership test, or short circuit form) and
9571 -- the not in question is the left operand of this operation. Note that
9572 -- if the not is in parens, then false is returned.
9574 -----------------------
9575 -- Parent_Is_Boolean --
9576 -----------------------
9578 function Parent_Is_Boolean return Boolean is
9579 begin
9580 if Paren_Count (N) /= 0 then
9581 return False;
9583 else
9584 case Nkind (Parent (N)) is
9585 when N_And_Then
9586 | N_In
9587 | N_Not_In
9588 | N_Op_And
9589 | N_Op_Eq
9590 | N_Op_Ge
9591 | N_Op_Gt
9592 | N_Op_Le
9593 | N_Op_Lt
9594 | N_Op_Ne
9595 | N_Op_Or
9596 | N_Op_Xor
9597 | N_Or_Else
9599 return Left_Opnd (Parent (N)) = N;
9601 when others =>
9602 return False;
9603 end case;
9604 end if;
9605 end Parent_Is_Boolean;
9607 -- Start of processing for Resolve_Op_Not
9609 begin
9610 -- Predefined operations on scalar types yield the base type. On the
9611 -- other hand, logical operations on arrays yield the type of the
9612 -- arguments (and the context).
9614 if Is_Array_Type (Typ) then
9615 B_Typ := Typ;
9616 else
9617 B_Typ := Base_Type (Typ);
9618 end if;
9620 -- Straightforward case of incorrect arguments
9622 if not Valid_Boolean_Arg (Typ) then
9623 Error_Msg_N ("invalid operand type for operator&", N);
9624 Set_Etype (N, Any_Type);
9625 return;
9627 -- Special case of probable missing parens
9629 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9630 if Parent_Is_Boolean then
9631 Error_Msg_N
9632 ("operand of not must be enclosed in parentheses",
9633 Right_Opnd (N));
9634 else
9635 Error_Msg_N
9636 ("no modular type available in this context", N);
9637 end if;
9639 Set_Etype (N, Any_Type);
9640 return;
9642 -- OK resolution of NOT
9644 else
9645 -- Warn if non-boolean types involved. This is a case like not a < b
9646 -- where a and b are modular, where we will get (not a) < b and most
9647 -- likely not (a < b) was intended.
9649 if Warn_On_Questionable_Missing_Parens
9650 and then not Is_Boolean_Type (Typ)
9651 and then Parent_Is_Boolean
9652 then
9653 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9654 end if;
9656 -- Warn on double negation if checking redundant constructs
9658 if Warn_On_Redundant_Constructs
9659 and then Comes_From_Source (N)
9660 and then Comes_From_Source (Right_Opnd (N))
9661 and then Root_Type (Typ) = Standard_Boolean
9662 and then Nkind (Right_Opnd (N)) = N_Op_Not
9663 then
9664 Error_Msg_N ("redundant double negation?r?", N);
9665 end if;
9667 -- Complete resolution and evaluation of NOT
9669 Resolve (Right_Opnd (N), B_Typ);
9670 Check_Unset_Reference (Right_Opnd (N));
9671 Set_Etype (N, B_Typ);
9672 Generate_Operator_Reference (N, B_Typ);
9673 Eval_Op_Not (N);
9674 end if;
9675 end Resolve_Op_Not;
9677 -----------------------------
9678 -- Resolve_Operator_Symbol --
9679 -----------------------------
9681 -- Nothing to be done, all resolved already
9683 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9684 pragma Warnings (Off, N);
9685 pragma Warnings (Off, Typ);
9687 begin
9688 null;
9689 end Resolve_Operator_Symbol;
9691 ----------------------------------
9692 -- Resolve_Qualified_Expression --
9693 ----------------------------------
9695 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9696 pragma Warnings (Off, Typ);
9698 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9699 Expr : constant Node_Id := Expression (N);
9701 begin
9702 Resolve (Expr, Target_Typ);
9704 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9705 -- operation if not needed.
9707 if Restriction_Check_Required (SPARK_05)
9708 and then Is_Array_Type (Target_Typ)
9709 and then Is_Array_Type (Etype (Expr))
9710 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9711 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9712 then
9713 Check_SPARK_05_Restriction
9714 ("array types should have matching static bounds", N);
9715 end if;
9717 -- A qualified expression requires an exact match of the type, class-
9718 -- wide matching is not allowed. However, if the qualifying type is
9719 -- specific and the expression has a class-wide type, it may still be
9720 -- okay, since it can be the result of the expansion of a call to a
9721 -- dispatching function, so we also have to check class-wideness of the
9722 -- type of the expression's original node.
9724 if (Is_Class_Wide_Type (Target_Typ)
9725 or else
9726 (Is_Class_Wide_Type (Etype (Expr))
9727 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9728 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9729 then
9730 Wrong_Type (Expr, Target_Typ);
9731 end if;
9733 -- If the target type is unconstrained, then we reset the type of the
9734 -- result from the type of the expression. For other cases, the actual
9735 -- subtype of the expression is the target type.
9737 if Is_Composite_Type (Target_Typ)
9738 and then not Is_Constrained (Target_Typ)
9739 then
9740 Set_Etype (N, Etype (Expr));
9741 end if;
9743 Analyze_Dimension (N);
9744 Eval_Qualified_Expression (N);
9746 -- If we still have a qualified expression after the static evaluation,
9747 -- then apply a scalar range check if needed. The reason that we do this
9748 -- after the Eval call is that otherwise, the application of the range
9749 -- check may convert an illegal static expression and result in warning
9750 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9752 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9753 Apply_Scalar_Range_Check (Expr, Typ);
9754 end if;
9756 -- Finally, check whether a predicate applies to the target type. This
9757 -- comes from AI12-0100. As for type conversions, check the enclosing
9758 -- context to prevent an infinite expansion.
9760 if Has_Predicates (Target_Typ) then
9761 if Nkind (Parent (N)) = N_Function_Call
9762 and then Present (Name (Parent (N)))
9763 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9764 or else
9765 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9766 then
9767 null;
9769 -- In the case of a qualified expression in an allocator, the check
9770 -- is applied when expanding the allocator, so avoid redundant check.
9772 elsif Nkind (N) = N_Qualified_Expression
9773 and then Nkind (Parent (N)) /= N_Allocator
9774 then
9775 Apply_Predicate_Check (N, Target_Typ);
9776 end if;
9777 end if;
9778 end Resolve_Qualified_Expression;
9780 ------------------------------
9781 -- Resolve_Raise_Expression --
9782 ------------------------------
9784 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9785 begin
9786 if Typ = Raise_Type then
9787 Error_Msg_N ("cannot find unique type for raise expression", N);
9788 Set_Etype (N, Any_Type);
9789 else
9790 Set_Etype (N, Typ);
9791 end if;
9792 end Resolve_Raise_Expression;
9794 -------------------
9795 -- Resolve_Range --
9796 -------------------
9798 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9799 L : constant Node_Id := Low_Bound (N);
9800 H : constant Node_Id := High_Bound (N);
9802 function First_Last_Ref return Boolean;
9803 -- Returns True if N is of the form X'First .. X'Last where X is the
9804 -- same entity for both attributes.
9806 --------------------
9807 -- First_Last_Ref --
9808 --------------------
9810 function First_Last_Ref return Boolean is
9811 Lorig : constant Node_Id := Original_Node (L);
9812 Horig : constant Node_Id := Original_Node (H);
9814 begin
9815 if Nkind (Lorig) = N_Attribute_Reference
9816 and then Nkind (Horig) = N_Attribute_Reference
9817 and then Attribute_Name (Lorig) = Name_First
9818 and then Attribute_Name (Horig) = Name_Last
9819 then
9820 declare
9821 PL : constant Node_Id := Prefix (Lorig);
9822 PH : constant Node_Id := Prefix (Horig);
9823 begin
9824 if Is_Entity_Name (PL)
9825 and then Is_Entity_Name (PH)
9826 and then Entity (PL) = Entity (PH)
9827 then
9828 return True;
9829 end if;
9830 end;
9831 end if;
9833 return False;
9834 end First_Last_Ref;
9836 -- Start of processing for Resolve_Range
9838 begin
9839 Set_Etype (N, Typ);
9841 -- The lower bound should be in Typ. The higher bound can be in Typ's
9842 -- base type if the range is null. It may still be invalid if it is
9843 -- higher than the lower bound. This is checked later in the context in
9844 -- which the range appears.
9846 Resolve (L, Typ);
9847 Resolve (H, Base_Type (Typ));
9849 -- Check for inappropriate range on unordered enumeration type
9851 if Bad_Unordered_Enumeration_Reference (N, Typ)
9853 -- Exclude X'First .. X'Last if X is the same entity for both
9855 and then not First_Last_Ref
9856 then
9857 Error_Msg_Sloc := Sloc (Typ);
9858 Error_Msg_NE
9859 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9860 end if;
9862 Check_Unset_Reference (L);
9863 Check_Unset_Reference (H);
9865 -- We have to check the bounds for being within the base range as
9866 -- required for a non-static context. Normally this is automatic and
9867 -- done as part of evaluating expressions, but the N_Range node is an
9868 -- exception, since in GNAT we consider this node to be a subexpression,
9869 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9870 -- this, but that would put the test on the main evaluation path for
9871 -- expressions.
9873 Check_Non_Static_Context (L);
9874 Check_Non_Static_Context (H);
9876 -- Check for an ambiguous range over character literals. This will
9877 -- happen with a membership test involving only literals.
9879 if Typ = Any_Character then
9880 Ambiguous_Character (L);
9881 Set_Etype (N, Any_Type);
9882 return;
9883 end if;
9885 -- If bounds are static, constant-fold them, so size computations are
9886 -- identical between front-end and back-end. Do not perform this
9887 -- transformation while analyzing generic units, as type information
9888 -- would be lost when reanalyzing the constant node in the instance.
9890 if Is_Discrete_Type (Typ) and then Expander_Active then
9891 if Is_OK_Static_Expression (L) then
9892 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9893 end if;
9895 if Is_OK_Static_Expression (H) then
9896 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9897 end if;
9898 end if;
9899 end Resolve_Range;
9901 --------------------------
9902 -- Resolve_Real_Literal --
9903 --------------------------
9905 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9906 Actual_Typ : constant Entity_Id := Etype (N);
9908 begin
9909 -- Special processing for fixed-point literals to make sure that the
9910 -- value is an exact multiple of small where this is required. We skip
9911 -- this for the universal real case, and also for generic types.
9913 if Is_Fixed_Point_Type (Typ)
9914 and then Typ /= Universal_Fixed
9915 and then Typ /= Any_Fixed
9916 and then not Is_Generic_Type (Typ)
9917 then
9918 declare
9919 Val : constant Ureal := Realval (N);
9920 Cintr : constant Ureal := Val / Small_Value (Typ);
9921 Cint : constant Uint := UR_Trunc (Cintr);
9922 Den : constant Uint := Norm_Den (Cintr);
9923 Stat : Boolean;
9925 begin
9926 -- Case of literal is not an exact multiple of the Small
9928 if Den /= 1 then
9930 -- For a source program literal for a decimal fixed-point type,
9931 -- this is statically illegal (RM 4.9(36)).
9933 if Is_Decimal_Fixed_Point_Type (Typ)
9934 and then Actual_Typ = Universal_Real
9935 and then Comes_From_Source (N)
9936 then
9937 Error_Msg_N ("value has extraneous low order digits", N);
9938 end if;
9940 -- Generate a warning if literal from source
9942 if Is_OK_Static_Expression (N)
9943 and then Warn_On_Bad_Fixed_Value
9944 then
9945 Error_Msg_N
9946 ("?b?static fixed-point value is not a multiple of Small!",
9948 end if;
9950 -- Replace literal by a value that is the exact representation
9951 -- of a value of the type, i.e. a multiple of the small value,
9952 -- by truncation, since Machine_Rounds is false for all GNAT
9953 -- fixed-point types (RM 4.9(38)).
9955 Stat := Is_OK_Static_Expression (N);
9956 Rewrite (N,
9957 Make_Real_Literal (Sloc (N),
9958 Realval => Small_Value (Typ) * Cint));
9960 Set_Is_Static_Expression (N, Stat);
9961 end if;
9963 -- In all cases, set the corresponding integer field
9965 Set_Corresponding_Integer_Value (N, Cint);
9966 end;
9967 end if;
9969 -- Now replace the actual type by the expected type as usual
9971 Set_Etype (N, Typ);
9972 Eval_Real_Literal (N);
9973 end Resolve_Real_Literal;
9975 -----------------------
9976 -- Resolve_Reference --
9977 -----------------------
9979 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9980 P : constant Node_Id := Prefix (N);
9982 begin
9983 -- Replace general access with specific type
9985 if Ekind (Etype (N)) = E_Allocator_Type then
9986 Set_Etype (N, Base_Type (Typ));
9987 end if;
9989 Resolve (P, Designated_Type (Etype (N)));
9991 -- If we are taking the reference of a volatile entity, then treat it as
9992 -- a potential modification of this entity. This is too conservative,
9993 -- but necessary because remove side effects can cause transformations
9994 -- of normal assignments into reference sequences that otherwise fail to
9995 -- notice the modification.
9997 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9998 Note_Possible_Modification (P, Sure => False);
9999 end if;
10000 end Resolve_Reference;
10002 --------------------------------
10003 -- Resolve_Selected_Component --
10004 --------------------------------
10006 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
10007 Comp : Entity_Id;
10008 Comp1 : Entity_Id := Empty; -- prevent junk warning
10009 P : constant Node_Id := Prefix (N);
10010 S : constant Node_Id := Selector_Name (N);
10011 T : Entity_Id := Etype (P);
10012 I : Interp_Index;
10013 I1 : Interp_Index := 0; -- prevent junk warning
10014 It : Interp;
10015 It1 : Interp;
10016 Found : Boolean;
10018 function Init_Component return Boolean;
10019 -- Check whether this is the initialization of a component within an
10020 -- init proc (by assignment or call to another init proc). If true,
10021 -- there is no need for a discriminant check.
