fix pr48988
[official-gcc.git] / gcc / cfgcleanup.c
blobc36af89a137c5fa45b228b9ffc2f3f3ff594d2d0
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "regs.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "diagnostic-core.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
51 #include "cfglayout.h"
52 #include "emit-rtl.h"
53 #include "tree-pass.h"
54 #include "cfgloop.h"
55 #include "expr.h"
56 #include "df.h"
57 #include "dce.h"
58 #include "dbgcnt.h"
60 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
62 /* Set to true when we are running first pass of try_optimize_cfg loop. */
63 static bool first_pass;
65 /* Set to true if crossjumps occured in the latest run of try_optimize_cfg. */
66 static bool crossjumps_occured;
68 /* Set to true if we couldn't run an optimization due to stale liveness
69 information; we should run df_analyze to enable more opportunities. */
70 static bool block_was_dirty;
72 static bool try_crossjump_to_edge (int, edge, edge, enum replace_direction);
73 static bool try_crossjump_bb (int, basic_block);
74 static bool outgoing_edges_match (int, basic_block, basic_block);
75 static enum replace_direction old_insns_match_p (int, rtx, rtx);
77 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
78 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
79 static bool try_optimize_cfg (int);
80 static bool try_simplify_condjump (basic_block);
81 static bool try_forward_edges (int, basic_block);
82 static edge thread_jump (edge, basic_block);
83 static bool mark_effect (rtx, bitmap);
84 static void notice_new_block (basic_block);
85 static void update_forwarder_flag (basic_block);
86 static int mentions_nonequal_regs (rtx *, void *);
87 static void merge_memattrs (rtx, rtx);
89 /* Set flags for newly created block. */
91 static void
92 notice_new_block (basic_block bb)
94 if (!bb)
95 return;
97 if (forwarder_block_p (bb))
98 bb->flags |= BB_FORWARDER_BLOCK;
101 /* Recompute forwarder flag after block has been modified. */
103 static void
104 update_forwarder_flag (basic_block bb)
106 if (forwarder_block_p (bb))
107 bb->flags |= BB_FORWARDER_BLOCK;
108 else
109 bb->flags &= ~BB_FORWARDER_BLOCK;
112 /* Simplify a conditional jump around an unconditional jump.
113 Return true if something changed. */
115 static bool
116 try_simplify_condjump (basic_block cbranch_block)
118 basic_block jump_block, jump_dest_block, cbranch_dest_block;
119 edge cbranch_jump_edge, cbranch_fallthru_edge;
120 rtx cbranch_insn;
122 /* Verify that there are exactly two successors. */
123 if (EDGE_COUNT (cbranch_block->succs) != 2)
124 return false;
126 /* Verify that we've got a normal conditional branch at the end
127 of the block. */
128 cbranch_insn = BB_END (cbranch_block);
129 if (!any_condjump_p (cbranch_insn))
130 return false;
132 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
133 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
135 /* The next block must not have multiple predecessors, must not
136 be the last block in the function, and must contain just the
137 unconditional jump. */
138 jump_block = cbranch_fallthru_edge->dest;
139 if (!single_pred_p (jump_block)
140 || jump_block->next_bb == EXIT_BLOCK_PTR
141 || !FORWARDER_BLOCK_P (jump_block))
142 return false;
143 jump_dest_block = single_succ (jump_block);
145 /* If we are partitioning hot/cold basic blocks, we don't want to
146 mess up unconditional or indirect jumps that cross between hot
147 and cold sections.
149 Basic block partitioning may result in some jumps that appear to
150 be optimizable (or blocks that appear to be mergeable), but which really
151 must be left untouched (they are required to make it safely across
152 partition boundaries). See the comments at the top of
153 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
155 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
156 || (cbranch_jump_edge->flags & EDGE_CROSSING))
157 return false;
159 /* The conditional branch must target the block after the
160 unconditional branch. */
161 cbranch_dest_block = cbranch_jump_edge->dest;
163 if (cbranch_dest_block == EXIT_BLOCK_PTR
164 || !can_fallthru (jump_block, cbranch_dest_block))
165 return false;
167 /* Invert the conditional branch. */
168 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
169 return false;
171 if (dump_file)
172 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
173 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
175 /* Success. Update the CFG to match. Note that after this point
176 the edge variable names appear backwards; the redirection is done
177 this way to preserve edge profile data. */
178 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
179 cbranch_dest_block);
180 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
181 jump_dest_block);
182 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
183 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
184 update_br_prob_note (cbranch_block);
186 /* Delete the block with the unconditional jump, and clean up the mess. */
187 delete_basic_block (jump_block);
188 tidy_fallthru_edge (cbranch_jump_edge);
189 update_forwarder_flag (cbranch_block);
191 return true;
194 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
195 on register. Used by jump threading. */
197 static bool
198 mark_effect (rtx exp, regset nonequal)
200 int regno;
201 rtx dest;
202 switch (GET_CODE (exp))
204 /* In case we do clobber the register, mark it as equal, as we know the
205 value is dead so it don't have to match. */
206 case CLOBBER:
207 if (REG_P (XEXP (exp, 0)))
209 dest = XEXP (exp, 0);
210 regno = REGNO (dest);
211 if (HARD_REGISTER_NUM_P (regno))
212 bitmap_clear_range (nonequal, regno,
213 hard_regno_nregs[regno][GET_MODE (dest)]);
214 else
215 bitmap_clear_bit (nonequal, regno);
217 return false;
219 case SET:
220 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
221 return false;
222 dest = SET_DEST (exp);
223 if (dest == pc_rtx)
224 return false;
225 if (!REG_P (dest))
226 return true;
227 regno = REGNO (dest);
228 if (HARD_REGISTER_NUM_P (regno))
229 bitmap_set_range (nonequal, regno,
230 hard_regno_nregs[regno][GET_MODE (dest)]);
231 else
232 bitmap_set_bit (nonequal, regno);
233 return false;
235 default:
236 return false;
240 /* Return nonzero if X is a register set in regset DATA.
241 Called via for_each_rtx. */
242 static int
243 mentions_nonequal_regs (rtx *x, void *data)
245 regset nonequal = (regset) data;
246 if (REG_P (*x))
248 int regno;
250 regno = REGNO (*x);
251 if (REGNO_REG_SET_P (nonequal, regno))
252 return 1;
253 if (regno < FIRST_PSEUDO_REGISTER)
255 int n = hard_regno_nregs[regno][GET_MODE (*x)];
256 while (--n > 0)
257 if (REGNO_REG_SET_P (nonequal, regno + n))
258 return 1;
261 return 0;
263 /* Attempt to prove that the basic block B will have no side effects and
264 always continues in the same edge if reached via E. Return the edge
265 if exist, NULL otherwise. */
267 static edge
268 thread_jump (edge e, basic_block b)
270 rtx set1, set2, cond1, cond2, insn;
271 enum rtx_code code1, code2, reversed_code2;
272 bool reverse1 = false;
273 unsigned i;
274 regset nonequal;
275 bool failed = false;
276 reg_set_iterator rsi;
278 if (b->flags & BB_NONTHREADABLE_BLOCK)
279 return NULL;
281 /* At the moment, we do handle only conditional jumps, but later we may
282 want to extend this code to tablejumps and others. */
283 if (EDGE_COUNT (e->src->succs) != 2)
284 return NULL;
285 if (EDGE_COUNT (b->succs) != 2)
287 b->flags |= BB_NONTHREADABLE_BLOCK;
288 return NULL;
291 /* Second branch must end with onlyjump, as we will eliminate the jump. */
292 if (!any_condjump_p (BB_END (e->src)))
293 return NULL;
295 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
297 b->flags |= BB_NONTHREADABLE_BLOCK;
298 return NULL;
301 set1 = pc_set (BB_END (e->src));
302 set2 = pc_set (BB_END (b));
303 if (((e->flags & EDGE_FALLTHRU) != 0)
304 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
305 reverse1 = true;
307 cond1 = XEXP (SET_SRC (set1), 0);
308 cond2 = XEXP (SET_SRC (set2), 0);
309 if (reverse1)
310 code1 = reversed_comparison_code (cond1, BB_END (e->src));
311 else
312 code1 = GET_CODE (cond1);
314 code2 = GET_CODE (cond2);
315 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
317 if (!comparison_dominates_p (code1, code2)
318 && !comparison_dominates_p (code1, reversed_code2))
319 return NULL;
321 /* Ensure that the comparison operators are equivalent.
322 ??? This is far too pessimistic. We should allow swapped operands,
323 different CCmodes, or for example comparisons for interval, that
324 dominate even when operands are not equivalent. */
325 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
326 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
327 return NULL;
329 /* Short circuit cases where block B contains some side effects, as we can't
330 safely bypass it. */
331 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
332 insn = NEXT_INSN (insn))
333 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
335 b->flags |= BB_NONTHREADABLE_BLOCK;
336 return NULL;
339 cselib_init (0);
341 /* First process all values computed in the source basic block. */
342 for (insn = NEXT_INSN (BB_HEAD (e->src));
343 insn != NEXT_INSN (BB_END (e->src));
344 insn = NEXT_INSN (insn))
345 if (INSN_P (insn))
346 cselib_process_insn (insn);
348 nonequal = BITMAP_ALLOC (NULL);
349 CLEAR_REG_SET (nonequal);
351 /* Now assume that we've continued by the edge E to B and continue
352 processing as if it were same basic block.
353 Our goal is to prove that whole block is an NOOP. */
355 for (insn = NEXT_INSN (BB_HEAD (b));
356 insn != NEXT_INSN (BB_END (b)) && !failed;
357 insn = NEXT_INSN (insn))
359 if (INSN_P (insn))
361 rtx pat = PATTERN (insn);
363 if (GET_CODE (pat) == PARALLEL)
365 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
366 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
368 else
369 failed |= mark_effect (pat, nonequal);
372 cselib_process_insn (insn);
375 /* Later we should clear nonequal of dead registers. So far we don't
376 have life information in cfg_cleanup. */
377 if (failed)
379 b->flags |= BB_NONTHREADABLE_BLOCK;
380 goto failed_exit;
383 /* cond2 must not mention any register that is not equal to the
384 former block. */
385 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
386 goto failed_exit;
388 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
389 goto failed_exit;
391 BITMAP_FREE (nonequal);
392 cselib_finish ();
393 if ((comparison_dominates_p (code1, code2) != 0)
394 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
395 return BRANCH_EDGE (b);
396 else
397 return FALLTHRU_EDGE (b);
399 failed_exit:
400 BITMAP_FREE (nonequal);
401 cselib_finish ();
402 return NULL;
405 /* Attempt to forward edges leaving basic block B.
406 Return true if successful. */
408 static bool
409 try_forward_edges (int mode, basic_block b)
411 bool changed = false;
412 edge_iterator ei;
413 edge e, *threaded_edges = NULL;
415 /* If we are partitioning hot/cold basic blocks, we don't want to
416 mess up unconditional or indirect jumps that cross between hot
417 and cold sections.
