1 /* Tail merging for gimple.
2 Copyright (C) 2011-2024 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
33 const charD.1 * restrict outputFileName.0D.3914;
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
61 # SUCC: 7 [100.0%] (fallthru,exec)
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
83 # SUCC: 7 [100.0%] (fallthru,exec)
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
101 # VUSE <.MEMD.3923_11>
103 # SUCC: EXIT [100.0%]
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
159 1. The pass first determines all groups of blocks with the same successor
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
180 This 'pass' is not a stand-alone gimple pass, but runs as part of
181 pass_pre, in order to share the value numbering.
186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
190 #include "coretypes.h"
194 #include "cfghooks.h"
195 #include "tree-pass.h"
197 #include "fold-const.h"
198 #include "trans-mem.h"
200 #include "cfgcleanup.h"
201 #include "gimple-iterator.h"
202 #include "tree-cfg.h"
203 #include "tree-into-ssa.h"
204 #include "tree-ssa-sccvn.h"
207 #include "tree-cfgcleanup.h"
209 const int ignore_edge_flags
= EDGE_DFS_BACK
| EDGE_EXECUTABLE
;
211 /* Describes a group of bbs with the same successors. The successor bbs are
212 cached in succs, and the successor edge flags are cached in succ_flags.
213 If a bb has the EDGE_TRUE/FALSE_VALUE flags swapped compared to succ_flags,
214 it's marked in inverse.
215 Additionally, the hash value for the struct is cached in hashval, and
216 in_worklist indicates whether it's currently part of worklist. */
218 struct same_succ
: pointer_hash
<same_succ
>
220 /* The bbs that have the same successor bbs. */
222 /* The successor bbs. */
224 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
227 /* The edge flags for each of the successor bbs. */
229 /* Indicates whether the struct is currently in the worklist. */
231 /* The hash value of the struct. */
234 /* hash_table support. */
235 static inline hashval_t
hash (const same_succ
*);
236 static int equal (const same_succ
*, const same_succ
*);
237 static void remove (same_succ
*);
240 /* hash routine for hash_table support, returns hashval of E. */
243 same_succ::hash (const same_succ
*e
)
248 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
252 /* The bbs in the cluster. */
254 /* The preds of the bbs in the cluster. */
256 /* Index in all_clusters vector. */
258 /* The bb to replace the cluster with. */
266 /* The number of non-debug statements in the bb. */
268 /* The same_succ that this bb is a member of. */
269 same_succ
*bb_same_succ
;
270 /* The cluster that this bb is a member of. */
272 /* The vop state at the exit of a bb. This is shortlived data, used to
273 communicate data between update_block_by and update_vuses. */
275 /* The bb that either contains or is dominated by the dependencies of the
280 /* Macros to access the fields of struct aux_bb_info. */
282 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
283 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
284 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
285 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
286 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
288 /* Valueization helper querying the VN lattice. */
291 tail_merge_valueize (tree name
)
293 if (TREE_CODE (name
) == SSA_NAME
294 && has_VN_INFO (name
))
296 tree tem
= VN_INFO (name
)->valnum
;
303 /* Returns true if the only effect a statement STMT has, is to define locally
307 stmt_local_def (gimple
*stmt
)
309 basic_block bb
, def_bb
;
310 imm_use_iterator iter
;
315 if (gimple_vdef (stmt
) != NULL_TREE
316 || gimple_has_side_effects (stmt
)
317 || gimple_could_trap_p_1 (stmt
, false, false)
318 || gimple_vuse (stmt
) != NULL_TREE
319 /* Copied from tree-ssa-ifcombine.cc:bb_no_side_effects_p():
320 const calls don't match any of the above, yet they could
321 still have some side-effects - they could contain
322 gimple_could_trap_p statements, like floating point
323 exceptions or integer division by zero. See PR70586.
324 FIXME: perhaps gimple_has_side_effects or gimple_could_trap_p
325 should handle this. */
326 || is_gimple_call (stmt
))
329 def_p
= SINGLE_SSA_DEF_OPERAND (stmt
, SSA_OP_DEF
);
333 val
= DEF_FROM_PTR (def_p
);
334 if (val
== NULL_TREE
|| TREE_CODE (val
) != SSA_NAME
)
337 def_bb
= gimple_bb (stmt
);
339 FOR_EACH_IMM_USE_FAST (use_p
, iter
, val
)
341 if (is_gimple_debug (USE_STMT (use_p
)))
343 bb
= gimple_bb (USE_STMT (use_p
));
347 if (gimple_code (USE_STMT (use_p
)) == GIMPLE_PHI
348 && EDGE_PRED (bb
, PHI_ARG_INDEX_FROM_USE (use_p
))->src
== def_bb
)
357 /* Let GSI skip forwards over local defs. */
360 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator
*gsi
)
366 if (gsi_end_p (*gsi
))
368 stmt
= gsi_stmt (*gsi
);
369 if (!stmt_local_def (stmt
))
371 gsi_next_nondebug (gsi
);
375 /* VAL1 and VAL2 are either:
376 - uses in BB1 and BB2, or
377 - phi alternatives for BB1 and BB2.
