more autogen definiton
[official-gcc.git] / gcc / ada / exp_pakd.adb
blob8a95ec5c8768fef75e0669fd50a093d73b1a52d6
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ P A K D --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Errout; use Errout;
30 with Exp_Dbug; use Exp_Dbug;
31 with Exp_Util; use Exp_Util;
32 with Layout; use Layout;
33 with Namet; use Namet;
34 with Nlists; use Nlists;
35 with Nmake; use Nmake;
36 with Opt; use Opt;
37 with Rtsfind; use Rtsfind;
38 with Sem; use Sem;
39 with Sem_Aux; use Sem_Aux;
40 with Sem_Ch3; use Sem_Ch3;
41 with Sem_Ch8; use Sem_Ch8;
42 with Sem_Ch13; use Sem_Ch13;
43 with Sem_Eval; use Sem_Eval;
44 with Sem_Res; use Sem_Res;
45 with Sem_Util; use Sem_Util;
46 with Sinfo; use Sinfo;
47 with Snames; use Snames;
48 with Stand; use Stand;
49 with Targparm; use Targparm;
50 with Tbuild; use Tbuild;
51 with Ttypes; use Ttypes;
52 with Uintp; use Uintp;
54 package body Exp_Pakd is
56 ---------------------------
57 -- Endian Considerations --
58 ---------------------------
60 -- As described in the specification, bit numbering in a packed array
61 -- is consistent with bit numbering in a record representation clause,
62 -- and hence dependent on the endianness of the machine:
64 -- For little-endian machines, element zero is at the right hand end
65 -- (low order end) of a bit field.
67 -- For big-endian machines, element zero is at the left hand end
68 -- (high order end) of a bit field.
70 -- The shifts that are used to right justify a field therefore differ in
71 -- the two cases. For the little-endian case, we can simply use the bit
72 -- number (i.e. the element number * element size) as the count for a right
73 -- shift. For the big-endian case, we have to subtract the shift count from
74 -- an appropriate constant to use in the right shift. We use rotates
75 -- instead of shifts (which is necessary in the store case to preserve
76 -- other fields), and we expect that the backend will be able to change the
77 -- right rotate into a left rotate, avoiding the subtract, if the machine
78 -- architecture provides such an instruction.
80 ----------------------------------------------
81 -- Entity Tables for Packed Access Routines --
82 ----------------------------------------------
84 -- For the cases of component size = 3,5-7,9-15,17-31,33-63 we call library
85 -- routines. This table provides the entity for the proper routine.
87 type E_Array is array (Int range 01 .. 63) of RE_Id;
89 -- Array of Bits_nn entities. Note that we do not use library routines
90 -- for the 8-bit and 16-bit cases, but we still fill in the table, using
91 -- entries from System.Unsigned, because we also use this table for
92 -- certain special unchecked conversions in the big-endian case.
94 Bits_Id : constant E_Array :=
95 (01 => RE_Bits_1,
96 02 => RE_Bits_2,
97 03 => RE_Bits_03,
98 04 => RE_Bits_4,
99 05 => RE_Bits_05,
100 06 => RE_Bits_06,
101 07 => RE_Bits_07,
102 08 => RE_Unsigned_8,
103 09 => RE_Bits_09,
104 10 => RE_Bits_10,
105 11 => RE_Bits_11,
106 12 => RE_Bits_12,
107 13 => RE_Bits_13,
108 14 => RE_Bits_14,
109 15 => RE_Bits_15,
110 16 => RE_Unsigned_16,
111 17 => RE_Bits_17,
112 18 => RE_Bits_18,
113 19 => RE_Bits_19,
114 20 => RE_Bits_20,
115 21 => RE_Bits_21,
116 22 => RE_Bits_22,
117 23 => RE_Bits_23,
118 24 => RE_Bits_24,
119 25 => RE_Bits_25,
120 26 => RE_Bits_26,
121 27 => RE_Bits_27,
122 28 => RE_Bits_28,
123 29 => RE_Bits_29,
124 30 => RE_Bits_30,
125 31 => RE_Bits_31,
126 32 => RE_Unsigned_32,
127 33 => RE_Bits_33,
128 34 => RE_Bits_34,
129 35 => RE_Bits_35,
130 36 => RE_Bits_36,
131 37 => RE_Bits_37,
132 38 => RE_Bits_38,
133 39 => RE_Bits_39,
134 40 => RE_Bits_40,
135 41 => RE_Bits_41,
136 42 => RE_Bits_42,
137 43 => RE_Bits_43,
138 44 => RE_Bits_44,
139 45 => RE_Bits_45,
140 46 => RE_Bits_46,
141 47 => RE_Bits_47,
142 48 => RE_Bits_48,
143 49 => RE_Bits_49,
144 50 => RE_Bits_50,
145 51 => RE_Bits_51,
146 52 => RE_Bits_52,
147 53 => RE_Bits_53,
148 54 => RE_Bits_54,
149 55 => RE_Bits_55,
150 56 => RE_Bits_56,
151 57 => RE_Bits_57,
152 58 => RE_Bits_58,
153 59 => RE_Bits_59,
154 60 => RE_Bits_60,
155 61 => RE_Bits_61,
156 62 => RE_Bits_62,
157 63 => RE_Bits_63);
159 -- Array of Get routine entities. These are used to obtain an element from
160 -- a packed array. The N'th entry is used to obtain elements from a packed
161 -- array whose component size is N. RE_Null is used as a null entry, for
162 -- the cases where a library routine is not used.
164 Get_Id : constant E_Array :=
165 (01 => RE_Null,
166 02 => RE_Null,
167 03 => RE_Get_03,
168 04 => RE_Null,
169 05 => RE_Get_05,
170 06 => RE_Get_06,
171 07 => RE_Get_07,
172 08 => RE_Null,
173 09 => RE_Get_09,
174 10 => RE_Get_10,
175 11 => RE_Get_11,
176 12 => RE_Get_12,
177 13 => RE_Get_13,
178 14 => RE_Get_14,
179 15 => RE_Get_15,
180 16 => RE_Null,
181 17 => RE_Get_17,
182 18 => RE_Get_18,
183 19 => RE_Get_19,
184 20 => RE_Get_20,
185 21 => RE_Get_21,
186 22 => RE_Get_22,
187 23 => RE_Get_23,
188 24 => RE_Get_24,
189 25 => RE_Get_25,
190 26 => RE_Get_26,
191 27 => RE_Get_27,
192 28 => RE_Get_28,
193 29 => RE_Get_29,
194 30 => RE_Get_30,
195 31 => RE_Get_31,
196 32 => RE_Null,
197 33 => RE_Get_33,
198 34 => RE_Get_34,
199 35 => RE_Get_35,
200 36 => RE_Get_36,
201 37 => RE_Get_37,
202 38 => RE_Get_38,
203 39 => RE_Get_39,
204 40 => RE_Get_40,
205 41 => RE_Get_41,
206 42 => RE_Get_42,
207 43 => RE_Get_43,
208 44 => RE_Get_44,
209 45 => RE_Get_45,
210 46 => RE_Get_46,
211 47 => RE_Get_47,
212 48 => RE_Get_48,
213 49 => RE_Get_49,
214 50 => RE_Get_50,
215 51 => RE_Get_51,
216 52 => RE_Get_52,
217 53 => RE_Get_53,
218 54 => RE_Get_54,
219 55 => RE_Get_55,
220 56 => RE_Get_56,
221 57 => RE_Get_57,
222 58 => RE_Get_58,
223 59 => RE_Get_59,
224 60 => RE_Get_60,
225 61 => RE_Get_61,
226 62 => RE_Get_62,
227 63 => RE_Get_63);
229 -- Array of Get routine entities to be used in the case where the packed
230 -- array is itself a component of a packed structure, and therefore may not
231 -- be fully aligned. This only affects the even sizes, since for the odd
232 -- sizes, we do not get any fixed alignment in any case.
234 GetU_Id : constant E_Array :=
235 (01 => RE_Null,
236 02 => RE_Null,
237 03 => RE_Get_03,
238 04 => RE_Null,
239 05 => RE_Get_05,
240 06 => RE_GetU_06,
241 07 => RE_Get_07,
242 08 => RE_Null,
243 09 => RE_Get_09,
244 10 => RE_GetU_10,
245 11 => RE_Get_11,
246 12 => RE_GetU_12,
247 13 => RE_Get_13,
248 14 => RE_GetU_14,
249 15 => RE_Get_15,
250 16 => RE_Null,
251 17 => RE_Get_17,
252 18 => RE_GetU_18,
253 19 => RE_Get_19,
254 20 => RE_GetU_20,
255 21 => RE_Get_21,
256 22 => RE_GetU_22,
257 23 => RE_Get_23,
258 24 => RE_GetU_24,
259 25 => RE_Get_25,
260 26 => RE_GetU_26,
261 27 => RE_Get_27,
262 28 => RE_GetU_28,
263 29 => RE_Get_29,
264 30 => RE_GetU_30,
265 31 => RE_Get_31,
266 32 => RE_Null,
267 33 => RE_Get_33,
268 34 => RE_GetU_34,
269 35 => RE_Get_35,
270 36 => RE_GetU_36,
271 37 => RE_Get_37,
272 38 => RE_GetU_38,
273 39 => RE_Get_39,
274 40 => RE_GetU_40,
275 41 => RE_Get_41,
276 42 => RE_GetU_42,
277 43 => RE_Get_43,
278 44 => RE_GetU_44,
279 45 => RE_Get_45,
280 46 => RE_GetU_46,
281 47 => RE_Get_47,
282 48 => RE_GetU_48,
283 49 => RE_Get_49,
284 50 => RE_GetU_50,
285 51 => RE_Get_51,
286 52 => RE_GetU_52,
287 53 => RE_Get_53,
288 54 => RE_GetU_54,
289 55 => RE_Get_55,
290 56 => RE_GetU_56,
291 57 => RE_Get_57,
292 58 => RE_GetU_58,
293 59 => RE_Get_59,
294 60 => RE_GetU_60,
295 61 => RE_Get_61,
296 62 => RE_GetU_62,
297 63 => RE_Get_63);
299 -- Array of Set routine entities. These are used to assign an element of a
300 -- packed array. The N'th entry is used to assign elements for a packed
301 -- array whose component size is N. RE_Null is used as a null entry, for
302 -- the cases where a library routine is not used.
304 Set_Id : constant E_Array :=
305 (01 => RE_Null,
306 02 => RE_Null,
307 03 => RE_Set_03,
308 04 => RE_Null,
309 05 => RE_Set_05,
310 06 => RE_Set_06,
311 07 => RE_Set_07,
312 08 => RE_Null,
313 09 => RE_Set_09,
314 10 => RE_Set_10,
315 11 => RE_Set_11,
316 12 => RE_Set_12,
317 13 => RE_Set_13,
318 14 => RE_Set_14,
319 15 => RE_Set_15,
320 16 => RE_Null,
321 17 => RE_Set_17,
322 18 => RE_Set_18,
323 19 => RE_Set_19,
324 20 => RE_Set_20,
325 21 => RE_Set_21,
326 22 => RE_Set_22,
327 23 => RE_Set_23,
328 24 => RE_Set_24,
329 25 => RE_Set_25,
330 26 => RE_Set_26,
331 27 => RE_Set_27,
332 28 => RE_Set_28,
333 29 => RE_Set_29,
334 30 => RE_Set_30,
335 31 => RE_Set_31,
336 32 => RE_Null,
337 33 => RE_Set_33,
338 34 => RE_Set_34,
339 35 => RE_Set_35,
340 36 => RE_Set_36,
341 37 => RE_Set_37,
342 38 => RE_Set_38,
343 39 => RE_Set_39,
344 40 => RE_Set_40,
345 41 => RE_Set_41,
346 42 => RE_Set_42,
347 43 => RE_Set_43,
348 44 => RE_Set_44,
349 45 => RE_Set_45,
350 46 => RE_Set_46,
351 47 => RE_Set_47,
352 48 => RE_Set_48,
353 49 => RE_Set_49,
354 50 => RE_Set_50,
355 51 => RE_Set_51,
356 52 => RE_Set_52,
357 53 => RE_Set_53,
358 54 => RE_Set_54,
359 55 => RE_Set_55,
360 56 => RE_Set_56,
361 57 => RE_Set_57,
362 58 => RE_Set_58,
363 59 => RE_Set_59,
364 60 => RE_Set_60,
365 61 => RE_Set_61,
366 62 => RE_Set_62,
367 63 => RE_Set_63);
369 -- Array of Set routine entities to be used in the case where the packed
370 -- array is itself a component of a packed structure, and therefore may not
371 -- be fully aligned. This only affects the even sizes, since for the odd
372 -- sizes, we do not get any fixed alignment in any case.
