mips-protos.h (mips_regno_mode_ok_for_base_p): Give the STRICT_P argument type "bool...
[official-gcc.git] / gcc / config / mips / mips.c
blob71678605cf975edbb5caea21c616610dde2c2ce5
1 /* Subroutines used for MIPS code generation.
2 Copyright (C) 1989, 1990, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5 Contributed by A. Lichnewsky, lich@inria.inria.fr.
6 Changes by Michael Meissner, meissner@osf.org.
7 64-bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
8 Brendan Eich, brendan@microunity.com.
10 This file is part of GCC.
12 GCC is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
17 GCC is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include <signal.h>
31 #include "rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "real.h"
35 #include "insn-config.h"
36 #include "conditions.h"
37 #include "insn-attr.h"
38 #include "recog.h"
39 #include "toplev.h"
40 #include "output.h"
41 #include "tree.h"
42 #include "function.h"
43 #include "expr.h"
44 #include "optabs.h"
45 #include "flags.h"
46 #include "reload.h"
47 #include "tm_p.h"
48 #include "ggc.h"
49 #include "gstab.h"
50 #include "hashtab.h"
51 #include "debug.h"
52 #include "target.h"
53 #include "target-def.h"
54 #include "integrate.h"
55 #include "langhooks.h"
56 #include "cfglayout.h"
57 #include "sched-int.h"
58 #include "tree-gimple.h"
59 #include "bitmap.h"
60 #include "diagnostic.h"
62 /* True if X is an UNSPEC wrapper around a SYMBOL_REF or LABEL_REF. */
63 #define UNSPEC_ADDRESS_P(X) \
64 (GET_CODE (X) == UNSPEC \
65 && XINT (X, 1) >= UNSPEC_ADDRESS_FIRST \
66 && XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES)
68 /* Extract the symbol or label from UNSPEC wrapper X. */
69 #define UNSPEC_ADDRESS(X) \
70 XVECEXP (X, 0, 0)
72 /* Extract the symbol type from UNSPEC wrapper X. */
73 #define UNSPEC_ADDRESS_TYPE(X) \
74 ((enum mips_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST))
76 /* The maximum distance between the top of the stack frame and the
77 value $sp has when we save and restore registers.
79 The value for normal-mode code must be a SMALL_OPERAND and must
80 preserve the maximum stack alignment. We therefore use a value
81 of 0x7ff0 in this case.
83 MIPS16e SAVE and RESTORE instructions can adjust the stack pointer by
84 up to 0x7f8 bytes and can usually save or restore all the registers
85 that we need to save or restore. (Note that we can only use these
86 instructions for o32, for which the stack alignment is 8 bytes.)
88 We use a maximum gap of 0x100 or 0x400 for MIPS16 code when SAVE and
89 RESTORE are not available. We can then use unextended instructions
90 to save and restore registers, and to allocate and deallocate the top
91 part of the frame. */
92 #define MIPS_MAX_FIRST_STACK_STEP \
93 (!TARGET_MIPS16 ? 0x7ff0 \
94 : GENERATE_MIPS16E_SAVE_RESTORE ? 0x7f8 \
95 : TARGET_64BIT ? 0x100 : 0x400)
97 /* True if INSN is a mips.md pattern or asm statement. */
98 #define USEFUL_INSN_P(INSN) \
99 (INSN_P (INSN) \
100 && GET_CODE (PATTERN (INSN)) != USE \
101 && GET_CODE (PATTERN (INSN)) != CLOBBER \
102 && GET_CODE (PATTERN (INSN)) != ADDR_VEC \
103 && GET_CODE (PATTERN (INSN)) != ADDR_DIFF_VEC)
105 /* If INSN is a delayed branch sequence, return the first instruction
106 in the sequence, otherwise return INSN itself. */
107 #define SEQ_BEGIN(INSN) \
108 (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \
109 ? XVECEXP (PATTERN (INSN), 0, 0) \
110 : (INSN))
112 /* Likewise for the last instruction in a delayed branch sequence. */
113 #define SEQ_END(INSN) \
114 (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \
115 ? XVECEXP (PATTERN (INSN), 0, XVECLEN (PATTERN (INSN), 0) - 1) \
116 : (INSN))
118 /* Execute the following loop body with SUBINSN set to each instruction
119 between SEQ_BEGIN (INSN) and SEQ_END (INSN) inclusive. */
120 #define FOR_EACH_SUBINSN(SUBINSN, INSN) \
121 for ((SUBINSN) = SEQ_BEGIN (INSN); \
122 (SUBINSN) != NEXT_INSN (SEQ_END (INSN)); \
123 (SUBINSN) = NEXT_INSN (SUBINSN))
125 /* True if bit BIT is set in VALUE. */
126 #define BITSET_P(VALUE, BIT) (((VALUE) & (1 << (BIT))) != 0)
128 /* Classifies an address.
