1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* This program is used to produce insn-recog.c, which contains a
22 function called `recog' plus its subroutines. These functions
23 contain a decision tree that recognizes whether an rtx, the
24 argument given to recog, is a valid instruction.
26 recog returns -1 if the rtx is not valid. If the rtx is valid,
27 recog returns a nonnegative number which is the insn code number
28 for the pattern that matched. This is the same as the order in the
29 machine description of the entry that matched. This number can be
30 used as an index into various insn_* tables, such as insn_template,
31 insn_outfun, and insn_n_operands (found in insn-output.c).
33 The third argument to recog is an optional pointer to an int. If
34 present, recog will accept a pattern if it matches except for
35 missing CLOBBER expressions at the end. In that case, the value
36 pointed to by the optional pointer will be set to the number of
37 CLOBBERs that need to be added (it should be initialized to zero by
38 the caller). If it is set nonzero, the caller should allocate a
39 PARALLEL of the appropriate size, copy the initial entries, and
40 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
42 This program also generates the function `split_insns', which
43 returns 0 if the rtl could not be split, or it returns the split
46 This program also generates the function `peephole2_insns', which
47 returns 0 if the rtl could not be matched. If there was a match,
48 the new rtl is returned in an INSN list, and LAST_INSN will point
49 to the last recognized insn in the old sequence.
52 At a high level, the algorithm used in this file is as follows:
54 1. Build up a decision tree for each routine, using the following
55 approach to matching an rtx:
57 - First determine the "shape" of the rtx, based on GET_CODE,
58 XVECLEN and XINT. This phase examines SET_SRCs before SET_DESTs
59 since SET_SRCs tend to be more distinctive. It examines other
60 operands in numerical order, since the canonicalization rules
61 prefer putting complex operands of commutative operators first.
63 - Next check modes and predicates. This phase examines all
64 operands in numerical order, even for SETs, since the mode of a
65 SET_DEST is exact while the mode of a SET_SRC can be VOIDmode
66 for constant integers.
68 - Next check match_dups.
70 - Finally check the C condition and (where appropriate) pnum_clobbers.
72 2. Try to optimize the tree by removing redundant tests, CSEing tests,
73 folding tests together, etc.
75 3. Look for common subtrees and split them out into "pattern" routines.
76 These common subtrees can be identical or they can differ in mode,
77 code, or integer (usually an UNSPEC or UNSPEC_VOLATILE code).
78 In the latter case the users of the pattern routine pass the
79 appropriate mode, etc., as argument. For example, if two patterns
82 (plus:SI (match_operand:SI 1 "register_operand")
83 (match_operand:SI 2 "register_operand"))
85 we can split the associated matching code out into a subroutine.
86 If a pattern contains:
88 (minus:DI (match_operand:DI 1 "register_operand")
89 (match_operand:DI 2 "register_operand"))
91 then we can consider using the same matching routine for both
92 the plus and minus expressions, passing PLUS and SImode in the
93 former case and MINUS and DImode in the latter case.
95 The main aim of this phase is to reduce the compile time of the
96 insn-recog.c code and to reduce the amount of object code in
99 4. Split the matching trees into functions, trying to limit the
100 size of each function to a sensible amount.
102 Again, the main aim of this phase is to reduce the compile time
103 of insn-recog.c. (It doesn't help with the size of insn-recog.o.)
105 5. Write out C++ code for each function. */
108 #define INCLUDE_ALGORITHM
110 #include "coretypes.h"
115 #include "gensupport.h"
117 #undef GENERATOR_FILE
119 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) TRUE_##ENUM,
122 FIRST_GENERATOR_RTX_CODE
124 #define NUM_TRUE_RTX_CODE ((int) FIRST_GENERATOR_RTX_CODE)
125 #define GENERATOR_FILE 1
127 /* Debugging variables to control which optimizations are performed.
128 Note that disabling merge_states_p leads to very large output. */
129 static const bool merge_states_p
= true;
130 static const bool collapse_optional_decisions_p
= true;
131 static const bool cse_tests_p
= true;
132 static const bool simplify_tests_p
= true;
133 static const bool use_operand_variables_p
= true;
134 static const bool use_subroutines_p
= true;
135 static const bool use_pattern_routines_p
= true;
137 /* Whether to add comments for optional tests that we decided to keep.
138 Can be useful when debugging the generator itself but is noise when
139 debugging the generated code. */
140 static const bool mark_optional_transitions_p
= false;
142 /* Whether pattern routines should calculate positions relative to their
143 rtx parameter rather than use absolute positions. This e.g. allows
144 a pattern routine to be shared between a plain SET and a PARALLEL
147 In principle it sounds like this should be useful, especially for
148 recog_for_combine, where the plain SET form is generated automatically
149 from a PARALLEL of a single SET and some CLOBBERs. In practice it doesn't
150 seem to help much and leads to slightly bigger object files. */
151 static const bool relative_patterns_p
= false;
153 /* Whether pattern routines should be allowed to test whether pnum_clobbers
154 is null. This requires passing pnum_clobbers around as a parameter. */
155 static const bool pattern_have_num_clobbers_p
= true;
157 /* Whether pattern routines should be allowed to test .md file C conditions.
158 This requires passing insn around as a parameter, in case the C
159 condition refers to it. In practice this tends to lead to bigger
161 static const bool pattern_c_test_p
= false;
163 /* Whether to require each parameter passed to a pattern routine to be
164 unique. Disabling this check for example allows unary operators with
165 matching modes (like NEG) and unary operators with mismatched modes
166 (like ZERO_EXTEND) to be matched by a single pattern. However, we then
167 often have cases where the same value is passed too many times. */
168 static const bool force_unique_params_p
= true;
170 /* The maximum (approximate) depth of block nesting that an individual
171 routine or subroutine should have. This limit is about keeping the
172 output readable rather than reducing compile time. */
173 static const unsigned int MAX_DEPTH
= 6;
175 /* The minimum number of pseudo-statements that a state must have before
176 we split it out into a subroutine. */
177 static const unsigned int MIN_NUM_STATEMENTS
= 5;
179 /* The number of pseudo-statements a state can have before we consider
180 splitting out substates into subroutines. This limit is about avoiding
181 compile-time problems with very big functions (and also about keeping
182 functions within --param optimization limits, etc.). */
183 static const unsigned int MAX_NUM_STATEMENTS
= 200;
185 /* The minimum number of pseudo-statements that can be used in a pattern
187 static const unsigned int MIN_COMBINE_COST
= 4;
189 /* The maximum number of arguments that a pattern routine can have.
190 The idea is to prevent one pattern getting a ridiculous number of
191 arguments when it would be more beneficial to have a separate pattern
193 static const unsigned int MAX_PATTERN_PARAMS
= 5;
195 /* The maximum operand number plus one. */
198 /* Ways of obtaining an rtx to be tested. */
200 /* PATTERN (peep2_next_insn (ARG)). */
203 /* XEXP (BASE, ARG). */
206 /* XVECEXP (BASE, 0, ARG). */
210 /* The position of an rtx relative to X0. Each useful position is
211 represented by exactly one instance of this structure. */
214 /* The parent rtx. This is the root position for POS_PEEP2_INSNs. */
215 struct position
*base
;
217 /* A position with the same BASE and TYPE, but with the next value
219 struct position
*next
;
221 /* A list of all POS_XEXP positions that use this one as their base,
222 chained by NEXT fields. The first entry represents XEXP (this, 0),
223 the second represents XEXP (this, 1), and so on. */
224 struct position
*xexps
;
226 /* A list of POS_XVECEXP0 positions that use this one as their base,
227 chained by NEXT fields. The first entry represents XVECEXP (this, 0, 0),
228 the second represents XVECEXP (this, 0, 1), and so on. */
229 struct position
*xvecexp0s
;
231 /* The type of position. */
232 enum position_type type
;
234 /* The argument to TYPE (shown as ARG in the position_type comments). */
237 /* The instruction to which the position belongs. */
238 unsigned int insn_id
;
240 /* The depth of this position relative to the instruction pattern.
241 E.g. if the instruction pattern is a SET, the SET itself has a
242 depth of 0 while the SET_DEST and SET_SRC have depths of 1. */
245 /* A unique identifier for this position. */
250 SUBPATTERN
, RECOG
, SPLIT
, PEEPHOLE2
253 /* The root position (x0). */
254 static struct position root_pos
;
256 /* The number of positions created. Also one higher than the maximum
258 static unsigned int num_positions
= 1;
260 /* A list of all POS_PEEP2_INSNs. The entry for insn 0 is the root position,
261 since we are given that instruction's pattern as x0. */
262 static struct position
*peep2_insn_pos_list
= &root_pos
;
264 /* Return a position with the given BASE, TYPE and ARG. NEXT_PTR
265 points to where the unique object that represents the position
266 should be stored. Create the object if it doesn't already exist,
267 otherwise reuse the object that is already there. */
269 static struct position
*
270 next_position (struct position
**next_ptr
, struct position
*base
,
271 enum position_type type
, int arg
)
273 struct position
*pos
;
278 pos
= XCNEW (struct position
);
281 if (type
== POS_PEEP2_INSN
)
285 pos
->depth
= base
->depth
;
290 pos
->insn_id
= base
->insn_id
;
291 pos
->depth
= base
->depth
+ 1;
293 pos
->id
= num_positions
++;
299 /* Compare positions POS1 and POS2 lexicographically. */
302 compare_positions (struct position
*pos1
, struct position
*pos2
)
306 diff
= pos1
->depth
- pos2
->depth
;
310 while (pos1
->depth
!= pos2
->depth
);
314 while (pos1
->depth
!= pos2
->depth
);
317 diff
= (int) pos1
->type
- (int) pos2
->type
;
319 diff
= pos1
->arg
- pos2
->arg
;
326 /* Return the most deeply-nested position that is common to both
327 POS1 and POS2. If the positions are from different instructions,
328 return the one with the lowest insn_id. */
330 static struct position
*
331 common_position (struct position
*pos1
, struct position
*pos2
)
333 if (pos1
->insn_id
!= pos2
->insn_id
)
334 return pos1
->insn_id
< pos2
->insn_id
? pos1
: pos2
;
335 if (pos1
->depth
> pos2
->depth
)
336 std::swap (pos1
, pos2
);
337 while (pos1
->depth
!= pos2
->depth
)
347 /* Search for and return operand N, stop when reaching node STOP. */
350 find_operand (rtx pattern
, int n
, rtx stop
)
360 code
= GET_CODE (pattern
);
361 if ((code
== MATCH_SCRATCH
362 || code
== MATCH_OPERAND
363 || code
== MATCH_OPERATOR
364 || code
== MATCH_PARALLEL
)
365 && XINT (pattern
, 0) == n
)
368 fmt
= GET_RTX_FORMAT (code
);
369 len
= GET_RTX_LENGTH (code
);
370 for (i
= 0; i
< len
; i
++)
375 if ((r
= find_operand (XEXP (pattern
, i
), n
, stop
)) != NULL_RTX
)
380 if (! XVEC (pattern
, i
))
385 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
386 if ((r
= find_operand (XVECEXP (pattern
, i
, j
), n
, stop
))
391 case 'i': case 'r': case 'w': case '0': case 's':
402 /* Search for and return operand M, such that it has a matching
403 constraint for operand N. */
406 find_matching_operand (rtx pattern
, int n
)
413 code
= GET_CODE (pattern
);
414 if (code
== MATCH_OPERAND
415 && (XSTR (pattern
, 2)[0] == '0' + n
416 || (XSTR (pattern
, 2)[0] == '%'
417 && XSTR (pattern
, 2)[1] == '0' + n
)))
420 fmt
= GET_RTX_FORMAT (code
);
421 len
= GET_RTX_LENGTH (code
);
422 for (i
= 0; i
< len
; i
++)
427 if ((r
= find_matching_operand (XEXP (pattern
, i
), n
)))
432 if (! XVEC (pattern
, i
))
437 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
438 if ((r
= find_matching_operand (XVECEXP (pattern
, i
, j
), n
)))
442 case 'i': case 'r': case 'w': case '0': case 's':
453 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
454 don't use the MATCH_OPERAND constraint, only the predicate.
455 This is confusing to folks doing new ports, so help them
456 not make the mistake. */
459 constraints_supported_in_insn_p (rtx insn
)
461 return !(GET_CODE (insn
) == DEFINE_EXPAND
462 || GET_CODE (insn
) == DEFINE_SPLIT
463 || GET_CODE (insn
) == DEFINE_PEEPHOLE2
);
466 /* Return the name of the predicate matched by MATCH_RTX. */
469 predicate_name (rtx match_rtx
)
471 if (GET_CODE (match_rtx
) == MATCH_SCRATCH
)
472 return "scratch_operand";
474 return XSTR (match_rtx
, 1);
477 /* Return true if OPERAND is a MATCH_OPERAND using a special predicate
481 special_predicate_operand_p (rtx operand
)
483 if (GET_CODE (operand
) == MATCH_OPERAND
)
485 const char *pred_name
= predicate_name (operand
);
486 if (pred_name
[0] != 0)
488 const struct pred_data
*pred
;
490 pred
= lookup_predicate (pred_name
);
491 return pred
!= NULL
&& pred
->special
;
498 /* Check for various errors in PATTERN, which is part of INFO.
499 SET is nonnull for a destination, and is the complete set pattern.
500 SET_CODE is '=' for normal sets, and '+' within a context that
501 requires in-out constraints. */
504 validate_pattern (rtx pattern
, md_rtx_info
*info
, rtx set
, int set_code
)
511 code
= GET_CODE (pattern
);
516 const char constraints0
= XSTR (pattern
, 1)[0];
518 if (!constraints_supported_in_insn_p (info
->def
))
522 error_at (info
->loc
, "constraints not supported in %s",
523 GET_RTX_NAME (GET_CODE (info
->def
)));
528 /* If a MATCH_SCRATCH is used in a context requiring an write-only
529 or read/write register, validate that. */
532 && constraints0
!= '='
533 && constraints0
!= '+')
535 error_at (info
->loc
, "operand %d missing output reload",
543 if (find_operand (info
->def
, XINT (pattern
, 0), pattern
) == pattern
)
544 error_at (info
->loc
, "operand %i duplicated before defined",
550 const char *pred_name
= XSTR (pattern
, 1);
551 const struct pred_data
*pred
;
554 c_test
= get_c_test (info
->def
);
556 if (pred_name
[0] != 0)
558 pred
= lookup_predicate (pred_name
);
560 error_at (info
->loc
, "unknown predicate '%s'", pred_name
);
565 if (code
== MATCH_OPERAND
)
567 const char *constraints
= XSTR (pattern
, 2);
568 const char constraints0
= constraints
[0];
570 if (!constraints_supported_in_insn_p (info
->def
))
574 error_at (info
->loc
, "constraints not supported in %s",
575 GET_RTX_NAME (GET_CODE (info
->def
)));
579 /* A MATCH_OPERAND that is a SET should have an output reload. */
580 else if (set
&& constraints0
)
584 if (constraints0
== '+')
586 /* If we've only got an output reload for this operand,
587 we'd better have a matching input operand. */
588 else if (constraints0
== '='
589 && find_matching_operand (info
->def
,
593 error_at (info
->loc
, "operand %d missing in-out reload",
596 else if (constraints0
!= '=' && constraints0
!= '+')
597 error_at (info
->loc
, "operand %d missing output reload",
601 /* For matching constraint in MATCH_OPERAND, the digit must be a
602 smaller number than the number of the operand that uses it in the
606 while (constraints
[0]
607 && (constraints
[0] == ' ' || constraints
[0] == ','))
612 if (constraints
[0] >= '0' && constraints
[0] <= '9')
616 sscanf (constraints
, "%d", &val
);
617 if (val
>= XINT (pattern
, 0))
618 error_at (info
->loc
, "constraint digit %d is not"
619 " smaller than operand %d",
620 val
, XINT (pattern
, 0));
623 while (constraints
[0] && constraints
[0] != ',')
628 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
629 while not likely to occur at runtime, results in less efficient
630 code from insn-recog.c. */
631 if (set
&& pred
&& pred
->allows_non_lvalue
)
632 error_at (info
->loc
, "destination operand %d allows non-lvalue",
635 /* A modeless MATCH_OPERAND can be handy when we can check for
636 multiple modes in the c_test. In most other cases, it is a
637 mistake. Only DEFINE_INSN is eligible, since SPLIT and
638 PEEP2 can FAIL within the output pattern. Exclude special
639 predicates, which check the mode themselves. Also exclude
640 predicates that allow only constants. Exclude the SET_DEST
641 of a call instruction, as that is a common idiom. */
643 if (GET_MODE (pattern
) == VOIDmode
644 && code
== MATCH_OPERAND
645 && GET_CODE (info
->def
) == DEFINE_INSN
648 && pred
->allows_non_const
649 && strstr (c_test
, "operands") == NULL
651 && GET_CODE (set
) == SET
652 && GET_CODE (SET_SRC (set
)) == CALL
))
653 message_at (info
->loc
, "warning: operand %d missing mode?",
660 machine_mode dmode
, smode
;
663 dest
= SET_DEST (pattern
);
664 src
= SET_SRC (pattern
);
666 /* STRICT_LOW_PART is a wrapper. Its argument is the real
667 destination, and it's mode should match the source. */
668 if (GET_CODE (dest
) == STRICT_LOW_PART
)
669 dest
= XEXP (dest
, 0);
671 /* Find the referent for a DUP. */
673 if (GET_CODE (dest
) == MATCH_DUP
674 || GET_CODE (dest
) == MATCH_OP_DUP
675 || GET_CODE (dest
) == MATCH_PAR_DUP
)
676 dest
= find_operand (info
->def
, XINT (dest
, 0), NULL
);
678 if (GET_CODE (src
) == MATCH_DUP
679 || GET_CODE (src
) == MATCH_OP_DUP
680 || GET_CODE (src
) == MATCH_PAR_DUP
)
681 src
= find_operand (info
->def
, XINT (src
, 0), NULL
);
683 dmode
= GET_MODE (dest
);
684 smode
= GET_MODE (src
);
686 /* Mode checking is not performed for special predicates. */
687 if (special_predicate_operand_p (src
)
688 || special_predicate_operand_p (dest
))
691 /* The operands of a SET must have the same mode unless one
693 else if (dmode
!= VOIDmode
&& smode
!= VOIDmode
&& dmode
!= smode
)
694 error_at (info
->loc
, "mode mismatch in set: %smode vs %smode",
695 GET_MODE_NAME (dmode
), GET_MODE_NAME (smode
));
697 /* If only one of the operands is VOIDmode, and PC or CC0 is
698 not involved, it's probably a mistake. */
699 else if (dmode
!= smode
700 && GET_CODE (dest
) != PC
701 && GET_CODE (dest
) != CC0
702 && GET_CODE (src
) != PC
703 && GET_CODE (src
) != CC0
704 && !CONST_INT_P (src
)
705 && !CONST_WIDE_INT_P (src
)
706 && GET_CODE (src
) != CALL
)
709 which
= (dmode
== VOIDmode
? "destination" : "source");
710 message_at (info
->loc
, "warning: %s missing a mode?", which
);
713 if (dest
!= SET_DEST (pattern
))
714 validate_pattern (dest
, info
, pattern
, '=');
715 validate_pattern (SET_DEST (pattern
), info
, pattern
, '=');
716 validate_pattern (SET_SRC (pattern
), info
, NULL_RTX
, 0);
721 validate_pattern (SET_DEST (pattern
), info
, pattern
, '=');
725 validate_pattern (XEXP (pattern
, 0), info
, set
, set
? '+' : 0);
726 validate_pattern (XEXP (pattern
, 1), info
, NULL_RTX
, 0);
727 validate_pattern (XEXP (pattern
, 2), info
, NULL_RTX
, 0);
730 case STRICT_LOW_PART
:
731 validate_pattern (XEXP (pattern
, 0), info
, set
, set
? '+' : 0);
735 if (GET_MODE (XEXP (pattern
, 0)) != VOIDmode
)
736 error_at (info
->loc
, "operand to label_ref %smode not VOIDmode",
737 GET_MODE_NAME (GET_MODE (XEXP (pattern
, 0))));
741 if (GET_MODE (pattern
) != VOIDmode
)
743 machine_mode mode
= GET_MODE (pattern
);
744 machine_mode imode
= GET_MODE (XEXP (pattern
, 0));
746 = VECTOR_MODE_P (mode
) ? GET_MODE_INNER (mode
) : mode
;
747 if (GET_CODE (XEXP (pattern
, 1)) == PARALLEL
)
749 int expected
= VECTOR_MODE_P (mode
) ? GET_MODE_NUNITS (mode
) : 1;
750 if (XVECLEN (XEXP (pattern
, 1), 0) != expected
)
752 "vec_select parallel with %d elements, expected %d",
753 XVECLEN (XEXP (pattern
, 1), 0), expected
);
755 if (imode
!= VOIDmode
&& !VECTOR_MODE_P (imode
))
756 error_at (info
->loc
, "%smode of first vec_select operand is not a "
757 "vector mode", GET_MODE_NAME (imode
));
758 else if (imode
!= VOIDmode
&& GET_MODE_INNER (imode
) != emode
)
759 error_at (info
->loc
, "element mode mismatch between vec_select "
760 "%smode and its operand %smode",
761 GET_MODE_NAME (emode
),
762 GET_MODE_NAME (GET_MODE_INNER (imode
)));
770 fmt
= GET_RTX_FORMAT (code
);
771 len
= GET_RTX_LENGTH (code
);
772 for (i
= 0; i
< len
; i
++)
777 validate_pattern (XEXP (pattern
, i
), info
, NULL_RTX
, 0);
781 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
782 validate_pattern (XVECEXP (pattern
, i
, j
), info
, NULL_RTX
, 0);
785 case 'i': case 'r': case 'w': case '0': case 's':
794 /* Simple list structure for items of type T, for use when being part
795 of a list is an inherent property of T. T must have members equivalent
796 to "T *prev, *next;" and a function "void set_parent (list_head <T> *)"
797 to set the parent list. */
798 template <typename T
>
801 /* A range of linked items. */
808 void set_parent (list_head
*);
813 void push_back (range
);
814 range
remove (range
);
815 void replace (range
, range
);
816 T
*singleton () const;
821 /* Create a range [START_IN, START_IN]. */
823 template <typename T
>
824 list_head
<T
>::range::range (T
*start_in
) : start (start_in
), end (start_in
) {}
826 /* Create a range [START_IN, END_IN], linked by next and prev fields. */
828 template <typename T
>
829 list_head
<T
>::range::range (T
*start_in
, T
*end_in
)
830 : start (start_in
), end (end_in
) {}
832 template <typename T
>
834 list_head
<T
>::range::set_parent (list_head
<T
> *owner
)
836 for (T
*item
= start
; item
!= end
; item
= item
->next
)
837 item
->set_parent (owner
);
838 end
->set_parent (owner
);
841 template <typename T
>
842 list_head
<T
>::list_head () : first (0), last (0) {}
844 /* Add R to the end of the list. */
846 template <typename T
>
848 list_head
<T
>::push_back (range r
)
851 last
->next
= r
.start
;
854 r
.start
->prev
= last
;
859 /* Remove R from the list. R remains valid and can be inserted into
862 template <typename T
>
863 typename list_head
<T
>::range
864 list_head
<T
>::remove (range r
)
867 r
.start
->prev
->next
= r
.end
->next
;
871 r
.end
->next
->prev
= r
.start
->prev
;
873 last
= r
.start
->prev
;
880 /* Replace OLDR with NEWR. OLDR remains valid and can be inserted into
883 template <typename T
>
885 list_head
<T
>::replace (range oldr
, range newr
)
887 newr
.start
->prev
= oldr
.start
->prev
;
888 newr
.end
->next
= oldr
.end
->next
;
890 oldr
.start
->prev
= 0;
894 if (newr
.start
->prev
)
895 newr
.start
->prev
->next
= newr
.start
;
899 newr
.end
->next
->prev
= newr
.end
;
902 newr
.set_parent (this);
905 /* Empty the list and return the previous contents as a range that can
906 be inserted into other lists. */
908 template <typename T
>
909 typename list_head
<T
>::range
910 list_head
<T
>::release ()
912 range
r (first
, last
);
919 /* If the list contains a single item, return that item, otherwise return
922 template <typename T
>
924 list_head
<T
>::singleton () const
926 return first
== last
? first
: 0;
931 /* Describes a possible successful return from a routine. */
932 struct acceptance_type
934 /* The type of routine we're returning from. */
935 routine_type type
: 16;
937 /* True if this structure only really represents a partial match,
938 and if we must call a subroutine of type TYPE to complete the match.
