1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Elists
; use Elists
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Eval_Fat
; use Eval_Fat
;
33 with Exp_Ch3
; use Exp_Ch3
;
34 with Exp_Ch9
; use Exp_Ch9
;
35 with Exp_Disp
; use Exp_Disp
;
36 with Exp_Dist
; use Exp_Dist
;
37 with Exp_Tss
; use Exp_Tss
;
38 with Exp_Util
; use Exp_Util
;
39 with Fname
; use Fname
;
40 with Freeze
; use Freeze
;
41 with Itypes
; use Itypes
;
42 with Layout
; use Layout
;
44 with Lib
.Xref
; use Lib
.Xref
;
45 with Namet
; use Namet
;
46 with Nmake
; use Nmake
;
48 with Restrict
; use Restrict
;
49 with Rident
; use Rident
;
50 with Rtsfind
; use Rtsfind
;
52 with Sem_Aux
; use Sem_Aux
;
53 with Sem_Case
; use Sem_Case
;
54 with Sem_Cat
; use Sem_Cat
;
55 with Sem_Ch6
; use Sem_Ch6
;
56 with Sem_Ch7
; use Sem_Ch7
;
57 with Sem_Ch8
; use Sem_Ch8
;
58 with Sem_Ch13
; use Sem_Ch13
;
59 with Sem_Dim
; use Sem_Dim
;
60 with Sem_Disp
; use Sem_Disp
;
61 with Sem_Dist
; use Sem_Dist
;
62 with Sem_Elim
; use Sem_Elim
;
63 with Sem_Eval
; use Sem_Eval
;
64 with Sem_Mech
; use Sem_Mech
;
65 with Sem_Prag
; use Sem_Prag
;
66 with Sem_Res
; use Sem_Res
;
67 with Sem_Smem
; use Sem_Smem
;
68 with Sem_Type
; use Sem_Type
;
69 with Sem_Util
; use Sem_Util
;
70 with Sem_Warn
; use Sem_Warn
;
71 with Stand
; use Stand
;
72 with Sinfo
; use Sinfo
;
73 with Sinput
; use Sinput
;
74 with Snames
; use Snames
;
75 with Targparm
; use Targparm
;
76 with Tbuild
; use Tbuild
;
77 with Ttypes
; use Ttypes
;
78 with Uintp
; use Uintp
;
79 with Urealp
; use Urealp
;
81 package body Sem_Ch3
is
83 -----------------------
84 -- Local Subprograms --
85 -----------------------
87 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
);
88 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
89 -- abstract interface types implemented by a record type or a derived
92 procedure Build_Derived_Type
94 Parent_Type
: Entity_Id
;
95 Derived_Type
: Entity_Id
;
96 Is_Completion
: Boolean;
97 Derive_Subps
: Boolean := True);
98 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
99 -- the N_Full_Type_Declaration node containing the derived type definition.
100 -- Parent_Type is the entity for the parent type in the derived type
101 -- definition and Derived_Type the actual derived type. Is_Completion must
102 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
103 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
104 -- completion of a private type declaration. If Is_Completion is set to
105 -- True, N is the completion of a private type declaration and Derived_Type
106 -- is different from the defining identifier inside N (i.e. Derived_Type /=
107 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
108 -- subprograms should be derived. The only case where this parameter is
109 -- False is when Build_Derived_Type is recursively called to process an
110 -- implicit derived full type for a type derived from a private type (in
111 -- that case the subprograms must only be derived for the private view of
114 -- ??? These flags need a bit of re-examination and re-documentation:
115 -- ??? are they both necessary (both seem related to the recursion)?
117 procedure Build_Derived_Access_Type
119 Parent_Type
: Entity_Id
;
120 Derived_Type
: Entity_Id
);
121 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
122 -- create an implicit base if the parent type is constrained or if the
123 -- subtype indication has a constraint.
125 procedure Build_Derived_Array_Type
127 Parent_Type
: Entity_Id
;
128 Derived_Type
: Entity_Id
);
129 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
130 -- create an implicit base if the parent type is constrained or if the
131 -- subtype indication has a constraint.
133 procedure Build_Derived_Concurrent_Type
135 Parent_Type
: Entity_Id
;
136 Derived_Type
: Entity_Id
);
137 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
138 -- protected type, inherit entries and protected subprograms, check
139 -- legality of discriminant constraints if any.
141 procedure Build_Derived_Enumeration_Type
143 Parent_Type
: Entity_Id
;
144 Derived_Type
: Entity_Id
);
145 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
146 -- type, we must create a new list of literals. Types derived from
147 -- Character and [Wide_]Wide_Character are special-cased.
149 procedure Build_Derived_Numeric_Type
151 Parent_Type
: Entity_Id
;
152 Derived_Type
: Entity_Id
);
153 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
154 -- an anonymous base type, and propagate constraint to subtype if needed.
156 procedure Build_Derived_Private_Type
158 Parent_Type
: Entity_Id
;
159 Derived_Type
: Entity_Id
;
160 Is_Completion
: Boolean;
161 Derive_Subps
: Boolean := True);
162 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
163 -- because the parent may or may not have a completion, and the derivation
164 -- may itself be a completion.
166 procedure Build_Derived_Record_Type
168 Parent_Type
: Entity_Id
;
169 Derived_Type
: Entity_Id
;
170 Derive_Subps
: Boolean := True);
171 -- Subsidiary procedure for Build_Derived_Type and
172 -- Analyze_Private_Extension_Declaration used for tagged and untagged
173 -- record types. All parameters are as in Build_Derived_Type except that
174 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
175 -- N_Private_Extension_Declaration node. See the definition of this routine
176 -- for much more info. Derive_Subps indicates whether subprograms should
177 -- be derived from the parent type. The only case where Derive_Subps is
178 -- False is for an implicit derived full type for a type derived from a
179 -- private type (see Build_Derived_Type).
181 procedure Build_Discriminal
(Discrim
: Entity_Id
);
182 -- Create the discriminal corresponding to discriminant Discrim, that is
183 -- the parameter corresponding to Discrim to be used in initialization
184 -- procedures for the type where Discrim is a discriminant. Discriminals
185 -- are not used during semantic analysis, and are not fully defined
186 -- entities until expansion. Thus they are not given a scope until
187 -- initialization procedures are built.
189 function Build_Discriminant_Constraints
192 Derived_Def
: Boolean := False) return Elist_Id
;
193 -- Validate discriminant constraints and return the list of the constraints
194 -- in order of discriminant declarations, where T is the discriminated
195 -- unconstrained type. Def is the N_Subtype_Indication node where the
196 -- discriminants constraints for T are specified. Derived_Def is True
197 -- when building the discriminant constraints in a derived type definition
198 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
199 -- type and Def is the constraint "(xxx)" on T and this routine sets the
200 -- Corresponding_Discriminant field of the discriminants in the derived
201 -- type D to point to the corresponding discriminants in the parent type T.
203 procedure Build_Discriminated_Subtype
207 Related_Nod
: Node_Id
;
208 For_Access
: Boolean := False);
209 -- Subsidiary procedure to Constrain_Discriminated_Type and to
210 -- Process_Incomplete_Dependents. Given
212 -- T (a possibly discriminated base type)
213 -- Def_Id (a very partially built subtype for T),
215 -- the call completes Def_Id to be the appropriate E_*_Subtype.
217 -- The Elist is the list of discriminant constraints if any (it is set
218 -- to No_Elist if T is not a discriminated type, and to an empty list if
219 -- T has discriminants but there are no discriminant constraints). The
220 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
221 -- The For_Access says whether or not this subtype is really constraining
222 -- an access type. That is its sole purpose is the designated type of an
223 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
224 -- is built to avoid freezing T when the access subtype is frozen.
226 function Build_Scalar_Bound
229 Der_T
: Entity_Id
) return Node_Id
;
230 -- The bounds of a derived scalar type are conversions of the bounds of
231 -- the parent type. Optimize the representation if the bounds are literals.
232 -- Needs a more complete spec--what are the parameters exactly, and what
233 -- exactly is the returned value, and how is Bound affected???
235 procedure Build_Underlying_Full_View
239 -- If the completion of a private type is itself derived from a private
240 -- type, or if the full view of a private subtype is itself private, the
241 -- back-end has no way to compute the actual size of this type. We build
242 -- an internal subtype declaration of the proper parent type to convey
243 -- this information. This extra mechanism is needed because a full
244 -- view cannot itself have a full view (it would get clobbered during
247 procedure Check_Access_Discriminant_Requires_Limited
250 -- Check the restriction that the type to which an access discriminant
251 -- belongs must be a concurrent type or a descendant of a type with
252 -- the reserved word 'limited' in its declaration.
254 procedure Check_Anonymous_Access_Components
258 Comp_List
: Node_Id
);
259 -- Ada 2005 AI-382: an access component in a record definition can refer to
260 -- the enclosing record, in which case it denotes the type itself, and not
261 -- the current instance of the type. We create an anonymous access type for
262 -- the component, and flag it as an access to a component, so accessibility
263 -- checks are properly performed on it. The declaration of the access type
264 -- is placed ahead of that of the record to prevent order-of-elaboration
265 -- circularity issues in Gigi. We create an incomplete type for the record
266 -- declaration, which is the designated type of the anonymous access.
268 procedure Check_Delta_Expression
(E
: Node_Id
);
269 -- Check that the expression represented by E is suitable for use as a
270 -- delta expression, i.e. it is of real type and is static.
272 procedure Check_Digits_Expression
(E
: Node_Id
);
273 -- Check that the expression represented by E is suitable for use as a
274 -- digits expression, i.e. it is of integer type, positive and static.
276 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
277 -- Validate the initialization of an object declaration. T is the required
278 -- type, and Exp is the initialization expression.
280 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
);
281 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
283 procedure Check_Or_Process_Discriminants
286 Prev
: Entity_Id
:= Empty
);
287 -- If N is the full declaration of the completion T of an incomplete or
288 -- private type, check its discriminants (which are already known to be
289 -- conformant with those of the partial view, see Find_Type_Name),
290 -- otherwise process them. Prev is the entity of the partial declaration,
293 procedure Check_Real_Bound
(Bound
: Node_Id
);
294 -- Check given bound for being of real type and static. If not, post an
295 -- appropriate message, and rewrite the bound with the real literal zero.
297 procedure Constant_Redeclaration
301 -- Various checks on legality of full declaration of deferred constant.
302 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
303 -- node. The caller has not yet set any attributes of this entity.
305 function Contain_Interface
307 Ifaces
: Elist_Id
) return Boolean;
308 -- Ada 2005: Determine whether Iface is present in the list Ifaces
310 procedure Convert_Scalar_Bounds
312 Parent_Type
: Entity_Id
;
313 Derived_Type
: Entity_Id
;
315 -- For derived scalar types, convert the bounds in the type definition to
316 -- the derived type, and complete their analysis. Given a constraint of the
317 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
318 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
319 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
320 -- subtype are conversions of those bounds to the derived_type, so that
321 -- their typing is consistent.
323 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
324 -- Copies attributes from array base type T2 to array base type T1. Copies
325 -- only attributes that apply to base types, but not subtypes.
327 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
328 -- Copies attributes from array subtype T2 to array subtype T1. Copies
329 -- attributes that apply to both subtypes and base types.
331 procedure Create_Constrained_Components
335 Constraints
: Elist_Id
);
336 -- Build the list of entities for a constrained discriminated record
337 -- subtype. If a component depends on a discriminant, replace its subtype
338 -- using the discriminant values in the discriminant constraint. Subt
339 -- is the defining identifier for the subtype whose list of constrained
340 -- entities we will create. Decl_Node is the type declaration node where
341 -- we will attach all the itypes created. Typ is the base discriminated
342 -- type for the subtype Subt. Constraints is the list of discriminant
343 -- constraints for Typ.
345 function Constrain_Component_Type
347 Constrained_Typ
: Entity_Id
;
348 Related_Node
: Node_Id
;
350 Constraints
: Elist_Id
) return Entity_Id
;
351 -- Given a discriminated base type Typ, a list of discriminant constraint
352 -- Constraints for Typ and a component of Typ, with type Compon_Type,
353 -- create and return the type corresponding to Compon_type where all
354 -- discriminant references are replaced with the corresponding constraint.
355 -- If no discriminant references occur in Compon_Typ then return it as is.
356 -- Constrained_Typ is the final constrained subtype to which the
357 -- constrained Compon_Type belongs. Related_Node is the node where we will
358 -- attach all the itypes created.
360 -- Above description is confused, what is Compon_Type???
362 procedure Constrain_Access
363 (Def_Id
: in out Entity_Id
;
365 Related_Nod
: Node_Id
);
366 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
367 -- an anonymous type created for a subtype indication. In that case it is
368 -- created in the procedure and attached to Related_Nod.
370 procedure Constrain_Array
371 (Def_Id
: in out Entity_Id
;
373 Related_Nod
: Node_Id
;
374 Related_Id
: Entity_Id
;
376 -- Apply a list of index constraints to an unconstrained array type. The
377 -- first parameter is the entity for the resulting subtype. A value of
378 -- Empty for Def_Id indicates that an implicit type must be created, but
379 -- creation is delayed (and must be done by this procedure) because other
380 -- subsidiary implicit types must be created first (which is why Def_Id
381 -- is an in/out parameter). The second parameter is a subtype indication
382 -- node for the constrained array to be created (e.g. something of the
383 -- form string (1 .. 10)). Related_Nod gives the place where this type
384 -- has to be inserted in the tree. The Related_Id and Suffix parameters
385 -- are used to build the associated Implicit type name.
387 procedure Constrain_Concurrent
388 (Def_Id
: in out Entity_Id
;
390 Related_Nod
: Node_Id
;
391 Related_Id
: Entity_Id
;
393 -- Apply list of discriminant constraints to an unconstrained concurrent
396 -- SI is the N_Subtype_Indication node containing the constraint and
397 -- the unconstrained type to constrain.
399 -- Def_Id is the entity for the resulting constrained subtype. A value
400 -- of Empty for Def_Id indicates that an implicit type must be created,
401 -- but creation is delayed (and must be done by this procedure) because
402 -- other subsidiary implicit types must be created first (which is why
403 -- Def_Id is an in/out parameter).
405 -- Related_Nod gives the place where this type has to be inserted
408 -- The last two arguments are used to create its external name if needed.
410 function Constrain_Corresponding_Record
411 (Prot_Subt
: Entity_Id
;
412 Corr_Rec
: Entity_Id
;
413 Related_Nod
: Node_Id
;
414 Related_Id
: Entity_Id
) return Entity_Id
;
415 -- When constraining a protected type or task type with discriminants,
416 -- constrain the corresponding record with the same discriminant values.
418 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
);
419 -- Constrain a decimal fixed point type with a digits constraint and/or a
420 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
422 procedure Constrain_Discriminated_Type
425 Related_Nod
: Node_Id
;
426 For_Access
: Boolean := False);
427 -- Process discriminant constraints of composite type. Verify that values
428 -- have been provided for all discriminants, that the original type is
429 -- unconstrained, and that the types of the supplied expressions match
430 -- the discriminant types. The first three parameters are like in routine
431 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
434 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
);
435 -- Constrain an enumeration type with a range constraint. This is identical
436 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
438 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
);
439 -- Constrain a floating point type with either a digits constraint
440 -- and/or a range constraint, building a E_Floating_Point_Subtype.
442 procedure Constrain_Index
445 Related_Nod
: Node_Id
;
446 Related_Id
: Entity_Id
;
449 -- Process an index constraint S in a constrained array declaration. The
450 -- constraint can be a subtype name, or a range with or without an explicit
451 -- subtype mark. The index is the corresponding index of the unconstrained
452 -- array. The Related_Id and Suffix parameters are used to build the
453 -- associated Implicit type name.
455 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
);
456 -- Build subtype of a signed or modular integer type
458 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
);
459 -- Constrain an ordinary fixed point type with a range constraint, and
460 -- build an E_Ordinary_Fixed_Point_Subtype entity.
462 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
);
463 -- Copy the Priv entity into the entity of its full declaration then swap
464 -- the two entities in such a manner that the former private type is now
465 -- seen as a full type.
467 procedure Decimal_Fixed_Point_Type_Declaration
470 -- Create a new decimal fixed point type, and apply the constraint to
471 -- obtain a subtype of this new type.
473 procedure Complete_Private_Subtype
476 Full_Base
: Entity_Id
;
477 Related_Nod
: Node_Id
);
478 -- Complete the implicit full view of a private subtype by setting the
479 -- appropriate semantic fields. If the full view of the parent is a record
480 -- type, build constrained components of subtype.
482 procedure Derive_Progenitor_Subprograms
483 (Parent_Type
: Entity_Id
;
484 Tagged_Type
: Entity_Id
);
485 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
486 -- operations of progenitors of Tagged_Type, and replace the subsidiary
487 -- subtypes with Tagged_Type, to build the specs of the inherited interface
488 -- primitives. The derived primitives are aliased to those of the
489 -- interface. This routine takes care also of transferring to the full view
490 -- subprograms associated with the partial view of Tagged_Type that cover
491 -- interface primitives.
493 procedure Derived_Standard_Character
495 Parent_Type
: Entity_Id
;
496 Derived_Type
: Entity_Id
);
497 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
498 -- derivations from types Standard.Character and Standard.Wide_Character.
500 procedure Derived_Type_Declaration
503 Is_Completion
: Boolean);
504 -- Process a derived type declaration. Build_Derived_Type is invoked
505 -- to process the actual derived type definition. Parameters N and
506 -- Is_Completion have the same meaning as in Build_Derived_Type.
507 -- T is the N_Defining_Identifier for the entity defined in the
508 -- N_Full_Type_Declaration node N, that is T is the derived type.
510 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
511 -- Insert each literal in symbol table, as an overloadable identifier. Each
512 -- enumeration type is mapped into a sequence of integers, and each literal
513 -- is defined as a constant with integer value. If any of the literals are
514 -- character literals, the type is a character type, which means that
515 -- strings are legal aggregates for arrays of components of the type.
517 function Expand_To_Stored_Constraint
519 Constraint
: Elist_Id
) return Elist_Id
;
520 -- Given a constraint (i.e. a list of expressions) on the discriminants of
521 -- Typ, expand it into a constraint on the stored discriminants and return
522 -- the new list of expressions constraining the stored discriminants.
524 function Find_Type_Of_Object
526 Related_Nod
: Node_Id
) return Entity_Id
;
527 -- Get type entity for object referenced by Obj_Def, attaching the
528 -- implicit types generated to Related_Nod
530 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
531 -- Create a new float and apply the constraint to obtain subtype of it
533 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
534 -- Given an N_Subtype_Indication node N, return True if a range constraint
535 -- is present, either directly, or as part of a digits or delta constraint.
536 -- In addition, a digits constraint in the decimal case returns True, since
537 -- it establishes a default range if no explicit range is present.
539 function Inherit_Components
541 Parent_Base
: Entity_Id
;
542 Derived_Base
: Entity_Id
;
544 Inherit_Discr
: Boolean;
545 Discs
: Elist_Id
) return Elist_Id
;
546 -- Called from Build_Derived_Record_Type to inherit the components of
547 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
548 -- For more information on derived types and component inheritance please
549 -- consult the comment above the body of Build_Derived_Record_Type.
551 -- N is the original derived type declaration
553 -- Is_Tagged is set if we are dealing with tagged types
555 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
556 -- Parent_Base, otherwise no discriminants are inherited.
558 -- Discs gives the list of constraints that apply to Parent_Base in the
559 -- derived type declaration. If Discs is set to No_Elist, then we have
560 -- the following situation:
562 -- type Parent (D1..Dn : ..) is [tagged] record ...;
563 -- type Derived is new Parent [with ...];
565 -- which gets treated as
567 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
569 -- For untagged types the returned value is an association list. The list
570 -- starts from the association (Parent_Base => Derived_Base), and then it
571 -- contains a sequence of the associations of the form
573 -- (Old_Component => New_Component),
575 -- where Old_Component is the Entity_Id of a component in Parent_Base and
576 -- New_Component is the Entity_Id of the corresponding component in
577 -- Derived_Base. For untagged records, this association list is needed when
578 -- copying the record declaration for the derived base. In the tagged case
579 -- the value returned is irrelevant.
581 function Is_Valid_Constraint_Kind
583 Constraint_Kind
: Node_Kind
) return Boolean;
584 -- Returns True if it is legal to apply the given kind of constraint to the
585 -- given kind of type (index constraint to an array type, for example).
587 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
588 -- Create new modular type. Verify that modulus is in bounds
590 procedure New_Concatenation_Op
(Typ
: Entity_Id
);
591 -- Create an abbreviated declaration for an operator in order to
592 -- materialize concatenation on array types.
594 procedure Ordinary_Fixed_Point_Type_Declaration
597 -- Create a new ordinary fixed point type, and apply the constraint to
598 -- obtain subtype of it.
600 procedure Prepare_Private_Subtype_Completion
602 Related_Nod
: Node_Id
);
603 -- Id is a subtype of some private type. Creates the full declaration
604 -- associated with Id whenever possible, i.e. when the full declaration
605 -- of the base type is already known. Records each subtype into
606 -- Private_Dependents of the base type.
608 procedure Process_Incomplete_Dependents
612 -- Process all entities that depend on an incomplete type. There include
613 -- subtypes, subprogram types that mention the incomplete type in their
614 -- profiles, and subprogram with access parameters that designate the
617 -- Inc_T is the defining identifier of an incomplete type declaration, its
618 -- Ekind is E_Incomplete_Type.
620 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
622 -- Full_T is N's defining identifier.
624 -- Subtypes of incomplete types with discriminants are completed when the
625 -- parent type is. This is simpler than private subtypes, because they can
626 -- only appear in the same scope, and there is no need to exchange views.
627 -- Similarly, access_to_subprogram types may have a parameter or a return
628 -- type that is an incomplete type, and that must be replaced with the
631 -- If the full type is tagged, subprogram with access parameters that
632 -- designated the incomplete may be primitive operations of the full type,
633 -- and have to be processed accordingly.
635 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
636 -- Given the type definition for a real type, this procedure processes and
637 -- checks the real range specification of this type definition if one is
638 -- present. If errors are found, error messages are posted, and the
639 -- Real_Range_Specification of Def is reset to Empty.
641 procedure Record_Type_Declaration
645 -- Process a record type declaration (for both untagged and tagged
646 -- records). Parameters T and N are exactly like in procedure
647 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
648 -- for this routine. If this is the completion of an incomplete type
649 -- declaration, Prev is the entity of the incomplete declaration, used for
650 -- cross-referencing. Otherwise Prev = T.
652 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
);
653 -- This routine is used to process the actual record type definition (both
654 -- for untagged and tagged records). Def is a record type definition node.
655 -- This procedure analyzes the components in this record type definition.
656 -- Prev_T is the entity for the enclosing record type. It is provided so
657 -- that its Has_Task flag can be set if any of the component have Has_Task
658 -- set. If the declaration is the completion of an incomplete type
659 -- declaration, Prev_T is the original incomplete type, whose full view is
662 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
);
663 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
664 -- build a copy of the declaration tree of the parent, and we create
665 -- independently the list of components for the derived type. Semantic
666 -- information uses the component entities, but record representation
667 -- clauses are validated on the declaration tree. This procedure replaces
668 -- discriminants and components in the declaration with those that have
669 -- been created by Inherit_Components.
671 procedure Set_Fixed_Range
676 -- Build a range node with the given bounds and set it as the Scalar_Range
677 -- of the given fixed-point type entity. Loc is the source location used
678 -- for the constructed range. See body for further details.
680 procedure Set_Scalar_Range_For_Subtype
684 -- This routine is used to set the scalar range field for a subtype given
685 -- Def_Id, the entity for the subtype, and R, the range expression for the
686 -- scalar range. Subt provides the parent subtype to be used to analyze,
687 -- resolve, and check the given range.
689 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
690 -- Create a new signed integer entity, and apply the constraint to obtain
691 -- the required first named subtype of this type.
693 procedure Set_Stored_Constraint_From_Discriminant_Constraint
695 -- E is some record type. This routine computes E's Stored_Constraint
696 -- from its Discriminant_Constraint.
698 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
);
699 -- Check that an entity in a list of progenitors is an interface,
700 -- emit error otherwise.
702 -----------------------
703 -- Access_Definition --
704 -----------------------
706 function Access_Definition
707 (Related_Nod
: Node_Id
;
708 N
: Node_Id
) return Entity_Id
710 Anon_Type
: Entity_Id
;
711 Anon_Scope
: Entity_Id
;
712 Desig_Type
: Entity_Id
;
713 Enclosing_Prot_Type
: Entity_Id
:= Empty
;
716 Check_SPARK_Restriction
("access type is not allowed", N
);
718 if Is_Entry
(Current_Scope
)
719 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
721 Error_Msg_N
("task entries cannot have access parameters", N
);
725 -- Ada 2005: for an object declaration the corresponding anonymous
726 -- type is declared in the current scope.
728 -- If the access definition is the return type of another access to
729 -- function, scope is the current one, because it is the one of the
730 -- current type declaration, except for the pathological case below.
732 if Nkind_In
(Related_Nod
, N_Object_Declaration
,
733 N_Access_Function_Definition
)
735 Anon_Scope
:= Current_Scope
;
737 -- A pathological case: function returning access functions that
738 -- return access functions, etc. Each anonymous access type created
739 -- is in the enclosing scope of the outermost function.
746 while Nkind_In
(Par
, N_Access_Function_Definition
,
752 if Nkind
(Par
) = N_Function_Specification
then
753 Anon_Scope
:= Scope
(Defining_Entity
(Par
));
757 -- For the anonymous function result case, retrieve the scope of the
758 -- function specification's associated entity rather than using the
759 -- current scope. The current scope will be the function itself if the
760 -- formal part is currently being analyzed, but will be the parent scope
761 -- in the case of a parameterless function, and we always want to use
762 -- the function's parent scope. Finally, if the function is a child
763 -- unit, we must traverse the tree to retrieve the proper entity.
765 elsif Nkind
(Related_Nod
) = N_Function_Specification
766 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
768 -- If the current scope is a protected type, the anonymous access
769 -- is associated with one of the protected operations, and must
770 -- be available in the scope that encloses the protected declaration.
771 -- Otherwise the type is in the scope enclosing the subprogram.
773 -- If the function has formals, The return type of a subprogram
774 -- declaration is analyzed in the scope of the subprogram (see
775 -- Process_Formals) and thus the protected type, if present, is
776 -- the scope of the current function scope.
778 if Ekind
(Current_Scope
) = E_Protected_Type
then
779 Enclosing_Prot_Type
:= Current_Scope
;
781 elsif Ekind
(Current_Scope
) = E_Function
782 and then Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
784 Enclosing_Prot_Type
:= Scope
(Current_Scope
);
787 if Present
(Enclosing_Prot_Type
) then
788 Anon_Scope
:= Scope
(Enclosing_Prot_Type
);
791 Anon_Scope
:= Scope
(Defining_Entity
(Related_Nod
));
794 -- For an access type definition, if the current scope is a child
795 -- unit it is the scope of the type.
797 elsif Is_Compilation_Unit
(Current_Scope
) then
798 Anon_Scope
:= Current_Scope
;
800 -- For access formals, access components, and access discriminants, the
801 -- scope is that of the enclosing declaration,
804 Anon_Scope
:= Scope
(Current_Scope
);
809 (E_Anonymous_Access_Type
, Related_Nod
, Scope_Id
=> Anon_Scope
);
812 and then Ada_Version
>= Ada_2005
814 Error_Msg_N
("ALL is not permitted for anonymous access types", N
);
817 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
818 -- the corresponding semantic routine
820 if Present
(Access_To_Subprogram_Definition
(N
)) then
822 -- Compiler runtime units are compiled in Ada 2005 mode when building
823 -- the runtime library but must also be compilable in Ada 95 mode
824 -- (when bootstrapping the compiler).
826 Check_Compiler_Unit
(N
);
828 Access_Subprogram_Declaration
829 (T_Name
=> Anon_Type
,
830 T_Def
=> Access_To_Subprogram_Definition
(N
));
832 if Ekind
(Anon_Type
) = E_Access_Protected_Subprogram_Type
then
834 (Anon_Type
, E_Anonymous_Access_Protected_Subprogram_Type
);
837 (Anon_Type
, E_Anonymous_Access_Subprogram_Type
);
840 Set_Can_Use_Internal_Rep
841 (Anon_Type
, not Always_Compatible_Rep_On_Target
);
843 -- If the anonymous access is associated with a protected operation,
844 -- create a reference to it after the enclosing protected definition
845 -- because the itype will be used in the subsequent bodies.
847 if Ekind
(Current_Scope
) = E_Protected_Type
then
848 Build_Itype_Reference
(Anon_Type
, Parent
(Current_Scope
));
854 Find_Type
(Subtype_Mark
(N
));
855 Desig_Type
:= Entity
(Subtype_Mark
(N
));
857 Set_Directly_Designated_Type
(Anon_Type
, Desig_Type
);
858 Set_Etype
(Anon_Type
, Anon_Type
);
860 -- Make sure the anonymous access type has size and alignment fields
861 -- set, as required by gigi. This is necessary in the case of the
862 -- Task_Body_Procedure.
864 if not Has_Private_Component
(Desig_Type
) then
865 Layout_Type
(Anon_Type
);
868 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
869 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
870 -- the null value is allowed. In Ada 95 the null value is never allowed.
872 if Ada_Version
>= Ada_2005
then
873 Set_Can_Never_Be_Null
(Anon_Type
, Null_Exclusion_Present
(N
));
875 Set_Can_Never_Be_Null
(Anon_Type
, True);
878 -- The anonymous access type is as public as the discriminated type or
879 -- subprogram that defines it. It is imported (for back-end purposes)
880 -- if the designated type is.
882 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
884 -- Ada 2005 (AI-231): Propagate the access-constant attribute
886 Set_Is_Access_Constant
(Anon_Type
, Constant_Present
(N
));
888 -- The context is either a subprogram declaration, object declaration,
889 -- or an access discriminant, in a private or a full type declaration.
890 -- In the case of a subprogram, if the designated type is incomplete,
891 -- the operation will be a primitive operation of the full type, to be
892 -- updated subsequently. If the type is imported through a limited_with
893 -- clause, the subprogram is not a primitive operation of the type
894 -- (which is declared elsewhere in some other scope).
896 if Ekind
(Desig_Type
) = E_Incomplete_Type
897 and then not From_With_Type
(Desig_Type
)
898 and then Is_Overloadable
(Current_Scope
)
900 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
901 Set_Has_Delayed_Freeze
(Current_Scope
);
904 -- Ada 2005: if the designated type is an interface that may contain
905 -- tasks, create a Master entity for the declaration. This must be done
906 -- before expansion of the full declaration, because the declaration may
907 -- include an expression that is an allocator, whose expansion needs the
908 -- proper Master for the created tasks.
910 if Nkind
(Related_Nod
) = N_Object_Declaration
911 and then Expander_Active
913 if Is_Interface
(Desig_Type
)
914 and then Is_Limited_Record
(Desig_Type
)
916 Build_Class_Wide_Master
(Anon_Type
);
918 -- Similarly, if the type is an anonymous access that designates
919 -- tasks, create a master entity for it in the current context.
921 elsif Has_Task
(Desig_Type
)
922 and then Comes_From_Source
(Related_Nod
)
924 Build_Master_Entity
(Defining_Identifier
(Related_Nod
));
925 Build_Master_Renaming
(Anon_Type
);
929 -- For a private component of a protected type, it is imperative that
930 -- the back-end elaborate the type immediately after the protected
931 -- declaration, because this type will be used in the declarations
932 -- created for the component within each protected body, so we must
933 -- create an itype reference for it now.
935 if Nkind
(Parent
(Related_Nod
)) = N_Protected_Definition
then
936 Build_Itype_Reference
(Anon_Type
, Parent
(Parent
(Related_Nod
)));
938 -- Similarly, if the access definition is the return result of a
939 -- function, create an itype reference for it because it will be used
940 -- within the function body. For a regular function that is not a
941 -- compilation unit, insert reference after the declaration. For a
942 -- protected operation, insert it after the enclosing protected type
943 -- declaration. In either case, do not create a reference for a type
944 -- obtained through a limited_with clause, because this would introduce
945 -- semantic dependencies.
947 -- Similarly, do not create a reference if the designated type is a
948 -- generic formal, because no use of it will reach the backend.
950 elsif Nkind
(Related_Nod
) = N_Function_Specification
951 and then not From_With_Type
(Desig_Type
)
952 and then not Is_Generic_Type
(Desig_Type
)
954 if Present
(Enclosing_Prot_Type
) then
955 Build_Itype_Reference
(Anon_Type
, Parent
(Enclosing_Prot_Type
));
957 elsif Is_List_Member
(Parent
(Related_Nod
))
958 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
960 Build_Itype_Reference
(Anon_Type
, Parent
(Related_Nod
));
963 -- Finally, create an itype reference for an object declaration of an
964 -- anonymous access type. This is strictly necessary only for deferred
965 -- constants, but in any case will avoid out-of-scope problems in the
968 elsif Nkind
(Related_Nod
) = N_Object_Declaration
then
969 Build_Itype_Reference
(Anon_Type
, Related_Nod
);
973 end Access_Definition
;
975 -----------------------------------
976 -- Access_Subprogram_Declaration --
977 -----------------------------------
979 procedure Access_Subprogram_Declaration
984 procedure Check_For_Premature_Usage
(Def
: Node_Id
);
985 -- Check that type T_Name is not used, directly or recursively, as a
986 -- parameter or a return type in Def. Def is either a subtype, an
987 -- access_definition, or an access_to_subprogram_definition.
989 -------------------------------
990 -- Check_For_Premature_Usage --
991 -------------------------------
993 procedure Check_For_Premature_Usage
(Def
: Node_Id
) is
997 -- Check for a subtype mark
999 if Nkind
(Def
) in N_Has_Etype
then
1000 if Etype
(Def
) = T_Name
then
1002 ("type& cannot be used before end of its declaration", Def
);
1005 -- If this is not a subtype, then this is an access_definition
1007 elsif Nkind
(Def
) = N_Access_Definition
then
1008 if Present
(Access_To_Subprogram_Definition
(Def
)) then
1009 Check_For_Premature_Usage
1010 (Access_To_Subprogram_Definition
(Def
));
1012 Check_For_Premature_Usage
(Subtype_Mark
(Def
));
1015 -- The only cases left are N_Access_Function_Definition and
1016 -- N_Access_Procedure_Definition.
1019 if Present
(Parameter_Specifications
(Def
)) then
1020 Param
:= First
(Parameter_Specifications
(Def
));
1021 while Present
(Param
) loop
1022 Check_For_Premature_Usage
(Parameter_Type
(Param
));
1023 Param
:= Next
(Param
);
1027 if Nkind
(Def
) = N_Access_Function_Definition
then
1028 Check_For_Premature_Usage
(Result_Definition
(Def
));
1031 end Check_For_Premature_Usage
;
1035 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
1038 Desig_Type
: constant Entity_Id
:=
1039 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
1041 -- Start of processing for Access_Subprogram_Declaration
1044 Check_SPARK_Restriction
("access type is not allowed", T_Def
);
1046 -- Associate the Itype node with the inner full-type declaration or
1047 -- subprogram spec or entry body. This is required to handle nested
1048 -- anonymous declarations. For example:
1051 -- (X : access procedure
1052 -- (Y : access procedure
1055 D_Ityp
:= Associated_Node_For_Itype
(Desig_Type
);
1056 while not (Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1057 N_Private_Type_Declaration
,
1058 N_Private_Extension_Declaration
,
1059 N_Procedure_Specification
,
1060 N_Function_Specification
,
1064 Nkind_In
(D_Ityp
, N_Object_Declaration
,
1065 N_Object_Renaming_Declaration
,
1066 N_Formal_Object_Declaration
,
1067 N_Formal_Type_Declaration
,
1068 N_Task_Type_Declaration
,
1069 N_Protected_Type_Declaration
))
1071 D_Ityp
:= Parent
(D_Ityp
);
1072 pragma Assert
(D_Ityp
/= Empty
);
1075 Set_Associated_Node_For_Itype
(Desig_Type
, D_Ityp
);
1077 if Nkind_In
(D_Ityp
, N_Procedure_Specification
,
1078 N_Function_Specification
)
1080 Set_Scope
(Desig_Type
, Scope
(Defining_Entity
(D_Ityp
)));
1082 elsif Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1083 N_Object_Declaration
,
1084 N_Object_Renaming_Declaration
,
1085 N_Formal_Type_Declaration
)
1087 Set_Scope
(Desig_Type
, Scope
(Defining_Identifier
(D_Ityp
)));
1090 if Nkind
(T_Def
) = N_Access_Function_Definition
then
1091 if Nkind
(Result_Definition
(T_Def
)) = N_Access_Definition
then
1093 Acc
: constant Node_Id
:= Result_Definition
(T_Def
);
1096 if Present
(Access_To_Subprogram_Definition
(Acc
))
1098 Protected_Present
(Access_To_Subprogram_Definition
(Acc
))
1102 Replace_Anonymous_Access_To_Protected_Subprogram
1108 Access_Definition
(T_Def
, Result_Definition
(T_Def
)));
1113 Analyze
(Result_Definition
(T_Def
));
1116 Typ
: constant Entity_Id
:= Entity
(Result_Definition
(T_Def
));
1119 -- If a null exclusion is imposed on the result type, then
1120 -- create a null-excluding itype (an access subtype) and use
1121 -- it as the function's Etype.
1123 if Is_Access_Type
(Typ
)
1124 and then Null_Exclusion_In_Return_Present
(T_Def
)
1126 Set_Etype
(Desig_Type
,
1127 Create_Null_Excluding_Itype
1129 Related_Nod
=> T_Def
,
1130 Scope_Id
=> Current_Scope
));
1133 if From_With_Type
(Typ
) then
1135 -- AI05-151: Incomplete types are allowed in all basic
1136 -- declarations, including access to subprograms.
1138 if Ada_Version
>= Ada_2012
then
1143 ("illegal use of incomplete type&",
1144 Result_Definition
(T_Def
), Typ
);
1147 elsif Ekind
(Current_Scope
) = E_Package
1148 and then In_Private_Part
(Current_Scope
)
1150 if Ekind
(Typ
) = E_Incomplete_Type
then
1151 Append_Elmt
(Desig_Type
, Private_Dependents
(Typ
));
1153 elsif Is_Class_Wide_Type
(Typ
)
1154 and then Ekind
(Etype
(Typ
)) = E_Incomplete_Type
1157 (Desig_Type
, Private_Dependents
(Etype
(Typ
)));
1161 Set_Etype
(Desig_Type
, Typ
);
1166 if not (Is_Type
(Etype
(Desig_Type
))) then
1168 ("expect type in function specification",
1169 Result_Definition
(T_Def
));
1173 Set_Etype
(Desig_Type
, Standard_Void_Type
);
1176 if Present
(Formals
) then
1177 Push_Scope
(Desig_Type
);
1179 -- A bit of a kludge here. These kludges will be removed when Itypes
1180 -- have proper parent pointers to their declarations???
1182 -- Kludge 1) Link defining_identifier of formals. Required by
1183 -- First_Formal to provide its functionality.
1189 F
:= First
(Formals
);
1191 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1192 -- when it is part of an unconstrained type and subtype expansion
1193 -- is disabled. To avoid back-end problems with shared profiles,
1194 -- use previous subprogram type as the designated type.
1197 and then Present
(Scope
(Defining_Identifier
(F
)))
1199 Set_Etype
(T_Name
, T_Name
);
1200 Init_Size_Align
(T_Name
);
1201 Set_Directly_Designated_Type
(T_Name
,
1202 Scope
(Defining_Identifier
(F
)));
1206 while Present
(F
) loop
1207 if No
(Parent
(Defining_Identifier
(F
))) then
1208 Set_Parent
(Defining_Identifier
(F
), F
);
1215 Process_Formals
(Formals
, Parent
(T_Def
));
1217 -- Kludge 2) End_Scope requires that the parent pointer be set to
1218 -- something reasonable, but Itypes don't have parent pointers. So
1219 -- we set it and then unset it ???
1221 Set_Parent
(Desig_Type
, T_Name
);
1223 Set_Parent
(Desig_Type
, Empty
);
1226 -- Check for premature usage of the type being defined
1228 Check_For_Premature_Usage
(T_Def
);
1230 -- The return type and/or any parameter type may be incomplete. Mark
1231 -- the subprogram_type as depending on the incomplete type, so that
1232 -- it can be updated when the full type declaration is seen. This
1233 -- only applies to incomplete types declared in some enclosing scope,
1234 -- not to limited views from other packages.
1236 if Present
(Formals
) then
1237 Formal
:= First_Formal
(Desig_Type
);
1238 while Present
(Formal
) loop
1239 if Ekind
(Formal
) /= E_In_Parameter
1240 and then Nkind
(T_Def
) = N_Access_Function_Definition
1242 Error_Msg_N
("functions can only have IN parameters", Formal
);
1245 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
1246 and then In_Open_Scopes
(Scope
(Etype
(Formal
)))
1248 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
1249 Set_Has_Delayed_Freeze
(Desig_Type
);
1252 Next_Formal
(Formal
);
1256 -- If the return type is incomplete, this is legal as long as the
1257 -- type is declared in the current scope and will be completed in
1258 -- it (rather than being part of limited view).
1260 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
1261 and then not Has_Delayed_Freeze
(Desig_Type
)
1262 and then In_Open_Scopes
(Scope
(Etype
(Desig_Type
)))
1264 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
1265 Set_Has_Delayed_Freeze
(Desig_Type
);
1268 Check_Delayed_Subprogram
(Desig_Type
);
1270 if Protected_Present
(T_Def
) then
1271 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
1272 Set_Convention
(Desig_Type
, Convention_Protected
);
1274 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
1277 Set_Can_Use_Internal_Rep
(T_Name
, not Always_Compatible_Rep_On_Target
);
1279 Set_Etype
(T_Name
, T_Name
);
1280 Init_Size_Align
(T_Name
);
1281 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
1283 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1285 Set_Can_Never_Be_Null
(T_Name
, Null_Exclusion_Present
(T_Def
));
1287 Check_Restriction
(No_Access_Subprograms
, T_Def
);
1288 end Access_Subprogram_Declaration
;
1290 ----------------------------
1291 -- Access_Type_Declaration --
1292 ----------------------------
1294 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
1295 P
: constant Node_Id
:= Parent
(Def
);
1296 S
: constant Node_Id
:= Subtype_Indication
(Def
);
1298 Full_Desig
: Entity_Id
;
1301 Check_SPARK_Restriction
("access type is not allowed", Def
);
1303 -- Check for permissible use of incomplete type
1305 if Nkind
(S
) /= N_Subtype_Indication
then
1308 if Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
then
1309 Set_Directly_Designated_Type
(T
, Entity
(S
));
1311 Set_Directly_Designated_Type
(T
,
1312 Process_Subtype
(S
, P
, T
, 'P'));
1316 Set_Directly_Designated_Type
(T
,
1317 Process_Subtype
(S
, P
, T
, 'P'));
1320 if All_Present
(Def
) or Constant_Present
(Def
) then
1321 Set_Ekind
(T
, E_General_Access_Type
);
1323 Set_Ekind
(T
, E_Access_Type
);
1326 Full_Desig
:= Designated_Type
(T
);
1328 if Base_Type
(Full_Desig
) = T
then
1329 Error_Msg_N
("access type cannot designate itself", S
);
1331 -- In Ada 2005, the type may have a limited view through some unit
1332 -- in its own context, allowing the following circularity that cannot
1333 -- be detected earlier
1335 elsif Is_Class_Wide_Type
(Full_Desig
)
1336 and then Etype
(Full_Desig
) = T
1339 ("access type cannot designate its own classwide type", S
);
1341 -- Clean up indication of tagged status to prevent cascaded errors
1343 Set_Is_Tagged_Type
(T
, False);
1348 -- If the type has appeared already in a with_type clause, it is
1349 -- frozen and the pointer size is already set. Else, initialize.
1351 if not From_With_Type
(T
) then
1352 Init_Size_Align
(T
);
1355 -- Note that Has_Task is always false, since the access type itself
1356 -- is not a task type. See Einfo for more description on this point.
1357 -- Exactly the same consideration applies to Has_Controlled_Component.
1359 Set_Has_Task
(T
, False);
1360 Set_Has_Controlled_Component
(T
, False);
1362 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1363 -- problems where an incomplete view of this entity has been previously
1364 -- established by a limited with and an overlaid version of this field
1365 -- (Stored_Constraint) was initialized for the incomplete view.
1367 -- This reset is performed in most cases except where the access type
1368 -- has been created for the purposes of allocating or deallocating a
1369 -- build-in-place object. Such access types have explicitly set pools
1370 -- and finalization masters.
1372 if No
(Associated_Storage_Pool
(T
)) then
1373 Set_Finalization_Master
(T
, Empty
);
1376 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1379 Set_Can_Never_Be_Null
(T
, Null_Exclusion_Present
(Def
));
1380 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
1381 end Access_Type_Declaration
;
1383 ----------------------------------
1384 -- Add_Interface_Tag_Components --
1385 ----------------------------------
1387 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
) is
1388 Loc
: constant Source_Ptr
:= Sloc
(N
);
1392 procedure Add_Tag
(Iface
: Entity_Id
);
1393 -- Add tag for one of the progenitor interfaces
1399 procedure Add_Tag
(Iface
: Entity_Id
) is
1406 pragma Assert
(Is_Tagged_Type
(Iface
)
1407 and then Is_Interface
(Iface
));
1409 -- This is a reasonable place to propagate predicates
1411 if Has_Predicates
(Iface
) then
1412 Set_Has_Predicates
(Typ
);
1416 Make_Component_Definition
(Loc
,
1417 Aliased_Present
=> True,
1418 Subtype_Indication
=>
1419 New_Occurrence_Of
(RTE
(RE_Interface_Tag
), Loc
));
1421 Tag
:= Make_Temporary
(Loc
, 'V');
1424 Make_Component_Declaration
(Loc
,
1425 Defining_Identifier
=> Tag
,
1426 Component_Definition
=> Def
);
1428 Analyze_Component_Declaration
(Decl
);
1430 Set_Analyzed
(Decl
);
1431 Set_Ekind
(Tag
, E_Component
);
1433 Set_Is_Aliased
(Tag
);
1434 Set_Related_Type
(Tag
, Iface
);
1435 Init_Component_Location
(Tag
);
1437 pragma Assert
(Is_Frozen
(Iface
));
1439 Set_DT_Entry_Count
(Tag
,
1440 DT_Entry_Count
(First_Entity
(Iface
)));
1442 if No
(Last_Tag
) then
1445 Insert_After
(Last_Tag
, Decl
);
1450 -- If the ancestor has discriminants we need to give special support
1451 -- to store the offset_to_top value of the secondary dispatch tables.
1452 -- For this purpose we add a supplementary component just after the
1453 -- field that contains the tag associated with each secondary DT.
1455 if Typ
/= Etype
(Typ
)
1456 and then Has_Discriminants
(Etype
(Typ
))
1459 Make_Component_Definition
(Loc
,
1460 Subtype_Indication
=>
1461 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
1463 Offset
:= Make_Temporary
(Loc
, 'V');
1466 Make_Component_Declaration
(Loc
,
1467 Defining_Identifier
=> Offset
,
1468 Component_Definition
=> Def
);
1470 Analyze_Component_Declaration
(Decl
);
1472 Set_Analyzed
(Decl
);
1473 Set_Ekind
(Offset
, E_Component
);
1474 Set_Is_Aliased
(Offset
);
1475 Set_Related_Type
(Offset
, Iface
);
1476 Init_Component_Location
(Offset
);
1477 Insert_After
(Last_Tag
, Decl
);
1488 -- Start of processing for Add_Interface_Tag_Components
1491 if not RTE_Available
(RE_Interface_Tag
) then
1493 ("(Ada 2005) interface types not supported by this run-time!",
1498 if Ekind
(Typ
) /= E_Record_Type
1499 or else (Is_Concurrent_Record_Type
(Typ
)
1500 and then Is_Empty_List
(Abstract_Interface_List
(Typ
)))
1501 or else (not Is_Concurrent_Record_Type
(Typ
)
1502 and then No
(Interfaces
(Typ
))
1503 and then Is_Empty_Elmt_List
(Interfaces
(Typ
)))
1508 -- Find the current last tag
1510 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1511 Ext
:= Record_Extension_Part
(Type_Definition
(N
));
1513 pragma Assert
(Nkind
(Type_Definition
(N
)) = N_Record_Definition
);
1514 Ext
:= Type_Definition
(N
);
1519 if not (Present
(Component_List
(Ext
))) then
1520 Set_Null_Present
(Ext
, False);
1522 Set_Component_List
(Ext
,
1523 Make_Component_List
(Loc
,
1524 Component_Items
=> L
,
1525 Null_Present
=> False));
1527 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1528 L
:= Component_Items
1530 (Record_Extension_Part
1531 (Type_Definition
(N
))));
1533 L
:= Component_Items
1535 (Type_Definition
(N
)));
1538 -- Find the last tag component
1541 while Present
(Comp
) loop
1542 if Nkind
(Comp
) = N_Component_Declaration
1543 and then Is_Tag
(Defining_Identifier
(Comp
))
1552 -- At this point L references the list of components and Last_Tag
1553 -- references the current last tag (if any). Now we add the tag
1554 -- corresponding with all the interfaces that are not implemented
1557 if Present
(Interfaces
(Typ
)) then
1558 Elmt
:= First_Elmt
(Interfaces
(Typ
));
1559 while Present
(Elmt
) loop
1560 Add_Tag
(Node
(Elmt
));
1564 end Add_Interface_Tag_Components
;
1566 -------------------------------------
1567 -- Add_Internal_Interface_Entities --
1568 -------------------------------------
1570 procedure Add_Internal_Interface_Entities
(Tagged_Type
: Entity_Id
) is
1573 Iface_Elmt
: Elmt_Id
;
1574 Iface_Prim
: Entity_Id
;
1575 Ifaces_List
: Elist_Id
;
1576 New_Subp
: Entity_Id
:= Empty
;
1578 Restore_Scope
: Boolean := False;
1581 pragma Assert
(Ada_Version
>= Ada_2005
1582 and then Is_Record_Type
(Tagged_Type
)
1583 and then Is_Tagged_Type
(Tagged_Type
)
1584 and then Has_Interfaces
(Tagged_Type
)
1585 and then not Is_Interface
(Tagged_Type
));
1587 -- Ensure that the internal entities are added to the scope of the type
1589 if Scope
(Tagged_Type
) /= Current_Scope
then
1590 Push_Scope
(Scope
(Tagged_Type
));
1591 Restore_Scope
:= True;
1594 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1596 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1597 while Present
(Iface_Elmt
) loop
1598 Iface
:= Node
(Iface_Elmt
);
1600 -- Originally we excluded here from this processing interfaces that
1601 -- are parents of Tagged_Type because their primitives are located
1602 -- in the primary dispatch table (and hence no auxiliary internal
1603 -- entities are required to handle secondary dispatch tables in such
1604 -- case). However, these auxiliary entities are also required to
1605 -- handle derivations of interfaces in formals of generics (see
1606 -- Derive_Subprograms).
1608 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
1609 while Present
(Elmt
) loop
1610 Iface_Prim
:= Node
(Elmt
);
1612 if not Is_Predefined_Dispatching_Operation
(Iface_Prim
) then
1614 Find_Primitive_Covering_Interface
1615 (Tagged_Type
=> Tagged_Type
,
1616 Iface_Prim
=> Iface_Prim
);
1618 if No
(Prim
) and then Serious_Errors_Detected
> 0 then
1622 pragma Assert
(Present
(Prim
));
1624 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1625 -- differs from the name of the interface primitive then it is
1626 -- a private primitive inherited from a parent type. In such
1627 -- case, given that Tagged_Type covers the interface, the
1628 -- inherited private primitive becomes visible. For such
1629 -- purpose we add a new entity that renames the inherited
1630 -- private primitive.
1632 if Chars
(Prim
) /= Chars
(Iface_Prim
) then
1633 pragma Assert
(Has_Suffix
(Prim
, 'P'));
1635 (New_Subp
=> New_Subp
,
1636 Parent_Subp
=> Iface_Prim
,
1637 Derived_Type
=> Tagged_Type
,
1638 Parent_Type
=> Iface
);
1639 Set_Alias
(New_Subp
, Prim
);
1640 Set_Is_Abstract_Subprogram
1641 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1645 (New_Subp
=> New_Subp
,
1646 Parent_Subp
=> Iface_Prim
,
1647 Derived_Type
=> Tagged_Type
,
1648 Parent_Type
=> Iface
);
1650 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1651 -- associated with interface types. These entities are
1652 -- only registered in the list of primitives of its
1653 -- corresponding tagged type because they are only used
1654 -- to fill the contents of the secondary dispatch tables.
1655 -- Therefore they are removed from the homonym chains.
1657 Set_Is_Hidden
(New_Subp
);
1658 Set_Is_Internal
(New_Subp
);
1659 Set_Alias
(New_Subp
, Prim
);
1660 Set_Is_Abstract_Subprogram
1661 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1662 Set_Interface_Alias
(New_Subp
, Iface_Prim
);
1664 -- Internal entities associated with interface types are
1665 -- only registered in the list of primitives of the tagged
1666 -- type. They are only used to fill the contents of the
1667 -- secondary dispatch tables. Therefore they are not needed
1668 -- in the homonym chains.
1670 Remove_Homonym
(New_Subp
);
1672 -- Hidden entities associated with interfaces must have set
1673 -- the Has_Delay_Freeze attribute to ensure that, in case of
1674 -- locally defined tagged types (or compiling with static
1675 -- dispatch tables generation disabled) the corresponding
1676 -- entry of the secondary dispatch table is filled when
1677 -- such an entity is frozen.
1679 Set_Has_Delayed_Freeze
(New_Subp
);
1686 Next_Elmt
(Iface_Elmt
);
1689 if Restore_Scope
then
1692 end Add_Internal_Interface_Entities
;
1694 -----------------------------------
1695 -- Analyze_Component_Declaration --
1696 -----------------------------------
1698 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
1699 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1700 E
: constant Node_Id
:= Expression
(N
);
1701 Typ
: constant Node_Id
:=
1702 Subtype_Indication
(Component_Definition
(N
));
1706 function Contains_POC
(Constr
: Node_Id
) return Boolean;
1707 -- Determines whether a constraint uses the discriminant of a record
1708 -- type thus becoming a per-object constraint (POC).
1710 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean;
1711 -- Typ is the type of the current component, check whether this type is
1712 -- a limited type. Used to validate declaration against that of
1713 -- enclosing record.
1719 function Contains_POC
(Constr
: Node_Id
) return Boolean is
1721 -- Prevent cascaded errors
1723 if Error_Posted
(Constr
) then
1727 case Nkind
(Constr
) is
1728 when N_Attribute_Reference
=>
1730 Attribute_Name
(Constr
) = Name_Access
1731 and then Prefix
(Constr
) = Scope
(Entity
(Prefix
(Constr
)));
1733 when N_Discriminant_Association
=>
1734 return Denotes_Discriminant
(Expression
(Constr
));
1736 when N_Identifier
=>
1737 return Denotes_Discriminant
(Constr
);
1739 when N_Index_Or_Discriminant_Constraint
=>
1744 IDC
:= First
(Constraints
(Constr
));
1745 while Present
(IDC
) loop
1747 -- One per-object constraint is sufficient
1749 if Contains_POC
(IDC
) then
1760 return Denotes_Discriminant
(Low_Bound
(Constr
))
1762 Denotes_Discriminant
(High_Bound
(Constr
));
1764 when N_Range_Constraint
=>
1765 return Denotes_Discriminant
(Range_Expression
(Constr
));
1773 ----------------------
1774 -- Is_Known_Limited --
1775 ----------------------
1777 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean is
1778 P
: constant Entity_Id
:= Etype
(Typ
);
1779 R
: constant Entity_Id
:= Root_Type
(Typ
);
1782 if Is_Limited_Record
(Typ
) then
1785 -- If the root type is limited (and not a limited interface)
1786 -- so is the current type
1788 elsif Is_Limited_Record
(R
)
1790 (not Is_Interface
(R
)
1791 or else not Is_Limited_Interface
(R
))
1795 -- Else the type may have a limited interface progenitor, but a
1796 -- limited record parent.
1799 and then Is_Limited_Record
(P
)
1806 end Is_Known_Limited
;
1808 -- Start of processing for Analyze_Component_Declaration
1811 Generate_Definition
(Id
);
1814 if Present
(Typ
) then
1815 T
:= Find_Type_Of_Object
1816 (Subtype_Indication
(Component_Definition
(N
)), N
);
1818 if not Nkind_In
(Typ
, N_Identifier
, N_Expanded_Name
) then
1819 Check_SPARK_Restriction
("subtype mark required", Typ
);
1822 -- Ada 2005 (AI-230): Access Definition case
1825 pragma Assert
(Present
1826 (Access_Definition
(Component_Definition
(N
))));
1828 T
:= Access_Definition
1830 N
=> Access_Definition
(Component_Definition
(N
)));
1831 Set_Is_Local_Anonymous_Access
(T
);
1833 -- Ada 2005 (AI-254)
1835 if Present
(Access_To_Subprogram_Definition
1836 (Access_Definition
(Component_Definition
(N
))))
1837 and then Protected_Present
(Access_To_Subprogram_Definition
1839 (Component_Definition
(N
))))
1841 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1845 -- If the subtype is a constrained subtype of the enclosing record,
1846 -- (which must have a partial view) the back-end does not properly
1847 -- handle the recursion. Rewrite the component declaration with an
1848 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1849 -- the tree directly because side effects have already been removed from
1850 -- discriminant constraints.
1852 if Ekind
(T
) = E_Access_Subtype
1853 and then Is_Entity_Name
(Subtype_Indication
(Component_Definition
(N
)))
1854 and then Comes_From_Source
(T
)
1855 and then Nkind
(Parent
(T
)) = N_Subtype_Declaration
1856 and then Etype
(Directly_Designated_Type
(T
)) = Current_Scope
1859 (Subtype_Indication
(Component_Definition
(N
)),
1860 New_Copy_Tree
(Subtype_Indication
(Parent
(T
))));
1861 T
:= Find_Type_Of_Object
1862 (Subtype_Indication
(Component_Definition
(N
)), N
);
1865 -- If the component declaration includes a default expression, then we
1866 -- check that the component is not of a limited type (RM 3.7(5)),
1867 -- and do the special preanalysis of the expression (see section on
1868 -- "Handling of Default and Per-Object Expressions" in the spec of
1872 Check_SPARK_Restriction
("default expression is not allowed", E
);
1873 Preanalyze_Spec_Expression
(E
, T
);
1874 Check_Initialization
(T
, E
);
1876 if Ada_Version
>= Ada_2005
1877 and then Ekind
(T
) = E_Anonymous_Access_Type
1878 and then Etype
(E
) /= Any_Type
1880 -- Check RM 3.9.2(9): "if the expected type for an expression is
1881 -- an anonymous access-to-specific tagged type, then the object
1882 -- designated by the expression shall not be dynamically tagged
1883 -- unless it is a controlling operand in a call on a dispatching
1886 if Is_Tagged_Type
(Directly_Designated_Type
(T
))
1888 Ekind
(Directly_Designated_Type
(T
)) /= E_Class_Wide_Type
1890 Ekind
(Directly_Designated_Type
(Etype
(E
))) =
1894 ("access to specific tagged type required (RM 3.9.2(9))", E
);
1897 -- (Ada 2005: AI-230): Accessibility check for anonymous
1900 if Type_Access_Level
(Etype
(E
)) >
1901 Deepest_Type_Access_Level
(T
)
1904 ("expression has deeper access level than component " &
1905 "(RM 3.10.2 (12.2))", E
);
1908 -- The initialization expression is a reference to an access
1909 -- discriminant. The type of the discriminant is always deeper
1910 -- than any access type.
1912 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
1913 and then Is_Entity_Name
(E
)
1914 and then Ekind
(Entity
(E
)) = E_In_Parameter
1915 and then Present
(Discriminal_Link
(Entity
(E
)))
1918 ("discriminant has deeper accessibility level than target",
1924 -- The parent type may be a private view with unknown discriminants,
1925 -- and thus unconstrained. Regular components must be constrained.
1927 if Is_Indefinite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
1928 if Is_Class_Wide_Type
(T
) then
1930 ("class-wide subtype with unknown discriminants" &
1931 " in component declaration",
1932 Subtype_Indication
(Component_Definition
(N
)));
1935 ("unconstrained subtype in component declaration",
1936 Subtype_Indication
(Component_Definition
(N
)));
1939 -- Components cannot be abstract, except for the special case of
1940 -- the _Parent field (case of extending an abstract tagged type)
1942 elsif Is_Abstract_Type
(T
) and then Chars
(Id
) /= Name_uParent
then
1943 Error_Msg_N
("type of a component cannot be abstract", N
);
1947 Set_Is_Aliased
(Id
, Aliased_Present
(Component_Definition
(N
)));
1949 -- The component declaration may have a per-object constraint, set
1950 -- the appropriate flag in the defining identifier of the subtype.
1952 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
1954 Sindic
: constant Node_Id
:=
1955 Subtype_Indication
(Component_Definition
(N
));
1957 if Nkind
(Sindic
) = N_Subtype_Indication
1958 and then Present
(Constraint
(Sindic
))
1959 and then Contains_POC
(Constraint
(Sindic
))
1961 Set_Has_Per_Object_Constraint
(Id
);
1966 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1967 -- out some static checks.
1969 if Ada_Version
>= Ada_2005
1970 and then Can_Never_Be_Null
(T
)
1972 Null_Exclusion_Static_Checks
(N
);
1975 -- If this component is private (or depends on a private type), flag the
1976 -- record type to indicate that some operations are not available.
1978 P
:= Private_Component
(T
);
1982 -- Check for circular definitions
1984 if P
= Any_Type
then
1985 Set_Etype
(Id
, Any_Type
);
1987 -- There is a gap in the visibility of operations only if the
1988 -- component type is not defined in the scope of the record type.
1990 elsif Scope
(P
) = Scope
(Current_Scope
) then
1993 elsif Is_Limited_Type
(P
) then
1994 Set_Is_Limited_Composite
(Current_Scope
);
1997 Set_Is_Private_Composite
(Current_Scope
);
2002 and then Is_Limited_Type
(T
)
2003 and then Chars
(Id
) /= Name_uParent
2004 and then Is_Tagged_Type
(Current_Scope
)
2006 if Is_Derived_Type
(Current_Scope
)
2007 and then not Is_Known_Limited
(Current_Scope
)
2010 ("extension of nonlimited type cannot have limited components",
2013 if Is_Interface
(Root_Type
(Current_Scope
)) then
2015 ("\limitedness is not inherited from limited interface", N
);
2016 Error_Msg_N
("\add LIMITED to type indication", N
);
2019 Explain_Limited_Type
(T
, N
);
2020 Set_Etype
(Id
, Any_Type
);
2021 Set_Is_Limited_Composite
(Current_Scope
, False);
2023 elsif not Is_Derived_Type
(Current_Scope
)
2024 and then not Is_Limited_Record
(Current_Scope
)
2025 and then not Is_Concurrent_Type
(Current_Scope
)
2028 ("nonlimited tagged type cannot have limited components", N
);
2029 Explain_Limited_Type
(T
, N
);
2030 Set_Etype
(Id
, Any_Type
);
2031 Set_Is_Limited_Composite
(Current_Scope
, False);
2035 Set_Original_Record_Component
(Id
, Id
);
2037 if Has_Aspects
(N
) then
2038 Analyze_Aspect_Specifications
(N
, Id
);
2041 Analyze_Dimension
(N
);
2042 end Analyze_Component_Declaration
;
2044 --------------------------
2045 -- Analyze_Declarations --
2046 --------------------------
2048 procedure Analyze_Declarations
(L
: List_Id
) is
2050 Freeze_From
: Entity_Id
:= Empty
;
2051 Next_Node
: Node_Id
;
2054 -- Adjust D not to include implicit label declarations, since these
2055 -- have strange Sloc values that result in elaboration check problems.
2056 -- (They have the sloc of the label as found in the source, and that
2057 -- is ahead of the current declarative part).
2063 procedure Adjust_D
is
2065 while Present
(Prev
(D
))
2066 and then Nkind
(D
) = N_Implicit_Label_Declaration
2072 -- Start of processing for Analyze_Declarations
2075 if Restriction_Check_Required
(SPARK
) then
2076 Check_Later_Vs_Basic_Declarations
(L
, During_Parsing
=> False);
2080 while Present
(D
) loop
2082 -- Package spec cannot contain a package declaration in SPARK
2084 if Nkind
(D
) = N_Package_Declaration
2085 and then Nkind
(Parent
(L
)) = N_Package_Specification
2087 Check_SPARK_Restriction
2088 ("package specification cannot contain a package declaration",
2092 -- Complete analysis of declaration
2095 Next_Node
:= Next
(D
);
2097 if No
(Freeze_From
) then
2098 Freeze_From
:= First_Entity
(Current_Scope
);
2101 -- At the end of a declarative part, freeze remaining entities
2102 -- declared in it. The end of the visible declarations of package
2103 -- specification is not the end of a declarative part if private
2104 -- declarations are present. The end of a package declaration is a
2105 -- freezing point only if it a library package. A task definition or
2106 -- protected type definition is not a freeze point either. Finally,
2107 -- we do not freeze entities in generic scopes, because there is no
2108 -- code generated for them and freeze nodes will be generated for
2111 -- The end of a package instantiation is not a freeze point, but
2112 -- for now we make it one, because the generic body is inserted
2113 -- (currently) immediately after. Generic instantiations will not
2114 -- be a freeze point once delayed freezing of bodies is implemented.
2115 -- (This is needed in any case for early instantiations ???).
2117 if No
(Next_Node
) then
2118 if Nkind_In
(Parent
(L
), N_Component_List
,
2120 N_Protected_Definition
)
2124 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
2125 if Nkind
(Parent
(L
)) = N_Package_Body
then
2126 Freeze_From
:= First_Entity
(Current_Scope
);
2130 Freeze_All
(Freeze_From
, D
);
2131 Freeze_From
:= Last_Entity
(Current_Scope
);
2133 elsif Scope
(Current_Scope
) /= Standard_Standard
2134 and then not Is_Child_Unit
(Current_Scope
)
2135 and then No
(Generic_Parent
(Parent
(L
)))
2139 elsif L
/= Visible_Declarations
(Parent
(L
))
2140 or else No
(Private_Declarations
(Parent
(L
)))
2141 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
2144 Freeze_All
(Freeze_From
, D
);
2145 Freeze_From
:= Last_Entity
(Current_Scope
);
2148 -- If next node is a body then freeze all types before the body.
2149 -- An exception occurs for some expander-generated bodies. If these
2150 -- are generated at places where in general language rules would not
2151 -- allow a freeze point, then we assume that the expander has
2152 -- explicitly checked that all required types are properly frozen,
2153 -- and we do not cause general freezing here. This special circuit
2154 -- is used when the encountered body is marked as having already
2157 -- In all other cases (bodies that come from source, and expander
2158 -- generated bodies that have not been analyzed yet), freeze all
2159 -- types now. Note that in the latter case, the expander must take
2160 -- care to attach the bodies at a proper place in the tree so as to
2161 -- not cause unwanted freezing at that point.
2163 elsif not Analyzed
(Next_Node
)
2164 and then (Nkind_In
(Next_Node
, N_Subprogram_Body
,
2170 Nkind
(Next_Node
) in N_Body_Stub
)
2173 Freeze_All
(Freeze_From
, D
);
2174 Freeze_From
:= Last_Entity
(Current_Scope
);
2180 -- One more thing to do, we need to scan the declarations to check
2181 -- for any precondition/postcondition pragmas (Pre/Post aspects have
2182 -- by this stage been converted into corresponding pragmas). It is
2183 -- at this point that we analyze the expressions in such pragmas,
2184 -- to implement the delayed visibility requirement.
2194 while Present
(Decl
) loop
2195 if Nkind
(Original_Node
(Decl
)) = N_Subprogram_Declaration
then
2196 Spec
:= Specification
(Original_Node
(Decl
));
2197 Sent
:= Defining_Unit_Name
(Spec
);
2199 Prag
:= Spec_PPC_List
(Contract
(Sent
));
2200 while Present
(Prag
) loop
2201 Analyze_PPC_In_Decl_Part
(Prag
, Sent
);
2202 Prag
:= Next_Pragma
(Prag
);
2205 Check_Subprogram_Contract
(Sent
);
2207 Prag
:= Spec_TC_List
(Contract
(Sent
));
2208 while Present
(Prag
) loop
2209 Analyze_TC_In_Decl_Part
(Prag
, Sent
);
2210 Prag
:= Next_Pragma
(Prag
);
2217 end Analyze_Declarations
;
2219 -----------------------------------
2220 -- Analyze_Full_Type_Declaration --
2221 -----------------------------------
2223 procedure Analyze_Full_Type_Declaration
(N
: Node_Id
) is
2224 Def
: constant Node_Id
:= Type_Definition
(N
);
2225 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2229 Is_Remote
: constant Boolean :=
2230 (Is_Remote_Types
(Current_Scope
)
2231 or else Is_Remote_Call_Interface
(Current_Scope
))
2232 and then not (In_Private_Part
(Current_Scope
)
2233 or else In_Package_Body
(Current_Scope
));
2235 procedure Check_Ops_From_Incomplete_Type
;
2236 -- If there is a tagged incomplete partial view of the type, traverse
2237 -- the primitives of the incomplete view and change the type of any
2238 -- controlling formals and result to indicate the full view. The
2239 -- primitives will be added to the full type's primitive operations
2240 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2241 -- is called from Process_Incomplete_Dependents).
2243 ------------------------------------
2244 -- Check_Ops_From_Incomplete_Type --
2245 ------------------------------------
2247 procedure Check_Ops_From_Incomplete_Type
is
2254 and then Ekind
(Prev
) = E_Incomplete_Type
2255 and then Is_Tagged_Type
(Prev
)
2256 and then Is_Tagged_Type
(T
)
2258 Elmt
:= First_Elmt
(Primitive_Operations
(Prev
));
2259 while Present
(Elmt
) loop
2262 Formal
:= First_Formal
(Op
);
2263 while Present
(Formal
) loop
2264 if Etype
(Formal
) = Prev
then
2265 Set_Etype
(Formal
, T
);
2268 Next_Formal
(Formal
);
2271 if Etype
(Op
) = Prev
then
2278 end Check_Ops_From_Incomplete_Type
;
2280 -- Start of processing for Analyze_Full_Type_Declaration
2283 Prev
:= Find_Type_Name
(N
);
2285 -- The full view, if present, now points to the current type
2287 -- Ada 2005 (AI-50217): If the type was previously decorated when
2288 -- imported through a LIMITED WITH clause, it appears as incomplete
2289 -- but has no full view.
2291 if Ekind
(Prev
) = E_Incomplete_Type
2292 and then Present
(Full_View
(Prev
))
2294 T
:= Full_View
(Prev
);
2299 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
2301 -- We set the flag Is_First_Subtype here. It is needed to set the
2302 -- corresponding flag for the Implicit class-wide-type created
2303 -- during tagged types processing.
2305 Set_Is_First_Subtype
(T
, True);
2307 -- Only composite types other than array types are allowed to have
2312 -- For derived types, the rule will be checked once we've figured
2313 -- out the parent type.
2315 when N_Derived_Type_Definition
=>
2318 -- For record types, discriminants are allowed, unless we are in
2321 when N_Record_Definition
=>
2322 if Present
(Discriminant_Specifications
(N
)) then
2323 Check_SPARK_Restriction
2324 ("discriminant type is not allowed",
2326 (First
(Discriminant_Specifications
(N
))));
2330 if Present
(Discriminant_Specifications
(N
)) then
2332 ("elementary or array type cannot have discriminants",
2334 (First
(Discriminant_Specifications
(N
))));
2338 -- Elaborate the type definition according to kind, and generate
2339 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2340 -- already done (this happens during the reanalysis that follows a call
2341 -- to the high level optimizer).
2343 if not Analyzed
(T
) then
2348 when N_Access_To_Subprogram_Definition
=>
2349 Access_Subprogram_Declaration
(T
, Def
);
2351 -- If this is a remote access to subprogram, we must create the
2352 -- equivalent fat pointer type, and related subprograms.
2355 Process_Remote_AST_Declaration
(N
);
2358 -- Validate categorization rule against access type declaration
2359 -- usually a violation in Pure unit, Shared_Passive unit.
2361 Validate_Access_Type_Declaration
(T
, N
);
2363 when N_Access_To_Object_Definition
=>
2364 Access_Type_Declaration
(T
, Def
);
2366 -- Validate categorization rule against access type declaration
2367 -- usually a violation in Pure unit, Shared_Passive unit.
