re PR rtl-optimization/39110 (Revision 143939 breaks bootstrap on Linux/ia64)
[official-gcc.git] / gcc / reload1.c
blobe0d0f942ff087b3e5afadb88792cb5065ea8f0c3
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "addresses.h"
39 #include "basic-block.h"
40 #include "reload.h"
41 #include "recog.h"
42 #include "output.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "ira.h"
48 #include "df.h"
49 #include "target.h"
50 #include "emit-rtl.h"
52 /* This file contains the reload pass of the compiler, which is
53 run after register allocation has been done. It checks that
54 each insn is valid (operands required to be in registers really
55 are in registers of the proper class) and fixes up invalid ones
56 by copying values temporarily into registers for the insns
57 that need them.
59 The results of register allocation are described by the vector
60 reg_renumber; the insns still contain pseudo regs, but reg_renumber
61 can be used to find which hard reg, if any, a pseudo reg is in.
63 The technique we always use is to free up a few hard regs that are
64 called ``reload regs'', and for each place where a pseudo reg
65 must be in a hard reg, copy it temporarily into one of the reload regs.
67 Reload regs are allocated locally for every instruction that needs
68 reloads. When there are pseudos which are allocated to a register that
69 has been chosen as a reload reg, such pseudos must be ``spilled''.
70 This means that they go to other hard regs, or to stack slots if no other
71 available hard regs can be found. Spilling can invalidate more
72 insns, requiring additional need for reloads, so we must keep checking
73 until the process stabilizes.
75 For machines with different classes of registers, we must keep track
76 of the register class needed for each reload, and make sure that
77 we allocate enough reload registers of each class.
79 The file reload.c contains the code that checks one insn for
80 validity and reports the reloads that it needs. This file
81 is in charge of scanning the entire rtl code, accumulating the
82 reload needs, spilling, assigning reload registers to use for
83 fixing up each insn, and generating the new insns to copy values
84 into the reload registers. */
86 /* During reload_as_needed, element N contains a REG rtx for the hard reg
87 into which reg N has been reloaded (perhaps for a previous insn). */
88 static rtx *reg_last_reload_reg;
90 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
91 for an output reload that stores into reg N. */
92 static regset_head reg_has_output_reload;
94 /* Indicates which hard regs are reload-registers for an output reload
95 in the current insn. */
96 static HARD_REG_SET reg_is_output_reload;
98 /* Element N is the constant value to which pseudo reg N is equivalent,
99 or zero if pseudo reg N is not equivalent to a constant.
100 find_reloads looks at this in order to replace pseudo reg N
101 with the constant it stands for. */
102 rtx *reg_equiv_constant;
104 /* Element N is an invariant value to which pseudo reg N is equivalent.
105 eliminate_regs_in_insn uses this to replace pseudos in particular
106 contexts. */
107 rtx *reg_equiv_invariant;
109 /* Element N is a memory location to which pseudo reg N is equivalent,
110 prior to any register elimination (such as frame pointer to stack
111 pointer). Depending on whether or not it is a valid address, this value
112 is transferred to either reg_equiv_address or reg_equiv_mem. */
113 rtx *reg_equiv_memory_loc;
115 /* We allocate reg_equiv_memory_loc inside a varray so that the garbage
116 collector can keep track of what is inside. */
117 VEC(rtx,gc) *reg_equiv_memory_loc_vec;
119 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
120 This is used when the address is not valid as a memory address
121 (because its displacement is too big for the machine.) */
122 rtx *reg_equiv_address;
124 /* Element N is the memory slot to which pseudo reg N is equivalent,
125 or zero if pseudo reg N is not equivalent to a memory slot. */
126 rtx *reg_equiv_mem;
128 /* Element N is an EXPR_LIST of REG_EQUIVs containing MEMs with
129 alternate representations of the location of pseudo reg N. */
130 rtx *reg_equiv_alt_mem_list;
132 /* Widest width in which each pseudo reg is referred to (via subreg). */
133 static unsigned int *reg_max_ref_width;
135 /* Element N is the list of insns that initialized reg N from its equivalent
136 constant or memory slot. */
137 rtx *reg_equiv_init;
138 int reg_equiv_init_size;
140 /* Vector to remember old contents of reg_renumber before spilling. */
141 static short *reg_old_renumber;
143 /* During reload_as_needed, element N contains the last pseudo regno reloaded
144 into hard register N. If that pseudo reg occupied more than one register,
145 reg_reloaded_contents points to that pseudo for each spill register in
146 use; all of these must remain set for an inheritance to occur. */
147 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
149 /* During reload_as_needed, element N contains the insn for which
150 hard register N was last used. Its contents are significant only
151 when reg_reloaded_valid is set for this register. */
152 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
154 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
155 static HARD_REG_SET reg_reloaded_valid;
156 /* Indicate if the register was dead at the end of the reload.
157 This is only valid if reg_reloaded_contents is set and valid. */
158 static HARD_REG_SET reg_reloaded_dead;
160 /* Indicate whether the register's current value is one that is not
161 safe to retain across a call, even for registers that are normally
162 call-saved. This is only meaningful for members of reg_reloaded_valid. */
163 static HARD_REG_SET reg_reloaded_call_part_clobbered;
165 /* Number of spill-regs so far; number of valid elements of spill_regs. */
166 static int n_spills;
168 /* In parallel with spill_regs, contains REG rtx's for those regs.
169 Holds the last rtx used for any given reg, or 0 if it has never
170 been used for spilling yet. This rtx is reused, provided it has
171 the proper mode. */
172 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
174 /* In parallel with spill_regs, contains nonzero for a spill reg
175 that was stored after the last time it was used.
176 The precise value is the insn generated to do the store. */
177 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
179 /* This is the register that was stored with spill_reg_store. This is a
180 copy of reload_out / reload_out_reg when the value was stored; if
181 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
182 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
184 /* This table is the inverse mapping of spill_regs:
185 indexed by hard reg number,
186 it contains the position of that reg in spill_regs,
187 or -1 for something that is not in spill_regs.
189 ?!? This is no longer accurate. */
190 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
192 /* This reg set indicates registers that can't be used as spill registers for
193 the currently processed insn. These are the hard registers which are live
194 during the insn, but not allocated to pseudos, as well as fixed
195 registers. */
196 static HARD_REG_SET bad_spill_regs;
198 /* These are the hard registers that can't be used as spill register for any
199 insn. This includes registers used for user variables and registers that
200 we can't eliminate. A register that appears in this set also can't be used
201 to retry register allocation. */
202 static HARD_REG_SET bad_spill_regs_global;
204 /* Describes order of use of registers for reloading
205 of spilled pseudo-registers. `n_spills' is the number of
206 elements that are actually valid; new ones are added at the end.
208 Both spill_regs and spill_reg_order are used on two occasions:
209 once during find_reload_regs, where they keep track of the spill registers
210 for a single insn, but also during reload_as_needed where they show all
211 the registers ever used by reload. For the latter case, the information
212 is calculated during finish_spills. */
213 static short spill_regs[FIRST_PSEUDO_REGISTER];
215 /* This vector of reg sets indicates, for each pseudo, which hard registers
216 may not be used for retrying global allocation because the register was
217 formerly spilled from one of them. If we allowed reallocating a pseudo to
218 a register that it was already allocated to, reload might not
219 terminate. */
220 static HARD_REG_SET *pseudo_previous_regs;
222 /* This vector of reg sets indicates, for each pseudo, which hard
223 registers may not be used for retrying global allocation because they
224 are used as spill registers during one of the insns in which the
225 pseudo is live. */
226 static HARD_REG_SET *pseudo_forbidden_regs;
228 /* All hard regs that have been used as spill registers for any insn are
229 marked in this set. */
230 static HARD_REG_SET used_spill_regs;
232 /* Index of last register assigned as a spill register. We allocate in
233 a round-robin fashion. */
234 static int last_spill_reg;
236 /* Nonzero if indirect addressing is supported on the machine; this means
237 that spilling (REG n) does not require reloading it into a register in
238 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
239 value indicates the level of indirect addressing supported, e.g., two
240 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
241 a hard register. */
242 static char spill_indirect_levels;
244 /* Nonzero if indirect addressing is supported when the innermost MEM is
245 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
246 which these are valid is the same as spill_indirect_levels, above. */
247 char indirect_symref_ok;
249 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
250 char double_reg_address_ok;
252 /* Record the stack slot for each spilled hard register. */
253 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
255 /* Width allocated so far for that stack slot. */
256 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
258 /* Record which pseudos needed to be spilled. */
259 static regset_head spilled_pseudos;
261 /* Record which pseudos changed their allocation in finish_spills. */
262 static regset_head changed_allocation_pseudos;
264 /* Used for communication between order_regs_for_reload and count_pseudo.
265 Used to avoid counting one pseudo twice. */
266 static regset_head pseudos_counted;
268 /* First uid used by insns created by reload in this function.
269 Used in find_equiv_reg. */
270 int reload_first_uid;
272 /* Flag set by local-alloc or global-alloc if anything is live in
273 a call-clobbered reg across calls. */
274 int caller_save_needed;
276 /* Set to 1 while reload_as_needed is operating.
277 Required by some machines to handle any generated moves differently. */
278 int reload_in_progress = 0;
280 /* These arrays record the insn_code of insns that may be needed to
281 perform input and output reloads of special objects. They provide a
282 place to pass a scratch register. */
283 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
284 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
286 /* This obstack is used for allocation of rtl during register elimination.
287 The allocated storage can be freed once find_reloads has processed the
288 insn. */
289 static struct obstack reload_obstack;
291 /* Points to the beginning of the reload_obstack. All insn_chain structures
292 are allocated first. */
293 static char *reload_startobj;
295 /* The point after all insn_chain structures. Used to quickly deallocate
296 memory allocated in copy_reloads during calculate_needs_all_insns. */
297 static char *reload_firstobj;
299 /* This points before all local rtl generated by register elimination.
300 Used to quickly free all memory after processing one insn. */
301 static char *reload_insn_firstobj;
303 /* List of insn_chain instructions, one for every insn that reload needs to
304 examine. */
305 struct insn_chain *reload_insn_chain;
307 /* List of all insns needing reloads. */
308 static struct insn_chain *insns_need_reload;
310 /* This structure is used to record information about register eliminations.
311 Each array entry describes one possible way of eliminating a register
312 in favor of another. If there is more than one way of eliminating a
313 particular register, the most preferred should be specified first. */
315 struct elim_table
317 int from; /* Register number to be eliminated. */
318 int to; /* Register number used as replacement. */
319 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
320 int can_eliminate; /* Nonzero if this elimination can be done. */
321 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
322 insns made by reload. */
323 HOST_WIDE_INT offset; /* Current offset between the two regs. */
324 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
325 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
326 rtx from_rtx; /* REG rtx for the register to be eliminated.
327 We cannot simply compare the number since
328 we might then spuriously replace a hard
329 register corresponding to a pseudo
330 assigned to the reg to be eliminated. */
331 rtx to_rtx; /* REG rtx for the replacement. */
334 static struct elim_table *reg_eliminate = 0;
336 /* This is an intermediate structure to initialize the table. It has
337 exactly the members provided by ELIMINABLE_REGS. */
338 static const struct elim_table_1
340 const int from;
341 const int to;
342 } reg_eliminate_1[] =
344 /* If a set of eliminable registers was specified, define the table from it.
345 Otherwise, default to the normal case of the frame pointer being
346 replaced by the stack pointer. */
348 #ifdef ELIMINABLE_REGS
349 ELIMINABLE_REGS;
350 #else
351 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
352 #endif
354 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
356 /* Record the number of pending eliminations that have an offset not equal
357 to their initial offset. If nonzero, we use a new copy of each
358 replacement result in any insns encountered. */
359 int num_not_at_initial_offset;
361 /* Count the number of registers that we may be able to eliminate. */
362 static int num_eliminable;
363 /* And the number of registers that are equivalent to a constant that
364 can be eliminated to frame_pointer / arg_pointer + constant. */
365 static int num_eliminable_invariants;
367 /* For each label, we record the offset of each elimination. If we reach
368 a label by more than one path and an offset differs, we cannot do the
369 elimination. This information is indexed by the difference of the
370 number of the label and the first label number. We can't offset the
371 pointer itself as this can cause problems on machines with segmented
372 memory. The first table is an array of flags that records whether we
373 have yet encountered a label and the second table is an array of arrays,
374 one entry in the latter array for each elimination. */
376 static int first_label_num;
377 static char *offsets_known_at;
378 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
380 /* Number of labels in the current function. */
382 static int num_labels;
384 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
385 static void maybe_fix_stack_asms (void);
386 static void copy_reloads (struct insn_chain *);
387 static void calculate_needs_all_insns (int);
388 static int find_reg (struct insn_chain *, int);
389 static void find_reload_regs (struct insn_chain *);
390 static void select_reload_regs (void);
391 static void delete_caller_save_insns (void);
393 static void spill_failure (rtx, enum reg_class);
394 static void count_spilled_pseudo (int, int, int);
395 static void delete_dead_insn (rtx);
396 static void alter_reg (int, int, bool);
397 static void set_label_offsets (rtx, rtx, int);
398 static void check_eliminable_occurrences (rtx);
399 static void elimination_effects (rtx, enum machine_mode);
400 static int eliminate_regs_in_insn (rtx, int);
401 static void update_eliminable_offsets (void);
402 static void mark_not_eliminable (rtx, const_rtx, void *);
403 static void set_initial_elim_offsets (void);
404 static bool verify_initial_elim_offsets (void);
405 static void set_initial_label_offsets (void);
406 static void set_offsets_for_label (rtx);
407 static void init_elim_table (void);
408 static void update_eliminables (HARD_REG_SET *);
409 static void spill_hard_reg (unsigned int, int);
410 static int finish_spills (int);
411 static void scan_paradoxical_subregs (rtx);
412 static void count_pseudo (int);
413 static void order_regs_for_reload (struct insn_chain *);
414 static void reload_as_needed (int);
415 static void forget_old_reloads_1 (rtx, const_rtx, void *);
416 static void forget_marked_reloads (regset);
417 static int reload_reg_class_lower (const void *, const void *);
418 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
419 enum machine_mode);
420 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
421 enum machine_mode);
422 static int reload_reg_free_p (unsigned int, int, enum reload_type);
423 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
424 rtx, rtx, int, int);
425 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
426 rtx, rtx, int, int);
427 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
428 static int allocate_reload_reg (struct insn_chain *, int, int);
429 static int conflicts_with_override (rtx);
430 static void failed_reload (rtx, int);
431 static int set_reload_reg (int, int);
432 static void choose_reload_regs_init (struct insn_chain *, rtx *);
433 static void choose_reload_regs (struct insn_chain *);
434 static void merge_assigned_reloads (rtx);
435 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
436 rtx, int);
437 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
438 int);
439 static void do_input_reload (struct insn_chain *, struct reload *, int);
440 static void do_output_reload (struct insn_chain *, struct reload *, int);
441 static void emit_reload_insns (struct insn_chain *);
442 static void delete_output_reload (rtx, int, int, rtx);
443 static void delete_address_reloads (rtx, rtx);
444 static void delete_address_reloads_1 (rtx, rtx, rtx);
445 static rtx inc_for_reload (rtx, rtx, rtx, int);
446 #ifdef AUTO_INC_DEC
447 static void add_auto_inc_notes (rtx, rtx);
448 #endif
449 static void copy_eh_notes (rtx, rtx);
450 static void substitute (rtx *, const_rtx, rtx);
451 static bool gen_reload_chain_without_interm_reg_p (int, int);
452 static int reloads_conflict (int, int);
453 static rtx gen_reload (rtx, rtx, int, enum reload_type);
454 static rtx emit_insn_if_valid_for_reload (rtx);
456 /* Initialize the reload pass. This is called at the beginning of compilation
457 and may be called again if the target is reinitialized. */
459 void
460 init_reload (void)
462 int i;
464 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
465 Set spill_indirect_levels to the number of levels such addressing is
466 permitted, zero if it is not permitted at all. */
468 rtx tem
469 = gen_rtx_MEM (Pmode,
470 gen_rtx_PLUS (Pmode,
471 gen_rtx_REG (Pmode,
472 LAST_VIRTUAL_REGISTER + 1),
473 GEN_INT (4)));
474 spill_indirect_levels = 0;
476 while (memory_address_p (QImode, tem))
478 spill_indirect_levels++;
479 tem = gen_rtx_MEM (Pmode, tem);
482 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
484 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
485 indirect_symref_ok = memory_address_p (QImode, tem);
487 /* See if reg+reg is a valid (and offsettable) address. */
489 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
491 tem = gen_rtx_PLUS (Pmode,
492 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
493 gen_rtx_REG (Pmode, i));
495 /* This way, we make sure that reg+reg is an offsettable address. */
496 tem = plus_constant (tem, 4);
498 if (memory_address_p (QImode, tem))
500 double_reg_address_ok = 1;
501 break;
505 /* Initialize obstack for our rtl allocation. */
506 gcc_obstack_init (&reload_obstack);
507 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
509 INIT_REG_SET (&spilled_pseudos);
510 INIT_REG_SET (&changed_allocation_pseudos);
511 INIT_REG_SET (&pseudos_counted);
514 /* List of insn chains that are currently unused. */
515 static struct insn_chain *unused_insn_chains = 0;
517 /* Allocate an empty insn_chain structure. */
518 struct insn_chain *
519 new_insn_chain (void)
521 struct insn_chain *c;
523 if (unused_insn_chains == 0)
525 c = XOBNEW (&reload_obstack, struct insn_chain);
526 INIT_REG_SET (&c->live_throughout);
527 INIT_REG_SET (&c->dead_or_set);
529 else
531 c = unused_insn_chains;
532 unused_insn_chains = c->next;
534 c->is_caller_save_insn = 0;
535 c->need_operand_change = 0;
536 c->need_reload = 0;
537 c->need_elim = 0;
538 return c;
541 /* Small utility function to set all regs in hard reg set TO which are
542 allocated to pseudos in regset FROM. */
544 void
545 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
547 unsigned int regno;
548 reg_set_iterator rsi;
550 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
552 int r = reg_renumber[regno];
554 if (r < 0)
556 /* reload_combine uses the information from DF_LIVE_IN,
557 which might still contain registers that have not
558 actually been allocated since they have an
559 equivalence. */
560 gcc_assert (ira_conflicts_p || reload_completed);
562 else
563 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
567 /* Replace all pseudos found in LOC with their corresponding
568 equivalences. */
570 static void
571 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
573 rtx x = *loc;
574 enum rtx_code code;
575 const char *fmt;
576 int i, j;
578 if (! x)
579 return;
581 code = GET_CODE (x);
582 if (code == REG)
584 unsigned int regno = REGNO (x);
586 if (regno < FIRST_PSEUDO_REGISTER)
587 return;
589 x = eliminate_regs (x, mem_mode, usage);
590 if (x != *loc)
592 *loc = x;
593 replace_pseudos_in (loc, mem_mode, usage);
594 return;
597 if (reg_equiv_constant[regno])
598 *loc = reg_equiv_constant[regno];
599 else if (reg_equiv_mem[regno])
600 *loc = reg_equiv_mem[regno];
601 else if (reg_equiv_address[regno])
602 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
603 else
605 gcc_assert (!REG_P (regno_reg_rtx[regno])
606 || REGNO (regno_reg_rtx[regno]) != regno);
607 *loc = regno_reg_rtx[regno];
610 return;
612 else if (code == MEM)
614 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
615 return;
618 /* Process each of our operands recursively. */
619 fmt = GET_RTX_FORMAT (code);
620 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
621 if (*fmt == 'e')
622 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
623 else if (*fmt == 'E')
624 for (j = 0; j < XVECLEN (x, i); j++)
625 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
628 /* Determine if the current function has an exception receiver block
629 that reaches the exit block via non-exceptional edges */
631 static bool
632 has_nonexceptional_receiver (void)
634 edge e;
635 edge_iterator ei;
636 basic_block *tos, *worklist, bb;
638 /* If we're not optimizing, then just err on the safe side. */
639 if (!optimize)
640 return true;
642 /* First determine which blocks can reach exit via normal paths. */
643 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
645 FOR_EACH_BB (bb)
646 bb->flags &= ~BB_REACHABLE;
648 /* Place the exit block on our worklist. */
649 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
650 *tos++ = EXIT_BLOCK_PTR;
652 /* Iterate: find everything reachable from what we've already seen. */
653 while (tos != worklist)
655 bb = *--tos;
657 FOR_EACH_EDGE (e, ei, bb->preds)
658 if (!(e->flags & EDGE_ABNORMAL))
660 basic_block src = e->src;
662 if (!(src->flags & BB_REACHABLE))
664 src->flags |= BB_REACHABLE;
665 *tos++ = src;
669 free (worklist);
671 /* Now see if there's a reachable block with an exceptional incoming
672 edge. */
673 FOR_EACH_BB (bb)
674 if (bb->flags & BB_REACHABLE)
675 FOR_EACH_EDGE (e, ei, bb->preds)
676 if (e->flags & EDGE_ABNORMAL)
677 return true;
679 /* No exceptional block reached exit unexceptionally. */
680 return false;
684 /* Global variables used by reload and its subroutines. */
686 /* Set during calculate_needs if an insn needs register elimination. */
687 static int something_needs_elimination;
688 /* Set during calculate_needs if an insn needs an operand changed. */
689 static int something_needs_operands_changed;
691 /* Nonzero means we couldn't get enough spill regs. */
692 static int failure;
694 /* Temporary array of pseudo-register number. */
695 static int *temp_pseudo_reg_arr;
697 /* Main entry point for the reload pass.
699 FIRST is the first insn of the function being compiled.
701 GLOBAL nonzero means we were called from global_alloc
702 and should attempt to reallocate any pseudoregs that we
703 displace from hard regs we will use for reloads.
704 If GLOBAL is zero, we do not have enough information to do that,
705 so any pseudo reg that is spilled must go to the stack.
707 Return value is nonzero if reload failed
708 and we must not do any more for this function. */
711 reload (rtx first, int global)
713 int i, n;
714 rtx insn;
715 struct elim_table *ep;
716 basic_block bb;
718 /* Make sure even insns with volatile mem refs are recognizable. */
719 init_recog ();
721 failure = 0;
723 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
725 /* Make sure that the last insn in the chain
726 is not something that needs reloading. */
727 emit_note (NOTE_INSN_DELETED);
729 /* Enable find_equiv_reg to distinguish insns made by reload. */
730 reload_first_uid = get_max_uid ();
732 #ifdef SECONDARY_MEMORY_NEEDED
733 /* Initialize the secondary memory table. */
734 clear_secondary_mem ();
735 #endif
737 /* We don't have a stack slot for any spill reg yet. */
738 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
739 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
741 /* Initialize the save area information for caller-save, in case some
742 are needed. */
743 init_save_areas ();
745 /* Compute which hard registers are now in use
746 as homes for pseudo registers.
747 This is done here rather than (eg) in global_alloc
748 because this point is reached even if not optimizing. */
749 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
750 mark_home_live (i);
752 /* A function that has a nonlocal label that can reach the exit
753 block via non-exceptional paths must save all call-saved
754 registers. */
755 if (cfun->has_nonlocal_label
756 && has_nonexceptional_receiver ())
757 crtl->saves_all_registers = 1;
759 if (crtl->saves_all_registers)
760 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
761 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
762 df_set_regs_ever_live (i, true);
764 /* Find all the pseudo registers that didn't get hard regs
765 but do have known equivalent constants or memory slots.
766 These include parameters (known equivalent to parameter slots)
767 and cse'd or loop-moved constant memory addresses.
769 Record constant equivalents in reg_equiv_constant
770 so they will be substituted by find_reloads.
771 Record memory equivalents in reg_mem_equiv so they can
772 be substituted eventually by altering the REG-rtx's. */
774 reg_equiv_constant = XCNEWVEC (rtx, max_regno);
775 reg_equiv_invariant = XCNEWVEC (rtx, max_regno);
776 reg_equiv_mem = XCNEWVEC (rtx, max_regno);
777 reg_equiv_alt_mem_list = XCNEWVEC (rtx, max_regno);
778 reg_equiv_address = XCNEWVEC (rtx, max_regno);
779 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
780 reg_old_renumber = XCNEWVEC (short, max_regno);
781 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
782 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
783 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
785 CLEAR_HARD_REG_SET (bad_spill_regs_global);
787 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
788 to. Also find all paradoxical subregs and find largest such for
789 each pseudo. */
791 num_eliminable_invariants = 0;
792 for (insn = first; insn; insn = NEXT_INSN (insn))
794 rtx set = single_set (insn);
796 /* We may introduce USEs that we want to remove at the end, so
797 we'll mark them with QImode. Make sure there are no
798 previously-marked insns left by say regmove. */
799 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
800 && GET_MODE (insn) != VOIDmode)
801 PUT_MODE (insn, VOIDmode);
803 if (INSN_P (insn))
804 scan_paradoxical_subregs (PATTERN (insn));
806 if (set != 0 && REG_P (SET_DEST (set)))
808 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
809 rtx x;
811 if (! note)
812 continue;
814 i = REGNO (SET_DEST (set));
815 x = XEXP (note, 0);
817 if (i <= LAST_VIRTUAL_REGISTER)
818 continue;
820 if (! function_invariant_p (x)
821 || ! flag_pic
822 /* A function invariant is often CONSTANT_P but may
823 include a register. We promise to only pass
824 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
825 || (CONSTANT_P (x)
826 && LEGITIMATE_PIC_OPERAND_P (x)))
828 /* It can happen that a REG_EQUIV note contains a MEM
829 that is not a legitimate memory operand. As later
830 stages of reload assume that all addresses found
831 in the reg_equiv_* arrays were originally legitimate,
832 we ignore such REG_EQUIV notes. */
833 if (memory_operand (x, VOIDmode))
835 /* Always unshare the equivalence, so we can
836 substitute into this insn without touching the
837 equivalence. */
838 reg_equiv_memory_loc[i] = copy_rtx (x);
840 else if (function_invariant_p (x))
842 if (GET_CODE (x) == PLUS)
844 /* This is PLUS of frame pointer and a constant,
845 and might be shared. Unshare it. */
846 reg_equiv_invariant[i] = copy_rtx (x);
847 num_eliminable_invariants++;
849 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
851 reg_equiv_invariant[i] = x;
852 num_eliminable_invariants++;
854 else if (LEGITIMATE_CONSTANT_P (x))
855 reg_equiv_constant[i] = x;
856 else
858 reg_equiv_memory_loc[i]
859 = force_const_mem (GET_MODE (SET_DEST (set)), x);
860 if (! reg_equiv_memory_loc[i])
861 reg_equiv_init[i] = NULL_RTX;
864 else
866 reg_equiv_init[i] = NULL_RTX;
867 continue;
870 else
871 reg_equiv_init[i] = NULL_RTX;
875 if (dump_file)
876 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
877 if (reg_equiv_init[i])
879 fprintf (dump_file, "init_insns for %u: ", i);
880 print_inline_rtx (dump_file, reg_equiv_init[i], 20);
881 fprintf (dump_file, "\n");
884 init_elim_table ();
886 first_label_num = get_first_label_num ();
887 num_labels = max_label_num () - first_label_num;
889 /* Allocate the tables used to store offset information at labels. */
890 /* We used to use alloca here, but the size of what it would try to
891 allocate would occasionally cause it to exceed the stack limit and
892 cause a core dump. */
893 offsets_known_at = XNEWVEC (char, num_labels);
894 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
896 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
897 stack slots to the pseudos that lack hard regs or equivalents.
898 Do not touch virtual registers. */
900 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
901 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
902 temp_pseudo_reg_arr[n++] = i;
904 if (ira_conflicts_p)
905 /* Ask IRA to order pseudo-registers for better stack slot
906 sharing. */
907 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
909 for (i = 0; i < n; i++)
910 alter_reg (temp_pseudo_reg_arr[i], -1, false);
912 /* If we have some registers we think can be eliminated, scan all insns to
913 see if there is an insn that sets one of these registers to something
914 other than itself plus a constant. If so, the register cannot be
915 eliminated. Doing this scan here eliminates an extra pass through the
916 main reload loop in the most common case where register elimination
917 cannot be done. */
918 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
919 if (INSN_P (insn))
920 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
922 maybe_fix_stack_asms ();
924 insns_need_reload = 0;
925 something_needs_elimination = 0;
927 /* Initialize to -1, which means take the first spill register. */
928 last_spill_reg = -1;
930 /* Spill any hard regs that we know we can't eliminate. */
931 CLEAR_HARD_REG_SET (used_spill_regs);
932 /* There can be multiple ways to eliminate a register;
933 they should be listed adjacently.
934 Elimination for any register fails only if all possible ways fail. */
935 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
937 int from = ep->from;
938 int can_eliminate = 0;
941 can_eliminate |= ep->can_eliminate;
942 ep++;
944 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
945 if (! can_eliminate)
946 spill_hard_reg (from, 1);
949 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
950 if (frame_pointer_needed)
951 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
952 #endif
953 finish_spills (global);
955 /* From now on, we may need to generate moves differently. We may also
956 allow modifications of insns which cause them to not be recognized.
957 Any such modifications will be cleaned up during reload itself. */
958 reload_in_progress = 1;
960 /* This loop scans the entire function each go-round
961 and repeats until one repetition spills no additional hard regs. */
962 for (;;)
964 int something_changed;
965 int did_spill;
966 HOST_WIDE_INT starting_frame_size;
968 starting_frame_size = get_frame_size ();
970 set_initial_elim_offsets ();
971 set_initial_label_offsets ();
973 /* For each pseudo register that has an equivalent location defined,
974 try to eliminate any eliminable registers (such as the frame pointer)
975 assuming initial offsets for the replacement register, which
976 is the normal case.
978 If the resulting location is directly addressable, substitute
979 the MEM we just got directly for the old REG.
981 If it is not addressable but is a constant or the sum of a hard reg
982 and constant, it is probably not addressable because the constant is
983 out of range, in that case record the address; we will generate
984 hairy code to compute the address in a register each time it is
985 needed. Similarly if it is a hard register, but one that is not
986 valid as an address register.
988 If the location is not addressable, but does not have one of the
989 above forms, assign a stack slot. We have to do this to avoid the
990 potential of producing lots of reloads if, e.g., a location involves
991 a pseudo that didn't get a hard register and has an equivalent memory
992 location that also involves a pseudo that didn't get a hard register.
994 Perhaps at some point we will improve reload_when_needed handling
995 so this problem goes away. But that's very hairy. */
997 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
998 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
1000 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
1002 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
1003 XEXP (x, 0)))
1004 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
1005 else if (CONSTANT_P (XEXP (x, 0))
1006 || (REG_P (XEXP (x, 0))
1007 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
1008 || (GET_CODE (XEXP (x, 0)) == PLUS
1009 && REG_P (XEXP (XEXP (x, 0), 0))
1010 && (REGNO (XEXP (XEXP (x, 0), 0))
1011 < FIRST_PSEUDO_REGISTER)
1012 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
1013 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
1014 else
1016 /* Make a new stack slot. Then indicate that something
1017 changed so we go back and recompute offsets for
1018 eliminable registers because the allocation of memory
1019 below might change some offset. reg_equiv_{mem,address}
1020 will be set up for this pseudo on the next pass around
1021 the loop. */
1022 reg_equiv_memory_loc[i] = 0;
1023 reg_equiv_init[i] = 0;
1024 alter_reg (i, -1, true);
1028 if (caller_save_needed)
1029 setup_save_areas ();
1031 /* If we allocated another stack slot, redo elimination bookkeeping. */
1032 if (starting_frame_size != get_frame_size ())
1033 continue;
1034 if (starting_frame_size && crtl->stack_alignment_needed)
1036 /* If we have a stack frame, we must align it now. The
1037 stack size may be a part of the offset computation for
1038 register elimination. So if this changes the stack size,
1039 then repeat the elimination bookkeeping. We don't
1040 realign when there is no stack, as that will cause a
1041 stack frame when none is needed should
1042 STARTING_FRAME_OFFSET not be already aligned to
1043 STACK_BOUNDARY. */
1044 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
1045 if (starting_frame_size != get_frame_size ())
1046 continue;
1049 if (caller_save_needed)
1051 save_call_clobbered_regs ();
1052 /* That might have allocated new insn_chain structures. */
1053 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1056 calculate_needs_all_insns (global);
1058 if (! ira_conflicts_p)
1059 /* Don't do it for IRA. We need this info because we don't
1060 change live_throughout and dead_or_set for chains when IRA
1061 is used. */
1062 CLEAR_REG_SET (&spilled_pseudos);
1064 did_spill = 0;
1066 something_changed = 0;
1068 /* If we allocated any new memory locations, make another pass
1069 since it might have changed elimination offsets. */
1070 if (starting_frame_size != get_frame_size ())
1071 something_changed = 1;
1073 /* Even if the frame size remained the same, we might still have
1074 changed elimination offsets, e.g. if find_reloads called
1075 force_const_mem requiring the back end to allocate a constant
1076 pool base register that needs to be saved on the stack. */
1077 else if (!verify_initial_elim_offsets ())
1078 something_changed = 1;
1081 HARD_REG_SET to_spill;
1082 CLEAR_HARD_REG_SET (to_spill);
1083 update_eliminables (&to_spill);
1084 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
1086 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1087 if (TEST_HARD_REG_BIT (to_spill, i))
1089 spill_hard_reg (i, 1);
1090 did_spill = 1;
1092 /* Regardless of the state of spills, if we previously had
1093 a register that we thought we could eliminate, but now can
1094 not eliminate, we must run another pass.