939 In this case we'll call the subroutine and, if it succeeds, return
940 whatever the subroutine returned.
942 False if this structure presents a full match. */
943 unsigned int partial_p
: 1;
947 /* If PARTIAL_P, this is the number of the subroutine to call. */
950 /* Valid if !PARTIAL_P. */
953 /* The identifier of the matching pattern. For SUBPATTERNs this
954 value belongs to an ad-hoc routine-specific enum. For the
955 others it's the number of an .md file pattern. */
959 /* For RECOG, the number of clobbers that must be added to the
960 pattern in order for it to match CODE. */
963 /* For PEEPHOLE2, the number of additional instructions that were
964 included in the optimization. */
972 operator == (const acceptance_type
&a
, const acceptance_type
&b
)
974 if (a
.partial_p
!= b
.partial_p
)
977 return a
.u
.subroutine_id
== b
.u
.subroutine_id
;
979 return a
.u
.full
.code
== b
.u
.full
.code
;
983 operator != (const acceptance_type
&a
, const acceptance_type
&b
)
985 return !operator == (a
, b
);
988 /* Represents a parameter to a pattern routine. */
991 /* The C type of parameter. */
993 /* Represents an invalid parameter. */
996 /* A machine_mode parameter. */
999 /* An rtx_code parameter. */
1002 /* An int parameter. */
1005 /* An unsigned int parameter. */
1008 /* A HOST_WIDE_INT parameter. */
1013 parameter (type_enum
, bool, uint64_t);
1015 /* The type of the parameter. */
1018 /* True if the value passed is variable, false if it is constant. */
1021 /* If IS_PARAM, this is the number of the variable passed, for an "i%d"
1022 format string. If !IS_PARAM, this is the constant value passed. */
1026 parameter::parameter ()
1027 : type (UNSET
), is_param (false), value (0) {}
1029 parameter::parameter (type_enum type_in
, bool is_param_in
, uint64_t value_in
)
1030 : type (type_in
), is_param (is_param_in
), value (value_in
) {}
1033 operator == (const parameter
¶m1
, const parameter
¶m2
)
1035 return (param1
.type
== param2
.type
1036 && param1
.is_param
== param2
.is_param
1037 && param1
.value
== param2
.value
);
1041 operator != (const parameter
¶m1
, const parameter
¶m2
)
1043 return !operator == (param1
, param2
);
1046 /* Represents a routine that matches a partial rtx pattern, returning
1047 an ad-hoc enum value on success and -1 on failure. The routine can
1048 be used by any subroutine type. The match can be parameterized by
1049 things like mode, code and UNSPEC number. */
1050 struct pattern_routine
1052 /* The state that implements the pattern. */
1055 /* The deepest root position from which S can access all the rtxes it needs.
1056 This is NULL if the pattern doesn't need an rtx input, usually because
1057 all matching is done on operands[] instead. */
1060 /* A unique identifier for the routine. */
1061 unsigned int pattern_id
;
1063 /* True if the routine takes pnum_clobbers as argument. */
1064 bool pnum_clobbers_p
;
1066 /* True if the routine takes the enclosing instruction as argument. */
1069 /* The types of the other parameters to the routine, if any. */
1070 auto_vec
<parameter::type_enum
, MAX_PATTERN_PARAMS
> param_types
;
1073 /* All defined patterns. */
1074 static vec
<pattern_routine
*> patterns
;
1076 /* Represents one use of a pattern routine. */
1079 /* The pattern routine to use. */
1080 pattern_routine
*routine
;
1082 /* The values to pass as parameters. This vector has the same length
1083 as ROUTINE->PARAM_TYPES. */
1084 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
1087 /* Represents a test performed by a decision. */
1092 /* The types of test that can be performed. Most of them take as input
1093 an rtx X. Some also take as input a transition label LABEL; the others
1094 are booleans for which the transition label is always "true".
1096 The order of the enum isn't important. */
1098 /* Check GET_CODE (X) == LABEL. */
1101 /* Check GET_MODE (X) == LABEL. */
1104 /* Check REGNO (X) == LABEL. */
1107 /* Check XINT (X, u.opno) == LABEL. */
1110 /* Check XWINT (X, u.opno) == LABEL. */
1113 /* Check XVECLEN (X, 0) == LABEL. */
1116 /* Check peep2_current_count >= u.min_len. */
1119 /* Check XVECLEN (X, 0) >= u.min_len. */
1122 /* Check whether X is a cached const_int with value u.integer. */
1125 /* Check u.predicate.data (X, u.predicate.mode). */
1128 /* Check rtx_equal_p (X, operands[u.opno]). */
1131 /* Check whether X matches pattern u.pattern. */
1134 /* Check whether pnum_clobbers is nonnull (RECOG only). */
1137 /* Check whether general C test u.string holds. In general the condition
1138 needs access to "insn" and the full operand list. */
1141 /* Execute operands[u.opno] = X. (Always succeeds.) */
1144 /* Accept u.acceptance. Always succeeds for SUBPATTERN, RECOG and SPLIT.
1145 May fail for PEEPHOLE2 if the define_peephole2 C code executes FAIL. */
1149 /* The position of rtx X in the above description, relative to the
1150 incoming instruction "insn". The position is null if the test
1151 doesn't take an X as input. */
1154 /* Which element of operands[] already contains POS, or -1 if no element
1155 is known to hold POS. */
1158 /* The type of test and its parameters, as described above. */
1171 const struct pred_data
*data
;
1172 /* True if the mode is taken from a machine_mode parameter
1173 to the routine rather than a constant machine_mode. If true,
1174 MODE is the number of the parameter (for an "i%d" format string),
1175 otherwise it is the mode itself. */
1179 pattern_use
*pattern
;
1181 acceptance_type acceptance
;
1184 static rtx_test
code (position
*);
1185 static rtx_test
mode (position
*);
1186 static rtx_test
regno_field (position
*);
1187 static rtx_test
int_field (position
*, int);
1188 static rtx_test
wide_int_field (position
*, int);
1189 static rtx_test
veclen (position
*);
1190 static rtx_test
peep2_count (int);
1191 static rtx_test
veclen_ge (position
*, int);
1192 static rtx_test
predicate (position
*, const pred_data
*, machine_mode
);
1193 static rtx_test
duplicate (position
*, int);
1194 static rtx_test
pattern (position
*, pattern_use
*);
1195 static rtx_test
have_num_clobbers ();
1196 static rtx_test
c_test (const char *);
1197 static rtx_test
set_op (position
*, int);
1198 static rtx_test
accept (const acceptance_type
&);
1200 bool terminal_p () const;
1201 bool single_outcome_p () const;
1204 rtx_test (position
*, kind_enum
);
1207 rtx_test::rtx_test () {}
1209 rtx_test::rtx_test (position
*pos_in
, kind_enum kind_in
)
1210 : pos (pos_in
), pos_operand (-1), kind (kind_in
) {}
1213 rtx_test::code (position
*pos
)
1215 return rtx_test (pos
, rtx_test::CODE
);
1219 rtx_test::mode (position
*pos
)
1221 return rtx_test (pos
, rtx_test::MODE
);
1225 rtx_test::regno_field (position
*pos
)
1227 rtx_test
res (pos
, rtx_test::REGNO_FIELD
);
1232 rtx_test::int_field (position
*pos
, int opno
)
1234 rtx_test
res (pos
, rtx_test::INT_FIELD
);
1240 rtx_test::wide_int_field (position
*pos
, int opno
)
1242 rtx_test
res (pos
, rtx_test::WIDE_INT_FIELD
);
1248 rtx_test::veclen (position
*pos
)
1250 return rtx_test (pos
, rtx_test::VECLEN
);
1254 rtx_test::peep2_count (int min_len
)
1256 rtx_test
res (0, rtx_test::PEEP2_COUNT
);
1257 res
.u
.min_len
= min_len
;
1262 rtx_test::veclen_ge (position
*pos
, int min_len
)
1264 rtx_test
res (pos
, rtx_test::VECLEN_GE
);
1265 res
.u
.min_len
= min_len
;
1270 rtx_test::predicate (position
*pos
, const struct pred_data
*data
,
1273 rtx_test
res (pos
, rtx_test::PREDICATE
);
1274 res
.u
.predicate
.data
= data
;
1275 res
.u
.predicate
.mode_is_param
= false;
1276 res
.u
.predicate
.mode
= mode
;
1281 rtx_test::duplicate (position
*pos
, int opno
)
1283 rtx_test
res (pos
, rtx_test::DUPLICATE
);
1289 rtx_test::pattern (position
*pos
, pattern_use
*pattern
)
1291 rtx_test
res (pos
, rtx_test::PATTERN
);
1292 res
.u
.pattern
= pattern
;
1297 rtx_test::have_num_clobbers ()
1299 return rtx_test (0, rtx_test::HAVE_NUM_CLOBBERS
);
1303 rtx_test::c_test (const char *string
)
1305 rtx_test
res (0, rtx_test::C_TEST
);
1306 res
.u
.string
= string
;
1311 rtx_test::set_op (position
*pos
, int opno
)
1313 rtx_test
res (pos
, rtx_test::SET_OP
);
1319 rtx_test::accept (const acceptance_type
&acceptance
)
1321 rtx_test
res (0, rtx_test::ACCEPT
);
1322 res
.u
.acceptance
= acceptance
;
1326 /* Return true if the test represents an unconditionally successful match. */
1329 rtx_test::terminal_p () const
1331 return kind
== rtx_test::ACCEPT
&& u
.acceptance
.type
!= PEEPHOLE2
;
1334 /* Return true if the test is a boolean that is always true. */
1337 rtx_test::single_outcome_p () const
1339 return terminal_p () || kind
== rtx_test::SET_OP
;
1343 operator == (const rtx_test
&a
, const rtx_test
&b
)
1345 if (a
.pos
!= b
.pos
|| a
.kind
!= b
.kind
)
1349 case rtx_test::CODE
:
1350 case rtx_test::MODE
:
1351 case rtx_test::REGNO_FIELD
:
1352 case rtx_test::VECLEN
:
1353 case rtx_test::HAVE_NUM_CLOBBERS
:
1356 case rtx_test::PEEP2_COUNT
:
1357 case rtx_test::VECLEN_GE
:
1358 return a
.u
.min_len
== b
.u
.min_len
;
1360 case rtx_test::INT_FIELD
:
1361 case rtx_test::WIDE_INT_FIELD
:
1362 case rtx_test::DUPLICATE
:
1363 case rtx_test::SET_OP
:
1364 return a
.u
.opno
== b
.u
.opno
;
1366 case rtx_test::SAVED_CONST_INT
:
1367 return (a
.u
.integer
.is_param
== b
.u
.integer
.is_param
1368 && a
.u
.integer
.value
== b
.u
.integer
.value
);
1370 case rtx_test::PREDICATE
:
1371 return (a
.u
.predicate
.data
== b
.u
.predicate
.data
1372 && a
.u
.predicate
.mode_is_param
== b
.u
.predicate
.mode_is_param
1373 && a
.u
.predicate
.mode
== b
.u
.predicate
.mode
);
1375 case rtx_test::PATTERN
:
1376 return (a
.u
.pattern
->routine
== b
.u
.pattern
->routine
1377 && a
.u
.pattern
->params
== b
.u
.pattern
->params
);
1379 case rtx_test::C_TEST
:
1380 return strcmp (a
.u
.string
, b
.u
.string
) == 0;
1382 case rtx_test::ACCEPT
:
1383 return a
.u
.acceptance
== b
.u
.acceptance
;
1389 operator != (const rtx_test
&a
, const rtx_test
&b
)
1391 return !operator == (a
, b
);
1394 /* A simple set of transition labels. Most transitions have a singleton
1395 label, so try to make that case as efficient as possible. */
1396 struct int_set
: public auto_vec
<uint64_t, 1>
1398 typedef uint64_t *iterator
;
1402 int_set (const int_set
&);
1404 int_set
&operator = (const int_set
&);
1410 int_set::int_set () : auto_vec
<uint64_t, 1> () {}
1412 int_set::int_set (uint64_t label
) :
1413 auto_vec
<uint64_t, 1> ()
1418 int_set::int_set (const int_set
&other
) :
1419 auto_vec
<uint64_t, 1> ()
1421 safe_splice (other
);
1425 int_set::operator = (const int_set
&other
)
1428 safe_splice (other
);
1441 return address () + length ();
1445 operator == (const int_set
&a
, const int_set
&b
)
1447 if (a
.length () != b
.length ())
1449 for (unsigned int i
= 0; i
< a
.length (); ++i
)
1456 operator != (const int_set
&a
, const int_set
&b
)
1458 return !operator == (a
, b
);
1463 /* Represents a transition between states, dependent on the result of
1467 transition (const int_set
&, state
*, bool);
1469 void set_parent (list_head
<transition
> *);
1471 /* Links to other transitions for T. Always null for boolean tests. */
1472 transition
*prev
, *next
;
1474 /* The transition should be taken when T has one of these values.
1475 E.g. for rtx_test::CODE this is a set of codes, while for booleans like
1476 rtx_test::PREDICATE it is always a singleton "true". The labels are
1477 sorted in ascending order. */
1480 /* The source decision. */
1483 /* The target state. */
1486 /* True if TO would function correctly even if TEST wasn't performed.
1487 E.g. it isn't necessary to check whether GET_MODE (x1) is SImode
1488 before calling register_operand (x1, SImode), since register_operand
1489 performs its own mode check. However, checking GET_MODE can be a cheap
1490 way of disambiguating SImode and DImode register operands. */
1493 /* True if LABELS contains parameter numbers rather than constants.
1494 E.g. if this is true for a rtx_test::CODE, the label is the number
1495 of an rtx_code parameter rather than an rtx_code itself.
1496 LABELS is always a singleton when this variable is true. */
1500 /* Represents a test and the action that should be taken on the result.
1501 If a transition exists for the test outcome, the machine switches
1502 to the transition's target state. If no suitable transition exists,
1503 the machine either falls through to the next decision or, if there are no
1504 more decisions to try, fails the match. */
1505 struct decision
: list_head
<transition
>
1507 decision (const rtx_test
&);
1509 void set_parent (list_head
<decision
> *s
);
1510 bool if_statement_p (uint64_t * = 0) const;
1512 /* The state to which this decision belongs. */
1515 /* Links to other decisions in the same state. */
1516 decision
*prev
, *next
;
1518 /* The test to perform. */
1522 /* Represents one machine state. For each state the machine tries a list
1523 of decisions, in order, and acts on the first match. It fails without
1524 further backtracking if no decisions match. */
1525 struct state
: list_head
<decision
>
1527 void set_parent (list_head
<state
> *) {}
1530 transition::transition (const int_set
&labels_in
, state
*to_in
,
1532 : prev (0), next (0), labels (labels_in
), from (0), to (to_in
),
1533 optional (optional_in
), is_param (false) {}
1535 /* Set the source decision of the transition. */
1538 transition::set_parent (list_head
<transition
> *from_in
)
1540 from
= static_cast <decision
*> (from_in
);
1543 decision::decision (const rtx_test
&test_in
)
1544 : prev (0), next (0), test (test_in
) {}
1546 /* Set the state to which this decision belongs. */
1549 decision::set_parent (list_head
<decision
> *s_in
)
1551 s
= static_cast <state
*> (s_in
);
1554 /* Return true if the decision has a single transition with a single label.
