1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Exp_Aggr
; use Exp_Aggr
;
33 with Exp_Ch6
; use Exp_Ch6
;
34 with Exp_Ch7
; use Exp_Ch7
;
35 with Exp_Ch11
; use Exp_Ch11
;
36 with Exp_Dbug
; use Exp_Dbug
;
37 with Exp_Pakd
; use Exp_Pakd
;
38 with Exp_Tss
; use Exp_Tss
;
39 with Exp_Util
; use Exp_Util
;
40 with Namet
; use Namet
;
41 with Nlists
; use Nlists
;
42 with Nmake
; use Nmake
;
44 with Restrict
; use Restrict
;
45 with Rident
; use Rident
;
46 with Rtsfind
; use Rtsfind
;
47 with Sinfo
; use Sinfo
;
49 with Sem_Aux
; use Sem_Aux
;
50 with Sem_Ch3
; use Sem_Ch3
;
51 with Sem_Ch8
; use Sem_Ch8
;
52 with Sem_Ch13
; use Sem_Ch13
;
53 with Sem_Eval
; use Sem_Eval
;
54 with Sem_Res
; use Sem_Res
;
55 with Sem_Util
; use Sem_Util
;
56 with Snames
; use Snames
;
57 with Stand
; use Stand
;
58 with Stringt
; use Stringt
;
59 with Targparm
; use Targparm
;
60 with Tbuild
; use Tbuild
;
61 with Validsw
; use Validsw
;
63 package body Exp_Ch5
is
65 function Change_Of_Representation
(N
: Node_Id
) return Boolean;
66 -- Determine if the right hand side of assignment N is a type conversion
67 -- which requires a change of representation. Called only for the array
70 procedure Expand_Assign_Array
(N
: Node_Id
; Rhs
: Node_Id
);
71 -- N is an assignment which assigns an array value. This routine process
72 -- the various special cases and checks required for such assignments,
73 -- including change of representation. Rhs is normally simply the right
74 -- hand side of the assignment, except that if the right hand side is a
75 -- type conversion or a qualified expression, then the RHS is the actual
76 -- expression inside any such type conversions or qualifications.
78 function Expand_Assign_Array_Loop
85 Rev
: Boolean) return Node_Id
;
86 -- N is an assignment statement which assigns an array value. This routine
87 -- expands the assignment into a loop (or nested loops for the case of a
88 -- multi-dimensional array) to do the assignment component by component.
89 -- Larray and Rarray are the entities of the actual arrays on the left
90 -- hand and right hand sides. L_Type and R_Type are the types of these
91 -- arrays (which may not be the same, due to either sliding, or to a
92 -- change of representation case). Ndim is the number of dimensions and
93 -- the parameter Rev indicates if the loops run normally (Rev = False),
94 -- or reversed (Rev = True). The value returned is the constructed
95 -- loop statement. Auxiliary declarations are inserted before node N
96 -- using the standard Insert_Actions mechanism.
98 procedure Expand_Assign_Record
(N
: Node_Id
);
99 -- N is an assignment of a non-tagged record value. This routine handles
100 -- the case where the assignment must be made component by component,
101 -- either because the target is not byte aligned, or there is a change
102 -- of representation, or when we have a tagged type with a representation
103 -- clause (this last case is required because holes in the tagged type
104 -- might be filled with components from child types).
106 procedure Expand_Iterator_Loop
(N
: Node_Id
);
107 -- Expand loop over arrays and containers that uses the form "for X of C"
108 -- with an optional subtype mark, or "for Y in C".
110 procedure Expand_Predicated_Loop
(N
: Node_Id
);
111 -- Expand for loop over predicated subtype
113 function Make_Tag_Ctrl_Assignment
(N
: Node_Id
) return List_Id
;
114 -- Generate the necessary code for controlled and tagged assignment, that
115 -- is to say, finalization of the target before, adjustment of the target
116 -- after and save and restore of the tag and finalization pointers which
117 -- are not 'part of the value' and must not be changed upon assignment. N
118 -- is the original Assignment node.
120 ------------------------------
121 -- Change_Of_Representation --
122 ------------------------------
124 function Change_Of_Representation
(N
: Node_Id
) return Boolean is
125 Rhs
: constant Node_Id
:= Expression
(N
);
128 Nkind
(Rhs
) = N_Type_Conversion
130 not Same_Representation
(Etype
(Rhs
), Etype
(Expression
(Rhs
)));
131 end Change_Of_Representation
;
133 -------------------------
134 -- Expand_Assign_Array --
135 -------------------------
137 -- There are two issues here. First, do we let Gigi do a block move, or
138 -- do we expand out into a loop? Second, we need to set the two flags
139 -- Forwards_OK and Backwards_OK which show whether the block move (or
140 -- corresponding loops) can be legitimately done in a forwards (low to
141 -- high) or backwards (high to low) manner.
143 procedure Expand_Assign_Array
(N
: Node_Id
; Rhs
: Node_Id
) is
144 Loc
: constant Source_Ptr
:= Sloc
(N
);
146 Lhs
: constant Node_Id
:= Name
(N
);
148 Act_Lhs
: constant Node_Id
:= Get_Referenced_Object
(Lhs
);
149 Act_Rhs
: Node_Id
:= Get_Referenced_Object
(Rhs
);
151 L_Type
: constant Entity_Id
:=
152 Underlying_Type
(Get_Actual_Subtype
(Act_Lhs
));
153 R_Type
: Entity_Id
:=
154 Underlying_Type
(Get_Actual_Subtype
(Act_Rhs
));
156 L_Slice
: constant Boolean := Nkind
(Act_Lhs
) = N_Slice
;
157 R_Slice
: constant Boolean := Nkind
(Act_Rhs
) = N_Slice
;
159 Crep
: constant Boolean := Change_Of_Representation
(N
);
164 Ndim
: constant Pos
:= Number_Dimensions
(L_Type
);
166 Loop_Required
: Boolean := False;
167 -- This switch is set to True if the array move must be done using
168 -- an explicit front end generated loop.
170 procedure Apply_Dereference
(Arg
: Node_Id
);
171 -- If the argument is an access to an array, and the assignment is
172 -- converted into a procedure call, apply explicit dereference.
174 function Has_Address_Clause
(Exp
: Node_Id
) return Boolean;
175 -- Test if Exp is a reference to an array whose declaration has
176 -- an address clause, or it is a slice of such an array.
178 function Is_Formal_Array
(Exp
: Node_Id
) return Boolean;
179 -- Test if Exp is a reference to an array which is either a formal
180 -- parameter or a slice of a formal parameter. These are the cases
181 -- where hidden aliasing can occur.
183 function Is_Non_Local_Array
(Exp
: Node_Id
) return Boolean;
184 -- Determine if Exp is a reference to an array variable which is other
185 -- than an object defined in the current scope, or a slice of such
186 -- an object. Such objects can be aliased to parameters (unlike local
187 -- array references).
189 -----------------------
190 -- Apply_Dereference --
191 -----------------------
193 procedure Apply_Dereference
(Arg
: Node_Id
) is
194 Typ
: constant Entity_Id
:= Etype
(Arg
);
196 if Is_Access_Type
(Typ
) then
197 Rewrite
(Arg
, Make_Explicit_Dereference
(Loc
,
198 Prefix
=> Relocate_Node
(Arg
)));
199 Analyze_And_Resolve
(Arg
, Designated_Type
(Typ
));
201 end Apply_Dereference
;
203 ------------------------
204 -- Has_Address_Clause --
205 ------------------------
207 function Has_Address_Clause
(Exp
: Node_Id
) return Boolean is
210 (Is_Entity_Name
(Exp
) and then
211 Present
(Address_Clause
(Entity
(Exp
))))
213 (Nkind
(Exp
) = N_Slice
and then Has_Address_Clause
(Prefix
(Exp
)));
214 end Has_Address_Clause
;
216 ---------------------
217 -- Is_Formal_Array --
218 ---------------------
220 function Is_Formal_Array
(Exp
: Node_Id
) return Boolean is
223 (Is_Entity_Name
(Exp
) and then Is_Formal
(Entity
(Exp
)))
225 (Nkind
(Exp
) = N_Slice
and then Is_Formal_Array
(Prefix
(Exp
)));
228 ------------------------
229 -- Is_Non_Local_Array --
230 ------------------------
232 function Is_Non_Local_Array
(Exp
: Node_Id
) return Boolean is
234 return (Is_Entity_Name
(Exp
)
235 and then Scope
(Entity
(Exp
)) /= Current_Scope
)
236 or else (Nkind
(Exp
) = N_Slice
237 and then Is_Non_Local_Array
(Prefix
(Exp
)));
238 end Is_Non_Local_Array
;
240 -- Determine if Lhs, Rhs are formal arrays or nonlocal arrays
242 Lhs_Formal
: constant Boolean := Is_Formal_Array
(Act_Lhs
);
243 Rhs_Formal
: constant Boolean := Is_Formal_Array
(Act_Rhs
);
245 Lhs_Non_Local_Var
: constant Boolean := Is_Non_Local_Array
(Act_Lhs
);
246 Rhs_Non_Local_Var
: constant Boolean := Is_Non_Local_Array
(Act_Rhs
);
248 -- Start of processing for Expand_Assign_Array
251 -- Deal with length check. Note that the length check is done with
252 -- respect to the right hand side as given, not a possible underlying
253 -- renamed object, since this would generate incorrect extra checks.
255 Apply_Length_Check
(Rhs
, L_Type
);
257 -- We start by assuming that the move can be done in either direction,
258 -- i.e. that the two sides are completely disjoint.
260 Set_Forwards_OK
(N
, True);
261 Set_Backwards_OK
(N
, True);
263 -- Normally it is only the slice case that can lead to overlap, and
264 -- explicit checks for slices are made below. But there is one case
265 -- where the slice can be implicit and invisible to us: when we have a
266 -- one dimensional array, and either both operands are parameters, or
267 -- one is a parameter (which can be a slice passed by reference) and the
268 -- other is a non-local variable. In this case the parameter could be a
269 -- slice that overlaps with the other operand.
271 -- However, if the array subtype is a constrained first subtype in the
272 -- parameter case, then we don't have to worry about overlap, since
273 -- slice assignments aren't possible (other than for a slice denoting
276 -- Note: No overlap is possible if there is a change of representation,
277 -- so we can exclude this case.
282 ((Lhs_Formal
and Rhs_Formal
)
284 (Lhs_Formal
and Rhs_Non_Local_Var
)
286 (Rhs_Formal
and Lhs_Non_Local_Var
))
288 (not Is_Constrained
(Etype
(Lhs
))
289 or else not Is_First_Subtype
(Etype
(Lhs
)))
291 -- In the case of compiling for the Java or .NET Virtual Machine,
292 -- slices are always passed by making a copy, so we don't have to
293 -- worry about overlap. We also want to prevent generation of "<"
294 -- comparisons for array addresses, since that's a meaningless
295 -- operation on the VM.
297 and then VM_Target
= No_VM
299 Set_Forwards_OK
(N
, False);
300 Set_Backwards_OK
(N
, False);
302 -- Note: the bit-packed case is not worrisome here, since if we have
303 -- a slice passed as a parameter, it is always aligned on a byte
304 -- boundary, and if there are no explicit slices, the assignment
305 -- can be performed directly.
308 -- If either operand has an address clause clear Backwards_OK and
309 -- Forwards_OK, since we cannot tell if the operands overlap. We
310 -- exclude this treatment when Rhs is an aggregate, since we know
311 -- that overlap can't occur.
313 if (Has_Address_Clause
(Lhs
) and then Nkind
(Rhs
) /= N_Aggregate
)
314 or else Has_Address_Clause
(Rhs
)
316 Set_Forwards_OK
(N
, False);
317 Set_Backwards_OK
(N
, False);
320 -- We certainly must use a loop for change of representation and also
321 -- we use the operand of the conversion on the right hand side as the
322 -- effective right hand side (the component types must match in this
326 Act_Rhs
:= Get_Referenced_Object
(Rhs
);
327 R_Type
:= Get_Actual_Subtype
(Act_Rhs
);
328 Loop_Required
:= True;
330 -- We require a loop if the left side is possibly bit unaligned
332 elsif Possible_Bit_Aligned_Component
(Lhs
)
334 Possible_Bit_Aligned_Component
(Rhs
)
336 Loop_Required
:= True;
338 -- Arrays with controlled components are expanded into a loop to force
339 -- calls to Adjust at the component level.
341 elsif Has_Controlled_Component
(L_Type
) then
342 Loop_Required
:= True;
344 -- If object is atomic, we cannot tolerate a loop
346 elsif Is_Atomic_Object
(Act_Lhs
)
348 Is_Atomic_Object
(Act_Rhs
)
352 -- Loop is required if we have atomic components since we have to
353 -- be sure to do any accesses on an element by element basis.
355 elsif Has_Atomic_Components
(L_Type
)
356 or else Has_Atomic_Components
(R_Type
)
357 or else Is_Atomic
(Component_Type
(L_Type
))
358 or else Is_Atomic
(Component_Type
(R_Type
))
360 Loop_Required
:= True;
362 -- Case where no slice is involved
364 elsif not L_Slice
and not R_Slice
then
366 -- The following code deals with the case of unconstrained bit packed
367 -- arrays. The problem is that the template for such arrays contains
368 -- the bounds of the actual source level array, but the copy of an
369 -- entire array requires the bounds of the underlying array. It would
370 -- be nice if the back end could take care of this, but right now it
371 -- does not know how, so if we have such a type, then we expand out
372 -- into a loop, which is inefficient but works correctly. If we don't
373 -- do this, we get the wrong length computed for the array to be
374 -- moved. The two cases we need to worry about are:
376 -- Explicit dereference of an unconstrained packed array type as in
377 -- the following example:
380 -- type BITS is array(INTEGER range <>) of BOOLEAN;
381 -- pragma PACK(BITS);
382 -- type A is access BITS;
385 -- P1 := new BITS (1 .. 65_535);
386 -- P2 := new BITS (1 .. 65_535);
390 -- A formal parameter reference with an unconstrained bit array type
391 -- is the other case we need to worry about (here we assume the same
392 -- BITS type declared above):
394 -- procedure Write_All (File : out BITS; Contents : BITS);
396 -- File.Storage := Contents;
399 -- We expand to a loop in either of these two cases
401 -- Question for future thought. Another potentially more efficient
402 -- approach would be to create the actual subtype, and then do an
403 -- unchecked conversion to this actual subtype ???
405 Check_Unconstrained_Bit_Packed_Array
: declare
407 function Is_UBPA_Reference
(Opnd
: Node_Id
) return Boolean;
408 -- Function to perform required test for the first case, above
409 -- (dereference of an unconstrained bit packed array).
411 -----------------------
412 -- Is_UBPA_Reference --
413 -----------------------
415 function Is_UBPA_Reference
(Opnd
: Node_Id
) return Boolean is
416 Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Opnd
));
418 Des_Type
: Entity_Id
;
421 if Present
(Packed_Array_Type
(Typ
))
422 and then Is_Array_Type
(Packed_Array_Type
(Typ
))
423 and then not Is_Constrained
(Packed_Array_Type
(Typ
))
427 elsif Nkind
(Opnd
) = N_Explicit_Dereference
then
428 P_Type
:= Underlying_Type
(Etype
(Prefix
(Opnd
)));
430 if not Is_Access_Type
(P_Type
) then
434 Des_Type
:= Designated_Type
(P_Type
);
436 Is_Bit_Packed_Array
(Des_Type
)
437 and then not Is_Constrained
(Des_Type
);
443 end Is_UBPA_Reference
;
445 -- Start of processing for Check_Unconstrained_Bit_Packed_Array
448 if Is_UBPA_Reference
(Lhs
)
450 Is_UBPA_Reference
(Rhs
)
452 Loop_Required
:= True;
454 -- Here if we do not have the case of a reference to a bit packed
455 -- unconstrained array case. In this case gigi can most certainly
456 -- handle the assignment if a forwards move is allowed.
