1 ------------------------------------------------------------------------------
3 -- GNAT RUN-TIME COMPONENTS --
5 -- S Y S T E M . S T R E A M _ A T T R I B U T E S --
9 -- Copyright (C) 1996-2010, Free Software Foundation, Inc. --
11 -- GARLIC is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
30 ------------------------------------------------------------------------------
32 -- This file is an alternate version of s-stratt.adb based on the XDR
33 -- standard. It is especially useful for exchanging streams between two
34 -- different systems with different basic type representations and endianness.
36 with Ada
.IO_Exceptions
;
37 with Ada
.Streams
; use Ada
.Streams
;
38 with Ada
.Unchecked_Conversion
;
40 package body System
.Stream_Attributes
is
42 pragma Suppress
(Range_Check
);
43 pragma Suppress
(Overflow_Check
);
47 Data_Error
: exception renames Ada
.IO_Exceptions
.End_Error
;
48 -- Exception raised if insufficient data read (End_Error is mandated by
51 SU
: constant := System
.Storage_Unit
;
52 -- The code in this body assumes that SU = 8
54 BB
: constant := 2 ** SU
; -- Byte base
55 BL
: constant := 2 ** SU
- 1; -- Byte last
56 BS
: constant := 2 ** (SU
- 1); -- Byte sign
58 US
: constant := Unsigned
'Size; -- Unsigned size
59 UB
: constant := (US
- 1) / SU
+ 1; -- Unsigned byte
60 UL
: constant := 2 ** US
- 1; -- Unsigned last
62 subtype SE
is Ada
.Streams
.Stream_Element
;
63 subtype SEA
is Ada
.Streams
.Stream_Element_Array
;
64 subtype SEO
is Ada
.Streams
.Stream_Element_Offset
;
66 generic function UC
renames Ada
.Unchecked_Conversion
;
70 E_Size
: Integer; -- Exponent bit size
71 E_Bias
: Integer; -- Exponent bias
72 F_Size
: Integer; -- Fraction bit size
73 E_Last
: Integer; -- Max exponent value
74 F_Mask
: SE
; -- Mask to apply on first fraction byte
75 E_Bytes
: SEO
; -- N. of exponent bytes completely used
76 F_Bytes
: SEO
; -- N. of fraction bytes completely used
77 F_Bits
: Integer; -- N. of bits used on first fraction word
80 type Precision
is (Single
, Double
, Quadruple
);
82 Fields
: constant array (Precision
) of Field_Type
:= (
90 F_Mask
=> 16#
7F#
, -- 2 ** 7 - 1,
100 E_Last
=> 2 ** 11 - 1,
101 F_Mask
=> 16#
0F#
, -- 2 ** 4 - 1,
104 F_Bits
=> 52 mod US
),
106 -- Quadruple precision
111 E_Last
=> 2 ** 8 - 1,
112 F_Mask
=> 16#FF#
, -- 2 ** 8 - 1,
115 F_Bits
=> 112 mod US
));
117 -- The representation of all items requires a multiple of four bytes
118 -- (or 32 bits) of data. The bytes are numbered 0 through n-1. The bytes
119 -- are read or written to some byte stream such that byte m always
120 -- precedes byte m+1. If the n bytes needed to contain the data are not
121 -- a multiple of four, then the n bytes are followed by enough (0 to 3)
122 -- residual zero bytes, r, to make the total byte count a multiple of 4.
124 -- An XDR signed integer is a 32-bit datum that encodes an integer
125 -- in the range [-2147483648,2147483647]. The integer is represented
126 -- in two's complement notation. The most and least significant bytes
127 -- are 0 and 3, respectively. Integers are declared as follows:
130 -- +-------+-------+-------+-------+
131 -- |byte 0 |byte 1 |byte 2 |byte 3 |
132 -- +-------+-------+-------+-------+
133 -- <------------32 bits------------>
135 SSI_L
: constant := 1;
136 SI_L
: constant := 2;
138 LI_L
: constant := 8;
139 LLI_L
: constant := 8;
141 subtype XDR_S_SSI
is SEA
(1 .. SSI_L
);
142 subtype XDR_S_SI
is SEA
(1 .. SI_L
);
143 subtype XDR_S_I
is SEA
(1 .. I_L
);
144 subtype XDR_S_LI
is SEA
(1 .. LI_L
);
145 subtype XDR_S_LLI
is SEA
(1 .. LLI_L
);
147 function Short_Short_Integer_To_XDR_S_SSI
is
148 new Ada
.Unchecked_Conversion
(Short_Short_Integer, XDR_S_SSI
);
149 function XDR_S_SSI_To_Short_Short_Integer
is
150 new Ada
.Unchecked_Conversion
(XDR_S_SSI
, Short_Short_Integer);
152 function Short_Integer_To_XDR_S_SI
is
153 new Ada
.Unchecked_Conversion
(Short_Integer, XDR_S_SI
);
154 function XDR_S_SI_To_Short_Integer
is
155 new Ada
.Unchecked_Conversion
(XDR_S_SI
, Short_Integer);
157 function Integer_To_XDR_S_I
is
158 new Ada