2369 Validate_Access_Type_Declaration
(T
, N
);
2371 -- If we are in a Remote_Call_Interface package and define a
2372 -- RACW, then calling stubs and specific stream attributes
2376 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
2378 Add_RACW_Features
(Def_Id
);
2381 -- Set no strict aliasing flag if config pragma seen
2383 if Opt
.No_Strict_Aliasing
then
2384 Set_No_Strict_Aliasing
(Base_Type
(Def_Id
));
2387 when N_Array_Type_Definition
=>
2388 Array_Type_Declaration
(T
, Def
);
2390 when N_Derived_Type_Definition
=>
2391 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
2393 when N_Enumeration_Type_Definition
=>
2394 Enumeration_Type_Declaration
(T
, Def
);
2396 when N_Floating_Point_Definition
=>
2397 Floating_Point_Type_Declaration
(T
, Def
);
2399 when N_Decimal_Fixed_Point_Definition
=>
2400 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
2402 when N_Ordinary_Fixed_Point_Definition
=>
2403 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
2405 when N_Signed_Integer_Type_Definition
=>
2406 Signed_Integer_Type_Declaration
(T
, Def
);
2408 when N_Modular_Type_Definition
=>
2409 Modular_Type_Declaration
(T
, Def
);
2411 when N_Record_Definition
=>
2412 Record_Type_Declaration
(T
, N
, Prev
);
2414 -- If declaration has a parse error, nothing to elaborate.
2420 raise Program_Error
;
2425 if Etype
(T
) = Any_Type
then
2429 -- Controlled type is not allowed in SPARK
2431 if Is_Visibly_Controlled
(T
) then
2432 Check_SPARK_Restriction
("controlled type is not allowed", N
);
2435 -- Some common processing for all types
2437 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
2438 Check_Ops_From_Incomplete_Type
;
2440 -- Both the declared entity, and its anonymous base type if one
2441 -- was created, need freeze nodes allocated.
2444 B
: constant Entity_Id
:= Base_Type
(T
);
2447 -- In the case where the base type differs from the first subtype, we
2448 -- pre-allocate a freeze node, and set the proper link to the first
2449 -- subtype. Freeze_Entity will use this preallocated freeze node when
2450 -- it freezes the entity.
2452 -- This does not apply if the base type is a generic type, whose
2453 -- declaration is independent of the current derived definition.
2455 if B
/= T
and then not Is_Generic_Type
(B
) then
2456 Ensure_Freeze_Node
(B
);
2457 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
2460 -- A type that is imported through a limited_with clause cannot
2461 -- generate any code, and thus need not be frozen. However, an access
2462 -- type with an imported designated type needs a finalization list,
2463 -- which may be referenced in some other package that has non-limited
2464 -- visibility on the designated type. Thus we must create the
2465 -- finalization list at the point the access type is frozen, to
2466 -- prevent unsatisfied references at link time.
2468 if not From_With_Type
(T
) or else Is_Access_Type
(T
) then
2469 Set_Has_Delayed_Freeze
(T
);
2473 -- Case where T is the full declaration of some private type which has
2474 -- been swapped in Defining_Identifier (N).
2476 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
2477 Process_Full_View
(N
, T
, Def_Id
);
2479 -- Record the reference. The form of this is a little strange, since
2480 -- the full declaration has been swapped in. So the first parameter
2481 -- here represents the entity to which a reference is made which is
2482 -- the "real" entity, i.e. the one swapped in, and the second
2483 -- parameter provides the reference location.
2485 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2486 -- since we don't want a complaint about the full type being an
2487 -- unwanted reference to the private type
2490 B
: constant Boolean := Has_Pragma_Unreferenced
(T
);
2492 Set_Has_Pragma_Unreferenced
(T
, False);
2493 Generate_Reference
(T
, T
, 'c');
2494 Set_Has_Pragma_Unreferenced
(T
, B
);
2497 Set_Completion_Referenced
(Def_Id
);
2499 -- For completion of incomplete type, process incomplete dependents
2500 -- and always mark the full type as referenced (it is the incomplete
2501 -- type that we get for any real reference).
2503 elsif Ekind
(Prev
) = E_Incomplete_Type
then
2504 Process_Incomplete_Dependents
(N
, T
, Prev
);
2505 Generate_Reference
(Prev
, Def_Id
, 'c');
2506 Set_Completion_Referenced
(Def_Id
);
2508 -- If not private type or incomplete type completion, this is a real
2509 -- definition of a new entity, so record it.
2512 Generate_Definition
(Def_Id
);
2515 if Chars
(Scope
(Def_Id
)) = Name_System
2516 and then Chars
(Def_Id
) = Name_Address
2517 and then Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(N
)))
2519 Set_Is_Descendent_Of_Address
(Def_Id
);
2520 Set_Is_Descendent_Of_Address
(Base_Type
(Def_Id
));
2521 Set_Is_Descendent_Of_Address
(Prev
);
2524 Set_Optimize_Alignment_Flags
(Def_Id
);
2525 Check_Eliminated
(Def_Id
);
2527 -- If the declaration is a completion and aspects are present, apply
2528 -- them to the entity for the type which is currently the partial
2529 -- view, but which is the one that will be frozen.
2531 if Has_Aspects
(N
) then
2532 if Prev
/= Def_Id
then
2533 Analyze_Aspect_Specifications
(N
, Prev
);
2535 Analyze_Aspect_Specifications
(N
, Def_Id
);
2538 end Analyze_Full_Type_Declaration
;
2540 ----------------------------------
2541 -- Analyze_Incomplete_Type_Decl --
2542 ----------------------------------
2544 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
2545 F
: constant Boolean := Is_Pure
(Current_Scope
);
2549 Check_SPARK_Restriction
("incomplete type is not allowed", N
);
2551 Generate_Definition
(Defining_Identifier
(N
));
2553 -- Process an incomplete declaration. The identifier must not have been
2554 -- declared already in the scope. However, an incomplete declaration may
2555 -- appear in the private part of a package, for a private type that has
2556 -- already been declared.
2558 -- In this case, the discriminants (if any) must match
2560 T
:= Find_Type_Name
(N
);
2562 Set_Ekind
(T
, E_Incomplete_Type
);
2563 Init_Size_Align
(T
);
2564 Set_Is_First_Subtype
(T
, True);
2567 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2568 -- incomplete types.
2570 if Tagged_Present
(N
) then
2571 Set_Is_Tagged_Type
(T
);
2572 Make_Class_Wide_Type
(T
);
2573 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2578 Set_Stored_Constraint
(T
, No_Elist
);
2580 if Present
(Discriminant_Specifications
(N
)) then
2581 Process_Discriminants
(N
);
2586 -- If the type has discriminants, non-trivial subtypes may be
2587 -- declared before the full view of the type. The full views of those
2588 -- subtypes will be built after the full view of the type.
2590 Set_Private_Dependents
(T
, New_Elmt_List
);
2592 end Analyze_Incomplete_Type_Decl
;
2594 -----------------------------------
2595 -- Analyze_Interface_Declaration --
2596 -----------------------------------
2598 procedure Analyze_Interface_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
2599 CW
: constant Entity_Id
:= Class_Wide_Type
(T
);
2602 Set_Is_Tagged_Type
(T
);
2604 Set_Is_Limited_Record
(T
, Limited_Present
(Def
)
2605 or else Task_Present
(Def
)
2606 or else Protected_Present
(Def
)
2607 or else Synchronized_Present
(Def
));
2609 -- Type is abstract if full declaration carries keyword, or if previous
2610 -- partial view did.
2612 Set_Is_Abstract_Type
(T
);
2613 Set_Is_Interface
(T
);
2615 -- Type is a limited interface if it includes the keyword limited, task,
2616 -- protected, or synchronized.
2618 Set_Is_Limited_Interface
2619 (T
, Limited_Present
(Def
)
2620 or else Protected_Present
(Def
)
2621 or else Synchronized_Present
(Def
)
2622 or else Task_Present
(Def
));
2624 Set_Interfaces
(T
, New_Elmt_List
);
2625 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2627 -- Complete the decoration of the class-wide entity if it was already
2628 -- built (i.e. during the creation of the limited view)
2630 if Present
(CW
) then
2631 Set_Is_Interface
(CW
);
2632 Set_Is_Limited_Interface
(CW
, Is_Limited_Interface
(T
));
2635 -- Check runtime support for synchronized interfaces
2637 if VM_Target
= No_VM
2638 and then (Is_Task_Interface
(T
)
2639 or else Is_Protected_Interface
(T
)
2640 or else Is_Synchronized_Interface
(T
))
2641 and then not RTE_Available
(RE_Select_Specific_Data
)
2643 Error_Msg_CRT
("synchronized interfaces", T
);
2645 end Analyze_Interface_Declaration
;
2647 -----------------------------
2648 -- Analyze_Itype_Reference --
2649 -----------------------------
2651 -- Nothing to do. This node is placed in the tree only for the benefit of
2652 -- back end processing, and has no effect on the semantic processing.
2654 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
2656 pragma Assert
(Is_Itype
(Itype
(N
)));
2658 end Analyze_Itype_Reference
;
2660 --------------------------------
2661 -- Analyze_Number_Declaration --
2662 --------------------------------
2664 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
2665 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2666 E
: constant Node_Id
:= Expression
(N
);
2668 Index
: Interp_Index
;
2672 Generate_Definition
(Id
);
2675 -- This is an optimization of a common case of an integer literal
2677 if Nkind
(E
) = N_Integer_Literal
then
2678 Set_Is_Static_Expression
(E
, True);
2679 Set_Etype
(E
, Universal_Integer
);
2681 Set_Etype
(Id
, Universal_Integer
);
2682 Set_Ekind
(Id
, E_Named_Integer
);
2683 Set_Is_Frozen
(Id
, True);
2687 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
2689 -- Process expression, replacing error by integer zero, to avoid
2690 -- cascaded errors or aborts further along in the processing
2692 -- Replace Error by integer zero, which seems least likely to cause
2696 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
2697 Set_Error_Posted
(E
);
2702 -- Verify that the expression is static and numeric. If
2703 -- the expression is overloaded, we apply the preference
2704 -- rule that favors root numeric types.
2706 if not Is_Overloaded
(E
) then
2712 Get_First_Interp
(E
, Index
, It
);
2713 while Present
(It
.Typ
) loop
2714 if (Is_Integer_Type
(It
.Typ
)
2715 or else Is_Real_Type
(It
.Typ
))
2716 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
2718 if T
= Any_Type
then
2721 elsif It
.Typ
= Universal_Real
2722 or else It
.Typ
= Universal_Integer
2724 -- Choose universal interpretation over any other
2731 Get_Next_Interp
(Index
, It
);
2735 if Is_Integer_Type
(T
) then
2737 Set_Etype
(Id
, Universal_Integer
);
2738 Set_Ekind
(Id
, E_Named_Integer
);
2740 elsif Is_Real_Type
(T
) then
2742 -- Because the real value is converted to universal_real, this is a
2743 -- legal context for a universal fixed expression.
2745 if T
= Universal_Fixed
then
2747 Loc
: constant Source_Ptr
:= Sloc
(N
);
2748 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
2750 New_Occurrence_Of
(Universal_Real
, Loc
),
2751 Expression
=> Relocate_Node
(E
));
2758 elsif T
= Any_Fixed
then
2759 Error_Msg_N
("illegal context for mixed mode operation", E
);
2761 -- Expression is of the form : universal_fixed * integer. Try to
2762 -- resolve as universal_real.
2764 T
:= Universal_Real
;
2769 Set_Etype
(Id
, Universal_Real
);
2770 Set_Ekind
(Id
, E_Named_Real
);
2773 Wrong_Type
(E
, Any_Numeric
);
2777 Set_Ekind
(Id
, E_Constant
);
2778 Set_Never_Set_In_Source
(Id
, True);
2779 Set_Is_True_Constant
(Id
, True);
2783 if Nkind_In
(E
, N_Integer_Literal
, N_Real_Literal
) then
2784 Set_Etype
(E
, Etype
(Id
));
2787 if not Is_OK_Static_Expression
(E
) then
2788 Flag_Non_Static_Expr
2789 ("non-static expression used in number declaration!", E
);
2790 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
2791 Set_Etype
(E
, Any_Type
);
2793 end Analyze_Number_Declaration
;
2795 --------------------------------
2796 -- Analyze_Object_Declaration --
2797 --------------------------------
2799 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
2800 Loc
: constant Source_Ptr
:= Sloc
(N
);
2801 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2805 E
: Node_Id
:= Expression
(N
);
2806 -- E is set to Expression (N) throughout this routine. When
2807 -- Expression (N) is modified, E is changed accordingly.
2809 Prev_Entity
: Entity_Id
:= Empty
;
2811 function Count_Tasks
(T
: Entity_Id
) return Uint
;
2812 -- This function is called when a non-generic library level object of a
2813 -- task type is declared. Its function is to count the static number of
2814 -- tasks declared within the type (it is only called if Has_Tasks is set
2815 -- for T). As a side effect, if an array of tasks with non-static bounds
2816 -- or a variant record type is encountered, Check_Restrictions is called
2817 -- indicating the count is unknown.
2823 function Count_Tasks
(T
: Entity_Id
) return Uint
is
2829 if Is_Task_Type
(T
) then
2832 elsif Is_Record_Type
(T
) then
2833 if Has_Discriminants
(T
) then
2834 Check_Restriction
(Max_Tasks
, N
);
2839 C
:= First_Component
(T
);
2840 while Present
(C
) loop
2841 V
:= V
+ Count_Tasks
(Etype
(C
));
2848 elsif Is_Array_Type
(T
) then
2849 X
:= First_Index
(T
);
2850 V
:= Count_Tasks
(Component_Type
(T
));
2851 while Present
(X
) loop
2854 if not Is_Static_Subtype
(C
) then
2855 Check_Restriction
(Max_Tasks
, N
);
2858 V
:= V
* (UI_Max
(Uint_0
,
2859 Expr_Value
(Type_High_Bound
(C
)) -
2860 Expr_Value
(Type_Low_Bound
(C
)) + Uint_1
));
2873 -- Start of processing for Analyze_Object_Declaration
2876 -- There are three kinds of implicit types generated by an
2877 -- object declaration:
2879 -- 1. Those generated by the original Object Definition
2881 -- 2. Those generated by the Expression
2883 -- 3. Those used to constrain the Object Definition with the
2884 -- expression constraints when the definition is unconstrained.
2886 -- They must be generated in this order to avoid order of elaboration
2887 -- issues. Thus the first step (after entering the name) is to analyze
2888 -- the object definition.
2890 if Constant_Present
(N
) then
2891 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
2893 if Present
(Prev_Entity
)
2896 -- If the homograph is an implicit subprogram, it is overridden
2897 -- by the current declaration.
2899 ((Is_Overloadable
(Prev_Entity
)
2900 and then Is_Inherited_Operation
(Prev_Entity
))
2902 -- The current object is a discriminal generated for an entry
2903 -- family index. Even though the index is a constant, in this
2904 -- particular context there is no true constant redeclaration.
2905 -- Enter_Name will handle the visibility.
2908 (Is_Discriminal
(Id
)
2909 and then Ekind
(Discriminal_Link
(Id
)) =
2910 E_Entry_Index_Parameter
)
2912 -- The current object is the renaming for a generic declared
2913 -- within the instance.
2916 (Ekind
(Prev_Entity
) = E_Package
2917 and then Nkind
(Parent
(Prev_Entity
)) =
2918 N_Package_Renaming_Declaration
2919 and then not Comes_From_Source
(Prev_Entity
)
2920 and then Is_Generic_Instance
(Renamed_Entity
(Prev_Entity
))))
2922 Prev_Entity
:= Empty
;
2926 if Present
(Prev_Entity
) then
2927 Constant_Redeclaration
(Id
, N
, T
);
2929 Generate_Reference
(Prev_Entity
, Id
, 'c');
2930 Set_Completion_Referenced
(Id
);
2932 if Error_Posted
(N
) then
2934 -- Type mismatch or illegal redeclaration, Do not analyze
2935 -- expression to avoid cascaded errors.
2937 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
2939 Set_Ekind
(Id
, E_Variable
);
2943 -- In the normal case, enter identifier at the start to catch premature
2944 -- usage in the initialization expression.
2947 Generate_Definition
(Id
);
2950 Mark_Coextensions
(N
, Object_Definition
(N
));
2952 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
2954 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
2956 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
2957 and then Protected_Present
2958 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
2960 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
2963 if Error_Posted
(Id
) then
2965 Set_Ekind
(Id
, E_Variable
);
2970 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2971 -- out some static checks
2973 if Ada_Version
>= Ada_2005
2974 and then Can_Never_Be_Null
(T
)
2976 -- In case of aggregates we must also take care of the correct
2977 -- initialization of nested aggregates bug this is done at the
2978 -- point of the analysis of the aggregate (see sem_aggr.adb)
2980 if Present
(Expression
(N
))
2981 and then Nkind
(Expression
(N
)) = N_Aggregate
2987 Save_Typ
: constant Entity_Id
:= Etype
(Id
);
2989 Set_Etype
(Id
, T
); -- Temp. decoration for static checks
2990 Null_Exclusion_Static_Checks
(N
);
2991 Set_Etype
(Id
, Save_Typ
);
2996 -- Object is marked pure if it is in a pure scope
2998 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3000 -- If deferred constant, make sure context is appropriate. We detect
3001 -- a deferred constant as a constant declaration with no expression.
3002 -- A deferred constant can appear in a package body if its completion
3003 -- is by means of an interface pragma.
3005 if Constant_Present
(N
)
3008 -- A deferred constant may appear in the declarative part of the
3009 -- following constructs:
3013 -- extended return statements
3016 -- subprogram bodies
3019 -- When declared inside a package spec, a deferred constant must be
3020 -- completed by a full constant declaration or pragma Import. In all
3021 -- other cases, the only proper completion is pragma Import. Extended
3022 -- return statements are flagged as invalid contexts because they do
3023 -- not have a declarative part and so cannot accommodate the pragma.
3025 if Ekind
(Current_Scope
) = E_Return_Statement
then
3027 ("invalid context for deferred constant declaration (RM 7.4)",
3030 ("\declaration requires an initialization expression",
3032 Set_Constant_Present
(N
, False);
3034 -- In Ada 83, deferred constant must be of private type
3036 elsif not Is_Private_Type
(T
) then
3037 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
3039 ("(Ada 83) deferred constant must be private type", N
);
3043 -- If not a deferred constant, then object declaration freezes its type
3046 Check_Fully_Declared
(T
, N
);
3047 Freeze_Before
(N
, T
);
3050 -- If the object was created by a constrained array definition, then
3051 -- set the link in both the anonymous base type and anonymous subtype
3052 -- that are built to represent the array type to point to the object.
3054 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
3055 N_Constrained_Array_Definition
3057 Set_Related_Array_Object
(T
, Id
);
3058 Set_Related_Array_Object
(Base_Type
(T
), Id
);
3061 -- Special checks for protected objects not at library level
3063 if Is_Protected_Type
(T
)
3064 and then not Is_Library_Level_Entity
(Id
)
3066 Check_Restriction
(No_Local_Protected_Objects
, Id
);
3068 -- Protected objects with interrupt handlers must be at library level
3070 -- Ada 2005: this test is not needed (and the corresponding clause
3071 -- in the RM is removed) because accessibility checks are sufficient
3072 -- to make handlers not at the library level illegal.
3074 if Has_Interrupt_Handler
(T
)
3075 and then Ada_Version
< Ada_2005
3078 ("interrupt object can only be declared at library level", Id
);
3082 -- The actual subtype of the object is the nominal subtype, unless
3083 -- the nominal one is unconstrained and obtained from the expression.
3087 -- These checks should be performed before the initialization expression
3088 -- is considered, so that the Object_Definition node is still the same
3089 -- as in source code.
3091 -- In SPARK, the nominal subtype shall be given by a subtype mark and
3092 -- shall not be unconstrained. (The only exception to this is the
3093 -- admission of declarations of constants of type String.)
3096 Nkind_In
(Object_Definition
(N
), N_Identifier
, N_Expanded_Name
)
3098 Check_SPARK_Restriction
3099 ("subtype mark required", Object_Definition
(N
));
3101 elsif Is_Array_Type
(T
)
3102 and then not Is_Constrained
(T
)
3103 and then T
/= Standard_String
3105 Check_SPARK_Restriction
3106 ("subtype mark of constrained type expected",
3107 Object_Definition
(N
));
3110 -- There are no aliased objects in SPARK
3112 if Aliased_Present
(N
) then
3113 Check_SPARK_Restriction
("aliased object is not allowed", N
);
3116 -- Process initialization expression if present and not in error
3118 if Present
(E
) and then E
/= Error
then
3120 -- Generate an error in case of CPP class-wide object initialization.
3121 -- Required because otherwise the expansion of the class-wide
3122 -- assignment would try to use 'size to initialize the object
3123 -- (primitive that is not available in CPP tagged types).
3125 if Is_Class_Wide_Type
(Act_T
)
3127 (Is_CPP_Class
(Root_Type
(Etype
(Act_T
)))
3129 (Present
(Full_View
(Root_Type
(Etype
(Act_T
))))
3131 Is_CPP_Class
(Full_View
(Root_Type
(Etype
(Act_T
))))))
3134 ("predefined assignment not available for 'C'P'P tagged types",
3138 Mark_Coextensions
(N
, E
);
3141 -- In case of errors detected in the analysis of the expression,
3142 -- decorate it with the expected type to avoid cascaded errors
3144 if No
(Etype
(E
)) then
3148 -- If an initialization expression is present, then we set the
3149 -- Is_True_Constant flag. It will be reset if this is a variable
3150 -- and it is indeed modified.
3152 Set_Is_True_Constant
(Id
, True);
3154 -- If we are analyzing a constant declaration, set its completion
3155 -- flag after analyzing and resolving the expression.
3157 if Constant_Present
(N
) then
3158 Set_Has_Completion
(Id
);
3161 -- Set type and resolve (type may be overridden later on)
3166 -- No further action needed if E is a call to an inlined function
3167 -- which returns an unconstrained type and it has been expanded into
3168 -- a procedure call. In that case N has been replaced by an object
3169 -- declaration without initializing expression and it has been
3170 -- analyzed (see Expand_Inlined_Call).
3173 and then Expander_Active
3174 and then Nkind
(E
) = N_Function_Call
3175 and then Nkind
(Name
(E
)) in N_Has_Entity
3176 and then Is_Inlined
(Entity
(Name
(E
)))
3177 and then not Is_Constrained
(Etype
(E
))
3178 and then Analyzed
(N
)
3179 and then No
(Expression
(N
))
3184 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3185 -- node (which was marked already-analyzed), we need to set the type
3186 -- to something other than Any_Access in order to keep gigi happy.
3188 if Etype
(E
) = Any_Access
then
3192 -- If the object is an access to variable, the initialization
3193 -- expression cannot be an access to constant.
3195 if Is_Access_Type
(T
)
3196 and then not Is_Access_Constant
(T
)
3197 and then Is_Access_Type
(Etype
(E
))
3198 and then Is_Access_Constant
(Etype
(E
))
3201 ("access to variable cannot be initialized "
3202 & "with an access-to-constant expression", E
);
3205 if not Assignment_OK
(N
) then
3206 Check_Initialization
(T
, E
);
3209 Check_Unset_Reference
(E
);
3211 -- If this is a variable, then set current value. If this is a
3212 -- declared constant of a scalar type with a static expression,
3213 -- indicate that it is always valid.
3215 if not Constant_Present
(N
) then
3216 if Compile_Time_Known_Value
(E
) then
3217 Set_Current_Value
(Id
, E
);
3220 elsif Is_Scalar_Type
(T
)
3221 and then Is_OK_Static_Expression
(E
)
3223 Set_Is_Known_Valid
(Id
);
3226 -- Deal with setting of null flags
3228 if Is_Access_Type
(T
) then
3229 if Known_Non_Null
(E
) then
3230 Set_Is_Known_Non_Null
(Id
, True);
3231 elsif Known_Null
(E
)
3232 and then not Can_Never_Be_Null
(Id
)
3234 Set_Is_Known_Null
(Id
, True);
3238 -- Check incorrect use of dynamically tagged expressions.
3240 if Is_Tagged_Type
(T
) then
3241 Check_Dynamically_Tagged_Expression
3247 Apply_Scalar_Range_Check
(E
, T
);
3248 Apply_Static_Length_Check
(E
, T
);
3250 if Nkind
(Original_Node
(N
)) = N_Object_Declaration
3251 and then Comes_From_Source
(Original_Node
(N
))
3253 -- Only call test if needed
3255 and then Restriction_Check_Required
(SPARK
)
3256 and then not Is_SPARK_Initialization_Expr
(E
)
3258 Check_SPARK_Restriction
3259 ("initialization expression is not appropriate", E
);
3263 -- If the No_Streams restriction is set, check that the type of the
3264 -- object is not, and does not contain, any subtype derived from
3265 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3266 -- Has_Stream just for efficiency reasons. There is no point in
3267 -- spending time on a Has_Stream check if the restriction is not set.
3269 if Restriction_Check_Required
(No_Streams
) then
3270 if Has_Stream
(T
) then
3271 Check_Restriction
(No_Streams
, N
);
3275 -- Deal with predicate check before we start to do major rewriting.
3276 -- it is OK to initialize and then check the initialized value, since
3277 -- the object goes out of scope if we get a predicate failure. Note
3278 -- that we do this in the analyzer and not the expander because the
3279 -- analyzer does some substantial rewriting in some cases.
3281 -- We need a predicate check if the type has predicates, and if either
3282 -- there is an initializing expression, or for default initialization
3283 -- when we have at least one case of an explicit default initial value.
3285 if not Suppress_Assignment_Checks
(N
)
3286 and then Present
(Predicate_Function
(T
))
3290 Is_Partially_Initialized_Type
(T
, Include_Implicit
=> False))
3293 Make_Predicate_Check
(T
, New_Occurrence_Of
(Id
, Loc
)));
3296 -- Case of unconstrained type
3298 if Is_Indefinite_Subtype
(T
) then
3300 -- In SPARK, a declaration of unconstrained type is allowed
3301 -- only for constants of type string.
3303 if Is_String_Type
(T
) and then not Constant_Present
(N
) then
3304 Check_SPARK_Restriction
3305 ("declaration of object of unconstrained type not allowed",
3309 -- Nothing to do in deferred constant case
3311 if Constant_Present
(N
) and then No
(E
) then
3314 -- Case of no initialization present
3317 if No_Initialization
(N
) then
3320 elsif Is_Class_Wide_Type
(T
) then
3322 ("initialization required in class-wide declaration ", N
);
3326 ("unconstrained subtype not allowed (need initialization)",
3327 Object_Definition
(N
));
3329 if Is_Record_Type
(T
) and then Has_Discriminants
(T
) then
3331 ("\provide initial value or explicit discriminant values",
3332 Object_Definition
(N
));
3335 ("\or give default discriminant values for type&",
3336 Object_Definition
(N
), T
);
3338 elsif Is_Array_Type
(T
) then
3340 ("\provide initial value or explicit array bounds",
3341 Object_Definition
(N
));
3345 -- Case of initialization present but in error. Set initial
3346 -- expression as absent (but do not make above complaints)
3348 elsif E
= Error
then
3349 Set_Expression
(N
, Empty
);
3352 -- Case of initialization present
3355 -- Check restrictions in Ada 83
3357 if not Constant_Present
(N
) then
3359 -- Unconstrained variables not allowed in Ada 83 mode
3361 if Ada_Version
= Ada_83
3362 and then Comes_From_Source
(Object_Definition
(N
))
3365 ("(Ada 83) unconstrained variable not allowed",
3366 Object_Definition
(N
));
3370 -- Now we constrain the variable from the initializing expression
3372 -- If the expression is an aggregate, it has been expanded into
3373 -- individual assignments. Retrieve the actual type from the
3374 -- expanded construct.
3376 if Is_Array_Type
(T
)
3377 and then No_Initialization
(N
)
3378 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3382 -- In case of class-wide interface object declarations we delay
3383 -- the generation of the equivalent record type declarations until
3384 -- its expansion because there are cases in they are not required.
3386 elsif Is_Interface
(T
) then
3390 Expand_Subtype_From_Expr
(N
, T
, Object_Definition
(N
), E
);
3391 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3394 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
3396 if Aliased_Present
(N
) then
3397 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
3400 Freeze_Before
(N
, Act_T
);
3401 Freeze_Before
(N
, T
);
3404 elsif Is_Array_Type
(T
)
3405 and then No_Initialization
(N
)
3406 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3408 if not Is_Entity_Name
(Object_Definition
(N
)) then
3410 Check_Compile_Time_Size
(Act_T
);
3412 if Aliased_Present
(N
) then
3413 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
3417 -- When the given object definition and the aggregate are specified
3418 -- independently, and their lengths might differ do a length check.
3419 -- This cannot happen if the aggregate is of the form (others =>...)
3421 if not Is_Constrained
(T
) then
3424 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
3426 -- Aggregate is statically illegal. Place back in declaration
3428 Set_Expression
(N
, E
);
3429 Set_No_Initialization
(N
, False);
3431 elsif T
= Etype
(E
) then
3434 elsif Nkind
(E
) = N_Aggregate
3435 and then Present
(Component_Associations
(E
))
3436 and then Present
(Choices
(First
(Component_Associations
(E
))))
3437 and then Nkind
(First
3438 (Choices
(First
(Component_Associations
(E
))))) = N_Others_Choice
3443 Apply_Length_Check
(E
, T
);
3446 -- If the type is limited unconstrained with defaulted discriminants and
3447 -- there is no expression, then the object is constrained by the
3448 -- defaults, so it is worthwhile building the corresponding subtype.
3450 elsif (Is_Limited_Record
(T
) or else Is_Concurrent_Type
(T
))
3451 and then not Is_Constrained
(T
)
3452 and then Has_Discriminants
(T
)
3455 Act_T
:= Build_Default_Subtype
(T
, N
);
3457 -- Ada 2005: a limited object may be initialized by means of an
3458 -- aggregate. If the type has default discriminants it has an
3459 -- unconstrained nominal type, Its actual subtype will be obtained
3460 -- from the aggregate, and not from the default discriminants.
3465 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
3467 elsif Present
(Underlying_Type
(T
))
3468 and then not Is_Constrained
(Underlying_Type
(T
))
3469 and then Has_Discriminants
(Underlying_Type
(T
))
3470 and then Nkind
(E
) = N_Function_Call
3471 and then Constant_Present
(N
)
3473 -- The back-end has problems with constants of a discriminated type
3474 -- with defaults, if the initial value is a function call. We
3475 -- generate an intermediate temporary for the result of the call.
3476 -- It is unclear why this should make it acceptable to gcc. ???
3478 Remove_Side_Effects
(E
);
3480 -- If this is a constant declaration of an unconstrained type and
3481 -- the initialization is an aggregate, we can use the subtype of the
3482 -- aggregate for the declared entity because it is immutable.
3484 elsif not Is_Constrained
(T
)
3485 and then Has_Discriminants
(T
)
3486 and then Constant_Present
(N
)
3487 and then not Has_Unchecked_Union
(T
)
3488 and then Nkind
(E
) = N_Aggregate
3493 -- Check No_Wide_Characters restriction
3495 Check_Wide_Character_Restriction
(T
, Object_Definition
(N
));
3497 -- Indicate this is not set in source. Certainly true for constants, and
3498 -- true for variables so far (will be reset for a variable if and when
3499 -- we encounter a modification in the source).
3501 Set_Never_Set_In_Source
(Id
, True);
3503 -- Now establish the proper kind and type of the object
3505 if Constant_Present
(N
) then
3506 Set_Ekind
(Id
, E_Constant
);
3507 Set_Is_True_Constant
(Id
, True);
3510 Set_Ekind
(Id
, E_Variable
);
3512 -- A variable is set as shared passive if it appears in a shared
3513 -- passive package, and is at the outer level. This is not done for
3514 -- entities generated during expansion, because those are always
3515 -- manipulated locally.
3517 if Is_Shared_Passive
(Current_Scope
)
3518 and then Is_Library_Level_Entity
(Id
)
3519 and then Comes_From_Source
(Id
)
3521 Set_Is_Shared_Passive
(Id
);
3522 Check_Shared_Var
(Id
, T
, N
);
3525 -- Set Has_Initial_Value if initializing expression present. Note
3526 -- that if there is no initializing expression, we leave the state
3527 -- of this flag unchanged (usually it will be False, but notably in
3528 -- the case of exception choice variables, it will already be true).
3531 Set_Has_Initial_Value
(Id
, True);
3535 -- Initialize alignment and size and capture alignment setting
3537 Init_Alignment
(Id
);
3539 Set_Optimize_Alignment_Flags
(Id
);
3541 -- Deal with aliased case
3543 if Aliased_Present
(N
) then
3544 Set_Is_Aliased
(Id
);
3546 -- If the object is aliased and the type is unconstrained with
3547 -- defaulted discriminants and there is no expression, then the
3548 -- object is constrained by the defaults, so it is worthwhile
3549 -- building the corresponding subtype.
3551 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3552 -- unconstrained, then only establish an actual subtype if the
3553 -- nominal subtype is indefinite. In definite cases the object is
3554 -- unconstrained in Ada 2005.
3557 and then Is_Record_Type
(T
)
3558 and then not Is_Constrained
(T
)
3559 and then Has_Discriminants
(T
)
3560 and then (Ada_Version
< Ada_2005
or else Is_Indefinite_Subtype
(T
))
3562 Set_Actual_Subtype
(Id
, Build_Default_Subtype
(T
, N
));
3566 -- Now we can set the type of the object
3568 Set_Etype
(Id
, Act_T
);
3570 -- Object is marked to be treated as volatile if type is volatile and
3571 -- we clear the Current_Value setting that may have been set above.
3573 if Treat_As_Volatile
(Etype
(Id
)) then
3574 Set_Treat_As_Volatile
(Id
);
3575 Set_Current_Value
(Id
, Empty
);
3578 -- Deal with controlled types
3580 if Has_Controlled_Component
(Etype
(Id
))
3581 or else Is_Controlled
(Etype
(Id
))
3583 if not Is_Library_Level_Entity
(Id
) then
3584 Check_Restriction
(No_Nested_Finalization
, N
);
3586 Validate_Controlled_Object
(Id
);
3589 -- Generate a warning when an initialization causes an obvious ABE
3590 -- violation. If the init expression is a simple aggregate there
3591 -- shouldn't be any initialize/adjust call generated. This will be
3592 -- true as soon as aggregates are built in place when possible.
3594 -- ??? at the moment we do not generate warnings for temporaries
3595 -- created for those aggregates although Program_Error might be
3596 -- generated if compiled with -gnato.
3598 if Is_Controlled
(Etype
(Id
))
3599 and then Comes_From_Source
(Id
)
3602 BT
: constant Entity_Id
:= Base_Type
(Etype
(Id
));
3604 Implicit_Call
: Entity_Id
;
3605 pragma Warnings
(Off
, Implicit_Call
);
3606 -- ??? what is this for (never referenced!)
3608 function Is_Aggr
(N
: Node_Id
) return Boolean;
3609 -- Check that N is an aggregate
3615 function Is_Aggr
(N
: Node_Id
) return Boolean is
3617 case Nkind
(Original_Node
(N
)) is
3618 when N_Aggregate | N_Extension_Aggregate
=>
3621 when N_Qualified_Expression |
3623 N_Unchecked_Type_Conversion
=>
3624 return Is_Aggr
(Expression
(Original_Node
(N
)));
3632 -- If no underlying type, we already are in an error situation.
3633 -- Do not try to add a warning since we do not have access to
3636 if No
(Underlying_Type
(BT
)) then
3637 Implicit_Call
:= Empty
;
3639 -- A generic type does not have usable primitive operators.
3640 -- Initialization calls are built for instances.
3642 elsif Is_Generic_Type
(BT
) then
3643 Implicit_Call
:= Empty
;
3645 -- If the init expression is not an aggregate, an adjust call
3646 -- will be generated
3648 elsif Present
(E
) and then not Is_Aggr
(E
) then
3649 Implicit_Call
:= Find_Prim_Op
(BT
, Name_Adjust
);
3651 -- If no init expression and we are not in the deferred
3652 -- constant case, an Initialize call will be generated
3654 elsif No
(E
) and then not Constant_Present
(N
) then
3655 Implicit_Call
:= Find_Prim_Op
(BT
, Name_Initialize
);
3658 Implicit_Call
:= Empty
;
3664 if Has_Task
(Etype
(Id
)) then
3665 Check_Restriction
(No_Tasking
, N
);
3667 -- Deal with counting max tasks
3669 -- Nothing to do if inside a generic
3671 if Inside_A_Generic
then
3674 -- If library level entity, then count tasks
3676 elsif Is_Library_Level_Entity
(Id
) then
3677 Check_Restriction
(Max_Tasks
, N
, Count_Tasks
(Etype
(Id
)));
3679 -- If not library level entity, then indicate we don't know max
3680 -- tasks and also check task hierarchy restriction and blocking
3681 -- operation (since starting a task is definitely blocking!)
3684 Check_Restriction
(Max_Tasks
, N
);
3685 Check_Restriction
(No_Task_Hierarchy
, N
);
3686 Check_Potentially_Blocking_Operation
(N
);
3689 -- A rather specialized test. If we see two tasks being declared
3690 -- of the same type in the same object declaration, and the task
3691 -- has an entry with an address clause, we know that program error
3692 -- will be raised at run time since we can't have two tasks with
3693 -- entries at the same address.
3695 if Is_Task_Type
(Etype
(Id
)) and then More_Ids
(N
) then
3700 E
:= First_Entity
(Etype
(Id
));
3701 while Present
(E
) loop
3702 if Ekind
(E
) = E_Entry
3703 and then Present
(Get_Attribute_Definition_Clause
3704 (E
, Attribute_Address
))
3707 ("?more than one task with same entry address", N
);
3709 ("\?Program_Error will be raised at run time", N
);
3711 Make_Raise_Program_Error
(Loc
,
3712 Reason
=> PE_Duplicated_Entry_Address
));
3722 -- Some simple constant-propagation: if the expression is a constant
3723 -- string initialized with a literal, share the literal. This avoids
3727 and then Is_Entity_Name
(E
)
3728 and then Ekind
(Entity
(E
)) = E_Constant
3729 and then Base_Type
(Etype
(E
)) = Standard_String
3732 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
3735 and then Nkind
(Val
) = N_String_Literal
3737 Rewrite
(E
, New_Copy
(Val
));
3742 -- Another optimization: if the nominal subtype is unconstrained and
3743 -- the expression is a function call that returns an unconstrained
3744 -- type, rewrite the declaration as a renaming of the result of the
3745 -- call. The exceptions below are cases where the copy is expected,
3746 -- either by the back end (Aliased case) or by the semantics, as for
3747 -- initializing controlled types or copying tags for classwide types.
3750 and then Nkind
(E
) = N_Explicit_Dereference
3751 and then Nkind
(Original_Node
(E
)) = N_Function_Call
3752 and then not Is_Library_Level_Entity
(Id
)
3753 and then not Is_Constrained
(Underlying_Type
(T
))
3754 and then not Is_Aliased
(Id
)
3755 and then not Is_Class_Wide_Type
(T
)
3756 and then not Is_Controlled
(T
)
3757 and then not Has_Controlled_Component
(Base_Type
(T
))
3758 and then Expander_Active
3761 Make_Object_Renaming_Declaration
(Loc
,
3762 Defining_Identifier
=> Id
,
3763 Access_Definition
=> Empty
,
3764 Subtype_Mark
=> New_Occurrence_Of
3765 (Base_Type
(Etype
(Id
)), Loc
),
3768 Set_Renamed_Object
(Id
, E
);
3770 -- Force generation of debugging information for the constant and for
3771 -- the renamed function call.
3773 Set_Debug_Info_Needed
(Id
);
3774 Set_Debug_Info_Needed
(Entity
(Prefix
(E
)));
3777 if Present
(Prev_Entity
)
3778 and then Is_Frozen
(Prev_Entity
)
3779 and then not Error_Posted
(Id
)
3781 Error_Msg_N
("full constant declaration appears too late", N
);
3784 Check_Eliminated
(Id
);
3786 -- Deal with setting In_Private_Part flag if in private part
3788 if Ekind
(Scope
(Id
)) = E_Package
3789 and then In_Private_Part
(Scope
(Id
))
3791 Set_In_Private_Part
(Id
);
3794 -- Check for violation of No_Local_Timing_Events
3796 if Restriction_Check_Required
(No_Local_Timing_Events
)
3797 and then not Is_Library_Level_Entity
(Id
)
3798 and then Is_RTE
(Etype
(Id
), RE_Timing_Event
)
3800 Check_Restriction
(No_Local_Timing_Events
, N
);
3804 if Has_Aspects
(N
) then
3805 Analyze_Aspect_Specifications
(N
, Id
);
3808 Analyze_Dimension
(N
);
3809 end Analyze_Object_Declaration
;
3811 ---------------------------
3812 -- Analyze_Others_Choice --
3813 ---------------------------
3815 -- Nothing to do for the others choice node itself, the semantic analysis
3816 -- of the others choice will occur as part of the processing of the parent
3818 procedure Analyze_Others_Choice
(N
: Node_Id
) is
3819 pragma Warnings
(Off
, N
);
3822 end Analyze_Others_Choice
;
3824 -------------------------------------------
3825 -- Analyze_Private_Extension_Declaration --
3826 -------------------------------------------
3828 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
3829 T
: constant Entity_Id
:= Defining_Identifier
(N
);
3830 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
3831 Parent_Type
: Entity_Id
;
3832 Parent_Base
: Entity_Id
;
3835 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
3837 if Is_Non_Empty_List
(Interface_List
(N
)) then
3843 Intf
:= First
(Interface_List
(N
));
3844 while Present
(Intf
) loop
3845 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
3847 Diagnose_Interface
(Intf
, T
);
3853 Generate_Definition
(T
);
3855 -- For other than Ada 2012, just enter the name in the current scope
3857 if Ada_Version
< Ada_2012
then
3860 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
3861 -- case of private type that completes an incomplete type.
3868 Prev
:= Find_Type_Name
(N
);
3870 pragma Assert
(Prev
= T
3871 or else (Ekind
(Prev
) = E_Incomplete_Type
3872 and then Present
(Full_View
(Prev
))
3873 and then Full_View
(Prev
) = T
));
3877 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
3878 Parent_Base
:= Base_Type
(Parent_Type
);
3880 if Parent_Type
= Any_Type
3881 or else Etype
(Parent_Type
) = Any_Type
3883 Set_Ekind
(T
, Ekind
(Parent_Type
));
3884 Set_Etype
(T
, Any_Type
);
3887 elsif not Is_Tagged_Type
(Parent_Type
) then
3889 ("parent of type extension must be a tagged type ", Indic
);
3892 elsif Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
3893 Error_Msg_N
("premature derivation of incomplete type", Indic
);
3896 elsif Is_Concurrent_Type
(Parent_Type
) then
3898 ("parent type of a private extension cannot be "
3899 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
3901 Set_Etype
(T
, Any_Type
);
3902 Set_Ekind
(T
, E_Limited_Private_Type
);
3903 Set_Private_Dependents
(T
, New_Elmt_List
);
3904 Set_Error_Posted
(T
);
3908 -- Perhaps the parent type should be changed to the class-wide type's
3909 -- specific type in this case to prevent cascading errors ???
3911 if Is_Class_Wide_Type
(Parent_Type
) then
3913 ("parent of type extension must not be a class-wide type", Indic
);
3917 if (not Is_Package_Or_Generic_Package
(Current_Scope
)
3918 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
3919 or else In_Private_Part
(Current_Scope
)
3922 Error_Msg_N
("invalid context for private extension", N
);
3925 -- Set common attributes
3927 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
3928 Set_Scope
(T
, Current_Scope
);
3929 Set_Ekind
(T
, E_Record_Type_With_Private
);
3930 Init_Size_Align
(T
);
3932 Set_Etype
(T
, Parent_Base
);
3933 Set_Has_Task
(T
, Has_Task
(Parent_Base
));
3935 Set_Convention
(T
, Convention
(Parent_Type
));
3936 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
3937 Set_Is_First_Subtype
(T
);
3938 Make_Class_Wide_Type
(T
);
3940 if Unknown_Discriminants_Present
(N
) then
3941 Set_Discriminant_Constraint
(T
, No_Elist
);
3944 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
3946 -- Propagate inherited invariant information. The new type has
3947 -- invariants, if the parent type has inheritable invariants,
3948 -- and these invariants can in turn be inherited.
3950 if Has_Inheritable_Invariants
(Parent_Type
) then
3951 Set_Has_Inheritable_Invariants
(T
);
3952 Set_Has_Invariants
(T
);
3955 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
3956 -- synchronized formal derived type.
3958 if Ada_Version
>= Ada_2005
3959 and then Synchronized_Present
(N
)
3961 Set_Is_Limited_Record
(T
);
3963 -- Formal derived type case
3965 if Is_Generic_Type
(T
) then
3967 -- The parent must be a tagged limited type or a synchronized
3970 if (not Is_Tagged_Type
(Parent_Type
)
3971 or else not Is_Limited_Type
(Parent_Type
))
3973 (not Is_Interface
(Parent_Type
)
3974 or else not Is_Synchronized_Interface
(Parent_Type
))
3976 Error_Msg_NE
("parent type of & must be tagged limited " &
3977 "or synchronized", N
, T
);
3980 -- The progenitors (if any) must be limited or synchronized
3983 if Present
(Interfaces
(T
)) then
3986 Iface_Elmt
: Elmt_Id
;
3989 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
3990 while Present
(Iface_Elmt
) loop
3991 Iface
:= Node
(Iface_Elmt
);
3993 if not Is_Limited_Interface
(Iface
)
3994 and then not Is_Synchronized_Interface
(Iface
)
3996 Error_Msg_NE
("progenitor & must be limited " &
3997 "or synchronized", N
, Iface
);
4000 Next_Elmt
(Iface_Elmt
);
4005 -- Regular derived extension, the parent must be a limited or
4006 -- synchronized interface.
4009 if not Is_Interface
(Parent_Type
)
4010 or else (not Is_Limited_Interface
(Parent_Type
)
4012 not Is_Synchronized_Interface
(Parent_Type
))
4015 ("parent type of & must be limited interface", N
, T
);
4019 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4020 -- extension with a synchronized parent must be explicitly declared
4021 -- synchronized, because the full view will be a synchronized type.
4022 -- This must be checked before the check for limited types below,
4023 -- to ensure that types declared limited are not allowed to extend
4024 -- synchronized interfaces.
4026 elsif Is_Interface
(Parent_Type
)
4027 and then Is_Synchronized_Interface
(Parent_Type
)
4028 and then not Synchronized_Present
(N
)
4031 ("private extension of& must be explicitly synchronized",
4034 elsif Limited_Present
(N
) then
4035 Set_Is_Limited_Record
(T
);
4037 if not Is_Limited_Type
(Parent_Type
)
4039 (not Is_Interface
(Parent_Type
)
4040 or else not Is_Limited_Interface
(Parent_Type
))
4042 Error_Msg_NE
("parent type& of limited extension must be limited",
4048 if Has_Aspects
(N
) then
4049 Analyze_Aspect_Specifications
(N
, T
);
4051 end Analyze_Private_Extension_Declaration
;
4053 ---------------------------------
4054 -- Analyze_Subtype_Declaration --
4055 ---------------------------------
4057 procedure Analyze_Subtype_Declaration
4059 Skip
: Boolean := False)
4061 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
4063 R_Checks
: Check_Result
;
4066 Generate_Definition
(Id
);
4067 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
4068 Init_Size_Align
(Id
);
4070 -- The following guard condition on Enter_Name is to handle cases where
4071 -- the defining identifier has already been entered into the scope but
4072 -- the declaration as a whole needs to be analyzed.
4074 -- This case in particular happens for derived enumeration types. The
4075 -- derived enumeration type is processed as an inserted enumeration type
4076 -- declaration followed by a rewritten subtype declaration. The defining
4077 -- identifier, however, is entered into the name scope very early in the
4078 -- processing of the original type declaration and therefore needs to be
4079 -- avoided here, when the created subtype declaration is analyzed. (See
4080 -- Build_Derived_Types)
4082 -- This also happens when the full view of a private type is derived
4083 -- type with constraints. In this case the entity has been introduced
4084 -- in the private declaration.
4087 or else (Present
(Etype
(Id
))
4088 and then (Is_Private_Type
(Etype
(Id
))
4089 or else Is_Task_Type
(Etype
(Id
))
4090 or else Is_Rewrite_Substitution
(N
)))
4098 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
4100 -- Class-wide equivalent types of records with unknown discriminants
4101 -- involve the generation of an itype which serves as the private view
4102 -- of a constrained record subtype. In such cases the base type of the
4103 -- current subtype we are processing is the private itype. Use the full
4104 -- of the private itype when decorating various attributes.
4107 and then Is_Private_Type
(T
)
4108 and then Present
(Full_View
(T
))
4113 -- Inherit common attributes
4115 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
4116 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
4117 Set_Treat_As_Volatile
(Id
, Treat_As_Volatile
(T
));
4118 Set_Is_Atomic
(Id
, Is_Atomic
(T
));
4119 Set_Is_Ada_2005_Only
(Id
, Is_Ada_2005_Only
(T
));
4120 Set_Is_Ada_2012_Only
(Id
, Is_Ada_2012_Only
(T
));
4121 Set_Convention
(Id
, Convention
(T
));
4123 -- If ancestor has predicates then so does the subtype, and in addition
4124 -- we must delay the freeze to properly arrange predicate inheritance.
4126 -- The Ancestor_Type test is a big kludge, there seem to be cases in
4127 -- which T = ID, so the above tests and assignments do nothing???
4129 if Has_Predicates
(T
)
4130 or else (Present
(Ancestor_Subtype
(T
))
4131 and then Has_Predicates
(Ancestor_Subtype
(T
)))
4133 Set_Has_Predicates
(Id
);
4134 Set_Has_Delayed_Freeze
(Id
);
4137 -- Subtype of Boolean cannot have a constraint in SPARK
4139 if Is_Boolean_Type
(T
)
4140 and then Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
4142 Check_SPARK_Restriction
4143 ("subtype of Boolean cannot have constraint", N
);
4146 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4148 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
4154 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
then
4155 One_Cstr
:= First
(Constraints
(Cstr
));
4156 while Present
(One_Cstr
) loop
4158 -- Index or discriminant constraint in SPARK must be a
4162 Nkind_In
(One_Cstr
, N_Identifier
, N_Expanded_Name
)
4164 Check_SPARK_Restriction
4165 ("subtype mark required", One_Cstr
);
4167 -- String subtype must have a lower bound of 1 in SPARK.
4168 -- Note that we do not need to test for the non-static case
4169 -- here, since that was already taken care of in
4170 -- Process_Range_Expr_In_Decl.
4172 elsif Base_Type
(T
) = Standard_String
then
4173 Get_Index_Bounds
(One_Cstr
, Low
, High
);
4175 if Is_OK_Static_Expression
(Low
)
4176 and then Expr_Value
(Low
) /= 1
4178 Check_SPARK_Restriction
4179 ("String subtype must have lower bound of 1", N
);
4189 -- In the case where there is no constraint given in the subtype
4190 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4191 -- semantic attributes must be established here.
4193 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
4194 Set_Etype
(Id
, Base_Type
(T
));
4196 -- Subtype of unconstrained array without constraint is not allowed
4199 if Is_Array_Type
(T
)
4200 and then not Is_Constrained
(T
)
4202 Check_SPARK_Restriction
4203 ("subtype of unconstrained array must have constraint", N
);
4208 Set_Ekind
(Id
, E_Array_Subtype
);
4209 Copy_Array_Subtype_Attributes
(Id
, T
);
4211 when Decimal_Fixed_Point_Kind
=>
4212 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
4213 Set_Digits_Value
(Id
, Digits_Value
(T
));
4214 Set_Delta_Value
(Id
, Delta_Value
(T
));
4215 Set_Scale_Value
(Id
, Scale_Value
(T
));
4216 Set_Small_Value
(Id
, Small_Value
(T
));
4217 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4218 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
4219 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4220 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4221 Set_RM_Size
(Id
, RM_Size
(T
));
4223 when Enumeration_Kind
=>
4224 Set_Ekind
(Id
, E_Enumeration_Subtype
);
4225 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
4226 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4227 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
4228 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4229 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4230 Set_RM_Size
(Id
, RM_Size
(T
));
4232 when Ordinary_Fixed_Point_Kind
=>
4233 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
4234 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4235 Set_Small_Value
(Id
, Small_Value
(T
));
4236 Set_Delta_Value
(Id
, Delta_Value
(T
));
4237 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4238 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4239 Set_RM_Size
(Id
, RM_Size
(T
));
4242 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
4243 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4244 Set_Digits_Value
(Id
, Digits_Value
(T
));
4245 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4247 when Signed_Integer_Kind
=>
4248 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
4249 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4250 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4251 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4252 Set_RM_Size
(Id
, RM_Size
(T
));
4254 when Modular_Integer_Kind
=>
4255 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
4256 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4257 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4258 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4259 Set_RM_Size
(Id
, RM_Size
(T
));
4261 when Class_Wide_Kind
=>
4262 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
4263 Set_First_Entity
(Id
, First_Entity
(T
));
4264 Set_Last_Entity
(Id
, Last_Entity
(T
));
4265 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4266 Set_Cloned_Subtype
(Id
, T
);
4267 Set_Is_Tagged_Type
(Id
, True);
4268 Set_Has_Unknown_Discriminants
4271 if Ekind
(T
) = E_Class_Wide_Subtype
then
4272 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
4275 when E_Record_Type | E_Record_Subtype
=>
4276 Set_Ekind
(Id
, E_Record_Subtype
);
4278 if Ekind
(T
) = E_Record_Subtype
4279 and then Present
(Cloned_Subtype
(T
))
4281 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
4283 Set_Cloned_Subtype
(Id
, T
);
4286 Set_First_Entity
(Id
, First_Entity
(T
));
4287 Set_Last_Entity
(Id
, Last_Entity
(T
));
4288 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4289 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4290 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4291 Set_Has_Implicit_Dereference
4292 (Id
, Has_Implicit_Dereference
(T
));
4293 Set_Has_Unknown_Discriminants
4294 (Id
, Has_Unknown_Discriminants
(T
));
4296 if Has_Discriminants
(T
) then
4297 Set_Discriminant_Constraint
4298 (Id
, Discriminant_Constraint
(T
));
4299 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4301 elsif Has_Unknown_Discriminants
(Id
) then
4302 Set_Discriminant_Constraint
(Id
, No_Elist
);
4305 if Is_Tagged_Type
(T
) then
4306 Set_Is_Tagged_Type
(Id
);
4307 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4308 Set_Direct_Primitive_Operations
4309 (Id
, Direct_Primitive_Operations
(T
));
4310 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4312 if Is_Interface
(T
) then
4313 Set_Is_Interface
(Id
);
4314 Set_Is_Limited_Interface
(Id
, Is_Limited_Interface
(T
));
4318 when Private_Kind
=>
4319 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4320 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4321 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4322 Set_First_Entity
(Id
, First_Entity
(T
));
4323 Set_Last_Entity
(Id
, Last_Entity
(T
));
4324 Set_Private_Dependents
(Id
, New_Elmt_List
);
4325 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4326 Set_Has_Implicit_Dereference
4327 (Id
, Has_Implicit_Dereference
(T
));
4328 Set_Has_Unknown_Discriminants
4329 (Id
, Has_Unknown_Discriminants
(T
));
4330 Set_Known_To_Have_Preelab_Init
4331 (Id
, Known_To_Have_Preelab_Init
(T
));
4333 if Is_Tagged_Type
(T
) then
4334 Set_Is_Tagged_Type
(Id
);
4335 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4336 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4337 Set_Direct_Primitive_Operations
(Id
,
4338 Direct_Primitive_Operations
(T
));
4341 -- In general the attributes of the subtype of a private type
4342 -- are the attributes of the partial view of parent. However,
4343 -- the full view may be a discriminated type, and the subtype
4344 -- must share the discriminant constraint to generate correct
4345 -- calls to initialization procedures.
4347 if Has_Discriminants
(T
) then
4348 Set_Discriminant_Constraint
4349 (Id
, Discriminant_Constraint
(T
));
4350 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4352 elsif Present
(Full_View
(T
))
4353 and then Has_Discriminants
(Full_View
(T
))
4355 Set_Discriminant_Constraint
4356 (Id
, Discriminant_Constraint
(Full_View
(T
)));
4357 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4359 -- This would seem semantically correct, but apparently
4360 -- confuses the back-end. To be explained and checked with
4361 -- current version ???
4363 -- Set_Has_Discriminants (Id);
4366 Prepare_Private_Subtype_Completion
(Id
, N
);
4369 Set_Ekind
(Id
, E_Access_Subtype
);
4370 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4371 Set_Is_Access_Constant
4372 (Id
, Is_Access_Constant
(T
));
4373 Set_Directly_Designated_Type
4374 (Id
, Designated_Type
(T
));
4375 Set_Can_Never_Be_Null
(Id
, Can_Never_Be_Null
(T
));
4377 -- A Pure library_item must not contain the declaration of a
4378 -- named access type, except within a subprogram, generic
4379 -- subprogram, task unit, or protected unit, or if it has
4380 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4382 if Comes_From_Source
(Id
)
4383 and then In_Pure_Unit
4384 and then not In_Subprogram_Task_Protected_Unit
4385 and then not No_Pool_Assigned
(Id
)
4388 ("named access types not allowed in pure unit", N
);
4391 when Concurrent_Kind
=>
4392 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4393 Set_Corresponding_Record_Type
(Id
,
4394 Corresponding_Record_Type
(T
));
4395 Set_First_Entity
(Id
, First_Entity
(T
));
4396 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
4397 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4398 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4399 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
4400 Set_Last_Entity
(Id
, Last_Entity
(T
));
4402 if Has_Discriminants
(T
) then
4403 Set_Discriminant_Constraint
(Id
,
4404 Discriminant_Constraint
(T
));
4405 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4408 when E_Incomplete_Type
=>
4409 if Ada_Version
>= Ada_2005
then
4410 Set_Ekind
(Id
, E_Incomplete_Subtype
);
4412 -- Ada 2005 (AI-412): Decorate an incomplete subtype
4413 -- of an incomplete type visible through a limited
4416 if From_With_Type
(T
)
4417 and then Present
(Non_Limited_View
(T
))
4419 Set_From_With_Type
(Id
);
4420 Set_Non_Limited_View
(Id
, Non_Limited_View
(T
));
4422 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4423 -- to the private dependents of the original incomplete
4424 -- type for future transformation.
4427 Append_Elmt
(Id
, Private_Dependents
(T
));
4430 -- If the subtype name denotes an incomplete type an error
4431 -- was already reported by Process_Subtype.
4434 Set_Etype
(Id
, Any_Type
);
4438 raise Program_Error
;
4442 if Etype
(Id
) = Any_Type
then
4446 -- Some common processing on all types
4448 Set_Size_Info
(Id
, T
);
4449 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
4453 Set_Is_Immediately_Visible
(Id
, True);
4454 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
4455 Set_Is_Descendent_Of_Address
(Id
, Is_Descendent_Of_Address
(T
));
4457 if Is_Interface
(T
) then
4458 Set_Is_Interface
(Id
);
4461 if Present
(Generic_Parent_Type
(N
))
4464 (Parent
(Generic_Parent_Type
(N
))) /= N_Formal_Type_Declaration
4466 (Formal_Type_Definition
(Parent
(Generic_Parent_Type
(N
))))
4467 /= N_Formal_Private_Type_Definition
)
4469 if Is_Tagged_Type
(Id
) then
4471 -- If this is a generic actual subtype for a synchronized type,
4472 -- the primitive operations are those of the corresponding record
4473 -- for which there is a separate subtype declaration.
4475 if Is_Concurrent_Type
(Id
) then
4477 elsif Is_Class_Wide_Type
(Id
) then
4478 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
4480 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
4483 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
4484 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
4488 if Is_Private_Type
(T
)
4489 and then Present
(Full_View
(T
))
4491 Conditional_Delay
(Id
, Full_View
(T
));
4493 -- The subtypes of components or subcomponents of protected types
4494 -- do not need freeze nodes, which would otherwise appear in the
4495 -- wrong scope (before the freeze node for the protected type). The
4496 -- proper subtypes are those of the subcomponents of the corresponding
4499 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
4500 and then Present
(Scope
(Scope
(Id
))) -- error defense!
4501 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
4503 Conditional_Delay
(Id
, T
);
4506 -- Check that Constraint_Error is raised for a scalar subtype indication
4507 -- when the lower or upper bound of a non-null range lies outside the
4508 -- range of the type mark.
4510 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4511 if Is_Scalar_Type
(Etype
(Id
))
4512 and then Scalar_Range
(Id
) /=
4513 Scalar_Range
(Etype
(Subtype_Mark
4514 (Subtype_Indication
(N
))))
4518 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
4520 -- In the array case, check compatibility for each index
4522 elsif Is_Array_Type
(Etype
(Id
))
4523 and then Present
(First_Index
(Id
))
4525 -- This really should be a subprogram that finds the indications
4529 Subt_Index
: Node_Id
:= First_Index
(Id
);
4530 Target_Index
: Node_Id
:=
4532 (Subtype_Mark
(Subtype_Indication
(N
))));
4533 Has_Dyn_Chk
: Boolean := Has_Dynamic_Range_Check
(N
);
4536 while Present
(Subt_Index
) loop
4537 if ((Nkind
(Subt_Index
) = N_Identifier
4538 and then Ekind
(Entity
(Subt_Index
)) in Scalar_Kind
)
4539 or else Nkind
(Subt_Index
) = N_Subtype_Indication
)
4541 Nkind
(Scalar_Range
(Etype
(Subt_Index
))) = N_Range
4544 Target_Typ
: constant Entity_Id
:=
4545 Etype
(Target_Index
);
4549 (Scalar_Range
(Etype
(Subt_Index
)),
4552 Defining_Identifier
(N
));
4554 -- Reset Has_Dynamic_Range_Check on the subtype to
4555 -- prevent elision of the index check due to a dynamic
4556 -- check generated for a preceding index (needed since
4557 -- Insert_Range_Checks tries to avoid generating
4558 -- redundant checks on a given declaration).
4560 Set_Has_Dynamic_Range_Check
(N
, False);
4566 Sloc
(Defining_Identifier
(N
)));
4568 -- Record whether this index involved a dynamic check
4571 Has_Dyn_Chk
or else Has_Dynamic_Range_Check
(N
);
4575 Next_Index
(Subt_Index
);
4576 Next_Index
(Target_Index
);
4579 -- Finally, mark whether the subtype involves dynamic checks
4581 Set_Has_Dynamic_Range_Check
(N
, Has_Dyn_Chk
);
4586 -- Make sure that generic actual types are properly frozen. The subtype
4587 -- is marked as a generic actual type when the enclosing instance is
4588 -- analyzed, so here we identify the subtype from the tree structure.
4591 and then Is_Generic_Actual_Type
(Id
)
4592 and then In_Instance
4593 and then not Comes_From_Source
(N
)
4594 and then Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
4595 and then Is_Frozen
(T
)
4597 Freeze_Before
(N
, Id
);
4600 Set_Optimize_Alignment_Flags
(Id
);
4601 Check_Eliminated
(Id
);
4604 if Has_Aspects
(N
) then
4605 Analyze_Aspect_Specifications
(N
, Id
);
4608 Analyze_Dimension
(N
);
4609 end Analyze_Subtype_Declaration
;
4611 --------------------------------
4612 -- Analyze_Subtype_Indication --
4613 --------------------------------
4615 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
4616 T
: constant Entity_Id
:= Subtype_Mark
(N
);
4617 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
4624 Set_Etype
(N
, Etype
(R
));
4625 Resolve
(R
, Entity
(T
));
4627 Set_Error_Posted
(R
);
4628 Set_Error_Posted
(T
);
4630 end Analyze_Subtype_Indication
;
4632 --------------------------
4633 -- Analyze_Variant_Part --
4634 --------------------------
4636 procedure Analyze_Variant_Part
(N
: Node_Id
) is
4638 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
4639 -- Error routine invoked by the generic instantiation below when the
4640 -- variant part has a non static choice.
4642 procedure Process_Declarations
(Variant
: Node_Id
);
4643 -- Analyzes all the declarations associated with a Variant. Needed by
4644 -- the generic instantiation below.
4646 package Variant_Choices_Processing
is new
4647 Generic_Choices_Processing
4648 (Get_Alternatives
=> Variants
,
4649 Get_Choices
=> Discrete_Choices
,
4650 Process_Empty_Choice
=> No_OP
,
4651 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
4652 Process_Associated_Node
=> Process_Declarations
);
4653 use Variant_Choices_Processing
;
4654 -- Instantiation of the generic choice processing package
4656 -----------------------------
4657 -- Non_Static_Choice_Error --
4658 -----------------------------
4660 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
4662 Flag_Non_Static_Expr
4663 ("choice given in variant part is not static!", Choice
);
4664 end Non_Static_Choice_Error
;
4666 --------------------------
4667 -- Process_Declarations --
4668 --------------------------
4670 procedure Process_Declarations
(Variant
: Node_Id
) is
4672 if not Null_Present
(Component_List
(Variant
)) then
4673 Analyze_Declarations
(Component_Items
(Component_List
(Variant
)));
4675 if Present
(Variant_Part
(Component_List
(Variant
))) then
4676 Analyze
(Variant_Part
(Component_List
(Variant
)));
4679 end Process_Declarations
;
4683 Discr_Name
: Node_Id
;
4684 Discr_Type
: Entity_Id
;
4686 Dont_Care
: Boolean;
4687 Others_Present
: Boolean := False;
4689 pragma Warnings
(Off
, Dont_Care
);
4690 pragma Warnings
(Off
, Others_Present
);
4691 -- We don't care about the assigned values of any of these
4693 -- Start of processing for Analyze_Variant_Part
4696 Discr_Name
:= Name
(N
);
4697 Analyze
(Discr_Name
);
4699 -- If Discr_Name bad, get out (prevent cascaded errors)
4701 if Etype
(Discr_Name
) = Any_Type
then
4705 -- Check invalid discriminant in variant part
4707 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
4708 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
4711 Discr_Type
:= Etype
(Entity
(Discr_Name
));
4713 if not Is_Discrete_Type
(Discr_Type
) then
4715 ("discriminant in a variant part must be of a discrete type",
4720 -- Call the instantiated Analyze_Choices which does the rest of the work
4722 Analyze_Choices
(N
, Discr_Type
, Dont_Care
, Others_Present
);
4723 end Analyze_Variant_Part
;
4725 ----------------------------
4726 -- Array_Type_Declaration --
4727 ----------------------------
4729 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
4730 Component_Def
: constant Node_Id
:= Component_Definition
(Def
);
4731 Component_Typ
: constant Node_Id
:= Subtype_Indication
(Component_Def
);
4732 Element_Type
: Entity_Id
;
4733 Implicit_Base
: Entity_Id
;
4735 Related_Id
: Entity_Id
:= Empty
;
4737 P
: constant Node_Id
:= Parent
(Def
);
4741 if Nkind
(Def
) = N_Constrained_Array_Definition
then
4742 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
4744 Index
:= First
(Subtype_Marks
(Def
));
4747 -- Find proper names for the implicit types which may be public. In case
4748 -- of anonymous arrays we use the name of the first object of that type
4752 Related_Id
:= Defining_Identifier
(P
);
4758 while Present
(Index
) loop
4761 if not Nkind_In
(Index
, N_Identifier
, N_Expanded_Name
) then
4762 Check_SPARK_Restriction
("subtype mark required", Index
);
4765 -- Add a subtype declaration for each index of private array type
4766 -- declaration whose etype is also private. For example:
4769 -- type Index is private;
4771 -- type Table is array (Index) of ...
4774 -- This is currently required by the expander for the internally
4775 -- generated equality subprogram of records with variant parts in
4776 -- which the etype of some component is such private type.
4778 if Ekind
(Current_Scope
) = E_Package
4779 and then In_Private_Part
(Current_Scope
)
4780 and then Has_Private_Declaration
(Etype
(Index
))
4783 Loc
: constant Source_Ptr
:= Sloc
(Def
);
4788 New_E
:= Make_Temporary
(Loc
, 'T');
4789 Set_Is_Internal
(New_E
);
4792 Make_Subtype_Declaration
(Loc
,
4793 Defining_Identifier
=> New_E
,
4794 Subtype_Indication
=>
4795 New_Occurrence_Of
(Etype
(Index
), Loc
));
4797 Insert_Before
(Parent
(Def
), Decl
);
4799 Set_Etype
(Index
, New_E
);
4801 -- If the index is a range the Entity attribute is not
4802 -- available. Example:
4805 -- type T is private;
4807 -- type T is new Natural;
4808 -- Table : array (T(1) .. T(10)) of Boolean;
4811 if Nkind
(Index
) /= N_Range
then
4812 Set_Entity
(Index
, New_E
);
4817 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
4819 -- Check error of subtype with predicate for index type
4821 Bad_Predicated_Subtype_Use
4822 ("subtype& has predicate, not allowed as index subtype",
4823 Index
, Etype
(Index
));
4825 -- Move to next index
4828 Nb_Index
:= Nb_Index
+ 1;
4831 -- Process subtype indication if one is present
4833 if Present
(Component_Typ
) then
4834 Element_Type
:= Process_Subtype
(Component_Typ
, P
, Related_Id
, 'C');
4836 Set_Etype
(Component_Typ
, Element_Type
);
4838 if not Nkind_In
(Component_Typ
, N_Identifier
, N_Expanded_Name
) then
4839 Check_SPARK_Restriction
("subtype mark required", Component_Typ
);
4842 -- Ada 2005 (AI-230): Access Definition case
4844 else pragma Assert
(Present
(Access_Definition
(Component_Def
)));
4846 -- Indicate that the anonymous access type is created by the
4847 -- array type declaration.
4849 Element_Type
:= Access_Definition
4851 N
=> Access_Definition
(Component_Def
));
4852 Set_Is_Local_Anonymous_Access
(Element_Type
);
4854 -- Propagate the parent. This field is needed if we have to generate
4855 -- the master_id associated with an anonymous access to task type
4856 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
4858 Set_Parent
(Element_Type
, Parent
(T
));
4860 -- Ada 2005 (AI-230): In case of components that are anonymous access
4861 -- types the level of accessibility depends on the enclosing type
4864 Set_Scope
(Element_Type
, Current_Scope
); -- Ada 2005 (AI-230)
4866 -- Ada 2005 (AI-254)
4869 CD
: constant Node_Id
:=
4870 Access_To_Subprogram_Definition
4871 (Access_Definition
(Component_Def
));
4873 if Present
(CD
) and then Protected_Present
(CD
) then
4875 Replace_Anonymous_Access_To_Protected_Subprogram
(Def
);
4880 -- Constrained array case
4883 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
4886 if Nkind
(Def
) = N_Constrained_Array_Definition
then
4888 -- Establish Implicit_Base as unconstrained base type
4890 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
4892 Set_Etype
(Implicit_Base
, Implicit_Base
);
4893 Set_Scope
(Implicit_Base
, Current_Scope
);
4894 Set_Has_Delayed_Freeze
(Implicit_Base
);
4896 -- The constrained array type is a subtype of the unconstrained one
4898 Set_Ekind
(T
, E_Array_Subtype
);
4899 Init_Size_Align
(T
);
4900 Set_Etype
(T
, Implicit_Base
);
4901 Set_Scope
(T
, Current_Scope
);
4902 Set_Is_Constrained
(T
, True);
4903 Set_First_Index
(T
, First
(Discrete_Subtype_Definitions
(Def
)));
4904 Set_Has_Delayed_Freeze
(T
);
4906 -- Complete setup of implicit base type
4908 Set_First_Index
(Implicit_Base
, First_Index
(T
));
4909 Set_Component_Type
(Implicit_Base
, Element_Type
);
4910 Set_Has_Task
(Implicit_Base
, Has_Task
(Element_Type
));
4911 Set_Component_Size
(Implicit_Base
, Uint_0
);
4912 Set_Packed_Array_Type
(Implicit_Base
, Empty
);
4913 Set_Has_Controlled_Component
4914 (Implicit_Base
, Has_Controlled_Component
4916 or else Is_Controlled
4918 Set_Finalize_Storage_Only
4919 (Implicit_Base
, Finalize_Storage_Only
4922 -- Unconstrained array case
4925 Set_Ekind
(T
, E_Array_Type
);
4926 Init_Size_Align
(T
);
4928 Set_Scope
(T
, Current_Scope
);
4929 Set_Component_Size
(T
, Uint_0
);
4930 Set_Is_Constrained
(T
, False);
4931 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
4932 Set_Has_Delayed_Freeze
(T
, True);
4933 Set_Has_Task
(T
, Has_Task
(Element_Type
));
4934 Set_Has_Controlled_Component
(T
, Has_Controlled_Component
4937 Is_Controlled
(Element_Type
));
4938 Set_Finalize_Storage_Only
(T
, Finalize_Storage_Only
4942 -- Common attributes for both cases
4944 Set_Component_Type
(Base_Type
(T
), Element_Type
);
4945 Set_Packed_Array_Type
(T
, Empty
);
4947 if Aliased_Present
(Component_Definition
(Def
)) then
4948 Check_SPARK_Restriction
4949 ("aliased is not allowed", Component_Definition
(Def
));
4950 Set_Has_Aliased_Components
(Etype
(T
));
4953 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
4954 -- array type to ensure that objects of this type are initialized.
