more autogen definiton
[official-gcc.git] / gcc / ada / a-ngelfu.adb
blobae95d66547b1ce30795694ef8d9739f272ff8978
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- This body is specifically for using an Ada interface to C math.h to get
33 -- the computation engine. Many special cases are handled locally to avoid
34 -- unnecessary calls. This is not a "strict" implementation, but takes full
35 -- advantage of the C functions, e.g. in providing interface to hardware
36 -- provided versions of the elementary functions.
38 -- Uses functions sqrt, exp, log, pow, sin, asin, cos, acos, tan, atan, sinh,
39 -- cosh, tanh from C library via math.h
41 with Ada.Numerics.Aux;
43 package body Ada.Numerics.Generic_Elementary_Functions is
45 use type Ada.Numerics.Aux.Double;
47 Sqrt_Two : constant := 1.41421_35623_73095_04880_16887_24209_69807_85696;
48 Log_Two : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755;
50 Half_Log_Two : constant := Log_Two / 2;
52 subtype T is Float_Type'Base;
53 subtype Double is Aux.Double;
55 Two_Pi : constant T := 2.0 * Pi;
56 Half_Pi : constant T := Pi / 2.0;
58 Half_Log_Epsilon : constant T := T (1 - T'Model_Mantissa) * Half_Log_Two;
59 Log_Inverse_Epsilon : constant T := T (T'Model_Mantissa - 1) * Log_Two;
60 Sqrt_Epsilon : constant T := Sqrt_Two ** (1 - T'Model_Mantissa);
62 -----------------------
63 -- Local Subprograms --
64 -----------------------
66 function Exp_Strict (X : Float_Type'Base) return Float_Type'Base;
67 -- Cody/Waite routine, supposedly more precise than the library version.
68 -- Currently only needed for Sinh/Cosh on X86 with the largest FP type.
70 function Local_Atan
71 (Y : Float_Type'Base;
72 X : Float_Type'Base := 1.0) return Float_Type'Base;
73 -- Common code for arc tangent after cycle reduction
75 ----------
76 -- "**" --
77 ----------
79 function "**" (Left, Right : Float_Type'Base) return Float_Type'Base is
80 A_Right : Float_Type'Base;
81 Int_Part : Integer;
82 Result : Float_Type'Base;
83 R1 : Float_Type'Base;
84 Rest : Float_Type'Base;
86 begin
87 if Left = 0.0
88 and then Right = 0.0
89 then
90 raise Argument_Error;
92 elsif Left < 0.0 then
93 raise Argument_Error;
95 elsif Right = 0.0 then
96 return 1.0;
98 elsif Left = 0.0 then
99 if Right < 0.0 then
100 raise Constraint_Error;
101 else
102 return 0.0;
103 end if;
105 elsif Left = 1.0 then
106 return 1.0;
108 elsif Right = 1.0 then
109 return Left;
111 else
112 begin
113 if Right = 2.0 then
114 return Left * Left;
116 elsif Right = 0.5 then
117 return Sqrt (Left);
119 else
120 A_Right := abs (Right);
122 -- If exponent is larger than one, compute integer exponen-
123 -- tiation if possible, and evaluate fractional part with more
124 -- precision. The relative error is now proportional to the
125 -- fractional part of the exponent only.
127 if A_Right > 1.0
128 and then A_Right < Float_Type'Base (Integer'Last)
129 then
130 Int_Part := Integer (Float_Type'Base'Truncation (A_Right));
131 Result := Left ** Int_Part;
132 Rest := A_Right - Float_Type'Base (Int_Part);
134 -- Compute with two leading bits of the mantissa using
135 -- square roots. Bound to be better than logarithms, and
136 -- easily extended to greater precision.