10023 --------------------
10024 -- Init_Component --
10025 --------------------
10027 function Init_Component return Boolean is
10028 begin
10029 return Inside_Init_Proc
10030 and then Nkind (Prefix (N)) = N_Identifier
10031 and then Chars (Prefix (N)) = Name_uInit
10032 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
10033 end Init_Component;
10035 -- Start of processing for Resolve_Selected_Component
10037 begin
10038 if Is_Overloaded (P) then
10040 -- Use the context type to select the prefix that has a selector
10041 -- of the correct name and type.
10043 Found := False;
10044 Get_First_Interp (P, I, It);
10046 Search : while Present (It.Typ) loop
10047 if Is_Access_Type (It.Typ) then
10048 T := Designated_Type (It.Typ);
10049 else
10050 T := It.Typ;
10051 end if;
10053 -- Locate selected component. For a private prefix the selector
10054 -- can denote a discriminant.
10056 if Is_Record_Type (T) or else Is_Private_Type (T) then
10058 -- The visible components of a class-wide type are those of
10059 -- the root type.
10061 if Is_Class_Wide_Type (T) then
10062 T := Etype (T);
10063 end if;
10065 Comp := First_Entity (T);
10066 while Present (Comp) loop
10067 if Chars (Comp) = Chars (S)
10068 and then Covers (Typ, Etype (Comp))
10069 then
10070 if not Found then
10071 Found := True;
10072 I1 := I;
10073 It1 := It;
10074 Comp1 := Comp;
10076 else
10077 It := Disambiguate (P, I1, I, Any_Type);
10079 if It = No_Interp then
10080 Error_Msg_N
10081 ("ambiguous prefix for selected component", N);
10082 Set_Etype (N, Typ);
10083 return;
10085 else
10086 It1 := It;
10088 -- There may be an implicit dereference. Retrieve
10089 -- designated record type.
10091 if Is_Access_Type (It1.Typ) then
10092 T := Designated_Type (It1.Typ);
10093 else
10094 T := It1.Typ;
10095 end if;
10097 if Scope (Comp1) /= T then
10099 -- Resolution chooses the new interpretation.
10100 -- Find the component with the right name.
10102 Comp1 := First_Entity (T);
10103 while Present (Comp1)
10104 and then Chars (Comp1) /= Chars (S)
10105 loop
10106 Comp1 := Next_Entity (Comp1);
10107 end loop;
10108 end if;
10110 exit Search;
10111 end if;
10112 end if;
10113 end if;
10115 Comp := Next_Entity (Comp);
10116 end loop;
10117 end if;
10119 Get_Next_Interp (I, It);
10120 end loop Search;
10122 -- There must be a legal interpretation at this point
10124 pragma Assert (Found);
10125 Resolve (P, It1.Typ);
10126 Set_Etype (N, Typ);
10127 Set_Entity_With_Checks (S, Comp1);
10129 else
10130 -- Resolve prefix with its type
10132 Resolve (P, T);
10133 end if;
10135 -- Generate cross-reference. We needed to wait until full overloading
10136 -- resolution was complete to do this, since otherwise we can't tell if
10137 -- we are an lvalue or not.
10139 if May_Be_Lvalue (N) then
10140 Generate_Reference (Entity (S), S, 'm');
10141 else
10142 Generate_Reference (Entity (S), S, 'r');
10143 end if;
10145 -- If prefix is an access type, the node will be transformed into an
10146 -- explicit dereference during expansion. The type of the node is the
10147 -- designated type of that of the prefix.
10149 if Is_Access_Type (Etype (P)) then
10150 T := Designated_Type (Etype (P));
10151 Check_Fully_Declared_Prefix (T, P);
10152 else
10153 T := Etype (P);
10154 end if;
10156 -- Set flag for expander if discriminant check required on a component
10157 -- appearing within a variant.
10159 if Has_Discriminants (T)
10160 and then Ekind (Entity (S)) = E_Component
10161 and then Present (Original_Record_Component (Entity (S)))
10162 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
10163 and then
10164 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
10165 and then not Discriminant_Checks_Suppressed (T)
10166 and then not Init_Component
10167 then
10168 Set_Do_Discriminant_Check (N);
10169 end if;
10171 if Ekind (Entity (S)) = E_Void then
10172 Error_Msg_N ("premature use of component", S);
10173 end if;
10175 -- If the prefix is a record conversion, this may be a renamed
10176 -- discriminant whose bounds differ from those of the original
10177 -- one, so we must ensure that a range check is performed.
10179 if Nkind (P) = N_Type_Conversion
10180 and then Ekind (Entity (S)) = E_Discriminant
10181 and then Is_Discrete_Type (Typ)
10182 then
10183 Set_Etype (N, Base_Type (Typ));
10184 end if;
10186 -- Note: No Eval processing is required, because the prefix is of a
10187 -- record type, or protected type, and neither can possibly be static.
10189 -- If the record type is atomic, and the component is non-atomic, then
10190 -- this is worth a warning, since we have a situation where the access
10191 -- to the component may cause extra read/writes of the atomic array
10192 -- object, or partial word accesses, both of which may be unexpected.
10194 if Nkind (N) = N_Selected_Component
10195 and then Is_Atomic_Ref_With_Address (N)
10196 and then not Is_Atomic (Entity (S))
10197 and then not Is_Atomic (Etype (Entity (S)))
10198 then
10199 Error_Msg_N
10200 ("??access to non-atomic component of atomic record",
10201 Prefix (N));
10202 Error_Msg_N
10203 ("\??may cause unexpected accesses to atomic object",
10204 Prefix (N));
10205 end if;
10207 Analyze_Dimension (N);
10208 end Resolve_Selected_Component;
10210 -------------------
10211 -- Resolve_Shift --
10212 -------------------
10214 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
10215 B_Typ : constant Entity_Id := Base_Type (Typ);
10216 L : constant Node_Id := Left_Opnd (N);
10217 R : constant Node_Id := Right_Opnd (N);
10219 begin
10220 -- We do the resolution using the base type, because intermediate values
10221 -- in expressions always are of the base type, not a subtype of it.
10223 Resolve (L, B_Typ);
10224 Resolve (R, Standard_Natural);
10226 Check_Unset_Reference (L);
10227 Check_Unset_Reference (R);
10229 Set_Etype (N, B_Typ);
10230 Generate_Operator_Reference (N, B_Typ);
10231 Eval_Shift (N);
10232 end Resolve_Shift;
10234 ---------------------------
10235 -- Resolve_Short_Circuit --
10236 ---------------------------
10238 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10239 B_Typ : constant Entity_Id := Base_Type (Typ);
10240 L : constant Node_Id := Left_Opnd (N);
10241 R : constant Node_Id := Right_Opnd (N);
10243 begin
10244 -- Ensure all actions associated with the left operand (e.g.
10245 -- finalization of transient objects) are fully evaluated locally within
10246 -- an expression with actions. This is particularly helpful for coverage
10247 -- analysis. However this should not happen in generics or if option
10248 -- Minimize_Expression_With_Actions is set.
10250 if Expander_Active and not Minimize_Expression_With_Actions then
10251 declare
10252 Reloc_L : constant Node_Id := Relocate_Node (L);
10253 begin
10254 Save_Interps (Old_N => L, New_N => Reloc_L);
10256 Rewrite (L,
10257 Make_Expression_With_Actions (Sloc (L),
10258 Actions => New_List,
10259 Expression => Reloc_L));
10261 -- Set Comes_From_Source on L to preserve warnings for unset
10262 -- reference.
10264 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
10265 end;
10266 end if;
10268 Resolve (L, B_Typ);
10269 Resolve (R, B_Typ);
10271 -- Check for issuing warning for always False assert/check, this happens
10272 -- when assertions are turned off, in which case the pragma Assert/Check
10273 -- was transformed into:
10275 -- if False and then <condition> then ...
10277 -- and we detect this pattern
10279 if Warn_On_Assertion_Failure
10280 and then Is_Entity_Name (R)
10281 and then Entity (R) = Standard_False
10282 and then Nkind (Parent (N)) = N_If_Statement
10283 and then Nkind (N) = N_And_Then
10284 and then Is_Entity_Name (L)
10285 and then Entity (L) = Standard_False
10286 then
10287 declare
10288 Orig : constant Node_Id := Original_Node (Parent (N));
10290 begin
10291 -- Special handling of Asssert pragma
10293 if Nkind (Orig) = N_Pragma
10294 and then Pragma_Name (Orig) = Name_Assert
10295 then
10296 declare
10297 Expr : constant Node_Id :=
10298 Original_Node
10299 (Expression
10300 (First (Pragma_Argument_Associations (Orig))));
10302 begin
10303 -- Don't warn if original condition is explicit False,
10304 -- since obviously the failure is expected in this case.
10306 if Is_Entity_Name (Expr)
10307 and then Entity (Expr) = Standard_False
10308 then
10309 null;
10311 -- Issue warning. We do not want the deletion of the
10312 -- IF/AND-THEN to take this message with it. We achieve this
10313 -- by making sure that the expanded code points to the Sloc
10314 -- of the expression, not the original pragma.
10316 else
10317 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10318 -- The source location of the expression is not usually
10319 -- the best choice here. For example, it gets located on
10320 -- the last AND keyword in a chain of boolean expressiond
10321 -- AND'ed together. It is best to put the message on the
10322 -- first character of the assertion, which is the effect
10323 -- of the First_Node call here.
10325 Error_Msg_F
10326 ("?A?assertion would fail at run time!",
10327 Expression
10328 (First (Pragma_Argument_Associations (Orig))));
10329 end if;
10330 end;
10332 -- Similar processing for Check pragma
10334 elsif Nkind (Orig) = N_Pragma
10335 and then Pragma_Name (Orig) = Name_Check
10336 then
10337 -- Don't want to warn if original condition is explicit False
10339 declare
10340 Expr : constant Node_Id :=
10341 Original_Node
10342 (Expression
10343 (Next (First (Pragma_Argument_Associations (Orig)))));
10344 begin
10345 if Is_Entity_Name (Expr)
10346 and then Entity (Expr) = Standard_False
10347 then
10348 null;
10350 -- Post warning
10352 else
10353 -- Again use Error_Msg_F rather than Error_Msg_N, see
10354 -- comment above for an explanation of why we do this.
10356 Error_Msg_F
10357 ("?A?check would fail at run time!",
10358 Expression
10359 (Last (Pragma_Argument_Associations (Orig))));
10360 end if;
10361 end;
10362 end if;
10363 end;
10364 end if;
10366 -- Continue with processing of short circuit
10368 Check_Unset_Reference (L);
10369 Check_Unset_Reference (R);
10371 Set_Etype (N, B_Typ);
10372 Eval_Short_Circuit (N);
10373 end Resolve_Short_Circuit;
10375 -------------------
10376 -- Resolve_Slice --
10377 -------------------
10379 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10380 Drange : constant Node_Id := Discrete_Range (N);
10381 Name : constant Node_Id := Prefix (N);
10382 Array_Type : Entity_Id := Empty;
10383 Dexpr : Node_Id := Empty;
10384 Index_Type : Entity_Id;
10386 begin
10387 if Is_Overloaded (Name) then
10389 -- Use the context type to select the prefix that yields the correct
10390 -- array type.
10392 declare
10393 I : Interp_Index;
10394 I1 : Interp_Index := 0;
10395 It : Interp;
10396 P : constant Node_Id := Prefix (N);
10397 Found : Boolean := False;
10399 begin
10400 Get_First_Interp (P, I, It);
10401 while Present (It.Typ) loop
10402 if (Is_Array_Type (It.Typ)
10403 and then Covers (Typ, It.Typ))
10404 or else (Is_Access_Type (It.Typ)
10405 and then Is_Array_Type (Designated_Type (It.Typ))
10406 and then Covers (Typ, Designated_Type (It.Typ)))
10407 then
10408 if Found then
10409 It := Disambiguate (P, I1, I, Any_Type);
10411 if It = No_Interp then
10412 Error_Msg_N ("ambiguous prefix for slicing", N);
10413 Set_Etype (N, Typ);
10414 return;
10415 else
10416 Found := True;
10417 Array_Type := It.Typ;
10418 I1 := I;
10419 end if;
10420 else
10421 Found := True;
10422 Array_Type := It.Typ;
10423 I1 := I;
10424 end if;
10425 end if;
10427 Get_Next_Interp (I, It);
10428 end loop;
10429 end;
10431 else
10432 Array_Type := Etype (Name);
10433 end if;
10435 Resolve (Name, Array_Type);
10437 if Is_Access_Type (Array_Type) then
10438 Apply_Access_Check (N);
10439 Array_Type := Designated_Type (Array_Type);
10441 -- If the prefix is an access to an unconstrained array, we must use
10442 -- the actual subtype of the object to perform the index checks. The
10443 -- object denoted by the prefix is implicit in the node, so we build
10444 -- an explicit representation for it in order to compute the actual
10445 -- subtype.
10447 if not Is_Constrained (Array_Type) then
10448 Remove_Side_Effects (Prefix (N));
10450 declare
10451 Obj : constant Node_Id :=
10452 Make_Explicit_Dereference (Sloc (N),
10453 Prefix => New_Copy_Tree (Prefix (N)));
10454 begin
10455 Set_Etype (Obj, Array_Type);
10456 Set_Parent (Obj, Parent (N));
10457 Array_Type := Get_Actual_Subtype (Obj);
10458 end;
10459 end if;
10461 elsif Is_Entity_Name (Name)
10462 or else Nkind (Name) = N_Explicit_Dereference
10463 or else (Nkind (Name) = N_Function_Call
10464 and then not Is_Constrained (Etype (Name)))
10465 then
10466 Array_Type := Get_Actual_Subtype (Name);
10468 -- If the name is a selected component that depends on discriminants,
10469 -- build an actual subtype for it. This can happen only when the name
10470 -- itself is overloaded; otherwise the actual subtype is created when
10471 -- the selected component is analyzed.