.Unchecked_Conversion
(Integer, XDR_S_I
);
159 function XDR_S_I_To_Integer
is
160 new Ada
.Unchecked_Conversion
(XDR_S_I
, Integer);
162 function Long_Long_Integer_To_XDR_S_LI
is
163 new Ada
.Unchecked_Conversion
(Long_Long_Integer, XDR_S_LI
);
164 function XDR_S_LI_To_Long_Long_Integer
is
165 new Ada
.Unchecked_Conversion
(XDR_S_LI
, Long_Long_Integer);
167 function Long_Long_Integer_To_XDR_S_LLI
is
168 new Ada
.Unchecked_Conversion
(Long_Long_Integer, XDR_S_LLI
);
169 function XDR_S_LLI_To_Long_Long_Integer
is
170 new Ada
.Unchecked_Conversion
(XDR_S_LLI
, Long_Long_Integer);
172 -- An XDR unsigned integer is a 32-bit datum that encodes a nonnegative
173 -- integer in the range [0,4294967295]. It is represented by an unsigned
174 -- binary number whose most and least significant bytes are 0 and 3,
175 -- respectively. An unsigned integer is declared as follows:
178 -- +-------+-------+-------+-------+
179 -- |byte 0 |byte 1 |byte 2 |byte 3 |
180 -- +-------+-------+-------+-------+
181 -- <------------32 bits------------>
183 SSU_L
: constant := 1;
184 SU_L
: constant := 2;
186 LU_L
: constant := 8;
187 LLU_L
: constant := 8;
189 subtype XDR_S_SSU
is SEA
(1 .. SSU_L
);
190 subtype XDR_S_SU
is SEA
(1 .. SU_L
);
191 subtype XDR_S_U
is SEA
(1 .. U_L
);
192 subtype XDR_S_LU
is SEA
(1 .. LU_L
);
193 subtype XDR_S_LLU
is SEA
(1 .. LLU_L
);
195 type XDR_SSU
is mod BB
** SSU_L
;
196 type XDR_SU
is mod BB
** SU_L
;
197 type XDR_U
is mod BB
** U_L
;
199 function Short_Unsigned_To_XDR_S_SU
is
200 new Ada
.Unchecked_Conversion
(Short_Unsigned
, XDR_S_SU
);
201 function XDR_S_SU_To_Short_Unsigned
is
202 new Ada
.Unchecked_Conversion
(XDR_S_SU
, Short_Unsigned
);
204 function Unsigned_To_XDR_S_U
is
205 new Ada
.Unchecked_Conversion
(Unsigned
, XDR_S_U
);
206 function XDR_S_U_To_Unsigned
is
207 new Ada
.Unchecked_Conversion
(XDR_S_U
, Unsigned
);
209 function Long_Long_Unsigned_To_XDR_S_LU
is
210 new Ada
.Unchecked_Conversion
(Long_Long_Unsigned
, XDR_S_LU
);
211 function XDR_S_LU_To_Long_Long_Unsigned
is
212 new Ada
.Unchecked_Conversion
(XDR_S_LU
, Long_Long_Unsigned
);
214 function Long_Long_Unsigned_To_XDR_S_LLU
is
215 new Ada
.Unchecked_Conversion
(Long_Long_Unsigned
, XDR_S_LLU
);
216 function XDR_S_LLU_To_Long_Long_Unsigned
is
217 new Ada
.Unchecked_Conversion
(XDR_S_LLU
, Long_Long_Unsigned
);
219 -- The standard defines the floating-point data type "float" (32 bits
220 -- or 4 bytes). The encoding used is the IEEE standard for normalized
221 -- single-precision floating-point numbers.
223 -- The standard defines the encoding used for the double-precision
224 -- floating-point data type "double" (64 bits or 8 bytes). The encoding
225 -- used is the IEEE standard for normalized double-precision floating-point
228 SF_L
: constant := 4; -- Single precision
229 F_L
: constant := 4; -- Single precision
230 LF_L
: constant := 8; -- Double precision
231 LLF_L
: constant := 16; -- Quadruple precision
233 TM_L
: constant := 8;
234 subtype XDR_S_TM
is SEA
(1 .. TM_L
);
235 type XDR_TM
is mod BB
** TM_L
;
237 type XDR_SA
is mod 2 ** Standard
'Address_Size;
238 function To_XDR_SA
is new UC
(System
.Address
, XDR_SA
);
239 function To_XDR_SA
is new UC
(XDR_SA
, System
.Address
);
241 -- Enumerations have the same representation as signed integers.
242 -- Enumerations are handy for describing subsets of the integers.
244 -- Booleans are important enough and occur frequently enough to warrant
245 -- their own explicit type in the standard. Booleans are declared as
246 -- an enumeration, with FALSE = 0 and TRUE = 1.
248 -- The standard defines a string of n (numbered 0 through n-1) ASCII
249 -- bytes to be the number n encoded as an unsigned integer (as described
250 -- above), and followed by the n bytes of the string. Byte m of the string
251 -- always precedes byte m+1 of the string, and byte 0 of the string always
252 -- follows the string's length. If n is not a multiple of four, then the
253 -- n bytes are followed by enough (0 to 3) residual zero bytes, r, to make
254 -- the total byte count a multiple of four.