374 SetU_Id : constant E_Array :=
375 (01 => RE_Null,
376 02 => RE_Null,
377 03 => RE_Set_03,
378 04 => RE_Null,
379 05 => RE_Set_05,
380 06 => RE_SetU_06,
381 07 => RE_Set_07,
382 08 => RE_Null,
383 09 => RE_Set_09,
384 10 => RE_SetU_10,
385 11 => RE_Set_11,
386 12 => RE_SetU_12,
387 13 => RE_Set_13,
388 14 => RE_SetU_14,
389 15 => RE_Set_15,
390 16 => RE_Null,
391 17 => RE_Set_17,
392 18 => RE_SetU_18,
393 19 => RE_Set_19,
394 20 => RE_SetU_20,
395 21 => RE_Set_21,
396 22 => RE_SetU_22,
397 23 => RE_Set_23,
398 24 => RE_SetU_24,
399 25 => RE_Set_25,
400 26 => RE_SetU_26,
401 27 => RE_Set_27,
402 28 => RE_SetU_28,
403 29 => RE_Set_29,
404 30 => RE_SetU_30,
405 31 => RE_Set_31,
406 32 => RE_Null,
407 33 => RE_Set_33,
408 34 => RE_SetU_34,
409 35 => RE_Set_35,
410 36 => RE_SetU_36,
411 37 => RE_Set_37,
412 38 => RE_SetU_38,
413 39 => RE_Set_39,
414 40 => RE_SetU_40,
415 41 => RE_Set_41,
416 42 => RE_SetU_42,
417 43 => RE_Set_43,
418 44 => RE_SetU_44,
419 45 => RE_Set_45,
420 46 => RE_SetU_46,
421 47 => RE_Set_47,
422 48 => RE_SetU_48,
423 49 => RE_Set_49,
424 50 => RE_SetU_50,
425 51 => RE_Set_51,
426 52 => RE_SetU_52,
427 53 => RE_Set_53,
428 54 => RE_SetU_54,
429 55 => RE_Set_55,
430 56 => RE_SetU_56,
431 57 => RE_Set_57,
432 58 => RE_SetU_58,
433 59 => RE_Set_59,
434 60 => RE_SetU_60,
435 61 => RE_Set_61,
436 62 => RE_SetU_62,
437 63 => RE_Set_63);
439 -----------------------
440 -- Local Subprograms --
441 -----------------------
443 procedure Compute_Linear_Subscript
444 (Atyp : Entity_Id;
445 N : Node_Id;
446 Subscr : out Node_Id);
447 -- Given a constrained array type Atyp, and an indexed component node N
448 -- referencing an array object of this type, build an expression of type
449 -- Standard.Integer representing the zero-based linear subscript value.
450 -- This expression includes any required range checks.
452 procedure Convert_To_PAT_Type (Aexp : Node_Id);
453 -- Given an expression of a packed array type, builds a corresponding
454 -- expression whose type is the implementation type used to represent
455 -- the packed array. Aexp is analyzed and resolved on entry and on exit.
457 procedure Get_Base_And_Bit_Offset
458 (N : Node_Id;
459 Base : out Node_Id;
460 Offset : out Node_Id);
461 -- Given a node N for a name which involves a packed array reference,
462 -- return the base object of the reference and build an expression of
463 -- type Standard.Integer representing the zero-based offset in bits
464 -- from Base'Address to the first bit of the reference.
466 function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean;
467 -- There are two versions of the Set routines, the ones used when the
468 -- object is known to be sufficiently well aligned given the number of
469 -- bits, and the ones used when the object is not known to be aligned.
470 -- This routine is used to determine which set to use. Obj is a reference
471 -- to the object, and Csiz is the component size of the packed array.
472 -- True is returned if the alignment of object is known to be sufficient,
473 -- defined as 1 for odd bit sizes, 4 for bit sizes divisible by 4, and
474 -- 2 otherwise.
476 function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id;
477 -- Build a left shift node, checking for the case of a shift count of zero
479 function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id;
480 -- Build a right shift node, checking for the case of a shift count of zero
482 function RJ_Unchecked_Convert_To
483 (Typ : Entity_Id;
484 Expr : Node_Id) return Node_Id;
485 -- The packed array code does unchecked conversions which in some cases
486 -- may involve non-discrete types with differing sizes. The semantics of
487 -- such conversions is potentially endian dependent, and the effect we
488 -- want here for such a conversion is to do the conversion in size as
489 -- though numeric items are involved, and we extend or truncate on the
490 -- left side. This happens naturally in the little-endian case, but in
491 -- the big endian case we can get left justification, when what we want
492 -- is right justification. This routine does the unchecked conversion in
493 -- a stepwise manner to ensure that it gives the expected result. Hence
494 -- the name (RJ = Right justified). The parameters Typ and Expr are as
495 -- for the case of a normal Unchecked_Convert_To call.
497 procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id);
498 -- This routine is called in the Get and Set case for arrays that are
499 -- packed but not bit-packed, meaning that they have at least one
500 -- subscript that is of an enumeration type with a non-standard
501 -- representation. This routine modifies the given node to properly
502 -- reference the corresponding packed array type.
504 procedure Setup_Inline_Packed_Array_Reference
505 (N : Node_Id;
506 Atyp : Entity_Id;
507 Obj : in out Node_Id;
508 Cmask : out Uint;
509 Shift : out Node_Id);
510 -- This procedure performs common processing on the N_Indexed_Component
511 -- parameter given as N, whose prefix is a reference to a packed array.
512 -- This is used for the get and set when the component size is 1,2,4
513 -- or for other component sizes when the packed array type is a modular
514 -- type (i.e. the cases that are handled with inline code).
516 -- On entry:
518 -- N is the N_Indexed_Component node for the packed array reference
520 -- Atyp is the constrained array type (the actual subtype has been
521 -- computed if necessary to obtain the constraints, but this is still
522 -- the original array type, not the Packed_Array_Type value).
524 -- Obj is the object which is to be indexed. It is always of type Atyp.
526 -- On return:
528 -- Obj is the object containing the desired bit field. It is of type
529 -- Unsigned, Long_Unsigned, or Long_Long_Unsigned, and is either the
530 -- entire value, for the small static case, or the proper selected byte
531 -- from the array in the large or dynamic case. This node is analyzed
532 -- and resolved on return.
534 -- Shift is a node representing the shift count to be used in the
535 -- rotate right instruction that positions the field for access.
536 -- This node is analyzed and resolved on return.
538 -- Cmask is a mask corresponding to the width of the component field.
539 -- Its value is 2 ** Csize - 1 (e.g. 2#1111# for component size of 4).
541 -- Note: in some cases the call to this routine may generate actions
542 -- (for handling multi-use references and the generation of the packed
543 -- array type on the fly). Such actions are inserted into the tree
544 -- directly using Insert_Action.
546 ------------------------------
547 -- Compute_Linear_Subscript --
548 ------------------------------
550 procedure Compute_Linear_Subscript
551 (Atyp : Entity_Id;
552 N : Node_Id;
553 Subscr : out Node_Id)
555 Loc : constant Source_Ptr := Sloc (N);
556 Oldsub : Node_Id;
557 Newsub : Node_Id;
558 Indx : Node_Id;
559 Styp : Entity_Id;
561 begin
562 Subscr := Empty;
564 -- Loop through dimensions
566 Indx := First_Index (Atyp);
567 Oldsub := First (Expressions (N));
569 while Present (Indx) loop
570 Styp := Etype (Indx);
571 Newsub := Relocate_Node (Oldsub);
573 -- Get expression for the subscript value. First, if Do_Range_Check
574 -- is set on a subscript, then we must do a range check against the
575 -- original bounds (not the bounds of the packed array type). We do
576 -- this by introducing a subtype conversion.
578 if Do_Range_Check (Newsub)
579 and then Etype (Newsub) /= Styp
580 then
581 Newsub := Convert_To (Styp, Newsub);
582 end if;
584 -- Now evolve the expression for the subscript. First convert
585 -- the subscript to be zero based and of an integer type.
587 -- Case of integer type, where we just subtract to get lower bound
589 if Is_Integer_Type (Styp) then
591 -- If length of integer type is smaller than standard integer,
592 -- then we convert to integer first, then do the subtract
594 -- Integer (subscript) - Integer (Styp'First)
596 if Esize (Styp) < Esize (Standard_Integer) then
597 Newsub :=
598 Make_Op_Subtract (Loc,
599 Left_Opnd => Convert_To (Standard_Integer, Newsub),
600 Right_Opnd =>
601 Convert_To (Standard_Integer,
602 Make_Attribute_Reference (Loc,
603 Prefix => New_Occurrence_Of (Styp, Loc),
604 Attribute_Name => Name_First)));
606 -- For larger integer types, subtract first, then convert to
607 -- integer, this deals with strange long long integer bounds.
609 -- Integer (subscript - Styp'First)
611 else
612 Newsub :=
613 Convert_To (Standard_Integer,
614 Make_Op_Subtract (Loc,
615 Left_Opnd => Newsub,
616 Right_Opnd =>
617 Make_Attribute_Reference (Loc,
618 Prefix => New_Occurrence_Of (Styp, Loc),
619 Attribute_Name => Name_First)));
620 end if;
622 -- For the enumeration case, we have to use 'Pos to get the value
623 -- to work with before subtracting the lower bound.
625 -- Integer (Styp'Pos (subscr)) - Integer (Styp'Pos (Styp'First));
627 -- This is not quite right for bizarre cases where the size of the
628 -- enumeration type is > Integer'Size bits due to rep clause ???
630 else
631 pragma Assert (Is_Enumeration_Type (Styp));
633 Newsub :=
634 Make_Op_Subtract (Loc,
635 Left_Opnd => Convert_To (Standard_Integer,
636 Make_Attribute_Reference (Loc,
637 Prefix => New_Occurrence_Of (Styp, Loc),
638 Attribute_Name => Name_Pos,
639 Expressions => New_List (Newsub))),
641 Right_Opnd =>
642 Convert_To (Standard_Integer,
643 Make_Attribute_Reference (Loc,
644 Prefix => New_Occurrence_Of (Styp, Loc),
645 Attribute_Name => Name_Pos,
646 Expressions => New_List (
647 Make_Attribute_Reference (Loc,
648 Prefix => New_Occurrence_Of (Styp, Loc),
649 Attribute_Name => Name_First)))));
650 end if;
652 Set_Paren_Count (Newsub, 1);
654 -- For the first subscript, we just copy that subscript value
656 if No (Subscr) then
657 Subscr := Newsub;
659 -- Otherwise, we must multiply what we already have by the current
660 -- stride and then add in the new value to the evolving subscript.