1096 Consider pseudos which have an entry in reg_equiv_* which
1097 reference an eliminable register. We must make another pass
1098 to update reg_equiv_* so that we do not substitute in the
1099 old value from when we thought the elimination could be
1100 performed. */
1101 something_changed = 1;
1105 select_reload_regs ();
1106 if (failure)
1107 goto failed;
1109 if (insns_need_reload != 0 || did_spill)
1110 something_changed |= finish_spills (global);
1112 if (! something_changed)
1113 break;
1115 if (caller_save_needed)
1116 delete_caller_save_insns ();
1118 obstack_free (&reload_obstack, reload_firstobj);
1121 /* If global-alloc was run, notify it of any register eliminations we have
1122 done. */
1123 if (global)
1124 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1125 if (ep->can_eliminate)
1126 mark_elimination (ep->from, ep->to);
1128 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1129 If that insn didn't set the register (i.e., it copied the register to
1130 memory), just delete that insn instead of the equivalencing insn plus
1131 anything now dead. If we call delete_dead_insn on that insn, we may
1132 delete the insn that actually sets the register if the register dies
1133 there and that is incorrect. */
1135 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1137 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1139 rtx list;
1140 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1142 rtx equiv_insn = XEXP (list, 0);
1144 /* If we already deleted the insn or if it may trap, we can't
1145 delete it. The latter case shouldn't happen, but can
1146 if an insn has a variable address, gets a REG_EH_REGION
1147 note added to it, and then gets converted into a load
1148 from a constant address. */
1149 if (NOTE_P (equiv_insn)
1150 || can_throw_internal (equiv_insn))
1152 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1153 delete_dead_insn (equiv_insn);
1154 else
1155 SET_INSN_DELETED (equiv_insn);
1160 /* Use the reload registers where necessary
1161 by generating move instructions to move the must-be-register
1162 values into or out of the reload registers. */
1164 if (insns_need_reload != 0 || something_needs_elimination
1165 || something_needs_operands_changed)
1167 HOST_WIDE_INT old_frame_size = get_frame_size ();
1169 reload_as_needed (global);
1171 gcc_assert (old_frame_size == get_frame_size ());
1173 gcc_assert (verify_initial_elim_offsets ());
1176 /* If we were able to eliminate the frame pointer, show that it is no
1177 longer live at the start of any basic block. If it ls live by
1178 virtue of being in a pseudo, that pseudo will be marked live
1179 and hence the frame pointer will be known to be live via that
1180 pseudo. */
1182 if (! frame_pointer_needed)
1183 FOR_EACH_BB (bb)
1184 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1186 /* Come here (with failure set nonzero) if we can't get enough spill
1187 regs. */
1188 failed:
1190 CLEAR_REG_SET (&changed_allocation_pseudos);
1191 CLEAR_REG_SET (&spilled_pseudos);
1192 reload_in_progress = 0;
1194 /* Now eliminate all pseudo regs by modifying them into
1195 their equivalent memory references.
1196 The REG-rtx's for the pseudos are modified in place,
1197 so all insns that used to refer to them now refer to memory.
1199 For a reg that has a reg_equiv_address, all those insns
1200 were changed by reloading so that no insns refer to it any longer;
1201 but the DECL_RTL of a variable decl may refer to it,
1202 and if so this causes the debugging info to mention the variable. */
1204 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1206 rtx addr = 0;
1208 if (reg_equiv_mem[i])
1209 addr = XEXP (reg_equiv_mem[i], 0);
1211 if (reg_equiv_address[i])
1212 addr = reg_equiv_address[i];
1214 if (addr)
1216 if (reg_renumber[i] < 0)
1218 rtx reg = regno_reg_rtx[i];
1220 REG_USERVAR_P (reg) = 0;
1221 PUT_CODE (reg, MEM);
1222 XEXP (reg, 0) = addr;
1223 if (reg_equiv_memory_loc[i])
1224 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1225 else
1227 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1228 MEM_ATTRS (reg) = 0;
1230 MEM_NOTRAP_P (reg) = 1;
1232 else if (reg_equiv_mem[i])
1233 XEXP (reg_equiv_mem[i], 0) = addr;
1237 /* We must set reload_completed now since the cleanup_subreg_operands call
1238 below will re-recognize each insn and reload may have generated insns
1239 which are only valid during and after reload. */
1240 reload_completed = 1;
1242 /* Make a pass over all the insns and delete all USEs which we inserted
1243 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1244 notes. Delete all CLOBBER insns, except those that refer to the return
1245 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1246 from misarranging variable-array code, and simplify (subreg (reg))
1247 operands. Strip and regenerate REG_INC notes that may have been moved
1248 around. */
1250 for (insn = first; insn; insn = NEXT_INSN (insn))
1251 if (INSN_P (insn))
1253 rtx *pnote;
1255 if (CALL_P (insn))
1256 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1257 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1259 if ((GET_CODE (PATTERN (insn)) == USE
1260 /* We mark with QImode USEs introduced by reload itself. */
1261 && (GET_MODE (insn) == QImode
1262 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1263 || (GET_CODE (PATTERN (insn)) == CLOBBER
1264 && (!MEM_P (XEXP (PATTERN (insn), 0))
1265 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1266 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1267 && XEXP (XEXP (PATTERN (insn), 0), 0)
1268 != stack_pointer_rtx))
1269 && (!REG_P (XEXP (PATTERN (insn), 0))
1270 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1272 delete_insn (insn);
1273 continue;
1276 /* Some CLOBBERs may survive until here and still reference unassigned
1277 pseudos with const equivalent, which may in turn cause ICE in later
1278 passes if the reference remains in place. */
1279 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1280 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1281 VOIDmode, PATTERN (insn));
1283 /* Discard obvious no-ops, even without -O. This optimization
1284 is fast and doesn't interfere with debugging. */
1285 if (NONJUMP_INSN_P (insn)
1286 && GET_CODE (PATTERN (insn)) == SET
1287 && REG_P (SET_SRC (PATTERN (insn)))
1288 && REG_P (SET_DEST (PATTERN (insn)))
1289 && (REGNO (SET_SRC (PATTERN (insn)))
1290 == REGNO (SET_DEST (PATTERN (insn)))))
1292 delete_insn (insn);
1293 continue;
1296 pnote = &REG_NOTES (insn);
1297 while (*pnote != 0)
1299 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1300 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1301 || REG_NOTE_KIND (*pnote) == REG_INC)
1302 *pnote = XEXP (*pnote, 1);
1303 else
1304 pnote = &XEXP (*pnote, 1);
1307 #ifdef AUTO_INC_DEC
1308 add_auto_inc_notes (insn, PATTERN (insn));
1309 #endif
1311 /* Simplify (subreg (reg)) if it appears as an operand. */
1312 cleanup_subreg_operands (insn);
1314 /* Clean up invalid ASMs so that they don't confuse later passes.
1315 See PR 21299. */
1316 if (asm_noperands (PATTERN (insn)) >= 0)
1318 extract_insn (insn);
1319 if (!constrain_operands (1))
1321 error_for_asm (insn,
1322 "%<asm%> operand has impossible constraints");
1323 delete_insn (insn);
1324 continue;
1329 /* If we are doing generic stack checking, give a warning if this
1330 function's frame size is larger than we expect. */
1331 if (flag_stack_check == GENERIC_STACK_CHECK)
1333 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1334 static int verbose_warned = 0;
1336 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1337 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1338 size += UNITS_PER_WORD;
1340 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1342 warning (0, "frame size too large for reliable stack checking");
1343 if (! verbose_warned)
1345 warning (0, "try reducing the number of local variables");
1346 verbose_warned = 1;
1351 /* Indicate that we no longer have known memory locations or constants. */
1352 if (reg_equiv_constant)
1353 free (reg_equiv_constant);
1354 if (reg_equiv_invariant)
1355 free (reg_equiv_invariant);
1356 reg_equiv_constant = 0;
1357 reg_equiv_invariant = 0;
1358 VEC_free (rtx, gc, reg_equiv_memory_loc_vec);
1359 reg_equiv_memory_loc = 0;
1361 free (temp_pseudo_reg_arr);
1363 if (offsets_known_at)
1364 free (offsets_known_at);
1365 if (offsets_at)
1366 free (offsets_at);
1368 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1369 if (reg_equiv_alt_mem_list[i])
1370 free_EXPR_LIST_list (&reg_equiv_alt_mem_list[i]);
1371 free (reg_equiv_alt_mem_list);
1373 free (reg_equiv_mem);
1374 reg_equiv_init = 0;
1375 free (reg_equiv_address);
1376 free (reg_max_ref_width);
1377 free (reg_old_renumber);
1378 free (pseudo_previous_regs);
1379 free (pseudo_forbidden_regs);
1381 CLEAR_HARD_REG_SET (used_spill_regs);
1382 for (i = 0; i < n_spills; i++)
1383 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1385 /* Free all the insn_chain structures at once. */
1386 obstack_free (&reload_obstack, reload_startobj);
1387 unused_insn_chains = 0;
1388 fixup_abnormal_edges ();
1390 /* Replacing pseudos with their memory equivalents might have
1391 created shared rtx. Subsequent passes would get confused
1392 by this, so unshare everything here. */
1393 unshare_all_rtl_again (first);
1395 #ifdef STACK_BOUNDARY
1396 /* init_emit has set the alignment of the hard frame pointer
1397 to STACK_BOUNDARY. It is very likely no longer valid if
1398 the hard frame pointer was used for register allocation. */
1399 if (!frame_pointer_needed)
1400 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1401 #endif
1403 return failure;
1406 /* Yet another special case. Unfortunately, reg-stack forces people to
1407 write incorrect clobbers in asm statements. These clobbers must not
1408 cause the register to appear in bad_spill_regs, otherwise we'll call
1409 fatal_insn later. We clear the corresponding regnos in the live
1410 register sets to avoid this.
1411 The whole thing is rather sick, I'm afraid. */
1413 static void
1414 maybe_fix_stack_asms (void)
1416 #ifdef STACK_REGS
1417 const char *constraints[MAX_RECOG_OPERANDS];
1418 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1419 struct insn_chain *chain;
1421 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1423 int i, noperands;
1424 HARD_REG_SET clobbered, allowed;
1425 rtx pat;
1427 if (! INSN_P (chain->insn)
1428 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1429 continue;
1430 pat = PATTERN (chain->insn);
1431 if (GET_CODE (pat) != PARALLEL)
1432 continue;
1434 CLEAR_HARD_REG_SET (clobbered);
1435 CLEAR_HARD_REG_SET (allowed);
1437 /* First, make a mask of all stack regs that are clobbered. */
1438 for (i = 0; i < XVECLEN (pat, 0); i++)
1440 rtx t = XVECEXP (pat, 0, i);
1441 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1442 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1445 /* Get the operand values and constraints out of the insn. */
1446 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1447 constraints, operand_mode, NULL);
1449 /* For every operand, see what registers are allowed. */
1450 for (i = 0; i < noperands; i++)
1452 const char *p = constraints[i];
1453 /* For every alternative, we compute the class of registers allowed
1454 for reloading in CLS, and merge its contents into the reg set
1455 ALLOWED. */
1456 int cls = (int) NO_REGS;
1458 for (;;)
1460 char c = *p;
1462 if (c == '\0' || c == ',' || c == '#')
1464 /* End of one alternative - mark the regs in the current
1465 class, and reset the class. */
1466 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1467 cls = NO_REGS;
1468 p++;
1469 if (c == '#')
1470 do {
1471 c = *p++;
1472 } while (c != '\0' && c != ',');
1473 if (c == '\0')
1474 break;
1475 continue;
1478 switch (c)
1480 case '=': case '+': case '*': case '%': case '?': case '!':
1481 case '0': case '1': case '2': case '3': case '4': case '<':
1482 case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1483 case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1484 case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1485 case TARGET_MEM_CONSTRAINT:
1486 break;
1488 case 'p':
1489 cls = (int) reg_class_subunion[cls]
1490 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1491 break;
1493 case 'g':
1494 case 'r':
1495 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1496 break;
1498 default:
1499 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1500 cls = (int) reg_class_subunion[cls]
1501 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1502 else
1503 cls = (int) reg_class_subunion[cls]
1504 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1506 p += CONSTRAINT_LEN (c, p);
1509 /* Those of the registers which are clobbered, but allowed by the
1510 constraints, must be usable as reload registers. So clear them
1511 out of the life information. */
1512 AND_HARD_REG_SET (allowed, clobbered);
1513 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1514 if (TEST_HARD_REG_BIT (allowed, i))
1516 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1517 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1521 #endif
1524 /* Copy the global variables n_reloads and rld into the corresponding elts
1525 of CHAIN. */
1526 static void
1527 copy_reloads (struct insn_chain *chain)
1529 chain->n_reloads = n_reloads;
1530 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1531 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1532 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1535 /* Walk the chain of insns, and determine for each whether it needs reloads
1536 and/or eliminations. Build the corresponding insns_need_reload list, and
1537 set something_needs_elimination as appropriate. */
1538 static void
1539 calculate_needs_all_insns (int global)
1541 struct insn_chain **pprev_reload = &insns_need_reload;
1542 struct insn_chain *chain, *next = 0;
1544 something_needs_elimination = 0;
1546 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1547 for (chain = reload_insn_chain; chain != 0; chain = next)
1549 rtx insn = chain->insn;
1551 next = chain->next;
1553 /* Clear out the shortcuts. */
1554 chain->n_reloads = 0;
1555 chain->need_elim = 0;
1556 chain->need_reload = 0;
1557 chain->need_operand_change = 0;
1559 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1560 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1561 what effects this has on the known offsets at labels. */
1563 if (LABEL_P (insn) || JUMP_P (insn)
1564 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1565 set_label_offsets (insn, insn, 0);
1567 if (INSN_P (insn))
1569 rtx old_body = PATTERN (insn);
1570 int old_code = INSN_CODE (insn);
1571 rtx old_notes = REG_NOTES (insn);
1572 int did_elimination = 0;
1573 int operands_changed = 0;
1574 rtx set = single_set (insn);
1576 /* Skip insns that only set an equivalence. */
1577 if (set && REG_P (SET_DEST (set))
1578 && reg_renumber[REGNO (SET_DEST (set))] < 0
1579 && (reg_equiv_constant[REGNO (SET_DEST (set))]
1580 || (reg_equiv_invariant[REGNO (SET_DEST (set))]))
1581 && reg_equiv_init[REGNO (SET_DEST (set))])
1582 continue;
1584 /* If needed, eliminate any eliminable registers. */
1585 if (num_eliminable || num_eliminable_invariants)
1586 did_elimination = eliminate_regs_in_insn (insn, 0);
1588 /* Analyze the instruction. */
1589 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1590 global, spill_reg_order);
1592 /* If a no-op set needs more than one reload, this is likely
1593 to be something that needs input address reloads. We
1594 can't get rid of this cleanly later, and it is of no use
1595 anyway, so discard it now.
1596 We only do this when expensive_optimizations is enabled,
1597 since this complements reload inheritance / output
1598 reload deletion, and it can make debugging harder. */
1599 if (flag_expensive_optimizations && n_reloads > 1)
1601 rtx set = single_set (insn);
1602 if (set
1604 ((SET_SRC (set) == SET_DEST (set)
1605 && REG_P (SET_SRC (set))
1606 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1607 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1608 && reg_renumber[REGNO (SET_SRC (set))] < 0
1609 && reg_renumber[REGNO (SET_DEST (set))] < 0
1610 && reg_equiv_memory_loc[REGNO (SET_SRC (set))] != NULL
1611 && reg_equiv_memory_loc[REGNO (SET_DEST (set))] != NULL
1612 && rtx_equal_p (reg_equiv_memory_loc
1613 [REGNO (SET_SRC (set))],
1614 reg_equiv_memory_loc
1615 [REGNO (SET_DEST (set))]))))
1617 if (ira_conflicts_p)
1618 /* Inform IRA about the insn deletion. */
1619 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1620 REGNO (SET_SRC (set)));
1621 delete_insn (insn);
1622 /* Delete it from the reload chain. */
1623 if (chain->prev)
1624 chain->prev->next = next;
1625 else
1626 reload_insn_chain = next;
1627 if (next)
1628 next->prev = chain->prev;
1629 chain->next = unused_insn_chains;
1630 unused_insn_chains = chain;
1631 continue;
1634 if (num_eliminable)
1635 update_eliminable_offsets ();
1637 /* Remember for later shortcuts which insns had any reloads or
1638 register eliminations. */
1639 chain->need_elim = did_elimination;
1640 chain->need_reload = n_reloads > 0;
1641 chain->need_operand_change = operands_changed;
1643 /* Discard any register replacements done. */
1644 if (did_elimination)
1646 obstack_free (&reload_obstack, reload_insn_firstobj);
1647 PATTERN (insn) = old_body;
1648 INSN_CODE (insn) = old_code;
1649 REG_NOTES (insn) = old_notes;
1650 something_needs_elimination = 1;
1653 something_needs_operands_changed |= operands_changed;
1655 if (n_reloads != 0)
1657 copy_reloads (chain);
1658 *pprev_reload = chain;
1659 pprev_reload = &chain->next_need_reload;
1663 *pprev_reload = 0;
1666 /* Comparison function for qsort to decide which of two reloads
1667 should be handled first. *P1 and *P2 are the reload numbers. */
1669 static int
1670 reload_reg_class_lower (const void *r1p, const void *r2p)
1672 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1673 int t;
1675 /* Consider required reloads before optional ones. */
1676 t = rld[r1].optional - rld[r2].optional;
1677 if (t != 0)
1678 return t;
1680 /* Count all solitary classes before non-solitary ones. */
1681 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1682 - (reg_class_size[(int) rld[r1].rclass] == 1));
1683 if (t != 0)
1684 return t;
1686 /* Aside from solitaires, consider all multi-reg groups first. */
1687 t = rld[r2].nregs - rld[r1].nregs;
1688 if (t != 0)
1689 return t;
1691 /* Consider reloads in order of increasing reg-class number. */
1692 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1693 if (t != 0)
1694 return t;
1696 /* If reloads are equally urgent, sort by reload number,
1697 so that the results of qsort leave nothing to chance. */
1698 return r1 - r2;
1701 /* The cost of spilling each hard reg. */
1702 static int spill_cost[FIRST_PSEUDO_REGISTER];
1704 /* When spilling multiple hard registers, we use SPILL_COST for the first
1705 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1706 only the first hard reg for a multi-reg pseudo. */
1707 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1709 /* Map of hard regno to pseudo regno currently occupying the hard
1710 reg. */
1711 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1713 /* Update the spill cost arrays, considering that pseudo REG is live. */
1715 static void
1716 count_pseudo (int reg)
1718 int freq = REG_FREQ (reg);
1719 int r = reg_renumber[reg];
1720 int nregs;
1722 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1723 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1724 /* Ignore spilled pseudo-registers which can be here only if IRA
1725 is used. */
1726 || (ira_conflicts_p && r < 0))
1727 return;
1729 SET_REGNO_REG_SET (&pseudos_counted, reg);
1731 gcc_assert (r >= 0);
1733 spill_add_cost[r] += freq;
1734 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1735 while (nregs-- > 0)
1737 hard_regno_to_pseudo_regno[r + nregs] = reg;
1738 spill_cost[r + nregs] += freq;
1742 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1743 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1745 static void
1746 order_regs_for_reload (struct insn_chain *chain)
1748 unsigned i;
1749 HARD_REG_SET used_by_pseudos;
1750 HARD_REG_SET used_by_pseudos2;
1751 reg_set_iterator rsi;
1753 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1755 memset (spill_cost, 0, sizeof spill_cost);
1756 memset (spill_add_cost, 0, sizeof spill_add_cost);
1757 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1758 hard_regno_to_pseudo_regno[i] = -1;
1760 /* Count number of uses of each hard reg by pseudo regs allocated to it
1761 and then order them by decreasing use. First exclude hard registers
1762 that are live in or across this insn. */
1764 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1765 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1766 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1767 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1769 /* Now find out which pseudos are allocated to it, and update
1770 hard_reg_n_uses. */
1771 CLEAR_REG_SET (&pseudos_counted);
1773 EXECUTE_IF_SET_IN_REG_SET
1774 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1776 count_pseudo (i);
1778 EXECUTE_IF_SET_IN_REG_SET
1779 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1781 count_pseudo (i);
1783 CLEAR_REG_SET (&pseudos_counted);
1786 /* Vector of reload-numbers showing the order in which the reloads should
1787 be processed. */
1788 static short reload_order[MAX_RELOADS];
1790 /* This is used to keep track of the spill regs used in one insn. */
1791 static HARD_REG_SET used_spill_regs_local;
1793 /* We decided to spill hard register SPILLED, which has a size of
1794 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1795 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1796 update SPILL_COST/SPILL_ADD_COST. */
1798 static void
1799 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1801 int freq = REG_FREQ (reg);
1802 int r = reg_renumber[reg];
1803 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1805 /* Ignore spilled pseudo-registers which can be here only if IRA is
1806 used. */
1807 if ((ira_conflicts_p && r < 0)
1808 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1809 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1810 return;
1812 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1814 spill_add_cost[r] -= freq;
1815 while (nregs-- > 0)
1817 hard_regno_to_pseudo_regno[r + nregs] = -1;
1818 spill_cost[r + nregs] -= freq;
1822 /* Find reload register to use for reload number ORDER. */
1824 static int
1825 find_reg (struct insn_chain *chain, int order)
1827 int rnum = reload_order[order];
1828 struct reload *rl = rld + rnum;
1829 int best_cost = INT_MAX;
1830 int best_reg = -1;
1831 unsigned int i, j, n;
1832 int k;
1833 HARD_REG_SET not_usable;
1834 HARD_REG_SET used_by_other_reload;
1835 reg_set_iterator rsi;
1836 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1837 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1839 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1840 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1841 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1843 CLEAR_HARD_REG_SET (used_by_other_reload);
1844 for (k = 0; k < order; k++)
1846 int other = reload_order[k];
1848 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1849 for (j = 0; j < rld[other].nregs; j++)
1850 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1853 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1855 #ifdef REG_ALLOC_ORDER
1856 unsigned int regno = reg_alloc_order[i];
1857 #else
1858 unsigned int regno = i;
1859 #endif
1861 if (! TEST_HARD_REG_BIT (not_usable, regno)
1862 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1863 && HARD_REGNO_MODE_OK (regno, rl->mode))
1865 int this_cost = spill_cost[regno];
1866 int ok = 1;
1867 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1869 for (j = 1; j < this_nregs; j++)
1871 this_cost += spill_add_cost[regno + j];
1872 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1873 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1874 ok = 0;
1876 if (! ok)
1877 continue;
1879 if (ira_conflicts_p)
1881 /* Ask IRA to find a better pseudo-register for
1882 spilling. */
1883 for (n = j = 0; j < this_nregs; j++)
1885 int r = hard_regno_to_pseudo_regno[regno + j];
1887 if (r < 0)
1888 continue;
1889 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1890 regno_pseudo_regs[n++] = r;
1892 regno_pseudo_regs[n++] = -1;
1893 if (best_reg < 0
1894 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1895 best_regno_pseudo_regs,
1896 rl->in, rl->out,
1897 chain->insn))
1899 best_reg = regno;
1900 for (j = 0;; j++)
1902 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1903 if (regno_pseudo_regs[j] < 0)
1904 break;
1907 continue;
1910 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1911 this_cost--;
1912 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1913 this_cost--;
1914 if (this_cost < best_cost
1915 /* Among registers with equal cost, prefer caller-saved ones, or
1916 use REG_ALLOC_ORDER if it is defined. */
1917 || (this_cost == best_cost
1918 #ifdef REG_ALLOC_ORDER
1919 && (inv_reg_alloc_order[regno]
1920 < inv_reg_alloc_order[best_reg])
1921 #else
1922 && call_used_regs[regno]
1923 && ! call_used_regs[best_reg]
1924 #endif
1927 best_reg = regno;
1928 best_cost = this_cost;
1932 if (best_reg == -1)
1933 return 0;
1935 if (dump_file)
1936 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1938 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1939 rl->regno = best_reg;
1941 EXECUTE_IF_SET_IN_REG_SET
1942 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1944 count_spilled_pseudo (best_reg, rl->nregs, j);
1947 EXECUTE_IF_SET_IN_REG_SET
1948 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1950 count_spilled_pseudo (best_reg, rl->nregs, j);
1953 for (i = 0; i < rl->nregs; i++)
1955 gcc_assert (spill_cost[best_reg + i] == 0);
1956 gcc_assert (spill_add_cost[best_reg + i] == 0);
1957 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1958 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1960 return 1;
1963 /* Find more reload regs to satisfy the remaining need of an insn, which
1964 is given by CHAIN.
1965 Do it by ascending class number, since otherwise a reg
1966 might be spilled for a big class and might fail to count
1967 for a smaller class even though it belongs to that class. */
1969 static void
1970 find_reload_regs (struct insn_chain *chain)
1972 int i;
1974 /* In order to be certain of getting the registers we need,
1975 we must sort the reloads into order of increasing register class.
1976 Then our grabbing of reload registers will parallel the process
1977 that provided the reload registers. */
1978 for (i = 0; i < chain->n_reloads; i++)
1980 /* Show whether this reload already has a hard reg. */
1981 if (chain->rld[i].reg_rtx)
1983 int regno = REGNO (chain->rld[i].reg_rtx);
1984 chain->rld[i].regno = regno;
1985 chain->rld[i].nregs
1986 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1988 else
1989 chain->rld[i].regno = -1;
1990 reload_order[i] = i;
1993 n_reloads = chain->n_reloads;
1994 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1996 CLEAR_HARD_REG_SET (used_spill_regs_local);
1998 if (dump_file)
1999 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2001 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2003 /* Compute the order of preference for hard registers to spill. */
2005 order_regs_for_reload (chain);
2007 for (i = 0; i < n_reloads; i++)
2009 int r = reload_order[i];
2011 /* Ignore reloads that got marked inoperative. */
2012 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2013 && ! rld[r].optional
2014 && rld[r].regno == -1)
2015 if (! find_reg (chain, i))
2017 if (dump_file)
2018 fprintf (dump_file, "reload failure for reload %d\n", r);
2019 spill_failure (chain->insn, rld[r].rclass);
2020 failure = 1;
2021 return;
2025 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2026 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2028 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2031 static void
2032 select_reload_regs (void)
2034 struct insn_chain *chain;
2036 /* Try to satisfy the needs for each insn. */
2037 for (chain = insns_need_reload; chain != 0;
2038 chain = chain->next_need_reload)
2039 find_reload_regs (chain);
2042 /* Delete all insns that were inserted by emit_caller_save_insns during
2043 this iteration. */
2044 static void
2045 delete_caller_save_insns (void)
2047 struct insn_chain *c = reload_insn_chain;
2049 while (c != 0)
2051 while (c != 0 && c->is_caller_save_insn)
2053 struct insn_chain *next = c->next;
2054 rtx insn = c->insn;
2056 if (c == reload_insn_chain)
2057 reload_insn_chain = next;
2058 delete_insn (insn);
2060 if (next)
2061 next->prev = c->prev;
2062 if (c->prev)
2063 c->prev->next = next;
2064 c->next = unused_insn_chains;
2065 unused_insn_chains = c;
2066 c = next;
2068 if (c != 0)
2069 c = c->next;
2073 /* Handle the failure to find a register to spill.
2074 INSN should be one of the insns which needed this particular spill reg. */
2076 static void
2077 spill_failure (rtx insn, enum reg_class rclass)
2079 if (asm_noperands (PATTERN (insn)) >= 0)
2080 error_for_asm (insn, "can't find a register in class %qs while "
2081 "reloading %<asm%>",
2082 reg_class_names[rclass]);
2083 else
2085 error ("unable to find a register to spill in class %qs",
2086 reg_class_names[rclass]);
2088 if (dump_file)
2090 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2091 debug_reload_to_stream (dump_file);
2093 fatal_insn ("this is the insn:", insn);
2097 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2098 data that is dead in INSN. */
2100 static void
2101 delete_dead_insn (rtx insn)
2103 rtx prev = prev_real_insn (insn);
2104 rtx prev_dest;
2106 /* If the previous insn sets a register that dies in our insn, delete it
2107 too. */
2108 if (prev && GET_CODE (PATTERN (prev)) == SET
2109 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2110 && reg_mentioned_p (prev_dest, PATTERN (insn))
2111 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2112 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2113 delete_dead_insn (prev);
2115 SET_INSN_DELETED (insn);
2118 /* Modify the home of pseudo-reg I.
2119 The new home is present in reg_renumber[I].
2121 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2122 or it may be -1, meaning there is none or it is not relevant.
2123 This is used so that all pseudos spilled from a given hard reg
2124 can share one stack slot. */
2126 static void
2127 alter_reg (int i, int from_reg, bool dont_share_p)
2129 /* When outputting an inline function, this can happen
2130 for a reg that isn't actually used. */
2131 if (regno_reg_rtx[i] == 0)
2132 return;
2134 /* If the reg got changed to a MEM at rtl-generation time,
2135 ignore it. */
2136 if (!REG_P (regno_reg_rtx[i]))
2137 return;
2139 /* Modify the reg-rtx to contain the new hard reg
2140 number or else to contain its pseudo reg number. */
2141 SET_REGNO (regno_reg_rtx[i],
2142 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2144 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2145 allocate a stack slot for it. */
2147 if (reg_renumber[i] < 0
2148 && REG_N_REFS (i) > 0
2149 && reg_equiv_constant[i] == 0
2150 && (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
2151 && reg_equiv_memory_loc[i] == 0)
2153 rtx x = NULL_RTX;
2154 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2155 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2156 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2157 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2158 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2159 int adjust = 0;
2161 if (ira_conflicts_p)
2163 /* Mark the spill for IRA. */
2164 SET_REGNO_REG_SET (&spilled_pseudos, i);
2165 if (!dont_share_p)
2166 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2169 if (x)
2172 /* Each pseudo reg has an inherent size which comes from its own mode,
2173 and a total size which provides room for paradoxical subregs
2174 which refer to the pseudo reg in wider modes.
2176 We can use a slot already allocated if it provides both
2177 enough inherent space and enough total space.
2178 Otherwise, we allocate a new slot, making sure that it has no less
2179 inherent space, and no less total space, then the previous slot. */
2180 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2182 rtx stack_slot;
2184 /* No known place to spill from => no slot to reuse. */
2185 x = assign_stack_local (mode, total_size,
2186 min_align > inherent_align
2187 || total_size > inherent_size ? -1 : 0);
2189 stack_slot = x;
2191 /* Cancel the big-endian correction done in assign_stack_local.
2192 Get the address of the beginning of the slot. This is so we
2193 can do a big-endian correction unconditionally below. */
2194 if (BYTES_BIG_ENDIAN)
2196 adjust = inherent_size - total_size;
2197 if (adjust)
2198 stack_slot
2199 = adjust_address_nv (x, mode_for_size (total_size
2200 * BITS_PER_UNIT,
2201 MODE_INT, 1),
2202 adjust);
2205 if (! dont_share_p && ira_conflicts_p)
2206 /* Inform IRA about allocation a new stack slot. */
2207 ira_mark_new_stack_slot (stack_slot, i, total_size);
2210 /* Reuse a stack slot if possible. */
2211 else if (spill_stack_slot[from_reg] != 0
2212 && spill_stack_slot_width[from_reg] >= total_size
2213 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2214 >= inherent_size)
2215 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2216 x = spill_stack_slot[from_reg];
2218 /* Allocate a bigger slot. */
2219 else
2221 /* Compute maximum size needed, both for inherent size
2222 and for total size. */
2223 rtx stack_slot;
2225 if (spill_stack_slot[from_reg])
2227 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2228 > inherent_size)
2229 mode = GET_MODE (spill_stack_slot[from_reg]);
2230 if (spill_stack_slot_width[from_reg] > total_size)
2231 total_size = spill_stack_slot_width[from_reg];
2232 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2233 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2236 /* Make a slot with that size. */
2237 x = assign_stack_local (mode, total_size,
2238 min_align > inherent_align
2239 || total_size > inherent_size ? -1 : 0);
2240 stack_slot = x;
2242 /* Cancel the big-endian correction done in assign_stack_local.