1555 If so, return the label in *LABEL if nonnull. */
1558 decision::if_statement_p (uint64_t *label
) const
1560 if (singleton () && first
->labels
.length () == 1)
1563 *label
= first
->labels
[0];
1569 /* Add to FROM a decision that performs TEST and has a single transition
1573 add_decision (state
*from
, const rtx_test
&test
, transition
*trans
)
1575 decision
*d
= new decision (test
);
1576 from
->push_back (d
);
1577 d
->push_back (trans
);
1580 /* Add a transition from FROM to a new, empty state that is taken
1581 when TEST == LABELS. OPTIONAL says whether the new transition
1582 should be optional. Return the new state. */
1585 add_decision (state
*from
, const rtx_test
&test
, int_set labels
, bool optional
)
1587 state
*to
= new state
;
1588 add_decision (from
, test
, new transition (labels
, to
, optional
));
1592 /* Insert a decision before decisions R to make them dependent on
1593 TEST == LABELS. OPTIONAL says whether the new transition should be
1597 insert_decision_before (state::range r
, const rtx_test
&test
,
1598 const int_set
&labels
, bool optional
)
1600 decision
*newd
= new decision (test
);
1601 state
*news
= new state
;
1602 newd
->push_back (new transition (labels
, news
, optional
));
1603 r
.start
->s
->replace (r
, newd
);
1604 news
->push_back (r
);
1608 /* Remove any optional transitions from S that turned out not to be useful. */
1611 collapse_optional_decisions (state
*s
)
1613 decision
*d
= s
->first
;
1616 decision
*next
= d
->next
;
1617 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1618 collapse_optional_decisions (trans
->to
);
1619 /* A decision with a single optional transition doesn't help
1620 partition the potential matches and so is unlikely to be
1621 worthwhile. In particular, if the decision that performs the
1622 test is the last in the state, the best it could do is reject
1623 an invalid pattern slightly earlier. If instead the decision
1624 is not the last in the state, the condition it tests could hold
1625 even for the later decisions in the state. The best it can do
1626 is save work in some cases where only the later decisions can
1629 In both cases the optional transition would add extra work to
1630 successful matches when the tested condition holds. */
1631 if (transition
*trans
= d
->singleton ())
1632 if (trans
->optional
)
1633 s
->replace (d
, trans
->to
->release ());
1638 /* Try to squash several separate tests into simpler ones. */
1641 simplify_tests (state
*s
)
1643 for (decision
*d
= s
->first
; d
; d
= d
->next
)
1646 /* Convert checks for GET_CODE (x) == CONST_INT and XWINT (x, 0) == N
1647 into checks for const_int_rtx[N'], if N is suitably small. */
1648 if (d
->test
.kind
== rtx_test::CODE
1649 && d
->if_statement_p (&label
)
1650 && label
== CONST_INT
)
1651 if (decision
*second
= d
->first
->to
->singleton ())
1652 if (d
->test
.pos
== second
->test
.pos
1653 && second
->test
.kind
== rtx_test::WIDE_INT_FIELD
1654 && second
->test
.u
.opno
== 0
1655 && second
->if_statement_p (&label
)
1656 && IN_RANGE (int64_t (label
),
1657 -MAX_SAVED_CONST_INT
, MAX_SAVED_CONST_INT
))
1659 d
->test
.kind
= rtx_test::SAVED_CONST_INT
;
1660 d
->test
.u
.integer
.is_param
= false;
1661 d
->test
.u
.integer
.value
= label
;
1662 d
->replace (d
->first
, second
->release ());
1663 d
->first
->labels
[0] = true;
1665 /* If we have a CODE test followed by a PREDICATE test, rely on
1666 the predicate to test the code.
1668 This case exists for match_operators. We initially treat the
1669 CODE test for a match_operator as non-optional so that we can
1670 safely move down to its operands. It may turn out that all
1671 paths that reach that code test require the same predicate
1672 to be true. cse_tests will then put the predicate test in
1673 series with the code test. */
1674 if (d
->test
.kind
== rtx_test::CODE
)
1675 if (transition
*trans
= d
->singleton ())
1677 state
*s
= trans
->to
;
1678 while (decision
*d2
= s
->singleton ())
1680 if (d
->test
.pos
!= d2
->test
.pos
)
1682 transition
*trans2
= d2
->singleton ();
1685 if (d2
->test
.kind
== rtx_test::PREDICATE
)
1688 trans
->labels
= int_set (true);
1689 s
->replace (d2
, trans2
->to
->release ());
1695 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1696 simplify_tests (trans
->to
);
1700 /* Return true if all successful returns passing through D require the
1701 condition tested by COMMON to be true.
1703 When returning true, add all transitions like COMMON in D to WHERE.
1704 WHERE may contain a partial result on failure. */
1707 common_test_p (decision
*d
, transition
*common
, vec
<transition
*> *where
)
1709 if (d
->test
.kind
== rtx_test::ACCEPT
)
1710 /* We found a successful return that didn't require COMMON. */
1712 if (d
->test
== common
->from
->test
)
1714 transition
*trans
= d
->singleton ();
1716 || trans
->optional
!= common
->optional
1717 || trans
->labels
!= common
->labels
)
1719 where
->safe_push (trans
);
1722 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1723 for (decision
*subd
= trans
->to
->first
; subd
; subd
= subd
->next
)
1724 if (!common_test_p (subd
, common
, where
))
1729 /* Indicates that we have tested GET_CODE (X) for a particular rtx X. */
1730 const unsigned char TESTED_CODE
= 1;
1732 /* Indicates that we have tested XVECLEN (X, 0) for a particular rtx X. */
1733 const unsigned char TESTED_VECLEN
= 2;
1735 /* Represents a set of conditions that are known to hold. */
1736 struct known_conditions
1738 /* A mask of TESTED_ values for each position, indexed by the position's
1740 auto_vec
<unsigned char> position_tests
;
1742 /* Index N says whether operands[N] has been set. */
1743 auto_vec
<bool> set_operands
;
1745 /* A guranteed lower bound on the value of peep2_current_count. */
1749 /* Return true if TEST can safely be performed at D, where
1750 the conditions in KC hold. TEST is known to occur along the
1751 first path from D (i.e. always following the first transition
1752 of the first decision). Any intervening tests can be used as
1753 negative proof that hoisting isn't safe, but only KC can be used
1754 as positive proof. */
1757 safe_to_hoist_p (decision
*d
, const rtx_test
&test
, known_conditions
*kc
)
1761 case rtx_test::C_TEST
:
1762 /* In general, C tests require everything else to have been
1763 verified and all operands to have been set up. */
1766 case rtx_test::ACCEPT
:
1767 /* Don't accept something before all conditions have been tested. */
1770 case rtx_test::PREDICATE
:
1771 /* Don't move a predicate over a test for VECLEN_GE, since the
1772 predicate used in a match_parallel can legitimately expect the
1773 length to be checked first. */
1774 for (decision
*subd
= d
;
1776 subd
= subd
->first
->to
->first
)
1777 if (subd
->test
.pos
== test
.pos
1778 && subd
->test
.kind
== rtx_test::VECLEN_GE
)
1782 case rtx_test::DUPLICATE
:
1783 /* Don't test for a match_dup until the associated operand has
1785 if (!kc
->set_operands
[test
.u
.opno
])
1789 case rtx_test::CODE
:
1790 case rtx_test::MODE
:
1791 case rtx_test::SAVED_CONST_INT
:
1792 case rtx_test::SET_OP
:
1794 /* Check whether it is safe to access the rtx under test. */
1795 switch (test
.pos
->type
)
1797 case POS_PEEP2_INSN
:
1798 return test
.pos
->arg
< kc
->peep2_count
;
1801 return kc
->position_tests
[test
.pos
->base
->id
] & TESTED_CODE
;
1804 return kc
->position_tests
[test
.pos
->base
->id
] & TESTED_VECLEN
;
1808 case rtx_test::REGNO_FIELD
:
1809 case rtx_test::INT_FIELD
:
1810 case rtx_test::WIDE_INT_FIELD
:
1811 case rtx_test::VECLEN
:
1812 case rtx_test::VECLEN_GE
:
1813 /* These tests access a specific part of an rtx, so are only safe
1814 once we know what the rtx is. */
1815 return kc
->position_tests
[test
.pos
->id
] & TESTED_CODE
;
1817 case rtx_test::PEEP2_COUNT
:
1818 case rtx_test::HAVE_NUM_CLOBBERS
:
1819 /* These tests can be performed anywhere. */
1822 case rtx_test::PATTERN
:
1828 /* Look for a transition that is taken by all successful returns from a range
1829 of decisions starting at OUTER and that would be better performed by
1830 OUTER's state instead. On success, store all instances of that transition
1831 in WHERE and return the last decision in the range. The range could
1832 just be OUTER, or it could include later decisions as well.
1834 WITH_POSITION_P is true if only tests with position POS should be tried,
1835 false if any test should be tried. WORTHWHILE_SINGLE_P is true if the
1836 result is useful even when the range contains just a single decision
1837 with a single transition. KC are the conditions that are known to
1841 find_common_test (decision
*outer
, bool with_position_p
,
1842 position
*pos
, bool worthwhile_single_p
,
1843 known_conditions
*kc
, vec
<transition
*> *where
)
1845 /* After this, WORTHWHILE_SINGLE_P indicates whether a range that contains
1846 just a single decision is useful, regardless of the number of
1847 transitions it has. */
1848 if (!outer
->singleton ())
1849 worthwhile_single_p
= true;
1850 /* Quick exit if we don't have enough decisions to form a worthwhile
1852 if (!worthwhile_single_p
&& !outer
->next
)
1854 /* Follow the first chain down, as one example of a path that needs
1855 to contain the common test. */
1856 for (decision
*d
= outer
; d
; d
= d
->first
->to
->first
)
1858 transition
*trans
= d
->singleton ();
1860 && (!with_position_p
|| d
->test
.pos
== pos
)
1861 && safe_to_hoist_p (outer
, d
->test
, kc
))
1863 if (common_test_p (outer
, trans
, where
))
1866 /* We checked above whether the move is worthwhile. */
1868 /* See how many decisions in OUTER's chain could reuse
1870 decision
*outer_end
= outer
;
1873 unsigned int length
= where
->length ();
1874 if (!common_test_p (outer_end
->next
, trans
, where
))
1876 where
->truncate (length
);
1879 outer_end
= outer_end
->next
;
1881 while (outer_end
->next
);
1882 /* It is worth moving TRANS if it can be shared by more than
1884 if (outer_end
!= outer
|| worthwhile_single_p
)
1887 where
->truncate (0);
1893 /* Try to promote common subtests in S to a single, shared decision.
1894 Also try to bunch tests for the same position together. POS is the
1895 position of the rtx tested before reaching S. KC are the conditions
1896 that are known to hold on entry to S. */
1899 cse_tests (position
*pos
, state
*s
, known_conditions
*kc
)
1901 for (decision
*d
= s
->first
; d
; d
= d
->next
)
1903 auto_vec
<transition
*, 16> where
;
1906 /* Try to find conditions that don't depend on a particular rtx,
1907 such as pnum_clobbers != NULL or peep2_current_count >= X.
1908 It's usually better to check these conditions as soon as
1909 possible, so the change is worthwhile even if there is
1910 only one copy of the test. */
1911 decision
*endd
= find_common_test (d
, true, 0, true, kc
, &where
);
1912 if (!endd
&& d
->test
.pos
!= pos
)
1913 /* Try to find other conditions related to position POS
1914 before moving to the new position. Again, this is
1915 worthwhile even if there is only one copy of the test,
1916 since it means that fewer position variables are live
1918 endd
= find_common_test (d
, true, pos
, true, kc
, &where
);
1920 /* Try to find any condition that is used more than once. */
1921 endd
= find_common_test (d
, false, 0, false, kc
, &where
);
1924 transition
*common
= where
[0];
1925 /* Replace [D, ENDD] with a test like COMMON. We'll recurse
1926 on the common test and see the original D again next time. */
1927 d
= insert_decision_before (state::range (d
, endd
),
1931 /* Remove the old tests. */
1932 while (!where
.is_empty ())
1934 transition
*trans
= where
.pop ();
1935 trans
->from
->s
->replace (trans
->from
, trans
->to
->release ());
1940 /* Make sure that safe_to_hoist_p isn't being overly conservative.
1941 It should realize that D's test is safe in the current
1943 gcc_assert (d
->test
.kind
== rtx_test::C_TEST
1944 || d
->test
.kind
== rtx_test::ACCEPT
1945 || safe_to_hoist_p (d
, d
->test
, kc
));
1947 /* D won't be changed any further by the current optimization.
1948 Recurse with the state temporarily updated to include D. */
1950 switch (d
->test
.kind
)
1952 case rtx_test::CODE
:
1953 prev
= kc
->position_tests
[d
->test
.pos
->id
];
1954 kc
->position_tests
[d
->test
.pos
->id
] |= TESTED_CODE
;
1957 case rtx_test::VECLEN
:
1958 case rtx_test::VECLEN_GE
:
1959 prev
= kc
->position_tests
[d
->test
.pos
->id
];
1960 kc
->position_tests
[d
->test
.pos
->id
] |= TESTED_VECLEN
;
1963 case rtx_test::SET_OP
:
1964 prev
= kc
->set_operands
[d
->test
.u
.opno
];
1966 kc
->set_operands
[d
->test
.u
.opno
] = true;
1969 case rtx_test::PEEP2_COUNT
:
1970 prev
= kc
->peep2_count
;
1971 kc
->peep2_count
= MAX (prev
, d
->test
.u
.min_len
);
1977 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1978 cse_tests (d
->test
.pos
? d
->test
.pos
: pos
, trans
->to
, kc
);
1979 switch (d
->test
.kind
)
1981 case rtx_test::CODE
:
1982 case rtx_test::VECLEN
:
1983 case rtx_test::VECLEN_GE
:
1984 kc
->position_tests
[d
->test
.pos
->id
] = prev
;
1987 case rtx_test::SET_OP
:
1988 kc
->set_operands
[d
->test
.u
.opno
] = prev
;
1991 case rtx_test::PEEP2_COUNT
:
1992 kc
->peep2_count
= prev
;
2001 /* Return the type of value that can be used to parameterize test KIND,
2002 or parameter::UNSET if none. */
2004 parameter::type_enum
2005 transition_parameter_type (rtx_test::kind_enum kind
)
2009 case rtx_test::CODE
:
2010 return parameter::CODE
;
2012 case rtx_test::MODE
:
2013 return parameter::MODE
;
2015 case rtx_test::REGNO_FIELD
:
2016 return parameter::UINT
;
2018 case rtx_test::INT_FIELD
:
2019 case rtx_test::VECLEN
:
2020 case rtx_test::PATTERN
:
2021 return parameter::INT
;
2023 case rtx_test::WIDE_INT_FIELD
:
2024 return parameter::WIDE_INT
;
2026 case rtx_test::PEEP2_COUNT
:
2027 case rtx_test::VECLEN_GE
:
2028 case rtx_test::SAVED_CONST_INT
:
2029 case rtx_test::PREDICATE
:
2030 case rtx_test::DUPLICATE
:
2031 case rtx_test::HAVE_NUM_CLOBBERS
:
2032 case rtx_test::C_TEST
:
2033 case rtx_test::SET_OP
:
2034 case rtx_test::ACCEPT
:
2035 return parameter::UNSET
;
2040 /* Initialize the pos_operand fields of each state reachable from S.
2041 If OPERAND_POS[ID] >= 0, the position with id ID is stored in
2042 operands[OPERAND_POS[ID]] on entry to S. */
2045 find_operand_positions (state
*s
, vec
<int> &operand_pos
)
2047 for (decision
*d
= s
->first
; d
; d
= d
->next
)
2049 int this_operand
= (d
->test
.pos
? operand_pos
[d
->test
.pos
->id
] : -1);
2050 if (this_operand
>= 0)
2051 d
->test
.pos_operand
= this_operand
;
2052 if (d
->test
.kind
== rtx_test::SET_OP
)
2053 operand_pos
[d
->test
.pos
->id
] = d
->test
.u
.opno
;
2054 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2055 find_operand_positions (trans
->to
, operand_pos
);
2056 if (d
->test
.kind
== rtx_test::SET_OP
)
2057 operand_pos
[d
->test
.pos
->id
] = this_operand
;
2061 /* Statistics about a matching routine. */
2066 /* The total number of decisions in the routine, excluding trivial
2067 ones that never fail. */
2068 unsigned int num_decisions
;
2070 /* The number of non-trivial decisions on the longest path through
2071 the routine, and the return value that contributes most to that
2073 unsigned int longest_path
;
2074 int longest_path_code
;
2076 /* The maximum number of times that a single call to the routine
2077 can backtrack, and the value returned at the end of that path.
2078 "Backtracking" here means failing one decision in state and
2079 going onto to the next. */
2080 unsigned int longest_backtrack
;
2081 int longest_backtrack_code
;
2085 : num_decisions (0), longest_path (0), longest_path_code (-1),
2086 longest_backtrack (0), longest_backtrack_code (-1) {}
2088 /* Return statistics about S. */
2091 get_stats (state
*s
)
2094 unsigned int longest_path
= 0;
2095 for (decision
*d
= s
->first
; d
; d
= d
->next
)
2097 /* Work out the statistics for D. */
2099 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2101 stats for_trans
= get_stats (trans
->to
);
2102 for_d
.num_decisions
+= for_trans
.num_decisions
;
2103 /* Each transition is mutually-exclusive, so just pick the
2104 longest of the individual paths. */
2105 if (for_d
.longest_path
<= for_trans
.longest_path
)
2107 for_d
.longest_path
= for_trans
.longest_path
;
2108 for_d
.longest_path_code
= for_trans
.longest_path_code
;
2110 /* Likewise for backtracking. */
2111 if (for_d
.longest_backtrack
<= for_trans
.longest_backtrack
)
2113 for_d
.longest_backtrack
= for_trans
.longest_backtrack
;
2114 for_d
.longest_backtrack_code
= for_trans
.longest_backtrack_code
;
2118 /* Account for D's test in its statistics. */
2119 if (!d
->test
.single_outcome_p ())
2121 for_d
.num_decisions
+= 1;
2122 for_d
.longest_path
+= 1;
2124 if (d
->test
.kind
== rtx_test::ACCEPT
)
2126 for_d
.longest_path_code
= d
->test
.u
.acceptance
.u
.full
.code
;
2127 for_d
.longest_backtrack_code
= d
->test
.u
.acceptance
.u
.full
.code
;
2130 /* Keep a running count of the number of backtracks. */
2132 for_s
.longest_backtrack
+= 1;
2134 /* Accumulate D's statistics into S's. */
2135 for_s
.num_decisions
+= for_d
.num_decisions
;
2136 for_s
.longest_path
+= for_d
.longest_path
;
2137 for_s
.longest_backtrack
+= for_d
.longest_backtrack
;
2139 /* Use the code from the decision with the longest individual path,
2140 since that's more likely to be useful if trying to make the
2141 path shorter. In the event of a tie, pick the later decision,
2142 since that's closer to the end of the path. */
2143 if (longest_path
<= for_d
.longest_path
)
2145 longest_path
= for_d
.longest_path
;
2146 for_s
.longest_path_code
= for_d
.longest_path_code
;
2149 /* Later decisions in a state are necessarily in a longer backtrack
2150 than earlier decisions. */
2151 for_s
.longest_backtrack_code
= for_d
.longest_backtrack_code
;
2156 /* Optimize ROOT. Use TYPE to describe ROOT in status messages. */
2159 optimize_subroutine_group (const char *type
, state
*root
)
2161 /* Remove optional transitions that turned out not to be worthwhile. */
2162 if (collapse_optional_decisions_p
)
2163 collapse_optional_decisions (root
);
2165 /* Try to remove duplicated tests and to rearrange tests into a more
2169 known_conditions kc
;
2170 kc
.position_tests
.safe_grow_cleared (num_positions
);
2171 kc
.set_operands
.safe_grow_cleared (num_operands
);
2173 cse_tests (&root_pos
, root
, &kc
);
2176 /* Try to simplify two or more tests into one. */
2177 if (simplify_tests_p
)
2178 simplify_tests (root
);
2180 /* Try to use operands[] instead of xN variables. */
2181 if (use_operand_variables_p
)
2183 auto_vec
<int> operand_pos (num_positions
);
2184 for (unsigned int i
= 0; i
< num_positions
; ++i
)
2185 operand_pos
.quick_push (-1);
2186 find_operand_positions (root
, operand_pos
);
2189 /* Print a summary of the new state. */
2190 stats st
= get_stats (root
);
2191 fprintf (stderr
, "Statistics for %s:\n", type
);
2192 fprintf (stderr
, " Number of decisions: %6d\n", st
.num_decisions
);
2193 fprintf (stderr
, " longest path: %6d (code: %6d)\n",
2194 st
.longest_path
, st
.longest_path_code
);
2195 fprintf (stderr
, " longest backtrack: %6d (code: %6d)\n",
2196 st
.longest_backtrack
, st
.longest_backtrack_code
);
2199 struct merge_pattern_info
;
2201 /* Represents a transition from one pattern to another. */
2202 struct merge_pattern_transition
2204 merge_pattern_transition (merge_pattern_info
*);
2206 /* The target pattern. */
2207 merge_pattern_info
*to
;
2209 /* The parameters that the source pattern passes to the target pattern.
