2001-11-06 Phil Edwards <pme@gcc.gnu.org>
[official-gcc.git] / gcc / cp / init.c
blob8dad82d071178f2b7a45c04a5657b987b9901f0e
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 /* High-level class interface. */
25 #include "config.h"
26 #include "system.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "expr.h"
30 #include "cp-tree.h"
31 #include "flags.h"
32 #include "output.h"
33 #include "except.h"
34 #include "toplev.h"
35 #include "ggc.h"
37 static void expand_aggr_vbase_init_1 PARAMS ((tree, tree, tree, tree));
38 static void construct_virtual_bases PARAMS ((tree, tree, tree, tree, tree));
39 static void expand_aggr_init_1 PARAMS ((tree, tree, tree, tree, int));
40 static void expand_default_init PARAMS ((tree, tree, tree, tree, int));
41 static tree build_vec_delete_1 PARAMS ((tree, tree, tree, special_function_kind, int));
42 static void perform_member_init PARAMS ((tree, tree, int));
43 static void sort_base_init PARAMS ((tree, tree, tree *, tree *));
44 static tree build_builtin_delete_call PARAMS ((tree));
45 static int member_init_ok_or_else PARAMS ((tree, tree, tree));
46 static void expand_virtual_init PARAMS ((tree, tree));
47 static tree sort_member_init PARAMS ((tree, tree));
48 static tree initializing_context PARAMS ((tree));
49 static void expand_cleanup_for_base PARAMS ((tree, tree));
50 static tree get_temp_regvar PARAMS ((tree, tree));
51 static tree dfs_initialize_vtbl_ptrs PARAMS ((tree, void *));
52 static tree build_default_init PARAMS ((tree));
53 static tree build_new_1 PARAMS ((tree));
54 static tree get_cookie_size PARAMS ((tree));
55 static tree build_dtor_call PARAMS ((tree, special_function_kind, int));
56 static tree build_field_list PARAMS ((tree, tree, int *));
57 static tree build_vtbl_address PARAMS ((tree));
59 /* Set up local variable for this file. MUST BE CALLED AFTER
60 INIT_DECL_PROCESSING. */
62 static tree BI_header_type;
64 void init_init_processing ()
66 tree fields[1];
68 /* Define the structure that holds header information for
69 arrays allocated via operator new. */
70 BI_header_type = make_aggr_type (RECORD_TYPE);
71 fields[0] = build_decl (FIELD_DECL, nelts_identifier, sizetype);
73 finish_builtin_type (BI_header_type, "__new_cookie", fields,
74 0, double_type_node);
76 ggc_add_tree_root (&BI_header_type, 1);
79 /* We are about to generate some complex initialization code.
80 Conceptually, it is all a single expression. However, we may want
81 to include conditionals, loops, and other such statement-level
82 constructs. Therefore, we build the initialization code inside a
83 statement-expression. This function starts such an expression.
84 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
85 pass them back to finish_init_stmts when the expression is
86 complete. */
88 void
89 begin_init_stmts (stmt_expr_p, compound_stmt_p)
90 tree *stmt_expr_p;
91 tree *compound_stmt_p;
93 if (building_stmt_tree ())
94 *stmt_expr_p = begin_stmt_expr ();
95 else
96 *stmt_expr_p = begin_global_stmt_expr ();
98 if (building_stmt_tree ())
99 *compound_stmt_p = begin_compound_stmt (/*has_no_scope=*/1);
101 else
102 *compound_stmt_p = genrtl_begin_compound_stmt (has_no_scope=1);
106 /* Finish out the statement-expression begun by the previous call to
107 begin_init_stmts. Returns the statement-expression itself. */
109 tree
110 finish_init_stmts (stmt_expr, compound_stmt)
111 tree stmt_expr;
112 tree compound_stmt;
115 if (building_stmt_tree ())
116 finish_compound_stmt (/*has_no_scope=*/1, compound_stmt);
118 if (building_stmt_tree ())
119 stmt_expr = finish_stmt_expr (stmt_expr);
120 else
121 stmt_expr = finish_global_stmt_expr (stmt_expr);
123 /* To avoid spurious warnings about unused values, we set
124 TREE_USED. */
125 if (stmt_expr)
126 TREE_USED (stmt_expr) = 1;
128 return stmt_expr;
131 /* Constructors */
133 /* Called from initialize_vtbl_ptrs via dfs_walk. */
135 static tree
136 dfs_initialize_vtbl_ptrs (binfo, data)
137 tree binfo;
138 void *data;
140 if ((!BINFO_PRIMARY_P (binfo) || TREE_VIA_VIRTUAL (binfo))
141 && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo)))
143 tree base_ptr = TREE_VALUE ((tree) data);
145 if (TREE_VIA_VIRTUAL (binfo))
146 base_ptr = convert_pointer_to_vbase (BINFO_TYPE (binfo),
147 base_ptr);
148 else
149 base_ptr
150 = build_vbase_path (PLUS_EXPR,
151 build_pointer_type (BINFO_TYPE (binfo)),
152 base_ptr,
153 binfo,
154 /*nonnull=*/1);
156 expand_virtual_init (binfo, base_ptr);
159 SET_BINFO_MARKED (binfo);
161 return NULL_TREE;
164 /* Initialize all the vtable pointers in the object pointed to by
165 ADDR. */
167 void
168 initialize_vtbl_ptrs (addr)
169 tree addr;
171 tree list;
172 tree type;
174 type = TREE_TYPE (TREE_TYPE (addr));
175 list = build_tree_list (type, addr);
177 /* Walk through the hierarchy, initializing the vptr in each base
178 class. We do these in pre-order because can't find the virtual
179 bases for a class until we've initialized the vtbl for that
180 class. */
181 dfs_walk_real (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs,
182 NULL, dfs_unmarked_real_bases_queue_p, list);
183 dfs_walk (TYPE_BINFO (type), dfs_unmark,
184 dfs_marked_real_bases_queue_p, type);
187 /* [dcl.init]:
189 To default-initialize an object of type T means:
191 --if T is a non-POD class type (clause _class_), the default construc-
192 tor for T is called (and the initialization is ill-formed if T has
193 no accessible default constructor);
195 --if T is an array type, each element is default-initialized;
197 --otherwise, the storage for the object is zero-initialized.
199 A program that calls for default-initialization of an entity of refer-
200 ence type is ill-formed. */
202 static tree
203 build_default_init (type)
204 tree type;
206 tree init = NULL_TREE;
208 if (TYPE_NEEDS_CONSTRUCTING (type))
209 /* Other code will handle running the default constructor. We can't do
210 anything with a CONSTRUCTOR for arrays here, as that would imply
211 copy-initialization. */
212 return NULL_TREE;
213 else if (AGGREGATE_TYPE_P (type) && !TYPE_PTRMEMFUNC_P (type))
215 /* This is a default initialization of an aggregate, but not one of
216 non-POD class type. We cleverly notice that the initialization
217 rules in such a case are the same as for initialization with an
218 empty brace-initialization list. */
219 init = build (CONSTRUCTOR, NULL_TREE, NULL_TREE, NULL_TREE);
221 else if (TREE_CODE (type) == REFERENCE_TYPE)
222 /* --if T is a reference type, no initialization is performed. */
223 return NULL_TREE;
224 else
226 init = integer_zero_node;
228 if (TREE_CODE (type) == ENUMERAL_TYPE)
229 /* We must make enumeral types the right type. */
230 init = fold (build1 (NOP_EXPR, type, init));
233 init = digest_init (type, init, 0);
234 return init;
237 /* Subroutine of emit_base_init. */
239 static void
240 perform_member_init (member, init, explicit)
241 tree member, init;
242 int explicit;
244 tree decl;
245 tree type = TREE_TYPE (member);
247 decl = build_component_ref (current_class_ref, member, NULL_TREE, explicit);
249 if (decl == error_mark_node)
250 return;
252 /* Deal with this here, as we will get confused if we try to call the
253 assignment op for an anonymous union. This can happen in a
254 synthesized copy constructor. */
255 if (ANON_AGGR_TYPE_P (type))
257 if (init)
259 init = build (INIT_EXPR, type, decl, TREE_VALUE (init));
260 finish_expr_stmt (init);
263 else if (TYPE_NEEDS_CONSTRUCTING (type)
264 || (init && TYPE_HAS_CONSTRUCTOR (type)))
266 /* Since `init' is already a TREE_LIST on the member_init_list,
267 only build it into one if we aren't already a list. */
268 if (init != NULL_TREE && TREE_CODE (init) != TREE_LIST)
269 init = build_tree_list (NULL_TREE, init);
271 if (explicit
272 && TREE_CODE (type) == ARRAY_TYPE
273 && init != NULL_TREE
274 && TREE_CHAIN (init) == NULL_TREE
275 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
277 /* Initialization of one array from another. */
278 finish_expr_stmt (build_vec_init (decl, TREE_VALUE (init), 1));
280 else
281 finish_expr_stmt (build_aggr_init (decl, init, 0));
283 else
285 if (init == NULL_TREE)
287 if (explicit)
289 init = build_default_init (type);
290 if (TREE_CODE (type) == REFERENCE_TYPE)
291 cp_warning
292 ("default-initialization of `%#D', which has reference type",
293 member);
295 /* member traversal: note it leaves init NULL */
296 else if (TREE_CODE (type) == REFERENCE_TYPE)
297 cp_pedwarn ("uninitialized reference member `%D'", member);
299 else if (TREE_CODE (init) == TREE_LIST)
301 /* There was an explicit member initialization. Do some
302 work in that case. */
303 if (TREE_CHAIN (init))
305 warning ("initializer list treated as compound expression");
306 init = build_compound_expr (init);
308 else
309 init = TREE_VALUE (init);
312 if (init)
313 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
316 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
318 tree expr;
320 expr = build_component_ref (current_class_ref, member, NULL_TREE,
321 explicit);
322 expr = build_delete (type, expr, sfk_complete_destructor,
323 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
325 if (expr != error_mark_node)
326 finish_subobject (expr);
330 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
331 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
333 static tree
334 build_field_list (t, list, uses_unions_p)
335 tree t;
336 tree list;
337 int *uses_unions_p;
339 tree fields;
341 /* Note whether or not T is a union. */
342 if (TREE_CODE (t) == UNION_TYPE)
343 *uses_unions_p = 1;
345 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
347 /* Skip CONST_DECLs for enumeration constants and so forth. */
348 if (TREE_CODE (fields) != FIELD_DECL)
349 continue;
351 /* Keep track of whether or not any fields are unions. */
352 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
353 *uses_unions_p = 1;
355 /* For an anonymous struct or union, we must recursively
356 consider the fields of the anonymous type. They can be
357 directly initialized from the constructor. */
358 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
360 /* Add this field itself. Synthesized copy constructors
361 initialize the entire aggregate. */
362 list = tree_cons (fields, NULL_TREE, list);
363 /* And now add the fields in the anonymous aggregate. */
364 list = build_field_list (TREE_TYPE (fields), list,
365 uses_unions_p);
367 /* Add this field. */
368 else if (DECL_NAME (fields))
369 list = tree_cons (fields, NULL_TREE, list);
372 return list;
375 /* The MEMBER_INIT_LIST is a TREE_LIST. The TREE_PURPOSE of each list
376 gives a FIELD_DECL in T that needs initialization. The TREE_VALUE
377 gives the initializer, or list of initializer arguments. Sort the
378 MEMBER_INIT_LIST, returning a version that contains the same
379 information but in the order that the fields should actually be
380 initialized. Perform error-checking in the process. */
382 static tree
383 sort_member_init (t, member_init_list)
384 tree t;
385 tree member_init_list;
387 tree init_list;
388 tree last_field;
389 tree init;
390 int uses_unions_p;
392 /* Build up a list of the various fields, in sorted order. */
393 init_list = nreverse (build_field_list (t, NULL_TREE, &uses_unions_p));
395 /* Go through the explicit initializers, adding them to the
396 INIT_LIST. */
397 last_field = init_list;
398 for (init = member_init_list; init; init = TREE_CHAIN (init))
400 tree f;
401 tree initialized_field;
403 initialized_field = TREE_PURPOSE (init);
404 my_friendly_assert (TREE_CODE (initialized_field) == FIELD_DECL,
405 20000516);
407 /* If the explicit initializers are in sorted order, then the
408 INITIALIZED_FIELD will be for a field following the
409 LAST_FIELD. */
410 for (f = last_field; f; f = TREE_CHAIN (f))
411 if (TREE_PURPOSE (f) == initialized_field)
412 break;
414 /* Give a warning, if appropriate. */
415 if (warn_reorder && !f)
417 cp_warning_at ("member initializers for `%#D'",
418 TREE_PURPOSE (last_field));
419 cp_warning_at (" and `%#D'", initialized_field);
420 warning (" will be re-ordered to match declaration order");
423 /* Look again, from the beginning of the list. We must find the
424 field on this loop. */
425 if (!f)
427 f = init_list;
428 while (TREE_PURPOSE (f) != initialized_field)
429 f = TREE_CHAIN (f);
432 /* If there was already an explicit initializer for this field,
433 issue an error. */
434 if (TREE_TYPE (f))
435 cp_error ("multiple initializations given for member `%D'",
436 initialized_field);
437 else
439 /* Mark the field as explicitly initialized. */
440 TREE_TYPE (f) = error_mark_node;
441 /* And insert the initializer. */
442 TREE_VALUE (f) = TREE_VALUE (init);
445 /* Remember the location of the last explicitly initialized
446 field. */
447 last_field = f;
450 /* [class.base.init]
452 If a ctor-initializer specifies more than one mem-initializer for
453 multiple members of the same union (including members of
454 anonymous unions), the ctor-initializer is ill-formed. */
455 if (uses_unions_p)
457 last_field = NULL_TREE;
458 for (init = init_list; init; init = TREE_CHAIN (init))
460 tree field;
461 tree field_type;
462 int done;
464 /* Skip uninitialized members. */
465 if (!TREE_TYPE (init))
466 continue;
467 /* See if this field is a member of a union, or a member of a
468 structure contained in a union, etc. */
469 field = TREE_PURPOSE (init);
470 for (field_type = DECL_CONTEXT (field);
471 !same_type_p (field_type, t);
472 field_type = TYPE_CONTEXT (field_type))
473 if (TREE_CODE (field_type) == UNION_TYPE)
474 break;
475 /* If this field is not a member of a union, skip it. */
476 if (TREE_CODE (field_type) != UNION_TYPE)
477 continue;
479 /* It's only an error if we have two initializers for the same
480 union type. */
481 if (!last_field)
483 last_field = field;
484 continue;
487 /* See if LAST_FIELD and the field initialized by INIT are
488 members of the same union. If so, there's a problem,
489 unless they're actually members of the same structure
490 which is itself a member of a union. For example, given:
492 union { struct { int i; int j; }; };
494 initializing both `i' and `j' makes sense. */
495 field_type = DECL_CONTEXT (field);
496 done = 0;
499 tree last_field_type;
501 last_field_type = DECL_CONTEXT (last_field);
502 while (1)
504 if (same_type_p (last_field_type, field_type))
506 if (TREE_CODE (field_type) == UNION_TYPE)
507 cp_error ("initializations for multiple members of `%T'",
508 last_field_type);
509 done = 1;
510 break;
513 if (same_type_p (last_field_type, t))
514 break;
516 last_field_type = TYPE_CONTEXT (last_field_type);
519 /* If we've reached the outermost class, then we're
520 done. */
521 if (same_type_p (field_type, t))
522 break;
524 field_type = TYPE_CONTEXT (field_type);
526 while (!done);
528 last_field = field;
532 return init_list;
535 /* Like sort_member_init, but used for initializers of base classes.