10473 elsif Nkind (Name) = N_Selected_Component
10474 and then Full_Analysis
10475 and then Depends_On_Discriminant (First_Index (Array_Type))
10476 then
10477 declare
10478 Act_Decl : constant Node_Id :=
10479 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10480 begin
10481 Insert_Action (N, Act_Decl);
10482 Array_Type := Defining_Identifier (Act_Decl);
10483 end;
10485 -- Maybe this should just be "else", instead of checking for the
10486 -- specific case of slice??? This is needed for the case where the
10487 -- prefix is an Image attribute, which gets expanded to a slice, and so
10488 -- has a constrained subtype which we want to use for the slice range
10489 -- check applied below (the range check won't get done if the
10490 -- unconstrained subtype of the 'Image is used).
10492 elsif Nkind (Name) = N_Slice then
10493 Array_Type := Etype (Name);
10494 end if;
10496 -- Obtain the type of the array index
10498 if Ekind (Array_Type) = E_String_Literal_Subtype then
10499 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10500 else
10501 Index_Type := Etype (First_Index (Array_Type));
10502 end if;
10504 -- If name was overloaded, set slice type correctly now
10506 Set_Etype (N, Array_Type);
10508 -- Handle the generation of a range check that compares the array index
10509 -- against the discrete_range. The check is not applied to internally
10510 -- built nodes associated with the expansion of dispatch tables. Check
10511 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10512 -- the unit.
10514 if Tagged_Type_Expansion
10515 and then RTU_Loaded (Ada_Tags)
10516 and then Nkind (Prefix (N)) = N_Selected_Component
10517 and then Present (Entity (Selector_Name (Prefix (N))))
10518 and then Entity (Selector_Name (Prefix (N))) =
10519 RTE_Record_Component (RE_Prims_Ptr)
10520 then
10521 null;
10523 -- The discrete_range is specified by a subtype indication. Create a
10524 -- shallow copy and inherit the type, parent and source location from
10525 -- the discrete_range. This ensures that the range check is inserted
10526 -- relative to the slice and that the runtime exception points to the
10527 -- proper construct.
10529 elsif Is_Entity_Name (Drange) then
10530 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10532 Set_Etype (Dexpr, Etype (Drange));
10533 Set_Parent (Dexpr, Parent (Drange));
10534 Set_Sloc (Dexpr, Sloc (Drange));
10536 -- The discrete_range is a regular range. Resolve the bounds and remove
10537 -- their side effects.
10539 else
10540 Resolve (Drange, Base_Type (Index_Type));
10542 if Nkind (Drange) = N_Range then
10543 Force_Evaluation (Low_Bound (Drange));
10544 Force_Evaluation (High_Bound (Drange));
10546 Dexpr := Drange;
10547 end if;
10548 end if;
10550 if Present (Dexpr) then
10551 Apply_Range_Check (Dexpr, Index_Type);
10552 end if;
10554 Set_Slice_Subtype (N);
10556 -- Check bad use of type with predicates
10558 declare
10559 Subt : Entity_Id;
10561 begin
10562 if Nkind (Drange) = N_Subtype_Indication
10563 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10564 then
10565 Subt := Entity (Subtype_Mark (Drange));
10566 else
10567 Subt := Etype (Drange);
10568 end if;
10570 if Has_Predicates (Subt) then
10571 Bad_Predicated_Subtype_Use
10572 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10573 end if;
10574 end;
10576 -- Otherwise here is where we check suspicious indexes
10578 if Nkind (Drange) = N_Range then
10579 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10580 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10581 end if;
10583 Analyze_Dimension (N);
10584 Eval_Slice (N);
10585 end Resolve_Slice;
10587 ----------------------------
10588 -- Resolve_String_Literal --
10589 ----------------------------
10591 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10592 C_Typ : constant Entity_Id := Component_Type (Typ);
10593 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10594 Loc : constant Source_Ptr := Sloc (N);
10595 Str : constant String_Id := Strval (N);
10596 Strlen : constant Nat := String_Length (Str);
10597 Subtype_Id : Entity_Id;
10598 Need_Check : Boolean;
10600 begin
10601 -- For a string appearing in a concatenation, defer creation of the
10602 -- string_literal_subtype until the end of the resolution of the
10603 -- concatenation, because the literal may be constant-folded away. This
10604 -- is a useful optimization for long concatenation expressions.
10606 -- If the string is an aggregate built for a single character (which
10607 -- happens in a non-static context) or a is null string to which special
10608 -- checks may apply, we build the subtype. Wide strings must also get a
10609 -- string subtype if they come from a one character aggregate. Strings
10610 -- generated by attributes might be static, but it is often hard to
10611 -- determine whether the enclosing context is static, so we generate
10612 -- subtypes for them as well, thus losing some rarer optimizations ???
10613 -- Same for strings that come from a static conversion.
10615 Need_Check :=
10616 (Strlen = 0 and then Typ /= Standard_String)
10617 or else Nkind (Parent (N)) /= N_Op_Concat
10618 or else (N /= Left_Opnd (Parent (N))
10619 and then N /= Right_Opnd (Parent (N)))
10620 or else ((Typ = Standard_Wide_String
10621 or else Typ = Standard_Wide_Wide_String)
10622 and then Nkind (Original_Node (N)) /= N_String_Literal);
10624 -- If the resolving type is itself a string literal subtype, we can just
10625 -- reuse it, since there is no point in creating another.
10627 if Ekind (Typ) = E_String_Literal_Subtype then
10628 Subtype_Id := Typ;
10630 elsif Nkind (Parent (N)) = N_Op_Concat
10631 and then not Need_Check
10632 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10633 N_Attribute_Reference,
10634 N_Qualified_Expression,
10635 N_Type_Conversion)
10636 then
10637 Subtype_Id := Typ;
10639 -- Do not generate a string literal subtype for the default expression
10640 -- of a formal parameter in GNATprove mode. This is because the string
10641 -- subtype is associated with the freezing actions of the subprogram,
10642 -- however freezing is disabled in GNATprove mode and as a result the
10643 -- subtype is unavailable.
10645 elsif GNATprove_Mode
10646 and then Nkind (Parent (N)) = N_Parameter_Specification
10647 then
10648 Subtype_Id := Typ;
10650 -- Otherwise we must create a string literal subtype. Note that the
10651 -- whole idea of string literal subtypes is simply to avoid the need
10652 -- for building a full fledged array subtype for each literal.
10654 else
10655 Set_String_Literal_Subtype (N, Typ);
10656 Subtype_Id := Etype (N);
10657 end if;
10659 if Nkind (Parent (N)) /= N_Op_Concat
10660 or else Need_Check
10661 then
10662 Set_Etype (N, Subtype_Id);
10663 Eval_String_Literal (N);
10664 end if;
10666 if Is_Limited_Composite (Typ)
10667 or else Is_Private_Composite (Typ)
10668 then
10669 Error_Msg_N ("string literal not available for private array", N);
10670 Set_Etype (N, Any_Type);
10671 return;
10672 end if;
10674 -- The validity of a null string has been checked in the call to
10675 -- Eval_String_Literal.
10677 if Strlen = 0 then
10678 return;
10680 -- Always accept string literal with component type Any_Character, which
10681 -- occurs in error situations and in comparisons of literals, both of
10682 -- which should accept all literals.
10684 elsif R_Typ = Any_Character then
10685 return;
10687 -- If the type is bit-packed, then we always transform the string
10688 -- literal into a full fledged aggregate.
10690 elsif Is_Bit_Packed_Array (Typ) then
10691 null;
10693 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10695 else
10696 -- For Standard.Wide_Wide_String, or any other type whose component
10697 -- type is Standard.Wide_Wide_Character, we know that all the
10698 -- characters in the string must be acceptable, since the parser
10699 -- accepted the characters as valid character literals.
10701 if R_Typ = Standard_Wide_Wide_Character then
10702 null;
10704 -- For the case of Standard.String, or any other type whose component
10705 -- type is Standard.Character, we must make sure that there are no
10706 -- wide characters in the string, i.e. that it is entirely composed
10707 -- of characters in range of type Character.
10709 -- If the string literal is the result of a static concatenation, the
10710 -- test has already been performed on the components, and need not be
10711 -- repeated.
10713 elsif R_Typ = Standard_Character
10714 and then Nkind (Original_Node (N)) /= N_Op_Concat
10715 then
10716 for J in 1 .. Strlen loop
10717 if not In_Character_Range (Get_String_Char (Str, J)) then
10719 -- If we are out of range, post error. This is one of the
10720 -- very few places that we place the flag in the middle of
10721 -- a token, right under the offending wide character. Not
10722 -- quite clear if this is right wrt wide character encoding
10723 -- sequences, but it's only an error message.
10725 Error_Msg
10726 ("literal out of range of type Standard.Character",
10727 Source_Ptr (Int (Loc) + J));
10728 return;
10729 end if;
10730 end loop;
10732 -- For the case of Standard.Wide_String, or any other type whose
10733 -- component type is Standard.Wide_Character, we must make sure that
10734 -- there are no wide characters in the string, i.e. that it is
10735 -- entirely composed of characters in range of type Wide_Character.
10737 -- If the string literal is the result of a static concatenation,
10738 -- the test has already been performed on the components, and need
10739 -- not be repeated.
10741 elsif R_Typ = Standard_Wide_Character
10742 and then Nkind (Original_Node (N)) /= N_Op_Concat
10743 then
10744 for J in 1 .. Strlen loop
10745 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10747 -- If we are out of range, post error. This is one of the
10748 -- very few places that we place the flag in the middle of
10749 -- a token, right under the offending wide character.
10751 -- This is not quite right, because characters in general
10752 -- will take more than one character position ???
10754 Error_Msg
10755 ("literal out of range of type Standard.Wide_Character",
10756 Source_Ptr (Int (Loc) + J));
10757 return;
10758 end if;
10759 end loop;
10761 -- If the root type is not a standard character, then we will convert
10762 -- the string into an aggregate and will let the aggregate code do
10763 -- the checking. Standard Wide_Wide_Character is also OK here.
10765 else
10766 null;
10767 end if;
10769 -- See if the component type of the array corresponding to the string
10770 -- has compile time known bounds. If yes we can directly check
10771 -- whether the evaluation of the string will raise constraint error.
10772 -- Otherwise we need to transform the string literal into the
10773 -- corresponding character aggregate and let the aggregate code do
10774 -- the checking.
10776 if Is_Standard_Character_Type (R_Typ) then
10778 -- Check for the case of full range, where we are definitely OK
10780 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10781 return;
10782 end if;
10784 -- Here the range is not the complete base type range, so check
10786 declare
10787 Comp_Typ_Lo : constant Node_Id :=
10788 Type_Low_Bound (Component_Type (Typ));
10789 Comp_Typ_Hi : constant Node_Id :=
10790 Type_High_Bound (Component_Type (Typ));
10792 Char_Val : Uint;
10794 begin
10795 if Compile_Time_Known_Value (Comp_Typ_Lo)
10796 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10797 then
10798 for J in 1 .. Strlen loop
10799 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10801 if Char_Val < Expr_Value (Comp_Typ_Lo)
10802 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10803 then
10804 Apply_Compile_Time_Constraint_Error
10805 (N, "character out of range??",
10806 CE_Range_Check_Failed,
10807 Loc => Source_Ptr (Int (Loc) + J));
10808 end if;
10809 end loop;
10811 return;
10812 end if;
10813 end;
10814 end if;
10815 end if;
10817 -- If we got here we meed to transform the string literal into the
10818 -- equivalent qualified positional array aggregate. This is rather
10819 -- heavy artillery for this situation, but it is hard work to avoid.
10821 declare
10822 Lits : constant List_Id := New_List;
10823 P : Source_Ptr := Loc + 1;
10824 C : Char_Code;
10826 begin
10827 -- Build the character literals, we give them source locations that
10828 -- correspond to the string positions, which is a bit tricky given
10829 -- the possible presence of wide character escape sequences.
10831 for J in 1 .. Strlen loop
10832 C := Get_String_Char (Str, J);
10833 Set_Character_Literal_Name (C);
10835 Append_To (Lits,
10836 Make_Character_Literal (P,
10837 Chars => Name_Find,
10838 Char_Literal_Value => UI_From_CC (C)));
10840 if In_Character_Range (C) then
10841 P := P + 1;
10843 -- Should we have a call to Skip_Wide here ???
10845 -- ??? else
10846 -- Skip_Wide (P);
10848 end if;
10849 end loop;
10851 Rewrite (N,
10852 Make_Qualified_Expression (Loc,
10853 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10854 Expression =>
10855 Make_Aggregate (Loc, Expressions => Lits)));
10857 Analyze_And_Resolve (N, Typ);
10858 end;
10859 end Resolve_String_Literal;
10861 -------------------------
10862 -- Resolve_Target_Name --
10863 -------------------------
10865 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is
10866 begin
10867 Set_Etype (N, Typ);
10868 end Resolve_Target_Name;
10870 -----------------------------
10871 -- Resolve_Type_Conversion --
10872 -----------------------------
10874 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10875 Conv_OK : constant Boolean := Conversion_OK (N);
10876 Operand : constant Node_Id := Expression (N);
10877 Operand_Typ : constant Entity_Id := Etype (Operand);
10878 Target_Typ : constant Entity_Id := Etype (N);
10879 Rop : Node_Id;
10880 Orig_N : Node_Id;
10881 Orig_T : Node_Id;
10883 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10884 -- Set to False to suppress cases where we want to suppress the test
10885 -- for redundancy to avoid possible false positives on this warning.
10887 begin
10888 if not Conv_OK
10889 and then not Valid_Conversion (N, Target_Typ, Operand)
10890 then
10891 return;
10892 end if;
10894 -- If the Operand Etype is Universal_Fixed, then the conversion is
10895 -- never redundant. We need this check because by the time we have
10896 -- finished the rather complex transformation, the conversion looks
10897 -- redundant when it is not.