2210 "parameter (TYPE, true, I)" represents parameter I of the source
2212 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2215 merge_pattern_transition::merge_pattern_transition (merge_pattern_info
*to_in
)
2220 /* Represents a pattern that can might match several states. The pattern
2221 may replace parts of the test with a parameter value. It may also
2222 replace transition labels with parameters. */
2223 struct merge_pattern_info
2225 merge_pattern_info (unsigned int);
2227 /* If PARAM_TEST_P, the state's singleton test should be generalized
2228 to use the runtime value of PARAMS[PARAM_TEST]. */
2229 unsigned int param_test
: 8;
2231 /* If PARAM_TRANSITION_P, the state's single transition label should
2232 be replaced by the runtime value of PARAMS[PARAM_TRANSITION]. */
2233 unsigned int param_transition
: 8;
2235 /* True if we have decided to generalize the root decision's test,
2236 as per PARAM_TEST. */
2237 unsigned int param_test_p
: 1;
2239 /* Likewise for the root decision's transition, as per PARAM_TRANSITION. */
2240 unsigned int param_transition_p
: 1;
2242 /* True if the contents of the structure are completely filled in. */
2243 unsigned int complete_p
: 1;
2245 /* The number of pseudo-statements in the pattern. Used to decide
2246 whether it's big enough to break out into a subroutine. */
2247 unsigned int num_statements
;
2249 /* The number of states that use this pattern. */
2250 unsigned int num_users
;
2252 /* The number of distinct success values that the pattern returns. */
2253 unsigned int num_results
;
2255 /* This array has one element for each runtime parameter to the pattern.
2256 PARAMS[I] gives the default value of parameter I, which is always
2259 These default parameters are used in cases where we match the
2260 pattern against some state S1, then add more parameters while
2261 matching against some state S2. S1 is then left passing fewer
2262 parameters than S2. The array gives us enough informatino to
2263 construct a full parameter list for S1 (see update_parameters).
2265 If we decide to create a subroutine for this pattern,
2266 PARAMS[I].type determines the C type of parameter I. */
2267 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2269 /* All states that match this pattern must have the same number of
2270 transitions. TRANSITIONS[I] describes the subpattern for transition
2271 number I; it is null if transition I represents a successful return
2272 from the pattern. */
2273 auto_vec
<merge_pattern_transition
*, 1> transitions
;
2275 /* The routine associated with the pattern, or null if we haven't generated
2277 pattern_routine
*routine
;
2280 merge_pattern_info::merge_pattern_info (unsigned int num_transitions
)
2282 param_transition (0),
2283 param_test_p (false),
2284 param_transition_p (false),
2291 transitions
.safe_grow_cleared (num_transitions
);
2294 /* Describes one way of matching a particular state to a particular
2296 struct merge_state_result
2298 merge_state_result (merge_pattern_info
*, position
*, merge_state_result
*);
2300 /* A pattern that matches the state. */
2301 merge_pattern_info
*pattern
;
2303 /* If we decide to use this match and create a subroutine for PATTERN,
2304 the state should pass the rtx at position ROOT to the pattern's
2305 rtx parameter. A null root means that the pattern doesn't need
2306 an rtx parameter; all the rtxes it matches come from elsewhere. */
2309 /* The parameters that should be passed to PATTERN for this state.
2310 If the array is shorter than PATTERN->params, the missing entries
2311 should be taken from the corresponding element of PATTERN->params. */
2312 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2314 /* An earlier match for the same state, or null if none. Patterns
2315 matched by earlier entries are smaller than PATTERN. */
2316 merge_state_result
*prev
;
2319 merge_state_result::merge_state_result (merge_pattern_info
*pattern_in
,
2321 merge_state_result
*prev_in
)
2322 : pattern (pattern_in
), root (root_in
), prev (prev_in
)
2325 /* Information about a state, used while trying to match it against
2327 struct merge_state_info
2329 merge_state_info (state
*);
2331 /* The state itself. */
2334 /* Index I gives information about the target of transition I. */
2335 merge_state_info
*to_states
;
2337 /* The number of transitions in S. */
2338 unsigned int num_transitions
;
2340 /* True if the state has been deleted in favor of a call to a
2344 /* The previous state that might be a merge candidate for S, or null
2345 if no previous states could be merged with S. */
2346 merge_state_info
*prev_same_test
;
2348 /* A list of pattern matches for this state. */
2349 merge_state_result
*res
;
2352 merge_state_info::merge_state_info (state
*s_in
)
2355 num_transitions (0),
2360 /* True if PAT would be useful as a subroutine. */
2363 useful_pattern_p (merge_pattern_info
*pat
)
2365 return pat
->num_statements
>= MIN_COMBINE_COST
;
2368 /* PAT2 is a subpattern of PAT1. Return true if PAT2 should be inlined
2369 into PAT1's C routine. */
2372 same_pattern_p (merge_pattern_info
*pat1
, merge_pattern_info
*pat2
)
2374 return pat1
->num_users
== pat2
->num_users
|| !useful_pattern_p (pat2
);
2377 /* PAT was previously matched against SINFO based on tentative matches
2378 for the target states of SINFO's state. Return true if the match
2379 still holds; that is, if the target states of SINFO's state still
2380 match the corresponding transitions of PAT. */
2383 valid_result_p (merge_pattern_info
*pat
, merge_state_info
*sinfo
)
2385 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
2386 if (merge_pattern_transition
*ptrans
= pat
->transitions
[j
])
2388 merge_state_result
*to_res
= sinfo
->to_states
[j
].res
;
2389 if (!to_res
|| to_res
->pattern
!= ptrans
->to
)
2395 /* Remove any matches that are no longer valid from the head of SINFO's
2399 prune_invalid_results (merge_state_info
*sinfo
)
2401 while (sinfo
->res
&& !valid_result_p (sinfo
->res
->pattern
, sinfo
))
2403 sinfo
->res
= sinfo
->res
->prev
;
2404 gcc_assert (sinfo
->res
);
2408 /* Return true if PAT represents the biggest posssible match for SINFO;
2409 that is, if the next action of SINFO's state on return from PAT will
2410 be something that cannot be merged with any other state. */
2413 complete_result_p (merge_pattern_info
*pat
, merge_state_info
*sinfo
)
2415 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
2416 if (sinfo
->to_states
[j
].res
&& !pat
->transitions
[j
])
2421 /* Update TO for any parameters that have been added to FROM since TO
2422 was last set. The extra parameters in FROM will be constants or
2423 instructions to duplicate earlier parameters. */
2426 update_parameters (vec
<parameter
> &to
, const vec
<parameter
> &from
)
2428 for (unsigned int i
= to
.length (); i
< from
.length (); ++i
)
2429 to
.quick_push (from
[i
]);
2432 /* Return true if A and B can be tested by a single test. If the test
2433 can be parameterised, store the parameter value for A in *PARAMA and
2434 the parameter value for B in *PARAMB, otherwise leave PARAMA and
2438 compatible_tests_p (const rtx_test
&a
, const rtx_test
&b
,
2439 parameter
*parama
, parameter
*paramb
)
2441 if (a
.kind
!= b
.kind
)
2445 case rtx_test::PREDICATE
:
2446 if (a
.u
.predicate
.data
!= b
.u
.predicate
.data
)
2448 *parama
= parameter (parameter::MODE
, false, a
.u
.predicate
.mode
);
2449 *paramb
= parameter (parameter::MODE
, false, b
.u
.predicate
.mode
);
2452 case rtx_test::SAVED_CONST_INT
:
2453 *parama
= parameter (parameter::INT
, false, a
.u
.integer
.value
);
2454 *paramb
= parameter (parameter::INT
, false, b
.u
.integer
.value
);
2462 /* PARAMS is an array of the parameters that a state is going to pass
2463 to a pattern routine. It is still incomplete; index I has a kind of
2464 parameter::UNSET if we don't yet know what the state will pass
2465 as parameter I. Try to make parameter ID equal VALUE, returning
2469 set_parameter (vec
<parameter
> ¶ms
, unsigned int id
,
2470 const parameter
&value
)
2472 if (params
[id
].type
== parameter::UNSET
)
2474 if (force_unique_params_p
)
2475 for (unsigned int i
= 0; i
< params
.length (); ++i
)
2476 if (params
[i
] == value
)
2481 return params
[id
] == value
;
2484 /* PARAMS2 is the "params" array for a pattern and PARAMS1 is the
2485 set of parameters that a particular state is going to pass to
2488 Try to extend PARAMS1 and PARAMS2 so that there is a parameter
2489 that is equal to PARAM1 for the state and has a default value of
2490 PARAM2. Parameters beginning at START were added as part of the
2491 same match and so may be reused. */
2494 add_parameter (vec
<parameter
> ¶ms1
, vec
<parameter
> ¶ms2
,
2495 const parameter
¶m1
, const parameter
¶m2
,
2496 unsigned int start
, unsigned int *res
)
2498 gcc_assert (params1
.length () == params2
.length ());
2499 gcc_assert (!param1
.is_param
&& !param2
.is_param
);
2501 for (unsigned int i
= start
; i
< params2
.length (); ++i
)
2502 if (params1
[i
] == param1
&& params2
[i
] == param2
)
2508 if (force_unique_params_p
)
2509 for (unsigned int i
= 0; i
< params2
.length (); ++i
)
2510 if (params1
[i
] == param1
|| params2
[i
] == param2
)
2513 if (params2
.length () >= MAX_PATTERN_PARAMS
)
2516 *res
= params2
.length ();
2517 params1
.quick_push (param1
);
2518 params2
.quick_push (param2
);
2522 /* If *ROOTA is nonnull, return true if the same sequence of steps are
2523 required to reach A from *ROOTA as to reach B from ROOTB. If *ROOTA
2524 is null, update it if necessary in order to make the condition hold. */
2527 merge_relative_positions (position
**roota
, position
*a
,
2528 position
*rootb
, position
*b
)
2530 if (!relative_patterns_p
)
2539 return *roota
== rootb
;
2541 /* If B does not belong to the same instruction as ROOTB, we don't
2542 start with ROOTB but instead start with a call to peep2_next_insn.
2543 In that case the sequences for B and A are identical iff B and A
2544 are themselves identical. */
2545 if (rootb
->insn_id
!= b
->insn_id
)
2549 if (!a
|| b
->type
!= a
->type
|| b
->arg
!= a
->arg
)
2559 /* A hasher of states that treats two states as "equal" if they might be
2560 merged (but trying to be more discriminating than "return true"). */
2561 struct test_pattern_hasher
: nofree_ptr_hash
<merge_state_info
>
2563 static inline hashval_t
hash (const value_type
&);
2564 static inline bool equal (const value_type
&, const compare_type
&);
2568 test_pattern_hasher::hash (merge_state_info
*const &sinfo
)
2571 decision
*d
= sinfo
->s
->singleton ();
2572 h
.add_int (d
->test
.pos_operand
+ 1);
2573 if (!relative_patterns_p
)
2574 h
.add_int (d
->test
.pos
? d
->test
.pos
->id
+ 1 : 0);
2575 h
.add_int (d
->test
.kind
);
2576 h
.add_int (sinfo
->num_transitions
);
2581 test_pattern_hasher::equal (merge_state_info
*const &sinfo1
,
2582 merge_state_info
*const &sinfo2
)
2584 decision
*d1
= sinfo1
->s
->singleton ();
2585 decision
*d2
= sinfo2
->s
->singleton ();
2586 gcc_assert (d1
&& d2
);
2588 parameter new_param1
, new_param2
;
2589 return (d1
->test
.pos_operand
== d2
->test
.pos_operand
2590 && (relative_patterns_p
|| d1
->test
.pos
== d2
->test
.pos
)
2591 && compatible_tests_p (d1
->test
, d2
->test
, &new_param1
, &new_param2
)
2592 && sinfo1
->num_transitions
== sinfo2
->num_transitions
);
2595 /* Try to make the state described by SINFO1 use the same pattern as the
2596 state described by SINFO2. Return true on success.
2598 SINFO1 and SINFO2 are known to have the same hash value. */
2601 merge_patterns (merge_state_info
*sinfo1
, merge_state_info
*sinfo2
)
2603 merge_state_result
*res2
= sinfo2
->res
;
2604 merge_pattern_info
*pat
= res2
->pattern
;
2606 /* Write to temporary arrays while matching, in case we have to abort
2607 half way through. */
2608 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params1
;
2609 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params2
;
2610 params1
.quick_grow_cleared (pat
->params
.length ());
2611 params2
.splice (pat
->params
);
2612 unsigned int start_param
= params2
.length ();
2614 /* An array for recording changes to PAT->transitions[?].params.
2615 All changes involve replacing a constant parameter with some
2616 PAT->params[N], where N is the second element of the pending_param. */
2617 typedef std::pair
<parameter
*, unsigned int> pending_param
;
2618 auto_vec
<pending_param
, 32> pending_params
;
2620 decision
*d1
= sinfo1
->s
->singleton ();
2621 decision
*d2
= sinfo2
->s
->singleton ();
2622 gcc_assert (d1
&& d2
);
2624 /* If D2 tests a position, SINFO1's root relative to D1 is the same
2625 as SINFO2's root relative to D2. */
2626 position
*root1
= 0;
2627 position
*root2
= res2
->root
;
2628 if (d2
->test
.pos_operand
< 0
2630 && !merge_relative_positions (&root1
, d1
->test
.pos
,
2631 root2
, d2
->test
.pos
))
2634 /* Check whether the patterns have the same shape. */
2635 unsigned int num_transitions
= sinfo1
->num_transitions
;
2636 gcc_assert (num_transitions
== sinfo2
->num_transitions
);
2637 for (unsigned int i
= 0; i
< num_transitions
; ++i
)
2638 if (merge_pattern_transition
*ptrans
= pat
->transitions
[i
])
2640 merge_state_result
*to1_res
= sinfo1
->to_states
[i
].res
;
2641 merge_state_result
*to2_res
= sinfo2
->to_states
[i
].res
;
2642 merge_pattern_info
*to_pat
= ptrans
->to
;
2643 gcc_assert (to2_res
&& to2_res
->pattern
== to_pat
);
2644 if (!to1_res
|| to1_res
->pattern
!= to_pat
)
2647 && !merge_relative_positions (&root1
, to1_res
->root
,
2648 root2
, to2_res
->root
))
2650 /* Match the parameters that TO1_RES passes to TO_PAT with the
2651 parameters that PAT passes to TO_PAT. */
2652 update_parameters (to1_res
->params
, to_pat
->params
);
2653 for (unsigned int j
= 0; j
< to1_res
->params
.length (); ++j
)
2655 const parameter
¶m1
= to1_res
->params
[j
];
2656 const parameter
¶m2
= ptrans
->params
[j
];
2657 gcc_assert (!param1
.is_param
);
2658 if (param2
.is_param
)
2660 if (!set_parameter (params1
, param2
.value
, param1
))
2663 else if (param1
!= param2
)
2666 if (!add_parameter (params1
, params2
,
2667 param1
, param2
, start_param
, &id
))
2669 /* Record that PAT should now pass parameter ID to TO_PAT,
2670 instead of the current contents of *PARAM2. We only
2671 make the change if the rest of the match succeeds. */
2672 pending_params
.safe_push
2673 (pending_param (&ptrans
->params
[j
], id
));
2678 unsigned int param_test
= pat
->param_test
;
2679 unsigned int param_transition
= pat
->param_transition
;
2680 bool param_test_p
= pat
->param_test_p
;
2681 bool param_transition_p
= pat
->param_transition_p
;
2683 /* If the tests don't match exactly, try to parameterize them. */
2684 parameter new_param1
, new_param2
;
2685 if (!compatible_tests_p (d1
->test
, d2
->test
, &new_param1
, &new_param2
))
2687 if (new_param1
.type
!= parameter::UNSET
)
2689 /* If the test has not already been parameterized, all existing
2690 matches use constant NEW_PARAM2. */
2693 if (!set_parameter (params1
, param_test
, new_param1
))
2696 else if (new_param1
!= new_param2
)
2698 if (!add_parameter (params1
, params2
, new_param1
, new_param2
,
2699 start_param
, ¶m_test
))
2701 param_test_p
= true;
2705 /* Match the transitions. */
2706 transition
*trans1
= d1
->first
;
2707 transition
*trans2
= d2
->first
;
2708 for (unsigned int i
= 0; i
< num_transitions
; ++i
)
2710 if (param_transition_p
|| trans1
->labels
!= trans2
->labels
)
2712 /* We can only generalize a single transition with a single
2714 if (num_transitions
!= 1
2715 || trans1
->labels
.length () != 1
2716 || trans2
->labels
.length () != 1)
2719 /* Although we can match wide-int fields, in practice it leads
2720 to some odd results for const_vectors. We end up
2721 parameterizing the first N const_ints of the vector
2722 and then (once we reach the maximum number of parameters)
2723 we go on to match the other elements exactly. */
2724 if (d1
->test
.kind
== rtx_test::WIDE_INT_FIELD
)
2727 /* See whether the label has a generalizable type. */
2728 parameter::type_enum param_type
2729 = transition_parameter_type (d1
->test
.kind
);
2730 if (param_type
== parameter::UNSET
)
2733 /* Match the labels using parameters. */
2734 new_param1
= parameter (param_type
, false, trans1
->labels
[0]);
2735 if (param_transition_p
)
2737 if (!set_parameter (params1
, param_transition
, new_param1
))
2742 new_param2
= parameter (param_type
, false, trans2
->labels
[0]);
2743 if (!add_parameter (params1
, params2
, new_param1
, new_param2
,
2744 start_param
, ¶m_transition
))
2746 param_transition_p
= true;
2749 trans1
= trans1
->next
;
2750 trans2
= trans2
->next
;
2753 /* Set any unset parameters to their default values. This occurs if some
2754 other state needed something to be parameterized in order to match SINFO2,
2755 but SINFO1 on its own does not. */
2756 for (unsigned int i
= 0; i
< params1
.length (); ++i
)
2757 if (params1
[i
].type
== parameter::UNSET
)
2758 params1
[i
] = params2
[i
];
2760 /* The match was successful. Commit all pending changes to PAT. */
2761 update_parameters (pat
->params
, params2
);
2765 FOR_EACH_VEC_ELT (pending_params
, i
, pp
)
2766 *pp
->first
= parameter (pp
->first
->type
, true, pp
->second
);
2768 pat
->param_test
= param_test
;
2769 pat
->param_transition
= param_transition
;
2770 pat
->param_test_p
= param_test_p
;
2771 pat
->param_transition_p
= param_transition_p
;
2773 /* Record the match of SINFO1. */
2774 merge_state_result
*new_res1
= new merge_state_result (pat
, root1
,
2776 new_res1
->params
.splice (params1
);
2777 sinfo1
->res
= new_res1
;
2781 /* The number of states that were removed by calling pattern routines. */
2782 static unsigned int pattern_use_states
;
2784 /* The number of states used while defining pattern routines. */
2785 static unsigned int pattern_def_states
;
2787 /* Information used while constructing a use or definition of a pattern
2789 struct create_pattern_info
2791 /* The routine itself. */
2792 pattern_routine
*routine
;
2794 /* The first unclaimed return value for this particular use or definition.
2795 We walk the substates of uses and definitions in the same order
2796 so each return value always refers to the same position within
2798 unsigned int next_result
;
2801 static void populate_pattern_routine (create_pattern_info
*,
2802 merge_state_info
*, state
*,
2803 const vec
<parameter
> &);
2805 /* SINFO matches a pattern for which we've decided to create a C routine.
2806 Return a decision that performs a call to the pattern routine,
2807 but leave the caller to add the transitions to it. Initialize CPI
2808 for this purpose. Also create a definition for the pattern routine,
2809 if it doesn't already have one.
2811 PARAMS are the parameters that SINFO passes to its pattern. */
2814 init_pattern_use (create_pattern_info
*cpi
, merge_state_info
*sinfo
,
2815 const vec
<parameter
> ¶ms
)
2817 state
*s
= sinfo
->s
;
2818 merge_state_result
*res
= sinfo
->res
;
2819 merge_pattern_info
*pat
= res
->pattern
;
2820 cpi
->routine
= pat
->routine
;
2823 /* We haven't defined the pattern routine yet, so create
2824 a definition now. */
2825 pattern_routine
*routine
= new pattern_routine
;
2826 pat
->routine
= routine
;
2827 cpi
->routine
= routine
;
2828 routine
->s
= new state
;
2829 routine
->insn_p
= false;
2830 routine
->pnum_clobbers_p
= false;
2832 /* Create an "idempotent" mapping of parameter I to parameter I.