662 else
663 Subscr :=
664 Make_Op_Add (Loc,
665 Left_Opnd =>
666 Make_Op_Multiply (Loc,
667 Left_Opnd => Subscr,
668 Right_Opnd =>
669 Make_Attribute_Reference (Loc,
670 Attribute_Name => Name_Range_Length,
671 Prefix => New_Occurrence_Of (Styp, Loc))),
672 Right_Opnd => Newsub);
673 end if;
675 -- Move to next subscript
677 Next_Index (Indx);
678 Next (Oldsub);
679 end loop;
680 end Compute_Linear_Subscript;
682 -------------------------
683 -- Convert_To_PAT_Type --
684 -------------------------
686 -- The PAT is always obtained from the actual subtype
688 procedure Convert_To_PAT_Type (Aexp : Node_Id) is
689 Act_ST : Entity_Id;
691 begin
692 Convert_To_Actual_Subtype (Aexp);
693 Act_ST := Underlying_Type (Etype (Aexp));
694 Create_Packed_Array_Type (Act_ST);
696 -- Just replace the etype with the packed array type. This works because
697 -- the expression will not be further analyzed, and Gigi considers the
698 -- two types equivalent in any case.
700 -- This is not strictly the case ??? If the reference is an actual in
701 -- call, the expansion of the prefix is delayed, and must be reanalyzed,
702 -- see Reset_Packed_Prefix. On the other hand, if the prefix is a simple
703 -- array reference, reanalysis can produce spurious type errors when the
704 -- PAT type is replaced again with the original type of the array. Same
705 -- for the case of a dereference. Ditto for function calls: expansion
706 -- may introduce additional actuals which will trigger errors if call is
707 -- reanalyzed. The following is correct and minimal, but the handling of
708 -- more complex packed expressions in actuals is confused. Probably the
709 -- problem only remains for actuals in calls.
711 Set_Etype (Aexp, Packed_Array_Type (Act_ST));
713 if Is_Entity_Name (Aexp)
714 or else
715 (Nkind (Aexp) = N_Indexed_Component
716 and then Is_Entity_Name (Prefix (Aexp)))
717 or else Nkind_In (Aexp, N_Explicit_Dereference, N_Function_Call)
718 then
719 Set_Analyzed (Aexp);
720 end if;
721 end Convert_To_PAT_Type;
723 ------------------------------
724 -- Create_Packed_Array_Type --
725 ------------------------------
727 procedure Create_Packed_Array_Type (Typ : Entity_Id) is
728 Loc : constant Source_Ptr := Sloc (Typ);
729 Ctyp : constant Entity_Id := Component_Type (Typ);
730 Csize : constant Uint := Component_Size (Typ);
732 Ancest : Entity_Id;
733 PB_Type : Entity_Id;
734 PASize : Uint;
735 Decl : Node_Id;
736 PAT : Entity_Id;
737 Len_Dim : Node_Id;
738 Len_Expr : Node_Id;
739 Len_Bits : Uint;
740 Bits_U1 : Node_Id;
741 PAT_High : Node_Id;
742 Btyp : Entity_Id;
743 Lit : Node_Id;
745 procedure Install_PAT;
746 -- This procedure is called with Decl set to the declaration for the
747 -- packed array type. It creates the type and installs it as required.
749 procedure Set_PB_Type;
750 -- Sets PB_Type to Packed_Bytes{1,2,4} as required by the alignment
751 -- requirements (see documentation in the spec of this package).
753 -----------------
754 -- Install_PAT --
755 -----------------
757 procedure Install_PAT is
758 Pushed_Scope : Boolean := False;
760 begin
761 -- We do not want to put the declaration we have created in the tree
762 -- since it is often hard, and sometimes impossible to find a proper
763 -- place for it (the impossible case arises for a packed array type
764 -- with bounds depending on the discriminant, a declaration cannot
765 -- be put inside the record, and the reference to the discriminant
766 -- cannot be outside the record).
768 -- The solution is to analyze the declaration while temporarily
769 -- attached to the tree at an appropriate point, and then we install
770 -- the resulting type as an Itype in the packed array type field of
771 -- the original type, so that no explicit declaration is required.
773 -- Note: the packed type is created in the scope of its parent
774 -- type. There are at least some cases where the current scope
775 -- is deeper, and so when this is the case, we temporarily reset
776 -- the scope for the definition. This is clearly safe, since the
777 -- first use of the packed array type will be the implicit
778 -- reference from the corresponding unpacked type when it is
779 -- elaborated.
781 if Is_Itype (Typ) then
782 Set_Parent (Decl, Associated_Node_For_Itype (Typ));
783 else
784 Set_Parent (Decl, Declaration_Node (Typ));
785 end if;
787 if Scope (Typ) /= Current_Scope then
788 Push_Scope (Scope (Typ));
789 Pushed_Scope := True;
790 end if;
792 Set_Is_Itype (PAT, True);
793 Set_Packed_Array_Type (Typ, PAT);
794 Analyze (Decl, Suppress => All_Checks);
796 if Pushed_Scope then
797 Pop_Scope;
798 end if;
800 -- Set Esize and RM_Size to the actual size of the packed object
801 -- Do not reset RM_Size if already set, as happens in the case of
802 -- a modular type.
804 if Unknown_Esize (PAT) then
805 Set_Esize (PAT, PASize);
806 end if;
808 if Unknown_RM_Size (PAT) then
809 Set_RM_Size (PAT, PASize);
810 end if;
812 Adjust_Esize_Alignment (PAT);
814 -- Set remaining fields of packed array type
816 Init_Alignment (PAT);
817 Set_Parent (PAT, Empty);
818 Set_Associated_Node_For_Itype (PAT, Typ);
819 Set_Is_Packed_Array_Type (PAT, True);
820 Set_Original_Array_Type (PAT, Typ);
822 -- We definitely do not want to delay freezing for packed array
823 -- types. This is of particular importance for the itypes that
824 -- are generated for record components depending on discriminants
825 -- where there is no place to put the freeze node.
827 Set_Has_Delayed_Freeze (PAT, False);
828 Set_Has_Delayed_Freeze (Etype (PAT), False);
830 -- If we did allocate a freeze node, then clear out the reference
831 -- since it is obsolete (should we delete the freeze node???)
833 Set_Freeze_Node (PAT, Empty);
834 Set_Freeze_Node (Etype (PAT), Empty);
835 end Install_PAT;
837 -----------------
838 -- Set_PB_Type --
839 -----------------
841 procedure Set_PB_Type is
842 begin
843 -- If the user has specified an explicit alignment for the
844 -- type or component, take it into account.
846 if Csize <= 2 or else Csize = 4 or else Csize mod 2 /= 0
847 or else Alignment (Typ) = 1
848 or else Component_Alignment (Typ) = Calign_Storage_Unit
849 then
850 PB_Type := RTE (RE_Packed_Bytes1);
852 elsif Csize mod 4 /= 0
853 or else Alignment (Typ) = 2
854 then
855 PB_Type := RTE (RE_Packed_Bytes2);
857 else
858 PB_Type := RTE (RE_Packed_Bytes4);
859 end if;
860 end Set_PB_Type;
862 -- Start of processing for Create_Packed_Array_Type
864 begin
865 -- If we already have a packed array type, nothing to do
867 if Present (Packed_Array_Type (Typ)) then
868 return;
869 end if;
871 -- If our immediate ancestor subtype is constrained, and it already
872 -- has a packed array type, then just share the same type, since the
873 -- bounds must be the same. If the ancestor is not an array type but
874 -- a private type, as can happen with multiple instantiations, create
875 -- a new packed type, to avoid privacy issues.
877 if Ekind (Typ) = E_Array_Subtype then
878 Ancest := Ancestor_Subtype (Typ);
880 if Present (Ancest)
881 and then Is_Array_Type (Ancest)
882 and then Is_Constrained (Ancest)
883 and then Present (Packed_Array_Type (Ancest))
884 then
885 Set_Packed_Array_Type (Typ, Packed_Array_Type (Ancest));
886 return;
887 end if;
888 end if;
890 -- We preset the result type size from the size of the original array
891 -- type, since this size clearly belongs to the packed array type. The
892 -- size of the conceptual unpacked type is always set to unknown.
894 PASize := RM_Size (Typ);
896 -- Case of an array where at least one index is of an enumeration
897 -- type with a non-standard representation, but the component size
898 -- is not appropriate for bit packing. This is the case where we
899 -- have Is_Packed set (we would never be in this unit otherwise),
900 -- but Is_Bit_Packed_Array is false.
902 -- Note that if the component size is appropriate for bit packing,
903 -- then the circuit for the computation of the subscript properly
904 -- deals with the non-standard enumeration type case by taking the
905 -- Pos anyway.
907 if not Is_Bit_Packed_Array (Typ) then
909 -- Here we build a declaration:
911 -- type tttP is array (index1, index2, ...) of component_type
913 -- where index1, index2, are the index types. These are the same
914 -- as the index types of the original array, except for the non-
915 -- standard representation enumeration type case, where we have
916 -- two subcases.
918 -- For the unconstrained array case, we use
920 -- Natural range <>
922 -- For the constrained case, we use
924 -- Natural range Enum_Type'Pos (Enum_Type'First) ..
925 -- Enum_Type'Pos (Enum_Type'Last);
927 PAT :=
928 Make_Defining_Identifier (Loc,
929 Chars => New_External_Name (Chars (Typ), 'P'));
931 Set_Packed_Array_Type (Typ, PAT);
933 declare
934 Indexes : constant List_Id := New_List;
935 Indx : Node_Id;
936 Indx_Typ : Entity_Id;
937 Enum_Case : Boolean;
938 Typedef : Node_Id;
940 begin
941 Indx := First_Index (Typ);
943 while Present (Indx) loop
944 Indx_Typ := Etype (Indx);
946 Enum_Case := Is_Enumeration_Type (Indx_Typ)
947 and then Has_Non_Standard_Rep (Indx_Typ);
949 -- Unconstrained case
951 if not Is_Constrained (Typ) then
952 if Enum_Case then
953 Indx_Typ := Standard_Natural;
954 end if;
956 Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
958 -- Constrained case
960 else
961 if not Enum_Case then
962 Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
964 else
965 Append_To (Indexes,
966 Make_Subtype_Indication (Loc,
967 Subtype_Mark =>
968 New_Occurrence_Of (Standard_Natural, Loc),
969 Constraint =>
970 Make_Range_Constraint (Loc,
971 Range_Expression =>
972 Make_Range (Loc,
973 Low_Bound =>
974 Make_Attribute_Reference (Loc,
975 Prefix =>
976 New_Occurrence_Of (Indx_Typ, Loc),
977 Attribute_Name => Name_Pos,
978 Expressions => New_List (
979 Make_Attribute_Reference (Loc,
980 Prefix =>
981 New_Occurrence_Of (Indx_Typ, Loc),
982 Attribute_Name => Name_First))),
984 High_Bound =>
985 Make_Attribute_Reference (Loc,
986 Prefix =>
987 New_Occurrence_Of (Indx_Typ, Loc),
988 Attribute_Name => Name_Pos,
989 Expressions => New_List (
990 Make_Attribute_Reference (Loc,
991 Prefix =>
992 New_Occurrence_Of (Indx_Typ, Loc),
993 Attribute_Name => Name_Last)))))));
995 end if;
996 end if;
998 Next_Index (Indx);
999 end loop;
1001 if not Is_Constrained (Typ) then
1002 Typedef :=
1003 Make_Unconstrained_Array_Definition (Loc,
1004 Subtype_Marks => Indexes,
1005 Component_Definition =>
1006 Make_Component_Definition (Loc,
1007 Aliased_Present => False,
1008 Subtype_Indication =>
1009 New_Occurrence_Of (Ctyp, Loc)));
1011 else
1012 Typedef :=
1013 Make_Constrained_Array_Definition (Loc,
1014 Discrete_Subtype_Definitions => Indexes,
1015 Component_Definition =>
1016 Make_Component_Definition (Loc,
1017 Aliased_Present => False,
1018 Subtype_Indication =>
1019 New_Occurrence_Of (Ctyp, Loc)));
1020 end if;
1022 Decl :=
1023 Make_Full_Type_Declaration (Loc,
1024 Defining_Identifier => PAT,
1025 Type_Definition => Typedef);
1026 end;
1028 -- Set type as packed array type and install it
1030 Set_Is_Packed_Array_Type (PAT);
1031 Install_PAT;
1032 return;
1034 -- Case of bit-packing required for unconstrained array. We create
1035 -- a subtype that is equivalent to use Packed_Bytes{1,2,4} as needed.