458 -- (could it handle the backwards case also???)
460 elsif Forwards_OK
(N
) then
463 end Check_Unconstrained_Bit_Packed_Array
;
465 -- The back end can always handle the assignment if the right side is a
466 -- string literal (note that overlap is definitely impossible in this
467 -- case). If the type is packed, a string literal is always converted
468 -- into an aggregate, except in the case of a null slice, for which no
469 -- aggregate can be written. In that case, rewrite the assignment as a
470 -- null statement, a length check has already been emitted to verify
471 -- that the range of the left-hand side is empty.
473 -- Note that this code is not executed if we have an assignment of a
474 -- string literal to a non-bit aligned component of a record, a case
475 -- which cannot be handled by the backend.
477 elsif Nkind
(Rhs
) = N_String_Literal
then
478 if String_Length
(Strval
(Rhs
)) = 0
479 and then Is_Bit_Packed_Array
(L_Type
)
481 Rewrite
(N
, Make_Null_Statement
(Loc
));
487 -- If either operand is bit packed, then we need a loop, since we can't
488 -- be sure that the slice is byte aligned. Similarly, if either operand
489 -- is a possibly unaligned slice, then we need a loop (since the back
490 -- end cannot handle unaligned slices).
492 elsif Is_Bit_Packed_Array
(L_Type
)
493 or else Is_Bit_Packed_Array
(R_Type
)
494 or else Is_Possibly_Unaligned_Slice
(Lhs
)
495 or else Is_Possibly_Unaligned_Slice
(Rhs
)
497 Loop_Required
:= True;
499 -- If we are not bit-packed, and we have only one slice, then no overlap
500 -- is possible except in the parameter case, so we can let the back end
503 elsif not (L_Slice
and R_Slice
) then
504 if Forwards_OK
(N
) then
509 -- If the right-hand side is a string literal, introduce a temporary for
510 -- it, for use in the generated loop that will follow.
512 if Nkind
(Rhs
) = N_String_Literal
then
514 Temp
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', Rhs
);
519 Make_Object_Declaration
(Loc
,
520 Defining_Identifier
=> Temp
,
521 Object_Definition
=> New_Occurrence_Of
(L_Type
, Loc
),
522 Expression
=> Relocate_Node
(Rhs
));
524 Insert_Action
(N
, Decl
);
525 Rewrite
(Rhs
, New_Occurrence_Of
(Temp
, Loc
));
526 R_Type
:= Etype
(Temp
);
530 -- Come here to complete the analysis
532 -- Loop_Required: Set to True if we know that a loop is required
533 -- regardless of overlap considerations.
535 -- Forwards_OK: Set to False if we already know that a forwards
536 -- move is not safe, else set to True.
538 -- Backwards_OK: Set to False if we already know that a backwards
539 -- move is not safe, else set to True
541 -- Our task at this stage is to complete the overlap analysis, which can
542 -- result in possibly setting Forwards_OK or Backwards_OK to False, and
543 -- then generating the final code, either by deciding that it is OK
544 -- after all to let Gigi handle it, or by generating appropriate code
548 L_Index_Typ
: constant Node_Id
:= Etype
(First_Index
(L_Type
));
549 R_Index_Typ
: constant Node_Id
:= Etype
(First_Index
(R_Type
));
551 Left_Lo
: constant Node_Id
:= Type_Low_Bound
(L_Index_Typ
);
552 Left_Hi
: constant Node_Id
:= Type_High_Bound
(L_Index_Typ
);
553 Right_Lo
: constant Node_Id
:= Type_Low_Bound
(R_Index_Typ
);
554 Right_Hi
: constant Node_Id
:= Type_High_Bound
(R_Index_Typ
);
556 Act_L_Array
: Node_Id
;
557 Act_R_Array
: Node_Id
;
563 Cresult
: Compare_Result
;
566 -- Get the expressions for the arrays. If we are dealing with a
567 -- private type, then convert to the underlying type. We can do
568 -- direct assignments to an array that is a private type, but we
569 -- cannot assign to elements of the array without this extra
570 -- unchecked conversion.
572 -- Note: We propagate Parent to the conversion nodes to generate
573 -- a well-formed subtree.
575 if Nkind
(Act_Lhs
) = N_Slice
then
576 Larray
:= Prefix
(Act_Lhs
);
580 if Is_Private_Type
(Etype
(Larray
)) then
582 Par
: constant Node_Id
:= Parent
(Larray
);
586 (Underlying_Type
(Etype
(Larray
)), Larray
);
587 Set_Parent
(Larray
, Par
);
592 if Nkind
(Act_Rhs
) = N_Slice
then
593 Rarray
:= Prefix
(Act_Rhs
);
597 if Is_Private_Type
(Etype
(Rarray
)) then
599 Par
: constant Node_Id
:= Parent
(Rarray
);
603 (Underlying_Type
(Etype
(Rarray
)), Rarray
);
604 Set_Parent
(Rarray
, Par
);
609 -- If both sides are slices, we must figure out whether it is safe
610 -- to do the move in one direction or the other. It is always safe
611 -- if there is a change of representation since obviously two arrays
612 -- with different representations cannot possibly overlap.
614 if (not Crep
) and L_Slice
and R_Slice
then
615 Act_L_Array
:= Get_Referenced_Object
(Prefix
(Act_Lhs
));
616 Act_R_Array
:= Get_Referenced_Object
(Prefix
(Act_Rhs
));
618 -- If both left and right hand arrays are entity names, and refer
619 -- to different entities, then we know that the move is safe (the
620 -- two storage areas are completely disjoint).
622 if Is_Entity_Name
(Act_L_Array
)
623 and then Is_Entity_Name
(Act_R_Array
)
624 and then Entity
(Act_L_Array
) /= Entity
(Act_R_Array
)
628 -- Otherwise, we assume the worst, which is that the two arrays
629 -- are the same array. There is no need to check if we know that
630 -- is the case, because if we don't know it, we still have to
633 -- Generally if the same array is involved, then we have an
634 -- overlapping case. We will have to really assume the worst (i.e.
635 -- set neither of the OK flags) unless we can determine the lower
636 -- or upper bounds at compile time and compare them.
641 (Left_Lo
, Right_Lo
, Assume_Valid
=> True);
643 if Cresult
= Unknown
then
646 (Left_Hi
, Right_Hi
, Assume_Valid
=> True);
650 when LT | LE | EQ
=> Set_Backwards_OK
(N
, False);
651 when GT | GE
=> Set_Forwards_OK
(N
, False);
652 when NE | Unknown
=> Set_Backwards_OK
(N
, False);
653 Set_Forwards_OK
(N
, False);
658 -- If after that analysis Loop_Required is False, meaning that we
659 -- have not discovered some non-overlap reason for requiring a loop,
660 -- then the outcome depends on the capabilities of the back end.
662 if not Loop_Required
then
664 -- The GCC back end can deal with all cases of overlap by falling
665 -- back to memmove if it cannot use a more efficient approach.
667 if VM_Target
= No_VM
and not AAMP_On_Target
then
670 -- Assume other back ends can handle it if Forwards_OK is set
672 elsif Forwards_OK
(N
) then
675 -- If Forwards_OK is not set, the back end will need something
676 -- like memmove to handle the move. For now, this processing is
677 -- activated using the .s debug flag (-gnatd.s).
679 elsif Debug_Flag_Dot_S
then
684 -- At this stage we have to generate an explicit loop, and we have
685 -- the following cases:
687 -- Forwards_OK = True
689 -- Rnn : right_index := right_index'First;
690 -- for Lnn in left-index loop
691 -- left (Lnn) := right (Rnn);
692 -- Rnn := right_index'Succ (Rnn);
695 -- Note: the above code MUST be analyzed with checks off, because
696 -- otherwise the Succ could overflow. But in any case this is more
699 -- Forwards_OK = False, Backwards_OK = True
701 -- Rnn : right_index := right_index'Last;
702 -- for Lnn in reverse left-index loop
703 -- left (Lnn) := right (Rnn);
704 -- Rnn := right_index'Pred (Rnn);
707 -- Note: the above code MUST be analyzed with checks off, because
708 -- otherwise the Pred could overflow. But in any case this is more
711 -- Forwards_OK = Backwards_OK = False
713 -- This only happens if we have the same array on each side. It is
714 -- possible to create situations using overlays that violate this,
715 -- but we simply do not promise to get this "right" in this case.
717 -- There are two possible subcases. If the No_Implicit_Conditionals
718 -- restriction is set, then we generate the following code:
721 -- T : constant <operand-type> := rhs;
726 -- If implicit conditionals are permitted, then we generate:
728 -- if Left_Lo <= Right_Lo then
729 -- <code for Forwards_OK = True above>
731 -- <code for Backwards_OK = True above>
734 -- In order to detect possible aliasing, we examine the renamed
735 -- expression when the source or target is a renaming. However,
736 -- the renaming may be intended to capture an address that may be
737 -- affected by subsequent code, and therefore we must recover
738 -- the actual entity for the expansion that follows, not the
739 -- object it renames. In particular, if source or target designate
740 -- a portion of a dynamically allocated object, the pointer to it
741 -- may be reassigned but the renaming preserves the proper location.
743 if Is_Entity_Name
(Rhs
)
745 Nkind
(Parent
(Entity
(Rhs
))) = N_Object_Renaming_Declaration
746 and then Nkind
(Act_Rhs
) = N_Slice
751 if Is_Entity_Name
(Lhs
)
753 Nkind
(Parent
(Entity
(Lhs
))) = N_Object_Renaming_Declaration
754 and then Nkind
(Act_Lhs
) = N_Slice
759 -- Cases where either Forwards_OK or Backwards_OK is true
761 if Forwards_OK
(N
) or else Backwards_OK
(N
) then
762 if Needs_Finalization
(Component_Type
(L_Type
))
763 and then Base_Type
(L_Type
) = Base_Type
(R_Type
)
765 and then not No_Ctrl_Actions
(N
)
768 Proc
: constant Entity_Id
:=
769 TSS
(Base_Type
(L_Type
), TSS_Slice_Assign
);
773 Apply_Dereference
(Larray
);
774 Apply_Dereference
(Rarray
);
775 Actuals
:= New_List
(
776 Duplicate_Subexpr
(Larray
, Name_Req
=> True),
777 Duplicate_Subexpr
(Rarray
, Name_Req
=> True),
778 Duplicate_Subexpr
(Left_Lo
, Name_Req
=> True),
779 Duplicate_Subexpr
(Left_Hi
, Name_Req
=> True),
780 Duplicate_Subexpr
(Right_Lo
, Name_Req
=> True),
781 Duplicate_Subexpr
(Right_Hi
, Name_Req
=> True));
785 Boolean_Literals
(not Forwards_OK
(N
)), Loc
));
788 Make_Procedure_Call_Statement
(Loc
,
789 Name
=> New_Reference_To
(Proc
, Loc
),
790 Parameter_Associations
=> Actuals
));
795 Expand_Assign_Array_Loop
796 (N
, Larray
, Rarray
, L_Type
, R_Type
, Ndim
,
797 Rev
=> not Forwards_OK
(N
)));
800 -- Case of both are false with No_Implicit_Conditionals
802 elsif Restriction_Active
(No_Implicit_Conditionals
) then
804 T
: constant Entity_Id
:=
805 Make_Defining_Identifier
(Loc
, Chars
=> Name_T
);
809 Make_Block_Statement
(Loc
,
810 Declarations
=> New_List
(
811 Make_Object_Declaration
(Loc
,
812 Defining_Identifier
=> T
,
813 Constant_Present
=> True,
815 New_Occurrence_Of
(Etype
(Rhs
), Loc
),
816 Expression
=> Relocate_Node
(Rhs
))),
818 Handled_Statement_Sequence
=>
819 Make_Handled_Sequence_Of_Statements
(Loc
,
820 Statements
=> New_List
(
821 Make_Assignment_Statement
(Loc
,
822 Name
=> Relocate_Node
(Lhs
),
823 Expression
=> New_Occurrence_Of
(T
, Loc
))))));
826 -- Case of both are false with implicit conditionals allowed
829 -- Before we generate this code, we must ensure that the left and
830 -- right side array types are defined. They may be itypes, and we
831 -- cannot let them be defined inside the if, since the first use
832 -- in the then may not be executed.
834 Ensure_Defined
(L_Type
, N
);
835 Ensure_Defined
(R_Type
, N
);
837 -- We normally compare addresses to find out which way round to
838 -- do the loop, since this is reliable, and handles the cases of
839 -- parameters, conversions etc. But we can't do that in the bit
840 -- packed case or the VM case, because addresses don't work there.
842 if not Is_Bit_Packed_Array
(L_Type
) and then VM_Target
= No_VM
then
846 Unchecked_Convert_To
(RTE
(RE_Integer_Address
),
847 Make_Attribute_Reference
(Loc
,
849 Make_Indexed_Component
(Loc
,
851 Duplicate_Subexpr_Move_Checks
(Larray
, True),
852 Expressions
=> New_List
(
853 Make_Attribute_Reference
(Loc
,
857 Attribute_Name
=> Name_First
))),
858 Attribute_Name
=> Name_Address
)),
861 Unchecked_Convert_To
(RTE
(RE_Integer_Address
),
862 Make_Attribute_Reference
(Loc
,
864 Make_Indexed_Component
(Loc
,
866 Duplicate_Subexpr_Move_Checks
(Rarray
, True),
867 Expressions
=> New_List
(
868 Make_Attribute_Reference
(Loc
,
872 Attribute_Name
=> Name_First
))),
873 Attribute_Name
=> Name_Address
)));
875 -- For the bit packed and VM cases we use the bounds. That's OK,
876 -- because we don't have to worry about parameters, since they
877 -- cannot cause overlap. Perhaps we should worry about weird slice
883 Cleft_Lo
:= New_Copy_Tree
(Left_Lo
);
884 Cright_Lo
:= New_Copy_Tree
(Right_Lo
);
886 -- If the types do not match we add an implicit conversion
887 -- here to ensure proper match
889 if Etype
(Left_Lo
) /= Etype
(Right_Lo
) then
891 Unchecked_Convert_To
(Etype
(Left_Lo
), Cright_Lo
);
894 -- Reset the Analyzed flag, because the bounds of the index
895 -- type itself may be universal, and must must be reanalyzed
896 -- to acquire the proper type for the back end.
898 Set_Analyzed
(Cleft_Lo
, False);
899 Set_Analyzed
(Cright_Lo
, False);
903 Left_Opnd
=> Cleft_Lo
,
904 Right_Opnd
=> Cright_Lo
);
907 if Needs_Finalization
(Component_Type
(L_Type
))
908 and then Base_Type
(L_Type
) = Base_Type
(R_Type
)
910 and then not No_Ctrl_Actions
(N
)
913 -- Call TSS procedure for array assignment, passing the
914 -- explicit bounds of right and left hand sides.