378 Return true if the uses have the same gvn value. */
381 gvn_uses_equal (tree val1
, tree val2
)
383 gcc_checking_assert (val1
!= NULL_TREE
&& val2
!= NULL_TREE
);
388 if (tail_merge_valueize (val1
) != tail_merge_valueize (val2
))
391 return ((TREE_CODE (val1
) == SSA_NAME
|| CONSTANT_CLASS_P (val1
))
392 && (TREE_CODE (val2
) == SSA_NAME
|| CONSTANT_CLASS_P (val2
)));
395 /* Prints E to FILE. */
398 same_succ_print (FILE *file
, const same_succ
*e
)
401 bitmap_print (file
, e
->bbs
, "bbs:", "\n");
402 bitmap_print (file
, e
->succs
, "succs:", "\n");
403 bitmap_print (file
, e
->inverse
, "inverse:", "\n");
404 fprintf (file
, "flags:");
405 for (i
= 0; i
< e
->succ_flags
.length (); ++i
)
406 fprintf (file
, " %x", e
->succ_flags
[i
]);
407 fprintf (file
, "\n");
410 /* Prints same_succ VE to VFILE. */
413 ssa_same_succ_print_traverse (same_succ
**pe
, FILE *file
)
415 const same_succ
*e
= *pe
;
416 same_succ_print (file
, e
);
420 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
423 update_dep_bb (basic_block use_bb
, tree val
)
428 if (TREE_CODE (val
) != SSA_NAME
)
431 /* Skip use of global def. */
432 if (SSA_NAME_IS_DEFAULT_DEF (val
))
435 /* Skip use of local def. */
436 dep_bb
= gimple_bb (SSA_NAME_DEF_STMT (val
));
437 if (dep_bb
== use_bb
)
440 if (BB_DEP_BB (use_bb
) == NULL
441 || dominated_by_p (CDI_DOMINATORS
, dep_bb
, BB_DEP_BB (use_bb
)))
442 BB_DEP_BB (use_bb
) = dep_bb
;
445 /* Update BB_DEP_BB, given the dependencies in STMT. */
448 stmt_update_dep_bb (gimple
*stmt
)
453 FOR_EACH_SSA_USE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
454 update_dep_bb (gimple_bb (stmt
), USE_FROM_PTR (use
));
457 /* Calculates hash value for same_succ VE. */
460 same_succ_hash (const same_succ
*e
)
462 inchash::hash
hstate (bitmap_hash (e
->succs
));
465 unsigned int first
= bitmap_first_set_bit (e
->bbs
);
466 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, first
);
473 for (gimple_stmt_iterator gsi
= gsi_start_nondebug_bb (bb
);
474 !gsi_end_p (gsi
); gsi_next_nondebug (&gsi
))
476 stmt
= gsi_stmt (gsi
);
477 stmt_update_dep_bb (stmt
);
478 if (stmt_local_def (stmt
))
482 hstate
.add_int (gimple_code (stmt
));
483 if (is_gimple_assign (stmt
))
484 hstate
.add_int (gimple_assign_rhs_code (stmt
));
485 if (!is_gimple_call (stmt
))
487 if (gimple_call_internal_p (stmt
))
488 hstate
.add_int (gimple_call_internal_fn (stmt
));
491 inchash::add_expr (gimple_call_fn (stmt
), hstate
);
492 if (gimple_call_chain (stmt
))
493 inchash::add_expr (gimple_call_chain (stmt
), hstate
);
495 for (i
= 0; i
< gimple_call_num_args (stmt
); i
++)
497 arg
= gimple_call_arg (stmt
, i
);
498 arg
= tail_merge_valueize (arg
);
499 inchash::add_expr (arg
, hstate
);
503 hstate
.add_int (size
);
506 hstate
.add_int (bb
->loop_father
->num
);
508 for (i
= 0; i
< e
->succ_flags
.length (); ++i
)
510 flags
= e
->succ_flags
[i
];
511 flags
= flags
& ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
512 hstate
.add_int (flags
);
515 EXECUTE_IF_SET_IN_BITMAP (e
->succs
, 0, s
, bs
)
517 int n
= find_edge (bb
, BASIC_BLOCK_FOR_FN (cfun
, s
))->dest_idx
;
518 for (gphi_iterator gsi
= gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun
, s
));
522 gphi
*phi
= gsi
.phi ();
523 tree lhs
= gimple_phi_result (phi
);
524 tree val
= gimple_phi_arg_def (phi
, n
);
526 if (virtual_operand_p (lhs
))
528 update_dep_bb (bb
, val
);
532 return hstate
.end ();
535 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
536 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
537 the other edge flags. */
540 inverse_flags (const same_succ
*e1
, const same_succ
*e2
)
542 int f1a
, f1b
, f2a
, f2b
;
543 int mask
= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
545 if (e1
->succ_flags
.length () != 2)
548 f1a
= e1
->succ_flags
[0];
549 f1b
= e1
->succ_flags
[1];
550 f2a
= e2
->succ_flags
[0];
551 f2b
= e2
->succ_flags
[1];
553 if (f1a
== f2a
&& f1b
== f2b
)
556 return (f1a
& mask
) == (f2a
& mask
) && (f1b
& mask
) == (f2b
& mask
);
559 /* Compares SAME_SUCCs E1 and E2. */
562 same_succ::equal (const same_succ
*e1
, const same_succ
*e2
)
564 unsigned int i
, first1
, first2
;
565 gimple_stmt_iterator gsi1
