1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
36 #include "coretypes.h"
39 #include "hard-reg-set.h"
43 #include "insn-config.h"
46 #include "diagnostic-core.h"
51 #include "cfglayout.h"
53 #include "tree-pass.h"
60 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
62 /* Set to true when we are running first pass of try_optimize_cfg loop. */
63 static bool first_pass
;
65 /* Set to true if crossjumps occured in the latest run of try_optimize_cfg. */
66 static bool crossjumps_occured
;
68 /* Set to true if we couldn't run an optimization due to stale liveness
69 information; we should run df_analyze to enable more opportunities. */
70 static bool block_was_dirty
;
72 static bool try_crossjump_to_edge (int, edge
, edge
, enum replace_direction
);
73 static bool try_crossjump_bb (int, basic_block
);
74 static bool outgoing_edges_match (int, basic_block
, basic_block
);
75 static enum replace_direction
old_insns_match_p (int, rtx
, rtx
);
77 static void merge_blocks_move_predecessor_nojumps (basic_block
, basic_block
);
78 static void merge_blocks_move_successor_nojumps (basic_block
, basic_block
);
79 static bool try_optimize_cfg (int);
80 static bool try_simplify_condjump (basic_block
);
81 static bool try_forward_edges (int, basic_block
);
82 static edge
thread_jump (edge
, basic_block
);
83 static bool mark_effect (rtx
, bitmap
);
84 static void notice_new_block (basic_block
);
85 static void update_forwarder_flag (basic_block
);
86 static int mentions_nonequal_regs (rtx
*, void *);
87 static void merge_memattrs (rtx
, rtx
);
89 /* Set flags for newly created block. */
92 notice_new_block (basic_block bb
)
97 if (forwarder_block_p (bb
))
98 bb
->flags
|= BB_FORWARDER_BLOCK
;
101 /* Recompute forwarder flag after block has been modified. */
104 update_forwarder_flag (basic_block bb
)
106 if (forwarder_block_p (bb
))
107 bb
->flags
|= BB_FORWARDER_BLOCK
;
109 bb
->flags
&= ~BB_FORWARDER_BLOCK
;
112 /* Simplify a conditional jump around an unconditional jump.
113 Return true if something changed. */
116 try_simplify_condjump (basic_block cbranch_block
)
118 basic_block jump_block
, jump_dest_block
, cbranch_dest_block
;
119 edge cbranch_jump_edge
, cbranch_fallthru_edge
;
122 /* Verify that there are exactly two successors. */
123 if (EDGE_COUNT (cbranch_block
->succs
) != 2)
126 /* Verify that we've got a normal conditional branch at the end
128 cbranch_insn
= BB_END (cbranch_block
);
129 if (!any_condjump_p (cbranch_insn
))
132 cbranch_fallthru_edge
= FALLTHRU_EDGE (cbranch_block
);
133 cbranch_jump_edge
= BRANCH_EDGE (cbranch_block
);
135 /* The next block must not have multiple predecessors, must not
136 be the last block in the function, and must contain just the
137 unconditional jump. */
138 jump_block
= cbranch_fallthru_edge
->dest
;
139 if (!single_pred_p (jump_block
)
140 || jump_block
->next_bb
== EXIT_BLOCK_PTR
141 || !FORWARDER_BLOCK_P (jump_block
))
143 jump_dest_block
= single_succ (jump_block
);
145 /* If we are partitioning hot/cold basic blocks, we don't want to
146 mess up unconditional or indirect jumps that cross between hot
149 Basic block partitioning may result in some jumps that appear to
150 be optimizable (or blocks that appear to be mergeable), but which really
151 must be left untouched (they are required to make it safely across
152 partition boundaries). See the comments at the top of
153 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
155 if (BB_PARTITION (jump_block
) != BB_PARTITION (jump_dest_block
)
156 || (cbranch_jump_edge
->flags
& EDGE_CROSSING
))
159 /* The conditional branch must target the block after the
160 unconditional branch. */
161 cbranch_dest_block
= cbranch_jump_edge
->dest
;
163 if (cbranch_dest_block
== EXIT_BLOCK_PTR
164 || !can_fallthru (jump_block
, cbranch_dest_block
))
167 /* Invert the conditional branch. */
168 if (!invert_jump (cbranch_insn
, block_label (jump_dest_block
), 0))
172 fprintf (dump_file
, "Simplifying condjump %i around jump %i\n",
173 INSN_UID (cbranch_insn
), INSN_UID (BB_END (jump_block
)));
175 /* Success. Update the CFG to match. Note that after this point
176 the edge variable names appear backwards; the redirection is done
177 this way to preserve edge profile data. */
178 cbranch_jump_edge
= redirect_edge_succ_nodup (cbranch_jump_edge
,
180 cbranch_fallthru_edge
= redirect_edge_succ_nodup (cbranch_fallthru_edge
,
182 cbranch_jump_edge
->flags
|= EDGE_FALLTHRU
;
183 cbranch_fallthru_edge
->flags
&= ~EDGE_FALLTHRU
;
184 update_br_prob_note (cbranch_block
);
186 /* Delete the block with the unconditional jump, and clean up the mess. */
187 delete_basic_block (jump_block
);
188 tidy_fallthru_edge (cbranch_jump_edge
);
189 update_forwarder_flag (cbranch_block
);
194 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
195 on register. Used by jump threading. */
198 mark_effect (rtx exp
, regset nonequal
)
202 switch (GET_CODE (exp
))
204 /* In case we do clobber the register, mark it as equal, as we know the
205 value is dead so it don't have to match. */
207 if (REG_P (XEXP (exp
, 0)))
209 dest
= XEXP (exp
, 0);
210 regno
= REGNO (dest
);
211 if (HARD_REGISTER_NUM_P (regno
))
212 bitmap_clear_range (nonequal
, regno
,
213 hard_regno_nregs
[regno
][GET_MODE (dest
)]);
215 bitmap_clear_bit (nonequal
, regno
);
220 if (rtx_equal_for_cselib_p (SET_DEST (exp
), SET_SRC (exp
)))
222 dest
= SET_DEST (exp
);
227 regno
= REGNO (dest
);
228 if (HARD_REGISTER_NUM_P (regno
))
229 bitmap_set_range (nonequal
, regno
,
230 hard_regno_nregs
[regno
][GET_MODE (dest
)]);
232 bitmap_set_bit (nonequal
, regno
);
240 /* Return nonzero if X is a register set in regset DATA.
241 Called via for_each_rtx. */
243 mentions_nonequal_regs (rtx
*x
, void *data
)
245 regset nonequal
= (regset
) data
;
251 if (REGNO_REG_SET_P (nonequal
, regno
))
253 if (regno
< FIRST_PSEUDO_REGISTER
)
255 int n
= hard_regno_nregs
[regno
][GET_MODE (*x
)];
257 if (REGNO_REG_SET_P (nonequal
, regno
+ n
))
263 /* Attempt to prove that the basic block B will have no side effects and
264 always continues in the same edge if reached via E. Return the edge
265 if exist, NULL otherwise. */
268 thread_jump (edge e
, basic_block b
)
270 rtx set1
, set2
, cond1
, cond2
, insn
;
271 enum rtx_code code1
, code2
, reversed_code2
;
272 bool reverse1
= false;
276 reg_set_iterator rsi
;
278 if (b
->flags
& BB_NONTHREADABLE_BLOCK
)
281 /* At the moment, we do handle only conditional jumps, but later we may
282 want to extend this code to tablejumps and others. */
283 if (EDGE_COUNT (e
->src
->succs
) != 2)
285 if (EDGE_COUNT (b
->succs
) != 2)
287 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
291 /* Second branch must end with onlyjump, as we will eliminate the jump. */
292 if (!any_condjump_p (BB_END (e
->src
)))
295 if (!any_condjump_p (BB_END (b
)) || !onlyjump_p (BB_END (b
)))
297 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
301 set1
= pc_set (BB_END (e
->src
));
302 set2
= pc_set (BB_END (b
));
303 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
304 != (XEXP (SET_SRC (set1
), 1) == pc_rtx
))
307 cond1
= XEXP (SET_SRC (set1
), 0);
308 cond2
= XEXP (SET_SRC (set2
), 0);
310 code1
= reversed_comparison_code (cond1
, BB_END (e
->src
));
312 code1
= GET_CODE (cond1
);
314 code2
= GET_CODE (cond2
);
315 reversed_code2
= reversed_comparison_code (cond2
, BB_END (b
));
317 if (!comparison_dominates_p (code1
, code2
)
318 && !comparison_dominates_p (code1
, reversed_code2
))
321 /* Ensure that the comparison operators are equivalent.
322 ??? This is far too pessimistic. We should allow swapped operands,
323 different CCmodes, or for example comparisons for interval, that
324 dominate even when operands are not equivalent. */
325 if (!rtx_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
326 || !rtx_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
329 /* Short circuit cases where block B contains some side effects, as we can't
331 for (insn
= NEXT_INSN (BB_HEAD (b
)); insn
!= NEXT_INSN (BB_END (b
));
332 insn
= NEXT_INSN (insn
))
333 if (INSN_P (insn
) && side_effects_p (PATTERN (insn
)))
335 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
341 /* First process all values computed in the source basic block. */
342 for (insn
= NEXT_INSN (BB_HEAD (e
->src
));
343 insn
!= NEXT_INSN (BB_END (e
->src
));
344 insn
= NEXT_INSN (insn
))
346 cselib_process_insn (insn
);
348 nonequal
= BITMAP_ALLOC (NULL
);
349 CLEAR_REG_SET (nonequal
);
351 /* Now assume that we've continued by the edge E to B and continue
352 processing as if it were same basic block.
353 Our goal is to prove that whole block is an NOOP. */
355 for (insn
= NEXT_INSN (BB_HEAD (b
));
356 insn
!= NEXT_INSN (BB_END (b
)) && !failed
;
357 insn
= NEXT_INSN (insn
))
361 rtx pat
= PATTERN (insn
);
363 if (GET_CODE (pat
) == PARALLEL
)
365 for (i
= 0; i
< (unsigned)XVECLEN (pat
, 0); i
++)
366 failed
|= mark_effect (XVECEXP (pat
, 0, i
), nonequal
);
369 failed
|= mark_effect (pat
, nonequal
);
372 cselib_process_insn (insn
);
375 /* Later we should clear nonequal of dead registers. So far we don't
376 have life information in cfg_cleanup. */
379 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
383 /* cond2 must not mention any register that is not equal to the
385 if (for_each_rtx (&cond2
, mentions_nonequal_regs
, nonequal
))
388 EXECUTE_IF_SET_IN_REG_SET (nonequal
, 0, i
, rsi
)
391 BITMAP_FREE (nonequal
);
393 if ((comparison_dominates_p (code1
, code2
) != 0)
394 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
395 return BRANCH_EDGE (b
);
397 return FALLTHRU_EDGE (b
);
400 BITMAP_FREE (nonequal
);
405 /* Attempt to forward edges leaving basic block B.