419 Basic block partitioning may result in some jumps that appear to
420 be optimizable (or blocks that appear to be mergeable), but which really
421 must be left untouched (they are required to make it safely across
422 partition boundaries). See the comments at the top of
423 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
425 if (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
426 return false;
428 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
430 basic_block target, first;
431 int counter, goto_locus;
432 bool threaded = false;
433 int nthreaded_edges = 0;
434 bool may_thread = first_pass || (b->flags & BB_MODIFIED) != 0;
436 /* Skip complex edges because we don't know how to update them.
438 Still handle fallthru edges, as we can succeed to forward fallthru
439 edge to the same place as the branch edge of conditional branch
440 and turn conditional branch to an unconditional branch. */
441 if (e->flags & EDGE_COMPLEX)
443 ei_next (&ei);
444 continue;
447 target = first = e->dest;
448 counter = NUM_FIXED_BLOCKS;
449 goto_locus = e->goto_locus;
451 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
452 up jumps that cross between hot/cold sections.
454 Basic block partitioning may result in some jumps that appear
455 to be optimizable (or blocks that appear to be mergeable), but which
456 really must be left untouched (they are required to make it safely
457 across partition boundaries). See the comments at the top of
458 bb-reorder.c:partition_hot_cold_basic_blocks for complete
459 details. */
461 if (first != EXIT_BLOCK_PTR
462 && find_reg_note (BB_END (first), REG_CROSSING_JUMP, NULL_RTX))
463 return false;
465 while (counter < n_basic_blocks)
467 basic_block new_target = NULL;
468 bool new_target_threaded = false;
469 may_thread |= (target->flags & BB_MODIFIED) != 0;
471 if (FORWARDER_BLOCK_P (target)
472 && !(single_succ_edge (target)->flags & EDGE_CROSSING)
473 && single_succ (target) != EXIT_BLOCK_PTR)
475 /* Bypass trivial infinite loops. */
476 new_target = single_succ (target);
477 if (target == new_target)
478 counter = n_basic_blocks;
479 else if (!optimize)
481 /* When not optimizing, ensure that edges or forwarder
482 blocks with different locus are not optimized out. */
483 int new_locus = single_succ_edge (target)->goto_locus;
484 int locus = goto_locus;
486 if (new_locus && locus && !locator_eq (new_locus, locus))
487 new_target = NULL;
488 else
490 rtx last;
492 if (new_locus)
493 locus = new_locus;
495 last = BB_END (target);
496 if (DEBUG_INSN_P (last))
497 last = prev_nondebug_insn (last);
499 new_locus = last && INSN_P (last)
500 ? INSN_LOCATOR (last) : 0;
502 if (new_locus && locus && !locator_eq (new_locus, locus))
503 new_target = NULL;
504 else
506 if (new_locus)
507 locus = new_locus;
509 goto_locus = locus;
515 /* Allow to thread only over one edge at time to simplify updating
516 of probabilities. */
517 else if ((mode & CLEANUP_THREADING) && may_thread)
519 edge t = thread_jump (e, target);
520 if (t)
522 if (!threaded_edges)
523 threaded_edges = XNEWVEC (edge, n_basic_blocks);
524 else
526 int i;
528 /* Detect an infinite loop across blocks not
529 including the start block. */
530 for (i = 0; i < nthreaded_edges; ++i)
531 if (threaded_edges[i] == t)
532 break;
533 if (i < nthreaded_edges)
535 counter = n_basic_blocks;
536 break;
540 /* Detect an infinite loop across the start block. */
541 if (t->dest == b)
542 break;
544 gcc_assert (nthreaded_edges < n_basic_blocks - NUM_FIXED_BLOCKS);
545 threaded_edges[nthreaded_edges++] = t;
547 new_target = t->dest;
548 new_target_threaded = true;
552 if (!new_target)
553 break;
555 counter++;
556 target = new_target;
557 threaded |= new_target_threaded;
560 if (counter >= n_basic_blocks)
562 if (dump_file)
563 fprintf (dump_file, "Infinite loop in BB %i.\n",
564 target->index);
566 else if (target == first)
567 ; /* We didn't do anything. */
568 else
570 /* Save the values now, as the edge may get removed. */
571 gcov_type edge_count = e->count;
572 int edge_probability = e->probability;
573 int edge_frequency;
574 int n = 0;
576 e->goto_locus = goto_locus;
578 /* Don't force if target is exit block. */
579 if (threaded && target != EXIT_BLOCK_PTR)
581 notice_new_block (redirect_edge_and_branch_force (e, target));
582 if (dump_file)
583 fprintf (dump_file, "Conditionals threaded.\n");
585 else if (!redirect_edge_and_branch (e, target))
587 if (dump_file)
588 fprintf (dump_file,
589 "Forwarding edge %i->%i to %i failed.\n",
590 b->index, e->dest->index, target->index);
591 ei_next (&ei);
592 continue;
595 /* We successfully forwarded the edge. Now update profile
596 data: for each edge we traversed in the chain, remove
597 the original edge's execution count. */
598 edge_frequency = ((edge_probability * b->frequency
599 + REG_BR_PROB_BASE / 2)
600 / REG_BR_PROB_BASE);
604 edge t;
606 if (!single_succ_p (first))
608 gcc_assert (n < nthreaded_edges);
609 t = threaded_edges [n++];
610 gcc_assert (t->src == first);
611 update_bb_profile_for_threading (first, edge_frequency,
612 edge_count, t);
613 update_br_prob_note (first);
615 else
617 first->count -= edge_count;
618 if (first->count < 0)
619 first->count = 0;
620 first->frequency -= edge_frequency;
621 if (first->frequency < 0)
622 first->frequency = 0;
623 /* It is possible that as the result of
624 threading we've removed edge as it is
625 threaded to the fallthru edge. Avoid
626 getting out of sync. */
627 if (n < nthreaded_edges
628 && first == threaded_edges [n]->src)
629 n++;
630 t = single_succ_edge (first);
633 t->count -= edge_count;
634 if (t->count < 0)
635 t->count = 0;
636 first = t->dest;
638 while (first != target);
640 changed = true;
641 continue;
643 ei_next (&ei);
646 free (threaded_edges);
647 return changed;
651 /* Blocks A and B are to be merged into a single block. A has no incoming
652 fallthru edge, so it can be moved before B without adding or modifying
653 any jumps (aside from the jump from A to B). */
655 static void
656 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
658 rtx barrier;
660 /* If we are partitioning hot/cold basic blocks, we don't want to
661 mess up unconditional or indirect jumps that cross between hot
662 and cold sections.
664 Basic block partitioning may result in some jumps that appear to
665 be optimizable (or blocks that appear to be mergeable), but which really
666 must be left untouched (they are required to make it safely across
667 partition boundaries). See the comments at the top of
668 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
670 if (BB_PARTITION (a) != BB_PARTITION (b))
671 return;
673 barrier = next_nonnote_insn (BB_END (a));
674 gcc_assert (BARRIER_P (barrier));
675 delete_insn (barrier);
677 /* Scramble the insn chain. */
678 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
679 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
680 df_set_bb_dirty (a);
682 if (dump_file)
683 fprintf (dump_file, "Moved block %d before %d and merged.\n",
684 a->index, b->index);
686 /* Swap the records for the two blocks around. */
688 unlink_block (a);
689 link_block (a, b->prev_bb);
691 /* Now blocks A and B are contiguous. Merge them. */
692 merge_blocks (a, b);
695 /* Blocks A and B are to be merged into a single block. B has no outgoing
696 fallthru edge, so it can be moved after A without adding or modifying
697 any jumps (aside from the jump from A to B). */
699 static void
700 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
702 rtx barrier, real_b_end;
703 rtx label, table;
705 /* If we are partitioning hot/cold basic blocks, we don't want to
706 mess up unconditional or indirect jumps that cross between hot
707 and cold sections.
709 Basic block partitioning may result in some jumps that appear to
710 be optimizable (or blocks that appear to be mergeable), but which really
711 must be left untouched (they are required to make it safely across
712 partition boundaries). See the comments at the top of
713 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
715 if (BB_PARTITION (a) != BB_PARTITION (b))
716 return;
718 real_b_end = BB_END (b);
720 /* If there is a jump table following block B temporarily add the jump table
721 to block B so that it will also be moved to the correct location. */
722 if (tablejump_p (BB_END (b), &label, &table)
723 && prev_active_insn (label) == BB_END (b))
725 BB_END (b) = table;
728 /* There had better have been a barrier there. Delete it. */
729 barrier = NEXT_INSN (BB_END (b));
730 if (barrier && BARRIER_P (barrier))
731 delete_insn (barrier);
734 /* Scramble the insn chain. */
735 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
737 /* Restore the real end of b. */
738 BB_END (b) = real_b_end;
740 if (dump_file)
741 fprintf (dump_file, "Moved block %d after %d and merged.\n",
742 b->index, a->index);
744 /* Now blocks A and B are contiguous. Merge them. */
745 merge_blocks (a, b);
748 /* Attempt to merge basic blocks that are potentially non-adjacent.
749 Return NULL iff the attempt failed, otherwise return basic block
750 where cleanup_cfg should continue. Because the merging commonly
751 moves basic block away or introduces another optimization
752 possibility, return basic block just before B so cleanup_cfg don't
753 need to iterate.
755 It may be good idea to return basic block before C in the case
756 C has been moved after B and originally appeared earlier in the
757 insn sequence, but we have no information available about the
758 relative ordering of these two. Hopefully it is not too common. */
760 static basic_block
761 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
763 basic_block next;
765 /* If we are partitioning hot/cold basic blocks, we don't want to
766 mess up unconditional or indirect jumps that cross between hot
767 and cold sections.
769 Basic block partitioning may result in some jumps that appear to
770 be optimizable (or blocks that appear to be mergeable), but which really
771 must be left untouched (they are required to make it safely across
772 partition boundaries). See the comments at the top of
773 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
775 if (BB_PARTITION (b) != BB_PARTITION (c))
776 return NULL;
778 /* If B has a fallthru edge to C, no need to move anything. */
779 if (e->flags & EDGE_FALLTHRU)
781 int b_index = b->index, c_index = c->index;
782 merge_blocks (b, c);
783 update_forwarder_flag (b);
785 if (dump_file)
786 fprintf (dump_file, "Merged %d and %d without moving.\n",
787 b_index, c_index);
789 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
792 /* Otherwise we will need to move code around. Do that only if expensive
793 transformations are allowed. */
794 else if (mode & CLEANUP_EXPENSIVE)
796 edge tmp_edge, b_fallthru_edge;
797 bool c_has_outgoing_fallthru;
798 bool b_has_incoming_fallthru;
800 /* Avoid overactive code motion, as the forwarder blocks should be
801 eliminated by edge redirection instead. One exception might have
802 been if B is a forwarder block and C has no fallthru edge, but
803 that should be cleaned up by bb-reorder instead. */
804 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
805 return NULL;
807 /* We must make sure to not munge nesting of lexical blocks,
808 and loop notes. This is done by squeezing out all the notes
809 and leaving them there to lie. Not ideal, but functional. */
811 tmp_edge = find_fallthru_edge (c->succs);
812 c_has_outgoing_fallthru = (tmp_edge != NULL);
814 tmp_edge = find_fallthru_edge (b->preds);
815 b_has_incoming_fallthru = (tmp_edge != NULL);
816 b_fallthru_edge = tmp_edge;
817 next = b->prev_bb;
818 if (next == c)
819 next = next->prev_bb;
821 /* Otherwise, we're going to try to move C after B. If C does
822 not have an outgoing fallthru, then it can be moved
823 immediately after B without introducing or modifying jumps. */
824 if (! c_has_outgoing_fallthru)
826 merge_blocks_move_successor_nojumps (b, c);
827 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
830 /* If B does not have an incoming fallthru, then it can be moved
831 immediately before C without introducing or modifying jumps.