256 -- To fit with XDR string, do not consider character as an enumeration
260 subtype XDR_S_C
is SEA
(1 .. C_L
);
262 -- Consider Wide_Character as an enumeration type
264 WC_L
: constant := 4;
265 subtype XDR_S_WC
is SEA
(1 .. WC_L
);
266 type XDR_WC
is mod BB
** WC_L
;
268 -- Consider Wide_Wide_Character as an enumeration type
270 WWC_L
: constant := 8;
271 subtype XDR_S_WWC
is SEA
(1 .. WWC_L
);
272 type XDR_WWC
is mod BB
** WWC_L
;
274 -- Optimization: if we already have the correct Bit_Order, then some
275 -- computations can be avoided since the source and the target will be
276 -- identical anyway. They will be replaced by direct unchecked
279 Optimize_Integers
: constant Boolean :=
280 Default_Bit_Order
= High_Order_First
;
286 function Block_IO_OK
return Boolean is
295 function I_AD
(Stream
: not null access RST
) return Fat_Pointer
is
299 FP
.P1
:= I_AS
(Stream
).P1
;
300 FP
.P2
:= I_AS
(Stream
).P1
;
309 function I_AS
(Stream
: not null access RST
) return Thin_Pointer
is
315 Ada
.Streams
.Read
(Stream
.all, S
, L
);
321 for N
in S
'Range loop
322 U
:= U
* BB
+ XDR_TM
(S
(N
));
325 return (P1
=> To_XDR_SA
(XDR_SA
(U
)));
333 function I_B
(Stream
: not null access RST
) return Boolean is
335 case I_SSU
(Stream
) is
336 when 0 => return False;
337 when 1 => return True;
338 when others => raise Data_Error
;
346 function I_C
(Stream
: not null access RST
) return Character is
351 Ada
.Streams
.Read
(Stream
.all, S
, L
);
357 -- Use Ada requirements on Character representation clause
359 return Character'Val (S
(1));
367 function I_F
(Stream
: not null access RST
) return Float is
368 I
: constant Precision
:= Single
;
369 E_Size
: Integer renames Fields
(I
).E_Size
;
370 E_Bias
: Integer renames Fields
(I
).E_Bias
;
371 E_Last
: Integer renames Fields
(I
).E_Last
;
372 F_Mask
: SE
renames Fields
(I
).F_Mask
;
373 E_Bytes
: SEO
renames Fields
(I
).E_Bytes
;
374 F_Bytes
: SEO
renames Fields
(I
).F_Bytes
;
375 F_Size
: Integer renames Fields
(I
).F_Size
;
378 Exponent
: Long_Unsigned
;
379 Fraction
: Long_Unsigned
;
385 Ada
.Streams
.Read
(Stream
.all, S
, L
);
391 -- Extract Fraction, Sign and Exponent
393 Fraction
:= Long_Unsigned
(S
(F_L
+ 1 - F_Bytes
) and F_Mask
);
394 for N
in F_L
+ 2 - F_Bytes
.. F_L
loop
395 Fraction
:= Fraction
* BB
+ Long_Unsigned
(S
(N
));
397 Result
:= Float'Scaling (Float (Fraction
), -F_Size
);
401 Exponent
:= Long_Unsigned
(S
(1) - BS
);
404 Exponent
:= Long_Unsigned
(S
(1));
407 for N
in 2 .. E_Bytes
loop
408 Exponent
:= Exponent
* BB
+ Long_Unsigned
(S
(N
));
410 Exponent
:= Shift_Right
(Exponent
, Integer (E_Bytes
) * SU
- E_Size
- 1);
414 if Integer (Exponent
) = E_Last
then
415 raise Constraint_Error
;
417 elsif Exponent
= 0 then
424 -- Denormalized float
427 Result
:= Float'Scaling (Result
, 1 - E_Bias
);
433 Result
:= Float'Scaling
434 (1.0 + Result
, Integer (Exponent
) - E_Bias
);
448 function I_I
(Stream
: not null access RST
) return Integer is
454 Ada
.Streams
.Read
(Stream
.all, S
, L
);
459 elsif Optimize_Integers
then
460 return XDR_S_I_To_Integer
(S
);
463 for N
in S
'Range loop
464 U
:= U
* BB
+ XDR_U
(S
(N
));
467 -- Test sign and apply two complement notation
473 return Integer (-((XDR_U
'Last xor U
) + 1));
482 function I_LF
(Stream
: not null access RST
) return Long_Float is
483 I
: constant Precision
:= Double
;
484 E_Size
: Integer renames Fields
(I
).E_Size
;
485 E_Bias
: Integer renames Fields
(I
).E_Bias
;
486 E_Last
: Integer renames Fields
(I
).E_Last
;
487 F_Mask
: SE
renames Fields
(I
).F_Mask
;
488 E_Bytes
: SEO
renames Fields
(I
).E_Bytes
;
489 F_Bytes
: SEO
renames Fields
(I
).F_Bytes
;
490 F_Size
: Integer renames Fields
(I
).F_Size
;
493 Exponent
: Long_Unsigned
;
494 Fraction
: Long_Long_Unsigned
;
500 Ada
.Streams
.Read
(Stream
.all, S
, L
);
506 -- Extract Fraction, Sign and Exponent
508 Fraction
:= Long_Long_Unsigned
(S
(LF_L
+ 1 - F_Bytes
) and F_Mask
);
509 for N
in LF_L
+ 2 - F_Bytes
.. LF_L
loop
510 Fraction
:= Fraction
* BB
+ Long_Long_Unsigned
(S
(N
));
513 Result
:= Long_Float'Scaling (Long_Float (Fraction
), -F_Size
);
517 Exponent
:= Long_Unsigned
(S
(1) - BS
);
520 Exponent
:= Long_Unsigned
(S
(1));
523 for N