1037 elsif not Is_Constrained (Typ) then
1038 PAT :=
1039 Make_Defining_Identifier (Loc,
1040 Chars => Make_Packed_Array_Type_Name (Typ, Csize));
1042 Set_Packed_Array_Type (Typ, PAT);
1043 Set_PB_Type;
1045 Decl :=
1046 Make_Subtype_Declaration (Loc,
1047 Defining_Identifier => PAT,
1048 Subtype_Indication => New_Occurrence_Of (PB_Type, Loc));
1049 Install_PAT;
1050 return;
1052 -- Remaining code is for the case of bit-packing for constrained array
1054 -- The name of the packed array subtype is
1056 -- ttt___Xsss
1058 -- where sss is the component size in bits and ttt is the name of
1059 -- the parent packed type.
1061 else
1062 PAT :=
1063 Make_Defining_Identifier (Loc,
1064 Chars => Make_Packed_Array_Type_Name (Typ, Csize));
1066 Set_Packed_Array_Type (Typ, PAT);
1068 -- Build an expression for the length of the array in bits.
1069 -- This is the product of the length of each of the dimensions
1071 declare
1072 J : Nat := 1;
1074 begin
1075 Len_Expr := Empty; -- suppress junk warning
1077 loop
1078 Len_Dim :=
1079 Make_Attribute_Reference (Loc,
1080 Attribute_Name => Name_Length,
1081 Prefix => New_Occurrence_Of (Typ, Loc),
1082 Expressions => New_List (
1083 Make_Integer_Literal (Loc, J)));
1085 if J = 1 then
1086 Len_Expr := Len_Dim;
1088 else
1089 Len_Expr :=
1090 Make_Op_Multiply (Loc,
1091 Left_Opnd => Len_Expr,
1092 Right_Opnd => Len_Dim);
1093 end if;
1095 J := J + 1;
1096 exit when J > Number_Dimensions (Typ);
1097 end loop;
1098 end;
1100 -- Temporarily attach the length expression to the tree and analyze
1101 -- and resolve it, so that we can test its value. We assume that the
1102 -- total length fits in type Integer. This expression may involve
1103 -- discriminants, so we treat it as a default/per-object expression.
1105 Set_Parent (Len_Expr, Typ);
1106 Preanalyze_Spec_Expression (Len_Expr, Standard_Long_Long_Integer);
1108 -- Use a modular type if possible. We can do this if we have
1109 -- static bounds, and the length is small enough, and the length
1110 -- is not zero. We exclude the zero length case because the size
1111 -- of things is always at least one, and the zero length object
1112 -- would have an anomalous size.
1114 if Compile_Time_Known_Value (Len_Expr) then
1115 Len_Bits := Expr_Value (Len_Expr) * Csize;
1117 -- Check for size known to be too large
1119 if Len_Bits >
1120 Uint_2 ** (Standard_Integer_Size - 1) * System_Storage_Unit
1121 then
1122 if System_Storage_Unit = 8 then
1123 Error_Msg_N
1124 ("packed array size cannot exceed " &
1125 "Integer''Last bytes", Typ);
1126 else
1127 Error_Msg_N
1128 ("packed array size cannot exceed " &
1129 "Integer''Last storage units", Typ);
1130 end if;
1132 -- Reset length to arbitrary not too high value to continue
1134 Len_Expr := Make_Integer_Literal (Loc, 65535);
1135 Analyze_And_Resolve (Len_Expr, Standard_Long_Long_Integer);
1136 end if;
1138 -- We normally consider small enough to mean no larger than the
1139 -- value of System_Max_Binary_Modulus_Power, checking that in the
1140 -- case of values longer than word size, we have long shifts.
1142 if Len_Bits > 0
1143 and then
1144 (Len_Bits <= System_Word_Size
1145 or else (Len_Bits <= System_Max_Binary_Modulus_Power
1146 and then Support_Long_Shifts_On_Target))
1147 then
1148 -- We can use the modular type, it has the form:
1150 -- subtype tttPn is btyp
1151 -- range 0 .. 2 ** ((Typ'Length (1)
1152 -- * ... * Typ'Length (n)) * Csize) - 1;
1154 -- The bounds are statically known, and btyp is one of the
1155 -- unsigned types, depending on the length.
1157 if Len_Bits <= Standard_Short_Short_Integer_Size then
1158 Btyp := RTE (RE_Short_Short_Unsigned);
1160 elsif Len_Bits <= Standard_Short_Integer_Size then
1161 Btyp := RTE (RE_Short_Unsigned);
1163 elsif Len_Bits <= Standard_Integer_Size then
1164 Btyp := RTE (RE_Unsigned);
1166 elsif Len_Bits <= Standard_Long_Integer_Size then
1167 Btyp := RTE (RE_Long_Unsigned);
1169 else
1170 Btyp := RTE (RE_Long_Long_Unsigned);
1171 end if;
1173 Lit := Make_Integer_Literal (Loc, 2 ** Len_Bits - 1);
1174 Set_Print_In_Hex (Lit);
1176 Decl :=
1177 Make_Subtype_Declaration (Loc,
1178 Defining_Identifier => PAT,
1179 Subtype_Indication =>
1180 Make_Subtype_Indication (Loc,
1181 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
1183 Constraint =>
1184 Make_Range_Constraint (Loc,
1185 Range_Expression =>
1186 Make_Range (Loc,
1187 Low_Bound =>
1188 Make_Integer_Literal (Loc, 0),
1189 High_Bound => Lit))));
1191 if PASize = Uint_0 then
1192 PASize := Len_Bits;
1193 end if;
1195 Install_PAT;
1197 -- Propagate a given alignment to the modular type. This can
1198 -- cause it to be under-aligned, but that's OK.
1200 if Present (Alignment_Clause (Typ)) then
1201 Set_Alignment (PAT, Alignment (Typ));
1202 end if;
1204 return;
1205 end if;
1206 end if;
1208 -- Could not use a modular type, for all other cases, we build
1209 -- a packed array subtype:
1211 -- subtype tttPn is
1212 -- System.Packed_Bytes{1,2,4} (0 .. (Bits + 7) / 8 - 1);
1214 -- Bits is the length of the array in bits
1216 Set_PB_Type;
1218 Bits_U1 :=
1219 Make_Op_Add (Loc,
1220 Left_Opnd =>
1221 Make_Op_Multiply (Loc,
1222 Left_Opnd =>
1223 Make_Integer_Literal (Loc, Csize),
1224 Right_Opnd => Len_Expr),
1226 Right_Opnd =>
1227 Make_Integer_Literal (Loc, 7));
1229 Set_Paren_Count (Bits_U1, 1);
1231 PAT_High :=
1232 Make_Op_Subtract (Loc,
1233 Left_Opnd =>
1234 Make_Op_Divide (Loc,
1235 Left_Opnd => Bits_U1,
1236 Right_Opnd => Make_Integer_Literal (Loc, 8)),
1237 Right_Opnd => Make_Integer_Literal (Loc, 1));
1239 Decl :=
1240 Make_Subtype_Declaration (Loc,
1241 Defining_Identifier => PAT,
1242 Subtype_Indication =>
1243 Make_Subtype_Indication (Loc,
1244 Subtype_Mark => New_Occurrence_Of (PB_Type, Loc),
1245 Constraint =>
1246 Make_Index_Or_Discriminant_Constraint (Loc,
1247 Constraints => New_List (
1248 Make_Range (Loc,
1249 Low_Bound =>
1250 Make_Integer_Literal (Loc, 0),
1251 High_Bound =>
1252 Convert_To (Standard_Integer, PAT_High))))));
1254 Install_PAT;
1256 -- Currently the code in this unit requires that packed arrays
1257 -- represented by non-modular arrays of bytes be on a byte
1258 -- boundary for bit sizes handled by System.Pack_nn units.
1259 -- That's because these units assume the array being accessed
1260 -- starts on a byte boundary.
1262 if Get_Id (UI_To_Int (Csize)) /= RE_Null then
1263 Set_Must_Be_On_Byte_Boundary (Typ);
1264 end if;
1265 end if;
1266 end Create_Packed_Array_Type;
1268 -----------------------------------
1269 -- Expand_Bit_Packed_Element_Set --
1270 -----------------------------------
1272 procedure Expand_Bit_Packed_Element_Set (N : Node_Id) is
1273 Loc : constant Source_Ptr := Sloc (N);
1274 Lhs : constant Node_Id := Name (N);
1276 Ass_OK : constant Boolean := Assignment_OK (Lhs);
1277 -- Used to preserve assignment OK status when assignment is rewritten
1279 Rhs : Node_Id := Expression (N);
1280 -- Initially Rhs is the right hand side value, it will be replaced
1281 -- later by an appropriate unchecked conversion for the assignment.
1283 Obj : Node_Id;
1284 Atyp : Entity_Id;
1285 PAT : Entity_Id;
1286 Ctyp : Entity_Id;
1287 Csiz : Int;
1288 Cmask : Uint;
1290 Shift : Node_Id;
1291 -- The expression for the shift value that is required
1293 Shift_Used : Boolean := False;
1294 -- Set True if Shift has been used in the generated code at least
1295 -- once, so that it must be duplicated if used again
1297 New_Lhs : Node_Id;
1298 New_Rhs : Node_Id;
1300 Rhs_Val_Known : Boolean;
1301 Rhs_Val : Uint;
1302 -- If the value of the right hand side as an integer constant is
1303 -- known at compile time, Rhs_Val_Known is set True, and Rhs_Val
1304 -- contains the value. Otherwise Rhs_Val_Known is set False, and
1305 -- the Rhs_Val is undefined.
1307 function Get_Shift return Node_Id;
1308 -- Function used to get the value of Shift, making sure that it
1309 -- gets duplicated if the function is called more than once.
1311 ---------------
1312 -- Get_Shift --
1313 ---------------
1315 function Get_Shift return Node_Id is
1316 begin
1317 -- If we used the shift value already, then duplicate it. We
1318 -- set a temporary parent in case actions have to be inserted.
1320 if Shift_Used then
1321 Set_Parent (Shift, N);
1322 return Duplicate_Subexpr_No_Checks (Shift);
1324 -- If first time, use Shift unchanged, and set flag for first use
1326 else
1327 Shift_Used := True;
1328 return Shift;
1329 end if;
1330 end Get_Shift;
1332 -- Start of processing for Expand_Bit_Packed_Element_Set
1334 begin
1335 pragma Assert (Is_Bit_Packed_Array (Etype (Prefix (Lhs))));
1337 Obj := Relocate_Node (Prefix (Lhs));
1338 Convert_To_Actual_Subtype (Obj);
1339 Atyp := Etype (Obj);
1340 PAT := Packed_Array_Type (Atyp);
1341 Ctyp := Component_Type (Atyp);
1342 Csiz := UI_To_Int (Component_Size (Atyp));
1344 -- We remove side effects, in case the rhs modifies the lhs, because we
1345 -- are about to transform the rhs into an expression that first READS
1346 -- the lhs, so we can do the necessary shifting and masking. Example:
1347 -- "X(2) := F(...);" where F modifies X(3). Otherwise, the side effect
1348 -- will be lost.
1350 Remove_Side_Effects (Rhs);
1352 -- We convert the right hand side to the proper subtype to ensure
1353 -- that an appropriate range check is made (since the normal range
1354 -- check from assignment will be lost in the transformations). This
1355 -- conversion is analyzed immediately so that subsequent processing
1356 -- can work with an analyzed Rhs (and e.g. look at its Etype)
1358 -- If the right-hand side is a string literal, create a temporary for
1359 -- it, constant-folding is not ready to wrap the bit representation
1360 -- of a string literal.
