1 /* GIMPLE store merging and byte swapping passes.
2 Copyright (C) 2009-2024 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The purpose of the store merging pass is to combine multiple memory stores
22 of constant values, values loaded from memory, bitwise operations on those,
23 or bit-field values, to consecutive locations, into fewer wider stores.
25 For example, if we have a sequence peforming four byte stores to
26 consecutive memory locations:
31 we can transform this into a single 4-byte store if the target supports it:
32 [p] := imm1:imm2:imm3:imm4 concatenated according to endianness.
39 if there is no overlap can be transformed into a single 4-byte
40 load followed by single 4-byte store.
44 [p + 1B] := [q + 1B] ^ imm2;
45 [p + 2B] := [q + 2B] ^ imm3;
46 [p + 3B] := [q + 3B] ^ imm4;
47 if there is no overlap can be transformed into a single 4-byte
48 load, xored with imm1:imm2:imm3:imm4 and stored using a single 4-byte store.
52 [p:31] := val & 0x7FFFFFFF;
53 we can transform this into a single 4-byte store if the target supports it:
54 [p] := imm:(val & 0x7FFFFFFF) concatenated according to endianness.
56 The algorithm is applied to each basic block in three phases:
58 1) Scan through the basic block and record assignments to destinations
59 that can be expressed as a store to memory of a certain size at a certain
60 bit offset from base expressions we can handle. For bit-fields we also
61 record the surrounding bit region, i.e. bits that could be stored in
62 a read-modify-write operation when storing the bit-field. Record store
63 chains to different bases in a hash_map (m_stores) and make sure to
64 terminate such chains when appropriate (for example when the stored
65 values get used subsequently).
66 These stores can be a result of structure element initializers, array stores
67 etc. A store_immediate_info object is recorded for every such store.
68 Record as many such assignments to a single base as possible until a
69 statement that interferes with the store sequence is encountered.
70 Each store has up to 2 operands, which can be a either constant, a memory
71 load or an SSA name, from which the value to be stored can be computed.
72 At most one of the operands can be a constant. The operands are recorded
73 in store_operand_info struct.
75 2) Analyze the chains of stores recorded in phase 1) (i.e. the vector of
76 store_immediate_info objects) and coalesce contiguous stores into
77 merged_store_group objects. For bit-field stores, we don't need to
78 require the stores to be contiguous, just their surrounding bit regions
79 have to be contiguous. If the expression being stored is different
80 between adjacent stores, such as one store storing a constant and
81 following storing a value loaded from memory, or if the loaded memory
82 objects are not adjacent, a new merged_store_group is created as well.
84 For example, given the stores:
91 This phase would produce two merged_store_group objects, one recording the
92 two bytes stored in the memory region [p : p + 1] and another
93 recording the four bytes stored in the memory region [p + 3 : p + 6].
95 3) The merged_store_group objects produced in phase 2) are processed
96 to generate the sequence of wider stores that set the contiguous memory
97 regions to the sequence of bytes that correspond to it. This may emit
98 multiple stores per store group to handle contiguous stores that are not
99 of a size that is a power of 2. For example it can try to emit a 40-bit
100 store as a 32-bit store followed by an 8-bit store.
101 We try to emit as wide stores as we can while respecting STRICT_ALIGNMENT
102 or TARGET_SLOW_UNALIGNED_ACCESS settings.
104 Note on endianness and example:
105 Consider 2 contiguous 16-bit stores followed by 2 contiguous 8-bit stores:
111 The memory layout for little-endian (LE) and big-endian (BE) must be:
121 To merge these into a single 48-bit merged value 'val' in phase 2)
122 on little-endian we insert stores to higher (consecutive) bitpositions
123 into the most significant bits of the merged value.
124 The final merged value would be: 0xcdab56781234
126 For big-endian we insert stores to higher bitpositions into the least
127 significant bits of the merged value.
128 The final merged value would be: 0x12345678abcd
130 Then, in phase 3), we want to emit this 48-bit value as a 32-bit store
131 followed by a 16-bit store. Again, we must consider endianness when
132 breaking down the 48-bit value 'val' computed above.
133 For little endian we emit:
134 [p] (32-bit) := 0x56781234; // val & 0x0000ffffffff;
135 [p + 4B] (16-bit) := 0xcdab; // (val & 0xffff00000000) >> 32;
137 Whereas for big-endian we emit:
138 [p] (32-bit) := 0x12345678; // (val & 0xffffffff0000) >> 16;
139 [p + 4B] (16-bit) := 0xabcd; // val & 0x00000000ffff; */
143 #include "coretypes.h"
147 #include "builtins.h"
148 #include "fold-const.h"
149 #include "tree-pass.h"
151 #include "gimple-pretty-print.h"
153 #include "fold-const.h"
154 #include "print-tree.h"
155 #include "tree-hash-traits.h"
156 #include "gimple-iterator.h"
157 #include "gimplify.h"
158 #include "gimple-fold.h"
159 #include "stor-layout.h"
162 #include "cfgcleanup.h"
163 #include "tree-cfg.h"
167 #include "gimplify-me.h"
169 #include "expr.h" /* For get_bit_range. */
170 #include "optabs-tree.h"
172 #include "selftest.h"
174 /* The maximum size (in bits) of the stores this pass should generate. */
175 #define MAX_STORE_BITSIZE (BITS_PER_WORD)
176 #define MAX_STORE_BYTES (MAX_STORE_BITSIZE / BITS_PER_UNIT)
178 /* Limit to bound the number of aliasing checks for loads with the same
179 vuse as the corresponding store. */
180 #define MAX_STORE_ALIAS_CHECKS 64
186 /* Number of hand-written 16-bit nop / bswaps found. */
189 /* Number of hand-written 32-bit nop / bswaps found. */
192 /* Number of hand-written 64-bit nop / bswaps found. */
194 } nop_stats
, bswap_stats
;
196 /* A symbolic number structure is used to detect byte permutation and selection
197 patterns of a source. To achieve that, its field N contains an artificial
198 number consisting of BITS_PER_MARKER sized markers tracking where does each
199 byte come from in the source:
201 0 - target byte has the value 0
202 FF - target byte has an unknown value (eg. due to sign extension)
203 1..size - marker value is the byte index in the source (0 for lsb).
205 To detect permutations on memory sources (arrays and structures), a symbolic
206 number is also associated:
207 - a base address BASE_ADDR and an OFFSET giving the address of the source;
208 - a range which gives the difference between the highest and lowest accessed
209 memory location to make such a symbolic number;
210 - the address SRC of the source element of lowest address as a convenience
211 to easily get BASE_ADDR + offset + lowest bytepos;
212 - number of expressions N_OPS bitwise ored together to represent
213 approximate cost of the computation.
215 Note 1: the range is different from size as size reflects the size of the
216 type of the current expression. For instance, for an array char a[],
217 (short) a[0] | (short) a[3] would have a size of 2 but a range of 4 while
218 (short) a[0] | ((short) a[0] << 1) would still have a size of 2 but this
221 Note 2: for non-memory sources, range holds the same value as size.
223 Note 3: SRC points to the SSA_NAME in case of non-memory source. */
225 struct symbolic_number
{
234 unsigned HOST_WIDE_INT range
;
238 #define BITS_PER_MARKER 8
239 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
240 #define MARKER_BYTE_UNKNOWN MARKER_MASK
241 #define HEAD_MARKER(n, size) \
242 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
244 /* The number which the find_bswap_or_nop_1 result should match in
245 order to have a nop. The number is masked according to the size of
246 the symbolic number before using it. */
247 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
248 (uint64_t)0x08070605 << 32 | 0x04030201)
250 /* The number which the find_bswap_or_nop_1 result should match in
251 order to have a byte swap. The number is masked according to the
252 size of the symbolic number before using it. */
253 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
254 (uint64_t)0x01020304 << 32 | 0x05060708)
256 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
257 number N. Return false if the requested operation is not permitted
258 on a symbolic number. */
261 do_shift_rotate (enum tree_code code
,
262 struct symbolic_number
*n
,
265 int i
, size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
266 uint64_t head_marker
;
269 || count
>= TYPE_PRECISION (n
->type
)
270 || count
% BITS_PER_UNIT
!= 0)
272 count
= (count
/ BITS_PER_UNIT
) * BITS_PER_MARKER
;
274 /* Zero out the extra bits of N in order to avoid them being shifted
275 into the significant bits. */
276 if (size
< 64 / BITS_PER_MARKER
)
277 n
->n
&= ((uint64_t) 1 << (size
* BITS_PER_MARKER
)) - 1;
285 head_marker
= HEAD_MARKER (n
->n
, size
);
287 /* Arithmetic shift of signed type: result is dependent on the value. */
288 if (!TYPE_UNSIGNED (n
->type
) && head_marker
)
289 for (i
= 0; i
< count
/ BITS_PER_MARKER
; i
++)
290 n
->n
|= (uint64_t) MARKER_BYTE_UNKNOWN
291 << ((size
- 1 - i
) * BITS_PER_MARKER
);
294 n
->n
= (n
->n
<< count
) | (n
->n
>> ((size
* BITS_PER_MARKER
) - count
));
297 n
->n
= (n
->n
>> count
) | (n
->n
<< ((size
* BITS_PER_MARKER
) - count
));
302 /* Zero unused bits for size. */
303 if (size
< 64 / BITS_PER_MARKER
)
304 n
->n
&= ((uint64_t) 1 << (size
* BITS_PER_MARKER
)) - 1;
308 /* Perform sanity checking for the symbolic number N and the gimple
312 verify_symbolic_number_p (struct symbolic_number
*n
, gimple
*stmt
)
316 lhs_type
= TREE_TYPE (gimple_get_lhs (stmt
));
318 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
319 && TREE_CODE (lhs_type
) != ENUMERAL_TYPE
)
322 if (TYPE_PRECISION (lhs_type
) != TYPE_PRECISION (n
->type
))
328 /* Initialize the symbolic number N for the bswap pass from the base element
329 SRC manipulated by the bitwise OR expression. */
332 init_symbolic_number (struct symbolic_number
*n
, tree src
)
336 if (!INTEGRAL_TYPE_P (TREE_TYPE (src
)) && !POINTER_TYPE_P (TREE_TYPE (src
)))
339 n
->base_addr
= n
->offset
= n
->alias_set
= n
->vuse
= NULL_TREE
;
342 /* Set up the symbolic number N by setting each byte to a value between 1 and
343 the byte size of rhs1. The highest order byte is set to n->size and the
344 lowest order byte to 1. */
345 n
->type
= TREE_TYPE (src
);
346 size
= TYPE_PRECISION (n
->type
);
347 if (size
% BITS_PER_UNIT
!= 0)
349 size
/= BITS_PER_UNIT
;
350 if (size
> 64 / BITS_PER_MARKER
)
356 if (size
< 64 / BITS_PER_MARKER
)
357 n
->n
&= ((uint64_t) 1 << (size
* BITS_PER_MARKER
)) - 1;
362 /* Check if STMT might be a byte swap or a nop from a memory source and returns
363 the answer. If so, REF is that memory source and the base of the memory area
364 accessed and the offset of the access from that base are recorded in N. */
367 find_bswap_or_nop_load (gimple
*stmt
, tree ref
, struct symbolic_number
*n
)
369 /* Leaf node is an array or component ref. Memorize its base and
370 offset from base to compare to other such leaf node. */
371 poly_int64 bitsize
, bitpos
, bytepos
;
373 int unsignedp
, reversep
, volatilep
;
374 tree offset
, base_addr
;
376 /* Not prepared to handle PDP endian. */
377 if (BYTES_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
380 if (!gimple_assign_load_p (stmt
) || gimple_has_volatile_ops (stmt
))
383 base_addr
= get_inner_reference (ref
, &bitsize
, &bitpos
, &offset
, &mode
,
384 &unsignedp
, &reversep
, &volatilep
);
386 if (TREE_CODE (base_addr
) == TARGET_MEM_REF
)
387 /* Do not rewrite TARGET_MEM_REF. */
389 else if (TREE_CODE (base_addr
) == MEM_REF
)
391 poly_offset_int bit_offset
= 0;
392 tree off
= TREE_OPERAND (base_addr
, 1);
394 if (!integer_zerop (off
))
396 poly_offset_int boff
= mem_ref_offset (base_addr
);
397 boff
<<= LOG2_BITS_PER_UNIT
;
401 base_addr
= TREE_OPERAND (base_addr
, 0);
403 /* Avoid returning a negative bitpos as this may wreak havoc later. */
404 if (maybe_lt (bit_offset
, 0))
406 tree byte_offset
= wide_int_to_tree
407 (sizetype
, bits_to_bytes_round_down (bit_offset
));
408 bit_offset
= num_trailing_bits (bit_offset
);
410 offset
= size_binop (PLUS_EXPR
, offset
, byte_offset
);
412 offset
= byte_offset
;
415 bitpos
+= bit_offset
.force_shwi ();
418 base_addr
= build_fold_addr_expr (base_addr
);
420 if (!multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
))
422 if (!multiple_p (bitsize
, BITS_PER_UNIT
))
427 if (!init_symbolic_number (n
, ref
))
429 n
->base_addr
= base_addr
;
431 n
->bytepos
= bytepos
;
432 n
->alias_set
= reference_alias_ptr_type (ref
);
433 n
->vuse
= gimple_vuse (stmt
);
437 /* Compute the symbolic number N representing the result of a bitwise OR,
438 bitwise XOR or plus on 2 symbolic number N1 and N2 whose source statements
439 are respectively SOURCE_STMT1 and SOURCE_STMT2. CODE is the operation. */
442 perform_symbolic_merge (gimple
*source_stmt1
, struct symbolic_number
*n1
,
443 gimple
*source_stmt2
, struct symbolic_number
*n2
,
444 struct symbolic_number
*n
, enum tree_code code
)
449 struct symbolic_number
*n_start
;
451 tree rhs1
= gimple_assign_rhs1 (source_stmt1
);
452 if (TREE_CODE (rhs1
) == BIT_FIELD_REF
453 && TREE_CODE (TREE_OPERAND (rhs1
, 0)) == SSA_NAME
)
454 rhs1
= TREE_OPERAND (rhs1
, 0);
455 tree rhs2
= gimple_assign_rhs1 (source_stmt2
);
456 if (TREE_CODE (rhs2
) == BIT_FIELD_REF
457 && TREE_CODE (TREE_OPERAND (rhs2
, 0)) == SSA_NAME
)
458 rhs2
= TREE_OPERAND (rhs2
, 0);
460 /* Sources are different, cancel bswap if they are not memory location with
461 the same base (array, structure, ...). */
465 HOST_WIDE_INT start1
, start2
, start_sub
, end_sub
, end1
, end2
, end
;
466 struct symbolic_number
*toinc_n_ptr
, *n_end
;
467 basic_block bb1
, bb2
;
469 if (!n1
->base_addr
|| !n2
->base_addr
470 || !operand_equal_p (n1
->base_addr
, n2
->base_addr
, 0))
473 if (!n1
->offset
!= !n2
->offset
474 || (n1
->offset
&& !operand_equal_p (n1
->offset
, n2
->offset
, 0)))
478 if (!(n2
->bytepos
- n1
->bytepos
).is_constant (&start2
))
484 start_sub
= start2
- start1
;
489 start_sub
= start1
- start2
;
492 bb1
= gimple_bb (source_stmt1
);
493 bb2
= gimple_bb (source_stmt2
);
494 if (dominated_by_p (CDI_DOMINATORS
, bb1
, bb2
))
495 source_stmt
= source_stmt1
;
497 source_stmt
= source_stmt2
;
499 /* Find the highest address at which a load is performed and
500 compute related info. */
501 end1
= start1
+ (n1
->range
- 1);
502 end2
= start2
+ (n2
->range
- 1);
506 end_sub
= end2
- end1
;
511 end_sub
= end1
- end2
;
513 n_end
= (end2
> end1
) ? n2
: n1
;
515 /* Find symbolic number whose lsb is the most significant. */
516 if (BYTES_BIG_ENDIAN
)
517 toinc_n_ptr
= (n_end
== n1
) ? n2
: n1
;
519 toinc_n_ptr
= (n_start
== n1
) ? n2
: n1
;
521 n
->range
= end
- MIN (start1
, start2
) + 1;
523 /* Check that the range of memory covered can be represented by
524 a symbolic number. */
525 if (n
->range
> 64 / BITS_PER_MARKER
)
528 /* Reinterpret byte marks in symbolic number holding the value of
529 bigger weight according to target endianness. */
530 inc
= BYTES_BIG_ENDIAN
? end_sub
: start_sub
;
531 size
= TYPE_PRECISION (n1
->type
) / BITS_PER_UNIT
;
532 for (i
= 0; i
< size
; i
++, inc
<<= BITS_PER_MARKER
)
535 = (toinc_n_ptr
->n
>> (i
* BITS_PER_MARKER
)) & MARKER_MASK
;
536 if (marker
&& marker
!= MARKER_BYTE_UNKNOWN
)
537 toinc_n_ptr
->n
+= inc
;
542 n
->range
= n1
->range
;
544 source_stmt
= source_stmt1
;
548 || alias_ptr_types_compatible_p (n1
->alias_set
, n2
->alias_set
))
549 n
->alias_set
= n1
->alias_set
;
551 n
->alias_set
= ptr_type_node
;
552 n
->vuse
= n_start
->vuse
;
553 n
->base_addr
= n_start
->base_addr
;
554 n
->offset
= n_start
->offset
;
555 n
->src
= n_start
->src
;
556 n
->bytepos
= n_start
->bytepos
;
557 n
->type
= n_start
->type
;
558 size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
559 uint64_t res_n
= n1
->n
| n2
->n
;
561 for (i
= 0, mask
= MARKER_MASK
; i
< size
; i
++, mask
<<= BITS_PER_MARKER
)
563 uint64_t masked1
, masked2
;
565 masked1
= n1
->n
& mask
;
566 masked2
= n2
->n
& mask
;
567 /* If at least one byte is 0, all of 0 | x == 0 ^ x == 0 + x == x. */
568 if (masked1
&& masked2
)
570 /* + can carry into upper bits, just punt. */
571 if (code
== PLUS_EXPR
)
573 /* x | x is still x. */
574 if (code
== BIT_IOR_EXPR
&& masked1
== masked2
)
576 if (code
== BIT_XOR_EXPR
)
578 /* x ^ x is 0, but MARKER_BYTE_UNKNOWN stands for
579 unknown values and unknown ^ unknown is unknown. */
580 if (masked1
== masked2
581 && masked1
!= ((uint64_t) MARKER_BYTE_UNKNOWN
582 << i
* BITS_PER_MARKER
))
588 /* Otherwise set the byte to unknown, it might still be
594 n
->n_ops
= n1
->n_ops
+ n2
->n_ops
;
599 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
600 the operation given by the rhs of STMT on the result. If the operation
601 could successfully be executed the function returns a gimple stmt whose
602 rhs's first tree is the expression of the source operand and NULL
606 find_bswap_or_nop_1 (gimple
*stmt
, struct symbolic_number
*n
, int limit
)
609 tree rhs1
, rhs2
= NULL
;
610 gimple
*rhs1_stmt
, *rhs2_stmt
, *source_stmt1
;
611 enum gimple_rhs_class rhs_class
;
613 if (!limit
|| !is_gimple_assign (stmt
))
616 rhs1
= gimple_assign_rhs1 (stmt
);
618 if (find_bswap_or_nop_load (stmt
, rhs1
, n
))
621 /* Handle BIT_FIELD_REF. */
622 if (TREE_CODE (rhs1
) == BIT_FIELD_REF
623 && TREE_CODE (TREE_OPERAND (rhs1
, 0)) == SSA_NAME
)
625 if (!tree_fits_uhwi_p (TREE_OPERAND (rhs1
, 1))
626 || !tree_fits_uhwi_p (TREE_OPERAND (rhs1
, 2)))
629 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (TREE_OPERAND (rhs1
, 1));
630 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (TREE_OPERAND (rhs1
, 2));
631 if (bitpos
% BITS_PER_UNIT
== 0
632 && bitsize
% BITS_PER_UNIT
== 0
633 && init_symbolic_number (n
, TREE_OPERAND (rhs1
, 0)))
635 /* Handle big-endian bit numbering in BIT_FIELD_REF. */
636 if (BYTES_BIG_ENDIAN
)
637 bitpos
= TYPE_PRECISION (n
->type
) - bitpos
- bitsize
;
640 if (!do_shift_rotate (RSHIFT_EXPR
, n
, bitpos
))
645 uint64_t tmp
= (1 << BITS_PER_UNIT
) - 1;
646 for (unsigned i
= 0; i
< bitsize
/ BITS_PER_UNIT
;
647 i
++, tmp
<<= BITS_PER_UNIT
)
648 mask
|= (uint64_t) MARKER_MASK
<< (i
* BITS_PER_MARKER
);
652 n
->type
= TREE_TYPE (rhs1
);
653 if (!verify_symbolic_number_p (n
, stmt
))
657 n
->range
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
665 if (TREE_CODE (rhs1
) != SSA_NAME
)
668 code
= gimple_assign_rhs_code (stmt
);
669 rhs_class
= gimple_assign_rhs_class (stmt
);
670 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
672 if (rhs_class
== GIMPLE_BINARY_RHS
)
673 rhs2
= gimple_assign_rhs2 (stmt
);
675 /* Handle unary rhs and binary rhs with integer constants as second
678 if (rhs_class
== GIMPLE_UNARY_RHS
679 || (rhs_class
== GIMPLE_BINARY_RHS
680 && TREE_CODE (rhs2
) == INTEGER_CST
))
682 if (code
!= BIT_AND_EXPR
683 && code
!= LSHIFT_EXPR
684 && code
!= RSHIFT_EXPR
685 && code
!= LROTATE_EXPR
686 && code
!= RROTATE_EXPR
687 && !CONVERT_EXPR_CODE_P (code
))
690 source_stmt1
= find_bswap_or_nop_1 (rhs1_stmt
, n
, limit
- 1);
692 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
693 we have to initialize the symbolic number. */
696 if (gimple_assign_load_p (stmt
)
697 || !init_symbolic_number (n
, rhs1
))
706 int i
, size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
707 uint64_t val
= int_cst_value (rhs2
), mask
= 0;
708 uint64_t tmp
= (1 << BITS_PER_UNIT
) - 1;
710 /* Only constants masking full bytes are allowed. */
711 for (i
= 0; i
< size
; i
++, tmp
<<= BITS_PER_UNIT
)
712 if ((val
& tmp
) != 0 && (val
& tmp
) != tmp
)
715 mask
|= (uint64_t) MARKER_MASK
<< (i
* BITS_PER_MARKER
);
724 if (!do_shift_rotate (code
, n
, (int) TREE_INT_CST_LOW (rhs2
)))
729 int i
, type_size
, old_type_size
;
732 type
= TREE_TYPE (gimple_assign_lhs (stmt
));
733 type_size
= TYPE_PRECISION (type
);
734 if (type_size
% BITS_PER_UNIT
!= 0)
736 type_size
/= BITS_PER_UNIT
;
737 if (type_size
> 64 / BITS_PER_MARKER
)
740 /* Sign extension: result is dependent on the value. */
741 old_type_size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
742 if (!TYPE_UNSIGNED (n
->type
) && type_size
> old_type_size
743 && HEAD_MARKER (n
->n
, old_type_size
))
744 for (i
= 0; i
< type_size
- old_type_size
; i
++)
745 n
->n
|= (uint64_t) MARKER_BYTE_UNKNOWN
746 << ((type_size
- 1 - i
) * BITS_PER_MARKER
);
748 if (type_size
< 64 / BITS_PER_MARKER
)
750 /* If STMT casts to a smaller type mask out the bits not
751 belonging to the target type. */
752 n
->n
&= ((uint64_t) 1 << (type_size
* BITS_PER_MARKER
)) - 1;
756 n
->range
= type_size
;
762 return verify_symbolic_number_p (n
, stmt
) ? source_stmt1
: NULL
;
765 /* Handle binary rhs. */
767 if (rhs_class
== GIMPLE_BINARY_RHS
)
769 struct symbolic_number n1
, n2
;
770 gimple
*source_stmt
, *source_stmt2
;
772 if (!rhs2
|| TREE_CODE (rhs2
) != SSA_NAME
)
775 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
782 source_stmt1
= find_bswap_or_nop_1 (rhs1_stmt
, &n1
, limit
- 1);
787 source_stmt2
= find_bswap_or_nop_1 (rhs2_stmt
, &n2
, limit
- 1);
792 if (TYPE_PRECISION (n1
.type
) != TYPE_PRECISION (n2
.type
))
795 if (n1
.vuse
!= n2
.vuse
)
799 = perform_symbolic_merge (source_stmt1
, &n1
, source_stmt2
, &n2
, n
,
805 if (!verify_symbolic_number_p (n
, stmt
))
817 /* Helper for find_bswap_or_nop and try_coalesce_bswap to compute
818 *CMPXCHG, *CMPNOP and adjust *N. */
821 find_bswap_or_nop_finalize (struct symbolic_number
*n
, uint64_t *cmpxchg
,
822 uint64_t *cmpnop
, bool *cast64_to_32
)
827 /* The number which the find_bswap_or_nop_1 result should match in order
828 to have a full byte swap. The number is shifted to the right
829 according to the size of the symbolic number before using it. */
832 *cast64_to_32
= false;
834 /* Find real size of result (highest non-zero byte). */
836 for (tmpn
= n
->n
, rsize
= 0; tmpn
; tmpn
>>= BITS_PER_MARKER
, rsize
++);
840 /* Zero out the bits corresponding to untouched bytes in original gimple
842 if (n
->range
< (int) sizeof (int64_t))
844 mask
= ((uint64_t) 1 << (n
->range
* BITS_PER_MARKER
)) - 1;
845 if (n
->base_addr
== NULL
847 && int_size_in_bytes (TREE_TYPE (n
->src
)) == 8)
849 /* If all bytes in n->n are either 0 or in [5..8] range, this
850 might be a candidate for (unsigned) __builtin_bswap64 (src).