2833 Also record the C type of each parameter to the routine. */
2834 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> def_params
;
2835 for (unsigned int i
= 0; i
< pat
->params
.length (); ++i
)
2837 def_params
.quick_push (parameter (pat
->params
[i
].type
, true, i
));
2838 routine
->param_types
.quick_push (pat
->params
[i
].type
);
2841 /* Any of the states that match the pattern could be used to
2842 create the routine definition. We might as well use SINFO
2843 since it's already to hand. This means that all positions
2844 in the definition will be relative to RES->root. */
2845 routine
->pos
= res
->root
;
2846 cpi
->next_result
= 0;
2847 populate_pattern_routine (cpi
, sinfo
, routine
->s
, def_params
);
2848 gcc_assert (cpi
->next_result
== pat
->num_results
);
2850 /* Add the routine to the global list, after the subroutines
2852 routine
->pattern_id
= patterns
.length ();
2853 patterns
.safe_push (routine
);
2856 /* Create a decision to call the routine, passing PARAMS to it. */
2857 pattern_use
*use
= new pattern_use
;
2858 use
->routine
= pat
->routine
;
2859 use
->params
.splice (params
);
2860 decision
*d
= new decision (rtx_test::pattern (res
->root
, use
));
2862 /* If the original decision could use an element of operands[] instead
2863 of an rtx variable, try to transfer it to the new decision. */
2864 if (s
->first
->test
.pos
&& res
->root
== s
->first
->test
.pos
)
2865 d
->test
.pos_operand
= s
->first
->test
.pos_operand
;
2867 cpi
->next_result
= 0;
2871 /* Make S return the next unclaimed pattern routine result for CPI. */
2874 add_pattern_acceptance (create_pattern_info
*cpi
, state
*s
)
2876 acceptance_type acceptance
;
2877 acceptance
.type
= SUBPATTERN
;
2878 acceptance
.partial_p
= false;
2879 acceptance
.u
.full
.code
= cpi
->next_result
;
2880 add_decision (s
, rtx_test::accept (acceptance
), true, false);
2881 cpi
->next_result
+= 1;
2884 /* Initialize new empty state NEWS so that it implements SINFO's pattern
2885 (here referred to as "P"). P may be the top level of a pattern routine
2886 or a subpattern that should be inlined into its parent pattern's routine
2887 (as per same_pattern_p). The choice of SINFO for a top-level pattern is
2888 arbitrary; it could be any of the states that use P. The choice for
2889 subpatterns follows the choice for the parent pattern.
2891 PARAMS gives the value of each parameter to P in terms of the parameters
2892 to the top-level pattern. If P itself is the top level pattern, PARAMS[I]
2893 is always "parameter (TYPE, true, I)". */
2896 populate_pattern_routine (create_pattern_info
*cpi
, merge_state_info
*sinfo
,
2897 state
*news
, const vec
<parameter
> ¶ms
)
2899 pattern_def_states
+= 1;
2901 decision
*d
= sinfo
->s
->singleton ();
2902 merge_pattern_info
*pat
= sinfo
->res
->pattern
;
2903 pattern_routine
*routine
= cpi
->routine
;
2905 /* Create a copy of D's test for the pattern routine and generalize it
2907 decision
*newd
= new decision (d
->test
);
2908 gcc_assert (newd
->test
.pos_operand
>= 0
2910 || common_position (newd
->test
.pos
,
2911 routine
->pos
) == routine
->pos
);
2912 if (pat
->param_test_p
)
2914 const parameter
¶m
= params
[pat
->param_test
];
2915 switch (newd
->test
.kind
)
2917 case rtx_test::PREDICATE
:
2918 newd
->test
.u
.predicate
.mode_is_param
= param
.is_param
;
2919 newd
->test
.u
.predicate
.mode
= param
.value
;
2922 case rtx_test::SAVED_CONST_INT
:
2923 newd
->test
.u
.integer
.is_param
= param
.is_param
;
2924 newd
->test
.u
.integer
.value
= param
.value
;
2932 if (d
->test
.kind
== rtx_test::C_TEST
)
2933 routine
->insn_p
= true;
2934 else if (d
->test
.kind
== rtx_test::HAVE_NUM_CLOBBERS
)
2935 routine
->pnum_clobbers_p
= true;
2936 news
->push_back (newd
);
2938 /* Fill in the transitions of NEWD. */
2940 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2942 /* Create a new state to act as the target of the new transition. */
2943 state
*to_news
= new state
;
2944 if (merge_pattern_transition
*ptrans
= pat
->transitions
[i
])
2946 /* The pattern hasn't finished matching yet. Get the target
2947 pattern and the corresponding target state of SINFO. */
2948 merge_pattern_info
*to_pat
= ptrans
->to
;
2949 merge_state_info
*to
= sinfo
->to_states
+ i
;
2950 gcc_assert (to
->res
->pattern
== to_pat
);
2951 gcc_assert (ptrans
->params
.length () == to_pat
->params
.length ());
2953 /* Express the parameters to TO_PAT in terms of the parameters
2954 to the top-level pattern. */
2955 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> to_params
;
2956 for (unsigned int j
= 0; j
< ptrans
->params
.length (); ++j
)
2958 const parameter
¶m
= ptrans
->params
[j
];
2959 to_params
.quick_push (param
.is_param
2960 ? params
[param
.value
]
2964 if (same_pattern_p (pat
, to_pat
))
2965 /* TO_PAT is part of the current routine, so just recurse. */
2966 populate_pattern_routine (cpi
, to
, to_news
, to_params
);
2969 /* TO_PAT should be matched by calling a separate routine. */
2970 create_pattern_info sub_cpi
;
2971 decision
*subd
= init_pattern_use (&sub_cpi
, to
, to_params
);
2972 routine
->insn_p
|= sub_cpi
.routine
->insn_p
;
2973 routine
->pnum_clobbers_p
|= sub_cpi
.routine
->pnum_clobbers_p
;
2975 /* Add the pattern routine call to the new target state. */
2976 to_news
->push_back (subd
);
2978 /* Add a transition for each successful call result. */
2979 for (unsigned int j
= 0; j
< to_pat
->num_results
; ++j
)
2981 state
*res
= new state
;
2982 add_pattern_acceptance (cpi
, res
);
2983 subd
->push_back (new transition (j
, res
, false));
2988 /* This transition corresponds to a successful match. */
2989 add_pattern_acceptance (cpi
, to_news
);
2991 /* Create the transition itself, generalizing as necessary. */
2992 transition
*new_trans
= new transition (trans
->labels
, to_news
,
2994 if (pat
->param_transition_p
)
2996 const parameter
¶m
= params
[pat
->param_transition
];
2997 new_trans
->is_param
= param
.is_param
;
2998 new_trans
->labels
[0] = param
.value
;
3000 newd
->push_back (new_trans
);
3005 /* USE is a decision that calls a pattern routine and SINFO is part of the
3006 original state tree that the call is supposed to replace. Add the
3007 transitions for SINFO and its substates to USE. */
3010 populate_pattern_use (create_pattern_info
*cpi
, decision
*use
,
3011 merge_state_info
*sinfo
)
3013 pattern_use_states
+= 1;
3014 gcc_assert (!sinfo
->merged_p
);
3015 sinfo
->merged_p
= true;
3016 merge_state_result
*res
= sinfo
->res
;
3017 merge_pattern_info
*pat
= res
->pattern
;
3018 decision
*d
= sinfo
->s
->singleton ();
3020 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
3022 if (pat
->transitions
[i
])
3023 /* The target state is also part of the pattern. */
3024 populate_pattern_use (cpi
, use
, sinfo
->to_states
+ i
);
3027 /* The transition corresponds to a successful return from the
3029 use
->push_back (new transition (cpi
->next_result
, trans
->to
, false));
3030 cpi
->next_result
+= 1;
3036 /* We have decided to replace SINFO's state with a call to a pattern
3037 routine. Make the change, creating a definition of the pattern routine
3038 if it doesn't have one already. */
3041 use_pattern (merge_state_info
*sinfo
)
3043 merge_state_result
*res
= sinfo
->res
;
3044 merge_pattern_info
*pat
= res
->pattern
;
3045 state
*s
= sinfo
->s
;
3047 /* The pattern may have acquired new parameters after it was matched
3048 against SINFO. Update the parameters that SINFO passes accordingly. */
3049 update_parameters (res
->params
, pat
->params
);
3051 create_pattern_info cpi
;
3052 decision
*d
= init_pattern_use (&cpi
, sinfo
, res
->params
);
3053 populate_pattern_use (&cpi
, d
, sinfo
);
3058 /* Look through the state trees in STATES for common patterns and
3059 split them into subroutines. */
3062 split_out_patterns (vec
<merge_state_info
> &states
)
3064 unsigned int first_transition
= states
.length ();
3065 hash_table
<test_pattern_hasher
> hashtab (128);
3066 /* Stage 1: Create an order in which parent states come before their child
3067 states and in which sibling states are at consecutive locations.
3068 Having consecutive sibling states allows merge_state_info to have
3069 a single to_states pointer. */
3070 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3071 for (decision
*d
= states
[i
].s
->first
; d
; d
= d
->next
)
3072 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
3074 states
.safe_push (trans
->to
);
3075 states
[i
].num_transitions
+= 1;
3077 /* Stage 2: Now that the addresses are stable, set up the to_states
3078 pointers. Look for states that might be merged and enter them
3079 into the hash table. */
3080 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3082 merge_state_info
*sinfo
= &states
[i
];
3083 if (sinfo
->num_transitions
)
3085 sinfo
->to_states
= &states
[first_transition
];
3086 first_transition
+= sinfo
->num_transitions
;
3088 /* For simplicity, we only try to merge states that have a single
3089 decision. This is in any case the best we can do for peephole2,
3090 since whether a peephole2 ACCEPT succeeds or not depends on the
3091 specific peephole2 pattern (which is unique to each ACCEPT
3092 and so couldn't be shared between states). */
3093 if (decision
*d
= sinfo
->s
->singleton ())
3094 /* ACCEPT states are unique, so don't even try to merge them. */
3095 if (d
->test
.kind
!= rtx_test::ACCEPT
3096 && (pattern_have_num_clobbers_p
3097 || d
->test
.kind
!= rtx_test::HAVE_NUM_CLOBBERS
)
3098 && (pattern_c_test_p
3099 || d
->test
.kind
!= rtx_test::C_TEST
))
3101 merge_state_info
**slot
= hashtab
.find_slot (sinfo
, INSERT
);
3102 sinfo
->prev_same_test
= *slot
;
3106 /* Stage 3: Walk backwards through the list of states and try to merge
3107 them. This is a greedy, bottom-up match; parent nodes can only start
3108 a new leaf pattern if they fail to match when combined with all child
3109 nodes that have matching patterns.
3111 For each state we keep a list of potential matches, with each
3112 potential match being larger (and deeper) than the next match in
3113 the list. The final element in the list is a leaf pattern that
3114 matches just a single state.
3116 Each candidate pattern created in this loop is unique -- it won't
3117 have been seen by an earlier iteration. We try to match each pattern
3118 with every state that appears earlier in STATES.
3120 Because the patterns created in the loop are unique, any state
3121 that already has a match must have a final potential match that
3122 is different from any new leaf pattern. Therefore, when matching
3123 leaf patterns, we need only consider states whose list of matches
3126 The non-leaf patterns that we try are as deep as possible
3127 and are an extension of the state's previous best candidate match (PB).
3128 We need only consider states whose current potential match is also PB;
3129 any states that don't match as much as PB cannnot match the new pattern,
3130 while any states that already match more than PB must be different from
3132 for (unsigned int i2
= states
.length (); i2
-- > 0; )
3134 merge_state_info
*sinfo2
= &states
[i2
];
3136 /* Enforce the bottom-upness of the match: remove matches with later
3137 states if SINFO2's child states ended up finding a better match. */
3138 prune_invalid_results (sinfo2
);
3140 /* Do nothing if the state doesn't match a later one and if there are
3141 no earlier states it could match. */
3142 if (!sinfo2
->res
&& !sinfo2
->prev_same_test
)
3145 merge_state_result
*res2
= sinfo2
->res
;
3146 decision
*d2
= sinfo2
->s
->singleton ();
3147 position
*root2
= (d2
->test
.pos_operand
< 0 ? d2
->test
.pos
: 0);
3148 unsigned int num_transitions
= sinfo2
->num_transitions
;
3150 /* If RES2 is null then SINFO2's test in isolation has not been seen
3151 before. First try matching that on its own. */
3154 merge_pattern_info
*new_pat
3155 = new merge_pattern_info (num_transitions
);
3156 merge_state_result
*new_res2
3157 = new merge_state_result (new_pat
, root2
, res2
);
3158 sinfo2
->res
= new_res2
;
3160 new_pat
->num_statements
= !d2
->test
.single_outcome_p ();
3161 new_pat
->num_results
= num_transitions
;
3162 bool matched_p
= false;
3163 /* Look for states that don't currently match anything but
3164 can be made to match SINFO2 on its own. */
3165 for (merge_state_info
*sinfo1
= sinfo2
->prev_same_test
; sinfo1
;
3166 sinfo1
= sinfo1
->prev_same_test
)
3167 if (!sinfo1
->res
&& merge_patterns (sinfo1
, sinfo2
))
3171 /* No other states match. */
3181 /* Keep the existing pattern if it's as good as anything we'd
3182 create for SINFO2. */
3183 if (complete_result_p (res2
->pattern
, sinfo2
))
3185 res2
->pattern
->num_users
+= 1;
3189 /* Create a new pattern for SINFO2. */
3190 merge_pattern_info
*new_pat
= new merge_pattern_info (num_transitions
);
3191 merge_state_result
*new_res2
3192 = new merge_state_result (new_pat
, root2
, res2
);
3193 sinfo2
->res
= new_res2
;
3195 /* Fill in details about the pattern. */
3196 new_pat
->num_statements
= !d2
->test
.single_outcome_p ();
3197 new_pat
->num_results
= 0;
3198 for (unsigned int j
= 0; j
< num_transitions
; ++j
)
3199 if (merge_state_result
*to_res
= sinfo2
->to_states
[j
].res
)
3201 /* Count the target state as part of this pattern.
3202 First update the root position so that it can reach
3203 the target state's root. */
3207 new_res2
->root
= common_position (new_res2
->root
,
3210 new_res2
->root
= to_res
->root
;
3212 merge_pattern_info
*to_pat
= to_res
->pattern
;
3213 merge_pattern_transition
*ptrans
3214 = new merge_pattern_transition (to_pat
);
3216 /* TO_PAT may have acquired more parameters when matching
3217 states earlier in STATES than TO_RES's, but the list is
3218 now final. Make sure that TO_RES is up to date. */
3219 update_parameters (to_res
->params
, to_pat
->params
);
3221 /* Start out by assuming that every user of NEW_PAT will
3222 want to pass the same (constant) parameters as TO_RES. */
3223 update_parameters (ptrans
->params
, to_res
->params
);
3225 new_pat
->transitions
[j
] = ptrans
;
3226 new_pat
->num_statements
+= to_pat
->num_statements
;
3227 new_pat
->num_results
+= to_pat
->num_results
;
3230 /* The target state doesn't match anything and so is not part
3232 new_pat
->num_results
+= 1;
3234 /* See if any earlier states that match RES2's pattern also match
3236 bool matched_p
= false;
3237 for (merge_state_info
*sinfo1
= sinfo2
->prev_same_test
; sinfo1
;
3238 sinfo1
= sinfo1
->prev_same_test
)
3240 prune_invalid_results (sinfo1
);
3242 && sinfo1
->res
->pattern
== res2
->pattern
3243 && merge_patterns (sinfo1
, sinfo2
))
3248 /* Nothing else matches NEW_PAT, so go back to the previous
3249 pattern (possibly just a single-state one). */
3254 /* Assume that SINFO2 will use RES. At this point we don't know
3255 whether earlier states that match the same pattern will use
3256 that match or a different one. */
3257 sinfo2
->res
->pattern
->num_users
+= 1;
3259 /* Step 4: Finalize the choice of pattern for each state, ignoring
3260 patterns that were only used once. Update each pattern's size
3261 so that it doesn't include subpatterns that are going to be split
3262 out into subroutines. */
3263 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3265 merge_state_info
*sinfo
= &states
[i
];
3266 merge_state_result
*res
= sinfo
->res
;
3267 /* Wind past patterns that are only used by SINFO. */
3268 while (res
&& res
->pattern
->num_users
== 1)
3273 res
->pattern
->num_users
+= 1;
3278 /* We have a shared pattern and are now committed to the match. */
3279 merge_pattern_info
*pat
= res
->pattern
;
3280 gcc_assert (valid_result_p (pat
, sinfo
));
3282 if (!pat
->complete_p
)
3284 /* Look for subpatterns that are going to be split out and remove
3285 them from the number of statements. */
3286 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
3287 if (merge_pattern_transition
*ptrans
= pat
->transitions
[j
])
3289 merge_pattern_info
*to_pat
= ptrans
->to
;
3290 if (!same_pattern_p (pat
, to_pat
))
3291 pat
->num_statements
-= to_pat
->num_statements
;
3293 pat
->complete_p
= true;
3296 /* Step 5: Split out the patterns. */
3297 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3299 merge_state_info
*sinfo
= &states
[i
];
3300 merge_state_result
*res
= sinfo
->res
;
3301 if (!sinfo
->merged_p
&& res
&& useful_pattern_p (res
->pattern
))
3302 use_pattern (sinfo
);
3304 fprintf (stderr
, "Shared %d out of %d states by creating %d new states,"
3306 pattern_use_states
, states
.length (), pattern_def_states
,
3307 pattern_use_states
- pattern_def_states
);
3310 /* Information about a state tree that we're considering splitting into a
3314 /* The number of pseudo-statements in the state tree. */
3315 unsigned int num_statements
;
3317 /* The approximate number of nested "if" and "switch" statements that
3318 would be required if control could fall through to a later state. */
3322 /* Pairs a transition with information about its target state. */
3323 typedef std::pair
<transition
*, state_size
> subroutine_candidate
;
3325 /* Sort two subroutine_candidates so that the one with the largest
3326 number of statements comes last. */
3329 subroutine_candidate_cmp (const void *a
, const void *b
)
3331 return int (((const subroutine_candidate
*) a
)->second
.num_statements
3332 - ((const subroutine_candidate
*) b
)->second
.num_statements
);
3335 /* Turn S into a subroutine of type TYPE and add it to PROCS. Return a new
3336 state that performs a subroutine call to S. */
3339 create_subroutine (routine_type type
, state
*s
, vec
<state
*> &procs
)
3341 procs
.safe_push (s
);
3342 acceptance_type acceptance
;
3343 acceptance
.type
= type
;
3344 acceptance
.partial_p
= true;
3345 acceptance
.u
.subroutine_id
= procs
.length ();
3346 state
*news
= new state
;
3347 add_decision (news
, rtx_test::accept (acceptance
), true, false);
3351 /* Walk state tree S, of type TYPE, and look for subtrees that would be
3352 better split into subroutines. Accumulate all such subroutines in PROCS.
3353 Return the size of the new state tree (excluding subroutines). */
3356 find_subroutines (routine_type type
, state
*s
, vec
<state
*> &procs
)
3358 auto_vec
<subroutine_candidate
, 16> candidates
;
3360 size
.num_statements
= 0;
3362 for (decision
*d
= s
->first
; d
; d
= d
->next
)
3364 if (!d
->test
.single_outcome_p ())
3365 size
.num_statements
+= 1;
3366 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
3368 /* Keep chains of simple decisions together if we know that no
3369 change of position is required. We'll output this chain as a
3370 single "if" statement, so it counts as a single nesting level. */
3371 if (d
->test
.pos
&& d
->if_statement_p ())
3374 decision
*newd
= trans
->to
->singleton ();
3377 && newd
->test
.pos_operand
< 0
3378 && newd
->test
.pos
!= d
->test
.pos
)
3379 || !newd
->if_statement_p ())
3381 if (!newd
->test
.single_outcome_p ())
3382 size
.num_statements
+= 1;
3383 trans
= newd
->singleton ();
3384 if (newd
->test
.kind
== rtx_test::SET_OP
3385 || newd
->test
.kind
== rtx_test::ACCEPT
)
3388 /* The target of TRANS is a subroutine candidate. First recurse
3389 on it to see how big it is after subroutines have been
3391 state_size to_size
= find_subroutines (type
, trans
->to
, procs
);
3392 if (d
->next
&& to_size
.depth
> MAX_DEPTH
)
3393 /* Keeping the target state in the same routine would lead
3394 to an excessive nesting of "if" and "switch" statements.
3395 Split it out into a subroutine so that it can use
3396 inverted tests that return early on failure. */
3397 trans
->to
= create_subroutine (type
, trans
->to
, procs
);
3400 size
.num_statements
+= to_size
.num_statements
;
3401 if (to_size
.num_statements
< MIN_NUM_STATEMENTS
)
3402 /* The target state is too small to be worth splitting.