536 *RBASE_PTR is filled in with the initializers for non-virtual bases;
537 vbase_ptr gets the virtual bases. */
539 static void
540 sort_base_init (t, base_init_list, rbase_ptr, vbase_ptr)
541 tree t;
542 tree base_init_list;
543 tree *rbase_ptr, *vbase_ptr;
545 tree binfos = BINFO_BASETYPES (TYPE_BINFO (t));
546 int n_baseclasses = binfos ? TREE_VEC_LENGTH (binfos) : 0;
548 int i;
549 tree x;
550 tree last;
552 /* For warn_reorder. */
553 int last_pos = 0;
554 tree last_base = NULL_TREE;
556 tree rbases = NULL_TREE;
557 tree vbases = NULL_TREE;
559 /* First walk through and splice out vbase and invalid initializers.
560 Also replace names with binfos. */
562 last = tree_cons (NULL_TREE, NULL_TREE, base_init_list);
563 for (x = TREE_CHAIN (last); x; x = TREE_CHAIN (x))
565 tree basetype = TREE_PURPOSE (x);
566 tree binfo = NULL_TREE;
568 if (basetype == NULL_TREE)
570 /* Initializer for single base class. Must not
571 use multiple inheritance or this is ambiguous. */
572 switch (n_baseclasses)
574 case 0:
575 cp_error ("`%T' does not have a base class to initialize",
576 current_class_type);
577 return;
578 case 1:
579 break;
580 default:
581 cp_error ("unnamed initializer ambiguous for `%T' which uses multiple inheritance",
582 current_class_type);
583 return;
585 binfo = TREE_VEC_ELT (binfos, 0);
587 else if (is_aggr_type (basetype, 1))
589 binfo = binfo_or_else (basetype, t);
590 if (binfo == NULL_TREE)
591 continue;
593 /* Virtual base classes are special cases. Their initializers
594 are recorded with this constructor, and they are used when
595 this constructor is the top-level constructor called. */
596 if (TREE_VIA_VIRTUAL (binfo))
598 tree v = binfo_for_vbase (BINFO_TYPE (binfo), t);
599 vbases = tree_cons (v, TREE_VALUE (x), vbases);
600 continue;
602 else
604 /* Otherwise, if it is not an immediate base class, complain. */
605 for (i = n_baseclasses-1; i >= 0; i--)
606 if (BINFO_TYPE (binfo) == BINFO_TYPE (TREE_VEC_ELT (binfos, i)))
607 break;
608 if (i < 0)
610 cp_error ("`%T' is not an immediate base class of `%T'",
611 basetype, current_class_type);
612 continue;
616 else
617 my_friendly_abort (365);
619 TREE_PURPOSE (x) = binfo;
620 TREE_CHAIN (last) = x;
621 last = x;
623 TREE_CHAIN (last) = NULL_TREE;
625 /* Now walk through our regular bases and make sure they're initialized. */
627 for (i = 0; i < n_baseclasses; ++i)
629 /* The base for which we're currently initializing. */
630 tree base_binfo = TREE_VEC_ELT (binfos, i);
631 /* The initializer for BASE_BINFO. */
632 tree init;
633 int pos;
635 if (TREE_VIA_VIRTUAL (base_binfo))
636 continue;
638 /* We haven't found the BASE_BINFO yet. */
639 init = NULL_TREE;
640 /* Loop through all the explicitly initialized bases, looking
641 for an appropriate initializer. */
642 for (x = base_init_list, pos = 0; x; x = TREE_CHAIN (x), ++pos)
644 tree binfo = TREE_PURPOSE (x);
646 if (binfo == base_binfo && !init)
648 if (warn_reorder)
650 if (pos < last_pos)
652 cp_warning_at ("base initializers for `%#T'", last_base);
653 cp_warning_at (" and `%#T'", BINFO_TYPE (binfo));
654 warning (" will be re-ordered to match inheritance order");
656 last_pos = pos;
657 last_base = BINFO_TYPE (binfo);
660 /* Make sure we won't try to work on this init again. */
661 TREE_PURPOSE (x) = NULL_TREE;
662 init = build_tree_list (binfo, TREE_VALUE (x));
664 else if (binfo == base_binfo)
666 cp_error ("base class `%T' already initialized",
667 BINFO_TYPE (binfo));
668 break;
672 /* If we didn't find BASE_BINFO in the list, create a dummy entry
673 so the two lists (RBASES and the list of bases) will be
674 symmetrical. */
675 if (!init)
676 init = build_tree_list (NULL_TREE, NULL_TREE);
677 rbases = chainon (rbases, init);
680 *rbase_ptr = rbases;
681 *vbase_ptr = vbases;
684 /* Perform whatever initializations have yet to be done on the base
685 class, and non-static data members, of the CURRENT_CLASS_TYPE.
686 These actions are given by the BASE_INIT_LIST and MEM_INIT_LIST,
687 respectively.
689 If there is a need for a call to a constructor, we must surround
690 that call with a pushlevel/poplevel pair, since we are technically
691 at the PARM level of scope. */
693 void
694 emit_base_init (mem_init_list, base_init_list)
695 tree mem_init_list;
696 tree base_init_list;
698 tree member;
699 tree rbase_init_list, vbase_init_list;
700 tree t = current_class_type;
701 tree t_binfo = TYPE_BINFO (t);
702 tree binfos = BINFO_BASETYPES (t_binfo);
703 int i;
704 int n_baseclasses = BINFO_N_BASETYPES (t_binfo);
706 mem_init_list = sort_member_init (t, mem_init_list);
707 sort_base_init (t, base_init_list, &rbase_init_list, &vbase_init_list);
709 /* First, initialize the virtual base classes, if we are
710 constructing the most-derived object. */
711 if (TYPE_USES_VIRTUAL_BASECLASSES (t))
713 tree first_arg = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
714 construct_virtual_bases (t, current_class_ref, current_class_ptr,
715 vbase_init_list, first_arg);
718 /* Now, perform initialization of non-virtual base classes. */
719 for (i = 0; i < n_baseclasses; i++)
721 tree base_binfo = TREE_VEC_ELT (binfos, i);
722 tree init = void_list_node;
724 if (TREE_VIA_VIRTUAL (base_binfo))
725 continue;
727 my_friendly_assert (BINFO_INHERITANCE_CHAIN (base_binfo) == t_binfo,
728 999);
730 if (TREE_PURPOSE (rbase_init_list))
731 init = TREE_VALUE (rbase_init_list);
732 else if (TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (base_binfo)))
734 init = NULL_TREE;
735 if (extra_warnings
736 && DECL_COPY_CONSTRUCTOR_P (current_function_decl))
737 cp_warning ("base class `%#T' should be explicitly initialized in the copy constructor",
738 BINFO_TYPE (base_binfo));
741 if (init != void_list_node)
743 member = convert_pointer_to_real (base_binfo, current_class_ptr);
744 expand_aggr_init_1 (base_binfo, NULL_TREE,
745 build_indirect_ref (member, NULL), init,
746 LOOKUP_NORMAL);
749 expand_cleanup_for_base (base_binfo, NULL_TREE);
750 rbase_init_list = TREE_CHAIN (rbase_init_list);
753 /* Initialize the vtable pointers for the class. */
754 initialize_vtbl_ptrs (current_class_ptr);
756 while (mem_init_list)
758 tree init;
759 tree member;
760 int from_init_list;
762 member = TREE_PURPOSE (mem_init_list);
764 /* See if we had a user-specified member initialization. */
765 if (TREE_TYPE (mem_init_list))
767 init = TREE_VALUE (mem_init_list);
768 from_init_list = 1;
770 else
772 init = DECL_INITIAL (member);
773 from_init_list = 0;
775 /* Effective C++ rule 12. */
776 if (warn_ecpp && init == NULL_TREE
777 && !DECL_ARTIFICIAL (member)
778 && TREE_CODE (TREE_TYPE (member)) != ARRAY_TYPE)
779 cp_warning ("`%D' should be initialized in the member initialization list", member);
782 perform_member_init (member, init, from_init_list);
783 mem_init_list = TREE_CHAIN (mem_init_list);
787 /* Returns the address of the vtable (i.e., the value that should be
788 assigned to the vptr) for BINFO. */
790 static tree
791 build_vtbl_address (binfo)
792 tree binfo;
794 tree binfo_for = binfo;
795 tree vtbl;
797 if (BINFO_VPTR_INDEX (binfo) && TREE_VIA_VIRTUAL (binfo)
798 && BINFO_PRIMARY_P (binfo))
799 /* If this is a virtual primary base, then the vtable we want to store
800 is that for the base this is being used as the primary base of. We
801 can't simply skip the initialization, because we may be expanding the
802 inits of a subobject constructor where the virtual base layout
803 can be different. */
804 while (BINFO_PRIMARY_BASE_OF (binfo_for))
805 binfo_for = BINFO_PRIMARY_BASE_OF (binfo_for);
807 /* Figure out what vtable BINFO's vtable is based on, and mark it as
808 used. */
809 vtbl = get_vtbl_decl_for_binfo (binfo_for);
810 assemble_external (vtbl);
811 TREE_USED (vtbl) = 1;
813 /* Now compute the address to use when initializing the vptr. */
814 vtbl = BINFO_VTABLE (binfo_for);
815 if (TREE_CODE (vtbl) == VAR_DECL)
817 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
818 TREE_CONSTANT (vtbl) = 1;
821 return vtbl;
824 /* This code sets up the virtual function tables appropriate for
825 the pointer DECL. It is a one-ply initialization.
827 BINFO is the exact type that DECL is supposed to be. In
828 multiple inheritance, this might mean "C's A" if C : A, B. */
830 static void
831 expand_virtual_init (binfo, decl)
832 tree binfo, decl;
834 tree type = BINFO_TYPE (binfo);
835 tree vtbl, vtbl_ptr;
836 tree vtype, vtype_binfo;
837 tree vtt_index;
839 /* Compute the location of the vtable. */
840 vtype = DECL_CONTEXT (TYPE_VFIELD (type));
841 vtype_binfo = get_binfo (vtype, TREE_TYPE (TREE_TYPE (decl)), 0);
843 /* Compute the initializer for vptr. */
844 vtbl = build_vtbl_address (binfo);
846 /* We may get this vptr from a VTT, if this is a subobject
847 constructor or subobject destructor. */
848 vtt_index = BINFO_VPTR_INDEX (binfo);
849 if (vtt_index)
851 tree vtbl2;
852 tree vtt_parm;
854 /* Compute the value to use, when there's a VTT. */
855 vtt_parm = current_vtt_parm;
856 vtbl2 = build (PLUS_EXPR,
857 TREE_TYPE (vtt_parm),
858 vtt_parm,
859 vtt_index);
860 vtbl2 = build1 (INDIRECT_REF, TREE_TYPE (vtbl), vtbl2);
862 /* The actual initializer is the VTT value only in the subobject
863 constructor. In maybe_clone_body we'll substitute NULL for
864 the vtt_parm in the case of the non-subobject constructor. */
865 vtbl = build (COND_EXPR,
866 TREE_TYPE (vtbl),
867 build (EQ_EXPR, boolean_type_node,
868 current_in_charge_parm, integer_zero_node),
869 vtbl2,
870 vtbl);
873 /* Compute the location of the vtpr. */
874 decl = convert_pointer_to_real (vtype_binfo, decl);
875 vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL), vtype);
876 if (vtbl_ptr == error_mark_node)
877 return;
879 /* Assign the vtable to the vptr. */
880 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
881 finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
884 /* If an exception is thrown in a constructor, those base classes already
885 constructed must be destroyed. This function creates the cleanup
886 for BINFO, which has just been constructed. If FLAG is non-NULL,
887 it is a DECL which is non-zero when this base needs to be
888 destroyed. */
890 static void
891 expand_cleanup_for_base (binfo, flag)
892 tree binfo;
893 tree flag;
895 tree expr;
897 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
898 return;
900 /* Call the destructor. */
901 expr = (build_scoped_method_call
902 (current_class_ref, binfo, base_dtor_identifier, NULL_TREE));
903 if (flag)
904 expr = fold (build (COND_EXPR, void_type_node,
905 truthvalue_conversion (flag),
906 expr, integer_zero_node));
908 finish_subobject (expr);
911 /* Subroutine of `expand_aggr_vbase_init'.