138 if Rest >= 0.5 then
139 R1 := Sqrt (Left);
140 Result := Result * R1;
141 Rest := Rest - 0.5;
143 if Rest >= 0.25 then
144 Result := Result * Sqrt (R1);
145 Rest := Rest - 0.25;
146 end if;
148 elsif Rest >= 0.25 then
149 Result := Result * Sqrt (Sqrt (Left));
150 Rest := Rest - 0.25;
151 end if;
153 Result := Result *
154 Float_Type'Base (Aux.Pow (Double (Left), Double (Rest)));
156 if Right >= 0.0 then
157 return Result;
158 else
159 return (1.0 / Result);
160 end if;
161 else
162 return
163 Float_Type'Base (Aux.Pow (Double (Left), Double (Right)));
164 end if;
165 end if;
167 exception
168 when others =>
169 raise Constraint_Error;
170 end;
171 end if;
172 end "**";
174 ------------
175 -- Arccos --
176 ------------
178 -- Natural cycle
180 function Arccos (X : Float_Type'Base) return Float_Type'Base is
181 Temp : Float_Type'Base;
183 begin
184 if abs X > 1.0 then
185 raise Argument_Error;
187 elsif abs X < Sqrt_Epsilon then
188 return Pi / 2.0 - X;
190 elsif X = 1.0 then
191 return 0.0;
193 elsif X = -1.0 then
194 return Pi;
195 end if;
197 Temp := Float_Type'Base (Aux.Acos (Double (X)));
199 if Temp < 0.0 then
200 Temp := Pi + Temp;
201 end if;
203 return Temp;
204 end Arccos;
206 -- Arbitrary cycle
208 function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base is
209 Temp : Float_Type'Base;
211 begin
212 if Cycle <= 0.0 then
213 raise Argument_Error;
215 elsif abs X > 1.0 then
216 raise Argument_Error;
218 elsif abs X < Sqrt_Epsilon then
219 return Cycle / 4.0;
221 elsif X = 1.0 then
222 return 0.0;
224 elsif X = -1.0 then
225 return Cycle / 2.0;
226 end if;
228 Temp := Arctan (Sqrt ((1.0 - X) * (1.0 + X)) / X, 1.0, Cycle);
230 if Temp < 0.0 then
231 Temp := Cycle / 2.0 + Temp;
232 end if;
234 return Temp;
235 end Arccos;
237 -------------
238 -- Arccosh --
239 -------------
241 function Arccosh (X : Float_Type'Base) return Float_Type'Base is
242 begin
243 -- Return positive branch of Log (X - Sqrt (X * X - 1.0)), or the proper
244 -- approximation for X close to 1 or >> 1.
246 if X < 1.0 then
247 raise Argument_Error;
249 elsif X < 1.0 + Sqrt_Epsilon then
250 return Sqrt (2.0 * (X - 1.0));
252 elsif X > 1.0 / Sqrt_Epsilon then
253 return Log (X) + Log_Two;
255 else
256 return Log (X + Sqrt ((X - 1.0) * (X + 1.0)));
257 end if;
258 end Arccosh;
260 ------------
261 -- Arccot --
262 ------------
264 -- Natural cycle
266 function Arccot
267 (X : Float_Type'Base;
268 Y : Float_Type'Base := 1.0)
269 return Float_Type'Base
271 begin
272 -- Just reverse arguments
274 return Arctan (Y, X);
275 end Arccot;
277 -- Arbitrary cycle
279 function Arccot
280 (X : Float_Type'Base;
281 Y : Float_Type'Base := 1.0;
282 Cycle : Float_Type'Base)
283 return Float_Type'Base
285 begin
286 -- Just reverse arguments
288 return Arctan (Y, X, Cycle);
289 end Arccot;
291 -------------
292 -- Arccoth --
293 -------------
295 function Arccoth (X : Float_Type'Base) return Float_Type'Base is
296 begin
297 if abs X > 2.0 then
298 return Arctanh (1.0 / X);
300 elsif abs X = 1.0 then
301 raise Constraint_Error;
303 elsif abs X < 1.0 then
304 raise Argument_Error;
306 else
307 -- 1.0 < abs X <= 2.0. One of X + 1.0 and X - 1.0 is exact, the other
308 -- has error 0 or Epsilon.