130 ADDRESS_REG
131 A natural register + offset address. The register satisfies
132 mips_valid_base_register_p and the offset is a const_arith_operand.
134 ADDRESS_LO_SUM
135 A LO_SUM rtx. The first operand is a valid base register and
136 the second operand is a symbolic address.
138 ADDRESS_CONST_INT
139 A signed 16-bit constant address.
141 ADDRESS_SYMBOLIC:
142 A constant symbolic address. */
143 enum mips_address_type {
144 ADDRESS_REG,
145 ADDRESS_LO_SUM,
146 ADDRESS_CONST_INT,
147 ADDRESS_SYMBOLIC
150 /* Macros to create an enumeration identifier for a function prototype. */
151 #define MIPS_FTYPE_NAME1(A, B) MIPS_##A##_FTYPE_##B
152 #define MIPS_FTYPE_NAME2(A, B, C) MIPS_##A##_FTYPE_##B##_##C
153 #define MIPS_FTYPE_NAME3(A, B, C, D) MIPS_##A##_FTYPE_##B##_##C##_##D
154 #define MIPS_FTYPE_NAME4(A, B, C, D, E) MIPS_##A##_FTYPE_##B##_##C##_##D##_##E
156 /* Classifies the prototype of a built-in function. */
157 enum mips_function_type {
158 #define DEF_MIPS_FTYPE(NARGS, LIST) MIPS_FTYPE_NAME##NARGS LIST,
159 #include "config/mips/mips-ftypes.def"
160 #undef DEF_MIPS_FTYPE
161 MIPS_MAX_FTYPE_MAX
164 /* Specifies how a built-in function should be converted into rtl. */
165 enum mips_builtin_type {
166 /* The function corresponds directly to an .md pattern. The return
167 value is mapped to operand 0 and the arguments are mapped to
168 operands 1 and above. */
169 MIPS_BUILTIN_DIRECT,
171 /* The function corresponds directly to an .md pattern. There is no return
172 value and the arguments are mapped to operands 0 and above. */
173 MIPS_BUILTIN_DIRECT_NO_TARGET,
175 /* The function corresponds to a comparison instruction followed by
176 a mips_cond_move_tf_ps pattern. The first two arguments are the
177 values to compare and the second two arguments are the vector
178 operands for the movt.ps or movf.ps instruction (in assembly order). */
179 MIPS_BUILTIN_MOVF,
180 MIPS_BUILTIN_MOVT,
182 /* The function corresponds to a V2SF comparison instruction. Operand 0
183 of this instruction is the result of the comparison, which has mode
184 CCV2 or CCV4. The function arguments are mapped to operands 1 and
185 above. The function's return value is an SImode boolean that is
186 true under the following conditions:
188 MIPS_BUILTIN_CMP_ANY: one of the registers is true
189 MIPS_BUILTIN_CMP_ALL: all of the registers are true
190 MIPS_BUILTIN_CMP_LOWER: the first register is true
191 MIPS_BUILTIN_CMP_UPPER: the second register is true. */
192 MIPS_BUILTIN_CMP_ANY,
193 MIPS_BUILTIN_CMP_ALL,
194 MIPS_BUILTIN_CMP_UPPER,
195 MIPS_BUILTIN_CMP_LOWER,
197 /* As above, but the instruction only sets a single $fcc register. */
198 MIPS_BUILTIN_CMP_SINGLE,
200 /* For generating bposge32 branch instructions in MIPS32 DSP ASE. */
201 MIPS_BUILTIN_BPOSGE32
204 /* Invoke MACRO (COND) for each C.cond.fmt condition. */
205 #define MIPS_FP_CONDITIONS(MACRO) \
206 MACRO (f), \
207 MACRO (un), \
208 MACRO (eq), \
209 MACRO (ueq), \
210 MACRO (olt), \
211 MACRO (ult), \
212 MACRO (ole), \
213 MACRO (ule), \
214 MACRO (sf), \
215 MACRO (ngle), \
216 MACRO (seq), \
217 MACRO (ngl), \
218 MACRO (lt), \
219 MACRO (nge), \
220 MACRO (le), \
221 MACRO (ngt)
223 /* Enumerates the codes above as MIPS_FP_COND_<X>. */
224 #define DECLARE_MIPS_COND(X) MIPS_FP_COND_ ## X
225 enum mips_fp_condition {
226 MIPS_FP_CONDITIONS (DECLARE_MIPS_COND)
229 /* Index X provides the string representation of MIPS_FP_COND_<X>. */
230 #define STRINGIFY(X) #X
231 static const char *const mips_fp_conditions[] = {
232 MIPS_FP_CONDITIONS (STRINGIFY)
235 /* Information about a function's frame layout. */
236 struct mips_frame_info GTY(()) {
237 /* The size of the frame in bytes. */
238 HOST_WIDE_INT total_size;
240 /* The number of bytes allocated to variables. */
241 HOST_WIDE_INT var_size;
243 /* The number of bytes allocated to outgoing function arguments. */
244 HOST_WIDE_INT args_size;