912 BINFO is the binfo of the type that is being initialized.
913 INIT_LIST is the list of initializers for the virtual baseclass. */
915 static void
916 expand_aggr_vbase_init_1 (binfo, exp, addr, init_list)
917 tree binfo, exp, addr, init_list;
919 tree init = purpose_member (binfo, init_list);
920 tree ref = build_indirect_ref (addr, NULL);
922 if (init)
923 init = TREE_VALUE (init);
924 /* Call constructors, but don't set up vtables. */
925 expand_aggr_init_1 (binfo, exp, ref, init, LOOKUP_COMPLAIN);
928 /* Construct the virtual base-classes of THIS_REF (whose address is
929 THIS_PTR). The object has the indicated TYPE. The construction
930 actually takes place only if FLAG is non-zero. INIT_LIST is list
931 of initializations for constructors to perform. */
933 static void
934 construct_virtual_bases (type, this_ref, this_ptr, init_list, flag)
935 tree type;
936 tree this_ref;
937 tree this_ptr;
938 tree init_list;
939 tree flag;
941 tree vbases;
943 /* If there are no virtual baseclasses, we shouldn't even be here. */
944 my_friendly_assert (TYPE_USES_VIRTUAL_BASECLASSES (type), 19990621);
946 /* Now, run through the baseclasses, initializing each. */
947 for (vbases = CLASSTYPE_VBASECLASSES (type); vbases;
948 vbases = TREE_CHAIN (vbases))
950 tree inner_if_stmt;
951 tree compound_stmt;
952 tree exp;
953 tree vbase;
955 /* If there are virtual base classes with destructors, we need to
956 emit cleanups to destroy them if an exception is thrown during
957 the construction process. These exception regions (i.e., the
958 period during which the cleanups must occur) begin from the time
959 the construction is complete to the end of the function. If we
960 create a conditional block in which to initialize the
961 base-classes, then the cleanup region for the virtual base begins
962 inside a block, and ends outside of that block. This situation
963 confuses the sjlj exception-handling code. Therefore, we do not
964 create a single conditional block, but one for each
965 initialization. (That way the cleanup regions always begin
966 in the outer block.) We trust the back-end to figure out
967 that the FLAG will not change across initializations, and
968 avoid doing multiple tests. */
969 inner_if_stmt = begin_if_stmt ();
970 finish_if_stmt_cond (flag, inner_if_stmt);
971 compound_stmt = begin_compound_stmt (/*has_no_scope=*/1);
973 /* Compute the location of the virtual base. If we're
974 constructing virtual bases, then we must be the most derived
975 class. Therefore, we don't have to look up the virtual base;
976 we already know where it is. */
977 vbase = TREE_VALUE (vbases);
978 exp = build (PLUS_EXPR,
979 TREE_TYPE (this_ptr),
980 this_ptr,
981 fold (build1 (NOP_EXPR, TREE_TYPE (this_ptr),
982 BINFO_OFFSET (vbase))));
983 exp = build1 (NOP_EXPR,
984 build_pointer_type (BINFO_TYPE (vbase)),
985 exp);
987 expand_aggr_vbase_init_1 (vbase, this_ref, exp, init_list);
988 finish_compound_stmt (/*has_no_scope=*/1, compound_stmt);
989 finish_then_clause (inner_if_stmt);
990 finish_if_stmt ();
992 expand_cleanup_for_base (vbase, flag);
996 /* Find the context in which this FIELD can be initialized. */
998 static tree
999 initializing_context (field)
1000 tree field;
1002 tree t = DECL_CONTEXT (field);
1004 /* Anonymous union members can be initialized in the first enclosing
1005 non-anonymous union context. */
1006 while (t && ANON_AGGR_TYPE_P (t))
1007 t = TYPE_CONTEXT (t);
1008 return t;
1011 /* Function to give error message if member initialization specification
1012 is erroneous. FIELD is the member we decided to initialize.
1013 TYPE is the type for which the initialization is being performed.
1014 FIELD must be a member of TYPE.
1016 MEMBER_NAME is the name of the member. */
1018 static int
1019 member_init_ok_or_else (field, type, member_name)
1020 tree field;
1021 tree type;
1022 tree member_name;
1024 if (field == error_mark_node)
1025 return 0;
1026 if (field == NULL_TREE || initializing_context (field) != type)
1028 cp_error ("class `%T' does not have any field named `%D'", type,
1029 member_name);
1030 return 0;
1032 if (TREE_STATIC (field))
1034 cp_error ("field `%#D' is static; the only point of initialization is its definition",
1035 field);
1036 return 0;
1039 return 1;
1042 /* If NAME is a viable field name for the aggregate DECL,
1043 and PARMS is a viable parameter list, then expand an _EXPR
1044 which describes this initialization.
1046 Note that we do not need to chase through the class's base classes
1047 to look for NAME, because if it's in that list, it will be handled
1048 by the constructor for that base class.
1050 We do not yet have a fixed-point finder to instantiate types
1051 being fed to overloaded constructors. If there is a unique
1052 constructor, then argument types can be got from that one. */
1054 tree
1055 expand_member_init (exp, name, init)
1056 tree exp, name, init;
1058 tree basetype = NULL_TREE, field;
1059 tree type;
1061 if (exp == NULL_TREE)
1062 return NULL_TREE;
1064 type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
1066 if (name && TYPE_P (name))
1068 basetype = name;
1069 name = TYPE_IDENTIFIER (name);
1071 else if (name && TREE_CODE (name) == TYPE_DECL)
1073 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1074 name = DECL_NAME (name);
1077 if (name == NULL_TREE && IS_AGGR_TYPE (type))
1078 switch (CLASSTYPE_N_BASECLASSES (type))
1080 case 0:
1081 error ("base class initializer specified, but no base class to initialize");
1082 return NULL_TREE;
1083 case 1:
1084 basetype = TYPE_BINFO_BASETYPE (type, 0);
1085 break;
1086 default:
1087 error ("initializer for unnamed base class ambiguous");
1088 cp_error ("(type `%T' uses multiple inheritance)", type);
1089 return NULL_TREE;
1092 my_friendly_assert (init != NULL_TREE, 0);
1094 /* The grammar should not allow fields which have names that are
1095 TYPENAMEs. Therefore, if the field has a non-NULL TREE_TYPE, we
1096 may assume that this is an attempt to initialize a base class
1097 member of the current type. Otherwise, it is an attempt to
1098 initialize a member field. */
1100 if (init == void_type_node)
1101 init = NULL_TREE;
1103 if (name == NULL_TREE || basetype)
1105 if (name == NULL_TREE)
1107 #if 0
1108 if (basetype)
1109 name = TYPE_IDENTIFIER (basetype);
1110 else
1112 error ("no base class to initialize");
1113 return;
1115 #endif
1117 else if (basetype != type
1118 && ! current_template_parms
1119 && ! vec_binfo_member (basetype,
1120 TYPE_BINFO_BASETYPES (type))
1121 && ! binfo_for_vbase (basetype, type))
1123 if (IDENTIFIER_CLASS_VALUE (name))
1124 goto try_member;
1125 if (TYPE_USES_VIRTUAL_BASECLASSES (type))
1126 cp_error ("type `%T' is not an immediate or virtual basetype for `%T'",
1127 basetype, type);
1128 else
1129 cp_error ("type `%T' is not an immediate basetype for `%T'",
1130 basetype, type);
1131 return NULL_TREE;
1134 init = build_tree_list (basetype, init);
1136 else
1138 try_member:
1139 field = lookup_field (type, name, 1, 0);
1141 if (! member_init_ok_or_else (field, type, name))
1142 return NULL_TREE;
1144 init = build_tree_list (field, init);
1147 return init;
1150 /* This is like `expand_member_init', only it stores one aggregate
1151 value into another.
1153 INIT comes in two flavors: it is either a value which
1154 is to be stored in EXP, or it is a parameter list
1155 to go to a constructor, which will operate on EXP.
1156 If INIT is not a parameter list for a constructor, then set
1157 LOOKUP_ONLYCONVERTING.
1158 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1159 the initializer, if FLAGS is 0, then it is the (init) form.
1160 If `init' is a CONSTRUCTOR, then we emit a warning message,
1161 explaining that such initializations are invalid.
1163 If INIT resolves to a CALL_EXPR which happens to return
1164 something of the type we are looking for, then we know
1165 that we can safely use that call to perform the
1166 initialization.
1168 The virtual function table pointer cannot be set up here, because
1169 we do not really know its type.
1171 Virtual baseclass pointers are also set up here.
1173 This never calls operator=().
1175 When initializing, nothing is CONST.
1177 A default copy constructor may have to be used to perform the
1178 initialization.
1180 A constructor or a conversion operator may have to be used to
1181 perform the initialization, but not both, as it would be ambiguous. */
1183 tree
1184 build_aggr_init (exp, init, flags)
1185 tree exp, init;
1186 int flags;
1188 tree stmt_expr;
1189 tree compound_stmt;
1190 int destroy_temps;
1191 tree type = TREE_TYPE (exp);
1192 int was_const = TREE_READONLY (exp);
1193 int was_volatile = TREE_THIS_VOLATILE (exp);
1195 if (init == error_mark_node)
1196 return error_mark_node;
1198 TREE_READONLY (exp) = 0;
1199 TREE_THIS_VOLATILE (exp) = 0;
1201 if (init && TREE_CODE (init) != TREE_LIST)
1202 flags |= LOOKUP_ONLYCONVERTING;
1204 if (TREE_CODE (type) == ARRAY_TYPE)
1206 /* Must arrange to initialize each element of EXP
1207 from elements of INIT. */
1208 tree itype = init ? TREE_TYPE (init) : NULL_TREE;
1210 if (init && !itype)
1212 /* Handle bad initializers like:
1213 class COMPLEX {
1214 public:
1215 double re, im;
1216 COMPLEX(double r = 0.0, double i = 0.0) {re = r; im = i;};
1217 ~COMPLEX() {};
1220 int main(int argc, char **argv) {
1221 COMPLEX zees(1.0, 0.0)[10];
1224 cp_error ("bad array initializer");
1225 return error_mark_node;
1227 if (CP_TYPE_QUALS (type) != TYPE_UNQUALIFIED)
1229 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1230 if (init)
1231 TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1233 stmt_expr = build_vec_init (exp, init,
1234 init && same_type_p (TREE_TYPE (init),
1235 TREE_TYPE (exp)));
1236 TREE_READONLY (exp) = was_const;
1237 TREE_THIS_VOLATILE (exp) = was_volatile;
1238 TREE_TYPE (exp) = type;
1239 if (init)
1240 TREE_TYPE (init) = itype;
1241 return stmt_expr;
1244 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1245 /* just know that we've seen something for this node */
1246 TREE_USED (exp) = 1;
1248 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1249 begin_init_stmts (&stmt_expr, &compound_stmt);
1250 destroy_temps = stmts_are_full_exprs_p ();
1251 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1252 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1253 init, LOOKUP_NORMAL|flags);
1254 stmt_expr = finish_init_stmts (stmt_expr, compound_stmt);
1255 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1256 TREE_TYPE (exp) = type;
1257 TREE_READONLY (exp) = was_const;
1258 TREE_THIS_VOLATILE (exp) = was_volatile;
1260 return stmt_expr;
1263 static void
1264 expand_default_init (binfo, true_exp, exp, init, flags)
1265 tree binfo;
1266 tree true_exp, exp;
1267 tree init;
1268 int flags;
1270 tree type = TREE_TYPE (exp);
1271 tree ctor_name;
1273 /* It fails because there may not be a constructor which takes
1274 its own type as the first (or only parameter), but which does
1275 take other types via a conversion. So, if the thing initializing
1276 the expression is a unit element of type X, first try X(X&),
1277 followed by initialization by X. If neither of these work
1278 out, then look hard. */
1279 tree rval;
1280 tree parms;
1282 if (init && TREE_CODE (init) != TREE_LIST
1283 && (flags & LOOKUP_ONLYCONVERTING))
1285 /* Base subobjects should only get direct-initialization. */
1286 if (true_exp != exp)
1287 abort ();
1289 if (flags & DIRECT_BIND)
1290 /* Do nothing. We hit this in two cases: Reference initialization,
1291 where we aren't initializing a real variable, so we don't want
1292 to run a new constructor; and catching an exception, where we
1293 have already built up the constructor call so we could wrap it
1294 in an exception region. */;
1295 else if (TREE_CODE (init) == CONSTRUCTOR)
1296 /* A brace-enclosed initializer has whatever type is
1297 required. There's no need to convert it. */
1299 else
1300 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1302 if (TREE_CODE (init) == TRY_CATCH_EXPR)
1303 /* We need to protect the initialization of a catch parm
1304 with a call to terminate(), which shows up as a TRY_CATCH_EXPR
1305 around the TARGET_EXPR for the copy constructor. See
1306 expand_start_catch_block. */
1307 TREE_OPERAND (init, 0) = build (INIT_EXPR, TREE_TYPE (exp), exp,
1308 TREE_OPERAND (init, 0));
1309 else
1310 init = build (INIT_EXPR, TREE_TYPE (exp), exp, init);
1311 TREE_SIDE_EFFECTS (init) = 1;
1312 finish_expr_stmt (init);
1313 return;
1316 if (init == NULL_TREE
1317 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1319 parms = init;
1320 if (parms)
1321 init = TREE_VALUE (parms);
1323 else
1324 parms = build_tree_list (NULL_TREE, init);
1326 if (true_exp == exp)
1327 ctor_name = complete_ctor_identifier;
1328 else
1329 ctor_name = base_ctor_identifier;
1331 rval = build_method_call (exp, ctor_name, parms, binfo, flags);
1332 if (TREE_SIDE_EFFECTS (rval))
1334 if (building_stmt_tree ())
1335 finish_expr_stmt (rval);
1336 else
1337 genrtl_expr_stmt (rval);
1341 /* This function is responsible for initializing EXP with INIT
1342 (if any).