310 return 0.5 * (Log (abs (X + 1.0)) - Log (abs (X - 1.0)));
311 end if;
312 end Arccoth;
314 ------------
315 -- Arcsin --
316 ------------
318 -- Natural cycle
320 function Arcsin (X : Float_Type'Base) return Float_Type'Base is
321 begin
322 if abs X > 1.0 then
323 raise Argument_Error;
325 elsif abs X < Sqrt_Epsilon then
326 return X;
328 elsif X = 1.0 then
329 return Pi / 2.0;
331 elsif X = -1.0 then
332 return -(Pi / 2.0);
333 end if;
335 return Float_Type'Base (Aux.Asin (Double (X)));
336 end Arcsin;
338 -- Arbitrary cycle
340 function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base is
341 begin
342 if Cycle <= 0.0 then
343 raise Argument_Error;
345 elsif abs X > 1.0 then
346 raise Argument_Error;
348 elsif X = 0.0 then
349 return X;
351 elsif X = 1.0 then
352 return Cycle / 4.0;
354 elsif X = -1.0 then
355 return -(Cycle / 4.0);
356 end if;
358 return Arctan (X / Sqrt ((1.0 - X) * (1.0 + X)), 1.0, Cycle);
359 end Arcsin;
361 -------------
362 -- Arcsinh --
363 -------------
365 function Arcsinh (X : Float_Type'Base) return Float_Type'Base is
366 begin
367 if abs X < Sqrt_Epsilon then
368 return X;
370 elsif X > 1.0 / Sqrt_Epsilon then
371 return Log (X) + Log_Two;
373 elsif X < -(1.0 / Sqrt_Epsilon) then
374 return -(Log (-X) + Log_Two);
376 elsif X < 0.0 then
377 return -Log (abs X + Sqrt (X * X + 1.0));
379 else
380 return Log (X + Sqrt (X * X + 1.0));
381 end if;
382 end Arcsinh;
384 ------------
385 -- Arctan --
386 ------------
388 -- Natural cycle
390 function Arctan
391 (Y : Float_Type'Base;
392 X : Float_Type'Base := 1.0)
393 return Float_Type'Base
395 begin
396 if X = 0.0 and then Y = 0.0 then
397 raise Argument_Error;
399 elsif Y = 0.0 then
400 if X > 0.0 then
401 return 0.0;
402 else -- X < 0.0
403 return Pi * Float_Type'Copy_Sign (1.0, Y);
404 end if;
406 elsif X = 0.0 then
407 return Float_Type'Copy_Sign (Half_Pi, Y);
409 else
410 return Local_Atan (Y, X);
411 end if;
412 end Arctan;
414 -- Arbitrary cycle
416 function Arctan
417 (Y : Float_Type'Base;
418 X : Float_Type'Base := 1.0;
419 Cycle : Float_Type'Base)
420 return Float_Type'Base
422 begin
423 if Cycle <= 0.0 then
424 raise Argument_Error;
426 elsif X = 0.0 and then Y = 0.0 then
427 raise Argument_Error;
429 elsif Y = 0.0 then
430 if X > 0.0 then
431 return 0.0;
432 else -- X < 0.0
433 return Cycle / 2.0 * Float_Type'Copy_Sign (1.0, Y);
434 end if;
436 elsif X = 0.0 then
437 return Float_Type'Copy_Sign (Cycle / 4.0, Y);
439 else
440 return Local_Atan (Y, X) * Cycle / Two_Pi;
441 end if;
442 end Arctan;
444 -------------
445 -- Arctanh --
446 -------------
448 function Arctanh (X : Float_Type'Base) return Float_Type'Base is
449 A, B, D, A_Plus_1, A_From_1 : Float_Type'Base;
451 Mantissa : constant Integer := Float_Type'Base'Machine_Mantissa;
453 begin
454 -- The naive formula:
456 -- Arctanh (X) := (1/2) * Log (1 + X) / (1 - X)
458 -- is not well-behaved numerically when X < 0.5 and when X is close
459 -- to one. The following is accurate but probably not optimal.