406 Return true if successful. */
409 try_forward_edges (int mode
, basic_block b
)
411 bool changed
= false;
413 edge e
, *threaded_edges
= NULL
;
415 /* If we are partitioning hot/cold basic blocks, we don't want to
416 mess up unconditional or indirect jumps that cross between hot
419 Basic block partitioning may result in some jumps that appear to
420 be optimizable (or blocks that appear to be mergeable), but which really
421 must be left untouched (they are required to make it safely across
422 partition boundaries). See the comments at the top of
423 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
425 if (find_reg_note (BB_END (b
), REG_CROSSING_JUMP
, NULL_RTX
))
428 for (ei
= ei_start (b
->succs
); (e
= ei_safe_edge (ei
)); )
430 basic_block target
, first
;
431 int counter
, goto_locus
;
432 bool threaded
= false;
433 int nthreaded_edges
= 0;
434 bool may_thread
= first_pass
|| (b
->flags
& BB_MODIFIED
) != 0;
436 /* Skip complex edges because we don't know how to update them.
438 Still handle fallthru edges, as we can succeed to forward fallthru
439 edge to the same place as the branch edge of conditional branch
440 and turn conditional branch to an unconditional branch. */
441 if (e
->flags
& EDGE_COMPLEX
)
447 target
= first
= e
->dest
;
448 counter
= NUM_FIXED_BLOCKS
;
449 goto_locus
= e
->goto_locus
;
451 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
452 up jumps that cross between hot/cold sections.
454 Basic block partitioning may result in some jumps that appear
455 to be optimizable (or blocks that appear to be mergeable), but which
456 really must be left untouched (they are required to make it safely
457 across partition boundaries). See the comments at the top of
458 bb-reorder.c:partition_hot_cold_basic_blocks for complete
461 if (first
!= EXIT_BLOCK_PTR
462 && find_reg_note (BB_END (first
), REG_CROSSING_JUMP
, NULL_RTX
))
465 while (counter
< n_basic_blocks
)
467 basic_block new_target
= NULL
;
468 bool new_target_threaded
= false;
469 may_thread
|= (target
->flags
& BB_MODIFIED
) != 0;
471 if (FORWARDER_BLOCK_P (target
)
472 && !(single_succ_edge (target
)->flags
& EDGE_CROSSING
)
473 && single_succ (target
) != EXIT_BLOCK_PTR
)
475 /* Bypass trivial infinite loops. */
476 new_target
= single_succ (target
);
477 if (target
== new_target
)
478 counter
= n_basic_blocks
;
481 /* When not optimizing, ensure that edges or forwarder
482 blocks with different locus are not optimized out. */
483 int new_locus
= single_succ_edge (target
)->goto_locus
;
484 int locus
= goto_locus
;
486 if (new_locus
&& locus
&& !locator_eq (new_locus
, locus
))
495 last
= BB_END (target
);
496 if (DEBUG_INSN_P (last
))
497 last
= prev_nondebug_insn (last
);
499 new_locus
= last
&& INSN_P (last
)
500 ? INSN_LOCATOR (last
) : 0;
502 if (new_locus
&& locus
&& !locator_eq (new_locus
, locus
))
515 /* Allow to thread only over one edge at time to simplify updating
517 else if ((mode
& CLEANUP_THREADING
) && may_thread
)
519 edge t
= thread_jump (e
, target
);
523 threaded_edges
= XNEWVEC (edge
, n_basic_blocks
);
528 /* Detect an infinite loop across blocks not
529 including the start block. */
530 for (i
= 0; i
< nthreaded_edges
; ++i
)
531 if (threaded_edges
[i
] == t
)
533 if (i
< nthreaded_edges
)
535 counter
= n_basic_blocks
;
540 /* Detect an infinite loop across the start block. */
544 gcc_assert (nthreaded_edges
< n_basic_blocks
- NUM_FIXED_BLOCKS
);
545 threaded_edges
[nthreaded_edges
++] = t
;
547 new_target
= t
->dest
;
548 new_target_threaded
= true;
557 threaded
|= new_target_threaded
;
560 if (counter
>= n_basic_blocks
)
563 fprintf (dump_file
, "Infinite loop in BB %i.\n",
566 else if (target
== first
)
567 ; /* We didn't do anything. */
570 /* Save the values now, as the edge may get removed. */
571 gcov_type edge_count
= e
->count
;
572 int edge_probability
= e
->probability
;
576 e
->goto_locus
= goto_locus
;
578 /* Don't force if target is exit block. */
579 if (threaded
&& target
!= EXIT_BLOCK_PTR
)
581 notice_new_block (redirect_edge_and_branch_force (e
, target
));
583 fprintf (dump_file
, "Conditionals threaded.\n");
585 else if (!redirect_edge_and_branch (e
, target
))
589 "Forwarding edge %i->%i to %i failed.\n",
590 b
->index
, e
->dest
->index
, target
->index
);
595 /* We successfully forwarded the edge. Now update profile
596 data: for each edge we traversed in the chain, remove
597 the original edge's execution count. */
598 edge_frequency
= ((edge_probability
* b
->frequency
599 + REG_BR_PROB_BASE
/ 2)
606 if (!single_succ_p (first
))
608 gcc_assert (n
< nthreaded_edges
);
609 t
= threaded_edges
[n
++];
610 gcc_assert (t
->src
== first
);
611 update_bb_profile_for_threading (first
, edge_frequency
,
613 update_br_prob_note (first
);
617 first
->count
-= edge_count
;
618 if (first
->count
< 0)
620 first
->frequency
-= edge_frequency
;
621 if (first
->frequency
< 0)
622 first
->frequency
= 0;
623 /* It is possible that as the result of
624 threading we've removed edge as it is
625 threaded to the fallthru edge. Avoid
626 getting out of sync. */
627 if (n
< nthreaded_edges
628 && first
== threaded_edges
[n
]->src
)
630 t
= single_succ_edge (first
);
633 t
->count
-= edge_count
;
638 while (first
!= target
);
646 free (threaded_edges
);
651 /* Blocks A and B are to be merged into a single block. A has no incoming
652 fallthru edge, so it can be moved before B without adding or modifying
653 any jumps (aside from the jump from A to B). */
656 merge_blocks_move_predecessor_nojumps (basic_block a
, basic_block b
)
660 /* If we are partitioning hot/cold basic blocks, we don't want to
661 mess up unconditional or indirect jumps that cross between hot
664 Basic block partitioning may result in some jumps that appear to
665 be optimizable (or blocks that appear to be mergeable), but which really
666 must be left untouched (they are required to make it safely across
667 partition boundaries). See the comments at the top of
668 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
670 if (BB_PARTITION (a
) != BB_PARTITION (b
))
673 barrier
= next_nonnote_insn (BB_END (a
));
674 gcc_assert (BARRIER_P (barrier
));
675 delete_insn (barrier
);
677 /* Scramble the insn chain. */
678 if (BB_END (a
) != PREV_INSN (BB_HEAD (b
)))
679 reorder_insns_nobb (BB_HEAD (a
), BB_END (a
), PREV_INSN (BB_HEAD (b
)));
683 fprintf (dump_file
, "Moved block %d before %d and merged.\n",
686 /* Swap the records for the two blocks around. */
689 link_block (a
, b
->prev_bb
);
691 /* Now blocks A and B are contiguous. Merge them. */
695 /* Blocks A and B are to be merged into a single block. B has no outgoing
696 fallthru edge, so it can be moved after A without adding or modifying
697 any jumps (aside from the jump from A to B). */
700 merge_blocks_move_successor_nojumps (basic_block a
, basic_block b
)
702 rtx barrier
, real_b_end
;
705 /* If we are partitioning hot/cold basic blocks, we don't want to
706 mess up unconditional or indirect jumps that cross between hot
709 Basic block partitioning may result in some jumps that appear to
710 be optimizable (or blocks that appear to be mergeable), but which really
711 must be left untouched (they are required to make it safely across
712 partition boundaries). See the comments at the top of
713 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
715 if (BB_PARTITION (a
) != BB_PARTITION (b
))
718 real_b_end
= BB_END (b
);
720 /* If there is a jump table following block B temporarily add the jump table
721 to block B so that it will also be moved to the correct location. */
722 if (tablejump_p (BB_END (b
), &label
, &table
)
723 && prev_active_insn (label
) == BB_END (b
))
728 /* There had better have been a barrier there. Delete it. */
729 barrier
= NEXT_INSN (BB_END (b
));
730 if (barrier
&& BARRIER_P (barrier
))
731 delete_insn (barrier
);
734 /* Scramble the insn chain. */
735 reorder_insns_nobb (BB_HEAD (b
), BB_END (b
), BB_END (a
));
737 /* Restore the real end of b. */
738 BB_END (b
) = real_b_end
;
741 fprintf (dump_file
, "Moved block %d after %d and merged.\n",
744 /* Now blocks A and B are contiguous. Merge them. */
748 /* Attempt to merge basic blocks that are potentially non-adjacent.
749 Return NULL iff the attempt failed, otherwise return basic block
750 where cleanup_cfg should continue. Because the merging commonly
751 moves basic block away or introduces another optimization
752 possibility, return basic block just before B so cleanup_cfg don't
755 It may be good idea to return basic block before C in the case
756 C has been moved after B and originally appeared earlier in the
757 insn sequence, but we have no information available about the
758 relative ordering of these two. Hopefully it is not too common. */
761 merge_blocks_move (edge e
, basic_block b
, basic_block c
, int mode
)
765 /* If we are partitioning hot/cold basic blocks, we don't want to
766 mess up unconditional or indirect jumps that cross between hot
769 Basic block partitioning may result in some jumps that appear to
770 be optimizable (or blocks that appear to be mergeable), but which really
771 must be left untouched (they are required to make it safely across
772 partition boundaries). See the comments at the top of
773 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
775 if (BB_PARTITION (b
) != BB_PARTITION (c
))
778 /* If B has a fallthru edge to C, no need to move anything. */
779 if (e
->flags
& EDGE_FALLTHRU
)
781 int b_index
= b
->index
, c_index
= c
->index
;
783 update_forwarder_flag (b
);
786 fprintf (dump_file
, "Merged %d and %d without moving.\n",
789 return b
->prev_bb
== ENTRY_BLOCK_PTR
? b
: b
->prev_bb
;
792 /* Otherwise we will need to move code around. Do that only if expensive
793 transformations are allowed. */
794 else if (mode
& CLEANUP_EXPENSIVE
)
796 edge tmp_edge
, b_fallthru_edge
;
797 bool c_has_outgoing_fallthru
;
798 bool b_has_incoming_fallthru
;
800 /* Avoid overactive code motion, as the forwarder blocks should be
801 eliminated by edge redirection instead. One exception might have
802 been if B is a forwarder block and C has no fallthru edge, but
803 that should be cleaned up by bb-reorder instead. */
804 if (FORWARDER_BLOCK_P (b
) || FORWARDER_BLOCK_P (c
))
807 /* We must make sure to not munge nesting of lexical blocks,
808 and loop notes. This is done by squeezing out all the notes
809 and leaving them there to lie. Not ideal, but functional. */
811 tmp_edge
= find_fallthru_edge (c
->succs
);
812 c_has_outgoing_fallthru
= (tmp_edge
!= NULL
);
814 tmp_edge
= find_fallthru_edge (b
->preds
);
815 b_has_incoming_fallthru
= (tmp_edge
!= NULL
);
816 b_fallthru_edge
= tmp_edge
;
819 next
= next
->prev_bb
;
821 /* Otherwise, we're going to try to move C after B. If C does
822 not have an outgoing fallthru, then it can be moved
823 immediately after B without introducing or modifying jumps. */
824 if (! c_has_outgoing_fallthru
)
826 merge_blocks_move_successor_nojumps (b
, c
);
827 return next
== ENTRY_BLOCK_PTR
? next
->next_bb
: next
;
830 /* If B does not have an incoming fallthru, then it can be moved
831 immediately before C without introducing or modifying jumps.