1344 BINFO is the binfo of the type for who we are performing the
1345 initialization. For example, if W is a virtual base class of A and B,
1346 and C : A, B.
1347 If we are initializing B, then W must contain B's W vtable, whereas
1348 were we initializing C, W must contain C's W vtable.
1350 TRUE_EXP is nonzero if it is the true expression being initialized.
1351 In this case, it may be EXP, or may just contain EXP. The reason we
1352 need this is because if EXP is a base element of TRUE_EXP, we
1353 don't necessarily know by looking at EXP where its virtual
1354 baseclass fields should really be pointing. But we do know
1355 from TRUE_EXP. In constructors, we don't know anything about
1356 the value being initialized.
1358 FLAGS is just passes to `build_method_call'. See that function for
1359 its description. */
1361 static void
1362 expand_aggr_init_1 (binfo, true_exp, exp, init, flags)
1363 tree binfo;
1364 tree true_exp, exp;
1365 tree init;
1366 int flags;
1368 tree type = TREE_TYPE (exp);
1370 my_friendly_assert (init != error_mark_node && type != error_mark_node, 211);
1372 /* Use a function returning the desired type to initialize EXP for us.
1373 If the function is a constructor, and its first argument is
1374 NULL_TREE, know that it was meant for us--just slide exp on
1375 in and expand the constructor. Constructors now come
1376 as TARGET_EXPRs. */
1378 if (init && TREE_CODE (exp) == VAR_DECL
1379 && TREE_CODE (init) == CONSTRUCTOR
1380 && TREE_HAS_CONSTRUCTOR (init))
1382 /* If store_init_value returns NULL_TREE, the INIT has been
1383 record in the DECL_INITIAL for EXP. That means there's
1384 nothing more we have to do. */
1385 if (!store_init_value (exp, init))
1387 if (!building_stmt_tree ())
1388 expand_decl_init (exp);
1390 else
1391 finish_expr_stmt (build (INIT_EXPR, type, exp, init));
1392 return;
1395 /* We know that expand_default_init can handle everything we want
1396 at this point. */
1397 expand_default_init (binfo, true_exp, exp, init, flags);
1400 /* Report an error if TYPE is not a user-defined, aggregate type. If
1401 OR_ELSE is nonzero, give an error message. */
1404 is_aggr_type (type, or_else)
1405 tree type;
1406 int or_else;
1408 if (type == error_mark_node)
1409 return 0;
1411 if (! IS_AGGR_TYPE (type)
1412 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1413 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1415 if (or_else)
1416 cp_error ("`%T' is not an aggregate type", type);
1417 return 0;
1419 return 1;
1422 /* Like is_aggr_typedef, but returns typedef if successful. */
1424 tree
1425 get_aggr_from_typedef (name, or_else)
1426 tree name;
1427 int or_else;
1429 tree type;
1431 if (name == error_mark_node)
1432 return NULL_TREE;
1434 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1435 type = IDENTIFIER_TYPE_VALUE (name);
1436 else
1438 if (or_else)
1439 cp_error ("`%T' fails to be an aggregate typedef", name);
1440 return NULL_TREE;
1443 if (! IS_AGGR_TYPE (type)
1444 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1445 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1447 if (or_else)
1448 cp_error ("type `%T' is of non-aggregate type", type);
1449 return NULL_TREE;
1451 return type;
1454 tree
1455 get_type_value (name)
1456 tree name;
1458 if (name == error_mark_node)
1459 return NULL_TREE;
1461 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1462 return IDENTIFIER_TYPE_VALUE (name);
1463 else
1464 return NULL_TREE;
1468 /* This code could just as well go in `class.c', but is placed here for
1469 modularity. */
1471 /* For an expression of the form TYPE :: NAME (PARMLIST), build
1472 the appropriate function call. */
1474 tree
1475 build_member_call (type, name, parmlist)
1476 tree type, name, parmlist;
1478 tree t;
1479 tree method_name;
1480 int dtor = 0;
1481 tree basetype_path, decl;
1483 if (TREE_CODE (name) == TEMPLATE_ID_EXPR
1484 && TREE_CODE (type) == NAMESPACE_DECL)
1486 /* 'name' already refers to the decls from the namespace, since we
1487 hit do_identifier for template_ids. */
1488 method_name = TREE_OPERAND (name, 0);
1489 /* FIXME: Since we don't do independent names right yet, the
1490 name might also be a LOOKUP_EXPR. Once we resolve this to a
1491 real decl earlier, this can go. This may happen during
1492 tsubst'ing. */
1493 if (TREE_CODE (method_name) == LOOKUP_EXPR)
1495 method_name = lookup_namespace_name
1496 (type, TREE_OPERAND (method_name, 0));
1497 TREE_OPERAND (name, 0) = method_name;
1499 my_friendly_assert (is_overloaded_fn (method_name), 980519);
1500 return build_x_function_call (name, parmlist, current_class_ref);
1503 if (DECL_P (name))
1504 name = DECL_NAME (name);
1506 if (TREE_CODE (type) == NAMESPACE_DECL)
1507 return build_x_function_call (lookup_namespace_name (type, name),
1508 parmlist, current_class_ref);
1510 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1512 method_name = TREE_OPERAND (name, 0);
1513 if (TREE_CODE (method_name) == COMPONENT_REF)
1514 method_name = TREE_OPERAND (method_name, 1);
1515 if (is_overloaded_fn (method_name))
1516 method_name = DECL_NAME (OVL_CURRENT (method_name));
1517 TREE_OPERAND (name, 0) = method_name;
1519 else
1520 method_name = name;
1522 if (TREE_CODE (method_name) == BIT_NOT_EXPR)
1524 method_name = TREE_OPERAND (method_name, 0);
1525 dtor = 1;
1528 /* This shouldn't be here, and build_member_call shouldn't appear in
1529 parse.y! (mrs) */
1530 if (type && TREE_CODE (type) == IDENTIFIER_NODE
1531 && get_aggr_from_typedef (type, 0) == 0)
1533 tree ns = lookup_name (type, 0);
1534 if (ns && TREE_CODE (ns) == NAMESPACE_DECL)
1536 return build_x_function_call (build_offset_ref (type, name), parmlist, current_class_ref);
1540 if (type == NULL_TREE || ! is_aggr_type (type, 1))
1541 return error_mark_node;
1543 /* An operator we did not like. */
1544 if (name == NULL_TREE)
1545 return error_mark_node;
1547 if (dtor)
1549 cp_error ("cannot call destructor `%T::~%T' without object", type,
1550 method_name);
1551 return error_mark_node;
1554 decl = maybe_dummy_object (type, &basetype_path);
1556 /* Convert 'this' to the specified type to disambiguate conversion
1557 to the function's context. Apparently Standard C++ says that we
1558 shouldn't do this. */
1559 if (decl == current_class_ref
1560 && ! pedantic
1561 && ACCESSIBLY_UNIQUELY_DERIVED_P (type, current_class_type))
1563 tree olddecl = current_class_ptr;
1564 tree oldtype = TREE_TYPE (TREE_TYPE (olddecl));
1565 if (oldtype != type)
1567 tree newtype = build_qualified_type (type, TYPE_QUALS (oldtype));
1568 decl = convert_force (build_pointer_type (newtype), olddecl, 0);
1569 decl = build_indirect_ref (decl, NULL);
1573 if (method_name == constructor_name (type)
1574 || method_name == constructor_name_full (type))
1575 return build_functional_cast (type, parmlist);
1576 if (lookup_fnfields (basetype_path, method_name, 0))
1577 return build_method_call (decl,
1578 TREE_CODE (name) == TEMPLATE_ID_EXPR
1579 ? name : method_name,
1580 parmlist, basetype_path,
1581 LOOKUP_NORMAL|LOOKUP_NONVIRTUAL);
1582 if (TREE_CODE (name) == IDENTIFIER_NODE
1583 && ((t = lookup_field (TYPE_BINFO (type), name, 1, 0))))
1585 if (t == error_mark_node)
1586 return error_mark_node;
1587 if (TREE_CODE (t) == FIELD_DECL)
1589 if (is_dummy_object (decl))
1591 cp_error ("invalid use of non-static field `%D'", t);
1592 return error_mark_node;
1594 decl = build (COMPONENT_REF, TREE_TYPE (t), decl, t);
1596 else if (TREE_CODE (t) == VAR_DECL)
1597 decl = t;
1598 else
1600 cp_error ("invalid use of member `%D'", t);
1601 return error_mark_node;
1603 if (TYPE_LANG_SPECIFIC (TREE_TYPE (decl)))
1604 return build_opfncall (CALL_EXPR, LOOKUP_NORMAL, decl,
1605 parmlist, NULL_TREE);
1606 return build_function_call (decl, parmlist);
1608 else
1610 cp_error ("no method `%T::%D'", type, name);
1611 return error_mark_node;
1615 /* Build a reference to a member of an aggregate. This is not a
1616 C++ `&', but really something which can have its address taken,
1617 and then act as a pointer to member, for example TYPE :: FIELD
1618 can have its address taken by saying & TYPE :: FIELD.
1620 @@ Prints out lousy diagnostics for operator <typename>
1621 @@ fields.