, gsi2
;
567 basic_block bb1
, bb2
;
572 if (e1
->hashval
!= e2
->hashval
)
575 if (e1
->succ_flags
.length () != e2
->succ_flags
.length ())
578 if (!bitmap_equal_p (e1
->succs
, e2
->succs
))
581 if (!inverse_flags (e1
, e2
))
583 for (i
= 0; i
< e1
->succ_flags
.length (); ++i
)
584 if (e1
->succ_flags
[i
] != e2
->succ_flags
[i
])
588 first1
= bitmap_first_set_bit (e1
->bbs
);
589 first2
= bitmap_first_set_bit (e2
->bbs
);
591 bb1
= BASIC_BLOCK_FOR_FN (cfun
, first1
);
592 bb2
= BASIC_BLOCK_FOR_FN (cfun
, first2
);
594 if (BB_SIZE (bb1
) != BB_SIZE (bb2
))
597 if (bb1
->loop_father
!= bb2
->loop_father
)
600 gsi1
= gsi_start_nondebug_bb (bb1
);
601 gsi2
= gsi_start_nondebug_bb (bb2
);
602 gsi_advance_fw_nondebug_nonlocal (&gsi1
);
603 gsi_advance_fw_nondebug_nonlocal (&gsi2
);
604 while (!(gsi_end_p (gsi1
) || gsi_end_p (gsi2
)))
606 s1
= gsi_stmt (gsi1
);
607 s2
= gsi_stmt (gsi2
);
608 if (gimple_code (s1
) != gimple_code (s2
))
610 if (is_gimple_call (s1
) && !gimple_call_same_target_p (s1
, s2
))
612 gsi_next_nondebug (&gsi1
);
613 gsi_next_nondebug (&gsi2
);
614 gsi_advance_fw_nondebug_nonlocal (&gsi1
);
615 gsi_advance_fw_nondebug_nonlocal (&gsi2
);
621 /* Alloc and init a new SAME_SUCC. */
624 same_succ_alloc (void)
626 same_succ
*same
= XNEW (struct same_succ
);
628 same
->bbs
= BITMAP_ALLOC (NULL
);
629 same
->succs
= BITMAP_ALLOC (NULL
);
630 same
->inverse
= BITMAP_ALLOC (NULL
);
631 same
->succ_flags
.create (10);
632 same
->in_worklist
= false;
637 /* Delete same_succ E. */
640 same_succ::remove (same_succ
*e
)
642 BITMAP_FREE (e
->bbs
);
643 BITMAP_FREE (e
->succs
);
644 BITMAP_FREE (e
->inverse
);
645 e
->succ_flags
.release ();
650 /* Reset same_succ SAME. */
653 same_succ_reset (same_succ
*same
)
655 bitmap_clear (same
->bbs
);
656 bitmap_clear (same
->succs
);
657 bitmap_clear (same
->inverse
);
658 same
->succ_flags
.truncate (0);
661 static hash_table
<same_succ
> *same_succ_htab
;
663 /* Array that is used to store the edge flags for a successor. */
665 static int *same_succ_edge_flags
;
667 /* Bitmap that is used to mark bbs that are recently deleted. */
669 static bitmap deleted_bbs
;
671 /* Bitmap that is used to mark predecessors of bbs that are
674 static bitmap deleted_bb_preds
;
676 /* Prints same_succ_htab to stderr. */
678 extern void debug_same_succ (void);
680 debug_same_succ ( void)
682 same_succ_htab
->traverse
<FILE *, ssa_same_succ_print_traverse
> (stderr
);
686 /* Vector of bbs to process. */
688 static vec
<same_succ
*> worklist
;
690 /* Prints worklist to FILE. */
693 print_worklist (FILE *file
)
696 for (i
= 0; i
< worklist
.length (); ++i
)
697 same_succ_print (file
, worklist
[i
]);
700 /* Adds SAME to worklist. */
703 add_to_worklist (same_succ
*same
)
705 if (same
->in_worklist
)
708 if (bitmap_count_bits (same
->bbs
) < 2)
711 same
->in_worklist
= true;
712 worklist
.safe_push (same
);
715 /* Add BB to same_succ_htab. */
718 find_same_succ_bb (basic_block bb
, same_succ
**same_p
)
722 same_succ
*same
= *same_p
;
729 bitmap_set_bit (same
->bbs
, bb
->index
);
730 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
732 int index
= e
->dest
->index
;
733 bitmap_set_bit (same
->succs
, index
);
734 same_succ_edge_flags
[index
] = (e
->flags
& ~ignore_edge_flags
);
736 EXECUTE_IF_SET_IN_BITMAP (same
->succs
, 0, j
, bj
)
737 same
->succ_flags
.safe_push (same_succ_edge_flags
[j
]);
739 same
->hashval
= same_succ_hash (same
);
741 slot
= same_succ_htab
->find_slot_with_hash (same
, same
->hashval
, INSERT
);
745 BB_SAME_SUCC (bb
) = same
;
746 add_to_worklist (same
);
751 bitmap_set_bit ((*slot
)->bbs
, bb
->index
);
752 BB_SAME_SUCC (bb
) = *slot
;
753 add_to_worklist (*slot
);
754 if (inverse_flags (same
, *slot
))
755 bitmap_set_bit ((*slot
)->inverse
, bb
->index
);
756 same_succ_reset (same
);
760 /* Find bbs with same successors. */
763 find_same_succ (void)
765 same_succ
*same
= same_succ_alloc ();
768 FOR_EACH_BB_FN (bb
, cfun
)
770 find_same_succ_bb (bb
, &same
);
772 same
= same_succ_alloc ();
775 same_succ::remove (same
);
778 /* Initializes worklist administration. */
783 alloc_aux_for_blocks (sizeof (struct aux_bb_info
));
784 same_succ_htab