832 C cannot be the first block, so we do not have to worry about
833 accessing a non-existent block. */
835 if (b_has_incoming_fallthru
)
839 if (b_fallthru_edge
->src
== ENTRY_BLOCK_PTR
)
841 bb
= force_nonfallthru (b_fallthru_edge
);
843 notice_new_block (bb
);
846 merge_blocks_move_predecessor_nojumps (b
, c
);
847 return next
== ENTRY_BLOCK_PTR
? next
->next_bb
: next
;
854 /* Removes the memory attributes of MEM expression
855 if they are not equal. */
858 merge_memattrs (rtx x
, rtx y
)
867 if (x
== 0 || y
== 0)
872 if (code
!= GET_CODE (y
))
875 if (GET_MODE (x
) != GET_MODE (y
))
878 if (code
== MEM
&& MEM_ATTRS (x
) != MEM_ATTRS (y
))
882 else if (! MEM_ATTRS (y
))
888 if (MEM_ALIAS_SET (x
) != MEM_ALIAS_SET (y
))
890 set_mem_alias_set (x
, 0);
891 set_mem_alias_set (y
, 0);
894 if (! mem_expr_equal_p (MEM_EXPR (x
), MEM_EXPR (y
)))
898 set_mem_offset (x
, 0);
899 set_mem_offset (y
, 0);
901 else if (MEM_OFFSET (x
) != MEM_OFFSET (y
))
903 set_mem_offset (x
, 0);
904 set_mem_offset (y
, 0);
909 else if (!MEM_SIZE (y
))
912 mem_size
= GEN_INT (MAX (INTVAL (MEM_SIZE (x
)),
913 INTVAL (MEM_SIZE (y
))));
914 set_mem_size (x
, mem_size
);
915 set_mem_size (y
, mem_size
);
917 set_mem_align (x
, MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)));
918 set_mem_align (y
, MEM_ALIGN (x
));
922 fmt
= GET_RTX_FORMAT (code
);
923 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
928 /* Two vectors must have the same length. */
929 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
932 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
933 merge_memattrs (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
));
938 merge_memattrs (XEXP (x
, i
), XEXP (y
, i
));
945 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
946 different single sets S1 and S2. */
949 equal_different_set_p (rtx p1
, rtx s1
, rtx p2
, rtx s2
)
954 if (p1
== s1
&& p2
== s2
)
957 if (GET_CODE (p1
) != PARALLEL
|| GET_CODE (p2
) != PARALLEL
)
960 if (XVECLEN (p1
, 0) != XVECLEN (p2
, 0))
963 for (i
= 0; i
< XVECLEN (p1
, 0); i
++)
965 e1
= XVECEXP (p1
, 0, i
);
966 e2
= XVECEXP (p2
, 0, i
);
967 if (e1
== s1
&& e2
== s2
)
970 ? rtx_renumbered_equal_p (e1
, e2
) : rtx_equal_p (e1
, e2
))
979 /* Examine register notes on I1 and I2 and return:
980 - dir_forward if I1 can be replaced by I2, or
981 - dir_backward if I2 can be replaced by I1, or
982 - dir_both if both are the case. */
984 static enum replace_direction
985 can_replace_by (rtx i1
, rtx i2
)
987 rtx s1
, s2
, d1
, d2
, src1
, src2
, note1
, note2
;
990 /* Check for 2 sets. */
991 s1
= single_set (i1
);
992 s2
= single_set (i2
);
993 if (s1
== NULL_RTX
|| s2
== NULL_RTX
)
996 /* Check that the 2 sets set the same dest. */
999 if (!(reload_completed
1000 ? rtx_renumbered_equal_p (d1
, d2
) : rtx_equal_p (d1
, d2
)))
1003 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1004 set dest to the same value. */
1005 note1
= find_reg_equal_equiv_note (i1
);
1006 note2
= find_reg_equal_equiv_note (i2
);
1007 if (!note1
|| !note2
|| !rtx_equal_p (XEXP (note1
, 0), XEXP (note2
, 0))
1008 || !CONST_INT_P (XEXP (note1
, 0)))
1011 if (!equal_different_set_p (PATTERN (i1
), s1
, PATTERN (i2
), s2
))
1014 /* Although the 2 sets set dest to the same value, we cannot replace
1015 (set (dest) (const_int))
1018 because we don't know if the reg is live and has the same value at the
1019 location of replacement. */
1020 src1
= SET_SRC (s1
);
1021 src2
= SET_SRC (s2
);
1022 c1
= CONST_INT_P (src1
);
1023 c2
= CONST_INT_P (src2
);
1029 return dir_backward
;
1034 /* Merges directions A and B. */
1036 static enum replace_direction
1037 merge_dir (enum replace_direction a
, enum replace_direction b
)
1039 /* Implements the following table:
1058 /* Examine I1 and I2 and return:
1059 - dir_forward if I1 can be replaced by I2, or
1060 - dir_backward if I2 can be replaced by I1, or
1061 - dir_both if both are the case. */
1063 static enum replace_direction
1064 old_insns_match_p (int mode ATTRIBUTE_UNUSED
, rtx i1
, rtx i2
)
1068 /* Verify that I1 and I2 are equivalent. */
1069 if (GET_CODE (i1
) != GET_CODE (i2
))
1072 /* __builtin_unreachable() may lead to empty blocks (ending with
1073 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1074 if (NOTE_INSN_BASIC_BLOCK_P (i1
) && NOTE_INSN_BASIC_BLOCK_P (i2
))
1080 if (GET_CODE (p1
) != GET_CODE (p2
))
1083 /* If this is a CALL_INSN, compare register usage information.
1084 If we don't check this on stack register machines, the two
1085 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1086 numbers of stack registers in the same basic block.
1087 If we don't check this on machines with delay slots, a delay slot may
1088 be filled that clobbers a parameter expected by the subroutine.
1090 ??? We take the simple route for now and assume that if they're
1091 equal, they were constructed identically.
1093 Also check for identical exception regions. */
1097 /* Ensure the same EH region. */
1098 rtx n1
= find_reg_note (i1
, REG_EH_REGION
, 0);
1099 rtx n2
= find_reg_note (i2
, REG_EH_REGION
, 0);
1104 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1107 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1
),
1108 CALL_INSN_FUNCTION_USAGE (i2
))
1109 || SIBLING_CALL_P (i1
) != SIBLING_CALL_P (i2
))
1114 /* If cross_jump_death_matters is not 0, the insn's mode
1115 indicates whether or not the insn contains any stack-like
1118 if ((mode
& CLEANUP_POST_REGSTACK
) && stack_regs_mentioned (i1
))
1120 /* If register stack conversion has already been done, then
1121 death notes must also be compared before it is certain that
1122 the two instruction streams match. */
1125 HARD_REG_SET i1_regset
, i2_regset
;
1127 CLEAR_HARD_REG_SET (i1_regset
);
1128 CLEAR_HARD_REG_SET (i2_regset
);
1130 for (note
= REG_NOTES (i1
); note
; note
= XEXP (note
, 1))
1131 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1132 SET_HARD_REG_BIT (i1_regset
, REGNO (XEXP (note
, 0)));
1134 for (note
= REG_NOTES (i2
); note
; note
= XEXP (note
, 1))
1135 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1136 SET_HARD_REG_BIT (i2_regset
, REGNO (XEXP (note
, 0)));
1138 if (!hard_reg_set_equal_p (i1_regset
, i2_regset
))
1143 if (reload_completed
1144 ? rtx_renumbered_equal_p (p1
, p2
) : rtx_equal_p (p1
, p2
))
1147 return can_replace_by (i1
, i2
);
1150 /* When comparing insns I1 and I2 in flow_find_cross_jump or
1151 flow_find_head_matching_sequence, ensure the notes match. */
1154 merge_notes (rtx i1
, rtx i2
)
1156 /* If the merged insns have different REG_EQUAL notes, then
1158 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1159 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1161 if (equiv1
&& !equiv2
)
1162 remove_note (i1
, equiv1
);
1163 else if (!equiv1
&& equiv2
)
1164 remove_note (i2
, equiv2
);
1165 else if (equiv1
&& equiv2
1166 && !rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))
1168 remove_note (i1
, equiv1
);
1169 remove_note (i2
, equiv2
);
1173 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1174 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1175 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1176 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1177 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1180 walk_to_nondebug_insn (rtx
*i1
, basic_block
*bb1
, bool follow_fallthru
,
1185 *did_fallthru
= false;
1188 while (!NONDEBUG_INSN_P (*i1
))
1190 if (*i1
!= BB_HEAD (*bb1
))
1192 *i1
= PREV_INSN (*i1
);
1196 if (!follow_fallthru
)
1199 fallthru
= find_fallthru_edge ((*bb1
)->preds
);
1200 if (!fallthru
|| fallthru
->src
== ENTRY_BLOCK_PTR_FOR_FUNCTION (cfun
)
1201 || !single_succ_p (fallthru
->src
))
1204 *bb1
= fallthru
->src
;
1205 *i1
= BB_END (*bb1
);
1206 *did_fallthru
= true;
1210 /* Look through the insns at the end of BB1 and BB2 and find the longest
1211 sequence that are either equivalent, or allow forward or backward
1212 replacement. Store the first insns for that sequence in *F1 and *F2 and
1213 return the sequence length.
1215 DIR_P indicates the allowed replacement direction on function entry, and
1216 the actual replacement direction on function exit. If NULL, only equivalent
1217 sequences are allowed.