1362 if Nkind (Rhs) = N_String_Literal then
1363 declare
1364 Decl : Node_Id;
1365 begin
1366 Decl :=
1367 Make_Object_Declaration (Loc,
1368 Defining_Identifier => Make_Temporary (Loc, 'T', Rhs),
1369 Object_Definition => New_Occurrence_Of (Ctyp, Loc),
1370 Expression => New_Copy_Tree (Rhs));
1372 Insert_Actions (N, New_List (Decl));
1373 Rhs := New_Occurrence_Of (Defining_Identifier (Decl), Loc);
1374 end;
1375 end if;
1377 Rhs := Convert_To (Ctyp, Rhs);
1378 Set_Parent (Rhs, N);
1380 -- If we are building the initialization procedure for a packed array,
1381 -- and Initialize_Scalars is enabled, each component assignment is an
1382 -- out-of-range value by design. Compile this value without checks,
1383 -- because a call to the array init_proc must not raise an exception.
1385 if Within_Init_Proc
1386 and then Initialize_Scalars
1387 then
1388 Analyze_And_Resolve (Rhs, Ctyp, Suppress => All_Checks);
1389 else
1390 Analyze_And_Resolve (Rhs, Ctyp);
1391 end if;
1393 -- For the AAMP target, indexing of certain packed array is passed
1394 -- through to the back end without expansion, because the expansion
1395 -- results in very inefficient code on that target. This allows the
1396 -- GNAAMP back end to generate specialized macros that support more
1397 -- efficient indexing of packed arrays with components having sizes
1398 -- that are small powers of two.
1400 if AAMP_On_Target
1401 and then (Csiz = 1 or else Csiz = 2 or else Csiz = 4)
1402 then
1403 return;
1404 end if;
1406 -- Case of component size 1,2,4 or any component size for the modular
1407 -- case. These are the cases for which we can inline the code.
1409 if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1410 or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1411 then
1412 Setup_Inline_Packed_Array_Reference (Lhs, Atyp, Obj, Cmask, Shift);
1414 -- The statement to be generated is:
1416 -- Obj := atyp!((Obj and Mask1) or (shift_left (rhs, Shift)))
1418 -- where Mask1 is obtained by shifting Cmask left Shift bits
1419 -- and then complementing the result.
1421 -- the "and Mask1" is omitted if rhs is constant and all 1 bits
1423 -- the "or ..." is omitted if rhs is constant and all 0 bits
1425 -- rhs is converted to the appropriate type
1427 -- The result is converted back to the array type, since
1428 -- otherwise we lose knowledge of the packed nature.
1430 -- Determine if right side is all 0 bits or all 1 bits
1432 if Compile_Time_Known_Value (Rhs) then
1433 Rhs_Val := Expr_Rep_Value (Rhs);
1434 Rhs_Val_Known := True;
1436 -- The following test catches the case of an unchecked conversion
1437 -- of an integer literal. This results from optimizing aggregates
1438 -- of packed types.
1440 elsif Nkind (Rhs) = N_Unchecked_Type_Conversion
1441 and then Compile_Time_Known_Value (Expression (Rhs))
1442 then
1443 Rhs_Val := Expr_Rep_Value (Expression (Rhs));
1444 Rhs_Val_Known := True;
1446 else
1447 Rhs_Val := No_Uint;
1448 Rhs_Val_Known := False;
1449 end if;
1451 -- Some special checks for the case where the right hand value is
1452 -- known at compile time. Basically we have to take care of the
1453 -- implicit conversion to the subtype of the component object.
1455 if Rhs_Val_Known then
1457 -- If we have a biased component type then we must manually do the
1458 -- biasing, since we are taking responsibility in this case for
1459 -- constructing the exact bit pattern to be used.
1461 if Has_Biased_Representation (Ctyp) then
1462 Rhs_Val := Rhs_Val - Expr_Rep_Value (Type_Low_Bound (Ctyp));
1463 end if;
1465 -- For a negative value, we manually convert the two's complement
1466 -- value to a corresponding unsigned value, so that the proper
1467 -- field width is maintained. If we did not do this, we would
1468 -- get too many leading sign bits later on.
1470 if Rhs_Val < 0 then
1471 Rhs_Val := 2 ** UI_From_Int (Csiz) + Rhs_Val;
1472 end if;
1473 end if;
1475 -- Now create copies removing side effects. Note that in some
1476 -- complex cases, this may cause the fact that we have already
1477 -- set a packed array type on Obj to get lost. So we save the
1478 -- type of Obj, and make sure it is reset properly.
1480 declare
1481 T : constant Entity_Id := Etype (Obj);
1482 begin
1483 New_Lhs := Duplicate_Subexpr (Obj, True);
1484 New_Rhs := Duplicate_Subexpr_No_Checks (Obj);
1485 Set_Etype (Obj, T);
1486 Set_Etype (New_Lhs, T);
1487 Set_Etype (New_Rhs, T);
1488 end;
1490 -- First we deal with the "and"
1492 if not Rhs_Val_Known or else Rhs_Val /= Cmask then
1493 declare
1494 Mask1 : Node_Id;
1495 Lit : Node_Id;
1497 begin
1498 if Compile_Time_Known_Value (Shift) then
1499 Mask1 :=
1500 Make_Integer_Literal (Loc,
1501 Modulus (Etype (Obj)) - 1 -
1502 (Cmask * (2 ** Expr_Value (Get_Shift))));
1503 Set_Print_In_Hex (Mask1);
1505 else
1506 Lit := Make_Integer_Literal (Loc, Cmask);
1507 Set_Print_In_Hex (Lit);
1508 Mask1 :=
1509 Make_Op_Not (Loc,
1510 Right_Opnd => Make_Shift_Left (Lit, Get_Shift));
1511 end if;
1513 New_Rhs :=
1514 Make_Op_And (Loc,
1515 Left_Opnd => New_Rhs,
1516 Right_Opnd => Mask1);
1517 end;
1518 end if;
1520 -- Then deal with the "or"
1522 if not Rhs_Val_Known or else Rhs_Val /= 0 then
1523 declare
1524 Or_Rhs : Node_Id;
1526 procedure Fixup_Rhs;
1527 -- Adjust Rhs by bias if biased representation for components
1528 -- or remove extraneous high order sign bits if signed.
1530 procedure Fixup_Rhs is
1531 Etyp : constant Entity_Id := Etype (Rhs);
1533 begin
1534 -- For biased case, do the required biasing by simply
1535 -- converting to the biased subtype (the conversion
1536 -- will generate the required bias).
1538 if Has_Biased_Representation (Ctyp) then
1539 Rhs := Convert_To (Ctyp, Rhs);
1541 -- For a signed integer type that is not biased, generate
1542 -- a conversion to unsigned to strip high order sign bits.
1544 elsif Is_Signed_Integer_Type (Ctyp) then
1545 Rhs := Unchecked_Convert_To (RTE (Bits_Id (Csiz)), Rhs);
1546 end if;
1548 -- Set Etype, since it can be referenced before the node is
1549 -- completely analyzed.
1551 Set_Etype (Rhs, Etyp);
1553 -- We now need to do an unchecked conversion of the
1554 -- result to the target type, but it is important that
1555 -- this conversion be a right justified conversion and
1556 -- not a left justified conversion.
1558 Rhs := RJ_Unchecked_Convert_To (Etype (Obj), Rhs);
1560 end Fixup_Rhs;
1562 begin
1563 if Rhs_Val_Known
1564 and then Compile_Time_Known_Value (Get_Shift)
1565 then
1566 Or_Rhs :=
1567 Make_Integer_Literal (Loc,
1568 Rhs_Val * (2 ** Expr_Value (Get_Shift)));
1569 Set_Print_In_Hex (Or_Rhs);
1571 else
1572 -- We have to convert the right hand side to Etype (Obj).
1573 -- A special case arises if what we have now is a Val
1574 -- attribute reference whose expression type is Etype (Obj).
1575 -- This happens for assignments of fields from the same
1576 -- array. In this case we get the required right hand side
1577 -- by simply removing the inner attribute reference.
1579 if Nkind (Rhs) = N_Attribute_Reference
1580 and then Attribute_Name (Rhs) = Name_Val
1581 and then Etype (First (Expressions (Rhs))) = Etype (Obj)
1582 then
1583 Rhs := Relocate_Node (First (Expressions (Rhs)));
1584 Fixup_Rhs;
1586 -- If the value of the right hand side is a known integer
1587 -- value, then just replace it by an untyped constant,
1588 -- which will be properly retyped when we analyze and
1589 -- resolve the expression.
1591 elsif Rhs_Val_Known then
1593 -- Note that Rhs_Val has already been normalized to
1594 -- be an unsigned value with the proper number of bits.
1596 Rhs :=
1597 Make_Integer_Literal (Loc, Rhs_Val);
1599 -- Otherwise we need an unchecked conversion
1601 else
1602 Fixup_Rhs;
1603 end if;
1605 Or_Rhs := Make_Shift_Left (Rhs, Get_Shift);
1606 end if;
1608 if Nkind (New_Rhs) = N_Op_And then
1609 Set_Paren_Count (New_Rhs, 1);
1610 end if;
1612 New_Rhs :=
1613 Make_Op_Or (Loc,
1614 Left_Opnd => New_Rhs,
1615 Right_Opnd => Or_Rhs);
1616 end;
1617 end if;
1619 -- Now do the rewrite
1621 Rewrite (N,
1622 Make_Assignment_Statement (Loc,
1623 Name => New_Lhs,
1624 Expression =>
1625 Unchecked_Convert_To (Etype (New_Lhs), New_Rhs)));
1626 Set_Assignment_OK (Name (N), Ass_OK);
1628 -- All other component sizes for non-modular case
1630 else
1631 -- We generate
1633 -- Set_nn (Arr'address, Subscr, Bits_nn!(Rhs))
1635 -- where Subscr is the computed linear subscript
1637 declare
1638 Bits_nn : constant Entity_Id := RTE (Bits_Id (Csiz));
1639 Set_nn : Entity_Id;
1640 Subscr : Node_Id;
1641 Atyp : Entity_Id;
1643 begin
1644 if No (Bits_nn) then
1646 -- Error, most likely High_Integrity_Mode restriction
1648 return;
1649 end if;
1651 -- Acquire proper Set entity. We use the aligned or unaligned
1652 -- case as appropriate.
1654 if Known_Aligned_Enough (Obj, Csiz) then
1655 Set_nn := RTE (Set_Id (Csiz));
1656 else
1657 Set_nn := RTE (SetU_Id (Csiz));
1658 end if;
1660 -- Now generate the set reference
1662 Obj := Relocate_Node (Prefix (Lhs));
1663 Convert_To_Actual_Subtype (Obj);
1664 Atyp := Etype (Obj);
1665 Compute_Linear_Subscript (Atyp, Lhs, Subscr);
1667 -- Below we must make the assumption that Obj is
1668 -- at least byte aligned, since otherwise its address
1669 -- cannot be taken. The assumption holds since the
1670 -- only arrays that can be misaligned are small packed
1671 -- arrays which are implemented as a modular type, and
1672 -- that is not the case here.
1674 Rewrite (N,
1675 Make_Procedure_Call_Statement (Loc,
1676 Name => New_Occurrence_Of (Set_nn, Loc),
1677 Parameter_Associations => New_List (
1678 Make_Attribute_Reference (Loc,
1679 Prefix => Obj,
1680 Attribute_Name => Name_Address),
1681 Subscr,
1682 Unchecked_Convert_To (Bits_nn,
1683 Convert_To (Ctyp, Rhs)))));
1685 end;
1686 end if;
1688 Analyze (N, Suppress => All_Checks);
1689 end Expand_Bit_Packed_Element_Set;
1691 -------------------------------------
1692 -- Expand_Packed_Address_Reference --
1693 -------------------------------------
1695 procedure Expand_Packed_Address_Reference (N : Node_Id) is
1696 Loc : constant Source_Ptr := Sloc (N);
1697 Base : Node_Id;
1698 Offset : Node_Id;
1700 begin
1701 -- We build an expression that has the form
1703 -- outer_object'Address
1704 -- + (linear-subscript * component_size for each array reference
1705 -- + field'Bit_Position for each record field
1706 -- + ...