2243 Get the address of the beginning of the slot. This is so we
2244 can do a big-endian correction unconditionally below. */
2245 if (BYTES_BIG_ENDIAN)
2247 adjust = GET_MODE_SIZE (mode) - total_size;
2248 if (adjust)
2249 stack_slot
2250 = adjust_address_nv (x, mode_for_size (total_size
2251 * BITS_PER_UNIT,
2252 MODE_INT, 1),
2253 adjust);
2256 spill_stack_slot[from_reg] = stack_slot;
2257 spill_stack_slot_width[from_reg] = total_size;
2260 /* On a big endian machine, the "address" of the slot
2261 is the address of the low part that fits its inherent mode. */
2262 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2263 adjust += (total_size - inherent_size);
2265 /* If we have any adjustment to make, or if the stack slot is the
2266 wrong mode, make a new stack slot. */
2267 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2269 /* Set all of the memory attributes as appropriate for a spill. */
2270 set_mem_attrs_for_spill (x);
2272 /* Save the stack slot for later. */
2273 reg_equiv_memory_loc[i] = x;
2277 /* Mark the slots in regs_ever_live for the hard regs used by
2278 pseudo-reg number REGNO, accessed in MODE. */
2280 static void
2281 mark_home_live_1 (int regno, enum machine_mode mode)
2283 int i, lim;
2285 i = reg_renumber[regno];
2286 if (i < 0)
2287 return;
2288 lim = end_hard_regno (mode, i);
2289 while (i < lim)
2290 df_set_regs_ever_live(i++, true);
2293 /* Mark the slots in regs_ever_live for the hard regs
2294 used by pseudo-reg number REGNO. */
2296 void
2297 mark_home_live (int regno)
2299 if (reg_renumber[regno] >= 0)
2300 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2303 /* This function handles the tracking of elimination offsets around branches.
2305 X is a piece of RTL being scanned.
2307 INSN is the insn that it came from, if any.
2309 INITIAL_P is nonzero if we are to set the offset to be the initial
2310 offset and zero if we are setting the offset of the label to be the
2311 current offset. */
2313 static void
2314 set_label_offsets (rtx x, rtx insn, int initial_p)
2316 enum rtx_code code = GET_CODE (x);
2317 rtx tem;
2318 unsigned int i;
2319 struct elim_table *p;
2321 switch (code)
2323 case LABEL_REF:
2324 if (LABEL_REF_NONLOCAL_P (x))
2325 return;
2327 x = XEXP (x, 0);
2329 /* ... fall through ... */
2331 case CODE_LABEL:
2332 /* If we know nothing about this label, set the desired offsets. Note
2333 that this sets the offset at a label to be the offset before a label
2334 if we don't know anything about the label. This is not correct for
2335 the label after a BARRIER, but is the best guess we can make. If
2336 we guessed wrong, we will suppress an elimination that might have
2337 been possible had we been able to guess correctly. */
2339 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2341 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2342 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2343 = (initial_p ? reg_eliminate[i].initial_offset
2344 : reg_eliminate[i].offset);
2345 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2348 /* Otherwise, if this is the definition of a label and it is
2349 preceded by a BARRIER, set our offsets to the known offset of
2350 that label. */
2352 else if (x == insn
2353 && (tem = prev_nonnote_insn (insn)) != 0
2354 && BARRIER_P (tem))
2355 set_offsets_for_label (insn);
2356 else
2357 /* If neither of the above cases is true, compare each offset
2358 with those previously recorded and suppress any eliminations
2359 where the offsets disagree. */
2361 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2362 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2363 != (initial_p ? reg_eliminate[i].initial_offset
2364 : reg_eliminate[i].offset))
2365 reg_eliminate[i].can_eliminate = 0;
2367 return;
2369 case JUMP_INSN:
2370 set_label_offsets (PATTERN (insn), insn, initial_p);
2372 /* ... fall through ... */
2374 case INSN:
2375 case CALL_INSN:
2376 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2377 to indirectly and hence must have all eliminations at their
2378 initial offsets. */
2379 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2380 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2381 set_label_offsets (XEXP (tem, 0), insn, 1);
2382 return;
2384 case PARALLEL:
2385 case ADDR_VEC:
2386 case ADDR_DIFF_VEC:
2387 /* Each of the labels in the parallel or address vector must be
2388 at their initial offsets. We want the first field for PARALLEL
2389 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2391 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2392 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2393 insn, initial_p);
2394 return;
2396 case SET:
2397 /* We only care about setting PC. If the source is not RETURN,
2398 IF_THEN_ELSE, or a label, disable any eliminations not at
2399 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2400 isn't one of those possibilities. For branches to a label,
2401 call ourselves recursively.
2403 Note that this can disable elimination unnecessarily when we have
2404 a non-local goto since it will look like a non-constant jump to
2405 someplace in the current function. This isn't a significant
2406 problem since such jumps will normally be when all elimination
2407 pairs are back to their initial offsets. */
2409 if (SET_DEST (x) != pc_rtx)
2410 return;
2412 switch (GET_CODE (SET_SRC (x)))
2414 case PC:
2415 case RETURN:
2416 return;
2418 case LABEL_REF:
2419 set_label_offsets (SET_SRC (x), insn, initial_p);
2420 return;
2422 case IF_THEN_ELSE:
2423 tem = XEXP (SET_SRC (x), 1);
2424 if (GET_CODE (tem) == LABEL_REF)
2425 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2426 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2427 break;
2429 tem = XEXP (SET_SRC (x), 2);
2430 if (GET_CODE (tem) == LABEL_REF)
2431 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2432 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2433 break;
2434 return;
2436 default:
2437 break;
2440 /* If we reach here, all eliminations must be at their initial
2441 offset because we are doing a jump to a variable address. */
2442 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2443 if (p->offset != p->initial_offset)
2444 p->can_eliminate = 0;
2445 break;
2447 default:
2448 break;
2452 /* Scan X and replace any eliminable registers (such as fp) with a
2453 replacement (such as sp), plus an offset.
2455 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2456 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2457 MEM, we are allowed to replace a sum of a register and the constant zero
2458 with the register, which we cannot do outside a MEM. In addition, we need
2459 to record the fact that a register is referenced outside a MEM.
2461 If INSN is an insn, it is the insn containing X. If we replace a REG
2462 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2463 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2464 the REG is being modified.
2466 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2467 That's used when we eliminate in expressions stored in notes.
2468 This means, do not set ref_outside_mem even if the reference
2469 is outside of MEMs.
2471 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2472 replacements done assuming all offsets are at their initial values. If
2473 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2474 encounter, return the actual location so that find_reloads will do
2475 the proper thing. */
2477 static rtx
2478 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2479 bool may_use_invariant)
2481 enum rtx_code code = GET_CODE (x);
2482 struct elim_table *ep;
2483 int regno;
2484 rtx new_rtx;
2485 int i, j;
2486 const char *fmt;
2487 int copied = 0;
2489 if (! current_function_decl)
2490 return x;
2492 switch (code)
2494 case CONST_INT:
2495 case CONST_DOUBLE:
2496 case CONST_FIXED:
2497 case CONST_VECTOR:
2498 case CONST:
2499 case SYMBOL_REF:
2500 case CODE_LABEL:
2501 case PC:
2502 case CC0:
2503 case ASM_INPUT:
2504 case ADDR_VEC:
2505 case ADDR_DIFF_VEC:
2506 case RETURN:
2507 return x;
2509 case REG:
2510 regno = REGNO (x);
2512 /* First handle the case where we encounter a bare register that
2513 is eliminable. Replace it with a PLUS. */
2514 if (regno < FIRST_PSEUDO_REGISTER)
2516 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2517 ep++)
2518 if (ep->from_rtx == x && ep->can_eliminate)
2519 return plus_constant (ep->to_rtx, ep->previous_offset);
2522 else if (reg_renumber && reg_renumber[regno] < 0
2523 && reg_equiv_invariant && reg_equiv_invariant[regno])
2525 if (may_use_invariant)
2526 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
2527 mem_mode, insn, true);
2528 /* There exists at least one use of REGNO that cannot be
2529 eliminated. Prevent the defining insn from being deleted. */
2530 reg_equiv_init[regno] = NULL_RTX;
2531 alter_reg (regno, -1, true);
2533 return x;
2535 /* You might think handling MINUS in a manner similar to PLUS is a
2536 good idea. It is not. It has been tried multiple times and every
2537 time the change has had to have been reverted.
2539 Other parts of reload know a PLUS is special (gen_reload for example)
2540 and require special code to handle code a reloaded PLUS operand.
2542 Also consider backends where the flags register is clobbered by a
2543 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2544 lea instruction comes to mind). If we try to reload a MINUS, we
2545 may kill the flags register that was holding a useful value.
2547 So, please before trying to handle MINUS, consider reload as a
2548 whole instead of this little section as well as the backend issues. */
2549 case PLUS:
2550 /* If this is the sum of an eliminable register and a constant, rework
2551 the sum. */
2552 if (REG_P (XEXP (x, 0))
2553 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2554 && CONSTANT_P (XEXP (x, 1)))
2556 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2557 ep++)
2558 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2560 /* The only time we want to replace a PLUS with a REG (this
2561 occurs when the constant operand of the PLUS is the negative
2562 of the offset) is when we are inside a MEM. We won't want
2563 to do so at other times because that would change the
2564 structure of the insn in a way that reload can't handle.
2565 We special-case the commonest situation in
2566 eliminate_regs_in_insn, so just replace a PLUS with a
2567 PLUS here, unless inside a MEM. */
2568 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2569 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2570 return ep->to_rtx;
2571 else
2572 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2573 plus_constant (XEXP (x, 1),
2574 ep->previous_offset));
2577 /* If the register is not eliminable, we are done since the other
2578 operand is a constant. */
2579 return x;
2582 /* If this is part of an address, we want to bring any constant to the
2583 outermost PLUS. We will do this by doing register replacement in
2584 our operands and seeing if a constant shows up in one of them.
2586 Note that there is no risk of modifying the structure of the insn,
2587 since we only get called for its operands, thus we are either
2588 modifying the address inside a MEM, or something like an address
2589 operand of a load-address insn. */
2592 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2593 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2595 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2597 /* If one side is a PLUS and the other side is a pseudo that
2598 didn't get a hard register but has a reg_equiv_constant,
2599 we must replace the constant here since it may no longer
2600 be in the position of any operand. */
2601 if (GET_CODE (new0) == PLUS && REG_P (new1)
2602 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2603 && reg_renumber[REGNO (new1)] < 0
2604 && reg_equiv_constant != 0
2605 && reg_equiv_constant[REGNO (new1)] != 0)
2606 new1 = reg_equiv_constant[REGNO (new1)];
2607 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2608 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2609 && reg_renumber[REGNO (new0)] < 0
2610 && reg_equiv_constant[REGNO (new0)] != 0)
2611 new0 = reg_equiv_constant[REGNO (new0)];
2613 new_rtx = form_sum (new0, new1);
2615 /* As above, if we are not inside a MEM we do not want to
2616 turn a PLUS into something else. We might try to do so here
2617 for an addition of 0 if we aren't optimizing. */
2618 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2619 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2620 else
2621 return new_rtx;
2624 return x;
2626 case MULT:
2627 /* If this is the product of an eliminable register and a
2628 constant, apply the distribute law and move the constant out
2629 so that we have (plus (mult ..) ..). This is needed in order
2630 to keep load-address insns valid. This case is pathological.
2631 We ignore the possibility of overflow here. */
2632 if (REG_P (XEXP (x, 0))
2633 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2634 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2635 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2636 ep++)
2637 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2639 if (! mem_mode
2640 /* Refs inside notes don't count for this purpose. */
2641 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2642 || GET_CODE (insn) == INSN_LIST)))
2643 ep->ref_outside_mem = 1;
2645 return
2646 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2647 ep->previous_offset * INTVAL (XEXP (x, 1)));
2650 /* ... fall through ... */
2652 case CALL:
2653 case COMPARE:
2654 /* See comments before PLUS about handling MINUS. */
2655 case MINUS:
2656 case DIV: case UDIV:
2657 case MOD: case UMOD:
2658 case AND: case IOR: case XOR:
2659 case ROTATERT: case ROTATE:
2660 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2661 case NE: case EQ:
2662 case GE: case GT: case GEU: case GTU:
2663 case LE: case LT: case LEU: case LTU:
2665 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2666 rtx new1 = XEXP (x, 1)
2667 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
2669 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2670 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2672 return x;
2674 case EXPR_LIST:
2675 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2676 if (XEXP (x, 0))
2678 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2679 if (new_rtx != XEXP (x, 0))
2681 /* If this is a REG_DEAD note, it is not valid anymore.
2682 Using the eliminated version could result in creating a
2683 REG_DEAD note for the stack or frame pointer. */
2684 if (REG_NOTE_KIND (x) == REG_DEAD)
2685 return (XEXP (x, 1)
2686 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
2687 : NULL_RTX);
2689 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2693 /* ... fall through ... */
2695 case INSN_LIST:
2696 /* Now do eliminations in the rest of the chain. If this was
2697 an EXPR_LIST, this might result in allocating more memory than is
2698 strictly needed, but it simplifies the code. */
2699 if (XEXP (x, 1))
2701 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2702 if (new_rtx != XEXP (x, 1))
2703 return
2704 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2706 return x;
2708 case PRE_INC:
2709 case POST_INC:
2710 case PRE_DEC:
2711 case POST_DEC:
2712 /* We do not support elimination of a register that is modified.
2713 elimination_effects has already make sure that this does not
2714 happen. */
2715 return x;
2717 case PRE_MODIFY:
2718 case POST_MODIFY:
2719 /* We do not support elimination of a register that is modified.
2720 elimination_effects has already make sure that this does not
2721 happen. The only remaining case we need to consider here is
2722 that the increment value may be an eliminable register. */
2723 if (GET_CODE (XEXP (x, 1)) == PLUS
2724 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2726 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2727 insn, true);
2729 if (new_rtx != XEXP (XEXP (x, 1), 1))
2730 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2731 gen_rtx_PLUS (GET_MODE (x),
2732 XEXP (x, 0), new_rtx));
2734 return x;
2736 case STRICT_LOW_PART:
2737 case NEG: case NOT:
2738 case SIGN_EXTEND: case ZERO_EXTEND:
2739 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2740 case FLOAT: case FIX:
2741 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2742 case ABS:
2743 case SQRT:
2744 case FFS:
2745 case CLZ:
2746 case CTZ:
2747 case POPCOUNT:
2748 case PARITY:
2749 case BSWAP:
2750 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2751 if (new_rtx != XEXP (x, 0))
2752 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2753 return x;
2755 case SUBREG:
2756 /* Similar to above processing, but preserve SUBREG_BYTE.
2757 Convert (subreg (mem)) to (mem) if not paradoxical.
2758 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2759 pseudo didn't get a hard reg, we must replace this with the
2760 eliminated version of the memory location because push_reload
2761 may do the replacement in certain circumstances. */
2762 if (REG_P (SUBREG_REG (x))
2763 && (GET_MODE_SIZE (GET_MODE (x))
2764 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2765 && reg_equiv_memory_loc != 0
2766 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2768 new_rtx = SUBREG_REG (x);
2770 else
2771 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
2773 if (new_rtx != SUBREG_REG (x))
2775 int x_size = GET_MODE_SIZE (GET_MODE (x));
2776 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2778 if (MEM_P (new_rtx)
2779 && ((x_size < new_size
2780 #ifdef WORD_REGISTER_OPERATIONS
2781 /* On these machines, combine can create rtl of the form
2782 (set (subreg:m1 (reg:m2 R) 0) ...)
2783 where m1 < m2, and expects something interesting to
2784 happen to the entire word. Moreover, it will use the
2785 (reg:m2 R) later, expecting all bits to be preserved.
2786 So if the number of words is the same, preserve the
2787 subreg so that push_reload can see it. */
2788 && ! ((x_size - 1) / UNITS_PER_WORD
2789 == (new_size -1 ) / UNITS_PER_WORD)
2790 #endif
2792 || x_size == new_size)
2794 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2795 else
2796 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2799 return x;
2801 case MEM:
2802 /* Our only special processing is to pass the mode of the MEM to our
2803 recursive call and copy the flags. While we are here, handle this
2804 case more efficiently. */
2805 return
2806 replace_equiv_address_nv (x,
2807 eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
2808 insn, true));
2810 case USE:
2811 /* Handle insn_list USE that a call to a pure function may generate. */
2812 new_rtx = eliminate_regs_1 (XEXP (x, 0), 0, insn, false);
2813 if (new_rtx != XEXP (x, 0))
2814 return gen_rtx_USE (GET_MODE (x), new_rtx);
2815 return x;
2817 case CLOBBER:
2818 case ASM_OPERANDS:
2819 case SET:
2820 gcc_unreachable ();
2822 default:
2823 break;
2826 /* Process each of our operands recursively. If any have changed, make a
2827 copy of the rtx. */
2828 fmt = GET_RTX_FORMAT (code);
2829 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2831 if (*fmt == 'e')
2833 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
2834 if (new_rtx != XEXP (x, i) && ! copied)
2836 x = shallow_copy_rtx (x);
2837 copied = 1;
2839 XEXP (x, i) = new_rtx;
2841 else if (*fmt == 'E')
2843 int copied_vec = 0;
2844 for (j = 0; j < XVECLEN (x, i); j++)
2846 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
2847 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2849 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2850 XVEC (x, i)->elem);
2851 if (! copied)
2853 x = shallow_copy_rtx (x);
2854 copied = 1;
2856 XVEC (x, i) = new_v;
2857 copied_vec = 1;
2859 XVECEXP (x, i, j) = new_rtx;
2864 return x;
2868 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2870 return eliminate_regs_1 (x, mem_mode, insn, false);
2873 /* Scan rtx X for modifications of elimination target registers. Update
2874 the table of eliminables to reflect the changed state. MEM_MODE is
2875 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2877 static void
2878 elimination_effects (rtx x, enum machine_mode mem_mode)
2880 enum rtx_code code = GET_CODE (x);
2881 struct elim_table *ep;
2882 int regno;
2883 int i, j;
2884 const char *fmt;
2886 switch (code)
2888 case CONST_INT:
2889 case CONST_DOUBLE:
2890 case CONST_FIXED:
2891 case CONST_VECTOR:
2892 case CONST:
2893 case SYMBOL_REF:
2894 case CODE_LABEL:
2895 case PC:
2896 case CC0:
2897 case ASM_INPUT:
2898 case ADDR_VEC:
2899 case ADDR_DIFF_VEC:
2900 case RETURN:
2901 return;
2903 case REG:
2904 regno = REGNO (x);
2906 /* First handle the case where we encounter a bare register that
2907 is eliminable. Replace it with a PLUS. */
2908 if (regno < FIRST_PSEUDO_REGISTER)
2910 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2911 ep++)
2912 if (ep->from_rtx == x && ep->can_eliminate)
2914 if (! mem_mode)
2915 ep->ref_outside_mem = 1;
2916 return;
2920 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2921 && reg_equiv_constant[regno]
2922 && ! function_invariant_p (reg_equiv_constant[regno]))
2923 elimination_effects (reg_equiv_constant[regno], mem_mode);
2924 return;
2926 case PRE_INC:
2927 case POST_INC:
2928 case PRE_DEC:
2929 case POST_DEC:
2930 case POST_MODIFY:
2931 case PRE_MODIFY:
2932 /* If we modify the source of an elimination rule, disable it. */
2933 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2934 if (ep->from_rtx == XEXP (x, 0))
2935 ep->can_eliminate = 0;
2937 /* If we modify the target of an elimination rule by adding a constant,
2938 update its offset. If we modify the target in any other way, we'll
2939 have to disable the rule as well. */
2940 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2941 if (ep->to_rtx == XEXP (x, 0))
2943 int size = GET_MODE_SIZE (mem_mode);
2945 /* If more bytes than MEM_MODE are pushed, account for them. */
2946 #ifdef PUSH_ROUNDING
2947 if (ep->to_rtx == stack_pointer_rtx)
2948 size = PUSH_ROUNDING (size);
2949 #endif
2950 if (code == PRE_DEC || code == POST_DEC)
2951 ep->offset += size;
2952 else if (code == PRE_INC || code == POST_INC)
2953 ep->offset -= size;
2954 else if (code == PRE_MODIFY || code == POST_MODIFY)
2956 if (GET_CODE (XEXP (x, 1)) == PLUS
2957 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2958 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
2959 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2960 else
2961 ep->can_eliminate = 0;
2965 /* These two aren't unary operators. */
2966 if (code == POST_MODIFY || code == PRE_MODIFY)
2967 break;
2969 /* Fall through to generic unary operation case. */
2970 case STRICT_LOW_PART:
2971 case NEG: case NOT:
2972 case SIGN_EXTEND: case ZERO_EXTEND:
2973 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2974 case FLOAT: case FIX:
2975 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2976 case ABS:
2977 case SQRT:
2978 case FFS:
2979 case CLZ:
2980 case CTZ:
2981 case POPCOUNT:
2982 case PARITY:
2983 case BSWAP:
2984 elimination_effects (XEXP (x, 0), mem_mode);
2985 return;
2987 case SUBREG:
2988 if (REG_P (SUBREG_REG (x))
2989 && (GET_MODE_SIZE (GET_MODE (x))
2990 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2991 && reg_equiv_memory_loc != 0
2992 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2993 return;
2995 elimination_effects (SUBREG_REG (x), mem_mode);
2996 return;
2998 case USE:
2999 /* If using a register that is the source of an eliminate we still
3000 think can be performed, note it cannot be performed since we don't
3001 know how this register is used. */
3002 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3003 if (ep->from_rtx == XEXP (x, 0))
3004 ep->can_eliminate = 0;
3006 elimination_effects (XEXP (x, 0), mem_mode);
3007 return;
3009 case CLOBBER:
3010 /* If clobbering a register that is the replacement register for an
3011 elimination we still think can be performed, note that it cannot
3012 be performed. Otherwise, we need not be concerned about it. */
3013 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3014 if (ep->to_rtx == XEXP (x, 0))
3015 ep->can_eliminate = 0;
3017 elimination_effects (XEXP (x, 0), mem_mode);
3018 return;
3020 case SET:
3021 /* Check for setting a register that we know about. */
3022 if (REG_P (SET_DEST (x)))
3024 /* See if this is setting the replacement register for an
3025 elimination.
3027 If DEST is the hard frame pointer, we do nothing because we
3028 assume that all assignments to the frame pointer are for
3029 non-local gotos and are being done at a time when they are valid
3030 and do not disturb anything else. Some machines want to
3031 eliminate a fake argument pointer (or even a fake frame pointer)
3032 with either the real frame or the stack pointer. Assignments to
3033 the hard frame pointer must not prevent this elimination. */
3035 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3036 ep++)
3037 if (ep->to_rtx == SET_DEST (x)
3038 && SET_DEST (x) != hard_frame_pointer_rtx)
3040 /* If it is being incremented, adjust the offset. Otherwise,
3041 this elimination can't be done. */
3042 rtx src = SET_SRC (x);
3044 if (GET_CODE (src) == PLUS
3045 && XEXP (src, 0) == SET_DEST (x)
3046 && GET_CODE (XEXP (src, 1)) == CONST_INT)
3047 ep->offset -= INTVAL (XEXP (src, 1));
3048 else
3049 ep->can_eliminate = 0;
3053 elimination_effects (SET_DEST (x), 0);
3054 elimination_effects (SET_SRC (x), 0);
3055 return;
3057 case MEM:
3058 /* Our only special processing is to pass the mode of the MEM to our
3059 recursive call. */
3060 elimination_effects (XEXP (x, 0), GET_MODE (x));
3061 return;
3063 default:
3064 break;
3067 fmt = GET_RTX_FORMAT (code);
3068 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3070 if (*fmt == 'e')
3071 elimination_effects (XEXP (x, i), mem_mode);
3072 else if (*fmt == 'E')
3073 for (j = 0; j < XVECLEN (x, i); j++)
3074 elimination_effects (XVECEXP (x, i, j), mem_mode);
3078 /* Descend through rtx X and verify that no references to eliminable registers
3079 remain. If any do remain, mark the involved register as not
3080 eliminable. */
3082 static void
3083 check_eliminable_occurrences (rtx x)
3085 const char *fmt;
3086 int i;
3087 enum rtx_code code;
3089 if (x == 0)
3090 return;
3092 code = GET_CODE (x);
3094 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3096 struct elim_table *ep;
3098 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3099 if (ep->from_rtx == x)
3100 ep->can_eliminate = 0;
3101 return;
3104 fmt = GET_RTX_FORMAT (code);
3105 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3107 if (*fmt == 'e')
3108 check_eliminable_occurrences (XEXP (x, i));
3109 else if (*fmt == 'E')
3111 int j;
3112 for (j = 0; j < XVECLEN (x, i); j++)
3113 check_eliminable_occurrences (XVECEXP (x, i, j));
3118 /* Scan INSN and eliminate all eliminable registers in it.
3120 If REPLACE is nonzero, do the replacement destructively. Also
3121 delete the insn as dead it if it is setting an eliminable register.
3123 If REPLACE is zero, do all our allocations in reload_obstack.
3125 If no eliminations were done and this insn doesn't require any elimination
3126 processing (these are not identical conditions: it might be updating sp,
3127 but not referencing fp; this needs to be seen during reload_as_needed so
3128 that the offset between fp and sp can be taken into consideration), zero
3129 is returned. Otherwise, 1 is returned. */
3131 static int
3132 eliminate_regs_in_insn (rtx insn, int replace)
3134 int icode = recog_memoized (insn);
3135 rtx old_body = PATTERN (insn);
3136 int insn_is_asm = asm_noperands (old_body) >= 0;
3137 rtx old_set = single_set (insn);
3138 rtx new_body;
3139 int val = 0;
3140 int i;
3141 rtx substed_operand[MAX_RECOG_OPERANDS];
3142 rtx orig_operand[MAX_RECOG_OPERANDS];
3143 struct elim_table *ep;
3144 rtx plus_src, plus_cst_src;
3146 if (! insn_is_asm && icode < 0)
3148 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3149 || GET_CODE (PATTERN (insn)) == CLOBBER
3150 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3151 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3152 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3153 return 0;
3156 if (old_set != 0 && REG_P (SET_DEST (old_set))
3157 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3159 /* Check for setting an eliminable register. */
3160 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3161 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3163 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3164 /* If this is setting the frame pointer register to the
3165 hardware frame pointer register and this is an elimination
3166 that will be done (tested above), this insn is really
3167 adjusting the frame pointer downward to compensate for
3168 the adjustment done before a nonlocal goto. */
3169 if (ep->from == FRAME_POINTER_REGNUM
3170 && ep->to == HARD_FRAME_POINTER_REGNUM)
3172 rtx base = SET_SRC (old_set);
3173 rtx base_insn = insn;
3174 HOST_WIDE_INT offset = 0;
3176 while (base != ep->to_rtx)
3178 rtx prev_insn, prev_set;
3180 if (GET_CODE (base) == PLUS
3181 && GET_CODE (XEXP (base, 1)) == CONST_INT)
3183 offset += INTVAL (XEXP (base, 1));
3184 base = XEXP (base, 0);
3186 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3187 && (prev_set = single_set (prev_insn)) != 0
3188 && rtx_equal_p (SET_DEST (prev_set), base))
3190 base = SET_SRC (prev_set);
3191 base_insn = prev_insn;
3193 else
3194 break;
3197 if (base == ep->to_rtx)
3199 rtx src
3200 = plus_constant (ep->to_rtx, offset - ep->offset);
3202 new_body = old_body;
3203 if (! replace)
3205 new_body = copy_insn (old_body);
3206 if (REG_NOTES (insn))
3207 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3209 PATTERN (insn) = new_body;
3210 old_set = single_set (insn);
3212 /* First see if this insn remains valid when we
3213 make the change. If not, keep the INSN_CODE
3214 the same and let reload fit it up. */
3215 validate_change (insn, &SET_SRC (old_set), src, 1);
3216 validate_change (insn, &SET_DEST (old_set),
3217 ep->to_rtx, 1);
3218 if (! apply_change_group ())
3220 SET_SRC (old_set) = src;
3221 SET_DEST (old_set) = ep->to_rtx;
3224 val = 1;
3225 goto done;
3228 #endif
3230 /* In this case this insn isn't serving a useful purpose. We
3231 will delete it in reload_as_needed once we know that this
3232 elimination is, in fact, being done.
3234 If REPLACE isn't set, we can't delete this insn, but needn't
3235 process it since it won't be used unless something changes. */
3236 if (replace)
3238 delete_dead_insn (insn);
3239 return 1;
3241 val = 1;
3242 goto done;
3246 /* We allow one special case which happens to work on all machines we
3247 currently support: a single set with the source or a REG_EQUAL
3248 note being a PLUS of an eliminable register and a constant. */
3249 plus_src = plus_cst_src = 0;
3250 if (old_set && REG_P (SET_DEST (old_set)))
3252 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3253 plus_src = SET_SRC (old_set);
3254 /* First see if the source is of the form (plus (...) CST). */
3255 if (plus_src
3256 && GET_CODE (XEXP (plus_src, 1)) == CONST_INT)
3257 plus_cst_src = plus_src;
3258 else if (REG_P (SET_SRC (old_set))
3259 || plus_src)
3261 /* Otherwise, see if we have a REG_EQUAL note of the form
3262 (plus (...) CST). */
3263 rtx links;
3264 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3266 if ((REG_NOTE_KIND (links) == REG_EQUAL
3267 || REG_NOTE_KIND (links) == REG_EQUIV)
3268 && GET_CODE (XEXP (links, 0)) == PLUS
3269 && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT)
3271 plus_cst_src = XEXP (links, 0);
3272 break;
3277 /* Check that the first operand of the PLUS is a hard reg or
3278 the lowpart subreg of one. */
3279 if (plus_cst_src)
3281 rtx reg = XEXP (plus_cst_src, 0);
3282 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3283 reg = SUBREG_REG (reg);
3285 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3286 plus_cst_src = 0;
3289 if (plus_cst_src)
3291 rtx reg = XEXP (plus_cst_src, 0);
3292 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3294 if (GET_CODE (reg) == SUBREG)
3295 reg = SUBREG_REG (reg);
3297 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3298 if (ep->from_rtx == reg && ep->can_eliminate)
3300 rtx to_rtx = ep->to_rtx;
3301 offset += ep->offset;
3302 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3304 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3305 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3306 to_rtx);
3307 /* If we have a nonzero offset, and the source is already
3308 a simple REG, the following transformation would
3309 increase the cost of the insn by replacing a simple REG
3310 with (plus (reg sp) CST). So try only when we already
3311 had a PLUS before. */
3312 if (offset == 0 || plus_src)
3314 rtx new_src = plus_constant (to_rtx, offset);
3316 new_body = old_body;
3317 if (! replace)
3319 new_body = copy_insn (old_body);
3320 if (REG_NOTES (insn))
3321 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3323 PATTERN (insn) = new_body;
3324 old_set = single_set (insn);
3326 /* First see if this insn remains valid when we make the
3327 change. If not, try to replace the whole pattern with
3328 a simple set (this may help if the original insn was a
3329 PARALLEL that was only recognized as single_set due to
3330 REG_UNUSED notes). If this isn't valid either, keep
3331 the INSN_CODE the same and let reload fix it up. */
3332 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3334 rtx new_pat = gen_rtx_SET (VOIDmode,
3335 SET_DEST (old_set), new_src);
3337 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3338 SET_SRC (old_set) = new_src;
3341 else
3342 break;
3344 val = 1;
3345 /* This can't have an effect on elimination offsets, so skip right
3346 to the end. */
3347 goto done;
3351 /* Determine the effects of this insn on elimination offsets. */
3352 elimination_effects (old_body, 0);
3354 /* Eliminate all eliminable registers occurring in operands that
3355 can be handled by reload. */
3356 extract_insn (insn);
3357 for (i = 0; i < recog_data.n_operands; i++)
3359 orig_operand[i] = recog_data.operand[i];
3360 substed_operand[i] = recog_data.operand[i];
3362 /* For an asm statement, every operand is eliminable. */
3363 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3365 bool is_set_src, in_plus;
3367 /* Check for setting a register that we know about. */
3368 if (recog_data.operand_type[i] != OP_IN
3369 && REG_P (orig_operand[i]))
3371 /* If we are assigning to a register that can be eliminated, it
3372 must be as part of a PARALLEL, since the code above handles
3373 single SETs. We must indicate that we can no longer
3374 eliminate this reg. */
3375 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3376 ep++)
3377 if (ep->from_rtx == orig_operand[i])
3378 ep->can_eliminate = 0;
3381 /* Companion to the above plus substitution, we can allow
3382 invariants as the source of a plain move. */
3383 is_set_src = false;
3384 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3385 is_set_src = true;
3386 in_plus = false;
3387 if (plus_src
3388 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3389 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3390 in_plus = true;
3392 substed_operand[i]
3393 = eliminate_regs_1 (recog_data.operand[i], 0,
3394 replace ? insn : NULL_RTX,
3395 is_set_src || in_plus);
3396 if (substed_operand[i] != orig_operand[i])
3397 val = 1;
3398 /* Terminate the search in check_eliminable_occurrences at
3399 this point. */
3400 *recog_data.operand_loc[i] = 0;
3402 /* If an output operand changed from a REG to a MEM and INSN is an
3403 insn, write a CLOBBER insn. */
3404 if (recog_data.operand_type[i] != OP_IN
3405 && REG_P (orig_operand[i])
3406 && MEM_P (substed_operand[i])
3407 && replace)
3408 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3412 for (i = 0; i < recog_data.n_dups; i++)
3413 *recog_data.dup_loc[i]
3414 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3416 /* If any eliminable remain, they aren't eliminable anymore. */
3417 check_eliminable_occurrences (old_body);
3419 /* Substitute the operands; the new values are in the substed_operand
3420 array. */
3421 for (i = 0; i < recog_data.n_operands; i++)
3422 *recog_data.operand_loc[i] = substed_operand[i];
3423 for (i = 0; i < recog_data.n_dups; i++)
3424 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3426 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3427 re-recognize the insn. We do this in case we had a simple addition
3428 but now can do this as a load-address. This saves an insn in this
3429 common case.