461 if abs X = 1.0 then
462 raise Constraint_Error;
464 elsif abs X >= 1.0 - 2.0 ** (-Mantissa) then
466 if abs X >= 1.0 then
467 raise Argument_Error;
468 else
470 -- The one case that overflows if put through the method below:
471 -- abs X = 1.0 - Epsilon. In this case (1/2) log (2/Epsilon) is
472 -- accurate. This simplifies to:
474 return Float_Type'Copy_Sign (
475 Half_Log_Two * Float_Type'Base (Mantissa + 1), X);
476 end if;
478 -- elsif abs X <= 0.5 then
479 -- why is above line commented out ???
481 else
482 -- Use several piecewise linear approximations. A is close to X,
483 -- chosen so 1.0 + A, 1.0 - A, and X - A are exact. The two scalings
484 -- remove the low-order bits of X.
486 A := Float_Type'Base'Scaling (
487 Float_Type'Base (Long_Long_Integer
488 (Float_Type'Base'Scaling (X, Mantissa - 1))), 1 - Mantissa);
490 B := X - A; -- This is exact; abs B <= 2**(-Mantissa).
491 A_Plus_1 := 1.0 + A; -- This is exact.
492 A_From_1 := 1.0 - A; -- Ditto.
493 D := A_Plus_1 * A_From_1; -- 1 - A*A.
495 -- use one term of the series expansion:
497 -- f (x + e) = f(x) + e * f'(x) + ..
499 -- The derivative of Arctanh at A is 1/(1-A*A). Next term is
500 -- A*(B/D)**2 (if a quadratic approximation is ever needed).
502 return 0.5 * (Log (A_Plus_1) - Log (A_From_1)) + B / D;
503 end if;
504 end Arctanh;
506 ---------
507 -- Cos --
508 ---------
510 -- Natural cycle
512 function Cos (X : Float_Type'Base) return Float_Type'Base is
513 begin
514 if X = 0.0 then
515 return 1.0;
517 elsif abs X < Sqrt_Epsilon then
518 return 1.0;
520 end if;
522 return Float_Type'Base (Aux.Cos (Double (X)));
523 end Cos;
525 -- Arbitrary cycle
527 function Cos (X, Cycle : Float_Type'Base) return Float_Type'Base is
528 begin
529 -- Just reuse the code for Sin. The potential small loss of speed is
530 -- negligible with proper (front-end) inlining.
532 return -Sin (abs X - Cycle * 0.25, Cycle);
533 end Cos;
535 ----------
536 -- Cosh --
537 ----------
539 function Cosh (X : Float_Type'Base) return Float_Type'Base is
540 Lnv : constant Float_Type'Base := 8#0.542714#;
541 V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
542 Y : constant Float_Type'Base := abs X;
543 Z : Float_Type'Base;
545 begin
546 if Y < Sqrt_Epsilon then
547 return 1.0;
549 elsif Y > Log_Inverse_Epsilon then
550 Z := Exp_Strict (Y - Lnv);
551 return (Z + V2minus1 * Z);
553 else
554 Z := Exp_Strict (Y);
555 return 0.5 * (Z + 1.0 / Z);
556 end if;
558 end Cosh;
560 ---------
561 -- Cot --
562 ---------
564 -- Natural cycle
566 function Cot (X : Float_Type'Base) return Float_Type'Base is
567 begin
568 if X = 0.0 then
569 raise Constraint_Error;
571 elsif abs X < Sqrt_Epsilon then
572 return 1.0 / X;
573 end if;
575 return 1.0 / Float_Type'Base (Aux.Tan (Double (X)));
576 end Cot;
578 -- Arbitrary cycle
580 function Cot (X, Cycle : Float_Type'Base) return Float_Type'Base is
581 T : Float_Type'Base;
583 begin
584 if Cycle <= 0.0 then
585 raise Argument_Error;
586 end if;
588 T := Float_Type'Base'Remainder (X, Cycle);
590 if T = 0.0 or else abs T = 0.5 * Cycle then
591 raise Constraint_Error;
593 elsif abs T < Sqrt_Epsilon then
594 return 1.0 / T;
596 elsif abs T = 0.25 * Cycle then
597 return 0.0;
599 else
600 T := T / Cycle * Two_Pi;
601 return Cos (T) / Sin (T);
602 end if;
603 end Cot;
605 ----------
606 -- Coth --
607 ----------
609 function Coth (X : Float_Type'Base) return Float_Type'Base is
610 begin
611 if X = 0.0 then
612 raise Constraint_Error;
614 elsif X < Half_Log_Epsilon then
615 return -1.0;
617 elsif X > -Half_Log_Epsilon then
618 return 1.0;
620 elsif abs X < Sqrt_Epsilon then
621 return 1.0 / X;
622 end if;
624 return 1.0 / Float_Type'Base (Aux.Tanh (Double (X)));
625 end Coth;
627 ---------
628 -- Exp --
629 ---------
631 function Exp (X : Float_Type'Base) return Float_Type'Base is
632 Result : Float_Type'Base;
634 begin
635 if X = 0.0 then
636 return 1.0;
637 end if;
639 Result := Float_Type'Base (Aux.Exp (Double (X)));
641 -- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
642 -- is False, then we can just leave it as an infinity (and indeed we
643 -- prefer to do so). But if Machine_Overflows is True, then we have
644 -- to raise a Constraint_Error exception as required by the RM.