1219 To simplify callers of this function, if the blocks match exactly,
1220 store the head of the blocks in *F1 and *F2. */
1223 flow_find_cross_jump (basic_block bb1
, basic_block bb2
, rtx
*f1
, rtx
*f2
,
1224 enum replace_direction
*dir_p
)
1226 rtx i1
, i2
, last1
, last2
, afterlast1
, afterlast2
;
1229 enum replace_direction dir
, last_dir
, afterlast_dir
;
1230 bool follow_fallthru
, did_fallthru
;
1236 afterlast_dir
= dir
;
1237 last_dir
= afterlast_dir
;
1239 /* Skip simple jumps at the end of the blocks. Complex jumps still
1240 need to be compared for equivalence, which we'll do below. */
1243 last1
= afterlast1
= last2
= afterlast2
= NULL_RTX
;
1245 || (returnjump_p (i1
) && !side_effects_p (PATTERN (i1
))))
1248 i1
= PREV_INSN (i1
);
1253 || (returnjump_p (i2
) && !side_effects_p (PATTERN (i2
))))
1256 /* Count everything except for unconditional jump as insn. */
1257 if (!simplejump_p (i2
) && !returnjump_p (i2
) && last1
)
1259 i2
= PREV_INSN (i2
);
1264 /* In the following example, we can replace all jumps to C by jumps to A.
1266 This removes 4 duplicate insns.
1267 [bb A] insn1 [bb C] insn1
1273 We could also replace all jumps to A by jumps to C, but that leaves B
1274 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1275 step, all jumps to B would be replaced with jumps to the middle of C,
1276 achieving the same result with more effort.
1277 So we allow only the first possibility, which means that we don't allow
1278 fallthru in the block that's being replaced. */
1280 follow_fallthru
= dir_p
&& dir
!= dir_forward
;
1281 walk_to_nondebug_insn (&i1
, &bb1
, follow_fallthru
, &did_fallthru
);
1285 follow_fallthru
= dir_p
&& dir
!= dir_backward
;
1286 walk_to_nondebug_insn (&i2
, &bb2
, follow_fallthru
, &did_fallthru
);
1290 if (i1
== BB_HEAD (bb1
) || i2
== BB_HEAD (bb2
))
1293 dir
= merge_dir (dir
, old_insns_match_p (0, i1
, i2
));
1294 if (dir
== dir_none
|| (!dir_p
&& dir
!= dir_both
))
1297 merge_memattrs (i1
, i2
);
1299 /* Don't begin a cross-jump with a NOTE insn. */
1302 merge_notes (i1
, i2
);
1304 afterlast1
= last1
, afterlast2
= last2
;
1305 last1
= i1
, last2
= i2
;
1306 afterlast_dir
= last_dir
;
1309 if (!(GET_CODE (p1
) == USE
|| GET_CODE (p1
) == CLOBBER
))
1313 i1
= PREV_INSN (i1
);
1314 i2
= PREV_INSN (i2
);
1318 /* Don't allow the insn after a compare to be shared by
1319 cross-jumping unless the compare is also shared. */
1320 if (ninsns
&& reg_mentioned_p (cc0_rtx
, last1
) && ! sets_cc0_p (last1
))
1321 last1
= afterlast1
, last2
= afterlast2
, last_dir
= afterlast_dir
, ninsns
--;
1324 /* Include preceding notes and labels in the cross-jump. One,
1325 this may bring us to the head of the blocks as requested above.
1326 Two, it keeps line number notes as matched as may be. */
1329 bb1
= BLOCK_FOR_INSN (last1
);
1330 while (last1
!= BB_HEAD (bb1
) && !NONDEBUG_INSN_P (PREV_INSN (last1
)))
1331 last1
= PREV_INSN (last1
);
1333 if (last1
!= BB_HEAD (bb1
) && LABEL_P (PREV_INSN (last1
)))
1334 last1
= PREV_INSN (last1
);
1336 bb2
= BLOCK_FOR_INSN (last2
);
1337 while (last2
!= BB_HEAD (bb2
) && !NONDEBUG_INSN_P (PREV_INSN (last2
)))
1338 last2
= PREV_INSN (last2
);
1340 if (last2
!= BB_HEAD (bb2
) && LABEL_P (PREV_INSN (last2
)))
1341 last2
= PREV_INSN (last2
);
1352 /* Like flow_find_cross_jump, except start looking for a matching sequence from
1353 the head of the two blocks. Do not include jumps at the end.
1354 If STOP_AFTER is nonzero, stop after finding that many matching
1358 flow_find_head_matching_sequence (basic_block bb1
, basic_block bb2
, rtx
*f1
,
1359 rtx
*f2
, int stop_after
)
1361 rtx i1
, i2
, last1
, last2
, beforelast1
, beforelast2
;
1365 int nehedges1
= 0, nehedges2
= 0;
1367 FOR_EACH_EDGE (e
, ei
, bb1
->succs
)
1368 if (e
->flags
& EDGE_EH
)
1370 FOR_EACH_EDGE (e
, ei
, bb2
->succs
)
1371 if (e
->flags
& EDGE_EH
)
1376 last1
= beforelast1
= last2
= beforelast2
= NULL_RTX
;
1380 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1381 while (!NONDEBUG_INSN_P (i1
) && i1
!= BB_END (bb1
))
1383 if (NOTE_P (i1
) && NOTE_KIND (i1
) == NOTE_INSN_EPILOGUE_BEG
)
1385 i1
= NEXT_INSN (i1
);
1388 while (!NONDEBUG_INSN_P (i2
) && i2
!= BB_END (bb2
))
1390 if (NOTE_P (i2
) && NOTE_KIND (i2
) == NOTE_INSN_EPILOGUE_BEG
)
1392 i2
= NEXT_INSN (i2
);
1395 if ((i1
== BB_END (bb1
) && !NONDEBUG_INSN_P (i1
))
1396 || (i2
== BB_END (bb2
) && !NONDEBUG_INSN_P (i2
)))
1399 if (NOTE_P (i1
) || NOTE_P (i2
)
1400 || JUMP_P (i1
) || JUMP_P (i2
))
1403 /* A sanity check to make sure we're not merging insns with different
1404 effects on EH. If only one of them ends a basic block, it shouldn't
1405 have an EH edge; if both end a basic block, there should be the same
1406 number of EH edges. */
1407 if ((i1
== BB_END (bb1
) && i2
!= BB_END (bb2
)
1409 || (i2
== BB_END (bb2
) && i1
!= BB_END (bb1
)
1411 || (i1
== BB_END (bb1
) && i2
== BB_END (bb2
)
1412 && nehedges1
!= nehedges2
))
1415 if (old_insns_match_p (0, i1
, i2
) != dir_both
)
1418 merge_memattrs (i1
, i2
);
1420 /* Don't begin a cross-jump with a NOTE insn. */
1423 merge_notes (i1
, i2
);
1425 beforelast1
= last1
, beforelast2
= last2
;
1426 last1
= i1
, last2
= i2
;
1430 if (i1
== BB_END (bb1
) || i2
== BB_END (bb2
)
1431 || (stop_after
> 0 && ninsns
== stop_after
))
1434 i1
= NEXT_INSN (i1
);
1435 i2
= NEXT_INSN (i2
);
1439 /* Don't allow a compare to be shared by cross-jumping unless the insn
1440 after the compare is also shared. */
1441 if (ninsns
&& reg_mentioned_p (cc0_rtx
, last1
) && sets_cc0_p (last1
))
1442 last1
= beforelast1
, last2
= beforelast2
, ninsns
--;
1454 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1455 the branch instruction. This means that if we commonize the control
1456 flow before end of the basic block, the semantic remains unchanged.
1458 We may assume that there exists one edge with a common destination. */
1461 outgoing_edges_match (int mode
, basic_block bb1
, basic_block bb2
)
1463 int nehedges1
= 0, nehedges2
= 0;
1464 edge fallthru1
= 0, fallthru2
= 0;
1468 /* If BB1 has only one successor, we may be looking at either an
1469 unconditional jump, or a fake edge to exit. */
1470 if (single_succ_p (bb1
)
1471 && (single_succ_edge (bb1
)->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1472 && (!JUMP_P (BB_END (bb1
)) || simplejump_p (BB_END (bb1
))))
1473 return (single_succ_p (bb2
)
1474 && (single_succ_edge (bb2
)->flags
1475 & (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1476 && (!JUMP_P (BB_END (bb2
)) || simplejump_p (BB_END (bb2
))));
1478 /* Match conditional jumps - this may get tricky when fallthru and branch
1479 edges are crossed. */
1480 if (EDGE_COUNT (bb1
->succs
) == 2
1481 && any_condjump_p (BB_END (bb1
))
1482 && onlyjump_p (BB_END (bb1
)))
1484 edge b1
, f1
, b2
, f2
;
1485 bool reverse
, match
;
1486 rtx set1
, set2
, cond1
, cond2
;
1487 enum rtx_code code1
, code2
;
1489 if (EDGE_COUNT (bb2
->succs
) != 2
1490 || !any_condjump_p (BB_END (bb2
))
1491 || !onlyjump_p (BB_END (bb2
)))
1494 b1
= BRANCH_EDGE (bb1
);
1495 b2
= BRANCH_EDGE (bb2
);
1496 f1
= FALLTHRU_EDGE (bb1
);
1497 f2
= FALLTHRU_EDGE (bb2
);
1499 /* Get around possible forwarders on fallthru edges. Other cases
1500 should be optimized out already. */
1501 if (FORWARDER_BLOCK_P (f1
->dest
))
1502 f1
= single_succ_edge (f1
->dest
);
1504 if (FORWARDER_BLOCK_P (f2
->dest
))
1505 f2
= single_succ_edge (f2
->dest
);
1507 /* To simplify use of this function, return false if there are
1508 unneeded forwarder blocks. These will get eliminated later
1509 during cleanup_cfg. */
1510 if (FORWARDER_BLOCK_P (f1
->dest
)
1511 || FORWARDER_BLOCK_P (f2
->dest
)
1512 || FORWARDER_BLOCK_P (b1
->dest
)
1513 || FORWARDER_BLOCK_P (b2
->dest
))
1516 if (f1
->dest
== f2
->dest
&& b1
->dest
== b2
->dest
)
1518 else if (f1
->dest
== b2
->dest
&& b1
->dest
== f2
->dest
)
1523 set1
= pc_set (BB_END (bb1
));
1524 set2
= pc_set (BB_END (bb2
));
1525 if ((XEXP (SET_SRC (set1
), 1) == pc_rtx
)
1526 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
1529 cond1
= XEXP (SET_SRC (set1
), 0);
1530 cond2
= XEXP (SET_SRC (set2
), 0);
1531 code1
= GET_CODE (cond1
);
1533 code2
= reversed_comparison_code (cond2
, BB_END (bb2
));
1535 code2
= GET_CODE (cond2
);
1537 if (code2
== UNKNOWN
)
1540 /* Verify codes and operands match. */
1541 match
= ((code1
== code2
1542 && rtx_renumbered_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
1543 && rtx_renumbered_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
1544 || (code1
== swap_condition (code2
)
1545 && rtx_renumbered_equal_p (XEXP (cond1
, 1),
1547 && rtx_renumbered_equal_p (XEXP (cond1
, 0),
1550 /* If we return true, we will join the blocks. Which means that
1551 we will only have one branch prediction bit to work with. Thus
1552 we require the existing branches to have probabilities that are
1555 && optimize_bb_for_speed_p (bb1
)
1556 && optimize_bb_for_speed_p (bb2
))
1560 if (b1
->dest
== b2
->dest
)
1561 prob2
= b2
->probability
;
1563 /* Do not use f2 probability as f2 may be forwarded. */
1564 prob2
= REG_BR_PROB_BASE
- b2
->probability
;
1566 /* Fail if the difference in probabilities is greater than 50%.