3430 If re-recognition fails, the old insn code number will still be used,
3431 and some register operands may have changed into PLUS expressions.
3432 These will be handled by find_reloads by loading them into a register
3433 again. */
3435 if (val)
3437 /* If we aren't replacing things permanently and we changed something,
3438 make another copy to ensure that all the RTL is new. Otherwise
3439 things can go wrong if find_reload swaps commutative operands
3440 and one is inside RTL that has been copied while the other is not. */
3441 new_body = old_body;
3442 if (! replace)
3444 new_body = copy_insn (old_body);
3445 if (REG_NOTES (insn))
3446 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3448 PATTERN (insn) = new_body;
3450 /* If we had a move insn but now we don't, rerecognize it. This will
3451 cause spurious re-recognition if the old move had a PARALLEL since
3452 the new one still will, but we can't call single_set without
3453 having put NEW_BODY into the insn and the re-recognition won't
3454 hurt in this rare case. */
3455 /* ??? Why this huge if statement - why don't we just rerecognize the
3456 thing always? */
3457 if (! insn_is_asm
3458 && old_set != 0
3459 && ((REG_P (SET_SRC (old_set))
3460 && (GET_CODE (new_body) != SET
3461 || !REG_P (SET_SRC (new_body))))
3462 /* If this was a load from or store to memory, compare
3463 the MEM in recog_data.operand to the one in the insn.
3464 If they are not equal, then rerecognize the insn. */
3465 || (old_set != 0
3466 && ((MEM_P (SET_SRC (old_set))
3467 && SET_SRC (old_set) != recog_data.operand[1])
3468 || (MEM_P (SET_DEST (old_set))
3469 && SET_DEST (old_set) != recog_data.operand[0])))
3470 /* If this was an add insn before, rerecognize. */
3471 || GET_CODE (SET_SRC (old_set)) == PLUS))
3473 int new_icode = recog (PATTERN (insn), insn, 0);
3474 if (new_icode >= 0)
3475 INSN_CODE (insn) = new_icode;
3479 /* Restore the old body. If there were any changes to it, we made a copy
3480 of it while the changes were still in place, so we'll correctly return
3481 a modified insn below. */
3482 if (! replace)
3484 /* Restore the old body. */
3485 for (i = 0; i < recog_data.n_operands; i++)
3486 *recog_data.operand_loc[i] = orig_operand[i];
3487 for (i = 0; i < recog_data.n_dups; i++)
3488 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3491 /* Update all elimination pairs to reflect the status after the current
3492 insn. The changes we make were determined by the earlier call to
3493 elimination_effects.
3495 We also detect cases where register elimination cannot be done,
3496 namely, if a register would be both changed and referenced outside a MEM
3497 in the resulting insn since such an insn is often undefined and, even if
3498 not, we cannot know what meaning will be given to it. Note that it is
3499 valid to have a register used in an address in an insn that changes it
3500 (presumably with a pre- or post-increment or decrement).
3502 If anything changes, return nonzero. */
3504 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3506 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3507 ep->can_eliminate = 0;
3509 ep->ref_outside_mem = 0;
3511 if (ep->previous_offset != ep->offset)
3512 val = 1;
3515 done:
3516 /* If we changed something, perform elimination in REG_NOTES. This is
3517 needed even when REPLACE is zero because a REG_DEAD note might refer
3518 to a register that we eliminate and could cause a different number
3519 of spill registers to be needed in the final reload pass than in
3520 the pre-passes. */
3521 if (val && REG_NOTES (insn) != 0)
3522 REG_NOTES (insn)
3523 = eliminate_regs_1 (REG_NOTES (insn), 0, REG_NOTES (insn), true);
3525 return val;
3528 /* Loop through all elimination pairs.
3529 Recalculate the number not at initial offset.
3531 Compute the maximum offset (minimum offset if the stack does not
3532 grow downward) for each elimination pair. */
3534 static void
3535 update_eliminable_offsets (void)
3537 struct elim_table *ep;
3539 num_not_at_initial_offset = 0;
3540 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3542 ep->previous_offset = ep->offset;
3543 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3544 num_not_at_initial_offset++;
3548 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3549 replacement we currently believe is valid, mark it as not eliminable if X
3550 modifies DEST in any way other than by adding a constant integer to it.
3552 If DEST is the frame pointer, we do nothing because we assume that
3553 all assignments to the hard frame pointer are nonlocal gotos and are being
3554 done at a time when they are valid and do not disturb anything else.
3555 Some machines want to eliminate a fake argument pointer with either the
3556 frame or stack pointer. Assignments to the hard frame pointer must not
3557 prevent this elimination.
3559 Called via note_stores from reload before starting its passes to scan
3560 the insns of the function. */
3562 static void
3563 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3565 unsigned int i;
3567 /* A SUBREG of a hard register here is just changing its mode. We should
3568 not see a SUBREG of an eliminable hard register, but check just in
3569 case. */
3570 if (GET_CODE (dest) == SUBREG)
3571 dest = SUBREG_REG (dest);
3573 if (dest == hard_frame_pointer_rtx)
3574 return;
3576 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3577 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3578 && (GET_CODE (x) != SET
3579 || GET_CODE (SET_SRC (x)) != PLUS
3580 || XEXP (SET_SRC (x), 0) != dest
3581 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3583 reg_eliminate[i].can_eliminate_previous
3584 = reg_eliminate[i].can_eliminate = 0;
3585 num_eliminable--;
3589 /* Verify that the initial elimination offsets did not change since the
3590 last call to set_initial_elim_offsets. This is used to catch cases
3591 where something illegal happened during reload_as_needed that could
3592 cause incorrect code to be generated if we did not check for it. */
3594 static bool
3595 verify_initial_elim_offsets (void)
3597 HOST_WIDE_INT t;
3599 if (!num_eliminable)
3600 return true;
3602 #ifdef ELIMINABLE_REGS
3604 struct elim_table *ep;
3606 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3608 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3609 if (t != ep->initial_offset)
3610 return false;
3613 #else
3614 INITIAL_FRAME_POINTER_OFFSET (t);
3615 if (t != reg_eliminate[0].initial_offset)
3616 return false;
3617 #endif
3619 return true;
3622 /* Reset all offsets on eliminable registers to their initial values. */
3624 static void
3625 set_initial_elim_offsets (void)
3627 struct elim_table *ep = reg_eliminate;
3629 #ifdef ELIMINABLE_REGS
3630 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3632 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3633 ep->previous_offset = ep->offset = ep->initial_offset;
3635 #else
3636 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3637 ep->previous_offset = ep->offset = ep->initial_offset;
3638 #endif
3640 num_not_at_initial_offset = 0;
3643 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3645 static void
3646 set_initial_eh_label_offset (rtx label)
3648 set_label_offsets (label, NULL_RTX, 1);
3651 /* Initialize the known label offsets.
3652 Set a known offset for each forced label to be at the initial offset
3653 of each elimination. We do this because we assume that all
3654 computed jumps occur from a location where each elimination is
3655 at its initial offset.
3656 For all other labels, show that we don't know the offsets. */
3658 static void
3659 set_initial_label_offsets (void)
3661 rtx x;
3662 memset (offsets_known_at, 0, num_labels);
3664 for (x = forced_labels; x; x = XEXP (x, 1))
3665 if (XEXP (x, 0))
3666 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3668 for_each_eh_label (set_initial_eh_label_offset);
3671 /* Set all elimination offsets to the known values for the code label given
3672 by INSN. */
3674 static void
3675 set_offsets_for_label (rtx insn)
3677 unsigned int i;
3678 int label_nr = CODE_LABEL_NUMBER (insn);
3679 struct elim_table *ep;
3681 num_not_at_initial_offset = 0;
3682 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3684 ep->offset = ep->previous_offset
3685 = offsets_at[label_nr - first_label_num][i];
3686 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3687 num_not_at_initial_offset++;
3691 /* See if anything that happened changes which eliminations are valid.
3692 For example, on the SPARC, whether or not the frame pointer can
3693 be eliminated can depend on what registers have been used. We need
3694 not check some conditions again (such as flag_omit_frame_pointer)
3695 since they can't have changed. */
3697 static void
3698 update_eliminables (HARD_REG_SET *pset)
3700 int previous_frame_pointer_needed = frame_pointer_needed;
3701 struct elim_table *ep;
3703 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3704 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3705 #ifdef ELIMINABLE_REGS
3706 || ! CAN_ELIMINATE (ep->from, ep->to)
3707 #endif
3709 ep->can_eliminate = 0;
3711 /* Look for the case where we have discovered that we can't replace
3712 register A with register B and that means that we will now be
3713 trying to replace register A with register C. This means we can
3714 no longer replace register C with register B and we need to disable
3715 such an elimination, if it exists. This occurs often with A == ap,
3716 B == sp, and C == fp. */
3718 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3720 struct elim_table *op;
3721 int new_to = -1;
3723 if (! ep->can_eliminate && ep->can_eliminate_previous)
3725 /* Find the current elimination for ep->from, if there is a
3726 new one. */
3727 for (op = reg_eliminate;
3728 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3729 if (op->from == ep->from && op->can_eliminate)
3731 new_to = op->to;
3732 break;
3735 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3736 disable it. */
3737 for (op = reg_eliminate;
3738 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3739 if (op->from == new_to && op->to == ep->to)
3740 op->can_eliminate = 0;
3744 /* See if any registers that we thought we could eliminate the previous
3745 time are no longer eliminable. If so, something has changed and we
3746 must spill the register. Also, recompute the number of eliminable
3747 registers and see if the frame pointer is needed; it is if there is
3748 no elimination of the frame pointer that we can perform. */
3750 frame_pointer_needed = 1;
3751 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3753 if (ep->can_eliminate
3754 && ep->from == FRAME_POINTER_REGNUM
3755 && ep->to != HARD_FRAME_POINTER_REGNUM
3756 && (! SUPPORTS_STACK_ALIGNMENT
3757 || ! crtl->stack_realign_needed))
3758 frame_pointer_needed = 0;
3760 if (! ep->can_eliminate && ep->can_eliminate_previous)
3762 ep->can_eliminate_previous = 0;
3763 SET_HARD_REG_BIT (*pset, ep->from);
3764 num_eliminable--;
3768 /* If we didn't need a frame pointer last time, but we do now, spill
3769 the hard frame pointer. */
3770 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3771 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3774 /* Return true if X is used as the target register of an elimination. */
3776 bool
3777 elimination_target_reg_p (rtx x)
3779 struct elim_table *ep;
3781 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3782 if (ep->to_rtx == x && ep->can_eliminate)
3783 return true;
3785 return false;
3788 /* Initialize the table of registers to eliminate.
3789 Pre-condition: global flag frame_pointer_needed has been set before
3790 calling this function. */
3792 static void
3793 init_elim_table (void)
3795 struct elim_table *ep;
3796 #ifdef ELIMINABLE_REGS
3797 const struct elim_table_1 *ep1;
3798 #endif
3800 if (!reg_eliminate)
3801 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
3803 num_eliminable = 0;
3805 #ifdef ELIMINABLE_REGS
3806 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3807 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3809 ep->from = ep1->from;
3810 ep->to = ep1->to;
3811 ep->can_eliminate = ep->can_eliminate_previous
3812 = (CAN_ELIMINATE (ep->from, ep->to)
3813 && ! (ep->to == STACK_POINTER_REGNUM
3814 && frame_pointer_needed
3815 && (! SUPPORTS_STACK_ALIGNMENT
3816 || ! stack_realign_fp)));
3818 #else
3819 reg_eliminate[0].from = reg_eliminate_1[0].from;
3820 reg_eliminate[0].to = reg_eliminate_1[0].to;
3821 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3822 = ! frame_pointer_needed;
3823 #endif
3825 /* Count the number of eliminable registers and build the FROM and TO
3826 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3827 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3828 We depend on this. */
3829 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3831 num_eliminable += ep->can_eliminate;
3832 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3833 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3837 /* Kick all pseudos out of hard register REGNO.
3839 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3840 because we found we can't eliminate some register. In the case, no pseudos
3841 are allowed to be in the register, even if they are only in a block that
3842 doesn't require spill registers, unlike the case when we are spilling this
3843 hard reg to produce another spill register.
3845 Return nonzero if any pseudos needed to be kicked out. */
3847 static void
3848 spill_hard_reg (unsigned int regno, int cant_eliminate)
3850 int i;
3852 if (cant_eliminate)
3854 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3855 df_set_regs_ever_live (regno, true);
3858 /* Spill every pseudo reg that was allocated to this reg
3859 or to something that overlaps this reg. */
3861 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3862 if (reg_renumber[i] >= 0
3863 && (unsigned int) reg_renumber[i] <= regno
3864 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
3865 SET_REGNO_REG_SET (&spilled_pseudos, i);
3868 /* After find_reload_regs has been run for all insn that need reloads,
3869 and/or spill_hard_regs was called, this function is used to actually
3870 spill pseudo registers and try to reallocate them. It also sets up the
3871 spill_regs array for use by choose_reload_regs. */
3873 static int
3874 finish_spills (int global)
3876 struct insn_chain *chain;
3877 int something_changed = 0;
3878 unsigned i;
3879 reg_set_iterator rsi;
3881 /* Build the spill_regs array for the function. */
3882 /* If there are some registers still to eliminate and one of the spill regs
3883 wasn't ever used before, additional stack space may have to be
3884 allocated to store this register. Thus, we may have changed the offset
3885 between the stack and frame pointers, so mark that something has changed.
3887 One might think that we need only set VAL to 1 if this is a call-used
3888 register. However, the set of registers that must be saved by the
3889 prologue is not identical to the call-used set. For example, the
3890 register used by the call insn for the return PC is a call-used register,
3891 but must be saved by the prologue. */
3893 n_spills = 0;
3894 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3895 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3897 spill_reg_order[i] = n_spills;
3898 spill_regs[n_spills++] = i;
3899 if (num_eliminable && ! df_regs_ever_live_p (i))
3900 something_changed = 1;
3901 df_set_regs_ever_live (i, true);
3903 else
3904 spill_reg_order[i] = -1;
3906 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
3907 if (! ira_conflicts_p || reg_renumber[i] >= 0)
3909 /* Record the current hard register the pseudo is allocated to
3910 in pseudo_previous_regs so we avoid reallocating it to the
3911 same hard reg in a later pass. */
3912 gcc_assert (reg_renumber[i] >= 0);
3914 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3915 /* Mark it as no longer having a hard register home. */
3916 reg_renumber[i] = -1;
3917 if (ira_conflicts_p)
3918 /* Inform IRA about the change. */
3919 ira_mark_allocation_change (i);
3920 /* We will need to scan everything again. */
3921 something_changed = 1;
3924 /* Retry global register allocation if possible. */
3925 if (global && ira_conflicts_p)
3927 unsigned int n;
3929 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3930 /* For every insn that needs reloads, set the registers used as spill
3931 regs in pseudo_forbidden_regs for every pseudo live across the
3932 insn. */
3933 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3935 EXECUTE_IF_SET_IN_REG_SET
3936 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3938 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3939 chain->used_spill_regs);
3941 EXECUTE_IF_SET_IN_REG_SET
3942 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
3944 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3945 chain->used_spill_regs);
3949 /* Retry allocating the pseudos spilled in IRA and the
3950 reload. For each reg, merge the various reg sets that
3951 indicate which hard regs can't be used, and call
3952 ira_reassign_pseudos. */
3953 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
3954 if (reg_old_renumber[i] != reg_renumber[i])
3956 if (reg_renumber[i] < 0)
3957 temp_pseudo_reg_arr[n++] = i;
3958 else
3959 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3961 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
3962 bad_spill_regs_global,
3963 pseudo_forbidden_regs, pseudo_previous_regs,
3964 &spilled_pseudos))
3965 something_changed = 1;
3967 /* Fix up the register information in the insn chain.
3968 This involves deleting those of the spilled pseudos which did not get
3969 a new hard register home from the live_{before,after} sets. */
3970 for (chain = reload_insn_chain; chain; chain = chain->next)
3972 HARD_REG_SET used_by_pseudos;
3973 HARD_REG_SET used_by_pseudos2;
3975 if (! ira_conflicts_p)
3977 /* Don't do it for IRA because IRA and the reload still can
3978 assign hard registers to the spilled pseudos on next
3979 reload iterations. */
3980 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3981 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3983 /* Mark any unallocated hard regs as available for spills. That
3984 makes inheritance work somewhat better. */
3985 if (chain->need_reload)
3987 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3988 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3989 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3991 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3992 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3993 /* Value of chain->used_spill_regs from previous iteration
3994 may be not included in the value calculated here because
3995 of possible removing caller-saves insns (see function
3996 delete_caller_save_insns. */
3997 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3998 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4002 CLEAR_REG_SET (&changed_allocation_pseudos);
4003 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4004 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4006 int regno = reg_renumber[i];
4007 if (reg_old_renumber[i] == regno)
4008 continue;
4010 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4012 alter_reg (i, reg_old_renumber[i], false);
4013 reg_old_renumber[i] = regno;
4014 if (dump_file)
4016 if (regno == -1)
4017 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4018 else
4019 fprintf (dump_file, " Register %d now in %d.\n\n",
4020 i, reg_renumber[i]);
4024 return something_changed;
4027 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4029 static void
4030 scan_paradoxical_subregs (rtx x)
4032 int i;
4033 const char *fmt;
4034 enum rtx_code code = GET_CODE (x);
4036 switch (code)
4038 case REG:
4039 case CONST_INT:
4040 case CONST:
4041 case SYMBOL_REF:
4042 case LABEL_REF:
4043 case CONST_DOUBLE:
4044 case CONST_FIXED:
4045 case CONST_VECTOR: /* shouldn't happen, but just in case. */
4046 case CC0:
4047 case PC:
4048 case USE:
4049 case CLOBBER:
4050 return;
4052 case SUBREG:
4053 if (REG_P (SUBREG_REG (x))
4054 && (GET_MODE_SIZE (GET_MODE (x))
4055 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4057 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4058 = GET_MODE_SIZE (GET_MODE (x));
4059 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4061 return;
4063 default:
4064 break;
4067 fmt = GET_RTX_FORMAT (code);
4068 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4070 if (fmt[i] == 'e')
4071 scan_paradoxical_subregs (XEXP (x, i));
4072 else if (fmt[i] == 'E')
4074 int j;
4075 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4076 scan_paradoxical_subregs (XVECEXP (x, i, j));
4081 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4082 examine all of the reload insns between PREV and NEXT exclusive, and
4083 annotate all that may trap. */
4085 static void
4086 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
4088 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4089 unsigned int trap_count;
4090 rtx i;
4092 if (note == NULL)
4093 return;
4095 if (may_trap_p (PATTERN (insn)))
4096 trap_count = 1;
4097 else
4099 remove_note (insn, note);
4100 trap_count = 0;
4103 for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
4104 if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
4106 trap_count++;
4107 add_reg_note (i, REG_EH_REGION, XEXP (note, 0));
4111 /* Reload pseudo-registers into hard regs around each insn as needed.
4112 Additional register load insns are output before the insn that needs it
4113 and perhaps store insns after insns that modify the reloaded pseudo reg.
4115 reg_last_reload_reg and reg_reloaded_contents keep track of
4116 which registers are already available in reload registers.
4117 We update these for the reloads that we perform,
4118 as the insns are scanned. */
4120 static void
4121 reload_as_needed (int live_known)
4123 struct insn_chain *chain;
4124 #if defined (AUTO_INC_DEC)
4125 int i;
4126 #endif
4127 rtx x;
4129 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4130 memset (spill_reg_store, 0, sizeof spill_reg_store);
4131 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4132 INIT_REG_SET (&reg_has_output_reload);
4133 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4134 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4136 set_initial_elim_offsets ();
4138 for (chain = reload_insn_chain; chain; chain = chain->next)
4140 rtx prev = 0;
4141 rtx insn = chain->insn;
4142 rtx old_next = NEXT_INSN (insn);
4143 #ifdef AUTO_INC_DEC
4144 rtx old_prev = PREV_INSN (insn);
4145 #endif
4147 /* If we pass a label, copy the offsets from the label information
4148 into the current offsets of each elimination. */
4149 if (LABEL_P (insn))
4150 set_offsets_for_label (insn);
4152 else if (INSN_P (insn))
4154 regset_head regs_to_forget;
4155 INIT_REG_SET (&regs_to_forget);
4156 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4158 /* If this is a USE and CLOBBER of a MEM, ensure that any
4159 references to eliminable registers have been removed. */
4161 if ((GET_CODE (PATTERN (insn)) == USE
4162 || GET_CODE (PATTERN (insn)) == CLOBBER)
4163 && MEM_P (XEXP (PATTERN (insn), 0)))
4164 XEXP (XEXP (PATTERN (insn), 0), 0)
4165 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4166 GET_MODE (XEXP (PATTERN (insn), 0)),
4167 NULL_RTX);
4169 /* If we need to do register elimination processing, do so.
4170 This might delete the insn, in which case we are done. */
4171 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4173 eliminate_regs_in_insn (insn, 1);
4174 if (NOTE_P (insn))
4176 update_eliminable_offsets ();
4177 CLEAR_REG_SET (&regs_to_forget);
4178 continue;
4182 /* If need_elim is nonzero but need_reload is zero, one might think
4183 that we could simply set n_reloads to 0. However, find_reloads
4184 could have done some manipulation of the insn (such as swapping
4185 commutative operands), and these manipulations are lost during
4186 the first pass for every insn that needs register elimination.
4187 So the actions of find_reloads must be redone here. */
4189 if (! chain->need_elim && ! chain->need_reload
4190 && ! chain->need_operand_change)
4191 n_reloads = 0;
4192 /* First find the pseudo regs that must be reloaded for this insn.
4193 This info is returned in the tables reload_... (see reload.h).
4194 Also modify the body of INSN by substituting RELOAD
4195 rtx's for those pseudo regs. */
4196 else
4198 CLEAR_REG_SET (&reg_has_output_reload);
4199 CLEAR_HARD_REG_SET (reg_is_output_reload);
4201 find_reloads (insn, 1, spill_indirect_levels, live_known,
4202 spill_reg_order);
4205 if (n_reloads > 0)
4207 rtx next = NEXT_INSN (insn);
4208 rtx p;
4210 prev = PREV_INSN (insn);
4212 /* Now compute which reload regs to reload them into. Perhaps
4213 reusing reload regs from previous insns, or else output
4214 load insns to reload them. Maybe output store insns too.
4215 Record the choices of reload reg in reload_reg_rtx. */
4216 choose_reload_regs (chain);
4218 /* Merge any reloads that we didn't combine for fear of
4219 increasing the number of spill registers needed but now
4220 discover can be safely merged. */
4221 if (SMALL_REGISTER_CLASSES)
4222 merge_assigned_reloads (insn);
4224 /* Generate the insns to reload operands into or out of
4225 their reload regs. */
4226 emit_reload_insns (chain);
4228 /* Substitute the chosen reload regs from reload_reg_rtx
4229 into the insn's body (or perhaps into the bodies of other
4230 load and store insn that we just made for reloading
4231 and that we moved the structure into). */
4232 subst_reloads (insn);
4234 /* Adjust the exception region notes for loads and stores. */
4235 if (flag_non_call_exceptions && !CALL_P (insn))
4236 fixup_eh_region_note (insn, prev, next);
4238 /* If this was an ASM, make sure that all the reload insns
4239 we have generated are valid. If not, give an error
4240 and delete them. */
4241 if (asm_noperands (PATTERN (insn)) >= 0)
4242 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4243 if (p != insn && INSN_P (p)
4244 && GET_CODE (PATTERN (p)) != USE
4245 && (recog_memoized (p) < 0
4246 || (extract_insn (p), ! constrain_operands (1))))
4248 error_for_asm (insn,
4249 "%<asm%> operand requires "
4250 "impossible reload");
4251 delete_insn (p);
4255 if (num_eliminable && chain->need_elim)
4256 update_eliminable_offsets ();
4258 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4259 is no longer validly lying around to save a future reload.
4260 Note that this does not detect pseudos that were reloaded
4261 for this insn in order to be stored in
4262 (obeying register constraints). That is correct; such reload
4263 registers ARE still valid. */
4264 forget_marked_reloads (&regs_to_forget);
4265 CLEAR_REG_SET (&regs_to_forget);
4267 /* There may have been CLOBBER insns placed after INSN. So scan
4268 between INSN and NEXT and use them to forget old reloads. */
4269 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4270 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4271 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4273 #ifdef AUTO_INC_DEC
4274 /* Likewise for regs altered by auto-increment in this insn.
4275 REG_INC notes have been changed by reloading:
4276 find_reloads_address_1 records substitutions for them,
4277 which have been performed by subst_reloads above. */
4278 for (i = n_reloads - 1; i >= 0; i--)
4280 rtx in_reg = rld[i].in_reg;
4281 if (in_reg)
4283 enum rtx_code code = GET_CODE (in_reg);
4284 /* PRE_INC / PRE_DEC will have the reload register ending up
4285 with the same value as the stack slot, but that doesn't
4286 hold true for POST_INC / POST_DEC. Either we have to
4287 convert the memory access to a true POST_INC / POST_DEC,
4288 or we can't use the reload register for inheritance. */
4289 if ((code == POST_INC || code == POST_DEC)
4290 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4291 REGNO (rld[i].reg_rtx))
4292 /* Make sure it is the inc/dec pseudo, and not
4293 some other (e.g. output operand) pseudo. */
4294 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4295 == REGNO (XEXP (in_reg, 0))))
4298 rtx reload_reg = rld[i].reg_rtx;
4299 enum machine_mode mode = GET_MODE (reload_reg);
4300 int n = 0;
4301 rtx p;
4303 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4305 /* We really want to ignore REG_INC notes here, so
4306 use PATTERN (p) as argument to reg_set_p . */
4307 if (reg_set_p (reload_reg, PATTERN (p)))
4308 break;
4309 n = count_occurrences (PATTERN (p), reload_reg, 0);
4310 if (! n)
4311 continue;
4312 if (n == 1)
4314 n = validate_replace_rtx (reload_reg,
4315 gen_rtx_fmt_e (code,
4316 mode,
4317 reload_reg),
4320 /* We must also verify that the constraints
4321 are met after the replacement. */
4322 extract_insn (p);
4323 if (n)
4324 n = constrain_operands (1);
4325 else
4326 break;
4328 /* If the constraints were not met, then
4329 undo the replacement. */
4330 if (!n)
4332 validate_replace_rtx (gen_rtx_fmt_e (code,
4333 mode,
4334 reload_reg),
4335 reload_reg, p);
4336 break;
4340 break;
4342 if (n == 1)
4344 add_reg_note (p, REG_INC, reload_reg);
4345 /* Mark this as having an output reload so that the
4346 REG_INC processing code below won't invalidate
4347 the reload for inheritance. */
4348 SET_HARD_REG_BIT (reg_is_output_reload,
4349 REGNO (reload_reg));
4350 SET_REGNO_REG_SET (&reg_has_output_reload,
4351 REGNO (XEXP (in_reg, 0)));
4353 else
4354 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4355 NULL);
4357 else if ((code == PRE_INC || code == PRE_DEC)
4358 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4359 REGNO (rld[i].reg_rtx))
4360 /* Make sure it is the inc/dec pseudo, and not
4361 some other (e.g. output operand) pseudo. */
4362 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4363 == REGNO (XEXP (in_reg, 0))))
4365 SET_HARD_REG_BIT (reg_is_output_reload,
4366 REGNO (rld[i].reg_rtx));
4367 SET_REGNO_REG_SET (&reg_has_output_reload,
4368 REGNO (XEXP (in_reg, 0)));
4370 else if ((code == PRE_INC || code == PRE_DEC
4371 || code == POST_INC || code == POST_DEC))
4373 int in_hard_regno;
4374 int in_regno = REGNO (XEXP (in_reg, 0));
4376 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4378 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4379 gcc_assert (TEST_HARD_REG_BIT (reg_reloaded_valid,
4380 in_hard_regno));
4381 for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4382 x != old_next;
4383 x = NEXT_INSN (x))
4384 if (x == reg_reloaded_insn[in_hard_regno])
4385 break;
4386 /* If for some reasons, we didn't set up
4387 reg_last_reload_reg in this insn,
4388 invalidate inheritance from previous
4389 insns for the incremented/decremented
4390 register. Such registers will be not in
4391 reg_has_output_reload. */
4392 if (x == old_next)
4393 forget_old_reloads_1 (XEXP (in_reg, 0),
4394 NULL_RTX, NULL);
4399 /* If a pseudo that got a hard register is auto-incremented,
4400 we must purge records of copying it into pseudos without
4401 hard registers. */
4402 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4403 if (REG_NOTE_KIND (x) == REG_INC)
4405 /* See if this pseudo reg was reloaded in this insn.
4406 If so, its last-reload info is still valid
4407 because it is based on this insn's reload. */
4408 for (i = 0; i < n_reloads; i++)
4409 if (rld[i].out == XEXP (x, 0))
4410 break;
4412 if (i == n_reloads)
4413 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4415 #endif
4417 /* A reload reg's contents are unknown after a label. */
4418 if (LABEL_P (insn))
4419 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4421 /* Don't assume a reload reg is still good after a call insn
4422 if it is a call-used reg, or if it contains a value that will
4423 be partially clobbered by the call. */
4424 else if (CALL_P (insn))
4426 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4427 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4431 /* Clean up. */
4432 free (reg_last_reload_reg);
4433 CLEAR_REG_SET (&reg_has_output_reload);
4436 /* Discard all record of any value reloaded from X,
4437 or reloaded in X from someplace else;
4438 unless X is an output reload reg of the current insn.
4440 X may be a hard reg (the reload reg)
4441 or it may be a pseudo reg that was reloaded from.
4443 When DATA is non-NULL just mark the registers in regset
4444 to be forgotten later. */
4446 static void
4447 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4448 void *data)
4450 unsigned int regno;
4451 unsigned int nr;
4452 regset regs = (regset) data;
4454 /* note_stores does give us subregs of hard regs,
4455 subreg_regno_offset requires a hard reg. */
4456 while (GET_CODE (x) == SUBREG)
4458 /* We ignore the subreg offset when calculating the regno,
4459 because we are using the entire underlying hard register
4460 below. */
4461 x = SUBREG_REG (x);
4464 if (!REG_P (x))
4465 return;
4467 regno = REGNO (x);
4469 if (regno >= FIRST_PSEUDO_REGISTER)
4470 nr = 1;
4471 else
4473 unsigned int i;
4475 nr = hard_regno_nregs[regno][GET_MODE (x)];
4476 /* Storing into a spilled-reg invalidates its contents.
4477 This can happen if a block-local pseudo is allocated to that reg
4478 and it wasn't spilled because this block's total need is 0.