= new hash_table
<same_succ
> (n_basic_blocks_for_fn (cfun
));
785 same_succ_edge_flags
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
786 deleted_bbs
= BITMAP_ALLOC (NULL
);
787 deleted_bb_preds
= BITMAP_ALLOC (NULL
);
788 worklist
.create (n_basic_blocks_for_fn (cfun
));
791 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
793 fprintf (dump_file
, "initial worklist:\n");
794 print_worklist (dump_file
);
798 /* Deletes worklist administration. */
801 delete_worklist (void)
803 free_aux_for_blocks ();
804 delete same_succ_htab
;
805 same_succ_htab
= NULL
;
806 XDELETEVEC (same_succ_edge_flags
);
807 same_succ_edge_flags
= NULL
;
808 BITMAP_FREE (deleted_bbs
);
809 BITMAP_FREE (deleted_bb_preds
);
813 /* Mark BB as deleted, and mark its predecessors. */
816 mark_basic_block_deleted (basic_block bb
)
821 bitmap_set_bit (deleted_bbs
, bb
->index
);
823 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
824 bitmap_set_bit (deleted_bb_preds
, e
->src
->index
);
827 /* Removes BB from its corresponding same_succ. */
830 same_succ_flush_bb (basic_block bb
)
832 same_succ
*same
= BB_SAME_SUCC (bb
);
836 BB_SAME_SUCC (bb
) = NULL
;
837 if (bitmap_single_bit_set_p (same
->bbs
))
838 same_succ_htab
->remove_elt_with_hash (same
, same
->hashval
);
840 bitmap_clear_bit (same
->bbs
, bb
->index
);
843 /* Removes all bbs in BBS from their corresponding same_succ. */
846 same_succ_flush_bbs (bitmap bbs
)
851 EXECUTE_IF_SET_IN_BITMAP (bbs
, 0, i
, bi
)
852 same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun
, i
));
855 /* Release the last vdef in BB, either normal or phi result. */
858 release_last_vdef (basic_block bb
)
860 for (gimple_stmt_iterator i
= gsi_last_bb (bb
); !gsi_end_p (i
);
861 gsi_prev_nondebug (&i
))
863 gimple
*stmt
= gsi_stmt (i
);
864 if (gimple_vdef (stmt
) == NULL_TREE
)
867 mark_virtual_operand_for_renaming (gimple_vdef (stmt
));
871 for (gphi_iterator i
= gsi_start_phis (bb
); !gsi_end_p (i
);
874 gphi
*phi
= i
.phi ();
875 tree res
= gimple_phi_result (phi
);
877 if (!virtual_operand_p (res
))
880 mark_virtual_phi_result_for_renaming (phi
);
885 /* For deleted_bb_preds, find bbs with same successors. */
888 update_worklist (void)
895 bitmap_and_compl_into (deleted_bb_preds
, deleted_bbs
);
896 bitmap_clear (deleted_bbs
);
898 bitmap_clear_bit (deleted_bb_preds
, ENTRY_BLOCK
);
899 same_succ_flush_bbs (deleted_bb_preds
);
901 same
= same_succ_alloc ();
902 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds
, 0, i
, bi
)
904 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
905 gcc_assert (bb
!= NULL
);
906 find_same_succ_bb (bb
, &same
);
908 same
= same_succ_alloc ();
910 same_succ::remove (same
);
911 bitmap_clear (deleted_bb_preds
);
914 /* Prints cluster C to FILE. */
917 print_cluster (FILE *file
, bb_cluster
*c
)
921 bitmap_print (file
, c
->bbs
, "bbs:", "\n");
922 bitmap_print (file
, c
->preds
, "preds:", "\n");
925 /* Prints cluster C to stderr. */
927 extern void debug_cluster (bb_cluster
*);
929 debug_cluster (bb_cluster
*c
)
931 print_cluster (stderr
, c
);
934 /* Update C->rep_bb, given that BB is added to the cluster. */
937 update_rep_bb (bb_cluster
*c
, basic_block bb
)
940 if (c
->rep_bb
== NULL
)
946 /* Current needs no deps, keep it. */
947 if (BB_DEP_BB (c
->rep_bb
) == NULL
)
950 /* Bb needs no deps, change rep_bb. */
951 if (BB_DEP_BB (bb
) == NULL
)
957 /* Bb needs last deps earlier than current, change rep_bb. A potential
958 problem with this, is that the first deps might also be earlier, which
959 would mean we prefer longer lifetimes for the deps. To be able to check
960 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
961 BB_DEP_BB, which is really BB_LAST_DEP_BB.
962 The benefit of choosing the bb with last deps earlier, is that it can
963 potentially be used as replacement for more bbs. */
964 if (dominated_by_p (CDI_DOMINATORS
, BB_DEP_BB (c
->rep_bb
), BB_DEP_BB (bb
)))
968 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
971 add_bb_to_cluster (bb_cluster
*c
, basic_block bb
)
976 bitmap_set_bit (c
->bbs
, bb
->index
);
978 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
979 bitmap_set_bit (c
->preds