1623 @@ This function should be rewritten and placed in search.c. */
1625 tree
1626 build_offset_ref (type, name)
1627 tree type, name;
1629 tree decl, t = error_mark_node;
1630 tree member;
1631 tree basebinfo = NULL_TREE;
1632 tree orig_name = name;
1634 /* class templates can come in as TEMPLATE_DECLs here. */
1635 if (TREE_CODE (name) == TEMPLATE_DECL)
1636 return name;
1638 if (processing_template_decl || uses_template_parms (type))
1639 return build_min_nt (SCOPE_REF, type, name);
1641 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1643 /* If the NAME is a TEMPLATE_ID_EXPR, we are looking at
1644 something like `a.template f<int>' or the like. For the most
1645 part, we treat this just like a.f. We do remember, however,
1646 the template-id that was used. */
1647 name = TREE_OPERAND (orig_name, 0);
1649 if (DECL_P (name))
1650 name = DECL_NAME (name);
1651 else
1653 if (TREE_CODE (name) == LOOKUP_EXPR)
1654 /* This can happen during tsubst'ing. */
1655 name = TREE_OPERAND (name, 0);
1656 else
1658 if (TREE_CODE (name) == COMPONENT_REF)
1659 name = TREE_OPERAND (name, 1);
1660 if (TREE_CODE (name) == OVERLOAD)
1661 name = DECL_NAME (OVL_CURRENT (name));
1665 my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 0);
1668 if (type == NULL_TREE)
1669 return error_mark_node;
1671 /* Handle namespace names fully here. */
1672 if (TREE_CODE (type) == NAMESPACE_DECL)
1674 t = lookup_namespace_name (type, name);
1675 if (t == error_mark_node)
1676 return t;
1677 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1678 /* Reconstruct the TEMPLATE_ID_EXPR. */
1679 t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t),
1680 t, TREE_OPERAND (orig_name, 1));
1681 if (! type_unknown_p (t))
1683 mark_used (t);
1684 t = convert_from_reference (t);
1686 return t;
1689 if (! is_aggr_type (type, 1))
1690 return error_mark_node;
1692 if (TREE_CODE (name) == BIT_NOT_EXPR)
1694 if (! check_dtor_name (type, name))
1695 cp_error ("qualified type `%T' does not match destructor name `~%T'",
1696 type, TREE_OPERAND (name, 0));
1697 name = dtor_identifier;
1700 if (!COMPLETE_TYPE_P (complete_type (type))
1701 && !TYPE_BEING_DEFINED (type))
1703 cp_error ("incomplete type `%T' does not have member `%D'", type,
1704 name);
1705 return error_mark_node;
1708 decl = maybe_dummy_object (type, &basebinfo);
1710 member = lookup_member (basebinfo, name, 1, 0);
1712 if (member == error_mark_node)
1713 return error_mark_node;
1715 /* A lot of this logic is now handled in lookup_member. */
1716 if (member && BASELINK_P (member))
1718 /* Go from the TREE_BASELINK to the member function info. */
1719 tree fnfields = member;
1720 t = TREE_VALUE (fnfields);
1722 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1724 /* The FNFIELDS are going to contain functions that aren't
1725 necessarily templates, and templates that don't
1726 necessarily match the explicit template parameters. We
1727 save all the functions, and the explicit parameters, and
1728 then figure out exactly what to instantiate with what
1729 arguments in instantiate_type. */
1731 if (TREE_CODE (t) != OVERLOAD)
1732 /* The code in instantiate_type which will process this
1733 expects to encounter OVERLOADs, not raw functions. */
1734 t = ovl_cons (t, NULL_TREE);
1736 t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t), t,
1737 TREE_OPERAND (orig_name, 1));
1738 t = build (OFFSET_REF, unknown_type_node, decl, t);
1740 PTRMEM_OK_P (t) = 1;
1742 return t;
1745 if (!really_overloaded_fn (t))
1747 /* Get rid of a potential OVERLOAD around it */
1748 t = OVL_CURRENT (t);
1750 /* unique functions are handled easily. */
1751 if (!enforce_access (basebinfo, t))
1752 return error_mark_node;
1753 mark_used (t);
1754 if (DECL_STATIC_FUNCTION_P (t))
1755 return t;
1756 t = build (OFFSET_REF, TREE_TYPE (t), decl, t);
1757 PTRMEM_OK_P (t) = 1;
1758 return t;
1761 TREE_TYPE (fnfields) = unknown_type_node;
1763 t = build (OFFSET_REF, unknown_type_node, decl, fnfields);
1764 PTRMEM_OK_P (t) = 1;
1765 return t;
1768 t = member;
1770 if (t == NULL_TREE)
1772 cp_error ("`%D' is not a member of type `%T'", name, type);
1773 return error_mark_node;
1776 if (TREE_CODE (t) == TYPE_DECL)
1778 TREE_USED (t) = 1;
1779 return t;
1781 /* static class members and class-specific enum
1782 values can be returned without further ado. */
1783 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == CONST_DECL)
1785 mark_used (t);
1786 return convert_from_reference (t);
1789 if (TREE_CODE (t) == FIELD_DECL && DECL_C_BIT_FIELD (t))
1791 cp_error ("illegal pointer to bit field `%D'", t);
1792 return error_mark_node;
1795 /* static class functions too. */
1796 if (TREE_CODE (t) == FUNCTION_DECL
1797 && TREE_CODE (TREE_TYPE (t)) == FUNCTION_TYPE)
1798 my_friendly_abort (53);
1800 /* In member functions, the form `type::name' is no longer
1801 equivalent to `this->type::name', at least not until
1802 resolve_offset_ref. */
1803 t = build (OFFSET_REF, build_offset_type (type, TREE_TYPE (t)), decl, t);
1804 PTRMEM_OK_P (t) = 1;
1805 return t;
1808 /* If a OFFSET_REF made it through to here, then it did
1809 not have its address taken. */
1811 tree
1812 resolve_offset_ref (exp)
1813 tree exp;
1815 tree type = TREE_TYPE (exp);
1816 tree base = NULL_TREE;
1817 tree member;
1818 tree basetype, addr;
1820 if (TREE_CODE (exp) == OFFSET_REF)
1822 member = TREE_OPERAND (exp, 1);
1823 base = TREE_OPERAND (exp, 0);
1825 else
1827 my_friendly_assert (TREE_CODE (type) == OFFSET_TYPE, 214);
1828 if (TYPE_OFFSET_BASETYPE (type) != current_class_type)
1830 error ("object missing in use of pointer-to-member construct");
1831 return error_mark_node;
1833 member = exp;
1834 type = TREE_TYPE (type);
1835 base = current_class_ref;
1838 if (BASELINK_P (member) || TREE_CODE (member) == TEMPLATE_ID_EXPR)
1839 return build_unary_op (ADDR_EXPR, exp, 0);
1841 if (TREE_CODE (TREE_TYPE (member)) == METHOD_TYPE)
1843 if (!flag_ms_extensions)
1844 /* A single non-static member, make sure we don't allow a
1845 pointer-to-member. */
1846 exp = ovl_cons (member, NULL_TREE);
1848 return build_unary_op (ADDR_EXPR, exp, 0);
1851 if ((TREE_CODE (member) == VAR_DECL
1852 && ! TYPE_PTRMEMFUNC_P (TREE_TYPE (member))
1853 && ! TYPE_PTRMEM_P (TREE_TYPE (member)))
1854 || TREE_CODE (TREE_TYPE (member)) == FUNCTION_TYPE)
1856 /* These were static members. */
1857 if (mark_addressable (member) == 0)
1858 return error_mark_node;
1859 return member;
1862 if (TREE_CODE (TREE_TYPE (member)) == POINTER_TYPE
1863 && TREE_CODE (TREE_TYPE (TREE_TYPE (member))) == METHOD_TYPE)
1864 return member;
1866 /* Syntax error can cause a member which should
1867 have been seen as static to be grok'd as non-static. */
1868 if (TREE_CODE (member) == FIELD_DECL && current_class_ref == NULL_TREE)
1870 cp_error_at ("member `%D' is non-static but referenced as a static member",
1871 member);
1872 error ("at this point in file");
1873 return error_mark_node;
1876 /* The first case is really just a reference to a member of `this'. */
1877 if (TREE_CODE (member) == FIELD_DECL
1878 && (base == current_class_ref || is_dummy_object (base)))
1880 tree expr;
1882 basetype = DECL_CONTEXT (member);
1884 /* Try to get to basetype from 'this'; if that doesn't work,
1885 nothing will. */
1886 base = current_class_ref;
1888 /* First convert to the intermediate base specified, if appropriate. */
1889 if (TREE_CODE (exp) == OFFSET_REF && TREE_CODE (type) == OFFSET_TYPE)
1890 base = build_scoped_ref (base, TYPE_OFFSET_BASETYPE (type));
1892 addr = build_unary_op (ADDR_EXPR, base, 0);
1893 addr = convert_pointer_to (basetype, addr);
1895 if (addr == error_mark_node)
1896 return error_mark_node;
1898 expr = build (COMPONENT_REF, TREE_TYPE (member),
1899 build_indirect_ref (addr, NULL), member);
1900 return convert_from_reference (expr);
1903 /* Ensure that we have an object. */
1904 if (is_dummy_object (base))
1905 addr = error_mark_node;
1906 else
1907 /* If this is a reference to a member function, then return the
1908 address of the member function (which may involve going
1909 through the object's vtable), otherwise, return an expression
1910 for the dereferenced pointer-to-member construct. */
1911 addr = build_unary_op (ADDR_EXPR, base, 0);
1913 if (TYPE_PTRMEM_P (TREE_TYPE (member)))
1915 if (addr == error_mark_node)
1917 cp_error ("object missing in `%E'", exp);
1918 return error_mark_node;
1921 basetype = TYPE_OFFSET_BASETYPE (TREE_TYPE (TREE_TYPE (member)));
1922 addr = convert_pointer_to (basetype, addr);
1923 member = cp_convert (ptrdiff_type_node, member);
1925 return build1 (INDIRECT_REF, type,
1926 build (PLUS_EXPR, build_pointer_type (type),
1927 addr, member));
1929 else if (TYPE_PTRMEMFUNC_P (TREE_TYPE (member)))
1931 return get_member_function_from_ptrfunc (&addr, member);
1933 my_friendly_abort (56);
1934 /* NOTREACHED */
1935 return NULL_TREE;
1938 /* If DECL is a `const' declaration, and its value is a known
1939 constant, then return that value. */
1941 tree
1942 decl_constant_value (decl)
1943 tree decl;
1945 if (TREE_READONLY_DECL_P (decl)
1946 && ! TREE_THIS_VOLATILE (decl)
1947 && DECL_INITIAL (decl)
1948 && DECL_INITIAL (decl) != error_mark_node
1949 /* This is invalid if initial value is not constant.
1950 If it has either a function call, a memory reference,
1951 or a variable, then re-evaluating it could give different results. */
1952 && TREE_CONSTANT (DECL_INITIAL (decl))
1953 /* Check for cases where this is sub-optimal, even though valid. */
1954 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1955 return DECL_INITIAL (decl);
1956 return decl;
1959 /* Common subroutines of build_new and build_vec_delete. */
1961 /* Call the global __builtin_delete to delete ADDR. */
1963 static tree
1964 build_builtin_delete_call (addr)
1965 tree addr;
1967 mark_used (global_delete_fndecl);
1968 return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
1971 /* Generate a C++ "new" expression. DECL is either a TREE_LIST
1972 (which needs to go through some sort of groktypename) or it
1973 is the name of the class we are newing. INIT is an initialization value.
1974 It is either an EXPRLIST, an EXPR_NO_COMMAS, or something in braces.
1975 If INIT is void_type_node, it means do *not* call a constructor
1976 for this instance.
1978 For types with constructors, the data returned is initialized
1979 by the appropriate constructor.
1981 Whether the type has a constructor or not, if it has a pointer
1982 to a virtual function table, then that pointer is set up
1983 here.
1985 Unless I am mistaken, a call to new () will return initialized
1986 data regardless of whether the constructor itself is private or
1987 not. NOPE; new fails if the constructor is private (jcm).
1989 Note that build_new does nothing to assure that any special
1990 alignment requirements of the type are met. Rather, it leaves
1991 it up to malloc to do the right thing. Otherwise, folding to
1992 the right alignment cal cause problems if the user tries to later
1993 free the memory returned by `new'.
1995 PLACEMENT is the `placement' list for user-defined operator new (). */
1997 tree
1998 build_new (placement, decl, init, use_global_new)
1999 tree placement;
2000 tree decl, init;
2001 int use_global_new;
2003 tree type, rval;
2004 tree nelts = NULL_TREE, t;
2005 int has_array = 0;
2007 if (decl == error_mark_node)
2008 return error_mark_node;
2010 if (TREE_CODE (decl) == TREE_LIST)
2012 tree absdcl = TREE_VALUE (decl);
2013 tree last_absdcl = NULL_TREE;
2015 if (current_function_decl
2016 && DECL_CONSTRUCTOR_P (current_function_decl))
2017 my_friendly_assert (immediate_size_expand == 0, 19990926);
2019 nelts = integer_one_node;
2021 if (absdcl && TREE_CODE (absdcl) == CALL_EXPR)
2022 my_friendly_abort (215);
2023 while (absdcl && TREE_CODE (absdcl) == INDIRECT_REF)
2025 last_absdcl = absdcl;
2026 absdcl = TREE_OPERAND (absdcl, 0);
2029 if (absdcl && TREE_CODE (absdcl) == ARRAY_REF)
2031 /* probably meant to be a vec new */
2032 tree this_nelts;
2034 while (TREE_OPERAND (absdcl, 0)
2035 && TREE_CODE (TREE_OPERAND (absdcl, 0)) == ARRAY_REF)
2037 last_absdcl = absdcl;
2038 absdcl = TREE_OPERAND (absdcl, 0);
2041 has_array = 1;
2042 this_nelts = TREE_OPERAND (absdcl, 1);
2043 if (this_nelts != error_mark_node)
2045 if (this_nelts == NULL_TREE)
2046 error ("new of array type fails to specify size");
2047 else if (processing_template_decl)
2049 nelts = this_nelts;
2050 absdcl = TREE_OPERAND (absdcl, 0);
2052 else
2054 if (build_expr_type_conversion (WANT_INT | WANT_ENUM,
2055 this_nelts, 0)
2056 == NULL_TREE)
2057 pedwarn ("size in array new must have integral type");
2059 this_nelts = save_expr (cp_convert (sizetype, this_nelts));
2060 absdcl = TREE_OPERAND (absdcl, 0);
2061 if (this_nelts == integer_zero_node)
2063 warning ("zero size array reserves no space");
2064 nelts = integer_zero_node;
2066 else
2067 nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
2070 else
2071 nelts = integer_zero_node;
2074 if (last_absdcl)
2075 TREE_OPERAND (last_absdcl, 0) = absdcl;
2076 else
2077 TREE_VALUE (decl) = absdcl;
2079 type = groktypename (decl);
2080 if (! type || type == error_mark_node)
2081 return error_mark_node;
2083 else if (TREE_CODE (decl) == IDENTIFIER_NODE)
2085 if (IDENTIFIER_HAS_TYPE_VALUE (decl))
2087 /* An aggregate type. */
2088 type = IDENTIFIER_TYPE_VALUE (decl);
2089 decl = TYPE_MAIN_DECL (type);
2091 else
2093 /* A builtin type. */
2094 decl = lookup_name (decl, 1);
2095 my_friendly_assert (TREE_CODE (decl) == TYPE_DECL, 215);
2096 type = TREE_TYPE (decl);
2099 else if (TREE_CODE (decl) == TYPE_DECL)
2101 type = TREE_TYPE (decl);
2103 else
2105 type = decl;
2106 decl = TYPE_MAIN_DECL (type);
2109 if (processing_template_decl)
2111 if (has_array)
2112 t = tree_cons (tree_cons (NULL_TREE, type, NULL_TREE),
2113 build_min_nt (ARRAY_REF, NULL_TREE, nelts),