832 C cannot be the first block, so we do not have to worry about
833 accessing a non-existent block. */
835 if (b_has_incoming_fallthru)
837 basic_block bb;
839 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
840 return NULL;
841 bb = force_nonfallthru (b_fallthru_edge);
842 if (bb)
843 notice_new_block (bb);
846 merge_blocks_move_predecessor_nojumps (b, c);
847 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
850 return NULL;
854 /* Removes the memory attributes of MEM expression
855 if they are not equal. */
857 void
858 merge_memattrs (rtx x, rtx y)
860 int i;
861 int j;
862 enum rtx_code code;
863 const char *fmt;
865 if (x == y)
866 return;
867 if (x == 0 || y == 0)
868 return;
870 code = GET_CODE (x);
872 if (code != GET_CODE (y))
873 return;
875 if (GET_MODE (x) != GET_MODE (y))
876 return;
878 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
880 if (! MEM_ATTRS (x))
881 MEM_ATTRS (y) = 0;
882 else if (! MEM_ATTRS (y))
883 MEM_ATTRS (x) = 0;
884 else
886 rtx mem_size;
888 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
890 set_mem_alias_set (x, 0);
891 set_mem_alias_set (y, 0);
894 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
896 set_mem_expr (x, 0);
897 set_mem_expr (y, 0);
898 set_mem_offset (x, 0);
899 set_mem_offset (y, 0);
901 else if (MEM_OFFSET (x) != MEM_OFFSET (y))
903 set_mem_offset (x, 0);
904 set_mem_offset (y, 0);
907 if (!MEM_SIZE (x))
908 mem_size = NULL_RTX;
909 else if (!MEM_SIZE (y))
910 mem_size = NULL_RTX;
911 else
912 mem_size = GEN_INT (MAX (INTVAL (MEM_SIZE (x)),
913 INTVAL (MEM_SIZE (y))));
914 set_mem_size (x, mem_size);
915 set_mem_size (y, mem_size);
917 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
918 set_mem_align (y, MEM_ALIGN (x));
922 fmt = GET_RTX_FORMAT (code);
923 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
925 switch (fmt[i])
927 case 'E':
928 /* Two vectors must have the same length. */
929 if (XVECLEN (x, i) != XVECLEN (y, i))
930 return;
932 for (j = 0; j < XVECLEN (x, i); j++)
933 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
935 break;
937 case 'e':
938 merge_memattrs (XEXP (x, i), XEXP (y, i));
941 return;
945 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
946 different single sets S1 and S2. */
948 static bool
949 equal_different_set_p (rtx p1, rtx s1, rtx p2, rtx s2)
951 int i;
952 rtx e1, e2;
954 if (p1 == s1 && p2 == s2)
955 return true;
957 if (GET_CODE (p1) != PARALLEL || GET_CODE (p2) != PARALLEL)
958 return false;
960 if (XVECLEN (p1, 0) != XVECLEN (p2, 0))
961 return false;
963 for (i = 0; i < XVECLEN (p1, 0); i++)
965 e1 = XVECEXP (p1, 0, i);
966 e2 = XVECEXP (p2, 0, i);
967 if (e1 == s1 && e2 == s2)
968 continue;
969 if (reload_completed
970 ? rtx_renumbered_equal_p (e1, e2) : rtx_equal_p (e1, e2))
971 continue;
973 return false;
976 return true;
979 /* Examine register notes on I1 and I2 and return:
980 - dir_forward if I1 can be replaced by I2, or
981 - dir_backward if I2 can be replaced by I1, or
982 - dir_both if both are the case. */
984 static enum replace_direction
985 can_replace_by (rtx i1, rtx i2)
987 rtx s1, s2, d1, d2, src1, src2, note1, note2;
988 bool c1, c2;
990 /* Check for 2 sets. */
991 s1 = single_set (i1);
992 s2 = single_set (i2);
993 if (s1 == NULL_RTX || s2 == NULL_RTX)
994 return dir_none;
996 /* Check that the 2 sets set the same dest. */
997 d1 = SET_DEST (s1);
998 d2 = SET_DEST (s2);
999 if (!(reload_completed
1000 ? rtx_renumbered_equal_p (d1, d2) : rtx_equal_p (d1, d2)))
1001 return dir_none;
1003 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1004 set dest to the same value. */
1005 note1 = find_reg_equal_equiv_note (i1);
1006 note2 = find_reg_equal_equiv_note (i2);
1007 if (!note1 || !note2 || !rtx_equal_p (XEXP (note1, 0), XEXP (note2, 0))
1008 || !CONST_INT_P (XEXP (note1, 0)))
1009 return dir_none;
1011 if (!equal_different_set_p (PATTERN (i1), s1, PATTERN (i2), s2))
1012 return dir_none;
1014 /* Although the 2 sets set dest to the same value, we cannot replace
1015 (set (dest) (const_int))
1017 (set (dest) (reg))
1018 because we don't know if the reg is live and has the same value at the
1019 location of replacement. */
1020 src1 = SET_SRC (s1);
1021 src2 = SET_SRC (s2);
1022 c1 = CONST_INT_P (src1);
1023 c2 = CONST_INT_P (src2);
1024 if (c1 && c2)
1025 return dir_both;
1026 else if (c2)
1027 return dir_forward;
1028 else if (c1)
1029 return dir_backward;
1031 return dir_none;
1034 /* Merges directions A and B. */
1036 static enum replace_direction
1037 merge_dir (enum replace_direction a, enum replace_direction b)
1039 /* Implements the following table:
1040 |bo fw bw no
1041 ---+-----------
1042 bo |bo fw bw no
1043 fw |-- fw no no
1044 bw |-- -- bw no
1045 no |-- -- -- no. */
1047 if (a == b)
1048 return a;
1050 if (a == dir_both)
1051 return b;
1052 if (b == dir_both)
1053 return a;
1055 return dir_none;
1058 /* Examine I1 and I2 and return:
1059 - dir_forward if I1 can be replaced by I2, or
1060 - dir_backward if I2 can be replaced by I1, or
1061 - dir_both if both are the case. */
1063 static enum replace_direction
1064 old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
1066 rtx p1, p2;
1068 /* Verify that I1 and I2 are equivalent. */
1069 if (GET_CODE (i1) != GET_CODE (i2))
1070 return dir_none;
1072 /* __builtin_unreachable() may lead to empty blocks (ending with
1073 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1074 if (NOTE_INSN_BASIC_BLOCK_P (i1) && NOTE_INSN_BASIC_BLOCK_P (i2))
1075 return dir_both;
1077 p1 = PATTERN (i1);
1078 p2 = PATTERN (i2);
1080 if (GET_CODE (p1) != GET_CODE (p2))
1081 return dir_none;
1083 /* If this is a CALL_INSN, compare register usage information.
1084 If we don't check this on stack register machines, the two
1085 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1086 numbers of stack registers in the same basic block.
1087 If we don't check this on machines with delay slots, a delay slot may
1088 be filled that clobbers a parameter expected by the subroutine.
1090 ??? We take the simple route for now and assume that if they're
1091 equal, they were constructed identically.
1093 Also check for identical exception regions. */
1095 if (CALL_P (i1))
1097 /* Ensure the same EH region. */
1098 rtx n1 = find_reg_note (i1, REG_EH_REGION, 0);
1099 rtx n2 = find_reg_note (i2, REG_EH_REGION, 0);
1101 if (!n1 && n2)
1102 return dir_none;
1104 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1105 return dir_none;
1107 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1108 CALL_INSN_FUNCTION_USAGE (i2))
1109 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2))
1110 return dir_none;
1113 #ifdef STACK_REGS
1114 /* If cross_jump_death_matters is not 0, the insn's mode
1115 indicates whether or not the insn contains any stack-like
1116 regs. */
1118 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
1120 /* If register stack conversion has already been done, then
1121 death notes must also be compared before it is certain that
1122 the two instruction streams match. */
1124 rtx note;
1125 HARD_REG_SET i1_regset, i2_regset;
1127 CLEAR_HARD_REG_SET (i1_regset);
1128 CLEAR_HARD_REG_SET (i2_regset);
1130 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1131 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1132 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1134 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1135 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1136 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1138 if (!hard_reg_set_equal_p (i1_regset, i2_regset))
1139 return dir_none;
1141 #endif
1143 if (reload_completed
1144 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1145 return dir_both;
1147 return can_replace_by (i1, i2);
1150 /* When comparing insns I1 and I2 in flow_find_cross_jump or
1151 flow_find_head_matching_sequence, ensure the notes match. */
1153 static void
1154 merge_notes (rtx i1, rtx i2)
1156 /* If the merged insns have different REG_EQUAL notes, then
1157 remove them. */
1158 rtx equiv1 = find_reg_equal_equiv_note (i1);
1159 rtx equiv2 = find_reg_equal_equiv_note (i2);
1161 if (equiv1 && !equiv2)
1162 remove_note (i1, equiv1);
1163 else if (!equiv1 && equiv2)
1164 remove_note (i2, equiv2);
1165 else if (equiv1 && equiv2
1166 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1168 remove_note (i1, equiv1);
1169 remove_note (i2, equiv2);
1173 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1174 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1175 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1176 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1177 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1179 static void
1180 walk_to_nondebug_insn (rtx *i1, basic_block *bb1, bool follow_fallthru,
1181 bool *did_fallthru)
1183 edge fallthru;
1185 *did_fallthru = false;
1187 /* Ignore notes. */
1188 while (!NONDEBUG_INSN_P (*i1))
1190 if (*i1 != BB_HEAD (*bb1))
1192 *i1 = PREV_INSN (*i1);
1193 continue;
1196 if (!follow_fallthru)
1197 return;
1199 fallthru = find_fallthru_edge ((*bb1)->preds);
1200 if (!fallthru || fallthru->src == ENTRY_BLOCK_PTR_FOR_FUNCTION (cfun)
1201 || !single_succ_p (fallthru->src))
1202 return;
1204 *bb1 = fallthru->src;
1205 *i1 = BB_END (*bb1);
1206 *did_fallthru = true;
1210 /* Look through the insns at the end of BB1 and BB2 and find the longest
1211 sequence that are either equivalent, or allow forward or backward
1212 replacement. Store the first insns for that sequence in *F1 and *F2 and
1213 return the sequence length.
1215 DIR_P indicates the allowed replacement direction on function entry, and
1216 the actual replacement direction on function exit. If NULL, only equivalent
1217 sequences are allowed.