917 Proc
: constant Entity_Id
:=
918 TSS
(Base_Type
(L_Type
), TSS_Slice_Assign
);
922 Apply_Dereference
(Larray
);
923 Apply_Dereference
(Rarray
);
924 Actuals
:= New_List
(
925 Duplicate_Subexpr
(Larray
, Name_Req
=> True),
926 Duplicate_Subexpr
(Rarray
, Name_Req
=> True),
927 Duplicate_Subexpr
(Left_Lo
, Name_Req
=> True),
928 Duplicate_Subexpr
(Left_Hi
, Name_Req
=> True),
929 Duplicate_Subexpr
(Right_Lo
, Name_Req
=> True),
930 Duplicate_Subexpr
(Right_Hi
, Name_Req
=> True));
934 Right_Opnd
=> Condition
));
937 Make_Procedure_Call_Statement
(Loc
,
938 Name
=> New_Reference_To
(Proc
, Loc
),
939 Parameter_Associations
=> Actuals
));
944 Make_Implicit_If_Statement
(N
,
945 Condition
=> Condition
,
947 Then_Statements
=> New_List
(
948 Expand_Assign_Array_Loop
949 (N
, Larray
, Rarray
, L_Type
, R_Type
, Ndim
,
952 Else_Statements
=> New_List
(
953 Expand_Assign_Array_Loop
954 (N
, Larray
, Rarray
, L_Type
, R_Type
, Ndim
,
959 Analyze
(N
, Suppress
=> All_Checks
);
963 when RE_Not_Available
=>
965 end Expand_Assign_Array
;
967 ------------------------------
968 -- Expand_Assign_Array_Loop --
969 ------------------------------
971 -- The following is an example of the loop generated for the case of a
972 -- two-dimensional array:
977 -- for L1b in 1 .. 100 loop
981 -- for L3b in 1 .. 100 loop
982 -- vm1 (L1b, L3b) := vm2 (R2b, R4b);
983 -- R4b := Tm1X2'succ(R4b);
986 -- R2b := Tm1X1'succ(R2b);
990 -- Here Rev is False, and Tm1Xn are the subscript types for the right hand
991 -- side. The declarations of R2b and R4b are inserted before the original
992 -- assignment statement.
994 function Expand_Assign_Array_Loop
1001 Rev
: Boolean) return Node_Id
1003 Loc
: constant Source_Ptr
:= Sloc
(N
);
1005 Lnn
: array (1 .. Ndim
) of Entity_Id
;
1006 Rnn
: array (1 .. Ndim
) of Entity_Id
;
1007 -- Entities used as subscripts on left and right sides
1009 L_Index_Type
: array (1 .. Ndim
) of Entity_Id
;
1010 R_Index_Type
: array (1 .. Ndim
) of Entity_Id
;
1011 -- Left and right index types
1018 function Build_Step
(J
: Nat
) return Node_Id
;
1019 -- The increment step for the index of the right-hand side is written
1020 -- as an attribute reference (Succ or Pred). This function returns
1021 -- the corresponding node, which is placed at the end of the loop body.
1027 function Build_Step
(J
: Nat
) return Node_Id
is
1039 Make_Assignment_Statement
(Loc
,
1040 Name
=> New_Occurrence_Of
(Rnn
(J
), Loc
),
1042 Make_Attribute_Reference
(Loc
,
1044 New_Occurrence_Of
(R_Index_Type
(J
), Loc
),
1045 Attribute_Name
=> S_Or_P
,
1046 Expressions
=> New_List
(
1047 New_Occurrence_Of
(Rnn
(J
), Loc
))));
1049 -- Note that on the last iteration of the loop, the index is increased
1050 -- (or decreased) past the corresponding bound. This is consistent with
1051 -- the C semantics of the back-end, where such an off-by-one value on a
1052 -- dead index variable is OK. However, in CodePeer mode this leads to
1053 -- spurious warnings, and thus we place a guard around the attribute
1054 -- reference. For obvious reasons we only do this for CodePeer.
1056 if CodePeer_Mode
then
1058 Make_If_Statement
(Loc
,
1061 Left_Opnd
=> New_Occurrence_Of
(Lnn
(J
), Loc
),
1063 Make_Attribute_Reference
(Loc
,
1064 Prefix
=> New_Occurrence_Of
(L_Index_Type
(J
), Loc
),
1065 Attribute_Name
=> Lim
)),
1066 Then_Statements
=> New_List
(Step
));
1072 -- Start of processing for Expand_Assign_Array_Loop
1076 F_Or_L
:= Name_Last
;
1077 S_Or_P
:= Name_Pred
;
1079 F_Or_L
:= Name_First
;
1080 S_Or_P
:= Name_Succ
;
1083 -- Setup index types and subscript entities
1090 L_Index
:= First_Index
(L_Type
);
1091 R_Index
:= First_Index
(R_Type
);
1093 for J
in 1 .. Ndim
loop
1094 Lnn
(J
) := Make_Temporary
(Loc
, 'L');
1095 Rnn
(J
) := Make_Temporary
(Loc
, 'R');
1097 L_Index_Type
(J
) := Etype
(L_Index
);
1098 R_Index_Type
(J
) := Etype
(R_Index
);
1100 Next_Index
(L_Index
);
1101 Next_Index
(R_Index
);
1105 -- Now construct the assignment statement
1108 ExprL
: constant List_Id
:= New_List
;
1109 ExprR
: constant List_Id
:= New_List
;
1112 for J
in 1 .. Ndim
loop
1113 Append_To
(ExprL
, New_Occurrence_Of
(Lnn
(J
), Loc
));
1114 Append_To
(ExprR
, New_Occurrence_Of
(Rnn
(J
), Loc
));
1118 Make_Assignment_Statement
(Loc
,
1120 Make_Indexed_Component
(Loc
,
1121 Prefix
=> Duplicate_Subexpr
(Larray
, Name_Req
=> True),
1122 Expressions
=> ExprL
),
1124 Make_Indexed_Component
(Loc
,
1125 Prefix
=> Duplicate_Subexpr
(Rarray
, Name_Req
=> True),
1126 Expressions
=> ExprR
));
1128 -- We set assignment OK, since there are some cases, e.g. in object
1129 -- declarations, where we are actually assigning into a constant.
1130 -- If there really is an illegality, it was caught long before now,
1131 -- and was flagged when the original assignment was analyzed.
1133 Set_Assignment_OK
(Name
(Assign
));
1135 -- Propagate the No_Ctrl_Actions flag to individual assignments
1137 Set_No_Ctrl_Actions
(Assign
, No_Ctrl_Actions
(N
));
1140 -- Now construct the loop from the inside out, with the last subscript
1141 -- varying most rapidly. Note that Assign is first the raw assignment
1142 -- statement, and then subsequently the loop that wraps it up.
1144 for J
in reverse 1 .. Ndim
loop
1146 Make_Block_Statement
(Loc
,
1147 Declarations
=> New_List
(
1148 Make_Object_Declaration
(Loc
,
1149 Defining_Identifier
=> Rnn
(J
),
1150 Object_Definition
=>
1151 New_Occurrence_Of
(R_Index_Type
(J
), Loc
),
1153 Make_Attribute_Reference
(Loc
,
1154 Prefix
=> New_Occurrence_Of
(R_Index_Type
(J
), Loc
),
1155 Attribute_Name
=> F_Or_L
))),
1157 Handled_Statement_Sequence
=>
1158 Make_Handled_Sequence_Of_Statements
(Loc
,
1159 Statements
=> New_List
(
1160 Make_Implicit_Loop_Statement
(N
,
1162 Make_Iteration_Scheme
(Loc
,
1163 Loop_Parameter_Specification
=>
1164 Make_Loop_Parameter_Specification
(Loc
,
1165 Defining_Identifier
=> Lnn
(J
),
1166 Reverse_Present
=> Rev
,
1167 Discrete_Subtype_Definition
=>
1168 New_Reference_To
(L_Index_Type
(J
), Loc
))),
1170 Statements
=> New_List
(Assign
, Build_Step
(J
))))));
1174 end Expand_Assign_Array_Loop
;
1176 --------------------------
1177 -- Expand_Assign_Record --
1178 --------------------------
1180 procedure Expand_Assign_Record
(N
: Node_Id
) is
1181 Lhs
: constant Node_Id
:= Name
(N
);
1182 Rhs
: Node_Id
:= Expression
(N
);
1183 L_Typ
: constant Entity_Id
:= Base_Type
(Etype
(Lhs
));
1186 -- If change of representation, then extract the real right hand side
1187 -- from the type conversion, and proceed with component-wise assignment,
1188 -- since the two types are not the same as far as the back end is
1191 if Change_Of_Representation
(N
) then
1192 Rhs
:= Expression
(Rhs
);
1194 -- If this may be a case of a large bit aligned component, then proceed
1195 -- with component-wise assignment, to avoid possible clobbering of other
1196 -- components sharing bits in the first or last byte of the component to
1199 elsif Possible_Bit_Aligned_Component
(Lhs
)
1201 Possible_Bit_Aligned_Component
(Rhs
)
1205 -- If we have a tagged type that has a complete record representation
1206 -- clause, we must do we must do component-wise assignments, since child
1207 -- types may have used gaps for their components, and we might be
1208 -- dealing with a view conversion.
1210 elsif Is_Fully_Repped_Tagged_Type
(L_Typ
) then
1213 -- If neither condition met, then nothing special to do, the back end
1214 -- can handle assignment of the entire component as a single entity.
1220 -- At this stage we know that we must do a component wise assignment
1223 Loc
: constant Source_Ptr
:= Sloc
(N
);
1224 R_Typ
: constant Entity_Id
:= Base_Type
(Etype
(Rhs
));
1225 Decl
: constant Node_Id
:= Declaration_Node
(R_Typ
);
1229 function Find_Component
1231 Comp
: Entity_Id
) return Entity_Id
;
1232 -- Find the component with the given name in the underlying record
1233 -- declaration for Typ. We need to use the actual entity because the
1234 -- type may be private and resolution by identifier alone would fail.
1236 function Make_Component_List_Assign
1238 U_U
: Boolean := False) return List_Id
;
1239 -- Returns a sequence of statements to assign the components that
1240 -- are referenced in the given component list. The flag U_U is
1241 -- used to force the usage of the inferred value of the variant
1242 -- part expression as the switch for the generated case statement.
1244 function Make_Field_Assign
1246 U_U
: Boolean := False) return Node_Id
;
1247 -- Given C, the entity for a discriminant or component, build an
1248 -- assignment for the corresponding field values. The flag U_U
1249 -- signals the presence of an Unchecked_Union and forces the usage
1250 -- of the inferred discriminant value of C as the right hand side
1251 -- of the assignment.
1253 function Make_Field_Assigns
(CI
: List_Id
) return List_Id
;
1254 -- Given CI, a component items list, construct series of statements
1255 -- for fieldwise assignment of the corresponding components.
1257 --------------------
1258 -- Find_Component --
1259 --------------------
1261 function Find_Component
1263 Comp
: Entity_Id
) return Entity_Id
1265 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
1269 C
:= First_Entity
(Utyp
);
1270 while Present
(C
) loop
1271 if Chars
(C
) = Chars
(Comp
) then
1278 raise Program_Error
;
1281 --------------------------------
1282 -- Make_Component_List_Assign --
1283 --------------------------------
1285 function Make_Component_List_Assign
1287 U_U
: Boolean := False) return List_Id
1289 CI
: constant List_Id
:= Component_Items
(CL
);
1290 VP
: constant Node_Id
:= Variant_Part
(CL
);
1300 Result
:= Make_Field_Assigns
(CI
);
1302 if Present
(VP
) then
1303 V
:= First_Non_Pragma
(Variants
(VP
));
1305 while Present
(V
) loop
1307 DC
:= First
(Discrete_Choices
(V
));
1308 while Present
(DC
) loop
1309 Append_To
(DCH
, New_Copy_Tree
(DC
));
1314 Make_Case_Statement_Alternative
(Loc
,
1315 Discrete_Choices
=> DCH
,
1317 Make_Component_List_Assign
(Component_List
(V
))));
1318 Next_Non_Pragma
(V
);
1321 -- If we have an Unchecked_Union, use the value of the inferred
1322 -- discriminant of the variant part expression as the switch
1323 -- for the case statement. The case statement may later be
1328 New_Copy
(Get_Discriminant_Value
(
1331 Discriminant_Constraint
(Etype
(Rhs
))));
1334 Make_Selected_Component
(Loc
,
1335 Prefix
=> Duplicate_Subexpr
(Rhs
),
1337 Make_Identifier
(Loc
, Chars
(Name
(VP
))));
1341 Make_Case_Statement
(Loc
,
1343 Alternatives
=> Alts
));
1347 end Make_Component_List_Assign
;
1349 -----------------------
1350 -- Make_Field_Assign --
1351 -----------------------
1353 function Make_Field_Assign
1355 U_U
: Boolean := False) return Node_Id
1361 -- In the case of an Unchecked_Union, use the discriminant
1362 -- constraint value as on the right hand side of the assignment.
1366 New_Copy
(Get_Discriminant_Value
(C
,
1368 Discriminant_Constraint
(Etype
(Rhs
))));
1371 Make_Selected_Component
(Loc
,
1372 Prefix
=> Duplicate_Subexpr
(Rhs
),
1373 Selector_Name
=> New_Occurrence_Of
(C
, Loc
));
1377 Make_Assignment_Statement
(Loc
,
1379 Make_Selected_Component
(Loc
,
1380 Prefix
=> Duplicate_Subexpr
(Lhs
),
1382 New_Occurrence_Of
(Find_Component
(L_Typ
, C
), Loc
)),
1383 Expression
=> Expr
);
1385 -- Set Assignment_OK, so discriminants can be assigned
1387 Set_Assignment_OK
(Name
(A
), True);
1389 if Componentwise_Assignment
(N
)
1390 and then Nkind
(Name
(A
)) = N_Selected_Component
1391 and then Chars
(Selector_Name
(Name
(A
))) = Name_uParent
1393 Set_Componentwise_Assignment
(A
);
1397 end Make_Field_Assign
;
1399 ------------------------
1400 -- Make_Field_Assigns --
1401 ------------------------
1403 function Make_Field_Assigns
(CI
: List_Id
) return List_Id
is
1411 while Present
(Item
) loop
1413 -- Look for components, but exclude _tag field assignment if
1414 -- the special Componentwise_Assignment flag is set.
1416 if Nkind
(Item
) = N_Component_Declaration
1417 and then not (Is_Tag
(Defining_Identifier
(Item
))
1418 and then Componentwise_Assignment
(N
))
1421 (Result
, Make_Field_Assign
(Defining_Identifier
(Item
)));
1428 end Make_Field_Assigns
;
1430 -- Start of processing for Expand_Assign_Record
1433 -- Note that we use the base types for this processing. This results
1434 -- in some extra work in the constrained case, but the change of
1435 -- representation case is so unusual that it is not worth the effort.
1437 -- First copy the discriminants. This is done unconditionally. It
1438 -- is required in the unconstrained left side case, and also in the
1439 -- case where this assignment was constructed during the expansion
1440 -- of a type conversion (since initialization of discriminants is
1441 -- suppressed in this case). It is unnecessary but harmless in
1444 if Has_Discriminants
(L_Typ
) then
1445 F
:= First_Discriminant
(R_Typ
);
1446 while Present
(F
) loop
1448 -- If we are expanding the initialization of a derived record
1449 -- that constrains or renames discriminants of the parent, we
1450 -- must use the corresponding discriminant in the parent.