851 It is not worth it for (unsigned short) __builtin_bswap64 (src)
852 or (unsigned short) __builtin_bswap32 (src). */
853 *cast64_to_32
= true;
854 for (tmpn
= n
->n
; tmpn
; tmpn
>>= BITS_PER_MARKER
)
855 if ((tmpn
& MARKER_MASK
)
856 && ((tmpn
& MARKER_MASK
) <= 4 || (tmpn
& MARKER_MASK
) > 8))
858 *cast64_to_32
= false;
865 *cmpxchg
>>= (64 / BITS_PER_MARKER
- n
->range
) * BITS_PER_MARKER
;
869 /* Zero out the bits corresponding to unused bytes in the result of the
870 gimple expression. */
871 if (rsize
< n
->range
)
873 if (BYTES_BIG_ENDIAN
)
875 mask
= ((uint64_t) 1 << (rsize
* BITS_PER_MARKER
)) - 1;
877 if (n
->range
- rsize
== sizeof (int64_t))
880 *cmpnop
>>= (n
->range
- rsize
) * BITS_PER_MARKER
;
884 mask
= ((uint64_t) 1 << (rsize
* BITS_PER_MARKER
)) - 1;
885 if (n
->range
- rsize
== sizeof (int64_t))
888 *cmpxchg
>>= (n
->range
- rsize
) * BITS_PER_MARKER
;
896 n
->range
*= BITS_PER_UNIT
;
899 /* Helper function for find_bswap_or_nop,
900 Return true if N is a swap or nop with MASK. */
902 is_bswap_or_nop_p (uint64_t n
, uint64_t cmpxchg
,
903 uint64_t cmpnop
, uint64_t* mask
,
906 *mask
= ~(uint64_t) 0;
909 else if (n
== cmpxchg
)
914 for (uint64_t msk
= MARKER_MASK
; msk
; msk
<<= BITS_PER_MARKER
)
917 else if ((n
& msk
) == (cmpxchg
& msk
))
930 /* Check if STMT completes a bswap implementation or a read in a given
931 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
932 accordingly. It also sets N to represent the kind of operations
933 performed: size of the resulting expression and whether it works on
934 a memory source, and if so alias-set and vuse. At last, the
935 function returns a stmt whose rhs's first tree is the source
939 find_bswap_or_nop (gimple
*stmt
, struct symbolic_number
*n
, bool *bswap
,
940 bool *cast64_to_32
, uint64_t *mask
, uint64_t* l_rotate
)
942 tree type_size
= TYPE_SIZE_UNIT (TREE_TYPE (gimple_get_lhs (stmt
)));
943 if (!tree_fits_uhwi_p (type_size
))
946 /* The last parameter determines the depth search limit. It usually
947 correlates directly to the number n of bytes to be touched. We
948 increase that number by 2 * (log2(n) + 1) here in order to also
949 cover signed -> unsigned conversions of the src operand as can be seen
950 in libgcc, and for initial shift/and operation of the src operand. */
951 int limit
= tree_to_uhwi (type_size
);
952 limit
+= 2 * (1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT
) limit
));
953 gimple
*ins_stmt
= find_bswap_or_nop_1 (stmt
, n
, limit
);
957 if (gimple_assign_rhs_code (stmt
) != CONSTRUCTOR
958 || BYTES_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
960 unsigned HOST_WIDE_INT sz
= tree_to_uhwi (type_size
) * BITS_PER_UNIT
;
961 if (sz
!= 16 && sz
!= 32 && sz
!= 64)
963 tree rhs
= gimple_assign_rhs1 (stmt
);
964 if (CONSTRUCTOR_NELTS (rhs
) == 0)
966 tree eltype
= TREE_TYPE (TREE_TYPE (rhs
));
967 unsigned HOST_WIDE_INT eltsz
968 = int_size_in_bytes (eltype
) * BITS_PER_UNIT
;
969 if (TYPE_PRECISION (eltype
) != eltsz
)
971 constructor_elt
*elt
;
973 tree type
= build_nonstandard_integer_type (sz
, 1);
974 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (rhs
), i
, elt
)
976 if (TREE_CODE (elt
->value
) != SSA_NAME
977 || !INTEGRAL_TYPE_P (TREE_TYPE (elt
->value
)))
979 struct symbolic_number n1
;
981 = find_bswap_or_nop_1 (SSA_NAME_DEF_STMT (elt
->value
), &n1
,
989 n1
.range
= sz
/ BITS_PER_UNIT
;
993 ins_stmt
= source_stmt
;
998 if (n
->vuse
!= n1
.vuse
)
1001 struct symbolic_number n0
= *n
;
1003 if (!BYTES_BIG_ENDIAN
)
1005 if (!do_shift_rotate (LSHIFT_EXPR
, &n1
, i
* eltsz
))
1008 else if (!do_shift_rotate (LSHIFT_EXPR
, &n0
, eltsz
))
1011 = perform_symbolic_merge (ins_stmt
, &n0
, source_stmt
, &n1
, n
,
1020 uint64_t cmpxchg
, cmpnop
;
1021 uint64_t orig_range
= n
->range
* BITS_PER_UNIT
;
1022 find_bswap_or_nop_finalize (n
, &cmpxchg
, &cmpnop
, cast64_to_32
);
1024 /* A complete byte swap should make the symbolic number to start with
1025 the largest digit in the highest order byte. Unchanged symbolic
1026 number indicates a read with same endianness as target architecture. */
1028 uint64_t tmp_n
= n
->n
;
1029 if (!is_bswap_or_nop_p (tmp_n
, cmpxchg
, cmpnop
, mask
, bswap
))
1031 /* Try bswap + lrotate. */
1032 /* TODO, handle cast64_to_32 and big/litte_endian memory
1033 source when rsize < range. */
1034 if (n
->range
== orig_range
1035 /* There're case like 0x300000200 for uint32->uint64 cast,
1036 Don't hanlde this. */
1037 && n
->range
== TYPE_PRECISION (n
->type
)
1038 && ((orig_range
== 32
1039 && optab_handler (rotl_optab
, SImode
) != CODE_FOR_nothing
)
1040 || (orig_range
== 64
1041 && optab_handler (rotl_optab
, DImode
) != CODE_FOR_nothing
))
1042 && (tmp_n
& MARKER_MASK
) < orig_range
/ BITS_PER_UNIT
)
1044 uint64_t range
= (orig_range
/ BITS_PER_UNIT
) * BITS_PER_MARKER
;
1045 uint64_t count
= (tmp_n
& MARKER_MASK
) * BITS_PER_MARKER
;
1046 /* .i.e. hanlde 0x203040506070800 when lower byte is zero. */
1049 for (uint64_t i
= 1; i
!= range
/ BITS_PER_MARKER
; i
++)
1051 count
= (tmp_n
>> i
* BITS_PER_MARKER
) & MARKER_MASK
;
1054 /* Count should be meaningful not 0xff. */
1055 if (count
<= range
/ BITS_PER_MARKER
)
1057 count
= (count
+ i
) * BITS_PER_MARKER
% range
;
1065 tmp_n
= tmp_n
>> count
| tmp_n
<< (range
- count
);
1066 if (orig_range
== 32)
1067 tmp_n
&= (1ULL << 32) - 1;
1068 if (!is_bswap_or_nop_p (tmp_n
, cmpxchg
, cmpnop
, mask
, bswap
))
1070 *l_rotate
= count
/ BITS_PER_MARKER
* BITS_PER_UNIT
;
1071 gcc_assert (*bswap
);
1077 /* Useless bit manipulation performed by code. */
1078 if (!n
->base_addr
&& n
->n
== cmpnop
&& n
->n_ops
== 1)
1084 const pass_data pass_data_optimize_bswap
=
1086 GIMPLE_PASS
, /* type */
1088 OPTGROUP_NONE
, /* optinfo_flags */
1089 TV_NONE
, /* tv_id */
1090 PROP_ssa
, /* properties_required */
1091 0, /* properties_provided */
1092 0, /* properties_destroyed */
1093 0, /* todo_flags_start */
1094 0, /* todo_flags_finish */
1097 class pass_optimize_bswap
: public gimple_opt_pass
1100 pass_optimize_bswap (gcc::context
*ctxt
)
1101 : gimple_opt_pass (pass_data_optimize_bswap
, ctxt
)
1104 /* opt_pass methods: */
1105 bool gate (function
*) final override
1107 return flag_expensive_optimizations
&& optimize
&& BITS_PER_UNIT
== 8;
1110 unsigned int execute (function
*) final override
;
1112 }; // class pass_optimize_bswap
1114 /* Helper function for bswap_replace. Build VIEW_CONVERT_EXPR from
1115 VAL to TYPE. If VAL has different type size, emit a NOP_EXPR cast
1119 bswap_view_convert (gimple_stmt_iterator
*gsi
, tree type
, tree val
,
1122 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (val
))
1123 || POINTER_TYPE_P (TREE_TYPE (val
)));
1124 if (TYPE_SIZE (type
) != TYPE_SIZE (TREE_TYPE (val
)))
1126 HOST_WIDE_INT prec
= TREE_INT_CST_LOW (TYPE_SIZE (type
));
1127 if (POINTER_TYPE_P (TREE_TYPE (val
)))
1130 = gimple_build_assign (make_ssa_name (pointer_sized_int_node
),
1133 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
1135 gsi_insert_after (gsi
, g
, GSI_NEW_STMT
);
1136 val
= gimple_assign_lhs (g
);
1138 tree itype
= build_nonstandard_integer_type (prec
, 1);
1139 gimple
*g
= gimple_build_assign (make_ssa_name (itype
), NOP_EXPR
, val
);
1141 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
1143 gsi_insert_after (gsi
, g
, GSI_NEW_STMT
);
1144 val
= gimple_assign_lhs (g
);
1146 return build1 (VIEW_CONVERT_EXPR
, type
, val
);
1149 /* Perform the bswap optimization: replace the expression computed in the rhs
1150 of gsi_stmt (GSI) (or if NULL add instead of replace) by an equivalent
1151 bswap, load or load + bswap expression.
1152 Which of these alternatives replace the rhs is given by N->base_addr (non
1153 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
1154 load to perform are also given in N while the builtin bswap invoke is given
1155 in FNDEL. Finally, if a load is involved, INS_STMT refers to one of the
1156 load statements involved to construct the rhs in gsi_stmt (GSI) and
1157 N->range gives the size of the rhs expression for maintaining some
1160 Note that if the replacement involve a load and if gsi_stmt (GSI) is
1161 non-NULL, that stmt is moved just after INS_STMT to do the load with the
1162 same VUSE which can lead to gsi_stmt (GSI) changing of basic block. */
1165 bswap_replace (gimple_stmt_iterator gsi
, gimple
*ins_stmt
, tree fndecl
,
1166 tree bswap_type
, tree load_type
, struct symbolic_number
*n
,
1167 bool bswap
, uint64_t mask
, uint64_t l_rotate
)
1169 tree src
, tmp
, tgt
= NULL_TREE
;
1170 gimple
*bswap_stmt
, *mask_stmt
= NULL
, *rotl_stmt
= NULL
;
1171 tree_code conv_code
= NOP_EXPR
;
1173 gimple
*cur_stmt
= gsi_stmt (gsi
);
1177 tgt
= gimple_assign_lhs (cur_stmt
);
1178 if (gimple_assign_rhs_code (cur_stmt
) == CONSTRUCTOR
1180 && VECTOR_TYPE_P (TREE_TYPE (tgt
)))
1181 conv_code
= VIEW_CONVERT_EXPR
;
1184 /* Need to load the value from memory first. */
1187 gimple_stmt_iterator gsi_ins
= gsi
;
1189 gsi_ins
= gsi_for_stmt (ins_stmt
);
1190 tree addr_expr
, addr_tmp
, val_expr
, val_tmp
;
1191 tree load_offset_ptr
, aligned_load_type
;
1193 unsigned align
= get_object_alignment (src
);
1194 poly_int64 load_offset
= 0;
1198 basic_block ins_bb
= gimple_bb (ins_stmt
);
1199 basic_block cur_bb
= gimple_bb (cur_stmt
);
1200 if (!dominated_by_p (CDI_DOMINATORS
, cur_bb
, ins_bb
))
1203 /* Move cur_stmt just before one of the load of the original
1204 to ensure it has the same VUSE. See PR61517 for what could
1206 if (gimple_bb (cur_stmt
) != gimple_bb (ins_stmt
))
1207 reset_flow_sensitive_info (gimple_assign_lhs (cur_stmt
));
1208 gsi_move_before (&gsi
, &gsi_ins
);
1209 gsi
= gsi_for_stmt (cur_stmt
);
1214 /* Compute address to load from and cast according to the size
1216 addr_expr
= build_fold_addr_expr (src
);
1217 if (is_gimple_mem_ref_addr (addr_expr
))
1218 addr_tmp
= unshare_expr (addr_expr
);
1221 addr_tmp
= unshare_expr (n
->base_addr
);
1222 if (!is_gimple_mem_ref_addr (addr_tmp
))
1223 addr_tmp
= force_gimple_operand_gsi_1 (&gsi
, addr_tmp
,
1224 is_gimple_mem_ref_addr
,
1227 load_offset
= n
->bytepos
;
1231 = force_gimple_operand_gsi (&gsi
, unshare_expr (n
->offset
),
1232 true, NULL_TREE
, true,
1235 = gimple_build_assign (make_ssa_name (TREE_TYPE (addr_tmp
)),
1236 POINTER_PLUS_EXPR
, addr_tmp
, off
);
1237 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
1238 addr_tmp
= gimple_assign_lhs (stmt
);
1242 /* Perform the load. */
1243 aligned_load_type
= load_type
;
1244 if (align
< TYPE_ALIGN (load_type
))
1245 aligned_load_type
= build_aligned_type (load_type
, align
);
1246 load_offset_ptr
= build_int_cst (n
->alias_set
, load_offset
);
1247 val_expr
= fold_build2 (MEM_REF
, aligned_load_type
, addr_tmp
,
1253 nop_stats
.found_16bit
++;
1254 else if (n
->range
== 32)
1255 nop_stats
.found_32bit
++;
1258 gcc_assert (n
->range
== 64);
1259 nop_stats
.found_64bit
++;
1262 /* Convert the result of load if necessary. */
1263 if (tgt
&& !useless_type_conversion_p (TREE_TYPE (tgt
), load_type
))
1265 val_tmp
= make_temp_ssa_name (aligned_load_type
, NULL
,
1267 load_stmt
= gimple_build_assign (val_tmp
, val_expr
);
1268 gimple_set_vuse (load_stmt
, n
->vuse
);
1269 gsi_insert_before (&gsi
, load_stmt
, GSI_SAME_STMT
);
1270 if (conv_code
== VIEW_CONVERT_EXPR
)
1271 val_tmp
= bswap_view_convert (&gsi
, TREE_TYPE (tgt
), val_tmp
,
1273 gimple_assign_set_rhs_with_ops (&gsi
, conv_code
, val_tmp
);
1274 update_stmt (cur_stmt
);
1278 gimple_assign_set_rhs_with_ops (&gsi
, MEM_REF
, val_expr
);
1279 gimple_set_vuse (cur_stmt
, n
->vuse
);
1280 update_stmt (cur_stmt
);
1284 tgt
= make_ssa_name (load_type
);
1285 cur_stmt
= gimple_build_assign (tgt
, MEM_REF
, val_expr
);
1286 gimple_set_vuse (cur_stmt
, n
->vuse
);
1287 gsi_insert_before (&gsi
, cur_stmt
, GSI_SAME_STMT
);
1293 "%d bit load in target endianness found at: ",
1295 print_gimple_stmt (dump_file
, cur_stmt
, 0);
1301 val_tmp
= make_temp_ssa_name (aligned_load_type
, NULL
, "load_dst");
1302 load_stmt
= gimple_build_assign (val_tmp
, val_expr
);
1303 gimple_set_vuse (load_stmt
, n
->vuse
);
1304 gsi_insert_before (&gsi
, load_stmt
, GSI_SAME_STMT
);
1311 if (tgt
&& !useless_type_conversion_p (TREE_TYPE (tgt
), TREE_TYPE (src
)))
1313 if (!is_gimple_val (src
))
1315 if (conv_code
== VIEW_CONVERT_EXPR
)
1316 src
= bswap_view_convert (&gsi
, TREE_TYPE (tgt
), src
, true);
1317 g
= gimple_build_assign (tgt
, conv_code
, src
);
1320 g
= gimple_build_assign (tgt
, src
);
1324 nop_stats
.found_16bit
++;
1325 else if (n
->range
== 32)
1326 nop_stats
.found_32bit
++;
1329 gcc_assert (n
->range
== 64);
1330 nop_stats
.found_64bit
++;
1335 "%d bit reshuffle in target endianness found at: ",
1338 print_gimple_stmt (dump_file
, cur_stmt
, 0);
1341 print_generic_expr (dump_file
, tgt
, TDF_NONE
);
1342 fprintf (dump_file
, "\n");
1346 gsi_replace (&gsi
, g
, true);
1349 else if (TREE_CODE (src
) == BIT_FIELD_REF
)
1350 src
= TREE_OPERAND (src
, 0);
1353 bswap_stats
.found_16bit
++;
1354 else if (n
->range
== 32)
1355 bswap_stats
.found_32bit
++;
1358 gcc_assert (n
->range
== 64);
1359 bswap_stats
.found_64bit
++;
1364 /* Convert the src expression if necessary. */
1365 if (!useless_type_conversion_p (TREE_TYPE (tmp
), bswap_type
))
1367 gimple
*convert_stmt
;
1369 tmp
= make_temp_ssa_name (bswap_type
, NULL
, "bswapsrc");
1370 convert_stmt
= gimple_build_assign (tmp
, NOP_EXPR
, src
);
1371 gsi_insert_before (&gsi
, convert_stmt
, GSI_SAME_STMT
);
1374 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
1375 are considered as rotation of 2N bit values by N bits is generally not
1376 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
1377 gives 0x03040102 while a bswap for that value is 0x04030201. */
1378 if (bswap
&& n
->range
== 16)
1380 tree count
= build_int_cst (NULL
, BITS_PER_UNIT
);
1381 src
= fold_build2 (LROTATE_EXPR
, bswap_type
, tmp
, count
);
1382 bswap_stmt
= gimple_build_assign (NULL
, src
);
1385 bswap_stmt
= gimple_build_call (fndecl
, 1, tmp
);
1387 if (tgt
== NULL_TREE
)
1388 tgt
= make_ssa_name (bswap_type
);
1391 if (mask
!= ~(uint64_t) 0)
1393 tree m
= build_int_cst (bswap_type
, mask
);
1394 tmp
= make_temp_ssa_name (bswap_type
, NULL
, "bswapdst");
1395 gimple_set_lhs (bswap_stmt
, tmp
);
1396 mask_stmt
= gimple_build_assign (tgt
, BIT_AND_EXPR
, tmp
, m
);
1402 tree m
= build_int_cst (bswap_type
, l_rotate
);
1403 tmp
= make_temp_ssa_name (bswap_type
, NULL
,
1404 mask_stmt
? "bswapmaskdst" : "bswapdst");
1405 gimple_set_lhs (mask_stmt
? mask_stmt
: bswap_stmt
, tmp
);
1406 rotl_stmt
= gimple_build_assign (tgt
, LROTATE_EXPR
, tmp
, m
);
1410 /* Convert the result if necessary. */
1411 if (!useless_type_conversion_p (TREE_TYPE (tgt
), bswap_type
))
1413 tmp
= make_temp_ssa_name (bswap_type
, NULL
, "bswapdst");
1415 gimple_stmt_iterator gsi2
= gsi
;
1416 if (conv_code
== VIEW_CONVERT_EXPR
)
1417 atmp
= bswap_view_convert (&gsi2
, TREE_TYPE (tgt
), tmp
, false);
1418 gimple
*convert_stmt
= gimple_build_assign (tgt
, conv_code
, atmp
);
1419 gsi_insert_after (&gsi2
, convert_stmt
, GSI_SAME_STMT
);
1422 gimple_set_lhs (rotl_stmt
? rotl_stmt
1423 : mask_stmt
? mask_stmt
: bswap_stmt
, tmp
);
1427 fprintf (dump_file
, "%d bit bswap implementation found at: ",
1430 print_gimple_stmt (dump_file
, cur_stmt
, 0);
1433 print_generic_expr (dump_file
, tgt
, TDF_NONE
);
1434 fprintf (dump_file
, "\n");
1441 gsi_insert_after (&gsi
, rotl_stmt
, GSI_SAME_STMT
);
1443 gsi_insert_after (&gsi
, mask_stmt
, GSI_SAME_STMT
);
1444 gsi_insert_after (&gsi
, bswap_stmt
, GSI_SAME_STMT
);
1445 gsi_remove (&gsi
, true);
1449 gsi_insert_before (&gsi
, bswap_stmt
, GSI_SAME_STMT
);
1451 gsi_insert_before (&gsi
, mask_stmt
, GSI_SAME_STMT
);
1453 gsi_insert_after (&gsi
, rotl_stmt
, GSI_SAME_STMT
);
1458 /* Try to optimize an assignment CUR_STMT with CONSTRUCTOR on the rhs
1459 using bswap optimizations. CDI_DOMINATORS need to be
1460 computed on entry. Return true if it has been optimized and
1461 TODO_update_ssa is needed. */
1464 maybe_optimize_vector_constructor (gimple
*cur_stmt
)
1466 tree fndecl
= NULL_TREE
, bswap_type
= NULL_TREE
, load_type
;
1467 struct symbolic_number n
;
1470 gcc_assert (is_gimple_assign (cur_stmt
)
1471 && gimple_assign_rhs_code (cur_stmt
) == CONSTRUCTOR
);
1473 tree rhs
= gimple_assign_rhs1 (cur_stmt
);
1474 if (!VECTOR_TYPE_P (TREE_TYPE (rhs
))
1475 || !INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (rhs
)))
1476 || gimple_assign_lhs (cur_stmt
) == NULL_TREE
)
1479 HOST_WIDE_INT sz
= int_size_in_bytes (TREE_TYPE (rhs
)) * BITS_PER_UNIT
;
1483 load_type
= bswap_type
= uint16_type_node
;
1486 if (builtin_decl_explicit_p (BUILT_IN_BSWAP32
)
1487 && optab_handler (bswap_optab
, SImode
) != CODE_FOR_nothing
)
1489 load_type
= uint32_type_node
;
1490 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP32
);
1491 bswap_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
1497 if (builtin_decl_explicit_p (BUILT_IN_BSWAP64
)
1498 && (optab_handler (bswap_optab
, DImode
) != CODE_FOR_nothing
1499 || (word_mode
== SImode
1500 && builtin_decl_explicit_p (BUILT_IN_BSWAP32
)
1501 && optab_handler (bswap_optab
, SImode
) != CODE_FOR_nothing
)))
1503 load_type
= uint64_type_node
;
1504 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP64
);
1505 bswap_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
1515 uint64_t mask
, l_rotate
;
1516 gimple
*ins_stmt
= find_bswap_or_nop (cur_stmt
, &n
, &bswap
,
1517 &cast64_to_32
, &mask
, &l_rotate
);
1519 || n
.range
!= (unsigned HOST_WIDE_INT
) sz
1521 || mask
!= ~(uint64_t) 0)
1524 if (bswap
&& !fndecl
&& n
.range
!= 16)
1527 memset (&nop_stats
, 0, sizeof (nop_stats
));
1528 memset (&bswap_stats
, 0, sizeof (bswap_stats
));
1529 return bswap_replace (gsi_for_stmt (cur_stmt
), ins_stmt
, fndecl
,
1530 bswap_type
, load_type
, &n
, bswap
, mask
,
1531 l_rotate
) != NULL_TREE
;
1534 /* Find manual byte swap implementations as well as load in a given
1535 endianness. Byte swaps are turned into a bswap builtin invokation
1536 while endian loads are converted to bswap builtin invokation or
1537 simple load according to the target endianness. */
1540 pass_optimize_bswap::execute (function
*fun
)
1543 bool bswap32_p
, bswap64_p
;
1544 bool changed
= false;
1545 tree bswap32_type
= NULL_TREE
, bswap64_type
= NULL_TREE
;
1547 bswap32_p
= (builtin_decl_explicit_p (BUILT_IN_BSWAP32
)
1548 && optab_handler (bswap_optab
, SImode
) != CODE_FOR_nothing
);
1549 bswap64_p
= (builtin_decl_explicit_p (BUILT_IN_BSWAP64
)
1550 && (optab_handler (bswap_optab
, DImode
) != CODE_FOR_nothing
1551 || (bswap32_p
&& word_mode
== SImode
)));
1553 /* Determine the argument type of the builtins. The code later on
1554 assumes that the return and argument type are the same. */
1557 tree fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP32
);
1558 bswap32_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
1563 tree fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP64
);
1564 bswap64_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
1567 memset (&nop_stats
, 0, sizeof (nop_stats
));
1568 memset (&bswap_stats
, 0, sizeof (bswap_stats
));
1569 calculate_dominance_info (CDI_DOMINATORS
);
1571 FOR_EACH_BB_FN (bb
, fun
)
1573 gimple_stmt_iterator gsi
;
1575 /* We do a reverse scan for bswap patterns to make sure we get the
1576 widest match. As bswap pattern matching doesn't handle previously
1577 inserted smaller bswap replacements as sub-patterns, the wider
1578 variant wouldn't be detected. */
1579 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
);)
1581 gimple
*ins_stmt
, *cur_stmt
= gsi_stmt (gsi
);
1582 tree fndecl
= NULL_TREE
, bswap_type
= NULL_TREE
, load_type
;
1583 enum tree_code code
;
1584 struct symbolic_number n
;
1585 bool bswap
, cast64_to_32
;
1586 uint64_t mask
, l_rotate
;
1588 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
1589 might be moved to a different basic block by bswap_replace and gsi
1590 must not points to it if that's the case. Moving the gsi_prev
1591 there make sure that gsi points to the statement previous to
1592 cur_stmt while still making sure that all statements are
1593 considered in this basic block. */
1596 if (!is_gimple_assign (cur_stmt
))
1599 code
= gimple_assign_rhs_code (cur_stmt
);
1604 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt
))
1605 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt
))
1615 tree rhs
= gimple_assign_rhs1 (cur_stmt
);
1616 if (VECTOR_TYPE_P (TREE_TYPE (rhs
))
1617 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (rhs
))))
1625 ins_stmt
= find_bswap_or_nop (cur_stmt
, &n
, &bswap
,
1626 &cast64_to_32
, &mask
, &l_rotate
);
1634 /* Already in canonical form, nothing to do. */
1635 if (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
)
1637 load_type
= bswap_type
= uint16_type_node
;
1640 load_type
= uint32_type_node
;
1643 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP32
);
1644 bswap_type
= bswap32_type
;
1648 load_type
= uint64_type_node
;
1651 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP64
);
1652 bswap_type
= bswap64_type
;
1659 if (bswap
&& !fndecl
&& n
.range
!= 16)
1662 if (bswap_replace (gsi_for_stmt (cur_stmt
), ins_stmt
, fndecl
,
1663 bswap_type
, load_type
, &n
, bswap
, mask
,
1669 statistics_counter_event (fun
, "16-bit nop implementations found",
1670 nop_stats
.found_16bit
);
1671 statistics_counter_event (fun
, "32-bit nop implementations found",
1672 nop_stats
.found_32bit
);
1673 statistics_counter_event (fun
, "64-bit nop implementations found",
1674 nop_stats
.found_64bit
);
1675 statistics_counter_event (fun
, "16-bit bswap implementations found",
1676 bswap_stats
.found_16bit
);
1677 statistics_counter_event (fun
, "32-bit bswap implementations found",
1678 bswap_stats
.found_32bit
);
1679 statistics_counter_event (fun
, "64-bit bswap implementations found",
1680 bswap_stats
.found_64bit
);
1682 return (changed
? TODO_update_ssa
: 0);
1688 make_pass_optimize_bswap (gcc::context
*ctxt
)
1690 return new pass_optimize_bswap (ctxt
);
1695 /* Struct recording one operand for the store, which is either a constant,
1696 then VAL represents the constant and all the other fields are zero, or
1697 a memory load, then VAL represents the reference, BASE_ADDR is non-NULL
1698 and the other fields also reflect the memory load, or an SSA name, then
1699 VAL represents the SSA name and all the other fields are zero. */
1701 class store_operand_info
1706 poly_uint64 bitsize
;
1708 poly_uint64 bitregion_start
;
1709 poly_uint64 bitregion_end
;
1712 store_operand_info ();
1715 store_operand_info::store_operand_info ()
1716 : val (NULL_TREE
), base_addr (NULL_TREE
), bitsize (0), bitpos (0),
1717 bitregion_start (0), bitregion_end (0), stmt (NULL
), bit_not_p (false)
1721 /* Struct recording the information about a single store of an immediate
1722 to memory. These are created in the first phase and coalesced into
1723 merged_store_group objects in the second phase. */
1725 class store_immediate_info
1728 unsigned HOST_WIDE_INT bitsize
;
1729 unsigned HOST_WIDE_INT bitpos
;
1730 unsigned HOST_WIDE_INT bitregion_start
;
1731 /* This is one past the last bit of the bit region. */
1732 unsigned HOST_WIDE_INT bitregion_end
;