1567 This rules out two well-predicted branches with opposite
1569 if (abs (b1
->probability
- prob2
) > REG_BR_PROB_BASE
/ 2)
1573 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1574 bb1
->index
, bb2
->index
, b1
->probability
, prob2
);
1580 if (dump_file
&& match
)
1581 fprintf (dump_file
, "Conditionals in bb %i and %i match.\n",
1582 bb1
->index
, bb2
->index
);
1587 /* Generic case - we are seeing a computed jump, table jump or trapping
1590 /* Check whether there are tablejumps in the end of BB1 and BB2.
1591 Return true if they are identical. */
1596 if (tablejump_p (BB_END (bb1
), &label1
, &table1
)
1597 && tablejump_p (BB_END (bb2
), &label2
, &table2
)
1598 && GET_CODE (PATTERN (table1
)) == GET_CODE (PATTERN (table2
)))
1600 /* The labels should never be the same rtx. If they really are same
1601 the jump tables are same too. So disable crossjumping of blocks BB1
1602 and BB2 because when deleting the common insns in the end of BB1
1603 by delete_basic_block () the jump table would be deleted too. */
1604 /* If LABEL2 is referenced in BB1->END do not do anything
1605 because we would loose information when replacing
1606 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1607 if (label1
!= label2
&& !rtx_referenced_p (label2
, BB_END (bb1
)))
1609 /* Set IDENTICAL to true when the tables are identical. */
1610 bool identical
= false;
1613 p1
= PATTERN (table1
);
1614 p2
= PATTERN (table2
);
1615 if (GET_CODE (p1
) == ADDR_VEC
&& rtx_equal_p (p1
, p2
))
1619 else if (GET_CODE (p1
) == ADDR_DIFF_VEC
1620 && (XVECLEN (p1
, 1) == XVECLEN (p2
, 1))
1621 && rtx_equal_p (XEXP (p1
, 2), XEXP (p2
, 2))
1622 && rtx_equal_p (XEXP (p1
, 3), XEXP (p2
, 3)))
1627 for (i
= XVECLEN (p1
, 1) - 1; i
>= 0 && identical
; i
--)
1628 if (!rtx_equal_p (XVECEXP (p1
, 1, i
), XVECEXP (p2
, 1, i
)))
1634 replace_label_data rr
;
1637 /* Temporarily replace references to LABEL1 with LABEL2
1638 in BB1->END so that we could compare the instructions. */
1641 rr
.update_label_nuses
= false;
1642 for_each_rtx (&BB_END (bb1
), replace_label
, &rr
);
1644 match
= (old_insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
))
1646 if (dump_file
&& match
)
1648 "Tablejumps in bb %i and %i match.\n",
1649 bb1
->index
, bb2
->index
);
1651 /* Set the original label in BB1->END because when deleting
1652 a block whose end is a tablejump, the tablejump referenced
1653 from the instruction is deleted too. */
1656 for_each_rtx (&BB_END (bb1
), replace_label
, &rr
);
1665 /* First ensure that the instructions match. There may be many outgoing
1666 edges so this test is generally cheaper. */
1667 if (old_insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
)) != dir_both
)
1670 /* Search the outgoing edges, ensure that the counts do match, find possible
1671 fallthru and exception handling edges since these needs more
1673 if (EDGE_COUNT (bb1
->succs
) != EDGE_COUNT (bb2
->succs
))
1676 FOR_EACH_EDGE (e1
, ei
, bb1
->succs
)
1678 e2
= EDGE_SUCC (bb2
, ei
.index
);
1680 if (e1
->flags
& EDGE_EH
)
1683 if (e2
->flags
& EDGE_EH
)
1686 if (e1
->flags
& EDGE_FALLTHRU
)
1688 if (e2
->flags
& EDGE_FALLTHRU
)
1692 /* If number of edges of various types does not match, fail. */
1693 if (nehedges1
!= nehedges2
1694 || (fallthru1
!= 0) != (fallthru2
!= 0))
1697 /* fallthru edges must be forwarded to the same destination. */
1700 basic_block d1
= (forwarder_block_p (fallthru1
->dest
)
1701 ? single_succ (fallthru1
->dest
): fallthru1
->dest
);
1702 basic_block d2
= (forwarder_block_p (fallthru2
->dest
)
1703 ? single_succ (fallthru2
->dest
): fallthru2
->dest
);
1709 /* Ensure the same EH region. */
1711 rtx n1
= find_reg_note (BB_END (bb1
), REG_EH_REGION
, 0);
1712 rtx n2
= find_reg_note (BB_END (bb2
), REG_EH_REGION
, 0);
1717 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1721 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1722 version of sequence abstraction. */
1723 FOR_EACH_EDGE (e1
, ei
, bb2
->succs
)
1727 basic_block d1
= e1
->dest
;
1729 if (FORWARDER_BLOCK_P (d1
))
1730 d1
= EDGE_SUCC (d1
, 0)->dest
;
1732 FOR_EACH_EDGE (e2
, ei
, bb1
->succs
)
1734 basic_block d2
= e2
->dest
;
1735 if (FORWARDER_BLOCK_P (d2
))
1736 d2
= EDGE_SUCC (d2
, 0)->dest
;
1748 /* Returns true if BB basic block has a preserve label. */
1751 block_has_preserve_label (basic_block bb
)
1755 && LABEL_PRESERVE_P (block_label (bb
)));
1758 /* E1 and E2 are edges with the same destination block. Search their
1759 predecessors for common code. If found, redirect control flow from
1760 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1761 or the other way around (dir_backward). DIR specifies the allowed
1762 replacement direction. */
1765 try_crossjump_to_edge (int mode
, edge e1
, edge e2
,
1766 enum replace_direction dir
)
1769 basic_block src1
= e1
->src
, src2
= e2
->src
;
1770 basic_block redirect_to
, redirect_from
, to_remove
;
1771 basic_block osrc1
, osrc2
, redirect_edges_to
, tmp
;
1772 rtx newpos1
, newpos2
;
1776 newpos1
= newpos2
= NULL_RTX
;
1778 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1779 to try this optimization.
1781 Basic block partitioning may result in some jumps that appear to
1782 be optimizable (or blocks that appear to be mergeable), but which really
1783 must be left untouched (they are required to make it safely across
1784 partition boundaries). See the comments at the top of
1785 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1787 if (flag_reorder_blocks_and_partition
&& reload_completed
)
1790 /* Search backward through forwarder blocks. We don't need to worry
1791 about multiple entry or chained forwarders, as they will be optimized
1792 away. We do this to look past the unconditional jump following a
1793 conditional jump that is required due to the current CFG shape. */
1794 if (single_pred_p (src1
)
1795 && FORWARDER_BLOCK_P (src1
))
1796 e1
= single_pred_edge (src1
), src1
= e1
->src
;
1798 if (single_pred_p (src2
)
1799 && FORWARDER_BLOCK_P (src2
))
1800 e2
= single_pred_edge (src2
), src2
= e2
->src
;
1802 /* Nothing to do if we reach ENTRY, or a common source block. */
1803 if (src1
== ENTRY_BLOCK_PTR
|| src2
== ENTRY_BLOCK_PTR
)
1808 /* Seeing more than 1 forwarder blocks would confuse us later... */
1809 if (FORWARDER_BLOCK_P (e1
->dest
)
1810 && FORWARDER_BLOCK_P (single_succ (e1
->dest
)))
1813 if (FORWARDER_BLOCK_P (e2
->dest
)
1814 && FORWARDER_BLOCK_P (single_succ (e2
->dest
)))
1817 /* Likewise with dead code (possibly newly created by the other optimizations
1819 if (EDGE_COUNT (src1
->preds
) == 0 || EDGE_COUNT (src2
->preds
) == 0)
1822 /* Look for the common insn sequence, part the first ... */
1823 if (!outgoing_edges_match (mode
, src1
, src2
))
1826 /* ... and part the second. */
1827 nmatch
= flow_find_cross_jump (src1
, src2
, &newpos1
, &newpos2
, &dir
);
1831 if (newpos1
!= NULL_RTX
)
1832 src1
= BLOCK_FOR_INSN (newpos1
);
1833 if (newpos2
!= NULL_RTX
)
1834 src2
= BLOCK_FOR_INSN (newpos2
);
1836 if (dir
== dir_backward
)
1838 #define SWAP(T, X, Y) do { T tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
1839 SWAP (basic_block
, osrc1
, osrc2
);
1840 SWAP (basic_block
, src1
, src2
);
1841 SWAP (edge
, e1
, e2
);
1842 SWAP (rtx
, newpos1
, newpos2
);
1846 /* Don't proceed with the crossjump unless we found a sufficient number
1847 of matching instructions or the 'from' block was totally matched
1848 (such that its predecessors will hopefully be redirected and the
1850 if ((nmatch
< PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS
))
1851 && (newpos1
!= BB_HEAD (src1
)))
1854 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1855 if (block_has_preserve_label (e1
->dest
)
1856 && (e1
->flags
& EDGE_ABNORMAL
))
1859 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1861 If we have tablejumps in the end of SRC1 and SRC2
1862 they have been already compared for equivalence in outgoing_edges_match ()
1863 so replace the references to TABLE1 by references to TABLE2. */
1868 if (tablejump_p (BB_END (osrc1
), &label1
, &table1
)
1869 && tablejump_p (BB_END (osrc2
), &label2
, &table2
)
1870 && label1
!= label2
)
1872 replace_label_data rr
;
1875 /* Replace references to LABEL1 with LABEL2. */
1878 rr
.update_label_nuses
= true;
1879 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1881 /* Do not replace the label in SRC1->END because when deleting
1882 a block whose end is a tablejump, the tablejump referenced
1883 from the instruction is deleted too. */
1884 if (insn
!= BB_END (osrc1
))
1885 for_each_rtx (&insn
, replace_label
, &rr
);
1890 /* Avoid splitting if possible. We must always split when SRC2 has
1891 EH predecessor edges, or we may end up with basic blocks with both
1892 normal and EH predecessor edges. */
1893 if (newpos2
== BB_HEAD (src2
)