1457 and then Present
(Corresponding_Discriminant
(F
))
1459 CF
:= Corresponding_Discriminant
(F
);
1464 if Is_Unchecked_Union
(Base_Type
(R_Typ
)) then
1466 -- Within an initialization procedure this is the
1467 -- assignment to an unchecked union component, in which
1468 -- case there is no discriminant to initialize.
1470 if Inside_Init_Proc
then
1474 -- The assignment is part of a conversion from a
1475 -- derived unchecked union type with an inferable
1476 -- discriminant, to a parent type.
1478 Insert_Action
(N
, Make_Field_Assign
(CF
, True));
1482 Insert_Action
(N
, Make_Field_Assign
(CF
));
1485 Next_Discriminant
(F
);
1490 -- We know the underlying type is a record, but its current view
1491 -- may be private. We must retrieve the usable record declaration.
1493 if Nkind_In
(Decl
, N_Private_Type_Declaration
,
1494 N_Private_Extension_Declaration
)
1495 and then Present
(Full_View
(R_Typ
))
1497 RDef
:= Type_Definition
(Declaration_Node
(Full_View
(R_Typ
)));
1499 RDef
:= Type_Definition
(Decl
);
1502 if Nkind
(RDef
) = N_Derived_Type_Definition
then
1503 RDef
:= Record_Extension_Part
(RDef
);
1506 if Nkind
(RDef
) = N_Record_Definition
1507 and then Present
(Component_List
(RDef
))
1509 if Is_Unchecked_Union
(R_Typ
) then
1511 Make_Component_List_Assign
(Component_List
(RDef
), True));
1514 (N
, Make_Component_List_Assign
(Component_List
(RDef
)));
1517 Rewrite
(N
, Make_Null_Statement
(Loc
));
1520 end Expand_Assign_Record
;
1522 -----------------------------------
1523 -- Expand_N_Assignment_Statement --
1524 -----------------------------------
1526 -- This procedure implements various cases where an assignment statement
1527 -- cannot just be passed on to the back end in untransformed state.
1529 procedure Expand_N_Assignment_Statement
(N
: Node_Id
) is
1530 Loc
: constant Source_Ptr
:= Sloc
(N
);
1531 Crep
: constant Boolean := Change_Of_Representation
(N
);
1532 Lhs
: constant Node_Id
:= Name
(N
);
1533 Rhs
: constant Node_Id
:= Expression
(N
);
1534 Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Lhs
));
1538 -- Special case to check right away, if the Componentwise_Assignment
1539 -- flag is set, this is a reanalysis from the expansion of the primitive
1540 -- assignment procedure for a tagged type, and all we need to do is to
1541 -- expand to assignment of components, because otherwise, we would get
1542 -- infinite recursion (since this looks like a tagged assignment which
1543 -- would normally try to *call* the primitive assignment procedure).
1545 if Componentwise_Assignment
(N
) then
1546 Expand_Assign_Record
(N
);
1550 -- Defend against invalid subscripts on left side if we are in standard
1551 -- validity checking mode. No need to do this if we are checking all
1554 -- Note that we do this right away, because there are some early return
1555 -- paths in this procedure, and this is required on all paths.
1557 if Validity_Checks_On
1558 and then Validity_Check_Default
1559 and then not Validity_Check_Subscripts
1561 Check_Valid_Lvalue_Subscripts
(Lhs
);
1564 -- Ada 2005 (AI-327): Handle assignment to priority of protected object
1566 -- Rewrite an assignment to X'Priority into a run-time call
1568 -- For example: X'Priority := New_Prio_Expr;
1569 -- ...is expanded into Set_Ceiling (X._Object, New_Prio_Expr);
1571 -- Note that although X'Priority is notionally an object, it is quite
1572 -- deliberately not defined as an aliased object in the RM. This means
1573 -- that it works fine to rewrite it as a call, without having to worry
1574 -- about complications that would other arise from X'Priority'Access,
1575 -- which is illegal, because of the lack of aliasing.
1577 if Ada_Version
>= Ada_2005
then
1580 Conctyp
: Entity_Id
;
1583 RT_Subprg_Name
: Node_Id
;
1586 -- Handle chains of renamings
1589 while Nkind
(Ent
) in N_Has_Entity
1590 and then Present
(Entity
(Ent
))
1591 and then Present
(Renamed_Object
(Entity
(Ent
)))
1593 Ent
:= Renamed_Object
(Entity
(Ent
));
1596 -- The attribute Priority applied to protected objects has been
1597 -- previously expanded into a call to the Get_Ceiling run-time
1600 if Nkind
(Ent
) = N_Function_Call
1601 and then (Entity
(Name
(Ent
)) = RTE
(RE_Get_Ceiling
)
1603 Entity
(Name
(Ent
)) = RTE
(RO_PE_Get_Ceiling
))
1605 -- Look for the enclosing concurrent type
1607 Conctyp
:= Current_Scope
;
1608 while not Is_Concurrent_Type
(Conctyp
) loop
1609 Conctyp
:= Scope
(Conctyp
);
1612 pragma Assert
(Is_Protected_Type
(Conctyp
));
1614 -- Generate the first actual of the call
1616 Subprg
:= Current_Scope
;
1617 while not Present
(Protected_Body_Subprogram
(Subprg
)) loop
1618 Subprg
:= Scope
(Subprg
);
1621 -- Select the appropriate run-time call
1623 if Number_Entries
(Conctyp
) = 0 then
1625 New_Reference_To
(RTE
(RE_Set_Ceiling
), Loc
);
1628 New_Reference_To
(RTE
(RO_PE_Set_Ceiling
), Loc
);
1632 Make_Procedure_Call_Statement
(Loc
,
1633 Name
=> RT_Subprg_Name
,
1634 Parameter_Associations
=> New_List
(
1635 New_Copy_Tree
(First
(Parameter_Associations
(Ent
))),
1636 Relocate_Node
(Expression
(N
))));
1645 -- Deal with assignment checks unless suppressed
1647 if not Suppress_Assignment_Checks
(N
) then
1649 -- First deal with generation of range check if required
1651 if Do_Range_Check
(Rhs
) then
1652 Set_Do_Range_Check
(Rhs
, False);
1653 Generate_Range_Check
(Rhs
, Typ
, CE_Range_Check_Failed
);
1656 -- Then generate predicate check if required
1658 Apply_Predicate_Check
(Rhs
, Typ
);
1661 -- Check for a special case where a high level transformation is
1662 -- required. If we have either of:
1667 -- where P is a reference to a bit packed array, then we have to unwind
1668 -- the assignment. The exact meaning of being a reference to a bit
1669 -- packed array is as follows:
1671 -- An indexed component whose prefix is a bit packed array is a
1672 -- reference to a bit packed array.
1674 -- An indexed component or selected component whose prefix is a
1675 -- reference to a bit packed array is itself a reference ot a
1676 -- bit packed array.
1678 -- The required transformation is
1680 -- Tnn : prefix_type := P;
1681 -- Tnn.field := rhs;
1686 -- Tnn : prefix_type := P;
1687 -- Tnn (subscr) := rhs;
1690 -- Since P is going to be evaluated more than once, any subscripts
1691 -- in P must have their evaluation forced.
1693 if Nkind_In
(Lhs
, N_Indexed_Component
, N_Selected_Component
)
1694 and then Is_Ref_To_Bit_Packed_Array
(Prefix
(Lhs
))
1697 BPAR_Expr
: constant Node_Id
:= Relocate_Node
(Prefix
(Lhs
));
1698 BPAR_Typ
: constant Entity_Id
:= Etype
(BPAR_Expr
);
1699 Tnn
: constant Entity_Id
:=
1700 Make_Temporary
(Loc
, 'T', BPAR_Expr
);
1703 -- Insert the post assignment first, because we want to copy the
1704 -- BPAR_Expr tree before it gets analyzed in the context of the
1705 -- pre assignment. Note that we do not analyze the post assignment
1706 -- yet (we cannot till we have completed the analysis of the pre
1707 -- assignment). As usual, the analysis of this post assignment
1708 -- will happen on its own when we "run into" it after finishing
1709 -- the current assignment.
1712 Make_Assignment_Statement
(Loc
,
1713 Name
=> New_Copy_Tree
(BPAR_Expr
),
1714 Expression
=> New_Occurrence_Of
(Tnn
, Loc
)));
1716 -- At this stage BPAR_Expr is a reference to a bit packed array
1717 -- where the reference was not expanded in the original tree,
1718 -- since it was on the left side of an assignment. But in the
1719 -- pre-assignment statement (the object definition), BPAR_Expr
1720 -- will end up on the right hand side, and must be reexpanded. To
1721 -- achieve this, we reset the analyzed flag of all selected and
1722 -- indexed components down to the actual indexed component for
1723 -- the packed array.
1727 Set_Analyzed
(Exp
, False);
1730 (Exp
, N_Selected_Component
, N_Indexed_Component
)
1732 Exp
:= Prefix
(Exp
);
1738 -- Now we can insert and analyze the pre-assignment
1740 -- If the right-hand side requires a transient scope, it has
1741 -- already been placed on the stack. However, the declaration is
1742 -- inserted in the tree outside of this scope, and must reflect
1743 -- the proper scope for its variable. This awkward bit is forced
1744 -- by the stricter scope discipline imposed by GCC 2.97.
1747 Uses_Transient_Scope
: constant Boolean :=
1749 and then N
= Node_To_Be_Wrapped
;
1752 if Uses_Transient_Scope
then
1753 Push_Scope
(Scope
(Current_Scope
));
1756 Insert_Before_And_Analyze
(N
,
1757 Make_Object_Declaration
(Loc
,
1758 Defining_Identifier
=> Tnn
,
1759 Object_Definition
=> New_Occurrence_Of
(BPAR_Typ
, Loc
),
1760 Expression
=> BPAR_Expr
));
1762 if Uses_Transient_Scope
then
1767 -- Now fix up the original assignment and continue processing
1769 Rewrite
(Prefix
(Lhs
),
1770 New_Occurrence_Of
(Tnn
, Loc
));
1772 -- We do not need to reanalyze that assignment, and we do not need
1773 -- to worry about references to the temporary, but we do need to
1774 -- make sure that the temporary is not marked as a true constant
1775 -- since we now have a generated assignment to it!
1777 Set_Is_True_Constant
(Tnn
, False);
1781 -- When we have the appropriate type of aggregate in the expression (it
1782 -- has been determined during analysis of the aggregate by setting the
1783 -- delay flag), let's perform in place assignment and thus avoid
1784 -- creating a temporary.
1786 if Is_Delayed_Aggregate
(Rhs
) then
1787 Convert_Aggr_In_Assignment
(N
);
1788 Rewrite
(N
, Make_Null_Statement
(Loc
));
1793 -- Apply discriminant check if required. If Lhs is an access type to a
1794 -- designated type with discriminants, we must always check.
1796 if Has_Discriminants
(Etype
(Lhs
)) then
1798 -- Skip discriminant check if change of representation. Will be
1799 -- done when the change of representation is expanded out.
1802 Apply_Discriminant_Check
(Rhs
, Etype
(Lhs
), Lhs
);
1805 -- If the type is private without discriminants, and the full type
1806 -- has discriminants (necessarily with defaults) a check may still be
1807 -- necessary if the Lhs is aliased. The private discriminants must be
1808 -- visible to build the discriminant constraints.
1810 -- Only an explicit dereference that comes from source indicates
1811 -- aliasing. Access to formals of protected operations and entries
1812 -- create dereferences but are not semantic aliasings.
1814 elsif Is_Private_Type
(Etype
(Lhs
))
1815 and then Has_Discriminants
(Typ
)
1816 and then Nkind
(Lhs
) = N_Explicit_Dereference
1817 and then Comes_From_Source
(Lhs
)
1820 Lt
: constant Entity_Id
:= Etype
(Lhs
);
1821 Ubt
: Entity_Id
:= Base_Type
(Typ
);
1824 -- In the case of an expander-generated record subtype whose base
1825 -- type still appears private, Typ will have been set to that
1826 -- private type rather than the underlying record type (because
1827 -- Underlying type will have returned the record subtype), so it's
1828 -- necessary to apply Underlying_Type again to the base type to
1829 -- get the record type we need for the discriminant check. Such
1830 -- subtypes can be created for assignments in certain cases, such
1831 -- as within an instantiation passed this kind of private type.
1832 -- It would be good to avoid this special test, but making changes
1833 -- to prevent this odd form of record subtype seems difficult. ???
1835 if Is_Private_Type
(Ubt
) then
1836 Ubt
:= Underlying_Type
(Ubt
);
1839 Set_Etype
(Lhs
, Ubt
);
1840 Rewrite
(Rhs
, OK_Convert_To
(Base_Type
(Ubt
), Rhs
));
1841 Apply_Discriminant_Check
(Rhs
, Ubt
, Lhs
);
1842 Set_Etype
(Lhs
, Lt
);
1845 -- If the Lhs has a private type with unknown discriminants, it
1846 -- may have a full view with discriminants, but those are nameable
1847 -- only in the underlying type, so convert the Rhs to it before
1848 -- potential checking.
1850 elsif Has_Unknown_Discriminants
(Base_Type
(Etype
(Lhs
)))
1851 and then Has_Discriminants
(Typ
)
1853 Rewrite
(Rhs
, OK_Convert_To
(Base_Type
(Typ
), Rhs
));
1854 Apply_Discriminant_Check
(Rhs
, Typ
, Lhs
);
1856 -- In the access type case, we need the same discriminant check, and
1857 -- also range checks if we have an access to constrained array.
1859 elsif Is_Access_Type
(Etype
(Lhs
))
1860 and then Is_Constrained
(Designated_Type
(Etype
(Lhs
)))
1862 if Has_Discriminants
(Designated_Type
(Etype
(Lhs
))) then
1864 -- Skip discriminant check if change of representation. Will be
1865 -- done when the change of representation is expanded out.
1868 Apply_Discriminant_Check
(Rhs
, Etype
(Lhs
));
1871 elsif Is_Array_Type
(Designated_Type
(Etype
(Lhs
))) then
1872 Apply_Range_Check
(Rhs
, Etype
(Lhs
));
1874 if Is_Constrained
(Etype
(Lhs
)) then
1875 Apply_Length_Check
(Rhs
, Etype
(Lhs
));
1878 if Nkind
(Rhs
) = N_Allocator
then
1880 Target_Typ
: constant Entity_Id
:= Etype
(Expression
(Rhs
));
1881 C_Es
: Check_Result
;
1888 Etype
(Designated_Type
(Etype
(Lhs
))));
1900 -- Apply range check for access type case
1902 elsif Is_Access_Type
(Etype
(Lhs
))
1903 and then Nkind
(Rhs
) = N_Allocator
1904 and then Nkind
(Expression
(Rhs
)) = N_Qualified_Expression
1906 Analyze_And_Resolve
(Expression
(Rhs
));
1908 (Expression
(Rhs
), Designated_Type
(Etype
(Lhs
)));
1911 -- Ada 2005 (AI-231): Generate the run-time check
1913 if Is_Access_Type
(Typ
)
1914 and then Can_Never_Be_Null
(Etype
(Lhs
))
1915 and then not Can_Never_Be_Null
(Etype
(Rhs
))
1917 Apply_Constraint_Check
(Rhs
, Etype
(Lhs
));
1920 -- Ada 2012 (AI05-148): Update current accessibility level if Rhs is a
1921 -- stand-alone obj of an anonymous access type.