1735 /* INTEGER_CST for constant store, STRING_CST for string store,
1736 MEM_REF for memory copy, BIT_*_EXPR for logical bitwise operation,
1737 BIT_INSERT_EXPR for bit insertion.
1738 LROTATE_EXPR if it can be only bswap optimized and
1739 ops are not really meaningful.
1740 NOP_EXPR if bswap optimization detected identity, ops
1741 are not meaningful. */
1742 enum tree_code rhs_code
;
1743 /* Two fields for bswap optimization purposes. */
1744 struct symbolic_number n
;
1746 /* True if BIT_{AND,IOR,XOR}_EXPR result is inverted before storing. */
1748 /* True if ops have been swapped and thus ops[1] represents
1749 rhs1 of BIT_{AND,IOR,XOR}_EXPR and ops[0] represents rhs2. */
1751 /* The index number of the landing pad, or 0 if there is none. */
1753 /* Operands. For BIT_*_EXPR rhs_code both operands are used, otherwise
1754 just the first one. */
1755 store_operand_info ops
[2];
1756 store_immediate_info (unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
1757 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
1758 gimple
*, unsigned int, enum tree_code
,
1759 struct symbolic_number
&, gimple
*, bool, int,
1760 const store_operand_info
&,
1761 const store_operand_info
&);
1764 store_immediate_info::store_immediate_info (unsigned HOST_WIDE_INT bs
,
1765 unsigned HOST_WIDE_INT bp
,
1766 unsigned HOST_WIDE_INT brs
,
1767 unsigned HOST_WIDE_INT bre
,
1770 enum tree_code rhscode
,
1771 struct symbolic_number
&nr
,
1775 const store_operand_info
&op0r
,
1776 const store_operand_info
&op1r
)
1777 : bitsize (bs
), bitpos (bp
), bitregion_start (brs
), bitregion_end (bre
),
1778 stmt (st
), order (ord
), rhs_code (rhscode
), n (nr
),
1779 ins_stmt (ins_stmtp
), bit_not_p (bitnotp
), ops_swapped_p (false),
1780 lp_nr (nr2
), ops
{ op0r
, op1r
}
1784 /* Struct representing a group of stores to contiguous memory locations.
1785 These are produced by the second phase (coalescing) and consumed in the
1786 third phase that outputs the widened stores. */
1788 class merged_store_group
1791 unsigned HOST_WIDE_INT start
;
1792 unsigned HOST_WIDE_INT width
;
1793 unsigned HOST_WIDE_INT bitregion_start
;
1794 unsigned HOST_WIDE_INT bitregion_end
;
1795 /* The size of the allocated memory for val and mask. */
1796 unsigned HOST_WIDE_INT buf_size
;
1797 unsigned HOST_WIDE_INT align_base
;
1798 poly_uint64 load_align_base
[2];
1801 unsigned int load_align
[2];
1802 unsigned int first_order
;
1803 unsigned int last_order
;
1805 bool string_concatenation
;
1806 bool only_constants
;
1808 unsigned int first_nonmergeable_order
;
1811 auto_vec
<store_immediate_info
*> stores
;
1812 /* We record the first and last original statements in the sequence because
1813 we'll need their vuse/vdef and replacement position. It's easier to keep
1814 track of them separately as 'stores' is reordered by apply_stores. */
1818 unsigned char *mask
;
1820 merged_store_group (store_immediate_info
*);
1821 ~merged_store_group ();
1822 bool can_be_merged_into (store_immediate_info
*);
1823 void merge_into (store_immediate_info
*);
1824 void merge_overlapping (store_immediate_info
*);
1825 bool apply_stores ();
1827 void do_merge (store_immediate_info
*);
1830 /* Debug helper. Dump LEN elements of byte array PTR to FD in hex. */
1833 dump_char_array (FILE *fd
, unsigned char *ptr
, unsigned int len
)
1838 for (unsigned int i
= 0; i
< len
; i
++)
1839 fprintf (fd
, "%02x ", ptr
[i
]);
1843 /* Clear out LEN bits starting from bit START in the byte array
1844 PTR. This clears the bits to the *right* from START.
1845 START must be within [0, BITS_PER_UNIT) and counts starting from
1846 the least significant bit. */
1849 clear_bit_region_be (unsigned char *ptr
, unsigned int start
,
1854 /* Clear len bits to the right of start. */
1855 else if (len
<= start
+ 1)
1857 unsigned char mask
= (~(~0U << len
));
1858 mask
= mask
<< (start
+ 1U - len
);
1861 else if (start
!= BITS_PER_UNIT
- 1)
1863 clear_bit_region_be (ptr
, start
, (start
% BITS_PER_UNIT
) + 1);
1864 clear_bit_region_be (ptr
+ 1, BITS_PER_UNIT
- 1,
1865 len
- (start
% BITS_PER_UNIT
) - 1);
1867 else if (start
== BITS_PER_UNIT
- 1
1868 && len
> BITS_PER_UNIT
)
1870 unsigned int nbytes
= len
/ BITS_PER_UNIT
;
1871 memset (ptr
, 0, nbytes
);
1872 if (len
% BITS_PER_UNIT
!= 0)
1873 clear_bit_region_be (ptr
+ nbytes
, BITS_PER_UNIT
- 1,
1874 len
% BITS_PER_UNIT
);
1880 /* In the byte array PTR clear the bit region starting at bit
1881 START and is LEN bits wide.
1882 For regions spanning multiple bytes do this recursively until we reach
1883 zero LEN or a region contained within a single byte. */
1886 clear_bit_region (unsigned char *ptr
, unsigned int start
,
1889 /* Degenerate base case. */
1892 else if (start
>= BITS_PER_UNIT
)
1893 clear_bit_region (ptr
+ 1, start
- BITS_PER_UNIT
, len
);
1894 /* Second base case. */
1895 else if ((start
+ len
) <= BITS_PER_UNIT
)
1897 unsigned char mask
= (~0U) << (unsigned char) (BITS_PER_UNIT
- len
);
1898 mask
>>= BITS_PER_UNIT
- (start
+ len
);
1904 /* Clear most significant bits in a byte and proceed with the next byte. */
1905 else if (start
!= 0)
1907 clear_bit_region (ptr
, start
, BITS_PER_UNIT
- start
);
1908 clear_bit_region (ptr
+ 1, 0, len
- (BITS_PER_UNIT
- start
));
1910 /* Whole bytes need to be cleared. */
1911 else if (start
== 0 && len
> BITS_PER_UNIT
)
1913 unsigned int nbytes
= len
/ BITS_PER_UNIT
;
1914 /* We could recurse on each byte but we clear whole bytes, so a simple
1916 memset (ptr
, '\0', nbytes
);
1917 /* Clear the remaining sub-byte region if there is one. */
1918 if (len
% BITS_PER_UNIT
!= 0)
1919 clear_bit_region (ptr
+ nbytes
, 0, len
% BITS_PER_UNIT
);
1925 /* Write BITLEN bits of EXPR to the byte array PTR at
1926 bit position BITPOS. PTR should contain TOTAL_BYTES elements.
1927 Return true if the operation succeeded. */
1930 encode_tree_to_bitpos (tree expr
, unsigned char *ptr
, int bitlen
, int bitpos
,
1931 unsigned int total_bytes
)
1933 unsigned int first_byte
= bitpos
/ BITS_PER_UNIT
;
1934 bool sub_byte_op_p
= ((bitlen
% BITS_PER_UNIT
)
1935 || (bitpos
% BITS_PER_UNIT
)
1936 || !int_mode_for_size (bitlen
, 0).exists ());
1938 = (TREE_CODE (expr
) == CONSTRUCTOR
1939 && CONSTRUCTOR_NELTS (expr
) == 0
1940 && TYPE_SIZE_UNIT (TREE_TYPE (expr
))
1941 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (expr
))));
1945 if (first_byte
>= total_bytes
)
1947 total_bytes
-= first_byte
;
1950 unsigned HOST_WIDE_INT rhs_bytes
1951 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (expr
)));
1952 if (rhs_bytes
> total_bytes
)
1954 memset (ptr
+ first_byte
, '\0', rhs_bytes
);
1957 return native_encode_expr (expr
, ptr
+ first_byte
, total_bytes
) != 0;
1961 We are writing a non byte-sized quantity or at a position that is not
1963 |--------|--------|--------| ptr + first_byte
1965 xxx xxxxxxxx xxx< bp>
1968 First native_encode_expr EXPR into a temporary buffer and shift each
1969 byte in the buffer by 'bp' (carrying the bits over as necessary).
1970 |00000000|00xxxxxx|xxxxxxxx| << bp = |000xxxxx|xxxxxxxx|xxx00000|
1971 <------bitlen---->< bp>
1972 Then we clear the destination bits:
1973 |---00000|00000000|000-----| ptr + first_byte
1974 <-------bitlen--->< bp>
1976 Finally we ORR the bytes of the shifted EXPR into the cleared region:
1977 |---xxxxx||xxxxxxxx||xxx-----| ptr + first_byte.
1980 We are writing a non byte-sized quantity or at a position that is not
1982 ptr + first_byte |--------|--------|--------|
1984 <bp >xxx xxxxxxxx xxx
1987 First native_encode_expr EXPR into a temporary buffer and shift each
1988 byte in the buffer to the right by (carrying the bits over as necessary).
1989 We shift by as much as needed to align the most significant bit of EXPR
1991 |00xxxxxx|xxxxxxxx| >> 3 = |00000xxx|xxxxxxxx|xxxxx000|
1992 <---bitlen----> <bp ><-----bitlen----->
1993 Then we clear the destination bits:
1994 ptr + first_byte |-----000||00000000||00000---|
1995 <bp ><-------bitlen----->
1997 Finally we ORR the bytes of the shifted EXPR into the cleared region:
1998 ptr + first_byte |---xxxxx||xxxxxxxx||xxx-----|.
1999 The awkwardness comes from the fact that bitpos is counted from the
2000 most significant bit of a byte. */
2002 /* We must be dealing with fixed-size data at this point, since the
2003 total size is also fixed. */
2004 unsigned int byte_size
;
2007 unsigned HOST_WIDE_INT rhs_bytes
2008 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (expr
)));
2009 if (rhs_bytes
> total_bytes
)
2011 byte_size
= rhs_bytes
;
2015 fixed_size_mode mode
2016 = as_a
<fixed_size_mode
> (TYPE_MODE (TREE_TYPE (expr
)));
2019 ? tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (expr
)))
2020 : GET_MODE_SIZE (mode
);
2022 /* Allocate an extra byte so that we have space to shift into. */
2024 unsigned char *tmpbuf
= XALLOCAVEC (unsigned char, byte_size
);
2025 memset (tmpbuf
, '\0', byte_size
);
2026 /* The store detection code should only have allowed constants that are
2027 accepted by native_encode_expr or empty ctors. */
2029 && native_encode_expr (expr
, tmpbuf
, byte_size
- 1) == 0)
2032 /* The native_encode_expr machinery uses TYPE_MODE to determine how many
2033 bytes to write. This means it can write more than
2034 ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT bytes (for example
2035 write 8 bytes for a bitlen of 40). Skip the bytes that are not within
2036 bitlen and zero out the bits that are not relevant as well (that may
2037 contain a sign bit due to sign-extension). */
2038 unsigned int padding
2039 = byte_size
- ROUND_UP (bitlen
, BITS_PER_UNIT
) / BITS_PER_UNIT
- 1;
2040 /* On big-endian the padding is at the 'front' so just skip the initial
2042 if (BYTES_BIG_ENDIAN
)
2045 byte_size
-= padding
;
2047 if (bitlen
% BITS_PER_UNIT
!= 0)
2049 if (BYTES_BIG_ENDIAN
)
2050 clear_bit_region_be (tmpbuf
, BITS_PER_UNIT
- 1,
2051 BITS_PER_UNIT
- (bitlen
% BITS_PER_UNIT
));
2053 clear_bit_region (tmpbuf
, bitlen
,
2054 byte_size
* BITS_PER_UNIT
- bitlen
);
2056 /* Left shifting relies on the last byte being clear if bitlen is
2057 a multiple of BITS_PER_UNIT, which might not be clear if
2058 there are padding bytes. */
2059 else if (!BYTES_BIG_ENDIAN
)
2060 tmpbuf
[byte_size
- 1] = '\0';
2062 /* Clear the bit region in PTR where the bits from TMPBUF will be
2064 if (BYTES_BIG_ENDIAN
)
2065 clear_bit_region_be (ptr
+ first_byte
,
2066 BITS_PER_UNIT
- 1 - (bitpos
% BITS_PER_UNIT
), bitlen
);
2068 clear_bit_region (ptr
+ first_byte
, bitpos
% BITS_PER_UNIT
, bitlen
);
2071 int bitlen_mod
= bitlen
% BITS_PER_UNIT
;
2072 int bitpos_mod
= bitpos
% BITS_PER_UNIT
;
2074 bool skip_byte
= false;
2075 if (BYTES_BIG_ENDIAN
)
2077 /* BITPOS and BITLEN are exactly aligned and no shifting
2079 if (bitpos_mod
+ bitlen_mod
== BITS_PER_UNIT
2080 || (bitpos_mod
== 0 && bitlen_mod
== 0))
2082 /* |. . . . . . . .|
2084 We always shift right for BYTES_BIG_ENDIAN so shift the beginning
2085 of the value until it aligns with 'bp' in the next byte over. */
2086 else if (bitpos_mod
+ bitlen_mod
< BITS_PER_UNIT
)
2088 shift_amnt
= bitlen_mod
+ bitpos_mod
;
2089 skip_byte
= bitlen_mod
!= 0;
2091 /* |. . . . . . . .|
2094 Shift the value right within the same byte so it aligns with 'bp'. */
2096 shift_amnt
= bitlen_mod
+ bitpos_mod
- BITS_PER_UNIT
;
2099 shift_amnt
= bitpos
% BITS_PER_UNIT
;
2101 /* Create the shifted version of EXPR. */
2102 if (!BYTES_BIG_ENDIAN
)
2104 shift_bytes_in_array_left (tmpbuf
, byte_size
, shift_amnt
);
2105 if (shift_amnt
== 0)
2110 gcc_assert (BYTES_BIG_ENDIAN
);
2111 shift_bytes_in_array_right (tmpbuf
, byte_size
, shift_amnt
);
2112 /* If shifting right forced us to move into the next byte skip the now
2121 /* Insert the bits from TMPBUF. */
2122 for (unsigned int i
= 0; i
< byte_size
; i
++)
2123 ptr
[first_byte
+ i
] |= tmpbuf
[i
];
2128 /* Sorting function for store_immediate_info objects.
2129 Sorts them by bitposition. */
2132 sort_by_bitpos (const void *x
, const void *y
)
2134 store_immediate_info
*const *tmp
= (store_immediate_info
* const *) x
;
2135 store_immediate_info
*const *tmp2
= (store_immediate_info
* const *) y
;
2137 if ((*tmp
)->bitpos
< (*tmp2
)->bitpos
)
2139 else if ((*tmp
)->bitpos
> (*tmp2
)->bitpos
)
2142 /* If they are the same let's use the order which is guaranteed to
2144 return (*tmp
)->order
- (*tmp2
)->order
;
2147 /* Sorting function for store_immediate_info objects.