646 if Float_Type'Machine_Overflows and then not Result'Valid then
647 raise Constraint_Error;
648 end if;
650 return Result;
651 end Exp;
653 ----------------
654 -- Exp_Strict --
655 ----------------
657 function Exp_Strict (X : Float_Type'Base) return Float_Type'Base is
658 G : Float_Type'Base;
659 Z : Float_Type'Base;
661 P0 : constant := 0.25000_00000_00000_00000;
662 P1 : constant := 0.75753_18015_94227_76666E-2;
663 P2 : constant := 0.31555_19276_56846_46356E-4;
665 Q0 : constant := 0.5;
666 Q1 : constant := 0.56817_30269_85512_21787E-1;
667 Q2 : constant := 0.63121_89437_43985_02557E-3;
668 Q3 : constant := 0.75104_02839_98700_46114E-6;
670 C1 : constant := 8#0.543#;
671 C2 : constant := -2.1219_44400_54690_58277E-4;
672 Le : constant := 1.4426_95040_88896_34074;
674 XN : Float_Type'Base;
675 P, Q, R : Float_Type'Base;
677 begin
678 if X = 0.0 then
679 return 1.0;
680 end if;
682 XN := Float_Type'Base'Rounding (X * Le);
683 G := (X - XN * C1) - XN * C2;
684 Z := G * G;
685 P := G * ((P2 * Z + P1) * Z + P0);
686 Q := ((Q3 * Z + Q2) * Z + Q1) * Z + Q0;
687 R := 0.5 + P / (Q - P);
689 R := Float_Type'Base'Scaling (R, Integer (XN) + 1);
691 -- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
692 -- is False, then we can just leave it as an infinity (and indeed we
693 -- prefer to do so). But if Machine_Overflows is True, then we have to
694 -- raise a Constraint_Error exception as required by the RM.