10899 if Operand_Typ = Universal_Fixed then
10900 Test_Redundant := False;
10902 -- If the operand is marked as Any_Fixed, then special processing is
10903 -- required. This is also a case where we suppress the test for a
10904 -- redundant conversion, since most certainly it is not redundant.
10906 elsif Operand_Typ = Any_Fixed then
10907 Test_Redundant := False;
10909 -- Mixed-mode operation involving a literal. Context must be a fixed
10910 -- type which is applied to the literal subsequently.
10912 -- Multiplication and division involving two fixed type operands must
10913 -- yield a universal real because the result is computed in arbitrary
10914 -- precision.
10916 if Is_Fixed_Point_Type (Typ)
10917 and then Nkind_In (Operand, N_Op_Divide, N_Op_Multiply)
10918 and then Etype (Left_Opnd (Operand)) = Any_Fixed
10919 and then Etype (Right_Opnd (Operand)) = Any_Fixed
10920 then
10921 Set_Etype (Operand, Universal_Real);
10923 elsif Is_Numeric_Type (Typ)
10924 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10925 and then (Etype (Right_Opnd (Operand)) = Universal_Real
10926 or else
10927 Etype (Left_Opnd (Operand)) = Universal_Real)
10928 then
10929 -- Return if expression is ambiguous
10931 if Unique_Fixed_Point_Type (N) = Any_Type then
10932 return;
10934 -- If nothing else, the available fixed type is Duration
10936 else
10937 Set_Etype (Operand, Standard_Duration);
10938 end if;
10940 -- Resolve the real operand with largest available precision
10942 if Etype (Right_Opnd (Operand)) = Universal_Real then
10943 Rop := New_Copy_Tree (Right_Opnd (Operand));
10944 else
10945 Rop := New_Copy_Tree (Left_Opnd (Operand));
10946 end if;
10948 Resolve (Rop, Universal_Real);
10950 -- If the operand is a literal (it could be a non-static and
10951 -- illegal exponentiation) check whether the use of Duration
10952 -- is potentially inaccurate.
10954 if Nkind (Rop) = N_Real_Literal
10955 and then Realval (Rop) /= Ureal_0
10956 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10957 then
10958 Error_Msg_N
10959 ("??universal real operand can only "
10960 & "be interpreted as Duration!", Rop);
10961 Error_Msg_N
10962 ("\??precision will be lost in the conversion!", Rop);
10963 end if;
10965 elsif Is_Numeric_Type (Typ)
10966 and then Nkind (Operand) in N_Op
10967 and then Unique_Fixed_Point_Type (N) /= Any_Type
10968 then
10969 Set_Etype (Operand, Standard_Duration);
10971 else
10972 Error_Msg_N ("invalid context for mixed mode operation", N);
10973 Set_Etype (Operand, Any_Type);
10974 return;
10975 end if;
10976 end if;
10978 Resolve (Operand);
10980 -- In SPARK, a type conversion between array types should be restricted
10981 -- to types which have matching static bounds.
10983 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10984 -- operation if not needed.
10986 if Restriction_Check_Required (SPARK_05)
10987 and then Is_Array_Type (Target_Typ)
10988 and then Is_Array_Type (Operand_Typ)
10989 and then Operand_Typ /= Any_Composite -- or else Operand in error
10990 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10991 then
10992 Check_SPARK_05_Restriction
10993 ("array types should have matching static bounds", N);
10994 end if;
10996 -- In formal mode, the operand of an ancestor type conversion must be an
10997 -- object (not an expression).
10999 if Is_Tagged_Type (Target_Typ)
11000 and then not Is_Class_Wide_Type (Target_Typ)
11001 and then Is_Tagged_Type (Operand_Typ)
11002 and then not Is_Class_Wide_Type (Operand_Typ)
11003 and then Is_Ancestor (Target_Typ, Operand_Typ)
11004 and then not Is_SPARK_05_Object_Reference (Operand)
11005 then
11006 Check_SPARK_05_Restriction ("object required", Operand);
11007 end if;
11009 Analyze_Dimension (N);
11011 -- Note: we do the Eval_Type_Conversion call before applying the
11012 -- required checks for a subtype conversion. This is important, since
11013 -- both are prepared under certain circumstances to change the type
11014 -- conversion to a constraint error node, but in the case of
11015 -- Eval_Type_Conversion this may reflect an illegality in the static
11016 -- case, and we would miss the illegality (getting only a warning
11017 -- message), if we applied the type conversion checks first.
11019 Eval_Type_Conversion (N);
11021 -- Even when evaluation is not possible, we may be able to simplify the
11022 -- conversion or its expression. This needs to be done before applying
11023 -- checks, since otherwise the checks may use the original expression
11024 -- and defeat the simplifications. This is specifically the case for
11025 -- elimination of the floating-point Truncation attribute in
11026 -- float-to-int conversions.
11028 Simplify_Type_Conversion (N);
11030 -- If after evaluation we still have a type conversion, then we may need
11031 -- to apply checks required for a subtype conversion.
11033 -- Skip these type conversion checks if universal fixed operands
11034 -- operands involved, since range checks are handled separately for
11035 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
11037 if Nkind (N) = N_Type_Conversion
11038 and then not Is_Generic_Type (Root_Type (Target_Typ))
11039 and then Target_Typ /= Universal_Fixed
11040 and then Operand_Typ /= Universal_Fixed
11041 then
11042 Apply_Type_Conversion_Checks (N);
11043 end if;
11045 -- Issue warning for conversion of simple object to its own type. We
11046 -- have to test the original nodes, since they may have been rewritten
11047 -- by various optimizations.
11049 Orig_N := Original_Node (N);
11051 -- Here we test for a redundant conversion if the warning mode is
11052 -- active (and was not locally reset), and we have a type conversion
11053 -- from source not appearing in a generic instance.
11055 if Test_Redundant
11056 and then Nkind (Orig_N) = N_Type_Conversion
11057 and then Comes_From_Source (Orig_N)
11058 and then not In_Instance
11059 then
11060 Orig_N := Original_Node (Expression (Orig_N));
11061 Orig_T := Target_Typ;
11063 -- If the node is part of a larger expression, the Target_Type
11064 -- may not be the original type of the node if the context is a
11065 -- condition. Recover original type to see if conversion is needed.
11067 if Is_Boolean_Type (Orig_T)
11068 and then Nkind (Parent (N)) in N_Op
11069 then
11070 Orig_T := Etype (Parent (N));
11071 end if;
11073 -- If we have an entity name, then give the warning if the entity
11074 -- is the right type, or if it is a loop parameter covered by the
11075 -- original type (that's needed because loop parameters have an
11076 -- odd subtype coming from the bounds).
11078 if (Is_Entity_Name (Orig_N)
11079 and then
11080 (Etype (Entity (Orig_N)) = Orig_T
11081 or else
11082 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
11083 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
11085 -- If not an entity, then type of expression must match
11087 or else Etype (Orig_N) = Orig_T
11088 then
11089 -- One more check, do not give warning if the analyzed conversion
11090 -- has an expression with non-static bounds, and the bounds of the
11091 -- target are static. This avoids junk warnings in cases where the
11092 -- conversion is necessary to establish staticness, for example in
11093 -- a case statement.
11095 if not Is_OK_Static_Subtype (Operand_Typ)
11096 and then Is_OK_Static_Subtype (Target_Typ)
11097 then
11098 null;
11100 -- Finally, if this type conversion occurs in a context requiring
11101 -- a prefix, and the expression is a qualified expression then the
11102 -- type conversion is not redundant, since a qualified expression
11103 -- is not a prefix, whereas a type conversion is. For example, "X
11104 -- := T'(Funx(...)).Y;" is illegal because a selected component
11105 -- requires a prefix, but a type conversion makes it legal: "X :=
11106 -- T(T'(Funx(...))).Y;"
11108 -- In Ada 2012, a qualified expression is a name, so this idiom is
11109 -- no longer needed, but we still suppress the warning because it
11110 -- seems unfriendly for warnings to pop up when you switch to the
11111 -- newer language version.
11113 elsif Nkind (Orig_N) = N_Qualified_Expression
11114 and then Nkind_In (Parent (N), N_Attribute_Reference,
11115 N_Indexed_Component,
11116 N_Selected_Component,
11117 N_Slice,
11118 N_Explicit_Dereference)
11119 then
11120 null;
11122 -- Never warn on conversion to Long_Long_Integer'Base since
11123 -- that is most likely an artifact of the extended overflow
11124 -- checking and comes from complex expanded code.
11126 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
11127 null;
11129 -- Here we give the redundant conversion warning. If it is an
11130 -- entity, give the name of the entity in the message. If not,
11131 -- just mention the expression.
11133 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
11135 else
11136 if Is_Entity_Name (Orig_N) then
11137 Error_Msg_Node_2 := Orig_T;
11138 Error_Msg_NE -- CODEFIX
11139 ("??redundant conversion, & is of type &!",
11140 N, Entity (Orig_N));
11141 else
11142 Error_Msg_NE
11143 ("??redundant conversion, expression is of type&!",
11144 N, Orig_T);
11145 end if;
11146 end if;
11147 end if;
11148 end if;
11150 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
11151 -- No need to perform any interface conversion if the type of the
11152 -- expression coincides with the target type.
11154 if Ada_Version >= Ada_2005
11155 and then Expander_Active
11156 and then Operand_Typ /= Target_Typ
11157 then
11158 declare
11159 Opnd : Entity_Id := Operand_Typ;
11160 Target : Entity_Id := Target_Typ;
11162 begin
11163 -- If the type of the operand is a limited view, use nonlimited
11164 -- view when available. If it is a class-wide type, recover the
11165 -- class-wide type of the nonlimited view.
11167 if From_Limited_With (Opnd)
11168 and then Has_Non_Limited_View (Opnd)
11169 then
11170 Opnd := Non_Limited_View (Opnd);
11171 Set_Etype (Expression (N), Opnd);
11172 end if;
11174 if Is_Access_Type (Opnd) then
11175 Opnd := Designated_Type (Opnd);
11176 end if;
11178 if Is_Access_Type (Target_Typ) then
11179 Target := Designated_Type (Target);
11180 end if;
11182 if Opnd = Target then
11183 null;
11185 -- Conversion from interface type
11187 elsif Is_Interface (Opnd) then
11189 -- Ada 2005 (AI-217): Handle entities from limited views
11191 if From_Limited_With (Opnd) then
11192 Error_Msg_Qual_Level := 99;
11193 Error_Msg_NE -- CODEFIX
11194 ("missing WITH clause on package &", N,
11195 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
11196 Error_Msg_N
11197 ("type conversions require visibility of the full view",
11200 elsif From_Limited_With (Target)
11201 and then not
11202 (Is_Access_Type (Target_Typ)
11203 and then Present (Non_Limited_View (Etype (Target))))
11204 then
11205 Error_Msg_Qual_Level := 99;
11206 Error_Msg_NE -- CODEFIX
11207 ("missing WITH clause on package &", N,
11208 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
11209 Error_Msg_N
11210 ("type conversions require visibility of the full view",
11213 else
11214 Expand_Interface_Conversion (N);
11215 end if;
11217 -- Conversion to interface type
11219 elsif Is_Interface (Target) then
11221 -- Handle subtypes
11223 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
11224 Opnd := Etype (Opnd);
11225 end if;
11227 if Is_Class_Wide_Type (Opnd)
11228 or else Interface_Present_In_Ancestor
11229 (Typ => Opnd,
11230 Iface => Target)
11231 then
11232 Expand_Interface_Conversion (N);
11233 else
11234 Error_Msg_Name_1 := Chars (Etype (Target));
11235 Error_Msg_Name_2 := Chars (Opnd);
11236 Error_Msg_N
11237 ("wrong interface conversion (% is not a progenitor "
11238 & "of %)", N);
11239 end if;
11240 end if;
11241 end;
11242 end if;
11244 -- Ada 2012: once the type conversion is resolved, check whether the
11245 -- operand statisfies the static predicate of the target type.
11247 if Has_Predicates (Target_Typ) then
11248 Check_Expression_Against_Static_Predicate (N, Target_Typ);
11249 end if;
11251 -- If at this stage we have a real to integer conversion, make sure that
11252 -- the Do_Range_Check flag is set, because such conversions in general
11253 -- need a range check. We only need this if expansion is off.
11254 -- In GNATprove mode, we only do that when converting from fixed-point
11255 -- (as floating-point to integer conversions are now handled in
11256 -- GNATprove mode).
11258 if Nkind (N) = N_Type_Conversion
11259 and then not Expander_Active
11260 and then Is_Integer_Type (Target_Typ)
11261 and then (Is_Fixed_Point_Type (Operand_Typ)
11262 or else (not GNATprove_Mode
11263 and then Is_Floating_Point_Type (Operand_Typ)))
11264 then
11265 Set_Do_Range_Check (Operand);
11266 end if;
11268 -- Generating C code a type conversion of an access to constrained
11269 -- array type to access to unconstrained array type involves building
11270 -- a fat pointer which in general cannot be generated on the fly. We
11271 -- remove side effects in order to store the result of the conversion
11272 -- into a temporary.