246 /* The number of bytes allocated to the .cprestore slot, or 0 if there
247 is no such slot. */
248 HOST_WIDE_INT cprestore_size;
250 /* Bit X is set if the function saves or restores GPR X. */
251 unsigned int mask;
253 /* Likewise FPR X. */
254 unsigned int fmask;
256 /* The number of GPRs and FPRs saved. */
257 unsigned int num_gp;
258 unsigned int num_fp;
260 /* The offset of the topmost GPR and FPR save slots from the top of
261 the frame, or zero if no such slots are needed. */
262 HOST_WIDE_INT gp_save_offset;
263 HOST_WIDE_INT fp_save_offset;
265 /* Likewise, but giving offsets from the bottom of the frame. */
266 HOST_WIDE_INT gp_sp_offset;
267 HOST_WIDE_INT fp_sp_offset;
269 /* The offset of arg_pointer_rtx from frame_pointer_rtx. */
270 HOST_WIDE_INT arg_pointer_offset;
272 /* The offset of hard_frame_pointer_rtx from frame_pointer_rtx. */
273 HOST_WIDE_INT hard_frame_pointer_offset;
276 struct machine_function GTY(()) {
277 /* The register returned by mips16_gp_pseudo_reg; see there for details. */
278 rtx mips16_gp_pseudo_rtx;
280 /* The number of extra stack bytes taken up by register varargs.
281 This area is allocated by the callee at the very top of the frame. */
282 int varargs_size;
284 /* The current frame information, calculated by mips_compute_frame_info. */
285 struct mips_frame_info frame;
287 /* The register to use as the function's global pointer. */
288 unsigned int global_pointer;
290 /* True if mips_adjust_insn_length should ignore an instruction's
291 hazard attribute. */
292 bool ignore_hazard_length_p;
294 /* True if the whole function is suitable for .set noreorder and
295 .set nomacro. */
296 bool all_noreorder_p;
298 /* True if the function is known to have an instruction that needs $gp. */
299 bool has_gp_insn_p;
301 /* True if we have emitted an instruction to initialize
302 mips16_gp_pseudo_rtx. */
303 bool initialized_mips16_gp_pseudo_p;
306 /* Information about a single argument. */
307 struct mips_arg_info {
308 /* True if the argument is passed in a floating-point register, or
309 would have been if we hadn't run out of registers. */
310 bool fpr_p;
312 /* The number of words passed in registers, rounded up. */
313 unsigned int reg_words;
315 /* For EABI, the offset of the first register from GP_ARG_FIRST or
316 FP_ARG_FIRST. For other ABIs, the offset of the first register from
317 the start of the ABI's argument structure (see the CUMULATIVE_ARGS
318 comment for details).
320 The value is MAX_ARGS_IN_REGISTERS if the argument is passed entirely
321 on the stack. */
322 unsigned int reg_offset;
324 /* The number of words that must be passed on the stack, rounded up. */
325 unsigned int stack_words;
327 /* The offset from the start of the stack overflow area of the argument's
328 first stack word. Only meaningful when STACK_WORDS is nonzero. */
329 unsigned int stack_offset;
332 /* Information about an address described by mips_address_type.
334 ADDRESS_CONST_INT
335 No fields are used.
337 ADDRESS_REG
338 REG is the base register and OFFSET is the constant offset.
340 ADDRESS_LO_SUM
341 REG and OFFSET are the operands to the LO_SUM and SYMBOL_TYPE
342 is the type of symbol it references.
344 ADDRESS_SYMBOLIC
345 SYMBOL_TYPE is the type of symbol that the address references. */
346 struct mips_address_info {
347 enum mips_address_type type;
348 rtx reg;
349 rtx offset;
350 enum mips_symbol_type symbol_type;
353 /* One stage in a constant building sequence. These sequences have
354 the form:
356 A = VALUE[0]
357 A = A CODE[1] VALUE[1]
358 A = A CODE[2] VALUE[2]
361 where A is an accumulator, each CODE[i] is a binary rtl operation
362 and each VALUE[i] is a constant integer. CODE[0] is undefined. */
363 struct mips_integer_op {
364 enum rtx_code code;
365 unsigned HOST_WIDE_INT value;
368 /* The largest number of operations needed to load an integer constant.