4479 Then some insn might have an optional reload and use this reg. */
4480 if (!regs)
4481 for (i = 0; i < nr; i++)
4482 /* But don't do this if the reg actually serves as an output
4483 reload reg in the current instruction. */
4484 if (n_reloads == 0
4485 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4487 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4488 spill_reg_store[regno + i] = 0;
4492 if (regs)
4493 while (nr-- > 0)
4494 SET_REGNO_REG_SET (regs, regno + nr);
4495 else
4497 /* Since value of X has changed,
4498 forget any value previously copied from it. */
4500 while (nr-- > 0)
4501 /* But don't forget a copy if this is the output reload
4502 that establishes the copy's validity. */
4503 if (n_reloads == 0
4504 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4505 reg_last_reload_reg[regno + nr] = 0;
4509 /* Forget the reloads marked in regset by previous function. */
4510 static void
4511 forget_marked_reloads (regset regs)
4513 unsigned int reg;
4514 reg_set_iterator rsi;
4515 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4517 if (reg < FIRST_PSEUDO_REGISTER
4518 /* But don't do this if the reg actually serves as an output
4519 reload reg in the current instruction. */
4520 && (n_reloads == 0
4521 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4523 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4524 spill_reg_store[reg] = 0;
4526 if (n_reloads == 0
4527 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4528 reg_last_reload_reg[reg] = 0;
4532 /* The following HARD_REG_SETs indicate when each hard register is
4533 used for a reload of various parts of the current insn. */
4535 /* If reg is unavailable for all reloads. */
4536 static HARD_REG_SET reload_reg_unavailable;
4537 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4538 static HARD_REG_SET reload_reg_used;
4539 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4540 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4541 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4542 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4543 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4544 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4545 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4546 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4547 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4548 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4549 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4550 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4551 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4552 static HARD_REG_SET reload_reg_used_in_op_addr;
4553 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4554 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4555 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4556 static HARD_REG_SET reload_reg_used_in_insn;
4557 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4558 static HARD_REG_SET reload_reg_used_in_other_addr;
4560 /* If reg is in use as a reload reg for any sort of reload. */
4561 static HARD_REG_SET reload_reg_used_at_all;
4563 /* If reg is use as an inherited reload. We just mark the first register
4564 in the group. */
4565 static HARD_REG_SET reload_reg_used_for_inherit;
4567 /* Records which hard regs are used in any way, either as explicit use or
4568 by being allocated to a pseudo during any point of the current insn. */
4569 static HARD_REG_SET reg_used_in_insn;
4571 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4572 TYPE. MODE is used to indicate how many consecutive regs are
4573 actually used. */
4575 static void
4576 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4577 enum machine_mode mode)
4579 unsigned int nregs = hard_regno_nregs[regno][mode];
4580 unsigned int i;
4582 for (i = regno; i < nregs + regno; i++)
4584 switch (type)
4586 case RELOAD_OTHER:
4587 SET_HARD_REG_BIT (reload_reg_used, i);
4588 break;
4590 case RELOAD_FOR_INPUT_ADDRESS:
4591 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4592 break;
4594 case RELOAD_FOR_INPADDR_ADDRESS:
4595 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4596 break;
4598 case RELOAD_FOR_OUTPUT_ADDRESS:
4599 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4600 break;
4602 case RELOAD_FOR_OUTADDR_ADDRESS:
4603 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4604 break;
4606 case RELOAD_FOR_OPERAND_ADDRESS:
4607 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4608 break;
4610 case RELOAD_FOR_OPADDR_ADDR:
4611 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4612 break;
4614 case RELOAD_FOR_OTHER_ADDRESS:
4615 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4616 break;
4618 case RELOAD_FOR_INPUT:
4619 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4620 break;
4622 case RELOAD_FOR_OUTPUT:
4623 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4624 break;
4626 case RELOAD_FOR_INSN:
4627 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4628 break;
4631 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4635 /* Similarly, but show REGNO is no longer in use for a reload. */
4637 static void
4638 clear_reload_reg_in_use (unsigned int regno, int opnum,
4639 enum reload_type type, enum machine_mode mode)
4641 unsigned int nregs = hard_regno_nregs[regno][mode];
4642 unsigned int start_regno, end_regno, r;
4643 int i;
4644 /* A complication is that for some reload types, inheritance might
4645 allow multiple reloads of the same types to share a reload register.
4646 We set check_opnum if we have to check only reloads with the same
4647 operand number, and check_any if we have to check all reloads. */
4648 int check_opnum = 0;
4649 int check_any = 0;
4650 HARD_REG_SET *used_in_set;
4652 switch (type)
4654 case RELOAD_OTHER:
4655 used_in_set = &reload_reg_used;
4656 break;
4658 case RELOAD_FOR_INPUT_ADDRESS:
4659 used_in_set = &reload_reg_used_in_input_addr[opnum];
4660 break;
4662 case RELOAD_FOR_INPADDR_ADDRESS:
4663 check_opnum = 1;
4664 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4665 break;
4667 case RELOAD_FOR_OUTPUT_ADDRESS:
4668 used_in_set = &reload_reg_used_in_output_addr[opnum];
4669 break;
4671 case RELOAD_FOR_OUTADDR_ADDRESS:
4672 check_opnum = 1;
4673 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4674 break;
4676 case RELOAD_FOR_OPERAND_ADDRESS:
4677 used_in_set = &reload_reg_used_in_op_addr;
4678 break;
4680 case RELOAD_FOR_OPADDR_ADDR:
4681 check_any = 1;
4682 used_in_set = &reload_reg_used_in_op_addr_reload;
4683 break;
4685 case RELOAD_FOR_OTHER_ADDRESS:
4686 used_in_set = &reload_reg_used_in_other_addr;
4687 check_any = 1;
4688 break;
4690 case RELOAD_FOR_INPUT:
4691 used_in_set = &reload_reg_used_in_input[opnum];
4692 break;
4694 case RELOAD_FOR_OUTPUT:
4695 used_in_set = &reload_reg_used_in_output[opnum];
4696 break;
4698 case RELOAD_FOR_INSN:
4699 used_in_set = &reload_reg_used_in_insn;
4700 break;
4701 default:
4702 gcc_unreachable ();
4704 /* We resolve conflicts with remaining reloads of the same type by
4705 excluding the intervals of reload registers by them from the
4706 interval of freed reload registers. Since we only keep track of
4707 one set of interval bounds, we might have to exclude somewhat
4708 more than what would be necessary if we used a HARD_REG_SET here.
4709 But this should only happen very infrequently, so there should
4710 be no reason to worry about it. */
4712 start_regno = regno;
4713 end_regno = regno + nregs;
4714 if (check_opnum || check_any)
4716 for (i = n_reloads - 1; i >= 0; i--)
4718 if (rld[i].when_needed == type
4719 && (check_any || rld[i].opnum == opnum)
4720 && rld[i].reg_rtx)
4722 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4723 unsigned int conflict_end
4724 = end_hard_regno (rld[i].mode, conflict_start);
4726 /* If there is an overlap with the first to-be-freed register,
4727 adjust the interval start. */
4728 if (conflict_start <= start_regno && conflict_end > start_regno)
4729 start_regno = conflict_end;
4730 /* Otherwise, if there is a conflict with one of the other
4731 to-be-freed registers, adjust the interval end. */
4732 if (conflict_start > start_regno && conflict_start < end_regno)
4733 end_regno = conflict_start;
4738 for (r = start_regno; r < end_regno; r++)
4739 CLEAR_HARD_REG_BIT (*used_in_set, r);
4742 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4743 specified by OPNUM and TYPE. */
4745 static int
4746 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4748 int i;
4750 /* In use for a RELOAD_OTHER means it's not available for anything. */
4751 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4752 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4753 return 0;
4755 switch (type)
4757 case RELOAD_OTHER:
4758 /* In use for anything means we can't use it for RELOAD_OTHER. */
4759 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4760 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4761 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4762 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4763 return 0;
4765 for (i = 0; i < reload_n_operands; i++)
4766 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4767 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4768 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4769 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4770 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4771 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4772 return 0;
4774 return 1;
4776 case RELOAD_FOR_INPUT:
4777 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4778 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4779 return 0;
4781 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4782 return 0;
4784 /* If it is used for some other input, can't use it. */
4785 for (i = 0; i < reload_n_operands; i++)
4786 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4787 return 0;
4789 /* If it is used in a later operand's address, can't use it. */
4790 for (i = opnum + 1; i < reload_n_operands; i++)
4791 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4792 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4793 return 0;
4795 return 1;
4797 case RELOAD_FOR_INPUT_ADDRESS:
4798 /* Can't use a register if it is used for an input address for this
4799 operand or used as an input in an earlier one. */
4800 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4801 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4802 return 0;
4804 for (i = 0; i < opnum; i++)
4805 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4806 return 0;
4808 return 1;
4810 case RELOAD_FOR_INPADDR_ADDRESS:
4811 /* Can't use a register if it is used for an input address
4812 for this operand or used as an input in an earlier
4813 one. */
4814 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4815 return 0;
4817 for (i = 0; i < opnum; i++)
4818 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4819 return 0;
4821 return 1;
4823 case RELOAD_FOR_OUTPUT_ADDRESS:
4824 /* Can't use a register if it is used for an output address for this
4825 operand or used as an output in this or a later operand. Note
4826 that multiple output operands are emitted in reverse order, so
4827 the conflicting ones are those with lower indices. */
4828 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4829 return 0;
4831 for (i = 0; i <= opnum; i++)
4832 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4833 return 0;
4835 return 1;
4837 case RELOAD_FOR_OUTADDR_ADDRESS:
4838 /* Can't use a register if it is used for an output address
4839 for this operand or used as an output in this or a
4840 later operand. Note that multiple output operands are
4841 emitted in reverse order, so the conflicting ones are
4842 those with lower indices. */
4843 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4844 return 0;
4846 for (i = 0; i <= opnum; i++)
4847 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4848 return 0;
4850 return 1;
4852 case RELOAD_FOR_OPERAND_ADDRESS:
4853 for (i = 0; i < reload_n_operands; i++)
4854 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4855 return 0;
4857 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4858 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4860 case RELOAD_FOR_OPADDR_ADDR:
4861 for (i = 0; i < reload_n_operands; i++)
4862 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4863 return 0;
4865 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4867 case RELOAD_FOR_OUTPUT:
4868 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4869 outputs, or an operand address for this or an earlier output.
4870 Note that multiple output operands are emitted in reverse order,
4871 so the conflicting ones are those with higher indices. */
4872 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4873 return 0;
4875 for (i = 0; i < reload_n_operands; i++)
4876 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4877 return 0;
4879 for (i = opnum; i < reload_n_operands; i++)
4880 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4881 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4882 return 0;
4884 return 1;
4886 case RELOAD_FOR_INSN:
4887 for (i = 0; i < reload_n_operands; i++)
4888 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4889 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4890 return 0;
4892 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4893 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4895 case RELOAD_FOR_OTHER_ADDRESS:
4896 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4898 default:
4899 gcc_unreachable ();
4903 /* Return 1 if the value in reload reg REGNO, as used by a reload
4904 needed for the part of the insn specified by OPNUM and TYPE,
4905 is still available in REGNO at the end of the insn.
4907 We can assume that the reload reg was already tested for availability
4908 at the time it is needed, and we should not check this again,
4909 in case the reg has already been marked in use. */
4911 static int
4912 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4914 int i;
4916 switch (type)
4918 case RELOAD_OTHER:
4919 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4920 its value must reach the end. */
4921 return 1;
4923 /* If this use is for part of the insn,
4924 its value reaches if no subsequent part uses the same register.
4925 Just like the above function, don't try to do this with lots
4926 of fallthroughs. */
4928 case RELOAD_FOR_OTHER_ADDRESS:
4929 /* Here we check for everything else, since these don't conflict
4930 with anything else and everything comes later. */
4932 for (i = 0; i < reload_n_operands; i++)
4933 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4934 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4935 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4936 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4937 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4938 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4939 return 0;
4941 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4942 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4943 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4944 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4946 case RELOAD_FOR_INPUT_ADDRESS:
4947 case RELOAD_FOR_INPADDR_ADDRESS:
4948 /* Similar, except that we check only for this and subsequent inputs
4949 and the address of only subsequent inputs and we do not need
4950 to check for RELOAD_OTHER objects since they are known not to
4951 conflict. */
4953 for (i = opnum; i < reload_n_operands; i++)
4954 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4955 return 0;
4957 for (i = opnum + 1; i < reload_n_operands; i++)
4958 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4959 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4960 return 0;
4962 for (i = 0; i < reload_n_operands; i++)
4963 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4964 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4965 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4966 return 0;
4968 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4969 return 0;
4971 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4972 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4973 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4975 case RELOAD_FOR_INPUT:
4976 /* Similar to input address, except we start at the next operand for
4977 both input and input address and we do not check for
4978 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4979 would conflict. */
4981 for (i = opnum + 1; i < reload_n_operands; i++)
4982 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4983 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4984 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4985 return 0;
4987 /* ... fall through ... */
4989 case RELOAD_FOR_OPERAND_ADDRESS:
4990 /* Check outputs and their addresses. */
4992 for (i = 0; i < reload_n_operands; i++)
4993 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4994 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4995 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4996 return 0;
4998 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5000 case RELOAD_FOR_OPADDR_ADDR:
5001 for (i = 0; i < reload_n_operands; i++)
5002 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5003 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5004 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5005 return 0;
5007 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5008 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5009 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5011 case RELOAD_FOR_INSN:
5012 /* These conflict with other outputs with RELOAD_OTHER. So
5013 we need only check for output addresses. */
5015 opnum = reload_n_operands;
5017 /* ... fall through ... */
5019 case RELOAD_FOR_OUTPUT:
5020 case RELOAD_FOR_OUTPUT_ADDRESS:
5021 case RELOAD_FOR_OUTADDR_ADDRESS:
5022 /* We already know these can't conflict with a later output. So the
5023 only thing to check are later output addresses.
5024 Note that multiple output operands are emitted in reverse order,
5025 so the conflicting ones are those with lower indices. */
5026 for (i = 0; i < opnum; i++)
5027 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5028 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5029 return 0;
5031 return 1;
5033 default:
5034 gcc_unreachable ();
5038 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5039 every register in the range [REGNO, REGNO + NREGS). */
5041 static bool
5042 reload_regs_reach_end_p (unsigned int regno, int nregs,
5043 int opnum, enum reload_type type)
5045 int i;
5047 for (i = 0; i < nregs; i++)
5048 if (!reload_reg_reaches_end_p (regno + i, opnum, type))
5049 return false;
5050 return true;
5054 /* Returns whether R1 and R2 are uniquely chained: the value of one
5055 is used by the other, and that value is not used by any other
5056 reload for this insn. This is used to partially undo the decision
5057 made in find_reloads when in the case of multiple
5058 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5059 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5060 reloads. This code tries to avoid the conflict created by that
5061 change. It might be cleaner to explicitly keep track of which
5062 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5063 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5064 this after the fact. */
5065 static bool
5066 reloads_unique_chain_p (int r1, int r2)
5068 int i;
5070 /* We only check input reloads. */
5071 if (! rld[r1].in || ! rld[r2].in)
5072 return false;
5074 /* Avoid anything with output reloads. */
5075 if (rld[r1].out || rld[r2].out)
5076 return false;
5078 /* "chained" means one reload is a component of the other reload,
5079 not the same as the other reload. */
5080 if (rld[r1].opnum != rld[r2].opnum
5081 || rtx_equal_p (rld[r1].in, rld[r2].in)
5082 || rld[r1].optional || rld[r2].optional
5083 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5084 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5085 return false;
5087 for (i = 0; i < n_reloads; i ++)
5088 /* Look for input reloads that aren't our two */
5089 if (i != r1 && i != r2 && rld[i].in)
5091 /* If our reload is mentioned at all, it isn't a simple chain. */
5092 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5093 return false;
5095 return true;
5099 /* The recursive function change all occurrences of WHAT in *WHERE
5100 onto REPL. */
5101 static void
5102 substitute (rtx *where, const_rtx what, rtx repl)
5104 const char *fmt;
5105 int i;
5106 enum rtx_code code;
5108 if (*where == 0)
5109 return;
5111 if (*where == what || rtx_equal_p (*where, what))
5113 *where = repl;
5114 return;
5117 code = GET_CODE (*where);
5118 fmt = GET_RTX_FORMAT (code);
5119 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5121 if (fmt[i] == 'E')
5123 int j;
5125 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5126 substitute (&XVECEXP (*where, i, j), what, repl);
5128 else if (fmt[i] == 'e')
5129 substitute (&XEXP (*where, i), what, repl);
5133 /* The function returns TRUE if chain of reload R1 and R2 (in any
5134 order) can be evaluated without usage of intermediate register for
5135 the reload containing another reload. It is important to see
5136 gen_reload to understand what the function is trying to do. As an
5137 example, let us have reload chain
5139 r2: const
5140 r1: <something> + const
5142 and reload R2 got reload reg HR. The function returns true if
5143 there is a correct insn HR = HR + <something>. Otherwise,
5144 gen_reload will use intermediate register (and this is the reload
5145 reg for R1) to reload <something>.
5147 We need this function to find a conflict for chain reloads. In our
5148 example, if HR = HR + <something> is incorrect insn, then we cannot
5149 use HR as a reload register for R2. If we do use it then we get a
5150 wrong code:
5152 HR = const
5153 HR = <something>
5154 HR = HR + HR
5157 static bool
5158 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5160 bool result;
5161 int regno, n, code;
5162 rtx out, in, tem, insn;
5163 rtx last = get_last_insn ();
5165 /* Make r2 a component of r1. */
5166 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5168 n = r1;
5169 r1 = r2;
5170 r2 = n;
5172 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5173 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5174 gcc_assert (regno >= 0);
5175 out = gen_rtx_REG (rld[r1].mode, regno);
5176 in = copy_rtx (rld[r1].in);
5177 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5179 /* If IN is a paradoxical SUBREG, remove it and try to put the
5180 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5181 if (GET_CODE (in) == SUBREG
5182 && (GET_MODE_SIZE (GET_MODE (in))
5183 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
5184 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
5185 in = SUBREG_REG (in), out = tem;
5187 if (GET_CODE (in) == PLUS
5188 && (REG_P (XEXP (in, 0))
5189 || GET_CODE (XEXP (in, 0)) == SUBREG
5190 || MEM_P (XEXP (in, 0)))
5191 && (REG_P (XEXP (in, 1))
5192 || GET_CODE (XEXP (in, 1)) == SUBREG
5193 || CONSTANT_P (XEXP (in, 1))
5194 || MEM_P (XEXP (in, 1))))
5196 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5197 code = recog_memoized (insn);
5198 result = false;
5200 if (code >= 0)
5202 extract_insn (insn);
5203 /* We want constrain operands to treat this insn strictly in
5204 its validity determination, i.e., the way it would after
5205 reload has completed. */
5206 result = constrain_operands (1);
5209 delete_insns_since (last);
5210 return result;
5213 /* It looks like other cases in gen_reload are not possible for
5214 chain reloads or do need an intermediate hard registers. */
5215 return true;
5218 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5219 Return 0 otherwise.
5221 This function uses the same algorithm as reload_reg_free_p above. */
5223 static int
5224 reloads_conflict (int r1, int r2)
5226 enum reload_type r1_type = rld[r1].when_needed;
5227 enum reload_type r2_type = rld[r2].when_needed;
5228 int r1_opnum = rld[r1].opnum;
5229 int r2_opnum = rld[r2].opnum;
5231 /* RELOAD_OTHER conflicts with everything. */
5232 if (r2_type == RELOAD_OTHER)
5233 return 1;
5235 /* Otherwise, check conflicts differently for each type. */
5237 switch (r1_type)
5239 case RELOAD_FOR_INPUT:
5240 return (r2_type == RELOAD_FOR_INSN
5241 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5242 || r2_type == RELOAD_FOR_OPADDR_ADDR
5243 || r2_type == RELOAD_FOR_INPUT
5244 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5245 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5246 && r2_opnum > r1_opnum));
5248 case RELOAD_FOR_INPUT_ADDRESS:
5249 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5250 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5252 case RELOAD_FOR_INPADDR_ADDRESS:
5253 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5254 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5256 case RELOAD_FOR_OUTPUT_ADDRESS:
5257 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5258 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5260 case RELOAD_FOR_OUTADDR_ADDRESS:
5261 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5262 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5264 case RELOAD_FOR_OPERAND_ADDRESS:
5265 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5266 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5267 && (!reloads_unique_chain_p (r1, r2)
5268 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5270 case RELOAD_FOR_OPADDR_ADDR:
5271 return (r2_type == RELOAD_FOR_INPUT
5272 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5274 case RELOAD_FOR_OUTPUT:
5275 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5276 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5277 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5278 && r2_opnum >= r1_opnum));
5280 case RELOAD_FOR_INSN:
5281 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5282 || r2_type == RELOAD_FOR_INSN
5283 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5285 case RELOAD_FOR_OTHER_ADDRESS:
5286 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5288 case RELOAD_OTHER:
5289 return 1;
5291 default:
5292 gcc_unreachable ();
5296 /* Indexed by reload number, 1 if incoming value
5297 inherited from previous insns. */
5298 static char reload_inherited[MAX_RELOADS];
5300 /* For an inherited reload, this is the insn the reload was inherited from,
5301 if we know it. Otherwise, this is 0. */
5302 static rtx reload_inheritance_insn[MAX_RELOADS];
5304 /* If nonzero, this is a place to get the value of the reload,
5305 rather than using reload_in. */
5306 static rtx reload_override_in[MAX_RELOADS];
5308 /* For each reload, the hard register number of the register used,
5309 or -1 if we did not need a register for this reload. */
5310 static int reload_spill_index[MAX_RELOADS];
5312 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5313 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5315 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5316 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5318 /* Subroutine of free_for_value_p, used to check a single register.
5319 START_REGNO is the starting regno of the full reload register
5320 (possibly comprising multiple hard registers) that we are considering. */
5322 static int
5323 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5324 enum reload_type type, rtx value, rtx out,
5325 int reloadnum, int ignore_address_reloads)
5327 int time1;
5328 /* Set if we see an input reload that must not share its reload register
5329 with any new earlyclobber, but might otherwise share the reload
5330 register with an output or input-output reload. */
5331 int check_earlyclobber = 0;
5332 int i;
5333 int copy = 0;
5335 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5336 return 0;
5338 if (out == const0_rtx)
5340 copy = 1;
5341 out = NULL_RTX;
5344 /* We use some pseudo 'time' value to check if the lifetimes of the
5345 new register use would overlap with the one of a previous reload
5346 that is not read-only or uses a different value.
5347 The 'time' used doesn't have to be linear in any shape or form, just
5348 monotonic.
5349 Some reload types use different 'buckets' for each operand.
5350 So there are MAX_RECOG_OPERANDS different time values for each
5351 such reload type.
5352 We compute TIME1 as the time when the register for the prospective
5353 new reload ceases to be live, and TIME2 for each existing
5354 reload as the time when that the reload register of that reload
5355 becomes live.
5356 Where there is little to be gained by exact lifetime calculations,
5357 we just make conservative assumptions, i.e. a longer lifetime;
5358 this is done in the 'default:' cases. */
5359 switch (type)
5361 case RELOAD_FOR_OTHER_ADDRESS:
5362 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5363 time1 = copy ? 0 : 1;
5364 break;
5365 case RELOAD_OTHER:
5366 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5367 break;
5368 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5369 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5370 respectively, to the time values for these, we get distinct time
5371 values. To get distinct time values for each operand, we have to
5372 multiply opnum by at least three. We round that up to four because
5373 multiply by four is often cheaper. */
5374 case RELOAD_FOR_INPADDR_ADDRESS:
5375 time1 = opnum * 4 + 2;
5376 break;
5377 case RELOAD_FOR_INPUT_ADDRESS:
5378 time1 = opnum * 4 + 3;
5379 break;
5380 case RELOAD_FOR_INPUT:
5381 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5382 executes (inclusive). */
5383 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5384 break;
5385 case RELOAD_FOR_OPADDR_ADDR:
5386 /* opnum * 4 + 4
5387 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5388 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5389 break;
5390 case RELOAD_FOR_OPERAND_ADDRESS:
5391 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5392 is executed. */
5393 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5394 break;
5395 case RELOAD_FOR_OUTADDR_ADDRESS:
5396 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5397 break;
5398 case RELOAD_FOR_OUTPUT_ADDRESS:
5399 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5400 break;
5401 default:
5402 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5405 for (i = 0; i < n_reloads; i++)
5407 rtx reg = rld[i].reg_rtx;
5408 if (reg && REG_P (reg)
5409 && ((unsigned) regno - true_regnum (reg)
5410 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5411 && i != reloadnum)
5413 rtx other_input = rld[i].in;
5415 /* If the other reload loads the same input value, that
5416 will not cause a conflict only if it's loading it into
5417 the same register. */
5418 if (true_regnum (reg) != start_regno)
5419 other_input = NULL_RTX;
5420 if (! other_input || ! rtx_equal_p (other_input, value)
5421 || rld[i].out || out)
5423 int time2;
5424 switch (rld[i].when_needed)
5426 case RELOAD_FOR_OTHER_ADDRESS:
5427 time2 = 0;
5428 break;
5429 case RELOAD_FOR_INPADDR_ADDRESS:
5430 /* find_reloads makes sure that a
5431 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5432 by at most one - the first -
5433 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5434 address reload is inherited, the address address reload
5435 goes away, so we can ignore this conflict. */
5436 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5437 && ignore_address_reloads
5438 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5439 Then the address address is still needed to store
5440 back the new address. */
5441 && ! rld[reloadnum].out)
5442 continue;
5443 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5444 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5445 reloads go away. */
5446 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5447 && ignore_address_reloads
5448 /* Unless we are reloading an auto_inc expression. */
5449 && ! rld[reloadnum].out)
5450 continue;
5451 time2 = rld[i].opnum * 4 + 2;
5452 break;
5453 case RELOAD_FOR_INPUT_ADDRESS:
5454 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5455 && ignore_address_reloads
5456 && ! rld[reloadnum].out)
5457 continue;
5458 time2 = rld[i].opnum * 4 + 3;
5459 break;
5460 case RELOAD_FOR_INPUT:
5461 time2 = rld[i].opnum * 4 + 4;
5462 check_earlyclobber = 1;
5463 break;
5464 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5465 == MAX_RECOG_OPERAND * 4 */
5466 case RELOAD_FOR_OPADDR_ADDR:
5467 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5468 && ignore_address_reloads
5469 && ! rld[reloadnum].out)
5470 continue;
5471 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5472 break;
5473 case RELOAD_FOR_OPERAND_ADDRESS:
5474 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5475 check_earlyclobber = 1;
5476 break;
5477 case RELOAD_FOR_INSN:
5478 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5479 break;
5480 case RELOAD_FOR_OUTPUT:
5481 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5482 instruction is executed. */
5483 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5484 break;
5485 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5486 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5487 value. */
5488 case RELOAD_FOR_OUTADDR_ADDRESS:
5489 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5490 && ignore_address_reloads
5491 && ! rld[reloadnum].out)
5492 continue;
5493 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5494 break;
5495 case RELOAD_FOR_OUTPUT_ADDRESS:
5496 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5497 break;
5498 case RELOAD_OTHER:
5499 /* If there is no conflict in the input part, handle this
5500 like an output reload. */
5501 if (! rld[i].in || rtx_equal_p (other_input, value))
5503 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5504 /* Earlyclobbered outputs must conflict with inputs. */
5505 if (earlyclobber_operand_p (rld[i].out))
5506 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5508 break;
5510 time2 = 1;
5511 /* RELOAD_OTHER might be live beyond instruction execution,
5512 but this is not obvious when we set time2 = 1. So check
5513 here if there might be a problem with the new reload
5514 clobbering the register used by the RELOAD_OTHER. */
5515 if (out)
5516 return 0;
5517 break;
5518 default:
5519 return 0;
5521 if ((time1 >= time2
5522 && (! rld[i].in || rld[i].out
5523 || ! rtx_equal_p (other_input, value)))
5524 || (out && rld[reloadnum].out_reg
5525 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5526 return 0;
5531 /* Earlyclobbered outputs must conflict with inputs. */
5532 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5533 return 0;
5535 return 1;
5538 /* Return 1 if the value in reload reg REGNO, as used by a reload
5539 needed for the part of the insn specified by OPNUM and TYPE,
5540 may be used to load VALUE into it.
5542 MODE is the mode in which the register is used, this is needed to
5543 determine how many hard regs to test.
5545 Other read-only reloads with the same value do not conflict
5546 unless OUT is nonzero and these other reloads have to live while
5547 output reloads live.
5548 If OUT is CONST0_RTX, this is a special case: it means that the
5549 test should not be for using register REGNO as reload register, but
5550 for copying from register REGNO into the reload register.
5552 RELOADNUM is the number of the reload we want to load this value for;
5553 a reload does not conflict with itself.
5555 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5556 reloads that load an address for the very reload we are considering.
5558 The caller has to make sure that there is no conflict with the return
5559 register. */
5561 static int
5562 free_for_value_p (int regno, enum machine_mode mode, int opnum,
5563 enum reload_type type, rtx value, rtx out, int reloadnum,
5564 int ignore_address_reloads)
5566 int nregs = hard_regno_nregs[regno][mode];
5567 while (nregs-- > 0)
5568 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5569 value, out, reloadnum,
5570 ignore_address_reloads))
5571 return 0;
5572 return 1;
5575 /* Return nonzero if the rtx X is invariant over the current function. */
5576 /* ??? Actually, the places where we use this expect exactly what is
5577 tested here, and not everything that is function invariant. In
5578 particular, the frame pointer and arg pointer are special cased;
5579 pic_offset_table_rtx is not, and we must not spill these things to
5580 memory. */
5583 function_invariant_p (const_rtx x)
5585 if (CONSTANT_P (x))
5586 return 1;
5587 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5588 return 1;
5589 if (GET_CODE (x) == PLUS
5590 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5591 && CONSTANT_P (XEXP (x, 1)))
5592 return 1;
5593 return 0;
5596 /* Determine whether the reload reg X overlaps any rtx'es used for
5597 overriding inheritance. Return nonzero if so. */
5599 static int
5600 conflicts_with_override (rtx x)
5602 int i;
5603 for (i = 0; i < n_reloads; i++)
5604 if (reload_override_in[i]
5605 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5606 return 1;
5607 return 0;
5610 /* Give an error message saying we failed to find a reload for INSN,
5611 and clear out reload R. */
5612 static void
5613 failed_reload (rtx insn, int r)
5615 if (asm_noperands (PATTERN (insn)) < 0)
5616 /* It's the compiler's fault. */
5617 fatal_insn ("could not find a spill register", insn);
5619 /* It's the user's fault; the operand's mode and constraint
5620 don't match. Disable this reload so we don't crash in final. */
5621 error_for_asm (insn,
5622 "%<asm%> operand constraint incompatible with operand size");
5623 rld[r].in = 0;
5624 rld[r].out = 0;
5625 rld[r].reg_rtx = 0;
5626 rld[r].optional = 1;
5627 rld[r].secondary_p = 1;
5630 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5631 for reload R. If it's valid, get an rtx for it. Return nonzero if
5632 successful. */
5633 static int
5634 set_reload_reg (int i, int r)
5636 int regno;
5637 rtx reg = spill_reg_rtx[i];
5639 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5640 spill_reg_rtx[i] = reg
5641 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5643 regno = true_regnum (reg);
5645 /* Detect when the reload reg can't hold the reload mode.
5646 This used to be one `if', but Sequent compiler can't handle that. */
5647 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5649 enum machine_mode test_mode = VOIDmode;
5650 if (rld[r].in)
5651 test_mode = GET_MODE (rld[r].in);
5652 /* If rld[r].in has VOIDmode, it means we will load it
5653 in whatever mode the reload reg has: to wit, rld[r].mode.
5654 We have already tested that for validity. */
5655 /* Aside from that, we need to test that the expressions
5656 to reload from or into have modes which are valid for this
5657 reload register. Otherwise the reload insns would be invalid. */
5658 if (! (rld[r].in != 0 && test_mode != VOIDmode
5659 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5660 if (! (rld[r].out != 0
5661 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5663 /* The reg is OK. */
5664 last_spill_reg = i;
5666 /* Mark as in use for this insn the reload regs we use
5667 for this. */
5668 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5669 rld[r].when_needed, rld[r].mode);
5671 rld[r].reg_rtx = reg;
5672 reload_spill_index[r] = spill_regs[i];
5673 return 1;
5676 return 0;
5679 /* Find a spill register to use as a reload register for reload R.
5680 LAST_RELOAD is nonzero if this is the last reload for the insn being
5681 processed.
5683 Set rld[R].reg_rtx to the register allocated.
5685 We return 1 if successful, or 0 if we couldn't find a spill reg and
5686 we didn't change anything. */
5688 static int
5689 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5690 int last_reload)
5692 int i, pass, count;
5694 /* If we put this reload ahead, thinking it is a group,
5695 then insist on finding a group. Otherwise we can grab a
5696 reg that some other reload needs.
5697 (That can happen when we have a 68000 DATA_OR_FP_REG
5698 which is a group of data regs or one fp reg.)
5699 We need not be so restrictive if there are no more reloads
5700 for this insn.
5702 ??? Really it would be nicer to have smarter handling
5703 for that kind of reg class, where a problem like this is normal.
5704 Perhaps those classes should be avoided for reloading
5705 by use of more alternatives. */
5707 int force_group = rld[r].nregs > 1 && ! last_reload;
5709 /* If we want a single register and haven't yet found one,
5710 take any reg in the right class and not in use.
5711 If we want a consecutive group, here is where we look for it.
5713 We use two passes so we can first look for reload regs to
5714 reuse, which are already in use for other reloads in this insn,
5715 and only then use additional registers.