4956 if Ada_Version
>= Ada_2005
4957 and then Can_Never_Be_Null
(Element_Type
)
4959 Set_Can_Never_Be_Null
(T
);
4961 if Null_Exclusion_Present
(Component_Definition
(Def
))
4963 -- No need to check itypes because in their case this check was
4964 -- done at their point of creation
4966 and then not Is_Itype
(Element_Type
)
4969 ("`NOT NULL` not allowed (null already excluded)",
4970 Subtype_Indication
(Component_Definition
(Def
)));
4974 Priv
:= Private_Component
(Element_Type
);
4976 if Present
(Priv
) then
4978 -- Check for circular definitions
4980 if Priv
= Any_Type
then
4981 Set_Component_Type
(Etype
(T
), Any_Type
);
4983 -- There is a gap in the visibility of operations on the composite
4984 -- type only if the component type is defined in a different scope.
4986 elsif Scope
(Priv
) = Current_Scope
then
4989 elsif Is_Limited_Type
(Priv
) then
4990 Set_Is_Limited_Composite
(Etype
(T
));
4991 Set_Is_Limited_Composite
(T
);
4993 Set_Is_Private_Composite
(Etype
(T
));
4994 Set_Is_Private_Composite
(T
);
4998 -- A syntax error in the declaration itself may lead to an empty index
4999 -- list, in which case do a minimal patch.
5001 if No
(First_Index
(T
)) then
5002 Error_Msg_N
("missing index definition in array type declaration", T
);
5005 Indexes
: constant List_Id
:=
5006 New_List
(New_Occurrence_Of
(Any_Id
, Sloc
(T
)));
5008 Set_Discrete_Subtype_Definitions
(Def
, Indexes
);
5009 Set_First_Index
(T
, First
(Indexes
));
5014 -- Create a concatenation operator for the new type. Internal array
5015 -- types created for packed entities do not need such, they are
5016 -- compatible with the user-defined type.
5018 if Number_Dimensions
(T
) = 1
5019 and then not Is_Packed_Array_Type
(T
)
5021 New_Concatenation_Op
(T
);
5024 -- In the case of an unconstrained array the parser has already verified
5025 -- that all the indexes are unconstrained but we still need to make sure
5026 -- that the element type is constrained.
5028 if Is_Indefinite_Subtype
(Element_Type
) then
5030 ("unconstrained element type in array declaration",
5031 Subtype_Indication
(Component_Def
));
5033 elsif Is_Abstract_Type
(Element_Type
) then
5035 ("the type of a component cannot be abstract",
5036 Subtype_Indication
(Component_Def
));
5038 end Array_Type_Declaration
;
5040 ------------------------------------------------------
5041 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5042 ------------------------------------------------------
5044 function Replace_Anonymous_Access_To_Protected_Subprogram
5045 (N
: Node_Id
) return Entity_Id
5047 Loc
: constant Source_Ptr
:= Sloc
(N
);
5049 Curr_Scope
: constant Scope_Stack_Entry
:=
5050 Scope_Stack
.Table
(Scope_Stack
.Last
);
5052 Anon
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5059 Set_Is_Internal
(Anon
);
5062 when N_Component_Declaration |
5063 N_Unconstrained_Array_Definition |
5064 N_Constrained_Array_Definition
=>
5065 Comp
:= Component_Definition
(N
);
5066 Acc
:= Access_Definition
(Comp
);
5068 when N_Discriminant_Specification
=>
5069 Comp
:= Discriminant_Type
(N
);
5072 when N_Parameter_Specification
=>
5073 Comp
:= Parameter_Type
(N
);
5076 when N_Access_Function_Definition
=>
5077 Comp
:= Result_Definition
(N
);
5080 when N_Object_Declaration
=>
5081 Comp
:= Object_Definition
(N
);
5084 when N_Function_Specification
=>
5085 Comp
:= Result_Definition
(N
);
5089 raise Program_Error
;
5092 Decl
:= Make_Full_Type_Declaration
(Loc
,
5093 Defining_Identifier
=> Anon
,
5095 Copy_Separate_Tree
(Access_To_Subprogram_Definition
(Acc
)));
5097 Mark_Rewrite_Insertion
(Decl
);
5099 -- Insert the new declaration in the nearest enclosing scope. If the
5100 -- node is a body and N is its return type, the declaration belongs in
5101 -- the enclosing scope.
5105 if Nkind
(P
) = N_Subprogram_Body
5106 and then Nkind
(N
) = N_Function_Specification
5111 while Present
(P
) and then not Has_Declarations
(P
) loop
5115 pragma Assert
(Present
(P
));
5117 if Nkind
(P
) = N_Package_Specification
then
5118 Prepend
(Decl
, Visible_Declarations
(P
));
5120 Prepend
(Decl
, Declarations
(P
));
5123 -- Replace the anonymous type with an occurrence of the new declaration.
5124 -- In all cases the rewritten node does not have the null-exclusion
5125 -- attribute because (if present) it was already inherited by the
5126 -- anonymous entity (Anon). Thus, in case of components we do not
5127 -- inherit this attribute.
5129 if Nkind
(N
) = N_Parameter_Specification
then
5130 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5131 Set_Etype
(Defining_Identifier
(N
), Anon
);
5132 Set_Null_Exclusion_Present
(N
, False);
5134 elsif Nkind
(N
) = N_Object_Declaration
then
5135 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5136 Set_Etype
(Defining_Identifier
(N
), Anon
);
5138 elsif Nkind
(N
) = N_Access_Function_Definition
then
5139 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5141 elsif Nkind
(N
) = N_Function_Specification
then
5142 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5143 Set_Etype
(Defining_Unit_Name
(N
), Anon
);
5147 Make_Component_Definition
(Loc
,
5148 Subtype_Indication
=> New_Occurrence_Of
(Anon
, Loc
)));
5151 Mark_Rewrite_Insertion
(Comp
);
5153 if Nkind_In
(N
, N_Object_Declaration
, N_Access_Function_Definition
) then
5157 -- Temporarily remove the current scope (record or subprogram) from
5158 -- the stack to add the new declarations to the enclosing scope.
5160 Scope_Stack
.Decrement_Last
;
5162 Set_Is_Itype
(Anon
);
5163 Scope_Stack
.Append
(Curr_Scope
);
5166 Set_Ekind
(Anon
, E_Anonymous_Access_Protected_Subprogram_Type
);
5167 Set_Can_Use_Internal_Rep
(Anon
, not Always_Compatible_Rep_On_Target
);
5169 end Replace_Anonymous_Access_To_Protected_Subprogram
;
5171 -------------------------------
5172 -- Build_Derived_Access_Type --
5173 -------------------------------
5175 procedure Build_Derived_Access_Type
5177 Parent_Type
: Entity_Id
;
5178 Derived_Type
: Entity_Id
)
5180 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
5182 Desig_Type
: Entity_Id
;
5184 Discr_Con_Elist
: Elist_Id
;
5185 Discr_Con_El
: Elmt_Id
;
5189 -- Set the designated type so it is available in case this is an access
5190 -- to a self-referential type, e.g. a standard list type with a next
5191 -- pointer. Will be reset after subtype is built.
5193 Set_Directly_Designated_Type
5194 (Derived_Type
, Designated_Type
(Parent_Type
));
5196 Subt
:= Process_Subtype
(S
, N
);
5198 if Nkind
(S
) /= N_Subtype_Indication
5199 and then Subt
/= Base_Type
(Subt
)
5201 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
5204 if Ekind
(Derived_Type
) = E_Access_Subtype
then
5206 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5207 Ibase
: constant Entity_Id
:=
5208 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
5209 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
5210 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
5213 Copy_Node
(Pbase
, Ibase
);
5215 Set_Chars
(Ibase
, Svg_Chars
);
5216 Set_Next_Entity
(Ibase
, Svg_Next_E
);
5217 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
5218 Set_Scope
(Ibase
, Scope
(Derived_Type
));
5219 Set_Freeze_Node
(Ibase
, Empty
);
5220 Set_Is_Frozen
(Ibase
, False);
5221 Set_Comes_From_Source
(Ibase
, False);
5222 Set_Is_First_Subtype
(Ibase
, False);
5224 Set_Etype
(Ibase
, Pbase
);
5225 Set_Etype
(Derived_Type
, Ibase
);
5229 Set_Directly_Designated_Type
5230 (Derived_Type
, Designated_Type
(Subt
));
5232 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
5233 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
5234 Set_Size_Info
(Derived_Type
, Parent_Type
);
5235 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
5236 Set_Depends_On_Private
(Derived_Type
,
5237 Has_Private_Component
(Derived_Type
));
5238 Conditional_Delay
(Derived_Type
, Subt
);
5240 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5241 -- that it is not redundant.
5243 if Null_Exclusion_Present
(Type_Definition
(N
)) then
5244 Set_Can_Never_Be_Null
(Derived_Type
);
5246 if Can_Never_Be_Null
(Parent_Type
)
5250 ("`NOT NULL` not allowed (& already excludes null)",
5254 elsif Can_Never_Be_Null
(Parent_Type
) then
5255 Set_Can_Never_Be_Null
(Derived_Type
);
5258 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5259 -- the root type for this information.
5261 -- Apply range checks to discriminants for derived record case
5262 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5264 Desig_Type
:= Designated_Type
(Derived_Type
);
5265 if Is_Composite_Type
(Desig_Type
)
5266 and then (not Is_Array_Type
(Desig_Type
))
5267 and then Has_Discriminants
(Desig_Type
)
5268 and then Base_Type
(Desig_Type
) /= Desig_Type
5270 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
5271 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
5273 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
5274 while Present
(Discr_Con_El
) loop
5275 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
5276 Next_Elmt
(Discr_Con_El
);
5277 Next_Discriminant
(Discr
);
5280 end Build_Derived_Access_Type
;
5282 ------------------------------
5283 -- Build_Derived_Array_Type --
5284 ------------------------------
5286 procedure Build_Derived_Array_Type
5288 Parent_Type
: Entity_Id
;
5289 Derived_Type
: Entity_Id
)
5291 Loc
: constant Source_Ptr
:= Sloc
(N
);
5292 Tdef
: constant Node_Id
:= Type_Definition
(N
);
5293 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
5294 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5295 Implicit_Base
: Entity_Id
;
5296 New_Indic
: Node_Id
;
5298 procedure Make_Implicit_Base
;
5299 -- If the parent subtype is constrained, the derived type is a subtype
5300 -- of an implicit base type derived from the parent base.
5302 ------------------------
5303 -- Make_Implicit_Base --
5304 ------------------------
5306 procedure Make_Implicit_Base
is
5309 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
5311 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
5312 Set_Etype
(Implicit_Base
, Parent_Base
);
5314 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
5315 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
5317 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
5318 end Make_Implicit_Base
;
5320 -- Start of processing for Build_Derived_Array_Type
5323 if not Is_Constrained
(Parent_Type
) then
5324 if Nkind
(Indic
) /= N_Subtype_Indication
then
5325 Set_Ekind
(Derived_Type
, E_Array_Type
);
5327 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
5328 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
5330 Set_Has_Delayed_Freeze
(Derived_Type
, True);
5334 Set_Etype
(Derived_Type
, Implicit_Base
);
5337 Make_Subtype_Declaration
(Loc
,
5338 Defining_Identifier
=> Derived_Type
,
5339 Subtype_Indication
=>
5340 Make_Subtype_Indication
(Loc
,
5341 Subtype_Mark
=> New_Reference_To
(Implicit_Base
, Loc
),
5342 Constraint
=> Constraint
(Indic
)));
5344 Rewrite
(N
, New_Indic
);
5349 if Nkind
(Indic
) /= N_Subtype_Indication
then
5352 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
5353 Set_Etype
(Derived_Type
, Implicit_Base
);
5354 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
5357 Error_Msg_N
("illegal constraint on constrained type", Indic
);
5361 -- If parent type is not a derived type itself, and is declared in
5362 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5363 -- the new type's concatenation operator since Derive_Subprograms
5364 -- will not inherit the parent's operator. If the parent type is
5365 -- unconstrained, the operator is of the unconstrained base type.
5367 if Number_Dimensions
(Parent_Type
) = 1
5368 and then not Is_Limited_Type
(Parent_Type
)
5369 and then not Is_Derived_Type
(Parent_Type
)
5370 and then not Is_Package_Or_Generic_Package
5371 (Scope
(Base_Type
(Parent_Type
)))
5373 if not Is_Constrained
(Parent_Type
)
5374 and then Is_Constrained
(Derived_Type
)
5376 New_Concatenation_Op
(Implicit_Base
);
5378 New_Concatenation_Op
(Derived_Type
);
5381 end Build_Derived_Array_Type
;
5383 -----------------------------------
5384 -- Build_Derived_Concurrent_Type --
5385 -----------------------------------
5387 procedure Build_Derived_Concurrent_Type
5389 Parent_Type
: Entity_Id
;
5390 Derived_Type
: Entity_Id
)
5392 Loc
: constant Source_Ptr
:= Sloc
(N
);
5394 Corr_Record
: constant Entity_Id
:= Make_Temporary
(Loc
, 'C');
5395 Corr_Decl
: Node_Id
;
5396 Corr_Decl_Needed
: Boolean;
5397 -- If the derived type has fewer discriminants than its parent, the
5398 -- corresponding record is also a derived type, in order to account for
5399 -- the bound discriminants. We create a full type declaration for it in
5402 Constraint_Present
: constant Boolean :=
5403 Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
5404 N_Subtype_Indication
;
5406 D_Constraint
: Node_Id
;
5407 New_Constraint
: Elist_Id
;
5408 Old_Disc
: Entity_Id
;
5409 New_Disc
: Entity_Id
;
5413 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
5414 Corr_Decl_Needed
:= False;
5417 if Present
(Discriminant_Specifications
(N
))
5418 and then Constraint_Present
5420 Old_Disc
:= First_Discriminant
(Parent_Type
);
5421 New_Disc
:= First
(Discriminant_Specifications
(N
));
5422 while Present
(New_Disc
) and then Present
(Old_Disc
) loop
5423 Next_Discriminant
(Old_Disc
);
5428 if Present
(Old_Disc
) and then Expander_Active
then
5430 -- The new type has fewer discriminants, so we need to create a new
5431 -- corresponding record, which is derived from the corresponding
5432 -- record of the parent, and has a stored constraint that captures
5433 -- the values of the discriminant constraints. The corresponding
5434 -- record is needed only if expander is active and code generation is
5437 -- The type declaration for the derived corresponding record has the
5438 -- same discriminant part and constraints as the current declaration.
5439 -- Copy the unanalyzed tree to build declaration.
5441 Corr_Decl_Needed
:= True;
5442 New_N
:= Copy_Separate_Tree
(N
);
5445 Make_Full_Type_Declaration
(Loc
,
5446 Defining_Identifier
=> Corr_Record
,
5447 Discriminant_Specifications
=>
5448 Discriminant_Specifications
(New_N
),
5450 Make_Derived_Type_Definition
(Loc
,
5451 Subtype_Indication
=>
5452 Make_Subtype_Indication
(Loc
,
5455 (Corresponding_Record_Type
(Parent_Type
), Loc
),
5458 (Subtype_Indication
(Type_Definition
(New_N
))))));
5461 -- Copy Storage_Size and Relative_Deadline variables if task case
5463 if Is_Task_Type
(Parent_Type
) then
5464 Set_Storage_Size_Variable
(Derived_Type
,
5465 Storage_Size_Variable
(Parent_Type
));
5466 Set_Relative_Deadline_Variable
(Derived_Type
,
5467 Relative_Deadline_Variable
(Parent_Type
));
5470 if Present
(Discriminant_Specifications
(N
)) then
5471 Push_Scope
(Derived_Type
);
5472 Check_Or_Process_Discriminants
(N
, Derived_Type
);
5474 if Constraint_Present
then
5476 Expand_To_Stored_Constraint
5478 Build_Discriminant_Constraints
5480 Subtype_Indication
(Type_Definition
(N
)), True));
5485 elsif Constraint_Present
then
5487 -- Build constrained subtype and derive from it
5490 Loc
: constant Source_Ptr
:= Sloc
(N
);
5491 Anon
: constant Entity_Id
:=
5492 Make_Defining_Identifier
(Loc
,
5493 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'T'));
5498 Make_Subtype_Declaration
(Loc
,
5499 Defining_Identifier
=> Anon
,
5500 Subtype_Indication
=>
5501 Subtype_Indication
(Type_Definition
(N
)));
5502 Insert_Before
(N
, Decl
);
5505 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
5506 New_Occurrence_Of
(Anon
, Loc
));
5507 Set_Analyzed
(Derived_Type
, False);
5513 -- By default, operations and private data are inherited from parent.
5514 -- However, in the presence of bound discriminants, a new corresponding
5515 -- record will be created, see below.
5517 Set_Has_Discriminants
5518 (Derived_Type
, Has_Discriminants
(Parent_Type
));
5519 Set_Corresponding_Record_Type
5520 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
5522 -- Is_Constrained is set according the parent subtype, but is set to
5523 -- False if the derived type is declared with new discriminants.
5527 (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
5528 and then not Present
(Discriminant_Specifications
(N
)));
5530 if Constraint_Present
then
5531 if not Has_Discriminants
(Parent_Type
) then
5532 Error_Msg_N
("untagged parent must have discriminants", N
);
5534 elsif Present
(Discriminant_Specifications
(N
)) then
5536 -- Verify that new discriminants are used to constrain old ones
5541 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
5543 Old_Disc
:= First_Discriminant
(Parent_Type
);
5545 while Present
(D_Constraint
) loop
5546 if Nkind
(D_Constraint
) /= N_Discriminant_Association
then
5548 -- Positional constraint. If it is a reference to a new
5549 -- discriminant, it constrains the corresponding old one.
5551 if Nkind
(D_Constraint
) = N_Identifier
then
5552 New_Disc
:= First_Discriminant
(Derived_Type
);
5553 while Present
(New_Disc
) loop
5554 exit when Chars
(New_Disc
) = Chars
(D_Constraint
);
5555 Next_Discriminant
(New_Disc
);
5558 if Present
(New_Disc
) then
5559 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
5563 Next_Discriminant
(Old_Disc
);
5565 -- if this is a named constraint, search by name for the old
5566 -- discriminants constrained by the new one.
5568 elsif Nkind
(Expression
(D_Constraint
)) = N_Identifier
then
5570 -- Find new discriminant with that name
5572 New_Disc
:= First_Discriminant
(Derived_Type
);
5573 while Present
(New_Disc
) loop
5575 Chars
(New_Disc
) = Chars
(Expression
(D_Constraint
));
5576 Next_Discriminant
(New_Disc
);
5579 if Present
(New_Disc
) then
5581 -- Verify that new discriminant renames some discriminant
5582 -- of the parent type, and associate the new discriminant
5583 -- with one or more old ones that it renames.
5589 Selector
:= First
(Selector_Names
(D_Constraint
));
5590 while Present
(Selector
) loop
5591 Old_Disc
:= First_Discriminant
(Parent_Type
);
5592 while Present
(Old_Disc
) loop
5593 exit when Chars
(Old_Disc
) = Chars
(Selector
);
5594 Next_Discriminant
(Old_Disc
);
5597 if Present
(Old_Disc
) then
5598 Set_Corresponding_Discriminant
5599 (New_Disc
, Old_Disc
);
5608 Next
(D_Constraint
);
5611 New_Disc
:= First_Discriminant
(Derived_Type
);
5612 while Present
(New_Disc
) loop
5613 if No
(Corresponding_Discriminant
(New_Disc
)) then
5615 ("new discriminant& must constrain old one", N
, New_Disc
);
5618 Subtypes_Statically_Compatible
5620 Etype
(Corresponding_Discriminant
(New_Disc
)))
5623 ("& not statically compatible with parent discriminant",
5627 Next_Discriminant
(New_Disc
);
5631 elsif Present
(Discriminant_Specifications
(N
)) then
5633 ("missing discriminant constraint in untagged derivation", N
);
5636 -- The entity chain of the derived type includes the new discriminants
5637 -- but shares operations with the parent.
5639 if Present
(Discriminant_Specifications
(N
)) then
5640 Old_Disc
:= First_Discriminant
(Parent_Type
);
5641 while Present
(Old_Disc
) loop
5642 if No
(Next_Entity
(Old_Disc
))
5643 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
5646 (Last_Entity
(Derived_Type
), Next_Entity
(Old_Disc
));
5650 Next_Discriminant
(Old_Disc
);
5654 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
5655 if Has_Discriminants
(Parent_Type
) then
5656 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
5657 Set_Discriminant_Constraint
(
5658 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
5662 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
5664 Set_Has_Completion
(Derived_Type
);
5666 if Corr_Decl_Needed
then
5667 Set_Stored_Constraint
(Derived_Type
, New_Constraint
);
5668 Insert_After
(N
, Corr_Decl
);
5669 Analyze
(Corr_Decl
);
5670 Set_Corresponding_Record_Type
(Derived_Type
, Corr_Record
);
5672 end Build_Derived_Concurrent_Type
;
5674 ------------------------------------
5675 -- Build_Derived_Enumeration_Type --
5676 ------------------------------------
5678 procedure Build_Derived_Enumeration_Type
5680 Parent_Type
: Entity_Id
;
5681 Derived_Type
: Entity_Id
)
5683 Loc
: constant Source_Ptr
:= Sloc
(N
);
5684 Def
: constant Node_Id
:= Type_Definition
(N
);
5685 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
5686 Implicit_Base
: Entity_Id
;
5687 Literal
: Entity_Id
;
5688 New_Lit
: Entity_Id
;
5689 Literals_List
: List_Id
;
5690 Type_Decl
: Node_Id
;
5692 Rang_Expr
: Node_Id
;
5695 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
5696 -- not have explicit literals lists we need to process types derived
5697 -- from them specially. This is handled by Derived_Standard_Character.
5698 -- If the parent type is a generic type, there are no literals either,
5699 -- and we construct the same skeletal representation as for the generic
5702 if Is_Standard_Character_Type
(Parent_Type
) then
5703 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
5705 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
5711 if Nkind
(Indic
) /= N_Subtype_Indication
then
5713 Make_Attribute_Reference
(Loc
,
5714 Attribute_Name
=> Name_First
,
5715 Prefix
=> New_Reference_To
(Derived_Type
, Loc
));
5716 Set_Etype
(Lo
, Derived_Type
);
5719 Make_Attribute_Reference
(Loc
,
5720 Attribute_Name
=> Name_Last
,
5721 Prefix
=> New_Reference_To
(Derived_Type
, Loc
));
5722 Set_Etype
(Hi
, Derived_Type
);
5724 Set_Scalar_Range
(Derived_Type
,
5730 -- Analyze subtype indication and verify compatibility
5731 -- with parent type.
5733 if Base_Type
(Process_Subtype
(Indic
, N
)) /=
5734 Base_Type
(Parent_Type
)
5737 ("illegal constraint for formal discrete type", N
);
5743 -- If a constraint is present, analyze the bounds to catch
5744 -- premature usage of the derived literals.
5746 if Nkind
(Indic
) = N_Subtype_Indication
5747 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
5749 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
5750 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
5753 -- Introduce an implicit base type for the derived type even if there
5754 -- is no constraint attached to it, since this seems closer to the
5755 -- Ada semantics. Build a full type declaration tree for the derived
5756 -- type using the implicit base type as the defining identifier. The
5757 -- build a subtype declaration tree which applies the constraint (if
5758 -- any) have it replace the derived type declaration.
5760 Literal
:= First_Literal
(Parent_Type
);
5761 Literals_List
:= New_List
;
5762 while Present
(Literal
)
5763 and then Ekind
(Literal
) = E_Enumeration_Literal
5765 -- Literals of the derived type have the same representation as
5766 -- those of the parent type, but this representation can be
5767 -- overridden by an explicit representation clause. Indicate
5768 -- that there is no explicit representation given yet. These
5769 -- derived literals are implicit operations of the new type,
5770 -- and can be overridden by explicit ones.
5772 if Nkind
(Literal
) = N_Defining_Character_Literal
then
5774 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
5776 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
5779 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
5780 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
5781 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
5782 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
5783 Set_Alias
(New_Lit
, Literal
);
5784 Set_Is_Known_Valid
(New_Lit
, True);
5786 Append
(New_Lit
, Literals_List
);
5787 Next_Literal
(Literal
);
5791 Make_Defining_Identifier
(Sloc
(Derived_Type
),
5792 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'B'));
5794 -- Indicate the proper nature of the derived type. This must be done
5795 -- before analysis of the literals, to recognize cases when a literal
5796 -- may be hidden by a previous explicit function definition (cf.
5799 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
5800 Set_Etype
(Derived_Type
, Implicit_Base
);
5803 Make_Full_Type_Declaration
(Loc
,
5804 Defining_Identifier
=> Implicit_Base
,
5805 Discriminant_Specifications
=> No_List
,
5807 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
5809 Mark_Rewrite_Insertion
(Type_Decl
);
5810 Insert_Before
(N
, Type_Decl
);
5811 Analyze
(Type_Decl
);
5813 -- After the implicit base is analyzed its Etype needs to be changed
5814 -- to reflect the fact that it is derived from the parent type which
5815 -- was ignored during analysis. We also set the size at this point.
5817 Set_Etype
(Implicit_Base
, Parent_Type
);
5819 Set_Size_Info
(Implicit_Base
, Parent_Type
);
5820 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
5821 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
5823 -- Copy other flags from parent type
5825 Set_Has_Non_Standard_Rep
5826 (Implicit_Base
, Has_Non_Standard_Rep
5828 Set_Has_Pragma_Ordered
5829 (Implicit_Base
, Has_Pragma_Ordered
5831 Set_Has_Delayed_Freeze
(Implicit_Base
);
5833 -- Process the subtype indication including a validation check on the
5834 -- constraint, if any. If a constraint is given, its bounds must be
5835 -- implicitly converted to the new type.
5837 if Nkind
(Indic
) = N_Subtype_Indication
then
5839 R
: constant Node_Id
:=
5840 Range_Expression
(Constraint
(Indic
));
5843 if Nkind
(R
) = N_Range
then
5844 Hi
:= Build_Scalar_Bound
5845 (High_Bound
(R
), Parent_Type
, Implicit_Base
);
5846 Lo
:= Build_Scalar_Bound
5847 (Low_Bound
(R
), Parent_Type
, Implicit_Base
);
5850 -- Constraint is a Range attribute. Replace with explicit
5851 -- mention of the bounds of the prefix, which must be a
5854 Analyze
(Prefix
(R
));
5856 Convert_To
(Implicit_Base
,
5857 Make_Attribute_Reference
(Loc
,
5858 Attribute_Name
=> Name_Last
,
5860 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
5863 Convert_To
(Implicit_Base
,
5864 Make_Attribute_Reference
(Loc
,
5865 Attribute_Name
=> Name_First
,
5867 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
5874 (Type_High_Bound
(Parent_Type
),
5875 Parent_Type
, Implicit_Base
);
5878 (Type_Low_Bound
(Parent_Type
),
5879 Parent_Type
, Implicit_Base
);
5887 -- If we constructed a default range for the case where no range
5888 -- was given, then the expressions in the range must not freeze
5889 -- since they do not correspond to expressions in the source.
5891 if Nkind
(Indic
) /= N_Subtype_Indication
then
5892 Set_Must_Not_Freeze
(Lo
);
5893 Set_Must_Not_Freeze
(Hi
);
5894 Set_Must_Not_Freeze
(Rang_Expr
);
5898 Make_Subtype_Declaration
(Loc
,
5899 Defining_Identifier
=> Derived_Type
,
5900 Subtype_Indication
=>
5901 Make_Subtype_Indication
(Loc
,
5902 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
5904 Make_Range_Constraint
(Loc
,
5905 Range_Expression
=> Rang_Expr
))));
5909 -- If pragma Discard_Names applies on the first subtype of the parent
5910 -- type, then it must be applied on this subtype as well.
5912 if Einfo
.Discard_Names
(First_Subtype
(Parent_Type
)) then
5913 Set_Discard_Names
(Derived_Type
);
5916 -- Apply a range check. Since this range expression doesn't have an
5917 -- Etype, we have to specifically pass the Source_Typ parameter. Is
5920 if Nkind
(Indic
) = N_Subtype_Indication
then
5921 Apply_Range_Check
(Range_Expression
(Constraint
(Indic
)),
5923 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
5926 end Build_Derived_Enumeration_Type
;
5928 --------------------------------
5929 -- Build_Derived_Numeric_Type --
5930 --------------------------------
5932 procedure Build_Derived_Numeric_Type
5934 Parent_Type
: Entity_Id
;
5935 Derived_Type
: Entity_Id
)
5937 Loc
: constant Source_Ptr
:= Sloc
(N
);
5938 Tdef
: constant Node_Id
:= Type_Definition
(N
);
5939 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
5940 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5941 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
5942 N_Subtype_Indication
;
5943 Implicit_Base
: Entity_Id
;
5949 -- Process the subtype indication including a validation check on
5950 -- the constraint if any.
5952 Discard_Node
(Process_Subtype
(Indic
, N
));
5954 -- Introduce an implicit base type for the derived type even if there
5955 -- is no constraint attached to it, since this seems closer to the Ada
5959 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
5961 Set_Etype
(Implicit_Base
, Parent_Base
);
5962 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
5963 Set_Size_Info
(Implicit_Base
, Parent_Base
);
5964 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
5965 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
5966 Set_Is_Known_Valid
(Implicit_Base
, Is_Known_Valid
(Parent_Base
));
5968 -- Set RM Size for discrete type or decimal fixed-point type
5969 -- Ordinary fixed-point is excluded, why???
5971 if Is_Discrete_Type
(Parent_Base
)
5972 or else Is_Decimal_Fixed_Point_Type
(Parent_Base
)
5974 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
5977 Set_Has_Delayed_Freeze
(Implicit_Base
);
5979 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
5980 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
5982 Set_Scalar_Range
(Implicit_Base
,
5987 if Has_Infinities
(Parent_Base
) then
5988 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
5991 -- The Derived_Type, which is the entity of the declaration, is a
5992 -- subtype of the implicit base. Its Ekind is a subtype, even in the
5993 -- absence of an explicit constraint.
5995 Set_Etype
(Derived_Type
, Implicit_Base
);
5997 -- If we did not have a constraint, then the Ekind is set from the
5998 -- parent type (otherwise Process_Subtype has set the bounds)
6000 if No_Constraint
then
6001 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
6004 -- If we did not have a range constraint, then set the range from the
6005 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6008 or else not Has_Range_Constraint
(Indic
)
6010 Set_Scalar_Range
(Derived_Type
,
6012 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
6013 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
6014 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6016 if Has_Infinities
(Parent_Type
) then
6017 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
6020 Set_Is_Known_Valid
(Derived_Type
, Is_Known_Valid
(Parent_Type
));
6023 Set_Is_Descendent_Of_Address
(Derived_Type
,
6024 Is_Descendent_Of_Address
(Parent_Type
));
6025 Set_Is_Descendent_Of_Address
(Implicit_Base
,
6026 Is_Descendent_Of_Address
(Parent_Type
));
6028 -- Set remaining type-specific fields, depending on numeric type
6030 if Is_Modular_Integer_Type
(Parent_Type
) then
6031 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
6033 Set_Non_Binary_Modulus
6034 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
6037 (Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6039 elsif Is_Floating_Point_Type
(Parent_Type
) then
6041 -- Digits of base type is always copied from the digits value of
6042 -- the parent base type, but the digits of the derived type will
6043 -- already have been set if there was a constraint present.
6045 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6046 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Parent_Base
));
6048 if No_Constraint
then
6049 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
6052 elsif Is_Fixed_Point_Type
(Parent_Type
) then
6054 -- Small of base type and derived type are always copied from the
6055 -- parent base type, since smalls never change. The delta of the
6056 -- base type is also copied from the parent base type. However the
6057 -- delta of the derived type will have been set already if a
6058 -- constraint was present.
6060 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
6061 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
6062 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
6064 if No_Constraint
then
6065 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
6068 -- The scale and machine radix in the decimal case are always
6069 -- copied from the parent base type.
6071 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
6072 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
6073 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
6075 Set_Machine_Radix_10
6076 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
6077 Set_Machine_Radix_10
6078 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
6080 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6082 if No_Constraint
then
6083 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
6086 -- the analysis of the subtype_indication sets the
6087 -- digits value of the derived type.
6094 -- The type of the bounds is that of the parent type, and they
6095 -- must be converted to the derived type.
6097 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
6099 -- The implicit_base should be frozen when the derived type is frozen,
6100 -- but note that it is used in the conversions of the bounds. For fixed
6101 -- types we delay the determination of the bounds until the proper
6102 -- freezing point. For other numeric types this is rejected by GCC, for
6103 -- reasons that are currently unclear (???), so we choose to freeze the
6104 -- implicit base now. In the case of integers and floating point types
6105 -- this is harmless because subsequent representation clauses cannot
6106 -- affect anything, but it is still baffling that we cannot use the
6107 -- same mechanism for all derived numeric types.
6109 -- There is a further complication: actually *some* representation
6110 -- clauses can affect the implicit base type. Namely, attribute
6111 -- definition clauses for stream-oriented attributes need to set the
6112 -- corresponding TSS entries on the base type, and this normally cannot
6113 -- be done after the base type is frozen, so the circuitry in
6114 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility and
6115 -- not use Set_TSS in this case.
6117 if Is_Fixed_Point_Type
(Parent_Type
) then
6118 Conditional_Delay
(Implicit_Base
, Parent_Type
);
6120 Freeze_Before
(N
, Implicit_Base
);
6122 end Build_Derived_Numeric_Type
;
6124 --------------------------------
6125 -- Build_Derived_Private_Type --
6126 --------------------------------
6128 procedure Build_Derived_Private_Type
6130 Parent_Type
: Entity_Id
;
6131 Derived_Type
: Entity_Id
;
6132 Is_Completion
: Boolean;
6133 Derive_Subps
: Boolean := True)
6135 Loc
: constant Source_Ptr
:= Sloc
(N
);
6136 Der_Base
: Entity_Id
;
6138 Full_Decl
: Node_Id
:= Empty
;
6139 Full_Der
: Entity_Id
;
6141 Last_Discr
: Entity_Id
;
6142 Par_Scope
: constant Entity_Id
:= Scope
(Base_Type
(Parent_Type
));
6143 Swapped
: Boolean := False;
6145 procedure Copy_And_Build
;
6146 -- Copy derived type declaration, replace parent with its full view,
6147 -- and analyze new declaration.
6149 --------------------
6150 -- Copy_And_Build --
6151 --------------------
6153 procedure Copy_And_Build
is
6157 if Ekind
(Parent_Type
) in Record_Kind
6159 (Ekind
(Parent_Type
) in Enumeration_Kind
6160 and then not Is_Standard_Character_Type
(Parent_Type
)
6161 and then not Is_Generic_Type
(Root_Type
(Parent_Type
)))
6163 Full_N
:= New_Copy_Tree
(N
);
6164 Insert_After
(N
, Full_N
);
6165 Build_Derived_Type
(
6166 Full_N
, Parent_Type
, Full_Der
, True, Derive_Subps
=> False);
6169 Build_Derived_Type
(
6170 N
, Parent_Type
, Full_Der
, True, Derive_Subps
=> False);
6174 -- Start of processing for Build_Derived_Private_Type
6177 if Is_Tagged_Type
(Parent_Type
) then
6178 Full_P
:= Full_View
(Parent_Type
);
6180 -- A type extension of a type with unknown discriminants is an
6181 -- indefinite type that the back-end cannot handle directly.
6182 -- We treat it as a private type, and build a completion that is
6183 -- derived from the full view of the parent, and hopefully has
6184 -- known discriminants.
6186 -- If the full view of the parent type has an underlying record view,
6187 -- use it to generate the underlying record view of this derived type
6188 -- (required for chains of derivations with unknown discriminants).
6190 -- Minor optimization: we avoid the generation of useless underlying
6191 -- record view entities if the private type declaration has unknown
6192 -- discriminants but its corresponding full view has no
6195 if Has_Unknown_Discriminants
(Parent_Type
)
6196 and then Present
(Full_P
)
6197 and then (Has_Discriminants
(Full_P
)
6198 or else Present
(Underlying_Record_View
(Full_P
)))
6199 and then not In_Open_Scopes
(Par_Scope
)
6200 and then Expander_Active
6203 Full_Der
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
6204 New_Ext
: constant Node_Id
:=
6206 (Record_Extension_Part
(Type_Definition
(N
)));
6210 Build_Derived_Record_Type
6211 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
6213 -- Build anonymous completion, as a derivation from the full
6214 -- view of the parent. This is not a completion in the usual
6215 -- sense, because the current type is not private.
6218 Make_Full_Type_Declaration
(Loc
,
6219 Defining_Identifier
=> Full_Der
,
6221 Make_Derived_Type_Definition
(Loc
,
6222 Subtype_Indication
=>
6224 (Subtype_Indication
(Type_Definition
(N
))),
6225 Record_Extension_Part
=> New_Ext
));
6227 -- If the parent type has an underlying record view, use it
6228 -- here to build the new underlying record view.
6230 if Present
(Underlying_Record_View
(Full_P
)) then
6232 (Nkind
(Subtype_Indication
(Type_Definition
(Decl
)))
6234 Set_Entity
(Subtype_Indication
(Type_Definition
(Decl
)),
6235 Underlying_Record_View
(Full_P
));
6238 Install_Private_Declarations
(Par_Scope
);
6239 Install_Visible_Declarations
(Par_Scope
);
6240 Insert_Before
(N
, Decl
);
6242 -- Mark entity as an underlying record view before analysis,
6243 -- to avoid generating the list of its primitive operations
6244 -- (which is not really required for this entity) and thus
6245 -- prevent spurious errors associated with missing overriding
6246 -- of abstract primitives (overridden only for Derived_Type).
6248 Set_Ekind
(Full_Der
, E_Record_Type
);
6249 Set_Is_Underlying_Record_View
(Full_Der
);
6253 pragma Assert
(Has_Discriminants
(Full_Der
)
6254 and then not Has_Unknown_Discriminants
(Full_Der
));
6256 Uninstall_Declarations
(Par_Scope
);
6258 -- Freeze the underlying record view, to prevent generation of
6259 -- useless dispatching information, which is simply shared with
6260 -- the real derived type.
6262 Set_Is_Frozen
(Full_Der
);
6264 -- Set up links between real entity and underlying record view
6266 Set_Underlying_Record_View
(Derived_Type
, Base_Type
(Full_Der
));
6267 Set_Underlying_Record_View
(Base_Type
(Full_Der
), Derived_Type
);
6270 -- If discriminants are known, build derived record
6273 Build_Derived_Record_Type
6274 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
6279 elsif Has_Discriminants
(Parent_Type
) then
6280 if Present
(Full_View
(Parent_Type
)) then
6281 if not Is_Completion
then
6283 -- Copy declaration for subsequent analysis, to provide a
6284 -- completion for what is a private declaration. Indicate that
6285 -- the full type is internally generated.
6287 Full_Decl
:= New_Copy_Tree
(N
);
6288 Full_Der
:= New_Copy
(Derived_Type
);
6289 Set_Comes_From_Source
(Full_Decl
, False);
6290 Set_Comes_From_Source
(Full_Der
, False);
6291 Set_Parent
(Full_Der
, Full_Decl
);
6293 Insert_After
(N
, Full_Decl
);
6296 -- If this is a completion, the full view being built is itself
6297 -- private. We build a subtype of the parent with the same
6298 -- constraints as this full view, to convey to the back end the
6299 -- constrained components and the size of this subtype. If the
6300 -- parent is constrained, its full view can serve as the
6301 -- underlying full view of the derived type.
6303 if No
(Discriminant_Specifications
(N
)) then
6304 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6305 N_Subtype_Indication
6307 Build_Underlying_Full_View
(N
, Derived_Type
, Parent_Type
);
6309 elsif Is_Constrained
(Full_View
(Parent_Type
)) then
6310 Set_Underlying_Full_View
6311 (Derived_Type
, Full_View
(Parent_Type
));
6315 -- If there are new discriminants, the parent subtype is
6316 -- constrained by them, but it is not clear how to build
6317 -- the Underlying_Full_View in this case???
6324 -- Build partial view of derived type from partial view of parent
6326 Build_Derived_Record_Type
6327 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
6329 if Present
(Full_View
(Parent_Type
)) and then not Is_Completion
then
6330 if not In_Open_Scopes
(Par_Scope
)
6331 or else not In_Same_Source_Unit
(N
, Parent_Type
)
6333 -- Swap partial and full views temporarily
6335 Install_Private_Declarations
(Par_Scope
);
6336 Install_Visible_Declarations
(Par_Scope
);
6340 -- Build full view of derived type from full view of parent which
6341 -- is now installed. Subprograms have been derived on the partial
6342 -- view, the completion does not derive them anew.
6344 if not Is_Tagged_Type
(Parent_Type
) then
6346 -- If the parent is itself derived from another private type,
6347 -- installing the private declarations has not affected its
6348 -- privacy status, so use its own full view explicitly.
6350 if Is_Private_Type
(Parent_Type
) then
6351 Build_Derived_Record_Type
6352 (Full_Decl
, Full_View
(Parent_Type
), Full_Der
, False);
6354 Build_Derived_Record_Type
6355 (Full_Decl
, Parent_Type
, Full_Der
, False);
6359 -- If full view of parent is tagged, the completion inherits
6360 -- the proper primitive operations.
6362 Set_Defining_Identifier
(Full_Decl
, Full_Der
);
6363 Build_Derived_Record_Type
6364 (Full_Decl
, Parent_Type
, Full_Der
, Derive_Subps
);
6367 -- The full declaration has been introduced into the tree and
6368 -- processed in the step above. It should not be analyzed again
6369 -- (when encountered later in the current list of declarations)
6370 -- to prevent spurious name conflicts. The full entity remains
6373 Set_Analyzed
(Full_Decl
);
6376 Uninstall_Declarations
(Par_Scope
);
6378 if In_Open_Scopes
(Par_Scope
) then
6379 Install_Visible_Declarations
(Par_Scope
);
6383 Der_Base
:= Base_Type
(Derived_Type
);
6384 Set_Full_View
(Derived_Type
, Full_Der
);
6385 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
6387 -- Copy the discriminant list from full view to the partial views
6388 -- (base type and its subtype). Gigi requires that the partial and
6389 -- full views have the same discriminants.
6391 -- Note that since the partial view is pointing to discriminants
6392 -- in the full view, their scope will be that of the full view.
6393 -- This might cause some front end problems and need adjustment???
6395 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
6396 Set_First_Entity
(Der_Base
, Discr
);
6399 Last_Discr
:= Discr
;
6400 Next_Discriminant
(Discr
);
6401 exit when No
(Discr
);
6404 Set_Last_Entity
(Der_Base
, Last_Discr
);
6406 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
6407 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
6408 Set_Stored_Constraint
(Full_Der
, Stored_Constraint
(Derived_Type
));
6411 -- If this is a completion, the derived type stays private and
6412 -- there is no need to create a further full view, except in the
6413 -- unusual case when the derivation is nested within a child unit,
6419 elsif Present
(Full_View
(Parent_Type
))
6420 and then Has_Discriminants
(Full_View
(Parent_Type
))
6422 if Has_Unknown_Discriminants
(Parent_Type
)
6423 and then Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6424 N_Subtype_Indication
6427 ("cannot constrain type with unknown discriminants",
6428 Subtype_Indication
(Type_Definition
(N
)));
6432 -- If full view of parent is a record type, build full view as a
6433 -- derivation from the parent's full view. Partial view remains
6434 -- private. For code generation and linking, the full view must have
6435 -- the same public status as the partial one. This full view is only
6436 -- needed if the parent type is in an enclosing scope, so that the
6437 -- full view may actually become visible, e.g. in a child unit. This
6438 -- is both more efficient, and avoids order of freezing problems with
6439 -- the added entities.
6441 if not Is_Private_Type
(Full_View
(Parent_Type
))
6442 and then (In_Open_Scopes
(Scope
(Parent_Type
)))
6445 Make_Defining_Identifier
6446 (Sloc
(Derived_Type
), Chars
(Derived_Type
));
6447 Set_Is_Itype
(Full_Der
);
6448 Set_Has_Private_Declaration
(Full_Der
);
6449 Set_Has_Private_Declaration
(Derived_Type
);
6450 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6451 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
6452 Set_Full_View
(Derived_Type
, Full_Der
);
6453 Set_Is_Public
(Full_Der
, Is_Public
(Derived_Type
));
6454 Full_P
:= Full_View
(Parent_Type
);
6455 Exchange_Declarations
(Parent_Type
);
6457 Exchange_Declarations
(Full_P
);
6460 Build_Derived_Record_Type
6461 (N
, Full_View
(Parent_Type
), Derived_Type
,
6462 Derive_Subps
=> False);
6465 -- In any case, the primitive operations are inherited from the
6466 -- parent type, not from the internal full view.
6468 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
6470 if Derive_Subps
then
6471 Derive_Subprograms
(Parent_Type
, Derived_Type
);
6475 -- Untagged type, No discriminants on either view
6477 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6478 N_Subtype_Indication
6481 ("illegal constraint on type without discriminants", N
);
6484 if Present
(Discriminant_Specifications
(N
))
6485 and then Present
(Full_View
(Parent_Type
))
6486 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
6488 Error_Msg_N
("cannot add discriminants to untagged type", N
);
6491 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
6492 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6493 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
6494 Set_Has_Controlled_Component
6495 (Derived_Type
, Has_Controlled_Component
6498 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6500 if not Is_Controlled
(Parent_Type
) then
6501 Set_Finalize_Storage_Only
6502 (Base_Type
(Derived_Type
), Finalize_Storage_Only
(Parent_Type
));
6505 -- Construct the implicit full view by deriving from full view of the
6506 -- parent type. In order to get proper visibility, we install the
6507 -- parent scope and its declarations.
6509 -- ??? If the parent is untagged private and its completion is
6510 -- tagged, this mechanism will not work because we cannot derive from
6511 -- the tagged full view unless we have an extension.
6513 if Present
(Full_View
(Parent_Type
))
6514 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
6515 and then not Is_Completion
6518 Make_Defining_Identifier
6519 (Sloc
(Derived_Type
), Chars
(Derived_Type
));
6520 Set_Is_Itype
(Full_Der
);
6521 Set_Has_Private_Declaration
(Full_Der
);
6522 Set_Has_Private_Declaration
(Derived_Type
);
6523 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6524 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
6525 Set_Full_View
(Derived_Type
, Full_Der
);
6527 if not In_Open_Scopes
(Par_Scope
) then
6528 Install_Private_Declarations
(Par_Scope
);
6529 Install_Visible_Declarations
(Par_Scope
);
6531 Uninstall_Declarations
(Par_Scope
);
6533 -- If parent scope is open and in another unit, and parent has a
6534 -- completion, then the derivation is taking place in the visible
6535 -- part of a child unit. In that case retrieve the full view of
6536 -- the parent momentarily.
6538 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
6539 Full_P
:= Full_View
(Parent_Type
);
6540 Exchange_Declarations
(Parent_Type
);
6542 Exchange_Declarations
(Full_P
);
6544 -- Otherwise it is a local derivation
6550 Set_Scope
(Full_Der
, Current_Scope
);
6551 Set_Is_First_Subtype
(Full_Der
,
6552 Is_First_Subtype
(Derived_Type
));
6553 Set_Has_Size_Clause
(Full_Der
, False);
6554 Set_Has_Alignment_Clause
(Full_Der
, False);
6555 Set_Next_Entity
(Full_Der
, Empty
);
6556 Set_Has_Delayed_Freeze
(Full_Der
);
6557 Set_Is_Frozen
(Full_Der
, False);
6558 Set_Freeze_Node
(Full_Der
, Empty
);
6559 Set_Depends_On_Private
(Full_Der
,
6560 Has_Private_Component
(Full_Der
));
6561 Set_Public_Status
(Full_Der
);
6565 Set_Has_Unknown_Discriminants
(Derived_Type
,
6566 Has_Unknown_Discriminants
(Parent_Type
));
6568 if Is_Private_Type
(Derived_Type
) then
6569 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
6572 if Is_Private_Type
(Parent_Type
)
6573 and then Base_Type
(Parent_Type
) = Parent_Type
6574 and then In_Open_Scopes
(Scope
(Parent_Type
))
6576 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
6578 if Is_Child_Unit
(Scope
(Current_Scope
))
6579 and then Is_Completion
6580 and then In_Private_Part
(Current_Scope
)
6581 and then Scope
(Parent_Type
) /= Current_Scope
6583 -- This is the unusual case where a type completed by a private
6584 -- derivation occurs within a package nested in a child unit, and
6585 -- the parent is declared in an ancestor. In this case, the full
6586 -- view of the parent type will become visible in the body of
6587 -- the enclosing child, and only then will the current type be
6588 -- possibly non-private. We build a underlying full view that
6589 -- will be installed when the enclosing child body is compiled.
6592 Make_Defining_Identifier
6593 (Sloc
(Derived_Type
), Chars
(Derived_Type
));
6594 Set_Is_Itype
(Full_Der
);
6595 Build_Itype_Reference
(Full_Der
, N
);
6597 -- The full view will be used to swap entities on entry/exit to
6598 -- the body, and must appear in the entity list for the package.
6600 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
6601 Set_Has_Private_Declaration
(Full_Der
);
6602 Set_Has_Private_Declaration
(Derived_Type
);
6603 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6604 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
6605 Full_P
:= Full_View
(Parent_Type
);
6606 Exchange_Declarations
(Parent_Type
);
6608 Exchange_Declarations
(Full_P
);
6609 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
6612 end Build_Derived_Private_Type
;
6614 -------------------------------
6615 -- Build_Derived_Record_Type --
6616 -------------------------------
6620 -- Ideally we would like to use the same model of type derivation for
6621 -- tagged and untagged record types. Unfortunately this is not quite
6622 -- possible because the semantics of representation clauses is different
6623 -- for tagged and untagged records under inheritance. Consider the
6626 -- type R (...) is [tagged] record ... end record;
6627 -- type T (...) is new R (...) [with ...];
6629 -- The representation clauses for T can specify a completely different
6630 -- record layout from R's. Hence the same component can be placed in two
6631 -- very different positions in objects of type T and R. If R and T are
6632 -- tagged types, representation clauses for T can only specify the layout
6633 -- of non inherited components, thus components that are common in R and T
6634 -- have the same position in objects of type R and T.
6636 -- This has two implications. The first is that the entire tree for R's
6637 -- declaration needs to be copied for T in the untagged case, so that T
6638 -- can be viewed as a record type of its own with its own representation
6639 -- clauses. The second implication is the way we handle discriminants.
6640 -- Specifically, in the untagged case we need a way to communicate to Gigi
6641 -- what are the real discriminants in the record, while for the semantics
6642 -- we need to consider those introduced by the user to rename the
6643 -- discriminants in the parent type. This is handled by introducing the
6644 -- notion of stored discriminants. See below for more.
6646 -- Fortunately the way regular components are inherited can be handled in
6647 -- the same way in tagged and untagged types.
6649 -- To complicate things a bit more the private view of a private extension
6650 -- cannot be handled in the same way as the full view (for one thing the
6651 -- semantic rules are somewhat different). We will explain what differs
6654 -- 2. DISCRIMINANTS UNDER INHERITANCE
6656 -- The semantic rules governing the discriminants of derived types are
6659 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
6660 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
6662 -- If parent type has discriminants, then the discriminants that are
6663 -- declared in the derived type are [3.4 (11)]:
6665 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
6668 -- o Otherwise, each discriminant of the parent type (implicitly declared
6669 -- in the same order with the same specifications). In this case, the
6670 -- discriminants are said to be "inherited", or if unknown in the parent
6671 -- are also unknown in the derived type.
6673 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
6675 -- o The parent subtype shall be constrained;
6677 -- o If the parent type is not a tagged type, then each discriminant of
6678 -- the derived type shall be used in the constraint defining a parent
6679 -- subtype. [Implementation note: This ensures that the new discriminant
6680 -- can share storage with an existing discriminant.]
6682 -- For the derived type each discriminant of the parent type is either
6683 -- inherited, constrained to equal some new discriminant of the derived
6684 -- type, or constrained to the value of an expression.
6686 -- When inherited or constrained to equal some new discriminant, the
6687 -- parent discriminant and the discriminant of the derived type are said
6690 -- If a discriminant of the parent type is constrained to a specific value
6691 -- in the derived type definition, then the discriminant is said to be
6692 -- "specified" by that derived type definition.
6694 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
6696 -- We have spoken about stored discriminants in point 1 (introduction)
6697 -- above. There are two sort of stored discriminants: implicit and
6698 -- explicit. As long as the derived type inherits the same discriminants as
6699 -- the root record type, stored discriminants are the same as regular
6700 -- discriminants, and are said to be implicit. However, if any discriminant
6701 -- in the root type was renamed in the derived type, then the derived
6702 -- type will contain explicit stored discriminants. Explicit stored
6703 -- discriminants are discriminants in addition to the semantically visible
6704 -- discriminants defined for the derived type. Stored discriminants are
6705 -- used by Gigi to figure out what are the physical discriminants in
6706 -- objects of the derived type (see precise definition in einfo.ads).
6707 -- As an example, consider the following:
6709 -- type R (D1, D2, D3 : Int) is record ... end record;
6710 -- type T1 is new R;
6711 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
6712 -- type T3 is new T2;
6713 -- type T4 (Y : Int) is new T3 (Y, 99);
6715 -- The following table summarizes the discriminants and stored
6716 -- discriminants in R and T1 through T4.
6718 -- Type Discrim Stored Discrim Comment
6719 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
6720 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
6721 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
6722 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
6723 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
6725 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
6726 -- find the corresponding discriminant in the parent type, while
6727 -- Original_Record_Component (abbreviated ORC below), the actual physical
6728 -- component that is renamed. Finally the field Is_Completely_Hidden
6729 -- (abbreviated ICH below) is set for all explicit stored discriminants
6730 -- (see einfo.ads for more info). For the above example this gives:
6732 -- Discrim CD ORC ICH
6733 -- ^^^^^^^ ^^ ^^^ ^^^
6734 -- D1 in R empty itself no
6735 -- D2 in R empty itself no
6736 -- D3 in R empty itself no
6738 -- D1 in T1 D1 in R itself no
6739 -- D2 in T1 D2 in R itself no
6740 -- D3 in T1 D3 in R itself no
6742 -- X1 in T2 D3 in T1 D3 in T2 no
6743 -- X2 in T2 D1 in T1 D1 in T2 no
6744 -- D1 in T2 empty itself yes
6745 -- D2 in T2 empty itself yes
6746 -- D3 in T2 empty itself yes
6748 -- X1 in T3 X1 in T2 D3 in T3 no
6749 -- X2 in T3 X2 in T2 D1 in T3 no
6750 -- D1 in T3 empty itself yes
6751 -- D2 in T3 empty itself yes
6752 -- D3 in T3 empty itself yes
6754 -- Y in T4 X1 in T3 D3 in T3 no
6755 -- D1 in T3 empty itself yes
6756 -- D2 in T3 empty itself yes
6757 -- D3 in T3 empty itself yes
6759 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
6761 -- Type derivation for tagged types is fairly straightforward. If no
6762 -- discriminants are specified by the derived type, these are inherited
6763 -- from the parent. No explicit stored discriminants are ever necessary.
6764 -- The only manipulation that is done to the tree is that of adding a
6765 -- _parent field with parent type and constrained to the same constraint
6766 -- specified for the parent in the derived type definition. For instance:
6768 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
6769 -- type T1 is new R with null record;
6770 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
6772 -- are changed into:
6774 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
6775 -- _parent : R (D1, D2, D3);
6778 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
6779 -- _parent : T1 (X2, 88, X1);
6782 -- The discriminants actually present in R, T1 and T2 as well as their CD,
6783 -- ORC and ICH fields are:
6785 -- Discrim CD ORC ICH
6786 -- ^^^^^^^ ^^ ^^^ ^^^
6787 -- D1 in R empty itself no
6788 -- D2 in R empty itself no
6789 -- D3 in R empty itself no
6791 -- D1 in T1 D1 in R D1 in R no
6792 -- D2 in T1 D2 in R D2 in R no
6793 -- D3 in T1 D3 in R D3 in R no
6795 -- X1 in T2 D3 in T1 D3 in R no
6796 -- X2 in T2 D1 in T1 D1 in R no
6798 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
6800 -- Regardless of whether we dealing with a tagged or untagged type
6801 -- we will transform all derived type declarations of the form
6803 -- type T is new R (...) [with ...];
6805 -- subtype S is R (...);
6806 -- type T is new S [with ...];
6808 -- type BT is new R [with ...];
6809 -- subtype T is BT (...);
6811 -- That is, the base derived type is constrained only if it has no
6812 -- discriminants. The reason for doing this is that GNAT's semantic model
6813 -- assumes that a base type with discriminants is unconstrained.
6815 -- Note that, strictly speaking, the above transformation is not always
6816 -- correct. Consider for instance the following excerpt from ACVC b34011a:
6818 -- procedure B34011A is
6819 -- type REC (D : integer := 0) is record
6824 -- type T6 is new Rec;
6825 -- function F return T6;
6830 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
6833 -- The definition of Q6.U is illegal. However transforming Q6.U into
6835 -- type BaseU is new T6;
6836 -- subtype U is BaseU (Q6.F.I)
6838 -- turns U into a legal subtype, which is incorrect. To avoid this problem
6839 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
6840 -- the transformation described above.
6842 -- There is another instance where the above transformation is incorrect.
6846 -- type Base (D : Integer) is tagged null record;
6847 -- procedure P (X : Base);
6849 -- type Der is new Base (2) with null record;
6850 -- procedure P (X : Der);
6853 -- Then the above transformation turns this into
6855 -- type Der_Base is new Base with null record;
6856 -- -- procedure P (X : Base) is implicitly inherited here
6857 -- -- as procedure P (X : Der_Base).
6859 -- subtype Der is Der_Base (2);
6860 -- procedure P (X : Der);
6861 -- -- The overriding of P (X : Der_Base) is illegal since we
6862 -- -- have a parameter conformance problem.
6864 -- To get around this problem, after having semantically processed Der_Base
6865 -- and the rewritten subtype declaration for Der, we copy Der_Base field
6866 -- Discriminant_Constraint from Der so that when parameter conformance is
6867 -- checked when P is overridden, no semantic errors are flagged.
6869 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
6871 -- Regardless of whether we are dealing with a tagged or untagged type
6872 -- we will transform all derived type declarations of the form
6874 -- type R (D1, .., Dn : ...) is [tagged] record ...;
6875 -- type T is new R [with ...];
6877 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
6879 -- The reason for such transformation is that it allows us to implement a
6880 -- very clean form of component inheritance as explained below.
6882 -- Note that this transformation is not achieved by direct tree rewriting
6883 -- and manipulation, but rather by redoing the semantic actions that the
6884 -- above transformation will entail. This is done directly in routine
6885 -- Inherit_Components.
6887 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
6889 -- In both tagged and untagged derived types, regular non discriminant
6890 -- components are inherited in the derived type from the parent type. In
6891 -- the absence of discriminants component, inheritance is straightforward
6892 -- as components can simply be copied from the parent.
6894 -- If the parent has discriminants, inheriting components constrained with
6895 -- these discriminants requires caution. Consider the following example:
6897 -- type R (D1, D2 : Positive) is [tagged] record
6898 -- S : String (D1 .. D2);
6901 -- type T1 is new R [with null record];
6902 -- type T2 (X : positive) is new R (1, X) [with null record];
6904 -- As explained in 6. above, T1 is rewritten as
6905 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
6906 -- which makes the treatment for T1 and T2 identical.
6908 -- What we want when inheriting S, is that references to D1 and D2 in R are
6909 -- replaced with references to their correct constraints, i.e. D1 and D2 in
6910 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
6911 -- with either discriminant references in the derived type or expressions.
6912 -- This replacement is achieved as follows: before inheriting R's
6913 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
6914 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
6915 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
6916 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
6917 -- by String (1 .. X).
6919 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
6921 -- We explain here the rules governing private type extensions relevant to
6922 -- type derivation. These rules are explained on the following example:
6924 -- type D [(...)] is new A [(...)] with private; <-- partial view
6925 -- type D [(...)] is new P [(...)] with null record; <-- full view
6927 -- Type A is called the ancestor subtype of the private extension.
6928 -- Type P is the parent type of the full view of the private extension. It
6929 -- must be A or a type derived from A.
6931 -- The rules concerning the discriminants of private type extensions are
6934 -- o If a private extension inherits known discriminants from the ancestor
6935 -- subtype, then the full view shall also inherit its discriminants from
6936 -- the ancestor subtype and the parent subtype of the full view shall be
6937 -- constrained if and only if the ancestor subtype is constrained.
6939 -- o If a partial view has unknown discriminants, then the full view may
6940 -- define a definite or an indefinite subtype, with or without
6943 -- o If a partial view has neither known nor unknown discriminants, then
6944 -- the full view shall define a definite subtype.
6946 -- o If the ancestor subtype of a private extension has constrained
6947 -- discriminants, then the parent subtype of the full view shall impose a
6948 -- statically matching constraint on those discriminants.
6950 -- This means that only the following forms of private extensions are
6953 -- type D is new A with private; <-- partial view
6954 -- type D is new P with null record; <-- full view
6956 -- If A has no discriminants than P has no discriminants, otherwise P must
6957 -- inherit A's discriminants.
6959 -- type D is new A (...) with private; <-- partial view
6960 -- type D is new P (:::) with null record; <-- full view
6962 -- P must inherit A's discriminants and (...) and (:::) must statically
6965 -- subtype A is R (...);
6966 -- type D is new A with private; <-- partial view
6967 -- type D is new P with null record; <-- full view
6969 -- P must have inherited R's discriminants and must be derived from A or
6970 -- any of its subtypes.
6972 -- type D (..) is new A with private; <-- partial view
6973 -- type D (..) is new P [(:::)] with null record; <-- full view
6975 -- No specific constraints on P's discriminants or constraint (:::).
6976 -- Note that A can be unconstrained, but the parent subtype P must either
6977 -- be constrained or (:::) must be present.
6979 -- type D (..) is new A [(...)] with private; <-- partial view
6980 -- type D (..) is new P [(:::)] with null record; <-- full view
6982 -- P's constraints on A's discriminants must statically match those
6983 -- imposed by (...).
6985 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
6987 -- The full view of a private extension is handled exactly as described
6988 -- above. The model chose for the private view of a private extension is
6989 -- the same for what concerns discriminants (i.e. they receive the same
6990 -- treatment as in the tagged case). However, the private view of the
6991 -- private extension always inherits the components of the parent base,
6992 -- without replacing any discriminant reference. Strictly speaking this is
6993 -- incorrect. However, Gigi never uses this view to generate code so this
6994 -- is a purely semantic issue. In theory, a set of transformations similar
6995 -- to those given in 5. and 6. above could be applied to private views of
6996 -- private extensions to have the same model of component inheritance as
6997 -- for non private extensions. However, this is not done because it would
6998 -- further complicate private type processing. Semantically speaking, this
6999 -- leaves us in an uncomfortable situation. As an example consider:
7002 -- type R (D : integer) is tagged record
7003 -- S : String (1 .. D);
7005 -- procedure P (X : R);
7006 -- type T is new R (1) with private;
7008 -- type T is new R (1) with null record;
7011 -- This is transformed into:
7014 -- type R (D : integer) is tagged record
7015 -- S : String (1 .. D);
7017 -- procedure P (X : R);
7018 -- type T is new R (1) with private;
7020 -- type BaseT is new R with null record;
7021 -- subtype T is BaseT (1);
7024 -- (strictly speaking the above is incorrect Ada)
7026 -- From the semantic standpoint the private view of private extension T
7027 -- should be flagged as constrained since one can clearly have
7031 -- in a unit withing Pack. However, when deriving subprograms for the
7032 -- private view of private extension T, T must be seen as unconstrained
7033 -- since T has discriminants (this is a constraint of the current
7034 -- subprogram derivation model). Thus, when processing the private view of
7035 -- a private extension such as T, we first mark T as unconstrained, we
7036 -- process it, we perform program derivation and just before returning from
7037 -- Build_Derived_Record_Type we mark T as constrained.
7039 -- ??? Are there are other uncomfortable cases that we will have to
7042 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7044 -- Types that are derived from a visible record type and have a private
7045 -- extension present other peculiarities. They behave mostly like private
7046 -- types, but if they have primitive operations defined, these will not
7047 -- have the proper signatures for further inheritance, because other
7048 -- primitive operations will use the implicit base that we define for
7049 -- private derivations below. This affect subprogram inheritance (see
7050 -- Derive_Subprograms for details). We also derive the implicit base from
7051 -- the base type of the full view, so that the implicit base is a record
7052 -- type and not another private type, This avoids infinite loops.
7054 procedure Build_Derived_Record_Type
7056 Parent_Type
: Entity_Id
;
7057 Derived_Type
: Entity_Id
;
7058 Derive_Subps
: Boolean := True)
7060 Discriminant_Specs
: constant Boolean :=
7061 Present
(Discriminant_Specifications
(N
));
7062 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
7063 Loc
: constant Source_Ptr
:= Sloc
(N
);
7064 Private_Extension
: constant Boolean :=
7065 Nkind
(N
) = N_Private_Extension_Declaration
;
7066 Assoc_List
: Elist_Id
;
7067 Constraint_Present
: Boolean;
7069 Discrim
: Entity_Id
;
7071 Inherit_Discrims
: Boolean := False;
7072 Last_Discrim
: Entity_Id
;
7073 New_Base
: Entity_Id
;
7075 New_Discrs
: Elist_Id
;
7076 New_Indic
: Node_Id
;
7077 Parent_Base
: Entity_Id
;
7078 Save_Etype
: Entity_Id
;
7079 Save_Discr_Constr
: Elist_Id
;
7080 Save_Next_Entity
: Entity_Id
;
7083 Discs
: Elist_Id
:= New_Elmt_List
;
7084 -- An empty Discs list means that there were no constraints in the
7085 -- subtype indication or that there was an error processing it.
7088 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
7089 and then Present
(Full_View
(Parent_Type
))
7090 and then Has_Discriminants
(Parent_Type
)
7092 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
7094 Parent_Base
:= Base_Type
(Parent_Type
);
7097 -- AI05-0115 : if this is a derivation from a private type in some
7098 -- other scope that may lead to invisible components for the derived
7099 -- type, mark it accordingly.
7101 if Is_Private_Type
(Parent_Type
) then
7102 if Scope
(Parent_Type
) = Scope
(Derived_Type
) then
7105 elsif In_Open_Scopes
(Scope
(Parent_Type
))
7106 and then In_Private_Part
(Scope
(Parent_Type
))
7111 Set_Has_Private_Ancestor
(Derived_Type
);
7115 Set_Has_Private_Ancestor
7116 (Derived_Type
, Has_Private_Ancestor
(Parent_Type
));
7119 -- Before we start the previously documented transformations, here is
7120 -- little fix for size and alignment of tagged types. Normally when we
7121 -- derive type D from type P, we copy the size and alignment of P as the
7122 -- default for D, and in the absence of explicit representation clauses
7123 -- for D, the size and alignment are indeed the same as the parent.
7125 -- But this is wrong for tagged types, since fields may be added, and
7126 -- the default size may need to be larger, and the default alignment may
7127 -- need to be larger.
7129 -- We therefore reset the size and alignment fields in the tagged case.
7130 -- Note that the size and alignment will in any case be at least as
7131 -- large as the parent type (since the derived type has a copy of the
7132 -- parent type in the _parent field)
7134 -- The type is also marked as being tagged here, which is needed when
7135 -- processing components with a self-referential anonymous access type
7136 -- in the call to Check_Anonymous_Access_Components below. Note that
7137 -- this flag is also set later on for completeness.
7140 Set_Is_Tagged_Type
(Derived_Type
);
7141 Init_Size_Align
(Derived_Type
);
7144 -- STEP 0a: figure out what kind of derived type declaration we have
7146 if Private_Extension
then
7148 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
7151 Type_Def
:= Type_Definition
(N
);
7153 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7154 -- Parent_Base can be a private type or private extension. However,
7155 -- for tagged types with an extension the newly added fields are
7156 -- visible and hence the Derived_Type is always an E_Record_Type.
7157 -- (except that the parent may have its own private fields).
7158 -- For untagged types we preserve the Ekind of the Parent_Base.
7160 if Present
(Record_Extension_Part
(Type_Def
)) then
7161 Set_Ekind
(Derived_Type
, E_Record_Type
);
7163 -- Create internal access types for components with anonymous
7166 if Ada_Version
>= Ada_2005
then
7167 Check_Anonymous_Access_Components
7168 (N
, Derived_Type
, Derived_Type
,
7169 Component_List
(Record_Extension_Part
(Type_Def
)));
7173 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
7177 -- Indic can either be an N_Identifier if the subtype indication
7178 -- contains no constraint or an N_Subtype_Indication if the subtype
7179 -- indication has a constraint.
7181 Indic
:= Subtype_Indication
(Type_Def
);
7182 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
7184 -- Check that the type has visible discriminants. The type may be
7185 -- a private type with unknown discriminants whose full view has
7186 -- discriminants which are invisible.
7188 if Constraint_Present
then
7189 if not Has_Discriminants
(Parent_Base
)
7191 (Has_Unknown_Discriminants
(Parent_Base
)
7192 and then Is_Private_Type
(Parent_Base
))
7195 ("invalid constraint: type has no discriminant",
7196 Constraint
(Indic
));
7198 Constraint_Present
:= False;
7199 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7201 elsif Is_Constrained
(Parent_Type
) then
7203 ("invalid constraint: parent type is already constrained",
7204 Constraint
(Indic
));
7206 Constraint_Present
:= False;
7207 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7211 -- STEP 0b: If needed, apply transformation given in point 5. above
7213 if not Private_Extension
7214 and then Has_Discriminants
(Parent_Type
)
7215 and then not Discriminant_Specs
7216 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
7218 -- First, we must analyze the constraint (see comment in point 5.)
7220 if Constraint_Present
then
7221 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
7223 if Has_Discriminants
(Derived_Type
)
7224 and then Has_Private_Declaration
(Derived_Type
)
7225 and then Present
(Discriminant_Constraint
(Derived_Type
))
7227 -- Verify that constraints of the full view statically match
7228 -- those given in the partial view.
7234 C1
:= First_Elmt
(New_Discrs
);
7235 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
7236 while Present
(C1
) and then Present
(C2
) loop
7237 if Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
7239 (Is_OK_Static_Expression
(Node
(C1
))
7241 Is_OK_Static_Expression
(Node
(C2
))
7243 Expr_Value
(Node
(C1
)) = Expr_Value
(Node
(C2
)))
7249 "constraint not conformant to previous declaration",
7260 -- Insert and analyze the declaration for the unconstrained base type
7262 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
7265 Make_Full_Type_Declaration
(Loc
,
7266 Defining_Identifier
=> New_Base
,
7268 Make_Derived_Type_Definition
(Loc
,
7269 Abstract_Present
=> Abstract_Present
(Type_Def
),
7270 Limited_Present
=> Limited_Present
(Type_Def
),
7271 Subtype_Indication
=>
7272 New_Occurrence_Of
(Parent_Base
, Loc
),
7273 Record_Extension_Part
=>
7274 Relocate_Node
(Record_Extension_Part
(Type_Def
)),
7275 Interface_List
=> Interface_List
(Type_Def
)));
7277 Set_Parent
(New_Decl
, Parent
(N
));
7278 Mark_Rewrite_Insertion
(New_Decl
);
7279 Insert_Before
(N
, New_Decl
);
7281 -- In the extension case, make sure ancestor is frozen appropriately
7282 -- (see also non-discriminated case below).
7284 if Present
(Record_Extension_Part
(Type_Def
))
7285 or else Is_Interface
(Parent_Base
)
7287 Freeze_Before
(New_Decl
, Parent_Type
);
7290 -- Note that this call passes False for the Derive_Subps parameter
7291 -- because subprogram derivation is deferred until after creating
7292 -- the subtype (see below).
7295 (New_Decl
, Parent_Base
, New_Base
,
7296 Is_Completion
=> True, Derive_Subps
=> False);
7298 -- ??? This needs re-examination to determine whether the
7299 -- above call can simply be replaced by a call to Analyze.