1707 -- + ...) / Storage_Unit;
1709 Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
1711 Rewrite (N,
1712 Unchecked_Convert_To (RTE (RE_Address),
1713 Make_Op_Add (Loc,
1714 Left_Opnd =>
1715 Unchecked_Convert_To (RTE (RE_Integer_Address),
1716 Make_Attribute_Reference (Loc,
1717 Prefix => Base,
1718 Attribute_Name => Name_Address)),
1720 Right_Opnd =>
1721 Unchecked_Convert_To (RTE (RE_Integer_Address),
1722 Make_Op_Divide (Loc,
1723 Left_Opnd => Offset,
1724 Right_Opnd =>
1725 Make_Integer_Literal (Loc, System_Storage_Unit))))));
1727 Analyze_And_Resolve (N, RTE (RE_Address));
1728 end Expand_Packed_Address_Reference;
1730 ---------------------------------
1731 -- Expand_Packed_Bit_Reference --
1732 ---------------------------------
1734 procedure Expand_Packed_Bit_Reference (N : Node_Id) is
1735 Loc : constant Source_Ptr := Sloc (N);
1736 Base : Node_Id;
1737 Offset : Node_Id;
1739 begin
1740 -- We build an expression that has the form
1742 -- (linear-subscript * component_size for each array reference
1743 -- + field'Bit_Position for each record field
1744 -- + ...
1745 -- + ...) mod Storage_Unit;
1747 Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
1749 Rewrite (N,
1750 Unchecked_Convert_To (Universal_Integer,
1751 Make_Op_Mod (Loc,
1752 Left_Opnd => Offset,
1753 Right_Opnd => Make_Integer_Literal (Loc, System_Storage_Unit))));
1755 Analyze_And_Resolve (N, Universal_Integer);
1756 end Expand_Packed_Bit_Reference;
1758 ------------------------------------
1759 -- Expand_Packed_Boolean_Operator --
1760 ------------------------------------
1762 -- This routine expands "a op b" for the packed cases
1764 procedure Expand_Packed_Boolean_Operator (N : Node_Id) is
1765 Loc : constant Source_Ptr := Sloc (N);
1766 Typ : constant Entity_Id := Etype (N);
1767 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
1768 R : constant Node_Id := Relocate_Node (Right_Opnd (N));
1770 Ltyp : Entity_Id;
1771 Rtyp : Entity_Id;
1772 PAT : Entity_Id;
1774 begin
1775 Convert_To_Actual_Subtype (L);
1776 Convert_To_Actual_Subtype (R);
1778 Ensure_Defined (Etype (L), N);
1779 Ensure_Defined (Etype (R), N);
1781 Apply_Length_Check (R, Etype (L));
1783 Ltyp := Etype (L);
1784 Rtyp := Etype (R);
1786 -- Deal with silly case of XOR where the subcomponent has a range
1787 -- True .. True where an exception must be raised.
1789 if Nkind (N) = N_Op_Xor then
1790 Silly_Boolean_Array_Xor_Test (N, Rtyp);
1791 end if;
1793 -- Now that that silliness is taken care of, get packed array type
1795 Convert_To_PAT_Type (L);
1796 Convert_To_PAT_Type (R);
1798 PAT := Etype (L);
1800 -- For the modular case, we expand a op b into
1802 -- rtyp!(pat!(a) op pat!(b))
1804 -- where rtyp is the Etype of the left operand. Note that we do not
1805 -- convert to the base type, since this would be unconstrained, and
1806 -- hence not have a corresponding packed array type set.
1808 -- Note that both operands must be modular for this code to be used
1810 if Is_Modular_Integer_Type (PAT)
1811 and then
1812 Is_Modular_Integer_Type (Etype (R))
1813 then
1814 declare
1815 P : Node_Id;
1817 begin
1818 if Nkind (N) = N_Op_And then
1819 P := Make_Op_And (Loc, L, R);
1821 elsif Nkind (N) = N_Op_Or then
1822 P := Make_Op_Or (Loc, L, R);
1824 else -- Nkind (N) = N_Op_Xor
1825 P := Make_Op_Xor (Loc, L, R);
1826 end if;
1828 Rewrite (N, Unchecked_Convert_To (Ltyp, P));
1829 end;
1831 -- For the array case, we insert the actions
1833 -- Result : Ltype;
1835 -- System.Bit_Ops.Bit_And/Or/Xor
1836 -- (Left'Address,
1837 -- Ltype'Length * Ltype'Component_Size;
1838 -- Right'Address,
1839 -- Rtype'Length * Rtype'Component_Size
1840 -- Result'Address);
1842 -- where Left and Right are the Packed_Bytes{1,2,4} operands and
1843 -- the second argument and fourth arguments are the lengths of the
1844 -- operands in bits. Then we replace the expression by a reference
1845 -- to Result.
1847 -- Note that if we are mixing a modular and array operand, everything
1848 -- works fine, since we ensure that the modular representation has the
1849 -- same physical layout as the array representation (that's what the
1850 -- left justified modular stuff in the big-endian case is about).
1852 else
1853 declare
1854 Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
1855 E_Id : RE_Id;
1857 begin
1858 if Nkind (N) = N_Op_And then
1859 E_Id := RE_Bit_And;
1861 elsif Nkind (N) = N_Op_Or then
1862 E_Id := RE_Bit_Or;
1864 else -- Nkind (N) = N_Op_Xor
1865 E_Id := RE_Bit_Xor;
1866 end if;
1868 Insert_Actions (N, New_List (
1870 Make_Object_Declaration (Loc,
1871 Defining_Identifier => Result_Ent,
1872 Object_Definition => New_Occurrence_Of (Ltyp, Loc)),
1874 Make_Procedure_Call_Statement (Loc,
1875 Name => New_Occurrence_Of (RTE (E_Id), Loc),
1876 Parameter_Associations => New_List (
1878 Make_Byte_Aligned_Attribute_Reference (Loc,
1879 Prefix => L,
1880 Attribute_Name => Name_Address),
1882 Make_Op_Multiply (Loc,
1883 Left_Opnd =>
1884 Make_Attribute_Reference (Loc,
1885 Prefix =>
1886 New_Occurrence_Of
1887 (Etype (First_Index (Ltyp)), Loc),
1888 Attribute_Name => Name_Range_Length),
1890 Right_Opnd =>
1891 Make_Integer_Literal (Loc, Component_Size (Ltyp))),
1893 Make_Byte_Aligned_Attribute_Reference (Loc,
1894 Prefix => R,
1895 Attribute_Name => Name_Address),
1897 Make_Op_Multiply (Loc,
1898 Left_Opnd =>
1899 Make_Attribute_Reference (Loc,
1900 Prefix =>
1901 New_Occurrence_Of
1902 (Etype (First_Index (Rtyp)), Loc),
1903 Attribute_Name => Name_Range_Length),
1905 Right_Opnd =>
1906 Make_Integer_Literal (Loc, Component_Size (Rtyp))),
1908 Make_Byte_Aligned_Attribute_Reference (Loc,
1909 Prefix => New_Occurrence_Of (Result_Ent, Loc),
1910 Attribute_Name => Name_Address)))));
1912 Rewrite (N,
1913 New_Occurrence_Of (Result_Ent, Loc));
1914 end;
1915 end if;
1917 Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
1918 end Expand_Packed_Boolean_Operator;
1920 -------------------------------------
1921 -- Expand_Packed_Element_Reference --
1922 -------------------------------------
1924 procedure Expand_Packed_Element_Reference (N : Node_Id) is
1925 Loc : constant Source_Ptr := Sloc (N);
1926 Obj : Node_Id;
1927 Atyp : Entity_Id;
1928 PAT : Entity_Id;
1929 Ctyp : Entity_Id;
1930 Csiz : Int;
1931 Shift : Node_Id;
1932 Cmask : Uint;
1933 Lit : Node_Id;
1934 Arg : Node_Id;
1936 begin
1937 -- If not bit packed, we have the enumeration case, which is easily
1938 -- dealt with (just adjust the subscripts of the indexed component)
1940 -- Note: this leaves the result as an indexed component, which is
1941 -- still a variable, so can be used in the assignment case, as is
1942 -- required in the enumeration case.
1944 if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
1945 Setup_Enumeration_Packed_Array_Reference (N);
1946 return;
1947 end if;
1949 -- Remaining processing is for the bit-packed case
1951 Obj := Relocate_Node (Prefix (N));
1952 Convert_To_Actual_Subtype (Obj);
1953 Atyp := Etype (Obj);
1954 PAT := Packed_Array_Type (Atyp);
1955 Ctyp := Component_Type (Atyp);
1956 Csiz := UI_To_Int (Component_Size (Atyp));
1958 -- For the AAMP target, indexing of certain packed array is passed
1959 -- through to the back end without expansion, because the expansion
1960 -- results in very inefficient code on that target. This allows the
1961 -- GNAAMP back end to generate specialized macros that support more
1962 -- efficient indexing of packed arrays with components having sizes
1963 -- that are small powers of two.
1965 if AAMP_On_Target
1966 and then (Csiz = 1 or else Csiz = 2 or else Csiz = 4)
1967 then
1968 return;
1969 end if;
1971 -- Case of component size 1,2,4 or any component size for the modular
1972 -- case. These are the cases for which we can inline the code.
1974 if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1975 or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1976 then
1977 Setup_Inline_Packed_Array_Reference (N, Atyp, Obj, Cmask, Shift);
1978 Lit := Make_Integer_Literal (Loc, Cmask);
1979 Set_Print_In_Hex (Lit);
1981 -- We generate a shift right to position the field, followed by a
1982 -- masking operation to extract the bit field, and we finally do an
1983 -- unchecked conversion to convert the result to the required target.
1985 -- Note that the unchecked conversion automatically deals with the
1986 -- bias if we are dealing with a biased representation. What will
1987 -- happen is that we temporarily generate the biased representation,
1988 -- but almost immediately that will be converted to the original
1989 -- unbiased component type, and the bias will disappear.
1991 Arg :=
1992 Make_Op_And (Loc,
1993 Left_Opnd => Make_Shift_Right (Obj, Shift),
1994 Right_Opnd => Lit);
1996 -- We needed to analyze this before we do the unchecked convert
1997 -- below, but we need it temporarily attached to the tree for
1998 -- this analysis (hence the temporary Set_Parent call).
2000 Set_Parent (Arg, Parent (N));
2001 Analyze_And_Resolve (Arg);
2003 Rewrite (N, RJ_Unchecked_Convert_To (Ctyp, Arg));
2005 -- All other component sizes for non-modular case
2007 else
2008 -- We generate
2010 -- Component_Type!(Get_nn (Arr'address, Subscr))
2012 -- where Subscr is the computed linear subscript
2014 declare
2015 Get_nn : Entity_Id;
2016 Subscr : Node_Id;
2018 begin
2019 -- Acquire proper Get entity. We use the aligned or unaligned
2020 -- case as appropriate.
2022 if Known_Aligned_Enough (Obj, Csiz) then
2023 Get_nn := RTE (Get_Id (Csiz));
2024 else
2025 Get_nn := RTE (GetU_Id (Csiz));
2026 end if;
2028 -- Now generate the get reference
2030 Compute_Linear_Subscript (Atyp, N, Subscr);
2032 -- Below we make the assumption that Obj is at least byte
2033 -- aligned, since otherwise its address cannot be taken.
2034 -- The assumption holds since the only arrays that can be
2035 -- misaligned are small packed arrays which are implemented
2036 -- as a modular type, and that is not the case here.