5716 I think that maximizing reuse is needed to make sure we don't
5717 run out of reload regs. Suppose we have three reloads, and
5718 reloads A and B can share regs. These need two regs.
5719 Suppose A and B are given different regs.
5720 That leaves none for C. */
5721 for (pass = 0; pass < 2; pass++)
5723 /* I is the index in spill_regs.
5724 We advance it round-robin between insns to use all spill regs
5725 equally, so that inherited reloads have a chance
5726 of leapfrogging each other. */
5728 i = last_spill_reg;
5730 for (count = 0; count < n_spills; count++)
5732 int rclass = (int) rld[r].rclass;
5733 int regnum;
5735 i++;
5736 if (i >= n_spills)
5737 i -= n_spills;
5738 regnum = spill_regs[i];
5740 if ((reload_reg_free_p (regnum, rld[r].opnum,
5741 rld[r].when_needed)
5742 || (rld[r].in
5743 /* We check reload_reg_used to make sure we
5744 don't clobber the return register. */
5745 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5746 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5747 rld[r].when_needed, rld[r].in,
5748 rld[r].out, r, 1)))
5749 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
5750 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5751 /* Look first for regs to share, then for unshared. But
5752 don't share regs used for inherited reloads; they are
5753 the ones we want to preserve. */
5754 && (pass
5755 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5756 regnum)
5757 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5758 regnum))))
5760 int nr = hard_regno_nregs[regnum][rld[r].mode];
5761 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5762 (on 68000) got us two FP regs. If NR is 1,
5763 we would reject both of them. */
5764 if (force_group)
5765 nr = rld[r].nregs;
5766 /* If we need only one reg, we have already won. */
5767 if (nr == 1)
5769 /* But reject a single reg if we demand a group. */
5770 if (force_group)
5771 continue;
5772 break;
5774 /* Otherwise check that as many consecutive regs as we need
5775 are available here. */
5776 while (nr > 1)
5778 int regno = regnum + nr - 1;
5779 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
5780 && spill_reg_order[regno] >= 0
5781 && reload_reg_free_p (regno, rld[r].opnum,
5782 rld[r].when_needed)))
5783 break;
5784 nr--;
5786 if (nr == 1)
5787 break;
5791 /* If we found something on pass 1, omit pass 2. */
5792 if (count < n_spills)
5793 break;
5796 /* We should have found a spill register by now. */
5797 if (count >= n_spills)
5798 return 0;
5800 /* I is the index in SPILL_REG_RTX of the reload register we are to
5801 allocate. Get an rtx for it and find its register number. */
5803 return set_reload_reg (i, r);
5806 /* Initialize all the tables needed to allocate reload registers.
5807 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5808 is the array we use to restore the reg_rtx field for every reload. */
5810 static void
5811 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5813 int i;
5815 for (i = 0; i < n_reloads; i++)
5816 rld[i].reg_rtx = save_reload_reg_rtx[i];
5818 memset (reload_inherited, 0, MAX_RELOADS);
5819 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5820 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5822 CLEAR_HARD_REG_SET (reload_reg_used);
5823 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5824 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5825 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5826 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5827 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5829 CLEAR_HARD_REG_SET (reg_used_in_insn);
5831 HARD_REG_SET tmp;
5832 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5833 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5834 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5835 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5836 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5837 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5840 for (i = 0; i < reload_n_operands; i++)
5842 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5843 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5844 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5845 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5846 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5847 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5850 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5852 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5854 for (i = 0; i < n_reloads; i++)
5855 /* If we have already decided to use a certain register,
5856 don't use it in another way. */
5857 if (rld[i].reg_rtx)
5858 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5859 rld[i].when_needed, rld[i].mode);
5862 /* Assign hard reg targets for the pseudo-registers we must reload
5863 into hard regs for this insn.
5864 Also output the instructions to copy them in and out of the hard regs.
5866 For machines with register classes, we are responsible for
5867 finding a reload reg in the proper class. */
5869 static void
5870 choose_reload_regs (struct insn_chain *chain)
5872 rtx insn = chain->insn;
5873 int i, j;
5874 unsigned int max_group_size = 1;
5875 enum reg_class group_class = NO_REGS;
5876 int pass, win, inheritance;
5878 rtx save_reload_reg_rtx[MAX_RELOADS];
5880 /* In order to be certain of getting the registers we need,
5881 we must sort the reloads into order of increasing register class.
5882 Then our grabbing of reload registers will parallel the process
5883 that provided the reload registers.
5885 Also note whether any of the reloads wants a consecutive group of regs.
5886 If so, record the maximum size of the group desired and what
5887 register class contains all the groups needed by this insn. */
5889 for (j = 0; j < n_reloads; j++)
5891 reload_order[j] = j;
5892 if (rld[j].reg_rtx != NULL_RTX)
5894 gcc_assert (REG_P (rld[j].reg_rtx)
5895 && HARD_REGISTER_P (rld[j].reg_rtx));
5896 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
5898 else
5899 reload_spill_index[j] = -1;
5901 if (rld[j].nregs > 1)
5903 max_group_size = MAX (rld[j].nregs, max_group_size);
5904 group_class
5905 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
5908 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5911 if (n_reloads > 1)
5912 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5914 /* If -O, try first with inheritance, then turning it off.
5915 If not -O, don't do inheritance.
5916 Using inheritance when not optimizing leads to paradoxes
5917 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5918 because one side of the comparison might be inherited. */
5919 win = 0;
5920 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5922 choose_reload_regs_init (chain, save_reload_reg_rtx);
5924 /* Process the reloads in order of preference just found.
5925 Beyond this point, subregs can be found in reload_reg_rtx.
5927 This used to look for an existing reloaded home for all of the
5928 reloads, and only then perform any new reloads. But that could lose
5929 if the reloads were done out of reg-class order because a later
5930 reload with a looser constraint might have an old home in a register
5931 needed by an earlier reload with a tighter constraint.
5933 To solve this, we make two passes over the reloads, in the order
5934 described above. In the first pass we try to inherit a reload
5935 from a previous insn. If there is a later reload that needs a
5936 class that is a proper subset of the class being processed, we must
5937 also allocate a spill register during the first pass.
5939 Then make a second pass over the reloads to allocate any reloads
5940 that haven't been given registers yet. */
5942 for (j = 0; j < n_reloads; j++)
5944 int r = reload_order[j];
5945 rtx search_equiv = NULL_RTX;
5947 /* Ignore reloads that got marked inoperative. */
5948 if (rld[r].out == 0 && rld[r].in == 0
5949 && ! rld[r].secondary_p)
5950 continue;
5952 /* If find_reloads chose to use reload_in or reload_out as a reload
5953 register, we don't need to chose one. Otherwise, try even if it
5954 found one since we might save an insn if we find the value lying
5955 around.
5956 Try also when reload_in is a pseudo without a hard reg. */
5957 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5958 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5959 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5960 && !MEM_P (rld[r].in)
5961 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5962 continue;
5964 #if 0 /* No longer needed for correct operation.
5965 It might give better code, or might not; worth an experiment? */
5966 /* If this is an optional reload, we can't inherit from earlier insns
5967 until we are sure that any non-optional reloads have been allocated.
5968 The following code takes advantage of the fact that optional reloads
5969 are at the end of reload_order. */
5970 if (rld[r].optional != 0)
5971 for (i = 0; i < j; i++)
5972 if ((rld[reload_order[i]].out != 0
5973 || rld[reload_order[i]].in != 0
5974 || rld[reload_order[i]].secondary_p)
5975 && ! rld[reload_order[i]].optional
5976 && rld[reload_order[i]].reg_rtx == 0)
5977 allocate_reload_reg (chain, reload_order[i], 0);
5978 #endif
5980 /* First see if this pseudo is already available as reloaded
5981 for a previous insn. We cannot try to inherit for reloads
5982 that are smaller than the maximum number of registers needed
5983 for groups unless the register we would allocate cannot be used
5984 for the groups.
5986 We could check here to see if this is a secondary reload for
5987 an object that is already in a register of the desired class.
5988 This would avoid the need for the secondary reload register.
5989 But this is complex because we can't easily determine what
5990 objects might want to be loaded via this reload. So let a
5991 register be allocated here. In `emit_reload_insns' we suppress
5992 one of the loads in the case described above. */
5994 if (inheritance)
5996 int byte = 0;
5997 int regno = -1;
5998 enum machine_mode mode = VOIDmode;
6000 if (rld[r].in == 0)
6002 else if (REG_P (rld[r].in))
6004 regno = REGNO (rld[r].in);
6005 mode = GET_MODE (rld[r].in);
6007 else if (REG_P (rld[r].in_reg))
6009 regno = REGNO (rld[r].in_reg);
6010 mode = GET_MODE (rld[r].in_reg);
6012 else if (GET_CODE (rld[r].in_reg) == SUBREG
6013 && REG_P (SUBREG_REG (rld[r].in_reg)))
6015 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6016 if (regno < FIRST_PSEUDO_REGISTER)
6017 regno = subreg_regno (rld[r].in_reg);
6018 else
6019 byte = SUBREG_BYTE (rld[r].in_reg);
6020 mode = GET_MODE (rld[r].in_reg);
6022 #ifdef AUTO_INC_DEC
6023 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6024 && REG_P (XEXP (rld[r].in_reg, 0)))
6026 regno = REGNO (XEXP (rld[r].in_reg, 0));
6027 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6028 rld[r].out = rld[r].in;
6030 #endif
6031 #if 0
6032 /* This won't work, since REGNO can be a pseudo reg number.
6033 Also, it takes much more hair to keep track of all the things
6034 that can invalidate an inherited reload of part of a pseudoreg. */
6035 else if (GET_CODE (rld[r].in) == SUBREG
6036 && REG_P (SUBREG_REG (rld[r].in)))
6037 regno = subreg_regno (rld[r].in);
6038 #endif
6040 if (regno >= 0
6041 && reg_last_reload_reg[regno] != 0
6042 #ifdef CANNOT_CHANGE_MODE_CLASS
6043 /* Verify that the register it's in can be used in
6044 mode MODE. */
6045 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6046 GET_MODE (reg_last_reload_reg[regno]),
6047 mode)
6048 #endif
6051 enum reg_class rclass = rld[r].rclass, last_class;
6052 rtx last_reg = reg_last_reload_reg[regno];
6053 enum machine_mode need_mode;
6055 i = REGNO (last_reg);
6056 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6057 last_class = REGNO_REG_CLASS (i);
6059 if (byte == 0)
6060 need_mode = mode;
6061 else
6062 need_mode
6063 = smallest_mode_for_size
6064 (GET_MODE_BITSIZE (mode) + byte * BITS_PER_UNIT,
6065 GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
6066 ? MODE_INT : GET_MODE_CLASS (mode));
6068 if ((GET_MODE_SIZE (GET_MODE (last_reg))
6069 >= GET_MODE_SIZE (need_mode))
6070 && reg_reloaded_contents[i] == regno
6071 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6072 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6073 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6074 /* Even if we can't use this register as a reload
6075 register, we might use it for reload_override_in,
6076 if copying it to the desired class is cheap
6077 enough. */
6078 || ((REGISTER_MOVE_COST (mode, last_class, rclass)
6079 < MEMORY_MOVE_COST (mode, rclass, 1))
6080 && (secondary_reload_class (1, rclass, mode,
6081 last_reg)
6082 == NO_REGS)
6083 #ifdef SECONDARY_MEMORY_NEEDED
6084 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6085 mode)
6086 #endif
6089 && (rld[r].nregs == max_group_size
6090 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6092 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6093 rld[r].when_needed, rld[r].in,
6094 const0_rtx, r, 1))
6096 /* If a group is needed, verify that all the subsequent
6097 registers still have their values intact. */
6098 int nr = hard_regno_nregs[i][rld[r].mode];
6099 int k;
6101 for (k = 1; k < nr; k++)
6102 if (reg_reloaded_contents[i + k] != regno
6103 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6104 break;
6106 if (k == nr)
6108 int i1;
6109 int bad_for_class;
6111 last_reg = (GET_MODE (last_reg) == mode
6112 ? last_reg : gen_rtx_REG (mode, i));
6114 bad_for_class = 0;
6115 for (k = 0; k < nr; k++)
6116 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6117 i+k);
6119 /* We found a register that contains the
6120 value we need. If this register is the
6121 same as an `earlyclobber' operand of the
6122 current insn, just mark it as a place to
6123 reload from since we can't use it as the
6124 reload register itself. */
6126 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6127 if (reg_overlap_mentioned_for_reload_p
6128 (reg_last_reload_reg[regno],
6129 reload_earlyclobbers[i1]))
6130 break;
6132 if (i1 != n_earlyclobbers
6133 || ! (free_for_value_p (i, rld[r].mode,
6134 rld[r].opnum,
6135 rld[r].when_needed, rld[r].in,
6136 rld[r].out, r, 1))
6137 /* Don't use it if we'd clobber a pseudo reg. */
6138 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6139 && rld[r].out
6140 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6141 /* Don't clobber the frame pointer. */
6142 || (i == HARD_FRAME_POINTER_REGNUM
6143 && frame_pointer_needed
6144 && rld[r].out)
6145 /* Don't really use the inherited spill reg
6146 if we need it wider than we've got it. */
6147 || (GET_MODE_SIZE (rld[r].mode)
6148 > GET_MODE_SIZE (mode))
6149 || bad_for_class
6151 /* If find_reloads chose reload_out as reload
6152 register, stay with it - that leaves the
6153 inherited register for subsequent reloads. */
6154 || (rld[r].out && rld[r].reg_rtx
6155 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6157 if (! rld[r].optional)
6159 reload_override_in[r] = last_reg;
6160 reload_inheritance_insn[r]
6161 = reg_reloaded_insn[i];
6164 else
6166 int k;
6167 /* We can use this as a reload reg. */
6168 /* Mark the register as in use for this part of
6169 the insn. */
6170 mark_reload_reg_in_use (i,
6171 rld[r].opnum,
6172 rld[r].when_needed,
6173 rld[r].mode);
6174 rld[r].reg_rtx = last_reg;
6175 reload_inherited[r] = 1;
6176 reload_inheritance_insn[r]
6177 = reg_reloaded_insn[i];
6178 reload_spill_index[r] = i;
6179 for (k = 0; k < nr; k++)
6180 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6181 i + k);
6188 /* Here's another way to see if the value is already lying around. */
6189 if (inheritance
6190 && rld[r].in != 0
6191 && ! reload_inherited[r]
6192 && rld[r].out == 0
6193 && (CONSTANT_P (rld[r].in)
6194 || GET_CODE (rld[r].in) == PLUS
6195 || REG_P (rld[r].in)
6196 || MEM_P (rld[r].in))
6197 && (rld[r].nregs == max_group_size
6198 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6199 search_equiv = rld[r].in;
6200 /* If this is an output reload from a simple move insn, look
6201 if an equivalence for the input is available. */
6202 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
6204 rtx set = single_set (insn);
6206 if (set
6207 && rtx_equal_p (rld[r].out, SET_DEST (set))
6208 && CONSTANT_P (SET_SRC (set)))
6209 search_equiv = SET_SRC (set);
6212 if (search_equiv)
6214 rtx equiv
6215 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6216 -1, NULL, 0, rld[r].mode);
6217 int regno = 0;
6219 if (equiv != 0)
6221 if (REG_P (equiv))
6222 regno = REGNO (equiv);
6223 else
6225 /* This must be a SUBREG of a hard register.
6226 Make a new REG since this might be used in an
6227 address and not all machines support SUBREGs
6228 there. */
6229 gcc_assert (GET_CODE (equiv) == SUBREG);
6230 regno = subreg_regno (equiv);
6231 equiv = gen_rtx_REG (rld[r].mode, regno);
6232 /* If we choose EQUIV as the reload register, but the
6233 loop below decides to cancel the inheritance, we'll
6234 end up reloading EQUIV in rld[r].mode, not the mode
6235 it had originally. That isn't safe when EQUIV isn't
6236 available as a spill register since its value might
6237 still be live at this point. */
6238 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6239 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6240 equiv = 0;
6244 /* If we found a spill reg, reject it unless it is free
6245 and of the desired class. */
6246 if (equiv != 0)
6248 int regs_used = 0;
6249 int bad_for_class = 0;
6250 int max_regno = regno + rld[r].nregs;
6252 for (i = regno; i < max_regno; i++)
6254 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6256 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6260 if ((regs_used
6261 && ! free_for_value_p (regno, rld[r].mode,
6262 rld[r].opnum, rld[r].when_needed,
6263 rld[r].in, rld[r].out, r, 1))
6264 || bad_for_class)
6265 equiv = 0;
6268 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6269 equiv = 0;
6271 /* We found a register that contains the value we need.
6272 If this register is the same as an `earlyclobber' operand
6273 of the current insn, just mark it as a place to reload from
6274 since we can't use it as the reload register itself. */
6276 if (equiv != 0)
6277 for (i = 0; i < n_earlyclobbers; i++)
6278 if (reg_overlap_mentioned_for_reload_p (equiv,
6279 reload_earlyclobbers[i]))
6281 if (! rld[r].optional)
6282 reload_override_in[r] = equiv;
6283 equiv = 0;
6284 break;
6287 /* If the equiv register we have found is explicitly clobbered
6288 in the current insn, it depends on the reload type if we
6289 can use it, use it for reload_override_in, or not at all.
6290 In particular, we then can't use EQUIV for a
6291 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6293 if (equiv != 0)
6295 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6296 switch (rld[r].when_needed)
6298 case RELOAD_FOR_OTHER_ADDRESS:
6299 case RELOAD_FOR_INPADDR_ADDRESS:
6300 case RELOAD_FOR_INPUT_ADDRESS:
6301 case RELOAD_FOR_OPADDR_ADDR:
6302 break;
6303 case RELOAD_OTHER:
6304 case RELOAD_FOR_INPUT:
6305 case RELOAD_FOR_OPERAND_ADDRESS:
6306 if (! rld[r].optional)
6307 reload_override_in[r] = equiv;
6308 /* Fall through. */
6309 default:
6310 equiv = 0;
6311 break;
6313 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6314 switch (rld[r].when_needed)
6316 case RELOAD_FOR_OTHER_ADDRESS:
6317 case RELOAD_FOR_INPADDR_ADDRESS:
6318 case RELOAD_FOR_INPUT_ADDRESS:
6319 case RELOAD_FOR_OPADDR_ADDR:
6320 case RELOAD_FOR_OPERAND_ADDRESS:
6321 case RELOAD_FOR_INPUT:
6322 break;
6323 case RELOAD_OTHER:
6324 if (! rld[r].optional)
6325 reload_override_in[r] = equiv;
6326 /* Fall through. */
6327 default:
6328 equiv = 0;
6329 break;
6333 /* If we found an equivalent reg, say no code need be generated
6334 to load it, and use it as our reload reg. */
6335 if (equiv != 0
6336 && (regno != HARD_FRAME_POINTER_REGNUM
6337 || !frame_pointer_needed))
6339 int nr = hard_regno_nregs[regno][rld[r].mode];
6340 int k;
6341 rld[r].reg_rtx = equiv;
6342 reload_spill_index[r] = regno;
6343 reload_inherited[r] = 1;
6345 /* If reg_reloaded_valid is not set for this register,
6346 there might be a stale spill_reg_store lying around.
6347 We must clear it, since otherwise emit_reload_insns
6348 might delete the store. */
6349 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6350 spill_reg_store[regno] = NULL_RTX;
6351 /* If any of the hard registers in EQUIV are spill
6352 registers, mark them as in use for this insn. */
6353 for (k = 0; k < nr; k++)
6355 i = spill_reg_order[regno + k];
6356 if (i >= 0)
6358 mark_reload_reg_in_use (regno, rld[r].opnum,
6359 rld[r].when_needed,
6360 rld[r].mode);
6361 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6362 regno + k);
6368 /* If we found a register to use already, or if this is an optional
6369 reload, we are done. */
6370 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6371 continue;
6373 #if 0
6374 /* No longer needed for correct operation. Might or might
6375 not give better code on the average. Want to experiment? */
6377 /* See if there is a later reload that has a class different from our
6378 class that intersects our class or that requires less register
6379 than our reload. If so, we must allocate a register to this
6380 reload now, since that reload might inherit a previous reload
6381 and take the only available register in our class. Don't do this
6382 for optional reloads since they will force all previous reloads
6383 to be allocated. Also don't do this for reloads that have been
6384 turned off. */
6386 for (i = j + 1; i < n_reloads; i++)
6388 int s = reload_order[i];
6390 if ((rld[s].in == 0 && rld[s].out == 0
6391 && ! rld[s].secondary_p)
6392 || rld[s].optional)
6393 continue;
6395 if ((rld[s].rclass != rld[r].rclass
6396 && reg_classes_intersect_p (rld[r].rclass,
6397 rld[s].rclass))
6398 || rld[s].nregs < rld[r].nregs)
6399 break;
6402 if (i == n_reloads)
6403 continue;
6405 allocate_reload_reg (chain, r, j == n_reloads - 1);
6406 #endif
6409 /* Now allocate reload registers for anything non-optional that
6410 didn't get one yet. */
6411 for (j = 0; j < n_reloads; j++)
6413 int r = reload_order[j];
6415 /* Ignore reloads that got marked inoperative. */
6416 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6417 continue;
6419 /* Skip reloads that already have a register allocated or are
6420 optional. */
6421 if (rld[r].reg_rtx != 0 || rld[r].optional)
6422 continue;
6424 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6425 break;
6428 /* If that loop got all the way, we have won. */
6429 if (j == n_reloads)
6431 win = 1;
6432 break;
6435 /* Loop around and try without any inheritance. */
6438 if (! win)
6440 /* First undo everything done by the failed attempt
6441 to allocate with inheritance. */
6442 choose_reload_regs_init (chain, save_reload_reg_rtx);
6444 /* Some sanity tests to verify that the reloads found in the first
6445 pass are identical to the ones we have now. */
6446 gcc_assert (chain->n_reloads == n_reloads);
6448 for (i = 0; i < n_reloads; i++)
6450 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6451 continue;
6452 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6453 for (j = 0; j < n_spills; j++)
6454 if (spill_regs[j] == chain->rld[i].regno)
6455 if (! set_reload_reg (j, i))
6456 failed_reload (chain->insn, i);
6460 /* If we thought we could inherit a reload, because it seemed that
6461 nothing else wanted the same reload register earlier in the insn,
6462 verify that assumption, now that all reloads have been assigned.
6463 Likewise for reloads where reload_override_in has been set. */
6465 /* If doing expensive optimizations, do one preliminary pass that doesn't
6466 cancel any inheritance, but removes reloads that have been needed only
6467 for reloads that we know can be inherited. */
6468 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6470 for (j = 0; j < n_reloads; j++)
6472 int r = reload_order[j];
6473 rtx check_reg;
6474 if (reload_inherited[r] && rld[r].reg_rtx)
6475 check_reg = rld[r].reg_rtx;
6476 else if (reload_override_in[r]
6477 && (REG_P (reload_override_in[r])
6478 || GET_CODE (reload_override_in[r]) == SUBREG))
6479 check_reg = reload_override_in[r];
6480 else
6481 continue;
6482 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6483 rld[r].opnum, rld[r].when_needed, rld[r].in,
6484 (reload_inherited[r]
6485 ? rld[r].out : const0_rtx),
6486 r, 1))
6488 if (pass)
6489 continue;
6490 reload_inherited[r] = 0;
6491 reload_override_in[r] = 0;
6493 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6494 reload_override_in, then we do not need its related
6495 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6496 likewise for other reload types.
6497 We handle this by removing a reload when its only replacement
6498 is mentioned in reload_in of the reload we are going to inherit.
6499 A special case are auto_inc expressions; even if the input is
6500 inherited, we still need the address for the output. We can
6501 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6502 If we succeeded removing some reload and we are doing a preliminary
6503 pass just to remove such reloads, make another pass, since the
6504 removal of one reload might allow us to inherit another one. */
6505 else if (rld[r].in
6506 && rld[r].out != rld[r].in
6507 && remove_address_replacements (rld[r].in) && pass)
6508 pass = 2;
6512 /* Now that reload_override_in is known valid,
6513 actually override reload_in. */
6514 for (j = 0; j < n_reloads; j++)
6515 if (reload_override_in[j])
6516 rld[j].in = reload_override_in[j];
6518 /* If this reload won't be done because it has been canceled or is
6519 optional and not inherited, clear reload_reg_rtx so other
6520 routines (such as subst_reloads) don't get confused. */
6521 for (j = 0; j < n_reloads; j++)
6522 if (rld[j].reg_rtx != 0
6523 && ((rld[j].optional && ! reload_inherited[j])
6524 || (rld[j].in == 0 && rld[j].out == 0
6525 && ! rld[j].secondary_p)))
6527 int regno = true_regnum (rld[j].reg_rtx);
6529 if (spill_reg_order[regno] >= 0)
6530 clear_reload_reg_in_use (regno, rld[j].opnum,
6531 rld[j].when_needed, rld[j].mode);
6532 rld[j].reg_rtx = 0;
6533 reload_spill_index[j] = -1;
6536 /* Record which pseudos and which spill regs have output reloads. */
6537 for (j = 0; j < n_reloads; j++)
6539 int r = reload_order[j];
6541 i = reload_spill_index[r];
6543 /* I is nonneg if this reload uses a register.
6544 If rld[r].reg_rtx is 0, this is an optional reload
6545 that we opted to ignore. */
6546 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6547 && rld[r].reg_rtx != 0)
6549 int nregno = REGNO (rld[r].out_reg);
6550 int nr = 1;
6552 if (nregno < FIRST_PSEUDO_REGISTER)
6553 nr = hard_regno_nregs[nregno][rld[r].mode];
6555 while (--nr >= 0)
6556 SET_REGNO_REG_SET (&reg_has_output_reload,
6557 nregno + nr);
6559 if (i >= 0)
6561 nr = hard_regno_nregs[i][rld[r].mode];
6562 while (--nr >= 0)
6563 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
6566 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6567 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6568 || rld[r].when_needed == RELOAD_FOR_INSN);
6573 /* Deallocate the reload register for reload R. This is called from
6574 remove_address_replacements. */
6576 void
6577 deallocate_reload_reg (int r)
6579 int regno;
6581 if (! rld[r].reg_rtx)
6582 return;
6583 regno = true_regnum (rld[r].reg_rtx);
6584 rld[r].reg_rtx = 0;
6585 if (spill_reg_order[regno] >= 0)
6586 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6587 rld[r].mode);
6588 reload_spill_index[r] = -1;
6591 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6592 reloads of the same item for fear that we might not have enough reload
6593 registers. However, normally they will get the same reload register
6594 and hence actually need not be loaded twice.
6596 Here we check for the most common case of this phenomenon: when we have
6597 a number of reloads for the same object, each of which were allocated
6598 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6599 reload, and is not modified in the insn itself. If we find such,
6600 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6601 This will not increase the number of spill registers needed and will
6602 prevent redundant code. */
6604 static void
6605 merge_assigned_reloads (rtx insn)
6607 int i, j;
6609 /* Scan all the reloads looking for ones that only load values and
6610 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6611 assigned and not modified by INSN. */
6613 for (i = 0; i < n_reloads; i++)
6615 int conflicting_input = 0;
6616 int max_input_address_opnum = -1;
6617 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6619 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6620 || rld[i].out != 0 || rld[i].reg_rtx == 0
6621 || reg_set_p (rld[i].reg_rtx, insn))
6622 continue;
6624 /* Look at all other reloads. Ensure that the only use of this
6625 reload_reg_rtx is in a reload that just loads the same value
6626 as we do. Note that any secondary reloads must be of the identical
6627 class since the values, modes, and result registers are the
6628 same, so we need not do anything with any secondary reloads. */
6630 for (j = 0; j < n_reloads; j++)
6632 if (i == j || rld[j].reg_rtx == 0
6633 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6634 rld[i].reg_rtx))
6635 continue;
6637 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6638 && rld[j].opnum > max_input_address_opnum)
6639 max_input_address_opnum = rld[j].opnum;
6641 /* If the reload regs aren't exactly the same (e.g, different modes)
6642 or if the values are different, we can't merge this reload.
6643 But if it is an input reload, we might still merge
6644 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6646 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6647 || rld[j].out != 0 || rld[j].in == 0
6648 || ! rtx_equal_p (rld[i].in, rld[j].in))
6650 if (rld[j].when_needed != RELOAD_FOR_INPUT
6651 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6652 || rld[i].opnum > rld[j].opnum)
6653 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6654 break;
6655 conflicting_input = 1;
6656 if (min_conflicting_input_opnum > rld[j].opnum)
6657 min_conflicting_input_opnum = rld[j].opnum;
6661 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6662 we, in fact, found any matching reloads. */
6664 if (j == n_reloads
6665 && max_input_address_opnum <= min_conflicting_input_opnum)
6667 gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
6669 for (j = 0; j < n_reloads; j++)
6670 if (i != j && rld[j].reg_rtx != 0
6671 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6672 && (! conflicting_input
6673 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6674 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6676 rld[i].when_needed = RELOAD_OTHER;
6677 rld[j].in = 0;
6678 reload_spill_index[j] = -1;
6679 transfer_replacements (i, j);
6682 /* If this is now RELOAD_OTHER, look for any reloads that
6683 load parts of this operand and set them to
6684 RELOAD_FOR_OTHER_ADDRESS if they were for inputs,
6685 RELOAD_OTHER for outputs. Note that this test is
6686 equivalent to looking for reloads for this operand
6687 number.
6689 We must take special care with RELOAD_FOR_OUTPUT_ADDRESS;
6690 it may share registers with a RELOAD_FOR_INPUT, so we can
6691 not change it to RELOAD_FOR_OTHER_ADDRESS. We should
6692 never need to, since we do not modify RELOAD_FOR_OUTPUT.