2114 NULL_TREE);
2115 else
2116 t = type;
2118 rval = build_min_nt (NEW_EXPR, placement, t, init);
2119 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
2120 return rval;
2123 /* ``A reference cannot be created by the new operator. A reference
2124 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2125 returned by new.'' ARM 5.3.3 */
2126 if (TREE_CODE (type) == REFERENCE_TYPE)
2128 error ("new cannot be applied to a reference type");
2129 type = TREE_TYPE (type);
2132 if (TREE_CODE (type) == FUNCTION_TYPE)
2134 error ("new cannot be applied to a function type");
2135 return error_mark_node;
2138 /* When the object being created is an array, the new-expression yields a
2139 pointer to the initial element (if any) of the array. For example,
2140 both new int and new int[10] return an int*. 5.3.4. */
2141 if (TREE_CODE (type) == ARRAY_TYPE && has_array == 0)
2143 nelts = array_type_nelts_top (type);
2144 has_array = 1;
2145 type = TREE_TYPE (type);
2148 if (has_array)
2149 t = build_nt (ARRAY_REF, type, nelts);
2150 else
2151 t = type;
2153 rval = build (NEW_EXPR, build_pointer_type (type), placement, t, init);
2154 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
2155 TREE_SIDE_EFFECTS (rval) = 1;
2156 rval = build_new_1 (rval);
2157 if (rval == error_mark_node)
2158 return error_mark_node;
2160 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2161 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2162 TREE_NO_UNUSED_WARNING (rval) = 1;
2164 return rval;
2167 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2169 tree
2170 build_java_class_ref (type)
2171 tree type;
2173 tree name = NULL_TREE, class_decl;
2174 static tree CL_suffix = NULL_TREE;
2175 if (CL_suffix == NULL_TREE)
2176 CL_suffix = get_identifier("class$");
2177 if (jclass_node == NULL_TREE)
2179 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2180 if (jclass_node == NULL_TREE)
2181 fatal_error ("call to Java constructor, while `jclass' undefined");
2183 jclass_node = TREE_TYPE (jclass_node);
2186 /* Mangle the class$ field */
2188 tree field;
2189 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2190 if (DECL_NAME (field) == CL_suffix)
2192 mangle_decl (field);
2193 name = DECL_ASSEMBLER_NAME (field);
2194 break;
2196 if (!field)
2197 internal_error ("Can't find class$");
2200 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2201 if (class_decl == NULL_TREE)
2203 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
2204 TREE_STATIC (class_decl) = 1;
2205 DECL_EXTERNAL (class_decl) = 1;
2206 TREE_PUBLIC (class_decl) = 1;
2207 DECL_ARTIFICIAL (class_decl) = 1;
2208 DECL_IGNORED_P (class_decl) = 1;
2209 pushdecl_top_level (class_decl);
2210 make_decl_rtl (class_decl, NULL);
2212 return class_decl;
2215 /* Returns the size of the cookie to use when allocating an array
2216 whose elements have the indicated TYPE. Assumes that it is already
2217 known that a cookie is needed. */
2219 static tree
2220 get_cookie_size (type)
2221 tree type;
2223 tree cookie_size;
2225 /* We need to allocate an additional max (sizeof (size_t), alignof
2226 (true_type)) bytes. */
2227 tree sizetype_size;
2228 tree type_align;
2230 sizetype_size = size_in_bytes (sizetype);
2231 type_align = size_int (TYPE_ALIGN_UNIT (type));
2232 if (INT_CST_LT_UNSIGNED (type_align, sizetype_size))
2233 cookie_size = sizetype_size;
2234 else
2235 cookie_size = type_align;
2237 return cookie_size;
2240 /* Called from cplus_expand_expr when expanding a NEW_EXPR. The return
2241 value is immediately handed to expand_expr. */
2243 static tree
2244 build_new_1 (exp)
2245 tree exp;
2247 tree placement, init;
2248 tree type, true_type, size, rval, t;
2249 tree full_type;
2250 tree nelts = NULL_TREE;
2251 tree alloc_call, alloc_expr, alloc_node;
2252 tree cookie_expr, init_expr;
2253 int has_array = 0;
2254 enum tree_code code;
2255 int use_cookie, nothrow, check_new;
2256 /* Nonzero if the user wrote `::new' rather than just `new'. */
2257 int globally_qualified_p;
2258 /* Nonzero if we're going to call a global operator new, rather than
2259 a class-specific version. */
2260 int use_global_new;
2261 int use_java_new = 0;
2262 /* If non-NULL, the number of extra bytes to allocate at the
2263 beginning of the storage allocated for an array-new expression in
2264 order to store the number of elements. */
2265 tree cookie_size = NULL_TREE;
2266 /* True if the function we are calling is a placement allocation
2267 function. */
2268 bool placement_allocation_fn_p;
2270 placement = TREE_OPERAND (exp, 0);
2271 type = TREE_OPERAND (exp, 1);
2272 init = TREE_OPERAND (exp, 2);
2273 globally_qualified_p = NEW_EXPR_USE_GLOBAL (exp);
2275 if (TREE_CODE (type) == ARRAY_REF)
2277 has_array = 1;
2278 nelts = TREE_OPERAND (type, 1);
2279 type = TREE_OPERAND (type, 0);
2281 full_type = cp_build_binary_op (MINUS_EXPR, nelts, integer_one_node);
2282 full_type = build_index_type (full_type);
2283 full_type = build_cplus_array_type (type, full_type);
2285 else
2286 full_type = type;
2288 true_type = type;
2290 code = has_array ? VEC_NEW_EXPR : NEW_EXPR;
2292 /* If our base type is an array, then make sure we know how many elements
2293 it has. */
2294 while (TREE_CODE (true_type) == ARRAY_TYPE)
2296 tree this_nelts = array_type_nelts_top (true_type);
2297 nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
2298 true_type = TREE_TYPE (true_type);
2301 if (!complete_type_or_else (true_type, exp))
2302 return error_mark_node;
2304 size = size_in_bytes (true_type);
2305 if (has_array)
2306 size = fold (cp_build_binary_op (MULT_EXPR, size, nelts));
2308 if (TREE_CODE (true_type) == VOID_TYPE)
2310 error ("invalid type `void' for new");
2311 return error_mark_node;
2314 if (abstract_virtuals_error (NULL_TREE, true_type))
2315 return error_mark_node;
2317 /* Figure out whether or not we're going to use the global operator
2318 new. */
2319 if (!globally_qualified_p
2320 && IS_AGGR_TYPE (true_type)
2321 && (has_array
2322 ? TYPE_HAS_ARRAY_NEW_OPERATOR (true_type)
2323 : TYPE_HAS_NEW_OPERATOR (true_type)))
2324 use_global_new = 0;
2325 else
2326 use_global_new = 1;
2328 /* We only need cookies for arrays containing types for which we
2329 need cookies. */
2330 if (!has_array || !TYPE_VEC_NEW_USES_COOKIE (true_type))
2331 use_cookie = 0;
2332 /* When using placement new, users may not realize that they need
2333 the extra storage. We require that the operator called be
2334 the global placement operator delete[]. */
2335 else if (placement && !TREE_CHAIN (placement)
2336 && same_type_p (TREE_TYPE (TREE_VALUE (placement)),
2337 ptr_type_node))
2338 use_cookie = !use_global_new;
2339 /* Otherwise, we need the cookie. */
2340 else
2341 use_cookie = 1;
2343 /* Compute the number of extra bytes to allocate, now that we know
2344 whether or not we need the cookie. */
2345 if (use_cookie)
2347 cookie_size = get_cookie_size (true_type);
2348 size = size_binop (PLUS_EXPR, size, cookie_size);
2351 /* Allocate the object. */
2353 if (! placement && TYPE_FOR_JAVA (true_type))
2355 tree class_addr, alloc_decl;
2356 tree class_decl = build_java_class_ref (true_type);
2357 tree class_size = size_in_bytes (true_type);
2358 static const char alloc_name[] = "_Jv_AllocObject";
2359 use_java_new = 1;
2360 alloc_decl = IDENTIFIER_GLOBAL_VALUE (get_identifier (alloc_name));
2361 if (alloc_decl == NULL_TREE)
2362 fatal_error ("call to Java constructor with `%s' undefined",
2363 alloc_name);
2365 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2366 alloc_call = (build_function_call
2367 (alloc_decl,
2368 tree_cons (NULL_TREE, class_addr,
2369 build_tree_list (NULL_TREE, class_size))));
2371 else
2373 tree fnname;
2374 tree args;
2376 args = tree_cons (NULL_TREE, size, placement);
2377 fnname = ansi_opname (code);
2379 if (use_global_new)
2380 alloc_call = (build_new_function_call
2381 (lookup_function_nonclass (fnname, args),
2382 args));
2383 else
2384 alloc_call = build_method_call (build_dummy_object (true_type),
2385 fnname, args, NULL_TREE,
2386 LOOKUP_NORMAL);
2389 if (alloc_call == error_mark_node)
2390 return error_mark_node;
2392 /* The ALLOC_CALL should be a CALL_EXPR, and the first operand
2393 should be the address of a known FUNCTION_DECL. */
2394 my_friendly_assert (TREE_CODE (alloc_call) == CALL_EXPR, 20000521);
2395 t = TREE_OPERAND (alloc_call, 0);
2396 my_friendly_assert (TREE_CODE (t) == ADDR_EXPR, 20000521);
2397 t = TREE_OPERAND (t, 0);
2398 my_friendly_assert (TREE_CODE (t) == FUNCTION_DECL, 20000521);
2399 /* Now, check to see if this function is actually a placement
2400 allocation function. This can happen even when PLACEMENT is NULL
2401 because we might have something like:
2403 struct S { void* operator new (size_t, int i = 0); };
2405 A call to `new S' will get this allocation function, even though
2406 there is no explicit placement argument. If there is more than
2407 one argument, or there are variable arguments, then this is a
2408 placement allocation function. */
2409 placement_allocation_fn_p
2410 = (type_num_arguments (TREE_TYPE (t)) > 1 || varargs_function_p (t));
2412 /* unless an allocation function is declared with an empty excep-
2413 tion-specification (_except.spec_), throw(), it indicates failure to
2414 allocate storage by throwing a bad_alloc exception (clause _except_,
2415 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2416 cation function is declared with an empty exception-specification,
2417 throw(), it returns null to indicate failure to allocate storage and a
2418 non-null pointer otherwise.
2420 So check for a null exception spec on the op new we just called. */
2422 /* The ADDR_EXPR. */
2423 t = TREE_OPERAND (alloc_call, 0);
2424 /* The function. */
2425 t = TREE_OPERAND (t, 0);
2426 nothrow = TYPE_NOTHROW_P (TREE_TYPE (t));
2427 check_new = (flag_check_new || nothrow) && ! use_java_new;
2429 alloc_expr = alloc_call;
2431 if (use_cookie)
2432 /* Adjust so we're pointing to the start of the object. */
2433 alloc_expr = build (PLUS_EXPR, TREE_TYPE (alloc_expr),
2434 alloc_expr, cookie_size);
2436 /* While we're working, use a pointer to the type we've actually
2437 allocated. */
2438 alloc_expr = convert (build_pointer_type (full_type), alloc_expr);
2440 /* Now save the allocation expression so we only evaluate it once. */
2441 alloc_expr = get_target_expr (alloc_expr);
2442 alloc_node = TREE_OPERAND (alloc_expr, 0);
2444 /* Now initialize the cookie. */
2445 if (use_cookie)
2447 tree cookie;
2449 /* Store the number of bytes allocated so that we can know how
2450 many elements to destroy later. We use the last sizeof
2451 (size_t) bytes to store the number of elements. */
2452 cookie = build (MINUS_EXPR, build_pointer_type (sizetype),
2453 alloc_node, size_in_bytes (sizetype));
2454 cookie = build_indirect_ref (cookie, NULL);
2456 cookie_expr = build (MODIFY_EXPR, void_type_node, cookie, nelts);
2457 TREE_SIDE_EFFECTS (cookie_expr) = 1;
2459 else
2460 cookie_expr = NULL_TREE;
2462 /* Now initialize the allocated object. */
2463 init_expr = NULL_TREE;
2464 if (TYPE_NEEDS_CONSTRUCTING (type) || init)
2466 init_expr = build_indirect_ref (alloc_node, NULL);
2468 if (init == void_zero_node)
2469 init = build_default_init (full_type);
2470 else if (init && pedantic && has_array)
2471 cp_pedwarn ("ISO C++ forbids initialization in array new");
2473 if (has_array)
2474 init_expr = build_vec_init (init_expr, init, 0);
2475 else if (TYPE_NEEDS_CONSTRUCTING (type))
2476 init_expr = build_method_call (init_expr,
2477 complete_ctor_identifier,
2478 init, TYPE_BINFO (true_type),
2479 LOOKUP_NORMAL);
2480 else
2482 /* We are processing something like `new int (10)', which
2483 means allocate an int, and initialize it with 10. */
2485 if (TREE_CODE (init) == TREE_LIST)
2487 if (TREE_CHAIN (init) != NULL_TREE)
2488 pedwarn
2489 ("initializer list being treated as compound expression");
2490 init = build_compound_expr (init);
2492 else if (TREE_CODE (init) == CONSTRUCTOR
2493 && TREE_TYPE (init) == NULL_TREE)
2495 pedwarn ("ISO C++ forbids aggregate initializer to new");
2496 init = digest_init (type, init, 0);
2499 init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
2502 if (init_expr == error_mark_node)
2503 return error_mark_node;
2505 /* If any part of the object initialization terminates by throwing an
2506 exception and a suitable deallocation function can be found, the
2507 deallocation function is called to free the memory in which the
2508 object was being constructed, after which the exception continues
2509 to propagate in the context of the new-expression. If no
2510 unambiguous matching deallocation function can be found,
2511 propagating the exception does not cause the object's memory to be
2512 freed. */
2513 if (flag_exceptions && ! use_java_new)
2515 enum tree_code dcode = has_array ? VEC_DELETE_EXPR : DELETE_EXPR;
2516 tree cleanup;
2517 int flags = (LOOKUP_NORMAL
2518 | (globally_qualified_p * LOOKUP_GLOBAL));
2520 /* The Standard is unclear here, but the right thing to do
2521 is to use the same method for finding deallocation
2522 functions that we use for finding allocation functions. */
2523 flags |= LOOKUP_SPECULATIVELY;
2525 cleanup = build_op_delete_call (dcode, alloc_node, size, flags,
2526 (placement_allocation_fn_p
2527 ? alloc_call : NULL_TREE));
2529 /* Ack! First we allocate the memory. Then we set our sentry
2530 variable to true, and expand a cleanup that deletes the memory
2531 if sentry is true. Then we run the constructor, and finally
2532 clear the sentry.
2534 It would be nice to be able to handle this without the sentry
2535 variable, perhaps with a TRY_CATCH_EXPR, but this doesn't
2536 work. We allocate the space first, so if there are any
2537 temporaries with cleanups in the constructor args we need this
2538 EH region to extend until end of full-expression to preserve
2539 nesting.