1923 if Is_Access_Type
(Typ
)
1924 and then Is_Entity_Name
(Lhs
)
1925 and then Present
(Effective_Extra_Accessibility
(Entity
(Lhs
))) then
1927 function Lhs_Entity
return Entity_Id
;
1928 -- Look through renames to find the underlying entity.
1929 -- For assignment to a rename, we don't care about the
1930 -- Enclosing_Dynamic_Scope of the rename declaration.
1936 function Lhs_Entity
return Entity_Id
is
1937 Result
: Entity_Id
:= Entity
(Lhs
);
1940 while Present
(Renamed_Object
(Result
)) loop
1942 -- Renamed_Object must return an Entity_Name here
1943 -- because of preceding "Present (E_E_A (...))" test.
1945 Result
:= Entity
(Renamed_Object
(Result
));
1951 -- Local Declarations
1953 Access_Check
: constant Node_Id
:=
1954 Make_Raise_Program_Error
(Loc
,
1958 Dynamic_Accessibility_Level
(Rhs
),
1960 Make_Integer_Literal
(Loc
,
1963 (Enclosing_Dynamic_Scope
1965 Reason
=> PE_Accessibility_Check_Failed
);
1967 Access_Level_Update
: constant Node_Id
:=
1968 Make_Assignment_Statement
(Loc
,
1971 (Effective_Extra_Accessibility
1972 (Entity
(Lhs
)), Loc
),
1974 Dynamic_Accessibility_Level
(Rhs
));
1977 if not Accessibility_Checks_Suppressed
(Entity
(Lhs
)) then
1978 Insert_Action
(N
, Access_Check
);
1981 Insert_Action
(N
, Access_Level_Update
);
1985 -- Case of assignment to a bit packed array element. If there is a
1986 -- change of representation this must be expanded into components,
1987 -- otherwise this is a bit-field assignment.
1989 if Nkind
(Lhs
) = N_Indexed_Component
1990 and then Is_Bit_Packed_Array
(Etype
(Prefix
(Lhs
)))
1992 -- Normal case, no change of representation
1995 Expand_Bit_Packed_Element_Set
(N
);
1998 -- Change of representation case
2001 -- Generate the following, to force component-by-component
2002 -- assignments in an efficient way. Otherwise each component
2003 -- will require a temporary and two bit-field manipulations.
2010 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
2016 Make_Object_Declaration
(Loc
,
2017 Defining_Identifier
=> Tnn
,
2018 Object_Definition
=>
2019 New_Occurrence_Of
(Etype
(Lhs
), Loc
)),
2020 Make_Assignment_Statement
(Loc
,
2021 Name
=> New_Occurrence_Of
(Tnn
, Loc
),
2022 Expression
=> Relocate_Node
(Rhs
)),
2023 Make_Assignment_Statement
(Loc
,
2024 Name
=> Relocate_Node
(Lhs
),
2025 Expression
=> New_Occurrence_Of
(Tnn
, Loc
)));
2027 Insert_Actions
(N
, Stats
);
2028 Rewrite
(N
, Make_Null_Statement
(Loc
));
2033 -- Build-in-place function call case. Note that we're not yet doing
2034 -- build-in-place for user-written assignment statements (the assignment
2035 -- here came from an aggregate.)
2037 elsif Ada_Version
>= Ada_2005
2038 and then Is_Build_In_Place_Function_Call
(Rhs
)
2040 Make_Build_In_Place_Call_In_Assignment
(N
, Rhs
);
2042 elsif Is_Tagged_Type
(Typ
) and then Is_Value_Type
(Etype
(Lhs
)) then
2044 -- Nothing to do for valuetypes
2045 -- ??? Set_Scope_Is_Transient (False);
2049 elsif Is_Tagged_Type
(Typ
)
2050 or else (Needs_Finalization
(Typ
) and then not Is_Array_Type
(Typ
))
2052 Tagged_Case
: declare
2053 L
: List_Id
:= No_List
;
2054 Expand_Ctrl_Actions
: constant Boolean := not No_Ctrl_Actions
(N
);
2057 -- In the controlled case, we ensure that function calls are
2058 -- evaluated before finalizing the target. In all cases, it makes
2059 -- the expansion easier if the side-effects are removed first.
2061 Remove_Side_Effects
(Lhs
);
2062 Remove_Side_Effects
(Rhs
);
2064 -- Avoid recursion in the mechanism
2068 -- If dispatching assignment, we need to dispatch to _assign
2070 if Is_Class_Wide_Type
(Typ
)
2072 -- If the type is tagged, we may as well use the predefined
2073 -- primitive assignment. This avoids inlining a lot of code
2074 -- and in the class-wide case, the assignment is replaced
2075 -- by a dispatching call to _assign. It is suppressed in the
2076 -- case of assignments created by the expander that correspond
2077 -- to initializations, where we do want to copy the tag
2078 -- (Expand_Ctrl_Actions flag is set True in this case). It is
2079 -- also suppressed if restriction No_Dispatching_Calls is in
2080 -- force because in that case predefined primitives are not
2083 or else (Is_Tagged_Type
(Typ
)
2084 and then not Is_Value_Type
(Etype
(Lhs
))
2085 and then Chars
(Current_Scope
) /= Name_uAssign
2086 and then Expand_Ctrl_Actions
2088 not Restriction_Active
(No_Dispatching_Calls
))
2090 if Is_Limited_Type
(Typ
) then
2092 -- This can happen in an instance when the formal is an
2093 -- extension of a limited interface, and the actual is
2094 -- limited. This is an error according to AI05-0087, but
2095 -- is not caught at the point of instantiation in earlier
2098 -- This is wrong, error messages cannot be issued during
2099 -- expansion, since they would be missed in -gnatc mode ???
2101 Error_Msg_N
("assignment not available on limited type", N
);
2105 -- Fetch the primitive op _assign and proper type to call it.
2106 -- Because of possible conflicts between private and full view,
2107 -- fetch the proper type directly from the operation profile.
2110 Op
: constant Entity_Id
:=
2111 Find_Prim_Op
(Typ
, Name_uAssign
);
2112 F_Typ
: Entity_Id
:= Etype
(First_Formal
(Op
));
2115 -- If the assignment is dispatching, make sure to use the
2118 if Is_Class_Wide_Type
(Typ
) then
2119 F_Typ
:= Class_Wide_Type
(F_Typ
);
2124 -- In case of assignment to a class-wide tagged type, before
2125 -- the assignment we generate run-time check to ensure that
2126 -- the tags of source and target match.
2128 if Is_Class_Wide_Type
(Typ
)
2129 and then Is_Tagged_Type
(Typ
)
2130 and then Is_Tagged_Type
(Underlying_Type
(Etype
(Rhs
)))
2133 Make_Raise_Constraint_Error
(Loc
,
2137 Make_Selected_Component
(Loc
,
2138 Prefix
=> Duplicate_Subexpr
(Lhs
),
2140 Make_Identifier
(Loc
, Name_uTag
)),
2142 Make_Selected_Component
(Loc
,
2143 Prefix
=> Duplicate_Subexpr
(Rhs
),
2145 Make_Identifier
(Loc
, Name_uTag
))),
2146 Reason
=> CE_Tag_Check_Failed
));
2150 Left_N
: Node_Id
:= Duplicate_Subexpr
(Lhs
);
2151 Right_N
: Node_Id
:= Duplicate_Subexpr
(Rhs
);
2154 -- In order to dispatch the call to _assign the type of
2155 -- the actuals must match. Add conversion (if required).
2157 if Etype
(Lhs
) /= F_Typ
then
2158 Left_N
:= Unchecked_Convert_To
(F_Typ
, Left_N
);
2161 if Etype
(Rhs
) /= F_Typ
then
2162 Right_N
:= Unchecked_Convert_To
(F_Typ
, Right_N
);
2166 Make_Procedure_Call_Statement
(Loc
,
2167 Name
=> New_Reference_To
(Op
, Loc
),
2168 Parameter_Associations
=> New_List
(
2170 Node2
=> Right_N
)));
2175 L
:= Make_Tag_Ctrl_Assignment
(N
);
2177 -- We can't afford to have destructive Finalization Actions in
2178 -- the Self assignment case, so if the target and the source
2179 -- are not obviously different, code is generated to avoid the
2180 -- self assignment case:
2182 -- if lhs'address /= rhs'address then
2183 -- <code for controlled and/or tagged assignment>
2186 -- Skip this if Restriction (No_Finalization) is active
2188 if not Statically_Different
(Lhs
, Rhs
)
2189 and then Expand_Ctrl_Actions
2190 and then not Restriction_Active
(No_Finalization
)
2193 Make_Implicit_If_Statement
(N
,
2197 Make_Attribute_Reference
(Loc
,
2198 Prefix
=> Duplicate_Subexpr
(Lhs
),
2199 Attribute_Name
=> Name_Address
),
2202 Make_Attribute_Reference
(Loc
,
2203 Prefix
=> Duplicate_Subexpr
(Rhs
),
2204 Attribute_Name
=> Name_Address
)),
2206 Then_Statements
=> L
));
2209 -- We need to set up an exception handler for implementing
2210 -- 7.6.1(18). The remaining adjustments are tackled by the
2211 -- implementation of adjust for record_controllers (see
2214 -- This is skipped if we have no finalization
2216 if Expand_Ctrl_Actions
2217 and then not Restriction_Active
(No_Finalization
)
2220 Make_Block_Statement
(Loc
,
2221 Handled_Statement_Sequence
=>
2222 Make_Handled_Sequence_Of_Statements
(Loc
,
2224 Exception_Handlers
=> New_List
(
2225 Make_Handler_For_Ctrl_Operation
(Loc
)))));
2230 Make_Block_Statement
(Loc
,
2231 Handled_Statement_Sequence
=>
2232 Make_Handled_Sequence_Of_Statements
(Loc
, Statements
=> L
)));
2234 -- If no restrictions on aborts, protect the whole assignment
2235 -- for controlled objects as per 9.8(11).
2237 if Needs_Finalization
(Typ
)
2238 and then Expand_Ctrl_Actions
2239 and then Abort_Allowed
2242 Blk
: constant Entity_Id
:=
2244 (E_Block
, Current_Scope
, Sloc
(N
), 'B');
2247 Set_Scope
(Blk
, Current_Scope
);
2248 Set_Etype
(Blk
, Standard_Void_Type
);
2249 Set_Identifier
(N
, New_Occurrence_Of
(Blk
, Sloc
(N
)));
2251 Prepend_To
(L
, Build_Runtime_Call
(Loc
, RE_Abort_Defer
));
2252 Set_At_End_Proc
(Handled_Statement_Sequence
(N
),
2253 New_Occurrence_Of
(RTE
(RE_Abort_Undefer_Direct
), Loc
));
2254 Expand_At_End_Handler
2255 (Handled_Statement_Sequence
(N
), Blk
);
2259 -- N has been rewritten to a block statement for which it is
2260 -- known by construction that no checks are necessary: analyze
2261 -- it with all checks suppressed.
2263 Analyze
(N
, Suppress
=> All_Checks
);
2269 elsif Is_Array_Type
(Typ
) then
2271 Actual_Rhs
: Node_Id
:= Rhs
;
2274 while Nkind_In
(Actual_Rhs
, N_Type_Conversion
,
2275 N_Qualified_Expression
)
2277 Actual_Rhs
:= Expression
(Actual_Rhs
);
2280 Expand_Assign_Array
(N
, Actual_Rhs
);
2286 elsif Is_Record_Type
(Typ
) then
2287 Expand_Assign_Record
(N
);
2290 -- Scalar types. This is where we perform the processing related to the
2291 -- requirements of (RM 13.9.1(9-11)) concerning the handling of invalid
2294 elsif Is_Scalar_Type
(Typ
) then
2296 -- Case where right side is known valid
2298 if Expr_Known_Valid
(Rhs
) then
2300 -- Here the right side is valid, so it is fine. The case to deal
2301 -- with is when the left side is a local variable reference whose
2302 -- value is not currently known to be valid. If this is the case,
2303 -- and the assignment appears in an unconditional context, then
2304 -- we can mark the left side as now being valid if one of these
2305 -- conditions holds:
2307 -- The expression of the right side has Do_Range_Check set so
2308 -- that we know a range check will be performed. Note that it
2309 -- can be the case that a range check is omitted because we
2310 -- make the assumption that we can assume validity for operands
2311 -- appearing in the right side in determining whether a range
2312 -- check is required
2314 -- The subtype of the right side matches the subtype of the
2315 -- left side. In this case, even though we have not checked
2316 -- the range of the right side, we know it is in range of its
2317 -- subtype if the expression is valid.
2319 if Is_Local_Variable_Reference
(Lhs
)
2320 and then not Is_Known_Valid
(Entity
(Lhs
))
2321 and then In_Unconditional_Context
(N
)
2323 if Do_Range_Check
(Rhs
)
2324 or else Etype
(Lhs
) = Etype
(Rhs
)
2326 Set_Is_Known_Valid
(Entity
(Lhs
), True);
2330 -- Case where right side may be invalid in the sense of the RM
2331 -- reference above. The RM does not require that we check for the
2332 -- validity on an assignment, but it does require that the assignment
2333 -- of an invalid value not cause erroneous behavior.
2335 -- The general approach in GNAT is to use the Is_Known_Valid flag
2336 -- to avoid the need for validity checking on assignments. However
2337 -- in some cases, we have to do validity checking in order to make
2338 -- sure that the setting of this flag is correct.
2341 -- Validate right side if we are validating copies
2343 if Validity_Checks_On
2344 and then Validity_Check_Copies
2346 -- Skip this if left hand side is an array or record component
2347 -- and elementary component validity checks are suppressed.
2349 if Nkind_In
(Lhs
, N_Selected_Component
, N_Indexed_Component
)
2350 and then not Validity_Check_Components
2357 -- We can propagate this to the left side where appropriate
2359 if Is_Local_Variable_Reference
(Lhs
)
2360 and then not Is_Known_Valid
(Entity
(Lhs
))
2361 and then In_Unconditional_Context
(N
)
2363 Set_Is_Known_Valid
(Entity
(Lhs
), True);
2366 -- Otherwise check to see what should be done
2368 -- If left side is a local variable, then we just set its flag to
2369 -- indicate that its value may no longer be valid, since we are
2370 -- copying a potentially invalid value.
2372 elsif Is_Local_Variable_Reference
(Lhs
) then
2373 Set_Is_Known_Valid
(Entity
(Lhs
), False);
2375 -- Check for case of a nonlocal variable on the left side which
2376 -- is currently known to be valid. In this case, we simply ensure
2377 -- that the right side is valid. We only play the game of copying
2378 -- validity status for local variables, since we are doing this
2379 -- statically, not by tracing the full flow graph.
2381 elsif Is_Entity_Name
(Lhs
)
2382 and then Is_Known_Valid
(Entity
(Lhs
))
2384 -- Note: If Validity_Checking mode is set to none, we ignore
2385 -- the Ensure_Valid call so don't worry about that case here.
2389 -- In all other cases, we can safely copy an invalid value without
2390 -- worrying about the status of the left side. Since it is not a
2391 -- variable reference it will not be considered
2392 -- as being known to be valid in any case.