6694 It is possible that the RELOAD_FOR_OPERAND_ADDRESS
6695 instruction is assigned the same register as the earlier
6696 RELOAD_FOR_OTHER_ADDRESS instruction. Merging these two
6697 instructions will cause the RELOAD_FOR_OTHER_ADDRESS
6698 instruction to be deleted later on. */
6700 if (rld[i].when_needed == RELOAD_OTHER)
6701 for (j = 0; j < n_reloads; j++)
6702 if (rld[j].in != 0
6703 && rld[j].when_needed != RELOAD_OTHER
6704 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6705 && rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
6706 && rld[j].when_needed != RELOAD_FOR_OPERAND_ADDRESS
6707 && (! conflicting_input
6708 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6709 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6710 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6711 rld[i].in))
6713 int k;
6715 rld[j].when_needed
6716 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6717 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6718 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6720 /* Check to see if we accidentally converted two
6721 reloads that use the same reload register with
6722 different inputs to the same type. If so, the
6723 resulting code won't work. */
6724 if (rld[j].reg_rtx)
6725 for (k = 0; k < j; k++)
6726 gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6727 || rld[k].when_needed != rld[j].when_needed
6728 || !rtx_equal_p (rld[k].reg_rtx,
6729 rld[j].reg_rtx)
6730 || rtx_equal_p (rld[k].in,
6731 rld[j].in));
6737 /* These arrays are filled by emit_reload_insns and its subroutines. */
6738 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6739 static rtx other_input_address_reload_insns = 0;
6740 static rtx other_input_reload_insns = 0;
6741 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6742 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6743 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6744 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6745 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6746 static rtx operand_reload_insns = 0;
6747 static rtx other_operand_reload_insns = 0;
6748 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6750 /* Values to be put in spill_reg_store are put here first. */
6751 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6752 static HARD_REG_SET reg_reloaded_died;
6754 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
6755 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
6756 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
6757 adjusted register, and return true. Otherwise, return false. */
6758 static bool
6759 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
6760 enum reg_class new_class,
6761 enum machine_mode new_mode)
6764 rtx reg;
6766 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
6768 unsigned regno = REGNO (reg);
6770 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
6771 continue;
6772 if (GET_MODE (reg) != new_mode)
6774 if (!HARD_REGNO_MODE_OK (regno, new_mode))
6775 continue;
6776 if (hard_regno_nregs[regno][new_mode]
6777 > hard_regno_nregs[regno][GET_MODE (reg)])
6778 continue;
6779 reg = reload_adjust_reg_for_mode (reg, new_mode);
6781 *reload_reg = reg;
6782 return true;
6784 return false;
6787 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
6788 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
6789 nonzero, if that is suitable. On success, change *RELOAD_REG to the
6790 adjusted register, and return true. Otherwise, return false. */
6791 static bool
6792 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
6793 enum insn_code icode)
6796 enum reg_class new_class = scratch_reload_class (icode);
6797 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
6799 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
6800 new_class, new_mode);
6803 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6804 has the number J. OLD contains the value to be used as input. */
6806 static void
6807 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6808 rtx old, int j)
6810 rtx insn = chain->insn;
6811 rtx reloadreg;
6812 rtx oldequiv_reg = 0;
6813 rtx oldequiv = 0;
6814 int special = 0;
6815 enum machine_mode mode;
6816 rtx *where;
6818 /* delete_output_reload is only invoked properly if old contains
6819 the original pseudo register. Since this is replaced with a
6820 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6821 find the pseudo in RELOAD_IN_REG. */
6822 if (reload_override_in[j]
6823 && REG_P (rl->in_reg))
6825 oldequiv = old;
6826 old = rl->in_reg;
6828 if (oldequiv == 0)
6829 oldequiv = old;
6830 else if (REG_P (oldequiv))
6831 oldequiv_reg = oldequiv;
6832 else if (GET_CODE (oldequiv) == SUBREG)
6833 oldequiv_reg = SUBREG_REG (oldequiv);
6835 reloadreg = reload_reg_rtx_for_input[j];
6836 mode = GET_MODE (reloadreg);
6838 /* If we are reloading from a register that was recently stored in
6839 with an output-reload, see if we can prove there was
6840 actually no need to store the old value in it. */
6842 if (optimize && REG_P (oldequiv)
6843 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6844 && spill_reg_store[REGNO (oldequiv)]
6845 && REG_P (old)
6846 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6847 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6848 rl->out_reg)))
6849 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
6851 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
6852 OLDEQUIV. */
6854 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6855 oldequiv = SUBREG_REG (oldequiv);
6856 if (GET_MODE (oldequiv) != VOIDmode
6857 && mode != GET_MODE (oldequiv))
6858 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6860 /* Switch to the right place to emit the reload insns. */
6861 switch (rl->when_needed)
6863 case RELOAD_OTHER:
6864 where = &other_input_reload_insns;
6865 break;
6866 case RELOAD_FOR_INPUT:
6867 where = &input_reload_insns[rl->opnum];
6868 break;
6869 case RELOAD_FOR_INPUT_ADDRESS:
6870 where = &input_address_reload_insns[rl->opnum];
6871 break;
6872 case RELOAD_FOR_INPADDR_ADDRESS:
6873 where = &inpaddr_address_reload_insns[rl->opnum];
6874 break;
6875 case RELOAD_FOR_OUTPUT_ADDRESS:
6876 where = &output_address_reload_insns[rl->opnum];
6877 break;
6878 case RELOAD_FOR_OUTADDR_ADDRESS:
6879 where = &outaddr_address_reload_insns[rl->opnum];
6880 break;
6881 case RELOAD_FOR_OPERAND_ADDRESS:
6882 where = &operand_reload_insns;
6883 break;
6884 case RELOAD_FOR_OPADDR_ADDR:
6885 where = &other_operand_reload_insns;
6886 break;
6887 case RELOAD_FOR_OTHER_ADDRESS:
6888 where = &other_input_address_reload_insns;
6889 break;
6890 default:
6891 gcc_unreachable ();
6894 push_to_sequence (*where);
6896 /* Auto-increment addresses must be reloaded in a special way. */
6897 if (rl->out && ! rl->out_reg)
6899 /* We are not going to bother supporting the case where a
6900 incremented register can't be copied directly from
6901 OLDEQUIV since this seems highly unlikely. */
6902 gcc_assert (rl->secondary_in_reload < 0);
6904 if (reload_inherited[j])
6905 oldequiv = reloadreg;
6907 old = XEXP (rl->in_reg, 0);
6909 if (optimize && REG_P (oldequiv)
6910 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6911 && spill_reg_store[REGNO (oldequiv)]
6912 && REG_P (old)
6913 && (dead_or_set_p (insn,
6914 spill_reg_stored_to[REGNO (oldequiv)])
6915 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6916 old)))
6917 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
6919 /* Prevent normal processing of this reload. */
6920 special = 1;
6921 /* Output a special code sequence for this case. */
6922 new_spill_reg_store[REGNO (reloadreg)]
6923 = inc_for_reload (reloadreg, oldequiv, rl->out,
6924 rl->inc);
6927 /* If we are reloading a pseudo-register that was set by the previous
6928 insn, see if we can get rid of that pseudo-register entirely
6929 by redirecting the previous insn into our reload register. */
6931 else if (optimize && REG_P (old)
6932 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6933 && dead_or_set_p (insn, old)
6934 /* This is unsafe if some other reload
6935 uses the same reg first. */
6936 && ! conflicts_with_override (reloadreg)
6937 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6938 rl->when_needed, old, rl->out, j, 0))
6940 rtx temp = PREV_INSN (insn);
6941 while (temp && NOTE_P (temp))
6942 temp = PREV_INSN (temp);
6943 if (temp
6944 && NONJUMP_INSN_P (temp)
6945 && GET_CODE (PATTERN (temp)) == SET
6946 && SET_DEST (PATTERN (temp)) == old
6947 /* Make sure we can access insn_operand_constraint. */
6948 && asm_noperands (PATTERN (temp)) < 0
6949 /* This is unsafe if operand occurs more than once in current
6950 insn. Perhaps some occurrences aren't reloaded. */
6951 && count_occurrences (PATTERN (insn), old, 0) == 1)
6953 rtx old = SET_DEST (PATTERN (temp));
6954 /* Store into the reload register instead of the pseudo. */
6955 SET_DEST (PATTERN (temp)) = reloadreg;
6957 /* Verify that resulting insn is valid. */
6958 extract_insn (temp);
6959 if (constrain_operands (1))
6961 /* If the previous insn is an output reload, the source is
6962 a reload register, and its spill_reg_store entry will
6963 contain the previous destination. This is now
6964 invalid. */
6965 if (REG_P (SET_SRC (PATTERN (temp)))
6966 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6968 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6969 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6972 /* If these are the only uses of the pseudo reg,
6973 pretend for GDB it lives in the reload reg we used. */
6974 if (REG_N_DEATHS (REGNO (old)) == 1
6975 && REG_N_SETS (REGNO (old)) == 1)
6977 reg_renumber[REGNO (old)] = REGNO (reloadreg);
6978 if (ira_conflicts_p)
6979 /* Inform IRA about the change. */
6980 ira_mark_allocation_change (REGNO (old));
6981 alter_reg (REGNO (old), -1, false);
6983 special = 1;
6985 else
6987 SET_DEST (PATTERN (temp)) = old;
6992 /* We can't do that, so output an insn to load RELOADREG. */
6994 /* If we have a secondary reload, pick up the secondary register
6995 and icode, if any. If OLDEQUIV and OLD are different or
6996 if this is an in-out reload, recompute whether or not we
6997 still need a secondary register and what the icode should
6998 be. If we still need a secondary register and the class or
6999 icode is different, go back to reloading from OLD if using
7000 OLDEQUIV means that we got the wrong type of register. We
7001 cannot have different class or icode due to an in-out reload
7002 because we don't make such reloads when both the input and
7003 output need secondary reload registers. */
7005 if (! special && rl->secondary_in_reload >= 0)
7007 rtx second_reload_reg = 0;
7008 rtx third_reload_reg = 0;
7009 int secondary_reload = rl->secondary_in_reload;
7010 rtx real_oldequiv = oldequiv;
7011 rtx real_old = old;
7012 rtx tmp;
7013 enum insn_code icode;
7014 enum insn_code tertiary_icode = CODE_FOR_nothing;
7016 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7017 and similarly for OLD.
7018 See comments in get_secondary_reload in reload.c. */
7019 /* If it is a pseudo that cannot be replaced with its
7020 equivalent MEM, we must fall back to reload_in, which
7021 will have all the necessary substitutions registered.
7022 Likewise for a pseudo that can't be replaced with its
7023 equivalent constant.
7025 Take extra care for subregs of such pseudos. Note that
7026 we cannot use reg_equiv_mem in this case because it is
7027 not in the right mode. */
7029 tmp = oldequiv;
7030 if (GET_CODE (tmp) == SUBREG)
7031 tmp = SUBREG_REG (tmp);
7032 if (REG_P (tmp)
7033 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7034 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
7035 || reg_equiv_constant[REGNO (tmp)] != 0))
7037 if (! reg_equiv_mem[REGNO (tmp)]
7038 || num_not_at_initial_offset
7039 || GET_CODE (oldequiv) == SUBREG)
7040 real_oldequiv = rl->in;
7041 else
7042 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
7045 tmp = old;
7046 if (GET_CODE (tmp) == SUBREG)
7047 tmp = SUBREG_REG (tmp);
7048 if (REG_P (tmp)
7049 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7050 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
7051 || reg_equiv_constant[REGNO (tmp)] != 0))
7053 if (! reg_equiv_mem[REGNO (tmp)]
7054 || num_not_at_initial_offset
7055 || GET_CODE (old) == SUBREG)
7056 real_old = rl->in;
7057 else
7058 real_old = reg_equiv_mem[REGNO (tmp)];
7061 second_reload_reg = rld[secondary_reload].reg_rtx;
7062 if (rld[secondary_reload].secondary_in_reload >= 0)
7064 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7066 third_reload_reg = rld[tertiary_reload].reg_rtx;
7067 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7068 /* We'd have to add more code for quartary reloads. */
7069 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7071 icode = rl->secondary_in_icode;
7073 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7074 || (rl->in != 0 && rl->out != 0))
7076 secondary_reload_info sri, sri2;
7077 enum reg_class new_class, new_t_class;
7079 sri.icode = CODE_FOR_nothing;
7080 sri.prev_sri = NULL;
7081 new_class = targetm.secondary_reload (1, real_oldequiv, rl->rclass,
7082 mode, &sri);
7084 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7085 second_reload_reg = 0;
7086 else if (new_class == NO_REGS)
7088 if (reload_adjust_reg_for_icode (&second_reload_reg,
7089 third_reload_reg, sri.icode))
7090 icode = sri.icode, third_reload_reg = 0;
7091 else
7092 oldequiv = old, real_oldequiv = real_old;
7094 else if (sri.icode != CODE_FOR_nothing)
7095 /* We currently lack a way to express this in reloads. */
7096 gcc_unreachable ();
7097 else
7099 sri2.icode = CODE_FOR_nothing;
7100 sri2.prev_sri = &sri;
7101 new_t_class = targetm.secondary_reload (1, real_oldequiv,
7102 new_class, mode, &sri);
7103 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7105 if (reload_adjust_reg_for_temp (&second_reload_reg,
7106 third_reload_reg,
7107 new_class, mode))
7108 third_reload_reg = 0, tertiary_icode = sri2.icode;
7109 else
7110 oldequiv = old, real_oldequiv = real_old;
7112 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7114 rtx intermediate = second_reload_reg;
7116 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7117 new_class, mode)
7118 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7119 sri2.icode))
7121 second_reload_reg = intermediate;
7122 tertiary_icode = sri2.icode;
7124 else
7125 oldequiv = old, real_oldequiv = real_old;
7127 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7129 rtx intermediate = second_reload_reg;
7131 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7132 new_class, mode)
7133 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7134 new_t_class, mode))
7136 second_reload_reg = intermediate;
7137 tertiary_icode = sri2.icode;
7139 else
7140 oldequiv = old, real_oldequiv = real_old;
7142 else
7143 /* This could be handled more intelligently too. */
7144 oldequiv = old, real_oldequiv = real_old;
7148 /* If we still need a secondary reload register, check
7149 to see if it is being used as a scratch or intermediate
7150 register and generate code appropriately. If we need
7151 a scratch register, use REAL_OLDEQUIV since the form of
7152 the insn may depend on the actual address if it is
7153 a MEM. */
7155 if (second_reload_reg)
7157 if (icode != CODE_FOR_nothing)
7159 /* We'd have to add extra code to handle this case. */
7160 gcc_assert (!third_reload_reg);
7162 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7163 second_reload_reg));
7164 special = 1;
7166 else
7168 /* See if we need a scratch register to load the
7169 intermediate register (a tertiary reload). */
7170 if (tertiary_icode != CODE_FOR_nothing)
7172 emit_insn ((GEN_FCN (tertiary_icode)
7173 (second_reload_reg, real_oldequiv,
7174 third_reload_reg)));
7176 else if (third_reload_reg)
7178 gen_reload (third_reload_reg, real_oldequiv,
7179 rl->opnum,
7180 rl->when_needed);
7181 gen_reload (second_reload_reg, third_reload_reg,
7182 rl->opnum,
7183 rl->when_needed);
7185 else
7186 gen_reload (second_reload_reg, real_oldequiv,
7187 rl->opnum,
7188 rl->when_needed);
7190 oldequiv = second_reload_reg;
7195 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7197 rtx real_oldequiv = oldequiv;
7199 if ((REG_P (oldequiv)
7200 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7201 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
7202 || reg_equiv_constant[REGNO (oldequiv)] != 0))
7203 || (GET_CODE (oldequiv) == SUBREG
7204 && REG_P (SUBREG_REG (oldequiv))
7205 && (REGNO (SUBREG_REG (oldequiv))
7206 >= FIRST_PSEUDO_REGISTER)
7207 && ((reg_equiv_memory_loc
7208 [REGNO (SUBREG_REG (oldequiv))] != 0)
7209 || (reg_equiv_constant
7210 [REGNO (SUBREG_REG (oldequiv))] != 0)))
7211 || (CONSTANT_P (oldequiv)
7212 && (PREFERRED_RELOAD_CLASS (oldequiv,
7213 REGNO_REG_CLASS (REGNO (reloadreg)))
7214 == NO_REGS)))
7215 real_oldequiv = rl->in;
7216 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7217 rl->when_needed);
7220 if (flag_non_call_exceptions)
7221 copy_eh_notes (insn, get_insns ());
7223 /* End this sequence. */
7224 *where = get_insns ();
7225 end_sequence ();
7227 /* Update reload_override_in so that delete_address_reloads_1
7228 can see the actual register usage. */
7229 if (oldequiv_reg)
7230 reload_override_in[j] = oldequiv;
7233 /* Generate insns to for the output reload RL, which is for the insn described
7234 by CHAIN and has the number J. */
7235 static void
7236 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7237 int j)
7239 rtx reloadreg;
7240 rtx insn = chain->insn;
7241 int special = 0;
7242 rtx old = rl->out;
7243 enum machine_mode mode;
7244 rtx p;
7245 rtx rl_reg_rtx;
7247 if (rl->when_needed == RELOAD_OTHER)
7248 start_sequence ();
7249 else
7250 push_to_sequence (output_reload_insns[rl->opnum]);
7252 rl_reg_rtx = reload_reg_rtx_for_output[j];
7253 mode = GET_MODE (rl_reg_rtx);
7255 reloadreg = rl_reg_rtx;
7257 /* If we need two reload regs, set RELOADREG to the intermediate
7258 one, since it will be stored into OLD. We might need a secondary
7259 register only for an input reload, so check again here. */
7261 if (rl->secondary_out_reload >= 0)
7263 rtx real_old = old;
7264 int secondary_reload = rl->secondary_out_reload;
7265 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7267 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7268 && reg_equiv_mem[REGNO (old)] != 0)
7269 real_old = reg_equiv_mem[REGNO (old)];
7271 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7273 rtx second_reloadreg = reloadreg;
7274 reloadreg = rld[secondary_reload].reg_rtx;
7276 /* See if RELOADREG is to be used as a scratch register
7277 or as an intermediate register. */
7278 if (rl->secondary_out_icode != CODE_FOR_nothing)
7280 /* We'd have to add extra code to handle this case. */
7281 gcc_assert (tertiary_reload < 0);
7283 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7284 (real_old, second_reloadreg, reloadreg)));
7285 special = 1;
7287 else
7289 /* See if we need both a scratch and intermediate reload
7290 register. */
7292 enum insn_code tertiary_icode
7293 = rld[secondary_reload].secondary_out_icode;
7295 /* We'd have to add more code for quartary reloads. */
7296 gcc_assert (tertiary_reload < 0
7297 || rld[tertiary_reload].secondary_out_reload < 0);
7299 if (GET_MODE (reloadreg) != mode)
7300 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7302 if (tertiary_icode != CODE_FOR_nothing)
7304 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7305 rtx tem;
7307 /* Copy primary reload reg to secondary reload reg.
7308 (Note that these have been swapped above, then
7309 secondary reload reg to OLD using our insn.) */
7311 /* If REAL_OLD is a paradoxical SUBREG, remove it
7312 and try to put the opposite SUBREG on
7313 RELOADREG. */
7314 if (GET_CODE (real_old) == SUBREG
7315 && (GET_MODE_SIZE (GET_MODE (real_old))
7316 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
7317 && 0 != (tem = gen_lowpart_common
7318 (GET_MODE (SUBREG_REG (real_old)),
7319 reloadreg)))
7320 real_old = SUBREG_REG (real_old), reloadreg = tem;
7322 gen_reload (reloadreg, second_reloadreg,
7323 rl->opnum, rl->when_needed);
7324 emit_insn ((GEN_FCN (tertiary_icode)
7325 (real_old, reloadreg, third_reloadreg)));
7326 special = 1;
7329 else
7331 /* Copy between the reload regs here and then to
7332 OUT later. */
7334 gen_reload (reloadreg, second_reloadreg,
7335 rl->opnum, rl->when_needed);
7336 if (tertiary_reload >= 0)
7338 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7340 gen_reload (third_reloadreg, reloadreg,
7341 rl->opnum, rl->when_needed);
7342 reloadreg = third_reloadreg;
7349 /* Output the last reload insn. */
7350 if (! special)
7352 rtx set;
7354 /* Don't output the last reload if OLD is not the dest of
7355 INSN and is in the src and is clobbered by INSN. */
7356 if (! flag_expensive_optimizations
7357 || !REG_P (old)
7358 || !(set = single_set (insn))
7359 || rtx_equal_p (old, SET_DEST (set))
7360 || !reg_mentioned_p (old, SET_SRC (set))
7361 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7362 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7363 gen_reload (old, reloadreg, rl->opnum,
7364 rl->when_needed);
7367 /* Look at all insns we emitted, just to be safe. */
7368 for (p = get_insns (); p; p = NEXT_INSN (p))
7369 if (INSN_P (p))
7371 rtx pat = PATTERN (p);
7373 /* If this output reload doesn't come from a spill reg,
7374 clear any memory of reloaded copies of the pseudo reg.
7375 If this output reload comes from a spill reg,
7376 reg_has_output_reload will make this do nothing. */
7377 note_stores (pat, forget_old_reloads_1, NULL);
7379 if (reg_mentioned_p (rl_reg_rtx, pat))
7381 rtx set = single_set (insn);
7382 if (reload_spill_index[j] < 0
7383 && set
7384 && SET_SRC (set) == rl_reg_rtx)
7386 int src = REGNO (SET_SRC (set));
7388 reload_spill_index[j] = src;
7389 SET_HARD_REG_BIT (reg_is_output_reload, src);
7390 if (find_regno_note (insn, REG_DEAD, src))
7391 SET_HARD_REG_BIT (reg_reloaded_died, src);
7393 if (HARD_REGISTER_P (rl_reg_rtx))
7395 int s = rl->secondary_out_reload;
7396 set = single_set (p);
7397 /* If this reload copies only to the secondary reload
7398 register, the secondary reload does the actual
7399 store. */
7400 if (s >= 0 && set == NULL_RTX)
7401 /* We can't tell what function the secondary reload
7402 has and where the actual store to the pseudo is
7403 made; leave new_spill_reg_store alone. */
7405 else if (s >= 0
7406 && SET_SRC (set) == rl_reg_rtx
7407 && SET_DEST (set) == rld[s].reg_rtx)
7409 /* Usually the next instruction will be the
7410 secondary reload insn; if we can confirm
7411 that it is, setting new_spill_reg_store to
7412 that insn will allow an extra optimization. */
7413 rtx s_reg = rld[s].reg_rtx;
7414 rtx next = NEXT_INSN (p);
7415 rld[s].out = rl->out;
7416 rld[s].out_reg = rl->out_reg;
7417 set = single_set (next);
7418 if (set && SET_SRC (set) == s_reg
7419 && ! new_spill_reg_store[REGNO (s_reg)])
7421 SET_HARD_REG_BIT (reg_is_output_reload,
7422 REGNO (s_reg));
7423 new_spill_reg_store[REGNO (s_reg)] = next;
7426 else
7427 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7432 if (rl->when_needed == RELOAD_OTHER)
7434 emit_insn (other_output_reload_insns[rl->opnum]);
7435 other_output_reload_insns[rl->opnum] = get_insns ();
7437 else
7438 output_reload_insns[rl->opnum] = get_insns ();
7440 if (flag_non_call_exceptions)
7441 copy_eh_notes (insn, get_insns ());
7443 end_sequence ();
7446 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7447 and has the number J. */
7448 static void
7449 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7451 rtx insn = chain->insn;
7452 rtx old = (rl->in && MEM_P (rl->in)
7453 ? rl->in_reg : rl->in);
7454 rtx reg_rtx = rl->reg_rtx;
7456 if (old && reg_rtx)
7458 enum machine_mode mode;
7460 /* Determine the mode to reload in.
7461 This is very tricky because we have three to choose from.
7462 There is the mode the insn operand wants (rl->inmode).
7463 There is the mode of the reload register RELOADREG.
7464 There is the intrinsic mode of the operand, which we could find
7465 by stripping some SUBREGs.
7466 It turns out that RELOADREG's mode is irrelevant:
7467 we can change that arbitrarily.
7469 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7470 then the reload reg may not support QImode moves, so use SImode.
7471 If foo is in memory due to spilling a pseudo reg, this is safe,
7472 because the QImode value is in the least significant part of a
7473 slot big enough for a SImode. If foo is some other sort of
7474 memory reference, then it is impossible to reload this case,
7475 so previous passes had better make sure this never happens.
7477 Then consider a one-word union which has SImode and one of its
7478 members is a float, being fetched as (SUBREG:SF union:SI).
7479 We must fetch that as SFmode because we could be loading into
7480 a float-only register. In this case OLD's mode is correct.
7482 Consider an immediate integer: it has VOIDmode. Here we need
7483 to get a mode from something else.
7485 In some cases, there is a fourth mode, the operand's
7486 containing mode. If the insn specifies a containing mode for
7487 this operand, it overrides all others.
7489 I am not sure whether the algorithm here is always right,
7490 but it does the right things in those cases. */
7492 mode = GET_MODE (old);
7493 if (mode == VOIDmode)
7494 mode = rl->inmode;
7496 /* We cannot use gen_lowpart_common since it can do the wrong thing
7497 when REG_RTX has a multi-word mode. Note that REG_RTX must
7498 always be a REG here. */
7499 if (GET_MODE (reg_rtx) != mode)
7500 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7502 reload_reg_rtx_for_input[j] = reg_rtx;
7504 if (old != 0
7505 /* AUTO_INC reloads need to be handled even if inherited. We got an
7506 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7507 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7508 && ! rtx_equal_p (reg_rtx, old)
7509 && reg_rtx != 0)
7510 emit_input_reload_insns (chain, rld + j, old, j);
7512 /* When inheriting a wider reload, we have a MEM in rl->in,
7513 e.g. inheriting a SImode output reload for
7514 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7515 if (optimize && reload_inherited[j] && rl->in
7516 && MEM_P (rl->in)
7517 && MEM_P (rl->in_reg)
7518 && reload_spill_index[j] >= 0
7519 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7520 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7522 /* If we are reloading a register that was recently stored in with an
7523 output-reload, see if we can prove there was
7524 actually no need to store the old value in it. */
7526 if (optimize
7527 && (reload_inherited[j] || reload_override_in[j])
7528 && reg_rtx
7529 && REG_P (reg_rtx)
7530 && spill_reg_store[REGNO (reg_rtx)] != 0
7531 #if 0
7532 /* There doesn't seem to be any reason to restrict this to pseudos
7533 and doing so loses in the case where we are copying from a
7534 register of the wrong class. */
7535 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7536 #endif
7537 /* The insn might have already some references to stackslots
7538 replaced by MEMs, while reload_out_reg still names the
7539 original pseudo. */
7540 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7541 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7542 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7545 /* Do output reloading for reload RL, which is for the insn described by
7546 CHAIN and has the number J.
7547 ??? At some point we need to support handling output reloads of
7548 JUMP_INSNs or insns that set cc0. */
7549 static void
7550 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7552 rtx note, old;
7553 rtx insn = chain->insn;
7554 /* If this is an output reload that stores something that is
7555 not loaded in this same reload, see if we can eliminate a previous
7556 store. */
7557 rtx pseudo = rl->out_reg;
7558 rtx reg_rtx = rl->reg_rtx;
7560 if (rl->out && reg_rtx)
7562 enum machine_mode mode;
7564 /* Determine the mode to reload in.
7565 See comments above (for input reloading). */
7566 mode = GET_MODE (rl->out);
7567 if (mode == VOIDmode)
7569 /* VOIDmode should never happen for an output. */
7570 if (asm_noperands (PATTERN (insn)) < 0)
7571 /* It's the compiler's fault. */
7572 fatal_insn ("VOIDmode on an output", insn);
7573 error_for_asm (insn, "output operand is constant in %<asm%>");
7574 /* Prevent crash--use something we know is valid. */
7575 mode = word_mode;
7576 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7578 if (GET_MODE (reg_rtx) != mode)
7579 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7581 reload_reg_rtx_for_output[j] = reg_rtx;
7583 if (pseudo
7584 && optimize
7585 && REG_P (pseudo)
7586 && ! rtx_equal_p (rl->in_reg, pseudo)
7587 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7588 && reg_last_reload_reg[REGNO (pseudo)])
7590 int pseudo_no = REGNO (pseudo);
7591 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7593 /* We don't need to test full validity of last_regno for
7594 inherit here; we only want to know if the store actually
7595 matches the pseudo. */
7596 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7597 && reg_reloaded_contents[last_regno] == pseudo_no
7598 && spill_reg_store[last_regno]
7599 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7600 delete_output_reload (insn, j, last_regno, reg_rtx);
7603 old = rl->out_reg;
7604 if (old == 0
7605 || reg_rtx == 0
7606 || rtx_equal_p (old, reg_rtx))
7607 return;
7609 /* An output operand that dies right away does need a reload,
7610 but need not be copied from it. Show the new location in the
7611 REG_UNUSED note. */
7612 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7613 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7615 XEXP (note, 0) = reg_rtx;
7616 return;
7618 /* Likewise for a SUBREG of an operand that dies. */
7619 else if (GET_CODE (old) == SUBREG
7620 && REG_P (SUBREG_REG (old))
7621 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7622 SUBREG_REG (old))))
7624 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7625 return;
7627 else if (GET_CODE (old) == SCRATCH)
7628 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7629 but we don't want to make an output reload. */
7630 return;
7632 /* If is a JUMP_INSN, we can't support output reloads yet. */
7633 gcc_assert (NONJUMP_INSN_P (insn));
7635 emit_output_reload_insns (chain, rld + j, j);
7638 /* A reload copies values of MODE from register SRC to register DEST.
7639 Return true if it can be treated for inheritance purposes like a
7640 group of reloads, each one reloading a single hard register. The
7641 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7642 occupy the same number of hard registers. */
7644 static bool
7645 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7646 int src ATTRIBUTE_UNUSED,
7647 enum machine_mode mode ATTRIBUTE_UNUSED)
7649 #ifdef CANNOT_CHANGE_MODE_CLASS
7650 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7651 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7652 #else
7653 return true;
7654 #endif
7657 /* Output insns to reload values in and out of the chosen reload regs. */
7659 static void
7660 emit_reload_insns (struct insn_chain *chain)
7662 rtx insn = chain->insn;
7664 int j;
7666 CLEAR_HARD_REG_SET (reg_reloaded_died);
7668 for (j = 0; j < reload_n_operands; j++)
7669 input_reload_insns[j] = input_address_reload_insns[j]
7670 = inpaddr_address_reload_insns[j]
7671 = output_reload_insns[j] = output_address_reload_insns[j]
7672 = outaddr_address_reload_insns[j]
7673 = other_output_reload_insns[j] = 0;
7674 other_input_address_reload_insns = 0;
7675 other_input_reload_insns = 0;
7676 operand_reload_insns = 0;
7677 other_operand_reload_insns = 0;
7679 /* Dump reloads into the dump file. */
7680 if (dump_file)
7682 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7683 debug_reload_to_stream (dump_file);
7686 /* Now output the instructions to copy the data into and out of the
7687 reload registers. Do these in the order that the reloads were reported,
7688 since reloads of base and index registers precede reloads of operands
7689 and the operands may need the base and index registers reloaded. */
7691 for (j = 0; j < n_reloads; j++)
7693 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
7695 unsigned int i;
7697 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
7698 new_spill_reg_store[i] = 0;
7701 do_input_reload (chain, rld + j, j);
7702 do_output_reload (chain, rld + j, j);
7705 /* Now write all the insns we made for reloads in the order expected by
7706 the allocation functions. Prior to the insn being reloaded, we write
7707 the following reloads:
7709 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7711 RELOAD_OTHER reloads.
7713 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7714 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7715 RELOAD_FOR_INPUT reload for the operand.
7717 RELOAD_FOR_OPADDR_ADDRS reloads.
7719 RELOAD_FOR_OPERAND_ADDRESS reloads.
7721 After the insn being reloaded, we write the following:
7723 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7724 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7725 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7726 reloads for the operand. The RELOAD_OTHER output reloads are
7727 output in descending order by reload number. */
7729 emit_insn_before (other_input_address_reload_insns, insn);
7730 emit_insn_before (other_input_reload_insns, insn);
7732 for (j = 0; j < reload_n_operands; j++)
7734 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7735 emit_insn_before (input_address_reload_insns[j], insn);
7736 emit_insn_before (input_reload_insns[j], insn);
7739 emit_insn_before (other_operand_reload_insns, insn);
7740 emit_insn_before (operand_reload_insns, insn);
7742 for (j = 0; j < reload_n_operands; j++)
7744 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7745 x = emit_insn_after (output_address_reload_insns[j], x);
7746 x = emit_insn_after (output_reload_insns[j], x);
7747 emit_insn_after (other_output_reload_insns[j], x);
7750 /* For all the spill regs newly reloaded in this instruction,
7751 record what they were reloaded from, so subsequent instructions
7752 can inherit the reloads.
7754 Update spill_reg_store for the reloads of this insn.
7755 Copy the elements that were updated in the loop above. */
7757 for (j = 0; j < n_reloads; j++)
7759 int r = reload_order[j];
7760 int i = reload_spill_index[r];
7762 /* If this is a non-inherited input reload from a pseudo, we must
7763 clear any memory of a previous store to the same pseudo. Only do
7764 something if there will not be an output reload for the pseudo
7765 being reloaded. */
7766 if (rld[r].in_reg != 0
7767 && ! (reload_inherited[r] || reload_override_in[r]))
7769 rtx reg = rld[r].in_reg;
7771 if (GET_CODE (reg) == SUBREG)
7772 reg = SUBREG_REG (reg);
7774 if (REG_P (reg)
7775 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7776 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
7778 int nregno = REGNO (reg);
7780 if (reg_last_reload_reg[nregno])
7782 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7784 if (reg_reloaded_contents[last_regno] == nregno)
7785 spill_reg_store[last_regno] = 0;
7790 /* I is nonneg if this reload used a register.