2541 If the backend had some mechanism so that we could force the
2542 allocation to be expanded after all the other args to the
2543 constructor, that would fix the nesting problem and we could
2544 do away with this complexity. But that would complicate other
2545 things; in particular, it would make it difficult to bail out
2546 if the allocation function returns null. */
2548 if (cleanup)
2550 tree end, sentry, begin;
2552 begin = get_target_expr (boolean_true_node);
2553 sentry = TREE_OPERAND (begin, 0);
2555 TREE_OPERAND (begin, 2)
2556 = build (COND_EXPR, void_type_node, sentry,
2557 cleanup, void_zero_node);
2559 end = build (MODIFY_EXPR, TREE_TYPE (sentry),
2560 sentry, boolean_false_node);
2562 init_expr
2563 = build (COMPOUND_EXPR, void_type_node, begin,
2564 build (COMPOUND_EXPR, void_type_node, init_expr,
2565 end));
2569 else if (CP_TYPE_CONST_P (true_type))
2570 cp_error ("uninitialized const in `new' of `%#T'", true_type);
2572 /* Now build up the return value in reverse order. */
2574 rval = alloc_node;
2576 if (init_expr)
2577 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2578 if (cookie_expr)
2579 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2581 if (rval == alloc_node)
2582 /* If we didn't modify anything, strip the TARGET_EXPR and return the
2583 (adjusted) call. */
2584 rval = TREE_OPERAND (alloc_expr, 1);
2585 else
2587 if (check_new)
2589 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
2590 integer_zero_node);
2591 rval = build_conditional_expr (ifexp, rval, alloc_node);
2594 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2597 /* Now strip the outer ARRAY_TYPE, so we return a pointer to the first
2598 element. */
2599 rval = convert (build_pointer_type (type), rval);
2601 return rval;
2604 static tree
2605 build_vec_delete_1 (base, maxindex, type, auto_delete_vec, use_global_delete)
2606 tree base, maxindex, type;
2607 special_function_kind auto_delete_vec;
2608 int use_global_delete;
2610 tree virtual_size;
2611 tree ptype = build_pointer_type (type = complete_type (type));
2612 tree size_exp = size_in_bytes (type);
2614 /* Temporary variables used by the loop. */
2615 tree tbase, tbase_init;
2617 /* This is the body of the loop that implements the deletion of a
2618 single element, and moves temp variables to next elements. */
2619 tree body;
2621 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2622 tree loop;
2624 /* This is the thing that governs what to do after the loop has run. */
2625 tree deallocate_expr = 0;
2627 /* This is the BIND_EXPR which holds the outermost iterator of the
2628 loop. It is convenient to set this variable up and test it before
2629 executing any other code in the loop.
2630 This is also the containing expression returned by this function. */
2631 tree controller = NULL_TREE;
2633 if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2635 loop = integer_zero_node;
2636 goto no_destructor;
2639 /* The below is short by the cookie size. */
2640 virtual_size = size_binop (MULT_EXPR, size_exp,
2641 convert (sizetype, maxindex));
2643 tbase = create_temporary_var (ptype);
2644 tbase_init = build_modify_expr (tbase, NOP_EXPR,
2645 fold (build (PLUS_EXPR, ptype,
2646 base,
2647 virtual_size)));
2648 DECL_REGISTER (tbase) = 1;
2649 controller = build (BIND_EXPR, void_type_node, tbase, NULL_TREE, NULL_TREE);
2650 TREE_SIDE_EFFECTS (controller) = 1;
2652 body = NULL_TREE;
2654 body = tree_cons (NULL_TREE,
2655 build_delete (ptype, tbase, sfk_complete_destructor,
2656 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1),
2657 body);
2659 body = tree_cons (NULL_TREE,
2660 build_modify_expr (tbase, NOP_EXPR, build (MINUS_EXPR, ptype, tbase, size_exp)),
2661 body);
2663 body = tree_cons (NULL_TREE,
2664 build (EXIT_EXPR, void_type_node,
2665 build (EQ_EXPR, boolean_type_node, base, tbase)),
2666 body);
2668 loop = build (LOOP_EXPR, void_type_node, build_compound_expr (body));
2670 loop = tree_cons (NULL_TREE, tbase_init,
2671 tree_cons (NULL_TREE, loop, NULL_TREE));
2672 loop = build_compound_expr (loop);
2674 no_destructor:
2675 /* If the delete flag is one, or anything else with the low bit set,
2676 delete the storage. */
2677 deallocate_expr = integer_zero_node;
2678 if (auto_delete_vec != sfk_base_destructor)
2680 tree base_tbd;
2682 /* The below is short by the cookie size. */
2683 virtual_size = size_binop (MULT_EXPR, size_exp,
2684 convert (sizetype, maxindex));
2686 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2687 /* no header */
2688 base_tbd = base;
2689 else
2691 tree cookie_size;
2693 cookie_size = get_cookie_size (type);
2694 base_tbd
2695 = cp_convert (ptype,
2696 cp_build_binary_op (MINUS_EXPR,
2697 cp_convert (string_type_node,
2698 base),
2699 cookie_size));
2700 /* True size with header. */
2701 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2704 if (auto_delete_vec == sfk_deleting_destructor)
2705 deallocate_expr = build_x_delete (base_tbd,
2706 2 | use_global_delete,
2707 virtual_size);
2710 if (loop && deallocate_expr != integer_zero_node)
2712 body = tree_cons (NULL_TREE, loop,
2713 tree_cons (NULL_TREE, deallocate_expr, NULL_TREE));
2714 body = build_compound_expr (body);
2716 else
2717 body = loop;
2719 /* Outermost wrapper: If pointer is null, punt. */
2720 body = fold (build (COND_EXPR, void_type_node,
2721 fold (build (NE_EXPR, boolean_type_node, base,
2722 integer_zero_node)),
2723 body, integer_zero_node));
2724 body = build1 (NOP_EXPR, void_type_node, body);
2726 if (controller)
2728 TREE_OPERAND (controller, 1) = body;
2729 return controller;
2731 else
2732 return cp_convert (void_type_node, body);
2735 /* Create an unnamed variable of the indicated TYPE. */
2737 tree
2738 create_temporary_var (type)
2739 tree type;
2741 tree decl;
2743 decl = build_decl (VAR_DECL, NULL_TREE, type);
2744 TREE_USED (decl) = 1;
2745 DECL_ARTIFICIAL (decl) = 1;
2746 DECL_SOURCE_FILE (decl) = input_filename;
2747 DECL_SOURCE_LINE (decl) = lineno;
2748 DECL_IGNORED_P (decl) = 1;
2749 DECL_CONTEXT (decl) = current_function_decl;
2751 return decl;
2754 /* Create a new temporary variable of the indicated TYPE, initialized
2755 to INIT.
2757 It is not entered into current_binding_level, because that breaks
2758 things when it comes time to do final cleanups (which take place
2759 "outside" the binding contour of the function). */
2761 static tree
2762 get_temp_regvar (type, init)
2763 tree type, init;
2765 tree decl;
2767 decl = create_temporary_var (type);
2768 if (building_stmt_tree ())
2769 add_decl_stmt (decl);
2770 if (!building_stmt_tree ())
2771 SET_DECL_RTL (decl, assign_temp (type, 2, 0, 1));
2772 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2774 return decl;
2777 /* `build_vec_init' returns tree structure that performs
2778 initialization of a vector of aggregate types.
2780 BASE is a reference to the vector, of ARRAY_TYPE.
2781 INIT is the (possibly NULL) initializer.
2783 FROM_ARRAY is 0 if we should init everything with INIT
2784 (i.e., every element initialized from INIT).
2785 FROM_ARRAY is 1 if we should index into INIT in parallel
2786 with initialization of DECL.
2787 FROM_ARRAY is 2 if we should index into INIT in parallel,
2788 but use assignment instead of initialization. */
2790 tree
2791 build_vec_init (base, init, from_array)
2792 tree base, init;
2793 int from_array;
2795 tree rval;
2796 tree base2 = NULL_TREE;
2797 tree size;
2798 tree itype = NULL_TREE;
2799 tree iterator;
2800 /* The type of the array. */
2801 tree atype = TREE_TYPE (base);
2802 /* The type of an element in the array. */
2803 tree type = TREE_TYPE (atype);
2804 /* The type of a pointer to an element in the array. */
2805 tree ptype;
2806 tree stmt_expr;
2807 tree compound_stmt;
2808 int destroy_temps;
2809 tree try_block = NULL_TREE;
2810 tree try_body = NULL_TREE;
2811 int num_initialized_elts = 0;
2812 tree maxindex = array_type_nelts (TREE_TYPE (base));
2814 if (maxindex == error_mark_node)
2815 return error_mark_node;
2817 /* For g++.ext/arrnew.C. */
2818 if (init && TREE_CODE (init) == CONSTRUCTOR && TREE_TYPE (init) == NULL_TREE)
2819 init = digest_init (atype, init, 0);
2821 if (init && !TYPE_NEEDS_CONSTRUCTING (type)
2822 && ((TREE_CODE (init) == CONSTRUCTOR
2823 /* Don't do this if the CONSTRUCTOR might contain something
2824 that might throw and require us to clean up. */
2825 && (CONSTRUCTOR_ELTS (init) == NULL_TREE
2826 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (target_type (type))))
2827 || from_array))
2829 /* Do non-default initialization of POD arrays resulting from
2830 brace-enclosed initializers. In this case, digest_init and
2831 store_constructor will handle the semantics for us. */
2833 stmt_expr = build (INIT_EXPR, atype, base, init);
2834 TREE_SIDE_EFFECTS (stmt_expr) = 1;
2835 return stmt_expr;
2838 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2839 ptype = build_pointer_type (type);
2840 size = size_in_bytes (type);
2841 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2842 base = cp_convert (ptype, default_conversion (base));
2844 /* The code we are generating looks like:
2846 T* t1 = (T*) base;
2847 T* rval = t1;
2848 ptrdiff_t iterator = maxindex;
2849 try {
2850 do {
2851 ... initialize *t1 ...
2852 ++t1;
2853 } while (--iterator != -1);
2854 } catch (...) {
2855 ... destroy elements that were constructed ...
2857 return rval;
2859 We can omit the try and catch blocks if we know that the
2860 initialization will never throw an exception, or if the array
2861 elements do not have destructors. We can omit the loop completely if
2862 the elements of the array do not have constructors.
2864 We actually wrap the entire body of the above in a STMT_EXPR, for
2865 tidiness.
2867 When copying from array to another, when the array elements have
2868 only trivial copy constructors, we should use __builtin_memcpy
2869 rather than generating a loop. That way, we could take advantage
2870 of whatever cleverness the back-end has for dealing with copies
2871 of blocks of memory. */
2873 begin_init_stmts (&stmt_expr, &compound_stmt);
2874 destroy_temps = stmts_are_full_exprs_p ();
2875 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2876 rval = get_temp_regvar (ptype, base);
2877 base = get_temp_regvar (ptype, rval);
2878 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2880 /* Protect the entire array initialization so that we can destroy
2881 the partially constructed array if an exception is thrown.
2882 But don't do this if we're assigning. */
2883 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2884 && from_array != 2)
2886 try_block = begin_try_block ();
2887 try_body = begin_compound_stmt (/*has_no_scope=*/1);
2890 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2892 /* Do non-default initialization of non-POD arrays resulting from
2893 brace-enclosed initializers. */
2895 tree elts;
2896 from_array = 0;
2898 for (elts = CONSTRUCTOR_ELTS (init); elts; elts = TREE_CHAIN (elts))
2900 tree elt = TREE_VALUE (elts);
2901 tree baseref = build1 (INDIRECT_REF, type, base);
2903 num_initialized_elts++;
2905 if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2906 finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2907 else
2908 finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2909 elt));
2911 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2912 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2915 /* Clear out INIT so that we don't get confused below. */
2916 init = NULL_TREE;
2918 else if (from_array)
2920 /* If initializing one array from another, initialize element by
2921 element. We rely upon the below calls the do argument
2922 checking. */
2923 if (init)
2925 base2 = default_conversion (init);
2926 itype = TREE_TYPE (base2);
2927 base2 = get_temp_regvar (itype, base2);
2928 itype = TREE_TYPE (itype);
2930 else if (TYPE_LANG_SPECIFIC (type)
2931 && TYPE_NEEDS_CONSTRUCTING (type)
2932 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2934 error ("initializer ends prematurely");
2935 return error_mark_node;
2939 /* Now, default-initialize any remaining elements. We don't need to
2940 do that if a) the type does not need constructing, or b) we've
2941 already initialized all the elements.