2401 when RE_Not_Available
=>
2403 end Expand_N_Assignment_Statement
;
2405 ------------------------------
2406 -- Expand_N_Block_Statement --
2407 ------------------------------
2409 -- Encode entity names defined in block statement
2411 procedure Expand_N_Block_Statement
(N
: Node_Id
) is
2413 Qualify_Entity_Names
(N
);
2414 end Expand_N_Block_Statement
;
2416 -----------------------------
2417 -- Expand_N_Case_Statement --
2418 -----------------------------
2420 procedure Expand_N_Case_Statement
(N
: Node_Id
) is
2421 Loc
: constant Source_Ptr
:= Sloc
(N
);
2422 Expr
: constant Node_Id
:= Expression
(N
);
2430 -- Check for the situation where we know at compile time which branch
2433 if Compile_Time_Known_Value
(Expr
) then
2434 Alt
:= Find_Static_Alternative
(N
);
2436 Process_Statements_For_Controlled_Objects
(Alt
);
2438 -- Move statements from this alternative after the case statement.
2439 -- They are already analyzed, so will be skipped by the analyzer.
2441 Insert_List_After
(N
, Statements
(Alt
));
2443 -- That leaves the case statement as a shell. So now we can kill all
2444 -- other alternatives in the case statement.
2446 Kill_Dead_Code
(Expression
(N
));
2452 -- Loop through case alternatives, skipping pragmas, and skipping
2453 -- the one alternative that we select (and therefore retain).
2455 Dead_Alt
:= First
(Alternatives
(N
));
2456 while Present
(Dead_Alt
) loop
2458 and then Nkind
(Dead_Alt
) = N_Case_Statement_Alternative
2460 Kill_Dead_Code
(Statements
(Dead_Alt
), Warn_On_Deleted_Code
);
2467 Rewrite
(N
, Make_Null_Statement
(Loc
));
2471 -- Here if the choice is not determined at compile time
2474 Last_Alt
: constant Node_Id
:= Last
(Alternatives
(N
));
2476 Others_Present
: Boolean;
2477 Others_Node
: Node_Id
;
2479 Then_Stms
: List_Id
;
2480 Else_Stms
: List_Id
;
2483 if Nkind
(First
(Discrete_Choices
(Last_Alt
))) = N_Others_Choice
then
2484 Others_Present
:= True;
2485 Others_Node
:= Last_Alt
;
2487 Others_Present
:= False;
2490 -- First step is to worry about possible invalid argument. The RM
2491 -- requires (RM 5.4(13)) that if the result is invalid (e.g. it is
2492 -- outside the base range), then Constraint_Error must be raised.
2494 -- Case of validity check required (validity checks are on, the
2495 -- expression is not known to be valid, and the case statement
2496 -- comes from source -- no need to validity check internally
2497 -- generated case statements).
2499 if Validity_Check_Default
then
2500 Ensure_Valid
(Expr
);
2503 -- If there is only a single alternative, just replace it with the
2504 -- sequence of statements since obviously that is what is going to
2505 -- be executed in all cases.
2507 Len
:= List_Length
(Alternatives
(N
));
2511 -- We still need to evaluate the expression if it has any side
2514 Remove_Side_Effects
(Expression
(N
));
2516 Alt
:= First
(Alternatives
(N
));
2518 Process_Statements_For_Controlled_Objects
(Alt
);
2519 Insert_List_After
(N
, Statements
(Alt
));
2521 -- That leaves the case statement as a shell. The alternative that
2522 -- will be executed is reset to a null list. So now we can kill
2523 -- the entire case statement.
2525 Kill_Dead_Code
(Expression
(N
));
2526 Rewrite
(N
, Make_Null_Statement
(Loc
));
2529 -- An optimization. If there are only two alternatives, and only
2530 -- a single choice, then rewrite the whole case statement as an
2531 -- if statement, since this can result in subsequent optimizations.
2532 -- This helps not only with case statements in the source of a
2533 -- simple form, but also with generated code (discriminant check
2534 -- functions in particular)
2537 Chlist
:= Discrete_Choices
(First
(Alternatives
(N
)));
2539 if List_Length
(Chlist
) = 1 then
2540 Choice
:= First
(Chlist
);
2542 Then_Stms
:= Statements
(First
(Alternatives
(N
)));
2543 Else_Stms
:= Statements
(Last
(Alternatives
(N
)));
2545 -- For TRUE, generate "expression", not expression = true
2547 if Nkind
(Choice
) = N_Identifier
2548 and then Entity
(Choice
) = Standard_True
2550 Cond
:= Expression
(N
);
2552 -- For FALSE, generate "expression" and switch then/else
2554 elsif Nkind
(Choice
) = N_Identifier
2555 and then Entity
(Choice
) = Standard_False
2557 Cond
:= Expression
(N
);
2558 Else_Stms
:= Statements
(First
(Alternatives
(N
)));
2559 Then_Stms
:= Statements
(Last
(Alternatives
(N
)));
2561 -- For a range, generate "expression in range"
2563 elsif Nkind
(Choice
) = N_Range
2564 or else (Nkind
(Choice
) = N_Attribute_Reference
2565 and then Attribute_Name
(Choice
) = Name_Range
)
2566 or else (Is_Entity_Name
(Choice
)
2567 and then Is_Type
(Entity
(Choice
)))
2568 or else Nkind
(Choice
) = N_Subtype_Indication
2572 Left_Opnd
=> Expression
(N
),
2573 Right_Opnd
=> Relocate_Node
(Choice
));
2575 -- For any other subexpression "expression = value"
2580 Left_Opnd
=> Expression
(N
),
2581 Right_Opnd
=> Relocate_Node
(Choice
));
2584 -- Now rewrite the case as an IF
2587 Make_If_Statement
(Loc
,
2589 Then_Statements
=> Then_Stms
,
2590 Else_Statements
=> Else_Stms
));
2596 -- If the last alternative is not an Others choice, replace it with
2597 -- an N_Others_Choice. Note that we do not bother to call Analyze on
2598 -- the modified case statement, since it's only effect would be to
2599 -- compute the contents of the Others_Discrete_Choices which is not
2600 -- needed by the back end anyway.
2602 -- The reason we do this is that the back end always needs some
2603 -- default for a switch, so if we have not supplied one in the
2604 -- processing above for validity checking, then we need to supply
2607 if not Others_Present
then
2608 Others_Node
:= Make_Others_Choice
(Sloc
(Last_Alt
));
2609 Set_Others_Discrete_Choices
2610 (Others_Node
, Discrete_Choices
(Last_Alt
));
2611 Set_Discrete_Choices
(Last_Alt
, New_List
(Others_Node
));
2614 Alt
:= First
(Alternatives
(N
));
2616 and then Nkind
(Alt
) = N_Case_Statement_Alternative
2618 Process_Statements_For_Controlled_Objects
(Alt
);
2622 end Expand_N_Case_Statement
;
2624 -----------------------------
2625 -- Expand_N_Exit_Statement --
2626 -----------------------------
2628 -- The only processing required is to deal with a possible C/Fortran
2629 -- boolean value used as the condition for the exit statement.
2631 procedure Expand_N_Exit_Statement
(N
: Node_Id
) is
2633 Adjust_Condition
(Condition
(N
));
2634 end Expand_N_Exit_Statement
;
2636 -----------------------------
2637 -- Expand_N_Goto_Statement --
2638 -----------------------------
2640 -- Add poll before goto if polling active
2642 procedure Expand_N_Goto_Statement
(N
: Node_Id
) is
2644 Generate_Poll_Call
(N
);
2645 end Expand_N_Goto_Statement
;
2647 ---------------------------
2648 -- Expand_N_If_Statement --
2649 ---------------------------
2651 -- First we deal with the case of C and Fortran convention boolean values,
2652 -- with zero/non-zero semantics.
2654 -- Second, we deal with the obvious rewriting for the cases where the
2655 -- condition of the IF is known at compile time to be True or False.
2657 -- Third, we remove elsif parts which have non-empty Condition_Actions and
2658 -- rewrite as independent if statements. For example:
2669 -- <<condition actions of y>>
2675 -- This rewriting is needed if at least one elsif part has a non-empty
2676 -- Condition_Actions list. We also do the same processing if there is a
2677 -- constant condition in an elsif part (in conjunction with the first
2678 -- processing step mentioned above, for the recursive call made to deal
2679 -- with the created inner if, this deals with properly optimizing the
2680 -- cases of constant elsif conditions).
2682 procedure Expand_N_If_Statement
(N
: Node_Id
) is
2683 Loc
: constant Source_Ptr
:= Sloc
(N
);
2688 Warn_If_Deleted
: constant Boolean :=
2689 Warn_On_Deleted_Code
and then Comes_From_Source
(N
);
2690 -- Indicates whether we want warnings when we delete branches of the
2691 -- if statement based on constant condition analysis. We never want
2692 -- these warnings for expander generated code.
2695 Process_Statements_For_Controlled_Objects
(N
);
2697 Adjust_Condition
(Condition
(N
));
2699 -- The following loop deals with constant conditions for the IF. We
2700 -- need a loop because as we eliminate False conditions, we grab the
2701 -- first elsif condition and use it as the primary condition.
2703 while Compile_Time_Known_Value
(Condition
(N
)) loop
2705 -- If condition is True, we can simply rewrite the if statement now
2706 -- by replacing it by the series of then statements.
2708 if Is_True
(Expr_Value
(Condition
(N
))) then
2710 -- All the else parts can be killed
2712 Kill_Dead_Code
(Elsif_Parts
(N
), Warn_If_Deleted
);
2713 Kill_Dead_Code
(Else_Statements
(N
), Warn_If_Deleted
);
2715 Hed
:= Remove_Head
(Then_Statements
(N
));
2716 Insert_List_After
(N
, Then_Statements
(N
));
2720 -- If condition is False, then we can delete the condition and
2721 -- the Then statements
2724 -- We do not delete the condition if constant condition warnings
2725 -- are enabled, since otherwise we end up deleting the desired
2726 -- warning. Of course the backend will get rid of this True/False
2727 -- test anyway, so nothing is lost here.
2729 if not Constant_Condition_Warnings
then
2730 Kill_Dead_Code
(Condition
(N
));
2733 Kill_Dead_Code
(Then_Statements
(N
), Warn_If_Deleted
);
2735 -- If there are no elsif statements, then we simply replace the
2736 -- entire if statement by the sequence of else statements.
2738 if No
(Elsif_Parts
(N
)) then
2739 if No
(Else_Statements
(N
))
2740 or else Is_Empty_List
(Else_Statements
(N
))
2743 Make_Null_Statement
(Sloc
(N
)));
2745 Hed
:= Remove_Head
(Else_Statements
(N
));
2746 Insert_List_After
(N
, Else_Statements
(N
));
2752 -- If there are elsif statements, the first of them becomes the
2753 -- if/then section of the rebuilt if statement This is the case
2754 -- where we loop to reprocess this copied condition.
2757 Hed
:= Remove_Head
(Elsif_Parts
(N
));
2758 Insert_Actions
(N
, Condition_Actions
(Hed
));
2759 Set_Condition
(N
, Condition
(Hed
));
2760 Set_Then_Statements
(N
, Then_Statements
(Hed
));
2762 -- Hed might have been captured as the condition determining
2763 -- the current value for an entity. Now it is detached from
2764 -- the tree, so a Current_Value pointer in the condition might
2765 -- need to be updated.
2767 Set_Current_Value_Condition
(N
);
2769 if Is_Empty_List
(Elsif_Parts
(N
)) then
2770 Set_Elsif_Parts
(N
, No_List
);
2776 -- Loop through elsif parts, dealing with constant conditions and
2777 -- possible expression actions that are present.
2779 if Present
(Elsif_Parts
(N
)) then
2780 E
:= First
(Elsif_Parts
(N
));
2781 while Present
(E
) loop
2782 Process_Statements_For_Controlled_Objects
(E
);
2784 Adjust_Condition
(Condition
(E
));
2786 -- If there are condition actions, then rewrite the if statement
2787 -- as indicated above. We also do the same rewrite for a True or
2788 -- False condition. The further processing of this constant
2789 -- condition is then done by the recursive call to expand the
2790 -- newly created if statement
2792 if Present
(Condition_Actions
(E
))
2793 or else Compile_Time_Known_Value
(Condition
(E
))
2795 -- Note this is not an implicit if statement, since it is part
2796 -- of an explicit if statement in the source (or of an implicit
2797 -- if statement that has already been tested).
2800 Make_If_Statement
(Sloc
(E
),
2801 Condition
=> Condition
(E
),
2802 Then_Statements
=> Then_Statements
(E
),
2803 Elsif_Parts
=> No_List
,
2804 Else_Statements
=> Else_Statements
(N
));
2806 -- Elsif parts for new if come from remaining elsif's of parent
2808 while Present
(Next
(E
)) loop
2809 if No
(Elsif_Parts
(New_If
)) then
2810 Set_Elsif_Parts
(New_If
, New_List
);
2813 Append
(Remove_Next
(E
), Elsif_Parts
(New_If
));
2816 Set_Else_Statements
(N
, New_List
(New_If
));
2818 if Present
(Condition_Actions
(E
)) then
2819 Insert_List_Before
(New_If
, Condition_Actions
(E
));
2824 if Is_Empty_List
(Elsif_Parts
(N
)) then
2825 Set_Elsif_Parts
(N
, No_List
);
2831 -- No special processing for that elsif part, move to next
2839 -- Some more optimizations applicable if we still have an IF statement
2841 if Nkind
(N
) /= N_If_Statement
then
2845 -- Another optimization, special cases that can be simplified
2847 -- if expression then
2853 -- can be changed to:
2855 -- return expression;
2859 -- if expression then
2865 -- can be changed to:
2867 -- return not (expression);
2869 -- Only do these optimizations if we are at least at -O1 level and
2870 -- do not do them if control flow optimizations are suppressed.