3403 Keep it in the same routine as S. */
3404 size
.depth
= MAX (size
.depth
, to_size
.depth
);
3406 /* Assume for now that we'll keep the target state in the
3407 same routine as S, but record it as a subroutine candidate
3408 if S grows too big. */
3409 candidates
.safe_push (subroutine_candidate (trans
, to_size
));
3413 if (size
.num_statements
> MAX_NUM_STATEMENTS
)
3415 /* S is too big. Sort the subroutine candidates so that bigger ones
3416 are nearer the end. */
3417 candidates
.qsort (subroutine_candidate_cmp
);
3418 while (!candidates
.is_empty ()
3419 && size
.num_statements
> MAX_NUM_STATEMENTS
)
3421 /* Peel off a candidate and force it into a subroutine. */
3422 subroutine_candidate cand
= candidates
.pop ();
3423 size
.num_statements
-= cand
.second
.num_statements
;
3424 cand
.first
->to
= create_subroutine (type
, cand
.first
->to
, procs
);
3427 /* Update the depth for subroutine candidates that we decided not to
3429 for (unsigned int i
= 0; i
< candidates
.length (); ++i
)
3430 size
.depth
= MAX (size
.depth
, candidates
[i
].second
.depth
);
3435 /* Return true if, for all X, PRED (X, MODE) implies that X has mode MODE. */
3438 safe_predicate_mode (const struct pred_data
*pred
, machine_mode mode
)
3440 /* Scalar integer constants have VOIDmode. */
3441 if (GET_MODE_CLASS (mode
) == MODE_INT
3442 && (pred
->codes
[CONST_INT
]
3443 || pred
->codes
[CONST_DOUBLE
]
3444 || pred
->codes
[CONST_WIDE_INT
]
3445 || pred
->codes
[LABEL_REF
]))
3448 return !pred
->special
&& mode
!= VOIDmode
;
3451 /* Fill CODES with the set of codes that could be matched by PRED. */
3454 get_predicate_codes (const struct pred_data
*pred
, int_set
*codes
)
3456 for (int i
= 0; i
< NUM_TRUE_RTX_CODE
; ++i
)
3457 if (!pred
|| pred
->codes
[i
])
3458 codes
->safe_push (i
);
3461 /* Return true if the first path through D1 tests the same thing as D2. */
3464 has_same_test_p (decision
*d1
, decision
*d2
)
3468 if (d1
->test
== d2
->test
)
3470 d1
= d1
->first
->to
->first
;
3476 /* Return true if D1 and D2 cannot match the same rtx. All states reachable
3477 from D2 have single decisions and all those decisions have single
3481 mutually_exclusive_p (decision
*d1
, decision
*d2
)
3483 /* If one path through D1 fails to test the same thing as D2, assume
3484 that D2's test could be true for D1 and look for a later, more useful,
3485 test. This isn't as expensive as it looks in practice. */
3486 while (!has_same_test_p (d1
, d2
))
3488 d2
= d2
->singleton ()->to
->singleton ();
3492 if (d1
->test
== d2
->test
)
3494 /* Look for any transitions from D1 that have the same labels as
3495 the transition from D2. */
3496 transition
*trans2
= d2
->singleton ();
3497 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3499 int_set::iterator i1
= trans1
->labels
.begin ();
3500 int_set::iterator end1
= trans1
->labels
.end ();
3501 int_set::iterator i2
= trans2
->labels
.begin ();
3502 int_set::iterator end2
= trans2
->labels
.end ();
3503 while (i1
!= end1
&& i2
!= end2
)
3510 /* TRANS1 has some labels in common with TRANS2. Assume
3511 that D1 and D2 could match the same rtx if the target
3512 of TRANS1 could match the same rtx as D2. */
3513 for (decision
*subd1
= trans1
->to
->first
;
3514 subd1
; subd1
= subd1
->next
)
3515 if (!mutually_exclusive_p (subd1
, d2
))
3522 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3523 for (decision
*subd1
= trans1
->to
->first
; subd1
; subd1
= subd1
->next
)
3524 if (!mutually_exclusive_p (subd1
, d2
))
3529 /* Try to merge S2's decision into D1, given that they have the same test.
3530 Fail only if EXCLUDE is nonnull and the new transition would have the
3531 same labels as *EXCLUDE. When returning true, set *NEXT_S1, *NEXT_S2
3532 and *NEXT_EXCLUDE as for merge_into_state_1, or set *NEXT_S2 to null
3533 if the merge is complete. */
3536 merge_into_decision (decision
*d1
, state
*s2
, const int_set
*exclude
,
3537 state
**next_s1
, state
**next_s2
,
3538 const int_set
**next_exclude
)
3540 decision
*d2
= s2
->singleton ();
3541 transition
*trans2
= d2
->singleton ();
3543 /* Get a list of the transitions that intersect TRANS2. */
3544 auto_vec
<transition
*, 32> intersecting
;
3545 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3547 int_set::iterator i1
= trans1
->labels
.begin ();
3548 int_set::iterator end1
= trans1
->labels
.end ();
3549 int_set::iterator i2
= trans2
->labels
.begin ();
3550 int_set::iterator end2
= trans2
->labels
.end ();
3551 bool trans1_is_subset
= true;
3552 bool trans2_is_subset
= true;
3553 bool intersect_p
= false;
3554 while (i1
!= end1
&& i2
!= end2
)
3557 trans1_is_subset
= false;
3562 trans2_is_subset
= false;
3572 trans1_is_subset
= false;
3574 trans2_is_subset
= false;
3575 if (trans1_is_subset
&& trans2_is_subset
)
3577 /* There's already a transition that matches exactly.
3578 Merge the target states. */
3579 trans1
->optional
&= trans2
->optional
;
3580 *next_s1
= trans1
->to
;
3581 *next_s2
= trans2
->to
;
3585 if (trans2_is_subset
)
3587 /* TRANS1 has all the labels that TRANS2 needs. Merge S2 into
3588 the target of TRANS1, but (to avoid infinite recursion)
3589 make sure that we don't end up creating another transition
3591 *next_s1
= trans1
->to
;
3593 *next_exclude
= &trans1
->labels
;
3597 intersecting
.safe_push (trans1
);
3600 if (intersecting
.is_empty ())
3602 /* No existing labels intersect the new ones. We can just add
3604 d1
->push_back (d2
->release ());
3611 /* Take the union of the labels in INTERSECTING and TRANS2. Store the
3612 result in COMBINED and use NEXT as a temporary. */
3613 int_set tmp1
= trans2
->labels
, tmp2
;
3614 int_set
*combined
= &tmp1
, *next
= &tmp2
;
3615 for (unsigned int i
= 0; i
< intersecting
.length (); ++i
)
3617 transition
*trans1
= intersecting
[i
];
3619 next
->safe_grow (trans1
->labels
.length () + combined
->length ());
3620 int_set::iterator end
3621 = std::set_union (trans1
->labels
.begin (), trans1
->labels
.end (),
3622 combined
->begin (), combined
->end (),
3624 next
->truncate (end
- next
->begin ());
3625 std::swap (next
, combined
);
3628 /* Stop now if we've been told not to create a transition with these
3630 if (exclude
&& *combined
== *exclude
)
3633 /* Get the transition that should carry the new labels. */
3634 transition
*new_trans
= intersecting
[0];
3635 if (intersecting
.length () == 1)
3637 /* We're merging with one existing transition whose labels are a
3638 subset of those required. If both transitions are optional,
3639 we can just expand the set of labels so that it's suitable
3640 for both transitions. It isn't worth preserving the original
3641 transitions since we know that they can't be merged; we would
3642 need to backtrack to S2 if TRANS1->to fails. In contrast,
3643 we might be able to merge the targets of the transitions
3644 without any backtracking.
3646 If instead the existing transition is not optional, ensure that
3647 all target decisions are suitably protected. Some decisions
3648 might already have a more specific requirement than NEW_TRANS,
3649 in which case there's no point testing NEW_TRANS as well. E.g. this
3650 would have happened if a test for an (eq ...) rtx had been
3651 added to a decision that tested whether the code is suitable
3652 for comparison_operator. The original comparison_operator
3653 transition would have been non-optional and the (eq ...) test
3654 would be performed by a second decision in the target of that
3657 The remaining case -- keeping the original optional transition
3658 when adding a non-optional TRANS2 -- is a wash. Preserving
3659 the optional transition only helps if we later merge another
3660 state S3 that is mutually exclusive with S2 and whose labels
3661 belong to *COMBINED - TRANS1->labels. We can then test the
3662 original NEW_TRANS and S3 in the same decision. We keep the
3663 optional transition around for that case, but it occurs very
3665 gcc_assert (new_trans
->labels
!= *combined
);
3666 if (!new_trans
->optional
|| !trans2
->optional
)
3668 decision
*start
= 0;
3669 for (decision
*end
= new_trans
->to
->first
; end
; end
= end
->next
)
3671 if (!start
&& end
->test
!= d1
->test
)
3672 /* END belongs to a range of decisions that need to be
3673 protected by NEW_TRANS. */
3675 if (start
&& (!end
->next
|| end
->next
->test
== d1
->test
))
3677 /* Protect [START, END] with NEW_TRANS. The decisions
3678 move to NEW_S and NEW_D becomes part of NEW_TRANS->to. */
3679 state
*new_s
= new state
;
3680 decision
*new_d
= new decision (d1
->test
);
3681 new_d
->push_back (new transition (new_trans
->labels
, new_s
,
3682 new_trans
->optional
));
3683 state::range
r (start
, end
);
3684 new_trans
->to
->replace (r
, new_d
);
3685 new_s
->push_back (r
);
3687 /* Continue with an empty range. */
3690 /* Continue from the decision after NEW_D. */
3695 new_trans
->optional
= true;
3696 new_trans
->labels
= *combined
;
3700 /* We're merging more than one existing transition together.
3701 Those transitions are successfully dividing the matching space
3702 and so we want to preserve them, even if they're optional.
3704 Create a new transition with the union set of labels and make
3705 it go to a state that has the original transitions. */
3706 decision
*new_d
= new decision (d1
->test
);
3707 for (unsigned int i
= 0; i
< intersecting
.length (); ++i
)
3708 new_d
->push_back (d1
->remove (intersecting
[i
]));
3710 state
*new_s
= new state
;
3711 new_s
->push_back (new_d
);
3713 new_trans
= new transition (*combined
, new_s
, true);
3714 d1
->push_back (new_trans
);
3717 /* We now have an optional transition with labels *COMBINED. Decide
3718 whether we can use it as TRANS2 or whether we need to merge S2
3719 into the target of NEW_TRANS. */
3720 gcc_assert (new_trans
->optional
);
3721 if (new_trans
->labels
== trans2
->labels
)
3723 /* NEW_TRANS matches TRANS2. Just merge the target states. */
3724 new_trans
->optional
= trans2
->optional
;
3725 *next_s1
= new_trans
->to
;
3726 *next_s2
= trans2
->to
;
3731 /* Try to merge TRANS2 into the target of the overlapping transition,
3732 but (to prevent infinite recursion or excessive redundancy) without
3733 creating another transition of the same type. */
3734 *next_s1
= new_trans
->to
;
3736 *next_exclude
= &new_trans
->labels
;
3741 /* Make progress in merging S2 into S1, given that each state in S2
3742 has a single decision. If EXCLUDE is nonnull, avoid creating a new
3743 transition with the same test as S2's decision and with the labels
3746 Return true if there is still work to do. When returning true,
3747 set *NEXT_S1, *NEXT_S2 and *NEXT_EXCLUDE to the values that
3748 S1, S2 and EXCLUDE should have next time round.
3750 If S1 and S2 both match a particular rtx, give priority to S1. */
3753 merge_into_state_1 (state
*s1
, state
*s2
, const int_set
*exclude
,
3754 state
**next_s1
, state
**next_s2
,
3755 const int_set
**next_exclude
)
3757 decision
*d2
= s2
->singleton ();
3758 if (decision
*d1
= s1
->last
)
3760 if (d1
->test
.terminal_p ())
3761 /* D1 is an unconditional return, so S2 can never match. This can
3762 sometimes be a bug in the .md description, but might also happen
3763 if genconditions forces some conditions to true for certain
3767 /* Go backwards through the decisions in S1, stopping once we find one
3768 that could match the same thing as S2. */
3769 while (d1
->prev
&& mutually_exclusive_p (d1
, d2
))
3772 /* Search forwards from that point, merging D2 into the first
3774 for (; d1
; d1
= d1
->next
)
3776 /* If S2 performs some optional tests before testing the same thing
3777 as D1, those tests do not help to distinguish D1 and S2, so it's
3778 better to drop them. Search through such optional decisions
3779 until we find something that tests the same thing as D1. */
3783 decision
*sub_d2
= sub_s2
->singleton ();
3784 if (d1
->test
== sub_d2
->test
)
3786 /* Only apply EXCLUDE if we're testing the same thing
3788 const int_set
*sub_exclude
= (d2
== sub_d2
? exclude
: 0);
3790 /* Try to merge SUB_S2 into D1. This can only fail if
3791 it would involve creating a new transition with
3792 labels SUB_EXCLUDE. */
3793 if (merge_into_decision (d1
, sub_s2
, sub_exclude
,
3794 next_s1
, next_s2
, next_exclude
))
3795 return *next_s2
!= 0;
3797 /* Can't merge with D1; try a later decision. */
3800 transition
*sub_trans2
= sub_d2
->singleton ();
3801 if (!sub_trans2
->optional
)
3802 /* Can't merge with D1; try a later decision. */
3804 sub_s2
= sub_trans2
->to
;
3809 /* We can't merge D2 with any existing decision. Just add it to the end. */
3810 s1
->push_back (s2
->release ());
3814 /* Merge S2 into S1. If they both match a particular rtx, give
3815 priority to S1. Each state in S2 has a single decision. */
3818 merge_into_state (state
*s1
, state
*s2
)
3820 const int_set
*exclude
= 0;
3821 while (s2
&& merge_into_state_1 (s1
, s2
, exclude
, &s1
, &s2
, &exclude
))
3825 /* Pairs a pattern that needs to be matched with the rtx position at
3826 which the pattern should occur. */
3827 struct pattern_pos
{
3829 pattern_pos (rtx
, position
*);
3835 pattern_pos::pattern_pos (rtx pattern_in
, position
*pos_in
)
3836 : pattern (pattern_in
), pos (pos_in
)
3839 /* Compare entries according to their depth-first order. There shouldn't
3840 be two entries at the same position. */
3843 operator < (const pattern_pos
&e1
, const pattern_pos
&e2
)
3845 int diff
= compare_positions (e1
.pos
, e2
.pos
);
3846 gcc_assert (diff
!= 0 || e1
.pattern
== e2
.pattern
);
3850 /* Add new decisions to S that check whether the rtx at position POS
3851 matches PATTERN. Return the state that is reached in that case.
3852 TOP_PATTERN is the overall pattern, as passed to match_pattern_1. */
3855 match_pattern_2 (state
*s
, md_rtx_info
*info
, position
*pos
, rtx pattern
)
3857 auto_vec
<pattern_pos
, 32> worklist
;
3858 auto_vec
<pattern_pos
, 32> pred_and_mode_tests
;
3859 auto_vec
<pattern_pos
, 32> dup_tests
;
3861 worklist
.safe_push (pattern_pos (pattern
, pos
));
3862 while (!worklist
.is_empty ())
3864 pattern_pos next
= worklist
.pop ();
3865 pattern
= next
.pattern
;
3867 unsigned int reverse_s
= worklist
.length ();
3869 enum rtx_code code
= GET_CODE (pattern
);
3875 /* Add a test that the rtx matches the earlier one, but only
3876 after the structure and predicates have been checked. */
3877 dup_tests
.safe_push (pattern_pos (pattern
, pos
));
3879 /* Use the same code check as the original operand. */
3880 pattern
= find_operand (info
->def
, XINT (pattern
, 0), NULL_RTX
);
3883 case MATCH_PARALLEL
:
3886 case MATCH_OPERATOR
:
3888 const char *pred_name
= predicate_name (pattern
);
3889 const struct pred_data
*pred
= 0;
3890 if (pred_name
[0] != 0)
3892 pred
= lookup_predicate (pred_name
);
3893 /* Only report errors once per rtx. */
3894 if (code
== GET_CODE (pattern
))
3897 error_at (info
->loc
, "unknown predicate '%s' used in %s",
3898 pred_name
, GET_RTX_NAME (code
));
3899 else if (code
== MATCH_PARALLEL
3900 && pred
->singleton
!= PARALLEL
)
3901 error_at (info
->loc
, "predicate '%s' used in"
3902 " match_parallel does not allow only PARALLEL",
3907 if (code
== MATCH_PARALLEL
|| code
== MATCH_PAR_DUP
)
3909 /* Check that we have a parallel with enough elements. */
3910 s
= add_decision (s
, rtx_test::code (pos
), PARALLEL
, false);
3911 int min_len
= XVECLEN (pattern
, 2);
3912 s
= add_decision (s
, rtx_test::veclen_ge (pos
, min_len
),
3917 /* Check that the rtx has one of codes accepted by the
3918 predicate. This is necessary when matching suboperands
3919 of a MATCH_OPERATOR or MATCH_OP_DUP, since we can't
3920 call XEXP (X, N) without checking that X has at least
3923 get_predicate_codes (pred
, &codes
);
3924 bool need_codes
= (pred
3925 && (code
== MATCH_OPERATOR
3926 || code
== MATCH_OP_DUP
));
3927 s
= add_decision (s
, rtx_test::code (pos
), codes
, !need_codes
);
3930 /* Postpone the predicate check until we've checked the rest
3931 of the rtx structure. */
3932 if (code
== GET_CODE (pattern
))
3933 pred_and_mode_tests
.safe_push (pattern_pos (pattern
, pos
));
3935 /* If we need to match suboperands, add them to the worklist. */
3936 if (code
== MATCH_OPERATOR
|| code
== MATCH_PARALLEL
)
3938 position
**subpos_ptr
;
3939 enum position_type pos_type
;
3941 if (code
== MATCH_OPERATOR
|| code
== MATCH_OP_DUP
)
3943 pos_type
= POS_XEXP
;
3944 subpos_ptr
= &pos
->xexps
;
3945 i
= (code
== MATCH_OPERATOR
? 2 : 1);
3949 pos_type
= POS_XVECEXP0
;
3950 subpos_ptr
= &pos
->xvecexp0s
;
3953 for (int j
= 0; j
< XVECLEN (pattern
, i
); ++j
)
3955 position
*subpos
= next_position (subpos_ptr
, pos
,
3957 worklist
.safe_push (pattern_pos (XVECEXP (pattern
, i
, j
),
3959 subpos_ptr
= &subpos
->next
;
3967 /* Check that the rtx has the right code. */
3968 s
= add_decision (s
, rtx_test::code (pos
), code
, false);
3970 /* Queue a test for the mode if one is specified. */
3971 if (GET_MODE (pattern
) != VOIDmode
)
3972 pred_and_mode_tests
.safe_push (pattern_pos (pattern
, pos
));
3974 /* Push subrtxes onto the worklist. Match nonrtx operands now. */
3975 const char *fmt
= GET_RTX_FORMAT (code
);
3976 position
**subpos_ptr
= &pos
->xexps
;
3977 for (size_t i
= 0; fmt
[i
]; ++i
)
3979 position
*subpos
= next_position (subpos_ptr
, pos
,
3984 worklist
.safe_push (pattern_pos (XEXP (pattern
, i
),
3990 /* Make sure the vector has the right number of
3992 int length
= XVECLEN (pattern
, i
);
3993 s
= add_decision (s
, rtx_test::veclen (pos
),
3996 position
**subpos2_ptr
= &pos
->xvecexp0s
;
3997 for (int j
= 0; j
< length
; j
++)
3999 position
*subpos2
= next_position (subpos2_ptr
, pos
,
4001 rtx x
= XVECEXP (pattern
, i
, j
);
4002 worklist
.safe_push (pattern_pos (x
, subpos2
));
4003 subpos2_ptr
= &subpos2
->next
;
4009 /* Make sure that XINT (X, I) has the right value. */
4010 s
= add_decision (s
, rtx_test::int_field (pos
, i
),
4011 XINT (pattern
, i
), false);
4015 /* Make sure that REGNO (X) has the right value. */
4016 gcc_assert (i
== 0);
4017 s
= add_decision (s
, rtx_test::regno_field (pos
),
4018 REGNO (pattern
), false);
4022 /* Make sure that XWINT (X, I) has the right value. */
4023 s
= add_decision (s
, rtx_test::wide_int_field (pos
, i
),
4024 XWINT (pattern
, 0), false);
4033 subpos_ptr
= &subpos
->next
;
4038 /* Operands are pushed onto the worklist so that later indices are
4039 nearer the top. That's what we want for SETs, since a SET_SRC
4040 is a better discriminator than a SET_DEST. In other cases it's
4041 usually better to match earlier indices first. This is especially
4042 true of PARALLELs, where the first element tends to be the most
4043 individual. It's also true for commutative operators, where the
4044 canonicalization rules say that the more complex operand should
4046 if (code
!= SET
&& worklist
.length () > reverse_s
)
4047 std::reverse (&worklist
[0] + reverse_s
,
4048 &worklist
[0] + worklist
.length ());
4051 /* Sort the predicate and mode tests so that they're in depth-first order.