, e
->src
->index
);
981 update_rep_bb (c
, bb
);
984 /* Allocate and init new cluster. */
990 c
= XCNEW (bb_cluster
);
991 c
->bbs
= BITMAP_ALLOC (NULL
);
992 c
->preds
= BITMAP_ALLOC (NULL
);
997 /* Delete clusters. */
1000 delete_cluster (bb_cluster
*c
)
1004 BITMAP_FREE (c
->bbs
);
1005 BITMAP_FREE (c
->preds
);
1010 /* Array that contains all clusters. */
1012 static vec
<bb_cluster
*> all_clusters
;
1014 /* Allocate all cluster vectors. */
1017 alloc_cluster_vectors (void)
1019 all_clusters
.create (n_basic_blocks_for_fn (cfun
));
1022 /* Reset all cluster vectors. */
1025 reset_cluster_vectors (void)
1029 for (i
= 0; i
< all_clusters
.length (); ++i
)
1030 delete_cluster (all_clusters
[i
]);
1031 all_clusters
.truncate (0);
1032 FOR_EACH_BB_FN (bb
, cfun
)
1033 BB_CLUSTER (bb
) = NULL
;
1036 /* Delete all cluster vectors. */
1039 delete_cluster_vectors (void)
1042 for (i
= 0; i
< all_clusters
.length (); ++i
)
1043 delete_cluster (all_clusters
[i
]);
1044 all_clusters
.release ();
1047 /* Merge cluster C2 into C1. */
1050 merge_clusters (bb_cluster
*c1
, bb_cluster
*c2
)
1052 bitmap_ior_into (c1
->bbs
, c2
->bbs
);
1053 bitmap_ior_into (c1
->preds
, c2
->preds
);
1056 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1057 all_clusters, or merge c with existing cluster. */
1060 set_cluster (basic_block bb1
, basic_block bb2
)
1062 basic_block merge_bb
, other_bb
;
1063 bb_cluster
*merge
, *old
, *c
;
1065 if (BB_CLUSTER (bb1
) == NULL
&& BB_CLUSTER (bb2
) == NULL
)
1068 add_bb_to_cluster (c
, bb1
);
1069 add_bb_to_cluster (c
, bb2
);
1070 BB_CLUSTER (bb1
) = c
;
1071 BB_CLUSTER (bb2
) = c
;
1072 c
->index
= all_clusters
.length ();
1073 all_clusters
.safe_push (c
);
1075 else if (BB_CLUSTER (bb1
) == NULL
|| BB_CLUSTER (bb2
) == NULL
)
1077 merge_bb
= BB_CLUSTER (bb1
) == NULL
? bb2
: bb1
;
1078 other_bb
= BB_CLUSTER (bb1
) == NULL
? bb1
: bb2
;
1079 merge
= BB_CLUSTER (merge_bb
);
1080 add_bb_to_cluster (merge
, other_bb
);
1081 BB_CLUSTER (other_bb
) = merge
;
1083 else if (BB_CLUSTER (bb1
) != BB_CLUSTER (bb2
))
1088 old
= BB_CLUSTER (bb2
);
1089 merge
= BB_CLUSTER (bb1
);
1090 merge_clusters (merge
, old
);
1091 EXECUTE_IF_SET_IN_BITMAP (old
->bbs
, 0, i
, bi
)
1092 BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun
, i
)) = merge
;
1093 all_clusters
[old
->index
] = NULL
;
1094 update_rep_bb (merge
, old
->rep_bb
);
1095 delete_cluster (old
);
1101 /* Return true if gimple operands T1 and T2 have the same value. */
1104 gimple_operand_equal_value_p (tree t1
, tree t2
)
1113 if (operand_equal_p (t1
, t2
, OEP_MATCH_SIDE_EFFECTS
))
1116 return gvn_uses_equal (t1
, t2
);
1119 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1120 gimple_bb (s2) are members of SAME_SUCC. */
1123 gimple_equal_p (same_succ
*same_succ
, gimple
*s1
, gimple
*s2
)
1127 basic_block bb1
= gimple_bb (s1
), bb2
= gimple_bb (s2
);
1130 enum tree_code code1
, code2
;
1132 if (gimple_code (s1
) != gimple_code (s2
))
1135 switch (gimple_code (s1
))
1138 if (!gimple_call_same_target_p (s1
, s2
))
1141 t1
= gimple_call_chain (s1
);
1142 t2
= gimple_call_chain (s2
);
1143 if (!gimple_operand_equal_value_p (t1
, t2
))
1146 if (gimple_call_num_args (s1
) != gimple_call_num_args (s2
))
1149 for (i
= 0; i
< gimple_call_num_args (s1
); ++i
)
1151 t1
= gimple_call_arg (s1
, i
);
1152 t2
= gimple_call_arg (s2
, i
);
1153 if (!gimple_operand_equal_value_p (t1
, t2
))
1157 lhs1
= gimple_get_lhs (s1
);
1158 lhs2
= gimple_get_lhs (s2
);
1159 if (lhs1
== NULL_TREE
&& lhs2
== NULL_TREE
)
1161 if (lhs1
== NULL_TREE
|| lhs2
== NULL_TREE
)
1163 if (TREE_CODE (lhs1
) == SSA_NAME
&& TREE_CODE (lhs2
) == SSA_NAME
)
1164 return tail_merge_valueize (lhs1
) == tail_merge_valueize (lhs2
);
1165 return operand_equal_p (lhs1
, lhs2
, 0);
1168 if (gimple_assign_rhs_code (s1
) != gimple_assign_rhs_code (s2
))
1171 lhs1
= gimple_get_lhs (s1
);
1172 lhs2
= gimple_get_lhs (s2
);
1173 if (TREE_CODE (lhs1
) != SSA_NAME
1174 && TREE_CODE (lhs2
) != SSA_NAME
)
1175 return (operand_equal_p (lhs1
, lhs2
, 0)
1176 && gimple_operand_equal_value_p (gimple_assign_rhs1 (s1
),
1177 gimple_assign_rhs1 (s2
)));
1179 if (TREE_CODE (lhs1
) != SSA_NAME