1219 To simplify callers of this function, if the blocks match exactly,
1220 store the head of the blocks in *F1 and *F2. */
1223 flow_find_cross_jump (basic_block bb1, basic_block bb2, rtx *f1, rtx *f2,
1224 enum replace_direction *dir_p)
1226 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1227 int ninsns = 0;
1228 rtx p1;
1229 enum replace_direction dir, last_dir, afterlast_dir;
1230 bool follow_fallthru, did_fallthru;
1232 if (dir_p)
1233 dir = *dir_p;
1234 else
1235 dir = dir_both;
1236 afterlast_dir = dir;
1237 last_dir = afterlast_dir;
1239 /* Skip simple jumps at the end of the blocks. Complex jumps still
1240 need to be compared for equivalence, which we'll do below. */
1242 i1 = BB_END (bb1);
1243 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1244 if (onlyjump_p (i1)
1245 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1247 last1 = i1;
1248 i1 = PREV_INSN (i1);
1251 i2 = BB_END (bb2);
1252 if (onlyjump_p (i2)
1253 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1255 last2 = i2;
1256 /* Count everything except for unconditional jump as insn. */
1257 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1258 ninsns++;
1259 i2 = PREV_INSN (i2);
1262 while (true)
1264 /* In the following example, we can replace all jumps to C by jumps to A.
1266 This removes 4 duplicate insns.
1267 [bb A] insn1 [bb C] insn1
1268 insn2 insn2
1269 [bb B] insn3 insn3
1270 insn4 insn4
1271 jump_insn jump_insn
1273 We could also replace all jumps to A by jumps to C, but that leaves B
1274 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1275 step, all jumps to B would be replaced with jumps to the middle of C,
1276 achieving the same result with more effort.
1277 So we allow only the first possibility, which means that we don't allow
1278 fallthru in the block that's being replaced. */
1280 follow_fallthru = dir_p && dir != dir_forward;
1281 walk_to_nondebug_insn (&i1, &bb1, follow_fallthru, &did_fallthru);
1282 if (did_fallthru)
1283 dir = dir_backward;
1285 follow_fallthru = dir_p && dir != dir_backward;
1286 walk_to_nondebug_insn (&i2, &bb2, follow_fallthru, &did_fallthru);
1287 if (did_fallthru)
1288 dir = dir_forward;
1290 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1291 break;
1293 dir = merge_dir (dir, old_insns_match_p (0, i1, i2));
1294 if (dir == dir_none || (!dir_p && dir != dir_both))
1295 break;
1297 merge_memattrs (i1, i2);
1299 /* Don't begin a cross-jump with a NOTE insn. */
1300 if (INSN_P (i1))
1302 merge_notes (i1, i2);
1304 afterlast1 = last1, afterlast2 = last2;
1305 last1 = i1, last2 = i2;
1306 afterlast_dir = last_dir;
1307 last_dir = dir;
1308 p1 = PATTERN (i1);
1309 if (!(GET_CODE (p1) == USE || GET_CODE (p1) == CLOBBER))
1310 ninsns++;
1313 i1 = PREV_INSN (i1);
1314 i2 = PREV_INSN (i2);
1317 #ifdef HAVE_cc0
1318 /* Don't allow the insn after a compare to be shared by
1319 cross-jumping unless the compare is also shared. */
1320 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1321 last1 = afterlast1, last2 = afterlast2, last_dir = afterlast_dir, ninsns--;
1322 #endif
1324 /* Include preceding notes and labels in the cross-jump. One,
1325 this may bring us to the head of the blocks as requested above.
1326 Two, it keeps line number notes as matched as may be. */
1327 if (ninsns)
1329 bb1 = BLOCK_FOR_INSN (last1);
1330 while (last1 != BB_HEAD (bb1) && !NONDEBUG_INSN_P (PREV_INSN (last1)))
1331 last1 = PREV_INSN (last1);
1333 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1334 last1 = PREV_INSN (last1);
1336 bb2 = BLOCK_FOR_INSN (last2);
1337 while (last2 != BB_HEAD (bb2) && !NONDEBUG_INSN_P (PREV_INSN (last2)))
1338 last2 = PREV_INSN (last2);
1340 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1341 last2 = PREV_INSN (last2);
1343 *f1 = last1;
1344 *f2 = last2;
1347 if (dir_p)
1348 *dir_p = last_dir;
1349 return ninsns;
1352 /* Like flow_find_cross_jump, except start looking for a matching sequence from
1353 the head of the two blocks. Do not include jumps at the end.
1354 If STOP_AFTER is nonzero, stop after finding that many matching
1355 instructions. */
1358 flow_find_head_matching_sequence (basic_block bb1, basic_block bb2, rtx *f1,
1359 rtx *f2, int stop_after)
1361 rtx i1, i2, last1, last2, beforelast1, beforelast2;
1362 int ninsns = 0;
1363 edge e;
1364 edge_iterator ei;
1365 int nehedges1 = 0, nehedges2 = 0;
1367 FOR_EACH_EDGE (e, ei, bb1->succs)
1368 if (e->flags & EDGE_EH)
1369 nehedges1++;
1370 FOR_EACH_EDGE (e, ei, bb2->succs)
1371 if (e->flags & EDGE_EH)
1372 nehedges2++;
1374 i1 = BB_HEAD (bb1);
1375 i2 = BB_HEAD (bb2);
1376 last1 = beforelast1 = last2 = beforelast2 = NULL_RTX;
1378 while (true)
1380 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1381 while (!NONDEBUG_INSN_P (i1) && i1 != BB_END (bb1))
1383 if (NOTE_P (i1) && NOTE_KIND (i1) == NOTE_INSN_EPILOGUE_BEG)
1384 break;
1385 i1 = NEXT_INSN (i1);
1388 while (!NONDEBUG_INSN_P (i2) && i2 != BB_END (bb2))
1390 if (NOTE_P (i2) && NOTE_KIND (i2) == NOTE_INSN_EPILOGUE_BEG)
1391 break;
1392 i2 = NEXT_INSN (i2);
1395 if ((i1 == BB_END (bb1) && !NONDEBUG_INSN_P (i1))
1396 || (i2 == BB_END (bb2) && !NONDEBUG_INSN_P (i2)))
1397 break;
1399 if (NOTE_P (i1) || NOTE_P (i2)
1400 || JUMP_P (i1) || JUMP_P (i2))
1401 break;
1403 /* A sanity check to make sure we're not merging insns with different
1404 effects on EH. If only one of them ends a basic block, it shouldn't
1405 have an EH edge; if both end a basic block, there should be the same
1406 number of EH edges. */
1407 if ((i1 == BB_END (bb1) && i2 != BB_END (bb2)
1408 && nehedges1 > 0)
1409 || (i2 == BB_END (bb2) && i1 != BB_END (bb1)
1410 && nehedges2 > 0)
1411 || (i1 == BB_END (bb1) && i2 == BB_END (bb2)
1412 && nehedges1 != nehedges2))
1413 break;
1415 if (old_insns_match_p (0, i1, i2) != dir_both)
1416 break;
1418 merge_memattrs (i1, i2);
1420 /* Don't begin a cross-jump with a NOTE insn. */
1421 if (INSN_P (i1))
1423 merge_notes (i1, i2);
1425 beforelast1 = last1, beforelast2 = last2;
1426 last1 = i1, last2 = i2;
1427 ninsns++;
1430 if (i1 == BB_END (bb1) || i2 == BB_END (bb2)
1431 || (stop_after > 0 && ninsns == stop_after))
1432 break;
1434 i1 = NEXT_INSN (i1);
1435 i2 = NEXT_INSN (i2);
1438 #ifdef HAVE_cc0
1439 /* Don't allow a compare to be shared by cross-jumping unless the insn
1440 after the compare is also shared. */
1441 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && sets_cc0_p (last1))
1442 last1 = beforelast1, last2 = beforelast2, ninsns--;
1443 #endif
1445 if (ninsns)
1447 *f1 = last1;
1448 *f2 = last2;
1451 return ninsns;
1454 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1455 the branch instruction. This means that if we commonize the control
1456 flow before end of the basic block, the semantic remains unchanged.
1458 We may assume that there exists one edge with a common destination. */
1460 static bool
1461 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1463 int nehedges1 = 0, nehedges2 = 0;
1464 edge fallthru1 = 0, fallthru2 = 0;
1465 edge e1, e2;
1466 edge_iterator ei;
1468 /* If BB1 has only one successor, we may be looking at either an
1469 unconditional jump, or a fake edge to exit. */
1470 if (single_succ_p (bb1)
1471 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1472 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1473 return (single_succ_p (bb2)
1474 && (single_succ_edge (bb2)->flags
1475 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1476 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1478 /* Match conditional jumps - this may get tricky when fallthru and branch
1479 edges are crossed. */
1480 if (EDGE_COUNT (bb1->succs) == 2
1481 && any_condjump_p (BB_END (bb1))
1482 && onlyjump_p (BB_END (bb1)))
1484 edge b1, f1, b2, f2;
1485 bool reverse, match;
1486 rtx set1, set2, cond1, cond2;
1487 enum rtx_code code1, code2;
1489 if (EDGE_COUNT (bb2->succs) != 2
1490 || !any_condjump_p (BB_END (bb2))
1491 || !onlyjump_p (BB_END (bb2)))
1492 return false;
1494 b1 = BRANCH_EDGE (bb1);
1495 b2 = BRANCH_EDGE (bb2);
1496 f1 = FALLTHRU_EDGE (bb1);
1497 f2 = FALLTHRU_EDGE (bb2);
1499 /* Get around possible forwarders on fallthru edges. Other cases
1500 should be optimized out already. */
1501 if (FORWARDER_BLOCK_P (f1->dest))
1502 f1 = single_succ_edge (f1->dest);
1504 if (FORWARDER_BLOCK_P (f2->dest))
1505 f2 = single_succ_edge (f2->dest);
1507 /* To simplify use of this function, return false if there are
1508 unneeded forwarder blocks. These will get eliminated later
1509 during cleanup_cfg. */
1510 if (FORWARDER_BLOCK_P (f1->dest)
1511 || FORWARDER_BLOCK_P (f2->dest)
1512 || FORWARDER_BLOCK_P (b1->dest)
1513 || FORWARDER_BLOCK_P (b2->dest))
1514 return false;
1516 if (f1->dest == f2->dest && b1->dest == b2->dest)
1517 reverse = false;
1518 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1519 reverse = true;
1520 else
1521 return false;
1523 set1 = pc_set (BB_END (bb1));
1524 set2 = pc_set (BB_END (bb2));
1525 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1526 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1527 reverse = !reverse;
1529 cond1 = XEXP (SET_SRC (set1), 0);
1530 cond2 = XEXP (SET_SRC (set2), 0);
1531 code1 = GET_CODE (cond1);
1532 if (reverse)
1533 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1534 else
1535 code2 = GET_CODE (cond2);
1537 if (code2 == UNKNOWN)
1538 return false;
1540 /* Verify codes and operands match. */
1541 match = ((code1 == code2
1542 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1543 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1544 || (code1 == swap_condition (code2)
1545 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1546 XEXP (cond2, 0))
1547 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1548 XEXP (cond2, 1))));
1550 /* If we return true, we will join the blocks. Which means that
1551 we will only have one branch prediction bit to work with. Thus
1552 we require the existing branches to have probabilities that are
1553 roughly similar. */
1554 if (match
1555 && optimize_bb_for_speed_p (bb1)
1556 && optimize_bb_for_speed_p (bb2))
1558 int prob2;
1560 if (b1->dest == b2->dest)
1561 prob2 = b2->probability;
1562 else
1563 /* Do not use f2 probability as f2 may be forwarded. */
1564 prob2 = REG_BR_PROB_BASE - b2->probability;
1566 /* Fail if the difference in probabilities is greater than 50%.