1894 && !(EDGE_PRED (src2
, 0)->flags
& EDGE_EH
))
1898 if (newpos2
== BB_HEAD (src2
))
1900 /* Skip possible basic block header. */
1901 if (LABEL_P (newpos2
))
1902 newpos2
= NEXT_INSN (newpos2
);
1903 while (DEBUG_INSN_P (newpos2
))
1904 newpos2
= NEXT_INSN (newpos2
);
1905 if (NOTE_P (newpos2
))
1906 newpos2
= NEXT_INSN (newpos2
);
1907 while (DEBUG_INSN_P (newpos2
))
1908 newpos2
= NEXT_INSN (newpos2
);
1912 fprintf (dump_file
, "Splitting bb %i before %i insns\n",
1913 src2
->index
, nmatch
);
1914 redirect_to
= split_block (src2
, PREV_INSN (newpos2
))->dest
;
1919 "Cross jumping from bb %i to bb %i; %i common insns\n",
1920 src1
->index
, src2
->index
, nmatch
);
1922 /* We may have some registers visible through the block. */
1923 df_set_bb_dirty (redirect_to
);
1926 redirect_edges_to
= redirect_to
;
1928 redirect_edges_to
= osrc2
;
1930 /* Recompute the frequencies and counts of outgoing edges. */
1931 FOR_EACH_EDGE (s
, ei
, redirect_edges_to
->succs
)
1935 basic_block d
= s
->dest
;
1937 if (FORWARDER_BLOCK_P (d
))
1938 d
= single_succ (d
);
1940 FOR_EACH_EDGE (s2
, ei
, src1
->succs
)
1942 basic_block d2
= s2
->dest
;
1943 if (FORWARDER_BLOCK_P (d2
))
1944 d2
= single_succ (d2
);
1949 s
->count
+= s2
->count
;
1951 /* Take care to update possible forwarder blocks. We verified
1952 that there is no more than one in the chain, so we can't run
1953 into infinite loop. */
1954 if (FORWARDER_BLOCK_P (s
->dest
))
1956 single_succ_edge (s
->dest
)->count
+= s2
->count
;
1957 s
->dest
->count
+= s2
->count
;
1958 s
->dest
->frequency
+= EDGE_FREQUENCY (s
);
1961 if (FORWARDER_BLOCK_P (s2
->dest
))
1963 single_succ_edge (s2
->dest
)->count
-= s2
->count
;
1964 if (single_succ_edge (s2
->dest
)->count
< 0)
1965 single_succ_edge (s2
->dest
)->count
= 0;
1966 s2
->dest
->count
-= s2
->count
;
1967 s2
->dest
->frequency
-= EDGE_FREQUENCY (s
);
1968 if (s2
->dest
->frequency
< 0)
1969 s2
->dest
->frequency
= 0;
1970 if (s2
->dest
->count
< 0)
1971 s2
->dest
->count
= 0;
1974 if (!redirect_edges_to
->frequency
&& !src1
->frequency
)
1975 s
->probability
= (s
->probability
+ s2
->probability
) / 2;
1978 = ((s
->probability
* redirect_edges_to
->frequency
+
1979 s2
->probability
* src1
->frequency
)
1980 / (redirect_edges_to
->frequency
+ src1
->frequency
));
1983 /* Adjust count and frequency for the block. An earlier jump
1984 threading pass may have left the profile in an inconsistent
1985 state (see update_bb_profile_for_threading) so we must be
1986 prepared for overflows. */
1990 tmp
->count
+= src1
->count
;
1991 tmp
->frequency
+= src1
->frequency
;
1992 if (tmp
->frequency
> BB_FREQ_MAX
)
1993 tmp
->frequency
= BB_FREQ_MAX
;
1994 if (tmp
== redirect_edges_to
)
1996 tmp
= find_fallthru_edge (tmp
->succs
)->dest
;
1999 update_br_prob_note (redirect_edges_to
);
2001 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2003 /* Skip possible basic block header. */
2004 if (LABEL_P (newpos1
))
2005 newpos1
= NEXT_INSN (newpos1
);
2007 while (DEBUG_INSN_P (newpos1
))
2008 newpos1
= NEXT_INSN (newpos1
);
2010 if (NOTE_INSN_BASIC_BLOCK_P (newpos1
))
2011 newpos1
= NEXT_INSN (newpos1
);
2013 while (DEBUG_INSN_P (newpos1
))
2014 newpos1
= NEXT_INSN (newpos1
);
2016 redirect_from
= split_block (src1
, PREV_INSN (newpos1
))->src
;
2017 to_remove
= single_succ (redirect_from
);
2019 redirect_edge_and_branch_force (single_succ_edge (redirect_from
), redirect_to
);
2020 delete_basic_block (to_remove
);
2022 update_forwarder_flag (redirect_from
);
2023 if (redirect_to
!= src2
)
2024 update_forwarder_flag (src2
);
2029 /* Search the predecessors of BB for common insn sequences. When found,
2030 share code between them by redirecting control flow. Return true if
2031 any changes made. */
2034 try_crossjump_bb (int mode
, basic_block bb
)
2036 edge e
, e2
, fallthru
;
2038 unsigned max
, ix
, ix2
;
2040 /* Nothing to do if there is not at least two incoming edges. */
2041 if (EDGE_COUNT (bb
->preds
) < 2)
2044 /* Don't crossjump if this block ends in a computed jump,
2045 unless we are optimizing for size. */
2046 if (optimize_bb_for_size_p (bb
)
2047 && bb
!= EXIT_BLOCK_PTR
2048 && computed_jump_p (BB_END (bb
)))
2051 /* If we are partitioning hot/cold basic blocks, we don't want to
2052 mess up unconditional or indirect jumps that cross between hot
2055 Basic block partitioning may result in some jumps that appear to
2056 be optimizable (or blocks that appear to be mergeable), but which really
2057 must be left untouched (they are required to make it safely across
2058 partition boundaries). See the comments at the top of
2059 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2061 if (BB_PARTITION (EDGE_PRED (bb
, 0)->src
) !=
2062 BB_PARTITION (EDGE_PRED (bb
, 1)->src
)
2063 || (EDGE_PRED (bb
, 0)->flags
& EDGE_CROSSING
))
2066 /* It is always cheapest to redirect a block that ends in a branch to
2067 a block that falls through into BB, as that adds no branches to the
2068 program. We'll try that combination first. */
2070 max
= PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES
);
2072 if (EDGE_COUNT (bb
->preds
) > max
)
2075 fallthru
= find_fallthru_edge (bb
->preds
);
2078 for (ix
= 0; ix
< EDGE_COUNT (bb
->preds
);)
2080 e
= EDGE_PRED (bb
, ix
);
2083 /* As noted above, first try with the fallthru predecessor (or, a
2084 fallthru predecessor if we are in cfglayout mode). */
2087 /* Don't combine the fallthru edge into anything else.
2088 If there is a match, we'll do it the other way around. */
2091 /* If nothing changed since the last attempt, there is nothing
2094 && !((e
->src
->flags
& BB_MODIFIED
)
2095 || (fallthru
->src
->flags
& BB_MODIFIED
)))
2098 if (try_crossjump_to_edge (mode
, e
, fallthru
, dir_forward
))
2106 /* Non-obvious work limiting check: Recognize that we're going
2107 to call try_crossjump_bb on every basic block. So if we have
2108 two blocks with lots of outgoing edges (a switch) and they
2109 share lots of common destinations, then we would do the
2110 cross-jump check once for each common destination.
2112 Now, if the blocks actually are cross-jump candidates, then
2113 all of their destinations will be shared. Which means that
2114 we only need check them for cross-jump candidacy once. We
2115 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2116 choosing to do the check from the block for which the edge
2117 in question is the first successor of A. */
2118 if (EDGE_SUCC (e
->src
, 0) != e
)
2121 for (ix2
= 0; ix2
< EDGE_COUNT (bb
->preds
); ix2
++)
2123 e2
= EDGE_PRED (bb
, ix2
);
2128 /* We've already checked the fallthru edge above. */
2132 /* The "first successor" check above only prevents multiple
2133 checks of crossjump(A,B). In order to prevent redundant
2134 checks of crossjump(B,A), require that A be the block
2135 with the lowest index. */
2136 if (e
->src
->index
> e2
->src
->index
)
2139 /* If nothing changed since the last attempt, there is nothing
2142 && !((e
->src
->flags
& BB_MODIFIED
)
2143 || (e2
->src
->flags
& BB_MODIFIED
)))
2146 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2148 if (try_crossjump_to_edge (mode
, e
, e2
, dir_both
))
2158 crossjumps_occured
= true;
2163 /* Search the successors of BB for common insn sequences. When found,
2164 share code between them by moving it across the basic block
2165 boundary. Return true if any changes made. */
2168 try_head_merge_bb (basic_block bb
)
2170 basic_block final_dest_bb
= NULL
;
2171 int max_match
= INT_MAX
;
2173 rtx
*headptr
, *currptr
, *nextptr
;
2174 bool changed
, moveall
;
2176 rtx e0_last_head
, cond
, move_before
;
2177 unsigned nedges
= EDGE_COUNT (bb
->succs
);
2178 rtx jump
= BB_END (bb
);
2179 regset live
, live_union
;
2181 /* Nothing to do if there is not at least two outgoing edges. */
2185 /* Don't crossjump if this block ends in a computed jump,
2186 unless we are optimizing for size. */
2187 if (optimize_bb_for_size_p (bb
)
2188 && bb
!= EXIT_BLOCK_PTR
2189 && computed_jump_p (BB_END (bb
)))
2192 cond
= get_condition (jump
, &move_before
, true, false);
2193 if (cond
== NULL_RTX
)
2196 for (ix
= 0; ix
< nedges
; ix
++)
2197 if (EDGE_SUCC (bb
, ix
)->dest
== EXIT_BLOCK_PTR
)
2200 for (ix
= 0; ix
< nedges
; ix
++)
2202 edge e
= EDGE_SUCC (bb
, ix
);
2203 basic_block other_bb
= e
->dest
;
2205 if (df_get_bb_dirty (other_bb
))
2207 block_was_dirty
= true;
2211 if (e
->flags
& EDGE_ABNORMAL
)
2214 /* Normally, all destination blocks must only be reachable from this
2215 block, i.e. they must have one incoming edge.
2217 There is one special case we can handle, that of multiple consecutive
2218 jumps where the first jumps to one of the targets of the second jump.
2219 This happens frequently in switch statements for default labels.
2220 The structure is as follows:
2226 jump with targets A, B, C, D...