7301 Set_Analyzed
(New_Decl
);
7303 -- Insert and analyze the declaration for the constrained subtype
7305 if Constraint_Present
then
7307 Make_Subtype_Indication
(Loc
,
7308 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
7309 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
7313 Constr_List
: constant List_Id
:= New_List
;
7318 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
7319 while Present
(C
) loop
7322 -- It is safe here to call New_Copy_Tree since
7323 -- Force_Evaluation was called on each constraint in
7324 -- Build_Discriminant_Constraints.
7326 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
7332 Make_Subtype_Indication
(Loc
,
7333 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
7335 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
7340 Make_Subtype_Declaration
(Loc
,
7341 Defining_Identifier
=> Derived_Type
,
7342 Subtype_Indication
=> New_Indic
));
7346 -- Derivation of subprograms must be delayed until the full subtype
7347 -- has been established, to ensure proper overriding of subprograms
7348 -- inherited by full types. If the derivations occurred as part of
7349 -- the call to Build_Derived_Type above, then the check for type
7350 -- conformance would fail because earlier primitive subprograms
7351 -- could still refer to the full type prior the change to the new
7352 -- subtype and hence would not match the new base type created here.
7353 -- Subprograms are not derived, however, when Derive_Subps is False
7354 -- (since otherwise there could be redundant derivations).
7356 if Derive_Subps
then
7357 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7360 -- For tagged types the Discriminant_Constraint of the new base itype
7361 -- is inherited from the first subtype so that no subtype conformance
7362 -- problem arise when the first subtype overrides primitive
7363 -- operations inherited by the implicit base type.
7366 Set_Discriminant_Constraint
7367 (New_Base
, Discriminant_Constraint
(Derived_Type
));
7373 -- If we get here Derived_Type will have no discriminants or it will be
7374 -- a discriminated unconstrained base type.
7376 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7380 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7381 -- The declaration of a specific descendant of an interface type
7382 -- freezes the interface type (RM 13.14).
7384 if not Private_Extension
or else Is_Interface
(Parent_Base
) then
7385 Freeze_Before
(N
, Parent_Type
);
7388 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7389 -- cannot be declared at a deeper level than its parent type is
7390 -- removed. The check on derivation within a generic body is also
7391 -- relaxed, but there's a restriction that a derived tagged type
7392 -- cannot be declared in a generic body if it's derived directly
7393 -- or indirectly from a formal type of that generic.
7395 if Ada_Version
>= Ada_2005
then
7396 if Present
(Enclosing_Generic_Body
(Derived_Type
)) then
7398 Ancestor_Type
: Entity_Id
;
7401 -- Check to see if any ancestor of the derived type is a
7404 Ancestor_Type
:= Parent_Type
;
7405 while not Is_Generic_Type
(Ancestor_Type
)
7406 and then Etype
(Ancestor_Type
) /= Ancestor_Type
7408 Ancestor_Type
:= Etype
(Ancestor_Type
);
7411 -- If the derived type does have a formal type as an
7412 -- ancestor, then it's an error if the derived type is
7413 -- declared within the body of the generic unit that
7414 -- declares the formal type in its generic formal part. It's
7415 -- sufficient to check whether the ancestor type is declared
7416 -- inside the same generic body as the derived type (such as
7417 -- within a nested generic spec), in which case the
7418 -- derivation is legal. If the formal type is declared
7419 -- outside of that generic body, then it's guaranteed that
7420 -- the derived type is declared within the generic body of
7421 -- the generic unit declaring the formal type.
7423 if Is_Generic_Type
(Ancestor_Type
)
7424 and then Enclosing_Generic_Body
(Ancestor_Type
) /=
7425 Enclosing_Generic_Body
(Derived_Type
)
7428 ("parent type of& must not be descendant of formal type"
7429 & " of an enclosing generic body",
7430 Indic
, Derived_Type
);
7435 elsif Type_Access_Level
(Derived_Type
) /=
7436 Type_Access_Level
(Parent_Type
)
7437 and then not Is_Generic_Type
(Derived_Type
)
7439 if Is_Controlled
(Parent_Type
) then
7441 ("controlled type must be declared at the library level",
7445 ("type extension at deeper accessibility level than parent",
7451 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
7455 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
7458 ("parent type of& must not be outside generic body"
7460 Indic
, Derived_Type
);
7466 -- Ada 2005 (AI-251)
7468 if Ada_Version
>= Ada_2005
and then Is_Tagged
then
7470 -- "The declaration of a specific descendant of an interface type
7471 -- freezes the interface type" (RM 13.14).
7476 if Is_Non_Empty_List
(Interface_List
(Type_Def
)) then
7477 Iface
:= First
(Interface_List
(Type_Def
));
7478 while Present
(Iface
) loop
7479 Freeze_Before
(N
, Etype
(Iface
));
7486 -- STEP 1b : preliminary cleanup of the full view of private types
7488 -- If the type is already marked as having discriminants, then it's the
7489 -- completion of a private type or private extension and we need to
7490 -- retain the discriminants from the partial view if the current
7491 -- declaration has Discriminant_Specifications so that we can verify
7492 -- conformance. However, we must remove any existing components that
7493 -- were inherited from the parent (and attached in Copy_And_Swap)
7494 -- because the full type inherits all appropriate components anyway, and
7495 -- we do not want the partial view's components interfering.
7497 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
7498 Discrim
:= First_Discriminant
(Derived_Type
);
7500 Last_Discrim
:= Discrim
;
7501 Next_Discriminant
(Discrim
);
7502 exit when No
(Discrim
);
7505 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
7507 -- In all other cases wipe out the list of inherited components (even
7508 -- inherited discriminants), it will be properly rebuilt here.
7511 Set_First_Entity
(Derived_Type
, Empty
);
7512 Set_Last_Entity
(Derived_Type
, Empty
);
7515 -- STEP 1c: Initialize some flags for the Derived_Type
7517 -- The following flags must be initialized here so that
7518 -- Process_Discriminants can check that discriminants of tagged types do
7519 -- not have a default initial value and that access discriminants are
7520 -- only specified for limited records. For completeness, these flags are
7521 -- also initialized along with all the other flags below.
7523 -- AI-419: Limitedness is not inherited from an interface parent, so to
7524 -- be limited in that case the type must be explicitly declared as
7525 -- limited. However, task and protected interfaces are always limited.
7527 if Limited_Present
(Type_Def
) then
7528 Set_Is_Limited_Record
(Derived_Type
);
7530 elsif Is_Limited_Record
(Parent_Type
)
7531 or else (Present
(Full_View
(Parent_Type
))
7532 and then Is_Limited_Record
(Full_View
(Parent_Type
)))
7534 if not Is_Interface
(Parent_Type
)
7535 or else Is_Synchronized_Interface
(Parent_Type
)
7536 or else Is_Protected_Interface
(Parent_Type
)
7537 or else Is_Task_Interface
(Parent_Type
)
7539 Set_Is_Limited_Record
(Derived_Type
);
7543 -- STEP 2a: process discriminants of derived type if any
7545 Push_Scope
(Derived_Type
);
7547 if Discriminant_Specs
then
7548 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
7550 -- The following call initializes fields Has_Discriminants and
7551 -- Discriminant_Constraint, unless we are processing the completion
7552 -- of a private type declaration.
7554 Check_Or_Process_Discriminants
(N
, Derived_Type
);
7556 -- For untagged types, the constraint on the Parent_Type must be
7557 -- present and is used to rename the discriminants.
7559 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
7560 Error_Msg_N
("untagged parent must have discriminants", Indic
);
7562 elsif not Is_Tagged
and then not Constraint_Present
then
7564 ("discriminant constraint needed for derived untagged records",
7567 -- Otherwise the parent subtype must be constrained unless we have a
7568 -- private extension.
7570 elsif not Constraint_Present
7571 and then not Private_Extension
7572 and then not Is_Constrained
(Parent_Type
)
7575 ("unconstrained type not allowed in this context", Indic
);
7577 elsif Constraint_Present
then
7578 -- The following call sets the field Corresponding_Discriminant
7579 -- for the discriminants in the Derived_Type.
7581 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
7583 -- For untagged types all new discriminants must rename
7584 -- discriminants in the parent. For private extensions new
7585 -- discriminants cannot rename old ones (implied by [7.3(13)]).
7587 Discrim
:= First_Discriminant
(Derived_Type
);
7588 while Present
(Discrim
) loop
7590 and then No
(Corresponding_Discriminant
(Discrim
))
7593 ("new discriminants must constrain old ones", Discrim
);
7595 elsif Private_Extension
7596 and then Present
(Corresponding_Discriminant
(Discrim
))
7599 ("only static constraints allowed for parent"
7600 & " discriminants in the partial view", Indic
);
7604 -- If a new discriminant is used in the constraint, then its
7605 -- subtype must be statically compatible with the parent
7606 -- discriminant's subtype (3.7(15)).
7608 if Present
(Corresponding_Discriminant
(Discrim
))
7610 not Subtypes_Statically_Compatible
7612 Etype
(Corresponding_Discriminant
(Discrim
)))
7615 ("subtype must be compatible with parent discriminant",
7619 Next_Discriminant
(Discrim
);
7622 -- Check whether the constraints of the full view statically
7623 -- match those imposed by the parent subtype [7.3(13)].
7625 if Present
(Stored_Constraint
(Derived_Type
)) then
7630 C1
:= First_Elmt
(Discs
);
7631 C2
:= First_Elmt
(Stored_Constraint
(Derived_Type
));
7632 while Present
(C1
) and then Present
(C2
) loop
7634 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
7637 ("not conformant with previous declaration",
7648 -- STEP 2b: No new discriminants, inherit discriminants if any
7651 if Private_Extension
then
7652 Set_Has_Unknown_Discriminants
7654 Has_Unknown_Discriminants
(Parent_Type
)
7655 or else Unknown_Discriminants_Present
(N
));
7657 -- The partial view of the parent may have unknown discriminants,
7658 -- but if the full view has discriminants and the parent type is
7659 -- in scope they must be inherited.
7661 elsif Has_Unknown_Discriminants
(Parent_Type
)
7663 (not Has_Discriminants
(Parent_Type
)
7664 or else not In_Open_Scopes
(Scope
(Parent_Type
)))
7666 Set_Has_Unknown_Discriminants
(Derived_Type
);
7669 if not Has_Unknown_Discriminants
(Derived_Type
)
7670 and then not Has_Unknown_Discriminants
(Parent_Base
)
7671 and then Has_Discriminants
(Parent_Type
)
7673 Inherit_Discrims
:= True;
7674 Set_Has_Discriminants
7675 (Derived_Type
, True);
7676 Set_Discriminant_Constraint
7677 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
7680 -- The following test is true for private types (remember
7681 -- transformation 5. is not applied to those) and in an error
7684 if Constraint_Present
then
7685 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
7688 -- For now mark a new derived type as constrained only if it has no
7689 -- discriminants. At the end of Build_Derived_Record_Type we properly
7690 -- set this flag in the case of private extensions. See comments in
7691 -- point 9. just before body of Build_Derived_Record_Type.
7695 not (Inherit_Discrims
7696 or else Has_Unknown_Discriminants
(Derived_Type
)));
7699 -- STEP 3: initialize fields of derived type
7701 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
7702 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7704 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
7705 -- but cannot be interfaces
7707 if not Private_Extension
7708 and then Ekind
(Derived_Type
) /= E_Private_Type
7709 and then Ekind
(Derived_Type
) /= E_Limited_Private_Type
7711 if Interface_Present
(Type_Def
) then
7712 Analyze_Interface_Declaration
(Derived_Type
, Type_Def
);
7715 Set_Interfaces
(Derived_Type
, No_Elist
);
7718 -- Fields inherited from the Parent_Type
7721 (Derived_Type
, Einfo
.Discard_Names
(Parent_Type
));
7722 Set_Has_Specified_Layout
7723 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
7724 Set_Is_Limited_Composite
7725 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
7726 Set_Is_Private_Composite
7727 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
7729 -- Fields inherited from the Parent_Base
7731 Set_Has_Controlled_Component
7732 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
7733 Set_Has_Non_Standard_Rep
7734 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
7735 Set_Has_Primitive_Operations
7736 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
7738 -- Fields inherited from the Parent_Base in the non-private case
7740 if Ekind
(Derived_Type
) = E_Record_Type
then
7741 Set_Has_Complex_Representation
7742 (Derived_Type
, Has_Complex_Representation
(Parent_Base
));
7745 -- Fields inherited from the Parent_Base for record types
7747 if Is_Record_Type
(Derived_Type
) then
7749 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7750 -- Parent_Base can be a private type or private extension.
7752 if Present
(Full_View
(Parent_Base
)) then
7753 Set_OK_To_Reorder_Components
7755 OK_To_Reorder_Components
(Full_View
(Parent_Base
)));
7756 Set_Reverse_Bit_Order
7757 (Derived_Type
, Reverse_Bit_Order
(Full_View
(Parent_Base
)));
7759 Set_OK_To_Reorder_Components
7760 (Derived_Type
, OK_To_Reorder_Components
(Parent_Base
));
7761 Set_Reverse_Bit_Order
7762 (Derived_Type
, Reverse_Bit_Order
(Parent_Base
));
7766 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7768 if not Is_Controlled
(Parent_Type
) then
7769 Set_Finalize_Storage_Only
7770 (Derived_Type
, Finalize_Storage_Only
(Parent_Type
));
7773 -- Set fields for private derived types
7775 if Is_Private_Type
(Derived_Type
) then
7776 Set_Depends_On_Private
(Derived_Type
, True);
7777 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
7779 -- Inherit fields from non private record types. If this is the
7780 -- completion of a derivation from a private type, the parent itself
7781 -- is private, and the attributes come from its full view, which must
7785 if Is_Private_Type
(Parent_Base
)
7786 and then not Is_Record_Type
(Parent_Base
)
7788 Set_Component_Alignment
7789 (Derived_Type
, Component_Alignment
(Full_View
(Parent_Base
)));
7791 (Derived_Type
, C_Pass_By_Copy
(Full_View
(Parent_Base
)));
7793 Set_Component_Alignment
7794 (Derived_Type
, Component_Alignment
(Parent_Base
));
7796 (Derived_Type
, C_Pass_By_Copy
(Parent_Base
));
7800 -- Set fields for tagged types
7803 Set_Direct_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
7805 -- All tagged types defined in Ada.Finalization are controlled
7807 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
7808 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
7809 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
7811 Set_Is_Controlled
(Derived_Type
);
7813 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Base
));
7816 -- Minor optimization: there is no need to generate the class-wide
7817 -- entity associated with an underlying record view.
7819 if not Is_Underlying_Record_View
(Derived_Type
) then
7820 Make_Class_Wide_Type
(Derived_Type
);
7823 Set_Is_Abstract_Type
(Derived_Type
, Abstract_Present
(Type_Def
));
7825 if Has_Discriminants
(Derived_Type
)
7826 and then Constraint_Present
7828 Set_Stored_Constraint
7829 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Base
, Discs
));
7832 if Ada_Version
>= Ada_2005
then
7834 Ifaces_List
: Elist_Id
;
7837 -- Checks rules 3.9.4 (13/2 and 14/2)
7839 if Comes_From_Source
(Derived_Type
)
7840 and then not Is_Private_Type
(Derived_Type
)
7841 and then Is_Interface
(Parent_Type
)
7842 and then not Is_Interface
(Derived_Type
)
7844 if Is_Task_Interface
(Parent_Type
) then
7846 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
7849 elsif Is_Protected_Interface
(Parent_Type
) then
7851 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
7856 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
7858 Check_Interfaces
(N
, Type_Def
);
7860 -- Ada 2005 (AI-251): Collect the list of progenitors that are
7861 -- not already in the parents.
7865 Ifaces_List
=> Ifaces_List
,
7866 Exclude_Parents
=> True);
7868 Set_Interfaces
(Derived_Type
, Ifaces_List
);
7870 -- If the derived type is the anonymous type created for
7871 -- a declaration whose parent has a constraint, propagate
7872 -- the interface list to the source type. This must be done
7873 -- prior to the completion of the analysis of the source type
7874 -- because the components in the extension may contain current
7875 -- instances whose legality depends on some ancestor.
7877 if Is_Itype
(Derived_Type
) then
7879 Def
: constant Node_Id
:=
7880 Associated_Node_For_Itype
(Derived_Type
);
7883 and then Nkind
(Def
) = N_Full_Type_Declaration
7886 (Defining_Identifier
(Def
), Ifaces_List
);
7894 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Base
));
7895 Set_Has_Non_Standard_Rep
7896 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
7899 -- STEP 4: Inherit components from the parent base and constrain them.
7900 -- Apply the second transformation described in point 6. above.
7902 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
7903 or else not Has_Discriminants
(Parent_Type
)
7904 or else not Is_Constrained
(Parent_Type
)
7908 Constrs
:= Discriminant_Constraint
(Parent_Type
);
7913 (N
, Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
7915 -- STEP 5a: Copy the parent record declaration for untagged types
7917 if not Is_Tagged
then
7919 -- Discriminant_Constraint (Derived_Type) has been properly
7920 -- constructed. Save it and temporarily set it to Empty because we
7921 -- do not want the call to New_Copy_Tree below to mess this list.
7923 if Has_Discriminants
(Derived_Type
) then
7924 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
7925 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
7927 Save_Discr_Constr
:= No_Elist
;
7930 -- Save the Etype field of Derived_Type. It is correctly set now,
7931 -- but the call to New_Copy tree may remap it to point to itself,
7932 -- which is not what we want. Ditto for the Next_Entity field.
7934 Save_Etype
:= Etype
(Derived_Type
);
7935 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
7937 -- Assoc_List maps all stored discriminants in the Parent_Base to
7938 -- stored discriminants in the Derived_Type. It is fundamental that
7939 -- no types or itypes with discriminants other than the stored
7940 -- discriminants appear in the entities declared inside
7941 -- Derived_Type, since the back end cannot deal with it.
7945 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
7947 -- Restore the fields saved prior to the New_Copy_Tree call
7948 -- and compute the stored constraint.
7950 Set_Etype
(Derived_Type
, Save_Etype
);
7951 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
7953 if Has_Discriminants
(Derived_Type
) then
7954 Set_Discriminant_Constraint
7955 (Derived_Type
, Save_Discr_Constr
);
7956 Set_Stored_Constraint
7957 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Type
, Discs
));
7958 Replace_Components
(Derived_Type
, New_Decl
);
7959 Set_Has_Implicit_Dereference
7960 (Derived_Type
, Has_Implicit_Dereference
(Parent_Type
));
7963 -- Insert the new derived type declaration
7965 Rewrite
(N
, New_Decl
);
7967 -- STEP 5b: Complete the processing for record extensions in generics
7969 -- There is no completion for record extensions declared in the
7970 -- parameter part of a generic, so we need to complete processing for
7971 -- these generic record extensions here. The Record_Type_Definition call
7972 -- will change the Ekind of the components from E_Void to E_Component.
7974 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
7975 Record_Type_Definition
(Empty
, Derived_Type
);
7977 -- STEP 5c: Process the record extension for non private tagged types
7979 elsif not Private_Extension
then
7981 -- Add the _parent field in the derived type
7983 Expand_Record_Extension
(Derived_Type
, Type_Def
);
7985 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
7986 -- implemented interfaces if we are in expansion mode
7989 and then Has_Interfaces
(Derived_Type
)
7991 Add_Interface_Tag_Components
(N
, Derived_Type
);
7994 -- Analyze the record extension
7996 Record_Type_Definition
7997 (Record_Extension_Part
(Type_Def
), Derived_Type
);
8002 -- Nothing else to do if there is an error in the derivation.
8003 -- An unusual case: the full view may be derived from a type in an
8004 -- instance, when the partial view was used illegally as an actual
8005 -- in that instance, leading to a circular definition.
8007 if Etype
(Derived_Type
) = Any_Type
8008 or else Etype
(Parent_Type
) = Derived_Type
8013 -- Set delayed freeze and then derive subprograms, we need to do
8014 -- this in this order so that derived subprograms inherit the
8015 -- derived freeze if necessary.
8017 Set_Has_Delayed_Freeze
(Derived_Type
);
8019 if Derive_Subps
then
8020 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8023 -- If we have a private extension which defines a constrained derived
8024 -- type mark as constrained here after we have derived subprograms. See
8025 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8027 if Private_Extension
and then Inherit_Discrims
then
8028 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
8029 Set_Is_Constrained
(Derived_Type
, True);
8030 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
8032 elsif Is_Constrained
(Parent_Type
) then
8034 (Derived_Type
, True);
8035 Set_Discriminant_Constraint
8036 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
8040 -- Update the class-wide type, which shares the now-completed entity
8041 -- list with its specific type. In case of underlying record views,
8042 -- we do not generate the corresponding class wide entity.
8045 and then not Is_Underlying_Record_View
(Derived_Type
)
8048 (Class_Wide_Type
(Derived_Type
), First_Entity
(Derived_Type
));
8050 (Class_Wide_Type
(Derived_Type
), Last_Entity
(Derived_Type
));
8052 end Build_Derived_Record_Type
;
8054 ------------------------
8055 -- Build_Derived_Type --
8056 ------------------------
8058 procedure Build_Derived_Type
8060 Parent_Type
: Entity_Id
;
8061 Derived_Type
: Entity_Id
;
8062 Is_Completion
: Boolean;
8063 Derive_Subps
: Boolean := True)
8065 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
8068 -- Set common attributes
8070 Set_Scope
(Derived_Type
, Current_Scope
);
8072 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
8073 Set_Etype
(Derived_Type
, Parent_Base
);
8074 Set_Has_Task
(Derived_Type
, Has_Task
(Parent_Base
));
8076 Set_Size_Info
(Derived_Type
, Parent_Type
);
8077 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
8078 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
8079 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged_Type
(Parent_Type
));
8081 -- If the parent type is a private subtype, the convention on the base
8082 -- type may be set in the private part, and not propagated to the
8083 -- subtype until later, so we obtain the convention from the base type.
8085 Set_Convention
(Derived_Type
, Convention
(Parent_Base
));
8087 -- Propagate invariant information. The new type has invariants if
8088 -- they are inherited from the parent type, and these invariants can
8089 -- be further inherited, so both flags are set.
8091 if Has_Inheritable_Invariants
(Parent_Type
) then
8092 Set_Has_Inheritable_Invariants
(Derived_Type
);
8093 Set_Has_Invariants
(Derived_Type
);
8096 -- We similarly inherit predicates
8098 if Has_Predicates
(Parent_Type
) then
8099 Set_Has_Predicates
(Derived_Type
);
8102 -- The derived type inherits the representation clauses of the parent.
8103 -- However, for a private type that is completed by a derivation, there
8104 -- may be operation attributes that have been specified already (stream
8105 -- attributes and External_Tag) and those must be provided. Finally,
8106 -- if the partial view is a private extension, the representation items
8107 -- of the parent have been inherited already, and should not be chained
8108 -- twice to the derived type.
8110 if Is_Tagged_Type
(Parent_Type
)
8111 and then Present
(First_Rep_Item
(Derived_Type
))
8113 -- The existing items are either operational items or items inherited
8114 -- from a private extension declaration.
8118 -- Used to iterate over representation items of the derived type
8121 -- Last representation item of the (non-empty) representation
8122 -- item list of the derived type.
8124 Found
: Boolean := False;
8127 Rep
:= First_Rep_Item
(Derived_Type
);
8129 while Present
(Rep
) loop
8130 if Rep
= First_Rep_Item
(Parent_Type
) then
8135 Rep
:= Next_Rep_Item
(Rep
);
8137 if Present
(Rep
) then
8143 -- Here if we either encountered the parent type's first rep
8144 -- item on the derived type's rep item list (in which case
8145 -- Found is True, and we have nothing else to do), or if we
8146 -- reached the last rep item of the derived type, which is
8147 -- Last_Rep, in which case we further chain the parent type's
8148 -- rep items to those of the derived type.
8151 Set_Next_Rep_Item
(Last_Rep
, First_Rep_Item
(Parent_Type
));
8156 Set_First_Rep_Item
(Derived_Type
, First_Rep_Item
(Parent_Type
));
8159 case Ekind
(Parent_Type
) is
8160 when Numeric_Kind
=>
8161 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
8164 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
8168 | Class_Wide_Kind
=>
8169 Build_Derived_Record_Type
8170 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
8173 when Enumeration_Kind
=>
8174 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
8177 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
8179 when Incomplete_Or_Private_Kind
=>
8180 Build_Derived_Private_Type
8181 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
8183 -- For discriminated types, the derivation includes deriving
8184 -- primitive operations. For others it is done below.
8186 if Is_Tagged_Type
(Parent_Type
)
8187 or else Has_Discriminants
(Parent_Type
)
8188 or else (Present
(Full_View
(Parent_Type
))
8189 and then Has_Discriminants
(Full_View
(Parent_Type
)))
8194 when Concurrent_Kind
=>
8195 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
8198 raise Program_Error
;
8201 if Etype
(Derived_Type
) = Any_Type
then
8205 -- Set delayed freeze and then derive subprograms, we need to do this
8206 -- in this order so that derived subprograms inherit the derived freeze
8209 Set_Has_Delayed_Freeze
(Derived_Type
);
8210 if Derive_Subps
then
8211 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8214 Set_Has_Primitive_Operations
8215 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
8216 end Build_Derived_Type
;
8218 -----------------------
8219 -- Build_Discriminal --
8220 -----------------------
8222 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
8223 D_Minal
: Entity_Id
;
8224 CR_Disc
: Entity_Id
;
8227 -- A discriminal has the same name as the discriminant
8229 D_Minal
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
8231 Set_Ekind
(D_Minal
, E_In_Parameter
);
8232 Set_Mechanism
(D_Minal
, Default_Mechanism
);
8233 Set_Etype
(D_Minal
, Etype
(Discrim
));
8234 Set_Scope
(D_Minal
, Current_Scope
);
8236 Set_Discriminal
(Discrim
, D_Minal
);
8237 Set_Discriminal_Link
(D_Minal
, Discrim
);
8239 -- For task types, build at once the discriminants of the corresponding
8240 -- record, which are needed if discriminants are used in entry defaults
8241 -- and in family bounds.
8243 if Is_Concurrent_Type
(Current_Scope
)
8244 or else Is_Limited_Type
(Current_Scope
)
8246 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
8248 Set_Ekind
(CR_Disc
, E_In_Parameter
);
8249 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
8250 Set_Etype
(CR_Disc
, Etype
(Discrim
));
8251 Set_Scope
(CR_Disc
, Current_Scope
);
8252 Set_Discriminal_Link
(CR_Disc
, Discrim
);
8253 Set_CR_Discriminant
(Discrim
, CR_Disc
);
8255 end Build_Discriminal
;
8257 ------------------------------------
8258 -- Build_Discriminant_Constraints --
8259 ------------------------------------
8261 function Build_Discriminant_Constraints
8264 Derived_Def
: Boolean := False) return Elist_Id
8266 C
: constant Node_Id
:= Constraint
(Def
);
8267 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
8269 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
8270 -- Saves the expression corresponding to a given discriminant in T
8272 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
8273 -- Return the Position number within array Discr_Expr of a discriminant
8274 -- D within the discriminant list of the discriminated type T.
8280 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
8284 Disc
:= First_Discriminant
(T
);
8285 for J
in Discr_Expr
'Range loop
8290 Next_Discriminant
(Disc
);
8293 -- Note: Since this function is called on discriminants that are
8294 -- known to belong to the discriminated type, falling through the
8295 -- loop with no match signals an internal compiler error.
8297 raise Program_Error
;
8300 -- Declarations local to Build_Discriminant_Constraints
8304 Elist
: constant Elist_Id
:= New_Elmt_List
;
8312 Discrim_Present
: Boolean := False;
8314 -- Start of processing for Build_Discriminant_Constraints
8317 -- The following loop will process positional associations only.
8318 -- For a positional association, the (single) discriminant is
8319 -- implicitly specified by position, in textual order (RM 3.7.2).
8321 Discr
:= First_Discriminant
(T
);
8322 Constr
:= First
(Constraints
(C
));
8323 for D
in Discr_Expr
'Range loop
8324 exit when Nkind
(Constr
) = N_Discriminant_Association
;
8327 Error_Msg_N
("too few discriminants given in constraint", C
);
8328 return New_Elmt_List
;
8330 elsif Nkind
(Constr
) = N_Range
8331 or else (Nkind
(Constr
) = N_Attribute_Reference
8333 Attribute_Name
(Constr
) = Name_Range
)
8336 ("a range is not a valid discriminant constraint", Constr
);
8337 Discr_Expr
(D
) := Error
;
8340 Analyze_And_Resolve
(Constr
, Base_Type
(Etype
(Discr
)));
8341 Discr_Expr
(D
) := Constr
;
8344 Next_Discriminant
(Discr
);
8348 if No
(Discr
) and then Present
(Constr
) then
8349 Error_Msg_N
("too many discriminants given in constraint", Constr
);
8350 return New_Elmt_List
;
8353 -- Named associations can be given in any order, but if both positional
8354 -- and named associations are used in the same discriminant constraint,
8355 -- then positional associations must occur first, at their normal
8356 -- position. Hence once a named association is used, the rest of the
8357 -- discriminant constraint must use only named associations.
8359 while Present
(Constr
) loop
8361 -- Positional association forbidden after a named association
8363 if Nkind
(Constr
) /= N_Discriminant_Association
then
8364 Error_Msg_N
("positional association follows named one", Constr
);
8365 return New_Elmt_List
;
8367 -- Otherwise it is a named association
8370 -- E records the type of the discriminants in the named
8371 -- association. All the discriminants specified in the same name
8372 -- association must have the same type.
8376 -- Search the list of discriminants in T to see if the simple name
8377 -- given in the constraint matches any of them.
8379 Id
:= First
(Selector_Names
(Constr
));
8380 while Present
(Id
) loop
8383 -- If Original_Discriminant is present, we are processing a
8384 -- generic instantiation and this is an instance node. We need
8385 -- to find the name of the corresponding discriminant in the
8386 -- actual record type T and not the name of the discriminant in
8387 -- the generic formal. Example:
8390 -- type G (D : int) is private;
8392 -- subtype W is G (D => 1);
8394 -- type Rec (X : int) is record ... end record;
8395 -- package Q is new P (G => Rec);
8397 -- At the point of the instantiation, formal type G is Rec
8398 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8399 -- which really looks like "subtype W is Rec (D => 1);" at
8400 -- the point of instantiation, we want to find the discriminant
8401 -- that corresponds to D in Rec, i.e. X.
8403 if Present
(Original_Discriminant
(Id
))
8404 and then In_Instance
8406 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
8410 Discr
:= First_Discriminant
(T
);
8411 while Present
(Discr
) loop
8412 if Chars
(Discr
) = Chars
(Id
) then
8417 Next_Discriminant
(Discr
);
8421 Error_Msg_N
("& does not match any discriminant", Id
);
8422 return New_Elmt_List
;
8424 -- If the parent type is a generic formal, preserve the
8425 -- name of the discriminant for subsequent instances.
8426 -- see comment at the beginning of this if statement.
8428 elsif Is_Generic_Type
(Root_Type
(T
)) then
8429 Set_Original_Discriminant
(Id
, Discr
);
8433 Position
:= Pos_Of_Discr
(T
, Discr
);
8435 if Present
(Discr_Expr
(Position
)) then
8436 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
8439 -- Each discriminant specified in the same named association
8440 -- must be associated with a separate copy of the
8441 -- corresponding expression.
8443 if Present
(Next
(Id
)) then
8444 Expr
:= New_Copy_Tree
(Expression
(Constr
));
8445 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
8447 Expr
:= Expression
(Constr
);
8450 Discr_Expr
(Position
) := Expr
;
8451 Analyze_And_Resolve
(Expr
, Base_Type
(Etype
(Discr
)));
8454 -- A discriminant association with more than one discriminant
8455 -- name is only allowed if the named discriminants are all of
8456 -- the same type (RM 3.7.1(8)).
8459 E
:= Base_Type
(Etype
(Discr
));
8461 elsif Base_Type
(Etype
(Discr
)) /= E
then
8463 ("all discriminants in an association " &
8464 "must have the same type", Id
);
8474 -- A discriminant constraint must provide exactly one value for each
8475 -- discriminant of the type (RM 3.7.1(8)).
8477 for J
in Discr_Expr
'Range loop
8478 if No
(Discr_Expr
(J
)) then
8479 Error_Msg_N
("too few discriminants given in constraint", C
);
8480 return New_Elmt_List
;
8484 -- Determine if there are discriminant expressions in the constraint
8486 for J
in Discr_Expr
'Range loop
8487 if Denotes_Discriminant
8488 (Discr_Expr
(J
), Check_Concurrent
=> True)
8490 Discrim_Present
:= True;
8494 -- Build an element list consisting of the expressions given in the
8495 -- discriminant constraint and apply the appropriate checks. The list
8496 -- is constructed after resolving any named discriminant associations
8497 -- and therefore the expressions appear in the textual order of the
8500 Discr
:= First_Discriminant
(T
);
8501 for J
in Discr_Expr
'Range loop
8502 if Discr_Expr
(J
) /= Error
then
8503 Append_Elmt
(Discr_Expr
(J
), Elist
);
8505 -- If any of the discriminant constraints is given by a
8506 -- discriminant and we are in a derived type declaration we
8507 -- have a discriminant renaming. Establish link between new
8508 -- and old discriminant.
8510 if Denotes_Discriminant
(Discr_Expr
(J
)) then
8512 Set_Corresponding_Discriminant
8513 (Entity
(Discr_Expr
(J
)), Discr
);
8516 -- Force the evaluation of non-discriminant expressions.
8517 -- If we have found a discriminant in the constraint 3.4(26)
8518 -- and 3.8(18) demand that no range checks are performed are
8519 -- after evaluation. If the constraint is for a component
8520 -- definition that has a per-object constraint, expressions are
8521 -- evaluated but not checked either. In all other cases perform
8525 if Discrim_Present
then
8528 elsif Nkind
(Parent
(Parent
(Def
))) = N_Component_Declaration
8530 Has_Per_Object_Constraint
8531 (Defining_Identifier
(Parent
(Parent
(Def
))))
8535 elsif Is_Access_Type
(Etype
(Discr
)) then
8536 Apply_Constraint_Check
(Discr_Expr
(J
), Etype
(Discr
));
8539 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
8542 Force_Evaluation
(Discr_Expr
(J
));
8545 -- Check that the designated type of an access discriminant's
8546 -- expression is not a class-wide type unless the discriminant's
8547 -- designated type is also class-wide.
8549 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
8550 and then not Is_Class_Wide_Type
8551 (Designated_Type
(Etype
(Discr
)))
8552 and then Etype
(Discr_Expr
(J
)) /= Any_Type
8553 and then Is_Class_Wide_Type
8554 (Designated_Type
(Etype
(Discr_Expr
(J
))))
8556 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
8558 elsif Is_Access_Type
(Etype
(Discr
))
8559 and then not Is_Access_Constant
(Etype
(Discr
))
8560 and then Is_Access_Type
(Etype
(Discr_Expr
(J
)))
8561 and then Is_Access_Constant
(Etype
(Discr_Expr
(J
)))
8564 ("constraint for discriminant& must be access to variable",
8569 Next_Discriminant
(Discr
);
8573 end Build_Discriminant_Constraints
;
8575 ---------------------------------
8576 -- Build_Discriminated_Subtype --
8577 ---------------------------------
8579 procedure Build_Discriminated_Subtype
8583 Related_Nod
: Node_Id
;
8584 For_Access
: Boolean := False)
8586 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
8587 Constrained
: constant Boolean :=
8589 and then not Is_Empty_Elmt_List
(Elist
)
8590 and then not Is_Class_Wide_Type
(T
))
8591 or else Is_Constrained
(T
);
8594 if Ekind
(T
) = E_Record_Type
then
8596 Set_Ekind
(Def_Id
, E_Private_Subtype
);
8597 Set_Is_For_Access_Subtype
(Def_Id
, True);
8599 Set_Ekind
(Def_Id
, E_Record_Subtype
);
8602 -- Inherit preelaboration flag from base, for types for which it
8603 -- may have been set: records, private types, protected types.
8605 Set_Known_To_Have_Preelab_Init
8606 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
8608 elsif Ekind
(T
) = E_Task_Type
then
8609 Set_Ekind
(Def_Id
, E_Task_Subtype
);
8611 elsif Ekind
(T
) = E_Protected_Type
then
8612 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
8613 Set_Known_To_Have_Preelab_Init
8614 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
8616 elsif Is_Private_Type
(T
) then
8617 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
8618 Set_Known_To_Have_Preelab_Init
8619 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
8621 elsif Is_Class_Wide_Type
(T
) then
8622 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
8625 -- Incomplete type. Attach subtype to list of dependents, to be
8626 -- completed with full view of parent type, unless is it the
8627 -- designated subtype of a record component within an init_proc.
8628 -- This last case arises for a component of an access type whose
8629 -- designated type is incomplete (e.g. a Taft Amendment type).
8630 -- The designated subtype is within an inner scope, and needs no
8631 -- elaboration, because only the access type is needed in the
8632 -- initialization procedure.
8634 Set_Ekind
(Def_Id
, Ekind
(T
));
8636 if For_Access
and then Within_Init_Proc
then
8639 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
8643 Set_Etype
(Def_Id
, T
);
8644 Init_Size_Align
(Def_Id
);
8645 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
8646 Set_Is_Constrained
(Def_Id
, Constrained
);
8648 Set_First_Entity
(Def_Id
, First_Entity
(T
));
8649 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
8650 Set_Has_Implicit_Dereference
8651 (Def_Id
, Has_Implicit_Dereference
(T
));
8653 -- If the subtype is the completion of a private declaration, there may
8654 -- have been representation clauses for the partial view, and they must
8655 -- be preserved. Build_Derived_Type chains the inherited clauses with
8656 -- the ones appearing on the extension. If this comes from a subtype
8657 -- declaration, all clauses are inherited.
8659 if No
(First_Rep_Item
(Def_Id
)) then
8660 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
8663 if Is_Tagged_Type
(T
) then
8664 Set_Is_Tagged_Type
(Def_Id
);
8665 Make_Class_Wide_Type
(Def_Id
);
8668 Set_Stored_Constraint
(Def_Id
, No_Elist
);
8671 Set_Discriminant_Constraint
(Def_Id
, Elist
);
8672 Set_Stored_Constraint_From_Discriminant_Constraint
(Def_Id
);
8675 if Is_Tagged_Type
(T
) then
8677 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
8678 -- concurrent record type (which has the list of primitive
8681 if Ada_Version
>= Ada_2005
8682 and then Is_Concurrent_Type
(T
)
8684 Set_Corresponding_Record_Type
(Def_Id
,
8685 Corresponding_Record_Type
(T
));
8687 Set_Direct_Primitive_Operations
(Def_Id
,
8688 Direct_Primitive_Operations
(T
));
8691 Set_Is_Abstract_Type
(Def_Id
, Is_Abstract_Type
(T
));
8694 -- Subtypes introduced by component declarations do not need to be
8695 -- marked as delayed, and do not get freeze nodes, because the semantics
8696 -- verifies that the parents of the subtypes are frozen before the
8697 -- enclosing record is frozen.
8699 if not Is_Type
(Scope
(Def_Id
)) then
8700 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
8702 if Is_Private_Type
(T
)
8703 and then Present
(Full_View
(T
))
8705 Conditional_Delay
(Def_Id
, Full_View
(T
));
8707 Conditional_Delay
(Def_Id
, T
);
8711 if Is_Record_Type
(T
) then
8712 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
8715 and then not Is_Empty_Elmt_List
(Elist
)
8716 and then not For_Access
8718 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
8719 elsif not For_Access
then
8720 Set_Cloned_Subtype
(Def_Id
, T
);
8723 end Build_Discriminated_Subtype
;
8725 ---------------------------
8726 -- Build_Itype_Reference --
8727 ---------------------------
8729 procedure Build_Itype_Reference
8733 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(Nod
));
8736 -- Itype references are only created for use by the back-end
8738 if Inside_A_Generic
then
8741 Set_Itype
(IR
, Ityp
);
8742 Insert_After
(Nod
, IR
);
8744 end Build_Itype_Reference
;
8746 ------------------------
8747 -- Build_Scalar_Bound --
8748 ------------------------
8750 function Build_Scalar_Bound
8753 Der_T
: Entity_Id
) return Node_Id
8755 New_Bound
: Entity_Id
;
8758 -- Note: not clear why this is needed, how can the original bound
8759 -- be unanalyzed at this point? and if it is, what business do we
8760 -- have messing around with it? and why is the base type of the
8761 -- parent type the right type for the resolution. It probably is
8762 -- not! It is OK for the new bound we are creating, but not for
8763 -- the old one??? Still if it never happens, no problem!
8765 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
8767 if Nkind_In
(Bound
, N_Integer_Literal
, N_Real_Literal
) then
8768 New_Bound
:= New_Copy
(Bound
);
8769 Set_Etype
(New_Bound
, Der_T
);
8770 Set_Analyzed
(New_Bound
);
8772 elsif Is_Entity_Name
(Bound
) then
8773 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
8775 -- The following is almost certainly wrong. What business do we have
8776 -- relocating a node (Bound) that is presumably still attached to
8777 -- the tree elsewhere???
8780 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
8783 Set_Etype
(New_Bound
, Der_T
);
8785 end Build_Scalar_Bound
;
8787 --------------------------------
8788 -- Build_Underlying_Full_View --
8789 --------------------------------
8791 procedure Build_Underlying_Full_View
8796 Loc
: constant Source_Ptr
:= Sloc
(N
);
8797 Subt
: constant Entity_Id
:=
8798 Make_Defining_Identifier
8799 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
8806 procedure Set_Discriminant_Name
(Id
: Node_Id
);
8807 -- If the derived type has discriminants, they may rename discriminants
8808 -- of the parent. When building the full view of the parent, we need to
8809 -- recover the names of the original discriminants if the constraint is
8810 -- given by named associations.
8812 ---------------------------
8813 -- Set_Discriminant_Name --
8814 ---------------------------
8816 procedure Set_Discriminant_Name
(Id
: Node_Id
) is
8820 Set_Original_Discriminant
(Id
, Empty
);
8822 if Has_Discriminants
(Typ
) then
8823 Disc
:= First_Discriminant
(Typ
);
8824 while Present
(Disc
) loop
8825 if Chars
(Disc
) = Chars
(Id
)
8826 and then Present
(Corresponding_Discriminant
(Disc
))
8828 Set_Chars
(Id
, Chars
(Corresponding_Discriminant
(Disc
)));
8830 Next_Discriminant
(Disc
);
8833 end Set_Discriminant_Name
;
8835 -- Start of processing for Build_Underlying_Full_View
8838 if Nkind
(N
) = N_Full_Type_Declaration
then
8839 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
8841 elsif Nkind
(N
) = N_Subtype_Declaration
then
8842 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
8844 elsif Nkind
(N
) = N_Component_Declaration
then
8847 (Constraint
(Subtype_Indication
(Component_Definition
(N
))));
8850 raise Program_Error
;
8853 C
:= First
(Constraints
(Constr
));
8854 while Present
(C
) loop
8855 if Nkind
(C
) = N_Discriminant_Association
then
8856 Id
:= First
(Selector_Names
(C
));
8857 while Present
(Id
) loop
8858 Set_Discriminant_Name
(Id
);
8867 Make_Subtype_Declaration
(Loc
,
8868 Defining_Identifier
=> Subt
,
8869 Subtype_Indication
=>
8870 Make_Subtype_Indication
(Loc
,
8871 Subtype_Mark
=> New_Reference_To
(Par
, Loc
),
8872 Constraint
=> New_Copy_Tree
(Constr
)));
8874 -- If this is a component subtype for an outer itype, it is not
8875 -- a list member, so simply set the parent link for analysis: if
8876 -- the enclosing type does not need to be in a declarative list,
8877 -- neither do the components.
8879 if Is_List_Member
(N
)
8880 and then Nkind
(N
) /= N_Component_Declaration
8882 Insert_Before
(N
, Indic
);
8884 Set_Parent
(Indic
, Parent
(N
));
8888 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
8889 end Build_Underlying_Full_View
;
8891 -------------------------------
8892 -- Check_Abstract_Overriding --
8893 -------------------------------
8895 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
8896 Alias_Subp
: Entity_Id
;
8902 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
);
8903 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
8904 -- which has pragma Implemented already set. Check whether Subp's entity
8905 -- kind conforms to the implementation kind of the overridden routine.
8907 procedure Check_Pragma_Implemented
8909 Iface_Subp
: Entity_Id
);
8910 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
8911 -- Iface_Subp and both entities have pragma Implemented already set on
8912 -- them. Check whether the two implementation kinds are conforming.
8914 procedure Inherit_Pragma_Implemented
8916 Iface_Subp
: Entity_Id
);
8917 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
8918 -- subprogram Iface_Subp which has been marked by pragma Implemented.
8919 -- Propagate the implementation kind of Iface_Subp to Subp.
8921 ------------------------------
8922 -- Check_Pragma_Implemented --
8923 ------------------------------
8925 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
) is
8926 Iface_Alias
: constant Entity_Id
:= Interface_Alias
(Subp
);
8927 Impl_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Alias
);
8928 Subp_Alias
: constant Entity_Id
:= Alias
(Subp
);
8929 Contr_Typ
: Entity_Id
;
8930 Impl_Subp
: Entity_Id
;
8933 -- Subp must have an alias since it is a hidden entity used to link
8934 -- an interface subprogram to its overriding counterpart.
8936 pragma Assert
(Present
(Subp_Alias
));
8938 -- Handle aliases to synchronized wrappers
8940 Impl_Subp
:= Subp_Alias
;
8942 if Is_Primitive_Wrapper
(Impl_Subp
) then
8943 Impl_Subp
:= Wrapped_Entity
(Impl_Subp
);
8946 -- Extract the type of the controlling formal
8948 Contr_Typ
:= Etype
(First_Formal
(Subp_Alias
));
8950 if Is_Concurrent_Record_Type
(Contr_Typ
) then
8951 Contr_Typ
:= Corresponding_Concurrent_Type
(Contr_Typ
);
8954 -- An interface subprogram whose implementation kind is By_Entry must
8955 -- be implemented by an entry.
8957 if Impl_Kind
= Name_By_Entry
8958 and then Ekind
(Impl_Subp
) /= E_Entry
8960 Error_Msg_Node_2
:= Iface_Alias
;
8962 ("type & must implement abstract subprogram & with an entry",
8963 Subp_Alias
, Contr_Typ
);
8965 elsif Impl_Kind
= Name_By_Protected_Procedure
then
8967 -- An interface subprogram whose implementation kind is By_
8968 -- Protected_Procedure cannot be implemented by a primitive
8969 -- procedure of a task type.
8971 if Ekind
(Contr_Typ
) /= E_Protected_Type
then
8972 Error_Msg_Node_2
:= Contr_Typ
;
8974 ("interface subprogram & cannot be implemented by a " &
8975 "primitive procedure of task type &", Subp_Alias
,
8978 -- An interface subprogram whose implementation kind is By_
8979 -- Protected_Procedure must be implemented by a procedure.
8981 elsif Ekind
(Impl_Subp
) /= E_Procedure
then
8982 Error_Msg_Node_2
:= Iface_Alias
;
8984 ("type & must implement abstract subprogram & with a " &
8985 "procedure", Subp_Alias
, Contr_Typ
);
8988 end Check_Pragma_Implemented
;
8990 ------------------------------
8991 -- Check_Pragma_Implemented --
8992 ------------------------------
8994 procedure Check_Pragma_Implemented
8996 Iface_Subp
: Entity_Id
)
8998 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
8999 Subp_Kind
: constant Name_Id
:= Implementation_Kind
(Subp
);
9002 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9003 -- and overriding subprogram are different. In general this is an
9004 -- error except when the implementation kind of the overridden
9005 -- subprograms is By_Any or Optional.
9007 if Iface_Kind
/= Subp_Kind
9008 and then Iface_Kind
/= Name_By_Any
9009 and then Iface_Kind
/= Name_Optional
9011 if Iface_Kind
= Name_By_Entry
then
9013 ("incompatible implementation kind, overridden subprogram " &
9014 "is marked By_Entry", Subp
);
9017 ("incompatible implementation kind, overridden subprogram " &
9018 "is marked By_Protected_Procedure", Subp
);
9021 end Check_Pragma_Implemented
;
9023 --------------------------------
9024 -- Inherit_Pragma_Implemented --
9025 --------------------------------
9027 procedure Inherit_Pragma_Implemented
9029 Iface_Subp
: Entity_Id
)
9031 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
9032 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
9033 Impl_Prag
: Node_Id
;
9036 -- Since the implementation kind is stored as a representation item
9037 -- rather than a flag, create a pragma node.
9041 Chars
=> Name_Implemented
,
9042 Pragma_Argument_Associations
=> New_List
(
9043 Make_Pragma_Argument_Association
(Loc
,
9045 New_Reference_To
(Subp
, Loc
)),
9047 Make_Pragma_Argument_Association
(Loc
,
9048 Expression
=> Make_Identifier
(Loc
, Iface_Kind
))));
9050 -- The pragma doesn't need to be analyzed because it is internally
9051 -- build. It is safe to directly register it as a rep item since we
9052 -- are only interested in the characters of the implementation kind.
9054 Record_Rep_Item
(Subp
, Impl_Prag
);
9055 end Inherit_Pragma_Implemented
;
9057 -- Start of processing for Check_Abstract_Overriding
9060 Op_List
:= Primitive_Operations
(T
);
9062 -- Loop to check primitive operations
9064 Elmt
:= First_Elmt
(Op_List
);
9065 while Present
(Elmt
) loop
9066 Subp
:= Node
(Elmt
);
9067 Alias_Subp
:= Alias
(Subp
);
9069 -- Inherited subprograms are identified by the fact that they do not
9070 -- come from source, and the associated source location is the
9071 -- location of the first subtype of the derived type.
9073 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9074 -- subprograms that "require overriding".
9076 -- Special exception, do not complain about failure to override the
9077 -- stream routines _Input and _Output, as well as the primitive
9078 -- operations used in dispatching selects since we always provide
9079 -- automatic overridings for these subprograms.
9081 -- Also ignore this rule for convention CIL since .NET libraries
9082 -- do bizarre things with interfaces???
9084 -- The partial view of T may have been a private extension, for
9085 -- which inherited functions dispatching on result are abstract.
9086 -- If the full view is a null extension, there is no need for
9087 -- overriding in Ada 2005, but wrappers need to be built for them
9088 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9090 if Is_Null_Extension
(T
)
9091 and then Has_Controlling_Result
(Subp
)
9092 and then Ada_Version
>= Ada_2005
9093 and then Present
(Alias_Subp
)
9094 and then not Comes_From_Source
(Subp
)
9095 and then not Is_Abstract_Subprogram
(Alias_Subp
)
9096 and then not Is_Access_Type
(Etype
(Subp
))
9100 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9101 -- processing because this check is done with the aliased
9104 elsif Present
(Interface_Alias
(Subp
)) then
9107 elsif (Is_Abstract_Subprogram
(Subp
)
9108 or else Requires_Overriding
(Subp
)
9110 (Has_Controlling_Result
(Subp
)
9111 and then Present
(Alias_Subp
)
9112 and then not Comes_From_Source
(Subp
)
9113 and then Sloc
(Subp
) = Sloc
(First_Subtype
(T
))))
9114 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
9115 and then not Is_TSS
(Subp
, TSS_Stream_Output
)
9116 and then not Is_Abstract_Type
(T
)
9117 and then Convention
(T
) /= Convention_CIL
9118 and then not Is_Predefined_Interface_Primitive
(Subp
)
9120 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9121 -- with abstract interface types because the check will be done
9122 -- with the aliased entity (otherwise we generate a duplicated
9125 and then not Present
(Interface_Alias
(Subp
))
9127 if Present
(Alias_Subp
) then
9129 -- Only perform the check for a derived subprogram when the
9130 -- type has an explicit record extension. This avoids incorrect
9131 -- flagging of abstract subprograms for the case of a type
9132 -- without an extension that is derived from a formal type
9133 -- with a tagged actual (can occur within a private part).
9135 -- Ada 2005 (AI-391): In the case of an inherited function with
9136 -- a controlling result of the type, the rule does not apply if
9137 -- the type is a null extension (unless the parent function
9138 -- itself is abstract, in which case the function must still be
9139 -- be overridden). The expander will generate an overriding
9140 -- wrapper function calling the parent subprogram (see
9141 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9143 Type_Def
:= Type_Definition
(Parent
(T
));
9145 if Nkind
(Type_Def
) = N_Derived_Type_Definition
9146 and then Present
(Record_Extension_Part
(Type_Def
))
9148 (Ada_Version
< Ada_2005
9149 or else not Is_Null_Extension
(T
)
9150 or else Ekind
(Subp
) = E_Procedure
9151 or else not Has_Controlling_Result
(Subp
)
9152 or else Is_Abstract_Subprogram
(Alias_Subp
)
9153 or else Requires_Overriding
(Subp
)
9154 or else Is_Access_Type
(Etype
(Subp
)))
9156 -- Avoid reporting error in case of abstract predefined
9157 -- primitive inherited from interface type because the
9158 -- body of internally generated predefined primitives
9159 -- of tagged types are generated later by Freeze_Type
9161 if Is_Interface
(Root_Type
(T
))
9162 and then Is_Abstract_Subprogram
(Subp
)
9163 and then Is_Predefined_Dispatching_Operation
(Subp
)
9164 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
9170 ("type must be declared abstract or & overridden",
9173 -- Traverse the whole chain of aliased subprograms to
9174 -- complete the error notification. This is especially
9175 -- useful for traceability of the chain of entities when
9176 -- the subprogram corresponds with an interface
9177 -- subprogram (which may be defined in another package).
9179 if Present
(Alias_Subp
) then
9185 while Present
(Alias
(E
)) loop
9187 -- Avoid reporting redundant errors on entities
9188 -- inherited from interfaces
9190 if Sloc
(E
) /= Sloc
(T
) then
9191 Error_Msg_Sloc
:= Sloc
(E
);
9193 ("\& has been inherited #", T
, Subp
);
9199 Error_Msg_Sloc
:= Sloc
(E
);
9201 -- AI05-0068: report if there is an overriding
9202 -- non-abstract subprogram that is invisible.
9205 and then not Is_Abstract_Subprogram
(E
)
9208 ("\& subprogram# is not visible",
9213 ("\& has been inherited from subprogram #",
9220 -- Ada 2005 (AI-345): Protected or task type implementing
9221 -- abstract interfaces.
9223 elsif Is_Concurrent_Record_Type
(T
)
9224 and then Present
(Interfaces
(T
))
9226 -- The controlling formal of Subp must be of mode "out",
9227 -- "in out" or an access-to-variable to be overridden.
9229 if Ekind
(First_Formal
(Subp
)) = E_In_Parameter
9230 and then Ekind
(Subp
) /= E_Function
9232 if not Is_Predefined_Dispatching_Operation
(Subp
)
9233 and then Is_Protected_Type
9234 (Corresponding_Concurrent_Type
(T
))
9236 Error_Msg_PT
(T
, Subp
);
9239 -- Some other kind of overriding failure
9243 ("interface subprogram & must be overridden",
9246 -- Examine primitive operations of synchronized type,
9247 -- to find homonyms that have the wrong profile.
9254 First_Entity
(Corresponding_Concurrent_Type
(T
));
9255 while Present
(Prim
) loop
9256 if Chars
(Prim
) = Chars
(Subp
) then
9258 ("profile is not type conformant with "
9259 & "prefixed view profile of "
9260 & "inherited operation&", Prim
, Subp
);
9270 Error_Msg_Node_2
:= T
;
9272 ("abstract subprogram& not allowed for type&", Subp
);
9274 -- Also post unconditional warning on the type (unconditional
9275 -- so that if there are more than one of these cases, we get
9276 -- them all, and not just the first one).
9278 Error_Msg_Node_2
:= Subp
;
9279 Error_Msg_N
("nonabstract type& has abstract subprogram&!", T
);
9283 -- Ada 2012 (AI05-0030): Perform some checks related to pragma
9286 -- Subp is an expander-generated procedure which maps an interface
9287 -- alias to a protected wrapper. The interface alias is flagged by
9288 -- pragma Implemented. Ensure that Subp is a procedure when the
9289 -- implementation kind is By_Protected_Procedure or an entry when
9292 if Ada_Version
>= Ada_2012
9293 and then Is_Hidden
(Subp
)
9294 and then Present
(Interface_Alias
(Subp
))
9295 and then Has_Rep_Pragma
(Interface_Alias
(Subp
), Name_Implemented
)
9297 Check_Pragma_Implemented
(Subp
);
9300 -- Subp is an interface primitive which overrides another interface
9301 -- primitive marked with pragma Implemented.
9303 if Ada_Version
>= Ada_2012
9304 and then Present
(Overridden_Operation
(Subp
))
9305 and then Has_Rep_Pragma
9306 (Overridden_Operation
(Subp
), Name_Implemented
)
9308 -- If the overriding routine is also marked by Implemented, check
9309 -- that the two implementation kinds are conforming.
9311 if Has_Rep_Pragma
(Subp
, Name_Implemented
) then
9312 Check_Pragma_Implemented
9314 Iface_Subp
=> Overridden_Operation
(Subp
));
9316 -- Otherwise the overriding routine inherits the implementation
9317 -- kind from the overridden subprogram.
9320 Inherit_Pragma_Implemented
9322 Iface_Subp
=> Overridden_Operation
(Subp
));
9328 end Check_Abstract_Overriding
;
9330 ------------------------------------------------
9331 -- Check_Access_Discriminant_Requires_Limited --
9332 ------------------------------------------------
9334 procedure Check_Access_Discriminant_Requires_Limited
9339 -- A discriminant_specification for an access discriminant shall appear
9340 -- only in the declaration for a task or protected type, or for a type
9341 -- with the reserved word 'limited' in its definition or in one of its
9342 -- ancestors (RM 3.7(10)).
9344 -- AI-0063: The proper condition is that type must be immutably limited,
9345 -- or else be a partial view.
9347 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
then
9348 if Is_Immutably_Limited_Type
(Current_Scope
)
9350 (Nkind
(Parent
(Current_Scope
)) = N_Private_Type_Declaration
9351 and then Limited_Present
(Parent
(Current_Scope
)))
9357 ("access discriminants allowed only for limited types", Loc
);
9360 end Check_Access_Discriminant_Requires_Limited
;
9362 -----------------------------------
9363 -- Check_Aliased_Component_Types --
9364 -----------------------------------
9366 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
9370 -- ??? Also need to check components of record extensions, but not
9371 -- components of protected types (which are always limited).
9373 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9374 -- types to be unconstrained. This is safe because it is illegal to
9375 -- create access subtypes to such types with explicit discriminant
9378 if not Is_Limited_Type
(T
) then
9379 if Ekind
(T
) = E_Record_Type
then
9380 C
:= First_Component
(T
);
9381 while Present
(C
) loop
9383 and then Has_Discriminants
(Etype
(C
))
9384 and then not Is_Constrained
(Etype
(C
))
9385 and then not In_Instance_Body
9386 and then Ada_Version
< Ada_2005
9389 ("aliased component must be constrained (RM 3.6(11))",
9396 elsif Ekind
(T
) = E_Array_Type
then
9397 if Has_Aliased_Components
(T
)
9398 and then Has_Discriminants
(Component_Type
(T
))
9399 and then not Is_Constrained
(Component_Type
(T
))
9400 and then not In_Instance_Body
9401 and then Ada_Version
< Ada_2005
9404 ("aliased component type must be constrained (RM 3.6(11))",
9409 end Check_Aliased_Component_Types
;
9411 ----------------------
9412 -- Check_Completion --
9413 ----------------------
9415 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
9418 procedure Post_Error
;
9419 -- Post error message for lack of completion for entity E
9425 procedure Post_Error
is
9427 procedure Missing_Body
;
9428 -- Output missing body message
9434 procedure Missing_Body
is
9436 -- Spec is in same unit, so we can post on spec
9438 if In_Same_Source_Unit
(Body_Id
, E
) then
9439 Error_Msg_N
("missing body for &", E
);
9441 -- Spec is in a separate unit, so we have to post on the body
9444 Error_Msg_NE
("missing body for & declared#!", Body_Id
, E
);
9448 -- Start of processing for Post_Error
9451 if not Comes_From_Source
(E
) then
9453 if Ekind_In
(E
, E_Task_Type
, E_Protected_Type
) then
9454 -- It may be an anonymous protected type created for a
9455 -- single variable. Post error on variable, if present.
9461 Var
:= First_Entity
(Current_Scope
);
9462 while Present
(Var
) loop
9463 exit when Etype
(Var
) = E
9464 and then Comes_From_Source
(Var
);
9469 if Present
(Var
) then
9476 -- If a generated entity has no completion, then either previous
9477 -- semantic errors have disabled the expansion phase, or else we had
9478 -- missing subunits, or else we are compiling without expansion,
9479 -- or else something is very wrong.
9481 if not Comes_From_Source
(E
) then
9483 (Serious_Errors_Detected
> 0
9484 or else Configurable_Run_Time_Violations
> 0
9485 or else Subunits_Missing
9486 or else not Expander_Active
);
9489 -- Here for source entity
9492 -- Here if no body to post the error message, so we post the error
9493 -- on the declaration that has no completion. This is not really
9494 -- the right place to post it, think about this later ???
9496 if No
(Body_Id
) then
9499 ("missing full declaration for }", Parent
(E
), E
);
9501 Error_Msg_NE
("missing body for &", Parent
(E
), E
);
9504 -- Package body has no completion for a declaration that appears
9505 -- in the corresponding spec. Post error on the body, with a
9506 -- reference to the non-completed declaration.
9509 Error_Msg_Sloc
:= Sloc
(E
);
9512 Error_Msg_NE
("missing full declaration for }!", Body_Id
, E
);
9514 elsif Is_Overloadable
(E
)
9515 and then Current_Entity_In_Scope
(E
) /= E
9517 -- It may be that the completion is mistyped and appears as
9518 -- a distinct overloading of the entity.
9521 Candidate
: constant Entity_Id
:=
9522 Current_Entity_In_Scope
(E
);
9523 Decl
: constant Node_Id
:=
9524 Unit_Declaration_Node
(Candidate
);
9527 if Is_Overloadable
(Candidate
)
9528 and then Ekind
(Candidate
) = Ekind
(E
)
9529 and then Nkind
(Decl
) = N_Subprogram_Body
9530 and then Acts_As_Spec
(Decl
)
9532 Check_Type_Conformant
(Candidate
, E
);
9546 -- Start of processing for Check_Completion
9549 E
:= First_Entity
(Current_Scope
);
9550 while Present
(E
) loop
9551 if Is_Intrinsic_Subprogram
(E
) then
9554 -- The following situation requires special handling: a child unit
9555 -- that appears in the context clause of the body of its parent:
9557 -- procedure Parent.Child (...);
9559 -- with Parent.Child;
9560 -- package body Parent is
9562 -- Here Parent.Child appears as a local entity, but should not be
9563 -- flagged as requiring completion, because it is a compilation
9566 -- Ignore missing completion for a subprogram that does not come from
9567 -- source (including the _Call primitive operation of RAS types,
9568 -- which has to have the flag Comes_From_Source for other purposes):
9569 -- we assume that the expander will provide the missing completion.
9570 -- In case of previous errors, other expansion actions that provide
9571 -- bodies for null procedures with not be invoked, so inhibit message
9574 -- Note that E_Operator is not in the list that follows, because
9575 -- this kind is reserved for predefined operators, that are
9576 -- intrinsic and do not need completion.
9578 elsif Ekind
(E
) = E_Function
9579 or else Ekind
(E
) = E_Procedure
9580 or else Ekind
(E
) = E_Generic_Function
9581 or else Ekind
(E
) = E_Generic_Procedure
9583 if Has_Completion
(E
) then
9586 elsif Is_Subprogram
(E
) and then Is_Abstract_Subprogram
(E
) then
9589 elsif Is_Subprogram
(E
)
9590 and then (not Comes_From_Source
(E
)
9591 or else Chars
(E
) = Name_uCall
)
9596 Nkind
(Parent
(Unit_Declaration_Node
(E
))) = N_Compilation_Unit
9600 elsif Nkind
(Parent
(E
)) = N_Procedure_Specification
9601 and then Null_Present
(Parent
(E
))
9602 and then Serious_Errors_Detected
> 0
9610 elsif Is_Entry
(E
) then
9611 if not Has_Completion
(E
) and then
9612 (Ekind
(Scope
(E
)) = E_Protected_Object
9613 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
9618 elsif Is_Package_Or_Generic_Package
(E
) then
9619 if Unit_Requires_Body
(E
) then
9620 if not Has_Completion
(E
)
9621 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
9627 elsif not Is_Child_Unit
(E
) then
9628 May_Need_Implicit_Body
(E
);
9631 -- A formal incomplete type (Ada 2012) does not require a completion;
9632 -- other incomplete type declarations do.
9634 elsif Ekind
(E
) = E_Incomplete_Type
9635 and then No
(Underlying_Type
(E
))
9636 and then not Is_Generic_Type
(E
)
9640 elsif (Ekind
(E
) = E_Task_Type
or else
9641 Ekind
(E
) = E_Protected_Type
)
9642 and then not Has_Completion
(E
)
9646 -- A single task declared in the current scope is a constant, verify
9647 -- that the body of its anonymous type is in the same scope. If the
9648 -- task is defined elsewhere, this may be a renaming declaration for
9649 -- which no completion is needed.
9651 elsif Ekind
(E
) = E_Constant
9652 and then Ekind
(Etype
(E
)) = E_Task_Type
9653 and then not Has_Completion
(Etype
(E
))
9654 and then Scope
(Etype
(E
)) = Current_Scope
9658 elsif Ekind
(E
) = E_Protected_Object
9659 and then not Has_Completion
(Etype
(E
))
9663 elsif Ekind
(E
) = E_Record_Type
then
9664 if Is_Tagged_Type
(E
) then
9665 Check_Abstract_Overriding
(E
);
9666 Check_Conventions
(E
);
9669 Check_Aliased_Component_Types
(E
);
9671 elsif Ekind
(E
) = E_Array_Type
then
9672 Check_Aliased_Component_Types
(E
);
9678 end Check_Completion
;
9680 ------------------------------------
9681 -- Check_CPP_Type_Has_No_Defaults --
9682 ------------------------------------
9684 procedure Check_CPP_Type_Has_No_Defaults
(T
: Entity_Id
) is
9685 Tdef
: constant Node_Id
:= Type_Definition
(Declaration_Node
(T
));
9690 -- Obtain the component list
9692 if Nkind
(Tdef
) = N_Record_Definition
then
9693 Clist
:= Component_List
(Tdef
);
9694 else pragma Assert
(Nkind
(Tdef
) = N_Derived_Type_Definition
);
9695 Clist
:= Component_List
(Record_Extension_Part
(Tdef
));
9698 -- Check all components to ensure no default expressions
9700 if Present
(Clist
) then
9701 Comp
:= First
(Component_Items
(Clist
));
9702 while Present
(Comp
) loop
9703 if Present
(Expression
(Comp
)) then
9705 ("component of imported 'C'P'P type cannot have "
9706 & "default expression", Expression
(Comp
));
9712 end Check_CPP_Type_Has_No_Defaults
;
9714 ----------------------------
9715 -- Check_Delta_Expression --
9716 ----------------------------
9718 procedure Check_Delta_Expression
(E
: Node_Id
) is
9720 if not (Is_Real_Type
(Etype
(E
))) then
9721 Wrong_Type
(E
, Any_Real
);
9723 elsif not Is_OK_Static_Expression
(E
) then
9724 Flag_Non_Static_Expr
9725 ("non-static expression used for delta value!", E
);
9727 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
9728 Error_Msg_N
("delta expression must be positive", E
);
9734 -- If any of above errors occurred, then replace the incorrect
9735 -- expression by the real 0.1, which should prevent further errors.
9738 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
9739 Analyze_And_Resolve
(E
, Standard_Float
);
9740 end Check_Delta_Expression
;
9742 -----------------------------
9743 -- Check_Digits_Expression --
9744 -----------------------------
9746 procedure Check_Digits_Expression
(E
: Node_Id
) is
9748 if not (Is_Integer_Type
(Etype
(E
))) then
9749 Wrong_Type
(E
, Any_Integer
);
9751 elsif not Is_OK_Static_Expression
(E
) then
9752 Flag_Non_Static_Expr
9753 ("non-static expression used for digits value!", E
);
9755 elsif Expr_Value
(E
) <= 0 then
9756 Error_Msg_N
("digits value must be greater than zero", E
);
9762 -- If any of above errors occurred, then replace the incorrect
9763 -- expression by the integer 1, which should prevent further errors.
9765 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
9766 Analyze_And_Resolve
(E
, Standard_Integer
);
9768 end Check_Digits_Expression
;
9770 --------------------------
9771 -- Check_Initialization --
9772 --------------------------
9774 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
9776 if Is_Limited_Type
(T
)
9777 and then not In_Instance
9778 and then not In_Inlined_Body
9780 if not OK_For_Limited_Init
(T
, Exp
) then
9782 -- In GNAT mode, this is just a warning, to allow it to be evilly
9783 -- turned off. Otherwise it is a real error.
9787 ("?cannot initialize entities of limited type!", Exp
);
9789 elsif Ada_Version
< Ada_2005
then
9791 -- The side effect removal machinery may generate illegal Ada
9792 -- code to avoid the usage of access types and 'reference in
9793 -- Alfa mode. Since this is legal code with respect to theorem
9794 -- proving, do not emit the error.
9797 and then Nkind
(Exp
) = N_Function_Call
9798 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
9799 and then not Comes_From_Source
9800 (Defining_Identifier
(Parent
(Exp
)))
9806 ("cannot initialize entities of limited type", Exp
);
9807 Explain_Limited_Type
(T
, Exp
);
9811 -- Specialize error message according to kind of illegal
9812 -- initial expression.
9814 if Nkind
(Exp
) = N_Type_Conversion
9815 and then Nkind
(Expression
(Exp
)) = N_Function_Call
9818 ("illegal context for call"
9819 & " to function with limited result", Exp
);
9823 ("initialization of limited object requires aggregate "
9824 & "or function call", Exp
);
9829 end Check_Initialization
;
9831 ----------------------
9832 -- Check_Interfaces --
9833 ----------------------
9835 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
) is
9836 Parent_Type
: constant Entity_Id
:= Etype
(Defining_Identifier
(N
));
9839 Iface_Def
: Node_Id
;
9840 Iface_Typ
: Entity_Id
;
9841 Parent_Node
: Node_Id
;
9843 Is_Task
: Boolean := False;
9844 -- Set True if parent type or any progenitor is a task interface
9846 Is_Protected
: Boolean := False;
9847 -- Set True if parent type or any progenitor is a protected interface
9849 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
);
9850 -- Check that a progenitor is compatible with declaration.
9851 -- Error is posted on Error_Node.
9857 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
) is
9858 Iface_Id
: constant Entity_Id
:=
9859 Defining_Identifier
(Parent
(Iface_Def
));
9863 if Nkind
(N
) = N_Private_Extension_Declaration
then
9866 Type_Def
:= Type_Definition
(N
);
9869 if Is_Task_Interface
(Iface_Id
) then
9872 elsif Is_Protected_Interface
(Iface_Id
) then
9873 Is_Protected
:= True;
9876 if Is_Synchronized_Interface
(Iface_Id
) then
9878 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
9879 -- extension derived from a synchronized interface must explicitly
9880 -- be declared synchronized, because the full view will be a
9881 -- synchronized type.
9883 if Nkind
(N
) = N_Private_Extension_Declaration
then
9884 if not Synchronized_Present
(N
) then
9886 ("private extension of& must be explicitly synchronized",
9890 -- However, by 3.9.4(16/2), a full type that is a record extension
9891 -- is never allowed to derive from a synchronized interface (note
9892 -- that interfaces must be excluded from this check, because those
9893 -- are represented by derived type definitions in some cases).
9895 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
9896 and then not Interface_Present
(Type_Definition
(N
))
9898 Error_Msg_N
("record extension cannot derive from synchronized"
9899 & " interface", Error_Node
);
9903 -- Check that the characteristics of the progenitor are compatible
9904 -- with the explicit qualifier in the declaration.
9905 -- The check only applies to qualifiers that come from source.
9906 -- Limited_Present also appears in the declaration of corresponding
9907 -- records, and the check does not apply to them.
9909 if Limited_Present
(Type_Def
)
9911 Is_Concurrent_Record_Type
(Defining_Identifier
(N
))
9913 if Is_Limited_Interface
(Parent_Type
)
9914 and then not Is_Limited_Interface
(Iface_Id
)
9917 ("progenitor& must be limited interface",
9918 Error_Node
, Iface_Id
);
9921 (Task_Present
(Iface_Def
)
9922 or else Protected_Present
(Iface_Def
)
9923 or else Synchronized_Present
(Iface_Def
))
9924 and then Nkind
(N
) /= N_Private_Extension_Declaration
9925 and then not Error_Posted
(N
)
9928 ("progenitor& must be limited interface",
9929 Error_Node
, Iface_Id
);
9932 -- Protected interfaces can only inherit from limited, synchronized
9933 -- or protected interfaces.