11274 if Modify_Tree_For_C
11275 and then Nkind (N) = N_Type_Conversion
11276 and then Nkind (Parent (N)) /= N_Object_Declaration
11277 and then Is_Access_Type (Etype (N))
11278 and then Is_Array_Type (Designated_Type (Etype (N)))
11279 and then not Is_Constrained (Designated_Type (Etype (N)))
11280 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
11281 then
11282 Remove_Side_Effects (N);
11283 end if;
11284 end Resolve_Type_Conversion;
11286 ----------------------
11287 -- Resolve_Unary_Op --
11288 ----------------------
11290 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11291 B_Typ : constant Entity_Id := Base_Type (Typ);
11292 R : constant Node_Id := Right_Opnd (N);
11293 OK : Boolean;
11294 Lo : Uint;
11295 Hi : Uint;
11297 begin
11298 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11299 Error_Msg_Name_1 := Chars (Typ);
11300 Check_SPARK_05_Restriction
11301 ("unary operator not defined for modular type%", N);
11302 end if;
11304 -- Deal with intrinsic unary operators
11306 if Comes_From_Source (N)
11307 and then Ekind (Entity (N)) = E_Function
11308 and then Is_Imported (Entity (N))
11309 and then Is_Intrinsic_Subprogram (Entity (N))
11310 then
11311 Resolve_Intrinsic_Unary_Operator (N, Typ);
11312 return;
11313 end if;
11315 -- Deal with universal cases
11317 if Etype (R) = Universal_Integer
11318 or else
11319 Etype (R) = Universal_Real
11320 then
11321 Check_For_Visible_Operator (N, B_Typ);
11322 end if;
11324 Set_Etype (N, B_Typ);
11325 Resolve (R, B_Typ);
11327 -- Generate warning for expressions like abs (x mod 2)
11329 if Warn_On_Redundant_Constructs
11330 and then Nkind (N) = N_Op_Abs
11331 then
11332 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11334 if OK and then Hi >= Lo and then Lo >= 0 then
11335 Error_Msg_N -- CODEFIX
11336 ("?r?abs applied to known non-negative value has no effect", N);
11337 end if;
11338 end if;
11340 -- Deal with reference generation
11342 Check_Unset_Reference (R);
11343 Generate_Operator_Reference (N, B_Typ);
11344 Analyze_Dimension (N);
11345 Eval_Unary_Op (N);
11347 -- Set overflow checking bit. Much cleverer code needed here eventually
11348 -- and perhaps the Resolve routines should be separated for the various
11349 -- arithmetic operations, since they will need different processing ???
11351 if Nkind (N) in N_Op then
11352 if not Overflow_Checks_Suppressed (Etype (N)) then
11353 Enable_Overflow_Check (N);
11354 end if;
11355 end if;
11357 -- Generate warning for expressions like -5 mod 3 for integers. No need
11358 -- to worry in the floating-point case, since parens do not affect the
11359 -- result so there is no point in giving in a warning.
11361 declare
11362 Norig : constant Node_Id := Original_Node (N);
11363 Rorig : Node_Id;
11364 Val : Uint;
11365 HB : Uint;
11366 LB : Uint;
11367 Lval : Uint;
11368 Opnd : Node_Id;
11370 begin
11371 if Warn_On_Questionable_Missing_Parens
11372 and then Comes_From_Source (Norig)
11373 and then Is_Integer_Type (Typ)
11374 and then Nkind (Norig) = N_Op_Minus
11375 then
11376 Rorig := Original_Node (Right_Opnd (Norig));
11378 -- We are looking for cases where the right operand is not
11379 -- parenthesized, and is a binary operator, multiply, divide, or
11380 -- mod. These are the cases where the grouping can affect results.
11382 if Paren_Count (Rorig) = 0
11383 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11384 then
11385 -- For mod, we always give the warning, since the value is
11386 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11387 -- -(5 mod 315)). But for the other cases, the only concern is
11388 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11389 -- overflows, but (-2) * 64 does not). So we try to give the
11390 -- message only when overflow is possible.
11392 if Nkind (Rorig) /= N_Op_Mod
11393 and then Compile_Time_Known_Value (R)
11394 then
11395 Val := Expr_Value (R);
11397 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11398 HB := Expr_Value (Type_High_Bound (Typ));
11399 else
11400 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11401 end if;
11403 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11404 LB := Expr_Value (Type_Low_Bound (Typ));
11405 else
11406 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11407 end if;
11409 -- Note that the test below is deliberately excluding the
11410 -- largest negative number, since that is a potentially
11411 -- troublesome case (e.g. -2 * x, where the result is the
11412 -- largest negative integer has an overflow with 2 * x).
11414 if Val > LB and then Val <= HB then
11415 return;
11416 end if;
11417 end if;
11419 -- For the multiplication case, the only case we have to worry
11420 -- about is when (-a)*b is exactly the largest negative number
11421 -- so that -(a*b) can cause overflow. This can only happen if
11422 -- a is a power of 2, and more generally if any operand is a
11423 -- constant that is not a power of 2, then the parentheses
11424 -- cannot affect whether overflow occurs. We only bother to
11425 -- test the left most operand
11427 -- Loop looking at left operands for one that has known value
11429 Opnd := Rorig;
11430 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11431 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11432 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11434 -- Operand value of 0 or 1 skips warning
11436 if Lval <= 1 then
11437 return;
11439 -- Otherwise check power of 2, if power of 2, warn, if
11440 -- anything else, skip warning.
11442 else
11443 while Lval /= 2 loop
11444 if Lval mod 2 = 1 then
11445 return;
11446 else
11447 Lval := Lval / 2;
11448 end if;
11449 end loop;
11451 exit Opnd_Loop;
11452 end if;
11453 end if;
11455 -- Keep looking at left operands
11457 Opnd := Left_Opnd (Opnd);
11458 end loop Opnd_Loop;
11460 -- For rem or "/" we can only have a problematic situation
11461 -- if the divisor has a value of minus one or one. Otherwise
11462 -- overflow is impossible (divisor > 1) or we have a case of
11463 -- division by zero in any case.
11465 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11466 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11467 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11468 then
11469 return;
11470 end if;
11472 -- If we fall through warning should be issued
11474 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11476 Error_Msg_N
11477 ("??unary minus expression should be parenthesized here!", N);
11478 end if;
11479 end if;
11480 end;
11481 end Resolve_Unary_Op;
11483 ----------------------------------
11484 -- Resolve_Unchecked_Expression --
11485 ----------------------------------
11487 procedure Resolve_Unchecked_Expression
11488 (N : Node_Id;
11489 Typ : Entity_Id)
11491 begin
11492 Resolve (Expression (N), Typ, Suppress => All_Checks);
11493 Set_Etype (N, Typ);
11494 end Resolve_Unchecked_Expression;
11496 ---------------------------------------
11497 -- Resolve_Unchecked_Type_Conversion --
11498 ---------------------------------------
11500 procedure Resolve_Unchecked_Type_Conversion
11501 (N : Node_Id;
11502 Typ : Entity_Id)
11504 pragma Warnings (Off, Typ);
11506 Operand : constant Node_Id := Expression (N);
11507 Opnd_Type : constant Entity_Id := Etype (Operand);
11509 begin
11510 -- Resolve operand using its own type
11512 Resolve (Operand, Opnd_Type);
11514 -- In an inlined context, the unchecked conversion may be applied
11515 -- to a literal, in which case its type is the type of the context.
11516 -- (In other contexts conversions cannot apply to literals).
11518 if In_Inlined_Body
11519 and then (Opnd_Type = Any_Character or else
11520 Opnd_Type = Any_Integer or else
11521 Opnd_Type = Any_Real)
11522 then
11523 Set_Etype (Operand, Typ);
11524 end if;
11526 Analyze_Dimension (N);
11527 Eval_Unchecked_Conversion (N);
11528 end Resolve_Unchecked_Type_Conversion;
11530 ------------------------------
11531 -- Rewrite_Operator_As_Call --
11532 ------------------------------
11534 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11535 Loc : constant Source_Ptr := Sloc (N);
11536 Actuals : constant List_Id := New_List;
11537 New_N : Node_Id;
11539 begin
11540 if Nkind (N) in N_Binary_Op then
11541 Append (Left_Opnd (N), Actuals);
11542 end if;
11544 Append (Right_Opnd (N), Actuals);
11546 New_N :=
11547 Make_Function_Call (Sloc => Loc,
11548 Name => New_Occurrence_Of (Nam, Loc),
11549 Parameter_Associations => Actuals);
11551 Preserve_Comes_From_Source (New_N, N);
11552 Preserve_Comes_From_Source (Name (New_N), N);
11553 Rewrite (N, New_N);
11554 Set_Etype (N, Etype (Nam));
11555 end Rewrite_Operator_As_Call;
11557 ------------------------------
11558 -- Rewrite_Renamed_Operator --
11559 ------------------------------
11561 procedure Rewrite_Renamed_Operator
11562 (N : Node_Id;
11563 Op : Entity_Id;
11564 Typ : Entity_Id)
11566 Nam : constant Name_Id := Chars (Op);
11567 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11568 Op_Node : Node_Id;
11570 begin
11571 -- Do not perform this transformation within a pre/postcondition,
11572 -- because the expression will be reanalyzed, and the transformation
11573 -- might affect the visibility of the operator, e.g. in an instance.
11574 -- Note that fully analyzed and expanded pre/postconditions appear as
11575 -- pragma Check equivalents.
11577 if In_Pre_Post_Condition (N) then
11578 return;
11579 end if;
11581 -- Likewise when an expression function is being preanalyzed, since the
11582 -- expression will be reanalyzed as part of the generated body.
11584 if In_Spec_Expression then
11585 declare
11586 S : constant Entity_Id := Current_Scope_No_Loops;
11587 begin
11588 if Ekind (S) = E_Function
11589 and then Nkind (Original_Node (Unit_Declaration_Node (S))) =
11590 N_Expression_Function
11591 then
11592 return;
11593 end if;
11594 end;
11595 end if;
11597 -- Rewrite the operator node using the real operator, not its renaming.
11598 -- Exclude user-defined intrinsic operations of the same name, which are
11599 -- treated separately and rewritten as calls.
11601 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11602 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11603 Set_Chars (Op_Node, Nam);
11604 Set_Etype (Op_Node, Etype (N));
11605 Set_Entity (Op_Node, Op);
11606 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11608 -- Indicate that both the original entity and its renaming are
11609 -- referenced at this point.
11611 Generate_Reference (Entity (N), N);
11612 Generate_Reference (Op, N);
11614 if Is_Binary then
11615 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11616 end if;
11618 Rewrite (N, Op_Node);
11620 -- If the context type is private, add the appropriate conversions so
11621 -- that the operator is applied to the full view. This is done in the
11622 -- routines that resolve intrinsic operators.
11624 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11625 case Nkind (N) is
11626 when N_Op_Add
11627 | N_Op_Divide
11628 | N_Op_Expon
11629 | N_Op_Mod
11630 | N_Op_Multiply
11631 | N_Op_Rem
11632 | N_Op_Subtract
11634 Resolve_Intrinsic_Operator (N, Typ);
11636 when N_Op_Abs
11637 | N_Op_Minus
11638 | N_Op_Plus
11640 Resolve_Intrinsic_Unary_Operator (N, Typ);
11642 when others =>
11643 Resolve (N, Typ);
11644 end case;
11645 end if;
11647 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11649 -- Operator renames a user-defined operator of the same name. Use the
11650 -- original operator in the node, which is the one Gigi knows about.
11652 Set_Entity (N, Op);
11653 Set_Is_Overloaded (N, False);
11654 end if;
11655 end Rewrite_Renamed_Operator;
11657 -----------------------
11658 -- Set_Slice_Subtype --
11659 -----------------------
11661 -- Build an implicit subtype declaration to represent the type delivered by
11662 -- the slice. This is an abbreviated version of an array subtype. We define
11663 -- an index subtype for the slice, using either the subtype name or the
11664 -- discrete range of the slice. To be consistent with index usage elsewhere
11665 -- we create a list header to hold the single index. This list is not
11666 -- otherwise attached to the syntax tree.
11668 procedure Set_Slice_Subtype (N : Node_Id) is
11669 Loc : constant Source_Ptr := Sloc (N);
11670 Index_List : constant List_Id := New_List;
11671 Index : Node_Id;
11672 Index_Subtype : Entity_Id;
11673 Index_Type : Entity_Id;
11674 Slice_Subtype : Entity_Id;
11675 Drange : constant Node_Id := Discrete_Range (N);
11677 begin
11678 Index_Type := Base_Type (Etype (Drange));
11680 if Is_Entity_Name (Drange) then
11681 Index_Subtype := Entity (Drange);
11683 else
11684 -- We force the evaluation of a range. This is definitely needed in
11685 -- the renamed case, and seems safer to do unconditionally. Note in
11686 -- any case that since we will create and insert an Itype referring
11687 -- to this range, we must make sure any side effect removal actions
11688 -- are inserted before the Itype definition.
11690 if Nkind (Drange) = N_Range then
11691 Force_Evaluation (Low_Bound (Drange));
11692 Force_Evaluation (High_Bound (Drange));
11694 -- If the discrete range is given by a subtype indication, the
11695 -- type of the slice is the base of the subtype mark.
11697 elsif Nkind (Drange) = N_Subtype_Indication then
11698 declare
11699 R : constant Node_Id := Range_Expression (Constraint (Drange));
11700 begin
11701 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11702 Force_Evaluation (Low_Bound (R));
11703 Force_Evaluation (High_Bound (R));
11704 end;
11705 end if;
11707 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11709 -- Take a new copy of Drange (where bounds have been rewritten to
11710 -- reference side-effect-free names). Using a separate tree ensures
11711 -- that further expansion (e.g. while rewriting a slice assignment
11712 -- into a FOR loop) does not attempt to remove side effects on the
11713 -- bounds again (which would cause the bounds in the index subtype
11714 -- definition to refer to temporaries before they are defined) (the
11715 -- reason is that some names are considered side effect free here
11716 -- for the subtype, but not in the context of a loop iteration
11717 -- scheme).
11719 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11720 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11721 Set_Etype (Index_Subtype, Index_Type);
11722 Set_Size_Info (Index_Subtype, Index_Type);
11723 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11724 end if;
11726 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11728 Index := New_Occurrence_Of (Index_Subtype, Loc);
11729 Set_Etype (Index, Index_Subtype);
11730 Append (Index, Index_List);
11732 Set_First_Index (Slice_Subtype, Index);
11733 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11734 Set_Is_Constrained (Slice_Subtype, True);
11736 Check_Compile_Time_Size (Slice_Subtype);
11738 -- The Etype of the existing Slice node is reset to this slice subtype.