2228 has two incoming edges, from FINAL_DEST_BB and BB
2230 In this case, we can try to move the insns through BB and into
2232 if (EDGE_COUNT (other_bb
->preds
) != 1)
2234 edge incoming_edge
, incoming_bb_other_edge
;
2237 if (final_dest_bb
!= NULL
2238 || EDGE_COUNT (other_bb
->preds
) != 2)
2241 /* We must be able to move the insns across the whole block. */
2242 move_before
= BB_HEAD (bb
);
2243 while (!NONDEBUG_INSN_P (move_before
))
2244 move_before
= NEXT_INSN (move_before
);
2246 if (EDGE_COUNT (bb
->preds
) != 1)
2248 incoming_edge
= EDGE_PRED (bb
, 0);
2249 final_dest_bb
= incoming_edge
->src
;
2250 if (EDGE_COUNT (final_dest_bb
->succs
) != 2)
2252 FOR_EACH_EDGE (incoming_bb_other_edge
, ei
, final_dest_bb
->succs
)
2253 if (incoming_bb_other_edge
!= incoming_edge
)
2255 if (incoming_bb_other_edge
->dest
!= other_bb
)
2260 e0
= EDGE_SUCC (bb
, 0);
2261 e0_last_head
= NULL_RTX
;
2264 for (ix
= 1; ix
< nedges
; ix
++)
2266 edge e
= EDGE_SUCC (bb
, ix
);
2267 rtx e0_last
, e_last
;
2270 nmatch
= flow_find_head_matching_sequence (e0
->dest
, e
->dest
,
2271 &e0_last
, &e_last
, 0);
2275 if (nmatch
< max_match
)
2278 e0_last_head
= e0_last
;
2282 /* If we matched an entire block, we probably have to avoid moving the
2285 && e0_last_head
== BB_END (e0
->dest
)
2286 && (find_reg_note (e0_last_head
, REG_EH_REGION
, 0)
2287 || control_flow_insn_p (e0_last_head
)))
2293 e0_last_head
= prev_real_insn (e0_last_head
);
2294 while (DEBUG_INSN_P (e0_last_head
));
2300 /* We must find a union of the live registers at each of the end points. */
2301 live
= BITMAP_ALLOC (NULL
);
2302 live_union
= BITMAP_ALLOC (NULL
);
2304 currptr
= XNEWVEC (rtx
, nedges
);
2305 headptr
= XNEWVEC (rtx
, nedges
);
2306 nextptr
= XNEWVEC (rtx
, nedges
);
2308 for (ix
= 0; ix
< nedges
; ix
++)
2311 basic_block merge_bb
= EDGE_SUCC (bb
, ix
)->dest
;
2312 rtx head
= BB_HEAD (merge_bb
);
2314 while (!NONDEBUG_INSN_P (head
))
2315 head
= NEXT_INSN (head
);
2319 /* Compute the end point and live information */
2320 for (j
= 1; j
< max_match
; j
++)
2322 head
= NEXT_INSN (head
);
2323 while (!NONDEBUG_INSN_P (head
));
2324 simulate_backwards_to_point (merge_bb
, live
, head
);
2325 IOR_REG_SET (live_union
, live
);
2328 /* If we're moving across two blocks, verify the validity of the
2329 first move, then adjust the target and let the loop below deal
2330 with the final move. */
2331 if (final_dest_bb
!= NULL
)
2335 moveall
= can_move_insns_across (currptr
[0], e0_last_head
, move_before
,
2336 jump
, e0
->dest
, live_union
,
2340 if (move_upto
== NULL_RTX
)
2343 while (e0_last_head
!= move_upto
)
2345 df_simulate_one_insn_backwards (e0
->dest
, e0_last_head
,
2347 e0_last_head
= PREV_INSN (e0_last_head
);
2350 if (e0_last_head
== NULL_RTX
)
2353 jump
= BB_END (final_dest_bb
);
2354 cond
= get_condition (jump
, &move_before
, true, false);
2355 if (cond
== NULL_RTX
)
2362 moveall
= can_move_insns_across (currptr
[0], e0_last_head
,
2363 move_before
, jump
, e0
->dest
, live_union
,
2365 if (!moveall
&& move_upto
== NULL_RTX
)
2367 if (jump
== move_before
)
2370 /* Try again, using a different insertion point. */
2374 /* Don't try moving before a cc0 user, as that may invalidate
2376 if (reg_mentioned_p (cc0_rtx
, jump
))
2383 if (final_dest_bb
&& !moveall
)
2384 /* We haven't checked whether a partial move would be OK for the first
2385 move, so we have to fail this case. */
2391 if (currptr
[0] == move_upto
)
2393 for (ix
= 0; ix
< nedges
; ix
++)
2395 rtx curr
= currptr
[ix
];
2397 curr
= NEXT_INSN (curr
);
2398 while (!NONDEBUG_INSN_P (curr
));
2403 /* If we can't currently move all of the identical insns, remember
2404 each insn after the range that we'll merge. */
2406 for (ix
= 0; ix
< nedges
; ix
++)
2408 rtx curr
= currptr
[ix
];
2410 curr
= NEXT_INSN (curr
);
2411 while (!NONDEBUG_INSN_P (curr
));
2415 reorder_insns (headptr
[0], currptr
[0], PREV_INSN (move_before
));
2416 df_set_bb_dirty (EDGE_SUCC (bb
, 0)->dest
);
2417 if (final_dest_bb
!= NULL
)
2418 df_set_bb_dirty (final_dest_bb
);
2419 df_set_bb_dirty (bb
);
2420 for (ix
= 1; ix
< nedges
; ix
++)
2422 df_set_bb_dirty (EDGE_SUCC (bb
, ix
)->dest
);
2423 delete_insn_chain (headptr
[ix
], currptr
[ix
], false);
2427 if (jump
== move_before
)
2430 /* For the unmerged insns, try a different insertion point. */
2434 /* Don't try moving before a cc0 user, as that may invalidate
2436 if (reg_mentioned_p (cc0_rtx
, jump
))
2440 for (ix
= 0; ix
< nedges
; ix
++)
2441 currptr
[ix
] = headptr
[ix
] = nextptr
[ix
];
2451 crossjumps_occured
|= changed
;
2456 /* Return true if BB contains just bb note, or bb note followed
2457 by only DEBUG_INSNs. */
2460 trivially_empty_bb_p (basic_block bb
)
2462 rtx insn
= BB_END (bb
);
2466 if (insn
== BB_HEAD (bb
))
2468 if (!DEBUG_INSN_P (insn
))
2470 insn
= PREV_INSN (insn
);
2474 /* Do simple CFG optimizations - basic block merging, simplifying of jump
2475 instructions etc. Return nonzero if changes were made. */
2478 try_optimize_cfg (int mode
)
2480 bool changed_overall
= false;
2483 basic_block bb
, b
, next
;
2485 if (mode
& (CLEANUP_CROSSJUMP
| CLEANUP_THREADING
))
2488 crossjumps_occured
= false;
2491 update_forwarder_flag (bb
);
2493 if (! targetm
.cannot_modify_jumps_p ())
2496 /* Attempt to merge blocks as made possible by edge removal. If
2497 a block has only one successor, and the successor has only
2498 one predecessor, they may be combined. */
2501 block_was_dirty
= false;
2507 "\n\ntry_optimize_cfg iteration %i\n\n",
2510 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
;)
2514 bool changed_here
= false;
2516 /* Delete trivially dead basic blocks. This is either
2517 blocks with no predecessors, or empty blocks with no
2518 successors. However if the empty block with no
2519 successors is the successor of the ENTRY_BLOCK, it is
2520 kept. This ensures that the ENTRY_BLOCK will have a
2521 successor which is a precondition for many RTL
2522 passes. Empty blocks may result from expanding
2523 __builtin_unreachable (). */
2524 if (EDGE_COUNT (b
->preds
) == 0
2525 || (EDGE_COUNT (b
->succs
) == 0
2526 && trivially_empty_bb_p (b
)
2527 && single_succ_edge (ENTRY_BLOCK_PTR
)->dest
!= b
))
2530 if (EDGE_COUNT (b
->preds
) > 0)
2535 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
2537 if (b
->il
.rtl
->footer
2538 && BARRIER_P (b
->il
.rtl
->footer
))
2539 FOR_EACH_EDGE (e
, ei
, b
->preds
)
2540 if ((e
->flags
& EDGE_FALLTHRU
)
2541 && e
->src
->il
.rtl
->footer
== NULL
)
2543 if (b
->il
.rtl
->footer
)
2545 e
->src
->il
.rtl
->footer
= b
->il
.rtl
->footer
;
2546 b
->il
.rtl
->footer
= NULL
;
2551 e
->src
->il
.rtl
->footer
= emit_barrier ();
2558 rtx last
= get_last_bb_insn (b
);
2559 if (last
&& BARRIER_P (last
))
2560 FOR_EACH_EDGE (e
, ei
, b
->preds
)
2561 if ((e
->flags
& EDGE_FALLTHRU
))
2562 emit_barrier_after (BB_END (e
->src
));
2565 delete_basic_block (b
);
2567 /* Avoid trying to remove ENTRY_BLOCK_PTR. */
2568 b
= (c
== ENTRY_BLOCK_PTR
? c
->next_bb
: c
);
2572 /* Remove code labels no longer used. */
2573 if (single_pred_p (b
)
2574 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
2575 && !(single_pred_edge (b
)->flags
& EDGE_COMPLEX
)
2576 && LABEL_P (BB_HEAD (b
))
2577 /* If the previous block ends with a branch to this
2578 block, we can't delete the label. Normally this
2579 is a condjump that is yet to be simplified, but
2580 if CASE_DROPS_THRU, this can be a tablejump with
2581 some element going to the same place as the
2582 default (fallthru). */
2583 && (single_pred (b
) == ENTRY_BLOCK_PTR
2584 || !JUMP_P (BB_END (single_pred (b
)))
2585 || ! label_is_jump_target_p (BB_HEAD (b
),
2586 BB_END (single_pred (b
)))))
2588 rtx label
= BB_HEAD (b
);
2590 delete_insn_chain (label
, label
, false);
2591 /* If the case label is undeletable, move it after the
2592 BASIC_BLOCK note. */
2593 if (NOTE_KIND (BB_HEAD (b
)) == NOTE_INSN_DELETED_LABEL
)
2595 rtx bb_note
= NEXT_INSN (BB_HEAD (b
));
2597 reorder_insns_nobb (label
, label
, bb_note
);
2598 BB_HEAD (b
) = bb_note
;
2599 if (BB_END (b
) == bb_note
)
2603 fprintf (dump_file
, "Deleted label in block %i.\n",
2607 /* If we fall through an empty block, we can remove it. */
2608 if (!(mode
& CLEANUP_CFGLAYOUT
)
2609 && single_pred_p (b
)
2610 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
2611 && !LABEL_P (BB_HEAD (b
))
2612 && FORWARDER_BLOCK_P (b
)
2613 /* Note that forwarder_block_p true ensures that
2614 there is a successor for this block. */
2615 && (single_succ_edge (b
)->flags
& EDGE_FALLTHRU
)
2616 && n_basic_blocks
> NUM_FIXED_BLOCKS
+ 1)
2620 "Deleting fallthru block %i.\n",