in 2 .. E_Bytes
loop
524 Exponent
:= Exponent
* BB
+ Long_Unsigned
(S
(N
));
527 Exponent
:= Shift_Right
(Exponent
, Integer (E_Bytes
) * SU
- E_Size
- 1);
531 if Integer (Exponent
) = E_Last
then
532 raise Constraint_Error
;
534 elsif Exponent
= 0 then
541 -- Denormalized float
544 Result
:= Long_Float'Scaling (Result
, 1 - E_Bias
);
550 Result
:= Long_Float'Scaling
551 (1.0 + Result
, Integer (Exponent
) - E_Bias
);
565 function I_LI
(Stream
: not null access RST
) return Long_Integer is
569 X
: Long_Unsigned
:= 0;
572 Ada
.Streams
.Read
(Stream
.all, S
, L
);
577 elsif Optimize_Integers
then
578 return Long_Integer (XDR_S_LI_To_Long_Long_Integer
(S
));
582 -- Compute using machine unsigned
583 -- rather than long_long_unsigned
585 for N
in S
'Range loop
586 U
:= U
* BB
+ Unsigned
(S
(N
));
588 -- We have filled an unsigned
591 X
:= Shift_Left
(X
, US
) + Long_Unsigned
(U
);
596 -- Test sign and apply two complement notation
599 return Long_Integer (X
);
601 return Long_Integer (-((Long_Unsigned
'Last xor X
) + 1));
611 function I_LLF
(Stream
: not null access RST
) return Long_Long_Float is
612 I
: constant Precision
:= Quadruple
;
613 E_Size
: Integer renames Fields
(I
).E_Size
;
614 E_Bias
: Integer renames Fields
(I
).E_Bias
;
615 E_Last
: Integer renames Fields
(I
).E_Last
;
616 E_Bytes
: SEO
renames Fields
(I
).E_Bytes
;
617 F_Bytes
: SEO
renames Fields
(I
).F_Bytes
;
618 F_Size
: Integer renames Fields
(I
).F_Size
;
621 Exponent
: Long_Unsigned
;
622 Fraction_1
: Long_Long_Unsigned
:= 0;
623 Fraction_2
: Long_Long_Unsigned
:= 0;
624 Result
: Long_Long_Float;
625 HF
: constant Natural := F_Size
/ 2;
626 S
: SEA
(1 .. LLF_L
);
630 Ada
.Streams
.Read
(Stream
.all, S
, L
);
636 -- Extract Fraction, Sign and Exponent
638 for I
in LLF_L
- F_Bytes
+ 1 .. LLF_L
- 7 loop
639 Fraction_1
:= Fraction_1
* BB
+ Long_Long_Unsigned
(S
(I
));
642 for I
in SEO
(LLF_L
- 6) .. SEO
(LLF_L
) loop
643 Fraction_2
:= Fraction_2
* BB
+ Long_Long_Unsigned
(S
(I
));
646 Result
:= Long_Long_Float'Scaling (Long_Long_Float (Fraction_2
), -HF
);
647 Result
:= Long_Long_Float (Fraction_1
) + Result
;
648 Result
:= Long_Long_Float'Scaling (Result
, HF
- F_Size
);
652 Exponent
:= Long_Unsigned
(S
(1) - BS
);
655 Exponent
:= Long_Unsigned
(S
(1));
658 for N
in 2 .. E_Bytes
loop
659 Exponent
:= Exponent
* BB
+ Long_Unsigned
(S
(N
));
662 Exponent
:= Shift_Right
(Exponent
, Integer (E_Bytes
) * SU
- E_Size
- 1);
666 if Integer (Exponent
) = E_Last
then
667 raise Constraint_Error
;
669 elsif Exponent
= 0 then
673 if Fraction_1
= 0 and then Fraction_2
= 0 then
676 -- Denormalized float
679 Result
:= Long_Long_Float'Scaling (Result
, 1 - E_Bias
);
685 Result
:= Long_Long_Float'Scaling
686 (1.0 + Result
, Integer (Exponent
) - E_Bias
);
700 function I_LLI
(Stream
: not null access RST
) return Long_Long_Integer is
704 X
: Long_Long_Unsigned
:= 0;
707 Ada
.Streams
.Read
(Stream
.all, S
, L
);
712 elsif Optimize_Integers
then
713 return XDR_S_LLI_To_Long_Long_Integer
(S
);
716 -- Compute using machine unsigned for computing
717 -- rather than long_long_unsigned.
719 for N
in S
'Range loop
720 U
:= U
* BB
+ Unsigned
(S
(N
));
722 -- We have filled an unsigned
725 X
:= Shift_Left
(X
, US
) + Long_Long_Unsigned
(U
);
730 -- Test sign and apply two complement notation
733 return Long_Long_Integer (X
);
735 return Long_Long_Integer (-((Long_Long_Unsigned
'Last xor X
) + 1));
744 function I_LLU
(Stream
: not null access RST
) return Long_Long_Unsigned
is
748 X
: Long_Long_Unsigned
:= 0;
751 Ada
.Streams
.Read
(Stream
.all, S
, L
);
756 elsif Optimize_Integers
then
757 return XDR_S_LLU_To_Long_Long_Unsigned
(S
);
760 -- Compute using machine unsigned
761 -- rather than long_long_unsigned.
763 for N
in S
'Range loop
764 U
:= U
* BB
+ Unsigned
(S
(N
));
766 -- We have filled an unsigned
769 X
:= Shift_Left
(X
, US
) + Long_Long_Unsigned
(U
);
782 function I_LU
(Stream
: not null access RST
) return Long_Unsigned
is
786 X
: Long_Unsigned
:= 0;
789 Ada
.Streams
.Read
(Stream
.all, S
, L
);
794 elsif Optimize_Integers
then
795 return Long_Unsigned
(XDR_S_LU_To_Long_Long_Unsigned
(S
));
798 -- Compute using machine unsigned
799 -- rather than long_unsigned.