9935 elsif Nkind
(N
) = N_Full_Type_Declaration
9936 and then Protected_Present
(Type_Def
)
9938 if Limited_Present
(Iface_Def
)
9939 or else Synchronized_Present
(Iface_Def
)
9940 or else Protected_Present
(Iface_Def
)
9944 elsif Task_Present
(Iface_Def
) then
9945 Error_Msg_N
("(Ada 2005) protected interface cannot inherit"
9946 & " from task interface", Error_Node
);
9949 Error_Msg_N
("(Ada 2005) protected interface cannot inherit"
9950 & " from non-limited interface", Error_Node
);
9953 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
9954 -- limited and synchronized.
9956 elsif Synchronized_Present
(Type_Def
) then
9957 if Limited_Present
(Iface_Def
)
9958 or else Synchronized_Present
(Iface_Def
)
9962 elsif Protected_Present
(Iface_Def
)
9963 and then Nkind
(N
) /= N_Private_Extension_Declaration
9965 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
9966 & " from protected interface", Error_Node
);
9968 elsif Task_Present
(Iface_Def
)
9969 and then Nkind
(N
) /= N_Private_Extension_Declaration
9971 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
9972 & " from task interface", Error_Node
);
9974 elsif not Is_Limited_Interface
(Iface_Id
) then
9975 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
9976 & " from non-limited interface", Error_Node
);
9979 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
9980 -- synchronized or task interfaces.
9982 elsif Nkind
(N
) = N_Full_Type_Declaration
9983 and then Task_Present
(Type_Def
)
9985 if Limited_Present
(Iface_Def
)
9986 or else Synchronized_Present
(Iface_Def
)
9987 or else Task_Present
(Iface_Def
)
9991 elsif Protected_Present
(Iface_Def
) then
9992 Error_Msg_N
("(Ada 2005) task interface cannot inherit from"
9993 & " protected interface", Error_Node
);
9996 Error_Msg_N
("(Ada 2005) task interface cannot inherit from"
9997 & " non-limited interface", Error_Node
);
10002 -- Start of processing for Check_Interfaces
10005 if Is_Interface
(Parent_Type
) then
10006 if Is_Task_Interface
(Parent_Type
) then
10009 elsif Is_Protected_Interface
(Parent_Type
) then
10010 Is_Protected
:= True;
10014 if Nkind
(N
) = N_Private_Extension_Declaration
then
10016 -- Check that progenitors are compatible with declaration
10018 Iface
:= First
(Interface_List
(Def
));
10019 while Present
(Iface
) loop
10020 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
10022 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
10023 Iface_Def
:= Type_Definition
(Parent_Node
);
10025 if not Is_Interface
(Iface_Typ
) then
10026 Diagnose_Interface
(Iface
, Iface_Typ
);
10029 Check_Ifaces
(Iface_Def
, Iface
);
10035 if Is_Task
and Is_Protected
then
10037 ("type cannot derive from task and protected interface", N
);
10043 -- Full type declaration of derived type.
10044 -- Check compatibility with parent if it is interface type
10046 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
10047 and then Is_Interface
(Parent_Type
)
10049 Parent_Node
:= Parent
(Parent_Type
);
10051 -- More detailed checks for interface varieties
10054 (Iface_Def
=> Type_Definition
(Parent_Node
),
10055 Error_Node
=> Subtype_Indication
(Type_Definition
(N
)));
10058 Iface
:= First
(Interface_List
(Def
));
10059 while Present
(Iface
) loop
10060 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
10062 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
10063 Iface_Def
:= Type_Definition
(Parent_Node
);
10065 if not Is_Interface
(Iface_Typ
) then
10066 Diagnose_Interface
(Iface
, Iface_Typ
);
10069 -- "The declaration of a specific descendant of an interface
10070 -- type freezes the interface type" RM 13.14
10072 Freeze_Before
(N
, Iface_Typ
);
10073 Check_Ifaces
(Iface_Def
, Error_Node
=> Iface
);
10079 if Is_Task
and Is_Protected
then
10081 ("type cannot derive from task and protected interface", N
);
10083 end Check_Interfaces
;
10085 ------------------------------------
10086 -- Check_Or_Process_Discriminants --
10087 ------------------------------------
10089 -- If an incomplete or private type declaration was already given for the
10090 -- type, the discriminants may have already been processed if they were
10091 -- present on the incomplete declaration. In this case a full conformance
10092 -- check has been performed in Find_Type_Name, and we then recheck here
10093 -- some properties that can't be checked on the partial view alone.
10094 -- Otherwise we call Process_Discriminants.
10096 procedure Check_Or_Process_Discriminants
10099 Prev
: Entity_Id
:= Empty
)
10102 if Has_Discriminants
(T
) then
10104 -- Discriminants are already set on T if they were already present
10105 -- on the partial view. Make them visible to component declarations.
10109 -- Discriminant on T (full view) referencing expr on partial view
10111 Prev_D
: Entity_Id
;
10112 -- Entity of corresponding discriminant on partial view
10115 -- Discriminant specification for full view, expression is the
10116 -- syntactic copy on full view (which has been checked for
10117 -- conformance with partial view), only used here to post error
10121 D
:= First_Discriminant
(T
);
10122 New_D
:= First
(Discriminant_Specifications
(N
));
10123 while Present
(D
) loop
10124 Prev_D
:= Current_Entity
(D
);
10125 Set_Current_Entity
(D
);
10126 Set_Is_Immediately_Visible
(D
);
10127 Set_Homonym
(D
, Prev_D
);
10129 -- Handle the case where there is an untagged partial view and
10130 -- the full view is tagged: must disallow discriminants with
10131 -- defaults, unless compiling for Ada 2012, which allows a
10132 -- limited tagged type to have defaulted discriminants (see
10133 -- AI05-0214). However, suppress the error here if it was
10134 -- already reported on the default expression of the partial
10137 if Is_Tagged_Type
(T
)
10138 and then Present
(Expression
(Parent
(D
)))
10139 and then (not Is_Limited_Type
(Current_Scope
)
10140 or else Ada_Version
< Ada_2012
)
10141 and then not Error_Posted
(Expression
(Parent
(D
)))
10143 if Ada_Version
>= Ada_2012
then
10145 ("discriminants of nonlimited tagged type cannot have"
10147 Expression
(New_D
));
10150 ("discriminants of tagged type cannot have defaults",
10151 Expression
(New_D
));
10155 -- Ada 2005 (AI-230): Access discriminant allowed in
10156 -- non-limited record types.
10158 if Ada_Version
< Ada_2005
then
10160 -- This restriction gets applied to the full type here. It
10161 -- has already been applied earlier to the partial view.
10163 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
10166 Next_Discriminant
(D
);
10171 elsif Present
(Discriminant_Specifications
(N
)) then
10172 Process_Discriminants
(N
, Prev
);
10174 end Check_Or_Process_Discriminants
;
10176 ----------------------
10177 -- Check_Real_Bound --
10178 ----------------------
10180 procedure Check_Real_Bound
(Bound
: Node_Id
) is
10182 if not Is_Real_Type
(Etype
(Bound
)) then
10184 ("bound in real type definition must be of real type", Bound
);
10186 elsif not Is_OK_Static_Expression
(Bound
) then
10187 Flag_Non_Static_Expr
10188 ("non-static expression used for real type bound!", Bound
);
10195 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
10197 Resolve
(Bound
, Standard_Float
);
10198 end Check_Real_Bound
;
10200 ------------------------------
10201 -- Complete_Private_Subtype --
10202 ------------------------------
10204 procedure Complete_Private_Subtype
10207 Full_Base
: Entity_Id
;
10208 Related_Nod
: Node_Id
)
10210 Save_Next_Entity
: Entity_Id
;
10211 Save_Homonym
: Entity_Id
;
10214 -- Set semantic attributes for (implicit) private subtype completion.
10215 -- If the full type has no discriminants, then it is a copy of the full
10216 -- view of the base. Otherwise, it is a subtype of the base with a
10217 -- possible discriminant constraint. Save and restore the original
10218 -- Next_Entity field of full to ensure that the calls to Copy_Node
10219 -- do not corrupt the entity chain.
10221 -- Note that the type of the full view is the same entity as the type of
10222 -- the partial view. In this fashion, the subtype has access to the
10223 -- correct view of the parent.
10225 Save_Next_Entity
:= Next_Entity
(Full
);
10226 Save_Homonym
:= Homonym
(Priv
);
10228 case Ekind
(Full_Base
) is
10229 when E_Record_Type |
10235 Copy_Node
(Priv
, Full
);
10237 Set_Has_Discriminants
(Full
, Has_Discriminants
(Full_Base
));
10238 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
10239 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
10242 Copy_Node
(Full_Base
, Full
);
10243 Set_Chars
(Full
, Chars
(Priv
));
10244 Conditional_Delay
(Full
, Priv
);
10245 Set_Sloc
(Full
, Sloc
(Priv
));
10248 Set_Next_Entity
(Full
, Save_Next_Entity
);
10249 Set_Homonym
(Full
, Save_Homonym
);
10250 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
10252 -- Set common attributes for all subtypes: kind, convention, etc.
10254 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
10255 Set_Convention
(Full
, Convention
(Full_Base
));
10257 -- The Etype of the full view is inconsistent. Gigi needs to see the
10258 -- structural full view, which is what the current scheme gives:
10259 -- the Etype of the full view is the etype of the full base. However,
10260 -- if the full base is a derived type, the full view then looks like
10261 -- a subtype of the parent, not a subtype of the full base. If instead
10264 -- Set_Etype (Full, Full_Base);
10266 -- then we get inconsistencies in the front-end (confusion between
10267 -- views). Several outstanding bugs are related to this ???
10269 Set_Is_First_Subtype
(Full
, False);
10270 Set_Scope
(Full
, Scope
(Priv
));
10271 Set_Size_Info
(Full
, Full_Base
);
10272 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
10273 Set_Is_Itype
(Full
);
10275 -- A subtype of a private-type-without-discriminants, whose full-view
10276 -- has discriminants with default expressions, is not constrained!
10278 if not Has_Discriminants
(Priv
) then
10279 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
10281 if Has_Discriminants
(Full_Base
) then
10282 Set_Discriminant_Constraint
10283 (Full
, Discriminant_Constraint
(Full_Base
));
10285 -- The partial view may have been indefinite, the full view
10288 Set_Has_Unknown_Discriminants
10289 (Full
, Has_Unknown_Discriminants
(Full_Base
));
10293 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
10294 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
10296 -- Freeze the private subtype entity if its parent is delayed, and not
10297 -- already frozen. We skip this processing if the type is an anonymous
10298 -- subtype of a record component, or is the corresponding record of a
10299 -- protected type, since ???
10301 if not Is_Type
(Scope
(Full
)) then
10302 Set_Has_Delayed_Freeze
(Full
,
10303 Has_Delayed_Freeze
(Full_Base
)
10304 and then (not Is_Frozen
(Full_Base
)));
10307 Set_Freeze_Node
(Full
, Empty
);
10308 Set_Is_Frozen
(Full
, False);
10309 Set_Full_View
(Priv
, Full
);
10311 if Has_Discriminants
(Full
) then
10312 Set_Stored_Constraint_From_Discriminant_Constraint
(Full
);
10313 Set_Stored_Constraint
(Priv
, Stored_Constraint
(Full
));
10315 if Has_Unknown_Discriminants
(Full
) then
10316 Set_Discriminant_Constraint
(Full
, No_Elist
);
10320 if Ekind
(Full_Base
) = E_Record_Type
10321 and then Has_Discriminants
(Full_Base
)
10322 and then Has_Discriminants
(Priv
) -- might not, if errors
10323 and then not Has_Unknown_Discriminants
(Priv
)
10324 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
10326 Create_Constrained_Components
10327 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
10329 -- If the full base is itself derived from private, build a congruent
10330 -- subtype of its underlying type, for use by the back end. For a
10331 -- constrained record component, the declaration cannot be placed on
10332 -- the component list, but it must nevertheless be built an analyzed, to
10333 -- supply enough information for Gigi to compute the size of component.
10335 elsif Ekind
(Full_Base
) in Private_Kind
10336 and then Is_Derived_Type
(Full_Base
)
10337 and then Has_Discriminants
(Full_Base
)
10338 and then (Ekind
(Current_Scope
) /= E_Record_Subtype
)
10340 if not Is_Itype
(Priv
)
10342 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
10344 Build_Underlying_Full_View
10345 (Parent
(Priv
), Full
, Etype
(Full_Base
));
10347 elsif Nkind
(Related_Nod
) = N_Component_Declaration
then
10348 Build_Underlying_Full_View
(Related_Nod
, Full
, Etype
(Full_Base
));
10351 elsif Is_Record_Type
(Full_Base
) then
10353 -- Show Full is simply a renaming of Full_Base
10355 Set_Cloned_Subtype
(Full
, Full_Base
);
10358 -- It is unsafe to share to bounds of a scalar type, because the Itype
10359 -- is elaborated on demand, and if a bound is non-static then different
10360 -- orders of elaboration in different units will lead to different
10361 -- external symbols.
10363 if Is_Scalar_Type
(Full_Base
) then
10364 Set_Scalar_Range
(Full
,
10365 Make_Range
(Sloc
(Related_Nod
),
10367 Duplicate_Subexpr_No_Checks
(Type_Low_Bound
(Full_Base
)),
10369 Duplicate_Subexpr_No_Checks
(Type_High_Bound
(Full_Base
))));
10371 -- This completion inherits the bounds of the full parent, but if
10372 -- the parent is an unconstrained floating point type, so is the
10375 if Is_Floating_Point_Type
(Full_Base
) then
10376 Set_Includes_Infinities
10377 (Scalar_Range
(Full
), Has_Infinities
(Full_Base
));
10381 -- ??? It seems that a lot of fields are missing that should be copied
10382 -- from Full_Base to Full. Here are some that are introduced in a
10383 -- non-disruptive way but a cleanup is necessary.
10385 if Is_Tagged_Type
(Full_Base
) then
10386 Set_Is_Tagged_Type
(Full
);
10387 Set_Direct_Primitive_Operations
(Full
,
10388 Direct_Primitive_Operations
(Full_Base
));
10390 -- Inherit class_wide type of full_base in case the partial view was
10391 -- not tagged. Otherwise it has already been created when the private
10392 -- subtype was analyzed.
10394 if No
(Class_Wide_Type
(Full
)) then
10395 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Full_Base
));
10398 -- If this is a subtype of a protected or task type, constrain its
10399 -- corresponding record, unless this is a subtype without constraints,
10400 -- i.e. a simple renaming as with an actual subtype in an instance.
10402 elsif Is_Concurrent_Type
(Full_Base
) then
10403 if Has_Discriminants
(Full
)
10404 and then Present
(Corresponding_Record_Type
(Full_Base
))
10406 not Is_Empty_Elmt_List
(Discriminant_Constraint
(Full
))
10408 Set_Corresponding_Record_Type
(Full
,
10409 Constrain_Corresponding_Record
10410 (Full
, Corresponding_Record_Type
(Full_Base
),
10411 Related_Nod
, Full_Base
));
10414 Set_Corresponding_Record_Type
(Full
,
10415 Corresponding_Record_Type
(Full_Base
));
10419 -- Link rep item chain, and also setting of Has_Predicates from private
10420 -- subtype to full subtype, since we will need these on the full subtype
10421 -- to create the predicate function. Note that the full subtype may
10422 -- already have rep items, inherited from the full view of the base
10423 -- type, so we must be sure not to overwrite these entries.
10428 Next_Item
: Node_Id
;
10431 Item
:= First_Rep_Item
(Full
);
10433 -- If no existing rep items on full type, we can just link directly
10434 -- to the list of items on the private type.
10437 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
10439 -- Otherwise, search to the end of items currently linked to the full
10440 -- subtype and append the private items to the end. However, if Priv
10441 -- and Full already have the same list of rep items, then the append
10442 -- is not done, as that would create a circularity.
10444 elsif Item
/= First_Rep_Item
(Priv
) then
10448 Next_Item
:= Next_Rep_Item
(Item
);
10449 exit when No
(Next_Item
);
10452 -- If the private view has aspect specifications, the full view
10453 -- inherits them. Since these aspects may already have been
10454 -- attached to the full view during derivation, do not append
10455 -- them if already present.
10457 if Item
= First_Rep_Item
(Priv
) then
10463 -- And link the private type items at the end of the chain
10466 Set_Next_Rep_Item
(Item
, First_Rep_Item
(Priv
));
10471 -- Make sure Has_Predicates is set on full type if it is set on the
10472 -- private type. Note that it may already be set on the full type and
10473 -- if so, we don't want to unset it.
10475 if Has_Predicates
(Priv
) then
10476 Set_Has_Predicates
(Full
);
10478 end Complete_Private_Subtype
;
10480 ----------------------------
10481 -- Constant_Redeclaration --
10482 ----------------------------
10484 procedure Constant_Redeclaration
10489 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
10490 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
10493 procedure Check_Possible_Deferred_Completion
10494 (Prev_Id
: Entity_Id
;
10495 Prev_Obj_Def
: Node_Id
;
10496 Curr_Obj_Def
: Node_Id
);
10497 -- Determine whether the two object definitions describe the partial
10498 -- and the full view of a constrained deferred constant. Generate
10499 -- a subtype for the full view and verify that it statically matches
10500 -- the subtype of the partial view.
10502 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
);
10503 -- If deferred constant is an access type initialized with an allocator,
10504 -- check whether there is an illegal recursion in the definition,
10505 -- through a default value of some record subcomponent. This is normally
10506 -- detected when generating init procs, but requires this additional
10507 -- mechanism when expansion is disabled.
10509 ----------------------------------------
10510 -- Check_Possible_Deferred_Completion --
10511 ----------------------------------------
10513 procedure Check_Possible_Deferred_Completion
10514 (Prev_Id
: Entity_Id
;
10515 Prev_Obj_Def
: Node_Id
;
10516 Curr_Obj_Def
: Node_Id
)
10519 if Nkind
(Prev_Obj_Def
) = N_Subtype_Indication
10520 and then Present
(Constraint
(Prev_Obj_Def
))
10521 and then Nkind
(Curr_Obj_Def
) = N_Subtype_Indication
10522 and then Present
(Constraint
(Curr_Obj_Def
))
10525 Loc
: constant Source_Ptr
:= Sloc
(N
);
10526 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
10527 Decl
: constant Node_Id
:=
10528 Make_Subtype_Declaration
(Loc
,
10529 Defining_Identifier
=> Def_Id
,
10530 Subtype_Indication
=>
10531 Relocate_Node
(Curr_Obj_Def
));
10534 Insert_Before_And_Analyze
(N
, Decl
);
10535 Set_Etype
(Id
, Def_Id
);
10537 if not Subtypes_Statically_Match
(Etype
(Prev_Id
), Def_Id
) then
10538 Error_Msg_Sloc
:= Sloc
(Prev_Id
);
10539 Error_Msg_N
("subtype does not statically match deferred " &
10540 "declaration#", N
);
10544 end Check_Possible_Deferred_Completion
;
10546 ---------------------------------
10547 -- Check_Recursive_Declaration --
10548 ---------------------------------
10550 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
) is
10554 if Is_Record_Type
(Typ
) then
10555 Comp
:= First_Component
(Typ
);
10556 while Present
(Comp
) loop
10557 if Comes_From_Source
(Comp
) then
10558 if Present
(Expression
(Parent
(Comp
)))
10559 and then Is_Entity_Name
(Expression
(Parent
(Comp
)))
10560 and then Entity
(Expression
(Parent
(Comp
))) = Prev
10562 Error_Msg_Sloc
:= Sloc
(Parent
(Comp
));
10564 ("illegal circularity with declaration for&#",
10568 elsif Is_Record_Type
(Etype
(Comp
)) then
10569 Check_Recursive_Declaration
(Etype
(Comp
));
10573 Next_Component
(Comp
);
10576 end Check_Recursive_Declaration
;
10578 -- Start of processing for Constant_Redeclaration
10581 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
10582 if Nkind
(Object_Definition
10583 (Parent
(Prev
))) = N_Subtype_Indication
10585 -- Find type of new declaration. The constraints of the two
10586 -- views must match statically, but there is no point in
10587 -- creating an itype for the full view.
10589 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
10590 Find_Type
(Subtype_Mark
(Obj_Def
));
10591 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
10594 Find_Type
(Obj_Def
);
10595 New_T
:= Entity
(Obj_Def
);
10601 -- The full view may impose a constraint, even if the partial
10602 -- view does not, so construct the subtype.
10604 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
10609 -- Current declaration is illegal, diagnosed below in Enter_Name
10615 -- If previous full declaration or a renaming declaration exists, or if
10616 -- a homograph is present, let Enter_Name handle it, either with an
10617 -- error or with the removal of an overridden implicit subprogram.
10619 if Ekind
(Prev
) /= E_Constant
10620 or else Nkind
(Parent
(Prev
)) = N_Object_Renaming_Declaration
10621 or else Present
(Expression
(Parent
(Prev
)))
10622 or else Present
(Full_View
(Prev
))
10626 -- Verify that types of both declarations match, or else that both types
10627 -- are anonymous access types whose designated subtypes statically match
10628 -- (as allowed in Ada 2005 by AI-385).
10630 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
)
10632 (Ekind
(Etype
(Prev
)) /= E_Anonymous_Access_Type
10633 or else Ekind
(Etype
(New_T
)) /= E_Anonymous_Access_Type
10634 or else Is_Access_Constant
(Etype
(New_T
)) /=
10635 Is_Access_Constant
(Etype
(Prev
))
10636 or else Can_Never_Be_Null
(Etype
(New_T
)) /=
10637 Can_Never_Be_Null
(Etype
(Prev
))
10638 or else Null_Exclusion_Present
(Parent
(Prev
)) /=
10639 Null_Exclusion_Present
(Parent
(Id
))
10640 or else not Subtypes_Statically_Match
10641 (Designated_Type
(Etype
(Prev
)),
10642 Designated_Type
(Etype
(New_T
))))
10644 Error_Msg_Sloc
:= Sloc
(Prev
);
10645 Error_Msg_N
("type does not match declaration#", N
);
10646 Set_Full_View
(Prev
, Id
);
10647 Set_Etype
(Id
, Any_Type
);
10650 Null_Exclusion_Present
(Parent
(Prev
))
10651 and then not Null_Exclusion_Present
(N
)
10653 Error_Msg_Sloc
:= Sloc
(Prev
);
10654 Error_Msg_N
("null-exclusion does not match declaration#", N
);
10655 Set_Full_View
(Prev
, Id
);
10656 Set_Etype
(Id
, Any_Type
);
10658 -- If so, process the full constant declaration
10661 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
10662 -- the deferred declaration is constrained, then the subtype defined
10663 -- by the subtype_indication in the full declaration shall match it
10666 Check_Possible_Deferred_Completion
10668 Prev_Obj_Def
=> Object_Definition
(Parent
(Prev
)),
10669 Curr_Obj_Def
=> Obj_Def
);
10671 Set_Full_View
(Prev
, Id
);
10672 Set_Is_Public
(Id
, Is_Public
(Prev
));
10673 Set_Is_Internal
(Id
);
10674 Append_Entity
(Id
, Current_Scope
);
10676 -- Check ALIASED present if present before (RM 7.4(7))
10678 if Is_Aliased
(Prev
)
10679 and then not Aliased_Present
(N
)
10681 Error_Msg_Sloc
:= Sloc
(Prev
);
10682 Error_Msg_N
("ALIASED required (see declaration#)", N
);
10685 -- Check that placement is in private part and that the incomplete
10686 -- declaration appeared in the visible part.
10688 if Ekind
(Current_Scope
) = E_Package
10689 and then not In_Private_Part
(Current_Scope
)
10691 Error_Msg_Sloc
:= Sloc
(Prev
);
10693 ("full constant for declaration#"
10694 & " must be in private part", N
);
10696 elsif Ekind
(Current_Scope
) = E_Package
10698 List_Containing
(Parent
(Prev
)) /=
10699 Visible_Declarations
10700 (Specification
(Unit_Declaration_Node
(Current_Scope
)))
10703 ("deferred constant must be declared in visible part",
10707 if Is_Access_Type
(T
)
10708 and then Nkind
(Expression
(N
)) = N_Allocator
10710 Check_Recursive_Declaration
(Designated_Type
(T
));
10713 end Constant_Redeclaration
;
10715 ----------------------
10716 -- Constrain_Access --
10717 ----------------------
10719 procedure Constrain_Access
10720 (Def_Id
: in out Entity_Id
;
10722 Related_Nod
: Node_Id
)
10724 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
10725 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
10726 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
10727 Constraint_OK
: Boolean := True;
10729 function Has_Defaulted_Discriminants
(Typ
: Entity_Id
) return Boolean;
10730 -- Simple predicate to test for defaulted discriminants
10731 -- Shouldn't this be in sem_util???
10733 ---------------------------------
10734 -- Has_Defaulted_Discriminants --
10735 ---------------------------------
10737 function Has_Defaulted_Discriminants
(Typ
: Entity_Id
) return Boolean is
10739 return Has_Discriminants
(Typ
)
10740 and then Present
(First_Discriminant
(Typ
))
10742 (Discriminant_Default_Value
(First_Discriminant
(Typ
)));
10743 end Has_Defaulted_Discriminants
;
10745 -- Start of processing for Constrain_Access
10748 if Is_Array_Type
(Desig_Type
) then
10749 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
10751 elsif (Is_Record_Type
(Desig_Type
)
10752 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
10753 and then not Is_Constrained
(Desig_Type
)
10755 -- ??? The following code is a temporary kludge to ignore a
10756 -- discriminant constraint on access type if it is constraining
10757 -- the current record. Avoid creating the implicit subtype of the
10758 -- record we are currently compiling since right now, we cannot
10759 -- handle these. For now, just return the access type itself.
10761 if Desig_Type
= Current_Scope
10762 and then No
(Def_Id
)
10764 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
10765 Def_Id
:= Entity
(Subtype_Mark
(S
));
10767 -- This call added to ensure that the constraint is analyzed
10768 -- (needed for a B test). Note that we still return early from
10769 -- this procedure to avoid recursive processing. ???
10771 Constrain_Discriminated_Type
10772 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
10776 -- Enforce rule that the constraint is illegal if there is an
10777 -- unconstrained view of the designated type. This means that the
10778 -- partial view (either a private type declaration or a derivation
10779 -- from a private type) has no discriminants. (Defect Report
10780 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
10782 -- Rule updated for Ada 2005: the private type is said to have
10783 -- a constrained partial view, given that objects of the type
10784 -- can be declared. Furthermore, the rule applies to all access
10785 -- types, unlike the rule concerning default discriminants (see
10788 if (Ekind
(T
) = E_General_Access_Type
10789 or else Ada_Version
>= Ada_2005
)
10790 and then Has_Private_Declaration
(Desig_Type
)
10791 and then In_Open_Scopes
(Scope
(Desig_Type
))
10792 and then Has_Discriminants
(Desig_Type
)
10795 Pack
: constant Node_Id
:=
10796 Unit_Declaration_Node
(Scope
(Desig_Type
));
10801 if Nkind
(Pack
) = N_Package_Declaration
then
10802 Decls
:= Visible_Declarations
(Specification
(Pack
));
10803 Decl
:= First
(Decls
);
10804 while Present
(Decl
) loop
10805 if (Nkind
(Decl
) = N_Private_Type_Declaration
10807 Chars
(Defining_Identifier
(Decl
)) =
10808 Chars
(Desig_Type
))
10811 (Nkind
(Decl
) = N_Full_Type_Declaration
10813 Chars
(Defining_Identifier
(Decl
)) =
10815 and then Is_Derived_Type
(Desig_Type
)
10817 Has_Private_Declaration
(Etype
(Desig_Type
)))
10819 if No
(Discriminant_Specifications
(Decl
)) then
10821 ("cannot constrain access type if designated " &
10822 "type has constrained partial view", S
);
10834 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
10835 For_Access
=> True);
10837 elsif (Is_Task_Type
(Desig_Type
)
10838 or else Is_Protected_Type
(Desig_Type
))
10839 and then not Is_Constrained
(Desig_Type
)
10841 Constrain_Concurrent
10842 (Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
10845 Error_Msg_N
("invalid constraint on access type", S
);
10846 Desig_Subtype
:= Desig_Type
; -- Ignore invalid constraint.
10847 Constraint_OK
:= False;
10850 if No
(Def_Id
) then
10851 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
10853 Set_Ekind
(Def_Id
, E_Access_Subtype
);
10856 if Constraint_OK
then
10857 Set_Etype
(Def_Id
, Base_Type
(T
));
10859 if Is_Private_Type
(Desig_Type
) then
10860 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
10863 Set_Etype
(Def_Id
, Any_Type
);
10866 Set_Size_Info
(Def_Id
, T
);
10867 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
10868 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
10869 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
10870 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
10872 Conditional_Delay
(Def_Id
, T
);
10874 -- AI-363 : Subtypes of general access types whose designated types have
10875 -- default discriminants are disallowed. In instances, the rule has to
10876 -- be checked against the actual, of which T is the subtype. In a
10877 -- generic body, the rule is checked assuming that the actual type has
10878 -- defaulted discriminants.
10880 if Ada_Version
>= Ada_2005
or else Warn_On_Ada_2005_Compatibility
then
10881 if Ekind
(Base_Type
(T
)) = E_General_Access_Type
10882 and then Has_Defaulted_Discriminants
(Desig_Type
)
10884 if Ada_Version
< Ada_2005
then
10886 ("access subtype of general access type would not " &
10887 "be allowed in Ada 2005?", S
);
10890 ("access subtype of general access type not allowed", S
);
10893 Error_Msg_N
("\discriminants have defaults", S
);
10895 elsif Is_Access_Type
(T
)
10896 and then Is_Generic_Type
(Desig_Type
)
10897 and then Has_Discriminants
(Desig_Type
)
10898 and then In_Package_Body
(Current_Scope
)
10900 if Ada_Version
< Ada_2005
then
10902 ("access subtype would not be allowed in generic body " &
10903 "in Ada 2005?", S
);
10906 ("access subtype not allowed in generic body", S
);
10910 ("\designated type is a discriminated formal", S
);
10913 end Constrain_Access
;
10915 ---------------------
10916 -- Constrain_Array --
10917 ---------------------
10919 procedure Constrain_Array
10920 (Def_Id
: in out Entity_Id
;
10922 Related_Nod
: Node_Id
;
10923 Related_Id
: Entity_Id
;
10924 Suffix
: Character)
10926 C
: constant Node_Id
:= Constraint
(SI
);
10927 Number_Of_Constraints
: Nat
:= 0;
10930 Constraint_OK
: Boolean := True;
10933 T
:= Entity
(Subtype_Mark
(SI
));
10935 if Ekind
(T
) in Access_Kind
then
10936 T
:= Designated_Type
(T
);
10939 -- If an index constraint follows a subtype mark in a subtype indication
10940 -- then the type or subtype denoted by the subtype mark must not already
10941 -- impose an index constraint. The subtype mark must denote either an
10942 -- unconstrained array type or an access type whose designated type
10943 -- is such an array type... (RM 3.6.1)
10945 if Is_Constrained
(T
) then
10946 Error_Msg_N
("array type is already constrained", Subtype_Mark
(SI
));
10947 Constraint_OK
:= False;
10950 S
:= First
(Constraints
(C
));
10951 while Present
(S
) loop
10952 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
10956 -- In either case, the index constraint must provide a discrete
10957 -- range for each index of the array type and the type of each
10958 -- discrete range must be the same as that of the corresponding
10959 -- index. (RM 3.6.1)
10961 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
10962 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
10963 Constraint_OK
:= False;
10966 S
:= First
(Constraints
(C
));
10967 Index
:= First_Index
(T
);
10970 -- Apply constraints to each index type
10972 for J
in 1 .. Number_Of_Constraints
loop
10973 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
10981 if No
(Def_Id
) then
10983 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
10984 Set_Parent
(Def_Id
, Related_Nod
);
10987 Set_Ekind
(Def_Id
, E_Array_Subtype
);
10990 Set_Size_Info
(Def_Id
, (T
));
10991 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
10992 Set_Etype
(Def_Id
, Base_Type
(T
));
10994 if Constraint_OK
then
10995 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
10997 Set_First_Index
(Def_Id
, First_Index
(T
));
11000 Set_Is_Constrained
(Def_Id
, True);
11001 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
11002 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
11004 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
11005 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
11007 -- A subtype does not inherit the packed_array_type of is parent. We
11008 -- need to initialize the attribute because if Def_Id is previously
11009 -- analyzed through a limited_with clause, it will have the attributes
11010 -- of an incomplete type, one of which is an Elist that overlaps the
11011 -- Packed_Array_Type field.
11013 Set_Packed_Array_Type
(Def_Id
, Empty
);
11015 -- Build a freeze node if parent still needs one. Also make sure that
11016 -- the Depends_On_Private status is set because the subtype will need
11017 -- reprocessing at the time the base type does, and also we must set a
11018 -- conditional delay.
11020 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
11021 Conditional_Delay
(Def_Id
, T
);
11022 end Constrain_Array
;
11024 ------------------------------
11025 -- Constrain_Component_Type --
11026 ------------------------------
11028 function Constrain_Component_Type
11030 Constrained_Typ
: Entity_Id
;
11031 Related_Node
: Node_Id
;
11033 Constraints
: Elist_Id
) return Entity_Id
11035 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
11036 Compon_Type
: constant Entity_Id
:= Etype
(Comp
);
11038 function Build_Constrained_Array_Type
11039 (Old_Type
: Entity_Id
) return Entity_Id
;
11040 -- If Old_Type is an array type, one of whose indexes is constrained
11041 -- by a discriminant, build an Itype whose constraint replaces the
11042 -- discriminant with its value in the constraint.
11044 function Build_Constrained_Discriminated_Type
11045 (Old_Type
: Entity_Id
) return Entity_Id
;
11046 -- Ditto for record components
11048 function Build_Constrained_Access_Type
11049 (Old_Type
: Entity_Id
) return Entity_Id
;
11050 -- Ditto for access types. Makes use of previous two functions, to
11051 -- constrain designated type.
11053 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
11054 -- T is an array or discriminated type, C is a list of constraints
11055 -- that apply to T. This routine builds the constrained subtype.
11057 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
11058 -- Returns True if Expr is a discriminant
11060 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
;
11061 -- Find the value of discriminant Discrim in Constraint
11063 -----------------------------------
11064 -- Build_Constrained_Access_Type --
11065 -----------------------------------
11067 function Build_Constrained_Access_Type
11068 (Old_Type
: Entity_Id
) return Entity_Id
11070 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
11072 Desig_Subtype
: Entity_Id
;
11076 -- if the original access type was not embedded in the enclosing
11077 -- type definition, there is no need to produce a new access
11078 -- subtype. In fact every access type with an explicit constraint
11079 -- generates an itype whose scope is the enclosing record.
11081 if not Is_Type
(Scope
(Old_Type
)) then
11084 elsif Is_Array_Type
(Desig_Type
) then
11085 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
11087 elsif Has_Discriminants
(Desig_Type
) then
11089 -- This may be an access type to an enclosing record type for
11090 -- which we are constructing the constrained components. Return
11091 -- the enclosing record subtype. This is not always correct,
11092 -- but avoids infinite recursion. ???
11094 Desig_Subtype
:= Any_Type
;
11096 for J
in reverse 0 .. Scope_Stack
.Last
loop
11097 Scop
:= Scope_Stack
.Table
(J
).Entity
;
11100 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
11102 Desig_Subtype
:= Scop
;
11105 exit when not Is_Type
(Scop
);
11108 if Desig_Subtype
= Any_Type
then
11110 Build_Constrained_Discriminated_Type
(Desig_Type
);
11117 if Desig_Subtype
/= Desig_Type
then
11119 -- The Related_Node better be here or else we won't be able
11120 -- to attach new itypes to a node in the tree.
11122 pragma Assert
(Present
(Related_Node
));
11124 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
11126 Set_Etype
(Itype
, Base_Type
(Old_Type
));
11127 Set_Size_Info
(Itype
, (Old_Type
));
11128 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
11129 Set_Depends_On_Private
(Itype
, Has_Private_Component
11131 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
11134 -- The new itype needs freezing when it depends on a not frozen
11135 -- type and the enclosing subtype needs freezing.
11137 if Has_Delayed_Freeze
(Constrained_Typ
)
11138 and then not Is_Frozen
(Constrained_Typ
)
11140 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
11148 end Build_Constrained_Access_Type
;
11150 ----------------------------------
11151 -- Build_Constrained_Array_Type --
11152 ----------------------------------
11154 function Build_Constrained_Array_Type
11155 (Old_Type
: Entity_Id
) return Entity_Id
11159 Old_Index
: Node_Id
;
11160 Range_Node
: Node_Id
;
11161 Constr_List
: List_Id
;
11163 Need_To_Create_Itype
: Boolean := False;
11166 Old_Index
:= First_Index
(Old_Type
);
11167 while Present
(Old_Index
) loop
11168 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
11170 if Is_Discriminant
(Lo_Expr
)
11171 or else Is_Discriminant
(Hi_Expr
)
11173 Need_To_Create_Itype
:= True;
11176 Next_Index
(Old_Index
);
11179 if Need_To_Create_Itype
then
11180 Constr_List
:= New_List
;
11182 Old_Index
:= First_Index
(Old_Type
);
11183 while Present
(Old_Index
) loop
11184 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
11186 if Is_Discriminant
(Lo_Expr
) then
11187 Lo_Expr
:= Get_Discr_Value
(Lo_Expr
);
11190 if Is_Discriminant
(Hi_Expr
) then
11191 Hi_Expr
:= Get_Discr_Value
(Hi_Expr
);
11196 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
11198 Append
(Range_Node
, To
=> Constr_List
);
11200 Next_Index
(Old_Index
);
11203 return Build_Subtype
(Old_Type
, Constr_List
);
11208 end Build_Constrained_Array_Type
;
11210 ------------------------------------------
11211 -- Build_Constrained_Discriminated_Type --
11212 ------------------------------------------
11214 function Build_Constrained_Discriminated_Type
11215 (Old_Type
: Entity_Id
) return Entity_Id
11218 Constr_List
: List_Id
;
11219 Old_Constraint
: Elmt_Id
;
11221 Need_To_Create_Itype
: Boolean := False;
11224 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
11225 while Present
(Old_Constraint
) loop
11226 Expr
:= Node
(Old_Constraint
);
11228 if Is_Discriminant
(Expr
) then
11229 Need_To_Create_Itype
:= True;
11232 Next_Elmt
(Old_Constraint
);
11235 if Need_To_Create_Itype
then
11236 Constr_List
:= New_List
;
11238 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
11239 while Present
(Old_Constraint
) loop
11240 Expr
:= Node
(Old_Constraint
);
11242 if Is_Discriminant
(Expr
) then
11243 Expr
:= Get_Discr_Value
(Expr
);
11246 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
11248 Next_Elmt
(Old_Constraint
);
11251 return Build_Subtype
(Old_Type
, Constr_List
);
11256 end Build_Constrained_Discriminated_Type
;
11258 -------------------
11259 -- Build_Subtype --
11260 -------------------
11262 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
11264 Subtyp_Decl
: Node_Id
;
11265 Def_Id
: Entity_Id
;
11266 Btyp
: Entity_Id
:= Base_Type
(T
);
11269 -- The Related_Node better be here or else we won't be able to
11270 -- attach new itypes to a node in the tree.
11272 pragma Assert
(Present
(Related_Node
));
11274 -- If the view of the component's type is incomplete or private
11275 -- with unknown discriminants, then the constraint must be applied
11276 -- to the full type.
11278 if Has_Unknown_Discriminants
(Btyp
)
11279 and then Present
(Underlying_Type
(Btyp
))
11281 Btyp
:= Underlying_Type
(Btyp
);
11285 Make_Subtype_Indication
(Loc
,
11286 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
11287 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
11289 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
11292 Make_Subtype_Declaration
(Loc
,
11293 Defining_Identifier
=> Def_Id
,
11294 Subtype_Indication
=> Indic
);
11296 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
11298 -- Itypes must be analyzed with checks off (see package Itypes)
11300 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
11305 ---------------------
11306 -- Get_Discr_Value --
11307 ---------------------
11309 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
is
11314 -- The discriminant may be declared for the type, in which case we
11315 -- find it by iterating over the list of discriminants. If the
11316 -- discriminant is inherited from a parent type, it appears as the
11317 -- corresponding discriminant of the current type. This will be the
11318 -- case when constraining an inherited component whose constraint is
11319 -- given by a discriminant of the parent.
11321 D
:= First_Discriminant
(Typ
);
11322 E
:= First_Elmt
(Constraints
);
11324 while Present
(D
) loop
11325 if D
= Entity
(Discrim
)
11326 or else D
= CR_Discriminant
(Entity
(Discrim
))
11327 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
11332 Next_Discriminant
(D
);
11336 -- The Corresponding_Discriminant mechanism is incomplete, because
11337 -- the correspondence between new and old discriminants is not one
11338 -- to one: one new discriminant can constrain several old ones. In
11339 -- that case, scan sequentially the stored_constraint, the list of
11340 -- discriminants of the parents, and the constraints.
11341 -- Previous code checked for the present of the Stored_Constraint
11342 -- list for the derived type, but did not use it at all. Should it
11343 -- be present when the component is a discriminated task type?
11345 if Is_Derived_Type
(Typ
)
11346 and then Scope
(Entity
(Discrim
)) = Etype
(Typ
)
11348 D
:= First_Discriminant
(Etype
(Typ
));
11349 E
:= First_Elmt
(Constraints
);
11350 while Present
(D
) loop
11351 if D
= Entity
(Discrim
) then
11355 Next_Discriminant
(D
);
11360 -- Something is wrong if we did not find the value
11362 raise Program_Error
;
11363 end Get_Discr_Value
;
11365 ---------------------
11366 -- Is_Discriminant --
11367 ---------------------
11369 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
11370 Discrim_Scope
: Entity_Id
;
11373 if Denotes_Discriminant
(Expr
) then
11374 Discrim_Scope
:= Scope
(Entity
(Expr
));
11376 -- Either we have a reference to one of Typ's discriminants,
11378 pragma Assert
(Discrim_Scope
= Typ
11380 -- or to the discriminants of the parent type, in the case
11381 -- of a derivation of a tagged type with variants.
11383 or else Discrim_Scope
= Etype
(Typ
)
11384 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
11386 -- or same as above for the case where the discriminants
11387 -- were declared in Typ's private view.
11389 or else (Is_Private_Type
(Discrim_Scope
)
11390 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
11392 -- or else we are deriving from the full view and the
11393 -- discriminant is declared in the private entity.
11395 or else (Is_Private_Type
(Typ
)
11396 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
11398 -- Or we are constrained the corresponding record of a
11399 -- synchronized type that completes a private declaration.
11401 or else (Is_Concurrent_Record_Type
(Typ
)
11403 Corresponding_Concurrent_Type
(Typ
) = Discrim_Scope
)
11405 -- or we have a class-wide type, in which case make sure the
11406 -- discriminant found belongs to the root type.
11408 or else (Is_Class_Wide_Type
(Typ
)
11409 and then Etype
(Typ
) = Discrim_Scope
));
11414 -- In all other cases we have something wrong
11417 end Is_Discriminant
;
11419 -- Start of processing for Constrain_Component_Type
11422 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
11423 and then Comes_From_Source
(Parent
(Comp
))
11424 and then Comes_From_Source
11425 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
11428 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
11430 return Compon_Type
;
11432 elsif Is_Array_Type
(Compon_Type
) then
11433 return Build_Constrained_Array_Type
(Compon_Type
);
11435 elsif Has_Discriminants
(Compon_Type
) then
11436 return Build_Constrained_Discriminated_Type
(Compon_Type
);
11438 elsif Is_Access_Type
(Compon_Type
) then
11439 return Build_Constrained_Access_Type
(Compon_Type
);
11442 return Compon_Type
;
11444 end Constrain_Component_Type
;
11446 --------------------------
11447 -- Constrain_Concurrent --
11448 --------------------------
11450 -- For concurrent types, the associated record value type carries the same
11451 -- discriminants, so when we constrain a concurrent type, we must constrain
11452 -- the corresponding record type as well.
11454 procedure Constrain_Concurrent
11455 (Def_Id
: in out Entity_Id
;
11457 Related_Nod
: Node_Id
;
11458 Related_Id
: Entity_Id
;
11459 Suffix
: Character)
11461 -- Retrieve Base_Type to ensure getting to the concurrent type in the
11462 -- case of a private subtype (needed when only doing semantic analysis).
11464 T_Ent
: Entity_Id
:= Base_Type
(Entity
(Subtype_Mark
(SI
)));
11468 if Ekind
(T_Ent
) in Access_Kind
then
11469 T_Ent
:= Designated_Type
(T_Ent
);
11472 T_Val
:= Corresponding_Record_Type
(T_Ent
);
11474 if Present
(T_Val
) then
11476 if No
(Def_Id
) then
11477 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
11480 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
11482 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
11483 Set_Corresponding_Record_Type
(Def_Id
,
11484 Constrain_Corresponding_Record
11485 (Def_Id
, T_Val
, Related_Nod
, Related_Id
));
11488 -- If there is no associated record, expansion is disabled and this
11489 -- is a generic context. Create a subtype in any case, so that
11490 -- semantic analysis can proceed.
11492 if No
(Def_Id
) then
11493 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
11496 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
11498 end Constrain_Concurrent
;
11500 ------------------------------------
11501 -- Constrain_Corresponding_Record --
11502 ------------------------------------
11504 function Constrain_Corresponding_Record
11505 (Prot_Subt
: Entity_Id
;
11506 Corr_Rec
: Entity_Id
;
11507 Related_Nod
: Node_Id
;
11508 Related_Id
: Entity_Id
) return Entity_Id
11510 T_Sub
: constant Entity_Id
:=
11511 Create_Itype
(E_Record_Subtype
, Related_Nod
, Related_Id
, 'V');
11514 Set_Etype
(T_Sub
, Corr_Rec
);
11515 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
11516 Set_Is_Constrained
(T_Sub
, True);
11517 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
11518 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
11520 -- As elsewhere, we do not want to create a freeze node for this itype
11521 -- if it is created for a constrained component of an enclosing record
11522 -- because references to outer discriminants will appear out of scope.
11524 if Ekind
(Scope
(Prot_Subt
)) /= E_Record_Type
then
11525 Conditional_Delay
(T_Sub
, Corr_Rec
);
11527 Set_Is_Frozen
(T_Sub
);
11530 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
11531 Set_Discriminant_Constraint
11532 (T_Sub
, Discriminant_Constraint
(Prot_Subt
));
11533 Set_Stored_Constraint_From_Discriminant_Constraint
(T_Sub
);
11534 Create_Constrained_Components
11535 (T_Sub
, Related_Nod
, Corr_Rec
, Discriminant_Constraint
(T_Sub
));
11538 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
11541 end Constrain_Corresponding_Record
;
11543 -----------------------
11544 -- Constrain_Decimal --
11545 -----------------------
11547 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
) is
11548 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11549 C
: constant Node_Id
:= Constraint
(S
);
11550 Loc
: constant Source_Ptr
:= Sloc
(C
);
11551 Range_Expr
: Node_Id
;
11552 Digits_Expr
: Node_Id
;
11557 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
11559 if Nkind
(C
) = N_Range_Constraint
then
11560 Range_Expr
:= Range_Expression
(C
);
11561 Digits_Val
:= Digits_Value
(T
);
11564 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
11566 Check_SPARK_Restriction
("digits constraint is not allowed", S
);
11568 Digits_Expr
:= Digits_Expression
(C
);
11569 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
11571 Check_Digits_Expression
(Digits_Expr
);
11572 Digits_Val
:= Expr_Value
(Digits_Expr
);
11574 if Digits_Val
> Digits_Value
(T
) then
11576 ("digits expression is incompatible with subtype", C
);
11577 Digits_Val
:= Digits_Value
(T
);
11580 if Present
(Range_Constraint
(C
)) then
11581 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
11583 Range_Expr
:= Empty
;
11587 Set_Etype
(Def_Id
, Base_Type
(T
));
11588 Set_Size_Info
(Def_Id
, (T
));
11589 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11590 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
11591 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
11592 Set_Small_Value
(Def_Id
, Small_Value
(T
));
11593 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
11594 Set_Digits_Value
(Def_Id
, Digits_Val
);
11596 -- Manufacture range from given digits value if no range present
11598 if No
(Range_Expr
) then
11599 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
11603 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
11605 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
11608 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
);
11609 Set_Discrete_RM_Size
(Def_Id
);
11611 -- Unconditionally delay the freeze, since we cannot set size
11612 -- information in all cases correctly until the freeze point.
11614 Set_Has_Delayed_Freeze
(Def_Id
);
11615 end Constrain_Decimal
;
11617 ----------------------------------
11618 -- Constrain_Discriminated_Type --
11619 ----------------------------------
11621 procedure Constrain_Discriminated_Type
11622 (Def_Id
: Entity_Id
;
11624 Related_Nod
: Node_Id
;
11625 For_Access
: Boolean := False)
11627 E
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11630 Elist
: Elist_Id
:= New_Elmt_List
;
11632 procedure Fixup_Bad_Constraint
;
11633 -- This is called after finding a bad constraint, and after having
11634 -- posted an appropriate error message. The mission is to leave the
11635 -- entity T in as reasonable state as possible!
11637 --------------------------
11638 -- Fixup_Bad_Constraint --
11639 --------------------------
11641 procedure Fixup_Bad_Constraint
is
11643 -- Set a reasonable Ekind for the entity. For an incomplete type,
11644 -- we can't do much, but for other types, we can set the proper
11645 -- corresponding subtype kind.
11647 if Ekind
(T
) = E_Incomplete_Type
then
11648 Set_Ekind
(Def_Id
, Ekind
(T
));
11650 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
11653 -- Set Etype to the known type, to reduce chances of cascaded errors
11655 Set_Etype
(Def_Id
, E
);
11656 Set_Error_Posted
(Def_Id
);
11657 end Fixup_Bad_Constraint
;
11659 -- Start of processing for Constrain_Discriminated_Type
11662 C
:= Constraint
(S
);
11664 -- A discriminant constraint is only allowed in a subtype indication,
11665 -- after a subtype mark. This subtype mark must denote either a type
11666 -- with discriminants, or an access type whose designated type is a
11667 -- type with discriminants. A discriminant constraint specifies the
11668 -- values of these discriminants (RM 3.7.2(5)).
11670 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
11672 if Ekind
(T
) in Access_Kind
then
11673 T
:= Designated_Type
(T
);
11676 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
11677 -- Avoid generating an error for access-to-incomplete subtypes.
11679 if Ada_Version
>= Ada_2005
11680 and then Ekind
(T
) = E_Incomplete_Type
11681 and then Nkind
(Parent
(S
)) = N_Subtype_Declaration
11682 and then not Is_Itype
(Def_Id
)
11684 -- A little sanity check, emit an error message if the type
11685 -- has discriminants to begin with. Type T may be a regular
11686 -- incomplete type or imported via a limited with clause.
11688 if Has_Discriminants
(T
)
11690 (From_With_Type
(T
)
11691 and then Present
(Non_Limited_View
(T
))
11692 and then Nkind
(Parent
(Non_Limited_View
(T
))) =
11693 N_Full_Type_Declaration
11694 and then Present
(Discriminant_Specifications
11695 (Parent
(Non_Limited_View
(T
)))))
11698 ("(Ada 2005) incomplete subtype may not be constrained", C
);
11700 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
11703 Fixup_Bad_Constraint
;
11706 -- Check that the type has visible discriminants. The type may be
11707 -- a private type with unknown discriminants whose full view has
11708 -- discriminants which are invisible.
11710 elsif not Has_Discriminants
(T
)
11712 (Has_Unknown_Discriminants
(T
)
11713 and then Is_Private_Type
(T
))
11715 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
11716 Fixup_Bad_Constraint
;
11719 elsif Is_Constrained
(E
)
11720 or else (Ekind
(E
) = E_Class_Wide_Subtype
11721 and then Present
(Discriminant_Constraint
(E
)))
11723 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
11724 Fixup_Bad_Constraint
;
11728 -- T may be an unconstrained subtype (e.g. a generic actual).
11729 -- Constraint applies to the base type.
11731 T
:= Base_Type
(T
);
11733 Elist
:= Build_Discriminant_Constraints
(T
, S
);
11735 -- If the list returned was empty we had an error in building the
11736 -- discriminant constraint. We have also already signalled an error
11737 -- in the incomplete type case
11739 if Is_Empty_Elmt_List
(Elist
) then
11740 Fixup_Bad_Constraint
;
11744 Build_Discriminated_Subtype
(T
, Def_Id
, Elist
, Related_Nod
, For_Access
);
11745 end Constrain_Discriminated_Type
;
11747 ---------------------------
11748 -- Constrain_Enumeration --
11749 ---------------------------
11751 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
) is
11752 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11753 C
: constant Node_Id
:= Constraint
(S
);
11756 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
11758 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
11760 Set_Etype
(Def_Id
, Base_Type
(T
));
11761 Set_Size_Info
(Def_Id
, (T
));
11762 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11763 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
11765 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
11767 Set_Discrete_RM_Size
(Def_Id
);
11768 end Constrain_Enumeration
;
11770 ----------------------
11771 -- Constrain_Float --
11772 ----------------------
11774 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
) is
11775 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11781 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
11783 Set_Etype
(Def_Id
, Base_Type
(T
));
11784 Set_Size_Info
(Def_Id
, (T
));
11785 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11787 -- Process the constraint
11789 C
:= Constraint
(S
);
11791 -- Digits constraint present
11793 if Nkind
(C
) = N_Digits_Constraint
then
11795 Check_SPARK_Restriction
("digits constraint is not allowed", S
);
11796 Check_Restriction
(No_Obsolescent_Features
, C
);
11798 if Warn_On_Obsolescent_Feature
then
11800 ("subtype digits constraint is an " &
11801 "obsolescent feature (RM J.3(8))?", C
);
11804 D
:= Digits_Expression
(C
);
11805 Analyze_And_Resolve
(D
, Any_Integer
);
11806 Check_Digits_Expression
(D
);
11807 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
11809 -- Check that digits value is in range. Obviously we can do this
11810 -- at compile time, but it is strictly a runtime check, and of
11811 -- course there is an ACVC test that checks this!
11813 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
11814 Error_Msg_Uint_1
:= Digits_Value
(T
);
11815 Error_Msg_N
("?digits value is too large, maximum is ^", D
);
11817 Make_Raise_Constraint_Error
(Sloc
(D
),
11818 Reason
=> CE_Range_Check_Failed
);
11819 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
11822 C
:= Range_Constraint
(C
);
11824 -- No digits constraint present
11827 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
11830 -- Range constraint present
11832 if Nkind
(C
) = N_Range_Constraint
then
11833 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
11835 -- No range constraint present
11838 pragma Assert
(No
(C
));
11839 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
11842 Set_Is_Constrained
(Def_Id
);
11843 end Constrain_Float
;
11845 ---------------------
11846 -- Constrain_Index --
11847 ---------------------
11849 procedure Constrain_Index
11852 Related_Nod
: Node_Id
;
11853 Related_Id
: Entity_Id
;
11854 Suffix
: Character;
11855 Suffix_Index
: Nat
)
11857 Def_Id
: Entity_Id
;
11858 R
: Node_Id
:= Empty
;
11859 T
: constant Entity_Id
:= Etype
(Index
);
11862 if Nkind
(S
) = N_Range
11864 (Nkind
(S
) = N_Attribute_Reference
11865 and then Attribute_Name
(S
) = Name_Range
)
11867 -- A Range attribute will be transformed into N_Range by Resolve
11873 Process_Range_Expr_In_Decl
(R
, T
, Empty_List
);
11875 if not Error_Posted
(S
)
11877 (Nkind
(S
) /= N_Range
11878 or else not Covers
(T
, (Etype
(Low_Bound
(S
))))
11879 or else not Covers
(T
, (Etype
(High_Bound
(S
)))))
11881 if Base_Type
(T
) /= Any_Type
11882 and then Etype
(Low_Bound
(S
)) /= Any_Type
11883 and then Etype
(High_Bound
(S
)) /= Any_Type
11885 Error_Msg_N
("range expected", S
);
11889 elsif Nkind
(S
) = N_Subtype_Indication
then
11891 -- The parser has verified that this is a discrete indication
11893 Resolve_Discrete_Subtype_Indication
(S
, T
);
11894 R
:= Range_Expression
(Constraint
(S
));
11896 -- Capture values of bounds and generate temporaries for them if
11897 -- needed, since checks may cause duplication of the expressions
11898 -- which must not be reevaluated.
11900 -- The forced evaluation removes side effects from expressions,
11901 -- which should occur also in Alfa mode. Otherwise, we end up with
11902 -- unexpected insertions of actions at places where this is not
11903 -- supposed to occur, e.g. on default parameters of a call.
11905 if Expander_Active
then
11906 Force_Evaluation
(Low_Bound
(R
));
11907 Force_Evaluation
(High_Bound
(R
));
11910 elsif Nkind
(S
) = N_Discriminant_Association
then
11912 -- Syntactically valid in subtype indication
11914 Error_Msg_N
("invalid index constraint", S
);
11915 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
11918 -- Subtype_Mark case, no anonymous subtypes to construct
11923 if Is_Entity_Name
(S
) then
11924 if not Is_Type
(Entity
(S
)) then
11925 Error_Msg_N
("expect subtype mark for index constraint", S
);
11927 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
11928 Wrong_Type
(S
, Base_Type
(T
));
11930 -- Check error of subtype with predicate in index constraint
11933 Bad_Predicated_Subtype_Use
11934 ("subtype& has predicate, not allowed in index constraint",
11941 Error_Msg_N
("invalid index constraint", S
);
11942 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
11948 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
11950 Set_Etype
(Def_Id
, Base_Type
(T
));
11952 if Is_Modular_Integer_Type
(T
) then
11953 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
11955 elsif Is_Integer_Type
(T
) then
11956 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
11959 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
11960 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
11961 Set_First_Literal
(Def_Id
, First_Literal
(T
));
11964 Set_Size_Info
(Def_Id
, (T
));
11965 Set_RM_Size
(Def_Id
, RM_Size
(T
));
11966 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11968 Set_Scalar_Range
(Def_Id
, R
);
11970 Set_Etype
(S
, Def_Id
);
11971 Set_Discrete_RM_Size
(Def_Id
);
11972 end Constrain_Index
;
11974 -----------------------
11975 -- Constrain_Integer --
11976 -----------------------
11978 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
) is
11979 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11980 C
: constant Node_Id
:= Constraint
(S
);
11983 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
11985 if Is_Modular_Integer_Type
(T
) then
11986 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
11988 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
11991 Set_Etype
(Def_Id
, Base_Type
(T
));
11992 Set_Size_Info
(Def_Id
, (T
));
11993 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11994 Set_Discrete_RM_Size
(Def_Id
);
11995 end Constrain_Integer
;
11997 ------------------------------
11998 -- Constrain_Ordinary_Fixed --
11999 ------------------------------
12001 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
) is
12002 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12008 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
12009 Set_Etype
(Def_Id
, Base_Type
(T
));
12010 Set_Size_Info
(Def_Id
, (T
));
12011 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12012 Set_Small_Value
(Def_Id
, Small_Value
(T
));
12014 -- Process the constraint
12016 C
:= Constraint
(S
);
12018 -- Delta constraint present
12020 if Nkind
(C
) = N_Delta_Constraint
then
12022 Check_SPARK_Restriction
("delta constraint is not allowed", S
);
12023 Check_Restriction
(No_Obsolescent_Features
, C
);
12025 if Warn_On_Obsolescent_Feature
then
12027 ("subtype delta constraint is an " &
12028 "obsolescent feature (RM J.3(7))?");
12031 D
:= Delta_Expression
(C
);
12032 Analyze_And_Resolve
(D
, Any_Real
);
12033 Check_Delta_Expression
(D
);
12034 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
12036 -- Check that delta value is in range. Obviously we can do this
12037 -- at compile time, but it is strictly a runtime check, and of
12038 -- course there is an ACVC test that checks this!
12040 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
12041 Error_Msg_N
("?delta value is too small", D
);
12043 Make_Raise_Constraint_Error
(Sloc
(D
),
12044 Reason
=> CE_Range_Check_Failed
);
12045 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
12048 C
:= Range_Constraint
(C
);
12050 -- No delta constraint present
12053 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
12056 -- Range constraint present
12058 if Nkind
(C
) = N_Range_Constraint
then
12059 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
12061 -- No range constraint present
12064 pragma Assert
(No
(C
));
12065 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
12069 Set_Discrete_RM_Size
(Def_Id
);
12071 -- Unconditionally delay the freeze, since we cannot set size
12072 -- information in all cases correctly until the freeze point.
12074 Set_Has_Delayed_Freeze
(Def_Id
);
12075 end Constrain_Ordinary_Fixed
;
12077 -----------------------
12078 -- Contain_Interface --
12079 -----------------------
12081 function Contain_Interface
12082 (Iface
: Entity_Id
;
12083 Ifaces
: Elist_Id
) return Boolean
12085 Iface_Elmt
: Elmt_Id
;
12088 if Present
(Ifaces
) then
12089 Iface_Elmt
:= First_Elmt
(Ifaces
);
12090 while Present
(Iface_Elmt
) loop
12091 if Node
(Iface_Elmt
) = Iface
then
12095 Next_Elmt
(Iface_Elmt
);
12100 end Contain_Interface
;
12102 ---------------------------
12103 -- Convert_Scalar_Bounds --
12104 ---------------------------
12106 procedure Convert_Scalar_Bounds
12108 Parent_Type
: Entity_Id
;
12109 Derived_Type
: Entity_Id
;
12112 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
12119 -- Defend against previous errors
12121 if No
(Scalar_Range
(Derived_Type
)) then
12125 Lo
:= Build_Scalar_Bound
12126 (Type_Low_Bound
(Derived_Type
),
12127 Parent_Type
, Implicit_Base
);
12129 Hi
:= Build_Scalar_Bound
12130 (Type_High_Bound
(Derived_Type
),
12131 Parent_Type
, Implicit_Base
);
12138 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
12140 Set_Parent
(Rng
, N
);
12141 Set_Scalar_Range
(Derived_Type
, Rng
);
12143 -- Analyze the bounds
12145 Analyze_And_Resolve
(Lo
, Implicit_Base
);
12146 Analyze_And_Resolve
(Hi
, Implicit_Base
);
12148 -- Analyze the range itself, except that we do not analyze it if
12149 -- the bounds are real literals, and we have a fixed-point type.
12150 -- The reason for this is that we delay setting the bounds in this
12151 -- case till we know the final Small and Size values (see circuit
12152 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12154 if Is_Fixed_Point_Type
(Parent_Type
)
12155 and then Nkind
(Lo
) = N_Real_Literal
12156 and then Nkind
(Hi
) = N_Real_Literal
12160 -- Here we do the analysis of the range
12162 -- Note: we do this manually, since if we do a normal Analyze and
12163 -- Resolve call, there are problems with the conversions used for
12164 -- the derived type range.
12167 Set_Etype
(Rng
, Implicit_Base
);
12168 Set_Analyzed
(Rng
, True);
12170 end Convert_Scalar_Bounds
;
12172 -------------------
12173 -- Copy_And_Swap --
12174 -------------------
12176 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
) is
12178 -- Initialize new full declaration entity by copying the pertinent
12179 -- fields of the corresponding private declaration entity.
12181 -- We temporarily set Ekind to a value appropriate for a type to
12182 -- avoid assert failures in Einfo from checking for setting type
12183 -- attributes on something that is not a type. Ekind (Priv) is an
12184 -- appropriate choice, since it allowed the attributes to be set
12185 -- in the first place. This Ekind value will be modified later.
12187 Set_Ekind
(Full
, Ekind
(Priv
));
12189 -- Also set Etype temporarily to Any_Type, again, in the absence
12190 -- of errors, it will be properly reset, and if there are errors,
12191 -- then we want a value of Any_Type to remain.
12193 Set_Etype
(Full
, Any_Type
);
12195 -- Now start copying attributes
12197 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
12199 if Has_Discriminants
(Full
) then
12200 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
12201 Set_Stored_Constraint
(Full
, Stored_Constraint
(Priv
));
12204 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
12205 Set_Homonym
(Full
, Homonym
(Priv
));
12206 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
12207 Set_Is_Public
(Full
, Is_Public
(Priv
));
12208 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
12209 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
12210 Set_Has_Pragma_Unmodified
(Full
, Has_Pragma_Unmodified
(Priv
));
12211 Set_Has_Pragma_Unreferenced
(Full
, Has_Pragma_Unreferenced
(Priv
));
12212 Set_Has_Pragma_Unreferenced_Objects
12213 (Full
, Has_Pragma_Unreferenced_Objects
12216 Conditional_Delay
(Full
, Priv
);
12218 if Is_Tagged_Type
(Full
) then
12219 Set_Direct_Primitive_Operations
(Full
,
12220 Direct_Primitive_Operations
(Priv
));
12222 if Is_Base_Type
(Priv
) then
12223 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
12227 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
12228 Set_Treat_As_Volatile
(Full
, Treat_As_Volatile
(Priv
));
12229 Set_Scope
(Full
, Scope
(Priv
));
12230 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
12231 Set_First_Entity
(Full
, First_Entity
(Priv
));
12232 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
12234 -- If access types have been recorded for later handling, keep them in
12235 -- the full view so that they get handled when the full view freeze
12236 -- node is expanded.
12238 if Present
(Freeze_Node
(Priv
))
12239 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
12241 Ensure_Freeze_Node
(Full
);
12242 Set_Access_Types_To_Process
12243 (Freeze_Node
(Full
),
12244 Access_Types_To_Process
(Freeze_Node
(Priv
)));
12247 -- Swap the two entities. Now Private is the full type entity and Full
12248 -- is the private one. They will be swapped back at the end of the
12249 -- private part. This swapping ensures that the entity that is visible
12250 -- in the private part is the full declaration.
12252 Exchange_Entities
(Priv
, Full
);
12253 Append_Entity
(Full
, Scope
(Full
));
12256 -------------------------------------
12257 -- Copy_Array_Base_Type_Attributes --
12258 -------------------------------------
12260 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
12262 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
12263 Set_Component_Type
(T1
, Component_Type
(T2
));
12264 Set_Component_Size
(T1
, Component_Size
(T2
));
12265 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
12266 Set_Finalize_Storage_Only
(T1
, Finalize_Storage_Only
(T2
));
12267 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
12268 Set_Has_Task
(T1
, Has_Task
(T2
));
12269 Set_Is_Packed
(T1
, Is_Packed
(T2
));
12270 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
12271 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
12272 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
12273 end Copy_Array_Base_Type_Attributes
;
12275 -----------------------------------
12276 -- Copy_Array_Subtype_Attributes --
12277 -----------------------------------
12279 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
12281 Set_Size_Info
(T1
, T2
);
12283 Set_First_Index
(T1
, First_Index
(T2
));
12284 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
12285 Set_Is_Atomic
(T1
, Is_Atomic
(T2
));
12286 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
12287 Set_Treat_As_Volatile
(T1
, Treat_As_Volatile
(T2
));
12288 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
12289 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
12290 Set_First_Rep_Item
(T1
, First_Rep_Item
(T2
));
12291 Set_Convention
(T1
, Convention
(T2
));
12292 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
12293 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
12294 Set_Packed_Array_Type
(T1
, Packed_Array_Type
(T2
));
12295 end Copy_Array_Subtype_Attributes
;
12297 -----------------------------------
12298 -- Create_Constrained_Components --
12299 -----------------------------------
12301 procedure Create_Constrained_Components
12303 Decl_Node
: Node_Id
;
12305 Constraints
: Elist_Id
)
12307 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
12308 Comp_List
: constant Elist_Id
:= New_Elmt_List
;
12309 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
12310 Assoc_List
: constant List_Id
:= New_List
;
12311 Discr_Val
: Elmt_Id
;
12315 Is_Static
: Boolean := True;
12317 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
12318 -- Collect parent type components that do not appear in a variant part
12320 procedure Create_All_Components
;
12321 -- Iterate over Comp_List to create the components of the subtype
12323 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
12324 -- Creates a new component from Old_Compon, copying all the fields from
12325 -- it, including its Etype, inserts the new component in the Subt entity
12326 -- chain and returns the new component.
12328 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
12329 -- If true, and discriminants are static, collect only components from
12330 -- variants selected by discriminant values.
12332 ------------------------------
12333 -- Collect_Fixed_Components --
12334 ------------------------------
12336 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
12338 -- Build association list for discriminants, and find components of the
12339 -- variant part selected by the values of the discriminants.
12341 Old_C
:= First_Discriminant
(Typ
);
12342 Discr_Val
:= First_Elmt
(Constraints
);
12343 while Present
(Old_C
) loop
12344 Append_To
(Assoc_List
,
12345 Make_Component_Association
(Loc
,
12346 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
12347 Expression
=> New_Copy
(Node
(Discr_Val
))));
12349 Next_Elmt
(Discr_Val
);
12350 Next_Discriminant
(Old_C
);
12353 -- The tag and the possible parent component are unconditionally in
12356 if Is_Tagged_Type
(Typ
)
12357 or else Has_Controlled_Component
(Typ
)
12359 Old_C
:= First_Component
(Typ
);
12360 while Present
(Old_C
) loop
12361 if Chars
((Old_C
)) = Name_uTag
12362 or else Chars
((Old_C
)) = Name_uParent
12364 Append_Elmt
(Old_C
, Comp_List
);
12367 Next_Component
(Old_C
);
12370 end Collect_Fixed_Components
;
12372 ---------------------------
12373 -- Create_All_Components --
12374 ---------------------------
12376 procedure Create_All_Components
is
12380 Comp
:= First_Elmt
(Comp_List
);
12381 while Present
(Comp
) loop
12382 Old_C
:= Node
(Comp
);
12383 New_C
:= Create_Component
(Old_C
);
12387 Constrain_Component_Type
12388 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
12389 Set_Is_Public
(New_C
, Is_Public
(Subt
));
12393 end Create_All_Components
;
12395 ----------------------
12396 -- Create_Component --
12397 ----------------------
12399 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
12400 New_Compon
: constant Entity_Id
:= New_Copy
(Old_Compon
);
12403 if Ekind
(Old_Compon
) = E_Discriminant
12404 and then Is_Completely_Hidden
(Old_Compon
)
12406 -- This is a shadow discriminant created for a discriminant of
12407 -- the parent type, which needs to be present in the subtype.
12408 -- Give the shadow discriminant an internal name that cannot
12409 -- conflict with that of visible components.
12411 Set_Chars
(New_Compon
, New_Internal_Name
('C'));
12414 -- Set the parent so we have a proper link for freezing etc. This is
12415 -- not a real parent pointer, since of course our parent does not own
12416 -- up to us and reference us, we are an illegitimate child of the
12417 -- original parent!
12419 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
12421 -- If the old component's Esize was already determined and is a
12422 -- static value, then the new component simply inherits it. Otherwise
12423 -- the old component's size may require run-time determination, but
12424 -- the new component's size still might be statically determinable
12425 -- (if, for example it has a static constraint). In that case we want
12426 -- Layout_Type to recompute the component's size, so we reset its
12427 -- size and positional fields.
12429 if Frontend_Layout_On_Target
12430 and then not Known_Static_Esize
(Old_Compon
)
12432 Set_Esize
(New_Compon
, Uint_0
);
12433 Init_Normalized_First_Bit
(New_Compon
);
12434 Init_Normalized_Position
(New_Compon
);
12435 Init_Normalized_Position_Max
(New_Compon
);
12438 -- We do not want this node marked as Comes_From_Source, since
12439 -- otherwise it would get first class status and a separate cross-
12440 -- reference line would be generated. Illegitimate children do not
12441 -- rate such recognition.
12443 Set_Comes_From_Source
(New_Compon
, False);
12445 -- But it is a real entity, and a birth certificate must be properly
12446 -- registered by entering it into the entity list.
12448 Enter_Name
(New_Compon
);
12451 end Create_Component
;
12453 -----------------------
12454 -- Is_Variant_Record --
12455 -----------------------
12457 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
12459 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
12460 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
12461 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
12464 (Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
12465 end Is_Variant_Record
;
12467 -- Start of processing for Create_Constrained_Components
12470 pragma Assert
(Subt
/= Base_Type
(Subt
));
12471 pragma Assert
(Typ
= Base_Type
(Typ
));
12473 Set_First_Entity
(Subt
, Empty
);
12474 Set_Last_Entity
(Subt
, Empty
);
12476 -- Check whether constraint is fully static, in which case we can
12477 -- optimize the list of components.