2148 Sorts them by the order field. */
2151 sort_by_order (const void *x
, const void *y
)
2153 store_immediate_info
*const *tmp
= (store_immediate_info
* const *) x
;
2154 store_immediate_info
*const *tmp2
= (store_immediate_info
* const *) y
;
2156 if ((*tmp
)->order
< (*tmp2
)->order
)
2158 else if ((*tmp
)->order
> (*tmp2
)->order
)
2164 /* Initialize a merged_store_group object from a store_immediate_info
2167 merged_store_group::merged_store_group (store_immediate_info
*info
)
2169 start
= info
->bitpos
;
2170 width
= info
->bitsize
;
2171 bitregion_start
= info
->bitregion_start
;
2172 bitregion_end
= info
->bitregion_end
;
2173 /* VAL has memory allocated for it in apply_stores once the group
2174 width has been finalized. */
2177 bit_insertion
= info
->rhs_code
== BIT_INSERT_EXPR
;
2178 string_concatenation
= info
->rhs_code
== STRING_CST
;
2179 only_constants
= info
->rhs_code
== INTEGER_CST
;
2181 first_nonmergeable_order
= ~0U;
2182 lp_nr
= info
->lp_nr
;
2183 unsigned HOST_WIDE_INT align_bitpos
= 0;
2184 get_object_alignment_1 (gimple_assign_lhs (info
->stmt
),
2185 &align
, &align_bitpos
);
2186 align_base
= start
- align_bitpos
;
2187 for (int i
= 0; i
< 2; ++i
)
2189 store_operand_info
&op
= info
->ops
[i
];
2190 if (op
.base_addr
== NULL_TREE
)
2193 load_align_base
[i
] = 0;
2197 get_object_alignment_1 (op
.val
, &load_align
[i
], &align_bitpos
);
2198 load_align_base
[i
] = op
.bitpos
- align_bitpos
;
2202 stores
.safe_push (info
);
2203 last_stmt
= info
->stmt
;
2204 last_order
= info
->order
;
2205 first_stmt
= last_stmt
;
2206 first_order
= last_order
;
2210 merged_store_group::~merged_store_group ()
2216 /* Return true if the store described by INFO can be merged into the group. */
2219 merged_store_group::can_be_merged_into (store_immediate_info
*info
)
2221 /* Do not merge bswap patterns. */
2222 if (info
->rhs_code
== LROTATE_EXPR
)
2225 if (info
->lp_nr
!= lp_nr
)
2228 /* The canonical case. */
2229 if (info
->rhs_code
== stores
[0]->rhs_code
)
2232 /* BIT_INSERT_EXPR is compatible with INTEGER_CST if no STRING_CST. */
2233 if (info
->rhs_code
== BIT_INSERT_EXPR
&& stores
[0]->rhs_code
== INTEGER_CST
)
2234 return !string_concatenation
;
2236 if (stores
[0]->rhs_code
== BIT_INSERT_EXPR
&& info
->rhs_code
== INTEGER_CST
)
2237 return !string_concatenation
;
2239 /* We can turn MEM_REF into BIT_INSERT_EXPR for bit-field stores, but do it
2240 only for small regions since this can generate a lot of instructions. */
2241 if (info
->rhs_code
== MEM_REF
2242 && (stores
[0]->rhs_code
== INTEGER_CST
2243 || stores
[0]->rhs_code
== BIT_INSERT_EXPR
)
2244 && info
->bitregion_start
== stores
[0]->bitregion_start
2245 && info
->bitregion_end
== stores
[0]->bitregion_end
2246 && info
->bitregion_end
- info
->bitregion_start
<= MAX_FIXED_MODE_SIZE
)
2247 return !string_concatenation
;
2249 if (stores
[0]->rhs_code
== MEM_REF
2250 && (info
->rhs_code
== INTEGER_CST
2251 || info
->rhs_code
== BIT_INSERT_EXPR
)
2252 && info
->bitregion_start
== stores
[0]->bitregion_start
2253 && info
->bitregion_end
== stores
[0]->bitregion_end
2254 && info
->bitregion_end
- info
->bitregion_start
<= MAX_FIXED_MODE_SIZE
)
2255 return !string_concatenation
;
2257 /* STRING_CST is compatible with INTEGER_CST if no BIT_INSERT_EXPR. */
2258 if (info
->rhs_code
== STRING_CST
2259 && stores
[0]->rhs_code
== INTEGER_CST
2260 && stores
[0]->bitsize
== CHAR_BIT
)
2261 return !bit_insertion
;
2263 if (stores
[0]->rhs_code
== STRING_CST
2264 && info
->rhs_code
== INTEGER_CST
2265 && info
->bitsize
== CHAR_BIT
)
2266 return !bit_insertion
;
2271 /* Helper method for merge_into and merge_overlapping to do
2275 merged_store_group::do_merge (store_immediate_info
*info
)
2277 bitregion_start
= MIN (bitregion_start
, info
->bitregion_start
);
2278 bitregion_end
= MAX (bitregion_end
, info
->bitregion_end
);
2280 unsigned int this_align
;
2281 unsigned HOST_WIDE_INT align_bitpos
= 0;
2282 get_object_alignment_1 (gimple_assign_lhs (info
->stmt
),
2283 &this_align
, &align_bitpos
);
2284 if (this_align
> align
)
2287 align_base
= info
->bitpos
- align_bitpos
;
2289 for (int i
= 0; i
< 2; ++i
)
2291 store_operand_info
&op
= info
->ops
[i
];
2295 get_object_alignment_1 (op
.val
, &this_align
, &align_bitpos
);
2296 if (this_align
> load_align
[i
])
2298 load_align
[i
] = this_align
;
2299 load_align_base
[i
] = op
.bitpos
- align_bitpos
;
2303 gimple
*stmt
= info
->stmt
;
2304 stores
.safe_push (info
);
2305 if (info
->order
> last_order
)
2307 last_order
= info
->order
;
2310 else if (info
->order
< first_order
)
2312 first_order
= info
->order
;
2316 if (info
->bitpos
!= start
+ width
)
2317 consecutive
= false;
2319 /* We need to use extraction if there is any bit-field. */
2320 if (info
->rhs_code
== BIT_INSERT_EXPR
)
2322 bit_insertion
= true;
2323 gcc_assert (!string_concatenation
);
2326 /* We want to use concatenation if there is any string. */
2327 if (info
->rhs_code
== STRING_CST
)
2329 string_concatenation
= true;
2330 gcc_assert (!bit_insertion
);
2333 /* But we cannot use it if we don't have consecutive stores. */
2335 string_concatenation
= false;
2337 if (info
->rhs_code
!= INTEGER_CST
)
2338 only_constants
= false;
2341 /* Merge a store recorded by INFO into this merged store.
2342 The store is not overlapping with the existing recorded
2346 merged_store_group::merge_into (store_immediate_info
*info
)
2350 /* Make sure we're inserting in the position we think we're inserting. */
2351 gcc_assert (info
->bitpos
>= start
+ width
2352 && info
->bitregion_start
<= bitregion_end
);
2354 width
= info
->bitpos
+ info
->bitsize
- start
;
2357 /* Merge a store described by INFO into this merged store.
2358 INFO overlaps in some way with the current store (i.e. it's not contiguous
2359 which is handled by merged_store_group::merge_into). */
2362 merged_store_group::merge_overlapping (store_immediate_info
*info
)
2366 /* If the store extends the size of the group, extend the width. */
2367 if (info
->bitpos
+ info
->bitsize
> start
+ width
)
2368 width
= info
->bitpos
+ info
->bitsize
- start
;
2371 /* Go through all the recorded stores in this group in program order and
2372 apply their values to the VAL byte array to create the final merged
2373 value. Return true if the operation succeeded. */
2376 merged_store_group::apply_stores ()
2378 store_immediate_info
*info
;
2381 /* Make sure we have more than one store in the group, otherwise we cannot
2383 if (bitregion_start
% BITS_PER_UNIT
!= 0
2384 || bitregion_end
% BITS_PER_UNIT
!= 0
2385 || stores
.length () == 1)
2388 buf_size
= (bitregion_end
- bitregion_start
) / BITS_PER_UNIT
;
2390 /* Really do string concatenation for large strings only. */
2391 if (buf_size
<= MOVE_MAX
)
2392 string_concatenation
= false;
2394 /* String concatenation only works for byte aligned start and end. */
2395 if (start
% BITS_PER_UNIT
!= 0 || width
% BITS_PER_UNIT
!= 0)
2396 string_concatenation
= false;
2398 /* Create a power-of-2-sized buffer for native_encode_expr. */
2399 if (!string_concatenation
)
2400 buf_size
= 1 << ceil_log2 (buf_size
);
2402 val
= XNEWVEC (unsigned char, 2 * buf_size
);
2403 mask
= val
+ buf_size
;
2404 memset (val
, 0, buf_size
);
2405 memset (mask
, ~0U, buf_size
);
2407 stores
.qsort (sort_by_order
);
2409 FOR_EACH_VEC_ELT (stores
, i
, info
)
2411 unsigned int pos_in_buffer
= info
->bitpos
- bitregion_start
;
2413 if (info
->ops
[0].val
&& info
->ops
[0].base_addr
== NULL_TREE
)
2414 cst
= info
->ops
[0].val
;
2415 else if (info
->ops
[1].val
&& info
->ops
[1].base_addr
== NULL_TREE
)
2416 cst
= info
->ops
[1].val
;
2420 if (cst
&& info
->rhs_code
!= BIT_INSERT_EXPR
)
2421 ret
= encode_tree_to_bitpos (cst
, val
, info
->bitsize
, pos_in_buffer
,
2423 unsigned char *m
= mask
+ (pos_in_buffer
/ BITS_PER_UNIT
);
2424 if (BYTES_BIG_ENDIAN
)
2425 clear_bit_region_be (m
, (BITS_PER_UNIT
- 1
2426 - (pos_in_buffer
% BITS_PER_UNIT
)),
2429 clear_bit_region (m
, pos_in_buffer
% BITS_PER_UNIT
, info
->bitsize
);
2430 if (cst
&& dump_file
&& (dump_flags
& TDF_DETAILS
))
2434 fputs ("After writing ", dump_file
);
2435 print_generic_expr (dump_file
, cst
, TDF_NONE
);
2436 fprintf (dump_file
, " of size " HOST_WIDE_INT_PRINT_DEC
2437 " at position %d\n", info
->bitsize
, pos_in_buffer
);
2438 fputs (" the merged value contains ", dump_file
);
2439 dump_char_array (dump_file
, val
, buf_size
);
2440 fputs (" the merged mask contains ", dump_file
);
2441 dump_char_array (dump_file
, mask
, buf_size
);
2443 fputs (" bit insertion is required\n", dump_file
);
2444 if (string_concatenation
)
2445 fputs (" string concatenation is required\n", dump_file
);
2448 fprintf (dump_file
, "Failed to merge stores\n");
2453 stores
.qsort (sort_by_bitpos
);
2457 /* Structure describing the store chain. */
2459 class imm_store_chain_info
2462 /* Doubly-linked list that imposes an order on chain processing.
2463 PNXP (prev's next pointer) points to the head of a list, or to
2464 the next field in the previous chain in the list.
2465 See pass_store_merging::m_stores_head for more rationale. */
2466 imm_store_chain_info
*next
, **pnxp
;
2468 auto_vec
<store_immediate_info
*> m_store_info
;
2469 auto_vec
<merged_store_group
*> m_merged_store_groups
;
2471 imm_store_chain_info (imm_store_chain_info
*&inspt
, tree b_a
)
2472 : next (inspt
), pnxp (&inspt
), base_addr (b_a
)
2477 gcc_checking_assert (pnxp
== next
->pnxp
);
2481 ~imm_store_chain_info ()
2486 gcc_checking_assert (&next
== next
->pnxp
);
2490 bool terminate_and_process_chain ();
2491 bool try_coalesce_bswap (merged_store_group
*, unsigned int, unsigned int,
2493 bool coalesce_immediate_stores ();
2494 bool output_merged_store (merged_store_group
*);
2495 bool output_merged_stores ();
2498 const pass_data pass_data_tree_store_merging
= {
2499 GIMPLE_PASS
, /* type */
2500 "store-merging", /* name */
2501 OPTGROUP_NONE
, /* optinfo_flags */
2502 TV_GIMPLE_STORE_MERGING
, /* tv_id */
2503 PROP_ssa
, /* properties_required */
2504 0, /* properties_provided */
2505 0, /* properties_destroyed */
2506 0, /* todo_flags_start */
2507 TODO_update_ssa
, /* todo_flags_finish */
2510 class pass_store_merging
: public gimple_opt_pass
2513 pass_store_merging (gcc::context
*ctxt
)
2514 : gimple_opt_pass (pass_data_tree_store_merging
, ctxt
), m_stores_head (),
2515 m_n_chains (0), m_n_stores (0)
2519 /* Pass not supported for PDP-endian, nor for insane hosts or
2520 target character sizes where native_{encode,interpret}_expr
2521 doesn't work properly. */
2523 gate (function
*) final override
2525 return flag_store_merging
2526 && BYTES_BIG_ENDIAN
== WORDS_BIG_ENDIAN
2528 && BITS_PER_UNIT
== 8;
2531 unsigned int execute (function
*) final override
;
2534 hash_map
<tree_operand_hash
, class imm_store_chain_info
*> m_stores
;
2536 /* Form a doubly-linked stack of the elements of m_stores, so that
2537 we can iterate over them in a predictable way. Using this order
2538 avoids extraneous differences in the compiler output just because
2539 of tree pointer variations (e.g. different chains end up in
2540 different positions of m_stores, so they are handled in different
2541 orders, so they allocate or release SSA names in different
2542 orders, and when they get reused, subsequent passes end up
2543 getting different SSA names, which may ultimately change
2544 decisions when going out of SSA). */
2545 imm_store_chain_info
*m_stores_head
;
2547 /* The number of store chains currently tracked. */
2548 unsigned m_n_chains
;
2549 /* The number of stores currently tracked. */
2550 unsigned m_n_stores
;
2552 bool process_store (gimple
*);
2553 bool terminate_and_process_chain (imm_store_chain_info
*);
2554 bool terminate_all_aliasing_chains (imm_store_chain_info
**, gimple
*);
2555 bool terminate_and_process_all_chains ();
2556 }; // class pass_store_merging
2558 /* Terminate and process all recorded chains. Return true if any changes
2562 pass_store_merging::terminate_and_process_all_chains ()
2565 while (m_stores_head
)
2566 ret
|= terminate_and_process_chain (m_stores_head
);
2567 gcc_assert (m_stores
.is_empty ());
2571 /* Terminate all chains that are affected by the statement STMT.
2572 CHAIN_INFO is the chain we should ignore from the checks if
2573 non-NULL. Return true if any changes were made. */
2576 pass_store_merging::terminate_all_aliasing_chains (imm_store_chain_info
2582 /* If the statement doesn't touch memory it can't alias. */
2583 if (!gimple_vuse (stmt
))
2586 tree store_lhs
= gimple_store_p (stmt
) ? gimple_get_lhs (stmt
) : NULL_TREE
;
2587 ao_ref store_lhs_ref
;
2588 ao_ref_init (&store_lhs_ref
, store_lhs
);
2589 for (imm_store_chain_info
*next
= m_stores_head
, *cur
= next
; cur
; cur
= next
)
2593 /* We already checked all the stores in chain_info and terminated the
2594 chain if necessary. Skip it here. */
2595 if (chain_info
&& *chain_info
== cur
)
2598 store_immediate_info
*info
;
2600 FOR_EACH_VEC_ELT (cur
->m_store_info
, i
, info
)
2602 tree lhs
= gimple_assign_lhs (info
->stmt
);
2604 ao_ref_init (&lhs_ref
, lhs
);
2605 if (ref_maybe_used_by_stmt_p (stmt
, &lhs_ref
)
2606 || stmt_may_clobber_ref_p_1 (stmt
, &lhs_ref
)
2607 || (store_lhs
&& refs_may_alias_p_1 (&store_lhs_ref
,
2610 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2612 fprintf (dump_file
, "stmt causes chain termination:\n");
2613 print_gimple_stmt (dump_file
, stmt
, 0);
2615 ret
|= terminate_and_process_chain (cur
);
2624 /* Helper function. Terminate the recorded chain storing to base object
2625 BASE. Return true if the merging and output was successful. The m_stores
2626 entry is removed after the processing in any case. */
2629 pass_store_merging::terminate_and_process_chain (imm_store_chain_info
*chain_info
)
2631 m_n_stores
-= chain_info
->m_store_info
.length ();
2633 bool ret
= chain_info
->terminate_and_process_chain ();
2634 m_stores
.remove (chain_info
->base_addr
);
2639 /* Return true if stmts in between FIRST (inclusive) and LAST (exclusive)
2640 may clobber REF. FIRST and LAST must have non-NULL vdef. We want to
2641 be able to sink load of REF across stores between FIRST and LAST, up
2642 to right before LAST. */
2645 stmts_may_clobber_ref_p (gimple
*first
, gimple
*last
, tree ref
)
2648 ao_ref_init (&r
, ref
);
2649 unsigned int count
= 0;
2650 tree vop
= gimple_vdef (last
);
2653 /* Return true conservatively if the basic blocks are different. */
2654 if (gimple_bb (first
) != gimple_bb (last
))
2659 stmt
= SSA_NAME_DEF_STMT (vop
);
2660 if (stmt_may_clobber_ref_p_1 (stmt
, &r
))
2662 if (gimple_store_p (stmt
)
2663 && refs_anti_dependent_p (ref
, gimple_get_lhs (stmt
)))
2665 /* Avoid quadratic compile time by bounding the number of checks
2667 if (++count
> MAX_STORE_ALIAS_CHECKS
)
2669 vop
= gimple_vuse (stmt
);
2671 while (stmt
!= first
);
2676 /* Return true if INFO->ops[IDX] is mergeable with the
2677 corresponding loads already in MERGED_STORE group.
2678 BASE_ADDR is the base address of the whole store group. */
2681 compatible_load_p (merged_store_group
*merged_store
,
2682 store_immediate_info
*info
,
2683 tree base_addr
, int idx
)
2685 store_immediate_info
*infof
= merged_store
->stores
[0];
2686 if (!info
->ops
[idx
].base_addr
2687 || maybe_ne (info
->ops
[idx
].bitpos
- infof
->ops
[idx
].bitpos
,
2688 info
->bitpos
- infof
->bitpos
)
2689 || !operand_equal_p (info
->ops
[idx
].base_addr
,
2690 infof
->ops
[idx
].base_addr
, 0))
2693 store_immediate_info
*infol
= merged_store
->stores
.last ();
2694 tree load_vuse
= gimple_vuse (info
->ops
[idx
].stmt
);
2695 /* In this case all vuses should be the same, e.g.
2696 _1 = s.a; _2 = s.b; _3 = _1 | 1; t.a = _3; _4 = _2 | 2; t.b = _4;
2698 _1 = s.a; _2 = s.b; t.a = _1; t.b = _2;
2699 and we can emit the coalesced load next to any of those loads. */
2700 if (gimple_vuse (infof
->ops
[idx
].stmt
) == load_vuse
2701 && gimple_vuse (infol
->ops
[idx
].stmt
) == load_vuse
)
2704 /* Otherwise, at least for now require that the load has the same
2705 vuse as the store. See following examples. */
2706 if (gimple_vuse (info
->stmt
) != load_vuse
)
2709 if (gimple_vuse (infof
->stmt
) != gimple_vuse (infof
->ops
[idx
].stmt
)
2711 && gimple_vuse (infol
->stmt
) != gimple_vuse (infol
->ops
[idx
].stmt
)))
2714 /* If the load is from the same location as the store, already
2715 the construction of the immediate chain info guarantees no intervening
2716 stores, so no further checks are needed. Example:
2717 _1 = s.a; _2 = _1 & -7; s.a = _2; _3 = s.b; _4 = _3 & -7; s.b = _4; */
2718 if (known_eq (info
->ops
[idx
].bitpos
, info
->bitpos
)
2719 && operand_equal_p (info
->ops
[idx
].base_addr
, base_addr
, 0))
2722 /* Otherwise, we need to punt if any of the loads can be clobbered by any
2723 of the stores in the group, or any other stores in between those.
2724 Previous calls to compatible_load_p ensured that for all the
2725 merged_store->stores IDX loads, no stmts starting with
2726 merged_store->first_stmt and ending right before merged_store->last_stmt
2727 clobbers those loads. */
2728 gimple
*first
= merged_store
->first_stmt
;
2729 gimple
*last
= merged_store
->last_stmt
;
2730 /* The stores are sorted by increasing store bitpos, so if info->stmt store
2731 comes before the so far first load, we'll be changing
2732 merged_store->first_stmt. In that case we need to give up if
2733 any of the earlier processed loads clobber with the stmts in the new
2735 if (info
->order
< merged_store
->first_order
)
2737 for (store_immediate_info
*infoc
: merged_store
->stores
)
2738 if (stmts_may_clobber_ref_p (info
->stmt
, first
, infoc
->ops
[idx
].val
))
2742 /* Similarly, we could change merged_store->last_stmt, so ensure
2743 in that case no stmts in the new range clobber any of the earlier
2745 else if (info
->order
> merged_store
->last_order
)
2747 for (store_immediate_info
*infoc
: merged_store
->stores
)
2748 if (stmts_may_clobber_ref_p (last
, info
->stmt
, infoc
->ops
[idx
].val
))
2752 /* And finally, we'd be adding a new load to the set, ensure it isn't
2753 clobbered in the new range. */
2754 if (stmts_may_clobber_ref_p (first
, last
, info
->ops
[idx
].val
))
2757 /* Otherwise, we are looking for:
2758 _1 = s.a; _2 = _1 ^ 15; t.a = _2; _3 = s.b; _4 = _3 ^ 15; t.b = _4;
2760 _1 = s.a; t.a = _1; _2 = s.b; t.b = _2; */
2764 /* Add all refs loaded to compute VAL to REFS vector. */
2767 gather_bswap_load_refs (vec
<tree
> *refs
, tree val
)
2769 if (TREE_CODE (val
) != SSA_NAME
)
2772 gimple
*stmt
= SSA_NAME_DEF_STMT (val
);
2773 if (!is_gimple_assign (stmt
))
2776 if (gimple_assign_load_p (stmt
))
2778 refs
->safe_push (gimple_assign_rhs1 (stmt
));
2782 switch (gimple_assign_rhs_class (stmt
))
2784 case GIMPLE_BINARY_RHS
:
2785 gather_bswap_load_refs (refs
, gimple_assign_rhs2 (stmt
));
2787 case GIMPLE_UNARY_RHS
:
2788 gather_bswap_load_refs (refs
, gimple_assign_rhs1 (stmt
));
2795 /* Check if there are any stores in M_STORE_INFO after index I
2796 (where M_STORE_INFO must be sorted by sort_by_bitpos) that overlap
2797 a potential group ending with END that have their order
2798 smaller than LAST_ORDER. ALL_INTEGER_CST_P is true if
2799 all the stores already merged and the one under consideration
2800 have rhs_code of INTEGER_CST. Return true if there are no such stores.
2802 MEM[(long long int *)p_28] = 0;
2803 MEM[(long long int *)p_28 + 8B] = 0;
2804 MEM[(long long int *)p_28 + 16B] = 0;
2805 MEM[(long long int *)p_28 + 24B] = 0;
2807 MEM[(int *)p_28 + 8B] = _129;
2808 MEM[(int *)p_28].a = -1;
2810 MEM[(long long int *)p_28] = 0;
2811 MEM[(int *)p_28].a = -1;
2812 stmts in the current group and need to consider if it is safe to
2813 add MEM[(long long int *)p_28 + 8B] = 0; store into the same group.
2814 There is an overlap between that store and the MEM[(int *)p_28 + 8B] = _129;
2815 store though, so if we add the MEM[(long long int *)p_28 + 8B] = 0;
2816 into the group and merging of those 3 stores is successful, merged
2817 stmts will be emitted at the latest store from that group, i.e.
2818 LAST_ORDER, which is the MEM[(int *)p_28].a = -1; store.
2819 The MEM[(int *)p_28 + 8B] = _129; store that originally follows
2820 the MEM[(long long int *)p_28 + 8B] = 0; would now be before it,
2821 so we need to refuse merging MEM[(long long int *)p_28 + 8B] = 0;
2822 into the group. That way it will be its own store group and will
2823 not be touched. If ALL_INTEGER_CST_P and there are overlapping
2824 INTEGER_CST stores, those are mergeable using merge_overlapping,
2825 so don't return false for those.
2827 Similarly, check stores from FIRST_EARLIER (inclusive) to END_EARLIER
2828 (exclusive), whether they don't overlap the bitrange START to END
2829 and have order in between FIRST_ORDER and LAST_ORDER. This is to
2830 prevent merging in cases like:
2831 MEM <char[12]> [&b + 8B] = {};
2832 MEM[(short *) &b] = 5;
2834 MEM <long long unsigned int> [&b + 2B] = _5;
2835 MEM[(char *)&b + 16B] = 88;
2836 MEM[(int *)&b + 20B] = 1;
2837 The = {} store comes in sort_by_bitpos before the = 88 store, and can't
2838 be merged with it, because the = _5 store overlaps these and is in between
2839 them in sort_by_order ordering. If it was merged, the merged store would
2840 go after the = _5 store and thus change behavior. */
2843 check_no_overlap (const vec
<store_immediate_info
*> &m_store_info
,
2845 bool all_integer_cst_p
, unsigned int first_order
,
2846 unsigned int last_order
, unsigned HOST_WIDE_INT start
,
2847 unsigned HOST_WIDE_INT end
, unsigned int first_earlier
,
2848 unsigned end_earlier
)
2850 unsigned int len
= m_store_info
.length ();
2851 for (unsigned int j
= first_earlier
; j
< end_earlier
; j
++)
2853 store_immediate_info
*info
= m_store_info
[j
];
2854 if (info
->order
> first_order
2855 && info
->order
< last_order
2856 && info
->bitpos
+ info
->bitsize
> start
)
2859 for (++i
; i
< len
; ++i
)
2861 store_immediate_info
*info
= m_store_info
[i
];
2862 if (info
->bitpos
>= end
)
2864 if (info
->order
< last_order
2865 && (!all_integer_cst_p
|| info
->rhs_code
!= INTEGER_CST
))
2871 /* Return true if m_store_info[first] and at least one following store
2872 form a group which store try_size bitsize value which is byte swapped
2873 from a memory load or some value, or identity from some value.