11739 -- Its bounds are obtained from its first index.
11741 Set_Etype (N, Slice_Subtype);
11743 -- For bit-packed slice subtypes, freeze immediately (except in the case
11744 -- of being in a "spec expression" where we never freeze when we first
11745 -- see the expression).
11747 if Is_Bit_Packed_Array (Slice_Subtype) and not In_Spec_Expression then
11748 Freeze_Itype (Slice_Subtype, N);
11750 -- For all other cases insert an itype reference in the slice's actions
11751 -- so that the itype is frozen at the proper place in the tree (i.e. at
11752 -- the point where actions for the slice are analyzed). Note that this
11753 -- is different from freezing the itype immediately, which might be
11754 -- premature (e.g. if the slice is within a transient scope). This needs
11755 -- to be done only if expansion is enabled.
11757 elsif Expander_Active then
11758 Ensure_Defined (Typ => Slice_Subtype, N => N);
11759 end if;
11760 end Set_Slice_Subtype;
11762 --------------------------------
11763 -- Set_String_Literal_Subtype --
11764 --------------------------------
11766 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11767 Loc : constant Source_Ptr := Sloc (N);
11768 Low_Bound : constant Node_Id :=
11769 Type_Low_Bound (Etype (First_Index (Typ)));
11770 Subtype_Id : Entity_Id;
11772 begin
11773 if Nkind (N) /= N_String_Literal then
11774 return;
11775 end if;
11777 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11778 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11779 (String_Length (Strval (N))));
11780 Set_Etype (Subtype_Id, Base_Type (Typ));
11781 Set_Is_Constrained (Subtype_Id);
11782 Set_Etype (N, Subtype_Id);
11784 -- The low bound is set from the low bound of the corresponding index
11785 -- type. Note that we do not store the high bound in the string literal
11786 -- subtype, but it can be deduced if necessary from the length and the
11787 -- low bound.
11789 if Is_OK_Static_Expression (Low_Bound) then
11790 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11792 -- If the lower bound is not static we create a range for the string
11793 -- literal, using the index type and the known length of the literal.
11794 -- The index type is not necessarily Positive, so the upper bound is
11795 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11797 else
11798 declare
11799 Index_List : constant List_Id := New_List;
11800 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11801 High_Bound : constant Node_Id :=
11802 Make_Attribute_Reference (Loc,
11803 Attribute_Name => Name_Val,
11804 Prefix =>
11805 New_Occurrence_Of (Index_Type, Loc),
11806 Expressions => New_List (
11807 Make_Op_Add (Loc,
11808 Left_Opnd =>
11809 Make_Attribute_Reference (Loc,
11810 Attribute_Name => Name_Pos,
11811 Prefix =>
11812 New_Occurrence_Of (Index_Type, Loc),
11813 Expressions =>
11814 New_List (New_Copy_Tree (Low_Bound))),
11815 Right_Opnd =>
11816 Make_Integer_Literal (Loc,
11817 String_Length (Strval (N)) - 1))));
11819 Array_Subtype : Entity_Id;
11820 Drange : Node_Id;
11821 Index : Node_Id;
11822 Index_Subtype : Entity_Id;
11824 begin
11825 if Is_Integer_Type (Index_Type) then
11826 Set_String_Literal_Low_Bound
11827 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11829 else
11830 -- If the index type is an enumeration type, build bounds
11831 -- expression with attributes.
11833 Set_String_Literal_Low_Bound
11834 (Subtype_Id,
11835 Make_Attribute_Reference (Loc,
11836 Attribute_Name => Name_First,
11837 Prefix =>
11838 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11839 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11840 end if;
11842 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11844 -- Build bona fide subtype for the string, and wrap it in an
11845 -- unchecked conversion, because the backend expects the
11846 -- String_Literal_Subtype to have a static lower bound.
11848 Index_Subtype :=
11849 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11850 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11851 Set_Scalar_Range (Index_Subtype, Drange);
11852 Set_Parent (Drange, N);
11853 Analyze_And_Resolve (Drange, Index_Type);
11855 -- In the context, the Index_Type may already have a constraint,
11856 -- so use common base type on string subtype. The base type may
11857 -- be used when generating attributes of the string, for example
11858 -- in the context of a slice assignment.
11860 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11861 Set_Size_Info (Index_Subtype, Index_Type);
11862 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11864 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11866 Index := New_Occurrence_Of (Index_Subtype, Loc);
11867 Set_Etype (Index, Index_Subtype);
11868 Append (Index, Index_List);
11870 Set_First_Index (Array_Subtype, Index);
11871 Set_Etype (Array_Subtype, Base_Type (Typ));
11872 Set_Is_Constrained (Array_Subtype, True);
11874 Rewrite (N,
11875 Make_Unchecked_Type_Conversion (Loc,
11876 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11877 Expression => Relocate_Node (N)));
11878 Set_Etype (N, Array_Subtype);
11879 end;
11880 end if;
11881 end Set_String_Literal_Subtype;
11883 ------------------------------
11884 -- Simplify_Type_Conversion --
11885 ------------------------------
11887 procedure Simplify_Type_Conversion (N : Node_Id) is
11888 begin
11889 if Nkind (N) = N_Type_Conversion then
11890 declare
11891 Operand : constant Node_Id := Expression (N);
11892 Target_Typ : constant Entity_Id := Etype (N);
11893 Opnd_Typ : constant Entity_Id := Etype (Operand);
11895 begin
11896 -- Special processing if the conversion is the expression of a
11897 -- Rounding or Truncation attribute reference. In this case we
11898 -- replace:
11900 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11902 -- by
11904 -- ityp (x)
11906 -- with the Float_Truncate flag set to False or True respectively,
11907 -- which is more efficient.
11909 if Is_Floating_Point_Type (Opnd_Typ)
11910 and then
11911 (Is_Integer_Type (Target_Typ)
11912 or else (Is_Fixed_Point_Type (Target_Typ)
11913 and then Conversion_OK (N)))
11914 and then Nkind (Operand) = N_Attribute_Reference
11915 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11916 Name_Truncation)
11917 then
11918 declare
11919 Truncate : constant Boolean :=
11920 Attribute_Name (Operand) = Name_Truncation;
11921 begin
11922 Rewrite (Operand,
11923 Relocate_Node (First (Expressions (Operand))));
11924 Set_Float_Truncate (N, Truncate);
11925 end;
11926 end if;
11927 end;
11928 end if;
11929 end Simplify_Type_Conversion;
11931 -----------------------------
11932 -- Unique_Fixed_Point_Type --
11933 -----------------------------
11935 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11936 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id);
11937 -- Give error messages for true ambiguity. Messages are posted on node
11938 -- N, and entities T1, T2 are the possible interpretations.
11940 -----------------------
11941 -- Fixed_Point_Error --
11942 -----------------------
11944 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id) is
11945 begin
11946 Error_Msg_N ("ambiguous universal_fixed_expression", N);
11947 Error_Msg_NE ("\\possible interpretation as}", N, T1);
11948 Error_Msg_NE ("\\possible interpretation as}", N, T2);
11949 end Fixed_Point_Error;
11951 -- Local variables
11953 ErrN : Node_Id;
11954 Item : Node_Id;
11955 Scop : Entity_Id;
11956 T1 : Entity_Id;
11957 T2 : Entity_Id;
11959 -- Start of processing for Unique_Fixed_Point_Type
11961 begin
11962 -- The operations on Duration are visible, so Duration is always a
11963 -- possible interpretation.
11965 T1 := Standard_Duration;
11967 -- Look for fixed-point types in enclosing scopes
11969 Scop := Current_Scope;
11970 while Scop /= Standard_Standard loop
11971 T2 := First_Entity (Scop);
11972 while Present (T2) loop
11973 if Is_Fixed_Point_Type (T2)
11974 and then Current_Entity (T2) = T2
11975 and then Scope (Base_Type (T2)) = Scop
11976 then
11977 if Present (T1) then
11978 Fixed_Point_Error (T1, T2);
11979 return Any_Type;
11980 else
11981 T1 := T2;
11982 end if;
11983 end if;
11985 Next_Entity (T2);
11986 end loop;
11988 Scop := Scope (Scop);
11989 end loop;
11991 -- Look for visible fixed type declarations in the context
11993 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11994 while Present (Item) loop
11995 if Nkind (Item) = N_With_Clause then
11996 Scop := Entity (Name (Item));
11997 T2 := First_Entity (Scop);
11998 while Present (T2) loop
11999 if Is_Fixed_Point_Type (T2)
12000 and then Scope (Base_Type (T2)) = Scop
12001 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
12002 then
12003 if Present (T1) then
12004 Fixed_Point_Error (T1, T2);
12005 return Any_Type;
12006 else
12007 T1 := T2;
12008 end if;
12009 end if;
12011 Next_Entity (T2);
12012 end loop;
12013 end if;
12015 Next (Item);
12016 end loop;
12018 if Nkind (N) = N_Real_Literal then
12019 Error_Msg_NE ("??real literal interpreted as }!", N, T1);
12021 else
12022 -- When the context is a type conversion, issue the warning on the
12023 -- expression of the conversion because it is the actual operation.
12025 if Nkind_In (N, N_Type_Conversion, N_Unchecked_Type_Conversion) then
12026 ErrN := Expression (N);
12027 else
12028 ErrN := N;
12029 end if;
12031 Error_Msg_NE
12032 ("??universal_fixed expression interpreted as }!", ErrN, T1);
12033 end if;
12035 return T1;
12036 end Unique_Fixed_Point_Type;
12038 ----------------------
12039 -- Valid_Conversion --
12040 ----------------------
12042 function Valid_Conversion
12043 (N : Node_Id;
12044 Target : Entity_Id;
12045 Operand : Node_Id;
12046 Report_Errs : Boolean := True) return Boolean
12048 Target_Type : constant Entity_Id := Base_Type (Target);
12049 Opnd_Type : Entity_Id := Etype (Operand);
12050 Inc_Ancestor : Entity_Id;
12052 function Conversion_Check
12053 (Valid : Boolean;
12054 Msg : String) return Boolean;
12055 -- Little routine to post Msg if Valid is False, returns Valid value
12057 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
12058 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
12060 procedure Conversion_Error_NE
12061 (Msg : String;
12062 N : Node_Or_Entity_Id;
12063 E : Node_Or_Entity_Id);
12064 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
12066 function In_Instance_Code return Boolean;
12067 -- Return True if expression is within an instance but is not in one of
12068 -- the actuals of the instantiation. Type conversions within an instance
12069 -- are not rechecked because type visbility may lead to spurious errors,
12070 -- but conversions in an actual for a formal object must be checked.
12072 function Valid_Tagged_Conversion
12073 (Target_Type : Entity_Id;
12074 Opnd_Type : Entity_Id) return Boolean;
12075 -- Specifically test for validity of tagged conversions
12077 function Valid_Array_Conversion return Boolean;
12078 -- Check index and component conformance, and accessibility levels if
12079 -- the component types are anonymous access types (Ada 2005).
12081 ----------------------
12082 -- Conversion_Check --
12083 ----------------------
12085 function Conversion_Check
12086 (Valid : Boolean;
12087 Msg : String) return Boolean
12089 begin
12090 if not Valid
12092 -- A generic unit has already been analyzed and we have verified
12093 -- that a particular conversion is OK in that context. Since the
12094 -- instance is reanalyzed without relying on the relationships
12095 -- established during the analysis of the generic, it is possible
12096 -- to end up with inconsistent views of private types. Do not emit
12097 -- the error message in such cases. The rest of the machinery in
12098 -- Valid_Conversion still ensures the proper compatibility of
12099 -- target and operand types.
12101 and then not In_Instance_Code
12102 then
12103 Conversion_Error_N (Msg, Operand);
12104 end if;
12106 return Valid;
12107 end Conversion_Check;
12109 ------------------------
12110 -- Conversion_Error_N --
12111 ------------------------
12113 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
12114 begin
12115 if Report_Errs then
12116 Error_Msg_N (Msg, N);
12117 end if;
12118 end Conversion_Error_N;
12120 -------------------------
12121 -- Conversion_Error_NE --
12122 -------------------------
12124 procedure Conversion_Error_NE
12125 (Msg : String;
12126 N : Node_Or_Entity_Id;
12127 E : Node_Or_Entity_Id)
12129 begin
12130 if Report_Errs then
12131 Error_Msg_NE (Msg, N, E);
12132 end if;
12133 end Conversion_Error_NE;
12135 ----------------------
12136 -- In_Instance_Code --
12137 ----------------------
12139 function In_Instance_Code return Boolean is
12140 Par : Node_Id;
12142 begin
12143 if not In_Instance then
12144 return False;
12146 else
12147 Par := Parent (N);
12148 while Present (Par) loop
12150 -- The expression is part of an actual object if it appears in
12151 -- the generated object declaration in the instance.