1567 This rules out two well-predicted branches with opposite
1568 outcomes. */
1569 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1571 if (dump_file)
1572 fprintf (dump_file,
1573 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1574 bb1->index, bb2->index, b1->probability, prob2);
1576 return false;
1580 if (dump_file && match)
1581 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1582 bb1->index, bb2->index);
1584 return match;
1587 /* Generic case - we are seeing a computed jump, table jump or trapping
1588 instruction. */
1590 /* Check whether there are tablejumps in the end of BB1 and BB2.
1591 Return true if they are identical. */
1593 rtx label1, label2;
1594 rtx table1, table2;
1596 if (tablejump_p (BB_END (bb1), &label1, &table1)
1597 && tablejump_p (BB_END (bb2), &label2, &table2)
1598 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1600 /* The labels should never be the same rtx. If they really are same
1601 the jump tables are same too. So disable crossjumping of blocks BB1
1602 and BB2 because when deleting the common insns in the end of BB1
1603 by delete_basic_block () the jump table would be deleted too. */
1604 /* If LABEL2 is referenced in BB1->END do not do anything
1605 because we would loose information when replacing
1606 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1607 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1609 /* Set IDENTICAL to true when the tables are identical. */
1610 bool identical = false;
1611 rtx p1, p2;
1613 p1 = PATTERN (table1);
1614 p2 = PATTERN (table2);
1615 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1617 identical = true;
1619 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1620 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1621 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1622 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1624 int i;
1626 identical = true;
1627 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1628 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1629 identical = false;
1632 if (identical)
1634 replace_label_data rr;
1635 bool match;
1637 /* Temporarily replace references to LABEL1 with LABEL2
1638 in BB1->END so that we could compare the instructions. */
1639 rr.r1 = label1;
1640 rr.r2 = label2;
1641 rr.update_label_nuses = false;
1642 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1644 match = (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2))
1645 == dir_both);
1646 if (dump_file && match)
1647 fprintf (dump_file,
1648 "Tablejumps in bb %i and %i match.\n",
1649 bb1->index, bb2->index);
1651 /* Set the original label in BB1->END because when deleting
1652 a block whose end is a tablejump, the tablejump referenced
1653 from the instruction is deleted too. */
1654 rr.r1 = label2;
1655 rr.r2 = label1;
1656 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1658 return match;
1661 return false;
1665 /* First ensure that the instructions match. There may be many outgoing
1666 edges so this test is generally cheaper. */
1667 if (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2)) != dir_both)
1668 return false;
1670 /* Search the outgoing edges, ensure that the counts do match, find possible
1671 fallthru and exception handling edges since these needs more
1672 validation. */
1673 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1674 return false;
1676 FOR_EACH_EDGE (e1, ei, bb1->succs)
1678 e2 = EDGE_SUCC (bb2, ei.index);
1680 if (e1->flags & EDGE_EH)
1681 nehedges1++;
1683 if (e2->flags & EDGE_EH)
1684 nehedges2++;
1686 if (e1->flags & EDGE_FALLTHRU)
1687 fallthru1 = e1;
1688 if (e2->flags & EDGE_FALLTHRU)
1689 fallthru2 = e2;
1692 /* If number of edges of various types does not match, fail. */
1693 if (nehedges1 != nehedges2
1694 || (fallthru1 != 0) != (fallthru2 != 0))
1695 return false;
1697 /* fallthru edges must be forwarded to the same destination. */
1698 if (fallthru1)
1700 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1701 ? single_succ (fallthru1->dest): fallthru1->dest);
1702 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1703 ? single_succ (fallthru2->dest): fallthru2->dest);
1705 if (d1 != d2)
1706 return false;
1709 /* Ensure the same EH region. */
1711 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1712 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1714 if (!n1 && n2)
1715 return false;
1717 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1718 return false;
1721 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1722 version of sequence abstraction. */
1723 FOR_EACH_EDGE (e1, ei, bb2->succs)
1725 edge e2;
1726 edge_iterator ei;
1727 basic_block d1 = e1->dest;
1729 if (FORWARDER_BLOCK_P (d1))
1730 d1 = EDGE_SUCC (d1, 0)->dest;
1732 FOR_EACH_EDGE (e2, ei, bb1->succs)
1734 basic_block d2 = e2->dest;
1735 if (FORWARDER_BLOCK_P (d2))
1736 d2 = EDGE_SUCC (d2, 0)->dest;
1737 if (d1 == d2)
1738 break;
1741 if (!e2)
1742 return false;
1745 return true;
1748 /* Returns true if BB basic block has a preserve label. */
1750 static bool
1751 block_has_preserve_label (basic_block bb)
1753 return (bb
1754 && block_label (bb)
1755 && LABEL_PRESERVE_P (block_label (bb)));
1758 /* E1 and E2 are edges with the same destination block. Search their
1759 predecessors for common code. If found, redirect control flow from
1760 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1761 or the other way around (dir_backward). DIR specifies the allowed
1762 replacement direction. */
1764 static bool
1765 try_crossjump_to_edge (int mode, edge e1, edge e2,
1766 enum replace_direction dir)
1768 int nmatch;
1769 basic_block src1 = e1->src, src2 = e2->src;
1770 basic_block redirect_to, redirect_from, to_remove;
1771 basic_block osrc1, osrc2, redirect_edges_to, tmp;
1772 rtx newpos1, newpos2;
1773 edge s;
1774 edge_iterator ei;
1776 newpos1 = newpos2 = NULL_RTX;
1778 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1779 to try this optimization.
1781 Basic block partitioning may result in some jumps that appear to
1782 be optimizable (or blocks that appear to be mergeable), but which really
1783 must be left untouched (they are required to make it safely across
1784 partition boundaries). See the comments at the top of
1785 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1787 if (flag_reorder_blocks_and_partition && reload_completed)
1788 return false;
1790 /* Search backward through forwarder blocks. We don't need to worry
1791 about multiple entry or chained forwarders, as they will be optimized
1792 away. We do this to look past the unconditional jump following a
1793 conditional jump that is required due to the current CFG shape. */
1794 if (single_pred_p (src1)
1795 && FORWARDER_BLOCK_P (src1))
1796 e1 = single_pred_edge (src1), src1 = e1->src;
1798 if (single_pred_p (src2)
1799 && FORWARDER_BLOCK_P (src2))
1800 e2 = single_pred_edge (src2), src2 = e2->src;
1802 /* Nothing to do if we reach ENTRY, or a common source block. */
1803 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1804 return false;
1805 if (src1 == src2)
1806 return false;
1808 /* Seeing more than 1 forwarder blocks would confuse us later... */
1809 if (FORWARDER_BLOCK_P (e1->dest)
1810 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
1811 return false;
1813 if (FORWARDER_BLOCK_P (e2->dest)
1814 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
1815 return false;
1817 /* Likewise with dead code (possibly newly created by the other optimizations
1818 of cfg_cleanup). */
1819 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
1820 return false;
1822 /* Look for the common insn sequence, part the first ... */
1823 if (!outgoing_edges_match (mode, src1, src2))
1824 return false;
1826 /* ... and part the second. */
1827 nmatch = flow_find_cross_jump (src1, src2, &newpos1, &newpos2, &dir);
1829 osrc1 = src1;
1830 osrc2 = src2;
1831 if (newpos1 != NULL_RTX)
1832 src1 = BLOCK_FOR_INSN (newpos1);
1833 if (newpos2 != NULL_RTX)
1834 src2 = BLOCK_FOR_INSN (newpos2);
1836 if (dir == dir_backward)
1838 #define SWAP(T, X, Y) do { T tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
1839 SWAP (basic_block, osrc1, osrc2);
1840 SWAP (basic_block, src1, src2);
1841 SWAP (edge, e1, e2);
1842 SWAP (rtx, newpos1, newpos2);
1843 #undef SWAP
1846 /* Don't proceed with the crossjump unless we found a sufficient number
1847 of matching instructions or the 'from' block was totally matched
1848 (such that its predecessors will hopefully be redirected and the
1849 block removed). */
1850 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1851 && (newpos1 != BB_HEAD (src1)))
1852 return false;
1854 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1855 if (block_has_preserve_label (e1->dest)
1856 && (e1->flags & EDGE_ABNORMAL))
1857 return false;
1859 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1860 will be deleted.