2874 This uses the bswap pass APIs. */
2877 imm_store_chain_info::try_coalesce_bswap (merged_store_group
*merged_store
,
2879 unsigned int try_size
,
2880 unsigned int first_earlier
)
2882 unsigned int len
= m_store_info
.length (), last
= first
;
2883 unsigned HOST_WIDE_INT width
= m_store_info
[first
]->bitsize
;
2884 if (width
>= try_size
)
2886 for (unsigned int i
= first
+ 1; i
< len
; ++i
)
2888 if (m_store_info
[i
]->bitpos
!= m_store_info
[first
]->bitpos
+ width
2889 || m_store_info
[i
]->lp_nr
!= merged_store
->lp_nr
2890 || m_store_info
[i
]->ins_stmt
== NULL
)
2892 width
+= m_store_info
[i
]->bitsize
;
2893 if (width
>= try_size
)
2899 if (width
!= try_size
)
2902 bool allow_unaligned
2903 = !STRICT_ALIGNMENT
&& param_store_merging_allow_unaligned
;
2904 /* Punt if the combined store would not be aligned and we need alignment. */
2905 if (!allow_unaligned
)
2907 unsigned int align
= merged_store
->align
;
2908 unsigned HOST_WIDE_INT align_base
= merged_store
->align_base
;
2909 for (unsigned int i
= first
+ 1; i
<= last
; ++i
)
2911 unsigned int this_align
;
2912 unsigned HOST_WIDE_INT align_bitpos
= 0;
2913 get_object_alignment_1 (gimple_assign_lhs (m_store_info
[i
]->stmt
),
2914 &this_align
, &align_bitpos
);
2915 if (this_align
> align
)
2918 align_base
= m_store_info
[i
]->bitpos
- align_bitpos
;
2921 unsigned HOST_WIDE_INT align_bitpos
2922 = (m_store_info
[first
]->bitpos
- align_base
) & (align
- 1);
2924 align
= least_bit_hwi (align_bitpos
);
2925 if (align
< try_size
)
2932 case 16: type
= uint16_type_node
; break;
2933 case 32: type
= uint32_type_node
; break;
2934 case 64: type
= uint64_type_node
; break;
2935 default: gcc_unreachable ();
2937 struct symbolic_number n
;
2938 gimple
*ins_stmt
= NULL
;
2939 int vuse_store
= -1;
2940 unsigned int first_order
= merged_store
->first_order
;
2941 unsigned int last_order
= merged_store
->last_order
;
2942 gimple
*first_stmt
= merged_store
->first_stmt
;
2943 gimple
*last_stmt
= merged_store
->last_stmt
;
2944 unsigned HOST_WIDE_INT end
= merged_store
->start
+ merged_store
->width
;
2945 store_immediate_info
*infof
= m_store_info
[first
];
2947 for (unsigned int i
= first
; i
<= last
; ++i
)
2949 store_immediate_info
*info
= m_store_info
[i
];
2950 struct symbolic_number this_n
= info
->n
;
2952 if (!this_n
.base_addr
)
2953 this_n
.range
= try_size
/ BITS_PER_UNIT
;
2955 /* Update vuse in case it has changed by output_merged_stores. */
2956 this_n
.vuse
= gimple_vuse (info
->ins_stmt
);
2957 unsigned int bitpos
= info
->bitpos
- infof
->bitpos
;
2958 if (!do_shift_rotate (LSHIFT_EXPR
, &this_n
,
2960 ? try_size
- info
->bitsize
- bitpos
2963 if (this_n
.base_addr
&& vuse_store
)
2966 for (j
= first
; j
<= last
; ++j
)
2967 if (this_n
.vuse
== gimple_vuse (m_store_info
[j
]->stmt
))
2971 if (vuse_store
== 1)
2979 ins_stmt
= info
->ins_stmt
;
2983 if (n
.base_addr
&& n
.vuse
!= this_n
.vuse
)
2985 if (vuse_store
== 0)
2989 if (info
->order
> last_order
)
2991 last_order
= info
->order
;
2992 last_stmt
= info
->stmt
;
2994 else if (info
->order
< first_order
)
2996 first_order
= info
->order
;
2997 first_stmt
= info
->stmt
;
2999 end
= MAX (end
, info
->bitpos
+ info
->bitsize
);
3001 ins_stmt
= perform_symbolic_merge (ins_stmt
, &n
, info
->ins_stmt
,
3002 &this_n
, &n
, BIT_IOR_EXPR
);
3003 if (ins_stmt
== NULL
)
3008 uint64_t cmpxchg
, cmpnop
;
3010 find_bswap_or_nop_finalize (&n
, &cmpxchg
, &cmpnop
, &cast64_to_32
);
3012 /* A complete byte swap should make the symbolic number to start with
3013 the largest digit in the highest order byte. Unchanged symbolic
3014 number indicates a read with same endianness as target architecture. */
3015 if (n
.n
!= cmpnop
&& n
.n
!= cmpxchg
)
3022 if (n
.base_addr
== NULL_TREE
&& !is_gimple_val (n
.src
))
3025 if (!check_no_overlap (m_store_info
, last
, false, first_order
, last_order
,
3026 merged_store
->start
, end
, first_earlier
, first
))
3029 /* Don't handle memory copy this way if normal non-bswap processing
3030 would handle it too. */
3031 if (n
.n
== cmpnop
&& (unsigned) n
.n_ops
== last
- first
+ 1)
3034 for (i
= first
; i
<= last
; ++i
)
3035 if (m_store_info
[i
]->rhs_code
!= MEM_REF
)
3045 /* Will emit LROTATE_EXPR. */
3048 if (builtin_decl_explicit_p (BUILT_IN_BSWAP32
)
3049 && optab_handler (bswap_optab
, SImode
) != CODE_FOR_nothing
)
3053 if (builtin_decl_explicit_p (BUILT_IN_BSWAP64
)
3054 && optab_handler (bswap_optab
, DImode
) != CODE_FOR_nothing
)
3061 if (!allow_unaligned
&& n
.base_addr
)
3063 unsigned int align
= get_object_alignment (n
.src
);
3064 if (align
< try_size
)
3068 /* If each load has vuse of the corresponding store, need to verify
3069 the loads can be sunk right before the last store. */
3070 if (vuse_store
== 1)
3072 auto_vec
<tree
, 64> refs
;
3073 for (unsigned int i
= first
; i
<= last
; ++i
)
3074 gather_bswap_load_refs (&refs
,
3075 gimple_assign_rhs1 (m_store_info
[i
]->stmt
));
3077 for (tree ref
: refs
)
3078 if (stmts_may_clobber_ref_p (first_stmt
, last_stmt
, ref
))
3084 infof
->ins_stmt
= ins_stmt
;
3085 for (unsigned int i
= first
; i
<= last
; ++i
)
3087 m_store_info
[i
]->rhs_code
= n
.n
== cmpxchg
? LROTATE_EXPR
: NOP_EXPR
;
3088 m_store_info
[i
]->ops
[0].base_addr
= NULL_TREE
;
3089 m_store_info
[i
]->ops
[1].base_addr
= NULL_TREE
;
3091 merged_store
->merge_into (m_store_info
[i
]);
3097 /* Go through the candidate stores recorded in m_store_info and merge them
3098 into merged_store_group objects recorded into m_merged_store_groups
3099 representing the widened stores. Return true if coalescing was successful
3100 and the number of widened stores is fewer than the original number
3104 imm_store_chain_info::coalesce_immediate_stores ()
3106 /* Anything less can't be processed. */
3107 if (m_store_info
.length () < 2)
3110 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3111 fprintf (dump_file
, "Attempting to coalesce %u stores in chain\n",
3112 m_store_info
.length ());
3114 store_immediate_info
*info
;
3115 unsigned int i
, ignore
= 0;
3116 unsigned int first_earlier
= 0;
3117 unsigned int end_earlier
= 0;
3119 /* Order the stores by the bitposition they write to. */
3120 m_store_info
.qsort (sort_by_bitpos
);
3122 info
= m_store_info
[0];
3123 merged_store_group
*merged_store
= new merged_store_group (info
);
3124 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3125 fputs ("New store group\n", dump_file
);
3127 FOR_EACH_VEC_ELT (m_store_info
, i
, info
)
3129 unsigned HOST_WIDE_INT new_bitregion_start
, new_bitregion_end
;
3134 while (first_earlier
< end_earlier
3135 && (m_store_info
[first_earlier
]->bitpos
3136 + m_store_info
[first_earlier
]->bitsize
3137 <= merged_store
->start
))
3140 /* First try to handle group of stores like:
3145 using the bswap framework. */
3146 if (info
->bitpos
== merged_store
->start
+ merged_store
->width
3147 && merged_store
->stores
.length () == 1
3148 && merged_store
->stores
[0]->ins_stmt
!= NULL
3149 && info
->lp_nr
== merged_store
->lp_nr
3150 && info
->ins_stmt
!= NULL
)
3152 unsigned int try_size
;
3153 for (try_size
= 64; try_size
>= 16; try_size
>>= 1)
3154 if (try_coalesce_bswap (merged_store
, i
- 1, try_size
,
3160 ignore
= i
+ merged_store
->stores
.length () - 1;
3161 m_merged_store_groups
.safe_push (merged_store
);
3162 if (ignore
< m_store_info
.length ())
3164 merged_store
= new merged_store_group (m_store_info
[ignore
]);
3165 end_earlier
= ignore
;
3168 merged_store
= NULL
;
3174 = MIN (merged_store
->bitregion_start
, info
->bitregion_start
);
3176 = MAX (merged_store
->bitregion_end
, info
->bitregion_end
);
3178 if (info
->order
>= merged_store
->first_nonmergeable_order
3179 || (((new_bitregion_end
- new_bitregion_start
+ 1) / BITS_PER_UNIT
)
3180 > (unsigned) param_store_merging_max_size
))
3185 Overlapping stores. */
3186 else if (IN_RANGE (info
->bitpos
, merged_store
->start
,
3187 merged_store
->start
+ merged_store
->width
- 1)
3188 /* |---store 1---||---store 2---|
3189 Handle also the consecutive INTEGER_CST stores case here,
3190 as we have here the code to deal with overlaps. */
3191 || (info
->bitregion_start
<= merged_store
->bitregion_end
3192 && info
->rhs_code
== INTEGER_CST
3193 && merged_store
->only_constants
3194 && merged_store
->can_be_merged_into (info
)))
3196 /* Only allow overlapping stores of constants. */
3197 if (info
->rhs_code
== INTEGER_CST
3198 && merged_store
->only_constants
3199 && info
->lp_nr
== merged_store
->lp_nr
)
3201 unsigned int first_order
3202 = MIN (merged_store
->first_order
, info
->order
);
3203 unsigned int last_order
3204 = MAX (merged_store
->last_order
, info
->order
);
3205 unsigned HOST_WIDE_INT end
3206 = MAX (merged_store
->start
+ merged_store
->width
,
3207 info
->bitpos
+ info
->bitsize
);
3208 if (check_no_overlap (m_store_info
, i
, true, first_order
,
3209 last_order
, merged_store
->start
, end
,
3210 first_earlier
, end_earlier
))
3212 /* check_no_overlap call above made sure there are no
3213 overlapping stores with non-INTEGER_CST rhs_code
3214 in between the first and last of the stores we've
3215 just merged. If there are any INTEGER_CST rhs_code
3216 stores in between, we need to merge_overlapping them
3217 even if in the sort_by_bitpos order there are other
3218 overlapping stores in between. Keep those stores as is.
3220 MEM[(int *)p_28] = 0;
3221 MEM[(char *)p_28 + 3B] = 1;
3222 MEM[(char *)p_28 + 1B] = 2;
3223 MEM[(char *)p_28 + 2B] = MEM[(char *)p_28 + 6B];
3224 We can't merge the zero store with the store of two and
3225 not merge anything else, because the store of one is
3226 in the original order in between those two, but in
3227 store_by_bitpos order it comes after the last store that
3228 we can't merge with them. We can merge the first 3 stores
3229 and keep the last store as is though. */
3230 unsigned int len
= m_store_info
.length ();
3231 unsigned int try_order
= last_order
;
3232 unsigned int first_nonmergeable_order
;
3234 bool last_iter
= false;
3238 unsigned int max_order
= 0;
3239 unsigned int min_order
= first_order
;
3240 unsigned first_nonmergeable_int_order
= ~0U;
3241 unsigned HOST_WIDE_INT this_end
= end
;
3243 first_nonmergeable_order
= ~0U;
3244 for (unsigned int j
= i
+ 1; j
< len
; ++j
)
3246 store_immediate_info
*info2
= m_store_info
[j
];
3247 if (info2
->bitpos
>= this_end
)
3249 if (info2
->order
< try_order
)
3251 if (info2
->rhs_code
!= INTEGER_CST
3252 || info2
->lp_nr
!= merged_store
->lp_nr
)
3254 /* Normally check_no_overlap makes sure this
3255 doesn't happen, but if end grows below,
3256 then we need to process more stores than
3257 check_no_overlap verified. Example:
3258 MEM[(int *)p_5] = 0;
3259 MEM[(short *)p_5 + 3B] = 1;
3260 MEM[(char *)p_5 + 4B] = _9;
3261 MEM[(char *)p_5 + 2B] = 2; */
3266 min_order
= MIN (min_order
, info2
->order
);
3267 this_end
= MAX (this_end
,
3268 info2
->bitpos
+ info2
->bitsize
);
3270 else if (info2
->rhs_code
== INTEGER_CST
3271 && info2
->lp_nr
== merged_store
->lp_nr
3274 max_order
= MAX (max_order
, info2
->order
+ 1);
3275 first_nonmergeable_int_order
3276 = MIN (first_nonmergeable_int_order
,
3280 first_nonmergeable_order
3281 = MIN (first_nonmergeable_order
, info2
->order
);
3284 && !check_no_overlap (m_store_info
, len
- 1, true,
3285 min_order
, try_order
,
3286 merged_store
->start
, this_end
,
3287 first_earlier
, end_earlier
))
3291 if (last_order
== try_order
)
3293 /* If this failed, but only because we grew
3294 try_order, retry with the last working one,
3295 so that we merge at least something. */
3296 try_order
= last_order
;
3300 last_order
= try_order
;
3301 /* Retry with a larger try_order to see if we could
3302 merge some further INTEGER_CST stores. */
3304 && (first_nonmergeable_int_order
3305 < first_nonmergeable_order
))
3307 try_order
= MIN (max_order
,
3308 first_nonmergeable_order
);
3311 merged_store
->first_nonmergeable_order
);
3312 if (try_order
> last_order
&& ++attempts
< 16)
3315 first_nonmergeable_order
3316 = MIN (first_nonmergeable_order
,
3317 first_nonmergeable_int_order
);
3325 merged_store
->merge_overlapping (info
);
3327 merged_store
->first_nonmergeable_order
3328 = MIN (merged_store
->first_nonmergeable_order
,
3329 first_nonmergeable_order
);
3331 for (unsigned int j
= i
+ 1; j
<= k
; j
++)
3333 store_immediate_info
*info2
= m_store_info
[j
];
3334 gcc_assert (info2
->bitpos
< end
);
3335 if (info2
->order
< last_order
)
3337 gcc_assert (info2
->rhs_code
== INTEGER_CST
);
3339 merged_store
->merge_overlapping (info2
);
3341 /* Other stores are kept and not merged in any
3350 /* |---store 1---||---store 2---|
3351 This store is consecutive to the previous one.
3352 Merge it into the current store group. There can be gaps in between
3353 the stores, but there can't be gaps in between bitregions. */
3354 else if (info
->bitregion_start
<= merged_store
->bitregion_end
3355 && merged_store
->can_be_merged_into (info
))
3357 store_immediate_info
*infof
= merged_store
->stores
[0];
3359 /* All the rhs_code ops that take 2 operands are commutative,
3360 swap the operands if it could make the operands compatible. */
3361 if (infof
->ops
[0].base_addr
3362 && infof
->ops
[1].base_addr
3363 && info
->ops
[0].base_addr
3364 && info
->ops
[1].base_addr
3365 && known_eq (info
->ops
[1].bitpos
- infof
->ops
[0].bitpos
,
3366 info
->bitpos
- infof
->bitpos
)
3367 && operand_equal_p (info
->ops
[1].base_addr
,
3368 infof
->ops
[0].base_addr
, 0))
3370 std::swap (info
->ops
[0], info
->ops
[1]);
3371 info
->ops_swapped_p
= true;
3373 if (check_no_overlap (m_store_info
, i
, false,
3374 MIN (merged_store
->first_order
, info
->order
),
3375 MAX (merged_store
->last_order
, info
->order
),
3376 merged_store
->start
,
3377 MAX (merged_store
->start
+ merged_store
->width
,
3378 info
->bitpos
+ info
->bitsize
),
3379 first_earlier
, end_earlier
))
3381 /* Turn MEM_REF into BIT_INSERT_EXPR for bit-field stores. */
3382 if (info
->rhs_code
== MEM_REF
&& infof
->rhs_code
!= MEM_REF
)
3384 info
->rhs_code
= BIT_INSERT_EXPR
;
3385 info
->ops
[0].val
= gimple_assign_rhs1 (info
->stmt
);
3386 info
->ops
[0].base_addr
= NULL_TREE
;
3388 else if (infof
->rhs_code
== MEM_REF
&& info
->rhs_code
!= MEM_REF
)
3390 for (store_immediate_info
*infoj
: merged_store
->stores
)
3392 infoj
->rhs_code
= BIT_INSERT_EXPR
;
3393 infoj
->ops
[0].val
= gimple_assign_rhs1 (infoj
->stmt
);
3394 infoj
->ops
[0].base_addr
= NULL_TREE
;
3396 merged_store
->bit_insertion
= true;
3398 if ((infof
->ops
[0].base_addr
3399 ? compatible_load_p (merged_store
, info
, base_addr
, 0)
3400 : !info
->ops
[0].base_addr
)
3401 && (infof
->ops
[1].base_addr
3402 ? compatible_load_p (merged_store
, info
, base_addr
, 1)
3403 : !info
->ops
[1].base_addr
))
3405 merged_store
->merge_into (info
);
3411 /* |---store 1---| <gap> |---store 2---|.
3412 Gap between stores or the rhs not compatible. Start a new group. */
3414 /* Try to apply all the stores recorded for the group to determine
3415 the bitpattern they write and discard it if that fails.
3416 This will also reject single-store groups. */
3417 if (merged_store
->apply_stores ())
3418 m_merged_store_groups
.safe_push (merged_store
);
3420 delete merged_store
;
3422 merged_store
= new merged_store_group (info
);
3424 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3425 fputs ("New store group\n", dump_file
);
3428 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3430 fprintf (dump_file
, "Store %u:\nbitsize:" HOST_WIDE_INT_PRINT_DEC
3431 " bitpos:" HOST_WIDE_INT_PRINT_DEC
" val:",
3432 i
, info
->bitsize
, info
->bitpos
);
3433 print_generic_expr (dump_file
, gimple_assign_rhs1 (info
->stmt
));
3434 fputc ('\n', dump_file
);
3438 /* Record or discard the last store group. */
3441 if (merged_store
->apply_stores ())
3442 m_merged_store_groups
.safe_push (merged_store
);
3444 delete merged_store
;
3447 gcc_assert (m_merged_store_groups
.length () <= m_store_info
.length ());
3450 = !m_merged_store_groups
.is_empty ()
3451 && m_merged_store_groups
.length () < m_store_info
.length ();
3453 if (success
&& dump_file
)
3454 fprintf (dump_file
, "Coalescing successful!\nMerged into %u stores\n",
3455 m_merged_store_groups
.length ());
3460 /* Return the type to use for the merged stores or loads described by STMTS.
3461 This is needed to get the alias sets right. If IS_LOAD, look for rhs,
3462 otherwise lhs. Additionally set *CLIQUEP and *BASEP to MR_DEPENDENCE_*
3463 of the MEM_REFs if any. */
3466 get_alias_type_for_stmts (vec
<gimple
*> &stmts
, bool is_load
,
3467 unsigned short *cliquep
, unsigned short *basep
)
3471 tree type
= NULL_TREE
;
3472 tree ret
= NULL_TREE
;
3476 FOR_EACH_VEC_ELT (stmts
, i
, stmt
)
3478 tree ref
= is_load
? gimple_assign_rhs1 (stmt
)
3479 : gimple_assign_lhs (stmt
);
3480 tree type1
= reference_alias_ptr_type (ref
);
3481 tree base
= get_base_address (ref
);
3485 if (TREE_CODE (base
) == MEM_REF
)
3487 *cliquep
= MR_DEPENDENCE_CLIQUE (base
);
3488 *basep
= MR_DEPENDENCE_BASE (base
);
3493 if (!alias_ptr_types_compatible_p (type
, type1
))
3494 ret
= ptr_type_node
;
3495 if (TREE_CODE (base
) != MEM_REF
3496 || *cliquep
!= MR_DEPENDENCE_CLIQUE (base
)
3497 || *basep
!= MR_DEPENDENCE_BASE (base
))
3506 /* Return the location_t information we can find among the statements
3510 get_location_for_stmts (vec
<gimple
*> &stmts
)
3512 for (gimple
*stmt
: stmts
)
3513 if (gimple_has_location (stmt
))
3514 return gimple_location (stmt
);
3516 return UNKNOWN_LOCATION
;
3519 /* Used to decribe a store resulting from splitting a wide store in smaller
3520 regularly-sized stores in split_group. */
3525 unsigned HOST_WIDE_INT bytepos
;
3526 unsigned HOST_WIDE_INT size
;
3527 unsigned HOST_WIDE_INT align
;
3528 auto_vec
<store_immediate_info
*> orig_stores
;
3529 /* True if there is a single orig stmt covering the whole split store. */
3531 split_store (unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
3532 unsigned HOST_WIDE_INT
);
3535 /* Simple constructor. */
3537 split_store::split_store (unsigned HOST_WIDE_INT bp
,
3538 unsigned HOST_WIDE_INT sz
,
3539 unsigned HOST_WIDE_INT al
)
3540 : bytepos (bp
), size (sz
), align (al
), orig (false)
3542 orig_stores
.create (0);
3545 /* Record all stores in GROUP that write to the region starting at BITPOS and
3546 is of size BITSIZE. Record infos for such statements in STORES if
3547 non-NULL. The stores in GROUP must be sorted by bitposition. Return INFO
3548 if there is exactly one original store in the range (in that case ignore
3549 clobber stmts, unless there are only clobber stmts). */
3551 static store_immediate_info
*
3552 find_constituent_stores (class merged_store_group
*group
,
3553 vec
<store_immediate_info
*> *stores
,
3554 unsigned int *first
,
3555 unsigned HOST_WIDE_INT bitpos
,
3556 unsigned HOST_WIDE_INT bitsize
)
3558 store_immediate_info
*info
, *ret
= NULL
;
3560 bool second
= false;
3561 bool update_first
= true;
3562 unsigned HOST_WIDE_INT end
= bitpos
+ bitsize
;
3563 for (i
= *first
; group
->stores
.iterate (i
, &info
); ++i
)
3565 unsigned HOST_WIDE_INT stmt_start
= info
->bitpos
;
3566 unsigned HOST_WIDE_INT stmt_end
= stmt_start
+ info
->bitsize
;
3567 if (stmt_end
<= bitpos
)
3569 /* BITPOS passed to this function never decreases from within the
3570 same split_group call, so optimize and don't scan info records
3571 which are known to end before or at BITPOS next time.
3572 Only do it if all stores before this one also pass this. */
3578 update_first
= false;
3580 /* The stores in GROUP are ordered by bitposition so if we're past
3581 the region for this group return early. */
3582 if (stmt_start
>= end
)
3585 if (gimple_clobber_p (info
->stmt
))
3588 stores
->safe_push (info
);
3595 stores
->safe_push (info
);
3596 if (ret
&& !gimple_clobber_p (ret
->stmt
))
3602 else if (ret
&& !gimple_clobber_p (ret
->stmt
))
3610 /* Return how many SSA_NAMEs used to compute value to store in the INFO
3611 store have multiple uses. If any SSA_NAME has multiple uses, also
3612 count statements needed to compute it. */
3615 count_multiple_uses (store_immediate_info
*info
)
3617 gimple
*stmt
= info
->stmt
;
3619 switch (info
->rhs_code
)
3627 if (info
->bit_not_p
)
3629 if (!has_single_use (gimple_assign_rhs1 (stmt
)))
3630 ret
= 1; /* Fall through below to return
3631 the BIT_NOT_EXPR stmt and then
3632 BIT_{AND,IOR,XOR}_EXPR and anything it
3635 /* stmt is after this the BIT_NOT_EXPR. */
3636 stmt
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
3638 if (!has_single_use (gimple_assign_rhs1 (stmt
)))
3640 ret
+= 1 + info
->ops
[0].bit_not_p
;
3641 if (info
->ops
[1].base_addr
)
3642 ret
+= 1 + info
->ops
[1].bit_not_p
;
3645 stmt
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
3646 /* stmt is now the BIT_*_EXPR. */
3647 if (!has_single_use (gimple_assign_rhs1 (stmt
)))
3648 ret
+= 1 + info
->ops
[info
->ops_swapped_p
].bit_not_p
;
3649 else if (info
->ops
[info
->ops_swapped_p
].bit_not_p
)
3651 gimple
*stmt2
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
3652 if (!has_single_use (gimple_assign_rhs1 (stmt2
)))
3655 if (info
->ops
[1].base_addr
== NULL_TREE
)
3657 gcc_checking_assert (!info
->ops_swapped_p
);
3660 if (!has_single_use (gimple_assign_rhs2 (stmt
)))
3661 ret
+= 1 + info
->ops
[1 - info
->ops_swapped_p
].bit_not_p
;
3662 else if (info
->ops
[1 - info
->ops_swapped_p
].bit_not_p
)
3664 gimple
*stmt2
= SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt
));
3665 if (!has_single_use (gimple_assign_rhs1 (stmt2
)))
3670 if (!has_single_use (gimple_assign_rhs1 (stmt
)))
3671 return 1 + info
->ops
[0].bit_not_p
;
3672 else if (info
->ops
[0].bit_not_p
)
3674 stmt
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
3675 if (!has_single_use (gimple_assign_rhs1 (stmt
)))
3679 case BIT_INSERT_EXPR
:
3680 return has_single_use (gimple_assign_rhs1 (stmt
)) ? 0 : 1;
3686 /* Split a merged store described by GROUP by populating the SPLIT_STORES
3687 vector (if non-NULL) with split_store structs describing the byte offset
3688 (from the base), the bit size and alignment of each store as well as the
3689 original statements involved in each such split group.