801 for N
in S
'Range loop
802 U
:= U
* BB
+ Unsigned
(S
(N
));
804 -- We have filled an unsigned
807 X
:= Shift_Left
(X
, US
) + Long_Unsigned
(U
);
820 function I_SF
(Stream
: not null access RST
) return Short_Float is
821 I
: constant Precision
:= Single
;
822 E_Size
: Integer renames Fields
(I
).E_Size
;
823 E_Bias
: Integer renames Fields
(I
).E_Bias
;
824 E_Last
: Integer renames Fields
(I
).E_Last
;
825 F_Mask
: SE
renames Fields
(I
).F_Mask
;
826 E_Bytes
: SEO
renames Fields
(I
).E_Bytes
;
827 F_Bytes
: SEO
renames Fields
(I
).F_Bytes
;
828 F_Size
: Integer renames Fields
(I
).F_Size
;
830 Exponent
: Long_Unsigned
;
831 Fraction
: Long_Unsigned
;
833 Result
: Short_Float;
838 Ada
.Streams
.Read
(Stream
.all, S
, L
);
844 -- Extract Fraction, Sign and Exponent
846 Fraction
:= Long_Unsigned
(S
(SF_L
+ 1 - F_Bytes
) and F_Mask
);
847 for N
in SF_L
+ 2 - F_Bytes
.. SF_L
loop
848 Fraction
:= Fraction
* BB
+ Long_Unsigned
(S
(N
));
850 Result
:= Short_Float'Scaling (Short_Float (Fraction
), -F_Size
);
854 Exponent
:= Long_Unsigned
(S
(1) - BS
);
857 Exponent
:= Long_Unsigned
(S
(1));
860 for N
in 2 .. E_Bytes
loop
861 Exponent
:= Exponent
* BB
+ Long_Unsigned
(S
(N
));
863 Exponent
:= Shift_Right
(Exponent
, Integer (E_Bytes
) * SU
- E_Size
- 1);
867 if Integer (Exponent
) = E_Last
then
868 raise Constraint_Error
;
870 elsif Exponent
= 0 then
877 -- Denormalized float
880 Result
:= Short_Float'Scaling (Result
, 1 - E_Bias
);
886 Result
:= Short_Float'Scaling
887 (1.0 + Result
, Integer (Exponent
) - E_Bias
);
901 function I_SI
(Stream
: not null access RST
) return Short_Integer is
907 Ada
.Streams
.Read
(Stream
.all, S
, L
);
912 elsif Optimize_Integers
then
913 return XDR_S_SI_To_Short_Integer
(S
);
916 for N
in S
'Range loop
917 U
:= U
* BB
+ XDR_SU
(S
(N
));
920 -- Test sign and apply two complement notation
923 return Short_Integer (U
);
925 return Short_Integer (-((XDR_SU
'Last xor U
) + 1));
934 function I_SSI
(Stream
: not null access RST
) return Short_Short_Integer is
940 Ada
.Streams
.Read
(Stream
.all, S
, L
);
945 elsif Optimize_Integers
then
946 return XDR_S_SSI_To_Short_Short_Integer
(S
);
949 U
:= XDR_SSU
(S
(1));
951 -- Test sign and apply two complement notation
954 return Short_Short_Integer (U
);
956 return Short_Short_Integer (-((XDR_SSU
'Last xor U
) + 1));
965 function I_SSU
(Stream
: not null access RST
) return Short_Short_Unsigned
is
971 Ada
.Streams
.Read
(Stream
.all, S
, L
);
977 U
:= XDR_SSU
(S
(1));
978 return Short_Short_Unsigned
(U
);
986 function I_SU
(Stream
: not null access RST
) return Short_Unsigned
is
992 Ada
.Streams
.Read
(Stream
.all, S
, L
);
997 elsif Optimize_Integers
then
998 return XDR_S_SU_To_Short_Unsigned
(S
);
1001 for N
in S
'Range loop
1002 U
:= U
* BB
+ XDR_SU
(S
(N
));
1005 return Short_Unsigned
(U
);
1013 function I_U
(Stream
: not null access RST
) return Unsigned
is
1019 Ada
.Streams
.Read
(Stream
.all, S
, L
);
1024 elsif Optimize_Integers
then
1025 return XDR_S_U_To_Unsigned
(S
);
1028 for N
in S
'Range loop
1029 U
:= U
* BB
+ XDR_U
(S
(N
));
1032 return Unsigned
(U
);
1040 function I_WC
(Stream
: not null access RST
) return Wide_Character is
1046 Ada
.Streams
.Read
(Stream
.all, S
, L
);
1052 for N
in S
'Range loop
1053 U
:= U
* BB
+ XDR_WC
(S
(N
));
1056 -- Use Ada requirements on Wide_Character representation clause
1058 return Wide_Character'Val (U
);
1066 function I_WWC
(Stream
: not null access RST
) return Wide_Wide_Character
is
1072 Ada
.Streams
.Read
(Stream
.all, S
, L
);
1078 for N
in S
'Range loop
1079 U
:= U
* BB
+ XDR_WWC
(S
(N
));
1082 -- Use Ada requirements on Wide_Wide_Character representation clause
1084 return Wide_Wide_Character
'Val (U
);
1092 procedure W_AD
(Stream
: not null access RST
; Item
: Fat_Pointer
) is
1097 U
:= XDR_TM
(To_XDR_SA
(Item
.P1
));
1098 for N
in reverse S
'Range loop
1099 S
(N
) := SE
(U
mod BB
);
1103 Ada
.Streams
.Write
(Stream
.all, S
);
1105 U
:= XDR_TM
(To_XDR_SA
(Item
.P2
));
1106 for N