12479 Discr_Val
:= First_Elmt
(Constraints
);
12480 while Present
(Discr_Val
) loop
12481 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
12482 Is_Static
:= False;
12486 Next_Elmt
(Discr_Val
);
12489 Set_Has_Static_Discriminants
(Subt
, Is_Static
);
12493 -- Inherit the discriminants of the parent type
12495 Add_Discriminants
: declare
12501 Old_C
:= First_Discriminant
(Typ
);
12503 while Present
(Old_C
) loop
12504 Num_Disc
:= Num_Disc
+ 1;
12505 New_C
:= Create_Component
(Old_C
);
12506 Set_Is_Public
(New_C
, Is_Public
(Subt
));
12507 Next_Discriminant
(Old_C
);
12510 -- For an untagged derived subtype, the number of discriminants may
12511 -- be smaller than the number of inherited discriminants, because
12512 -- several of them may be renamed by a single new discriminant or
12513 -- constrained. In this case, add the hidden discriminants back into
12514 -- the subtype, because they need to be present if the optimizer of
12515 -- the GCC 4.x back-end decides to break apart assignments between
12516 -- objects using the parent view into member-wise assignments.
12520 if Is_Derived_Type
(Typ
)
12521 and then not Is_Tagged_Type
(Typ
)
12523 Old_C
:= First_Stored_Discriminant
(Typ
);
12525 while Present
(Old_C
) loop
12526 Num_Gird
:= Num_Gird
+ 1;
12527 Next_Stored_Discriminant
(Old_C
);
12531 if Num_Gird
> Num_Disc
then
12533 -- Find out multiple uses of new discriminants, and add hidden
12534 -- components for the extra renamed discriminants. We recognize
12535 -- multiple uses through the Corresponding_Discriminant of a
12536 -- new discriminant: if it constrains several old discriminants,
12537 -- this field points to the last one in the parent type. The
12538 -- stored discriminants of the derived type have the same name
12539 -- as those of the parent.
12543 New_Discr
: Entity_Id
;
12544 Old_Discr
: Entity_Id
;
12547 Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
12548 Old_Discr
:= First_Stored_Discriminant
(Typ
);
12549 while Present
(Constr
) loop
12550 if Is_Entity_Name
(Node
(Constr
))
12551 and then Ekind
(Entity
(Node
(Constr
))) = E_Discriminant
12553 New_Discr
:= Entity
(Node
(Constr
));
12555 if Chars
(Corresponding_Discriminant
(New_Discr
)) /=
12558 -- The new discriminant has been used to rename a
12559 -- subsequent old discriminant. Introduce a shadow
12560 -- component for the current old discriminant.
12562 New_C
:= Create_Component
(Old_Discr
);
12563 Set_Original_Record_Component
(New_C
, Old_Discr
);
12567 -- The constraint has eliminated the old discriminant.
12568 -- Introduce a shadow component.
12570 New_C
:= Create_Component
(Old_Discr
);
12571 Set_Original_Record_Component
(New_C
, Old_Discr
);
12574 Next_Elmt
(Constr
);
12575 Next_Stored_Discriminant
(Old_Discr
);
12579 end Add_Discriminants
;
12582 and then Is_Variant_Record
(Typ
)
12584 Collect_Fixed_Components
(Typ
);
12586 Gather_Components
(
12588 Component_List
(Type_Definition
(Parent
(Typ
))),
12589 Governed_By
=> Assoc_List
,
12591 Report_Errors
=> Errors
);
12592 pragma Assert
(not Errors
);
12594 Create_All_Components
;
12596 -- If the subtype declaration is created for a tagged type derivation
12597 -- with constraints, we retrieve the record definition of the parent
12598 -- type to select the components of the proper variant.
12601 and then Is_Tagged_Type
(Typ
)
12602 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
12604 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
12605 and then Is_Variant_Record
(Parent_Type
)
12607 Collect_Fixed_Components
(Typ
);
12609 Gather_Components
(
12611 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
12612 Governed_By
=> Assoc_List
,
12614 Report_Errors
=> Errors
);
12615 pragma Assert
(not Errors
);
12617 -- If the tagged derivation has a type extension, collect all the
12618 -- new components therein.
12621 (Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
12623 Old_C
:= First_Component
(Typ
);
12624 while Present
(Old_C
) loop
12625 if Original_Record_Component
(Old_C
) = Old_C
12626 and then Chars
(Old_C
) /= Name_uTag
12627 and then Chars
(Old_C
) /= Name_uParent
12629 Append_Elmt
(Old_C
, Comp_List
);
12632 Next_Component
(Old_C
);
12636 Create_All_Components
;
12639 -- If discriminants are not static, or if this is a multi-level type
12640 -- extension, we have to include all components of the parent type.
12642 Old_C
:= First_Component
(Typ
);
12643 while Present
(Old_C
) loop
12644 New_C
:= Create_Component
(Old_C
);
12648 Constrain_Component_Type
12649 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
12650 Set_Is_Public
(New_C
, Is_Public
(Subt
));
12652 Next_Component
(Old_C
);
12657 end Create_Constrained_Components
;
12659 ------------------------------------------
12660 -- Decimal_Fixed_Point_Type_Declaration --
12661 ------------------------------------------
12663 procedure Decimal_Fixed_Point_Type_Declaration
12667 Loc
: constant Source_Ptr
:= Sloc
(Def
);
12668 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
12669 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
12670 Implicit_Base
: Entity_Id
;
12677 Check_SPARK_Restriction
12678 ("decimal fixed point type is not allowed", Def
);
12679 Check_Restriction
(No_Fixed_Point
, Def
);
12681 -- Create implicit base type
12684 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
12685 Set_Etype
(Implicit_Base
, Implicit_Base
);
12687 -- Analyze and process delta expression
12689 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
12691 Check_Delta_Expression
(Delta_Expr
);
12692 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
12694 -- Check delta is power of 10, and determine scale value from it
12700 Scale_Val
:= Uint_0
;
12703 if Val
< Ureal_1
then
12704 while Val
< Ureal_1
loop
12705 Val
:= Val
* Ureal_10
;
12706 Scale_Val
:= Scale_Val
+ 1;
12709 if Scale_Val
> 18 then
12710 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
12711 Scale_Val
:= UI_From_Int
(+18);
12715 while Val
> Ureal_1
loop
12716 Val
:= Val
/ Ureal_10
;
12717 Scale_Val
:= Scale_Val
- 1;
12720 if Scale_Val
< -18 then
12721 Error_Msg_N
("scale is less than minimum value of -18", Def
);
12722 Scale_Val
:= UI_From_Int
(-18);
12726 if Val
/= Ureal_1
then
12727 Error_Msg_N
("delta expression must be a power of 10", Def
);
12728 Delta_Val
:= Ureal_10
** (-Scale_Val
);
12732 -- Set delta, scale and small (small = delta for decimal type)
12734 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
12735 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
12736 Set_Small_Value
(Implicit_Base
, Delta_Val
);
12738 -- Analyze and process digits expression
12740 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
12741 Check_Digits_Expression
(Digs_Expr
);
12742 Digs_Val
:= Expr_Value
(Digs_Expr
);
12744 if Digs_Val
> 18 then
12745 Digs_Val
:= UI_From_Int
(+18);
12746 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
12749 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
12750 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
12752 -- Set range of base type from digits value for now. This will be
12753 -- expanded to represent the true underlying base range by Freeze.
12755 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
12757 -- Note: We leave size as zero for now, size will be set at freeze
12758 -- time. We have to do this for ordinary fixed-point, because the size
12759 -- depends on the specified small, and we might as well do the same for
12760 -- decimal fixed-point.
12762 pragma Assert
(Esize
(Implicit_Base
) = Uint_0
);
12764 -- If there are bounds given in the declaration use them as the
12765 -- bounds of the first named subtype.
12767 if Present
(Real_Range_Specification
(Def
)) then
12769 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
12770 Low
: constant Node_Id
:= Low_Bound
(RRS
);
12771 High
: constant Node_Id
:= High_Bound
(RRS
);
12776 Analyze_And_Resolve
(Low
, Any_Real
);
12777 Analyze_And_Resolve
(High
, Any_Real
);
12778 Check_Real_Bound
(Low
);
12779 Check_Real_Bound
(High
);
12780 Low_Val
:= Expr_Value_R
(Low
);
12781 High_Val
:= Expr_Value_R
(High
);
12783 if Low_Val
< (-Bound_Val
) then
12785 ("range low bound too small for digits value", Low
);
12786 Low_Val
:= -Bound_Val
;
12789 if High_Val
> Bound_Val
then
12791 ("range high bound too large for digits value", High
);
12792 High_Val
:= Bound_Val
;
12795 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
12798 -- If no explicit range, use range that corresponds to given
12799 -- digits value. This will end up as the final range for the
12803 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
12806 -- Complete entity for first subtype
12808 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
12809 Set_Etype
(T
, Implicit_Base
);
12810 Set_Size_Info
(T
, Implicit_Base
);
12811 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
12812 Set_Digits_Value
(T
, Digs_Val
);
12813 Set_Delta_Value
(T
, Delta_Val
);
12814 Set_Small_Value
(T
, Delta_Val
);
12815 Set_Scale_Value
(T
, Scale_Val
);
12816 Set_Is_Constrained
(T
);
12817 end Decimal_Fixed_Point_Type_Declaration
;
12819 -----------------------------------
12820 -- Derive_Progenitor_Subprograms --
12821 -----------------------------------
12823 procedure Derive_Progenitor_Subprograms
12824 (Parent_Type
: Entity_Id
;
12825 Tagged_Type
: Entity_Id
)
12830 Iface_Elmt
: Elmt_Id
;
12831 Iface_Subp
: Entity_Id
;
12832 New_Subp
: Entity_Id
:= Empty
;
12833 Prim_Elmt
: Elmt_Id
;
12838 pragma Assert
(Ada_Version
>= Ada_2005
12839 and then Is_Record_Type
(Tagged_Type
)
12840 and then Is_Tagged_Type
(Tagged_Type
)
12841 and then Has_Interfaces
(Tagged_Type
));
12843 -- Step 1: Transfer to the full-view primitives associated with the
12844 -- partial-view that cover interface primitives. Conceptually this
12845 -- work should be done later by Process_Full_View; done here to
12846 -- simplify its implementation at later stages. It can be safely
12847 -- done here because interfaces must be visible in the partial and
12848 -- private view (RM 7.3(7.3/2)).
12850 -- Small optimization: This work is only required if the parent is
12851 -- abstract. If the tagged type is not abstract, it cannot have
12852 -- abstract primitives (the only entities in the list of primitives of
12853 -- non-abstract tagged types that can reference abstract primitives
12854 -- through its Alias attribute are the internal entities that have
12855 -- attribute Interface_Alias, and these entities are generated later
12856 -- by Add_Internal_Interface_Entities).
12858 if In_Private_Part
(Current_Scope
)
12859 and then Is_Abstract_Type
(Parent_Type
)
12861 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
12862 while Present
(Elmt
) loop
12863 Subp
:= Node
(Elmt
);
12865 -- At this stage it is not possible to have entities in the list
12866 -- of primitives that have attribute Interface_Alias
12868 pragma Assert
(No
(Interface_Alias
(Subp
)));
12870 Typ
:= Find_Dispatching_Type
(Ultimate_Alias
(Subp
));
12872 if Is_Interface
(Typ
) then
12873 E
:= Find_Primitive_Covering_Interface
12874 (Tagged_Type
=> Tagged_Type
,
12875 Iface_Prim
=> Subp
);
12878 and then Find_Dispatching_Type
(Ultimate_Alias
(E
)) /= Typ
12880 Replace_Elmt
(Elmt
, E
);
12881 Remove_Homonym
(Subp
);
12889 -- Step 2: Add primitives of progenitors that are not implemented by
12890 -- parents of Tagged_Type
12892 if Present
(Interfaces
(Base_Type
(Tagged_Type
))) then
12893 Iface_Elmt
:= First_Elmt
(Interfaces
(Base_Type
(Tagged_Type
)));
12894 while Present
(Iface_Elmt
) loop
12895 Iface
:= Node
(Iface_Elmt
);
12897 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
12898 while Present
(Prim_Elmt
) loop
12899 Iface_Subp
:= Node
(Prim_Elmt
);
12901 -- Exclude derivation of predefined primitives except those
12902 -- that come from source, or are inherited from one that comes
12903 -- from source. Required to catch declarations of equality
12904 -- operators of interfaces. For example:
12906 -- type Iface is interface;
12907 -- function "=" (Left, Right : Iface) return Boolean;
12909 if not Is_Predefined_Dispatching_Operation
(Iface_Subp
)
12910 or else Comes_From_Source
(Ultimate_Alias
(Iface_Subp
))
12912 E
:= Find_Primitive_Covering_Interface
12913 (Tagged_Type
=> Tagged_Type
,
12914 Iface_Prim
=> Iface_Subp
);
12916 -- If not found we derive a new primitive leaving its alias
12917 -- attribute referencing the interface primitive
12921 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
12923 -- Ada 2012 (AI05-0197): If the covering primitive's name
12924 -- differs from the name of the interface primitive then it
12925 -- is a private primitive inherited from a parent type. In
12926 -- such case, given that Tagged_Type covers the interface,
12927 -- the inherited private primitive becomes visible. For such
12928 -- purpose we add a new entity that renames the inherited
12929 -- private primitive.
12931 elsif Chars
(E
) /= Chars
(Iface_Subp
) then
12932 pragma Assert
(Has_Suffix
(E
, 'P'));
12934 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
12935 Set_Alias
(New_Subp
, E
);
12936 Set_Is_Abstract_Subprogram
(New_Subp
,
12937 Is_Abstract_Subprogram
(E
));
12939 -- Propagate to the full view interface entities associated
12940 -- with the partial view
12942 elsif In_Private_Part
(Current_Scope
)
12943 and then Present
(Alias
(E
))
12944 and then Alias
(E
) = Iface_Subp
12946 List_Containing
(Parent
(E
)) /=
12947 Private_Declarations
12949 (Unit_Declaration_Node
(Current_Scope
)))
12951 Append_Elmt
(E
, Primitive_Operations
(Tagged_Type
));
12955 Next_Elmt
(Prim_Elmt
);
12958 Next_Elmt
(Iface_Elmt
);
12961 end Derive_Progenitor_Subprograms
;
12963 -----------------------
12964 -- Derive_Subprogram --
12965 -----------------------
12967 procedure Derive_Subprogram
12968 (New_Subp
: in out Entity_Id
;
12969 Parent_Subp
: Entity_Id
;
12970 Derived_Type
: Entity_Id
;
12971 Parent_Type
: Entity_Id
;
12972 Actual_Subp
: Entity_Id
:= Empty
)
12974 Formal
: Entity_Id
;
12975 -- Formal parameter of parent primitive operation
12977 Formal_Of_Actual
: Entity_Id
;
12978 -- Formal parameter of actual operation, when the derivation is to
12979 -- create a renaming for a primitive operation of an actual in an
12982 New_Formal
: Entity_Id
;
12983 -- Formal of inherited operation
12985 Visible_Subp
: Entity_Id
:= Parent_Subp
;
12987 function Is_Private_Overriding
return Boolean;
12988 -- If Subp is a private overriding of a visible operation, the inherited
12989 -- operation derives from the overridden op (even though its body is the
12990 -- overriding one) and the inherited operation is visible now. See
12991 -- sem_disp to see the full details of the handling of the overridden
12992 -- subprogram, which is removed from the list of primitive operations of
12993 -- the type. The overridden subprogram is saved locally in Visible_Subp,
12994 -- and used to diagnose abstract operations that need overriding in the
12997 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
12998 -- When the type is an anonymous access type, create a new access type
12999 -- designating the derived type.
13001 procedure Set_Derived_Name
;
13002 -- This procedure sets the appropriate Chars name for New_Subp. This
13003 -- is normally just a copy of the parent name. An exception arises for
13004 -- type support subprograms, where the name is changed to reflect the
13005 -- name of the derived type, e.g. if type foo is derived from type bar,
13006 -- then a procedure barDA is derived with a name fooDA.
13008 ---------------------------
13009 -- Is_Private_Overriding --
13010 ---------------------------
13012 function Is_Private_Overriding
return Boolean is
13016 -- If the parent is not a dispatching operation there is no
13017 -- need to investigate overridings
13019 if not Is_Dispatching_Operation
(Parent_Subp
) then
13023 -- The visible operation that is overridden is a homonym of the
13024 -- parent subprogram. We scan the homonym chain to find the one
13025 -- whose alias is the subprogram we are deriving.
13027 Prev
:= Current_Entity
(Parent_Subp
);
13028 while Present
(Prev
) loop
13029 if Ekind
(Prev
) = Ekind
(Parent_Subp
)
13030 and then Alias
(Prev
) = Parent_Subp
13031 and then Scope
(Parent_Subp
) = Scope
(Prev
)
13032 and then not Is_Hidden
(Prev
)
13034 Visible_Subp
:= Prev
;
13038 Prev
:= Homonym
(Prev
);
13042 end Is_Private_Overriding
;
13048 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
13049 Acc_Type
: Entity_Id
;
13050 Par
: constant Node_Id
:= Parent
(Derived_Type
);
13053 -- When the type is an anonymous access type, create a new access
13054 -- type designating the derived type. This itype must be elaborated
13055 -- at the point of the derivation, not on subsequent calls that may
13056 -- be out of the proper scope for Gigi, so we insert a reference to
13057 -- it after the derivation.
13059 if Ekind
(Etype
(Id
)) = E_Anonymous_Access_Type
then
13061 Desig_Typ
: Entity_Id
:= Designated_Type
(Etype
(Id
));
13064 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
13065 and then Present
(Full_View
(Desig_Typ
))
13066 and then not Is_Private_Type
(Parent_Type
)
13068 Desig_Typ
:= Full_View
(Desig_Typ
);
13071 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
)
13073 -- Ada 2005 (AI-251): Handle also derivations of abstract
13074 -- interface primitives.
13076 or else (Is_Interface
(Desig_Typ
)
13077 and then not Is_Class_Wide_Type
(Desig_Typ
))
13079 Acc_Type
:= New_Copy
(Etype
(Id
));
13080 Set_Etype
(Acc_Type
, Acc_Type
);
13081 Set_Scope
(Acc_Type
, New_Subp
);
13083 -- Compute size of anonymous access type
13085 if Is_Array_Type
(Desig_Typ
)
13086 and then not Is_Constrained
(Desig_Typ
)
13088 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
13090 Init_Size
(Acc_Type
, System_Address_Size
);
13093 Init_Alignment
(Acc_Type
);
13094 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
13096 Set_Etype
(New_Id
, Acc_Type
);
13097 Set_Scope
(New_Id
, New_Subp
);
13099 -- Create a reference to it
13100 Build_Itype_Reference
(Acc_Type
, Parent
(Derived_Type
));
13103 Set_Etype
(New_Id
, Etype
(Id
));
13107 elsif Base_Type
(Etype
(Id
)) = Base_Type
(Parent_Type
)
13109 (Ekind
(Etype
(Id
)) = E_Record_Type_With_Private
13110 and then Present
(Full_View
(Etype
(Id
)))
13112 Base_Type
(Full_View
(Etype
(Id
))) = Base_Type
(Parent_Type
))
13114 -- Constraint checks on formals are generated during expansion,
13115 -- based on the signature of the original subprogram. The bounds
13116 -- of the derived type are not relevant, and thus we can use
13117 -- the base type for the formals. However, the return type may be
13118 -- used in a context that requires that the proper static bounds
13119 -- be used (a case statement, for example) and for those cases
13120 -- we must use the derived type (first subtype), not its base.
13122 -- If the derived_type_definition has no constraints, we know that
13123 -- the derived type has the same constraints as the first subtype
13124 -- of the parent, and we can also use it rather than its base,
13125 -- which can lead to more efficient code.
13127 if Etype
(Id
) = Parent_Type
then
13128 if Is_Scalar_Type
(Parent_Type
)
13130 Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
)
13132 Set_Etype
(New_Id
, Derived_Type
);
13134 elsif Nkind
(Par
) = N_Full_Type_Declaration
13136 Nkind
(Type_Definition
(Par
)) = N_Derived_Type_Definition
13139 (Subtype_Indication
(Type_Definition
(Par
)))
13141 Set_Etype
(New_Id
, Derived_Type
);
13144 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
13148 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
13152 Set_Etype
(New_Id
, Etype
(Id
));
13156 ----------------------
13157 -- Set_Derived_Name --
13158 ----------------------
13160 procedure Set_Derived_Name
is
13161 Nm
: constant TSS_Name_Type
:= Get_TSS_Name
(Parent_Subp
);
13163 if Nm
= TSS_Null
then
13164 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
13166 Set_Chars
(New_Subp
, Make_TSS_Name
(Base_Type
(Derived_Type
), Nm
));
13168 end Set_Derived_Name
;
13170 -- Start of processing for Derive_Subprogram
13174 New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
13175 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
13176 Set_Contract
(New_Subp
, Make_Contract
(Sloc
(New_Subp
)));
13178 -- Check whether the inherited subprogram is a private operation that
13179 -- should be inherited but not yet made visible. Such subprograms can
13180 -- become visible at a later point (e.g., the private part of a public
13181 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13182 -- following predicate is true, then this is not such a private
13183 -- operation and the subprogram simply inherits the name of the parent
13184 -- subprogram. Note the special check for the names of controlled
13185 -- operations, which are currently exempted from being inherited with
13186 -- a hidden name because they must be findable for generation of
13187 -- implicit run-time calls.
13189 if not Is_Hidden
(Parent_Subp
)
13190 or else Is_Internal
(Parent_Subp
)
13191 or else Is_Private_Overriding
13192 or else Is_Internal_Name
(Chars
(Parent_Subp
))
13193 or else Chars
(Parent_Subp
) = Name_Initialize
13194 or else Chars
(Parent_Subp
) = Name_Adjust
13195 or else Chars
(Parent_Subp
) = Name_Finalize
13199 -- An inherited dispatching equality will be overridden by an internally
13200 -- generated one, or by an explicit one, so preserve its name and thus
13201 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13202 -- private operation it may become invisible if the full view has
13203 -- progenitors, and the dispatch table will be malformed.
13204 -- We check that the type is limited to handle the anomalous declaration
13205 -- of Limited_Controlled, which is derived from a non-limited type, and
13206 -- which is handled specially elsewhere as well.
13208 elsif Chars
(Parent_Subp
) = Name_Op_Eq
13209 and then Is_Dispatching_Operation
(Parent_Subp
)
13210 and then Etype
(Parent_Subp
) = Standard_Boolean
13211 and then not Is_Limited_Type
(Etype
(First_Formal
(Parent_Subp
)))
13213 Etype
(First_Formal
(Parent_Subp
)) =
13214 Etype
(Next_Formal
(First_Formal
(Parent_Subp
)))
13218 -- If parent is hidden, this can be a regular derivation if the
13219 -- parent is immediately visible in a non-instantiating context,
13220 -- or if we are in the private part of an instance. This test
13221 -- should still be refined ???
13223 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13224 -- operation as a non-visible operation in cases where the parent
13225 -- subprogram might not be visible now, but was visible within the
13226 -- original generic, so it would be wrong to make the inherited
13227 -- subprogram non-visible now. (Not clear if this test is fully
13228 -- correct; are there any cases where we should declare the inherited
13229 -- operation as not visible to avoid it being overridden, e.g., when
13230 -- the parent type is a generic actual with private primitives ???)
13232 -- (they should be treated the same as other private inherited
13233 -- subprograms, but it's not clear how to do this cleanly). ???
13235 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
13236 and then Is_Immediately_Visible
(Parent_Subp
)
13237 and then not In_Instance
)
13238 or else In_Instance_Not_Visible
13242 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13243 -- overrides an interface primitive because interface primitives
13244 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13246 elsif Ada_Version
>= Ada_2005
13247 and then Is_Dispatching_Operation
(Parent_Subp
)
13248 and then Covers_Some_Interface
(Parent_Subp
)
13252 -- Otherwise, the type is inheriting a private operation, so enter
13253 -- it with a special name so it can't be overridden.
13256 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
13259 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
13261 if Present
(Actual_Subp
) then
13262 Replace_Type
(Actual_Subp
, New_Subp
);
13264 Replace_Type
(Parent_Subp
, New_Subp
);
13267 Conditional_Delay
(New_Subp
, Parent_Subp
);
13269 -- If we are creating a renaming for a primitive operation of an
13270 -- actual of a generic derived type, we must examine the signature
13271 -- of the actual primitive, not that of the generic formal, which for
13272 -- example may be an interface. However the name and initial value
13273 -- of the inherited operation are those of the formal primitive.
13275 Formal
:= First_Formal
(Parent_Subp
);
13277 if Present
(Actual_Subp
) then
13278 Formal_Of_Actual
:= First_Formal
(Actual_Subp
);
13280 Formal_Of_Actual
:= Empty
;
13283 while Present
(Formal
) loop
13284 New_Formal
:= New_Copy
(Formal
);
13286 -- Normally we do not go copying parents, but in the case of
13287 -- formals, we need to link up to the declaration (which is the
13288 -- parameter specification), and it is fine to link up to the
13289 -- original formal's parameter specification in this case.
13291 Set_Parent
(New_Formal
, Parent
(Formal
));
13292 Append_Entity
(New_Formal
, New_Subp
);
13294 if Present
(Formal_Of_Actual
) then
13295 Replace_Type
(Formal_Of_Actual
, New_Formal
);
13296 Next_Formal
(Formal_Of_Actual
);
13298 Replace_Type
(Formal
, New_Formal
);
13301 Next_Formal
(Formal
);
13304 -- If this derivation corresponds to a tagged generic actual, then
13305 -- primitive operations rename those of the actual. Otherwise the
13306 -- primitive operations rename those of the parent type, If the parent
13307 -- renames an intrinsic operator, so does the new subprogram. We except
13308 -- concatenation, which is always properly typed, and does not get
13309 -- expanded as other intrinsic operations.
13311 if No
(Actual_Subp
) then
13312 if Is_Intrinsic_Subprogram
(Parent_Subp
) then
13313 Set_Is_Intrinsic_Subprogram
(New_Subp
);
13315 if Present
(Alias
(Parent_Subp
))
13316 and then Chars
(Parent_Subp
) /= Name_Op_Concat
13318 Set_Alias
(New_Subp
, Alias
(Parent_Subp
));
13320 Set_Alias
(New_Subp
, Parent_Subp
);
13324 Set_Alias
(New_Subp
, Parent_Subp
);
13328 Set_Alias
(New_Subp
, Actual_Subp
);
13331 -- Derived subprograms of a tagged type must inherit the convention
13332 -- of the parent subprogram (a requirement of AI-117). Derived
13333 -- subprograms of untagged types simply get convention Ada by default.
13335 if Is_Tagged_Type
(Derived_Type
) then
13336 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
13339 -- Predefined controlled operations retain their name even if the parent
13340 -- is hidden (see above), but they are not primitive operations if the
13341 -- ancestor is not visible, for example if the parent is a private
13342 -- extension completed with a controlled extension. Note that a full
13343 -- type that is controlled can break privacy: the flag Is_Controlled is
13344 -- set on both views of the type.
13346 if Is_Controlled
(Parent_Type
)
13348 (Chars
(Parent_Subp
) = Name_Initialize
13349 or else Chars
(Parent_Subp
) = Name_Adjust
13350 or else Chars
(Parent_Subp
) = Name_Finalize
)
13351 and then Is_Hidden
(Parent_Subp
)
13352 and then not Is_Visibly_Controlled
(Parent_Type
)
13354 Set_Is_Hidden
(New_Subp
);
13357 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
13358 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
13360 if Ekind
(Parent_Subp
) = E_Procedure
then
13361 Set_Is_Valued_Procedure
13362 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
13364 Set_Has_Controlling_Result
13365 (New_Subp
, Has_Controlling_Result
(Parent_Subp
));
13368 -- No_Return must be inherited properly. If this is overridden in the
13369 -- case of a dispatching operation, then a check is made in Sem_Disp
13370 -- that the overriding operation is also No_Return (no such check is
13371 -- required for the case of non-dispatching operation.
13373 Set_No_Return
(New_Subp
, No_Return
(Parent_Subp
));
13375 -- A derived function with a controlling result is abstract. If the
13376 -- Derived_Type is a nonabstract formal generic derived type, then
13377 -- inherited operations are not abstract: the required check is done at
13378 -- instantiation time. If the derivation is for a generic actual, the
13379 -- function is not abstract unless the actual is.
13381 if Is_Generic_Type
(Derived_Type
)
13382 and then not Is_Abstract_Type
(Derived_Type
)
13386 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
13387 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
13389 elsif Ada_Version
>= Ada_2005
13390 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
13391 or else (Is_Tagged_Type
(Derived_Type
)
13392 and then Etype
(New_Subp
) = Derived_Type
13393 and then not Is_Null_Extension
(Derived_Type
))
13394 or else (Is_Tagged_Type
(Derived_Type
)
13395 and then Ekind
(Etype
(New_Subp
)) =
13396 E_Anonymous_Access_Type
13397 and then Designated_Type
(Etype
(New_Subp
)) =
13399 and then not Is_Null_Extension
(Derived_Type
)))
13400 and then No
(Actual_Subp
)
13402 if not Is_Tagged_Type
(Derived_Type
)
13403 or else Is_Abstract_Type
(Derived_Type
)
13404 or else Is_Abstract_Subprogram
(Alias
(New_Subp
))
13406 Set_Is_Abstract_Subprogram
(New_Subp
);
13408 Set_Requires_Overriding
(New_Subp
);
13411 elsif Ada_Version
< Ada_2005
13412 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
13413 or else (Is_Tagged_Type
(Derived_Type
)
13414 and then Etype
(New_Subp
) = Derived_Type
13415 and then No
(Actual_Subp
)))
13417 Set_Is_Abstract_Subprogram
(New_Subp
);
13419 -- AI05-0097 : an inherited operation that dispatches on result is
13420 -- abstract if the derived type is abstract, even if the parent type
13421 -- is concrete and the derived type is a null extension.
13423 elsif Has_Controlling_Result
(Alias
(New_Subp
))
13424 and then Is_Abstract_Type
(Etype
(New_Subp
))
13426 Set_Is_Abstract_Subprogram
(New_Subp
);
13428 -- Finally, if the parent type is abstract we must verify that all
13429 -- inherited operations are either non-abstract or overridden, or that
13430 -- the derived type itself is abstract (this check is performed at the
13431 -- end of a package declaration, in Check_Abstract_Overriding). A
13432 -- private overriding in the parent type will not be visible in the
13433 -- derivation if we are not in an inner package or in a child unit of
13434 -- the parent type, in which case the abstractness of the inherited
13435 -- operation is carried to the new subprogram.
13437 elsif Is_Abstract_Type
(Parent_Type
)
13438 and then not In_Open_Scopes
(Scope
(Parent_Type
))
13439 and then Is_Private_Overriding
13440 and then Is_Abstract_Subprogram
(Visible_Subp
)
13442 if No
(Actual_Subp
) then
13443 Set_Alias
(New_Subp
, Visible_Subp
);
13444 Set_Is_Abstract_Subprogram
(New_Subp
, True);
13447 -- If this is a derivation for an instance of a formal derived
13448 -- type, abstractness comes from the primitive operation of the
13449 -- actual, not from the operation inherited from the ancestor.
13451 Set_Is_Abstract_Subprogram
13452 (New_Subp
, Is_Abstract_Subprogram
(Actual_Subp
));
13456 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
13458 -- Check for case of a derived subprogram for the instantiation of a
13459 -- formal derived tagged type, if so mark the subprogram as dispatching
13460 -- and inherit the dispatching attributes of the actual subprogram. The
13461 -- derived subprogram is effectively renaming of the actual subprogram,
13462 -- so it needs to have the same attributes as the actual.
13464 if Present
(Actual_Subp
)
13465 and then Is_Dispatching_Operation
(Actual_Subp
)
13467 Set_Is_Dispatching_Operation
(New_Subp
);
13469 if Present
(DTC_Entity
(Actual_Subp
)) then
13470 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Actual_Subp
));
13471 Set_DT_Position
(New_Subp
, DT_Position
(Actual_Subp
));
13475 -- Indicate that a derived subprogram does not require a body and that
13476 -- it does not require processing of default expressions.
13478 Set_Has_Completion
(New_Subp
);
13479 Set_Default_Expressions_Processed
(New_Subp
);
13481 if Ekind
(New_Subp
) = E_Function
then
13482 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
13484 end Derive_Subprogram
;
13486 ------------------------
13487 -- Derive_Subprograms --
13488 ------------------------
13490 procedure Derive_Subprograms
13491 (Parent_Type
: Entity_Id
;
13492 Derived_Type
: Entity_Id
;
13493 Generic_Actual
: Entity_Id
:= Empty
)
13495 Op_List
: constant Elist_Id
:=
13496 Collect_Primitive_Operations
(Parent_Type
);
13498 function Check_Derived_Type
return Boolean;
13499 -- Check that all the entities derived from Parent_Type are found in
13500 -- the list of primitives of Derived_Type exactly in the same order.
13502 procedure Derive_Interface_Subprogram
13503 (New_Subp
: in out Entity_Id
;
13505 Actual_Subp
: Entity_Id
);
13506 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
13507 -- (which is an interface primitive). If Generic_Actual is present then
13508 -- Actual_Subp is the actual subprogram corresponding with the generic
13509 -- subprogram Subp.
13511 function Check_Derived_Type
return Boolean is
13515 New_Subp
: Entity_Id
;
13520 -- Traverse list of entities in the current scope searching for
13521 -- an incomplete type whose full-view is derived type
13523 E
:= First_Entity
(Scope
(Derived_Type
));
13525 and then E
/= Derived_Type
13527 if Ekind
(E
) = E_Incomplete_Type
13528 and then Present
(Full_View
(E
))
13529 and then Full_View
(E
) = Derived_Type
13531 -- Disable this test if Derived_Type completes an incomplete
13532 -- type because in such case more primitives can be added
13533 -- later to the list of primitives of Derived_Type by routine
13534 -- Process_Incomplete_Dependents
13539 E
:= Next_Entity
(E
);
13542 List
:= Collect_Primitive_Operations
(Derived_Type
);
13543 Elmt
:= First_Elmt
(List
);
13545 Op_Elmt
:= First_Elmt
(Op_List
);
13546 while Present
(Op_Elmt
) loop
13547 Subp
:= Node
(Op_Elmt
);
13548 New_Subp
:= Node
(Elmt
);
13550 -- At this early stage Derived_Type has no entities with attribute
13551 -- Interface_Alias. In addition, such primitives are always
13552 -- located at the end of the list of primitives of Parent_Type.
13553 -- Therefore, if found we can safely stop processing pending
13556 exit when Present
(Interface_Alias
(Subp
));
13558 -- Handle hidden entities
13560 if not Is_Predefined_Dispatching_Operation
(Subp
)
13561 and then Is_Hidden
(Subp
)
13563 if Present
(New_Subp
)
13564 and then Primitive_Names_Match
(Subp
, New_Subp
)
13570 if not Present
(New_Subp
)
13571 or else Ekind
(Subp
) /= Ekind
(New_Subp
)
13572 or else not Primitive_Names_Match
(Subp
, New_Subp
)
13580 Next_Elmt
(Op_Elmt
);
13584 end Check_Derived_Type
;
13586 ---------------------------------
13587 -- Derive_Interface_Subprogram --
13588 ---------------------------------
13590 procedure Derive_Interface_Subprogram
13591 (New_Subp
: in out Entity_Id
;
13593 Actual_Subp
: Entity_Id
)
13595 Iface_Subp
: constant Entity_Id
:= Ultimate_Alias
(Subp
);
13596 Iface_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Iface_Subp
);
13599 pragma Assert
(Is_Interface
(Iface_Type
));
13602 (New_Subp
=> New_Subp
,
13603 Parent_Subp
=> Iface_Subp
,
13604 Derived_Type
=> Derived_Type
,
13605 Parent_Type
=> Iface_Type
,
13606 Actual_Subp
=> Actual_Subp
);
13608 -- Given that this new interface entity corresponds with a primitive
13609 -- of the parent that was not overridden we must leave it associated
13610 -- with its parent primitive to ensure that it will share the same
13611 -- dispatch table slot when overridden.
13613 if No
(Actual_Subp
) then
13614 Set_Alias
(New_Subp
, Subp
);
13616 -- For instantiations this is not needed since the previous call to
13617 -- Derive_Subprogram leaves the entity well decorated.
13620 pragma Assert
(Alias
(New_Subp
) = Actual_Subp
);
13623 end Derive_Interface_Subprogram
;
13627 Alias_Subp
: Entity_Id
;
13628 Act_List
: Elist_Id
;
13629 Act_Elmt
: Elmt_Id
:= No_Elmt
;
13630 Act_Subp
: Entity_Id
:= Empty
;
13632 Need_Search
: Boolean := False;
13633 New_Subp
: Entity_Id
:= Empty
;
13634 Parent_Base
: Entity_Id
;
13637 -- Start of processing for Derive_Subprograms
13640 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
13641 and then Has_Discriminants
(Parent_Type
)
13642 and then Present
(Full_View
(Parent_Type
))
13644 Parent_Base
:= Full_View
(Parent_Type
);
13646 Parent_Base
:= Parent_Type
;
13649 if Present
(Generic_Actual
) then
13650 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
13651 Act_Elmt
:= First_Elmt
(Act_List
);
13654 -- Derive primitives inherited from the parent. Note that if the generic
13655 -- actual is present, this is not really a type derivation, it is a
13656 -- completion within an instance.
13658 -- Case 1: Derived_Type does not implement interfaces
13660 if not Is_Tagged_Type
(Derived_Type
)
13661 or else (not Has_Interfaces
(Derived_Type
)
13662 and then not (Present
(Generic_Actual
)
13664 Has_Interfaces
(Generic_Actual
)))
13666 Elmt
:= First_Elmt
(Op_List
);
13667 while Present
(Elmt
) loop
13668 Subp
:= Node
(Elmt
);
13670 -- Literals are derived earlier in the process of building the
13671 -- derived type, and are skipped here.
13673 if Ekind
(Subp
) = E_Enumeration_Literal
then
13676 -- The actual is a direct descendant and the common primitive
13677 -- operations appear in the same order.
13679 -- If the generic parent type is present, the derived type is an
13680 -- instance of a formal derived type, and within the instance its
13681 -- operations are those of the actual. We derive from the formal
13682 -- type but make the inherited operations aliases of the
13683 -- corresponding operations of the actual.
13686 pragma Assert
(No
(Node
(Act_Elmt
))
13687 or else (Primitive_Names_Match
(Subp
, Node
(Act_Elmt
))
13689 Type_Conformant
(Subp
, Node
(Act_Elmt
),
13690 Skip_Controlling_Formals
=> True)));
13693 (New_Subp
, Subp
, Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
13695 if Present
(Act_Elmt
) then
13696 Next_Elmt
(Act_Elmt
);
13703 -- Case 2: Derived_Type implements interfaces
13706 -- If the parent type has no predefined primitives we remove
13707 -- predefined primitives from the list of primitives of generic
13708 -- actual to simplify the complexity of this algorithm.
13710 if Present
(Generic_Actual
) then
13712 Has_Predefined_Primitives
: Boolean := False;
13715 -- Check if the parent type has predefined primitives
13717 Elmt
:= First_Elmt
(Op_List
);
13718 while Present
(Elmt
) loop
13719 Subp
:= Node
(Elmt
);
13721 if Is_Predefined_Dispatching_Operation
(Subp
)
13722 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
13724 Has_Predefined_Primitives
:= True;
13731 -- Remove predefined primitives of Generic_Actual. We must use
13732 -- an auxiliary list because in case of tagged types the value
13733 -- returned by Collect_Primitive_Operations is the value stored
13734 -- in its Primitive_Operations attribute (and we don't want to
13735 -- modify its current contents).
13737 if not Has_Predefined_Primitives
then
13739 Aux_List
: constant Elist_Id
:= New_Elmt_List
;
13742 Elmt
:= First_Elmt
(Act_List
);
13743 while Present
(Elmt
) loop
13744 Subp
:= Node
(Elmt
);
13746 if not Is_Predefined_Dispatching_Operation
(Subp
)
13747 or else Comes_From_Source
(Subp
)
13749 Append_Elmt
(Subp
, Aux_List
);
13755 Act_List
:= Aux_List
;
13759 Act_Elmt
:= First_Elmt
(Act_List
);
13760 Act_Subp
:= Node
(Act_Elmt
);
13764 -- Stage 1: If the generic actual is not present we derive the
13765 -- primitives inherited from the parent type. If the generic parent
13766 -- type is present, the derived type is an instance of a formal
13767 -- derived type, and within the instance its operations are those of
13768 -- the actual. We derive from the formal type but make the inherited
13769 -- operations aliases of the corresponding operations of the actual.
13771 Elmt
:= First_Elmt
(Op_List
);
13772 while Present
(Elmt
) loop
13773 Subp
:= Node
(Elmt
);
13774 Alias_Subp
:= Ultimate_Alias
(Subp
);
13776 -- Do not derive internal entities of the parent that link
13777 -- interface primitives with their covering primitive. These
13778 -- entities will be added to this type when frozen.
13780 if Present
(Interface_Alias
(Subp
)) then
13784 -- If the generic actual is present find the corresponding
13785 -- operation in the generic actual. If the parent type is a
13786 -- direct ancestor of the derived type then, even if it is an
13787 -- interface, the operations are inherited from the primary
13788 -- dispatch table and are in the proper order. If we detect here
13789 -- that primitives are not in the same order we traverse the list
13790 -- of primitive operations of the actual to find the one that
13791 -- implements the interface primitive.
13795 (Present
(Generic_Actual
)
13796 and then Present
(Act_Subp
)
13798 (Primitive_Names_Match
(Subp
, Act_Subp
)
13800 Type_Conformant
(Subp
, Act_Subp
,
13801 Skip_Controlling_Formals
=> True)))
13803 pragma Assert
(not Is_Ancestor
(Parent_Base
, Generic_Actual
,
13804 Use_Full_View
=> True));
13806 -- Remember that we need searching for all pending primitives
13808 Need_Search
:= True;
13810 -- Handle entities associated with interface primitives
13812 if Present
(Alias_Subp
)
13813 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
13814 and then not Is_Predefined_Dispatching_Operation
(Subp
)
13816 -- Search for the primitive in the homonym chain
13819 Find_Primitive_Covering_Interface
13820 (Tagged_Type
=> Generic_Actual
,
13821 Iface_Prim
=> Alias_Subp
);
13823 -- Previous search may not locate primitives covering
13824 -- interfaces defined in generics units or instantiations.
13825 -- (it fails if the covering primitive has formals whose
13826 -- type is also defined in generics or instantiations).
13827 -- In such case we search in the list of primitives of the
13828 -- generic actual for the internal entity that links the
13829 -- interface primitive and the covering primitive.
13832 and then Is_Generic_Type
(Parent_Type
)
13834 -- This code has been designed to handle only generic
13835 -- formals that implement interfaces that are defined
13836 -- in a generic unit or instantiation. If this code is
13837 -- needed for other cases we must review it because
13838 -- (given that it relies on Original_Location to locate
13839 -- the primitive of Generic_Actual that covers the
13840 -- interface) it could leave linked through attribute
13841 -- Alias entities of unrelated instantiations).
13845 (Scope
(Find_Dispatching_Type
(Alias_Subp
)))
13847 Instantiation_Depth
13848 (Sloc
(Find_Dispatching_Type
(Alias_Subp
))) > 0);
13851 Iface_Prim_Loc
: constant Source_Ptr
:=
13852 Original_Location
(Sloc
(Alias_Subp
));
13857 First_Elmt
(Primitive_Operations
(Generic_Actual
));
13859 Search
: while Present
(Elmt
) loop
13860 Prim
:= Node
(Elmt
);
13862 if Present
(Interface_Alias
(Prim
))
13863 and then Original_Location
13864 (Sloc
(Interface_Alias
(Prim
)))
13867 Act_Subp
:= Alias
(Prim
);
13876 pragma Assert
(Present
(Act_Subp
)
13877 or else Is_Abstract_Type
(Generic_Actual
)
13878 or else Serious_Errors_Detected
> 0);
13880 -- Handle predefined primitives plus the rest of user-defined
13884 Act_Elmt
:= First_Elmt
(Act_List
);
13885 while Present
(Act_Elmt
) loop
13886 Act_Subp
:= Node
(Act_Elmt
);
13888 exit when Primitive_Names_Match
(Subp
, Act_Subp
)
13889 and then Type_Conformant
13891 Skip_Controlling_Formals
=> True)
13892 and then No
(Interface_Alias
(Act_Subp
));
13894 Next_Elmt
(Act_Elmt
);
13897 if No
(Act_Elmt
) then
13903 -- Case 1: If the parent is a limited interface then it has the
13904 -- predefined primitives of synchronized interfaces. However, the
13905 -- actual type may be a non-limited type and hence it does not
13906 -- have such primitives.
13908 if Present
(Generic_Actual
)
13909 and then not Present
(Act_Subp
)
13910 and then Is_Limited_Interface
(Parent_Base
)
13911 and then Is_Predefined_Interface_Primitive
(Subp
)
13915 -- Case 2: Inherit entities associated with interfaces that were
13916 -- not covered by the parent type. We exclude here null interface
13917 -- primitives because they do not need special management.
13919 -- We also exclude interface operations that are renamings. If the
13920 -- subprogram is an explicit renaming of an interface primitive,
13921 -- it is a regular primitive operation, and the presence of its
13922 -- alias is not relevant: it has to be derived like any other
13925 elsif Present
(Alias
(Subp
))
13926 and then Nkind
(Unit_Declaration_Node
(Subp
)) /=
13927 N_Subprogram_Renaming_Declaration
13928 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
13930 (Nkind
(Parent
(Alias_Subp
)) = N_Procedure_Specification
13931 and then Null_Present
(Parent
(Alias_Subp
)))
13933 -- If this is an abstract private type then we transfer the
13934 -- derivation of the interface primitive from the partial view
13935 -- to the full view. This is safe because all the interfaces
13936 -- must be visible in the partial view. Done to avoid adding
13937 -- a new interface derivation to the private part of the
13938 -- enclosing package; otherwise this new derivation would be
13939 -- decorated as hidden when the analysis of the enclosing
13940 -- package completes.
13942 if Is_Abstract_Type
(Derived_Type
)
13943 and then In_Private_Part
(Current_Scope
)
13944 and then Has_Private_Declaration
(Derived_Type
)
13947 Partial_View
: Entity_Id
;
13952 Partial_View
:= First_Entity
(Current_Scope
);
13954 exit when No
(Partial_View
)
13955 or else (Has_Private_Declaration
(Partial_View
)
13957 Full_View
(Partial_View
) = Derived_Type
);
13959 Next_Entity
(Partial_View
);
13962 -- If the partial view was not found then the source code
13963 -- has errors and the derivation is not needed.
13965 if Present
(Partial_View
) then
13967 First_Elmt
(Primitive_Operations
(Partial_View
));
13968 while Present
(Elmt
) loop
13969 Ent
:= Node
(Elmt
);
13971 if Present
(Alias
(Ent
))
13972 and then Ultimate_Alias
(Ent
) = Alias
(Subp
)
13975 (Ent
, Primitive_Operations
(Derived_Type
));
13982 -- If the interface primitive was not found in the
13983 -- partial view then this interface primitive was
13984 -- overridden. We add a derivation to activate in
13985 -- Derive_Progenitor_Subprograms the machinery to
13989 Derive_Interface_Subprogram
13990 (New_Subp
=> New_Subp
,
13992 Actual_Subp
=> Act_Subp
);
13997 Derive_Interface_Subprogram
13998 (New_Subp
=> New_Subp
,
14000 Actual_Subp
=> Act_Subp
);
14003 -- Case 3: Common derivation
14007 (New_Subp
=> New_Subp
,
14008 Parent_Subp
=> Subp
,
14009 Derived_Type
=> Derived_Type
,
14010 Parent_Type
=> Parent_Base
,
14011 Actual_Subp
=> Act_Subp
);
14014 -- No need to update Act_Elm if we must search for the
14015 -- corresponding operation in the generic actual
14018 and then Present
(Act_Elmt
)
14020 Next_Elmt
(Act_Elmt
);
14021 Act_Subp
:= Node
(Act_Elmt
);
14028 -- Inherit additional operations from progenitors. If the derived
14029 -- type is a generic actual, there are not new primitive operations
14030 -- for the type because it has those of the actual, and therefore
14031 -- nothing needs to be done. The renamings generated above are not
14032 -- primitive operations, and their purpose is simply to make the
14033 -- proper operations visible within an instantiation.
14035 if No
(Generic_Actual
) then
14036 Derive_Progenitor_Subprograms
(Parent_Base
, Derived_Type
);
14040 -- Final check: Direct descendants must have their primitives in the
14041 -- same order. We exclude from this test untagged types and instances
14042 -- of formal derived types. We skip this test if we have already
14043 -- reported serious errors in the sources.
14045 pragma Assert
(not Is_Tagged_Type
(Derived_Type
)
14046 or else Present
(Generic_Actual
)
14047 or else Serious_Errors_Detected
> 0
14048 or else Check_Derived_Type
);
14049 end Derive_Subprograms
;
14051 --------------------------------
14052 -- Derived_Standard_Character --
14053 --------------------------------
14055 procedure Derived_Standard_Character
14057 Parent_Type
: Entity_Id
;
14058 Derived_Type
: Entity_Id
)
14060 Loc
: constant Source_Ptr
:= Sloc
(N
);
14061 Def
: constant Node_Id
:= Type_Definition
(N
);
14062 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
14063 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
14064 Implicit_Base
: constant Entity_Id
:=
14066 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
14072 Discard_Node
(Process_Subtype
(Indic
, N
));
14074 Set_Etype
(Implicit_Base
, Parent_Base
);
14075 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
14076 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
14078 Set_Is_Character_Type
(Implicit_Base
, True);
14079 Set_Has_Delayed_Freeze
(Implicit_Base
);
14081 -- The bounds of the implicit base are the bounds of the parent base.
14082 -- Note that their type is the parent base.
14084 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
14085 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
14087 Set_Scalar_Range
(Implicit_Base
,
14090 High_Bound
=> Hi
));
14092 Conditional_Delay
(Derived_Type
, Parent_Type
);
14094 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
14095 Set_Etype
(Derived_Type
, Implicit_Base
);
14096 Set_Size_Info
(Derived_Type
, Parent_Type
);
14098 if Unknown_RM_Size
(Derived_Type
) then
14099 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
14102 Set_Is_Character_Type
(Derived_Type
, True);
14104 if Nkind
(Indic
) /= N_Subtype_Indication
then
14106 -- If no explicit constraint, the bounds are those
14107 -- of the parent type.
14109 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
14110 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
14111 Set_Scalar_Range
(Derived_Type
, Make_Range
(Loc
, Lo
, Hi
));
14114 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
14116 -- Because the implicit base is used in the conversion of the bounds, we
14117 -- have to freeze it now. This is similar to what is done for numeric
14118 -- types, and it equally suspicious, but otherwise a non-static bound
14119 -- will have a reference to an unfrozen type, which is rejected by Gigi
14120 -- (???). This requires specific care for definition of stream
14121 -- attributes. For details, see comments at the end of
14122 -- Build_Derived_Numeric_Type.
14124 Freeze_Before
(N
, Implicit_Base
);
14125 end Derived_Standard_Character
;
14127 ------------------------------
14128 -- Derived_Type_Declaration --
14129 ------------------------------
14131 procedure Derived_Type_Declaration
14134 Is_Completion
: Boolean)
14136 Parent_Type
: Entity_Id
;
14138 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean;
14139 -- Check whether the parent type is a generic formal, or derives
14140 -- directly or indirectly from one.
14142 ------------------------
14143 -- Comes_From_Generic --
14144 ------------------------
14146 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean is
14148 if Is_Generic_Type
(Typ
) then
14151 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
14154 elsif Is_Private_Type
(Typ
)
14155 and then Present
(Full_View
(Typ
))
14156 and then Is_Generic_Type
(Root_Type
(Full_View
(Typ
)))
14160 elsif Is_Generic_Actual_Type
(Typ
) then
14166 end Comes_From_Generic
;
14170 Def
: constant Node_Id
:= Type_Definition
(N
);
14171 Iface_Def
: Node_Id
;
14172 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
14173 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
14174 Parent_Node
: Node_Id
;
14177 -- Start of processing for Derived_Type_Declaration
14180 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
14182 -- Ada 2005 (AI-251): In case of interface derivation check that the
14183 -- parent is also an interface.
14185 if Interface_Present
(Def
) then
14186 Check_SPARK_Restriction
("interface is not allowed", Def
);
14188 if not Is_Interface
(Parent_Type
) then
14189 Diagnose_Interface
(Indic
, Parent_Type
);
14192 Parent_Node
:= Parent
(Base_Type
(Parent_Type
));
14193 Iface_Def
:= Type_Definition
(Parent_Node
);
14195 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14196 -- other limited interfaces.
14198 if Limited_Present
(Def
) then
14199 if Limited_Present
(Iface_Def
) then
14202 elsif Protected_Present
(Iface_Def
) then
14204 ("descendant of& must be declared"
14205 & " as a protected interface",
14208 elsif Synchronized_Present
(Iface_Def
) then
14210 ("descendant of& must be declared"
14211 & " as a synchronized interface",
14214 elsif Task_Present
(Iface_Def
) then
14216 ("descendant of& must be declared as a task interface",
14221 ("(Ada 2005) limited interface cannot "
14222 & "inherit from non-limited interface", Indic
);
14225 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14226 -- from non-limited or limited interfaces.
14228 elsif not Protected_Present
(Def
)
14229 and then not Synchronized_Present
(Def
)
14230 and then not Task_Present
(Def
)
14232 if Limited_Present
(Iface_Def
) then
14235 elsif Protected_Present
(Iface_Def
) then
14237 ("descendant of& must be declared"
14238 & " as a protected interface",
14241 elsif Synchronized_Present
(Iface_Def
) then
14243 ("descendant of& must be declared"
14244 & " as a synchronized interface",
14247 elsif Task_Present
(Iface_Def
) then
14249 ("descendant of& must be declared as a task interface",
14258 if Is_Tagged_Type
(Parent_Type
)
14259 and then Is_Concurrent_Type
(Parent_Type
)
14260 and then not Is_Interface
(Parent_Type
)
14263 ("parent type of a record extension cannot be "
14264 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
14265 Set_Etype
(T
, Any_Type
);
14269 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14272 if Is_Tagged_Type
(Parent_Type
)
14273 and then Is_Non_Empty_List
(Interface_List
(Def
))
14280 Intf
:= First
(Interface_List
(Def
));
14281 while Present
(Intf
) loop
14282 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
14284 if not Is_Interface
(T
) then
14285 Diagnose_Interface
(Intf
, T
);
14287 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14288 -- a limited type from having a nonlimited progenitor.
14290 elsif (Limited_Present
(Def
)
14291 or else (not Is_Interface
(Parent_Type
)
14292 and then Is_Limited_Type
(Parent_Type
)))
14293 and then not Is_Limited_Interface
(T
)
14296 ("progenitor interface& of limited type must be limited",
14305 if Parent_Type
= Any_Type
14306 or else Etype
(Parent_Type
) = Any_Type
14307 or else (Is_Class_Wide_Type
(Parent_Type
)
14308 and then Etype
(Parent_Type
) = T
)
14310 -- If Parent_Type is undefined or illegal, make new type into a
14311 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14312 -- errors. If this is a self-definition, emit error now.
14315 or else T
= Etype
(Parent_Type
)
14317 Error_Msg_N
("type cannot be used in its own definition", Indic
);
14320 Set_Ekind
(T
, Ekind
(Parent_Type
));
14321 Set_Etype
(T
, Any_Type
);
14322 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
14324 if Is_Tagged_Type
(T
)
14325 and then Is_Record_Type
(T
)
14327 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
14333 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14334 -- an interface is special because the list of interfaces in the full
14335 -- view can be given in any order. For example:
14337 -- type A is interface;
14338 -- type B is interface and A;
14339 -- type D is new B with private;
14341 -- type D is new A and B with null record; -- 1 --
14343 -- In this case we perform the following transformation of -1-:
14345 -- type D is new B and A with null record;
14347 -- If the parent of the full-view covers the parent of the partial-view
14348 -- we have two possible cases:
14350 -- 1) They have the same parent
14351 -- 2) The parent of the full-view implements some further interfaces
14353 -- In both cases we do not need to perform the transformation. In the
14354 -- first case the source program is correct and the transformation is
14355 -- not needed; in the second case the source program does not fulfill
14356 -- the no-hidden interfaces rule (AI-396) and the error will be reported
14359 -- This transformation not only simplifies the rest of the analysis of
14360 -- this type declaration but also simplifies the correct generation of
14361 -- the object layout to the expander.
14363 if In_Private_Part
(Current_Scope
)
14364 and then Is_Interface
(Parent_Type
)
14368 Partial_View
: Entity_Id
;
14369 Partial_View_Parent
: Entity_Id
;
14370 New_Iface
: Node_Id
;
14373 -- Look for the associated private type declaration
14375 Partial_View
:= First_Entity
(Current_Scope
);
14377 exit when No
(Partial_View
)
14378 or else (Has_Private_Declaration
(Partial_View
)
14379 and then Full_View
(Partial_View
) = T
);
14381 Next_Entity
(Partial_View
);
14384 -- If the partial view was not found then the source code has
14385 -- errors and the transformation is not needed.
14387 if Present
(Partial_View
) then
14388 Partial_View_Parent
:= Etype
(Partial_View
);
14390 -- If the parent of the full-view covers the parent of the
14391 -- partial-view we have nothing else to do.
14393 if Interface_Present_In_Ancestor
14394 (Parent_Type
, Partial_View_Parent
)
14398 -- Traverse the list of interfaces of the full-view to look
14399 -- for the parent of the partial-view and perform the tree
14403 Iface
:= First
(Interface_List
(Def
));
14404 while Present
(Iface
) loop
14405 if Etype
(Iface
) = Etype
(Partial_View
) then
14406 Rewrite
(Subtype_Indication
(Def
),
14407 New_Copy
(Subtype_Indication
14408 (Parent
(Partial_View
))));
14411 Make_Identifier
(Sloc
(N
), Chars
(Parent_Type
));
14412 Append
(New_Iface
, Interface_List
(Def
));
14414 -- Analyze the transformed code
14416 Derived_Type_Declaration
(T
, N
, Is_Completion
);
14427 -- Only composite types other than array types are allowed to have
14428 -- discriminants. In SPARK, no types are allowed to have discriminants.
14430 if Present
(Discriminant_Specifications
(N
)) then
14431 if (Is_Elementary_Type
(Parent_Type
)
14432 or else Is_Array_Type
(Parent_Type
))
14433 and then not Error_Posted
(N
)
14436 ("elementary or array type cannot have discriminants",
14437 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
14438 Set_Has_Discriminants
(T
, False);
14440 Check_SPARK_Restriction
("discriminant type is not allowed", N
);
14444 -- In Ada 83, a derived type defined in a package specification cannot
14445 -- be used for further derivation until the end of its visible part.
14446 -- Note that derivation in the private part of the package is allowed.
14448 if Ada_Version
= Ada_83
14449 and then Is_Derived_Type
(Parent_Type
)
14450 and then In_Visible_Part
(Scope
(Parent_Type
))
14452 if Ada_Version
= Ada_83
and then Comes_From_Source
(Indic
) then
14454 ("(Ada 83): premature use of type for derivation", Indic
);
14458 -- Check for early use of incomplete or private type
14460 if Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
14461 Error_Msg_N
("premature derivation of incomplete type", Indic
);
14464 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
14465 and then not Comes_From_Generic
(Parent_Type
))
14466 or else Has_Private_Component
(Parent_Type
)
14468 -- The ancestor type of a formal type can be incomplete, in which
14469 -- case only the operations of the partial view are available in the
14470 -- generic. Subsequent checks may be required when the full view is
14471 -- analyzed to verify that a derivation from a tagged type has an
14474 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
14477 elsif No
(Underlying_Type
(Parent_Type
))
14478 or else Has_Private_Component
(Parent_Type
)
14481 ("premature derivation of derived or private type", Indic
);
14483 -- Flag the type itself as being in error, this prevents some
14484 -- nasty problems with subsequent uses of the malformed type.
14486 Set_Error_Posted
(T
);
14488 -- Check that within the immediate scope of an untagged partial
14489 -- view it's illegal to derive from the partial view if the
14490 -- full view is tagged. (7.3(7))
14492 -- We verify that the Parent_Type is a partial view by checking
14493 -- that it is not a Full_Type_Declaration (i.e. a private type or
14494 -- private extension declaration), to distinguish a partial view
14495 -- from a derivation from a private type which also appears as
14496 -- E_Private_Type. If the parent base type is not declared in an
14497 -- enclosing scope there is no need to check.
14499 elsif Present
(Full_View
(Parent_Type
))
14500 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
14501 and then not Is_Tagged_Type
(Parent_Type
)
14502 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
14503 and then In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
14506 ("premature derivation from type with tagged full view",
14511 -- Check that form of derivation is appropriate
14513 Taggd
:= Is_Tagged_Type
(Parent_Type
);
14515 -- Perhaps the parent type should be changed to the class-wide type's
14516 -- specific type in this case to prevent cascading errors ???
14518 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
14519 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
14523 if Present
(Extension
) and then not Taggd
then
14525 ("type derived from untagged type cannot have extension", Indic
);
14527 elsif No
(Extension
) and then Taggd
then
14529 -- If this declaration is within a private part (or body) of a
14530 -- generic instantiation then the derivation is allowed (the parent
14531 -- type can only appear tagged in this case if it's a generic actual
14532 -- type, since it would otherwise have been rejected in the analysis
14533 -- of the generic template).
14535 if not Is_Generic_Actual_Type
(Parent_Type
)
14536 or else In_Visible_Part
(Scope
(Parent_Type
))
14538 if Is_Class_Wide_Type
(Parent_Type
) then
14540 ("parent type must not be a class-wide type", Indic
);
14542 -- Use specific type to prevent cascaded errors.
14544 Parent_Type
:= Etype
(Parent_Type
);
14548 ("type derived from tagged type must have extension", Indic
);
14553 -- AI-443: Synchronized formal derived types require a private
14554 -- extension. There is no point in checking the ancestor type or
14555 -- the progenitors since the construct is wrong to begin with.
14557 if Ada_Version
>= Ada_2005
14558 and then Is_Generic_Type
(T
)
14559 and then Present
(Original_Node
(N
))
14562 Decl
: constant Node_Id
:= Original_Node
(N
);
14565 if Nkind
(Decl
) = N_Formal_Type_Declaration
14566 and then Nkind
(Formal_Type_Definition
(Decl
)) =
14567 N_Formal_Derived_Type_Definition
14568 and then Synchronized_Present
(Formal_Type_Definition
(Decl
))
14569 and then No
(Extension
)
14571 -- Avoid emitting a duplicate error message
14573 and then not Error_Posted
(Indic
)
14576 ("synchronized derived type must have extension", N
);
14581 if Null_Exclusion_Present
(Def
)
14582 and then not Is_Access_Type
(Parent_Type
)
14584 Error_Msg_N
("null exclusion can only apply to an access type", N
);
14587 -- Avoid deriving parent primitives of underlying record views
14589 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
,
14590 Derive_Subps
=> not Is_Underlying_Record_View
(T
));
14592 -- AI-419: The parent type of an explicitly limited derived type must
14593 -- be a limited type or a limited interface.
14595 if Limited_Present
(Def
) then
14596 Set_Is_Limited_Record
(T
);
14598 if Is_Interface
(T
) then
14599 Set_Is_Limited_Interface
(T
);
14602 if not Is_Limited_Type
(Parent_Type
)
14604 (not Is_Interface
(Parent_Type
)
14605 or else not Is_Limited_Interface
(Parent_Type
))
14607 -- AI05-0096: a derivation in the private part of an instance is
14608 -- legal if the generic formal is untagged limited, and the actual
14611 if Is_Generic_Actual_Type
(Parent_Type
)
14612 and then In_Private_Part
(Current_Scope
)
14615 (Generic_Parent_Type
(Parent
(Parent_Type
)))
14621 ("parent type& of limited type must be limited",
14627 -- In SPARK, there are no derived type definitions other than type
14628 -- extensions of tagged record types.
14630 if No
(Extension
) then
14631 Check_SPARK_Restriction
("derived type is not allowed", N
);
14633 end Derived_Type_Declaration
;
14635 ------------------------
14636 -- Diagnose_Interface --
14637 ------------------------
14639 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
) is
14641 if not Is_Interface
(E
)
14642 and then E
/= Any_Type
14644 Error_Msg_NE
("(Ada 2005) & must be an interface", N
, E
);
14646 end Diagnose_Interface
;
14648 ----------------------------------
14649 -- Enumeration_Type_Declaration --
14650 ----------------------------------
14652 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
14659 -- Create identifier node representing lower bound
14661 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
14662 L
:= First
(Literals
(Def
));
14663 Set_Chars
(B_Node
, Chars
(L
));
14664 Set_Entity
(B_Node
, L
);
14665 Set_Etype
(B_Node
, T
);
14666 Set_Is_Static_Expression
(B_Node
, True);
14668 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
14669 Set_Low_Bound
(R_Node
, B_Node
);
14671 Set_Ekind
(T
, E_Enumeration_Type
);
14672 Set_First_Literal
(T
, L
);
14674 Set_Is_Constrained
(T
);
14678 -- Loop through literals of enumeration type setting pos and rep values
14679 -- except that if the Ekind is already set, then it means the literal
14680 -- was already constructed (case of a derived type declaration and we
14681 -- should not disturb the Pos and Rep values.
14683 while Present
(L
) loop
14684 if Ekind
(L
) /= E_Enumeration_Literal
then
14685 Set_Ekind
(L
, E_Enumeration_Literal
);
14686 Set_Enumeration_Pos
(L
, Ev
);
14687 Set_Enumeration_Rep
(L
, Ev
);
14688 Set_Is_Known_Valid
(L
, True);
14692 New_Overloaded_Entity
(L
);
14693 Generate_Definition
(L
);
14694 Set_Convention
(L
, Convention_Intrinsic
);
14696 -- Case of character literal
14698 if Nkind
(L
) = N_Defining_Character_Literal
then
14699 Set_Is_Character_Type
(T
, True);
14701 -- Check violation of No_Wide_Characters
14703 if Restriction_Check_Required
(No_Wide_Characters
) then
14704 Get_Name_String
(Chars
(L
));
14706 if Name_Len
>= 3 and then Name_Buffer
(1 .. 2) = "QW" then
14707 Check_Restriction
(No_Wide_Characters
, L
);
14716 -- Now create a node representing upper bound
14718 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
14719 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
14720 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
14721 Set_Etype
(B_Node
, T
);
14722 Set_Is_Static_Expression
(B_Node
, True);
14724 Set_High_Bound
(R_Node
, B_Node
);
14726 -- Initialize various fields of the type. Some of this information
14727 -- may be overwritten later through rep.clauses.
14729 Set_Scalar_Range
(T
, R_Node
);
14730 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
14731 Set_Enum_Esize
(T
);
14732 Set_Enum_Pos_To_Rep
(T
, Empty
);
14734 -- Set Discard_Names if configuration pragma set, or if there is
14735 -- a parameterless pragma in the current declarative region
14737 if Global_Discard_Names
14738 or else Discard_Names
(Scope
(T
))
14740 Set_Discard_Names
(T
);
14743 -- Process end label if there is one
14745 if Present
(Def
) then
14746 Process_End_Label
(Def
, 'e', T
);
14748 end Enumeration_Type_Declaration
;
14750 ---------------------------------
14751 -- Expand_To_Stored_Constraint --
14752 ---------------------------------
14754 function Expand_To_Stored_Constraint
14756 Constraint
: Elist_Id
) return Elist_Id
14758 Explicitly_Discriminated_Type
: Entity_Id
;
14759 Expansion
: Elist_Id
;
14760 Discriminant
: Entity_Id
;
14762 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
14763 -- Find the nearest type that actually specifies discriminants
14765 ---------------------------------
14766 -- Type_With_Explicit_Discrims --
14767 ---------------------------------
14769 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
14770 Typ
: constant E
:= Base_Type
(Id
);
14773 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
14774 if Present
(Full_View
(Typ
)) then
14775 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
14779 if Has_Discriminants
(Typ
) then
14784 if Etype
(Typ
) = Typ
then
14786 elsif Has_Discriminants
(Typ
) then
14789 return Type_With_Explicit_Discrims
(Etype
(Typ
));
14792 end Type_With_Explicit_Discrims
;
14794 -- Start of processing for Expand_To_Stored_Constraint
14798 or else Is_Empty_Elmt_List
(Constraint
)
14803 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
14805 if No
(Explicitly_Discriminated_Type
) then
14809 Expansion
:= New_Elmt_List
;
14812 First_Stored_Discriminant
(Explicitly_Discriminated_Type
);
14813 while Present
(Discriminant
) loop
14815 Get_Discriminant_Value
(
14816 Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
14818 Next_Stored_Discriminant
(Discriminant
);
14822 end Expand_To_Stored_Constraint
;
14824 ---------------------------
14825 -- Find_Hidden_Interface --
14826 ---------------------------
14828 function Find_Hidden_Interface
14830 Dest
: Elist_Id
) return Entity_Id
14833 Iface_Elmt
: Elmt_Id
;
14836 if Present
(Src
) and then Present
(Dest
) then
14837 Iface_Elmt
:= First_Elmt
(Src
);
14838 while Present
(Iface_Elmt
) loop
14839 Iface
:= Node
(Iface_Elmt
);
14841 if Is_Interface
(Iface
)
14842 and then not Contain_Interface
(Iface
, Dest
)
14847 Next_Elmt
(Iface_Elmt
);
14852 end Find_Hidden_Interface
;
14854 --------------------
14855 -- Find_Type_Name --
14856 --------------------
14858 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
14859 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
14861 New_Id
: Entity_Id
;
14862 Prev_Par
: Node_Id
;
14864 procedure Tag_Mismatch
;
14865 -- Diagnose a tagged partial view whose full view is untagged.
14866 -- We post the message on the full view, with a reference to
14867 -- the previous partial view. The partial view can be private
14868 -- or incomplete, and these are handled in a different manner,
14869 -- so we determine the position of the error message from the
14870 -- respective slocs of both.
14876 procedure Tag_Mismatch
is
14878 if Sloc
(Prev
) < Sloc
(Id
) then
14879 if Ada_Version
>= Ada_2012
14880 and then Nkind
(N
) = N_Private_Type_Declaration
14883 ("declaration of private } must be a tagged type ", Id
, Prev
);
14886 ("full declaration of } must be a tagged type ", Id
, Prev
);
14889 if Ada_Version
>= Ada_2012
14890 and then Nkind
(N
) = N_Private_Type_Declaration
14893 ("declaration of private } must be a tagged type ", Prev
, Id
);
14896 ("full declaration of } must be a tagged type ", Prev
, Id
);
14901 -- Start of processing for Find_Type_Name
14904 -- Find incomplete declaration, if one was given
14906 Prev
:= Current_Entity_In_Scope
(Id
);
14908 -- New type declaration
14914 -- Previous declaration exists
14917 Prev_Par
:= Parent
(Prev
);
14919 -- Error if not incomplete/private case except if previous
14920 -- declaration is implicit, etc. Enter_Name will emit error if
14923 if not Is_Incomplete_Or_Private_Type
(Prev
) then
14927 -- Check invalid completion of private or incomplete type
14929 elsif not Nkind_In
(N
, N_Full_Type_Declaration
,
14930 N_Task_Type_Declaration
,
14931 N_Protected_Type_Declaration
)
14933 (Ada_Version
< Ada_2012
14934 or else not Is_Incomplete_Type
(Prev
)
14935 or else not Nkind_In
(N
, N_Private_Type_Declaration
,
14936 N_Private_Extension_Declaration
))
14938 -- Completion must be a full type declarations (RM 7.3(4))
14940 Error_Msg_Sloc
:= Sloc
(Prev
);
14941 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
14943 -- Set scope of Id to avoid cascaded errors. Entity is never
14944 -- examined again, except when saving globals in generics.
14946 Set_Scope
(Id
, Current_Scope
);
14949 -- If this is a repeated incomplete declaration, no further
14950 -- checks are possible.
14952 if Nkind
(N
) = N_Incomplete_Type_Declaration
then
14956 -- Case of full declaration of incomplete type
14958 elsif Ekind
(Prev
) = E_Incomplete_Type
14959 and then (Ada_Version
< Ada_2012
14960 or else No
(Full_View
(Prev
))
14961 or else not Is_Private_Type
(Full_View
(Prev
)))
14964 -- Indicate that the incomplete declaration has a matching full
14965 -- declaration. The defining occurrence of the incomplete
14966 -- declaration remains the visible one, and the procedure
14967 -- Get_Full_View dereferences it whenever the type is used.