7791 If rld[r].reg_rtx is 0, this is an optional reload
7792 that we opted to ignore. */
7794 if (i >= 0 && rld[r].reg_rtx != 0)
7796 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7797 int k;
7799 /* For a multi register reload, we need to check if all or part
7800 of the value lives to the end. */
7801 for (k = 0; k < nr; k++)
7802 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7803 rld[r].when_needed))
7804 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7806 /* Maybe the spill reg contains a copy of reload_out. */
7807 if (rld[r].out != 0
7808 && (REG_P (rld[r].out)
7809 #ifdef AUTO_INC_DEC
7810 || ! rld[r].out_reg
7811 #endif
7812 || REG_P (rld[r].out_reg)))
7814 rtx reg;
7815 enum machine_mode mode;
7816 int regno, nregs;
7818 reg = reload_reg_rtx_for_output[r];
7819 mode = GET_MODE (reg);
7820 regno = REGNO (reg);
7821 nregs = hard_regno_nregs[regno][mode];
7822 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
7823 rld[r].when_needed))
7825 rtx out = (REG_P (rld[r].out)
7826 ? rld[r].out
7827 : rld[r].out_reg
7828 ? rld[r].out_reg
7829 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7830 int out_regno = REGNO (out);
7831 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
7832 : hard_regno_nregs[out_regno][mode]);
7833 bool piecemeal;
7835 spill_reg_store[regno] = new_spill_reg_store[regno];
7836 spill_reg_stored_to[regno] = out;
7837 reg_last_reload_reg[out_regno] = reg;
7839 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
7840 && nregs == out_nregs
7841 && inherit_piecemeal_p (out_regno, regno, mode));
7843 /* If OUT_REGNO is a hard register, it may occupy more than
7844 one register. If it does, say what is in the
7845 rest of the registers assuming that both registers
7846 agree on how many words the object takes. If not,
7847 invalidate the subsequent registers. */
7849 if (HARD_REGISTER_NUM_P (out_regno))
7850 for (k = 1; k < out_nregs; k++)
7851 reg_last_reload_reg[out_regno + k]
7852 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
7854 /* Now do the inverse operation. */
7855 for (k = 0; k < nregs; k++)
7857 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
7858 reg_reloaded_contents[regno + k]
7859 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
7860 ? out_regno
7861 : out_regno + k);
7862 reg_reloaded_insn[regno + k] = insn;
7863 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
7864 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
7865 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7866 regno + k);
7867 else
7868 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7869 regno + k);
7873 /* Maybe the spill reg contains a copy of reload_in. Only do
7874 something if there will not be an output reload for
7875 the register being reloaded. */
7876 else if (rld[r].out_reg == 0
7877 && rld[r].in != 0
7878 && ((REG_P (rld[r].in)
7879 && !HARD_REGISTER_P (rld[r].in)
7880 && !REGNO_REG_SET_P (&reg_has_output_reload,
7881 REGNO (rld[r].in)))
7882 || (REG_P (rld[r].in_reg)
7883 && !REGNO_REG_SET_P (&reg_has_output_reload,
7884 REGNO (rld[r].in_reg))))
7885 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
7887 rtx reg;
7888 enum machine_mode mode;
7889 int regno, nregs;
7891 reg = reload_reg_rtx_for_input[r];
7892 mode = GET_MODE (reg);
7893 regno = REGNO (reg);
7894 nregs = hard_regno_nregs[regno][mode];
7895 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
7896 rld[r].when_needed))
7898 int in_regno;
7899 int in_nregs;
7900 rtx in;
7901 bool piecemeal;
7903 if (REG_P (rld[r].in)
7904 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7905 in = rld[r].in;
7906 else if (REG_P (rld[r].in_reg))
7907 in = rld[r].in_reg;
7908 else
7909 in = XEXP (rld[r].in_reg, 0);
7910 in_regno = REGNO (in);
7912 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
7913 : hard_regno_nregs[in_regno][mode]);
7915 reg_last_reload_reg[in_regno] = reg;
7917 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
7918 && nregs == in_nregs
7919 && inherit_piecemeal_p (regno, in_regno, mode));
7921 if (HARD_REGISTER_NUM_P (in_regno))
7922 for (k = 1; k < in_nregs; k++)
7923 reg_last_reload_reg[in_regno + k]
7924 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
7926 /* Unless we inherited this reload, show we haven't
7927 recently done a store.
7928 Previous stores of inherited auto_inc expressions
7929 also have to be discarded. */
7930 if (! reload_inherited[r]
7931 || (rld[r].out && ! rld[r].out_reg))
7932 spill_reg_store[regno] = 0;
7934 for (k = 0; k < nregs; k++)
7936 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
7937 reg_reloaded_contents[regno + k]
7938 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
7939 ? in_regno
7940 : in_regno + k);
7941 reg_reloaded_insn[regno + k] = insn;
7942 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
7943 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
7944 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7945 regno + k);
7946 else
7947 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7948 regno + k);
7954 /* The following if-statement was #if 0'd in 1.34 (or before...).
7955 It's reenabled in 1.35 because supposedly nothing else
7956 deals with this problem. */
7958 /* If a register gets output-reloaded from a non-spill register,
7959 that invalidates any previous reloaded copy of it.
7960 But forget_old_reloads_1 won't get to see it, because
7961 it thinks only about the original insn. So invalidate it here.
7962 Also do the same thing for RELOAD_OTHER constraints where the
7963 output is discarded. */
7964 if (i < 0
7965 && ((rld[r].out != 0
7966 && (REG_P (rld[r].out)
7967 || (MEM_P (rld[r].out)
7968 && REG_P (rld[r].out_reg))))
7969 || (rld[r].out == 0 && rld[r].out_reg
7970 && REG_P (rld[r].out_reg))))
7972 rtx out = ((rld[r].out && REG_P (rld[r].out))
7973 ? rld[r].out : rld[r].out_reg);
7974 int out_regno = REGNO (out);
7975 enum machine_mode mode = GET_MODE (out);
7977 /* REG_RTX is now set or clobbered by the main instruction.
7978 As the comment above explains, forget_old_reloads_1 only
7979 sees the original instruction, and there is no guarantee
7980 that the original instruction also clobbered REG_RTX.
7981 For example, if find_reloads sees that the input side of
7982 a matched operand pair dies in this instruction, it may
7983 use the input register as the reload register.
7985 Calling forget_old_reloads_1 is a waste of effort if
7986 REG_RTX is also the output register.
7988 If we know that REG_RTX holds the value of a pseudo
7989 register, the code after the call will record that fact. */
7990 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
7991 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
7993 if (!HARD_REGISTER_NUM_P (out_regno))
7995 rtx src_reg, store_insn = NULL_RTX;
7997 reg_last_reload_reg[out_regno] = 0;
7999 /* If we can find a hard register that is stored, record
8000 the storing insn so that we may delete this insn with
8001 delete_output_reload. */
8002 src_reg = reload_reg_rtx_for_output[r];
8004 /* If this is an optional reload, try to find the source reg
8005 from an input reload. */
8006 if (! src_reg)
8008 rtx set = single_set (insn);
8009 if (set && SET_DEST (set) == rld[r].out)
8011 int k;
8013 src_reg = SET_SRC (set);
8014 store_insn = insn;
8015 for (k = 0; k < n_reloads; k++)
8017 if (rld[k].in == src_reg)
8019 src_reg = reload_reg_rtx_for_input[k];
8020 break;
8025 else
8026 store_insn = new_spill_reg_store[REGNO (src_reg)];
8027 if (src_reg && REG_P (src_reg)
8028 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8030 int src_regno, src_nregs, k;
8031 rtx note;
8033 gcc_assert (GET_MODE (src_reg) == mode);
8034 src_regno = REGNO (src_reg);
8035 src_nregs = hard_regno_nregs[src_regno][mode];
8036 /* The place where to find a death note varies with
8037 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8038 necessarily checked exactly in the code that moves
8039 notes, so just check both locations. */
8040 note = find_regno_note (insn, REG_DEAD, src_regno);
8041 if (! note && store_insn)
8042 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8043 for (k = 0; k < src_nregs; k++)
8045 spill_reg_store[src_regno + k] = store_insn;
8046 spill_reg_stored_to[src_regno + k] = out;
8047 reg_reloaded_contents[src_regno + k] = out_regno;
8048 reg_reloaded_insn[src_regno + k] = store_insn;
8049 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8050 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8051 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8052 mode))
8053 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8054 src_regno + k);
8055 else
8056 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8057 src_regno + k);
8058 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8059 if (note)
8060 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8061 else
8062 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8064 reg_last_reload_reg[out_regno] = src_reg;
8065 /* We have to set reg_has_output_reload here, or else
8066 forget_old_reloads_1 will clear reg_last_reload_reg
8067 right away. */
8068 SET_REGNO_REG_SET (&reg_has_output_reload,
8069 out_regno);
8072 else
8074 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8076 for (k = 0; k < out_nregs; k++)
8077 reg_last_reload_reg[out_regno + k] = 0;
8081 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8084 /* Go through the motions to emit INSN and test if it is strictly valid.
8085 Return the emitted insn if valid, else return NULL. */
8087 static rtx
8088 emit_insn_if_valid_for_reload (rtx insn)
8090 rtx last = get_last_insn ();
8091 int code;
8093 insn = emit_insn (insn);
8094 code = recog_memoized (insn);
8096 if (code >= 0)
8098 extract_insn (insn);
8099 /* We want constrain operands to treat this insn strictly in its
8100 validity determination, i.e., the way it would after reload has
8101 completed. */
8102 if (constrain_operands (1))
8103 return insn;
8106 delete_insns_since (last);
8107 return NULL;
8110 /* Emit code to perform a reload from IN (which may be a reload register) to
8111 OUT (which may also be a reload register). IN or OUT is from operand
8112 OPNUM with reload type TYPE.
8114 Returns first insn emitted. */
8116 static rtx
8117 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8119 rtx last = get_last_insn ();
8120 rtx tem;
8122 /* If IN is a paradoxical SUBREG, remove it and try to put the
8123 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8124 if (GET_CODE (in) == SUBREG
8125 && (GET_MODE_SIZE (GET_MODE (in))
8126 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
8127 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
8128 in = SUBREG_REG (in), out = tem;
8129 else if (GET_CODE (out) == SUBREG
8130 && (GET_MODE_SIZE (GET_MODE (out))
8131 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
8132 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
8133 out = SUBREG_REG (out), in = tem;
8135 /* How to do this reload can get quite tricky. Normally, we are being
8136 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8137 register that didn't get a hard register. In that case we can just
8138 call emit_move_insn.
8140 We can also be asked to reload a PLUS that adds a register or a MEM to
8141 another register, constant or MEM. This can occur during frame pointer
8142 elimination and while reloading addresses. This case is handled by
8143 trying to emit a single insn to perform the add. If it is not valid,
8144 we use a two insn sequence.
8146 Or we can be asked to reload an unary operand that was a fragment of
8147 an addressing mode, into a register. If it isn't recognized as-is,
8148 we try making the unop operand and the reload-register the same:
8149 (set reg:X (unop:X expr:Y))
8150 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8152 Finally, we could be called to handle an 'o' constraint by putting
8153 an address into a register. In that case, we first try to do this
8154 with a named pattern of "reload_load_address". If no such pattern
8155 exists, we just emit a SET insn and hope for the best (it will normally
8156 be valid on machines that use 'o').
8158 This entire process is made complex because reload will never
8159 process the insns we generate here and so we must ensure that
8160 they will fit their constraints and also by the fact that parts of
8161 IN might be being reloaded separately and replaced with spill registers.
8162 Because of this, we are, in some sense, just guessing the right approach
8163 here. The one listed above seems to work.
8165 ??? At some point, this whole thing needs to be rethought. */
8167 if (GET_CODE (in) == PLUS
8168 && (REG_P (XEXP (in, 0))
8169 || GET_CODE (XEXP (in, 0)) == SUBREG
8170 || MEM_P (XEXP (in, 0)))
8171 && (REG_P (XEXP (in, 1))
8172 || GET_CODE (XEXP (in, 1)) == SUBREG
8173 || CONSTANT_P (XEXP (in, 1))
8174 || MEM_P (XEXP (in, 1))))
8176 /* We need to compute the sum of a register or a MEM and another
8177 register, constant, or MEM, and put it into the reload
8178 register. The best possible way of doing this is if the machine
8179 has a three-operand ADD insn that accepts the required operands.
8181 The simplest approach is to try to generate such an insn and see if it
8182 is recognized and matches its constraints. If so, it can be used.
8184 It might be better not to actually emit the insn unless it is valid,
8185 but we need to pass the insn as an operand to `recog' and
8186 `extract_insn' and it is simpler to emit and then delete the insn if
8187 not valid than to dummy things up. */
8189 rtx op0, op1, tem, insn;
8190 int code;
8192 op0 = find_replacement (&XEXP (in, 0));
8193 op1 = find_replacement (&XEXP (in, 1));
8195 /* Since constraint checking is strict, commutativity won't be
8196 checked, so we need to do that here to avoid spurious failure
8197 if the add instruction is two-address and the second operand
8198 of the add is the same as the reload reg, which is frequently
8199 the case. If the insn would be A = B + A, rearrange it so
8200 it will be A = A + B as constrain_operands expects. */
8202 if (REG_P (XEXP (in, 1))
8203 && REGNO (out) == REGNO (XEXP (in, 1)))
8204 tem = op0, op0 = op1, op1 = tem;
8206 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8207 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8209 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8210 if (insn)
8211 return insn;
8213 /* If that failed, we must use a conservative two-insn sequence.
8215 Use a move to copy one operand into the reload register. Prefer
8216 to reload a constant, MEM or pseudo since the move patterns can
8217 handle an arbitrary operand. If OP1 is not a constant, MEM or
8218 pseudo and OP1 is not a valid operand for an add instruction, then
8219 reload OP1.
8221 After reloading one of the operands into the reload register, add
8222 the reload register to the output register.
8224 If there is another way to do this for a specific machine, a
8225 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8226 we emit below. */
8228 code = (int) optab_handler (add_optab, GET_MODE (out))->insn_code;
8230 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8231 || (REG_P (op1)
8232 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8233 || (code != CODE_FOR_nothing
8234 && ! ((*insn_data[code].operand[2].predicate)
8235 (op1, insn_data[code].operand[2].mode))))
8236 tem = op0, op0 = op1, op1 = tem;
8238 gen_reload (out, op0, opnum, type);
8240 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8241 This fixes a problem on the 32K where the stack pointer cannot
8242 be used as an operand of an add insn. */
8244 if (rtx_equal_p (op0, op1))
8245 op1 = out;
8247 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8248 if (insn)
8250 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8251 set_unique_reg_note (insn, REG_EQUIV, in);
8252 return insn;
8255 /* If that failed, copy the address register to the reload register.
8256 Then add the constant to the reload register. */
8258 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8259 gen_reload (out, op1, opnum, type);
8260 insn = emit_insn (gen_add2_insn (out, op0));
8261 set_unique_reg_note (insn, REG_EQUIV, in);
8264 #ifdef SECONDARY_MEMORY_NEEDED
8265 /* If we need a memory location to do the move, do it that way. */
8266 else if ((REG_P (in)
8267 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
8268 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
8269 && (REG_P (out)
8270 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
8271 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
8272 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
8273 REGNO_REG_CLASS (reg_or_subregno (out)),
8274 GET_MODE (out)))
8276 /* Get the memory to use and rewrite both registers to its mode. */
8277 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8279 if (GET_MODE (loc) != GET_MODE (out))
8280 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
8282 if (GET_MODE (loc) != GET_MODE (in))
8283 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
8285 gen_reload (loc, in, opnum, type);
8286 gen_reload (out, loc, opnum, type);
8288 #endif
8289 else if (REG_P (out) && UNARY_P (in))
8291 rtx insn;
8292 rtx op1;
8293 rtx out_moded;
8294 rtx set;
8296 op1 = find_replacement (&XEXP (in, 0));
8297 if (op1 != XEXP (in, 0))
8298 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8300 /* First, try a plain SET. */
8301 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8302 if (set)
8303 return set;
8305 /* If that failed, move the inner operand to the reload
8306 register, and try the same unop with the inner expression
8307 replaced with the reload register. */
8309 if (GET_MODE (op1) != GET_MODE (out))
8310 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8311 else
8312 out_moded = out;
8314 gen_reload (out_moded, op1, opnum, type);
8316 insn
8317 = gen_rtx_SET (VOIDmode, out,
8318 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8319 out_moded));
8320 insn = emit_insn_if_valid_for_reload (insn);
8321 if (insn)
8323 set_unique_reg_note (insn, REG_EQUIV, in);
8324 return insn;
8327 fatal_insn ("Failure trying to reload:", set);
8329 /* If IN is a simple operand, use gen_move_insn. */
8330 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8332 tem = emit_insn (gen_move_insn (out, in));
8333 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8334 mark_jump_label (in, tem, 0);
8337 #ifdef HAVE_reload_load_address
8338 else if (HAVE_reload_load_address)
8339 emit_insn (gen_reload_load_address (out, in));
8340 #endif
8342 /* Otherwise, just write (set OUT IN) and hope for the best. */
8343 else
8344 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8346 /* Return the first insn emitted.
8347 We can not just return get_last_insn, because there may have
8348 been multiple instructions emitted. Also note that gen_move_insn may
8349 emit more than one insn itself, so we can not assume that there is one
8350 insn emitted per emit_insn_before call. */
8352 return last ? NEXT_INSN (last) : get_insns ();
8355 /* Delete a previously made output-reload whose result we now believe
8356 is not needed. First we double-check.
8358 INSN is the insn now being processed.
8359 LAST_RELOAD_REG is the hard register number for which we want to delete
8360 the last output reload.
8361 J is the reload-number that originally used REG. The caller has made
8362 certain that reload J doesn't use REG any longer for input.
8363 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8365 static void
8366 delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
8368 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8369 rtx reg = spill_reg_stored_to[last_reload_reg];
8370 int k;
8371 int n_occurrences;
8372 int n_inherited = 0;
8373 rtx i1;
8374 rtx substed;
8376 /* It is possible that this reload has been only used to set another reload
8377 we eliminated earlier and thus deleted this instruction too. */
8378 if (INSN_DELETED_P (output_reload_insn))
8379 return;
8381 /* Get the raw pseudo-register referred to. */
8383 while (GET_CODE (reg) == SUBREG)
8384 reg = SUBREG_REG (reg);
8385 substed = reg_equiv_memory_loc[REGNO (reg)];
8387 /* This is unsafe if the operand occurs more often in the current
8388 insn than it is inherited. */
8389 for (k = n_reloads - 1; k >= 0; k--)
8391 rtx reg2 = rld[k].in;
8392 if (! reg2)
8393 continue;
8394 if (MEM_P (reg2) || reload_override_in[k])
8395 reg2 = rld[k].in_reg;
8396 #ifdef AUTO_INC_DEC
8397 if (rld[k].out && ! rld[k].out_reg)
8398 reg2 = XEXP (rld[k].in_reg, 0);
8399 #endif
8400 while (GET_CODE (reg2) == SUBREG)
8401 reg2 = SUBREG_REG (reg2);
8402 if (rtx_equal_p (reg2, reg))
8404 if (reload_inherited[k] || reload_override_in[k] || k == j)
8405 n_inherited++;
8406 else
8407 return;
8410 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8411 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8412 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8413 reg, 0);
8414 if (substed)
8415 n_occurrences += count_occurrences (PATTERN (insn),
8416 eliminate_regs (substed, 0,
8417 NULL_RTX), 0);
8418 for (i1 = reg_equiv_alt_mem_list[REGNO (reg)]; i1; i1 = XEXP (i1, 1))
8420 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8421 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8423 if (n_occurrences > n_inherited)
8424 return;
8426 /* If the pseudo-reg we are reloading is no longer referenced
8427 anywhere between the store into it and here,
8428 and we're within the same basic block, then the value can only
8429 pass through the reload reg and end up here.
8430 Otherwise, give up--return. */
8431 for (i1 = NEXT_INSN (output_reload_insn);
8432 i1 != insn; i1 = NEXT_INSN (i1))
8434 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8435 return;
8436 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8437 && reg_mentioned_p (reg, PATTERN (i1)))
8439 /* If this is USE in front of INSN, we only have to check that
8440 there are no more references than accounted for by inheritance. */
8441 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8443 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8444 i1 = NEXT_INSN (i1);
8446 if (n_occurrences <= n_inherited && i1 == insn)
8447 break;
8448 return;
8452 /* We will be deleting the insn. Remove the spill reg information. */
8453 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8455 spill_reg_store[last_reload_reg + k] = 0;
8456 spill_reg_stored_to[last_reload_reg + k] = 0;
8459 /* The caller has already checked that REG dies or is set in INSN.
8460 It has also checked that we are optimizing, and thus some
8461 inaccuracies in the debugging information are acceptable.
8462 So we could just delete output_reload_insn. But in some cases
8463 we can improve the debugging information without sacrificing
8464 optimization - maybe even improving the code: See if the pseudo
8465 reg has been completely replaced with reload regs. If so, delete
8466 the store insn and forget we had a stack slot for the pseudo. */
8467 if (rld[j].out != rld[j].in
8468 && REG_N_DEATHS (REGNO (reg)) == 1
8469 && REG_N_SETS (REGNO (reg)) == 1
8470 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8471 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8473 rtx i2;
8475 /* We know that it was used only between here and the beginning of
8476 the current basic block. (We also know that the last use before
8477 INSN was the output reload we are thinking of deleting, but never
8478 mind that.) Search that range; see if any ref remains. */
8479 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8481 rtx set = single_set (i2);
8483 /* Uses which just store in the pseudo don't count,
8484 since if they are the only uses, they are dead. */
8485 if (set != 0 && SET_DEST (set) == reg)
8486 continue;
8487 if (LABEL_P (i2)
8488 || JUMP_P (i2))
8489 break;
8490 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8491 && reg_mentioned_p (reg, PATTERN (i2)))
8493 /* Some other ref remains; just delete the output reload we
8494 know to be dead. */
8495 delete_address_reloads (output_reload_insn, insn);
8496 delete_insn (output_reload_insn);
8497 return;
8501 /* Delete the now-dead stores into this pseudo. Note that this
8502 loop also takes care of deleting output_reload_insn. */
8503 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8505 rtx set = single_set (i2);
8507 if (set != 0 && SET_DEST (set) == reg)
8509 delete_address_reloads (i2, insn);
8510 delete_insn (i2);
8512 if (LABEL_P (i2)
8513 || JUMP_P (i2))
8514 break;
8517 /* For the debugging info, say the pseudo lives in this reload reg. */
8518 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8519 if (ira_conflicts_p)
8520 /* Inform IRA about the change. */
8521 ira_mark_allocation_change (REGNO (reg));
8522 alter_reg (REGNO (reg), -1, false);
8524 else
8526 delete_address_reloads (output_reload_insn, insn);
8527 delete_insn (output_reload_insn);
8531 /* We are going to delete DEAD_INSN. Recursively delete loads of
8532 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8533 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8534 static void
8535 delete_address_reloads (rtx dead_insn, rtx current_insn)
8537 rtx set = single_set (dead_insn);
8538 rtx set2, dst, prev, next;
8539 if (set)
8541 rtx dst = SET_DEST (set);
8542 if (MEM_P (dst))
8543 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8545 /* If we deleted the store from a reloaded post_{in,de}c expression,
8546 we can delete the matching adds. */
8547 prev = PREV_INSN (dead_insn);
8548 next = NEXT_INSN (dead_insn);
8549 if (! prev || ! next)
8550 return;
8551 set = single_set (next);
8552 set2 = single_set (prev);
8553 if (! set || ! set2
8554 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8555 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
8556 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
8557 return;
8558 dst = SET_DEST (set);
8559 if (! rtx_equal_p (dst, SET_DEST (set2))
8560 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8561 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8562 || (INTVAL (XEXP (SET_SRC (set), 1))
8563 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8564 return;
8565 delete_related_insns (prev);
8566 delete_related_insns (next);
8569 /* Subfunction of delete_address_reloads: process registers found in X. */
8570 static void
8571 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8573 rtx prev, set, dst, i2;
8574 int i, j;
8575 enum rtx_code code = GET_CODE (x);
8577 if (code != REG)
8579 const char *fmt = GET_RTX_FORMAT (code);
8580 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8582 if (fmt[i] == 'e')
8583 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8584 else if (fmt[i] == 'E')
8586 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8587 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8588 current_insn);
8591 return;
8594 if (spill_reg_order[REGNO (x)] < 0)
8595 return;
8597 /* Scan backwards for the insn that sets x. This might be a way back due
8598 to inheritance. */
8599 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8601 code = GET_CODE (prev);
8602 if (code == CODE_LABEL || code == JUMP_INSN)
8603 return;
8604 if (!INSN_P (prev))
8605 continue;
8606 if (reg_set_p (x, PATTERN (prev)))
8607 break;
8608 if (reg_referenced_p (x, PATTERN (prev)))
8609 return;
8611 if (! prev || INSN_UID (prev) < reload_first_uid)
8612 return;
8613 /* Check that PREV only sets the reload register. */
8614 set = single_set (prev);
8615 if (! set)
8616 return;
8617 dst = SET_DEST (set);
8618 if (!REG_P (dst)
8619 || ! rtx_equal_p (dst, x))
8620 return;
8621 if (! reg_set_p (dst, PATTERN (dead_insn)))
8623 /* Check if DST was used in a later insn -
8624 it might have been inherited. */
8625 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8627 if (LABEL_P (i2))
8628 break;
8629 if (! INSN_P (i2))
8630 continue;
8631 if (reg_referenced_p (dst, PATTERN (i2)))
8633 /* If there is a reference to the register in the current insn,
8634 it might be loaded in a non-inherited reload. If no other
8635 reload uses it, that means the register is set before
8636 referenced. */
8637 if (i2 == current_insn)
8639 for (j = n_reloads - 1; j >= 0; j--)
8640 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8641 || reload_override_in[j] == dst)
8642 return;
8643 for (j = n_reloads - 1; j >= 0; j--)
8644 if (rld[j].in && rld[j].reg_rtx == dst)
8645 break;
8646 if (j >= 0)
8647 break;
8649 return;
8651 if (JUMP_P (i2))
8652 break;
8653 /* If DST is still live at CURRENT_INSN, check if it is used for
8654 any reload. Note that even if CURRENT_INSN sets DST, we still
8655 have to check the reloads. */
8656 if (i2 == current_insn)
8658 for (j = n_reloads - 1; j >= 0; j--)
8659 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8660 || reload_override_in[j] == dst)
8661 return;
8662 /* ??? We can't finish the loop here, because dst might be
8663 allocated to a pseudo in this block if no reload in this
8664 block needs any of the classes containing DST - see
8665 spill_hard_reg. There is no easy way to tell this, so we
8666 have to scan till the end of the basic block. */
8668 if (reg_set_p (dst, PATTERN (i2)))
8669 break;
8672 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8673 reg_reloaded_contents[REGNO (dst)] = -1;
8674 delete_insn (prev);
8677 /* Output reload-insns to reload VALUE into RELOADREG.
8678 VALUE is an autoincrement or autodecrement RTX whose operand
8679 is a register or memory location;
8680 so reloading involves incrementing that location.
8681 IN is either identical to VALUE, or some cheaper place to reload from.
8683 INC_AMOUNT is the number to increment or decrement by (always positive).
8684 This cannot be deduced from VALUE.
8686 Return the instruction that stores into RELOADREG. */
8688 static rtx
8689 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
8691 /* REG or MEM to be copied and incremented. */
8692 rtx incloc = find_replacement (&XEXP (value, 0));
8693 /* Nonzero if increment after copying. */
8694 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8695 || GET_CODE (value) == POST_MODIFY);
8696 rtx last;
8697 rtx inc;
8698 rtx add_insn;
8699 int code;
8700 rtx store;
8701 rtx real_in = in == value ? incloc : in;
8703 /* No hard register is equivalent to this register after
8704 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
8705 we could inc/dec that register as well (maybe even using it for
8706 the source), but I'm not sure it's worth worrying about. */
8707 if (REG_P (incloc))
8708 reg_last_reload_reg[REGNO (incloc)] = 0;
8710 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
8712 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
8713 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
8715 else
8717 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
8718 inc_amount = -inc_amount;
8720 inc = GEN_INT (inc_amount);
8723 /* If this is post-increment, first copy the location to the reload reg. */
8724 if (post && real_in != reloadreg)
8725 emit_insn (gen_move_insn (reloadreg, real_in));
8727 if (in == value)
8729 /* See if we can directly increment INCLOC. Use a method similar to
8730 that in gen_reload. */
8732 last = get_last_insn ();
8733 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
8734 gen_rtx_PLUS (GET_MODE (incloc),
8735 incloc, inc)));
8737 code = recog_memoized (add_insn);
8738 if (code >= 0)
8740 extract_insn (add_insn);
8741 if (constrain_operands (1))
8743 /* If this is a pre-increment and we have incremented the value
8744 where it lives, copy the incremented value to RELOADREG to
8745 be used as an address. */
8747 if (! post)
8748 emit_insn (gen_move_insn (reloadreg, incloc));
8750 return add_insn;
8753 delete_insns_since (last);
8756 /* If couldn't do the increment directly, must increment in RELOADREG.
8757 The way we do this depends on whether this is pre- or post-increment.
8758 For pre-increment, copy INCLOC to the reload register, increment it
8759 there, then save back. */
8761 if (! post)
8763 if (in != reloadreg)
8764 emit_insn (gen_move_insn (reloadreg, real_in));
8765 emit_insn (gen_add2_insn (reloadreg, inc));
8766 store = emit_insn (gen_move_insn (incloc, reloadreg));
8768 else
8770 /* Postincrement.
8771 Because this might be a jump insn or a compare, and because RELOADREG
8772 may not be available after the insn in an input reload, we must do
8773 the incrementation before the insn being reloaded for.
8775 We have already copied IN to RELOADREG. Increment the copy in
8776 RELOADREG, save that back, then decrement RELOADREG so it has
8777 the original value. */
8779 emit_insn (gen_add2_insn (reloadreg, inc));
8780 store = emit_insn (gen_move_insn (incloc, reloadreg));
8781 if (GET_CODE (inc) == CONST_INT)
8782 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
8783 else
8784 emit_insn (gen_sub2_insn (reloadreg, inc));
8787 return store;
8790 #ifdef AUTO_INC_DEC
8791 static void
8792 add_auto_inc_notes (rtx insn, rtx x)
8794 enum rtx_code code = GET_CODE (x);
8795 const char *fmt;
8796 int i, j;
8798 if (code == MEM && auto_inc_p (XEXP (x, 0)))
8800 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
8801 return;
8804 /* Scan all the operand sub-expressions. */
8805 fmt = GET_RTX_FORMAT (code);
8806 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8808 if (fmt[i] == 'e')
8809 add_auto_inc_notes (insn, XEXP (x, i));
8810 else if (fmt[i] == 'E')
8811 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8812 add_auto_inc_notes (insn, XVECEXP (x, i, j));
8815 #endif
8817 /* Copy EH notes from an insn to its reloads. */
8818 static void
8819 copy_eh_notes (rtx insn, rtx x)
8821 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8822 if (eh_note)
8824 for (; x != 0; x = NEXT_INSN (x))
8826 if (may_trap_p (PATTERN (x)))
8827 add_reg_note (x, REG_EH_REGION, XEXP (eh_note, 0));
8832 /* This is used by reload pass, that does emit some instructions after
8833 abnormal calls moving basic block end, but in fact it wants to emit
8834 them on the edge. Looks for abnormal call edges, find backward the
8835 proper call and fix the damage.
8837 Similar handle instructions throwing exceptions internally. */
8838 void
8839 fixup_abnormal_edges (void)
8841 bool inserted = false;
8842 basic_block bb;
8844 FOR_EACH_BB (bb)
8846 edge e;
8847 edge_iterator ei;
8849 /* Look for cases we are interested in - calls or instructions causing
8850 exceptions. */
8851 FOR_EACH_EDGE (e, ei, bb->succs)
8853 if (e->flags & EDGE_ABNORMAL_CALL)
8854 break;
8855 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8856 == (EDGE_ABNORMAL | EDGE_EH))
8857 break;
8859 if (e && !CALL_P (BB_END (bb))
8860 && !can_throw_internal (BB_END (bb)))
8862 rtx insn;
8864 /* Get past the new insns generated. Allow notes, as the insns
8865 may be already deleted. */
8866 insn = BB_END (bb);
8867 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
8868 && !can_throw_internal (insn)
8869 && insn != BB_HEAD (bb))
8870 insn = PREV_INSN (insn);
8872 if (CALL_P (insn) || can_throw_internal (insn))
8874 rtx stop, next;
8876 stop = NEXT_INSN (BB_END (bb));
8877 BB_END (bb) = insn;
8878 insn = NEXT_INSN (insn);
8880 FOR_EACH_EDGE (e, ei, bb->succs)
8881 if (e->flags & EDGE_FALLTHRU)
8882 break;
8884 while (insn && insn != stop)
8886 next = NEXT_INSN (insn);
8887 if (INSN_P (insn))
8889 delete_insn (insn);
8891 /* Sometimes there's still the return value USE.
8892 If it's placed after a trapping call (i.e. that
8893 call is the last insn anyway), we have no fallthru
8894 edge. Simply delete this use and don't try to insert
8895 on the non-existent edge. */
8896 if (GET_CODE (PATTERN (insn)) != USE)
8898 /* We're not deleting it, we're moving it. */
8899 INSN_DELETED_P (insn) = 0;
8900 PREV_INSN (insn) = NULL_RTX;
8901 NEXT_INSN (insn) = NULL_RTX;
8903 insert_insn_on_edge (insn, e);
8904 inserted = true;
8907 else if (!BARRIER_P (insn))
8908 set_block_for_insn (insn, NULL);
8909 insn = next;
8913 /* It may be that we don't find any such trapping insn. In this
8914 case we discovered quite late that the insn that had been
8915 marked as can_throw_internal in fact couldn't trap at all.
8916 So we should in fact delete the EH edges out of the block. */
8917 else
8918 purge_dead_edges (bb);
8922 /* We've possibly turned single trapping insn into multiple ones. */
8923 if (flag_non_call_exceptions)
8925 sbitmap blocks;
8926 blocks = sbitmap_alloc (last_basic_block);
8927 sbitmap_ones (blocks);
8928 find_many_sub_basic_blocks (blocks);
8929 sbitmap_free (blocks);
8932 if (inserted)
8933 commit_edge_insertions ();
8935 #ifdef ENABLE_CHECKING
8936 /* Verify that we didn't turn one trapping insn into many, and that
8937 we found and corrected all of the problems wrt fixups on the
8938 fallthru edge. */
8939 verify_flow_info ();
8940 #endif