696 if Float_Type'Machine_Overflows and then not R'Valid then
697 raise Constraint_Error;
698 else
699 return R;
700 end if;
702 end Exp_Strict;
704 ----------------
705 -- Local_Atan --
706 ----------------
708 function Local_Atan
709 (Y : Float_Type'Base;
710 X : Float_Type'Base := 1.0) return Float_Type'Base
712 Z : Float_Type'Base;
713 Raw_Atan : Float_Type'Base;
715 begin
716 Z := (if abs Y > abs X then abs (X / Y) else abs (Y / X));
718 Raw_Atan :=
719 (if Z < Sqrt_Epsilon then Z
720 elsif Z = 1.0 then Pi / 4.0
721 else Float_Type'Base (Aux.Atan (Double (Z))));
723 if abs Y > abs X then
724 Raw_Atan := Half_Pi - Raw_Atan;
725 end if;
727 if X > 0.0 then
728 return Float_Type'Copy_Sign (Raw_Atan, Y);
729 else
730 return Float_Type'Copy_Sign (Pi - Raw_Atan, Y);
731 end if;
732 end Local_Atan;
734 ---------
735 -- Log --
736 ---------
738 -- Natural base
740 function Log (X : Float_Type'Base) return Float_Type'Base is
741 begin
742 if X < 0.0 then
743 raise Argument_Error;
745 elsif X = 0.0 then
746 raise Constraint_Error;
748 elsif X = 1.0 then
749 return 0.0;
750 end if;
752 return Float_Type'Base (Aux.Log (Double (X)));
753 end Log;
755 -- Arbitrary base
757 function Log (X, Base : Float_Type'Base) return Float_Type'Base is
758 begin
759 if X < 0.0 then
760 raise Argument_Error;
762 elsif Base <= 0.0 or else Base = 1.0 then
763 raise Argument_Error;
765 elsif X = 0.0 then
766 raise Constraint_Error;
768 elsif X = 1.0 then
769 return 0.0;
770 end if;
772 return Float_Type'Base (Aux.Log (Double (X)) / Aux.Log (Double (Base)));
773 end Log;
775 ---------
776 -- Sin --
777 ---------
779 -- Natural cycle
781 function Sin (X : Float_Type'Base) return Float_Type'Base is
782 begin
783 if abs X < Sqrt_Epsilon then
784 return X;
785 end if;
787 return Float_Type'Base (Aux.Sin (Double (X)));
788 end Sin;
790 -- Arbitrary cycle
792 function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base is
793 T : Float_Type'Base;
795 begin
796 if Cycle <= 0.0 then
797 raise Argument_Error;
799 -- If X is zero, return it as the result, preserving the argument sign.
800 -- Is this test really needed on any machine ???
802 elsif X = 0.0 then
803 return X;
804 end if;
806 T := Float_Type'Base'Remainder (X, Cycle);
808 -- The following two reductions reduce the argument to the interval
809 -- [-0.25 * Cycle, 0.25 * Cycle]. This reduction is exact and is needed
810 -- to prevent inaccuracy that may result if the sine function uses a
811 -- different (more accurate) value of Pi in its reduction than is used
812 -- in the multiplication with Two_Pi.
814 if abs T > 0.25 * Cycle then
815 T := 0.5 * Float_Type'Copy_Sign (Cycle, T) - T;
816 end if;
818 -- Could test for 12.0 * abs T = Cycle, and return an exact value in
819 -- those cases. It is not clear this is worth the extra test though.
821 return Float_Type'Base (Aux.Sin (Double (T / Cycle * Two_Pi)));
822 end Sin;
824 ----------
825 -- Sinh --
826 ----------
828 function Sinh (X : Float_Type'Base) return Float_Type'Base is
829 Lnv : constant Float_Type'Base := 8#0.542714#;
830 V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
831 Y : constant Float_Type'Base := abs X;
832 F : constant Float_Type'Base := Y * Y;
833 Z : Float_Type'Base;
835 Float_Digits_1_6 : constant Boolean := Float_Type'Digits < 7;
837 begin
838 if Y < Sqrt_Epsilon then
839 return X;
841 elsif Y > Log_Inverse_Epsilon then
842 Z := Exp_Strict (Y - Lnv);
843 Z := Z + V2minus1 * Z;
845 elsif Y < 1.0 then
847 if Float_Digits_1_6 then
849 -- Use expansion provided by Cody and Waite, p. 226. Note that
850 -- leading term of the polynomial in Q is exactly 1.0.