4052 The main goal of this is to put SET_SRC match_operands after SET_DEST
4053 match_operands and after mode checks for the enclosing SET_SRC operators
4054 (such as the mode of a PLUS in an addition instruction). The latter
4055 two types of test can determine the mode exactly, whereas a SET_SRC
4056 match_operand often has to cope with the possibility of the operand
4057 being a modeless constant integer. E.g. something that matches
4058 register_operand (x, SImode) never matches register_operand (x, DImode),
4059 but a const_int that matches immediate_operand (x, SImode) also matches
4060 immediate_operand (x, DImode). The register_operand cases can therefore
4061 be distinguished by a switch on the mode, but the immediate_operand
4063 if (pred_and_mode_tests
.length () > 1)
4064 std::sort (&pred_and_mode_tests
[0],
4065 &pred_and_mode_tests
[0] + pred_and_mode_tests
.length ());
4067 /* Add the mode and predicate tests. */
4070 FOR_EACH_VEC_ELT (pred_and_mode_tests
, i
, e
)
4072 switch (GET_CODE (e
->pattern
))
4074 case MATCH_PARALLEL
:
4077 case MATCH_OPERATOR
:
4079 int opno
= XINT (e
->pattern
, 0);
4080 num_operands
= MAX (num_operands
, opno
+ 1);
4081 const char *pred_name
= predicate_name (e
->pattern
);
4084 const struct pred_data
*pred
= lookup_predicate (pred_name
);
4085 /* Check the mode first, to distinguish things like SImode
4086 and DImode register_operands, as described above. */
4087 machine_mode mode
= GET_MODE (e
->pattern
);
4088 if (pred
&& safe_predicate_mode (pred
, mode
))
4089 s
= add_decision (s
, rtx_test::mode (e
->pos
), mode
, true);
4091 /* Assign to operands[] first, so that the rtx usually doesn't
4092 need to be live across the call to the predicate.
4094 This shouldn't cause a problem with dirtying the page,
4095 since we fully expect to assign to operands[] at some point,
4096 and since the caller usually writes to other parts of
4097 recog_data anyway. */
4098 s
= add_decision (s
, rtx_test::set_op (e
->pos
, opno
),
4100 s
= add_decision (s
, rtx_test::predicate (e
->pos
, pred
, mode
),
4104 /* Historically we've ignored the mode when there's no
4105 predicate. Just set up operands[] unconditionally. */
4106 s
= add_decision (s
, rtx_test::set_op (e
->pos
, opno
),
4112 s
= add_decision (s
, rtx_test::mode (e
->pos
),
4113 GET_MODE (e
->pattern
), false);
4118 /* Finally add rtx_equal_p checks for duplicated operands. */
4119 FOR_EACH_VEC_ELT (dup_tests
, i
, e
)
4120 s
= add_decision (s
, rtx_test::duplicate (e
->pos
, XINT (e
->pattern
, 0)),
4125 /* Add new decisions to S that make it return ACCEPTANCE if:
4127 (1) the rtx doesn't match anything already matched by S
4128 (2) the rtx matches TOP_PATTERN and
4129 (3) the C test required by INFO->def is true
4131 For peephole2, TOP_PATTERN is a SEQUENCE of the instruction patterns
4132 to match, otherwise it is a single instruction pattern. */
4135 match_pattern_1 (state
*s
, md_rtx_info
*info
, rtx pattern
,
4136 acceptance_type acceptance
)
4138 if (acceptance
.type
== PEEPHOLE2
)
4140 /* Match each individual instruction. */
4141 position
**subpos_ptr
= &peep2_insn_pos_list
;
4143 for (int i
= 0; i
< XVECLEN (pattern
, 0); ++i
)
4145 rtx x
= XVECEXP (pattern
, 0, i
);
4146 position
*subpos
= next_position (subpos_ptr
, &root_pos
,
4147 POS_PEEP2_INSN
, count
);
4149 s
= add_decision (s
, rtx_test::peep2_count (count
+ 1),
4151 s
= match_pattern_2 (s
, info
, subpos
, x
);
4152 subpos_ptr
= &subpos
->next
;
4155 acceptance
.u
.full
.u
.match_len
= count
- 1;
4159 /* Make the rtx itself. */
4160 s
= match_pattern_2 (s
, info
, &root_pos
, pattern
);
4162 /* If the match is only valid when extra clobbers are added,
4163 make sure we're able to pass that information to the caller. */
4164 if (acceptance
.type
== RECOG
&& acceptance
.u
.full
.u
.num_clobbers
)
4165 s
= add_decision (s
, rtx_test::have_num_clobbers (), true, false);
4168 /* Make sure that the C test is true. */
4169 const char *c_test
= get_c_test (info
->def
);
4170 if (maybe_eval_c_test (c_test
) != 1)
4171 s
= add_decision (s
, rtx_test::c_test (c_test
), true, false);
4173 /* Accept the pattern. */
4174 add_decision (s
, rtx_test::accept (acceptance
), true, false);
4177 /* Like match_pattern_1, but (if merge_states_p) try to merge the
4178 decisions with what's already in S, to reduce the amount of
4182 match_pattern (state
*s
, md_rtx_info
*info
, rtx pattern
,
4183 acceptance_type acceptance
)
4188 /* Add the decisions to a fresh state and then merge the full tree
4189 into the existing one. */
4190 match_pattern_1 (&root
, info
, pattern
, acceptance
);
4191 merge_into_state (s
, &root
);
4194 match_pattern_1 (s
, info
, pattern
, acceptance
);
4197 /* Begin the output file. */
4203 /* Generated automatically by the program `genrecog' from the target\n\
4204 machine description file. */\n\
4206 #include \"config.h\"\n\
4207 #include \"system.h\"\n\
4208 #include \"coretypes.h\"\n\
4209 #include \"backend.h\"\n\
4210 #include \"predict.h\"\n\
4211 #include \"rtl.h\"\n\
4212 #include \"memmodel.h\"\n\
4213 #include \"tm_p.h\"\n\
4214 #include \"emit-rtl.h\"\n\
4215 #include \"insn-config.h\"\n\
4216 #include \"recog.h\"\n\
4217 #include \"output.h\"\n\
4218 #include \"flags.h\"\n\
4219 #include \"df.h\"\n\
4220 #include \"resource.h\"\n\
4221 #include \"diagnostic-core.h\"\n\
4222 #include \"reload.h\"\n\
4223 #include \"regs.h\"\n\
4224 #include \"tm-constrs.h\"\n\
4228 /* `recog' contains a decision tree that recognizes whether the rtx\n\
4229 X0 is a valid instruction.\n\
4231 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
4232 returns a nonnegative number which is the insn code number for the\n\
4233 pattern that matched. This is the same as the order in the machine\n\
4234 description of the entry that matched. This number can be used as an\n\
4235 index into `insn_data' and other tables.\n");
4237 The third parameter to recog is an optional pointer to an int. If\n\
4238 present, recog will accept a pattern if it matches except for missing\n\
4239 CLOBBER expressions at the end. In that case, the value pointed to by\n\
4240 the optional pointer will be set to the number of CLOBBERs that need\n\
4241 to be added (it should be initialized to zero by the caller). If it");
4243 is set nonzero, the caller should allocate a PARALLEL of the\n\
4244 appropriate size, copy the initial entries, and call add_clobbers\n\
4245 (found in insn-emit.c) to fill in the CLOBBERs.\n\
4249 The function split_insns returns 0 if the rtl could not\n\
4250 be split or the split rtl as an INSN list if it can be.\n\
4252 The function peephole2_insns returns 0 if the rtl could not\n\
4253 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
4254 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
4258 /* Return the C type of a parameter with type TYPE. */
4261 parameter_type_string (parameter::type_enum type
)
4265 case parameter::UNSET
:
4268 case parameter::CODE
:
4271 case parameter::MODE
:
4272 return "machine_mode";
4274 case parameter::INT
:
4277 case parameter::UINT
:
4278 return "unsigned int";
4280 case parameter::WIDE_INT
:
4281 return "HOST_WIDE_INT";
4286 /* Return true if ACCEPTANCE requires only a single C statement even in
4287 a backtracking context. */
4290 single_statement_p (const acceptance_type
&acceptance
)
4292 if (acceptance
.partial_p
)
4293 /* We need to handle failures of the subroutine. */
4295 switch (acceptance
.type
)
4302 /* False if we need to assign to pnum_clobbers. */
4303 return acceptance
.u
.full
.u
.num_clobbers
== 0;
4306 /* We need to assign to pmatch_len_ and handle null returns from the
4307 peephole2 routine. */
4313 /* Return the C failure value for a routine of type TYPE. */
4316 get_failure_return (routine_type type
)
4331 /* Indicates whether a block of code always returns or whether it can fall
4339 /* Information used while writing out code. */
4343 /* The type of routine that we're generating. */
4346 /* Maps position ids to xN variable numbers. The entry is only valid if
4347 it is less than the length of VAR_TO_ID, but this holds for every position
4348 tested by a state when writing out that state. */
4349 auto_vec
<unsigned int> id_to_var
;
4351 /* Maps xN variable numbers to position ids. */
4352 auto_vec
<unsigned int> var_to_id
;
4354 /* Index N is true if variable xN has already been set. */
4355 auto_vec
<bool> seen_vars
;
4358 /* Return true if D is a call to a pattern routine and if there is some X
4359 such that the transition for pattern result N goes to a successful return
4360 with code X+N. When returning true, set *BASE_OUT to this X and *COUNT_OUT
4361 to the number of return values. (We know that every PATTERN decision has
4362 a transition for every successful return.) */
4365 terminal_pattern_p (decision
*d
, unsigned int *base_out
,
4366 unsigned int *count_out
)
4368 if (d
->test
.kind
!= rtx_test::PATTERN
)
4370 unsigned int base
= 0;
4371 unsigned int count
= 0;
4372 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
4374 if (trans
->is_param
|| trans
->labels
.length () != 1)
4376 decision
*subd
= trans
->to
->singleton ();
4377 if (!subd
|| subd
->test
.kind
!= rtx_test::ACCEPT
)
4379 unsigned int this_base
= (subd
->test
.u
.acceptance
.u
.full
.code
4380 - trans
->labels
[0]);
4381 if (trans
== d
->first
)
4383 else if (base
!= this_base
)
4392 /* Return true if TEST doesn't test an rtx or if the rtx it tests is
4393 already available in state OS. */
4396 test_position_available_p (output_state
*os
, const rtx_test
&test
)
4399 || test
.pos_operand
>= 0
4400 || os
->seen_vars
[os
->id_to_var
[test
.pos
->id
]]);
4403 /* Like printf, but print INDENT spaces at the beginning. */
4405 static void ATTRIBUTE_PRINTF_2
4406 printf_indent (unsigned int indent
, const char *format
, ...)
4409 va_start (ap
, format
);
4410 printf ("%*s", indent
, "");
4411 vprintf (format
, ap
);
4415 /* Emit code to initialize the variable associated with POS, if it isn't
4416 already valid in state OS. Indent each line by INDENT spaces. Update
4417 OS with the new state. */
4420 change_state (output_state
*os
, position
*pos
, unsigned int indent
)
4422 unsigned int var
= os
->id_to_var
[pos
->id
];
4423 gcc_assert (var
< os
->var_to_id
.length () && os
->var_to_id
[var
] == pos
->id
);
4424 if (os
->seen_vars
[var
])
4428 case POS_PEEP2_INSN
:
4429 printf_indent (indent
, "x%d = PATTERN (peep2_next_insn (%d));\n",
4434 change_state (os
, pos
->base
, indent
);
4435 printf_indent (indent
, "x%d = XEXP (x%d, %d);\n",
4436 var
, os
->id_to_var
[pos
->base
->id
], pos
->arg
);
4440 change_state (os
, pos
->base
, indent
);
4441 printf_indent (indent
, "x%d = XVECEXP (x%d, 0, %d);\n",
4442 var
, os
->id_to_var
[pos
->base
->id
], pos
->arg
);
4445 os
->seen_vars
[var
] = true;
4448 /* Print the enumerator constant for CODE -- the upcase version of
4452 print_code (enum rtx_code code
)
4455 for (p
= GET_RTX_NAME (code
); *p
; p
++)
4456 putchar (TOUPPER (*p
));
4459 /* Emit a uint64_t as an integer constant expression. We need to take
4460 special care to avoid "decimal constant is so large that it is unsigned"
4461 warnings in the resulting code. */
4464 print_host_wide_int (uint64_t val
)
4466 uint64_t min
= uint64_t (1) << (HOST_BITS_PER_WIDE_INT
- 1);
4468 printf ("(" HOST_WIDE_INT_PRINT_DEC_C
" - 1)", val
+ 1);
4470 printf (HOST_WIDE_INT_PRINT_DEC_C
, val
);
4473 /* Print the C expression for actual parameter PARAM. */
4476 print_parameter_value (const parameter
¶m
)
4479 printf ("i%d", (int) param
.value
+ 1);
4483 case parameter::UNSET
:
4487 case parameter::CODE
:
4488 print_code ((enum rtx_code
) param
.value
);
4491 case parameter::MODE
:
4492 printf ("E_%smode", GET_MODE_NAME ((machine_mode
) param
.value
));
4495 case parameter::INT
:
4496 printf ("%d", (int) param
.value
);
4499 case parameter::UINT
:
4500 printf ("%u", (unsigned int) param
.value
);
4503 case parameter::WIDE_INT
:
4504 print_host_wide_int (param
.value
);
4509 /* Print the C expression for the rtx tested by TEST. */
4512 print_test_rtx (output_state
*os
, const rtx_test
&test
)
4514 if (test
.pos_operand
>= 0)
4515 printf ("operands[%d]", test
.pos_operand
);
4517 printf ("x%d", os
->id_to_var
[test
.pos
->id
]);
4520 /* Print the C expression for non-boolean test TEST. */
4523 print_nonbool_test (output_state
*os
, const rtx_test
&test
)
4527 case rtx_test::CODE
:
4528 printf ("GET_CODE (");
4529 print_test_rtx (os
, test
);
4533 case rtx_test::MODE
:
4534 printf ("GET_MODE (");
4535 print_test_rtx (os
, test
);
4539 case rtx_test::VECLEN
:
4540 printf ("XVECLEN (");
4541 print_test_rtx (os
, test
);
4545 case rtx_test::INT_FIELD
:
4547 print_test_rtx (os
, test
);
4548 printf (", %d)", test
.u
.opno
);
4551 case rtx_test::REGNO_FIELD
:
4553 print_test_rtx (os
, test
);
4557 case rtx_test::WIDE_INT_FIELD
:
4559 print_test_rtx (os
, test
);
4560 printf (", %d)", test
.u
.opno
);
4563 case rtx_test::PATTERN
:
4565 pattern_routine
*routine
= test
.u
.pattern
->routine
;
4566 printf ("pattern%d (", routine
->pattern_id
);
4567 const char *sep
= "";
4570 print_test_rtx (os
, test
);
4573 if (routine
->insn_p
)
4575 printf ("%sinsn", sep
);
4578 if (routine
->pnum_clobbers_p
)
4580 printf ("%spnum_clobbers", sep
);
4583 for (unsigned int i
= 0; i
< test
.u
.pattern
->params
.length (); ++i
)
4585 fputs (sep
, stdout
);
4586 print_parameter_value (test
.u
.pattern
->params
[i
]);
4593 case rtx_test::PEEP2_COUNT
:
4594 case rtx_test::VECLEN_GE
:
4595 case rtx_test::SAVED_CONST_INT
:
4596 case rtx_test::DUPLICATE
:
4597 case rtx_test::PREDICATE
:
4598 case rtx_test::SET_OP
:
4599 case rtx_test::HAVE_NUM_CLOBBERS
:
4600 case rtx_test::C_TEST
:
4601 case rtx_test::ACCEPT
:
4606 /* IS_PARAM and LABEL are taken from a transition whose source
4607 decision performs TEST. Print the C code for the label. */
4610 print_label_value (const rtx_test
&test
, bool is_param
, uint64_t value
)
4612 print_parameter_value (parameter (transition_parameter_type (test
.kind
),
4616 /* If IS_PARAM, print code to compare TEST with the C variable i<VALUE+1>.
4617 If !IS_PARAM, print code to compare TEST with the C constant VALUE.
4618 Test for inequality if INVERT_P, otherwise test for equality. */
4621 print_test (output_state
*os
, const rtx_test
&test
, bool is_param
,
4622 uint64_t value
, bool invert_p
)
4626 /* Handle the non-boolean TESTs. */
4627 case rtx_test::CODE
:
4628 case rtx_test::MODE
:
4629 case rtx_test::VECLEN
:
4630 case rtx_test::REGNO_FIELD
:
4631 case rtx_test::INT_FIELD
:
4632 case rtx_test::WIDE_INT_FIELD
:
4633 case rtx_test::PATTERN
:
4634 print_nonbool_test (os
, test
);
4635 printf (" %s ", invert_p
? "!=" : "==");
4636 print_label_value (test
, is_param
, value
);
4639 case rtx_test::SAVED_CONST_INT
:
4640 gcc_assert (!is_param
&& value
== 1);
4641 print_test_rtx (os
, test
);
4642 printf (" %s const_int_rtx[MAX_SAVED_CONST_INT + ",
4643 invert_p
? "!=" : "==");
4644 print_parameter_value (parameter (parameter::INT
,
4645 test
.u
.integer
.is_param
,
4646 test
.u
.integer
.value
));
4650 case rtx_test::PEEP2_COUNT
:
4651 gcc_assert (!is_param
&& value
== 1);
4652 printf ("peep2_current_count %s %d", invert_p
? "<" : ">=",
4656 case rtx_test::VECLEN_GE
:
4657 gcc_assert (!is_param
&& value
== 1);
4658 printf ("XVECLEN (");
4659 print_test_rtx (os
, test
);
4660 printf (", 0) %s %d", invert_p
? "<" : ">=", test
.u
.min_len
);
4663 case rtx_test::PREDICATE
:
4664 gcc_assert (!is_param
&& value
== 1);
4665 printf ("%s%s (", invert_p
? "!" : "", test
.u
.predicate
.data
->name
);
4666 print_test_rtx (os
, test
);
4668 print_parameter_value (parameter (parameter::MODE
,
4669 test
.u
.predicate
.mode_is_param
,
4670 test
.u
.predicate
.mode
));
4674 case rtx_test::DUPLICATE
:
4675 gcc_assert (!is_param
&& value
== 1);
4676 printf ("%srtx_equal_p (", invert_p
? "!" : "");
4677 print_test_rtx (os
, test
);
4678 printf (", operands[%d])", test
.u
.opno
);
4681 case rtx_test::HAVE_NUM_CLOBBERS
:
4682 gcc_assert (!is_param
&& value
== 1);
4683 printf ("pnum_clobbers %s NULL", invert_p
? "==" : "!=");
4686 case rtx_test::C_TEST
:
4687 gcc_assert (!is_param
&& value
== 1);
4690 rtx_reader_ptr
->print_c_condition (test
.u
.string
);
4693 case rtx_test::ACCEPT
:
4694 case rtx_test::SET_OP
:
4699 static exit_state
print_decision (output_state
*, decision
*,
4700 unsigned int, bool);
4702 /* Print code to perform S, indent each line by INDENT spaces.
4703 IS_FINAL is true if there are no fallback decisions to test on failure;
4704 if the state fails then the entire routine fails. */
4707 print_state (output_state
*os
, state
*s
, unsigned int indent
, bool is_final
)
4709 exit_state es
= ES_FALLTHROUGH
;
4710 for (decision
*d
= s
->first
; d
; d
= d
->next
)
4711 es
= print_decision (os
, d
, indent
, is_final
&& !d
->next
);
4712 if (es
!= ES_RETURNED
&& is_final
)
4714 printf_indent (indent
, "return %s;\n", get_failure_return (os
->type
));
4720 /* Print the code for subroutine call ACCEPTANCE (for which partial_p
4721 is known to be true). Return the C condition that indicates a successful
4725 print_subroutine_call (const acceptance_type
&acceptance
)
4727 switch (acceptance
.type
)
4733 printf ("recog_%d (x1, insn, pnum_clobbers)",
4734 acceptance
.u
.subroutine_id
);
4738 printf ("split_%d (x1, insn)", acceptance
.u
.subroutine_id
);
4739 return "!= NULL_RTX";
4742 printf ("peephole2_%d (x1, insn, pmatch_len_)",
4743 acceptance
.u
.subroutine_id
);
4744 return "!= NULL_RTX";
4749 /* Print code for the successful match described by ACCEPTANCE.