12153 if Nkind (Par) = N_Object_Declaration
12154 and then Present (Corresponding_Generic_Association (Par))
12155 then
12156 return False;
12158 else
12159 exit when
12160 Nkind (Par) in N_Statement_Other_Than_Procedure_Call
12161 or else Nkind (Par) in N_Subprogram_Call
12162 or else Nkind (Par) in N_Declaration;
12163 end if;
12165 Par := Parent (Par);
12166 end loop;
12168 -- Otherwise the expression appears within the instantiated unit
12170 return True;
12171 end if;
12172 end In_Instance_Code;
12174 ----------------------------
12175 -- Valid_Array_Conversion --
12176 ----------------------------
12178 function Valid_Array_Conversion return Boolean is
12179 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
12180 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
12182 Opnd_Index : Node_Id;
12183 Opnd_Index_Type : Entity_Id;
12185 Target_Comp_Type : constant Entity_Id :=
12186 Component_Type (Target_Type);
12187 Target_Comp_Base : constant Entity_Id :=
12188 Base_Type (Target_Comp_Type);
12190 Target_Index : Node_Id;
12191 Target_Index_Type : Entity_Id;
12193 begin
12194 -- Error if wrong number of dimensions
12197 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
12198 then
12199 Conversion_Error_N
12200 ("incompatible number of dimensions for conversion", Operand);
12201 return False;
12203 -- Number of dimensions matches
12205 else
12206 -- Loop through indexes of the two arrays
12208 Target_Index := First_Index (Target_Type);
12209 Opnd_Index := First_Index (Opnd_Type);
12210 while Present (Target_Index) and then Present (Opnd_Index) loop
12211 Target_Index_Type := Etype (Target_Index);
12212 Opnd_Index_Type := Etype (Opnd_Index);
12214 -- Error if index types are incompatible
12216 if not (Is_Integer_Type (Target_Index_Type)
12217 and then Is_Integer_Type (Opnd_Index_Type))
12218 and then (Root_Type (Target_Index_Type)
12219 /= Root_Type (Opnd_Index_Type))
12220 then
12221 Conversion_Error_N
12222 ("incompatible index types for array conversion",
12223 Operand);
12224 return False;
12225 end if;
12227 Next_Index (Target_Index);
12228 Next_Index (Opnd_Index);
12229 end loop;
12231 -- If component types have same base type, all set
12233 if Target_Comp_Base = Opnd_Comp_Base then
12234 null;
12236 -- Here if base types of components are not the same. The only
12237 -- time this is allowed is if we have anonymous access types.
12239 -- The conversion of arrays of anonymous access types can lead
12240 -- to dangling pointers. AI-392 formalizes the accessibility
12241 -- checks that must be applied to such conversions to prevent
12242 -- out-of-scope references.
12244 elsif Ekind_In
12245 (Target_Comp_Base, E_Anonymous_Access_Type,
12246 E_Anonymous_Access_Subprogram_Type)
12247 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
12248 and then
12249 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
12250 then
12251 if Type_Access_Level (Target_Type) <
12252 Deepest_Type_Access_Level (Opnd_Type)
12253 then
12254 if In_Instance_Body then
12255 Error_Msg_Warn := SPARK_Mode /= On;
12256 Conversion_Error_N
12257 ("source array type has deeper accessibility "
12258 & "level than target<<", Operand);
12259 Conversion_Error_N ("\Program_Error [<<", Operand);
12260 Rewrite (N,
12261 Make_Raise_Program_Error (Sloc (N),
12262 Reason => PE_Accessibility_Check_Failed));
12263 Set_Etype (N, Target_Type);
12264 return False;
12266 -- Conversion not allowed because of accessibility levels
12268 else
12269 Conversion_Error_N
12270 ("source array type has deeper accessibility "
12271 & "level than target", Operand);
12272 return False;
12273 end if;
12275 else
12276 null;
12277 end if;
12279 -- All other cases where component base types do not match
12281 else
12282 Conversion_Error_N
12283 ("incompatible component types for array conversion",
12284 Operand);
12285 return False;
12286 end if;
12288 -- Check that component subtypes statically match. For numeric
12289 -- types this means that both must be either constrained or
12290 -- unconstrained. For enumeration types the bounds must match.
12291 -- All of this is checked in Subtypes_Statically_Match.
12293 if not Subtypes_Statically_Match
12294 (Target_Comp_Type, Opnd_Comp_Type)
12295 then
12296 Conversion_Error_N
12297 ("component subtypes must statically match", Operand);
12298 return False;
12299 end if;
12300 end if;
12302 return True;
12303 end Valid_Array_Conversion;
12305 -----------------------------
12306 -- Valid_Tagged_Conversion --
12307 -----------------------------
12309 function Valid_Tagged_Conversion
12310 (Target_Type : Entity_Id;
12311 Opnd_Type : Entity_Id) return Boolean
12313 begin
12314 -- Upward conversions are allowed (RM 4.6(22))
12316 if Covers (Target_Type, Opnd_Type)
12317 or else Is_Ancestor (Target_Type, Opnd_Type)
12318 then
12319 return True;
12321 -- Downward conversion are allowed if the operand is class-wide
12322 -- (RM 4.6(23)).
12324 elsif Is_Class_Wide_Type (Opnd_Type)
12325 and then Covers (Opnd_Type, Target_Type)
12326 then
12327 return True;
12329 elsif Covers (Opnd_Type, Target_Type)
12330 or else Is_Ancestor (Opnd_Type, Target_Type)
12331 then
12332 return
12333 Conversion_Check (False,
12334 "downward conversion of tagged objects not allowed");
12336 -- Ada 2005 (AI-251): The conversion to/from interface types is
12337 -- always valid. The types involved may be class-wide (sub)types.
12339 elsif Is_Interface (Etype (Base_Type (Target_Type)))
12340 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
12341 then
12342 return True;
12344 -- If the operand is a class-wide type obtained through a limited_
12345 -- with clause, and the context includes the nonlimited view, use
12346 -- it to determine whether the conversion is legal.
12348 elsif Is_Class_Wide_Type (Opnd_Type)
12349 and then From_Limited_With (Opnd_Type)
12350 and then Present (Non_Limited_View (Etype (Opnd_Type)))
12351 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
12352 then
12353 return True;
12355 elsif Is_Access_Type (Opnd_Type)
12356 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
12357 then
12358 return True;
12360 else
12361 Conversion_Error_NE
12362 ("invalid tagged conversion, not compatible with}",
12363 N, First_Subtype (Opnd_Type));
12364 return False;
12365 end if;
12366 end Valid_Tagged_Conversion;
12368 -- Start of processing for Valid_Conversion
12370 begin
12371 Check_Parameterless_Call (Operand);
12373 if Is_Overloaded (Operand) then
12374 declare
12375 I : Interp_Index;
12376 I1 : Interp_Index;
12377 It : Interp;
12378 It1 : Interp;
12379 N1 : Entity_Id;
12380 T1 : Entity_Id;
12382 begin
12383 -- Remove procedure calls, which syntactically cannot appear in
12384 -- this context, but which cannot be removed by type checking,
12385 -- because the context does not impose a type.
12387 -- The node may be labelled overloaded, but still contain only one
12388 -- interpretation because others were discarded earlier. If this
12389 -- is the case, retain the single interpretation if legal.
12391 Get_First_Interp (Operand, I, It);
12392 Opnd_Type := It.Typ;
12393 Get_Next_Interp (I, It);
12395 if Present (It.Typ)
12396 and then Opnd_Type /= Standard_Void_Type
12397 then
12398 -- More than one candidate interpretation is available
12400 Get_First_Interp (Operand, I, It);
12401 while Present (It.Typ) loop
12402 if It.Typ = Standard_Void_Type then
12403 Remove_Interp (I);
12404 end if;
12406 -- When compiling for a system where Address is of a visible
12407 -- integer type, spurious ambiguities can be produced when
12408 -- arithmetic operations have a literal operand and return
12409 -- System.Address or a descendant of it. These ambiguities
12410 -- are usually resolved by the context, but for conversions
12411 -- there is no context type and the removal of the spurious
12412 -- operations must be done explicitly here.
12414 if not Address_Is_Private
12415 and then Is_Descendant_Of_Address (It.Typ)
12416 then
12417 Remove_Interp (I);
12418 end if;
12420 Get_Next_Interp (I, It);
12421 end loop;
12422 end if;
12424 Get_First_Interp (Operand, I, It);
12425 I1 := I;
12426 It1 := It;
12428 if No (It.Typ) then
12429 Conversion_Error_N ("illegal operand in conversion", Operand);
12430 return False;
12431 end if;
12433 Get_Next_Interp (I, It);
12435 if Present (It.Typ) then
12436 N1 := It1.Nam;
12437 T1 := It1.Typ;
12438 It1 := Disambiguate (Operand, I1, I, Any_Type);
12440 if It1 = No_Interp then
12441 Conversion_Error_N
12442 ("ambiguous operand in conversion", Operand);
12444 -- If the interpretation involves a standard operator, use
12445 -- the location of the type, which may be user-defined.
12447 if Sloc (It.Nam) = Standard_Location then
12448 Error_Msg_Sloc := Sloc (It.Typ);
12449 else
12450 Error_Msg_Sloc := Sloc (It.Nam);
12451 end if;
12453 Conversion_Error_N -- CODEFIX
12454 ("\\possible interpretation#!", Operand);
12456 if Sloc (N1) = Standard_Location then
12457 Error_Msg_Sloc := Sloc (T1);
12458 else
12459 Error_Msg_Sloc := Sloc (N1);
12460 end if;
12462 Conversion_Error_N -- CODEFIX
12463 ("\\possible interpretation#!", Operand);
12465 return False;
12466 end if;
12467 end if;
12469 Set_Etype (Operand, It1.Typ);
12470 Opnd_Type := It1.Typ;
12471 end;
12472 end if;
12474 -- Deal with conversion of integer type to address if the pragma
12475 -- Allow_Integer_Address is in effect. We convert the conversion to
12476 -- an unchecked conversion in this case and we are all done.
12478 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12479 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12480 Analyze_And_Resolve (N, Target_Type);
12481 return True;
12482 end if;
12484 -- If we are within a child unit, check whether the type of the
12485 -- expression has an ancestor in a parent unit, in which case it
12486 -- belongs to its derivation class even if the ancestor is private.
12487 -- See RM 7.3.1 (5.2/3).
12489 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12491 -- Numeric types
12493 if Is_Numeric_Type (Target_Type) then
12495 -- A universal fixed expression can be converted to any numeric type
12497 if Opnd_Type = Universal_Fixed then
12498 return True;
12500 -- Also no need to check when in an instance or inlined body, because
12501 -- the legality has been established when the template was analyzed.
12502 -- Furthermore, numeric conversions may occur where only a private
12503 -- view of the operand type is visible at the instantiation point.
12504 -- This results in a spurious error if we check that the operand type
12505 -- is a numeric type.
12507 -- Note: in a previous version of this unit, the following tests were
12508 -- applied only for generated code (Comes_From_Source set to False),
12509 -- but in fact the test is required for source code as well, since
12510 -- this situation can arise in source code.
12512 elsif In_Instance_Code or else In_Inlined_Body then
12513 return True;
12515 -- Otherwise we need the conversion check
12517 else
12518 return Conversion_Check
12519 (Is_Numeric_Type (Opnd_Type)
12520 or else
12521 (Present (Inc_Ancestor)
12522 and then Is_Numeric_Type (Inc_Ancestor)),
12523 "illegal operand for numeric conversion");
12524 end if;
12526 -- Array types
12528 elsif Is_Array_Type (Target_Type) then
12529 if not Is_Array_Type (Opnd_Type)
12530 or else Opnd_Type = Any_Composite
12531 or else Opnd_Type = Any_String
12532 then
12533 Conversion_Error_N
12534 ("illegal operand for array conversion", Operand);
12535 return False;
12537 else
12538 return Valid_Array_Conversion;
12539 end if;
12541 -- Ada 2005 (AI-251): Internally generated conversions of access to
12542 -- interface types added to force the displacement of the pointer to
12543 -- reference the corresponding dispatch table.
12545 elsif not Comes_From_Source (N)
12546 and then Is_Access_Type (Target_Type)
12547 and then Is_Interface (Designated_Type (Target_Type))
12548 then
12549 return True;
12551 -- Ada 2005 (AI-251): Anonymous access types where target references an
12552 -- interface type.
12554 elsif Is_Access_Type (Opnd_Type)
12555 and then Ekind_In (Target_Type, E_General_Access_Type,
12556 E_Anonymous_Access_Type)
12557 and then Is_Interface (Directly_Designated_Type (Target_Type))
12558 then
12559 -- Check the static accessibility rule of 4.6(17). Note that the
12560 -- check is not enforced when within an instance body, since the
12561 -- RM requires such cases to be caught at run time.
12563 -- If the operand is a rewriting of an allocator no check is needed
12564 -- because there are no accessibility issues.
12566 if Nkind (Original_Node (N)) = N_Allocator then
12567 null;
12569 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12570 if Type_Access_Level (Opnd_Type) >
12571 Deepest_Type_Access_Level (Target_Type)
12572 then
12573 -- In an instance, this is a run-time check, but one we know
12574 -- will fail, so generate an appropriate warning. The raise
12575 -- will be generated by Expand_N_Type_Conversion.
12577 if In_Instance_Body then
12578 Error_Msg_Warn := SPARK_Mode /= On;
12579 Conversion_Error_N
12580 ("cannot convert local pointer to non-local access type<<",
12581 Operand);
12582 Conversion_Error_N ("\Program_Error [<<", Operand);
12584 else
12585 Conversion_Error_N
12586 ("cannot convert local pointer to non-local access type",
12587 Operand);
12588 return False;
12589 end if;
12591 -- Special accessibility checks are needed in the case of access
12592 -- discriminants declared for a limited type.
12594 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12595 and then not Is_Local_Anonymous_Access (Opnd_Type)
12596 then
12597 -- When the operand is a selected access discriminant the check
12598 -- needs to be made against the level of the object denoted by
12599 -- the prefix of the selected name (Object_Access_Level handles
12600 -- checking the prefix of the operand for this case).
12602 if Nkind (Operand) = N_Selected_Component
12603 and then Object_Access_Level (Operand) >
12604 Deepest_Type_Access_Level (Target_Type)
12605 then
12606 -- In an instance, this is a run-time check, but one we know
12607 -- will fail, so generate an appropriate warning. The raise
12608 -- will be generated by Expand_N_Type_Conversion.
12610 if In_Instance_Body then
12611 Error_Msg_Warn := SPARK_Mode /= On;
12612 Conversion_Error_N
12613 ("cannot convert access discriminant to non-local "
12614 & "access type<<", Operand);
12615 Conversion_Error_N ("\Program_Error [<<", Operand);
12617 -- Real error if not in instance body
12619 else
12620 Conversion_Error_N
12621 ("cannot convert access discriminant to non-local "
12622 & "access type", Operand);
12623 return False;
12624 end if;
12625 end if;
12627 -- The case of a reference to an access discriminant from
12628 -- within a limited type declaration (which will appear as
12629 -- a discriminal) is always illegal because the level of the
12630 -- discriminant is considered to be deeper than any (nameable)
12631 -- access type.