2872 if Optimization_Level
> 0
2873 and then not Opt
.Suppress_Control_Flow_Optimizations
2875 if Nkind
(N
) = N_If_Statement
2876 and then No
(Elsif_Parts
(N
))
2877 and then Present
(Else_Statements
(N
))
2878 and then List_Length
(Then_Statements
(N
)) = 1
2879 and then List_Length
(Else_Statements
(N
)) = 1
2882 Then_Stm
: constant Node_Id
:= First
(Then_Statements
(N
));
2883 Else_Stm
: constant Node_Id
:= First
(Else_Statements
(N
));
2886 if Nkind
(Then_Stm
) = N_Simple_Return_Statement
2888 Nkind
(Else_Stm
) = N_Simple_Return_Statement
2891 Then_Expr
: constant Node_Id
:= Expression
(Then_Stm
);
2892 Else_Expr
: constant Node_Id
:= Expression
(Else_Stm
);
2895 if Nkind
(Then_Expr
) = N_Identifier
2897 Nkind
(Else_Expr
) = N_Identifier
2899 if Entity
(Then_Expr
) = Standard_True
2900 and then Entity
(Else_Expr
) = Standard_False
2903 Make_Simple_Return_Statement
(Loc
,
2904 Expression
=> Relocate_Node
(Condition
(N
))));
2908 elsif Entity
(Then_Expr
) = Standard_False
2909 and then Entity
(Else_Expr
) = Standard_True
2912 Make_Simple_Return_Statement
(Loc
,
2916 Relocate_Node
(Condition
(N
)))));
2926 end Expand_N_If_Statement
;
2928 --------------------------
2929 -- Expand_Iterator_Loop --
2930 --------------------------
2932 procedure Expand_Iterator_Loop
(N
: Node_Id
) is
2933 Isc
: constant Node_Id
:= Iteration_Scheme
(N
);
2934 I_Spec
: constant Node_Id
:= Iterator_Specification
(Isc
);
2935 Id
: constant Entity_Id
:= Defining_Identifier
(I_Spec
);
2936 Loc
: constant Source_Ptr
:= Sloc
(N
);
2938 Container
: constant Node_Id
:= Name
(I_Spec
);
2939 Container_Typ
: constant Entity_Id
:= Base_Type
(Etype
(Container
));
2941 Iterator
: Entity_Id
;
2943 Stats
: List_Id
:= Statements
(N
);
2946 -- Processing for arrays
2948 if Is_Array_Type
(Container_Typ
) then
2950 -- for Element of Array loop
2952 -- This case requires an internally generated cursor to iterate over
2955 if Of_Present
(I_Spec
) then
2956 Iterator
:= Make_Temporary
(Loc
, 'C');
2959 -- Element : Component_Type renames Container (Iterator);
2962 Make_Object_Renaming_Declaration
(Loc
,
2963 Defining_Identifier
=> Id
,
2965 New_Reference_To
(Component_Type
(Container_Typ
), Loc
),
2967 Make_Indexed_Component
(Loc
,
2968 Prefix
=> Relocate_Node
(Container
),
2969 Expressions
=> New_List
(
2970 New_Reference_To
(Iterator
, Loc
)))));
2972 -- for Index in Array loop
2974 -- This case utilizes the already given iterator name
2981 -- for Iterator in [reverse] Container'Range loop
2982 -- Element : Component_Type renames Container (Iterator);
2983 -- -- for the "of" form
2985 -- <original loop statements>
2989 Make_Loop_Statement
(Loc
,
2991 Make_Iteration_Scheme
(Loc
,
2992 Loop_Parameter_Specification
=>
2993 Make_Loop_Parameter_Specification
(Loc
,
2994 Defining_Identifier
=> Iterator
,
2995 Discrete_Subtype_Definition
=>
2996 Make_Attribute_Reference
(Loc
,
2997 Prefix
=> Relocate_Node
(Container
),
2998 Attribute_Name
=> Name_Range
),
2999 Reverse_Present
=> Reverse_Present
(I_Spec
))),
3000 Statements
=> Stats
,
3001 End_Label
=> Empty
);
3003 -- Processing for containers
3006 -- For an "of" iterator the name is a container expression, which
3007 -- is transformed into a call to the default iterator.
3009 -- For an iterator of the form "in" the name is a function call
3010 -- that delivers an iterator type.
3012 -- In both cases, analysis of the iterator has introduced an object
3013 -- declaration to capture the domain, so that Container is an entity.
3015 -- The for loop is expanded into a while loop which uses a container
3016 -- specific cursor to desgnate each element.
3018 -- Iter : Iterator_Type := Container.Iterate;
3019 -- Cursor : Cursor_type := First (Iter);
3020 -- while Has_Element (Iter) loop
3022 -- -- The block is added when Element_Type is controlled
3024 -- Obj : Pack.Element_Type := Element (Cursor);
3025 -- -- for the "of" loop form
3027 -- <original loop statements>
3030 -- Cursor := Iter.Next (Cursor);
3033 -- If "reverse" is present, then the initialization of the cursor
3034 -- uses Last and the step becomes Prev. Pack is the name of the
3035 -- scope where the container package is instantiated.
3038 Element_Type
: constant Entity_Id
:= Etype
(Id
);
3039 Iter_Type
: Entity_Id
;
3042 Name_Init
: Name_Id
;
3043 Name_Step
: Name_Id
;
3046 -- The type of the iterator is the return type of the Iterate
3047 -- function used. For the "of" form this is the default iterator
3048 -- for the type, otherwise it is the type of the explicit
3049 -- function used in the iterator specification. The most common
3050 -- case will be an Iterate function in the container package.
3052 -- The primitive operations of the container type may not be
3053 -- use-visible, so we introduce the name of the enclosing package
3054 -- in the declarations below. The Iterator type is declared in a
3055 -- an instance within the container package itself.
3057 -- If the container type is a derived type, the cursor type is
3058 -- found in the package of the parent type.
3060 if Is_Derived_Type
(Container_Typ
) then
3061 Pack
:= Scope
(Root_Type
(Container_Typ
));
3063 Pack
:= Scope
(Container_Typ
);
3066 Iter_Type
:= Etype
(Name
(I_Spec
));
3068 -- The "of" case uses an internally generated cursor whose type
3069 -- is found in the container package. The domain of iteration
3070 -- is expanded into a call to the default Iterator function, but
3071 -- this expansion does not take place in quantified expressions
3072 -- that are analyzed with expansion disabled, and in that case the
3073 -- type of the iterator must be obtained from the aspect.
3075 if Of_Present
(I_Spec
) then
3077 Default_Iter
: constant Entity_Id
:=
3081 Aspect_Default_Iterator
));
3083 Container_Arg
: Node_Id
;
3087 Cursor
:= Make_Temporary
(Loc
, 'I');
3089 -- For an container element iterator, the iterator type
3090 -- is obtained from the corresponding aspect.
3092 Iter_Type
:= Etype
(Default_Iter
);
3093 Pack
:= Scope
(Iter_Type
);
3095 -- Rewrite domain of iteration as a call to the default
3096 -- iterator for the container type. If the container is
3097 -- a derived type and the aspect is inherited, convert
3098 -- container to parent type. The Cursor type is also
3099 -- inherited from the scope of the parent.
3101 if Base_Type
(Etype
(Container
)) =
3102 Base_Type
(Etype
(First_Formal
(Default_Iter
)))
3104 Container_Arg
:= New_Copy_Tree
(Container
);
3108 Make_Type_Conversion
(Loc
,
3111 (Etype
(First_Formal
(Default_Iter
)), Loc
),
3112 Expression
=> New_Copy_Tree
(Container
));
3115 Rewrite
(Name
(I_Spec
),
3116 Make_Function_Call
(Loc
,
3117 Name
=> New_Occurrence_Of
(Default_Iter
, Loc
),
3118 Parameter_Associations
=>
3119 New_List
(Container_Arg
)));
3120 Analyze_And_Resolve
(Name
(I_Spec
));
3122 -- Find cursor type in proper iterator package, which is an
3123 -- instantiation of Iterator_Interfaces.
3125 Ent
:= First_Entity
(Pack
);
3126 while Present
(Ent
) loop
3127 if Chars
(Ent
) = Name_Cursor
then
3128 Set_Etype
(Cursor
, Etype
(Ent
));
3135 -- Id : Element_Type renames Container (Cursor);
3136 -- This assumes that the container type has an indexing
3137 -- operation with Cursor. The check that this operation
3138 -- exists is performed in Check_Container_Indexing.
3141 Make_Object_Renaming_Declaration
(Loc
,
3142 Defining_Identifier
=> Id
,
3144 New_Reference_To
(Element_Type
, Loc
),
3146 Make_Indexed_Component
(Loc
,
3147 Prefix
=> Relocate_Node
(Container_Arg
),
3149 New_List
(New_Occurrence_Of
(Cursor
, Loc
))));
3151 -- If the container holds controlled objects, wrap the loop
3152 -- statements and element renaming declaration with a block.
3153 -- This ensures that the result of Element (Cusor) is
3154 -- cleaned up after each iteration of the loop.
3156 if Needs_Finalization
(Element_Type
) then
3160 -- Id : Element_Type := Element (curosr);
3162 -- <original loop statements>
3166 Make_Block_Statement
(Loc
,
3167 Declarations
=> New_List
(Decl
),
3168 Handled_Statement_Sequence
=>
3169 Make_Handled_Sequence_Of_Statements
(Loc
,
3170 Statements
=> Stats
)));
3172 -- Elements do not need finalization
3175 Prepend_To
(Stats
, Decl
);
3179 -- X in Iterate (S) : type of iterator is type of explicitly
3180 -- given Iterate function, and the loop variable is the cursor.
3181 -- It will be assigned in the loop and must be a variable.
3185 Set_Ekind
(Cursor
, E_Variable
);
3188 Iterator
:= Make_Temporary
(Loc
, 'I');
3190 -- Determine the advancement and initialization steps for the
3193 -- Analysis of the expanded loop will verify that the container
3194 -- has a reverse iterator.
3196 if Reverse_Present
(I_Spec
) then
3197 Name_Init
:= Name_Last
;
3198 Name_Step
:= Name_Previous
;
3201 Name_Init
:= Name_First
;
3202 Name_Step
:= Name_Next
;
3205 -- For both iterator forms, add a call to the step operation to
3206 -- advance the cursor. Generate:
3208 -- Cursor := Iterator.Next (Cursor);
3212 -- Cursor := Next (Cursor);
3219 Make_Function_Call
(Loc
,
3221 Make_Selected_Component
(Loc
,
3222 Prefix
=> New_Reference_To
(Iterator
, Loc
),
3223 Selector_Name
=> Make_Identifier
(Loc
, Name_Step
)),
3224 Parameter_Associations
=> New_List
(
3225 New_Reference_To
(Cursor
, Loc
)));
3228 Make_Assignment_Statement
(Loc
,
3229 Name
=> New_Occurrence_Of
(Cursor
, Loc
),
3230 Expression
=> Rhs
));
3234 -- while Iterator.Has_Element loop
3238 -- Has_Element is the second actual in the iterator package
3241 Make_Loop_Statement
(Loc
,
3243 Make_Iteration_Scheme
(Loc
,
3245 Make_Function_Call
(Loc
,
3248 Next_Entity
(First_Entity
(Pack
)), Loc
),
3249 Parameter_Associations
=>
3251 New_Reference_To
(Cursor
, Loc
)))),
3253 Statements
=> Stats
,
3254 End_Label
=> Empty
);
3256 -- Create the declarations for Iterator and cursor and insert them
3257 -- before the source loop. Given that the domain of iteration is
3258 -- already an entity, the iterator is just a renaming of that
3259 -- entity. Possible optimization ???
3262 -- I : Iterator_Type renames Container;
3263 -- C : Cursor_Type := Container.[First | Last];
3266 Make_Object_Renaming_Declaration
(Loc
,
3267 Defining_Identifier
=> Iterator
,
3268 Subtype_Mark
=> New_Occurrence_Of
(Iter_Type
, Loc
),
3269 Name
=> Relocate_Node
(Name
(I_Spec
))));
3271 -- Create declaration for cursor
3278 Make_Object_Declaration
(Loc
,
3279 Defining_Identifier
=> Cursor
,
3280 Object_Definition
=>
3281 New_Occurrence_Of
(Etype
(Cursor
), Loc
),
3283 Make_Selected_Component
(Loc
,
3284 Prefix
=> New_Reference_To
(Iterator
, Loc
),
3286 Make_Identifier
(Loc
, Name_Init
)));
3288 -- The cursor is only modified in expanded code, so it appears
3289 -- as unassigned to the warning machinery. We must suppress
3290 -- this spurious warning explicitly.
3292 Set_Warnings_Off
(Cursor
);
3293 Set_Assignment_OK
(Decl
);
3295 Insert_Action
(N
, Decl
);
3298 -- If the range of iteration is given by a function call that
3299 -- returns a container, the finalization actions have been saved
3300 -- in the Condition_Actions of the iterator. Insert them now at
3301 -- the head of the loop.
3303 if Present
(Condition_Actions
(Isc
)) then
3304 Insert_List_Before
(N
, Condition_Actions
(Isc
));
3309 Rewrite
(N
, New_Loop
);
3311 end Expand_Iterator_Loop
;
3313 -----------------------------
3314 -- Expand_N_Loop_Statement --
3315 -----------------------------
3317 -- 1. Remove null loop entirely
3318 -- 2. Deal with while condition for C/Fortran boolean
3319 -- 3. Deal with loops with a non-standard enumeration type range
3320 -- 4. Deal with while loops where Condition_Actions is set
3321 -- 5. Deal with loops over predicated subtypes
3322 -- 6. Deal with loops with iterators over arrays and containers
3323 -- 7. Insert polling call if required
3325 procedure Expand_N_Loop_Statement
(N
: Node_Id
) is
3326 Loc
: constant Source_Ptr
:= Sloc
(N
);
3327 Isc
: constant Node_Id
:= Iteration_Scheme
(N
);
3332 if Is_Null_Loop
(N
) then
3333 Rewrite
(N
, Make_Null_Statement
(Loc
));
3337 Process_Statements_For_Controlled_Objects
(N
);
3339 -- Deal with condition for C/Fortran Boolean
3341 if Present
(Isc
) then
3342 Adjust_Condition
(Condition
(Isc
));
3345 -- Generate polling call
3347 if Is_Non_Empty_List
(Statements
(N
)) then
3348 Generate_Poll_Call
(First
(Statements
(N
)));
3351 -- Nothing more to do for plain loop with no iteration scheme
3356 -- Case of for loop (Loop_Parameter_Specification present)
3358 -- Note: we do not have to worry about validity checking of the for loop
3359 -- range bounds here, since they were frozen with constant declarations
3360 -- and it is during that process that the validity checking is done.
3362 elsif Present
(Loop_Parameter_Specification
(Isc
)) then
3364 LPS
: constant Node_Id
:= Loop_Parameter_Specification
(Isc
);
3365 Loop_Id
: constant Entity_Id
:= Defining_Identifier
(LPS
);
3366 Ltype
: constant Entity_Id
:= Etype
(Loop_Id
);
3367 Btype
: constant Entity_Id
:= Base_Type
(Ltype
);
3372 -- Deal with loop over predicates
3374 if Is_Discrete_Type
(Ltype
)
3375 and then Present
(Predicate_Function
(Ltype
))
3377 Expand_Predicated_Loop
(N
);
3379 -- Handle the case where we have a for loop with the range type
3380 -- being an enumeration type with non-standard representation.
3381 -- In this case we expand:
3383 -- for x in [reverse] a .. b loop
3389 -- for xP in [reverse] integer
3390 -- range etype'Pos (a) .. etype'Pos (b)
3393 -- x : constant etype := Pos_To_Rep (xP);
3399 elsif Is_Enumeration_Type
(Btype
)
3400 and then Present
(Enum_Pos_To_Rep
(Btype
))
3403 Make_Defining_Identifier
(Loc
,
3404 Chars
=> New_External_Name
(Chars
(Loop_Id
), 'P'));
3406 -- If the type has a contiguous representation, successive
3407 -- values can be generated as offsets from the first literal.