1861 If we have tablejumps in the end of SRC1 and SRC2
1862 they have been already compared for equivalence in outgoing_edges_match ()
1863 so replace the references to TABLE1 by references to TABLE2. */
1865 rtx label1, label2;
1866 rtx table1, table2;
1868 if (tablejump_p (BB_END (osrc1), &label1, &table1)
1869 && tablejump_p (BB_END (osrc2), &label2, &table2)
1870 && label1 != label2)
1872 replace_label_data rr;
1873 rtx insn;
1875 /* Replace references to LABEL1 with LABEL2. */
1876 rr.r1 = label1;
1877 rr.r2 = label2;
1878 rr.update_label_nuses = true;
1879 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1881 /* Do not replace the label in SRC1->END because when deleting
1882 a block whose end is a tablejump, the tablejump referenced
1883 from the instruction is deleted too. */
1884 if (insn != BB_END (osrc1))
1885 for_each_rtx (&insn, replace_label, &rr);
1890 /* Avoid splitting if possible. We must always split when SRC2 has
1891 EH predecessor edges, or we may end up with basic blocks with both
1892 normal and EH predecessor edges. */
1893 if (newpos2 == BB_HEAD (src2)
1894 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
1895 redirect_to = src2;
1896 else
1898 if (newpos2 == BB_HEAD (src2))
1900 /* Skip possible basic block header. */
1901 if (LABEL_P (newpos2))
1902 newpos2 = NEXT_INSN (newpos2);
1903 while (DEBUG_INSN_P (newpos2))
1904 newpos2 = NEXT_INSN (newpos2);
1905 if (NOTE_P (newpos2))
1906 newpos2 = NEXT_INSN (newpos2);
1907 while (DEBUG_INSN_P (newpos2))
1908 newpos2 = NEXT_INSN (newpos2);
1911 if (dump_file)
1912 fprintf (dump_file, "Splitting bb %i before %i insns\n",
1913 src2->index, nmatch);
1914 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1917 if (dump_file)
1918 fprintf (dump_file,
1919 "Cross jumping from bb %i to bb %i; %i common insns\n",
1920 src1->index, src2->index, nmatch);
1922 /* We may have some registers visible through the block. */
1923 df_set_bb_dirty (redirect_to);
1925 if (osrc2 == src2)
1926 redirect_edges_to = redirect_to;
1927 else
1928 redirect_edges_to = osrc2;
1930 /* Recompute the frequencies and counts of outgoing edges. */
1931 FOR_EACH_EDGE (s, ei, redirect_edges_to->succs)
1933 edge s2;
1934 edge_iterator ei;
1935 basic_block d = s->dest;
1937 if (FORWARDER_BLOCK_P (d))
1938 d = single_succ (d);
1940 FOR_EACH_EDGE (s2, ei, src1->succs)
1942 basic_block d2 = s2->dest;
1943 if (FORWARDER_BLOCK_P (d2))
1944 d2 = single_succ (d2);
1945 if (d == d2)
1946 break;
1949 s->count += s2->count;
1951 /* Take care to update possible forwarder blocks. We verified
1952 that there is no more than one in the chain, so we can't run
1953 into infinite loop. */
1954 if (FORWARDER_BLOCK_P (s->dest))
1956 single_succ_edge (s->dest)->count += s2->count;
1957 s->dest->count += s2->count;
1958 s->dest->frequency += EDGE_FREQUENCY (s);
1961 if (FORWARDER_BLOCK_P (s2->dest))
1963 single_succ_edge (s2->dest)->count -= s2->count;
1964 if (single_succ_edge (s2->dest)->count < 0)
1965 single_succ_edge (s2->dest)->count = 0;
1966 s2->dest->count -= s2->count;
1967 s2->dest->frequency -= EDGE_FREQUENCY (s);
1968 if (s2->dest->frequency < 0)
1969 s2->dest->frequency = 0;
1970 if (s2->dest->count < 0)
1971 s2->dest->count = 0;
1974 if (!redirect_edges_to->frequency && !src1->frequency)
1975 s->probability = (s->probability + s2->probability) / 2;
1976 else
1977 s->probability
1978 = ((s->probability * redirect_edges_to->frequency +
1979 s2->probability * src1->frequency)
1980 / (redirect_edges_to->frequency + src1->frequency));
1983 /* Adjust count and frequency for the block. An earlier jump
1984 threading pass may have left the profile in an inconsistent
1985 state (see update_bb_profile_for_threading) so we must be
1986 prepared for overflows. */
1987 tmp = redirect_to;
1990 tmp->count += src1->count;
1991 tmp->frequency += src1->frequency;
1992 if (tmp->frequency > BB_FREQ_MAX)
1993 tmp->frequency = BB_FREQ_MAX;
1994 if (tmp == redirect_edges_to)
1995 break;
1996 tmp = find_fallthru_edge (tmp->succs)->dest;
1998 while (true);
1999 update_br_prob_note (redirect_edges_to);
2001 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2003 /* Skip possible basic block header. */
2004 if (LABEL_P (newpos1))
2005 newpos1 = NEXT_INSN (newpos1);
2007 while (DEBUG_INSN_P (newpos1))
2008 newpos1 = NEXT_INSN (newpos1);
2010 if (NOTE_INSN_BASIC_BLOCK_P (newpos1))
2011 newpos1 = NEXT_INSN (newpos1);
2013 while (DEBUG_INSN_P (newpos1))
2014 newpos1 = NEXT_INSN (newpos1);
2016 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
2017 to_remove = single_succ (redirect_from);
2019 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
2020 delete_basic_block (to_remove);
2022 update_forwarder_flag (redirect_from);
2023 if (redirect_to != src2)
2024 update_forwarder_flag (src2);
2026 return true;
2029 /* Search the predecessors of BB for common insn sequences. When found,
2030 share code between them by redirecting control flow. Return true if
2031 any changes made. */
2033 static bool
2034 try_crossjump_bb (int mode, basic_block bb)
2036 edge e, e2, fallthru;
2037 bool changed;
2038 unsigned max, ix, ix2;
2040 /* Nothing to do if there is not at least two incoming edges. */
2041 if (EDGE_COUNT (bb->preds) < 2)
2042 return false;
2044 /* Don't crossjump if this block ends in a computed jump,
2045 unless we are optimizing for size. */
2046 if (optimize_bb_for_size_p (bb)
2047 && bb != EXIT_BLOCK_PTR
2048 && computed_jump_p (BB_END (bb)))
2049 return false;
2051 /* If we are partitioning hot/cold basic blocks, we don't want to
2052 mess up unconditional or indirect jumps that cross between hot
2053 and cold sections.
2055 Basic block partitioning may result in some jumps that appear to
2056 be optimizable (or blocks that appear to be mergeable), but which really
2057 must be left untouched (they are required to make it safely across
2058 partition boundaries). See the comments at the top of
2059 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2061 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
2062 BB_PARTITION (EDGE_PRED (bb, 1)->src)
2063 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
2064 return false;
2066 /* It is always cheapest to redirect a block that ends in a branch to
2067 a block that falls through into BB, as that adds no branches to the
2068 program. We'll try that combination first. */
2069 fallthru = NULL;
2070 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
2072 if (EDGE_COUNT (bb->preds) > max)
2073 return false;
2075 fallthru = find_fallthru_edge (bb->preds);
2077 changed = false;
2078 for (ix = 0; ix < EDGE_COUNT (bb->preds);)
2080 e = EDGE_PRED (bb, ix);
2081 ix++;
2083 /* As noted above, first try with the fallthru predecessor (or, a
2084 fallthru predecessor if we are in cfglayout mode). */
2085 if (fallthru)
2087 /* Don't combine the fallthru edge into anything else.
2088 If there is a match, we'll do it the other way around. */
2089 if (e == fallthru)
2090 continue;
2091 /* If nothing changed since the last attempt, there is nothing
2092 we can do. */
2093 if (!first_pass
2094 && !((e->src->flags & BB_MODIFIED)
2095 || (fallthru->src->flags & BB_MODIFIED)))
2096 continue;
2098 if (try_crossjump_to_edge (mode, e, fallthru, dir_forward))
2100 changed = true;
2101 ix = 0;
2102 continue;
2106 /* Non-obvious work limiting check: Recognize that we're going
2107 to call try_crossjump_bb on every basic block. So if we have
2108 two blocks with lots of outgoing edges (a switch) and they
2109 share lots of common destinations, then we would do the
2110 cross-jump check once for each common destination.
2112 Now, if the blocks actually are cross-jump candidates, then
2113 all of their destinations will be shared. Which means that
2114 we only need check them for cross-jump candidacy once. We
2115 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2116 choosing to do the check from the block for which the edge
2117 in question is the first successor of A. */
2118 if (EDGE_SUCC (e->src, 0) != e)
2119 continue;
2121 for (ix2 = 0; ix2 < EDGE_COUNT (bb->preds); ix2++)
2123 e2 = EDGE_PRED (bb, ix2);
2125 if (e2 == e)
2126 continue;
2128 /* We've already checked the fallthru edge above. */
2129 if (e2 == fallthru)
2130 continue;
2132 /* The "first successor" check above only prevents multiple
2133 checks of crossjump(A,B). In order to prevent redundant
2134 checks of crossjump(B,A), require that A be the block
2135 with the lowest index. */
2136 if (e->src->index > e2->src->index)
2137 continue;
2139 /* If nothing changed since the last attempt, there is nothing
2140 we can do. */
2141 if (!first_pass
2142 && !((e->src->flags & BB_MODIFIED)
2143 || (e2->src->flags & BB_MODIFIED)))
2144 continue;
2146 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2147 direction. */
2148 if (try_crossjump_to_edge (mode, e, e2, dir_both))
2150 changed = true;
2151 ix = 0;
2152 break;
2157 if (changed)
2158 crossjumps_occured = true;
2160 return changed;
2163 /* Search the successors of BB for common insn sequences. When found,
2164 share code between them by moving it across the basic block
2165 boundary. Return true if any changes made. */
2167 static bool
2168 try_head_merge_bb (basic_block bb)
2170 basic_block final_dest_bb = NULL;
2171 int max_match = INT_MAX;
2172 edge e0;
2173 rtx *headptr, *currptr, *nextptr;
2174 bool changed, moveall;
2175 unsigned ix;
2176 rtx e0_last_head, cond, move_before;
2177 unsigned nedges = EDGE_COUNT (bb->succs);
2178 rtx jump = BB_END (bb);
2179 regset live, live_union;
2181 /* Nothing to do if there is not at least two outgoing edges. */
2182 if (nedges < 2)
2183 return false;
2185 /* Don't crossjump if this block ends in a computed jump,
2186 unless we are optimizing for size. */
2187 if (optimize_bb_for_size_p (bb)
2188 && bb != EXIT_BLOCK_PTR
2189 && computed_jump_p (BB_END (bb)))
2190 return false;
2192 cond = get_condition (jump, &move_before, true, false);
2193 if (cond == NULL_RTX)
2194 move_before = jump;
2196 for (ix = 0; ix < nedges; ix++)
2197 if (EDGE_SUCC (bb, ix)->dest == EXIT_BLOCK_PTR)
2198 return false;
2200 for (ix = 0; ix < nedges; ix++)
2202 edge e = EDGE_SUCC (bb, ix);
2203 basic_block other_bb = e->dest;
2205 if (df_get_bb_dirty (other_bb))
2207 block_was_dirty = true;
2208 return false;
2211 if (e->flags & EDGE_ABNORMAL)
2212 return false;
2214 /* Normally, all destination blocks must only be reachable from this
2215 block, i.e. they must have one incoming edge.
2217 There is one special case we can handle, that of multiple consecutive
2218 jumps where the first jumps to one of the targets of the second jump.
2219 This happens frequently in switch statements for default labels.
2220 The structure is as follows:
2221 FINAL_DEST_BB
2222 ....
2223 if (cond) jump A;
2224 fall through
2226 jump with targets A, B, C, D...