4750 INDENT and IS_FINAL are as for print_state. */
4753 print_acceptance (const acceptance_type
&acceptance
, unsigned int indent
,
4756 if (acceptance
.partial_p
)
4758 /* Defer the rest of the match to a subroutine. */
4761 printf_indent (indent
, "return ");
4762 print_subroutine_call (acceptance
);
4768 printf_indent (indent
, "res = ");
4769 const char *res_test
= print_subroutine_call (acceptance
);
4771 printf_indent (indent
, "if (res %s)\n", res_test
);
4772 printf_indent (indent
+ 2, "return res;\n");
4773 return ES_FALLTHROUGH
;
4776 switch (acceptance
.type
)
4779 printf_indent (indent
, "return %d;\n", acceptance
.u
.full
.code
);
4783 if (acceptance
.u
.full
.u
.num_clobbers
!= 0)
4784 printf_indent (indent
, "*pnum_clobbers = %d;\n",
4785 acceptance
.u
.full
.u
.num_clobbers
);
4786 printf_indent (indent
, "return %d; /* %s */\n", acceptance
.u
.full
.code
,
4787 get_insn_name (acceptance
.u
.full
.code
));
4791 printf_indent (indent
, "return gen_split_%d (insn, operands);\n",
4792 acceptance
.u
.full
.code
);
4796 printf_indent (indent
, "*pmatch_len_ = %d;\n",
4797 acceptance
.u
.full
.u
.match_len
);
4800 printf_indent (indent
, "return gen_peephole2_%d (insn, operands);\n",
4801 acceptance
.u
.full
.code
);
4806 printf_indent (indent
, "res = gen_peephole2_%d (insn, operands);\n",
4807 acceptance
.u
.full
.code
);
4808 printf_indent (indent
, "if (res != NULL_RTX)\n");
4809 printf_indent (indent
+ 2, "return res;\n");
4810 return ES_FALLTHROUGH
;
4816 /* Print code to perform D. INDENT and IS_FINAL are as for print_state. */
4819 print_decision (output_state
*os
, decision
*d
, unsigned int indent
,
4823 unsigned int base
, count
;
4825 /* Make sure the rtx under test is available either in operands[] or
4826 in an xN variable. */
4827 if (d
->test
.pos
&& d
->test
.pos_operand
< 0)
4828 change_state (os
, d
->test
.pos
, indent
);
4830 /* Look for cases where a pattern routine P1 calls another pattern routine
4831 P2 and where P1 returns X + BASE whenever P2 returns X. If IS_FINAL
4832 is true and BASE is zero we can simply use:
4834 return patternN (...);
4836 Otherwise we can use:
4838 res = patternN (...);
4842 However, if BASE is nonzero and patternN only returns 0 or -1,
4843 the usual "return BASE;" is better than "return res + BASE;".
4844 If BASE is zero, "return res;" should be better than "return 0;",
4845 since no assignment to the return register is required. */
4846 if (os
->type
== SUBPATTERN
4847 && terminal_pattern_p (d
, &base
, &count
)
4848 && (base
== 0 || count
> 1))
4850 if (is_final
&& base
== 0)
4852 printf_indent (indent
, "return ");
4853 print_nonbool_test (os
, d
->test
);
4854 printf ("; /* [-1, %d] */\n", count
- 1);
4859 printf_indent (indent
, "res = ");
4860 print_nonbool_test (os
, d
->test
);
4862 printf_indent (indent
, "if (res >= 0)\n");
4863 printf_indent (indent
+ 2, "return res");
4865 printf (" + %d", base
);
4866 printf ("; /* [%d, %d] */\n", base
, base
+ count
- 1);
4867 return ES_FALLTHROUGH
;
4870 else if (d
->test
.kind
== rtx_test::ACCEPT
)
4871 return print_acceptance (d
->test
.u
.acceptance
, indent
, is_final
);
4872 else if (d
->test
.kind
== rtx_test::SET_OP
)
4874 printf_indent (indent
, "operands[%d] = ", d
->test
.u
.opno
);
4875 print_test_rtx (os
, d
->test
);
4877 return print_state (os
, d
->singleton ()->to
, indent
, is_final
);
4879 /* Handle decisions with a single transition and a single transition
4881 else if (d
->if_statement_p (&label
))
4883 transition
*trans
= d
->singleton ();
4884 if (mark_optional_transitions_p
&& trans
->optional
)
4885 printf_indent (indent
, "/* OPTIONAL IF */\n");
4887 /* Print the condition associated with TRANS. Invert it if IS_FINAL,
4888 so that we return immediately on failure and fall through on
4890 printf_indent (indent
, "if (");
4891 print_test (os
, d
->test
, trans
->is_param
, label
, is_final
);
4893 /* Look for following states that would be handled by this code
4894 on recursion. If they don't need any preparatory statements,
4895 include them in the current "if" statement rather than creating
4899 d
= trans
->to
->singleton ();
4901 || d
->test
.kind
== rtx_test::ACCEPT
4902 || d
->test
.kind
== rtx_test::SET_OP
4903 || !d
->if_statement_p (&label
)
4904 || !test_position_available_p (os
, d
->test
))
4908 if (mark_optional_transitions_p
&& trans
->optional
)
4909 printf_indent (indent
+ 4, "/* OPTIONAL IF */\n");
4910 printf_indent (indent
+ 4, "%s ", is_final
? "||" : "&&");
4911 print_test (os
, d
->test
, trans
->is_param
, label
, is_final
);
4915 /* Print the conditional code with INDENT + 2 and the fallthrough
4916 code with indent INDENT. */
4917 state
*to
= trans
->to
;
4920 /* We inverted the condition above, so return failure in the
4921 "if" body and fall through to the target of the transition. */
4922 printf_indent (indent
+ 2, "return %s;\n",
4923 get_failure_return (os
->type
));
4924 return print_state (os
, to
, indent
, is_final
);
4926 else if (to
->singleton ()
4927 && to
->first
->test
.kind
== rtx_test::ACCEPT
4928 && single_statement_p (to
->first
->test
.u
.acceptance
))
4930 /* The target of the transition is a simple "return" statement.
4931 It doesn't need any braces and doesn't fall through. */
4932 if (print_acceptance (to
->first
->test
.u
.acceptance
,
4933 indent
+ 2, true) != ES_RETURNED
)
4935 return ES_FALLTHROUGH
;
4939 /* The general case. Output code for the target of the transition
4940 in braces. This will not invalidate any of the xN variables
4941 that are already valid, but we mustn't rely on any that are
4942 set by the "if" body. */
4943 auto_vec
<bool, 32> old_seen
;
4944 old_seen
.safe_splice (os
->seen_vars
);
4946 printf_indent (indent
+ 2, "{\n");
4947 print_state (os
, trans
->to
, indent
+ 4, is_final
);
4948 printf_indent (indent
+ 2, "}\n");
4950 os
->seen_vars
.truncate (0);
4951 os
->seen_vars
.splice (old_seen
);
4952 return ES_FALLTHROUGH
;
4957 /* Output the decision as a switch statement. */
4958 printf_indent (indent
, "switch (");
4959 print_nonbool_test (os
, d
->test
);
4962 /* Each case statement starts with the same set of valid variables.
4963 These are also the only variables will be valid on fallthrough. */
4964 auto_vec
<bool, 32> old_seen
;
4965 old_seen
.safe_splice (os
->seen_vars
);
4967 printf_indent (indent
+ 2, "{\n");
4968 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
4970 gcc_assert (!trans
->is_param
);
4971 if (mark_optional_transitions_p
&& trans
->optional
)
4972 printf_indent (indent
+ 2, "/* OPTIONAL CASE */\n");
4973 for (int_set::iterator j
= trans
->labels
.begin ();
4974 j
!= trans
->labels
.end (); ++j
)
4976 printf_indent (indent
+ 2, "case ");
4977 print_label_value (d
->test
, trans
->is_param
, *j
);
4980 if (print_state (os
, trans
->to
, indent
+ 4, is_final
))
4982 /* The state can fall through. Add an explicit break. */
4983 gcc_assert (!is_final
);
4984 printf_indent (indent
+ 4, "break;\n");
4988 /* Restore the original set of valid variables. */
4989 os
->seen_vars
.truncate (0);
4990 os
->seen_vars
.splice (old_seen
);
4992 /* Add a default case. */
4993 printf_indent (indent
+ 2, "default:\n");
4995 printf_indent (indent
+ 4, "return %s;\n",
4996 get_failure_return (os
->type
));
4998 printf_indent (indent
+ 4, "break;\n");
4999 printf_indent (indent
+ 2, "}\n");
5000 return is_final
? ES_RETURNED
: ES_FALLTHROUGH
;
5004 /* Make sure that OS has a position variable for POS. ROOT_P is true if
5005 POS is the root position for the routine. */
5008 assign_position_var (output_state
*os
, position
*pos
, bool root_p
)
5010 unsigned int idx
= os
->id_to_var
[pos
->id
];
5011 if (idx
< os
->var_to_id
.length () && os
->var_to_id
[idx
] == pos
->id
)
5013 if (!root_p
&& pos
->type
!= POS_PEEP2_INSN
)
5014 assign_position_var (os
, pos
->base
, false);
5015 os
->id_to_var
[pos
->id
] = os
->var_to_id
.length ();
5016 os
->var_to_id
.safe_push (pos
->id
);
5019 /* Make sure that OS has the position variables required by S. */
5022 assign_position_vars (output_state
*os
, state
*s
)
5024 for (decision
*d
= s
->first
; d
; d
= d
->next
)
5026 /* Positions associated with operands can be read from the
5027 operands[] array. */
5028 if (d
->test
.pos
&& d
->test
.pos_operand
< 0)
5029 assign_position_var (os
, d
->test
.pos
, false);
5030 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
5031 assign_position_vars (os
, trans
->to
);
5035 /* Print the open brace and variable definitions for a routine that
5036 implements S. ROOT is the deepest rtx from which S can access all
5037 relevant parts of the first instruction it matches. Initialize OS
5038 so that every relevant position has an rtx variable xN and so that
5039 only ROOT's variable has a valid value. */
5042 print_subroutine_start (output_state
*os
, state
*s
, position
*root
)
5044 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED"
5045 " = &recog_data.operand[0];\n");
5046 os
->var_to_id
.truncate (0);
5047 os
->seen_vars
.truncate (0);
5050 /* Create a fake entry for position 0 so that an id_to_var of 0
5051 is always invalid. This also makes the xN variables naturally
5052 1-based rather than 0-based. */
5053 os
->var_to_id
.safe_push (num_positions
);
5055 /* Associate ROOT with x1. */
5056 assign_position_var (os
, root
, true);
5058 /* Assign xN variables to all other relevant positions. */
5059 assign_position_vars (os
, s
);
5061 /* Output the variable declarations (except for ROOT's, which is
5062 passed in as a parameter). */
5063 unsigned int num_vars
= os
->var_to_id
.length ();
5066 for (unsigned int i
= 2; i
< num_vars
; ++i
)
5067 /* Print 8 rtx variables to a line. */
5069 i
== 2 ? " rtx" : (i
- 2) % 8 == 0 ? ";\n rtx" : ",", i
);
5073 /* Say that x1 is valid and the rest aren't. */
5074 os
->seen_vars
.safe_grow_cleared (num_vars
);
5075 os
->seen_vars
[1] = true;
5077 if (os
->type
== SUBPATTERN
|| os
->type
== RECOG
)
5078 printf (" int res ATTRIBUTE_UNUSED;\n");
5080 printf (" rtx_insn *res ATTRIBUTE_UNUSED;\n");
5083 /* Output the definition of pattern routine ROUTINE. */
5086 print_pattern (output_state
*os
, pattern_routine
*routine
)
5088 printf ("\nstatic int\npattern%d (", routine
->pattern_id
);
5089 const char *sep
= "";
5090 /* Add the top-level rtx parameter, if any. */
5093 printf ("%srtx x1", sep
);
5096 /* Add the optional parameters. */
5097 if (routine
->insn_p
)
5099 /* We can't easily tell whether a C condition actually reads INSN,
5100 so add an ATTRIBUTE_UNUSED just in case. */
5101 printf ("%srtx_insn *insn ATTRIBUTE_UNUSED", sep
);
5104 if (routine
->pnum_clobbers_p
)
5106 printf ("%sint *pnum_clobbers", sep
);
5109 /* Add the "i" parameters. */
5110 for (unsigned int i
= 0; i
< routine
->param_types
.length (); ++i
)
5112 printf ("%s%s i%d", sep
,
5113 parameter_type_string (routine
->param_types
[i
]), i
+ 1);
5117 os
->type
= SUBPATTERN
;
5118 print_subroutine_start (os
, routine
->s
, routine
->pos
);
5119 print_state (os
, routine
->s
, 2, true);
5123 /* Output a routine of type TYPE that implements S. PROC_ID is the
5124 number of the subroutine associated with S, or 0 if S is the main
5128 print_subroutine (output_state
*os
, state
*s
, int proc_id
)
5138 printf ("static int\nrecog_%d", proc_id
);
5140 printf ("int\nrecog");
5141 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5142 "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5143 "\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n");
5148 printf ("static rtx_insn *\nsplit_%d", proc_id
);
5150 printf ("rtx_insn *\nsplit_insns");
5151 printf (" (rtx x1 ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED)\n");
5156 printf ("static rtx_insn *\npeephole2_%d", proc_id
);
5158 printf ("rtx_insn *\npeephole2_insns");
5159 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5160 "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5161 "\tint *pmatch_len_ ATTRIBUTE_UNUSED)\n");
5164 print_subroutine_start (os
, s
, &root_pos
);
5167 printf (" recog_data.insn = NULL;\n");
5169 print_state (os
, s
, 2, true);
5173 /* Print out a routine of type TYPE that performs ROOT. */
5176 print_subroutine_group (output_state
*os
, routine_type type
, state
*root
)
5179 if (use_subroutines_p
)
5181 /* Split ROOT up into smaller pieces, both for readability and to
5182 help the compiler. */
5183 auto_vec
<state
*> subroutines
;
5184 find_subroutines (type
, root
, subroutines
);
5186 /* Output the subroutines (but not ROOT itself). */
5189 FOR_EACH_VEC_ELT (subroutines
, i
, s
)
5190 print_subroutine (os
, s
, i
+ 1);
5192 /* Output the main routine. */
5193 print_subroutine (os
, root
, 0);
5196 /* Return the rtx pattern for the list of rtxes in a define_peephole2. */
5199 get_peephole2_pattern (md_rtx_info
*info
)
5202 rtvec vec
= XVEC (info
->def
, 0);
5203 rtx pattern
= rtx_alloc (SEQUENCE
);
5204 XVEC (pattern
, 0) = rtvec_alloc (GET_NUM_ELEM (vec
));
5205 for (i
= j
= 0; i
< GET_NUM_ELEM (vec
); i
++)
5207 rtx x
= RTVEC_ELT (vec
, i
);
5208 /* Ignore scratch register requirements. */
5209 if (GET_CODE (x
) != MATCH_SCRATCH
&& GET_CODE (x
) != MATCH_DUP
)
5211 XVECEXP (pattern
, 0, j
) = x
;
5215 XVECLEN (pattern
, 0) = j
;
5217 error_at (info
->loc
, "empty define_peephole2");
5221 /* Return true if *PATTERN_PTR is a PARALLEL in which at least one trailing
5222 rtx can be added automatically by add_clobbers. If so, update
5223 *ACCEPTANCE_PTR so that its num_clobbers field contains the number
5224 of such trailing rtxes and update *PATTERN_PTR so that it contains
5225 the pattern without those rtxes. */
5228 remove_clobbers (acceptance_type
*acceptance_ptr
, rtx
*pattern_ptr
)
5233 /* Find the last non-clobber in the parallel. */
5234 rtx pattern
= *pattern_ptr
;
5235 for (i
= XVECLEN (pattern
, 0); i
> 0; i
--)
5237 rtx x
= XVECEXP (pattern
, 0, i
- 1);
5238 if (GET_CODE (x
) != CLOBBER
5239 || (!REG_P (XEXP (x
, 0))
5240 && GET_CODE (XEXP (x
, 0)) != MATCH_SCRATCH
))
5244 if (i
== XVECLEN (pattern
, 0))
5247 /* Build a similar insn without the clobbers. */
5249 new_pattern
= XVECEXP (pattern
, 0, 0);
5252 new_pattern
= rtx_alloc (PARALLEL
);
5253 XVEC (new_pattern
, 0) = rtvec_alloc (i
);
5254 for (int j
= 0; j
< i
; ++j
)
5255 XVECEXP (new_pattern
, 0, j
) = XVECEXP (pattern
, 0, j
);
5259 acceptance_ptr
->u
.full
.u
.num_clobbers
= XVECLEN (pattern
, 0) - i
;
5260 *pattern_ptr
= new_pattern
;
5265 main (int argc
, const char **argv
)
5267 state insn_root
, split_root
, peephole2_root
;
5269 progname
= "genrecog";
5271 if (!init_rtx_reader_args (argc
, argv
))
5272 return (FATAL_EXIT_CODE
);
5276 /* Read the machine description. */
5279 while (read_md_rtx (&info
))
5283 acceptance_type acceptance
;
5284 acceptance
.partial_p
= false;
5285 acceptance
.u
.full
.code
= info
.index
;
5288 switch (GET_CODE (def
))
5292 /* Match the instruction in the original .md form. */
5293 acceptance
.type
= RECOG
;
5294 acceptance
.u
.full
.u
.num_clobbers
= 0;
5295 pattern
= add_implicit_parallel (XVEC (def
, 1));
5296 validate_pattern (pattern
, &info
, NULL_RTX
, 0);
5297 match_pattern (&insn_root
, &info
, pattern
, acceptance
);
5299 /* If the pattern is a PARALLEL with trailing CLOBBERs,
5300 allow recog_for_combine to match without the clobbers. */
5301 if (GET_CODE (pattern
) == PARALLEL
5302 && remove_clobbers (&acceptance
, &pattern
))
5303 match_pattern (&insn_root
, &info
, pattern
, acceptance
);
5308 acceptance
.type
= SPLIT
;
5309 pattern
= add_implicit_parallel (XVEC (def
, 0));
5310 validate_pattern (pattern
, &info
, NULL_RTX
, 0);
5311 match_pattern (&split_root
, &info
, pattern
, acceptance
);
5313 /* Declare the gen_split routine that we'll call if the
5314 pattern matches. The definition comes from insn-emit.c. */
5315 printf ("extern rtx_insn *gen_split_%d (rtx_insn *, rtx *);\n",
5319 case DEFINE_PEEPHOLE2
:
5320 acceptance
.type
= PEEPHOLE2
;
5321 pattern
= get_peephole2_pattern (&info
);
5322 validate_pattern (pattern
, &info
, NULL_RTX
, 0);
5323 match_pattern (&peephole2_root
, &info
, pattern
, acceptance
);
5325 /* Declare the gen_peephole2 routine that we'll call if the
5326 pattern matches. The definition comes from insn-emit.c. */
5327 printf ("extern rtx_insn *gen_peephole2_%d (rtx_insn *, rtx *);\n",
5337 return FATAL_EXIT_CODE
;
5341 /* Optimize each routine in turn. */
5342 optimize_subroutine_group ("recog", &insn_root
);
5343 optimize_subroutine_group ("split_insns", &split_root
);
5344 optimize_subroutine_group ("peephole2_insns", &peephole2_root
);
5347 os
.id_to_var
.safe_grow_cleared (num_positions
);
5349 if (use_pattern_routines_p
)
5351 /* Look for common patterns and split them out into subroutines. */
5352 auto_vec
<merge_state_info
> states
;
5353 states
.safe_push (&insn_root
);
5354 states
.safe_push (&split_root
);
5355 states
.safe_push (&peephole2_root
);
5356 split_out_patterns (states
);
5358 /* Print out the routines that we just created. */
5360 pattern_routine
*routine
;
5361 FOR_EACH_VEC_ELT (patterns
, i
, routine
)
5362 print_pattern (&os
, routine
);
5365 /* Print out the matching routines. */
5366 print_subroutine_group (&os
, RECOG
, &insn_root
);
5367 print_subroutine_group (&os
, SPLIT
, &split_root
);
5368 print_subroutine_group (&os
, PEEPHOLE2
, &peephole2_root
);
5371 return (ferror (stdout
) != 0 ? FATAL_EXIT_CODE
: SUCCESS_EXIT_CODE
);