369 The worst accepted case for 64-bit constants is LUI,ORI,SLL,ORI,SLL,ORI.
370 When the lowest bit is clear, we can try, but reject a sequence with
371 an extra SLL at the end. */
372 #define MIPS_MAX_INTEGER_OPS 7
374 /* Information about a MIPS16e SAVE or RESTORE instruction. */
375 struct mips16e_save_restore_info {
376 /* The number of argument registers saved by a SAVE instruction.
377 0 for RESTORE instructions. */
378 unsigned int nargs;
380 /* Bit X is set if the instruction saves or restores GPR X. */
381 unsigned int mask;
383 /* The total number of bytes to allocate. */
384 HOST_WIDE_INT size;
387 /* Global variables for machine-dependent things. */
389 /* The -G setting, or the configuration's default small-data limit if
390 no -G option is given. */
391 static unsigned int mips_small_data_threshold;
393 /* The number of file directives written by mips_output_filename. */
394 int num_source_filenames;
396 /* The name that appeared in the last .file directive written by
397 mips_output_filename, or "" if mips_output_filename hasn't
398 written anything yet. */
399 const char *current_function_file = "";
401 /* A label counter used by PUT_SDB_BLOCK_START and PUT_SDB_BLOCK_END. */
402 int sdb_label_count;
404 /* Arrays that map GCC register numbers to debugger register numbers. */
405 int mips_dbx_regno[FIRST_PSEUDO_REGISTER];
406 int mips_dwarf_regno[FIRST_PSEUDO_REGISTER];
408 /* The nesting depth of the PRINT_OPERAND '%(', '%<' and '%[' constructs. */
409 int set_noreorder;
410 int set_nomacro;
411 static int set_noat;
413 /* True if we're writing out a branch-likely instruction rather than a
414 normal branch. */
415 static bool mips_branch_likely;
417 /* The operands passed to the last cmpMM expander. */
418 rtx cmp_operands[2];
420 /* The current instruction-set architecture. */
421 enum processor_type mips_arch;
422 const struct mips_cpu_info *mips_arch_info;
424 /* The processor that we should tune the code for. */
425 enum processor_type mips_tune;
426 const struct mips_cpu_info *mips_tune_info;
428 /* The ISA level associated with mips_arch. */
429 int mips_isa;
431 /* The architecture selected by -mipsN, or null if -mipsN wasn't used. */
432 static const struct mips_cpu_info *mips_isa_option_info;
434 /* Which ABI to use. */
435 int mips_abi = MIPS_ABI_DEFAULT;
437 /* Which cost information to use. */
438 const struct mips_rtx_cost_data *mips_cost;
440 /* The ambient target flags, excluding MASK_MIPS16. */
441 static int mips_base_target_flags;
443 /* True if MIPS16 is the default mode. */
444 static bool mips_base_mips16;
446 /* The ambient values of other global variables. */
447 static int mips_base_delayed_branch; /* flag_delayed_branch */
448 static int mips_base_schedule_insns; /* flag_schedule_insns */
449 static int mips_base_reorder_blocks_and_partition; /* flag_reorder... */
450 static int mips_base_move_loop_invariants; /* flag_move_loop_invariants */
451 static int mips_base_align_loops; /* align_loops */
452 static int mips_base_align_jumps; /* align_jumps */
453 static int mips_base_align_functions; /* align_functions */
455 /* The -mcode-readable setting. */
456 enum mips_code_readable_setting mips_code_readable = CODE_READABLE_YES;
458 /* Index [M][R] is true if register R is allowed to hold a value of mode M. */
459 bool mips_hard_regno_mode_ok[(int) MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
461 /* Index C is true if character C is a valid PRINT_OPERAND punctation
462 character. */
463 bool mips_print_operand_punct[256];