3409 if Has_Contiguous_Rep
(Btype
) then
3411 Unchecked_Convert_To
(Btype
,
3414 Make_Integer_Literal
(Loc
,
3415 Enumeration_Rep
(First_Literal
(Btype
))),
3416 Right_Opnd
=> New_Reference_To
(New_Id
, Loc
)));
3418 -- Use the constructed array Enum_Pos_To_Rep
3421 Make_Indexed_Component
(Loc
,
3423 New_Reference_To
(Enum_Pos_To_Rep
(Btype
), Loc
),
3425 New_List
(New_Reference_To
(New_Id
, Loc
)));
3429 Make_Loop_Statement
(Loc
,
3430 Identifier
=> Identifier
(N
),
3433 Make_Iteration_Scheme
(Loc
,
3434 Loop_Parameter_Specification
=>
3435 Make_Loop_Parameter_Specification
(Loc
,
3436 Defining_Identifier
=> New_Id
,
3437 Reverse_Present
=> Reverse_Present
(LPS
),
3439 Discrete_Subtype_Definition
=>
3440 Make_Subtype_Indication
(Loc
,
3443 New_Reference_To
(Standard_Natural
, Loc
),
3446 Make_Range_Constraint
(Loc
,
3451 Make_Attribute_Reference
(Loc
,
3453 New_Reference_To
(Btype
, Loc
),
3455 Attribute_Name
=> Name_Pos
,
3457 Expressions
=> New_List
(
3459 (Type_Low_Bound
(Ltype
)))),
3462 Make_Attribute_Reference
(Loc
,
3464 New_Reference_To
(Btype
, Loc
),
3466 Attribute_Name
=> Name_Pos
,
3468 Expressions
=> New_List
(
3473 Statements
=> New_List
(
3474 Make_Block_Statement
(Loc
,
3475 Declarations
=> New_List
(
3476 Make_Object_Declaration
(Loc
,
3477 Defining_Identifier
=> Loop_Id
,
3478 Constant_Present
=> True,
3479 Object_Definition
=>
3480 New_Reference_To
(Ltype
, Loc
),
3481 Expression
=> Expr
)),
3483 Handled_Statement_Sequence
=>
3484 Make_Handled_Sequence_Of_Statements
(Loc
,
3485 Statements
=> Statements
(N
)))),
3487 End_Label
=> End_Label
(N
)));
3489 -- The loop parameter's entity must be removed from the loop
3490 -- scope's entity list, since it will now be located in the
3491 -- new block scope. Any other entities already associated with
3492 -- the loop scope, such as the loop parameter's subtype, will
3495 pragma Assert
(First_Entity
(Scope
(Loop_Id
)) = Loop_Id
);
3496 Set_First_Entity
(Scope
(Loop_Id
), Next_Entity
(Loop_Id
));
3498 if Last_Entity
(Scope
(Loop_Id
)) = Loop_Id
then
3499 Set_Last_Entity
(Scope
(Loop_Id
), Empty
);
3504 -- Nothing to do with other cases of for loops
3511 -- Second case, if we have a while loop with Condition_Actions set, then
3512 -- we change it into a plain loop:
3521 -- <<condition actions>>
3527 and then Present
(Condition_Actions
(Isc
))
3528 and then Present
(Condition
(Isc
))
3535 Make_Exit_Statement
(Sloc
(Condition
(Isc
)),
3537 Make_Op_Not
(Sloc
(Condition
(Isc
)),
3538 Right_Opnd
=> Condition
(Isc
)));
3540 Prepend
(ES
, Statements
(N
));
3541 Insert_List_Before
(ES
, Condition_Actions
(Isc
));
3543 -- This is not an implicit loop, since it is generated in response
3544 -- to the loop statement being processed. If this is itself
3545 -- implicit, the restriction has already been checked. If not,
3546 -- it is an explicit loop.
3549 Make_Loop_Statement
(Sloc
(N
),
3550 Identifier
=> Identifier
(N
),
3551 Statements
=> Statements
(N
),
3552 End_Label
=> End_Label
(N
)));
3557 -- Here to deal with iterator case
3560 and then Present
(Iterator_Specification
(Isc
))
3562 Expand_Iterator_Loop
(N
);
3564 end Expand_N_Loop_Statement
;
3566 ----------------------------
3567 -- Expand_Predicated_Loop --
3568 ----------------------------
3570 -- Note: the expander can handle generation of loops over predicated
3571 -- subtypes for both the dynamic and static cases. Depending on what
3572 -- we decide is allowed in Ada 2012 mode and/or extensions allowed
3573 -- mode, the semantic analyzer may disallow one or both forms.
3575 procedure Expand_Predicated_Loop
(N
: Node_Id
) is
3576 Loc
: constant Source_Ptr
:= Sloc
(N
);
3577 Isc
: constant Node_Id
:= Iteration_Scheme
(N
);
3578 LPS
: constant Node_Id
:= Loop_Parameter_Specification
(Isc
);
3579 Loop_Id
: constant Entity_Id
:= Defining_Identifier
(LPS
);
3580 Ltype
: constant Entity_Id
:= Etype
(Loop_Id
);
3581 Stat
: constant List_Id
:= Static_Predicate
(Ltype
);
3582 Stmts
: constant List_Id
:= Statements
(N
);
3585 -- Case of iteration over non-static predicate, should not be possible
3586 -- since this is not allowed by the semantics and should have been
3587 -- caught during analysis of the loop statement.
3590 raise Program_Error
;
3592 -- If the predicate list is empty, that corresponds to a predicate of
3593 -- False, in which case the loop won't run at all, and we rewrite the
3594 -- entire loop as a null statement.
3596 elsif Is_Empty_List
(Stat
) then
3597 Rewrite
(N
, Make_Null_Statement
(Loc
));
3600 -- For expansion over a static predicate we generate the following
3603 -- J : Ltype := min-val;
3608 -- when endpoint => J := startpoint;
3609 -- when endpoint => J := startpoint;
3611 -- when max-val => exit;
3612 -- when others => J := Lval'Succ (J);
3617 -- To make this a little clearer, let's take a specific example:
3619 -- type Int is range 1 .. 10;
3620 -- subtype L is Int with
3621 -- predicate => L in 3 | 10 | 5 .. 7;
3623 -- for L in StaticP loop
3624 -- Put_Line ("static:" & J'Img);
3627 -- In this case, the loop is transformed into
3634 -- when 3 => J := 5;
3635 -- when 7 => J := 10;
3637 -- when others => J := L'Succ (J);
3643 Static_Predicate
: declare
3650 function Lo_Val
(N
: Node_Id
) return Node_Id
;
3651 -- Given static expression or static range, returns an identifier
3652 -- whose value is the low bound of the expression value or range.
3654 function Hi_Val
(N
: Node_Id
) return Node_Id
;
3655 -- Given static expression or static range, returns an identifier
3656 -- whose value is the high bound of the expression value or range.
3662 function Hi_Val
(N
: Node_Id
) return Node_Id
is
3664 if Is_Static_Expression
(N
) then
3665 return New_Copy
(N
);
3667 pragma Assert
(Nkind
(N
) = N_Range
);
3668 return New_Copy
(High_Bound
(N
));
3676 function Lo_Val
(N
: Node_Id
) return Node_Id
is
3678 if Is_Static_Expression
(N
) then
3679 return New_Copy
(N
);
3681 pragma Assert
(Nkind
(N
) = N_Range
);
3682 return New_Copy
(Low_Bound
(N
));
3686 -- Start of processing for Static_Predicate
3689 -- Convert loop identifier to normal variable and reanalyze it so
3690 -- that this conversion works. We have to use the same defining
3691 -- identifier, since there may be references in the loop body.
3693 Set_Analyzed
(Loop_Id
, False);
3694 Set_Ekind
(Loop_Id
, E_Variable
);
3696 -- Loop to create branches of case statement
3700 while Present
(P
) loop
3701 if No
(Next
(P
)) then
3702 S
:= Make_Exit_Statement
(Loc
);
3705 Make_Assignment_Statement
(Loc
,
3706 Name
=> New_Occurrence_Of
(Loop_Id
, Loc
),
3707 Expression
=> Lo_Val
(Next
(P
)));
3708 Set_Suppress_Assignment_Checks
(S
);
3712 Make_Case_Statement_Alternative
(Loc
,
3713 Statements
=> New_List
(S
),
3714 Discrete_Choices
=> New_List
(Hi_Val
(P
))));
3719 -- Add others choice
3722 Make_Assignment_Statement
(Loc
,
3723 Name
=> New_Occurrence_Of
(Loop_Id
, Loc
),
3725 Make_Attribute_Reference
(Loc
,
3726 Prefix
=> New_Occurrence_Of
(Ltype
, Loc
),
3727 Attribute_Name
=> Name_Succ
,
3728 Expressions
=> New_List
(
3729 New_Occurrence_Of
(Loop_Id
, Loc
))));
3730 Set_Suppress_Assignment_Checks
(S
);
3733 Make_Case_Statement_Alternative
(Loc
,
3734 Discrete_Choices
=> New_List
(Make_Others_Choice
(Loc
)),
3735 Statements
=> New_List
(S
)));
3737 -- Construct case statement and append to body statements
3740 Make_Case_Statement
(Loc
,
3741 Expression
=> New_Occurrence_Of
(Loop_Id
, Loc
),
3742 Alternatives
=> Alts
);
3743 Append_To
(Stmts
, Cstm
);
3748 Make_Object_Declaration
(Loc
,
3749 Defining_Identifier
=> Loop_Id
,
3750 Object_Definition
=> New_Occurrence_Of
(Ltype
, Loc
),
3751 Expression
=> Lo_Val
(First
(Stat
)));
3752 Set_Suppress_Assignment_Checks
(D
);
3755 Make_Block_Statement
(Loc
,
3756 Declarations
=> New_List
(D
),
3757 Handled_Statement_Sequence
=>
3758 Make_Handled_Sequence_Of_Statements
(Loc
,
3759 Statements
=> New_List
(
3760 Make_Loop_Statement
(Loc
,
3761 Statements
=> Stmts
,
3762 End_Label
=> Empty
)))));
3765 end Static_Predicate
;
3767 end Expand_Predicated_Loop
;
3769 ------------------------------
3770 -- Make_Tag_Ctrl_Assignment --
3771 ------------------------------
3773 function Make_Tag_Ctrl_Assignment
(N
: Node_Id
) return List_Id
is
3774 Asn
: constant Node_Id
:= Relocate_Node
(N
);
3775 L
: constant Node_Id
:= Name
(N
);
3776 Loc
: constant Source_Ptr
:= Sloc
(N
);
3777 Res
: constant List_Id
:= New_List
;
3778 T
: constant Entity_Id
:= Underlying_Type
(Etype
(L
));
3780 Comp_Asn
: constant Boolean := Is_Fully_Repped_Tagged_Type
(T
);
3781 Ctrl_Act
: constant Boolean := Needs_Finalization
(T
)
3782 and then not No_Ctrl_Actions
(N
);
3783 Save_Tag
: constant Boolean := Is_Tagged_Type
(T
)
3784 and then not Comp_Asn
3785 and then not No_Ctrl_Actions
(N
)
3786 and then Tagged_Type_Expansion
;
3787 -- Tags are not saved and restored when VM_Target because VM tags are
3788 -- represented implicitly in objects.
3790 Next_Id
: Entity_Id
;
3791 Prev_Id
: Entity_Id
;
3795 -- Finalize the target of the assignment when controlled
3797 -- We have two exceptions here:
3799 -- 1. If we are in an init proc since it is an initialization more
3800 -- than an assignment.
3802 -- 2. If the left-hand side is a temporary that was not initialized
3803 -- (or the parent part of a temporary since it is the case in
3804 -- extension aggregates). Such a temporary does not come from
3805 -- source. We must examine the original node for the prefix, because
3806 -- it may be a component of an entry formal, in which case it has
3807 -- been rewritten and does not appear to come from source either.
3809 -- Case of init proc
3811 if not Ctrl_Act
then
3814 -- The left hand side is an uninitialized temporary object
3816 elsif Nkind
(L
) = N_Type_Conversion
3817 and then Is_Entity_Name
(Expression
(L
))
3818 and then Nkind
(Parent
(Entity
(Expression
(L
)))) =
3819 N_Object_Declaration
3820 and then No_Initialization
(Parent
(Entity
(Expression
(L
))))
3827 (Obj_Ref
=> Duplicate_Subexpr_No_Checks
(L
),
3831 -- Save the Tag in a local variable Tag_Id
3834 Tag_Id
:= Make_Temporary
(Loc
, 'A');
3837 Make_Object_Declaration
(Loc
,
3838 Defining_Identifier
=> Tag_Id
,
3839 Object_Definition
=> New_Reference_To
(RTE
(RE_Tag
), Loc
),
3841 Make_Selected_Component
(Loc
,
3842 Prefix
=> Duplicate_Subexpr_No_Checks
(L
),
3844 New_Reference_To
(First_Tag_Component
(T
), Loc
))));
3846 -- Otherwise Tag_Id is not used
3852 -- Save the Prev and Next fields on .NET/JVM. This is not needed on non
3853 -- VM targets since the fields are not part of the object.
3855 if VM_Target
/= No_VM
3856 and then Is_Controlled
(T
)
3858 Prev_Id
:= Make_Temporary
(Loc
, 'P');
3859 Next_Id
:= Make_Temporary
(Loc
, 'N');
3862 -- Pnn : Root_Controlled_Ptr := Root_Controlled (L).Prev;
3865 Make_Object_Declaration
(Loc
,
3866 Defining_Identifier
=> Prev_Id
,
3867 Object_Definition
=>
3868 New_Reference_To
(RTE
(RE_Root_Controlled_Ptr
), Loc
),
3870 Make_Selected_Component
(Loc
,
3872 Unchecked_Convert_To
3873 (RTE
(RE_Root_Controlled
), New_Copy_Tree
(L
)),
3875 Make_Identifier
(Loc
, Name_Prev
))));
3878 -- Nnn : Root_Controlled_Ptr := Root_Controlled (L).Next;
3881 Make_Object_Declaration
(Loc
,
3882 Defining_Identifier
=> Next_Id
,
3883 Object_Definition
=>
3884 New_Reference_To
(RTE
(RE_Root_Controlled_Ptr
), Loc
),
3886 Make_Selected_Component
(Loc
,
3888 Unchecked_Convert_To
3889 (RTE
(RE_Root_Controlled
), New_Copy_Tree
(L
)),
3891 Make_Identifier
(Loc
, Name_Next
))));
3894 -- If the tagged type has a full rep clause, expand the assignment into
3895 -- component-wise assignments. Mark the node as unanalyzed in order to
3896 -- generate the proper code and propagate this scenario by setting a
3897 -- flag to avoid infinite recursion.
3900 Set_Analyzed
(Asn
, False);
3901 Set_Componentwise_Assignment
(Asn
, True);
3904 Append_To
(Res
, Asn
);
3910 Make_Assignment_Statement
(Loc
,
3912 Make_Selected_Component
(Loc
,
3913 Prefix
=> Duplicate_Subexpr_No_Checks
(L
),
3915 New_Reference_To
(First_Tag_Component
(T
), Loc
)),
3916 Expression
=> New_Reference_To
(Tag_Id
, Loc
)));
3919 -- Restore the Prev and Next fields on .NET/JVM
3921 if VM_Target
/= No_VM
3922 and then Is_Controlled
(T
)
3925 -- Root_Controlled (L).Prev := Prev_Id;
3928 Make_Assignment_Statement
(Loc
,
3930 Make_Selected_Component
(Loc
,
3932 Unchecked_Convert_To
3933 (RTE
(RE_Root_Controlled
), New_Copy_Tree
(L
)),
3935 Make_Identifier
(Loc
, Name_Prev
)),
3936 Expression
=> New_Reference_To
(Prev_Id
, Loc
)));
3939 -- Root_Controlled (L).Next := Next_Id;
3942 Make_Assignment_Statement
(Loc
,
3944 Make_Selected_Component
(Loc
,
3946 Unchecked_Convert_To
3947 (RTE
(RE_Root_Controlled
), New_Copy_Tree
(L
)),
3948 Selector_Name
=> Make_Identifier
(Loc
, Name_Next
)),
3949 Expression
=> New_Reference_To
(Next_Id
, Loc
)));
3952 -- Adjust the target after the assignment when controlled (not in the
3953 -- init proc since it is an initialization more than an assignment).
3958 (Obj_Ref
=> Duplicate_Subexpr_Move_Checks
(L
),
3966 -- Could use comment here ???
3968 when RE_Not_Available
=>
3970 end Make_Tag_Ctrl_Assignment
;