14969 if Present
(Full_View
(Prev
)) then
14970 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
14973 Set_Full_View
(Prev
, Id
);
14974 Append_Entity
(Id
, Current_Scope
);
14975 Set_Is_Public
(Id
, Is_Public
(Prev
));
14976 Set_Is_Internal
(Id
);
14979 -- If the incomplete view is tagged, a class_wide type has been
14980 -- created already. Use it for the private type as well, in order
14981 -- to prevent multiple incompatible class-wide types that may be
14982 -- created for self-referential anonymous access components.
14984 if Is_Tagged_Type
(Prev
)
14985 and then Present
(Class_Wide_Type
(Prev
))
14987 Set_Ekind
(Id
, Ekind
(Prev
)); -- will be reset later
14988 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(Prev
));
14990 -- If the incomplete type is completed by a private declaration
14991 -- the class-wide type remains associated with the incomplete
14992 -- type, to prevent order-of-elaboration issues in gigi, else
14993 -- we associate the class-wide type with the known full view.
14995 if Nkind
(N
) /= N_Private_Type_Declaration
then
14996 Set_Etype
(Class_Wide_Type
(Id
), Id
);
15000 -- Case of full declaration of private type
15003 -- If the private type was a completion of an incomplete type then
15004 -- update Prev to reference the private type
15006 if Ada_Version
>= Ada_2012
15007 and then Ekind
(Prev
) = E_Incomplete_Type
15008 and then Present
(Full_View
(Prev
))
15009 and then Is_Private_Type
(Full_View
(Prev
))
15011 Prev
:= Full_View
(Prev
);
15012 Prev_Par
:= Parent
(Prev
);
15015 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
15016 if Etype
(Prev
) /= Prev
then
15018 -- Prev is a private subtype or a derived type, and needs
15021 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
15024 elsif Ekind
(Prev
) = E_Private_Type
15025 and then Nkind_In
(N
, N_Task_Type_Declaration
,
15026 N_Protected_Type_Declaration
)
15029 ("completion of nonlimited type cannot be limited", N
);
15031 elsif Ekind
(Prev
) = E_Record_Type_With_Private
15032 and then Nkind_In
(N
, N_Task_Type_Declaration
,
15033 N_Protected_Type_Declaration
)
15035 if not Is_Limited_Record
(Prev
) then
15037 ("completion of nonlimited type cannot be limited", N
);
15039 elsif No
(Interface_List
(N
)) then
15041 ("completion of tagged private type must be tagged",
15045 elsif Nkind
(N
) = N_Full_Type_Declaration
15047 Nkind
(Type_Definition
(N
)) = N_Record_Definition
15048 and then Interface_Present
(Type_Definition
(N
))
15051 ("completion of private type cannot be an interface", N
);
15054 -- Ada 2005 (AI-251): Private extension declaration of a task
15055 -- type or a protected type. This case arises when covering
15056 -- interface types.
15058 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
15059 N_Protected_Type_Declaration
)
15063 elsif Nkind
(N
) /= N_Full_Type_Declaration
15064 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
15067 ("full view of private extension must be an extension", N
);
15069 elsif not (Abstract_Present
(Parent
(Prev
)))
15070 and then Abstract_Present
(Type_Definition
(N
))
15073 ("full view of non-abstract extension cannot be abstract", N
);
15076 if not In_Private_Part
(Current_Scope
) then
15078 ("declaration of full view must appear in private part", N
);
15081 Copy_And_Swap
(Prev
, Id
);
15082 Set_Has_Private_Declaration
(Prev
);
15083 Set_Has_Private_Declaration
(Id
);
15085 -- Preserve aspect and iterator flags that may have been set on
15086 -- the partial view.
15088 Set_Has_Delayed_Aspects
(Prev
, Has_Delayed_Aspects
(Id
));
15089 Set_Has_Implicit_Dereference
(Prev
, Has_Implicit_Dereference
(Id
));
15091 -- If no error, propagate freeze_node from private to full view.
15092 -- It may have been generated for an early operational item.
15094 if Present
(Freeze_Node
(Id
))
15095 and then Serious_Errors_Detected
= 0
15096 and then No
(Full_View
(Id
))
15098 Set_Freeze_Node
(Prev
, Freeze_Node
(Id
));
15099 Set_Freeze_Node
(Id
, Empty
);
15100 Set_First_Rep_Item
(Prev
, First_Rep_Item
(Id
));
15103 Set_Full_View
(Id
, Prev
);
15107 -- Verify that full declaration conforms to partial one
15109 if Is_Incomplete_Or_Private_Type
(Prev
)
15110 and then Present
(Discriminant_Specifications
(Prev_Par
))
15112 if Present
(Discriminant_Specifications
(N
)) then
15113 if Ekind
(Prev
) = E_Incomplete_Type
then
15114 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
15116 Check_Discriminant_Conformance
(N
, Prev
, Id
);
15121 ("missing discriminants in full type declaration", N
);
15123 -- To avoid cascaded errors on subsequent use, share the
15124 -- discriminants of the partial view.
15126 Set_Discriminant_Specifications
(N
,
15127 Discriminant_Specifications
(Prev_Par
));
15131 -- A prior untagged partial view can have an associated class-wide
15132 -- type due to use of the class attribute, and in this case the full
15133 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15134 -- of incomplete tagged declarations, but we check for it.
15137 and then (Is_Tagged_Type
(Prev
)
15138 or else Present
(Class_Wide_Type
(Prev
)))
15140 -- Ada 2012 (AI05-0162): A private type may be the completion of
15141 -- an incomplete type
15143 if Ada_Version
>= Ada_2012
15144 and then Is_Incomplete_Type
(Prev
)
15145 and then Nkind_In
(N
, N_Private_Type_Declaration
,
15146 N_Private_Extension_Declaration
)
15148 -- No need to check private extensions since they are tagged
15150 if Nkind
(N
) = N_Private_Type_Declaration
15151 and then not Tagged_Present
(N
)
15156 -- The full declaration is either a tagged type (including
15157 -- a synchronized type that implements interfaces) or a
15158 -- type extension, otherwise this is an error.
15160 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
15161 N_Protected_Type_Declaration
)
15163 if No
(Interface_List
(N
))
15164 and then not Error_Posted
(N
)
15169 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
15171 -- Indicate that the previous declaration (tagged incomplete
15172 -- or private declaration) requires the same on the full one.
15174 if not Tagged_Present
(Type_Definition
(N
)) then
15176 Set_Is_Tagged_Type
(Id
);
15179 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
15180 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
15182 ("full declaration of } must be a record extension",
15185 -- Set some attributes to produce a usable full view
15187 Set_Is_Tagged_Type
(Id
);
15196 and then Nkind
(Parent
(Prev
)) = N_Incomplete_Type_Declaration
15197 and then Present
(Premature_Use
(Parent
(Prev
)))
15199 Error_Msg_Sloc
:= Sloc
(N
);
15201 ("\full declaration #", Premature_Use
(Parent
(Prev
)));
15206 end Find_Type_Name
;
15208 -------------------------
15209 -- Find_Type_Of_Object --
15210 -------------------------
15212 function Find_Type_Of_Object
15213 (Obj_Def
: Node_Id
;
15214 Related_Nod
: Node_Id
) return Entity_Id
15216 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
15217 P
: Node_Id
:= Parent
(Obj_Def
);
15222 -- If the parent is a component_definition node we climb to the
15223 -- component_declaration node
15225 if Nkind
(P
) = N_Component_Definition
then
15229 -- Case of an anonymous array subtype
15231 if Nkind_In
(Def_Kind
, N_Constrained_Array_Definition
,
15232 N_Unconstrained_Array_Definition
)
15235 Array_Type_Declaration
(T
, Obj_Def
);
15237 -- Create an explicit subtype whenever possible
15239 elsif Nkind
(P
) /= N_Component_Declaration
15240 and then Def_Kind
= N_Subtype_Indication
15242 -- Base name of subtype on object name, which will be unique in
15243 -- the current scope.
15245 -- If this is a duplicate declaration, return base type, to avoid
15246 -- generating duplicate anonymous types.
15248 if Error_Posted
(P
) then
15249 Analyze
(Subtype_Mark
(Obj_Def
));
15250 return Entity
(Subtype_Mark
(Obj_Def
));
15255 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
15257 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
15259 Insert_Action
(Obj_Def
,
15260 Make_Subtype_Declaration
(Sloc
(P
),
15261 Defining_Identifier
=> T
,
15262 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
15264 -- This subtype may need freezing, and this will not be done
15265 -- automatically if the object declaration is not in declarative
15266 -- part. Since this is an object declaration, the type cannot always
15267 -- be frozen here. Deferred constants do not freeze their type
15268 -- (which often enough will be private).
15270 if Nkind
(P
) = N_Object_Declaration
15271 and then Constant_Present
(P
)
15272 and then No
(Expression
(P
))
15276 Insert_Actions
(Obj_Def
, Freeze_Entity
(T
, P
));
15279 -- Ada 2005 AI-406: the object definition in an object declaration
15280 -- can be an access definition.
15282 elsif Def_Kind
= N_Access_Definition
then
15283 T
:= Access_Definition
(Related_Nod
, Obj_Def
);
15285 Set_Is_Local_Anonymous_Access
15287 V
=> (Ada_Version
< Ada_2012
)
15288 or else (Nkind
(P
) /= N_Object_Declaration
)
15289 or else Is_Library_Level_Entity
(Defining_Identifier
(P
)));
15291 -- Otherwise, the object definition is just a subtype_mark
15294 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
15296 -- If expansion is disabled an object definition that is an aggregate
15297 -- will not get expanded and may lead to scoping problems in the back
15298 -- end, if the object is referenced in an inner scope. In that case
15299 -- create an itype reference for the object definition now. This
15300 -- may be redundant in some cases, but harmless.
15303 and then Nkind
(Related_Nod
) = N_Object_Declaration
15306 Build_Itype_Reference
(T
, Related_Nod
);
15311 end Find_Type_Of_Object
;
15313 --------------------------------
15314 -- Find_Type_Of_Subtype_Indic --
15315 --------------------------------
15317 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
15321 -- Case of subtype mark with a constraint
15323 if Nkind
(S
) = N_Subtype_Indication
then
15324 Find_Type
(Subtype_Mark
(S
));
15325 Typ
:= Entity
(Subtype_Mark
(S
));
15328 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
15331 ("incorrect constraint for this kind of type", Constraint
(S
));
15332 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
15335 -- Otherwise we have a subtype mark without a constraint
15337 elsif Error_Posted
(S
) then
15338 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
15346 -- Check No_Wide_Characters restriction
15348 Check_Wide_Character_Restriction
(Typ
, S
);
15351 end Find_Type_Of_Subtype_Indic
;
15353 -------------------------------------
15354 -- Floating_Point_Type_Declaration --
15355 -------------------------------------
15357 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
15358 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
15359 Max_Digs_Val
: constant Uint
:= Digits_Value
(Standard_Long_Long_Float
);
15361 Base_Typ
: Entity_Id
;
15362 Implicit_Base
: Entity_Id
;
15365 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
15366 -- Find if given digits value, and possibly a specified range, allows
15367 -- derivation from specified type
15369 function Find_Base_Type
return Entity_Id
;
15370 -- Find a predefined base type that Def can derive from, or generate
15371 -- an error and substitute Long_Long_Float if none exists.
15373 ---------------------
15374 -- Can_Derive_From --
15375 ---------------------
15377 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
15378 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
15381 -- Check specified "digits" constraint
15383 if Digs_Val
> Digits_Value
(E
) then
15387 -- Avoid types not matching pragma Float_Representation, if present
15389 if (Opt
.Float_Format
= 'I' and then Float_Rep
(E
) /= IEEE_Binary
)
15391 (Opt
.Float_Format
= 'V' and then Float_Rep
(E
) /= VAX_Native
)
15396 -- Check for matching range, if specified
15398 if Present
(Spec
) then
15399 if Expr_Value_R
(Type_Low_Bound
(E
)) >
15400 Expr_Value_R
(Low_Bound
(Spec
))
15405 if Expr_Value_R
(Type_High_Bound
(E
)) <
15406 Expr_Value_R
(High_Bound
(Spec
))
15413 end Can_Derive_From
;
15415 --------------------
15416 -- Find_Base_Type --
15417 --------------------
15419 function Find_Base_Type
return Entity_Id
is
15420 Choice
: Elmt_Id
:= First_Elmt
(Predefined_Float_Types
);
15423 -- Iterate over the predefined types in order, returning the first
15424 -- one that Def can derive from.
15426 while Present
(Choice
) loop
15427 if Can_Derive_From
(Node
(Choice
)) then
15428 return Node
(Choice
);
15431 Next_Elmt
(Choice
);
15434 -- If we can't derive from any existing type, use Long_Long_Float
15435 -- and give appropriate message explaining the problem.
15437 if Digs_Val
> Max_Digs_Val
then
15438 -- It might be the case that there is a type with the requested
15439 -- range, just not the combination of digits and range.
15442 ("no predefined type has requested range and precision",
15443 Real_Range_Specification
(Def
));
15447 ("range too large for any predefined type",
15448 Real_Range_Specification
(Def
));
15451 return Standard_Long_Long_Float
;
15452 end Find_Base_Type
;
15454 -- Start of processing for Floating_Point_Type_Declaration
15457 Check_Restriction
(No_Floating_Point
, Def
);
15459 -- Create an implicit base type
15462 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
15464 -- Analyze and verify digits value
15466 Analyze_And_Resolve
(Digs
, Any_Integer
);
15467 Check_Digits_Expression
(Digs
);
15468 Digs_Val
:= Expr_Value
(Digs
);
15470 -- Process possible range spec and find correct type to derive from
15472 Process_Real_Range_Specification
(Def
);
15474 -- Check that requested number of digits is not too high.
15476 if Digs_Val
> Max_Digs_Val
then
15477 -- The check for Max_Base_Digits may be somewhat expensive, as it
15478 -- requires reading System, so only do it when necessary.
15481 Max_Base_Digits
: constant Uint
:=
15484 (Parent
(RTE
(RE_Max_Base_Digits
))));
15487 if Digs_Val
> Max_Base_Digits
then
15488 Error_Msg_Uint_1
:= Max_Base_Digits
;
15489 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
15491 elsif No
(Real_Range_Specification
(Def
)) then
15492 Error_Msg_Uint_1
:= Max_Digs_Val
;
15493 Error_Msg_N
("types with more than ^ digits need range spec "
15494 & "(RM 3.5.7(6))", Digs
);
15499 -- Find a suitable type to derive from or complain and use a substitute
15501 Base_Typ
:= Find_Base_Type
;
15503 -- If there are bounds given in the declaration use them as the bounds
15504 -- of the type, otherwise use the bounds of the predefined base type
15505 -- that was chosen based on the Digits value.
15507 if Present
(Real_Range_Specification
(Def
)) then
15508 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
15509 Set_Is_Constrained
(T
);
15511 -- The bounds of this range must be converted to machine numbers
15512 -- in accordance with RM 4.9(38).
15514 Bound
:= Type_Low_Bound
(T
);
15516 if Nkind
(Bound
) = N_Real_Literal
then
15518 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
15519 Set_Is_Machine_Number
(Bound
);
15522 Bound
:= Type_High_Bound
(T
);
15524 if Nkind
(Bound
) = N_Real_Literal
then
15526 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
15527 Set_Is_Machine_Number
(Bound
);
15531 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
15534 -- Complete definition of implicit base and declared first subtype
15536 Set_Etype
(Implicit_Base
, Base_Typ
);
15538 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
15539 Set_Size_Info
(Implicit_Base
, (Base_Typ
));
15540 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
15541 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
15542 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
15543 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Base_Typ
));
15545 Set_Ekind
(T
, E_Floating_Point_Subtype
);
15546 Set_Etype
(T
, Implicit_Base
);
15548 Set_Size_Info
(T
, (Implicit_Base
));
15549 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
15550 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
15551 Set_Digits_Value
(T
, Digs_Val
);
15552 end Floating_Point_Type_Declaration
;
15554 ----------------------------
15555 -- Get_Discriminant_Value --
15556 ----------------------------
15558 -- This is the situation:
15560 -- There is a non-derived type
15562 -- type T0 (Dx, Dy, Dz...)
15564 -- There are zero or more levels of derivation, with each derivation
15565 -- either purely inheriting the discriminants, or defining its own.
15567 -- type Ti is new Ti-1
15569 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
15571 -- subtype Ti is ...
15573 -- The subtype issue is avoided by the use of Original_Record_Component,
15574 -- and the fact that derived subtypes also derive the constraints.
15576 -- This chain leads back from
15578 -- Typ_For_Constraint
15580 -- Typ_For_Constraint has discriminants, and the value for each
15581 -- discriminant is given by its corresponding Elmt of Constraints.
15583 -- Discriminant is some discriminant in this hierarchy
15585 -- We need to return its value
15587 -- We do this by recursively searching each level, and looking for
15588 -- Discriminant. Once we get to the bottom, we start backing up
15589 -- returning the value for it which may in turn be a discriminant
15590 -- further up, so on the backup we continue the substitution.
15592 function Get_Discriminant_Value
15593 (Discriminant
: Entity_Id
;
15594 Typ_For_Constraint
: Entity_Id
;
15595 Constraint
: Elist_Id
) return Node_Id
15597 function Search_Derivation_Levels
15599 Discrim_Values
: Elist_Id
;
15600 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
;
15601 -- This is the routine that performs the recursive search of levels
15602 -- as described above.
15604 ------------------------------
15605 -- Search_Derivation_Levels --
15606 ------------------------------
15608 function Search_Derivation_Levels
15610 Discrim_Values
: Elist_Id
;
15611 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
15615 Result
: Node_Or_Entity_Id
;
15616 Result_Entity
: Node_Id
;
15619 -- If inappropriate type, return Error, this happens only in
15620 -- cascaded error situations, and we want to avoid a blow up.
15622 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
15626 -- Look deeper if possible. Use Stored_Constraints only for
15627 -- untagged types. For tagged types use the given constraint.
15628 -- This asymmetry needs explanation???
15630 if not Stored_Discrim_Values
15631 and then Present
(Stored_Constraint
(Ti
))
15632 and then not Is_Tagged_Type
(Ti
)
15635 Search_Derivation_Levels
(Ti
, Stored_Constraint
(Ti
), True);
15638 Td
: constant Entity_Id
:= Etype
(Ti
);
15642 Result
:= Discriminant
;
15645 if Present
(Stored_Constraint
(Ti
)) then
15647 Search_Derivation_Levels
15648 (Td
, Stored_Constraint
(Ti
), True);
15651 Search_Derivation_Levels
15652 (Td
, Discrim_Values
, Stored_Discrim_Values
);
15658 -- Extra underlying places to search, if not found above. For
15659 -- concurrent types, the relevant discriminant appears in the
15660 -- corresponding record. For a type derived from a private type
15661 -- without discriminant, the full view inherits the discriminants
15662 -- of the full view of the parent.
15664 if Result
= Discriminant
then
15665 if Is_Concurrent_Type
(Ti
)
15666 and then Present
(Corresponding_Record_Type
(Ti
))
15669 Search_Derivation_Levels
(
15670 Corresponding_Record_Type
(Ti
),
15672 Stored_Discrim_Values
);
15674 elsif Is_Private_Type
(Ti
)
15675 and then not Has_Discriminants
(Ti
)
15676 and then Present
(Full_View
(Ti
))
15677 and then Etype
(Full_View
(Ti
)) /= Ti
15680 Search_Derivation_Levels
(
15683 Stored_Discrim_Values
);
15687 -- If Result is not a (reference to a) discriminant, return it,
15688 -- otherwise set Result_Entity to the discriminant.
15690 if Nkind
(Result
) = N_Defining_Identifier
then
15691 pragma Assert
(Result
= Discriminant
);
15692 Result_Entity
:= Result
;
15695 if not Denotes_Discriminant
(Result
) then
15699 Result_Entity
:= Entity
(Result
);
15702 -- See if this level of derivation actually has discriminants
15703 -- because tagged derivations can add them, hence the lower
15704 -- levels need not have any.
15706 if not Has_Discriminants
(Ti
) then
15710 -- Scan Ti's discriminants for Result_Entity,
15711 -- and return its corresponding value, if any.
15713 Result_Entity
:= Original_Record_Component
(Result_Entity
);
15715 Assoc
:= First_Elmt
(Discrim_Values
);
15717 if Stored_Discrim_Values
then
15718 Disc
:= First_Stored_Discriminant
(Ti
);
15720 Disc
:= First_Discriminant
(Ti
);
15723 while Present
(Disc
) loop
15724 pragma Assert
(Present
(Assoc
));
15726 if Original_Record_Component
(Disc
) = Result_Entity
then
15727 return Node
(Assoc
);
15732 if Stored_Discrim_Values
then
15733 Next_Stored_Discriminant
(Disc
);
15735 Next_Discriminant
(Disc
);
15739 -- Could not find it
15742 end Search_Derivation_Levels
;
15746 Result
: Node_Or_Entity_Id
;
15748 -- Start of processing for Get_Discriminant_Value
15751 -- ??? This routine is a gigantic mess and will be deleted. For the
15752 -- time being just test for the trivial case before calling recurse.
15754 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
15760 D
:= First_Discriminant
(Typ_For_Constraint
);
15761 E
:= First_Elmt
(Constraint
);
15762 while Present
(D
) loop
15763 if Chars
(D
) = Chars
(Discriminant
) then
15767 Next_Discriminant
(D
);
15773 Result
:= Search_Derivation_Levels
15774 (Typ_For_Constraint
, Constraint
, False);
15776 -- ??? hack to disappear when this routine is gone
15778 if Nkind
(Result
) = N_Defining_Identifier
then
15784 D
:= First_Discriminant
(Typ_For_Constraint
);
15785 E
:= First_Elmt
(Constraint
);
15786 while Present
(D
) loop
15787 if Corresponding_Discriminant
(D
) = Discriminant
then
15791 Next_Discriminant
(D
);
15797 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
15799 end Get_Discriminant_Value
;
15801 --------------------------
15802 -- Has_Range_Constraint --
15803 --------------------------
15805 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
15806 C
: constant Node_Id
:= Constraint
(N
);
15809 if Nkind
(C
) = N_Range_Constraint
then
15812 elsif Nkind
(C
) = N_Digits_Constraint
then
15814 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
15816 Present
(Range_Constraint
(C
));
15818 elsif Nkind
(C
) = N_Delta_Constraint
then
15819 return Present
(Range_Constraint
(C
));
15824 end Has_Range_Constraint
;
15826 ------------------------
15827 -- Inherit_Components --
15828 ------------------------
15830 function Inherit_Components
15832 Parent_Base
: Entity_Id
;
15833 Derived_Base
: Entity_Id
;
15834 Is_Tagged
: Boolean;
15835 Inherit_Discr
: Boolean;
15836 Discs
: Elist_Id
) return Elist_Id
15838 Assoc_List
: constant Elist_Id
:= New_Elmt_List
;
15840 procedure Inherit_Component
15841 (Old_C
: Entity_Id
;
15842 Plain_Discrim
: Boolean := False;
15843 Stored_Discrim
: Boolean := False);
15844 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
15845 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
15846 -- True, Old_C is a stored discriminant. If they are both false then
15847 -- Old_C is a regular component.
15849 -----------------------
15850 -- Inherit_Component --
15851 -----------------------
15853 procedure Inherit_Component
15854 (Old_C
: Entity_Id
;
15855 Plain_Discrim
: Boolean := False;
15856 Stored_Discrim
: Boolean := False)
15858 procedure Set_Anonymous_Type
(Id
: Entity_Id
);
15859 -- Id denotes the entity of an access discriminant or anonymous
15860 -- access component. Set the type of Id to either the same type of
15861 -- Old_C or create a new one depending on whether the parent and
15862 -- the child types are in the same scope.
15864 ------------------------
15865 -- Set_Anonymous_Type --
15866 ------------------------
15868 procedure Set_Anonymous_Type
(Id
: Entity_Id
) is
15869 Old_Typ
: constant Entity_Id
:= Etype
(Old_C
);
15872 if Scope
(Parent_Base
) = Scope
(Derived_Base
) then
15873 Set_Etype
(Id
, Old_Typ
);
15875 -- The parent and the derived type are in two different scopes.
15876 -- Reuse the type of the original discriminant / component by
15877 -- copying it in order to preserve all attributes.
15881 Typ
: constant Entity_Id
:= New_Copy
(Old_Typ
);
15884 Set_Etype
(Id
, Typ
);
15886 -- Since we do not generate component declarations for
15887 -- inherited components, associate the itype with the
15890 Set_Associated_Node_For_Itype
(Typ
, Parent
(Derived_Base
));
15891 Set_Scope
(Typ
, Derived_Base
);
15894 end Set_Anonymous_Type
;
15896 -- Local variables and constants
15898 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
15900 Corr_Discrim
: Entity_Id
;
15901 Discrim
: Entity_Id
;
15903 -- Start of processing for Inherit_Component
15906 pragma Assert
(not Is_Tagged
or else not Stored_Discrim
);
15908 Set_Parent
(New_C
, Parent
(Old_C
));
15910 -- Regular discriminants and components must be inserted in the scope
15911 -- of the Derived_Base. Do it here.
15913 if not Stored_Discrim
then
15914 Enter_Name
(New_C
);
15917 -- For tagged types the Original_Record_Component must point to
15918 -- whatever this field was pointing to in the parent type. This has
15919 -- already been achieved by the call to New_Copy above.
15921 if not Is_Tagged
then
15922 Set_Original_Record_Component
(New_C
, New_C
);
15925 -- Set the proper type of an access discriminant
15927 if Ekind
(New_C
) = E_Discriminant
15928 and then Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
15930 Set_Anonymous_Type
(New_C
);
15933 -- If we have inherited a component then see if its Etype contains
15934 -- references to Parent_Base discriminants. In this case, replace
15935 -- these references with the constraints given in Discs. We do not
15936 -- do this for the partial view of private types because this is
15937 -- not needed (only the components of the full view will be used
15938 -- for code generation) and cause problem. We also avoid this
15939 -- transformation in some error situations.
15941 if Ekind
(New_C
) = E_Component
then
15943 -- Set the proper type of an anonymous access component
15945 if Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
then
15946 Set_Anonymous_Type
(New_C
);
15948 elsif (Is_Private_Type
(Derived_Base
)
15949 and then not Is_Generic_Type
(Derived_Base
))
15950 or else (Is_Empty_Elmt_List
(Discs
)
15951 and then not Expander_Active
)
15953 Set_Etype
(New_C
, Etype
(Old_C
));
15956 -- The current component introduces a circularity of the
15959 -- limited with Pack_2;
15960 -- package Pack_1 is
15961 -- type T_1 is tagged record
15962 -- Comp : access Pack_2.T_2;
15968 -- package Pack_2 is
15969 -- type T_2 is new Pack_1.T_1 with ...;
15974 Constrain_Component_Type
15975 (Old_C
, Derived_Base
, N
, Parent_Base
, Discs
));
15979 -- In derived tagged types it is illegal to reference a non
15980 -- discriminant component in the parent type. To catch this, mark
15981 -- these components with an Ekind of E_Void. This will be reset in
15982 -- Record_Type_Definition after processing the record extension of
15983 -- the derived type.
15985 -- If the declaration is a private extension, there is no further
15986 -- record extension to process, and the components retain their
15987 -- current kind, because they are visible at this point.
15989 if Is_Tagged
and then Ekind
(New_C
) = E_Component
15990 and then Nkind
(N
) /= N_Private_Extension_Declaration
15992 Set_Ekind
(New_C
, E_Void
);
15995 if Plain_Discrim
then
15996 Set_Corresponding_Discriminant
(New_C
, Old_C
);
15997 Build_Discriminal
(New_C
);
15999 -- If we are explicitly inheriting a stored discriminant it will be
16000 -- completely hidden.
16002 elsif Stored_Discrim
then
16003 Set_Corresponding_Discriminant
(New_C
, Empty
);
16004 Set_Discriminal
(New_C
, Empty
);
16005 Set_Is_Completely_Hidden
(New_C
);
16007 -- Set the Original_Record_Component of each discriminant in the
16008 -- derived base to point to the corresponding stored that we just
16011 Discrim
:= First_Discriminant
(Derived_Base
);
16012 while Present
(Discrim
) loop
16013 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
16015 -- Corr_Discrim could be missing in an error situation
16017 if Present
(Corr_Discrim
)
16018 and then Original_Record_Component
(Corr_Discrim
) = Old_C
16020 Set_Original_Record_Component
(Discrim
, New_C
);
16023 Next_Discriminant
(Discrim
);
16026 Append_Entity
(New_C
, Derived_Base
);
16029 if not Is_Tagged
then
16030 Append_Elmt
(Old_C
, Assoc_List
);
16031 Append_Elmt
(New_C
, Assoc_List
);
16033 end Inherit_Component
;
16035 -- Variables local to Inherit_Component
16037 Loc
: constant Source_Ptr
:= Sloc
(N
);
16039 Parent_Discrim
: Entity_Id
;
16040 Stored_Discrim
: Entity_Id
;
16042 Component
: Entity_Id
;
16044 -- Start of processing for Inherit_Components
16047 if not Is_Tagged
then
16048 Append_Elmt
(Parent_Base
, Assoc_List
);
16049 Append_Elmt
(Derived_Base
, Assoc_List
);
16052 -- Inherit parent discriminants if needed
16054 if Inherit_Discr
then
16055 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
16056 while Present
(Parent_Discrim
) loop
16057 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
16058 Next_Discriminant
(Parent_Discrim
);
16062 -- Create explicit stored discrims for untagged types when necessary
16064 if not Has_Unknown_Discriminants
(Derived_Base
)
16065 and then Has_Discriminants
(Parent_Base
)
16066 and then not Is_Tagged
16069 or else First_Discriminant
(Parent_Base
) /=
16070 First_Stored_Discriminant
(Parent_Base
))
16072 Stored_Discrim
:= First_Stored_Discriminant
(Parent_Base
);
16073 while Present
(Stored_Discrim
) loop
16074 Inherit_Component
(Stored_Discrim
, Stored_Discrim
=> True);
16075 Next_Stored_Discriminant
(Stored_Discrim
);
16079 -- See if we can apply the second transformation for derived types, as
16080 -- explained in point 6. in the comments above Build_Derived_Record_Type
16081 -- This is achieved by appending Derived_Base discriminants into Discs,
16082 -- which has the side effect of returning a non empty Discs list to the
16083 -- caller of Inherit_Components, which is what we want. This must be
16084 -- done for private derived types if there are explicit stored
16085 -- discriminants, to ensure that we can retrieve the values of the
16086 -- constraints provided in the ancestors.
16089 and then Is_Empty_Elmt_List
(Discs
)
16090 and then Present
(First_Discriminant
(Derived_Base
))
16092 (not Is_Private_Type
(Derived_Base
)
16093 or else Is_Completely_Hidden
16094 (First_Stored_Discriminant
(Derived_Base
))
16095 or else Is_Generic_Type
(Derived_Base
))
16097 D
:= First_Discriminant
(Derived_Base
);
16098 while Present
(D
) loop
16099 Append_Elmt
(New_Reference_To
(D
, Loc
), Discs
);
16100 Next_Discriminant
(D
);
16104 -- Finally, inherit non-discriminant components unless they are not
16105 -- visible because defined or inherited from the full view of the
16106 -- parent. Don't inherit the _parent field of the parent type.
16108 Component
:= First_Entity
(Parent_Base
);
16109 while Present
(Component
) loop
16111 -- Ada 2005 (AI-251): Do not inherit components associated with
16112 -- secondary tags of the parent.
16114 if Ekind
(Component
) = E_Component
16115 and then Present
(Related_Type
(Component
))
16119 elsif Ekind
(Component
) /= E_Component
16120 or else Chars
(Component
) = Name_uParent
16124 -- If the derived type is within the parent type's declarative
16125 -- region, then the components can still be inherited even though
16126 -- they aren't visible at this point. This can occur for cases
16127 -- such as within public child units where the components must
16128 -- become visible upon entering the child unit's private part.
16130 elsif not Is_Visible_Component
(Component
)
16131 and then not In_Open_Scopes
(Scope
(Parent_Base
))
16135 elsif Ekind_In
(Derived_Base
, E_Private_Type
,
16136 E_Limited_Private_Type
)
16141 Inherit_Component
(Component
);
16144 Next_Entity
(Component
);
16147 -- For tagged derived types, inherited discriminants cannot be used in
16148 -- component declarations of the record extension part. To achieve this
16149 -- we mark the inherited discriminants as not visible.
16151 if Is_Tagged
and then Inherit_Discr
then
16152 D
:= First_Discriminant
(Derived_Base
);
16153 while Present
(D
) loop
16154 Set_Is_Immediately_Visible
(D
, False);
16155 Next_Discriminant
(D
);
16160 end Inherit_Components
;
16162 -----------------------
16163 -- Is_Constant_Bound --
16164 -----------------------
16166 function Is_Constant_Bound
(Exp
: Node_Id
) return Boolean is
16168 if Compile_Time_Known_Value
(Exp
) then
16171 elsif Is_Entity_Name
(Exp
)
16172 and then Present
(Entity
(Exp
))
16174 return Is_Constant_Object
(Entity
(Exp
))
16175 or else Ekind
(Entity
(Exp
)) = E_Enumeration_Literal
;
16177 elsif Nkind
(Exp
) in N_Binary_Op
then
16178 return Is_Constant_Bound
(Left_Opnd
(Exp
))
16179 and then Is_Constant_Bound
(Right_Opnd
(Exp
))
16180 and then Scope
(Entity
(Exp
)) = Standard_Standard
;
16185 end Is_Constant_Bound
;
16187 -----------------------
16188 -- Is_Null_Extension --
16189 -----------------------
16191 function Is_Null_Extension
(T
: Entity_Id
) return Boolean is
16192 Type_Decl
: constant Node_Id
:= Parent
(Base_Type
(T
));
16193 Comp_List
: Node_Id
;
16197 if Nkind
(Type_Decl
) /= N_Full_Type_Declaration
16198 or else not Is_Tagged_Type
(T
)
16199 or else Nkind
(Type_Definition
(Type_Decl
)) /=
16200 N_Derived_Type_Definition
16201 or else No
(Record_Extension_Part
(Type_Definition
(Type_Decl
)))
16207 Component_List
(Record_Extension_Part
(Type_Definition
(Type_Decl
)));
16209 if Present
(Discriminant_Specifications
(Type_Decl
)) then
16212 elsif Present
(Comp_List
)
16213 and then Is_Non_Empty_List
(Component_Items
(Comp_List
))
16215 Comp
:= First
(Component_Items
(Comp_List
));
16217 -- Only user-defined components are relevant. The component list
16218 -- may also contain a parent component and internal components
16219 -- corresponding to secondary tags, but these do not determine
16220 -- whether this is a null extension.
16222 while Present
(Comp
) loop
16223 if Comes_From_Source
(Comp
) then
16234 end Is_Null_Extension
;
16236 ------------------------------
16237 -- Is_Valid_Constraint_Kind --
16238 ------------------------------
16240 function Is_Valid_Constraint_Kind
16241 (T_Kind
: Type_Kind
;
16242 Constraint_Kind
: Node_Kind
) return Boolean
16246 when Enumeration_Kind |
16248 return Constraint_Kind
= N_Range_Constraint
;
16250 when Decimal_Fixed_Point_Kind
=>
16251 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
16252 N_Range_Constraint
);
16254 when Ordinary_Fixed_Point_Kind
=>
16255 return Nkind_In
(Constraint_Kind
, N_Delta_Constraint
,
16256 N_Range_Constraint
);
16259 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
16260 N_Range_Constraint
);
16267 E_Incomplete_Type |
16270 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
16273 return True; -- Error will be detected later
16275 end Is_Valid_Constraint_Kind
;
16277 --------------------------
16278 -- Is_Visible_Component --
16279 --------------------------
16281 function Is_Visible_Component
(C
: Entity_Id
) return Boolean is
16282 Original_Comp
: Entity_Id
:= Empty
;
16283 Original_Scope
: Entity_Id
;
16284 Type_Scope
: Entity_Id
;
16286 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean;
16287 -- Check whether parent type of inherited component is declared locally,
16288 -- possibly within a nested package or instance. The current scope is
16289 -- the derived record itself.
16291 -------------------
16292 -- Is_Local_Type --
16293 -------------------
16295 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean is
16299 Scop
:= Scope
(Typ
);
16300 while Present
(Scop
)
16301 and then Scop
/= Standard_Standard
16303 if Scop
= Scope
(Current_Scope
) then
16307 Scop
:= Scope
(Scop
);
16313 -- Start of processing for Is_Visible_Component
16316 if Ekind_In
(C
, E_Component
, E_Discriminant
) then
16317 Original_Comp
:= Original_Record_Component
(C
);
16320 if No
(Original_Comp
) then
16322 -- Premature usage, or previous error
16327 Original_Scope
:= Scope
(Original_Comp
);
16328 Type_Scope
:= Scope
(Base_Type
(Scope
(C
)));
16331 -- This test only concerns tagged types
16333 if not Is_Tagged_Type
(Original_Scope
) then
16336 -- If it is _Parent or _Tag, there is no visibility issue
16338 elsif not Comes_From_Source
(Original_Comp
) then
16341 -- Discriminants are always visible
16343 elsif Ekind
(Original_Comp
) = E_Discriminant
16344 and then not Has_Unknown_Discriminants
(Original_Scope
)
16348 -- In the body of an instantiation, no need to check for the visibility
16351 elsif In_Instance_Body
then
16354 -- If the component has been declared in an ancestor which is currently
16355 -- a private type, then it is not visible. The same applies if the
16356 -- component's containing type is not in an open scope and the original
16357 -- component's enclosing type is a visible full view of a private type
16358 -- (which can occur in cases where an attempt is being made to reference
16359 -- a component in a sibling package that is inherited from a visible
16360 -- component of a type in an ancestor package; the component in the
16361 -- sibling package should not be visible even though the component it
16362 -- inherited from is visible). This does not apply however in the case
16363 -- where the scope of the type is a private child unit, or when the
16364 -- parent comes from a local package in which the ancestor is currently
16365 -- visible. The latter suppression of visibility is needed for cases
16366 -- that are tested in B730006.
16368 elsif Is_Private_Type
(Original_Scope
)
16370 (not Is_Private_Descendant
(Type_Scope
)
16371 and then not In_Open_Scopes
(Type_Scope
)
16372 and then Has_Private_Declaration
(Original_Scope
))
16374 -- If the type derives from an entity in a formal package, there
16375 -- are no additional visible components.
16377 if Nkind
(Original_Node
(Unit_Declaration_Node
(Type_Scope
))) =
16378 N_Formal_Package_Declaration
16382 -- if we are not in the private part of the current package, there
16383 -- are no additional visible components.
16385 elsif Ekind
(Scope
(Current_Scope
)) = E_Package
16386 and then not In_Private_Part
(Scope
(Current_Scope
))
16391 Is_Child_Unit
(Cunit_Entity
(Current_Sem_Unit
))
16392 and then In_Open_Scopes
(Scope
(Original_Scope
))
16393 and then Is_Local_Type
(Type_Scope
);
16396 -- There is another weird way in which a component may be invisible
16397 -- when the private and the full view are not derived from the same
16398 -- ancestor. Here is an example :
16400 -- type A1 is tagged record F1 : integer; end record;
16401 -- type A2 is new A1 with record F2 : integer; end record;
16402 -- type T is new A1 with private;
16404 -- type T is new A2 with null record;
16406 -- In this case, the full view of T inherits F1 and F2 but the private
16407 -- view inherits only F1
16411 Ancestor
: Entity_Id
:= Scope
(C
);
16415 if Ancestor
= Original_Scope
then
16417 elsif Ancestor
= Etype
(Ancestor
) then
16421 Ancestor
:= Etype
(Ancestor
);
16425 end Is_Visible_Component
;
16427 --------------------------
16428 -- Make_Class_Wide_Type --
16429 --------------------------
16431 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
16432 CW_Type
: Entity_Id
;
16434 Next_E
: Entity_Id
;
16437 if Present
(Class_Wide_Type
(T
)) then
16439 -- The class-wide type is a partially decorated entity created for a
16440 -- unanalyzed tagged type referenced through a limited with clause.
16441 -- When the tagged type is analyzed, its class-wide type needs to be
16442 -- redecorated. Note that we reuse the entity created by Decorate_
16443 -- Tagged_Type in order to preserve all links.
16445 if Materialize_Entity
(Class_Wide_Type
(T
)) then
16446 CW_Type
:= Class_Wide_Type
(T
);
16447 Set_Materialize_Entity
(CW_Type
, False);
16449 -- The class wide type can have been defined by the partial view, in
16450 -- which case everything is already done.
16456 -- Default case, we need to create a new class-wide type
16460 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
16463 -- Inherit root type characteristics
16465 CW_Name
:= Chars
(CW_Type
);
16466 Next_E
:= Next_Entity
(CW_Type
);
16467 Copy_Node
(T
, CW_Type
);
16468 Set_Comes_From_Source
(CW_Type
, False);
16469 Set_Chars
(CW_Type
, CW_Name
);
16470 Set_Parent
(CW_Type
, Parent
(T
));
16471 Set_Next_Entity
(CW_Type
, Next_E
);
16473 -- Ensure we have a new freeze node for the class-wide type. The partial
16474 -- view may have freeze action of its own, requiring a proper freeze
16475 -- node, and the same freeze node cannot be shared between the two
16478 Set_Has_Delayed_Freeze
(CW_Type
);
16479 Set_Freeze_Node
(CW_Type
, Empty
);
16481 -- Customize the class-wide type: It has no prim. op., it cannot be
16482 -- abstract and its Etype points back to the specific root type.
16484 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
16485 Set_Is_Tagged_Type
(CW_Type
, True);
16486 Set_Direct_Primitive_Operations
(CW_Type
, New_Elmt_List
);
16487 Set_Is_Abstract_Type
(CW_Type
, False);
16488 Set_Is_Constrained
(CW_Type
, False);
16489 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
16491 if Ekind
(T
) = E_Class_Wide_Subtype
then
16492 Set_Etype
(CW_Type
, Etype
(Base_Type
(T
)));
16494 Set_Etype
(CW_Type
, T
);
16497 -- If this is the class_wide type of a constrained subtype, it does
16498 -- not have discriminants.
16500 Set_Has_Discriminants
(CW_Type
,
16501 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
16503 Set_Has_Unknown_Discriminants
(CW_Type
, True);
16504 Set_Class_Wide_Type
(T
, CW_Type
);
16505 Set_Equivalent_Type
(CW_Type
, Empty
);
16507 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
16509 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
16510 end Make_Class_Wide_Type
;
16516 procedure Make_Index
16518 Related_Nod
: Node_Id
;
16519 Related_Id
: Entity_Id
:= Empty
;
16520 Suffix_Index
: Nat
:= 1;
16521 In_Iter_Schm
: Boolean := False)
16525 Def_Id
: Entity_Id
:= Empty
;
16526 Found
: Boolean := False;
16529 -- For a discrete range used in a constrained array definition and
16530 -- defined by a range, an implicit conversion to the predefined type
16531 -- INTEGER is assumed if each bound is either a numeric literal, a named
16532 -- number, or an attribute, and the type of both bounds (prior to the
16533 -- implicit conversion) is the type universal_integer. Otherwise, both
16534 -- bounds must be of the same discrete type, other than universal
16535 -- integer; this type must be determinable independently of the
16536 -- context, but using the fact that the type must be discrete and that
16537 -- both bounds must have the same type.
16539 -- Character literals also have a universal type in the absence of
16540 -- of additional context, and are resolved to Standard_Character.
16542 if Nkind
(I
) = N_Range
then
16544 -- The index is given by a range constraint. The bounds are known
16545 -- to be of a consistent type.
16547 if not Is_Overloaded
(I
) then
16550 -- For universal bounds, choose the specific predefined type
16552 if T
= Universal_Integer
then
16553 T
:= Standard_Integer
;
16555 elsif T
= Any_Character
then
16556 Ambiguous_Character
(Low_Bound
(I
));
16558 T
:= Standard_Character
;
16561 -- The node may be overloaded because some user-defined operators
16562 -- are available, but if a universal interpretation exists it is
16563 -- also the selected one.
16565 elsif Universal_Interpretation
(I
) = Universal_Integer
then
16566 T
:= Standard_Integer
;
16572 Ind
: Interp_Index
;
16576 Get_First_Interp
(I
, Ind
, It
);
16577 while Present
(It
.Typ
) loop
16578 if Is_Discrete_Type
(It
.Typ
) then
16581 and then not Covers
(It
.Typ
, T
)
16582 and then not Covers
(T
, It
.Typ
)
16584 Error_Msg_N
("ambiguous bounds in discrete range", I
);
16592 Get_Next_Interp
(Ind
, It
);
16595 if T
= Any_Type
then
16596 Error_Msg_N
("discrete type required for range", I
);
16597 Set_Etype
(I
, Any_Type
);
16600 elsif T
= Universal_Integer
then
16601 T
:= Standard_Integer
;
16606 if not Is_Discrete_Type
(T
) then
16607 Error_Msg_N
("discrete type required for range", I
);
16608 Set_Etype
(I
, Any_Type
);
16612 if Nkind
(Low_Bound
(I
)) = N_Attribute_Reference
16613 and then Attribute_Name
(Low_Bound
(I
)) = Name_First
16614 and then Is_Entity_Name
(Prefix
(Low_Bound
(I
)))
16615 and then Is_Type
(Entity
(Prefix
(Low_Bound
(I
))))
16616 and then Is_Discrete_Type
(Entity
(Prefix
(Low_Bound
(I
))))
16618 -- The type of the index will be the type of the prefix, as long
16619 -- as the upper bound is 'Last of the same type.
16621 Def_Id
:= Entity
(Prefix
(Low_Bound
(I
)));
16623 if Nkind
(High_Bound
(I
)) /= N_Attribute_Reference
16624 or else Attribute_Name
(High_Bound
(I
)) /= Name_Last
16625 or else not Is_Entity_Name
(Prefix
(High_Bound
(I
)))
16626 or else Entity
(Prefix
(High_Bound
(I
))) /= Def_Id
16633 Process_Range_Expr_In_Decl
(R
, T
, In_Iter_Schm
=> In_Iter_Schm
);
16635 elsif Nkind
(I
) = N_Subtype_Indication
then
16637 -- The index is given by a subtype with a range constraint
16639 T
:= Base_Type
(Entity
(Subtype_Mark
(I
)));
16641 if not Is_Discrete_Type
(T
) then
16642 Error_Msg_N
("discrete type required for range", I
);
16643 Set_Etype
(I
, Any_Type
);
16647 R
:= Range_Expression
(Constraint
(I
));
16650 Process_Range_Expr_In_Decl
16651 (R
, Entity
(Subtype_Mark
(I
)), In_Iter_Schm
=> In_Iter_Schm
);
16653 elsif Nkind
(I
) = N_Attribute_Reference
then
16655 -- The parser guarantees that the attribute is a RANGE attribute
16657 -- If the node denotes the range of a type mark, that is also the
16658 -- resulting type, and we do no need to create an Itype for it.
16660 if Is_Entity_Name
(Prefix
(I
))
16661 and then Comes_From_Source
(I
)
16662 and then Is_Type
(Entity
(Prefix
(I
)))
16663 and then Is_Discrete_Type
(Entity
(Prefix
(I
)))
16665 Def_Id
:= Entity
(Prefix
(I
));
16668 Analyze_And_Resolve
(I
);
16672 -- If none of the above, must be a subtype. We convert this to a
16673 -- range attribute reference because in the case of declared first
16674 -- named subtypes, the types in the range reference can be different
16675 -- from the type of the entity. A range attribute normalizes the
16676 -- reference and obtains the correct types for the bounds.
16678 -- This transformation is in the nature of an expansion, is only
16679 -- done if expansion is active. In particular, it is not done on
16680 -- formal generic types, because we need to retain the name of the
16681 -- original index for instantiation purposes.
16684 if not Is_Entity_Name
(I
) or else not Is_Type
(Entity
(I
)) then
16685 Error_Msg_N
("invalid subtype mark in discrete range ", I
);
16686 Set_Etype
(I
, Any_Integer
);
16690 -- The type mark may be that of an incomplete type. It is only
16691 -- now that we can get the full view, previous analysis does
16692 -- not look specifically for a type mark.
16694 Set_Entity
(I
, Get_Full_View
(Entity
(I
)));
16695 Set_Etype
(I
, Entity
(I
));
16696 Def_Id
:= Entity
(I
);
16698 if not Is_Discrete_Type
(Def_Id
) then
16699 Error_Msg_N
("discrete type required for index", I
);
16700 Set_Etype
(I
, Any_Type
);
16705 if Expander_Active
then
16707 Make_Attribute_Reference
(Sloc
(I
),
16708 Attribute_Name
=> Name_Range
,
16709 Prefix
=> Relocate_Node
(I
)));
16711 -- The original was a subtype mark that does not freeze. This
16712 -- means that the rewritten version must not freeze either.
16714 Set_Must_Not_Freeze
(I
);
16715 Set_Must_Not_Freeze
(Prefix
(I
));
16717 -- Is order critical??? if so, document why, if not
16718 -- use Analyze_And_Resolve
16720 Analyze_And_Resolve
(I
);
16724 -- If expander is inactive, type is legal, nothing else to construct
16731 if not Is_Discrete_Type
(T
) then
16732 Error_Msg_N
("discrete type required for range", I
);
16733 Set_Etype
(I
, Any_Type
);
16736 elsif T
= Any_Type
then
16737 Set_Etype
(I
, Any_Type
);
16741 -- We will now create the appropriate Itype to describe the range, but
16742 -- first a check. If we originally had a subtype, then we just label
16743 -- the range with this subtype. Not only is there no need to construct
16744 -- a new subtype, but it is wrong to do so for two reasons:
16746 -- 1. A legality concern, if we have a subtype, it must not freeze,
16747 -- and the Itype would cause freezing incorrectly
16749 -- 2. An efficiency concern, if we created an Itype, it would not be
16750 -- recognized as the same type for the purposes of eliminating
16751 -- checks in some circumstances.
16753 -- We signal this case by setting the subtype entity in Def_Id
16755 if No
(Def_Id
) then
16757 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
16758 Set_Etype
(Def_Id
, Base_Type
(T
));
16760 if Is_Signed_Integer_Type
(T
) then
16761 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
16763 elsif Is_Modular_Integer_Type
(T
) then
16764 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
16767 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
16768 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
16769 Set_First_Literal
(Def_Id
, First_Literal
(T
));
16772 Set_Size_Info
(Def_Id
, (T
));
16773 Set_RM_Size
(Def_Id
, RM_Size
(T
));
16774 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
16776 Set_Scalar_Range
(Def_Id
, R
);
16777 Conditional_Delay
(Def_Id
, T
);
16779 -- In the subtype indication case, if the immediate parent of the
16780 -- new subtype is non-static, then the subtype we create is non-
16781 -- static, even if its bounds are static.
16783 if Nkind
(I
) = N_Subtype_Indication
16784 and then not Is_Static_Subtype
(Entity
(Subtype_Mark
(I
)))
16786 Set_Is_Non_Static_Subtype
(Def_Id
);
16790 -- Final step is to label the index with this constructed type
16792 Set_Etype
(I
, Def_Id
);
16795 ------------------------------
16796 -- Modular_Type_Declaration --
16797 ------------------------------
16799 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16800 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
16803 procedure Set_Modular_Size
(Bits
: Int
);
16804 -- Sets RM_Size to Bits, and Esize to normal word size above this
16806 ----------------------
16807 -- Set_Modular_Size --
16808 ----------------------
16810 procedure Set_Modular_Size
(Bits
: Int
) is
16812 Set_RM_Size
(T
, UI_From_Int
(Bits
));
16817 elsif Bits
<= 16 then
16818 Init_Esize
(T
, 16);
16820 elsif Bits
<= 32 then
16821 Init_Esize
(T
, 32);
16824 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
16827 if not Non_Binary_Modulus
(T
)
16828 and then Esize
(T
) = RM_Size
(T
)
16830 Set_Is_Known_Valid
(T
);
16832 end Set_Modular_Size
;
16834 -- Start of processing for Modular_Type_Declaration
16837 -- If the mod expression is (exactly) 2 * literal, where literal is
16838 -- 64 or less,then almost certainly the * was meant to be **. Warn!
16840 if Warn_On_Suspicious_Modulus_Value
16841 and then Nkind
(Mod_Expr
) = N_Op_Multiply
16842 and then Nkind
(Left_Opnd
(Mod_Expr
)) = N_Integer_Literal
16843 and then Intval
(Left_Opnd
(Mod_Expr
)) = Uint_2
16844 and then Nkind
(Right_Opnd
(Mod_Expr
)) = N_Integer_Literal
16845 and then Intval
(Right_Opnd
(Mod_Expr
)) <= Uint_64
16847 Error_Msg_N
("suspicious MOD value, was '*'* intended'??", Mod_Expr
);
16850 -- Proceed with analysis of mod expression
16852 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
16854 Set_Ekind
(T
, E_Modular_Integer_Type
);
16855 Init_Alignment
(T
);
16856 Set_Is_Constrained
(T
);
16858 if not Is_OK_Static_Expression
(Mod_Expr
) then
16859 Flag_Non_Static_Expr
16860 ("non-static expression used for modular type bound!", Mod_Expr
);
16861 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
16863 M_Val
:= Expr_Value
(Mod_Expr
);
16867 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
16868 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
16871 Set_Modulus
(T
, M_Val
);
16873 -- Create bounds for the modular type based on the modulus given in
16874 -- the type declaration and then analyze and resolve those bounds.
16876 Set_Scalar_Range
(T
,
16877 Make_Range
(Sloc
(Mod_Expr
),
16878 Low_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
16879 High_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
16881 -- Properly analyze the literals for the range. We do this manually
16882 -- because we can't go calling Resolve, since we are resolving these
16883 -- bounds with the type, and this type is certainly not complete yet!
16885 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
16886 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
16887 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
16888 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
16890 -- Loop through powers of two to find number of bits required
16892 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
16896 if M_Val
= 2 ** Bits
then
16897 Set_Modular_Size
(Bits
);
16902 elsif M_Val
< 2 ** Bits
then
16903 Check_SPARK_Restriction
("modulus should be a power of 2", T
);
16904 Set_Non_Binary_Modulus
(T
);
16906 if Bits
> System_Max_Nonbinary_Modulus_Power
then
16907 Error_Msg_Uint_1
:=
16908 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
16910 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
16911 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
16915 -- In the non-binary case, set size as per RM 13.3(55)
16917 Set_Modular_Size
(Bits
);
16924 -- If we fall through, then the size exceed System.Max_Binary_Modulus
16925 -- so we just signal an error and set the maximum size.
16927 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
16928 Error_Msg_F
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
16930 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
16931 Init_Alignment
(T
);
16933 end Modular_Type_Declaration
;
16935 --------------------------
16936 -- New_Concatenation_Op --
16937 --------------------------
16939 procedure New_Concatenation_Op
(Typ
: Entity_Id
) is
16940 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
16943 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
16944 -- Create abbreviated declaration for the formal of a predefined
16945 -- Operator 'Op' of type 'Typ'
16947 --------------------
16948 -- Make_Op_Formal --
16949 --------------------
16951 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
16952 Formal
: Entity_Id
;
16954 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
16955 Set_Etype
(Formal
, Typ
);
16956 Set_Mechanism
(Formal
, Default_Mechanism
);
16958 end Make_Op_Formal
;
16960 -- Start of processing for New_Concatenation_Op
16963 Op
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Concat
);
16965 Set_Ekind
(Op
, E_Operator
);
16966 Set_Scope
(Op
, Current_Scope
);
16967 Set_Etype
(Op
, Typ
);
16968 Set_Homonym
(Op
, Get_Name_Entity_Id
(Name_Op_Concat
));
16969 Set_Is_Immediately_Visible
(Op
);
16970 Set_Is_Intrinsic_Subprogram
(Op
);
16971 Set_Has_Completion
(Op
);
16972 Append_Entity
(Op
, Current_Scope
);
16974 Set_Name_Entity_Id
(Name_Op_Concat
, Op
);
16976 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
16977 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
16978 end New_Concatenation_Op
;
16980 -------------------------
16981 -- OK_For_Limited_Init --
16982 -------------------------
16984 -- ???Check all calls of this, and compare the conditions under which it's
16987 function OK_For_Limited_Init
16989 Exp
: Node_Id
) return Boolean
16992 return Is_CPP_Constructor_Call
(Exp
)
16993 or else (Ada_Version
>= Ada_2005
16994 and then not Debug_Flag_Dot_L
16995 and then OK_For_Limited_Init_In_05
(Typ
, Exp
));
16996 end OK_For_Limited_Init
;
16998 -------------------------------
16999 -- OK_For_Limited_Init_In_05 --
17000 -------------------------------
17002 function OK_For_Limited_Init_In_05
17004 Exp
: Node_Id
) return Boolean
17007 -- An object of a limited interface type can be initialized with any
17008 -- expression of a nonlimited descendant type.
17010 if Is_Class_Wide_Type
(Typ
)
17011 and then Is_Limited_Interface
(Typ
)
17012 and then not Is_Limited_Type
(Etype
(Exp
))
17017 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
17018 -- case of limited aggregates (including extension aggregates), and
17019 -- function calls. The function call may have been given in prefixed
17020 -- notation, in which case the original node is an indexed component.
17021 -- If the function is parameterless, the original node was an explicit
17022 -- dereference. The function may also be parameterless, in which case
17023 -- the source node is just an identifier.
17025 case Nkind
(Original_Node
(Exp
)) is
17026 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op
=>
17029 when N_Identifier
=>
17030 return Present
(Entity
(Original_Node
(Exp
)))
17031 and then Ekind
(Entity
(Original_Node
(Exp
))) = E_Function
;
17033 when N_Qualified_Expression
=>
17035 OK_For_Limited_Init_In_05
17036 (Typ
, Expression
(Original_Node
(Exp
)));
17038 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
17039 -- with a function call, the expander has rewritten the call into an
17040 -- N_Type_Conversion node to force displacement of the pointer to
17041 -- reference the component containing the secondary dispatch table.
17042 -- Otherwise a type conversion is not a legal context.
17043 -- A return statement for a build-in-place function returning a
17044 -- synchronized type also introduces an unchecked conversion.
17046 when N_Type_Conversion |
17047 N_Unchecked_Type_Conversion
=>
17048 return not Comes_From_Source
(Exp
)
17050 OK_For_Limited_Init_In_05
17051 (Typ
, Expression
(Original_Node
(Exp
)));
17053 when N_Indexed_Component |
17054 N_Selected_Component |
17055 N_Explicit_Dereference
=>
17056 return Nkind
(Exp
) = N_Function_Call
;
17058 -- A use of 'Input is a function call, hence allowed. Normally the
17059 -- attribute will be changed to a call, but the attribute by itself
17060 -- can occur with -gnatc.
17062 when N_Attribute_Reference
=>
17063 return Attribute_Name
(Original_Node
(Exp
)) = Name_Input
;
17065 -- For a conditional expression, all dependent expressions must be
17066 -- legal constructs.
17068 when N_Conditional_Expression
=>
17070 Then_Expr
: constant Node_Id
:=
17071 Next
(First
(Expressions
(Original_Node
(Exp
))));
17072 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
17074 return OK_For_Limited_Init_In_05
(Typ
, Then_Expr
)
17075 and then OK_For_Limited_Init_In_05
(Typ
, Else_Expr
);
17078 when N_Case_Expression
=>
17083 Alt
:= First
(Alternatives
(Original_Node
(Exp
)));
17084 while Present
(Alt
) loop
17085 if not OK_For_Limited_Init_In_05
(Typ
, Expression
(Alt
)) then
17098 end OK_For_Limited_Init_In_05
;
17100 -------------------------------------------
17101 -- Ordinary_Fixed_Point_Type_Declaration --
17102 -------------------------------------------
17104 procedure Ordinary_Fixed_Point_Type_Declaration
17108 Loc
: constant Source_Ptr
:= Sloc
(Def
);
17109 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
17110 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
17111 Implicit_Base
: Entity_Id
;
17118 Check_Restriction
(No_Fixed_Point
, Def
);
17120 -- Create implicit base type
17123 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
17124 Set_Etype
(Implicit_Base
, Implicit_Base
);
17126 -- Analyze and process delta expression
17128 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
17130 Check_Delta_Expression
(Delta_Expr
);
17131 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
17133 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
17135 -- Compute default small from given delta, which is the largest power
17136 -- of two that does not exceed the given delta value.
17146 if Delta_Val
< Ureal_1
then
17147 while Delta_Val
< Tmp
loop
17148 Tmp
:= Tmp
/ Ureal_2
;
17149 Scale
:= Scale
+ 1;
17154 Tmp
:= Tmp
* Ureal_2
;
17155 exit when Tmp
> Delta_Val
;
17156 Scale
:= Scale
- 1;
17160 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
17163 Set_Small_Value
(Implicit_Base
, Small_Val
);
17165 -- If no range was given, set a dummy range
17167 if RRS
<= Empty_Or_Error
then
17168 Low_Val
:= -Small_Val
;
17169 High_Val
:= Small_Val
;
17171 -- Otherwise analyze and process given range
17175 Low
: constant Node_Id
:= Low_Bound
(RRS
);
17176 High
: constant Node_Id
:= High_Bound
(RRS
);
17179 Analyze_And_Resolve
(Low
, Any_Real
);
17180 Analyze_And_Resolve
(High
, Any_Real
);
17181 Check_Real_Bound
(Low
);
17182 Check_Real_Bound
(High
);
17184 -- Obtain and set the range
17186 Low_Val
:= Expr_Value_R
(Low
);
17187 High_Val
:= Expr_Value_R
(High
);
17189 if Low_Val
> High_Val
then
17190 Error_Msg_NE
("?fixed point type& has null range", Def
, T
);
17195 -- The range for both the implicit base and the declared first subtype
17196 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17197 -- set a temporary range in place. Note that the bounds of the base
17198 -- type will be widened to be symmetrical and to fill the available
17199 -- bits when the type is frozen.
17201 -- We could do this with all discrete types, and probably should, but
17202 -- we absolutely have to do it for fixed-point, since the end-points
17203 -- of the range and the size are determined by the small value, which
17204 -- could be reset before the freeze point.
17206 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
17207 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
17209 -- Complete definition of first subtype
17211 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
17212 Set_Etype
(T
, Implicit_Base
);
17213 Init_Size_Align
(T
);
17214 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
17215 Set_Small_Value
(T
, Small_Val
);
17216 Set_Delta_Value
(T
, Delta_Val
);
17217 Set_Is_Constrained
(T
);
17219 end Ordinary_Fixed_Point_Type_Declaration
;
17221 ----------------------------------------
17222 -- Prepare_Private_Subtype_Completion --
17223 ----------------------------------------
17225 procedure Prepare_Private_Subtype_Completion
17227 Related_Nod
: Node_Id
)
17229 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
17230 Full_B
: constant Entity_Id
:= Full_View
(Id_B
);
17234 if Present
(Full_B
) then
17236 -- The Base_Type is already completed, we can complete the subtype
17237 -- now. We have to create a new entity with the same name, Thus we
17238 -- can't use Create_Itype.
17240 -- This is messy, should be fixed ???
17242 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
17243 Set_Is_Itype
(Full
);
17244 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
17245 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
17248 -- The parent subtype may be private, but the base might not, in some
17249 -- nested instances. In that case, the subtype does not need to be
17250 -- exchanged. It would still be nice to make private subtypes and their
17251 -- bases consistent at all times ???
17253 if Is_Private_Type
(Id_B
) then
17254 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
17257 end Prepare_Private_Subtype_Completion
;
17259 ---------------------------
17260 -- Process_Discriminants --
17261 ---------------------------
17263 procedure Process_Discriminants
17265 Prev
: Entity_Id
:= Empty
)
17267 Elist
: constant Elist_Id
:= New_Elmt_List
;
17270 Discr_Number
: Uint
;
17271 Discr_Type
: Entity_Id
;
17272 Default_Present
: Boolean := False;
17273 Default_Not_Present
: Boolean := False;
17276 -- A composite type other than an array type can have discriminants.
17277 -- On entry, the current scope is the composite type.
17279 -- The discriminants are initially entered into the scope of the type
17280 -- via Enter_Name with the default Ekind of E_Void to prevent premature
17281 -- use, as explained at the end of this procedure.
17283 Discr
:= First
(Discriminant_Specifications
(N
));
17284 while Present
(Discr
) loop
17285 Enter_Name
(Defining_Identifier
(Discr
));
17287 -- For navigation purposes we add a reference to the discriminant
17288 -- in the entity for the type. If the current declaration is a
17289 -- completion, place references on the partial view. Otherwise the
17290 -- type is the current scope.
17292 if Present
(Prev
) then
17294 -- The references go on the partial view, if present. If the
17295 -- partial view has discriminants, the references have been
17296 -- generated already.
17298 if not Has_Discriminants
(Prev
) then
17299 Generate_Reference
(Prev
, Defining_Identifier
(Discr
), 'd');
17303 (Current_Scope
, Defining_Identifier
(Discr
), 'd');
17306 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
17307 Discr_Type
:= Access_Definition
(Discr
, Discriminant_Type
(Discr
));
17309 -- Ada 2005 (AI-254)
17311 if Present
(Access_To_Subprogram_Definition
17312 (Discriminant_Type
(Discr
)))
17313 and then Protected_Present
(Access_To_Subprogram_Definition
17314 (Discriminant_Type
(Discr
)))
17317 Replace_Anonymous_Access_To_Protected_Subprogram
(Discr
);
17321 Find_Type
(Discriminant_Type
(Discr
));
17322 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
17324 if Error_Posted
(Discriminant_Type
(Discr
)) then
17325 Discr_Type
:= Any_Type
;
17329 if Is_Access_Type
(Discr_Type
) then
17331 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
17334 if Ada_Version
< Ada_2005
then
17335 Check_Access_Discriminant_Requires_Limited
17336 (Discr
, Discriminant_Type
(Discr
));
17339 if Ada_Version
= Ada_83
and then Comes_From_Source
(Discr
) then
17341 ("(Ada 83) access discriminant not allowed", Discr
);
17344 elsif not Is_Discrete_Type
(Discr_Type
) then
17345 Error_Msg_N
("discriminants must have a discrete or access type",
17346 Discriminant_Type
(Discr
));
17349 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
17351 -- If a discriminant specification includes the assignment compound
17352 -- delimiter followed by an expression, the expression is the default
17353 -- expression of the discriminant; the default expression must be of
17354 -- the type of the discriminant. (RM 3.7.1) Since this expression is
17355 -- a default expression, we do the special preanalysis, since this
17356 -- expression does not freeze (see "Handling of Default and Per-
17357 -- Object Expressions" in spec of package Sem).
17359 if Present
(Expression
(Discr
)) then
17360 Preanalyze_Spec_Expression
(Expression
(Discr
), Discr_Type
);
17362 if Nkind
(N
) = N_Formal_Type_Declaration
then
17364 ("discriminant defaults not allowed for formal type",
17365 Expression
(Discr
));
17367 -- Flag an error for a tagged type with defaulted discriminants,
17368 -- excluding limited tagged types when compiling for Ada 2012
17369 -- (see AI05-0214).
17371 elsif Is_Tagged_Type
(Current_Scope
)
17372 and then (not Is_Limited_Type
(Current_Scope
)
17373 or else Ada_Version
< Ada_2012
)
17374 and then Comes_From_Source
(N
)
17376 -- Note: see similar test in Check_Or_Process_Discriminants, to
17377 -- handle the (illegal) case of the completion of an untagged
17378 -- view with discriminants with defaults by a tagged full view.
17379 -- We skip the check if Discr does not come from source, to
17380 -- account for the case of an untagged derived type providing
17381 -- defaults for a renamed discriminant from a private untagged
17382 -- ancestor with a tagged full view (ACATS B460006).
17384 if Ada_Version
>= Ada_2012
then
17386 ("discriminants of nonlimited tagged type cannot have"
17388 Expression
(Discr
));
17391 ("discriminants of tagged type cannot have defaults",
17392 Expression
(Discr
));
17396 Default_Present
:= True;
17397 Append_Elmt
(Expression
(Discr
), Elist
);
17399 -- Tag the defining identifiers for the discriminants with
17400 -- their corresponding default expressions from the tree.
17402 Set_Discriminant_Default_Value
17403 (Defining_Identifier
(Discr
), Expression
(Discr
));
17407 Default_Not_Present
:= True;
17410 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
17411 -- Discr_Type but with the null-exclusion attribute
17413 if Ada_Version
>= Ada_2005
then
17415 -- Ada 2005 (AI-231): Static checks
17417 if Can_Never_Be_Null
(Discr_Type
) then
17418 Null_Exclusion_Static_Checks
(Discr
);
17420 elsif Is_Access_Type
(Discr_Type
)
17421 and then Null_Exclusion_Present
(Discr
)
17423 -- No need to check itypes because in their case this check
17424 -- was done at their point of creation
17426 and then not Is_Itype
(Discr_Type
)
17428 if Can_Never_Be_Null
(Discr_Type
) then
17430 ("`NOT NULL` not allowed (& already excludes null)",
17435 Set_Etype
(Defining_Identifier
(Discr
),
17436 Create_Null_Excluding_Itype
17438 Related_Nod
=> Discr
));
17440 -- Check for improper null exclusion if the type is otherwise
17441 -- legal for a discriminant.
17443 elsif Null_Exclusion_Present
(Discr
)
17444 and then Is_Discrete_Type
(Discr_Type
)
17447 ("null exclusion can only apply to an access type", Discr
);
17450 -- Ada 2005 (AI-402): access discriminants of nonlimited types
17451 -- can't have defaults. Synchronized types, or types that are
17452 -- explicitly limited are fine, but special tests apply to derived
17453 -- types in generics: in a generic body we have to assume the
17454 -- worst, and therefore defaults are not allowed if the parent is
17455 -- a generic formal private type (see ACATS B370001).
17457 if Is_Access_Type
(Discr_Type
) and then Default_Present
then
17458 if Ekind
(Discr_Type
) /= E_Anonymous_Access_Type
17459 or else Is_Limited_Record
(Current_Scope
)
17460 or else Is_Concurrent_Type
(Current_Scope
)
17461 or else Is_Concurrent_Record_Type
(Current_Scope
)
17462 or else Ekind
(Current_Scope
) = E_Limited_Private_Type
17464 if not Is_Derived_Type
(Current_Scope
)
17465 or else not Is_Generic_Type
(Etype
(Current_Scope
))
17466 or else not In_Package_Body
(Scope
(Etype
(Current_Scope
)))
17467 or else Limited_Present
17468 (Type_Definition
(Parent
(Current_Scope
)))
17473 Error_Msg_N
("access discriminants of nonlimited types",
17474 Expression
(Discr
));
17475 Error_Msg_N
("\cannot have defaults", Expression
(Discr
));
17478 elsif Present
(Expression
(Discr
)) then
17480 ("(Ada 2005) access discriminants of nonlimited types",
17481 Expression
(Discr
));
17482 Error_Msg_N
("\cannot have defaults", Expression
(Discr
));
17490 -- An element list consisting of the default expressions of the
17491 -- discriminants is constructed in the above loop and used to set
17492 -- the Discriminant_Constraint attribute for the type. If an object
17493 -- is declared of this (record or task) type without any explicit
17494 -- discriminant constraint given, this element list will form the
17495 -- actual parameters for the corresponding initialization procedure
17498 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
17499 Set_Stored_Constraint
(Current_Scope
, No_Elist
);
17501 -- Default expressions must be provided either for all or for none
17502 -- of the discriminants of a discriminant part. (RM 3.7.1)
17504 if Default_Present
and then Default_Not_Present
then
17506 ("incomplete specification of defaults for discriminants", N
);
17509 -- The use of the name of a discriminant is not allowed in default
17510 -- expressions of a discriminant part if the specification of the
17511 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
17513 -- To detect this, the discriminant names are entered initially with an
17514 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
17515 -- attempt to use a void entity (for example in an expression that is
17516 -- type-checked) produces the error message: premature usage. Now after
17517 -- completing the semantic analysis of the discriminant part, we can set
17518 -- the Ekind of all the discriminants appropriately.
17520 Discr
:= First
(Discriminant_Specifications
(N
));
17521 Discr_Number
:= Uint_1
;
17522 while Present
(Discr
) loop
17523 Id
:= Defining_Identifier
(Discr
);
17524 Set_Ekind
(Id
, E_Discriminant
);
17525 Init_Component_Location
(Id
);
17527 Set_Discriminant_Number
(Id
, Discr_Number
);
17529 -- Make sure this is always set, even in illegal programs
17531 Set_Corresponding_Discriminant
(Id
, Empty
);
17533 -- Initialize the Original_Record_Component to the entity itself.
17534 -- Inherit_Components will propagate the right value to
17535 -- discriminants in derived record types.