2228 has two incoming edges, from FINAL_DEST_BB and BB
2230 In this case, we can try to move the insns through BB and into
2231 FINAL_DEST_BB. */
2232 if (EDGE_COUNT (other_bb->preds) != 1)
2234 edge incoming_edge, incoming_bb_other_edge;
2235 edge_iterator ei;
2237 if (final_dest_bb != NULL
2238 || EDGE_COUNT (other_bb->preds) != 2)
2239 return false;
2241 /* We must be able to move the insns across the whole block. */
2242 move_before = BB_HEAD (bb);
2243 while (!NONDEBUG_INSN_P (move_before))
2244 move_before = NEXT_INSN (move_before);
2246 if (EDGE_COUNT (bb->preds) != 1)
2247 return false;
2248 incoming_edge = EDGE_PRED (bb, 0);
2249 final_dest_bb = incoming_edge->src;
2250 if (EDGE_COUNT (final_dest_bb->succs) != 2)
2251 return false;
2252 FOR_EACH_EDGE (incoming_bb_other_edge, ei, final_dest_bb->succs)
2253 if (incoming_bb_other_edge != incoming_edge)
2254 break;
2255 if (incoming_bb_other_edge->dest != other_bb)
2256 return false;
2260 e0 = EDGE_SUCC (bb, 0);
2261 e0_last_head = NULL_RTX;
2262 changed = false;
2264 for (ix = 1; ix < nedges; ix++)
2266 edge e = EDGE_SUCC (bb, ix);
2267 rtx e0_last, e_last;
2268 int nmatch;
2270 nmatch = flow_find_head_matching_sequence (e0->dest, e->dest,
2271 &e0_last, &e_last, 0);
2272 if (nmatch == 0)
2273 return false;
2275 if (nmatch < max_match)
2277 max_match = nmatch;
2278 e0_last_head = e0_last;
2282 /* If we matched an entire block, we probably have to avoid moving the
2283 last insn. */
2284 if (max_match > 0
2285 && e0_last_head == BB_END (e0->dest)
2286 && (find_reg_note (e0_last_head, REG_EH_REGION, 0)
2287 || control_flow_insn_p (e0_last_head)))
2289 max_match--;
2290 if (max_match == 0)
2291 return false;
2293 e0_last_head = prev_real_insn (e0_last_head);
2294 while (DEBUG_INSN_P (e0_last_head));
2297 if (max_match == 0)
2298 return false;
2300 /* We must find a union of the live registers at each of the end points. */
2301 live = BITMAP_ALLOC (NULL);
2302 live_union = BITMAP_ALLOC (NULL);
2304 currptr = XNEWVEC (rtx, nedges);
2305 headptr = XNEWVEC (rtx, nedges);
2306 nextptr = XNEWVEC (rtx, nedges);
2308 for (ix = 0; ix < nedges; ix++)
2310 int j;
2311 basic_block merge_bb = EDGE_SUCC (bb, ix)->dest;
2312 rtx head = BB_HEAD (merge_bb);
2314 while (!NONDEBUG_INSN_P (head))
2315 head = NEXT_INSN (head);
2316 headptr[ix] = head;
2317 currptr[ix] = head;
2319 /* Compute the end point and live information */
2320 for (j = 1; j < max_match; j++)
2322 head = NEXT_INSN (head);
2323 while (!NONDEBUG_INSN_P (head));
2324 simulate_backwards_to_point (merge_bb, live, head);
2325 IOR_REG_SET (live_union, live);
2328 /* If we're moving across two blocks, verify the validity of the
2329 first move, then adjust the target and let the loop below deal
2330 with the final move. */
2331 if (final_dest_bb != NULL)
2333 rtx move_upto;
2335 moveall = can_move_insns_across (currptr[0], e0_last_head, move_before,
2336 jump, e0->dest, live_union,
2337 NULL, &move_upto);
2338 if (!moveall)
2340 if (move_upto == NULL_RTX)
2341 goto out;
2343 while (e0_last_head != move_upto)
2345 df_simulate_one_insn_backwards (e0->dest, e0_last_head,
2346 live_union);
2347 e0_last_head = PREV_INSN (e0_last_head);
2350 if (e0_last_head == NULL_RTX)
2351 goto out;
2353 jump = BB_END (final_dest_bb);
2354 cond = get_condition (jump, &move_before, true, false);
2355 if (cond == NULL_RTX)
2356 move_before = jump;
2361 rtx move_upto;
2362 moveall = can_move_insns_across (currptr[0], e0_last_head,
2363 move_before, jump, e0->dest, live_union,
2364 NULL, &move_upto);
2365 if (!moveall && move_upto == NULL_RTX)
2367 if (jump == move_before)
2368 break;
2370 /* Try again, using a different insertion point. */
2371 move_before = jump;
2373 #ifdef HAVE_cc0
2374 /* Don't try moving before a cc0 user, as that may invalidate
2375 the cc0. */
2376 if (reg_mentioned_p (cc0_rtx, jump))
2377 break;
2378 #endif
2380 continue;
2383 if (final_dest_bb && !moveall)
2384 /* We haven't checked whether a partial move would be OK for the first
2385 move, so we have to fail this case. */
2386 break;
2388 changed = true;
2389 for (;;)
2391 if (currptr[0] == move_upto)
2392 break;
2393 for (ix = 0; ix < nedges; ix++)
2395 rtx curr = currptr[ix];
2397 curr = NEXT_INSN (curr);
2398 while (!NONDEBUG_INSN_P (curr));
2399 currptr[ix] = curr;
2403 /* If we can't currently move all of the identical insns, remember
2404 each insn after the range that we'll merge. */
2405 if (!moveall)
2406 for (ix = 0; ix < nedges; ix++)
2408 rtx curr = currptr[ix];
2410 curr = NEXT_INSN (curr);
2411 while (!NONDEBUG_INSN_P (curr));
2412 nextptr[ix] = curr;
2415 reorder_insns (headptr[0], currptr[0], PREV_INSN (move_before));
2416 df_set_bb_dirty (EDGE_SUCC (bb, 0)->dest);
2417 if (final_dest_bb != NULL)
2418 df_set_bb_dirty (final_dest_bb);
2419 df_set_bb_dirty (bb);
2420 for (ix = 1; ix < nedges; ix++)
2422 df_set_bb_dirty (EDGE_SUCC (bb, ix)->dest);
2423 delete_insn_chain (headptr[ix], currptr[ix], false);
2425 if (!moveall)
2427 if (jump == move_before)
2428 break;
2430 /* For the unmerged insns, try a different insertion point. */
2431 move_before = jump;
2433 #ifdef HAVE_cc0
2434 /* Don't try moving before a cc0 user, as that may invalidate
2435 the cc0. */
2436 if (reg_mentioned_p (cc0_rtx, jump))
2437 break;
2438 #endif
2440 for (ix = 0; ix < nedges; ix++)
2441 currptr[ix] = headptr[ix] = nextptr[ix];
2444 while (!moveall);
2446 out:
2447 free (currptr);
2448 free (headptr);
2449 free (nextptr);
2451 crossjumps_occured |= changed;
2453 return changed;
2456 /* Return true if BB contains just bb note, or bb note followed
2457 by only DEBUG_INSNs. */
2459 static bool
2460 trivially_empty_bb_p (basic_block bb)
2462 rtx insn = BB_END (bb);
2464 while (1)
2466 if (insn == BB_HEAD (bb))
2467 return true;
2468 if (!DEBUG_INSN_P (insn))
2469 return false;
2470 insn = PREV_INSN (insn);
2474 /* Do simple CFG optimizations - basic block merging, simplifying of jump
2475 instructions etc. Return nonzero if changes were made. */
2477 static bool
2478 try_optimize_cfg (int mode)
2480 bool changed_overall = false;
2481 bool changed;
2482 int iterations = 0;
2483 basic_block bb, b, next;
2485 if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
2486 clear_bb_flags ();
2488 crossjumps_occured = false;
2490 FOR_EACH_BB (bb)
2491 update_forwarder_flag (bb);
2493 if (! targetm.cannot_modify_jumps_p ())
2495 first_pass = true;
2496 /* Attempt to merge blocks as made possible by edge removal. If
2497 a block has only one successor, and the successor has only
2498 one predecessor, they may be combined. */
2501 block_was_dirty = false;
2502 changed = false;
2503 iterations++;
2505 if (dump_file)
2506 fprintf (dump_file,
2507 "\n\ntry_optimize_cfg iteration %i\n\n",
2508 iterations);
2510 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
2512 basic_block c;
2513 edge s;
2514 bool changed_here = false;
2516 /* Delete trivially dead basic blocks. This is either
2517 blocks with no predecessors, or empty blocks with no
2518 successors. However if the empty block with no
2519 successors is the successor of the ENTRY_BLOCK, it is
2520 kept. This ensures that the ENTRY_BLOCK will have a
2521 successor which is a precondition for many RTL
2522 passes. Empty blocks may result from expanding
2523 __builtin_unreachable (). */
2524 if (EDGE_COUNT (b->preds) == 0
2525 || (EDGE_COUNT (b->succs) == 0
2526 && trivially_empty_bb_p (b)
2527 && single_succ_edge (ENTRY_BLOCK_PTR)->dest != b))
2529 c = b->prev_bb;
2530 if (EDGE_COUNT (b->preds) > 0)
2532 edge e;
2533 edge_iterator ei;
2535 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2537 if (b->il.rtl->footer
2538 && BARRIER_P (b->il.rtl->footer))
2539 FOR_EACH_EDGE (e, ei, b->preds)
2540 if ((e->flags & EDGE_FALLTHRU)
2541 && e->src->il.rtl->footer == NULL)
2543 if (b->il.rtl->footer)
2545 e->src->il.rtl->footer = b->il.rtl->footer;
2546 b->il.rtl->footer = NULL;
2548 else
2550 start_sequence ();
2551 e->src->il.rtl->footer = emit_barrier ();
2552 end_sequence ();
2556 else
2558 rtx last = get_last_bb_insn (b);
2559 if (last && BARRIER_P (last))
2560 FOR_EACH_EDGE (e, ei, b->preds)
2561 if ((e->flags & EDGE_FALLTHRU))
2562 emit_barrier_after (BB_END (e->src));
2565 delete_basic_block (b);
2566 changed = true;
2567 /* Avoid trying to remove ENTRY_BLOCK_PTR. */
2568 b = (c == ENTRY_BLOCK_PTR ? c->next_bb : c);
2569 continue;
2572 /* Remove code labels no longer used. */
2573 if (single_pred_p (b)
2574 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2575 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
2576 && LABEL_P (BB_HEAD (b))
2577 /* If the previous block ends with a branch to this
2578 block, we can't delete the label. Normally this
2579 is a condjump that is yet to be simplified, but
2580 if CASE_DROPS_THRU, this can be a tablejump with
2581 some element going to the same place as the
2582 default (fallthru). */
2583 && (single_pred (b) == ENTRY_BLOCK_PTR
2584 || !JUMP_P (BB_END (single_pred (b)))
2585 || ! label_is_jump_target_p (BB_HEAD (b),
2586 BB_END (single_pred (b)))))
2588 rtx label = BB_HEAD (b);
2590 delete_insn_chain (label, label, false);
2591 /* If the case label is undeletable, move it after the
2592 BASIC_BLOCK note. */
2593 if (NOTE_KIND (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
2595 rtx bb_note = NEXT_INSN (BB_HEAD (b));
2597 reorder_insns_nobb (label, label, bb_note);
2598 BB_HEAD (b) = bb_note;
2599 if (BB_END (b) == bb_note)
2600 BB_END (b) = label;
2602 if (dump_file)
2603 fprintf (dump_file, "Deleted label in block %i.\n",
2604 b->index);
2607 /* If we fall through an empty block, we can remove it. */
2608 if (!(mode & CLEANUP_CFGLAYOUT)
2609 && single_pred_p (b)
2610 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2611 && !LABEL_P (BB_HEAD (b))
2612 && FORWARDER_BLOCK_P (b)
2613 /* Note that forwarder_block_p true ensures that
2614 there is a successor for this block. */