2943 We do need to keep going if we're copying an array. */
2945 if (from_array
2946 || (TYPE_NEEDS_CONSTRUCTING (type)
2947 && ! (host_integerp (maxindex, 0)
2948 && (num_initialized_elts
2949 == tree_low_cst (maxindex, 0) + 1))))
2951 /* If the ITERATOR is equal to -1, then we don't have to loop;
2952 we've already initialized all the elements. */
2953 tree if_stmt;
2954 tree do_stmt;
2955 tree do_body;
2956 tree elt_init;
2958 if_stmt = begin_if_stmt ();
2959 finish_if_stmt_cond (build (NE_EXPR, boolean_type_node,
2960 iterator, integer_minus_one_node),
2961 if_stmt);
2963 /* Otherwise, loop through the elements. */
2964 do_stmt = begin_do_stmt ();
2965 do_body = begin_compound_stmt (/*has_no_scope=*/1);
2967 /* When we're not building a statement-tree, things are a little
2968 complicated. If, when we recursively call build_aggr_init,
2969 an expression containing a TARGET_EXPR is expanded, then it
2970 may get a cleanup. Then, the result of that expression is
2971 passed to finish_expr_stmt, which will call
2972 expand_start_target_temps/expand_end_target_temps. However,
2973 the latter call will not cause the cleanup to run because
2974 that block will still be on the block stack. So, we call
2975 expand_start_target_temps here manually; the corresponding
2976 call to expand_end_target_temps below will cause the cleanup
2977 to be performed. */
2978 if (!building_stmt_tree ())
2979 expand_start_target_temps ();
2981 if (from_array)
2983 tree to = build1 (INDIRECT_REF, type, base);
2984 tree from;
2986 if (base2)
2987 from = build1 (INDIRECT_REF, itype, base2);
2988 else
2989 from = NULL_TREE;
2991 if (from_array == 2)
2992 elt_init = build_modify_expr (to, NOP_EXPR, from);
2993 else if (TYPE_NEEDS_CONSTRUCTING (type))
2994 elt_init = build_aggr_init (to, from, 0);
2995 else if (from)
2996 elt_init = build_modify_expr (to, NOP_EXPR, from);
2997 else
2998 my_friendly_abort (57);
3000 else if (TREE_CODE (type) == ARRAY_TYPE)
3002 if (init != 0)
3003 sorry
3004 ("cannot initialize multi-dimensional array with initializer");
3005 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
3006 0, 0);
3008 else
3009 elt_init = build_aggr_init (build1 (INDIRECT_REF, type, base),
3010 init, 0);
3012 /* The initialization of each array element is a
3013 full-expression, as per core issue 124. */
3014 if (!building_stmt_tree ())
3016 genrtl_expr_stmt (elt_init);
3017 expand_end_target_temps ();
3019 else
3021 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3022 finish_expr_stmt (elt_init);
3023 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3026 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
3027 if (base2)
3028 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
3030 finish_compound_stmt (/*has_no_scope=*/1, do_body);
3031 finish_do_body (do_stmt);
3032 finish_do_stmt (build (NE_EXPR, boolean_type_node,
3033 build_unary_op (PREDECREMENT_EXPR, iterator, 0),
3034 integer_minus_one_node),
3035 do_stmt);
3037 finish_then_clause (if_stmt);
3038 finish_if_stmt ();
3041 /* Make sure to cleanup any partially constructed elements. */
3042 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3043 && from_array != 2)
3045 tree e;
3047 finish_compound_stmt (/*has_no_scope=*/1, try_body);
3048 finish_cleanup_try_block (try_block);
3049 e = build_vec_delete_1 (rval,
3050 cp_build_binary_op (MINUS_EXPR, maxindex,
3051 iterator),
3052 type,
3053 sfk_base_destructor,
3054 /*use_global_delete=*/0);
3055 finish_cleanup (e, try_block);
3058 /* The value of the array initialization is the address of the
3059 first element in the array. */
3060 finish_expr_stmt (rval);
3062 stmt_expr = finish_init_stmts (stmt_expr, compound_stmt);
3063 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3064 return stmt_expr;
3067 /* Free up storage of type TYPE, at address ADDR.
3069 TYPE is a POINTER_TYPE and can be ptr_type_node for no special type
3070 of pointer.
3072 VIRTUAL_SIZE is the amount of storage that was allocated, and is
3073 used as the second argument to operator delete. It can include
3074 things like padding and magic size cookies. It has virtual in it,
3075 because if you have a base pointer and you delete through a virtual
3076 destructor, it should be the size of the dynamic object, not the
3077 static object, see Free Store 12.5 ISO C++.
3079 This does not call any destructors. */
3081 tree
3082 build_x_delete (addr, which_delete, virtual_size)
3083 tree addr;
3084 int which_delete;
3085 tree virtual_size;
3087 int use_global_delete = which_delete & 1;
3088 int use_vec_delete = !!(which_delete & 2);
3089 enum tree_code code = use_vec_delete ? VEC_DELETE_EXPR : DELETE_EXPR;
3090 int flags = LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL);
3092 return build_op_delete_call (code, addr, virtual_size, flags, NULL_TREE);
3095 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3096 build_delete. */
3098 static tree
3099 build_dtor_call (exp, dtor_kind, flags)
3100 tree exp;
3101 special_function_kind dtor_kind;
3102 int flags;
3104 tree name;
3106 switch (dtor_kind)
3108 case sfk_complete_destructor:
3109 name = complete_dtor_identifier;
3110 break;
3112 case sfk_base_destructor:
3113 name = base_dtor_identifier;
3114 break;
3116 case sfk_deleting_destructor:
3117 name = deleting_dtor_identifier;
3118 break;
3120 default:
3121 my_friendly_abort (20000524);
3123 return build_method_call (exp, name, NULL_TREE, NULL_TREE, flags);
3126 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3127 ADDR is an expression which yields the store to be destroyed.
3128 AUTO_DELETE is the name of the destructor to call, i.e., either
3129 sfk_complete_destructor, sfk_base_destructor, or
3130 sfk_deleting_destructor.
3132 FLAGS is the logical disjunction of zero or more LOOKUP_
3133 flags. See cp-tree.h for more info.
3135 This function does not delete an object's virtual base classes. */
3137 tree
3138 build_delete (type, addr, auto_delete, flags, use_global_delete)
3139 tree type, addr;
3140 special_function_kind auto_delete;
3141 int flags;
3142 int use_global_delete;
3144 tree member;
3145 tree expr;
3147 if (addr == error_mark_node)
3148 return error_mark_node;
3150 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3151 set to `error_mark_node' before it gets properly cleaned up. */
3152 if (type == error_mark_node)
3153 return error_mark_node;
3155 type = TYPE_MAIN_VARIANT (type);
3157 if (TREE_CODE (type) == POINTER_TYPE)
3159 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3160 if (!VOID_TYPE_P (type) && !complete_type_or_else (type, addr))
3161 return error_mark_node;
3162 if (TREE_CODE (type) == ARRAY_TYPE)
3163 goto handle_array;
3164 if (! IS_AGGR_TYPE (type))
3166 /* Call the builtin operator delete. */
3167 return build_builtin_delete_call (addr);
3169 if (TREE_SIDE_EFFECTS (addr))
3170 addr = save_expr (addr);
3172 /* throw away const and volatile on target type of addr */
3173 addr = convert_force (build_pointer_type (type), addr, 0);
3175 else if (TREE_CODE (type) == ARRAY_TYPE)
3177 handle_array:
3178 if (TREE_SIDE_EFFECTS (addr))
3179 addr = save_expr (addr);
3180 if (TYPE_DOMAIN (type) == NULL_TREE)
3182 error ("unknown array size in delete");
3183 return error_mark_node;
3185 return build_vec_delete (addr, array_type_nelts (type),
3186 auto_delete, use_global_delete);
3188 else
3190 /* Don't check PROTECT here; leave that decision to the
3191 destructor. If the destructor is accessible, call it,
3192 else report error. */
3193 addr = build_unary_op (ADDR_EXPR, addr, 0);
3194 if (TREE_SIDE_EFFECTS (addr))
3195 addr = save_expr (addr);
3197 addr = convert_force (build_pointer_type (type), addr, 0);
3200 my_friendly_assert (IS_AGGR_TYPE (type), 220);
3202 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3204 if (auto_delete != sfk_deleting_destructor)
3205 return void_zero_node;
3207 return build_op_delete_call
3208 (DELETE_EXPR, addr, c_sizeof_nowarn (type),
3209 LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL),
3210 NULL_TREE);
3213 /* Below, we will reverse the order in which these calls are made.
3214 If we have a destructor, then that destructor will take care
3215 of the base classes; otherwise, we must do that here. */
3216 if (TYPE_HAS_DESTRUCTOR (type))
3218 tree do_delete = NULL_TREE;
3219 tree ifexp;
3221 /* For `::delete x', we must not use the deleting destructor
3222 since then we would not be sure to get the global `operator
3223 delete'. */
3224 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3226 /* We will use ADDR multiple times so we must save it. */
3227 addr = save_expr (addr);
3228 /* Delete the object. */
3229 do_delete = build_builtin_delete_call (addr);
3230 /* Otherwise, treat this like a complete object destructor
3231 call. */
3232 auto_delete = sfk_complete_destructor;
3234 /* If the destructor is non-virtual, there is no deleting
3235 variant. Instead, we must explicitly call the appropriate
3236 `operator delete' here. */
3237 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3238 && auto_delete == sfk_deleting_destructor)
3240 /* We will use ADDR multiple times so we must save it. */
3241 addr = save_expr (addr);
3242 /* Build the call. */
3243 do_delete = build_op_delete_call (DELETE_EXPR,
3244 addr,
3245 c_sizeof_nowarn (type),
3246 LOOKUP_NORMAL,
3247 NULL_TREE);
3248 /* Call the complete object destructor. */
3249 auto_delete = sfk_complete_destructor;
3252 expr = build_dtor_call (build_indirect_ref (addr, NULL),
3253 auto_delete, flags);
3254 if (do_delete)
3255 expr = build (COMPOUND_EXPR, void_type_node, expr, do_delete);
3257 if (flags & LOOKUP_DESTRUCTOR)
3258 /* Explicit destructor call; don't check for null pointer. */
3259 ifexp = integer_one_node;
3260 else
3261 /* Handle deleting a null pointer. */
3262 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
3264 if (ifexp != integer_one_node)
3265 expr = build (COND_EXPR, void_type_node,
3266 ifexp, expr, void_zero_node);
3268 return expr;
3270 else
3272 /* We only get here from finish_function for a destructor. */
3273 tree binfos = BINFO_BASETYPES (TYPE_BINFO (type));
3274 int i, n_baseclasses = CLASSTYPE_N_BASECLASSES (type);
3275 tree base_binfo = n_baseclasses > 0 ? TREE_VEC_ELT (binfos, 0) : NULL_TREE;
3276 tree exprstmt = NULL_TREE;
3277 tree ref = build_indirect_ref (addr, NULL);
3279 /* Set this again before we call anything, as we might get called
3280 recursively. */
3281 TYPE_HAS_DESTRUCTOR (type) = 1;
3283 /* If we have member delete or vbases, we call delete in
3284 finish_function. */
3285 my_friendly_assert (auto_delete == sfk_base_destructor, 20000411);
3287 /* Take care of the remaining baseclasses. */
3288 for (i = 0; i < n_baseclasses; i++)
3290 base_binfo = TREE_VEC_ELT (binfos, i);
3291 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3292 || TREE_VIA_VIRTUAL (base_binfo))
3293 continue;
3295 expr = build_scoped_method_call (ref, base_binfo,
3296 base_dtor_identifier,
3297 NULL_TREE);
3299 exprstmt = tree_cons (NULL_TREE, expr, exprstmt);
3302 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
3304 if (TREE_CODE (member) != FIELD_DECL)
3305 continue;
3306 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
3308 tree this_member = build_component_ref (ref, DECL_NAME (member), NULL_TREE, 0);
3309 tree this_type = TREE_TYPE (member);
3310 expr = build_delete (this_type, this_member,
3311 sfk_complete_destructor, flags, 0);
3312 exprstmt = tree_cons (NULL_TREE, expr, exprstmt);
3316 if (exprstmt)
3317 return build_compound_expr (exprstmt);
3318 /* Virtual base classes make this function do nothing. */
3319 return void_zero_node;
3323 /* For type TYPE, delete the virtual baseclass objects of DECL. */
3325 tree
3326 build_vbase_delete (type, decl)
3327 tree type, decl;
3329 tree vbases = CLASSTYPE_VBASECLASSES (type);
3330 tree result = NULL_TREE;
3331 tree addr = build_unary_op (ADDR_EXPR, decl, 0);
3333 my_friendly_assert (addr != error_mark_node, 222);
3335 while (vbases)
3337 tree this_addr
3338 = convert_force (build_pointer_type (BINFO_TYPE (TREE_VALUE (vbases))),
3339 addr, 0);
3340 result = tree_cons (NULL_TREE,
3341 build_delete (TREE_TYPE (this_addr), this_addr,
3342 sfk_base_destructor,
3343 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0),
3344 result);
3345 vbases = TREE_CHAIN (vbases);
3347 return build_compound_expr (nreverse (result));
3350 /* Build a C++ vector delete expression.
3351 MAXINDEX is the number of elements to be deleted.
3352 ELT_SIZE is the nominal size of each element in the vector.
3353 BASE is the expression that should yield the store to be deleted.
3354 This function expands (or synthesizes) these calls itself.
3355 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3357 This also calls delete for virtual baseclasses of elements of the vector.
3359 Update: MAXINDEX is no longer needed. The size can be extracted from the
3360 start of the vector for pointers, and from the type for arrays. We still
3361 use MAXINDEX for arrays because it happens to already have one of the
3362 values we'd have to extract. (We could use MAXINDEX with pointers to
3363 confirm the size, and trap if the numbers differ; not clear that it'd
3364 be worth bothering.) */
3366 tree
3367 build_vec_delete (base, maxindex, auto_delete_vec, use_global_delete)
3368 tree base, maxindex;
3369 special_function_kind auto_delete_vec;
3370 int use_global_delete;
3372 tree type;
3374 if (TREE_CODE (base) == OFFSET_REF)
3375 base = resolve_offset_ref (base);
3377 type = TREE_TYPE (base);
3379 base = stabilize_reference (base);
3381 /* Since we can use base many times, save_expr it. */
3382 if (TREE_SIDE_EFFECTS (base))
3383 base = save_expr (base);
3385 if (TREE_CODE (type) == POINTER_TYPE)
3387 /* Step back one from start of vector, and read dimension. */
3388 tree cookie_addr;
3390 type = strip_array_types (TREE_TYPE (type));
3391 cookie_addr = build (MINUS_EXPR,
3392 build_pointer_type (sizetype),
3393 base,
3394 TYPE_SIZE_UNIT (sizetype));
3395 maxindex = build_indirect_ref (cookie_addr, NULL);
3397 else if (TREE_CODE (type) == ARRAY_TYPE)
3399 /* get the total number of things in the array, maxindex is a bad name */
3400 maxindex = array_type_nelts_total (type);
3401 type = strip_array_types (type);
3402 base = build_unary_op (ADDR_EXPR, base, 1);
3404 else
3406 if (base != error_mark_node)
3407 error ("type to vector delete is neither pointer or array type");
3408 return error_mark_node;
3411 return build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3412 use_global_delete);