2038 Rewrite (N,
2039 Unchecked_Convert_To (Ctyp,
2040 Make_Function_Call (Loc,
2041 Name => New_Occurrence_Of (Get_nn, Loc),
2042 Parameter_Associations => New_List (
2043 Make_Attribute_Reference (Loc,
2044 Prefix => Obj,
2045 Attribute_Name => Name_Address),
2046 Subscr))));
2047 end;
2048 end if;
2050 Analyze_And_Resolve (N, Ctyp, Suppress => All_Checks);
2052 end Expand_Packed_Element_Reference;
2054 ----------------------
2055 -- Expand_Packed_Eq --
2056 ----------------------
2058 -- Handles expansion of "=" on packed array types
2060 procedure Expand_Packed_Eq (N : Node_Id) is
2061 Loc : constant Source_Ptr := Sloc (N);
2062 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
2063 R : constant Node_Id := Relocate_Node (Right_Opnd (N));
2065 LLexpr : Node_Id;
2066 RLexpr : Node_Id;
2068 Ltyp : Entity_Id;
2069 Rtyp : Entity_Id;
2070 PAT : Entity_Id;
2072 begin
2073 Convert_To_Actual_Subtype (L);
2074 Convert_To_Actual_Subtype (R);
2075 Ltyp := Underlying_Type (Etype (L));
2076 Rtyp := Underlying_Type (Etype (R));
2078 Convert_To_PAT_Type (L);
2079 Convert_To_PAT_Type (R);
2080 PAT := Etype (L);
2082 LLexpr :=
2083 Make_Op_Multiply (Loc,
2084 Left_Opnd =>
2085 Make_Attribute_Reference (Loc,
2086 Prefix => New_Occurrence_Of (Ltyp, Loc),
2087 Attribute_Name => Name_Length),
2088 Right_Opnd =>
2089 Make_Integer_Literal (Loc, Component_Size (Ltyp)));
2091 RLexpr :=
2092 Make_Op_Multiply (Loc,
2093 Left_Opnd =>
2094 Make_Attribute_Reference (Loc,
2095 Prefix => New_Occurrence_Of (Rtyp, Loc),
2096 Attribute_Name => Name_Length),
2097 Right_Opnd =>
2098 Make_Integer_Literal (Loc, Component_Size (Rtyp)));
2100 -- For the modular case, we transform the comparison to:
2102 -- Ltyp'Length = Rtyp'Length and then PAT!(L) = PAT!(R)
2104 -- where PAT is the packed array type. This works fine, since in the
2105 -- modular case we guarantee that the unused bits are always zeroes.
2106 -- We do have to compare the lengths because we could be comparing
2107 -- two different subtypes of the same base type.
2109 if Is_Modular_Integer_Type (PAT) then
2110 Rewrite (N,
2111 Make_And_Then (Loc,
2112 Left_Opnd =>
2113 Make_Op_Eq (Loc,
2114 Left_Opnd => LLexpr,
2115 Right_Opnd => RLexpr),
2117 Right_Opnd =>
2118 Make_Op_Eq (Loc,
2119 Left_Opnd => L,
2120 Right_Opnd => R)));
2122 -- For the non-modular case, we call a runtime routine
2124 -- System.Bit_Ops.Bit_Eq
2125 -- (L'Address, L_Length, R'Address, R_Length)
2127 -- where PAT is the packed array type, and the lengths are the lengths
2128 -- in bits of the original packed arrays. This routine takes care of
2129 -- not comparing the unused bits in the last byte.
2131 else
2132 Rewrite (N,
2133 Make_Function_Call (Loc,
2134 Name => New_Occurrence_Of (RTE (RE_Bit_Eq), Loc),
2135 Parameter_Associations => New_List (
2136 Make_Byte_Aligned_Attribute_Reference (Loc,
2137 Prefix => L,
2138 Attribute_Name => Name_Address),
2140 LLexpr,
2142 Make_Byte_Aligned_Attribute_Reference (Loc,
2143 Prefix => R,
2144 Attribute_Name => Name_Address),
2146 RLexpr)));
2147 end if;
2149 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
2150 end Expand_Packed_Eq;
2152 -----------------------
2153 -- Expand_Packed_Not --
2154 -----------------------
2156 -- Handles expansion of "not" on packed array types
2158 procedure Expand_Packed_Not (N : Node_Id) is
2159 Loc : constant Source_Ptr := Sloc (N);
2160 Typ : constant Entity_Id := Etype (N);
2161 Opnd : constant Node_Id := Relocate_Node (Right_Opnd (N));
2163 Rtyp : Entity_Id;
2164 PAT : Entity_Id;
2165 Lit : Node_Id;
2167 begin
2168 Convert_To_Actual_Subtype (Opnd);
2169 Rtyp := Etype (Opnd);
2171 -- Deal with silly False..False and True..True subtype case
2173 Silly_Boolean_Array_Not_Test (N, Rtyp);
2175 -- Now that the silliness is taken care of, get packed array type
2177 Convert_To_PAT_Type (Opnd);
2178 PAT := Etype (Opnd);
2180 -- For the case where the packed array type is a modular type, "not A"
2181 -- expands simply into:
2183 -- Rtyp!(PAT!(A) xor Mask)
2185 -- where PAT is the packed array type, Mask is a mask of all 1 bits of
2186 -- length equal to the size of this packed type, and Rtyp is the actual
2187 -- actual subtype of the operand.
2189 Lit := Make_Integer_Literal (Loc, 2 ** RM_Size (PAT) - 1);
2190 Set_Print_In_Hex (Lit);
2192 if not Is_Array_Type (PAT) then
2193 Rewrite (N,
2194 Unchecked_Convert_To (Rtyp,
2195 Make_Op_Xor (Loc,
2196 Left_Opnd => Opnd,
2197 Right_Opnd => Lit)));
2199 -- For the array case, we insert the actions
2201 -- Result : Typ;
2203 -- System.Bit_Ops.Bit_Not
2204 -- (Opnd'Address,
2205 -- Typ'Length * Typ'Component_Size,
2206 -- Result'Address);
2208 -- where Opnd is the Packed_Bytes{1,2,4} operand and the second argument
2209 -- is the length of the operand in bits. We then replace the expression
2210 -- with a reference to Result.
2212 else
2213 declare
2214 Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
2216 begin
2217 Insert_Actions (N, New_List (
2218 Make_Object_Declaration (Loc,
2219 Defining_Identifier => Result_Ent,
2220 Object_Definition => New_Occurrence_Of (Rtyp, Loc)),
2222 Make_Procedure_Call_Statement (Loc,
2223 Name => New_Occurrence_Of (RTE (RE_Bit_Not), Loc),
2224 Parameter_Associations => New_List (
2225 Make_Byte_Aligned_Attribute_Reference (Loc,
2226 Prefix => Opnd,
2227 Attribute_Name => Name_Address),
2229 Make_Op_Multiply (Loc,
2230 Left_Opnd =>
2231 Make_Attribute_Reference (Loc,
2232 Prefix =>
2233 New_Occurrence_Of
2234 (Etype (First_Index (Rtyp)), Loc),
2235 Attribute_Name => Name_Range_Length),
2237 Right_Opnd =>
2238 Make_Integer_Literal (Loc, Component_Size (Rtyp))),
2240 Make_Byte_Aligned_Attribute_Reference (Loc,
2241 Prefix => New_Occurrence_Of (Result_Ent, Loc),
2242 Attribute_Name => Name_Address)))));
2244 Rewrite (N, New_Occurrence_Of (Result_Ent, Loc));
2245 end;
2246 end if;
2248 Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
2249 end Expand_Packed_Not;
2251 -----------------------------
2252 -- Get_Base_And_Bit_Offset --
2253 -----------------------------
2255 procedure Get_Base_And_Bit_Offset
2256 (N : Node_Id;
2257 Base : out Node_Id;
2258 Offset : out Node_Id)
2260 Loc : Source_Ptr;
2261 Term : Node_Id;
2262 Atyp : Entity_Id;
2263 Subscr : Node_Id;
2265 begin
2266 Base := N;
2267 Offset := Empty;
2269 -- We build up an expression serially that has the form
2271 -- linear-subscript * component_size for each array reference
2272 -- + field'Bit_Position for each record field
2273 -- + ...
2275 loop
2276 Loc := Sloc (Base);
2278 if Nkind (Base) = N_Indexed_Component then
2279 Convert_To_Actual_Subtype (Prefix (Base));
2280 Atyp := Etype (Prefix (Base));
2281 Compute_Linear_Subscript (Atyp, Base, Subscr);
2283 Term :=
2284 Make_Op_Multiply (Loc,
2285 Left_Opnd => Subscr,
2286 Right_Opnd =>
2287 Make_Attribute_Reference (Loc,
2288 Prefix => New_Occurrence_Of (Atyp, Loc),
2289 Attribute_Name => Name_Component_Size));
2291 elsif Nkind (Base) = N_Selected_Component then
2292 Term :=
2293 Make_Attribute_Reference (Loc,
2294 Prefix => Selector_Name (Base),
2295 Attribute_Name => Name_Bit_Position);
2297 else
2298 return;
2299 end if;
2301 if No (Offset) then
2302 Offset := Term;
2304 else
2305 Offset :=
2306 Make_Op_Add (Loc,
2307 Left_Opnd => Offset,
2308 Right_Opnd => Term);
2309 end if;
2311 Base := Prefix (Base);
2312 end loop;
2313 end Get_Base_And_Bit_Offset;
2315 -------------------------------------
2316 -- Involves_Packed_Array_Reference --
2317 -------------------------------------
2319 function Involves_Packed_Array_Reference (N : Node_Id) return Boolean is
2320 begin
2321 if Nkind (N) = N_Indexed_Component
2322 and then Is_Bit_Packed_Array (Etype (Prefix (N)))
2323 then
2324 return True;
2326 elsif Nkind (N) = N_Selected_Component then
2327 return Involves_Packed_Array_Reference (Prefix (N));
2329 else
2330 return False;
2331 end if;
2332 end Involves_Packed_Array_Reference;
2334 --------------------------
2335 -- Known_Aligned_Enough --
2336 --------------------------
2338 function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean is
2339 Typ : constant Entity_Id := Etype (Obj);
2341 function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean;
2342 -- If the component is in a record that contains previous packed
2343 -- components, consider it unaligned because the back-end might
2344 -- choose to pack the rest of the record. Lead to less efficient code,
2345 -- but safer vis-a-vis of back-end choices.
2347 --------------------------------
2348 -- In_Partially_Packed_Record --
2349 --------------------------------
2351 function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean is
2352 Rec_Type : constant Entity_Id := Scope (Comp);
2353 Prev_Comp : Entity_Id;
2355 begin
2356 Prev_Comp := First_Entity (Rec_Type);
2357 while Present (Prev_Comp) loop
2358 if Is_Packed (Etype (Prev_Comp)) then
2359 return True;
2361 elsif Prev_Comp = Comp then
2362 return False;
2363 end if;
2365 Next_Entity (Prev_Comp);
2366 end loop;
2368 return False;
2369 end In_Partially_Packed_Record;
2371 -- Start of processing for Known_Aligned_Enough
2373 begin
2374 -- Odd bit sizes don't need alignment anyway
2376 if Csiz mod 2 = 1 then
2377 return True;
2379 -- If we have a specified alignment, see if it is sufficient, if not
2380 -- then we can't possibly be aligned enough in any case.
2382 elsif Known_Alignment (Etype (Obj)) then
2383 -- Alignment required is 4 if size is a multiple of 4, and
2384 -- 2 otherwise (e.g. 12 bits requires 4, 10 bits requires 2)
2386 if Alignment (Etype (Obj)) < 4 - (Csiz mod 4) then
2387 return False;
2388 end if;
2389 end if;
2391 -- OK, alignment should be sufficient, if object is aligned
2393 -- If object is strictly aligned, then it is definitely aligned
2395 if Strict_Alignment (Typ) then
2396 return True;
2398 -- Case of subscripted array reference
2400 elsif Nkind (Obj) = N_Indexed_Component then
2402 -- If we have a pointer to an array, then this is definitely
2403 -- aligned, because pointers always point to aligned versions.