852 declare
853 P0 : constant := -0.71379_3159E+1;
854 P1 : constant := -0.19033_3399E+0;
855 Q0 : constant := -0.42827_7109E+2;
857 begin
858 Z := Y + Y * F * (P1 * F + P0) / (F + Q0);
859 end;
861 else
862 declare
863 P0 : constant := -0.35181_28343_01771_17881E+6;
864 P1 : constant := -0.11563_52119_68517_68270E+5;
865 P2 : constant := -0.16375_79820_26307_51372E+3;
866 P3 : constant := -0.78966_12741_73570_99479E+0;
867 Q0 : constant := -0.21108_77005_81062_71242E+7;
868 Q1 : constant := 0.36162_72310_94218_36460E+5;
869 Q2 : constant := -0.27773_52311_96507_01667E+3;
871 begin
872 Z := Y + Y * F * (((P3 * F + P2) * F + P1) * F + P0)
873 / (((F + Q2) * F + Q1) * F + Q0);
874 end;
875 end if;
877 else
878 Z := Exp_Strict (Y);
879 Z := 0.5 * (Z - 1.0 / Z);
880 end if;
882 if X > 0.0 then
883 return Z;
884 else
885 return -Z;
886 end if;
887 end Sinh;
889 ----------
890 -- Sqrt --
891 ----------
893 function Sqrt (X : Float_Type'Base) return Float_Type'Base is
894 begin
895 if X < 0.0 then
896 raise Argument_Error;
898 -- Special case Sqrt (0.0) to preserve possible minus sign per IEEE
900 elsif X = 0.0 then
901 return X;
902 end if;
904 return Float_Type'Base (Aux.Sqrt (Double (X)));
905 end Sqrt;
907 ---------
908 -- Tan --
909 ---------
911 -- Natural cycle
913 function Tan (X : Float_Type'Base) return Float_Type'Base is
914 begin
915 if abs X < Sqrt_Epsilon then
916 return X;
917 end if;
919 -- Note: if X is exactly pi/2, then we should raise an exception, since
920 -- the result would overflow. But for all floating-point formats we deal
921 -- with, it is impossible for X to be exactly pi/2, and the result is
922 -- always in range.
924 return Float_Type'Base (Aux.Tan (Double (X)));
925 end Tan;
927 -- Arbitrary cycle
929 function Tan (X, Cycle : Float_Type'Base) return Float_Type'Base is
930 T : Float_Type'Base;
932 begin
933 if Cycle <= 0.0 then
934 raise Argument_Error;
936 elsif X = 0.0 then
937 return X;
938 end if;
940 T := Float_Type'Base'Remainder (X, Cycle);
942 if abs T = 0.25 * Cycle then
943 raise Constraint_Error;
945 elsif abs T = 0.5 * Cycle then
946 return 0.0;
948 else
949 T := T / Cycle * Two_Pi;
950 return Sin (T) / Cos (T);
951 end if;
953 end Tan;
955 ----------
956 -- Tanh --
957 ----------
959 function Tanh (X : Float_Type'Base) return Float_Type'Base is
960 P0 : constant Float_Type'Base := -0.16134_11902_39962_28053E+4;
961 P1 : constant Float_Type'Base := -0.99225_92967_22360_83313E+2;
962 P2 : constant Float_Type'Base := -0.96437_49277_72254_69787E+0;
964 Q0 : constant Float_Type'Base := 0.48402_35707_19886_88686E+4;
965 Q1 : constant Float_Type'Base := 0.22337_72071_89623_12926E+4;
966 Q2 : constant Float_Type'Base := 0.11274_47438_05349_49335E+3;
967 Q3 : constant Float_Type'Base := 0.10000_00000_00000_00000E+1;
969 Half_Ln3 : constant Float_Type'Base := 0.54930_61443_34054_84570;
971 P, Q, R : Float_Type'Base;
972 Y : constant Float_Type'Base := abs X;
973 G : constant Float_Type'Base := Y * Y;
975 Float_Type_Digits_15_Or_More : constant Boolean :=
976 Float_Type'Digits > 14;
978 begin
979 if X < Half_Log_Epsilon then
980 return -1.0;
982 elsif X > -Half_Log_Epsilon then
983 return 1.0;
985 elsif Y < Sqrt_Epsilon then
986 return X;
988 elsif Y < Half_Ln3
989 and then Float_Type_Digits_15_Or_More
990 then
991 P := (P2 * G + P1) * G + P0;
992 Q := ((Q3 * G + Q2) * G + Q1) * G + Q0;
993 R := G * (P / Q);
994 return X + X * R;
996 else
997 return Float_Type'Base (Aux.Tanh (Double (X)));
998 end if;
999 end Tanh;
1001 end Ada.Numerics.Generic_Elementary_Functions;