3690 This is to separate the splitting strategy from the statement
3691 building/emission/linking done in output_merged_store.
3692 Return number of new stores.
3693 If ALLOW_UNALIGNED_STORE is false, then all stores must be aligned.
3694 If ALLOW_UNALIGNED_LOAD is false, then all loads must be aligned.
3695 BZERO_FIRST may be true only when the first store covers the whole group
3696 and clears it; if BZERO_FIRST is true, keep that first store in the set
3697 unmodified and emit further stores for the overrides only.
3698 If SPLIT_STORES is NULL, it is just a dry run to count number of
3702 split_group (merged_store_group
*group
, bool allow_unaligned_store
,
3703 bool allow_unaligned_load
, bool bzero_first
,
3704 vec
<split_store
*> *split_stores
,
3705 unsigned *total_orig
,
3706 unsigned *total_new
)
3708 unsigned HOST_WIDE_INT pos
= group
->bitregion_start
;
3709 unsigned HOST_WIDE_INT size
= group
->bitregion_end
- pos
;
3710 unsigned HOST_WIDE_INT bytepos
= pos
/ BITS_PER_UNIT
;
3711 unsigned HOST_WIDE_INT group_align
= group
->align
;
3712 unsigned HOST_WIDE_INT align_base
= group
->align_base
;
3713 unsigned HOST_WIDE_INT group_load_align
= group_align
;
3714 bool any_orig
= false;
3716 gcc_assert ((size
% BITS_PER_UNIT
== 0) && (pos
% BITS_PER_UNIT
== 0));
3718 /* For bswap framework using sets of stores, all the checking has been done
3719 earlier in try_coalesce_bswap and the result always needs to be emitted
3720 as a single store. Likewise for string concatenation. */
3721 if (group
->stores
[0]->rhs_code
== LROTATE_EXPR
3722 || group
->stores
[0]->rhs_code
== NOP_EXPR
3723 || group
->string_concatenation
)
3725 gcc_assert (!bzero_first
);
3728 /* Avoid the old/new stmt count heuristics. It should be
3729 always beneficial. */
3736 unsigned HOST_WIDE_INT align_bitpos
3737 = (group
->start
- align_base
) & (group_align
- 1);
3738 unsigned HOST_WIDE_INT align
= group_align
;
3740 align
= least_bit_hwi (align_bitpos
);
3741 bytepos
= group
->start
/ BITS_PER_UNIT
;
3743 = new split_store (bytepos
, group
->width
, align
);
3744 unsigned int first
= 0;
3745 find_constituent_stores (group
, &store
->orig_stores
,
3746 &first
, group
->start
, group
->width
);
3747 split_stores
->safe_push (store
);
3753 unsigned int ret
= 0, first
= 0;
3754 unsigned HOST_WIDE_INT try_pos
= bytepos
;
3759 store_immediate_info
*info
= group
->stores
[0];
3762 total_orig
[0] = 1; /* The orig store. */
3763 info
= group
->stores
[0];
3764 if (info
->ops
[0].base_addr
)
3766 if (info
->ops
[1].base_addr
)
3768 switch (info
->rhs_code
)
3773 total_orig
[0]++; /* The orig BIT_*_EXPR stmt. */
3778 total_orig
[0] *= group
->stores
.length ();
3780 FOR_EACH_VEC_ELT (group
->stores
, i
, info
)
3782 total_new
[0] += count_multiple_uses (info
);
3783 total_orig
[0] += (info
->bit_not_p
3784 + info
->ops
[0].bit_not_p
3785 + info
->ops
[1].bit_not_p
);
3789 if (!allow_unaligned_load
)
3790 for (int i
= 0; i
< 2; ++i
)
3791 if (group
->load_align
[i
])
3792 group_load_align
= MIN (group_load_align
, group
->load_align
[i
]);
3796 store_immediate_info
*gstore
;
3797 FOR_EACH_VEC_ELT (group
->stores
, first
, gstore
)
3798 if (!gimple_clobber_p (gstore
->stmt
))
3805 = new split_store (bytepos
, gstore
->bitsize
, align_base
);
3806 store
->orig_stores
.safe_push (gstore
);
3809 split_stores
->safe_push (store
);
3815 if ((allow_unaligned_store
|| group_align
<= BITS_PER_UNIT
)
3816 && (group
->mask
[try_pos
- bytepos
] == (unsigned char) ~0U
3817 || (bzero_first
&& group
->val
[try_pos
- bytepos
] == 0)))
3819 /* Skip padding bytes. */
3821 size
-= BITS_PER_UNIT
;
3825 unsigned HOST_WIDE_INT try_bitpos
= try_pos
* BITS_PER_UNIT
;
3826 unsigned int try_size
= MAX_STORE_BITSIZE
, nonmasked
;
3827 unsigned HOST_WIDE_INT align_bitpos
3828 = (try_bitpos
- align_base
) & (group_align
- 1);
3829 unsigned HOST_WIDE_INT align
= group_align
;
3830 bool found_orig
= false;
3832 align
= least_bit_hwi (align_bitpos
);
3833 if (!allow_unaligned_store
)
3834 try_size
= MIN (try_size
, align
);
3835 if (!allow_unaligned_load
)
3837 /* If we can't do or don't want to do unaligned stores
3838 as well as loads, we need to take the loads into account
3840 unsigned HOST_WIDE_INT load_align
= group_load_align
;
3841 align_bitpos
= (try_bitpos
- align_base
) & (load_align
- 1);
3843 load_align
= least_bit_hwi (align_bitpos
);
3844 for (int i
= 0; i
< 2; ++i
)
3845 if (group
->load_align
[i
])
3848 = known_alignment (try_bitpos
3849 - group
->stores
[0]->bitpos
3850 + group
->stores
[0]->ops
[i
].bitpos
3851 - group
->load_align_base
[i
]);
3852 if (align_bitpos
& (group_load_align
- 1))
3854 unsigned HOST_WIDE_INT a
= least_bit_hwi (align_bitpos
);
3855 load_align
= MIN (load_align
, a
);
3858 try_size
= MIN (try_size
, load_align
);
3860 store_immediate_info
*info
3861 = find_constituent_stores (group
, NULL
, &first
, try_bitpos
, try_size
);
3862 if (info
&& !gimple_clobber_p (info
->stmt
))
3864 /* If there is just one original statement for the range, see if
3865 we can just reuse the original store which could be even larger
3867 unsigned HOST_WIDE_INT stmt_end
3868 = ROUND_UP (info
->bitpos
+ info
->bitsize
, BITS_PER_UNIT
);
3869 info
= find_constituent_stores (group
, NULL
, &first
, try_bitpos
,
3870 stmt_end
- try_bitpos
);
3871 if (info
&& info
->bitpos
>= try_bitpos
)
3873 store_immediate_info
*info2
= NULL
;
3874 unsigned int first_copy
= first
;
3875 if (info
->bitpos
> try_bitpos
3876 && stmt_end
- try_bitpos
<= try_size
)
3878 info2
= find_constituent_stores (group
, NULL
, &first_copy
,
3880 info
->bitpos
- try_bitpos
);
3881 gcc_assert (info2
== NULL
|| gimple_clobber_p (info2
->stmt
));
3883 if (info2
== NULL
&& stmt_end
- try_bitpos
< try_size
)
3885 info2
= find_constituent_stores (group
, NULL
, &first_copy
,
3887 (try_bitpos
+ try_size
)
3889 gcc_assert (info2
== NULL
|| gimple_clobber_p (info2
->stmt
));
3893 try_size
= stmt_end
- try_bitpos
;
3900 /* Approximate store bitsize for the case when there are no padding
3902 while (try_size
> size
)
3904 /* Now look for whole padding bytes at the end of that bitsize. */
3905 for (nonmasked
= try_size
/ BITS_PER_UNIT
; nonmasked
> 0; --nonmasked
)
3906 if (group
->mask
[try_pos
- bytepos
+ nonmasked
- 1]
3907 != (unsigned char) ~0U
3909 || group
->val
[try_pos
- bytepos
+ nonmasked
- 1] != 0))
3911 if (nonmasked
== 0 || (info
&& gimple_clobber_p (info
->stmt
)))
3913 /* If entire try_size range is padding, skip it. */
3914 try_pos
+= try_size
/ BITS_PER_UNIT
;
3918 /* Otherwise try to decrease try_size if second half, last 3 quarters
3919 etc. are padding. */
3920 nonmasked
*= BITS_PER_UNIT
;
3921 while (nonmasked
<= try_size
/ 2)
3923 if (!allow_unaligned_store
&& group_align
> BITS_PER_UNIT
)
3925 /* Now look for whole padding bytes at the start of that bitsize. */
3926 unsigned int try_bytesize
= try_size
/ BITS_PER_UNIT
, masked
;
3927 for (masked
= 0; masked
< try_bytesize
; ++masked
)
3928 if (group
->mask
[try_pos
- bytepos
+ masked
] != (unsigned char) ~0U
3930 || group
->val
[try_pos
- bytepos
+ masked
] != 0))
3932 masked
*= BITS_PER_UNIT
;
3933 gcc_assert (masked
< try_size
);
3934 if (masked
>= try_size
/ 2)
3936 while (masked
>= try_size
/ 2)
3939 try_pos
+= try_size
/ BITS_PER_UNIT
;
3943 /* Need to recompute the alignment, so just retry at the new
3955 = new split_store (try_pos
, try_size
, align
);
3956 info
= find_constituent_stores (group
, &store
->orig_stores
,
3957 &first
, try_bitpos
, try_size
);
3959 && !gimple_clobber_p (info
->stmt
)
3960 && info
->bitpos
>= try_bitpos
3961 && info
->bitpos
+ info
->bitsize
<= try_bitpos
+ try_size
3962 && (store
->orig_stores
.length () == 1
3964 || (info
->bitpos
== try_bitpos
3965 && (info
->bitpos
+ info
->bitsize
3966 == try_bitpos
+ try_size
))))
3971 split_stores
->safe_push (store
);
3974 try_pos
+= try_size
/ BITS_PER_UNIT
;
3982 /* If we are reusing some original stores and any of the
3983 original SSA_NAMEs had multiple uses, we need to subtract
3984 those now before we add the new ones. */
3985 if (total_new
[0] && any_orig
)
3987 FOR_EACH_VEC_ELT (*split_stores
, i
, store
)
3989 total_new
[0] -= count_multiple_uses (store
->orig_stores
[0]);
3991 total_new
[0] += ret
; /* The new store. */
3992 store_immediate_info
*info
= group
->stores
[0];
3993 if (info
->ops
[0].base_addr
)
3994 total_new
[0] += ret
;
3995 if (info
->ops
[1].base_addr
)
3996 total_new
[0] += ret
;
3997 switch (info
->rhs_code
)
4002 total_new
[0] += ret
; /* The new BIT_*_EXPR stmt. */
4007 FOR_EACH_VEC_ELT (*split_stores
, i
, store
)
4010 bool bit_not_p
[3] = { false, false, false };
4011 /* If all orig_stores have certain bit_not_p set, then
4012 we'd use a BIT_NOT_EXPR stmt and need to account for it.
4013 If some orig_stores have certain bit_not_p set, then
4014 we'd use a BIT_XOR_EXPR with a mask and need to account for
4016 FOR_EACH_VEC_ELT (store
->orig_stores
, j
, info
)
4018 if (info
->ops
[0].bit_not_p
)
4019 bit_not_p
[0] = true;
4020 if (info
->ops
[1].bit_not_p
)
4021 bit_not_p
[1] = true;
4022 if (info
->bit_not_p
)
4023 bit_not_p
[2] = true;
4025 total_new
[0] += bit_not_p
[0] + bit_not_p
[1] + bit_not_p
[2];
4033 /* Return the operation through which the operand IDX (if < 2) or
4034 result (IDX == 2) should be inverted. If NOP_EXPR, no inversion
4035 is done, if BIT_NOT_EXPR, all bits are inverted, if BIT_XOR_EXPR,
4036 the bits should be xored with mask. */
4038 static enum tree_code
4039 invert_op (split_store
*split_store
, int idx
, tree int_type
, tree
&mask
)
4042 store_immediate_info
*info
;
4043 unsigned int cnt
= 0;
4044 bool any_paddings
= false;
4045 FOR_EACH_VEC_ELT (split_store
->orig_stores
, i
, info
)
4047 bool bit_not_p
= idx
< 2 ? info
->ops
[idx
].bit_not_p
: info
->bit_not_p
;
4051 tree lhs
= gimple_assign_lhs (info
->stmt
);
4052 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
4053 && TYPE_PRECISION (TREE_TYPE (lhs
)) < info
->bitsize
)
4054 any_paddings
= true;
4060 if (cnt
== split_store
->orig_stores
.length () && !any_paddings
)
4061 return BIT_NOT_EXPR
;
4063 unsigned HOST_WIDE_INT try_bitpos
= split_store
->bytepos
* BITS_PER_UNIT
;
4064 unsigned buf_size
= split_store
->size
/ BITS_PER_UNIT
;
4066 = XALLOCAVEC (unsigned char, buf_size
);
4067 memset (buf
, ~0U, buf_size
);
4068 FOR_EACH_VEC_ELT (split_store
->orig_stores
, i
, info
)
4070 bool bit_not_p
= idx
< 2 ? info
->ops
[idx
].bit_not_p
: info
->bit_not_p
;
4073 /* Clear regions with bit_not_p and invert afterwards, rather than
4074 clear regions with !bit_not_p, so that gaps in between stores aren't
4076 unsigned HOST_WIDE_INT bitsize
= info
->bitsize
;
4077 unsigned HOST_WIDE_INT prec
= bitsize
;
4078 unsigned int pos_in_buffer
= 0;
4081 tree lhs
= gimple_assign_lhs (info
->stmt
);
4082 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
4083 && TYPE_PRECISION (TREE_TYPE (lhs
)) < bitsize
)
4084 prec
= TYPE_PRECISION (TREE_TYPE (lhs
));
4086 if (info
->bitpos
< try_bitpos
)
4088 gcc_assert (info
->bitpos
+ bitsize
> try_bitpos
);
4089 if (!BYTES_BIG_ENDIAN
)
4091 if (prec
<= try_bitpos
- info
->bitpos
)
4093 prec
-= try_bitpos
- info
->bitpos
;
4095 bitsize
-= try_bitpos
- info
->bitpos
;
4096 if (BYTES_BIG_ENDIAN
&& prec
> bitsize
)
4100 pos_in_buffer
= info
->bitpos
- try_bitpos
;
4103 /* If this is a bool inversion, invert just the least significant
4104 prec bits rather than all bits of it. */
4105 if (BYTES_BIG_ENDIAN
)
4107 pos_in_buffer
+= bitsize
- prec
;
4108 if (pos_in_buffer
>= split_store
->size
)
4113 if (pos_in_buffer
+ bitsize
> split_store
->size
)
4114 bitsize
= split_store
->size
- pos_in_buffer
;
4115 unsigned char *p
= buf
+ (pos_in_buffer
/ BITS_PER_UNIT
);
4116 if (BYTES_BIG_ENDIAN
)
4117 clear_bit_region_be (p
, (BITS_PER_UNIT
- 1
4118 - (pos_in_buffer
% BITS_PER_UNIT
)), bitsize
);
4120 clear_bit_region (p
, pos_in_buffer
% BITS_PER_UNIT
, bitsize
);
4122 for (unsigned int i
= 0; i
< buf_size
; ++i
)
4124 mask
= native_interpret_expr (int_type
, buf
, buf_size
);
4125 return BIT_XOR_EXPR
;
4128 /* Given a merged store group GROUP output the widened version of it.
4129 The store chain is against the base object BASE.
4130 Try store sizes of at most MAX_STORE_BITSIZE bits wide and don't output
4131 unaligned stores for STRICT_ALIGNMENT targets or if it's too expensive.
4132 Make sure that the number of statements output is less than the number of
4133 original statements. If a better sequence is possible emit it and
4137 imm_store_chain_info::output_merged_store (merged_store_group
*group
)
4139 const unsigned HOST_WIDE_INT start_byte_pos
4140 = group
->bitregion_start
/ BITS_PER_UNIT
;
4141 unsigned int orig_num_stmts
= group
->stores
.length ();
4142 if (orig_num_stmts
< 2)
4145 bool allow_unaligned_store
4146 = !STRICT_ALIGNMENT
&& param_store_merging_allow_unaligned
;
4147 bool allow_unaligned_load
= allow_unaligned_store
;
4148 bool bzero_first
= false;
4149 store_immediate_info
*store
;
4150 unsigned int num_clobber_stmts
= 0;
4151 if (group
->stores
[0]->rhs_code
== INTEGER_CST
)
4154 FOR_EACH_VEC_ELT (group
->stores
, i
, store
)
4155 if (gimple_clobber_p (store
->stmt
))
4156 num_clobber_stmts
++;
4157 else if (TREE_CODE (gimple_assign_rhs1 (store
->stmt
)) == CONSTRUCTOR
4158 && CONSTRUCTOR_NELTS (gimple_assign_rhs1 (store
->stmt
)) == 0
4159 && group
->start
== store
->bitpos
4160 && group
->width
== store
->bitsize
4161 && (group
->start
% BITS_PER_UNIT
) == 0
4162 && (group
->width
% BITS_PER_UNIT
) == 0)
4169 FOR_EACH_VEC_ELT_FROM (group
->stores
, i
, store
, i
)
4170 if (gimple_clobber_p (store
->stmt
))
4171 num_clobber_stmts
++;
4172 if (num_clobber_stmts
== orig_num_stmts
)
4174 orig_num_stmts
-= num_clobber_stmts
;
4176 if (allow_unaligned_store
|| bzero_first
)
4178 /* If unaligned stores are allowed, see how many stores we'd emit
4179 for unaligned and how many stores we'd emit for aligned stores.
4180 Only use unaligned stores if it allows fewer stores than aligned.
4181 Similarly, if there is a whole region clear first, prefer expanding
4182 it together compared to expanding clear first followed by merged
4184 unsigned cnt
[4] = { ~0U, ~0U, ~0U, ~0U };
4186 for (int pass
= 0; pass
< 4; ++pass
)
4188 if (!allow_unaligned_store
&& (pass
& 1) != 0)
4190 if (!bzero_first
&& (pass
& 2) != 0)
4192 cnt
[pass
] = split_group (group
, (pass
& 1) != 0,
4193 allow_unaligned_load
, (pass
& 2) != 0,
4195 if (cnt
[pass
] < cnt
[pass_min
])
4198 if ((pass_min
& 1) == 0)
4199 allow_unaligned_store
= false;
4200 if ((pass_min
& 2) == 0)
4201 bzero_first
= false;
4204 auto_vec
<class split_store
*, 32> split_stores
;
4205 split_store
*split_store
;
4206 unsigned total_orig
, total_new
, i
;
4207 split_group (group
, allow_unaligned_store
, allow_unaligned_load
, bzero_first
,
4208 &split_stores
, &total_orig
, &total_new
);
4210 /* Determine if there is a clobber covering the whole group at the start,
4211 followed by proposed split stores that cover the whole group. In that
4212 case, prefer the transformation even if
4213 split_stores.length () == orig_num_stmts. */
4214 bool clobber_first
= false;
4215 if (num_clobber_stmts
4216 && gimple_clobber_p (group
->stores
[0]->stmt
)
4217 && group
->start
== group
->stores
[0]->bitpos
4218 && group
->width
== group
->stores
[0]->bitsize
4219 && (group
->start
% BITS_PER_UNIT
) == 0
4220 && (group
->width
% BITS_PER_UNIT
) == 0)
4222 clobber_first
= true;
4223 unsigned HOST_WIDE_INT pos
= group
->start
/ BITS_PER_UNIT
;
4224 FOR_EACH_VEC_ELT (split_stores
, i
, split_store
)
4225 if (split_store
->bytepos
!= pos
)
4227 clobber_first
= false;
4231 pos
+= split_store
->size
/ BITS_PER_UNIT
;
4232 if (pos
!= (group
->start
+ group
->width
) / BITS_PER_UNIT
)
4233 clobber_first
= false;
4236 if (split_stores
.length () >= orig_num_stmts
+ clobber_first
)
4239 /* We didn't manage to reduce the number of statements. Bail out. */
4240 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4241 fprintf (dump_file
, "Exceeded original number of stmts (%u)."
4242 " Not profitable to emit new sequence.\n",
4244 FOR_EACH_VEC_ELT (split_stores
, i
, split_store
)
4248 if (total_orig
<= total_new
)
4250 /* If number of estimated new statements is above estimated original
4251 statements, bail out too. */
4252 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4253 fprintf (dump_file
, "Estimated number of original stmts (%u)"
4254 " not larger than estimated number of new"
4256 total_orig
, total_new
);
4257 FOR_EACH_VEC_ELT (split_stores
, i
, split_store
)
4261 if (group
->stores
[0]->rhs_code
== INTEGER_CST
)
4263 bool all_orig
= true;
4264 FOR_EACH_VEC_ELT (split_stores
, i
, split_store
)
4265 if (!split_store
->orig
)
4272 unsigned int cnt
= split_stores
.length ();
4273 store_immediate_info
*store
;
4274 FOR_EACH_VEC_ELT (group
->stores
, i
, store
)
4275 if (gimple_clobber_p (store
->stmt
))
4277 /* Punt if we wouldn't make any real changes, i.e. keep all
4278 orig stmts + all clobbers. */
4279 if (cnt
== group
->stores
.length ())
4281 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4282 fprintf (dump_file
, "Exceeded original number of stmts (%u)."