12633 if Is_Entity_Name (Operand)
12634 and then not Is_Local_Anonymous_Access (Opnd_Type)
12635 and then
12636 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12637 and then Present (Discriminal_Link (Entity (Operand)))
12638 then
12639 Conversion_Error_N
12640 ("discriminant has deeper accessibility level than target",
12641 Operand);
12642 return False;
12643 end if;
12644 end if;
12645 end if;
12647 return True;
12649 -- General and anonymous access types
12651 elsif Ekind_In (Target_Type, E_General_Access_Type,
12652 E_Anonymous_Access_Type)
12653 and then
12654 Conversion_Check
12655 (Is_Access_Type (Opnd_Type)
12656 and then not
12657 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12658 E_Access_Protected_Subprogram_Type),
12659 "must be an access-to-object type")
12660 then
12661 if Is_Access_Constant (Opnd_Type)
12662 and then not Is_Access_Constant (Target_Type)
12663 then
12664 Conversion_Error_N
12665 ("access-to-constant operand type not allowed", Operand);
12666 return False;
12667 end if;
12669 -- Check the static accessibility rule of 4.6(17). Note that the
12670 -- check is not enforced when within an instance body, since the RM
12671 -- requires such cases to be caught at run time.
12673 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12674 or else Is_Local_Anonymous_Access (Target_Type)
12675 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12676 N_Object_Declaration
12677 then
12678 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12679 -- conversions from an anonymous access type to a named general
12680 -- access type. Such conversions are not allowed in the case of
12681 -- access parameters and stand-alone objects of an anonymous
12682 -- access type. The implicit conversion case is recognized by
12683 -- testing that Comes_From_Source is False and that it's been
12684 -- rewritten. The Comes_From_Source test isn't sufficient because
12685 -- nodes in inlined calls to predefined library routines can have
12686 -- Comes_From_Source set to False. (Is there a better way to test
12687 -- for implicit conversions???)
12689 if Ada_Version >= Ada_2012
12690 and then not Comes_From_Source (N)
12691 and then N /= Original_Node (N)
12692 and then Ekind (Target_Type) = E_General_Access_Type
12693 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12694 then
12695 if Is_Itype (Opnd_Type) then
12697 -- Implicit conversions aren't allowed for objects of an
12698 -- anonymous access type, since such objects have nonstatic
12699 -- levels in Ada 2012.
12701 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12702 N_Object_Declaration
12703 then
12704 Conversion_Error_N
12705 ("implicit conversion of stand-alone anonymous "
12706 & "access object not allowed", Operand);
12707 return False;
12709 -- Implicit conversions aren't allowed for anonymous access
12710 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12711 -- is done to exclude anonymous access results.
12713 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12714 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12715 N_Function_Specification,
12716 N_Procedure_Specification)
12717 then
12718 Conversion_Error_N
12719 ("implicit conversion of anonymous access formal "
12720 & "not allowed", Operand);
12721 return False;
12723 -- This is a case where there's an enclosing object whose
12724 -- to which the "statically deeper than" relationship does
12725 -- not apply (such as an access discriminant selected from
12726 -- a dereference of an access parameter).
12728 elsif Object_Access_Level (Operand)
12729 = Scope_Depth (Standard_Standard)
12730 then
12731 Conversion_Error_N
12732 ("implicit conversion of anonymous access value "
12733 & "not allowed", Operand);
12734 return False;
12736 -- In other cases, the level of the operand's type must be
12737 -- statically less deep than that of the target type, else
12738 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12740 elsif Type_Access_Level (Opnd_Type) >
12741 Deepest_Type_Access_Level (Target_Type)
12742 then
12743 Conversion_Error_N
12744 ("implicit conversion of anonymous access value "
12745 & "violates accessibility", Operand);
12746 return False;
12747 end if;
12748 end if;
12750 elsif Type_Access_Level (Opnd_Type) >
12751 Deepest_Type_Access_Level (Target_Type)
12752 then
12753 -- In an instance, this is a run-time check, but one we know
12754 -- will fail, so generate an appropriate warning. The raise
12755 -- will be generated by Expand_N_Type_Conversion.
12757 if In_Instance_Body then
12758 Error_Msg_Warn := SPARK_Mode /= On;
12759 Conversion_Error_N
12760 ("cannot convert local pointer to non-local access type<<",
12761 Operand);
12762 Conversion_Error_N ("\Program_Error [<<", Operand);
12764 -- If not in an instance body, this is a real error
12766 else
12767 -- Avoid generation of spurious error message
12769 if not Error_Posted (N) then
12770 Conversion_Error_N
12771 ("cannot convert local pointer to non-local access type",
12772 Operand);
12773 end if;
12775 return False;
12776 end if;
12778 -- Special accessibility checks are needed in the case of access
12779 -- discriminants declared for a limited type.
12781 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12782 and then not Is_Local_Anonymous_Access (Opnd_Type)
12783 then
12784 -- When the operand is a selected access discriminant the check
12785 -- needs to be made against the level of the object denoted by
12786 -- the prefix of the selected name (Object_Access_Level handles
12787 -- checking the prefix of the operand for this case).
12789 if Nkind (Operand) = N_Selected_Component
12790 and then Object_Access_Level (Operand) >
12791 Deepest_Type_Access_Level (Target_Type)
12792 then
12793 -- In an instance, this is a run-time check, but one we know
12794 -- will fail, so generate an appropriate warning. The raise
12795 -- will be generated by Expand_N_Type_Conversion.
12797 if In_Instance_Body then
12798 Error_Msg_Warn := SPARK_Mode /= On;
12799 Conversion_Error_N
12800 ("cannot convert access discriminant to non-local "
12801 & "access type<<", Operand);
12802 Conversion_Error_N ("\Program_Error [<<", Operand);
12804 -- If not in an instance body, this is a real error
12806 else
12807 Conversion_Error_N
12808 ("cannot convert access discriminant to non-local "
12809 & "access type", Operand);
12810 return False;
12811 end if;
12812 end if;
12814 -- The case of a reference to an access discriminant from
12815 -- within a limited type declaration (which will appear as
12816 -- a discriminal) is always illegal because the level of the
12817 -- discriminant is considered to be deeper than any (nameable)
12818 -- access type.
12820 if Is_Entity_Name (Operand)
12821 and then
12822 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12823 and then Present (Discriminal_Link (Entity (Operand)))
12824 then
12825 Conversion_Error_N
12826 ("discriminant has deeper accessibility level than target",
12827 Operand);
12828 return False;
12829 end if;
12830 end if;
12831 end if;
12833 -- In the presence of limited_with clauses we have to use nonlimited
12834 -- views, if available.
12836 Check_Limited : declare
12837 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12838 -- Helper function to handle limited views
12840 --------------------------
12841 -- Full_Designated_Type --
12842 --------------------------
12844 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12845 Desig : constant Entity_Id := Designated_Type (T);
12847 begin
12848 -- Handle the limited view of a type
12850 if From_Limited_With (Desig)
12851 and then Has_Non_Limited_View (Desig)
12852 then
12853 return Available_View (Desig);
12854 else
12855 return Desig;
12856 end if;
12857 end Full_Designated_Type;
12859 -- Local Declarations
12861 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12862 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12864 Same_Base : constant Boolean :=
12865 Base_Type (Target) = Base_Type (Opnd);
12867 -- Start of processing for Check_Limited
12869 begin
12870 if Is_Tagged_Type (Target) then
12871 return Valid_Tagged_Conversion (Target, Opnd);
12873 else
12874 if not Same_Base then
12875 Conversion_Error_NE
12876 ("target designated type not compatible with }",
12877 N, Base_Type (Opnd));
12878 return False;
12880 -- Ada 2005 AI-384: legality rule is symmetric in both
12881 -- designated types. The conversion is legal (with possible
12882 -- constraint check) if either designated type is
12883 -- unconstrained.
12885 elsif Subtypes_Statically_Match (Target, Opnd)
12886 or else
12887 (Has_Discriminants (Target)
12888 and then
12889 (not Is_Constrained (Opnd)
12890 or else not Is_Constrained (Target)))
12891 then
12892 -- Special case, if Value_Size has been used to make the
12893 -- sizes different, the conversion is not allowed even
12894 -- though the subtypes statically match.
12896 if Known_Static_RM_Size (Target)
12897 and then Known_Static_RM_Size (Opnd)
12898 and then RM_Size (Target) /= RM_Size (Opnd)
12899 then
12900 Conversion_Error_NE
12901 ("target designated subtype not compatible with }",
12902 N, Opnd);
12903 Conversion_Error_NE
12904 ("\because sizes of the two designated subtypes differ",
12905 N, Opnd);
12906 return False;
12908 -- Normal case where conversion is allowed
12910 else
12911 return True;
12912 end if;
12914 else
12915 Error_Msg_NE
12916 ("target designated subtype not compatible with }",
12917 N, Opnd);
12918 return False;
12919 end if;
12920 end if;
12921 end Check_Limited;
12923 -- Access to subprogram types. If the operand is an access parameter,
12924 -- the type has a deeper accessibility that any master, and cannot be
12925 -- assigned. We must make an exception if the conversion is part of an
12926 -- assignment and the target is the return object of an extended return
12927 -- statement, because in that case the accessibility check takes place
12928 -- after the return.
12930 elsif Is_Access_Subprogram_Type (Target_Type)
12932 -- Note: this test of Opnd_Type is there to prevent entering this
12933 -- branch in the case of a remote access to subprogram type, which
12934 -- is internally represented as an E_Record_Type.
12936 and then Is_Access_Type (Opnd_Type)
12937 then
12938 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12939 and then Is_Entity_Name (Operand)
12940 and then Ekind (Entity (Operand)) = E_In_Parameter
12941 and then
12942 (Nkind (Parent (N)) /= N_Assignment_Statement
12943 or else not Is_Entity_Name (Name (Parent (N)))
12944 or else not Is_Return_Object (Entity (Name (Parent (N)))))
12945 then
12946 Conversion_Error_N
12947 ("illegal attempt to store anonymous access to subprogram",
12948 Operand);
12949 Conversion_Error_N
12950 ("\value has deeper accessibility than any master "
12951 & "(RM 3.10.2 (13))",
12952 Operand);
12954 Error_Msg_NE
12955 ("\use named access type for& instead of access parameter",
12956 Operand, Entity (Operand));
12957 end if;
12959 -- Check that the designated types are subtype conformant
12961 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
12962 Old_Id => Designated_Type (Opnd_Type),
12963 Err_Loc => N);
12965 -- Check the static accessibility rule of 4.6(20)
12967 if Type_Access_Level (Opnd_Type) >
12968 Deepest_Type_Access_Level (Target_Type)
12969 then
12970 Conversion_Error_N
12971 ("operand type has deeper accessibility level than target",
12972 Operand);
12974 -- Check that if the operand type is declared in a generic body,
12975 -- then the target type must be declared within that same body
12976 -- (enforces last sentence of 4.6(20)).
12978 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12979 declare
12980 O_Gen : constant Node_Id :=
12981 Enclosing_Generic_Body (Opnd_Type);
12983 T_Gen : Node_Id;
12985 begin
12986 T_Gen := Enclosing_Generic_Body (Target_Type);
12987 while Present (T_Gen) and then T_Gen /= O_Gen loop
12988 T_Gen := Enclosing_Generic_Body (T_Gen);
12989 end loop;
12991 if T_Gen /= O_Gen then
12992 Conversion_Error_N
12993 ("target type must be declared in same generic body "
12994 & "as operand type", N);
12995 end if;
12996 end;
12997 end if;
12999 return True;
13001 -- Remote access to subprogram types
13003 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
13004 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
13005 then
13006 -- It is valid to convert from one RAS type to another provided
13007 -- that their specification statically match.
13009 -- Note: at this point, remote access to subprogram types have been
13010 -- expanded to their E_Record_Type representation, and we need to
13011 -- go back to the original access type definition using the
13012 -- Corresponding_Remote_Type attribute in order to check that the
13013 -- designated profiles match.
13015 pragma Assert (Ekind (Target_Type) = E_Record_Type);
13016 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
13018 Check_Subtype_Conformant
13019 (New_Id =>
13020 Designated_Type (Corresponding_Remote_Type (Target_Type)),
13021 Old_Id =>
13022 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
13023 Err_Loc =>
13025 return True;
13027 -- If it was legal in the generic, it's legal in the instance
13029 elsif In_Instance_Body then
13030 return True;
13032 -- If both are tagged types, check legality of view conversions
13034 elsif Is_Tagged_Type (Target_Type)
13035 and then
13036 Is_Tagged_Type (Opnd_Type)
13037 then
13038 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
13040 -- Types derived from the same root type are convertible
13042 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
13043 return True;
13045 -- In an instance or an inlined body, there may be inconsistent views of
13046 -- the same type, or of types derived from a common root.
13048 elsif (In_Instance or In_Inlined_Body)
13049 and then
13050 Root_Type (Underlying_Type (Target_Type)) =
13051 Root_Type (Underlying_Type (Opnd_Type))
13052 then
13053 return True;
13055 -- Special check for common access type error case
13057 elsif Ekind (Target_Type) = E_Access_Type
13058 and then Is_Access_Type (Opnd_Type)
13059 then
13060 Conversion_Error_N ("target type must be general access type!", N);
13061 Conversion_Error_NE -- CODEFIX
13062 ("add ALL to }!", N, Target_Type);
13063 return False;
13065 -- Here we have a real conversion error
13067 else
13068 Conversion_Error_NE
13069 ("invalid conversion, not compatible with }", N, Opnd_Type);
13070 return False;
13071 end if;
13072 end Valid_Conversion;
13074 end Sem_Res;