in reverse S
'Range loop
1107 S
(N
) := SE
(U
mod BB
);
1111 Ada
.Streams
.Write
(Stream
.all, S
);
1122 procedure W_AS
(Stream
: not null access RST
; Item
: Thin_Pointer
) is
1124 U
: XDR_TM
:= XDR_TM
(To_XDR_SA
(Item
.P1
));
1127 for N
in reverse S
'Range loop
1128 S
(N
) := SE
(U
mod BB
);
1132 Ada
.Streams
.Write
(Stream
.all, S
);
1143 procedure W_B
(Stream
: not null access RST
; Item
: Boolean) is
1156 procedure W_C
(Stream
: not null access RST
; Item
: Character) is
1159 pragma Assert
(C_L
= 1);
1162 -- Use Ada requirements on Character representation clause
1164 S
(1) := SE
(Character'Pos (Item
));
1166 Ada
.Streams
.Write
(Stream
.all, S
);
1173 procedure W_F
(Stream
: not null access RST
; Item
: Float) is
1174 I
: constant Precision
:= Single
;
1175 E_Size
: Integer renames Fields
(I
).E_Size
;
1176 E_Bias
: Integer renames Fields
(I
).E_Bias
;
1177 E_Bytes
: SEO
renames Fields
(I
).E_Bytes
;
1178 F_Bytes
: SEO
renames Fields
(I
).F_Bytes
;
1179 F_Size
: Integer renames Fields
(I
).F_Size
;
1180 F_Mask
: SE
renames Fields
(I
).F_Mask
;
1182 Exponent
: Long_Unsigned
;
1183 Fraction
: Long_Unsigned
;
1187 S
: SEA
(1 .. F_L
) := (others => 0);
1190 if not Item
'Valid then
1191 raise Constraint_Error
;
1196 Positive := (0.0 <= Item
);
1206 E
:= Float'Exponent (F
) - 1;
1208 -- Denormalized float
1210 if E
<= -E_Bias
then
1211 F
:= Float'Scaling (F
, F_Size
+ E_Bias
- 1);
1214 F
:= Float'Scaling (Float'Fraction (F
), F_Size
+ 1);
1217 -- Compute Exponent and Fraction
1219 Exponent
:= Long_Unsigned
(E
+ E_Bias
);
1220 Fraction
:= Long_Unsigned
(F
* 2.0) / 2;
1225 for I
in reverse F_L
- F_Bytes
+ 1 .. F_L
loop
1226 S
(I
) := SE
(Fraction
mod BB
);
1227 Fraction
:= Fraction
/ BB
;
1230 -- Remove implicit bit
1232 S
(F_L
- F_Bytes
+ 1) := S
(F_L
- F_Bytes
+ 1) and F_Mask
;
1234 -- Store Exponent (not always at the beginning of a byte)
1236 Exponent
:= Shift_Left
(Exponent
, Integer (E_Bytes
) * SU
- E_Size
- 1);
1237 for N
in reverse 1 .. E_Bytes
loop
1238 S
(N
) := SE
(Exponent
mod BB
) + S
(N
);
1239 Exponent
:= Exponent
/ BB
;
1244 if not Positive then
1245 S
(1) := S
(1) + BS
;
1248 Ada
.Streams
.Write
(Stream
.all, S
);
1255 procedure W_I
(Stream
: not null access RST
; Item
: Integer) is
1260 if Optimize_Integers
then
1261 S
:= Integer_To_XDR_S_I
(Item
);
1264 -- Test sign and apply two complement notation
1267 then XDR_U
'Last xor XDR_U
(-(Item
+ 1))
1270 for N
in reverse S
'Range loop
1271 S
(N
) := SE
(U
mod BB
);
1280 Ada
.Streams
.Write
(Stream
.all, S
);
1287 procedure W_LF
(Stream
: not null access RST
; Item
: Long_Float) is
1288 I
: constant Precision
:= Double
;
1289 E_Size
: Integer renames Fields
(I
).E_Size
;
1290 E_Bias
: Integer renames Fields
(I
).E_Bias
;
1291 E_Bytes
: SEO
renames Fields
(I
).E_Bytes
;
1292 F_Bytes
: SEO
renames Fields
(I
).F_Bytes
;
1293 F_Size
: Integer renames Fields
(I
).F_Size
;
1294 F_Mask
: SE
renames Fields
(I
).F_Mask
;
1296 Exponent
: Long_Unsigned
;
1297 Fraction
: Long_Long_Unsigned
;
1301 S
: SEA
(1 .. LF_L
) := (others => 0);
1304 if not Item
'Valid then
1305 raise Constraint_Error
;
1310 Positive := (0.0 <= Item
);
1320 E
:= Long_Float'Exponent (F
) - 1;
1322 -- Denormalized float
1324 if E
<= -E_Bias
then
1326 F
:= Long_Float'Scaling (F
, F_Size
+ E_Bias
- 1);
1328 F
:= Long_Float'Scaling (F
, F_Size
- E
);
1331 -- Compute Exponent and Fraction
1333 Exponent
:= Long_Unsigned
(E
+ E_Bias
);
1334 Fraction
:= Long_Long_Unsigned
(F
* 2.0) / 2;
1339 for I
in reverse LF_L
- F_Bytes
+ 1 .. LF_L
loop
1340 S
(I
) := SE
(Fraction
mod BB
);
1341 Fraction
:= Fraction
/ BB
;
1344 -- Remove implicit bit
1346 S
(LF_L
- F_Bytes
+ 1) := S
(LF_L
- F_Bytes
+ 1) and F_Mask
;
1348 -- Store Exponent (not always at the beginning of a byte)
1350 Exponent
:= Shift_Left
(Exponent
, Integer (E_Bytes
) * SU
- E_Size
- 1);
1351 for N
in reverse 1 .. E_Bytes
loop
1352 S
(N
) := SE
(Exponent
mod BB
) + S
(N
);
1353 Exponent
:= Exponent
/ BB
;
1358 if not Positive then
1359 S