2405 if Is_Access_Type (Etype (Prefix (Obj))) then
2406 return True;
2408 -- Otherwise, go look at the prefix
2410 else
2411 return Known_Aligned_Enough (Prefix (Obj), Csiz);
2412 end if;
2414 -- Case of record field
2416 elsif Nkind (Obj) = N_Selected_Component then
2418 -- What is significant here is whether the record type is packed
2420 if Is_Record_Type (Etype (Prefix (Obj)))
2421 and then Is_Packed (Etype (Prefix (Obj)))
2422 then
2423 return False;
2425 -- Or the component has a component clause which might cause
2426 -- the component to become unaligned (we can't tell if the
2427 -- backend is doing alignment computations).
2429 elsif Present (Component_Clause (Entity (Selector_Name (Obj)))) then
2430 return False;
2432 elsif In_Partially_Packed_Record (Entity (Selector_Name (Obj))) then
2433 return False;
2435 -- In all other cases, go look at prefix
2437 else
2438 return Known_Aligned_Enough (Prefix (Obj), Csiz);
2439 end if;
2441 elsif Nkind (Obj) = N_Type_Conversion then
2442 return Known_Aligned_Enough (Expression (Obj), Csiz);
2444 -- For a formal parameter, it is safer to assume that it is not
2445 -- aligned, because the formal may be unconstrained while the actual
2446 -- is constrained. In this situation, a small constrained packed
2447 -- array, represented in modular form, may be unaligned.
2449 elsif Is_Entity_Name (Obj) then
2450 return not Is_Formal (Entity (Obj));
2451 else
2453 -- If none of the above, must be aligned
2454 return True;
2455 end if;
2456 end Known_Aligned_Enough;
2458 ---------------------
2459 -- Make_Shift_Left --
2460 ---------------------
2462 function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id is
2463 Nod : Node_Id;
2465 begin
2466 if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2467 return N;
2468 else
2469 Nod :=
2470 Make_Op_Shift_Left (Sloc (N),
2471 Left_Opnd => N,
2472 Right_Opnd => S);
2473 Set_Shift_Count_OK (Nod, True);
2474 return Nod;
2475 end if;
2476 end Make_Shift_Left;
2478 ----------------------
2479 -- Make_Shift_Right --
2480 ----------------------
2482 function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id is
2483 Nod : Node_Id;
2485 begin
2486 if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2487 return N;
2488 else
2489 Nod :=
2490 Make_Op_Shift_Right (Sloc (N),
2491 Left_Opnd => N,
2492 Right_Opnd => S);
2493 Set_Shift_Count_OK (Nod, True);
2494 return Nod;
2495 end if;
2496 end Make_Shift_Right;
2498 -----------------------------
2499 -- RJ_Unchecked_Convert_To --
2500 -----------------------------
2502 function RJ_Unchecked_Convert_To
2503 (Typ : Entity_Id;
2504 Expr : Node_Id) return Node_Id
2506 Source_Typ : constant Entity_Id := Etype (Expr);
2507 Target_Typ : constant Entity_Id := Typ;
2509 Src : Node_Id := Expr;
2511 Source_Siz : Nat;
2512 Target_Siz : Nat;
2514 begin
2515 Source_Siz := UI_To_Int (RM_Size (Source_Typ));
2516 Target_Siz := UI_To_Int (RM_Size (Target_Typ));
2518 -- First step, if the source type is not a discrete type, then we first
2519 -- convert to a modular type of the source length, since otherwise, on
2520 -- a big-endian machine, we get left-justification. We do it for little-
2521 -- endian machines as well, because there might be junk bits that are
2522 -- not cleared if the type is not numeric.
2524 if Source_Siz /= Target_Siz
2525 and then not Is_Discrete_Type (Source_Typ)
2526 then
2527 Src := Unchecked_Convert_To (RTE (Bits_Id (Source_Siz)), Src);
2528 end if;
2530 -- In the big endian case, if the lengths of the two types differ, then
2531 -- we must worry about possible left justification in the conversion,
2532 -- and avoiding that is what this is all about.
2534 if Bytes_Big_Endian and then Source_Siz /= Target_Siz then
2536 -- Next step. If the target is not a discrete type, then we first
2537 -- convert to a modular type of the target length, since otherwise,
2538 -- on a big-endian machine, we get left-justification.
2540 if not Is_Discrete_Type (Target_Typ) then
2541 Src := Unchecked_Convert_To (RTE (Bits_Id (Target_Siz)), Src);
2542 end if;
2543 end if;
2545 -- And now we can do the final conversion to the target type
2547 return Unchecked_Convert_To (Target_Typ, Src);
2548 end RJ_Unchecked_Convert_To;
2550 ----------------------------------------------
2551 -- Setup_Enumeration_Packed_Array_Reference --
2552 ----------------------------------------------
2554 -- All we have to do here is to find the subscripts that correspond to the
2555 -- index positions that have non-standard enumeration types and insert a
2556 -- Pos attribute to get the proper subscript value.
2558 -- Finally the prefix must be uncheck-converted to the corresponding packed
2559 -- array type.
2561 -- Note that the component type is unchanged, so we do not need to fiddle
2562 -- with the types (Gigi always automatically takes the packed array type if
2563 -- it is set, as it will be in this case).
2565 procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id) is
2566 Pfx : constant Node_Id := Prefix (N);
2567 Typ : constant Entity_Id := Etype (N);
2568 Exprs : constant List_Id := Expressions (N);
2569 Expr : Node_Id;
2571 begin
2572 -- If the array is unconstrained, then we replace the array reference
2573 -- with its actual subtype. This actual subtype will have a packed array
2574 -- type with appropriate bounds.
2576 if not Is_Constrained (Packed_Array_Type (Etype (Pfx))) then
2577 Convert_To_Actual_Subtype (Pfx);
2578 end if;
2580 Expr := First (Exprs);
2581 while Present (Expr) loop
2582 declare
2583 Loc : constant Source_Ptr := Sloc (Expr);
2584 Expr_Typ : constant Entity_Id := Etype (Expr);
2586 begin
2587 if Is_Enumeration_Type (Expr_Typ)
2588 and then Has_Non_Standard_Rep (Expr_Typ)
2589 then
2590 Rewrite (Expr,
2591 Make_Attribute_Reference (Loc,
2592 Prefix => New_Occurrence_Of (Expr_Typ, Loc),
2593 Attribute_Name => Name_Pos,
2594 Expressions => New_List (Relocate_Node (Expr))));
2595 Analyze_And_Resolve (Expr, Standard_Natural);
2596 end if;
2597 end;
2599 Next (Expr);
2600 end loop;
2602 Rewrite (N,
2603 Make_Indexed_Component (Sloc (N),
2604 Prefix =>
2605 Unchecked_Convert_To (Packed_Array_Type (Etype (Pfx)), Pfx),
2606 Expressions => Exprs));
2608 Analyze_And_Resolve (N, Typ);
2609 end Setup_Enumeration_Packed_Array_Reference;
2611 -----------------------------------------
2612 -- Setup_Inline_Packed_Array_Reference --
2613 -----------------------------------------
2615 procedure Setup_Inline_Packed_Array_Reference
2616 (N : Node_Id;
2617 Atyp : Entity_Id;
2618 Obj : in out Node_Id;
2619 Cmask : out Uint;
2620 Shift : out Node_Id)
2622 Loc : constant Source_Ptr := Sloc (N);
2623 PAT : Entity_Id;
2624 Otyp : Entity_Id;
2625 Csiz : Uint;
2626 Osiz : Uint;
2628 begin
2629 Csiz := Component_Size (Atyp);
2631 Convert_To_PAT_Type (Obj);
2632 PAT := Etype (Obj);
2634 Cmask := 2 ** Csiz - 1;
2636 if Is_Array_Type (PAT) then
2637 Otyp := Component_Type (PAT);
2638 Osiz := Component_Size (PAT);
2640 else
2641 Otyp := PAT;
2643 -- In the case where the PAT is a modular type, we want the actual
2644 -- size in bits of the modular value we use. This is neither the
2645 -- Object_Size nor the Value_Size, either of which may have been
2646 -- reset to strange values, but rather the minimum size. Note that
2647 -- since this is a modular type with full range, the issue of
2648 -- biased representation does not arise.
2650 Osiz := UI_From_Int (Minimum_Size (Otyp));
2651 end if;
2653 Compute_Linear_Subscript (Atyp, N, Shift);
2655 -- If the component size is not 1, then the subscript must be multiplied
2656 -- by the component size to get the shift count.
2658 if Csiz /= 1 then
2659 Shift :=
2660 Make_Op_Multiply (Loc,
2661 Left_Opnd => Make_Integer_Literal (Loc, Csiz),
2662 Right_Opnd => Shift);
2663 end if;
2665 -- If we have the array case, then this shift count must be broken down
2666 -- into a byte subscript, and a shift within the byte.
2668 if Is_Array_Type (PAT) then
2670 declare
2671 New_Shift : Node_Id;
2673 begin
2674 -- We must analyze shift, since we will duplicate it
2676 Set_Parent (Shift, N);
2677 Analyze_And_Resolve
2678 (Shift, Standard_Integer, Suppress => All_Checks);
2680 -- The shift count within the word is
2681 -- shift mod Osiz
2683 New_Shift :=
2684 Make_Op_Mod (Loc,
2685 Left_Opnd => Duplicate_Subexpr (Shift),
2686 Right_Opnd => Make_Integer_Literal (Loc, Osiz));
2688 -- The subscript to be used on the PAT array is
2689 -- shift / Osiz
2691 Obj :=
2692 Make_Indexed_Component (Loc,
2693 Prefix => Obj,
2694 Expressions => New_List (
2695 Make_Op_Divide (Loc,
2696 Left_Opnd => Duplicate_Subexpr (Shift),
2697 Right_Opnd => Make_Integer_Literal (Loc, Osiz))));
2699 Shift := New_Shift;
2700 end;
2702 -- For the modular integer case, the object to be manipulated is the
2703 -- entire array, so Obj is unchanged. Note that we will reset its type
2704 -- to PAT before returning to the caller.
2706 else
2707 null;
2708 end if;
2710 -- The one remaining step is to modify the shift count for the
2711 -- big-endian case. Consider the following example in a byte:
2713 -- xxxxxxxx bits of byte
2714 -- vvvvvvvv bits of value
2715 -- 33221100 little-endian numbering
2716 -- 00112233 big-endian numbering
2718 -- Here we have the case of 2-bit fields
2720 -- For the little-endian case, we already have the proper shift count
2721 -- set, e.g. for element 2, the shift count is 2*2 = 4.
2723 -- For the big endian case, we have to adjust the shift count, computing
2724 -- it as (N - F) - Shift, where N is the number of bits in an element of
2725 -- the array used to implement the packed array, F is the number of bits
2726 -- in a source array element, and Shift is the count so far computed.
2728 if Bytes_Big_Endian then
2729 Shift :=
2730 Make_Op_Subtract (Loc,
2731 Left_Opnd => Make_Integer_Literal (Loc, Osiz - Csiz),
2732 Right_Opnd => Shift);
2733 end if;
2735 Set_Parent (Shift, N);
2736 Set_Parent (Obj, N);
2737 Analyze_And_Resolve (Obj, Otyp, Suppress => All_Checks);
2738 Analyze_And_Resolve (Shift, Standard_Integer, Suppress => All_Checks);
2740 -- Make sure final type of object is the appropriate packed type
2742 Set_Etype (Obj, Otyp);
2744 end Setup_Inline_Packed_Array_Reference;
2746 end Exp_Pakd;