4283 " Not profitable to emit new sequence.\n",
4285 FOR_EACH_VEC_ELT (split_stores
, i
, split_store
)
4292 gimple_stmt_iterator last_gsi
= gsi_for_stmt (group
->last_stmt
);
4293 gimple_seq seq
= NULL
;
4294 tree last_vdef
, new_vuse
;
4295 last_vdef
= gimple_vdef (group
->last_stmt
);
4296 new_vuse
= gimple_vuse (group
->last_stmt
);
4297 tree bswap_res
= NULL_TREE
;
4299 /* Clobbers are not removed. */
4300 if (gimple_clobber_p (group
->last_stmt
))
4302 new_vuse
= make_ssa_name (gimple_vop (cfun
), group
->last_stmt
);
4303 gimple_set_vdef (group
->last_stmt
, new_vuse
);
4306 if (group
->stores
[0]->rhs_code
== LROTATE_EXPR
4307 || group
->stores
[0]->rhs_code
== NOP_EXPR
)
4309 tree fndecl
= NULL_TREE
, bswap_type
= NULL_TREE
, load_type
;
4310 gimple
*ins_stmt
= group
->stores
[0]->ins_stmt
;
4311 struct symbolic_number
*n
= &group
->stores
[0]->n
;
4312 bool bswap
= group
->stores
[0]->rhs_code
== LROTATE_EXPR
;
4317 load_type
= bswap_type
= uint16_type_node
;
4320 load_type
= uint32_type_node
;
4323 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP32
);
4324 bswap_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
4328 load_type
= uint64_type_node
;
4331 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP64
);
4332 bswap_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
4339 /* If the loads have each vuse of the corresponding store,
4340 we've checked the aliasing already in try_coalesce_bswap and
4341 we want to sink the need load into seq. So need to use new_vuse
4345 if (n
->vuse
== NULL
)
4351 /* Update vuse in case it has changed by output_merged_stores. */
4352 n
->vuse
= gimple_vuse (ins_stmt
);
4354 bswap_res
= bswap_replace (gsi_start (seq
), ins_stmt
, fndecl
,
4355 bswap_type
, load_type
, n
, bswap
,
4357 gcc_assert (bswap_res
);
4360 gimple
*stmt
= NULL
;
4361 auto_vec
<gimple
*, 32> orig_stmts
;
4362 gimple_seq this_seq
;
4363 tree addr
= force_gimple_operand_1 (unshare_expr (base_addr
), &this_seq
,
4364 is_gimple_mem_ref_addr
, NULL_TREE
);
4365 gimple_seq_add_seq_without_update (&seq
, this_seq
);
4367 tree load_addr
[2] = { NULL_TREE
, NULL_TREE
};
4368 gimple_seq load_seq
[2] = { NULL
, NULL
};
4369 gimple_stmt_iterator load_gsi
[2] = { gsi_none (), gsi_none () };
4370 for (int j
= 0; j
< 2; ++j
)
4372 store_operand_info
&op
= group
->stores
[0]->ops
[j
];
4373 if (op
.base_addr
== NULL_TREE
)
4376 store_immediate_info
*infol
= group
->stores
.last ();
4377 if (gimple_vuse (op
.stmt
) == gimple_vuse (infol
->ops
[j
].stmt
))
4379 /* We can't pick the location randomly; while we've verified
4380 all the loads have the same vuse, they can be still in different
4381 basic blocks and we need to pick the one from the last bb:
4387 otherwise if we put the wider load at the q[0] load, we might
4388 segfault if q[1] is not mapped. */
4389 basic_block bb
= gimple_bb (op
.stmt
);
4390 gimple
*ostmt
= op
.stmt
;
4391 store_immediate_info
*info
;
4392 FOR_EACH_VEC_ELT (group
->stores
, i
, info
)
4394 gimple
*tstmt
= info
->ops
[j
].stmt
;
4395 basic_block tbb
= gimple_bb (tstmt
);
4396 if (dominated_by_p (CDI_DOMINATORS
, tbb
, bb
))
4402 load_gsi
[j
] = gsi_for_stmt (ostmt
);
4404 = force_gimple_operand_1 (unshare_expr (op
.base_addr
),
4405 &load_seq
[j
], is_gimple_mem_ref_addr
,
4408 else if (operand_equal_p (base_addr
, op
.base_addr
, 0))
4409 load_addr
[j
] = addr
;
4413 = force_gimple_operand_1 (unshare_expr (op
.base_addr
),
4414 &this_seq
, is_gimple_mem_ref_addr
,
4416 gimple_seq_add_seq_without_update (&seq
, this_seq
);
4420 FOR_EACH_VEC_ELT (split_stores
, i
, split_store
)
4422 const unsigned HOST_WIDE_INT try_size
= split_store
->size
;
4423 const unsigned HOST_WIDE_INT try_pos
= split_store
->bytepos
;
4424 const unsigned HOST_WIDE_INT try_bitpos
= try_pos
* BITS_PER_UNIT
;
4425 const unsigned HOST_WIDE_INT try_align
= split_store
->align
;
4426 const unsigned HOST_WIDE_INT try_offset
= try_pos
- start_byte_pos
;
4430 if (split_store
->orig
)
4432 /* If there is just a single non-clobber constituent store
4433 which covers the whole area, just reuse the lhs and rhs. */
4434 gimple
*orig_stmt
= NULL
;
4435 store_immediate_info
*store
;
4437 FOR_EACH_VEC_ELT (split_store
->orig_stores
, j
, store
)
4438 if (!gimple_clobber_p (store
->stmt
))
4440 orig_stmt
= store
->stmt
;
4443 dest
= gimple_assign_lhs (orig_stmt
);
4444 src
= gimple_assign_rhs1 (orig_stmt
);
4445 loc
= gimple_location (orig_stmt
);
4449 store_immediate_info
*info
;
4450 unsigned short clique
, base
;
4452 FOR_EACH_VEC_ELT (split_store
->orig_stores
, k
, info
)
4453 orig_stmts
.safe_push (info
->stmt
);
4455 = get_alias_type_for_stmts (orig_stmts
, false, &clique
, &base
);
4457 loc
= get_location_for_stmts (orig_stmts
);
4458 orig_stmts
.truncate (0);
4460 if (group
->string_concatenation
)
4462 = build_array_type_nelts (char_type_node
,
4463 try_size
/ BITS_PER_UNIT
);
4466 dest_type
= build_nonstandard_integer_type (try_size
, UNSIGNED
);
4467 dest_type
= build_aligned_type (dest_type
, try_align
);
4469 dest
= fold_build2 (MEM_REF
, dest_type
, addr
,
4470 build_int_cst (offset_type
, try_pos
));
4471 if (TREE_CODE (dest
) == MEM_REF
)
4473 MR_DEPENDENCE_CLIQUE (dest
) = clique
;
4474 MR_DEPENDENCE_BASE (dest
) = base
;
4478 if (bswap_res
|| group
->string_concatenation
)
4479 mask
= integer_zero_node
;
4481 mask
= native_interpret_expr (dest_type
,
4482 group
->mask
+ try_offset
,
4487 j
< 1 + (split_store
->orig_stores
[0]->ops
[1].val
!= NULL_TREE
);
4490 store_operand_info
&op
= split_store
->orig_stores
[0]->ops
[j
];
4493 else if (group
->string_concatenation
)
4495 ops
[j
] = build_string (try_size
/ BITS_PER_UNIT
,
4496 (const char *) group
->val
+ try_offset
);
4497 TREE_TYPE (ops
[j
]) = dest_type
;
4499 else if (op
.base_addr
)
4501 FOR_EACH_VEC_ELT (split_store
->orig_stores
, k
, info
)
4502 orig_stmts
.safe_push (info
->ops
[j
].stmt
);
4504 offset_type
= get_alias_type_for_stmts (orig_stmts
, true,
4506 location_t load_loc
= get_location_for_stmts (orig_stmts
);
4507 orig_stmts
.truncate (0);
4509 unsigned HOST_WIDE_INT load_align
= group
->load_align
[j
];
4510 unsigned HOST_WIDE_INT align_bitpos
4511 = known_alignment (try_bitpos
4512 - split_store
->orig_stores
[0]->bitpos
4514 if (align_bitpos
& (load_align
- 1))
4515 load_align
= least_bit_hwi (align_bitpos
);
4518 = build_nonstandard_integer_type (try_size
, UNSIGNED
);
4520 = build_aligned_type (load_int_type
, load_align
);
4522 poly_uint64 load_pos
4523 = exact_div (try_bitpos
4524 - split_store
->orig_stores
[0]->bitpos
4527 ops
[j
] = fold_build2 (MEM_REF
, load_int_type
, load_addr
[j
],
4528 build_int_cst (offset_type
, load_pos
));
4529 if (TREE_CODE (ops
[j
]) == MEM_REF
)
4531 MR_DEPENDENCE_CLIQUE (ops
[j
]) = clique
;
4532 MR_DEPENDENCE_BASE (ops
[j
]) = base
;
4534 if (!integer_zerop (mask
))
4536 /* The load might load some bits (that will be masked
4537 off later on) uninitialized, avoid -W*uninitialized
4538 warnings in that case. */
4539 suppress_warning (ops
[j
], OPT_Wuninitialized
);
4542 stmt
= gimple_build_assign (make_ssa_name (dest_type
), ops
[j
]);
4543 gimple_set_location (stmt
, load_loc
);
4544 if (gsi_bb (load_gsi
[j
]))
4546 gimple_set_vuse (stmt
, gimple_vuse (op
.stmt
));
4547 gimple_seq_add_stmt_without_update (&load_seq
[j
], stmt
);
4551 gimple_set_vuse (stmt
, new_vuse
);
4552 gimple_seq_add_stmt_without_update (&seq
, stmt
);
4554 ops
[j
] = gimple_assign_lhs (stmt
);
4556 enum tree_code inv_op
4557 = invert_op (split_store
, j
, dest_type
, xor_mask
);
4558 if (inv_op
!= NOP_EXPR
)
4560 stmt
= gimple_build_assign (make_ssa_name (dest_type
),
4561 inv_op
, ops
[j
], xor_mask
);
4562 gimple_set_location (stmt
, load_loc
);
4563 ops
[j
] = gimple_assign_lhs (stmt
);
4565 if (gsi_bb (load_gsi
[j
]))
4566 gimple_seq_add_stmt_without_update (&load_seq
[j
],
4569 gimple_seq_add_stmt_without_update (&seq
, stmt
);
4573 ops
[j
] = native_interpret_expr (dest_type
,
4574 group
->val
+ try_offset
,
4578 switch (split_store
->orig_stores
[0]->rhs_code
)
4583 FOR_EACH_VEC_ELT (split_store
->orig_stores
, k
, info
)
4585 tree rhs1
= gimple_assign_rhs1 (info
->stmt
);
4586 orig_stmts
.safe_push (SSA_NAME_DEF_STMT (rhs1
));
4589 bit_loc
= get_location_for_stmts (orig_stmts
);
4590 orig_stmts
.truncate (0);
4593 = gimple_build_assign (make_ssa_name (dest_type
),
4594 split_store
->orig_stores
[0]->rhs_code
,
4596 gimple_set_location (stmt
, bit_loc
);
4597 /* If there is just one load and there is a separate
4598 load_seq[0], emit the bitwise op right after it. */
4599 if (load_addr
[1] == NULL_TREE
&& gsi_bb (load_gsi
[0]))
4600 gimple_seq_add_stmt_without_update (&load_seq
[0], stmt
);
4601 /* Otherwise, if at least one load is in seq, we need to
4602 emit the bitwise op right before the store. If there
4603 are two loads and are emitted somewhere else, it would
4604 be better to emit the bitwise op as early as possible;
4605 we don't track where that would be possible right now
4608 gimple_seq_add_stmt_without_update (&seq
, stmt
);
4609 src
= gimple_assign_lhs (stmt
);
4611 enum tree_code inv_op
;
4612 inv_op
= invert_op (split_store
, 2, dest_type
, xor_mask
);
4613 if (inv_op
!= NOP_EXPR
)
4615 stmt
= gimple_build_assign (make_ssa_name (dest_type
),
4616 inv_op
, src
, xor_mask
);
4617 gimple_set_location (stmt
, bit_loc
);
4618 if (load_addr
[1] == NULL_TREE
&& gsi_bb (load_gsi
[0]))
4619 gimple_seq_add_stmt_without_update (&load_seq
[0], stmt
);
4621 gimple_seq_add_stmt_without_update (&seq
, stmt
);
4622 src
= gimple_assign_lhs (stmt
);
4628 if (!is_gimple_val (src
))
4630 stmt
= gimple_build_assign (make_ssa_name (TREE_TYPE (src
)),
4632 gimple_seq_add_stmt_without_update (&seq
, stmt
);
4633 src
= gimple_assign_lhs (stmt
);
4635 if (!useless_type_conversion_p (dest_type
, TREE_TYPE (src
)))
4637 stmt
= gimple_build_assign (make_ssa_name (dest_type
),
4639 gimple_seq_add_stmt_without_update (&seq
, stmt
);
4640 src
= gimple_assign_lhs (stmt
);
4642 inv_op
= invert_op (split_store
, 2, dest_type
, xor_mask
);
4643 if (inv_op
!= NOP_EXPR
)
4645 stmt
= gimple_build_assign (make_ssa_name (dest_type
),
4646 inv_op
, src
, xor_mask
);
4647 gimple_set_location (stmt
, loc
);
4648 gimple_seq_add_stmt_without_update (&seq
, stmt
);
4649 src
= gimple_assign_lhs (stmt
);
4657 /* If bit insertion is required, we use the source as an accumulator
4658 into which the successive bit-field values are manually inserted.
4659 FIXME: perhaps use BIT_INSERT_EXPR instead in some cases? */
4660 if (group
->bit_insertion
)
4661 FOR_EACH_VEC_ELT (split_store
->orig_stores
, k
, info
)
4662 if (info
->rhs_code
== BIT_INSERT_EXPR
4663 && info
->bitpos
< try_bitpos
+ try_size
4664 && info
->bitpos
+ info
->bitsize
> try_bitpos
)
4666 /* Mask, truncate, convert to final type, shift and ior into
4667 the accumulator. Note that every step can be a no-op. */
4668 const HOST_WIDE_INT start_gap
= info
->bitpos
- try_bitpos
;
4669 const HOST_WIDE_INT end_gap
4670 = (try_bitpos
+ try_size
) - (info
->bitpos
+ info
->bitsize
);
4671 tree tem
= info
->ops
[0].val
;
4672 if (!INTEGRAL_TYPE_P (TREE_TYPE (tem
)))
4674 const unsigned HOST_WIDE_INT size
4675 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (tem
)));
4677 = build_nonstandard_integer_type (size
, UNSIGNED
);
4678 tem
= gimple_build (&seq
, loc
, VIEW_CONVERT_EXPR
,
4681 if (TYPE_PRECISION (TREE_TYPE (tem
)) <= info
->bitsize
)
4684 = build_nonstandard_integer_type (info
->bitsize
,
4686 tem
= gimple_convert (&seq
, loc
, bitfield_type
, tem
);
4688 else if ((BYTES_BIG_ENDIAN
? start_gap
: end_gap
) > 0)
4691 = wi::mask (info
->bitsize
, false,
4692 TYPE_PRECISION (TREE_TYPE (tem
)));
4693 tem
= gimple_build (&seq
, loc
,
4694 BIT_AND_EXPR
, TREE_TYPE (tem
), tem
,
4695 wide_int_to_tree (TREE_TYPE (tem
),
4698 const HOST_WIDE_INT shift
4699 = (BYTES_BIG_ENDIAN
? end_gap
: start_gap
);
4701 tem
= gimple_build (&seq
, loc
,
4702 RSHIFT_EXPR
, TREE_TYPE (tem
), tem
,
4703 build_int_cst (NULL_TREE
, -shift
));
4704 tem
= gimple_convert (&seq
, loc
, dest_type
, tem
);
4706 tem
= gimple_build (&seq
, loc
,
4707 LSHIFT_EXPR
, dest_type
, tem
,
4708 build_int_cst (NULL_TREE
, shift
));
4709 src
= gimple_build (&seq
, loc
,
4710 BIT_IOR_EXPR
, dest_type
, tem
, src
);
4713 if (!integer_zerop (mask
))
4715 tree tem
= make_ssa_name (dest_type
);
4716 tree load_src
= unshare_expr (dest
);
4717 /* The load might load some or all bits uninitialized,
4718 avoid -W*uninitialized warnings in that case.
4719 As optimization, it would be nice if all the bits are
4720 provably uninitialized (no stores at all yet or previous
4721 store a CLOBBER) we'd optimize away the load and replace
4723 suppress_warning (load_src
, OPT_Wuninitialized
);
4724 stmt
= gimple_build_assign (tem
, load_src
);
4725 gimple_set_location (stmt
, loc
);
4726 gimple_set_vuse (stmt
, new_vuse
);
4727 gimple_seq_add_stmt_without_update (&seq
, stmt
);
4729 /* FIXME: If there is a single chunk of zero bits in mask,
4730 perhaps use BIT_INSERT_EXPR instead? */
4731 stmt
= gimple_build_assign (make_ssa_name (dest_type
),
4732 BIT_AND_EXPR
, tem
, mask
);
4733 gimple_set_location (stmt
, loc
);
4734 gimple_seq_add_stmt_without_update (&seq
, stmt
);
4735 tem
= gimple_assign_lhs (stmt
);
4737 if (TREE_CODE (src
) == INTEGER_CST
)
4738 src
= wide_int_to_tree (dest_type
,
4739 wi::bit_and_not (wi::to_wide (src
),
4740 wi::to_wide (mask
)));
4744 = wide_int_to_tree (dest_type
,
4745 wi::bit_not (wi::to_wide (mask
)));
4746 stmt
= gimple_build_assign (make_ssa_name (dest_type
),
4747 BIT_AND_EXPR
, src
, nmask
);
4748 gimple_set_location (stmt
, loc
);
4749 gimple_seq_add_stmt_without_update (&seq
, stmt
);
4750 src
= gimple_assign_lhs (stmt
);
4752 stmt
= gimple_build_assign (make_ssa_name (dest_type
),
4753 BIT_IOR_EXPR
, tem
, src
);
4754 gimple_set_location (stmt
, loc
);
4755 gimple_seq_add_stmt_without_update (&seq
, stmt
);
4756 src
= gimple_assign_lhs (stmt
);
4760 stmt
= gimple_build_assign (dest
, src
);
4761 gimple_set_location (stmt
, loc
);
4762 gimple_set_vuse (stmt
, new_vuse
);
4763 gimple_seq_add_stmt_without_update (&seq
, stmt
);
4765 if (group
->lp_nr
&& stmt_could_throw_p (cfun
, stmt
))
4766 add_stmt_to_eh_lp (stmt
, group
->lp_nr
);
4769 if (i
< split_stores
.length () - 1)
4770 new_vdef
= make_ssa_name (gimple_vop (cfun
), stmt
);
4772 new_vdef
= last_vdef
;
4774 gimple_set_vdef (stmt
, new_vdef
);
4775 SSA_NAME_DEF_STMT (new_vdef
) = stmt
;
4776 new_vuse
= new_vdef
;
4779 FOR_EACH_VEC_ELT (split_stores
, i
, split_store
)
4786 "New sequence of %u stores to replace old one of %u stores\n",
4787 split_stores
.length (), orig_num_stmts
);
4788 if (dump_flags
& TDF_DETAILS
)
4789 print_gimple_seq (dump_file
, seq
, 0, TDF_VOPS
| TDF_MEMSYMS
);
4792 if (gimple_clobber_p (group
->last_stmt
))
4793 update_stmt (group
->last_stmt
);
4795 if (group
->lp_nr
> 0)
4797 /* We're going to insert a sequence of (potentially) throwing stores
4798 into an active EH region. This means that we're going to create
4799 new basic blocks with EH edges pointing to the post landing pad
4800 and, therefore, to have to update its PHI nodes, if any. For the
4801 virtual PHI node, we're going to use the VDEFs created above, but
4802 for the other nodes, we need to record the original reaching defs. */
4803 eh_landing_pad lp
= get_eh_landing_pad_from_number (group
->lp_nr
);
4804 basic_block lp_bb
= label_to_block (cfun
, lp
->post_landing_pad
);
4805 basic_block last_bb
= gimple_bb (group
->last_stmt
);
4806 edge last_edge
= find_edge (last_bb
, lp_bb
);
4807 auto_vec
<tree
, 16> last_defs
;
4809 for (gpi
= gsi_start_phis (lp_bb
); !gsi_end_p (gpi
); gsi_next (&gpi
))
4811 gphi
*phi
= gpi
.phi ();
4813 if (virtual_operand_p (gimple_phi_result (phi
)))
4814 last_def
= NULL_TREE
;
4816 last_def
= gimple_phi_arg_def (phi
, last_edge
->dest_idx
);
4817 last_defs
.safe_push (last_def
);
4820 /* Do the insertion. Then, if new basic blocks have been created in the
4821 process, rewind the chain of VDEFs create above to walk the new basic
4822 blocks and update the corresponding arguments of the PHI nodes. */
4823 update_modified_stmts (seq
);
4824 if (gimple_find_sub_bbs (seq
, &last_gsi
))
4825 while (last_vdef
!= gimple_vuse (group
->last_stmt
))
4827 gimple
*stmt
= SSA_NAME_DEF_STMT (last_vdef
);
4828 if (stmt_could_throw_p (cfun
, stmt
))
4830 edge new_edge
= find_edge (gimple_bb (stmt
), lp_bb
);
4832 for (gpi
= gsi_start_phis (lp_bb
), i
= 0;
4834 gsi_next (&gpi
), i
++)
4836 gphi
*phi
= gpi
.phi ();
4838 if (virtual_operand_p (gimple_phi_result (phi
)))
4839 new_def
= last_vdef
;
4841 new_def
= last_defs
[i
];
4842 add_phi_arg (phi
, new_def
, new_edge
, UNKNOWN_LOCATION
);
4845 last_vdef
= gimple_vuse (stmt
);
4849 gsi_insert_seq_after (&last_gsi
, seq
, GSI_SAME_STMT
);
4851 for (int j
= 0; j
< 2; ++j
)
4853 gsi_insert_seq_after (&load_gsi
[j
], load_seq
[j
], GSI_SAME_STMT
);
4858 /* Process the merged_store_group objects created in the coalescing phase.
4859 The stores are all against the base object BASE.
4860 Try to output the widened stores and delete the original statements if
4861 successful. Return true iff any changes were made. */
4864 imm_store_chain_info::output_merged_stores ()
4867 merged_store_group
*merged_store
;
4869 FOR_EACH_VEC_ELT (m_merged_store_groups
, i
, merged_store
)
4871 if (dbg_cnt (store_merging
)
4872 && output_merged_store (merged_store
))
4875 store_immediate_info
*store
;
4876 FOR_EACH_VEC_ELT (merged_store
->stores
, j
, store
)
4878 gimple
*stmt
= store
->stmt
;
4879 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
4880 /* Don't remove clobbers, they are still useful even if
4881 everything is overwritten afterwards. */
4882 if (gimple_clobber_p (stmt
))
4884 gsi_remove (&gsi
, true);
4886 remove_stmt_from_eh_lp (stmt
);
4887 if (stmt
!= merged_store
->last_stmt
)
4889 unlink_stmt_vdef (stmt
);
4890 release_defs (stmt
);
4896 if (ret
&& dump_file
)
4897 fprintf (dump_file
, "Merging successful!\n");
4902 /* Coalesce the store_immediate_info objects recorded against the base object
4903 BASE in the first phase and output them.
4904 Delete the allocated structures.
4905 Return true if any changes were made. */
4908 imm_store_chain_info::terminate_and_process_chain ()
4910 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4911 fprintf (dump_file
, "Terminating chain with %u stores\n",
4912 m_store_info
.length ());
4913 /* Process store chain. */
4915 if (m_store_info
.length () > 1)
4917 ret
= coalesce_immediate_stores ();
4919 ret
= output_merged_stores ();
4922 /* Delete all the entries we allocated ourselves. */
4923 store_immediate_info
*info
;
4925 FOR_EACH_VEC_ELT (m_store_info
, i
, info
)
4928 merged_store_group
*merged_info
;
4929 FOR_EACH_VEC_ELT (m_merged_store_groups
, i
, merged_info
)
4935 /* Return true iff LHS is a destination potentially interesting for
4936 store merging. In practice these are the codes that get_inner_reference
4940 lhs_valid_for_store_merging_p (tree lhs
)
4945 switch (TREE_CODE (lhs
))
4948 case ARRAY_RANGE_REF
:
4952 case VIEW_CONVERT_EXPR
:
4959 /* Return true if the tree RHS is a constant we want to consider
4960 during store merging. In practice accept all codes that
4961 native_encode_expr accepts. */
4964 rhs_valid_for_store_merging_p (tree rhs
)
4966 unsigned HOST_WIDE_INT size
;
4967 if (TREE_CODE (rhs
) == CONSTRUCTOR
4968 && CONSTRUCTOR_NELTS (rhs
) == 0
4969 && TYPE_SIZE_UNIT (TREE_TYPE (rhs
))
4970 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (rhs
))))
4972 return (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (rhs
))).is_constant (&size
)
4973 && native_encode_expr (rhs
, NULL
, size
) != 0);
4976 /* Adjust *PBITPOS, *PBITREGION_START and *PBITREGION_END by BYTE_OFF bytes
4977 and return true on success or false on failure. */
4980 adjust_bit_pos (poly_offset_int byte_off
,
4981 poly_int64
*pbitpos
,
4982 poly_uint64
*pbitregion_start
,
4983 poly_uint64
*pbitregion_end
)
4985 poly_offset_int bit_off
= byte_off
<< LOG2_BITS_PER_UNIT
;
4986 bit_off
+= *pbitpos
;
4988 if (known_ge (bit_off
, 0) && bit_off
.to_shwi (pbitpos
))
4990 if (maybe_ne (*pbitregion_end
, 0U))
4992 bit_off
= byte_off
<< LOG2_BITS_PER_UNIT
;
4993 bit_off
+= *pbitregion_start
;
4994 if (bit_off
.to_uhwi (pbitregion_start
))
4996 bit_off
= byte_off
<< LOG2_BITS_PER_UNIT
;
4997 bit_off
+= *pbitregion_end
;
4998 if (!bit_off
.to_uhwi (pbitregion_end
))
4999 *pbitregion_end
= 0;
5002 *pbitregion_end
= 0;
5010 /* If MEM is a memory reference usable for store merging (either as
5011 store destination or for loads), return the non-NULL base_addr
5012 and set *PBITSIZE, *PBITPOS, *PBITREGION_START and *PBITREGION_END.