2623 c
= b
->prev_bb
== ENTRY_BLOCK_PTR
? b
->next_bb
: b
->prev_bb
;
2624 redirect_edge_succ_nodup (single_pred_edge (b
),
2626 delete_basic_block (b
);
2632 /* Merge B with its single successor, if any. */
2633 if (single_succ_p (b
)
2634 && (s
= single_succ_edge (b
))
2635 && !(s
->flags
& EDGE_COMPLEX
)
2636 && (c
= s
->dest
) != EXIT_BLOCK_PTR
2637 && single_pred_p (c
)
2640 /* When not in cfg_layout mode use code aware of reordering
2641 INSN. This code possibly creates new basic blocks so it
2642 does not fit merge_blocks interface and is kept here in
2643 hope that it will become useless once more of compiler
2644 is transformed to use cfg_layout mode. */
2646 if ((mode
& CLEANUP_CFGLAYOUT
)
2647 && can_merge_blocks_p (b
, c
))
2649 merge_blocks (b
, c
);
2650 update_forwarder_flag (b
);
2651 changed_here
= true;
2653 else if (!(mode
& CLEANUP_CFGLAYOUT
)
2654 /* If the jump insn has side effects,
2655 we can't kill the edge. */
2656 && (!JUMP_P (BB_END (b
))
2657 || (reload_completed
2658 ? simplejump_p (BB_END (b
))
2659 : (onlyjump_p (BB_END (b
))
2660 && !tablejump_p (BB_END (b
),
2662 && (next
= merge_blocks_move (s
, b
, c
, mode
)))
2665 changed_here
= true;
2669 /* Simplify branch over branch. */
2670 if ((mode
& CLEANUP_EXPENSIVE
)
2671 && !(mode
& CLEANUP_CFGLAYOUT
)
2672 && try_simplify_condjump (b
))
2673 changed_here
= true;
2675 /* If B has a single outgoing edge, but uses a
2676 non-trivial jump instruction without side-effects, we
2677 can either delete the jump entirely, or replace it
2678 with a simple unconditional jump. */
2679 if (single_succ_p (b
)
2680 && single_succ (b
) != EXIT_BLOCK_PTR
2681 && onlyjump_p (BB_END (b
))
2682 && !find_reg_note (BB_END (b
), REG_CROSSING_JUMP
, NULL_RTX
)
2683 && try_redirect_by_replacing_jump (single_succ_edge (b
),
2685 (mode
& CLEANUP_CFGLAYOUT
) != 0))
2687 update_forwarder_flag (b
);
2688 changed_here
= true;
2691 /* Simplify branch to branch. */
2692 if (try_forward_edges (mode
, b
))
2694 update_forwarder_flag (b
);
2695 changed_here
= true;
2698 /* Look for shared code between blocks. */
2699 if ((mode
& CLEANUP_CROSSJUMP
)
2700 && try_crossjump_bb (mode
, b
))
2701 changed_here
= true;
2703 if ((mode
& CLEANUP_CROSSJUMP
)
2704 /* This can lengthen register lifetimes. Do it only after
2707 && try_head_merge_bb (b
))
2708 changed_here
= true;
2710 /* Don't get confused by the index shift caused by
2718 if ((mode
& CLEANUP_CROSSJUMP
)
2719 && try_crossjump_bb (mode
, EXIT_BLOCK_PTR
))
2722 if (block_was_dirty
)
2724 /* This should only be set by head-merging. */
2725 gcc_assert (mode
& CLEANUP_CROSSJUMP
);
2729 #ifdef ENABLE_CHECKING
2731 verify_flow_info ();
2734 changed_overall
|= changed
;
2741 b
->flags
&= ~(BB_FORWARDER_BLOCK
| BB_NONTHREADABLE_BLOCK
);
2743 return changed_overall
;
2746 /* Delete all unreachable basic blocks. */
2749 delete_unreachable_blocks (void)
2751 bool changed
= false;
2752 basic_block b
, prev_bb
;
2754 find_unreachable_blocks ();
2756 /* When we're in GIMPLE mode and there may be debug insns, we should
2757 delete blocks in reverse dominator order, so as to get a chance
2758 to substitute all released DEFs into debug stmts. If we don't
2759 have dominators information, walking blocks backward gets us a
2760 better chance of retaining most debug information than
2762 if (MAY_HAVE_DEBUG_STMTS
&& current_ir_type () == IR_GIMPLE
2763 && dom_info_available_p (CDI_DOMINATORS
))
2765 for (b
= EXIT_BLOCK_PTR
->prev_bb
; b
!= ENTRY_BLOCK_PTR
; b
= prev_bb
)
2767 prev_bb
= b
->prev_bb
;
2769 if (!(b
->flags
& BB_REACHABLE
))
2771 /* Speed up the removal of blocks that don't dominate
2772 others. Walking backwards, this should be the common
2774 if (!first_dom_son (CDI_DOMINATORS
, b
))
2775 delete_basic_block (b
);
2778 VEC (basic_block
, heap
) *h
2779 = get_all_dominated_blocks (CDI_DOMINATORS
, b
);
2781 while (VEC_length (basic_block
, h
))
2783 b
= VEC_pop (basic_block
, h
);
2785 prev_bb
= b
->prev_bb
;
2787 gcc_assert (!(b
->flags
& BB_REACHABLE
));
2789 delete_basic_block (b
);
2792 VEC_free (basic_block
, heap
, h
);
2801 for (b
= EXIT_BLOCK_PTR
->prev_bb
; b
!= ENTRY_BLOCK_PTR
; b
= prev_bb
)
2803 prev_bb
= b
->prev_bb
;
2805 if (!(b
->flags
& BB_REACHABLE
))
2807 delete_basic_block (b
);
2814 tidy_fallthru_edges ();
2818 /* Delete any jump tables never referenced. We can't delete them at the
2819 time of removing tablejump insn as they are referenced by the preceding
2820 insns computing the destination, so we delay deleting and garbagecollect
2821 them once life information is computed. */
2823 delete_dead_jumptables (void)
2827 /* A dead jump table does not belong to any basic block. Scan insns
2828 between two adjacent basic blocks. */
2833 for (insn
= NEXT_INSN (BB_END (bb
));
2834 insn
&& !NOTE_INSN_BASIC_BLOCK_P (insn
);
2837 next
= NEXT_INSN (insn
);
2839 && LABEL_NUSES (insn
) == LABEL_PRESERVE_P (insn
)
2840 && JUMP_TABLE_DATA_P (next
))
2842 rtx label
= insn
, jump
= next
;
2845 fprintf (dump_file
, "Dead jumptable %i removed\n",
2848 next
= NEXT_INSN (next
);
2850 delete_insn (label
);
2857 /* Tidy the CFG by deleting unreachable code and whatnot. */
2860 cleanup_cfg (int mode
)
2862 bool changed
= false;
2864 /* Set the cfglayout mode flag here. We could update all the callers
2865 but that is just inconvenient, especially given that we eventually
2866 want to have cfglayout mode as the default. */
2867 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
2868 mode
|= CLEANUP_CFGLAYOUT
;
2870 timevar_push (TV_CLEANUP_CFG
);
2871 if (delete_unreachable_blocks ())
2874 /* We've possibly created trivially dead code. Cleanup it right
2875 now to introduce more opportunities for try_optimize_cfg. */
2876 if (!(mode
& (CLEANUP_NO_INSN_DEL
))
2877 && !reload_completed
)
2878 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2883 /* To tail-merge blocks ending in the same noreturn function (e.g.
2884 a call to abort) we have to insert fake edges to exit. Do this
2885 here once. The fake edges do not interfere with any other CFG
2887 if (mode
& CLEANUP_CROSSJUMP
)
2888 add_noreturn_fake_exit_edges ();
2890 if (!dbg_cnt (cfg_cleanup
))
2893 while (try_optimize_cfg (mode
))
2895 delete_unreachable_blocks (), changed
= true;
2896 if (!(mode
& CLEANUP_NO_INSN_DEL
))
2898 /* Try to remove some trivially dead insns when doing an expensive
2899 cleanup. But delete_trivially_dead_insns doesn't work after
2900 reload (it only handles pseudos) and run_fast_dce is too costly
2901 to run in every iteration.
2903 For effective cross jumping, we really want to run a fast DCE to
2904 clean up any dead conditions, or they get in the way of performing
2907 Other transformations in cleanup_cfg are not so sensitive to dead
2908 code, so delete_trivially_dead_insns or even doing nothing at all
2910 if ((mode
& CLEANUP_EXPENSIVE
) && !reload_completed
2911 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
2913 if ((mode
& CLEANUP_CROSSJUMP
) && crossjumps_occured
)
2920 if (mode
& CLEANUP_CROSSJUMP
)
2921 remove_fake_exit_edges ();
2923 /* Don't call delete_dead_jumptables in cfglayout mode, because
2924 that function assumes that jump tables are in the insns stream.
2925 But we also don't _have_ to delete dead jumptables in cfglayout
2926 mode because we shouldn't even be looking at things that are
2927 not in a basic block. Dead jumptables are cleaned up when
2928 going out of cfglayout mode. */
2929 if (!(mode
& CLEANUP_CFGLAYOUT
))
2930 delete_dead_jumptables ();
2932 timevar_pop (TV_CLEANUP_CFG
);
2938 rest_of_handle_jump (void)
2940 if (crtl
->tail_call_emit
)
2941 fixup_tail_calls ();
2945 struct rtl_opt_pass pass_jump
=
2949 "sibling", /* name */
2951 rest_of_handle_jump
, /* execute */
2954 0, /* static_pass_number */
2955 TV_JUMP
, /* tv_id */
2956 0, /* properties_required */
2957 0, /* properties_provided */
2958 0, /* properties_destroyed */
2959 TODO_ggc_collect
, /* todo_flags_start */
2960 TODO_verify_flow
, /* todo_flags_finish */
2966 rest_of_handle_jump2 (void)
2968 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2970 dump_flow_info (dump_file
, dump_flags
);
2971 cleanup_cfg ((optimize
? CLEANUP_EXPENSIVE
: 0)
2972 | (flag_thread_jumps
? CLEANUP_THREADING
: 0));
2977 struct rtl_opt_pass pass_jump2
=
2983 rest_of_handle_jump2
, /* execute */
2986 0, /* static_pass_number */
2987 TV_JUMP
, /* tv_id */
2988 0, /* properties_required */
2989 0, /* properties_provided */
2990 0, /* properties_destroyed */
2991 TODO_ggc_collect
, /* todo_flags_start */
2992 TODO_dump_func
| TODO_verify_rtl_sharing
,/* todo_flags_finish */