(1) := S
(1) + BS
;
1362 Ada
.Streams
.Write
(Stream
.all, S
);
1369 procedure W_LI
(Stream
: not null access RST
; Item
: Long_Integer) is
1375 if Optimize_Integers
then
1376 S
:= Long_Long_Integer_To_XDR_S_LI
(Long_Long_Integer (Item
));
1379 -- Test sign and apply two complement notation
1382 X
:= Long_Unsigned
'Last xor Long_Unsigned
(-(Item
+ 1));
1384 X
:= Long_Unsigned
(Item
);
1387 -- Compute using machine unsigned rather than long_unsigned
1389 for N
in reverse S
'Range loop
1391 -- We have filled an unsigned
1393 if (LU_L
- N
) mod UB
= 0 then
1394 U
:= Unsigned
(X
and UL
);
1395 X
:= Shift_Right
(X
, US
);
1398 S
(N
) := SE
(U
mod BB
);
1407 Ada
.Streams
.Write
(Stream
.all, S
);
1414 procedure W_LLF
(Stream
: not null access RST
; Item
: Long_Long_Float) is
1415 I
: constant Precision
:= Quadruple
;
1416 E_Size
: Integer renames Fields
(I
).E_Size
;
1417 E_Bias
: Integer renames Fields
(I
).E_Bias
;
1418 E_Bytes
: SEO
renames Fields
(I
).E_Bytes
;
1419 F_Bytes
: SEO
renames Fields
(I
).F_Bytes
;
1420 F_Size
: Integer renames Fields
(I
).F_Size
;
1422 HFS
: constant Integer := F_Size
/ 2;
1424 Exponent
: Long_Unsigned
;
1425 Fraction_1
: Long_Long_Unsigned
;
1426 Fraction_2
: Long_Long_Unsigned
;
1429 F
: Long_Long_Float := Item
;
1430 S
: SEA
(1 .. LLF_L
) := (others => 0);
1433 if not Item
'Valid then
1434 raise Constraint_Error
;
1439 Positive := (0.0 <= Item
);
1452 E
:= Long_Long_Float'Exponent (F
) - 1;
1454 -- Denormalized float
1456 if E
<= -E_Bias
then
1457 F
:= Long_Long_Float'Scaling (F
, E_Bias
- 1);
1460 F
:= Long_Long_Float'Scaling
1461 (Long_Long_Float'Fraction (F
), 1);
1464 -- Compute Exponent and Fraction
1466 Exponent
:= Long_Unsigned
(E
+ E_Bias
);
1467 F
:= Long_Long_Float'Scaling (F
, F_Size
- HFS
);
1468 Fraction_1
:= Long_Long_Unsigned
(Long_Long_Float'Floor (F
));
1469 F
:= F
- Long_Long_Float (Fraction_1
);
1470 F
:= Long_Long_Float'Scaling (F
, HFS
);
1471 Fraction_2
:= Long_Long_Unsigned
(Long_Long_Float'Floor (F
));
1476 for I
in reverse LLF_L
- F_Bytes
+ 1 .. LLF_L
- 7 loop
1477 S
(I
) := SE
(Fraction_1
mod BB
);
1478 Fraction_1
:= Fraction_1
/ BB
;
1483 for I
in reverse LLF_L
- 6 .. LLF_L
loop
1484 S
(SEO
(I
)) := SE
(Fraction_2
mod BB
);
1485 Fraction_2
:= Fraction_2
/ BB
;
1488 -- Store Exponent (not always at the beginning of a byte)
1490 Exponent
:= Shift_Left
(Exponent
, Integer (E_Bytes
) * SU
- E_Size
- 1);
1491 for N
in reverse 1 .. E_Bytes
loop
1492 S
(N
) := SE
(Exponent
mod BB
) + S
(N
);
1493 Exponent
:= Exponent
/ BB
;
1498 if not Positive then
1499 S
(1) := S
(1) + BS
;
1502 Ada
.Streams
.Write
(Stream
.all, S
);
1510 (Stream
: not null access RST
;
1511 Item
: Long_Long_Integer)
1515 X
: Long_Long_Unsigned
;
1518 if Optimize_Integers
then
1519 S
:= Long_Long_Integer_To_XDR_S_LLI
(Item
);
1522 -- Test sign and apply two complement notation
1525 X
:= Long_Long_Unsigned
'Last xor Long_Long_Unsigned
(-(Item
+ 1));
1527 X
:= Long_Long_Unsigned
(Item
);
1530 -- Compute using machine unsigned rather than long_long_unsigned
1532 for N
in reverse S
'Range loop
1534 -- We have filled an unsigned
1536 if (LLU_L
- N
) mod UB
= 0 then
1537 U
:= Unsigned
(X
and UL
);
1538 X
:= Shift_Right
(X
, US
);
1541 S
(N
) := SE
(U
mod BB
);
1550 Ada
.Streams
.Write
(Stream
.all, S
);
1558 (Stream
: not null access RST
;
1559 Item
: Long_Long_Unsigned
)
1563 X
: Long_Long_Unsigned
:= Item
;
1566 if Optimize_Integers
then
1567 S
:= Long_Long_Unsigned_To_XDR_S_LLU
(Item
);
1570 -- Compute using machine unsigned rather than long_long_unsigned
1572 for N
in reverse S
'Range loop
1574 -- We have filled an unsigned
1576 if (LLU_L
- N
) mod UB
= 0 then
1577 U
:= Unsigned
(X
and UL
);
1578 X
:= Shift_Right
(X
, US
);
1581 S
(N
) := SE
(U
mod BB
);
1590 Ada
.Streams
.Write
(Stream
.all, S
);
1597 procedure W_LU
(Stream
: not null access RST
; Item
: Long_Unsigned
) is
1600 X
: Long_Unsigned
:= Item
;
1603 if Optimize_Integers
then
1604 S
:= Long_Long_Unsigned_To_XDR_S_LU