465 static GTY (()) int mips_output_filename_first_time = 1;
467 /* mips_split_p[X] is true if symbols of type X can be split by
468 mips_split_symbol. */
469 bool mips_split_p[NUM_SYMBOL_TYPES];
471 /* mips_lo_relocs[X] is the relocation to use when a symbol of type X
472 appears in a LO_SUM. It can be null if such LO_SUMs aren't valid or
473 if they are matched by a special .md file pattern. */
474 static const char *mips_lo_relocs[NUM_SYMBOL_TYPES];
476 /* Likewise for HIGHs. */
477 static const char *mips_hi_relocs[NUM_SYMBOL_TYPES];
479 /* Index R is the smallest register class that contains register R. */
480 const enum reg_class mips_regno_to_class[FIRST_PSEUDO_REGISTER] = {
481 LEA_REGS, LEA_REGS, M16_NA_REGS, V1_REG,
482 M16_REGS, M16_REGS, M16_REGS, M16_REGS,
483 LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
484 LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
485 M16_NA_REGS, M16_NA_REGS, LEA_REGS, LEA_REGS,
486 LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
487 T_REG, PIC_FN_ADDR_REG, LEA_REGS, LEA_REGS,
488 LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
489 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
490 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
491 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
492 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
493 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
494 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
495 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
496 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
497 MD0_REG, MD1_REG, NO_REGS, ST_REGS,
498 ST_REGS, ST_REGS, ST_REGS, ST_REGS,
499 ST_REGS, ST_REGS, ST_REGS, NO_REGS,
500 NO_REGS, ALL_REGS, ALL_REGS, NO_REGS,
501 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
502 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
503 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
504 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
505 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
506 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
507 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
508 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
509 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
510 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
511 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
512 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
513 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
514 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
515 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
516 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
517 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
518 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
519 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
520 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
521 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
522 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
523 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
524 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
525 DSP_ACC_REGS, DSP_ACC_REGS, DSP_ACC_REGS, DSP_ACC_REGS,
526 DSP_ACC_REGS, DSP_ACC_REGS, ALL_REGS, ALL_REGS,
527 ALL_REGS, ALL_REGS, ALL_REGS, ALL_REGS
530 /* The value of TARGET_ATTRIBUTE_TABLE. */
531 const struct attribute_spec mips_attribute_table[] = {
532 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
533 { "long_call", 0, 0, false, true, true, NULL },
534 { "far", 0, 0, false, true, true, NULL },