2615 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
2616 && n_basic_blocks > NUM_FIXED_BLOCKS + 1)
2618 if (dump_file)
2619 fprintf (dump_file,
2620 "Deleting fallthru block %i.\n",
2621 b->index);
2623 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
2624 redirect_edge_succ_nodup (single_pred_edge (b),
2625 single_succ (b));
2626 delete_basic_block (b);
2627 changed = true;
2628 b = c;
2629 continue;
2632 /* Merge B with its single successor, if any. */
2633 if (single_succ_p (b)
2634 && (s = single_succ_edge (b))
2635 && !(s->flags & EDGE_COMPLEX)
2636 && (c = s->dest) != EXIT_BLOCK_PTR
2637 && single_pred_p (c)
2638 && b != c)
2640 /* When not in cfg_layout mode use code aware of reordering
2641 INSN. This code possibly creates new basic blocks so it
2642 does not fit merge_blocks interface and is kept here in
2643 hope that it will become useless once more of compiler
2644 is transformed to use cfg_layout mode. */
2646 if ((mode & CLEANUP_CFGLAYOUT)
2647 && can_merge_blocks_p (b, c))
2649 merge_blocks (b, c);
2650 update_forwarder_flag (b);
2651 changed_here = true;
2653 else if (!(mode & CLEANUP_CFGLAYOUT)
2654 /* If the jump insn has side effects,
2655 we can't kill the edge. */
2656 && (!JUMP_P (BB_END (b))
2657 || (reload_completed
2658 ? simplejump_p (BB_END (b))
2659 : (onlyjump_p (BB_END (b))
2660 && !tablejump_p (BB_END (b),
2661 NULL, NULL))))
2662 && (next = merge_blocks_move (s, b, c, mode)))
2664 b = next;
2665 changed_here = true;
2669 /* Simplify branch over branch. */
2670 if ((mode & CLEANUP_EXPENSIVE)
2671 && !(mode & CLEANUP_CFGLAYOUT)
2672 && try_simplify_condjump (b))
2673 changed_here = true;
2675 /* If B has a single outgoing edge, but uses a
2676 non-trivial jump instruction without side-effects, we
2677 can either delete the jump entirely, or replace it
2678 with a simple unconditional jump. */
2679 if (single_succ_p (b)
2680 && single_succ (b) != EXIT_BLOCK_PTR
2681 && onlyjump_p (BB_END (b))
2682 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
2683 && try_redirect_by_replacing_jump (single_succ_edge (b),
2684 single_succ (b),
2685 (mode & CLEANUP_CFGLAYOUT) != 0))
2687 update_forwarder_flag (b);
2688 changed_here = true;
2691 /* Simplify branch to branch. */
2692 if (try_forward_edges (mode, b))
2694 update_forwarder_flag (b);
2695 changed_here = true;
2698 /* Look for shared code between blocks. */
2699 if ((mode & CLEANUP_CROSSJUMP)
2700 && try_crossjump_bb (mode, b))
2701 changed_here = true;
2703 if ((mode & CLEANUP_CROSSJUMP)
2704 /* This can lengthen register lifetimes. Do it only after
2705 reload. */
2706 && reload_completed
2707 && try_head_merge_bb (b))
2708 changed_here = true;
2710 /* Don't get confused by the index shift caused by
2711 deleting blocks. */
2712 if (!changed_here)
2713 b = b->next_bb;
2714 else
2715 changed = true;
2718 if ((mode & CLEANUP_CROSSJUMP)
2719 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
2720 changed = true;
2722 if (block_was_dirty)
2724 /* This should only be set by head-merging. */
2725 gcc_assert (mode & CLEANUP_CROSSJUMP);
2726 df_analyze ();
2729 #ifdef ENABLE_CHECKING
2730 if (changed)
2731 verify_flow_info ();
2732 #endif
2734 changed_overall |= changed;
2735 first_pass = false;
2737 while (changed);
2740 FOR_ALL_BB (b)
2741 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
2743 return changed_overall;
2746 /* Delete all unreachable basic blocks. */
2748 bool
2749 delete_unreachable_blocks (void)
2751 bool changed = false;
2752 basic_block b, prev_bb;
2754 find_unreachable_blocks ();
2756 /* When we're in GIMPLE mode and there may be debug insns, we should
2757 delete blocks in reverse dominator order, so as to get a chance
2758 to substitute all released DEFs into debug stmts. If we don't
2759 have dominators information, walking blocks backward gets us a
2760 better chance of retaining most debug information than
2761 otherwise. */
2762 if (MAY_HAVE_DEBUG_STMTS && current_ir_type () == IR_GIMPLE
2763 && dom_info_available_p (CDI_DOMINATORS))
2765 for (b = EXIT_BLOCK_PTR->prev_bb; b != ENTRY_BLOCK_PTR; b = prev_bb)
2767 prev_bb = b->prev_bb;
2769 if (!(b->flags & BB_REACHABLE))
2771 /* Speed up the removal of blocks that don't dominate
2772 others. Walking backwards, this should be the common
2773 case. */
2774 if (!first_dom_son (CDI_DOMINATORS, b))
2775 delete_basic_block (b);
2776 else
2778 VEC (basic_block, heap) *h
2779 = get_all_dominated_blocks (CDI_DOMINATORS, b);
2781 while (VEC_length (basic_block, h))
2783 b = VEC_pop (basic_block, h);
2785 prev_bb = b->prev_bb;
2787 gcc_assert (!(b->flags & BB_REACHABLE));
2789 delete_basic_block (b);
2792 VEC_free (basic_block, heap, h);
2795 changed = true;
2799 else
2801 for (b = EXIT_BLOCK_PTR->prev_bb; b != ENTRY_BLOCK_PTR; b = prev_bb)
2803 prev_bb = b->prev_bb;
2805 if (!(b->flags & BB_REACHABLE))
2807 delete_basic_block (b);
2808 changed = true;
2813 if (changed)
2814 tidy_fallthru_edges ();
2815 return changed;
2818 /* Delete any jump tables never referenced. We can't delete them at the
2819 time of removing tablejump insn as they are referenced by the preceding
2820 insns computing the destination, so we delay deleting and garbagecollect
2821 them once life information is computed. */
2822 void
2823 delete_dead_jumptables (void)
2825 basic_block bb;
2827 /* A dead jump table does not belong to any basic block. Scan insns
2828 between two adjacent basic blocks. */
2829 FOR_EACH_BB (bb)
2831 rtx insn, next;
2833 for (insn = NEXT_INSN (BB_END (bb));
2834 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
2835 insn = next)
2837 next = NEXT_INSN (insn);
2838 if (LABEL_P (insn)
2839 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
2840 && JUMP_TABLE_DATA_P (next))
2842 rtx label = insn, jump = next;
2844 if (dump_file)
2845 fprintf (dump_file, "Dead jumptable %i removed\n",
2846 INSN_UID (insn));
2848 next = NEXT_INSN (next);
2849 delete_insn (jump);
2850 delete_insn (label);
2857 /* Tidy the CFG by deleting unreachable code and whatnot. */
2859 bool
2860 cleanup_cfg (int mode)
2862 bool changed = false;
2864 /* Set the cfglayout mode flag here. We could update all the callers
2865 but that is just inconvenient, especially given that we eventually
2866 want to have cfglayout mode as the default. */
2867 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2868 mode |= CLEANUP_CFGLAYOUT;
2870 timevar_push (TV_CLEANUP_CFG);
2871 if (delete_unreachable_blocks ())
2873 changed = true;
2874 /* We've possibly created trivially dead code. Cleanup it right
2875 now to introduce more opportunities for try_optimize_cfg. */
2876 if (!(mode & (CLEANUP_NO_INSN_DEL))
2877 && !reload_completed)
2878 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2881 compact_blocks ();
2883 /* To tail-merge blocks ending in the same noreturn function (e.g.
2884 a call to abort) we have to insert fake edges to exit. Do this
2885 here once. The fake edges do not interfere with any other CFG
2886 cleanups. */
2887 if (mode & CLEANUP_CROSSJUMP)
2888 add_noreturn_fake_exit_edges ();
2890 if (!dbg_cnt (cfg_cleanup))
2891 return changed;
2893 while (try_optimize_cfg (mode))
2895 delete_unreachable_blocks (), changed = true;
2896 if (!(mode & CLEANUP_NO_INSN_DEL))
2898 /* Try to remove some trivially dead insns when doing an expensive
2899 cleanup. But delete_trivially_dead_insns doesn't work after
2900 reload (it only handles pseudos) and run_fast_dce is too costly
2901 to run in every iteration.
2903 For effective cross jumping, we really want to run a fast DCE to
2904 clean up any dead conditions, or they get in the way of performing
2905 useful tail merges.
2907 Other transformations in cleanup_cfg are not so sensitive to dead
2908 code, so delete_trivially_dead_insns or even doing nothing at all
2909 is good enough. */
2910 if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
2911 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
2912 break;
2913 if ((mode & CLEANUP_CROSSJUMP) && crossjumps_occured)
2914 run_fast_dce ();
2916 else
2917 break;
2920 if (mode & CLEANUP_CROSSJUMP)
2921 remove_fake_exit_edges ();
2923 /* Don't call delete_dead_jumptables in cfglayout mode, because
2924 that function assumes that jump tables are in the insns stream.
2925 But we also don't _have_ to delete dead jumptables in cfglayout
2926 mode because we shouldn't even be looking at things that are
2927 not in a basic block. Dead jumptables are cleaned up when
2928 going out of cfglayout mode. */
2929 if (!(mode & CLEANUP_CFGLAYOUT))
2930 delete_dead_jumptables ();
2932 timevar_pop (TV_CLEANUP_CFG);
2934 return changed;
2937 static unsigned int
2938 rest_of_handle_jump (void)
2940 if (crtl->tail_call_emit)
2941 fixup_tail_calls ();
2942 return 0;
2945 struct rtl_opt_pass pass_jump =
2948 RTL_PASS,
2949 "sibling", /* name */
2950 NULL, /* gate */
2951 rest_of_handle_jump, /* execute */
2952 NULL, /* sub */
2953 NULL, /* next */
2954 0, /* static_pass_number */
2955 TV_JUMP, /* tv_id */
2956 0, /* properties_required */
2957 0, /* properties_provided */
2958 0, /* properties_destroyed */
2959 TODO_ggc_collect, /* todo_flags_start */
2960 TODO_verify_flow, /* todo_flags_finish */
2965 static unsigned int
2966 rest_of_handle_jump2 (void)
2968 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2969 if (dump_file)
2970 dump_flow_info (dump_file, dump_flags);
2971 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
2972 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
2973 return 0;
2977 struct rtl_opt_pass pass_jump2 =
2980 RTL_PASS,
2981 "jump", /* name */
2982 NULL, /* gate */
2983 rest_of_handle_jump2, /* execute */
2984 NULL, /* sub */
2985 NULL, /* next */
2986 0, /* static_pass_number */
2987 TV_JUMP, /* tv_id */
2988 0, /* properties_required */
2989 0, /* properties_provided */
2990 0, /* properties_destroyed */
2991 TODO_ggc_collect, /* todo_flags_start */
2992 TODO_dump_func | TODO_verify_rtl_sharing,/* todo_flags_finish */