1180 || TREE_CODE (lhs2
) != SSA_NAME
)
1183 gcc_checking_assert (gimple_num_args (s1
) == gimple_num_args (s2
));
1184 for (i
= 0; i
< gimple_num_args (s1
); ++i
)
1186 t1
= gimple_arg (s1
, i
);
1187 t2
= gimple_arg (s2
, i
);
1188 if (!gimple_operand_equal_value_p (t1
, t2
))
1194 t1
= gimple_cond_lhs (s1
);
1195 t2
= gimple_cond_lhs (s2
);
1196 if (!gimple_operand_equal_value_p (t1
, t2
))
1199 t1
= gimple_cond_rhs (s1
);
1200 t2
= gimple_cond_rhs (s2
);
1201 if (!gimple_operand_equal_value_p (t1
, t2
))
1204 code1
= gimple_cond_code (s1
);
1205 code2
= gimple_cond_code (s2
);
1206 inv_cond
= (bitmap_bit_p (same_succ
->inverse
, bb1
->index
)
1207 != bitmap_bit_p (same_succ
->inverse
, bb2
->index
));
1210 bool honor_nans
= HONOR_NANS (t1
);
1211 code2
= invert_tree_comparison (code2
, honor_nans
);
1213 return code1
== code2
;
1220 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1221 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1222 processed statements. */
1225 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator
*gsi
, tree
*vuse
,
1233 if (gsi_end_p (*gsi
))
1235 stmt
= gsi_stmt (*gsi
);
1237 lvuse
= gimple_vuse (stmt
);
1238 if (lvuse
!= NULL_TREE
)
1241 if (!ZERO_SSA_OPERANDS (stmt
, SSA_OP_DEF
))
1242 *vuse_escaped
= true;
1245 if (!stmt_local_def (stmt
))
1247 gsi_prev_nondebug (gsi
);
1251 /* Return true if equal (in the sense of gimple_equal_p) statements STMT1 and
1252 STMT2 are allowed to be merged. */
1255 merge_stmts_p (gimple
*stmt1
, gimple
*stmt2
)
1257 /* What could be better than this here is to blacklist the bb
1258 containing the stmt, when encountering the stmt f.i. in
1260 if (is_tm_ending (stmt1
))
1263 /* Verify EH landing pads. */
1264 if (lookup_stmt_eh_lp_fn (cfun
, stmt1
) != lookup_stmt_eh_lp_fn (cfun
, stmt2
))
1267 if (is_gimple_call (stmt1
)
1268 && gimple_call_internal_p (stmt1
))
1269 switch (gimple_call_internal_fn (stmt1
))
1271 case IFN_UBSAN_NULL
:
1272 case IFN_UBSAN_BOUNDS
:
1273 case IFN_UBSAN_VPTR
:
1274 case IFN_UBSAN_CHECK_ADD
:
1275 case IFN_UBSAN_CHECK_SUB
:
1276 case IFN_UBSAN_CHECK_MUL
:
1277 case IFN_UBSAN_OBJECT_SIZE
:
1279 case IFN_ASAN_CHECK
:
1280 /* For these internal functions, gimple_location is an implicit
1281 parameter, which will be used explicitly after expansion.
1282 Merging these statements may cause confusing line numbers in
1283 sanitizer messages. */
1284 return gimple_location (stmt1
) == gimple_location (stmt2
);
1292 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1296 find_duplicate (same_succ
*same_succ
, basic_block bb1
, basic_block bb2
)
1298 gimple_stmt_iterator gsi1
= gsi_last_nondebug_bb (bb1
);
1299 gimple_stmt_iterator gsi2
= gsi_last_nondebug_bb (bb2
);
1300 tree vuse1
= NULL_TREE
, vuse2
= NULL_TREE
;
1301 bool vuse_escaped
= false;
1303 gsi_advance_bw_nondebug_nonlocal (&gsi1
, &vuse1
, &vuse_escaped
);
1304 gsi_advance_bw_nondebug_nonlocal (&gsi2
, &vuse2
, &vuse_escaped
);
1306 while (!gsi_end_p (gsi1
) && !gsi_end_p (gsi2
))
1308 gimple
*stmt1
= gsi_stmt (gsi1
);
1309 gimple
*stmt2
= gsi_stmt (gsi2
);
1311 if (gimple_code (stmt1
) == GIMPLE_LABEL
1312 && gimple_code (stmt2
) == GIMPLE_LABEL
)
1315 if (!gimple_equal_p (same_succ
, stmt1
, stmt2
))
1318 if (!merge_stmts_p (stmt1
, stmt2
))
1321 gsi_prev_nondebug (&gsi1
);
1322 gsi_prev_nondebug (&gsi2
);
1323 gsi_advance_bw_nondebug_nonlocal (&gsi1
, &vuse1
, &vuse_escaped
);
1324 gsi_advance_bw_nondebug_nonlocal (&gsi2
, &vuse2
, &vuse_escaped
);
1327 while (!gsi_end_p (gsi1
) && gimple_code (gsi_stmt (gsi1
)) == GIMPLE_LABEL
)
1329 tree label
= gimple_label_label (as_a
<glabel
*> (gsi_stmt (gsi1
)));
1330 if (DECL_NONLOCAL (label
) || FORCED_LABEL (label
))
1334 while (!gsi_end_p (gsi2
) && gimple_code (gsi_stmt (gsi2
)) == GIMPLE_LABEL
)
1336 tree label
= gimple_label_label (as_a
<glabel
*> (gsi_stmt (gsi2
)));
1337 if (DECL_NONLOCAL (label
) || FORCED_LABEL (label
))
1341 if (!(gsi_end_p (gsi1
) && gsi_end_p (gsi2
)))
1344 /* If the incoming vuses are not the same, and the vuse escaped into an
1345 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1346 which potentially means the semantics of one of the blocks will be changed.