17537 Set_Original_Record_Component
(Id
, Id
);
17539 -- Create the discriminal for the discriminant
17541 Build_Discriminal
(Id
);
17544 Discr_Number
:= Discr_Number
+ 1;
17547 Set_Has_Discriminants
(Current_Scope
);
17548 end Process_Discriminants
;
17550 -----------------------
17551 -- Process_Full_View --
17552 -----------------------
17554 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
17555 Priv_Parent
: Entity_Id
;
17556 Full_Parent
: Entity_Id
;
17557 Full_Indic
: Node_Id
;
17559 procedure Collect_Implemented_Interfaces
17561 Ifaces
: Elist_Id
);
17562 -- Ada 2005: Gather all the interfaces that Typ directly or
17563 -- inherently implements. Duplicate entries are not added to
17564 -- the list Ifaces.
17566 ------------------------------------
17567 -- Collect_Implemented_Interfaces --
17568 ------------------------------------
17570 procedure Collect_Implemented_Interfaces
17575 Iface_Elmt
: Elmt_Id
;
17578 -- Abstract interfaces are only associated with tagged record types
17580 if not Is_Tagged_Type
(Typ
)
17581 or else not Is_Record_Type
(Typ
)
17586 -- Recursively climb to the ancestors
17588 if Etype
(Typ
) /= Typ
17590 -- Protect the frontend against wrong cyclic declarations like:
17592 -- type B is new A with private;
17593 -- type C is new A with private;
17595 -- type B is new C with null record;
17596 -- type C is new B with null record;
17598 and then Etype
(Typ
) /= Priv_T
17599 and then Etype
(Typ
) /= Full_T
17601 -- Keep separate the management of private type declarations
17603 if Ekind
(Typ
) = E_Record_Type_With_Private
then
17605 -- Handle the following erroneous case:
17606 -- type Private_Type is tagged private;
17608 -- type Private_Type is new Type_Implementing_Iface;
17610 if Present
(Full_View
(Typ
))
17611 and then Etype
(Typ
) /= Full_View
(Typ
)
17613 if Is_Interface
(Etype
(Typ
)) then
17614 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
17617 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
17620 -- Non-private types
17623 if Is_Interface
(Etype
(Typ
)) then
17624 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
17627 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
17631 -- Handle entities in the list of abstract interfaces
17633 if Present
(Interfaces
(Typ
)) then
17634 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
17635 while Present
(Iface_Elmt
) loop
17636 Iface
:= Node
(Iface_Elmt
);
17638 pragma Assert
(Is_Interface
(Iface
));
17640 if not Contain_Interface
(Iface
, Ifaces
) then
17641 Append_Elmt
(Iface
, Ifaces
);
17642 Collect_Implemented_Interfaces
(Iface
, Ifaces
);
17645 Next_Elmt
(Iface_Elmt
);
17648 end Collect_Implemented_Interfaces
;
17650 -- Start of processing for Process_Full_View
17653 -- First some sanity checks that must be done after semantic
17654 -- decoration of the full view and thus cannot be placed with other
17655 -- similar checks in Find_Type_Name
17657 if not Is_Limited_Type
(Priv_T
)
17658 and then (Is_Limited_Type
(Full_T
)
17659 or else Is_Limited_Composite
(Full_T
))
17661 if In_Instance
then
17665 ("completion of nonlimited type cannot be limited", Full_T
);
17666 Explain_Limited_Type
(Full_T
, Full_T
);
17669 elsif Is_Abstract_Type
(Full_T
)
17670 and then not Is_Abstract_Type
(Priv_T
)
17673 ("completion of nonabstract type cannot be abstract", Full_T
);
17675 elsif Is_Tagged_Type
(Priv_T
)
17676 and then Is_Limited_Type
(Priv_T
)
17677 and then not Is_Limited_Type
(Full_T
)
17679 -- If pragma CPP_Class was applied to the private declaration
17680 -- propagate the limitedness to the full-view
17682 if Is_CPP_Class
(Priv_T
) then
17683 Set_Is_Limited_Record
(Full_T
);
17685 -- GNAT allow its own definition of Limited_Controlled to disobey
17686 -- this rule in order in ease the implementation. This test is safe
17687 -- because Root_Controlled is defined in a child of System that
17688 -- normal programs are not supposed to use.
17690 elsif Is_RTE
(Etype
(Full_T
), RE_Root_Controlled
) then
17691 Set_Is_Limited_Composite
(Full_T
);
17694 ("completion of limited tagged type must be limited", Full_T
);
17697 elsif Is_Generic_Type
(Priv_T
) then
17698 Error_Msg_N
("generic type cannot have a completion", Full_T
);
17701 -- Check that ancestor interfaces of private and full views are
17702 -- consistent. We omit this check for synchronized types because
17703 -- they are performed on the corresponding record type when frozen.
17705 if Ada_Version
>= Ada_2005
17706 and then Is_Tagged_Type
(Priv_T
)
17707 and then Is_Tagged_Type
(Full_T
)
17708 and then not Is_Concurrent_Type
(Full_T
)
17712 Priv_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
17713 Full_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
17716 Collect_Implemented_Interfaces
(Priv_T
, Priv_T_Ifaces
);
17717 Collect_Implemented_Interfaces
(Full_T
, Full_T_Ifaces
);
17719 -- Ada 2005 (AI-251): The partial view shall be a descendant of
17720 -- an interface type if and only if the full type is descendant
17721 -- of the interface type (AARM 7.3 (7.3/2)).
17723 Iface
:= Find_Hidden_Interface
(Priv_T_Ifaces
, Full_T_Ifaces
);
17725 if Present
(Iface
) then
17727 ("interface & not implemented by full type " &
17728 "(RM-2005 7.3 (7.3/2))", Priv_T
, Iface
);
17731 Iface
:= Find_Hidden_Interface
(Full_T_Ifaces
, Priv_T_Ifaces
);
17733 if Present
(Iface
) then
17735 ("interface & not implemented by partial view " &
17736 "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
17741 if Is_Tagged_Type
(Priv_T
)
17742 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
17743 and then Is_Derived_Type
(Full_T
)
17745 Priv_Parent
:= Etype
(Priv_T
);
17747 -- The full view of a private extension may have been transformed
17748 -- into an unconstrained derived type declaration and a subtype
17749 -- declaration (see build_derived_record_type for details).
17751 if Nkind
(N
) = N_Subtype_Declaration
then
17752 Full_Indic
:= Subtype_Indication
(N
);
17753 Full_Parent
:= Etype
(Base_Type
(Full_T
));
17755 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
17756 Full_Parent
:= Etype
(Full_T
);
17759 -- Check that the parent type of the full type is a descendant of
17760 -- the ancestor subtype given in the private extension. If either
17761 -- entity has an Etype equal to Any_Type then we had some previous
17762 -- error situation [7.3(8)].
17764 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
17767 -- Ada 2005 (AI-251): Interfaces in the full-typ can be given in
17768 -- any order. Therefore we don't have to check that its parent must
17769 -- be a descendant of the parent of the private type declaration.
17771 elsif Is_Interface
(Priv_Parent
)
17772 and then Is_Interface
(Full_Parent
)
17776 -- Ada 2005 (AI-251): If the parent of the private type declaration
17777 -- is an interface there is no need to check that it is an ancestor
17778 -- of the associated full type declaration. The required tests for
17779 -- this case are performed by Build_Derived_Record_Type.
17781 elsif not Is_Interface
(Base_Type
(Priv_Parent
))
17782 and then not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
)
17785 ("parent of full type must descend from parent"
17786 & " of private extension", Full_Indic
);
17788 -- First check a formal restriction, and then proceed with checking
17789 -- Ada rules. Since the formal restriction is not a serious error, we
17790 -- don't prevent further error detection for this check, hence the
17795 -- In formal mode, when completing a private extension the type
17796 -- named in the private part must be exactly the same as that
17797 -- named in the visible part.
17799 if Priv_Parent
/= Full_Parent
then
17800 Error_Msg_Name_1
:= Chars
(Priv_Parent
);
17801 Check_SPARK_Restriction
("% expected", Full_Indic
);
17804 -- Check the rules of 7.3(10): if the private extension inherits
17805 -- known discriminants, then the full type must also inherit those
17806 -- discriminants from the same (ancestor) type, and the parent
17807 -- subtype of the full type must be constrained if and only if
17808 -- the ancestor subtype of the private extension is constrained.
17810 if No
(Discriminant_Specifications
(Parent
(Priv_T
)))
17811 and then not Has_Unknown_Discriminants
(Priv_T
)
17812 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
17815 Priv_Indic
: constant Node_Id
:=
17816 Subtype_Indication
(Parent
(Priv_T
));
17818 Priv_Constr
: constant Boolean :=
17819 Is_Constrained
(Priv_Parent
)
17821 Nkind
(Priv_Indic
) = N_Subtype_Indication
17823 Is_Constrained
(Entity
(Priv_Indic
));
17825 Full_Constr
: constant Boolean :=
17826 Is_Constrained
(Full_Parent
)
17828 Nkind
(Full_Indic
) = N_Subtype_Indication
17830 Is_Constrained
(Entity
(Full_Indic
));
17832 Priv_Discr
: Entity_Id
;
17833 Full_Discr
: Entity_Id
;
17836 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
17837 Full_Discr
:= First_Discriminant
(Full_Parent
);
17838 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
17839 if Original_Record_Component
(Priv_Discr
) =
17840 Original_Record_Component
(Full_Discr
)
17842 Corresponding_Discriminant
(Priv_Discr
) =
17843 Corresponding_Discriminant
(Full_Discr
)
17850 Next_Discriminant
(Priv_Discr
);
17851 Next_Discriminant
(Full_Discr
);
17854 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
17856 ("full view must inherit discriminants of the parent"
17857 & " type used in the private extension", Full_Indic
);
17859 elsif Priv_Constr
and then not Full_Constr
then
17861 ("parent subtype of full type must be constrained",
17864 elsif Full_Constr
and then not Priv_Constr
then
17866 ("parent subtype of full type must be unconstrained",
17871 -- Check the rules of 7.3(12): if a partial view has neither
17872 -- known or unknown discriminants, then the full type
17873 -- declaration shall define a definite subtype.
17875 elsif not Has_Unknown_Discriminants
(Priv_T
)
17876 and then not Has_Discriminants
(Priv_T
)
17877 and then not Is_Constrained
(Full_T
)
17880 ("full view must define a constrained type if partial view"
17881 & " has no discriminants", Full_T
);
17884 -- ??????? Do we implement the following properly ?????
17885 -- If the ancestor subtype of a private extension has constrained
17886 -- discriminants, then the parent subtype of the full view shall
17887 -- impose a statically matching constraint on those discriminants
17892 -- For untagged types, verify that a type without discriminants
17893 -- is not completed with an unconstrained type.
17895 if not Is_Indefinite_Subtype
(Priv_T
)
17896 and then Is_Indefinite_Subtype
(Full_T
)
17898 Error_Msg_N
("full view of type must be definite subtype", Full_T
);
17902 -- AI-419: verify that the use of "limited" is consistent
17905 Orig_Decl
: constant Node_Id
:= Original_Node
(N
);
17908 if Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
17909 and then not Limited_Present
(Parent
(Priv_T
))
17910 and then not Synchronized_Present
(Parent
(Priv_T
))
17911 and then Nkind
(Orig_Decl
) = N_Full_Type_Declaration
17913 (Type_Definition
(Orig_Decl
)) = N_Derived_Type_Definition
17914 and then Limited_Present
(Type_Definition
(Orig_Decl
))
17917 ("full view of non-limited extension cannot be limited", N
);
17921 -- Ada 2005 (AI-443): A synchronized private extension must be
17922 -- completed by a task or protected type.
17924 if Ada_Version
>= Ada_2005
17925 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
17926 and then Synchronized_Present
(Parent
(Priv_T
))
17927 and then not Is_Concurrent_Type
(Full_T
)
17929 Error_Msg_N
("full view of synchronized extension must " &
17930 "be synchronized type", N
);
17933 -- Ada 2005 AI-363: if the full view has discriminants with
17934 -- defaults, it is illegal to declare constrained access subtypes
17935 -- whose designated type is the current type. This allows objects
17936 -- of the type that are declared in the heap to be unconstrained.
17938 if not Has_Unknown_Discriminants
(Priv_T
)
17939 and then not Has_Discriminants
(Priv_T
)
17940 and then Has_Discriminants
(Full_T
)
17942 Present
(Discriminant_Default_Value
(First_Discriminant
(Full_T
)))
17944 Set_Has_Constrained_Partial_View
(Full_T
);
17945 Set_Has_Constrained_Partial_View
(Priv_T
);
17948 -- Create a full declaration for all its subtypes recorded in
17949 -- Private_Dependents and swap them similarly to the base type. These
17950 -- are subtypes that have been define before the full declaration of
17951 -- the private type. We also swap the entry in Private_Dependents list
17952 -- so we can properly restore the private view on exit from the scope.
17955 Priv_Elmt
: Elmt_Id
;
17960 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
17961 while Present
(Priv_Elmt
) loop
17962 Priv
:= Node
(Priv_Elmt
);
17964 if Ekind_In
(Priv
, E_Private_Subtype
,
17965 E_Limited_Private_Subtype
,
17966 E_Record_Subtype_With_Private
)
17968 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
17969 Set_Is_Itype
(Full
);
17970 Set_Parent
(Full
, Parent
(Priv
));
17971 Set_Associated_Node_For_Itype
(Full
, N
);
17973 -- Now we need to complete the private subtype, but since the
17974 -- base type has already been swapped, we must also swap the
17975 -- subtypes (and thus, reverse the arguments in the call to
17976 -- Complete_Private_Subtype).
17978 Copy_And_Swap
(Priv
, Full
);
17979 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
17980 Replace_Elmt
(Priv_Elmt
, Full
);
17983 Next_Elmt
(Priv_Elmt
);
17987 -- If the private view was tagged, copy the new primitive operations
17988 -- from the private view to the full view.
17990 if Is_Tagged_Type
(Full_T
) then
17992 Disp_Typ
: Entity_Id
;
17993 Full_List
: Elist_Id
;
17995 Prim_Elmt
: Elmt_Id
;
17996 Priv_List
: Elist_Id
;
18000 L
: Elist_Id
) return Boolean;
18001 -- Determine whether list L contains element E
18009 L
: Elist_Id
) return Boolean
18011 List_Elmt
: Elmt_Id
;
18014 List_Elmt
:= First_Elmt
(L
);
18015 while Present
(List_Elmt
) loop
18016 if Node
(List_Elmt
) = E
then
18020 Next_Elmt
(List_Elmt
);
18026 -- Start of processing
18029 if Is_Tagged_Type
(Priv_T
) then
18030 Priv_List
:= Primitive_Operations
(Priv_T
);
18031 Prim_Elmt
:= First_Elmt
(Priv_List
);
18033 -- In the case of a concurrent type completing a private tagged
18034 -- type, primitives may have been declared in between the two
18035 -- views. These subprograms need to be wrapped the same way
18036 -- entries and protected procedures are handled because they
18037 -- cannot be directly shared by the two views.
18039 if Is_Concurrent_Type
(Full_T
) then
18041 Conc_Typ
: constant Entity_Id
:=
18042 Corresponding_Record_Type
(Full_T
);
18043 Curr_Nod
: Node_Id
:= Parent
(Conc_Typ
);
18044 Wrap_Spec
: Node_Id
;
18047 while Present
(Prim_Elmt
) loop
18048 Prim
:= Node
(Prim_Elmt
);
18050 if Comes_From_Source
(Prim
)
18051 and then not Is_Abstract_Subprogram
(Prim
)
18054 Make_Subprogram_Declaration
(Sloc
(Prim
),
18058 Obj_Typ
=> Conc_Typ
,
18060 Parameter_Specifications
(
18063 Insert_After
(Curr_Nod
, Wrap_Spec
);
18064 Curr_Nod
:= Wrap_Spec
;
18066 Analyze
(Wrap_Spec
);
18069 Next_Elmt
(Prim_Elmt
);
18075 -- For non-concurrent types, transfer explicit primitives, but
18076 -- omit those inherited from the parent of the private view
18077 -- since they will be re-inherited later on.
18080 Full_List
:= Primitive_Operations
(Full_T
);
18082 while Present
(Prim_Elmt
) loop
18083 Prim
:= Node
(Prim_Elmt
);
18085 if Comes_From_Source
(Prim
)
18086 and then not Contains
(Prim
, Full_List
)
18088 Append_Elmt
(Prim
, Full_List
);
18091 Next_Elmt
(Prim_Elmt
);
18095 -- Untagged private view
18098 Full_List
:= Primitive_Operations
(Full_T
);
18100 -- In this case the partial view is untagged, so here we locate
18101 -- all of the earlier primitives that need to be treated as
18102 -- dispatching (those that appear between the two views). Note
18103 -- that these additional operations must all be new operations
18104 -- (any earlier operations that override inherited operations
18105 -- of the full view will already have been inserted in the
18106 -- primitives list, marked by Check_Operation_From_Private_View
18107 -- as dispatching. Note that implicit "/=" operators are
18108 -- excluded from being added to the primitives list since they
18109 -- shouldn't be treated as dispatching (tagged "/=" is handled
18112 Prim
:= Next_Entity
(Full_T
);
18113 while Present
(Prim
) and then Prim
/= Priv_T
loop
18114 if Ekind_In
(Prim
, E_Procedure
, E_Function
) then
18115 Disp_Typ
:= Find_Dispatching_Type
(Prim
);
18117 if Disp_Typ
= Full_T
18118 and then (Chars
(Prim
) /= Name_Op_Ne
18119 or else Comes_From_Source
(Prim
))
18121 Check_Controlling_Formals
(Full_T
, Prim
);
18123 if not Is_Dispatching_Operation
(Prim
) then
18124 Append_Elmt
(Prim
, Full_List
);
18125 Set_Is_Dispatching_Operation
(Prim
, True);
18126 Set_DT_Position
(Prim
, No_Uint
);
18129 elsif Is_Dispatching_Operation
(Prim
)
18130 and then Disp_Typ
/= Full_T
18133 -- Verify that it is not otherwise controlled by a
18134 -- formal or a return value of type T.
18136 Check_Controlling_Formals
(Disp_Typ
, Prim
);
18140 Next_Entity
(Prim
);
18144 -- For the tagged case, the two views can share the same primitive
18145 -- operations list and the same class-wide type. Update attributes
18146 -- of the class-wide type which depend on the full declaration.
18148 if Is_Tagged_Type
(Priv_T
) then
18149 Set_Direct_Primitive_Operations
(Priv_T
, Full_List
);
18150 Set_Class_Wide_Type
18151 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
18153 Set_Has_Task
(Class_Wide_Type
(Priv_T
), Has_Task
(Full_T
));
18158 -- Ada 2005 AI 161: Check preelaboratable initialization consistency
18160 if Known_To_Have_Preelab_Init
(Priv_T
) then
18162 -- Case where there is a pragma Preelaborable_Initialization. We
18163 -- always allow this in predefined units, which is a bit of a kludge,
18164 -- but it means we don't have to struggle to meet the requirements in
18165 -- the RM for having Preelaborable Initialization. Otherwise we
18166 -- require that the type meets the RM rules. But we can't check that
18167 -- yet, because of the rule about overriding Initialize, so we simply
18168 -- set a flag that will be checked at freeze time.
18170 if not In_Predefined_Unit
(Full_T
) then
18171 Set_Must_Have_Preelab_Init
(Full_T
);
18175 -- If pragma CPP_Class was applied to the private type declaration,
18176 -- propagate it now to the full type declaration.
18178 if Is_CPP_Class
(Priv_T
) then
18179 Set_Is_CPP_Class
(Full_T
);
18180 Set_Convention
(Full_T
, Convention_CPP
);
18182 -- Check that components of imported CPP types do not have default
18185 Check_CPP_Type_Has_No_Defaults
(Full_T
);
18188 -- If the private view has user specified stream attributes, then so has
18191 -- Why the test, how could these flags be already set in Full_T ???
18193 if Has_Specified_Stream_Read
(Priv_T
) then
18194 Set_Has_Specified_Stream_Read
(Full_T
);
18197 if Has_Specified_Stream_Write
(Priv_T
) then
18198 Set_Has_Specified_Stream_Write
(Full_T
);
18201 if Has_Specified_Stream_Input
(Priv_T
) then
18202 Set_Has_Specified_Stream_Input
(Full_T
);
18205 if Has_Specified_Stream_Output
(Priv_T
) then
18206 Set_Has_Specified_Stream_Output
(Full_T
);
18209 -- Propagate invariants to full type
18211 if Has_Invariants
(Priv_T
) then
18212 Set_Has_Invariants
(Full_T
);
18213 Set_Invariant_Procedure
(Full_T
, Invariant_Procedure
(Priv_T
));
18216 if Has_Inheritable_Invariants
(Priv_T
) then
18217 Set_Has_Inheritable_Invariants
(Full_T
);
18220 -- Propagate predicates to full type
18222 if Has_Predicates
(Priv_T
) then
18223 Set_Predicate_Function
(Priv_T
, Predicate_Function
(Full_T
));
18224 Set_Has_Predicates
(Full_T
);
18226 end Process_Full_View
;
18228 -----------------------------------
18229 -- Process_Incomplete_Dependents --
18230 -----------------------------------
18232 procedure Process_Incomplete_Dependents
18234 Full_T
: Entity_Id
;
18237 Inc_Elmt
: Elmt_Id
;
18238 Priv_Dep
: Entity_Id
;
18239 New_Subt
: Entity_Id
;
18241 Disc_Constraint
: Elist_Id
;
18244 if No
(Private_Dependents
(Inc_T
)) then
18248 -- Itypes that may be generated by the completion of an incomplete
18249 -- subtype are not used by the back-end and not attached to the tree.
18250 -- They are created only for constraint-checking purposes.
18252 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
18253 while Present
(Inc_Elmt
) loop
18254 Priv_Dep
:= Node
(Inc_Elmt
);
18256 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
18258 -- An Access_To_Subprogram type may have a return type or a
18259 -- parameter type that is incomplete. Replace with the full view.
18261 if Etype
(Priv_Dep
) = Inc_T
then
18262 Set_Etype
(Priv_Dep
, Full_T
);
18266 Formal
: Entity_Id
;
18269 Formal
:= First_Formal
(Priv_Dep
);
18270 while Present
(Formal
) loop
18271 if Etype
(Formal
) = Inc_T
then
18272 Set_Etype
(Formal
, Full_T
);
18275 Next_Formal
(Formal
);
18279 elsif Is_Overloadable
(Priv_Dep
) then
18281 -- If a subprogram in the incomplete dependents list is primitive
18282 -- for a tagged full type then mark it as a dispatching operation,
18283 -- check whether it overrides an inherited subprogram, and check
18284 -- restrictions on its controlling formals. Note that a protected
18285 -- operation is never dispatching: only its wrapper operation
18286 -- (which has convention Ada) is.
18288 if Is_Tagged_Type
(Full_T
)
18289 and then Is_Primitive
(Priv_Dep
)
18290 and then Convention
(Priv_Dep
) /= Convention_Protected
18292 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
18293 Set_Is_Dispatching_Operation
(Priv_Dep
);
18294 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
18297 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
18299 -- Can happen during processing of a body before the completion
18300 -- of a TA type. Ignore, because spec is also on dependent list.
18304 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
18305 -- corresponding subtype of the full view.
18307 elsif Ekind
(Priv_Dep
) = E_Incomplete_Subtype
then
18308 Set_Subtype_Indication
18309 (Parent
(Priv_Dep
), New_Reference_To
(Full_T
, Sloc
(Priv_Dep
)));
18310 Set_Etype
(Priv_Dep
, Full_T
);
18311 Set_Ekind
(Priv_Dep
, Subtype_Kind
(Ekind
(Full_T
)));
18312 Set_Analyzed
(Parent
(Priv_Dep
), False);
18314 -- Reanalyze the declaration, suppressing the call to
18315 -- Enter_Name to avoid duplicate names.
18317 Analyze_Subtype_Declaration
18318 (N
=> Parent
(Priv_Dep
),
18321 -- Dependent is a subtype
18324 -- We build a new subtype indication using the full view of the
18325 -- incomplete parent. The discriminant constraints have been
18326 -- elaborated already at the point of the subtype declaration.
18328 New_Subt
:= Create_Itype
(E_Void
, N
);
18330 if Has_Discriminants
(Full_T
) then
18331 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
18333 Disc_Constraint
:= No_Elist
;
18336 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
18337 Set_Full_View
(Priv_Dep
, New_Subt
);
18340 Next_Elmt
(Inc_Elmt
);
18342 end Process_Incomplete_Dependents
;
18344 --------------------------------
18345 -- Process_Range_Expr_In_Decl --
18346 --------------------------------
18348 procedure Process_Range_Expr_In_Decl
18351 Check_List
: List_Id
:= Empty_List
;
18352 R_Check_Off
: Boolean := False;
18353 In_Iter_Schm
: Boolean := False)
18356 R_Checks
: Check_Result
;
18357 Insert_Node
: Node_Id
;
18358 Def_Id
: Entity_Id
;
18361 Analyze_And_Resolve
(R
, Base_Type
(T
));
18363 if Nkind
(R
) = N_Range
then
18365 -- In SPARK, all ranges should be static, with the exception of the
18366 -- discrete type definition of a loop parameter specification.
18368 if not In_Iter_Schm
18369 and then not Is_Static_Range
(R
)
18371 Check_SPARK_Restriction
("range should be static", R
);
18374 Lo
:= Low_Bound
(R
);
18375 Hi
:= High_Bound
(R
);
18377 -- We need to ensure validity of the bounds here, because if we
18378 -- go ahead and do the expansion, then the expanded code will get
18379 -- analyzed with range checks suppressed and we miss the check.
18381 Validity_Check_Range
(R
);
18383 -- If there were errors in the declaration, try and patch up some
18384 -- common mistakes in the bounds. The cases handled are literals
18385 -- which are Integer where the expected type is Real and vice versa.
18386 -- These corrections allow the compilation process to proceed further
18387 -- along since some basic assumptions of the format of the bounds
18390 if Etype
(R
) = Any_Type
then
18392 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
18394 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
18396 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
18398 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
18400 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
18402 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
18404 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
18406 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
18413 -- If the bounds of the range have been mistakenly given as string
18414 -- literals (perhaps in place of character literals), then an error
18415 -- has already been reported, but we rewrite the string literal as a
18416 -- bound of the range's type to avoid blowups in later processing
18417 -- that looks at static values.
18419 if Nkind
(Lo
) = N_String_Literal
then
18421 Make_Attribute_Reference
(Sloc
(Lo
),
18422 Attribute_Name
=> Name_First
,
18423 Prefix
=> New_Reference_To
(T
, Sloc
(Lo
))));
18424 Analyze_And_Resolve
(Lo
);
18427 if Nkind
(Hi
) = N_String_Literal
then
18429 Make_Attribute_Reference
(Sloc
(Hi
),
18430 Attribute_Name
=> Name_First
,
18431 Prefix
=> New_Reference_To
(T
, Sloc
(Hi
))));
18432 Analyze_And_Resolve
(Hi
);
18435 -- If bounds aren't scalar at this point then exit, avoiding
18436 -- problems with further processing of the range in this procedure.
18438 if not Is_Scalar_Type
(Etype
(Lo
)) then
18442 -- Resolve (actually Sem_Eval) has checked that the bounds are in
18443 -- then range of the base type. Here we check whether the bounds
18444 -- are in the range of the subtype itself. Note that if the bounds
18445 -- represent the null range the Constraint_Error exception should
18448 -- ??? The following code should be cleaned up as follows
18450 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
18451 -- is done in the call to Range_Check (R, T); below
18453 -- 2. The use of R_Check_Off should be investigated and possibly
18454 -- removed, this would clean up things a bit.
18456 if Is_Null_Range
(Lo
, Hi
) then
18460 -- Capture values of bounds and generate temporaries for them
18461 -- if needed, before applying checks, since checks may cause
18462 -- duplication of the expression without forcing evaluation.
18464 -- The forced evaluation removes side effects from expressions,
18465 -- which should occur also in Alfa mode. Otherwise, we end up with
18466 -- unexpected insertions of actions at places where this is not
18467 -- supposed to occur, e.g. on default parameters of a call.
18469 if Expander_Active
then
18470 Force_Evaluation
(Lo
);
18471 Force_Evaluation
(Hi
);
18474 -- We use a flag here instead of suppressing checks on the
18475 -- type because the type we check against isn't necessarily
18476 -- the place where we put the check.
18478 if not R_Check_Off
then
18479 R_Checks
:= Get_Range_Checks
(R
, T
);
18481 -- Look up tree to find an appropriate insertion point. We
18482 -- can't just use insert_actions because later processing
18483 -- depends on the insertion node. Prior to Ada 2012 the
18484 -- insertion point could only be a declaration or a loop, but
18485 -- quantified expressions can appear within any context in an
18486 -- expression, and the insertion point can be any statement,
18487 -- pragma, or declaration.
18489 Insert_Node
:= Parent
(R
);
18490 while Present
(Insert_Node
) loop
18492 Nkind
(Insert_Node
) in N_Declaration
18495 (Insert_Node
, N_Component_Declaration
,
18496 N_Loop_Parameter_Specification
,
18497 N_Function_Specification
,
18498 N_Procedure_Specification
);
18500 exit when Nkind
(Insert_Node
) in N_Later_Decl_Item
18501 or else Nkind
(Insert_Node
) in
18502 N_Statement_Other_Than_Procedure_Call
18503 or else Nkind_In
(Insert_Node
, N_Procedure_Call_Statement
,
18506 Insert_Node
:= Parent
(Insert_Node
);
18509 -- Why would Type_Decl not be present??? Without this test,
18510 -- short regression tests fail.
18512 if Present
(Insert_Node
) then
18514 -- Case of loop statement. Verify that the range is part
18515 -- of the subtype indication of the iteration scheme.
18517 if Nkind
(Insert_Node
) = N_Loop_Statement
then
18522 Indic
:= Parent
(R
);
18523 while Present
(Indic
)
18524 and then Nkind
(Indic
) /= N_Subtype_Indication
18526 Indic
:= Parent
(Indic
);
18529 if Present
(Indic
) then
18530 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
18532 Insert_Range_Checks
18536 Sloc
(Insert_Node
),
18538 Do_Before
=> True);
18542 -- Insertion before a declaration. If the declaration
18543 -- includes discriminants, the list of applicable checks
18544 -- is given by the caller.
18546 elsif Nkind
(Insert_Node
) in N_Declaration
then
18547 Def_Id
:= Defining_Identifier
(Insert_Node
);
18549 if (Ekind
(Def_Id
) = E_Record_Type
18550 and then Depends_On_Discriminant
(R
))
18552 (Ekind
(Def_Id
) = E_Protected_Type
18553 and then Has_Discriminants
(Def_Id
))
18555 Append_Range_Checks
18557 Check_List
, Def_Id
, Sloc
(Insert_Node
), R
);
18560 Insert_Range_Checks
18562 Insert_Node
, Def_Id
, Sloc
(Insert_Node
), R
);
18566 -- Insertion before a statement. Range appears in the
18567 -- context of a quantified expression. Insertion will
18568 -- take place when expression is expanded.
18577 -- Case of other than an explicit N_Range node
18579 -- The forced evaluation removes side effects from expressions, which
18580 -- should occur also in Alfa mode. Otherwise, we end up with unexpected
18581 -- insertions of actions at places where this is not supposed to occur,
18582 -- e.g. on default parameters of a call.
18584 elsif Expander_Active
then
18585 Get_Index_Bounds
(R
, Lo
, Hi
);
18586 Force_Evaluation
(Lo
);
18587 Force_Evaluation
(Hi
);
18589 end Process_Range_Expr_In_Decl
;
18591 --------------------------------------
18592 -- Process_Real_Range_Specification --
18593 --------------------------------------
18595 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
18596 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
18599 Err
: Boolean := False;
18601 procedure Analyze_Bound
(N
: Node_Id
);
18602 -- Analyze and check one bound
18604 -------------------
18605 -- Analyze_Bound --
18606 -------------------
18608 procedure Analyze_Bound
(N
: Node_Id
) is
18610 Analyze_And_Resolve
(N
, Any_Real
);
18612 if not Is_OK_Static_Expression
(N
) then
18613 Flag_Non_Static_Expr
18614 ("bound in real type definition is not static!", N
);
18619 -- Start of processing for Process_Real_Range_Specification
18622 if Present
(Spec
) then
18623 Lo
:= Low_Bound
(Spec
);
18624 Hi
:= High_Bound
(Spec
);
18625 Analyze_Bound
(Lo
);
18626 Analyze_Bound
(Hi
);
18628 -- If error, clear away junk range specification
18631 Set_Real_Range_Specification
(Def
, Empty
);
18634 end Process_Real_Range_Specification
;
18636 ---------------------
18637 -- Process_Subtype --
18638 ---------------------
18640 function Process_Subtype
18642 Related_Nod
: Node_Id
;
18643 Related_Id
: Entity_Id
:= Empty
;
18644 Suffix
: Character := ' ') return Entity_Id
18647 Def_Id
: Entity_Id
;
18648 Error_Node
: Node_Id
;
18649 Full_View_Id
: Entity_Id
;
18650 Subtype_Mark_Id
: Entity_Id
;
18652 May_Have_Null_Exclusion
: Boolean;
18654 procedure Check_Incomplete
(T
: Entity_Id
);
18655 -- Called to verify that an incomplete type is not used prematurely
18657 ----------------------
18658 -- Check_Incomplete --
18659 ----------------------
18661 procedure Check_Incomplete
(T
: Entity_Id
) is
18663 -- Ada 2005 (AI-412): Incomplete subtypes are legal
18665 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
18667 not (Ada_Version
>= Ada_2005
18669 (Nkind
(Parent
(T
)) = N_Subtype_Declaration
18671 (Nkind
(Parent
(T
)) = N_Subtype_Indication
18672 and then Nkind
(Parent
(Parent
(T
))) =
18673 N_Subtype_Declaration
)))
18675 Error_Msg_N
("invalid use of type before its full declaration", T
);
18677 end Check_Incomplete
;
18679 -- Start of processing for Process_Subtype
18682 -- Case of no constraints present
18684 if Nkind
(S
) /= N_Subtype_Indication
then
18686 Check_Incomplete
(S
);
18689 -- Ada 2005 (AI-231): Static check
18691 if Ada_Version
>= Ada_2005
18692 and then Present
(P
)
18693 and then Null_Exclusion_Present
(P
)
18694 and then Nkind
(P
) /= N_Access_To_Object_Definition
18695 and then not Is_Access_Type
(Entity
(S
))
18697 Error_Msg_N
("`NOT NULL` only allowed for an access type", S
);
18700 -- The following is ugly, can't we have a range or even a flag???
18702 May_Have_Null_Exclusion
:=
18703 Nkind_In
(P
, N_Access_Definition
,
18704 N_Access_Function_Definition
,
18705 N_Access_Procedure_Definition
,
18706 N_Access_To_Object_Definition
,
18708 N_Component_Definition
)
18710 Nkind_In
(P
, N_Derived_Type_Definition
,
18711 N_Discriminant_Specification
,
18712 N_Formal_Object_Declaration
,
18713 N_Object_Declaration
,
18714 N_Object_Renaming_Declaration
,
18715 N_Parameter_Specification
,
18716 N_Subtype_Declaration
);
18718 -- Create an Itype that is a duplicate of Entity (S) but with the
18719 -- null-exclusion attribute.
18721 if May_Have_Null_Exclusion
18722 and then Is_Access_Type
(Entity
(S
))
18723 and then Null_Exclusion_Present
(P
)
18725 -- No need to check the case of an access to object definition.
18726 -- It is correct to define double not-null pointers.
18729 -- type Not_Null_Int_Ptr is not null access Integer;
18730 -- type Acc is not null access Not_Null_Int_Ptr;
18732 and then Nkind
(P
) /= N_Access_To_Object_Definition
18734 if Can_Never_Be_Null
(Entity
(S
)) then
18735 case Nkind
(Related_Nod
) is
18736 when N_Full_Type_Declaration
=>
18737 if Nkind
(Type_Definition
(Related_Nod
))
18738 in N_Array_Type_Definition
18742 (Component_Definition
18743 (Type_Definition
(Related_Nod
)));
18746 Subtype_Indication
(Type_Definition
(Related_Nod
));
18749 when N_Subtype_Declaration
=>
18750 Error_Node
:= Subtype_Indication
(Related_Nod
);
18752 when N_Object_Declaration
=>
18753 Error_Node
:= Object_Definition
(Related_Nod
);
18755 when N_Component_Declaration
=>
18757 Subtype_Indication
(Component_Definition
(Related_Nod
));
18759 when N_Allocator
=>
18760 Error_Node
:= Expression
(Related_Nod
);
18763 pragma Assert
(False);
18764 Error_Node
:= Related_Nod
;
18768 ("`NOT NULL` not allowed (& already excludes null)",
18774 Create_Null_Excluding_Itype
18776 Related_Nod
=> P
));
18777 Set_Entity
(S
, Etype
(S
));
18782 -- Case of constraint present, so that we have an N_Subtype_Indication
18783 -- node (this node is created only if constraints are present).
18786 Find_Type
(Subtype_Mark
(S
));
18788 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
18790 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
18791 and then Is_Itype
(Defining_Identifier
(Parent
(S
))))
18793 Check_Incomplete
(Subtype_Mark
(S
));
18797 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
18799 -- Explicit subtype declaration case
18801 if Nkind
(P
) = N_Subtype_Declaration
then
18802 Def_Id
:= Defining_Identifier
(P
);
18804 -- Explicit derived type definition case
18806 elsif Nkind
(P
) = N_Derived_Type_Definition
then
18807 Def_Id
:= Defining_Identifier
(Parent
(P
));
18809 -- Implicit case, the Def_Id must be created as an implicit type.
18810 -- The one exception arises in the case of concurrent types, array
18811 -- and access types, where other subsidiary implicit types may be
18812 -- created and must appear before the main implicit type. In these
18813 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
18814 -- has not yet been called to create Def_Id.
18817 if Is_Array_Type
(Subtype_Mark_Id
)
18818 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
18819 or else Is_Access_Type
(Subtype_Mark_Id
)
18823 -- For the other cases, we create a new unattached Itype,
18824 -- and set the indication to ensure it gets attached later.
18828 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
18832 -- If the kind of constraint is invalid for this kind of type,
18833 -- then give an error, and then pretend no constraint was given.
18835 if not Is_Valid_Constraint_Kind
18836 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
18839 ("incorrect constraint for this kind of type", Constraint
(S
));
18841 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
18843 -- Set Ekind of orphan itype, to prevent cascaded errors
18845 if Present
(Def_Id
) then
18846 Set_Ekind
(Def_Id
, Ekind
(Any_Type
));
18849 -- Make recursive call, having got rid of the bogus constraint
18851 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
18854 -- Remaining processing depends on type. Select on Base_Type kind to
18855 -- ensure getting to the concrete type kind in the case of a private
18856 -- subtype (needed when only doing semantic analysis).
18858 case Ekind
(Base_Type
(Subtype_Mark_Id
)) is
18859 when Access_Kind
=>
18860 Constrain_Access
(Def_Id
, S
, Related_Nod
);
18863 and then Is_Itype
(Designated_Type
(Def_Id
))
18864 and then Nkind
(Related_Nod
) = N_Subtype_Declaration
18865 and then not Is_Incomplete_Type
(Designated_Type
(Def_Id
))
18867 Build_Itype_Reference
18868 (Designated_Type
(Def_Id
), Related_Nod
);
18872 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
18874 when Decimal_Fixed_Point_Kind
=>
18875 Constrain_Decimal
(Def_Id
, S
);
18877 when Enumeration_Kind
=>
18878 Constrain_Enumeration
(Def_Id
, S
);
18880 when Ordinary_Fixed_Point_Kind
=>
18881 Constrain_Ordinary_Fixed
(Def_Id
, S
);
18884 Constrain_Float
(Def_Id
, S
);
18886 when Integer_Kind
=>
18887 Constrain_Integer
(Def_Id
, S
);
18889 when E_Record_Type |
18892 E_Incomplete_Type
=>
18893 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
18895 if Ekind
(Def_Id
) = E_Incomplete_Type
then
18896 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
18899 when Private_Kind
=>
18900 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
18901 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
18903 -- In case of an invalid constraint prevent further processing
18904 -- since the type constructed is missing expected fields.
18906 if Etype
(Def_Id
) = Any_Type
then
18910 -- If the full view is that of a task with discriminants,
18911 -- we must constrain both the concurrent type and its
18912 -- corresponding record type. Otherwise we will just propagate
18913 -- the constraint to the full view, if available.
18915 if Present
(Full_View
(Subtype_Mark_Id
))
18916 and then Has_Discriminants
(Subtype_Mark_Id
)
18917 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
18920 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
18922 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
18923 Constrain_Concurrent
(Full_View_Id
, S
,
18924 Related_Nod
, Related_Id
, Suffix
);
18925 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
18926 Set_Full_View
(Def_Id
, Full_View_Id
);
18928 -- Introduce an explicit reference to the private subtype,
18929 -- to prevent scope anomalies in gigi if first use appears
18930 -- in a nested context, e.g. a later function body.
18931 -- Should this be generated in other contexts than a full
18932 -- type declaration?
18934 if Is_Itype
(Def_Id
)
18936 Nkind
(Parent
(P
)) = N_Full_Type_Declaration
18938 Build_Itype_Reference
(Def_Id
, Parent
(P
));
18942 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
18945 when Concurrent_Kind
=>
18946 Constrain_Concurrent
(Def_Id
, S
,
18947 Related_Nod
, Related_Id
, Suffix
);
18950 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
18953 -- Size and Convention are always inherited from the base type
18955 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
18956 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
18960 end Process_Subtype
;
18962 ---------------------------------------
18963 -- Check_Anonymous_Access_Components --
18964 ---------------------------------------
18966 procedure Check_Anonymous_Access_Components
18967 (Typ_Decl
: Node_Id
;
18970 Comp_List
: Node_Id
)
18972 Loc
: constant Source_Ptr
:= Sloc
(Typ_Decl
);
18973 Anon_Access
: Entity_Id
;
18976 Comp_Def
: Node_Id
;
18978 Type_Def
: Node_Id
;
18980 procedure Build_Incomplete_Type_Declaration
;
18981 -- If the record type contains components that include an access to the
18982 -- current record, then create an incomplete type declaration for the
18983 -- record, to be used as the designated type of the anonymous access.
18984 -- This is done only once, and only if there is no previous partial
18985 -- view of the type.
18987 function Designates_T
(Subt
: Node_Id
) return Boolean;
18988 -- Check whether a node designates the enclosing record type, or 'Class
18991 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean;
18992 -- Check whether an access definition includes a reference to
18993 -- the enclosing record type. The reference can be a subtype mark
18994 -- in the access definition itself, a 'Class attribute reference, or
18995 -- recursively a reference appearing in a parameter specification
18996 -- or result definition of an access_to_subprogram definition.
18998 --------------------------------------
18999 -- Build_Incomplete_Type_Declaration --
19000 --------------------------------------
19002 procedure Build_Incomplete_Type_Declaration
is
19007 -- Is_Tagged indicates whether the type is tagged. It is tagged if
19008 -- it's "is new ... with record" or else "is tagged record ...".
19010 Is_Tagged
: constant Boolean :=
19011 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Derived_Type_Definition
19014 (Record_Extension_Part
(Type_Definition
(Typ_Decl
))))
19016 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Record_Definition
19017 and then Tagged_Present
(Type_Definition
(Typ_Decl
)));
19020 -- If there is a previous partial view, no need to create a new one
19021 -- If the partial view, given by Prev, is incomplete, If Prev is
19022 -- a private declaration, full declaration is flagged accordingly.
19024 if Prev
/= Typ
then
19026 Make_Class_Wide_Type
(Prev
);
19027 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Prev
));
19028 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
19033 elsif Has_Private_Declaration
(Typ
) then
19035 -- If we refer to T'Class inside T, and T is the completion of a
19036 -- private type, then we need to make sure the class-wide type
19040 Make_Class_Wide_Type
(Typ
);
19045 -- If there was a previous anonymous access type, the incomplete
19046 -- type declaration will have been created already.
19048 elsif Present
(Current_Entity
(Typ
))
19049 and then Ekind
(Current_Entity
(Typ
)) = E_Incomplete_Type
19050 and then Full_View
(Current_Entity
(Typ
)) = Typ
19053 and then Comes_From_Source
(Current_Entity
(Typ
))
19054 and then not Is_Tagged_Type
(Current_Entity
(Typ
))
19056 Make_Class_Wide_Type
(Typ
);
19058 ("incomplete view of tagged type should be declared tagged?",
19059 Parent
(Current_Entity
(Typ
)));
19064 Inc_T
:= Make_Defining_Identifier
(Loc
, Chars
(Typ
));
19065 Decl
:= Make_Incomplete_Type_Declaration
(Loc
, Inc_T
);
19067 -- Type has already been inserted into the current scope. Remove
19068 -- it, and add incomplete declaration for type, so that subsequent
19069 -- anonymous access types can use it. The entity is unchained from
19070 -- the homonym list and from immediate visibility. After analysis,
19071 -- the entity in the incomplete declaration becomes immediately
19072 -- visible in the record declaration that follows.
19074 H
:= Current_Entity
(Typ
);
19077 Set_Name_Entity_Id
(Chars
(Typ
), Homonym
(Typ
));
19080 and then Homonym
(H
) /= Typ
19082 H
:= Homonym
(Typ
);
19085 Set_Homonym
(H
, Homonym
(Typ
));
19088 Insert_Before
(Typ_Decl
, Decl
);
19090 Set_Full_View
(Inc_T
, Typ
);
19094 -- Create a common class-wide type for both views, and set the
19095 -- Etype of the class-wide type to the full view.
19097 Make_Class_Wide_Type
(Inc_T
);
19098 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Inc_T
));
19099 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
19102 end Build_Incomplete_Type_Declaration
;
19108 function Designates_T
(Subt
: Node_Id
) return Boolean is
19109 Type_Id
: constant Name_Id
:= Chars
(Typ
);
19111 function Names_T
(Nam
: Node_Id
) return Boolean;
19112 -- The record type has not been introduced in the current scope
19113 -- yet, so we must examine the name of the type itself, either
19114 -- an identifier T, or an expanded name of the form P.T, where
19115 -- P denotes the current scope.
19121 function Names_T
(Nam
: Node_Id
) return Boolean is
19123 if Nkind
(Nam
) = N_Identifier
then
19124 return Chars
(Nam
) = Type_Id
;
19126 elsif Nkind
(Nam
) = N_Selected_Component
then
19127 if Chars
(Selector_Name
(Nam
)) = Type_Id
then
19128 if Nkind
(Prefix
(Nam
)) = N_Identifier
then
19129 return Chars
(Prefix
(Nam
)) = Chars
(Current_Scope
);
19131 elsif Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
19132 return Chars
(Selector_Name
(Prefix
(Nam
))) =
19133 Chars
(Current_Scope
);
19147 -- Start of processing for Designates_T
19150 if Nkind
(Subt
) = N_Identifier
then
19151 return Chars
(Subt
) = Type_Id
;
19153 -- Reference can be through an expanded name which has not been
19154 -- analyzed yet, and which designates enclosing scopes.
19156 elsif Nkind
(Subt
) = N_Selected_Component
then
19157 if Names_T
(Subt
) then
19160 -- Otherwise it must denote an entity that is already visible.
19161 -- The access definition may name a subtype of the enclosing
19162 -- type, if there is a previous incomplete declaration for it.
19165 Find_Selected_Component
(Subt
);
19167 Is_Entity_Name
(Subt
)
19168 and then Scope
(Entity
(Subt
)) = Current_Scope
19170 (Chars
(Base_Type
(Entity
(Subt
))) = Type_Id
19172 (Is_Class_Wide_Type
(Entity
(Subt
))
19174 Chars
(Etype
(Base_Type
(Entity
(Subt
)))) =
19178 -- A reference to the current type may appear as the prefix of
19179 -- a 'Class attribute.
19181 elsif Nkind
(Subt
) = N_Attribute_Reference
19182 and then Attribute_Name
(Subt
) = Name_Class
19184 return Names_T
(Prefix
(Subt
));
19195 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean is
19196 Param_Spec
: Node_Id
;
19198 Acc_Subprg
: constant Node_Id
:=
19199 Access_To_Subprogram_Definition
(Acc_Def
);
19202 if No
(Acc_Subprg
) then
19203 return Designates_T
(Subtype_Mark
(Acc_Def
));
19206 -- Component is an access_to_subprogram: examine its formals,
19207 -- and result definition in the case of an access_to_function.
19209 Param_Spec
:= First
(Parameter_Specifications
(Acc_Subprg
));
19210 while Present
(Param_Spec
) loop
19211 if Nkind
(Parameter_Type
(Param_Spec
)) = N_Access_Definition
19212 and then Mentions_T
(Parameter_Type
(Param_Spec
))
19216 elsif Designates_T
(Parameter_Type
(Param_Spec
)) then
19223 if Nkind
(Acc_Subprg
) = N_Access_Function_Definition
then
19224 if Nkind
(Result_Definition
(Acc_Subprg
)) =
19225 N_Access_Definition
19227 return Mentions_T
(Result_Definition
(Acc_Subprg
));
19229 return Designates_T
(Result_Definition
(Acc_Subprg
));
19236 -- Start of processing for Check_Anonymous_Access_Components
19239 if No
(Comp_List
) then
19243 Comp
:= First
(Component_Items
(Comp_List
));
19244 while Present
(Comp
) loop
19245 if Nkind
(Comp
) = N_Component_Declaration
19247 (Access_Definition
(Component_Definition
(Comp
)))
19249 Mentions_T
(Access_Definition
(Component_Definition
(Comp
)))
19251 Comp_Def
:= Component_Definition
(Comp
);
19253 Access_To_Subprogram_Definition
19254 (Access_Definition
(Comp_Def
));
19256 Build_Incomplete_Type_Declaration
;
19257 Anon_Access
:= Make_Temporary
(Loc
, 'S');
19259 -- Create a declaration for the anonymous access type: either
19260 -- an access_to_object or an access_to_subprogram.
19262 if Present
(Acc_Def
) then
19263 if Nkind
(Acc_Def
) = N_Access_Function_Definition
then
19265 Make_Access_Function_Definition
(Loc
,
19266 Parameter_Specifications
=>
19267 Parameter_Specifications
(Acc_Def
),
19268 Result_Definition
=> Result_Definition
(Acc_Def
));
19271 Make_Access_Procedure_Definition
(Loc
,
19272 Parameter_Specifications
=>
19273 Parameter_Specifications
(Acc_Def
));
19278 Make_Access_To_Object_Definition
(Loc
,
19279 Subtype_Indication
=>
19282 (Access_Definition
(Comp_Def
))));
19284 Set_Constant_Present
19285 (Type_Def
, Constant_Present
(Access_Definition
(Comp_Def
)));
19287 (Type_Def
, All_Present
(Access_Definition
(Comp_Def
)));
19290 Set_Null_Exclusion_Present
19292 Null_Exclusion_Present
(Access_Definition
(Comp_Def
)));
19295 Make_Full_Type_Declaration
(Loc
,
19296 Defining_Identifier
=> Anon_Access
,
19297 Type_Definition
=> Type_Def
);
19299 Insert_Before
(Typ_Decl
, Decl
);
19302 -- If an access to subprogram, create the extra formals
19304 if Present
(Acc_Def
) then
19305 Create_Extra_Formals
(Designated_Type
(Anon_Access
));
19307 -- If an access to object, preserve entity of designated type,
19308 -- for ASIS use, before rewriting the component definition.
19315 Desig
:= Entity
(Subtype_Indication
(Type_Def
));
19317 -- If the access definition is to the current record,
19318 -- the visible entity at this point is an incomplete
19319 -- type. Retrieve the full view to simplify ASIS queries
19321 if Ekind
(Desig
) = E_Incomplete_Type
then
19322 Desig
:= Full_View
(Desig
);
19326 (Subtype_Mark
(Access_Definition
(Comp_Def
)), Desig
);
19331 Make_Component_Definition
(Loc
,
19332 Subtype_Indication
=>
19333 New_Occurrence_Of
(Anon_Access
, Loc
)));
19335 if Ekind
(Designated_Type
(Anon_Access
)) = E_Subprogram_Type
then
19336 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Subprogram_Type
);
19338 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Type
);
19341 Set_Is_Local_Anonymous_Access
(Anon_Access
);
19347 if Present
(Variant_Part
(Comp_List
)) then
19351 V
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
19352 while Present
(V
) loop
19353 Check_Anonymous_Access_Components
19354 (Typ_Decl
, Typ
, Prev
, Component_List
(V
));
19355 Next_Non_Pragma
(V
);
19359 end Check_Anonymous_Access_Components
;
19361 --------------------------------
19362 -- Preanalyze_Spec_Expression --
19363 --------------------------------
19365 procedure Preanalyze_Spec_Expression
(N
: Node_Id
; T
: Entity_Id
) is
19366 Save_In_Spec_Expression
: constant Boolean := In_Spec_Expression
;
19368 In_Spec_Expression
:= True;
19369 Preanalyze_And_Resolve
(N
, T
);
19370 In_Spec_Expression
:= Save_In_Spec_Expression
;
19371 end Preanalyze_Spec_Expression
;
19373 -----------------------------
19374 -- Record_Type_Declaration --
19375 -----------------------------
19377 procedure Record_Type_Declaration
19382 Def
: constant Node_Id
:= Type_Definition
(N
);
19383 Is_Tagged
: Boolean;
19384 Tag_Comp
: Entity_Id
;
19387 -- These flags must be initialized before calling Process_Discriminants
19388 -- because this routine makes use of them.
19390 Set_Ekind
(T
, E_Record_Type
);
19392 Init_Size_Align
(T
);
19393 Set_Interfaces
(T
, No_Elist
);
19394 Set_Stored_Constraint
(T
, No_Elist
);
19398 if Ada_Version
< Ada_2005
19399 or else not Interface_Present
(Def
)
19401 if Limited_Present
(Def
) then
19402 Check_SPARK_Restriction
("limited is not allowed", N
);
19405 if Abstract_Present
(Def
) then
19406 Check_SPARK_Restriction
("abstract is not allowed", N
);
19409 -- The flag Is_Tagged_Type might have already been set by
19410 -- Find_Type_Name if it detected an error for declaration T. This
19411 -- arises in the case of private tagged types where the full view
19412 -- omits the word tagged.
19415 Tagged_Present
(Def
)
19416 or else (Serious_Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
19418 Set_Is_Tagged_Type
(T
, Is_Tagged
);
19419 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
19421 -- Type is abstract if full declaration carries keyword, or if
19422 -- previous partial view did.
19424 Set_Is_Abstract_Type
(T
, Is_Abstract_Type
(T
)
19425 or else Abstract_Present
(Def
));
19428 Check_SPARK_Restriction
("interface is not allowed", N
);
19431 Analyze_Interface_Declaration
(T
, Def
);
19433 if Present
(Discriminant_Specifications
(N
)) then
19435 ("interface types cannot have discriminants",
19436 Defining_Identifier
19437 (First
(Discriminant_Specifications
(N
))));
19441 -- First pass: if there are self-referential access components,
19442 -- create the required anonymous access type declarations, and if
19443 -- need be an incomplete type declaration for T itself.
19445 Check_Anonymous_Access_Components
(N
, T
, Prev
, Component_List
(Def
));
19447 if Ada_Version
>= Ada_2005
19448 and then Present
(Interface_List
(Def
))
19450 Check_Interfaces
(N
, Def
);
19453 Ifaces_List
: Elist_Id
;
19456 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
19457 -- already in the parents.
19461 Ifaces_List
=> Ifaces_List
,
19462 Exclude_Parents
=> True);
19464 Set_Interfaces
(T
, Ifaces_List
);
19468 -- Records constitute a scope for the component declarations within.
19469 -- The scope is created prior to the processing of these declarations.
19470 -- Discriminants are processed first, so that they are visible when
19471 -- processing the other components. The Ekind of the record type itself
19472 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
19474 -- Enter record scope
19478 -- If an incomplete or private type declaration was already given for
19479 -- the type, then this scope already exists, and the discriminants have
19480 -- been declared within. We must verify that the full declaration
19481 -- matches the incomplete one.
19483 Check_Or_Process_Discriminants
(N
, T
, Prev
);
19485 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
19486 Set_Has_Delayed_Freeze
(T
, True);
19488 -- For tagged types add a manually analyzed component corresponding
19489 -- to the component _tag, the corresponding piece of tree will be
19490 -- expanded as part of the freezing actions if it is not a CPP_Class.
19494 -- Do not add the tag unless we are in expansion mode
19496 if Expander_Active
then
19497 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
19498 Enter_Name
(Tag_Comp
);
19500 Set_Ekind
(Tag_Comp
, E_Component
);
19501 Set_Is_Tag
(Tag_Comp
);
19502 Set_Is_Aliased
(Tag_Comp
);
19503 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
19504 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
19505 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
19506 Init_Component_Location
(Tag_Comp
);
19508 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
19509 -- implemented interfaces.
19511 if Has_Interfaces
(T
) then
19512 Add_Interface_Tag_Components
(N
, T
);
19516 Make_Class_Wide_Type
(T
);
19517 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
19520 -- We must suppress range checks when processing record components in
19521 -- the presence of discriminants, since we don't want spurious checks to
19522 -- be generated during their analysis, but Suppress_Range_Checks flags
19523 -- must be reset the after processing the record definition.
19525 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
19526 -- couldn't we just use the normal range check suppression method here.
19527 -- That would seem cleaner ???
19529 if Has_Discriminants
(T
) and then not Range_Checks_Suppressed
(T
) then
19530 Set_Kill_Range_Checks
(T
, True);
19531 Record_Type_Definition
(Def
, Prev
);
19532 Set_Kill_Range_Checks
(T
, False);
19534 Record_Type_Definition
(Def
, Prev
);
19537 -- Exit from record scope
19541 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
19542 -- the implemented interfaces and associate them an aliased entity.
19545 and then not Is_Empty_List
(Interface_List
(Def
))
19547 Derive_Progenitor_Subprograms
(T
, T
);
19549 end Record_Type_Declaration
;
19551 ----------------------------
19552 -- Record_Type_Definition --
19553 ----------------------------
19555 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
) is
19556 Component
: Entity_Id
;
19557 Ctrl_Components
: Boolean := False;
19558 Final_Storage_Only
: Boolean;
19562 if Ekind
(Prev_T
) = E_Incomplete_Type
then
19563 T
:= Full_View
(Prev_T
);
19568 -- In SPARK, tagged types and type extensions may only be declared in
19569 -- the specification of library unit packages.
19571 if Present
(Def
) and then Is_Tagged_Type
(T
) then
19577 if Nkind
(Parent
(Def
)) = N_Full_Type_Declaration
then
19578 Typ
:= Parent
(Def
);
19581 (Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
);
19582 Typ
:= Parent
(Parent
(Def
));
19585 Ctxt
:= Parent
(Typ
);
19587 if Nkind
(Ctxt
) = N_Package_Body
19588 and then Nkind
(Parent
(Ctxt
)) = N_Compilation_Unit
19590 Check_SPARK_Restriction
19591 ("type should be defined in package specification", Typ
);
19593 elsif Nkind
(Ctxt
) /= N_Package_Specification
19594 or else Nkind
(Parent
(Parent
(Ctxt
))) /= N_Compilation_Unit
19596 Check_SPARK_Restriction
19597 ("type should be defined in library unit package", Typ
);
19602 Final_Storage_Only
:= not Is_Controlled
(T
);
19604 -- Ada 2005: check whether an explicit Limited is present in a derived
19605 -- type declaration.
19607 if Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
19608 and then Limited_Present
(Parent
(Def
))
19610 Set_Is_Limited_Record
(T
);
19613 -- If the component list of a record type is defined by the reserved
19614 -- word null and there is no discriminant part, then the record type has
19615 -- no components and all records of the type are null records (RM 3.7)
19616 -- This procedure is also called to process the extension part of a
19617 -- record extension, in which case the current scope may have inherited
19621 or else No
(Component_List
(Def
))
19622 or else Null_Present
(Component_List
(Def
))
19624 if not Is_Tagged_Type
(T
) then
19625 Check_SPARK_Restriction
("non-tagged record cannot be null", Def
);
19629 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
19631 if Present
(Variant_Part
(Component_List
(Def
))) then
19632 Check_SPARK_Restriction
("variant part is not allowed", Def
);
19633 Analyze
(Variant_Part
(Component_List
(Def
)));
19637 -- After completing the semantic analysis of the record definition,
19638 -- record components, both new and inherited, are accessible. Set their
19639 -- kind accordingly. Exclude malformed itypes from illegal declarations,
19640 -- whose Ekind may be void.
19642 Component
:= First_Entity
(Current_Scope
);
19643 while Present
(Component
) loop
19644 if Ekind
(Component
) = E_Void
19645 and then not Is_Itype
(Component
)
19647 Set_Ekind
(Component
, E_Component
);
19648 Init_Component_Location
(Component
);
19651 if Has_Task
(Etype
(Component
)) then
19655 if Ekind
(Component
) /= E_Component
then
19658 -- Do not set Has_Controlled_Component on a class-wide equivalent
19659 -- type. See Make_CW_Equivalent_Type.
19661 elsif not Is_Class_Wide_Equivalent_Type
(T
)
19662 and then (Has_Controlled_Component
(Etype
(Component
))
19663 or else (Chars
(Component
) /= Name_uParent
19664 and then Is_Controlled
(Etype
(Component
))))
19666 Set_Has_Controlled_Component
(T
, True);
19667 Final_Storage_Only
:=
19669 and then Finalize_Storage_Only
(Etype
(Component
));
19670 Ctrl_Components
:= True;
19673 Next_Entity
(Component
);
19676 -- A Type is Finalize_Storage_Only only if all its controlled components
19679 if Ctrl_Components
then
19680 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
19683 -- Place reference to end record on the proper entity, which may
19684 -- be a partial view.
19686 if Present
(Def
) then
19687 Process_End_Label
(Def
, 'e', Prev_T
);
19689 end Record_Type_Definition
;
19691 ------------------------
19692 -- Replace_Components --
19693 ------------------------
19695 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
) is
19696 function Process
(N
: Node_Id
) return Traverse_Result
;
19702 function Process
(N
: Node_Id
) return Traverse_Result
is
19706 if Nkind
(N
) = N_Discriminant_Specification
then
19707 Comp
:= First_Discriminant
(Typ
);
19708 while Present
(Comp
) loop
19709 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
19710 Set_Defining_Identifier
(N
, Comp
);
19714 Next_Discriminant
(Comp
);
19717 elsif Nkind
(N
) = N_Component_Declaration
then
19718 Comp
:= First_Component
(Typ
);
19719 while Present
(Comp
) loop
19720 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
19721 Set_Defining_Identifier
(N
, Comp
);
19725 Next_Component
(Comp
);
19732 procedure Replace
is new Traverse_Proc
(Process
);
19734 -- Start of processing for Replace_Components
19738 end Replace_Components
;
19740 -------------------------------
19741 -- Set_Completion_Referenced --
19742 -------------------------------
19744 procedure Set_Completion_Referenced
(E
: Entity_Id
) is
19746 -- If in main unit, mark entity that is a completion as referenced,
19747 -- warnings go on the partial view when needed.
19749 if In_Extended_Main_Source_Unit
(E
) then
19750 Set_Referenced
(E
);
19752 end Set_Completion_Referenced
;
19754 ---------------------
19755 -- Set_Fixed_Range --
19756 ---------------------
19758 -- The range for fixed-point types is complicated by the fact that we
19759 -- do not know the exact end points at the time of the declaration. This
19760 -- is true for three reasons:
19762 -- A size clause may affect the fudging of the end-points.
19763 -- A small clause may affect the values of the end-points.
19764 -- We try to include the end-points if it does not affect the size.
19766 -- This means that the actual end-points must be established at the
19767 -- point when the type is frozen. Meanwhile, we first narrow the range
19768 -- as permitted (so that it will fit if necessary in a small specified
19769 -- size), and then build a range subtree with these narrowed bounds.
19770 -- Set_Fixed_Range constructs the range from real literal values, and
19771 -- sets the range as the Scalar_Range of the given fixed-point type entity.
19773 -- The parent of this range is set to point to the entity so that it is
19774 -- properly hooked into the tree (unlike normal Scalar_Range entries for
19775 -- other scalar types, which are just pointers to the range in the
19776 -- original tree, this would otherwise be an orphan).
19778 -- The tree is left unanalyzed. When the type is frozen, the processing
19779 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
19780 -- analyzed, and uses this as an indication that it should complete
19781 -- work on the range (it will know the final small and size values).
19783 procedure Set_Fixed_Range
19789 S
: constant Node_Id
:=
19791 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
19792 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
19794 Set_Scalar_Range
(E
, S
);
19797 -- Before the freeze point, the bounds of a fixed point are universal
19798 -- and carry the corresponding type.
19800 Set_Etype
(Low_Bound
(S
), Universal_Real
);
19801 Set_Etype
(High_Bound
(S
), Universal_Real
);
19802 end Set_Fixed_Range
;
19804 ----------------------------------
19805 -- Set_Scalar_Range_For_Subtype --
19806 ----------------------------------
19808 procedure Set_Scalar_Range_For_Subtype
19809 (Def_Id
: Entity_Id
;
19813 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
19816 -- Defend against previous error
19818 if Nkind
(R
) = N_Error
then
19822 Set_Scalar_Range
(Def_Id
, R
);
19824 -- We need to link the range into the tree before resolving it so
19825 -- that types that are referenced, including importantly the subtype
19826 -- itself, are properly frozen (Freeze_Expression requires that the
19827 -- expression be properly linked into the tree). Of course if it is
19828 -- already linked in, then we do not disturb the current link.
19830 if No
(Parent
(R
)) then
19831 Set_Parent
(R
, Def_Id
);
19834 -- Reset the kind of the subtype during analysis of the range, to
19835 -- catch possible premature use in the bounds themselves.
19837 Set_Ekind
(Def_Id
, E_Void
);
19838 Process_Range_Expr_In_Decl
(R
, Subt
);
19839 Set_Ekind
(Def_Id
, Kind
);
19840 end Set_Scalar_Range_For_Subtype
;
19842 --------------------------------------------------------
19843 -- Set_Stored_Constraint_From_Discriminant_Constraint --
19844 --------------------------------------------------------
19846 procedure Set_Stored_Constraint_From_Discriminant_Constraint
19850 -- Make sure set if encountered during Expand_To_Stored_Constraint
19852 Set_Stored_Constraint
(E
, No_Elist
);
19854 -- Give it the right value
19856 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
19857 Set_Stored_Constraint
(E
,
19858 Expand_To_Stored_Constraint
(E
, Discriminant_Constraint
(E
)));
19860 end Set_Stored_Constraint_From_Discriminant_Constraint
;
19862 -------------------------------------
19863 -- Signed_Integer_Type_Declaration --
19864 -------------------------------------
19866 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
19867 Implicit_Base
: Entity_Id
;
19868 Base_Typ
: Entity_Id
;
19871 Errs
: Boolean := False;
19875 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
19876 -- Determine whether given bounds allow derivation from specified type
19878 procedure Check_Bound
(Expr
: Node_Id
);
19879 -- Check bound to make sure it is integral and static. If not, post
19880 -- appropriate error message and set Errs flag
19882 ---------------------
19883 -- Can_Derive_From --
19884 ---------------------
19886 -- Note we check both bounds against both end values, to deal with
19887 -- strange types like ones with a range of 0 .. -12341234.
19889 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
19890 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
19891 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
19893 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
19895 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
19896 end Can_Derive_From
;
19902 procedure Check_Bound
(Expr
: Node_Id
) is
19904 -- If a range constraint is used as an integer type definition, each
19905 -- bound of the range must be defined by a static expression of some
19906 -- integer type, but the two bounds need not have the same integer
19907 -- type (Negative bounds are allowed.) (RM 3.5.4)
19909 if not Is_Integer_Type
(Etype
(Expr
)) then
19911 ("integer type definition bounds must be of integer type", Expr
);
19914 elsif not Is_OK_Static_Expression
(Expr
) then
19915 Flag_Non_Static_Expr
19916 ("non-static expression used for integer type bound!", Expr
);
19919 -- The bounds are folded into literals, and we set their type to be
19920 -- universal, to avoid typing difficulties: we cannot set the type
19921 -- of the literal to the new type, because this would be a forward
19922 -- reference for the back end, and if the original type is user-
19923 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
19926 if Is_Entity_Name
(Expr
) then
19927 Fold_Uint
(Expr
, Expr_Value
(Expr
), True);
19930 Set_Etype
(Expr
, Universal_Integer
);
19934 -- Start of processing for Signed_Integer_Type_Declaration
19937 -- Create an anonymous base type
19940 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
19942 -- Analyze and check the bounds, they can be of any integer type
19944 Lo
:= Low_Bound
(Def
);
19945 Hi
:= High_Bound
(Def
);
19947 -- Arbitrarily use Integer as the type if either bound had an error
19949 if Hi
= Error
or else Lo
= Error
then
19950 Base_Typ
:= Any_Integer
;
19951 Set_Error_Posted
(T
, True);
19953 -- Here both bounds are OK expressions
19956 Analyze_And_Resolve
(Lo
, Any_Integer
);
19957 Analyze_And_Resolve
(Hi
, Any_Integer
);
19963 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
19964 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
19967 -- Find type to derive from
19969 Lo_Val
:= Expr_Value
(Lo
);
19970 Hi_Val
:= Expr_Value
(Hi
);
19972 if Can_Derive_From
(Standard_Short_Short_Integer
) then
19973 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
19975 elsif Can_Derive_From
(Standard_Short_Integer
) then
19976 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
19978 elsif Can_Derive_From
(Standard_Integer
) then
19979 Base_Typ
:= Base_Type
(Standard_Integer
);
19981 elsif Can_Derive_From
(Standard_Long_Integer
) then
19982 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
19984 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
19985 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
19988 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
19989 Error_Msg_N
("integer type definition bounds out of range", Def
);
19990 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
19991 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
19995 -- Complete both implicit base and declared first subtype entities
19997 Set_Etype
(Implicit_Base
, Base_Typ
);
19998 Set_Size_Info
(Implicit_Base
, (Base_Typ
));
19999 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
20000 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
20002 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
20003 Set_Etype
(T
, Implicit_Base
);
20005 -- In formal verification mode, restrict the base type's range to the
20006 -- minimum allowed by RM 3.5.4, namely the smallest symmetric range
20007 -- around zero with a possible extra negative value that contains the
20008 -- subtype range. Keep Size, RM_Size and First_Rep_Item info, which
20009 -- should not be relied upon in formal verification.
20011 if Strict_Alfa_Mode
then
20015 Dloc
: constant Source_Ptr
:= Sloc
(Def
);
20021 -- If the subtype range is empty, the smallest base type range
20022 -- is the symmetric range around zero containing Lo_Val and
20025 if UI_Gt
(Lo_Val
, Hi_Val
) then
20026 Sym_Hi_Val
:= UI_Max
(UI_Abs
(Lo_Val
), UI_Abs
(Hi_Val
));
20027 Sym_Lo_Val
:= UI_Negate
(Sym_Hi_Val
);
20029 -- Otherwise, if the subtype range is not empty and Hi_Val has
20030 -- the largest absolute value, Hi_Val is non negative and the
20031 -- smallest base type range is the symmetric range around zero
20032 -- containing Hi_Val.
20034 elsif UI_Le
(UI_Abs
(Lo_Val
), UI_Abs
(Hi_Val
)) then
20035 Sym_Hi_Val
:= Hi_Val
;
20036 Sym_Lo_Val
:= UI_Negate
(Hi_Val
);
20038 -- Otherwise, the subtype range is not empty, Lo_Val has the
20039 -- strictly largest absolute value, Lo_Val is negative and the
20040 -- smallest base type range is the symmetric range around zero
20041 -- with an extra negative value Lo_Val.
20044 Sym_Lo_Val
:= Lo_Val
;
20045 Sym_Hi_Val
:= UI_Sub
(UI_Negate
(Lo_Val
), Uint_1
);
20048 Lbound
:= Make_Integer_Literal
(Dloc
, Sym_Lo_Val
);
20049 Ubound
:= Make_Integer_Literal
(Dloc
, Sym_Hi_Val
);
20050 Set_Is_Static_Expression
(Lbound
);
20051 Set_Is_Static_Expression
(Ubound
);
20052 Analyze_And_Resolve
(Lbound
, Any_Integer
);
20053 Analyze_And_Resolve
(Ubound
, Any_Integer
);
20055 Bounds
:= Make_Range
(Dloc
, Lbound
, Ubound
);
20056 Set_Etype
(Bounds
, Base_Typ
);
20058 Set_Scalar_Range
(Implicit_Base
, Bounds
);
20062 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
20065 Set_Size_Info
(T
, (Implicit_Base
));
20066 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
20067 Set_Scalar_Range
(T
, Def
);
20068 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
20069 Set_Is_Constrained
(T
);
20070 end Signed_Integer_Type_Declaration
;