(Long_Long_Unsigned
(Item
));
1607 -- Compute using machine unsigned rather than long_unsigned
1609 for N
in reverse S
'Range loop
1611 -- We have filled an unsigned
1613 if (LU_L
- N
) mod UB
= 0 then
1614 U
:= Unsigned
(X
and UL
);
1615 X
:= Shift_Right
(X
, US
);
1617 S
(N
) := SE
(U
mod BB
);
1626 Ada
.Streams
.Write
(Stream
.all, S
);
1633 procedure W_SF
(Stream
: not null access RST
; Item
: Short_Float) is
1634 I
: constant Precision
:= Single
;
1635 E_Size
: Integer renames Fields
(I
).E_Size
;
1636 E_Bias
: Integer renames Fields
(I
).E_Bias
;
1637 E_Bytes
: SEO
renames Fields
(I
).E_Bytes
;
1638 F_Bytes
: SEO
renames Fields
(I
).F_Bytes
;
1639 F_Size
: Integer renames Fields
(I
).F_Size
;
1640 F_Mask
: SE
renames Fields
(I
).F_Mask
;
1642 Exponent
: Long_Unsigned
;
1643 Fraction
: Long_Unsigned
;
1647 S
: SEA
(1 .. SF_L
) := (others => 0);
1650 if not Item
'Valid then
1651 raise Constraint_Error
;
1656 Positive := (0.0 <= Item
);
1666 E
:= Short_Float'Exponent (F
) - 1;
1668 -- Denormalized float
1670 if E
<= -E_Bias
then
1672 F
:= Short_Float'Scaling (F
, F_Size
+ E_Bias
- 1);
1674 F
:= Short_Float'Scaling (F
, F_Size
- E
);
1677 -- Compute Exponent and Fraction
1679 Exponent
:= Long_Unsigned
(E
+ E_Bias
);
1680 Fraction
:= Long_Unsigned
(F
* 2.0) / 2;
1685 for I
in reverse SF_L
- F_Bytes
+ 1 .. SF_L
loop
1686 S
(I
) := SE
(Fraction
mod BB
);
1687 Fraction
:= Fraction
/ BB
;
1690 -- Remove implicit bit
1692 S
(SF_L
- F_Bytes
+ 1) := S
(SF_L
- F_Bytes
+ 1) and F_Mask
;
1694 -- Store Exponent (not always at the beginning of a byte)
1696 Exponent
:= Shift_Left
(Exponent
, Integer (E_Bytes
) * SU
- E_Size
- 1);
1697 for N
in reverse 1 .. E_Bytes
loop
1698 S
(N
) := SE
(Exponent
mod BB
) + S
(N
);
1699 Exponent
:= Exponent
/ BB
;
1704 if not Positive then
1705 S
(1) := S
(1) + BS
;
1708 Ada
.Streams
.Write
(Stream
.all, S
);
1715 procedure W_SI
(Stream
: not null access RST
; Item
: Short_Integer) is
1720 if Optimize_Integers
then
1721 S
:= Short_Integer_To_XDR_S_SI
(Item
);
1724 -- Test sign and apply two complement's notation
1727 then XDR_SU
'Last xor XDR_SU
(-(Item
+ 1))
1728 else XDR_SU
(Item
));
1730 for N
in reverse S
'Range loop
1731 S
(N
) := SE
(U
mod BB
);
1740 Ada
.Streams
.Write
(Stream
.all, S
);
1748 (Stream
: not null access RST
;
1749 Item
: Short_Short_Integer)
1755 if Optimize_Integers
then
1756 S
:= Short_Short_Integer_To_XDR_S_SSI
(Item
);
1759 -- Test sign and apply two complement's notation
1762 then XDR_SSU
'Last xor XDR_SSU
(-(Item
+ 1))
1763 else XDR_SSU
(Item
));
1768 Ada
.Streams
.Write
(Stream
.all, S
);
1776 (Stream
: not null access RST
;
1777 Item
: Short_Short_Unsigned
)
1779 U
: constant XDR_SSU
:= XDR_SSU
(Item
);
1784 Ada
.Streams
.Write
(Stream
.all, S
);
1791 procedure W_SU
(Stream
: not null access RST
; Item
: Short_Unsigned
) is
1793 U
: XDR_SU
:= XDR_SU
(Item
);
1796 if Optimize_Integers
then
1797 S
:= Short_Unsigned_To_XDR_S_SU
(Item
);
1800 for N
in reverse S
'Range loop
1801 S
(N
) := SE
(U
mod BB
);
1810 Ada
.Streams
.Write
(Stream
.all, S
);
1817 procedure W_U
(Stream
: not null access RST
; Item
: Unsigned
) is
1819 U
: XDR_U
:= XDR_U
(Item
);
1822 if Optimize_Integers
then
1823 S
:= Unsigned_To_XDR_S_U
(Item
);
1826 for N
in reverse S
'Range loop
1827 S
(N
) := SE
(U
mod BB
);
1836 Ada
.Streams
.Write
(Stream
.all, S
);
1843 procedure W_WC
(Stream
: not null access RST
; Item
: Wide_Character) is
1848 -- Use Ada requirements on Wide_Character representation clause
1850 U
:= XDR_WC
(Wide_Character'Pos (Item
));
1852 for N
in reverse S
'Range loop
1853 S
(N
) := SE
(U
mod BB
);
1857 Ada
.Streams
.Write
(Stream
.all, S
);
1869 (Stream
: not null access RST
; Item
: Wide_Wide_Character
)
1875 -- Use Ada requirements on Wide_Wide_Character representation clause
1877 U
:= XDR_WWC
(Wide_Wide_Character
'Pos (Item
));
1879 for N
in reverse S
'Range loop
1880 S
(N
) := SE
(U
mod BB
);
1884 Ada
.Streams
.Write
(Stream
.all, S
);
1891 end System
.Stream_Attributes
;