1347 TODO: make this check more precise. */
1348 if (vuse_escaped
&& vuse1
!= vuse2
)
1352 fprintf (dump_file
, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1353 bb1
->index
, bb2
->index
);
1355 set_cluster (bb1
, bb2
);
1358 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1362 same_phi_alternatives_1 (basic_block dest
, edge e1
, edge e2
)
1364 int n1
= e1
->dest_idx
, n2
= e2
->dest_idx
;
1367 for (gsi
= gsi_start_phis (dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1369 gphi
*phi
= gsi
.phi ();
1370 tree lhs
= gimple_phi_result (phi
);
1371 tree val1
= gimple_phi_arg_def (phi
, n1
);
1372 tree val2
= gimple_phi_arg_def (phi
, n2
);
1374 if (virtual_operand_p (lhs
))
1377 if (operand_equal_for_phi_arg_p (val1
, val2
))
1379 if (gvn_uses_equal (val1
, val2
))
1388 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1389 phi alternatives for BB1 and BB2 are equal. */
1392 same_phi_alternatives (same_succ
*same_succ
, basic_block bb1
, basic_block bb2
)
1399 EXECUTE_IF_SET_IN_BITMAP (same_succ
->succs
, 0, s
, bs
)
1401 succ
= BASIC_BLOCK_FOR_FN (cfun
, s
);
1402 e1
= find_edge (bb1
, succ
);
1403 e2
= find_edge (bb2
, succ
);
1404 if (e1
->flags
& EDGE_COMPLEX
1405 || e2
->flags
& EDGE_COMPLEX
)
1408 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1410 if (!same_phi_alternatives_1 (succ
, e1
, e2
))
1417 /* Return true if BB has non-vop phis. */
1420 bb_has_non_vop_phi (basic_block bb
)
1422 gimple_seq phis
= phi_nodes (bb
);
1428 if (!gimple_seq_singleton_p (phis
))
1431 phi
= gimple_seq_first_stmt (phis
);
1432 return !virtual_operand_p (gimple_phi_result (phi
));
1435 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1436 invariant that uses in FROM are dominates by their defs. */
1439 deps_ok_for_redirect_from_bb_to_bb (basic_block from
, basic_block to
)
1441 basic_block cd
, dep_bb
= BB_DEP_BB (to
);
1448 bitmap from_preds
= BITMAP_ALLOC (NULL
);
1449 FOR_EACH_EDGE (e
, ei
, from
->preds
)
1450 bitmap_set_bit (from_preds
, e
->src
->index
);
1451 cd
= nearest_common_dominator_for_set (CDI_DOMINATORS
, from_preds
);
1452 BITMAP_FREE (from_preds
);
1454 return dominated_by_p (CDI_DOMINATORS
, dep_bb
, cd
);
1457 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1458 replacement bb) and vice versa maintains the invariant that uses in the
1459 replacement are dominates by their defs. */
1462 deps_ok_for_redirect (basic_block bb1
, basic_block bb2
)
1464 if (BB_CLUSTER (bb1
) != NULL
)
1465 bb1
= BB_CLUSTER (bb1
)->rep_bb
;
1467 if (BB_CLUSTER (bb2
) != NULL
)
1468 bb2
= BB_CLUSTER (bb2
)->rep_bb
;
1470 return (deps_ok_for_redirect_from_bb_to_bb (bb1
, bb2
)
1471 && deps_ok_for_redirect_from_bb_to_bb (bb2
, bb1
));
1474 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1477 find_clusters_1 (same_succ
*same_succ
)
1479 basic_block bb1
, bb2
;
1481 bitmap_iterator bi
, bj
;
1483 int max_comparisons
= param_max_tail_merge_comparisons
;
1485 EXECUTE_IF_SET_IN_BITMAP (same_succ
->bbs
, 0, i
, bi
)
1487 bb1
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1489 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1490 phi-nodes in bb1 and bb2, with the same alternatives for the same
1492 if (bb_has_non_vop_phi (bb1
) || bb_has_eh_pred (bb1
)
1493 || bb_has_abnormal_pred (bb1
))
1497 EXECUTE_IF_SET_IN_BITMAP (same_succ
->bbs
, i
+ 1, j
, bj
)
1499 bb2
= BASIC_BLOCK_FOR_FN (cfun
, j
);
1501 if (bb_has_non_vop_phi (bb2
) || bb_has_eh_pred (bb2
)
1502 || bb_has_abnormal_pred (bb2
))
1505 if (BB_CLUSTER (bb1
) != NULL
&& BB_CLUSTER (bb1
) == BB_CLUSTER (bb2
))
1508 /* Limit quadratic behavior. */
1510 if (nr_comparisons
> max_comparisons
)
1513 /* This is a conservative dependency check. We could test more
1514 precise for allowed replacement direction. */
1515 if (!deps_ok_for_redirect (bb1
, bb2
))
1518 if (!(same_phi_alternatives (same_succ
, bb1
, bb2
)))
1521 find_duplicate (same_succ
, bb1
, bb2
);
1526 /* Find clusters of bbs which can be merged. */
1529 find_clusters (void)
1533 while (!worklist
.is_empty ())
1535 same
= worklist
.pop ();
1536 same
->in_worklist
= false;
1537 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1539 fprintf (dump_file
, "processing worklist entry\n");
1540 same_succ_print (dump_file
, same
);
1542 find_clusters_1 (same
);
1546 /* Returns the vop phi of BB, if any. */
1549 vop_phi (basic_block bb
)
1553 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1556 if (! virtual_operand_p (gimple_phi_result (stmt
)))
1563 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1566 replace_block_by (basic_block bb1
, basic_block bb2
)
1572 bb2_phi
= vop_phi (bb2
);
1574 /* Mark the basic block as deleted. */
1575 mark_basic_block_deleted (bb1
);
1577 /* Redirect the incoming edges of bb1 to bb2. */
1578 for (i
= EDGE_COUNT (bb1
->preds
); i
> 0 ; --i
)
1580 pred_edge
= EDGE_PRED (bb1
, i
- 1);
1581 pred_edge
= redirect_edge_and_branch (pred_edge
, bb2
);
1582 gcc_assert (pred_edge
!= NULL
);
1584 if (bb2_phi
== NULL
)
1587 /* The phi might have run out of capacity when the redirect added an
1588 argument, which means it could have been replaced. Refresh it. */
1589 bb2_phi
= vop_phi (bb2
);
1591 add_phi_arg (bb2_phi
, SSA_NAME_VAR (gimple_phi_result (bb2_phi
)),
1592 pred_edge
, UNKNOWN_LOCATION
);
1596 /* Merge the outgoing edge counts from bb1 onto bb2. */
1600 if (bb2
->count
.initialized_p ())
1601 FOR_EACH_EDGE (e1
, ei
, bb1
->succs
)
1603 e2
= find_edge (bb2
, e1
->dest
);
1606 /* If probabilities are same, we are done.