535 { "near", 0, 0, false, true, true, NULL },
536 /* We would really like to treat "mips16" and "nomips16" as type
537 attributes, but GCC doesn't provide the hooks we need to support
538 the right conversion rules. As declaration attributes, they affect
539 code generation but don't carry other semantics. */
540 { "mips16", 0, 0, true, false, false, NULL },
541 { "nomips16", 0, 0, true, false, false, NULL },
542 { NULL, 0, 0, false, false, false, NULL }
545 /* A table describing all the processors GCC knows about. Names are
546 matched in the order listed. The first mention of an ISA level is
547 taken as the canonical name for that ISA.
549 To ease comparison, please keep this table in the same order
550 as GAS's mips_cpu_info_table. Please also make sure that
551 MIPS_ISA_LEVEL_SPEC and MIPS_ARCH_FLOAT_SPEC handle all -march
552 options correctly. */
553 static const struct mips_cpu_info mips_cpu_info_table[] = {
554 /* Entries for generic ISAs. */
555 { "mips1", PROCESSOR_R3000, 1, 0 },
556 { "mips2", PROCESSOR_R6000, 2, 0 },
557 { "mips3", PROCESSOR_R4000, 3, 0 },
558 { "mips4", PROCESSOR_R8000, 4, 0 },
559 /* Prefer not to use branch-likely instructions for generic MIPS32rX
560 and MIPS64rX code. The instructions were officially deprecated
561 in revisions 2 and earlier, but revision 3 is likely to downgrade
562 that to a recommendation to avoid the instructions in code that
563 isn't tuned to a specific processor. */
564 { "mips32", PROCESSOR_4KC, 32, PTF_AVOID_BRANCHLIKELY },
565 { "mips32r2", PROCESSOR_M4K, 33, PTF_AVOID_BRANCHLIKELY },
566 { "mips64", PROCESSOR_5KC, 64, PTF_AVOID_BRANCHLIKELY },
568 /* MIPS I processors. */
569 { "r3000", PROCESSOR_R3000, 1, 0 },
570 { "r2000", PROCESSOR_R3000, 1, 0 },
571 { "r3900", PROCESSOR_R3900, 1, 0 },
573 /* MIPS II processors. */
574 { "r6000", PROCESSOR_R6000, 2, 0 },
576 /* MIPS III processors. */
577 { "r4000", PROCESSOR_R4000, 3, 0 },
578 { "vr4100", PROCESSOR_R4100, 3, 0 },
579 { "vr4111", PROCESSOR_R4111, 3, 0 },
580 { "vr4120", PROCESSOR_R4120, 3, 0 },
581 { "vr4130", PROCESSOR_R4130, 3, 0 },
582 { "vr4300", PROCESSOR_R4300, 3, 0 },
583 { "r4400", PROCESSOR_R4000, 3, 0 },
584 { "r4600", PROCESSOR_R4600, 3, 0 },
585 { "orion", PROCESSOR_R4600, 3, 0 },
586 { "r4650", PROCESSOR_R4650, 3, 0 },
588 /* MIPS IV processors. */
589 { "r8000", PROCESSOR_R8000, 4, 0 },
590 { "vr5000", PROCESSOR_R5000, 4, 0 },
591 { "vr5400", PROCESSOR_R5400, 4, 0 },
592 { "vr5500", PROCESSOR_R5500, 4, PTF_AVOID_BRANCHLIKELY },
593 { "rm7000", PROCESSOR_R7000, 4, 0 },
594 { "rm9000", PROCESSOR_R9000, 4, 0 },
596 /* MIPS32 processors. */
597 { "4kc", PROCESSOR_4KC, 32, 0 },
598 { "4km", PROCESSOR_4KC, 32, 0 },
599 { "4kp", PROCESSOR_4KP, 32, 0 },
600 { "4ksc", PROCESSOR_4KC, 32, 0 },
602 /* MIPS32 Release 2 processors. */
603 { "m4k", PROCESSOR_M4K, 33, 0 },
604 { "4kec", PROCESSOR_4KC, 33, 0 },
605 { "4kem", PROCESSOR_4KC, 33, 0 },
606 { "4kep", PROCESSOR_4KP, 33, 0 },
607 { "4ksd", PROCESSOR_4KC, 33, 0 },
609 { "24kc", PROCESSOR_24KC, 33, 0 },
610 { "24kf2_1", PROCESSOR_24KF2_1, 33, 0 },
611 { "24kf", PROCESSOR_24KF2_1, 33, 0 },
612 { "24kf1_1", PROCESSOR_24KF1_1, 33, 0 },
613 { "24kfx", PROCESSOR_24KF1_1, 33, 0 },
614 { "24kx", PROCESSOR_24KF1_1, 33, 0 },
616 { "24kec", PROCESSOR_24KC, 33, 0 }, /* 24K with DSP. */
617 { "24kef2_1", PROCESSOR_24KF2_1, 33, 0 },
618 { "24kef", PROCESSOR_24KF2_1, 33, 0 },
619 { "24kef1_1", PROCESSOR_24KF1_1, 33, 0 },
620 { "24kefx", PROCESSOR_24KF1_1, 33, 0 },
621 { "24kex", PROCESSOR_24KF1_1, 33, 0 },