5013 Otherwise return NULL, *PBITPOS should be still valid even for that
5017 mem_valid_for_store_merging (tree mem
, poly_uint64
*pbitsize
,
5018 poly_uint64
*pbitpos
,
5019 poly_uint64
*pbitregion_start
,
5020 poly_uint64
*pbitregion_end
)
5022 poly_int64 bitsize
, bitpos
;
5023 poly_uint64 bitregion_start
= 0, bitregion_end
= 0;
5025 int unsignedp
= 0, reversep
= 0, volatilep
= 0;
5027 tree base_addr
= get_inner_reference (mem
, &bitsize
, &bitpos
, &offset
, &mode
,
5028 &unsignedp
, &reversep
, &volatilep
);
5029 *pbitsize
= bitsize
;
5030 if (known_le (bitsize
, 0))
5033 if (TREE_CODE (mem
) == COMPONENT_REF
5034 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (mem
, 1)))
5036 get_bit_range (&bitregion_start
, &bitregion_end
, mem
, &bitpos
, &offset
);
5037 if (maybe_ne (bitregion_end
, 0U))
5044 /* We do not want to rewrite TARGET_MEM_REFs. */
5045 if (TREE_CODE (base_addr
) == TARGET_MEM_REF
)
5047 /* In some cases get_inner_reference may return a
5048 MEM_REF [ptr + byteoffset]. For the purposes of this pass
5049 canonicalize the base_addr to MEM_REF [ptr] and take
5050 byteoffset into account in the bitpos. This occurs in
5051 PR 23684 and this way we can catch more chains. */
5052 else if (TREE_CODE (base_addr
) == MEM_REF
)
5054 if (!adjust_bit_pos (mem_ref_offset (base_addr
), &bitpos
,
5055 &bitregion_start
, &bitregion_end
))
5057 base_addr
= TREE_OPERAND (base_addr
, 0);
5059 /* get_inner_reference returns the base object, get at its
5063 if (maybe_lt (bitpos
, 0))
5065 base_addr
= build_fold_addr_expr (base_addr
);
5070 /* If the access is variable offset then a base decl has to be
5071 address-taken to be able to emit pointer-based stores to it.
5072 ??? We might be able to get away with re-using the original
5073 base up to the first variable part and then wrapping that inside
5075 tree base
= get_base_address (base_addr
);
5076 if (!base
|| (DECL_P (base
) && !TREE_ADDRESSABLE (base
)))
5079 /* Similarly to above for the base, remove constant from the offset. */
5080 if (TREE_CODE (offset
) == PLUS_EXPR
5081 && TREE_CODE (TREE_OPERAND (offset
, 1)) == INTEGER_CST
5082 && adjust_bit_pos (wi::to_poly_offset (TREE_OPERAND (offset
, 1)),
5083 &bitpos
, &bitregion_start
, &bitregion_end
))
5084 offset
= TREE_OPERAND (offset
, 0);
5086 base_addr
= build2 (POINTER_PLUS_EXPR
, TREE_TYPE (base_addr
),
5090 if (known_eq (bitregion_end
, 0U))
5092 bitregion_start
= round_down_to_byte_boundary (bitpos
);
5093 bitregion_end
= round_up_to_byte_boundary (bitpos
+ bitsize
);
5096 *pbitsize
= bitsize
;
5098 *pbitregion_start
= bitregion_start
;
5099 *pbitregion_end
= bitregion_end
;
5103 /* Return true if STMT is a load that can be used for store merging.
5104 In that case fill in *OP. BITSIZE, BITPOS, BITREGION_START and
5105 BITREGION_END are properties of the corresponding store. */
5108 handled_load (gimple
*stmt
, store_operand_info
*op
,
5109 poly_uint64 bitsize
, poly_uint64 bitpos
,
5110 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
)
5112 if (!is_gimple_assign (stmt
))
5114 if (gimple_assign_rhs_code (stmt
) == BIT_NOT_EXPR
)
5116 tree rhs1
= gimple_assign_rhs1 (stmt
);
5117 if (TREE_CODE (rhs1
) == SSA_NAME
5118 && handled_load (SSA_NAME_DEF_STMT (rhs1
), op
, bitsize
, bitpos
,
5119 bitregion_start
, bitregion_end
))
5121 /* Don't allow _1 = load; _2 = ~1; _3 = ~_2; which should have
5122 been optimized earlier, but if allowed here, would confuse the
5123 multiple uses counting. */
5126 op
->bit_not_p
= !op
->bit_not_p
;
5131 if (gimple_vuse (stmt
)
5132 && gimple_assign_load_p (stmt
)
5133 && !stmt_can_throw_internal (cfun
, stmt
)
5134 && !gimple_has_volatile_ops (stmt
))
5136 tree mem
= gimple_assign_rhs1 (stmt
);
5138 = mem_valid_for_store_merging (mem
, &op
->bitsize
, &op
->bitpos
,
5139 &op
->bitregion_start
,
5140 &op
->bitregion_end
);
5141 if (op
->base_addr
!= NULL_TREE
5142 && known_eq (op
->bitsize
, bitsize
)
5143 && multiple_p (op
->bitpos
- bitpos
, BITS_PER_UNIT
)
5144 && known_ge (op
->bitpos
- op
->bitregion_start
,
5145 bitpos
- bitregion_start
)
5146 && known_ge (op
->bitregion_end
- op
->bitpos
,
5147 bitregion_end
- bitpos
))
5151 op
->bit_not_p
= false;
5158 /* Return the index number of the landing pad for STMT, if any. */
5161 lp_nr_for_store (gimple
*stmt
)
5163 if (!cfun
->can_throw_non_call_exceptions
|| !cfun
->eh
)
5166 if (!stmt_could_throw_p (cfun
, stmt
))
5169 return lookup_stmt_eh_lp (stmt
);
5172 /* Record the store STMT for store merging optimization if it can be
5173 optimized. Return true if any changes were made. */
5176 pass_store_merging::process_store (gimple
*stmt
)
5178 tree lhs
= gimple_assign_lhs (stmt
);
5179 tree rhs
= gimple_assign_rhs1 (stmt
);
5180 poly_uint64 bitsize
, bitpos
= 0;
5181 poly_uint64 bitregion_start
= 0, bitregion_end
= 0;
5183 = mem_valid_for_store_merging (lhs
, &bitsize
, &bitpos
,
5184 &bitregion_start
, &bitregion_end
);
5185 if (known_eq (bitsize
, 0U))
5188 bool invalid
= (base_addr
== NULL_TREE
5189 || (maybe_gt (bitsize
,
5190 (unsigned int) MAX_BITSIZE_MODE_ANY_INT
)
5191 && TREE_CODE (rhs
) != INTEGER_CST
5192 && (TREE_CODE (rhs
) != CONSTRUCTOR
5193 || CONSTRUCTOR_NELTS (rhs
) != 0)));
5194 enum tree_code rhs_code
= ERROR_MARK
;
5195 bool bit_not_p
= false;
5196 struct symbolic_number n
;
5197 gimple
*ins_stmt
= NULL
;
5198 store_operand_info ops
[2];
5201 else if (TREE_CODE (rhs
) == STRING_CST
)
5203 rhs_code
= STRING_CST
;
5206 else if (rhs_valid_for_store_merging_p (rhs
))
5208 rhs_code
= INTEGER_CST
;
5211 else if (TREE_CODE (rhs
) == SSA_NAME
)
5213 gimple
*def_stmt
= SSA_NAME_DEF_STMT (rhs
), *def_stmt1
, *def_stmt2
;
5214 if (!is_gimple_assign (def_stmt
))
5216 else if (handled_load (def_stmt
, &ops
[0], bitsize
, bitpos
,
5217 bitregion_start
, bitregion_end
))
5219 else if (gimple_assign_rhs_code (def_stmt
) == BIT_NOT_EXPR
)
5221 tree rhs1
= gimple_assign_rhs1 (def_stmt
);
5222 if (TREE_CODE (rhs1
) == SSA_NAME
5223 && is_gimple_assign (SSA_NAME_DEF_STMT (rhs1
)))
5226 def_stmt
= SSA_NAME_DEF_STMT (rhs1
);
5230 if (rhs_code
== ERROR_MARK
&& !invalid
)
5231 switch ((rhs_code
= gimple_assign_rhs_code (def_stmt
)))
5237 rhs1
= gimple_assign_rhs1 (def_stmt
);
5238 rhs2
= gimple_assign_rhs2 (def_stmt
);
5240 if (TREE_CODE (rhs1
) != SSA_NAME
)
5242 def_stmt1
= SSA_NAME_DEF_STMT (rhs1
);
5243 if (!is_gimple_assign (def_stmt1
)
5244 || !handled_load (def_stmt1
, &ops
[0], bitsize
, bitpos
,
5245 bitregion_start
, bitregion_end
))
5247 if (rhs_valid_for_store_merging_p (rhs2
))
5249 else if (TREE_CODE (rhs2
) != SSA_NAME
)
5253 def_stmt2
= SSA_NAME_DEF_STMT (rhs2
);
5254 if (!is_gimple_assign (def_stmt2
))
5256 else if (!handled_load (def_stmt2
, &ops
[1], bitsize
, bitpos
,
5257 bitregion_start
, bitregion_end
))
5267 unsigned HOST_WIDE_INT const_bitsize
;
5268 if (bitsize
.is_constant (&const_bitsize
)
5269 && (const_bitsize
% BITS_PER_UNIT
) == 0
5270 && const_bitsize
<= 64
5271 && multiple_p (bitpos
, BITS_PER_UNIT
))
5273 ins_stmt
= find_bswap_or_nop_1 (def_stmt
, &n
, 12);
5277 for (unsigned HOST_WIDE_INT i
= 0;
5279 i
+= BITS_PER_UNIT
, nn
>>= BITS_PER_MARKER
)
5280 if ((nn
& MARKER_MASK
) == 0
5281 || (nn
& MARKER_MASK
) == MARKER_BYTE_UNKNOWN
)
5290 rhs_code
= LROTATE_EXPR
;
5291 ops
[0].base_addr
= NULL_TREE
;
5292 ops
[1].base_addr
= NULL_TREE
;
5300 && bitsize
.is_constant (&const_bitsize
)
5301 && ((const_bitsize
% BITS_PER_UNIT
) != 0
5302 || !multiple_p (bitpos
, BITS_PER_UNIT
))
5303 && const_bitsize
<= MAX_FIXED_MODE_SIZE
)
5305 /* Bypass a conversion to the bit-field type. */
5307 && is_gimple_assign (def_stmt
)
5308 && CONVERT_EXPR_CODE_P (rhs_code
))
5310 tree rhs1
= gimple_assign_rhs1 (def_stmt
);
5311 if (TREE_CODE (rhs1
) == SSA_NAME
5312 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
5315 rhs_code
= BIT_INSERT_EXPR
;
5318 ops
[0].base_addr
= NULL_TREE
;
5319 ops
[1].base_addr
= NULL_TREE
;
5326 unsigned HOST_WIDE_INT const_bitsize
, const_bitpos
;
5327 unsigned HOST_WIDE_INT const_bitregion_start
, const_bitregion_end
;
5329 || !bitsize
.is_constant (&const_bitsize
)
5330 || !bitpos
.is_constant (&const_bitpos
)
5331 || !bitregion_start
.is_constant (&const_bitregion_start
)
5332 || !bitregion_end
.is_constant (&const_bitregion_end
))
5333 return terminate_all_aliasing_chains (NULL
, stmt
);
5336 memset (&n
, 0, sizeof (n
));
5338 class imm_store_chain_info
**chain_info
= NULL
;
5341 chain_info
= m_stores
.get (base_addr
);
5343 store_immediate_info
*info
;
5346 unsigned int ord
= (*chain_info
)->m_store_info
.length ();
5347 info
= new store_immediate_info (const_bitsize
, const_bitpos
,
5348 const_bitregion_start
,
5349 const_bitregion_end
,
5350 stmt
, ord
, rhs_code
, n
, ins_stmt
,
5351 bit_not_p
, lp_nr_for_store (stmt
),
5353 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5355 fprintf (dump_file
, "Recording immediate store from stmt:\n");
5356 print_gimple_stmt (dump_file
, stmt
, 0);
5358 (*chain_info
)->m_store_info
.safe_push (info
);
5360 ret
|= terminate_all_aliasing_chains (chain_info
, stmt
);
5361 /* If we reach the limit of stores to merge in a chain terminate and
5362 process the chain now. */
5363 if ((*chain_info
)->m_store_info
.length ()
5364 == (unsigned int) param_max_stores_to_merge
)
5366 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5368 "Reached maximum number of statements to merge:\n");
5369 ret
|= terminate_and_process_chain (*chain_info
);
5374 /* Store aliases any existing chain? */
5375 ret
|= terminate_all_aliasing_chains (NULL
, stmt
);
5377 /* Start a new chain. */
5378 class imm_store_chain_info
*new_chain
5379 = new imm_store_chain_info (m_stores_head
, base_addr
);
5380 info
= new store_immediate_info (const_bitsize
, const_bitpos
,
5381 const_bitregion_start
,
5382 const_bitregion_end
,
5383 stmt
, 0, rhs_code
, n
, ins_stmt
,
5384 bit_not_p
, lp_nr_for_store (stmt
),
5386 new_chain
->m_store_info
.safe_push (info
);
5388 m_stores
.put (base_addr
, new_chain
);
5390 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5392 fprintf (dump_file
, "Starting active chain number %u with statement:\n",
5394 print_gimple_stmt (dump_file
, stmt
, 0);
5395 fprintf (dump_file
, "The base object is:\n");
5396 print_generic_expr (dump_file
, base_addr
);
5397 fprintf (dump_file
, "\n");
5401 /* Prune oldest chains so that after adding the chain or store above
5402 we're again within the limits set by the params. */
5403 if (m_n_chains
> (unsigned)param_max_store_chains_to_track
5404 || m_n_stores
> (unsigned)param_max_stores_to_track
)
5406 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5407 fprintf (dump_file
, "Too many chains (%u > %d) or stores (%u > %d), "
5408 "terminating oldest chain(s).\n", m_n_chains
,
5409 param_max_store_chains_to_track
, m_n_stores
,
5410 param_max_stores_to_track
);
5411 imm_store_chain_info
**e
= &m_stores_head
;
5413 unsigned n_stores
= 0;
5416 if (idx
>= (unsigned)param_max_store_chains_to_track
5417 || (n_stores
+ (*e
)->m_store_info
.length ()
5418 > (unsigned)param_max_stores_to_track
))
5419 ret
|= terminate_and_process_chain (*e
);
5422 n_stores
+= (*e
)->m_store_info
.length ();
5432 /* Return true if STMT is a store valid for store merging. */
5435 store_valid_for_store_merging_p (gimple
*stmt
)
5437 return gimple_assign_single_p (stmt
)
5438 && gimple_vdef (stmt
)
5439 && lhs_valid_for_store_merging_p (gimple_assign_lhs (stmt
))
5440 && (!gimple_has_volatile_ops (stmt
) || gimple_clobber_p (stmt
));
5443 enum basic_block_status
{ BB_INVALID
, BB_VALID
, BB_EXTENDED_VALID
};
5445 /* Return the status of basic block BB wrt store merging. */
5447 static enum basic_block_status
5448 get_status_for_store_merging (basic_block bb
)
5450 unsigned int num_statements
= 0;
5451 unsigned int num_constructors
= 0;
5452 gimple_stmt_iterator gsi
;
5454 gimple
*last_stmt
= NULL
;
5456 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5458 gimple
*stmt
= gsi_stmt (gsi
);
5460 if (is_gimple_debug (stmt
))
5465 if (store_valid_for_store_merging_p (stmt
) && ++num_statements
>= 2)
5468 if (is_gimple_assign (stmt
)
5469 && gimple_assign_rhs_code (stmt
) == CONSTRUCTOR
)
5471 tree rhs
= gimple_assign_rhs1 (stmt
);
5472 if (VECTOR_TYPE_P (TREE_TYPE (rhs
))
5473 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (rhs
)))
5474 && gimple_assign_lhs (stmt
) != NULL_TREE
)
5477 = int_size_in_bytes (TREE_TYPE (rhs
)) * BITS_PER_UNIT
;
5478 if (sz
== 16 || sz
== 32 || sz
== 64)
5480 num_constructors
= 1;
5487 if (num_statements
== 0 && num_constructors
== 0)
5490 if (cfun
->can_throw_non_call_exceptions
&& cfun
->eh
5491 && store_valid_for_store_merging_p (last_stmt
)
5492 && (e
= find_fallthru_edge (bb
->succs
))
5493 && e
->dest
== bb
->next_bb
)
5494 return BB_EXTENDED_VALID
;
5496 return (num_statements
>= 2 || num_constructors
) ? BB_VALID
: BB_INVALID
;
5499 /* Entry point for the pass. Go over each basic block recording chains of
5500 immediate stores. Upon encountering a terminating statement (as defined
5501 by stmt_terminates_chain_p) process the recorded stores and emit the widened
5505 pass_store_merging::execute (function
*fun
)
5508 hash_set
<gimple
*> orig_stmts
;
5509 bool changed
= false, open_chains
= false;
5511 /* If the function can throw and catch non-call exceptions, we'll be trying
5512 to merge stores across different basic blocks so we need to first unsplit
5513 the EH edges in order to streamline the CFG of the function. */
5514 if (cfun
->can_throw_non_call_exceptions
&& cfun
->eh
)
5515 unsplit_eh_edges ();
5517 calculate_dominance_info (CDI_DOMINATORS
);
5519 FOR_EACH_BB_FN (bb
, fun
)
5521 const basic_block_status bb_status
= get_status_for_store_merging (bb
);
5522 gimple_stmt_iterator gsi
;
5524 if (open_chains
&& (bb_status
== BB_INVALID
|| !single_pred_p (bb
)))
5526 changed
|= terminate_and_process_all_chains ();
5527 open_chains
= false;
5530 if (bb_status
== BB_INVALID
)
5533 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5534 fprintf (dump_file
, "Processing basic block <%d>:\n", bb
->index
);
5536 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
); )
5538 gimple
*stmt
= gsi_stmt (gsi
);
5541 if (is_gimple_debug (stmt
))
5544 if (gimple_has_volatile_ops (stmt
) && !gimple_clobber_p (stmt
))
5546 /* Terminate all chains. */
5547 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5548 fprintf (dump_file
, "Volatile access terminates "
5550 changed
|= terminate_and_process_all_chains ();
5551 open_chains
= false;
5555 if (is_gimple_assign (stmt
)
5556 && gimple_assign_rhs_code (stmt
) == CONSTRUCTOR
5557 && maybe_optimize_vector_constructor (stmt
))
5560 if (store_valid_for_store_merging_p (stmt
))
5561 changed
|= process_store (stmt
);
5563 changed
|= terminate_all_aliasing_chains (NULL
, stmt
);
5566 if (bb_status
== BB_EXTENDED_VALID
)
5570 changed
|= terminate_and_process_all_chains ();
5571 open_chains
= false;
5576 changed
|= terminate_and_process_all_chains ();
5578 /* If the function can throw and catch non-call exceptions and something
5579 changed during the pass, then the CFG has (very likely) changed too. */
5580 if (cfun
->can_throw_non_call_exceptions
&& cfun
->eh
&& changed
)
5582 free_dominance_info (CDI_DOMINATORS
);
5583 return TODO_cleanup_cfg
;
5591 /* Construct and return a store merging pass object. */
5594 make_pass_store_merging (gcc::context
*ctxt
)
5596 return new pass_store_merging (ctxt
);
5601 namespace selftest
{
5603 /* Selftests for store merging helpers. */
5605 /* Assert that all elements of the byte arrays X and Y, both of length N
5609 verify_array_eq (unsigned char *x
, unsigned char *y
, unsigned int n
)
5611 for (unsigned int i
= 0; i
< n
; i
++)
5615 fprintf (stderr
, "Arrays do not match. X:\n");
5616 dump_char_array (stderr
, x
, n
);
5617 fprintf (stderr
, "Y:\n");
5618 dump_char_array (stderr
, y
, n
);
5620 ASSERT_EQ (x
[i
], y
[i
]);
5624 /* Test shift_bytes_in_array_left and that it carries bits across between
5628 verify_shift_bytes_in_array_left (void)
5631 00011111 | 11100000. */
5632 unsigned char orig
[2] = { 0xe0, 0x1f };
5633 unsigned char in
[2];
5634 memcpy (in
, orig
, sizeof orig
);
5636 unsigned char expected
[2] = { 0x80, 0x7f };
5637 shift_bytes_in_array_left (in
, sizeof (in
), 2);
5638 verify_array_eq (in
, expected
, sizeof (in
));
5640 memcpy (in
, orig
, sizeof orig
);
5641 memcpy (expected
, orig
, sizeof orig
);
5642 /* Check that shifting by zero doesn't change anything. */
5643 shift_bytes_in_array_left (in
, sizeof (in
), 0);
5644 verify_array_eq (in
, expected
, sizeof (in
));
5648 /* Test shift_bytes_in_array_right and that it carries bits across between
5652 verify_shift_bytes_in_array_right (void)
5655 00011111 | 11100000. */
5656 unsigned char orig
[2] = { 0x1f, 0xe0};
5657 unsigned char in
[2];
5658 memcpy (in
, orig
, sizeof orig
);
5659 unsigned char expected
[2] = { 0x07, 0xf8};
5660 shift_bytes_in_array_right (in
, sizeof (in
), 2);
5661 verify_array_eq (in
, expected
, sizeof (in
));
5663 memcpy (in
, orig
, sizeof orig
);
5664 memcpy (expected
, orig
, sizeof orig
);
5665 /* Check that shifting by zero doesn't change anything. */
5666 shift_bytes_in_array_right (in
, sizeof (in
), 0);
5667 verify_array_eq (in
, expected
, sizeof (in
));
5670 /* Test clear_bit_region that it clears exactly the bits asked and
5674 verify_clear_bit_region (void)
5676 /* Start with all bits set and test clearing various patterns in them. */
5677 unsigned char orig
[3] = { 0xff, 0xff, 0xff};
5678 unsigned char in
[3];
5679 unsigned char expected
[3];
5680 memcpy (in
, orig
, sizeof in
);
5682 /* Check zeroing out all the bits. */
5683 clear_bit_region (in
, 0, 3 * BITS_PER_UNIT
);
5684 expected
[0] = expected
[1] = expected
[2] = 0;
5685 verify_array_eq (in
, expected
, sizeof in
);
5687 memcpy (in
, orig
, sizeof in
);
5688 /* Leave the first and last bits intact. */
5689 clear_bit_region (in
, 1, 3 * BITS_PER_UNIT
- 2);
5693 verify_array_eq (in
, expected
, sizeof in
);
5696 /* Test clear_bit_region_be that it clears exactly the bits asked and
5700 verify_clear_bit_region_be (void)
5702 /* Start with all bits set and test clearing various patterns in them. */
5703 unsigned char orig
[3] = { 0xff, 0xff, 0xff};
5704 unsigned char in
[3];
5705 unsigned char expected
[3];
5706 memcpy (in
, orig
, sizeof in
);
5708 /* Check zeroing out all the bits. */
5709 clear_bit_region_be (in
, BITS_PER_UNIT
- 1, 3 * BITS_PER_UNIT
);
5710 expected
[0] = expected
[1] = expected
[2] = 0;
5711 verify_array_eq (in
, expected
, sizeof in
);
5713 memcpy (in
, orig
, sizeof in
);
5714 /* Leave the first and last bits intact. */
5715 clear_bit_region_be (in
, BITS_PER_UNIT
- 2, 3 * BITS_PER_UNIT
- 2);
5719 verify_array_eq (in
, expected
, sizeof in
);
5723 /* Run all of the selftests within this file. */
5726 store_merging_cc_tests (void)
5728 verify_shift_bytes_in_array_left ();
5729 verify_shift_bytes_in_array_right ();
5730 verify_clear_bit_region ();
5731 verify_clear_bit_region_be ();
5734 } // namespace selftest
5735 #endif /* CHECKING_P. */