1607 If counts are nonzero we can distribute accordingly. In remaining
1608 cases just average the values and hope for the best. */
1609 e2
->probability
= e1
->probability
.combine_with_count
1610 (bb1
->count
, e2
->probability
, bb2
->count
);
1612 bb2
->count
+= bb1
->count
;
1614 /* Move over any user labels from bb1 after the bb2 labels. */
1615 gimple_stmt_iterator gsi1
= gsi_start_bb (bb1
);
1616 if (!gsi_end_p (gsi1
) && gimple_code (gsi_stmt (gsi1
)) == GIMPLE_LABEL
)
1618 gimple_stmt_iterator gsi2
= gsi_after_labels (bb2
);
1619 while (!gsi_end_p (gsi1
)
1620 && gimple_code (gsi_stmt (gsi1
)) == GIMPLE_LABEL
)
1622 tree label
= gimple_label_label (as_a
<glabel
*> (gsi_stmt (gsi1
)));
1623 gcc_assert (!DECL_NONLOCAL (label
) && !FORCED_LABEL (label
));
1624 if (DECL_ARTIFICIAL (label
))
1627 gsi_move_before (&gsi1
, &gsi2
);
1631 /* Clear range info from all stmts in BB2 -- this transformation
1632 could make them out of date. */
1633 reset_flow_sensitive_info_in_bb (bb2
);
1635 /* Do updates that use bb1, before deleting bb1. */
1636 release_last_vdef (bb1
);
1637 same_succ_flush_bb (bb1
);
1639 delete_basic_block (bb1
);
1642 /* Bbs for which update_debug_stmt need to be called. */
1644 static bitmap update_bbs
;
1646 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1647 number of bbs removed. */
1650 apply_clusters (void)
1652 basic_block bb1
, bb2
;
1656 int nr_bbs_removed
= 0;
1658 for (i
= 0; i
< all_clusters
.length (); ++i
)
1660 c
= all_clusters
[i
];
1665 bitmap_set_bit (update_bbs
, bb2
->index
);
1667 bitmap_clear_bit (c
->bbs
, bb2
->index
);
1668 EXECUTE_IF_SET_IN_BITMAP (c
->bbs
, 0, j
, bj
)
1670 bb1
= BASIC_BLOCK_FOR_FN (cfun
, j
);
1671 bitmap_clear_bit (update_bbs
, bb1
->index
);
1673 replace_block_by (bb1
, bb2
);
1678 return nr_bbs_removed
;
1681 /* Resets debug statement STMT if it has uses that are not dominated by their
1685 update_debug_stmt (gimple
*stmt
)
1687 use_operand_p use_p
;
1691 if (!gimple_debug_bind_p (stmt
))
1694 bbuse
= gimple_bb (stmt
);
1695 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, oi
, SSA_OP_USE
)
1697 tree name
= USE_FROM_PTR (use_p
);
1698 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
1699 basic_block bbdef
= gimple_bb (def_stmt
);
1700 if (bbdef
== NULL
|| bbuse
== bbdef
1701 || dominated_by_p (CDI_DOMINATORS
, bbuse
, bbdef
))
1704 gimple_debug_bind_reset_value (stmt
);
1710 /* Resets all debug statements that have uses that are not
1711 dominated by their defs. */
1714 update_debug_stmts (void)
1720 EXECUTE_IF_SET_IN_BITMAP (update_bbs
, 0, i
, bi
)
1723 gimple_stmt_iterator gsi
;
1725 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1726 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1728 stmt
= gsi_stmt (gsi
);
1729 if (!is_gimple_debug (stmt
))
1731 update_debug_stmt (stmt
);
1736 /* Runs tail merge optimization. */
1739 tail_merge_optimize (bool need_crit_edge_split
)
1741 int nr_bbs_removed_total
= 0;
1743 bool loop_entered
= false;
1744 int iteration_nr
= 0;
1745 int max_iterations
= param_max_tail_merge_iterations
;
1747 if (!flag_tree_tail_merge
1748 || max_iterations
== 0)
1751 timevar_push (TV_TREE_TAIL_MERGE
);
1753 /* Re-split critical edges when PRE did a CFG cleanup. */
1754 if (need_crit_edge_split
)
1755 split_edges_for_insertion ();
1757 if (!dom_info_available_p (CDI_DOMINATORS
))
1759 /* PRE can leave us with unreachable blocks, remove them now. */
1760 delete_unreachable_blocks ();
1761 calculate_dominance_info (CDI_DOMINATORS
);
1765 while (!worklist
.is_empty ())
1769 loop_entered
= true;
1770 alloc_cluster_vectors ();
1771 update_bbs
= BITMAP_ALLOC (NULL
);
1774 reset_cluster_vectors ();
1777 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1778 fprintf (dump_file
, "worklist iteration #%d\n", iteration_nr
);
1781 gcc_assert (worklist
.is_empty ());
1782 if (all_clusters
.is_empty ())
1785 nr_bbs_removed
= apply_clusters ();
1786 nr_bbs_removed_total
+= nr_bbs_removed
;
1787 if (nr_bbs_removed
== 0)
1790 free_dominance_info (CDI_DOMINATORS
);
1792 if (iteration_nr
== max_iterations
)
1795 calculate_dominance_info (CDI_DOMINATORS
);
1799 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1800 fprintf (dump_file
, "htab collision / search: %f\n",
1801 same_succ_htab
->collisions ());
1803 if (nr_bbs_removed_total
> 0)
1805 if (MAY_HAVE_DEBUG_BIND_STMTS
)
1807 calculate_dominance_info (CDI_DOMINATORS
);
1808 update_debug_stmts ();
1811 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1813 fprintf (dump_file
, "Before TODOs.\n");
1814 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
1817 mark_virtual_operands_for_renaming (cfun
);
1823 delete_cluster_vectors ();
1824 BITMAP_FREE (update_bbs
);
1827 timevar_pop (TV_TREE_TAIL_MERGE
);