623 { "34kc", PROCESSOR_24KC, 33, 0 }, /* 34K with MT/DSP. */
624 { "34kf2_1", PROCESSOR_24KF2_1, 33, 0 },
625 { "34kf", PROCESSOR_24KF2_1, 33, 0 },
626 { "34kf1_1", PROCESSOR_24KF1_1, 33, 0 },
627 { "34kfx", PROCESSOR_24KF1_1, 33, 0 },
628 { "34kx", PROCESSOR_24KF1_1, 33, 0 },
630 { "74kc", PROCESSOR_74KC, 33, 0 }, /* 74K with DSPr2. */
631 { "74kf2_1", PROCESSOR_74KF2_1, 33, 0 },
632 { "74kf", PROCESSOR_74KF2_1, 33, 0 },
633 { "74kf1_1", PROCESSOR_74KF1_1, 33, 0 },
634 { "74kfx", PROCESSOR_74KF1_1, 33, 0 },
635 { "74kx", PROCESSOR_74KF1_1, 33, 0 },
636 { "74kf3_2", PROCESSOR_74KF3_2, 33, 0 },
638 /* MIPS64 processors. */
639 { "5kc", PROCESSOR_5KC, 64, 0 },
640 { "5kf", PROCESSOR_5KF, 64, 0 },
641 { "20kc", PROCESSOR_20KC, 64, PTF_AVOID_BRANCHLIKELY },
642 { "sb1", PROCESSOR_SB1, 64, PTF_AVOID_BRANCHLIKELY },
643 { "sb1a", PROCESSOR_SB1A, 64, PTF_AVOID_BRANCHLIKELY },
644 { "sr71000", PROCESSOR_SR71000, 64, PTF_AVOID_BRANCHLIKELY },
647 /* Default costs. If these are used for a processor we should look
648 up the actual costs. */
649 #define DEFAULT_COSTS COSTS_N_INSNS (6), /* fp_add */ \
650 COSTS_N_INSNS (7), /* fp_mult_sf */ \
651 COSTS_N_INSNS (8), /* fp_mult_df */ \
652 COSTS_N_INSNS (23), /* fp_div_sf */ \
653 COSTS_N_INSNS (36), /* fp_div_df */ \
654 COSTS_N_INSNS (10), /* int_mult_si */ \
655 COSTS_N_INSNS (10), /* int_mult_di */ \
656 COSTS_N_INSNS (69), /* int_div_si */ \
657 COSTS_N_INSNS (69), /* int_div_di */ \
658 2, /* branch_cost */ \
659 4 /* memory_latency */
661 /* Floating-point costs for processors without an FPU. Just assume that
662 all floating-point libcalls are very expensive. */
663 #define SOFT_FP_COSTS COSTS_N_INSNS (256), /* fp_add */ \
664 COSTS_N_INSNS (256), /* fp_mult_sf */ \
665 COSTS_N_INSNS (256), /* fp_mult_df */ \
666 COSTS_N_INSNS (256), /* fp_div_sf */ \
667 COSTS_N_INSNS (256) /* fp_div_df */
669 /* Costs to use when optimizing for size. */
670 static const struct mips_rtx_cost_data mips_rtx_cost_optimize_size = {
671 COSTS_N_INSNS (1), /* fp_add */
672 COSTS_N_INSNS (1), /* fp_mult_sf */
673 COSTS_N_INSNS (1), /* fp_mult_df */
674 COSTS_N_INSNS (1), /* fp_div_sf */
675 COSTS_N_INSNS (1), /* fp_div_df */
676 COSTS_N_INSNS (1), /* int_mult_si */
677 COSTS_N_INSNS (1), /* int_mult_di */
678 COSTS_N_INSNS (1), /* int_div_si */
679 COSTS_N_INSNS (1), /* int_div_di */
680 2, /* branch_cost */
681 4 /* memory_latency */
684 /* Costs to use when optimizing for speed, indexed by processor. */
685 static const struct mips_rtx_cost_data mips_rtx_cost_data[PROCESSOR_MAX] = {
686 { /* R3000 */
687 COSTS_N_INSNS (2), /* fp_add */
688 COSTS_N_INSNS (4), /* fp_mult_sf */
689 COSTS_N_INSNS (5), /* fp_mult_df */
690 COSTS_N_INSNS (12), /* fp_div_sf */
691 COSTS_N_INSNS (19), /* fp_div_df */
692 COSTS_N_INSNS (12), /* int_mult_si */
693 COSTS_N_INSNS (12), /* int_mult_di */
694 COSTS_N_INSNS (35), /* int_div_si */
695 COSTS_N_INSNS (35), /* int_div_di */
696 1, /* branch_cost */
697 4 /* memory_latency */
699 { /* 4KC */
700 SOFT_FP_COSTS,
701 COSTS_N_INSNS (6), /* int_mult_si */
702 COSTS_N_INSNS (6), /* int_mult_di */
703 COSTS_N_INSNS (36), /* int_div_si */
704 COSTS_N_INSNS (36), /* int_div_di */
705 1, /* branch_cost */
706 4 /* memory_latency */
708 { /* 4KP */
709 SOFT_FP_COSTS,
710 COSTS_N_INSNS (36), /* int_mult_si */
711 COSTS_N_INSNS (36), /* int_mult_di */
712 COSTS_N_INSNS (37), /* int_div_si */
713 COSTS_N_INSNS (37), /* int_div_di */
714 1, /* branch_cost */
715 4 /* memory_latency */
717 { /* 5KC */
718 SOFT_FP_COSTS,
719 COSTS_N_INSNS (4), /* int_mult_si */
720 COSTS_N_INSNS (11), /* int_mult_di */
721 COSTS_N_INSNS (36), /* int_div_si */
722 COSTS_N_INSNS (68), /* int_div_di */
723 1, /* branch_cost */
724 4 /* memory_latency */
726 { /* 5KF */
727 COSTS_N_INSNS (4), /* fp_add */
728 COSTS_N_INSNS (4), /* fp_mult_sf */
729 COSTS_N_INSNS (5), /* fp_mult_df */
730 COSTS_N_INSNS (17), /* fp_div_sf */
731 COSTS_N_INSNS (32), /* fp_div_df */
732 COSTS_N_INSNS (4), /* int_mult_si */
733 COSTS_N_INSNS (11), /* int_mult_di */
734 COSTS_N_INSNS (36), /* int_div_si */
735 COSTS_N_INSNS (68), /* int_div_di */
736 1, /* branch_cost */
737 4 /* memory_latency */
739 { /* 20KC */
740 COSTS_N_INSNS (4), /* fp_add */
741 COSTS_N_INSNS (4), /* fp_mult_sf */
742 COSTS_N_INSNS (5), /* fp_mult_df */
743 COSTS_N_INSNS (17), /* fp_div_sf */
744 COSTS_N_INSNS (32), /* fp_div_df */
745 COSTS_N_INSNS (4), /* int_mult_si */
746 COSTS_N_INSNS (7), /* int_mult_di */
747 COSTS_N_INSNS (42), /* int_div_si */
748 COSTS_N_INSNS (72), /* int_div_di */
749 1, /* branch_cost */
750 4 /* memory_latency */
752 { /* 24KC */
753 SOFT_FP_COSTS,
754 COSTS_N_INSNS (5), /* int_mult_si */
755 COSTS_N_INSNS (5), /* int_mult_di */
756 COSTS_N_INSNS (41), /* int_div_si */
757 COSTS_N_INSNS (41), /* int_div_di */
758 1, /* branch_cost */
759 4 /* memory_latency */
761 { /* 24KF2_1 */
762 COSTS_N_INSNS (8), /* fp_add */
763 COSTS_N_INSNS (8), /* fp_mult_sf */
764 COSTS_N_INSNS (10), /* fp_mult_df */
765 COSTS_N_INSNS (34), /* fp_div_sf */
766 COSTS_N_INSNS (64), /* fp_div_df */
767 COSTS_N_INSNS (5), /* int_mult_si */
768 COSTS_N_INSNS (5), /* int_mult_di */
769 COSTS_N_INSNS (41), /* int_div_si */
770 COSTS_N_INSNS (41), /* int_div_di */
771 1, /* branch_cost */
772 4 /* memory_latency */
774 { /* 24KF1_1 */
775 COSTS_N_INSNS (4), /* fp_add */
776 COSTS_N_INSNS (4), /* fp_mult_sf */
777 COSTS_N_INSNS (5), /* fp_mult_df */
778 COSTS_N_INSNS (17), /* fp_div_sf */
779 COSTS_N_INSNS (32), /* fp_div_df */
780 COSTS_N_INSNS (5), /* int_mult_si */
781 COSTS_N_INSNS (5), /* int_mult_di */
782 COSTS_N_INSNS (41), /* int_div_si */
783 COSTS_N_INSNS (41), /* int_div_di */
784 1, /* branch_cost */
785 4 /* memory_latency */
787 { /* 74KC */
788 SOFT_FP_COSTS,
789 COSTS_N_INSNS (5), /* int_mult_si */
790 COSTS_N_INSNS (5), /* int_mult_di */
791 COSTS_N_INSNS (41), /* int_div_si */
792 COSTS_N_INSNS (41), /* int_div_di */
793 1, /* branch_cost */
794 4 /* memory_latency */
796 { /* 74KF2_1 */
797 COSTS_N_INSNS (8), /* fp_add */
798 COSTS_N_INSNS (8), /* fp_mult_sf */
799 COSTS_N_INSNS (10), /* fp_mult_df */
800 COSTS_N_INSNS (34), /* fp_div_sf */
801 COSTS_N_INSNS (64), /* fp_div_df */
802 COSTS_N_INSNS (5), /* int_mult_si */
803 COSTS_N_INSNS (5), /* int_mult_di */
804 COSTS_N_INSNS (41), /* int_div_si */
805 COSTS_N_INSNS (41), /* int_div_di */
806 1, /* branch_cost */
807 4 /* memory_latency */
809 { /* 74KF1_1 */
810 COSTS_N_INSNS (4), /* fp_add */
811 COSTS_N_INSNS (4), /* fp_mult_sf */
812 COSTS_N_INSNS (5), /* fp_mult_df */
813 COSTS_N_INSNS (17), /* fp_div_sf */
814 COSTS_N_INSNS (32), /* fp_div_df */
815 COSTS_N_INSNS (5), /* int_mult_si */
816 COSTS_N_INSNS (5), /* int_mult_di */
817 COSTS_N_INSNS (41), /* int_div_si */
818 COSTS_N_INSNS (41), /* int_div_di */
819 1, /* branch_cost */
820 4 /* memory_latency */
822 { /* 74KF3_2 */
823 COSTS_N_INSNS (6), /* fp_add */
824 COSTS_N_INSNS (6), /* fp_mult_sf */
825 COSTS_N_INSNS (7), /* fp_mult_df */
826 COSTS_N_INSNS (25), /* fp_div_sf */
827 COSTS_N_INSNS (48), /* fp_div_df */
828 COSTS_N_INSNS (5), /* int_mult_si */
829 COSTS_N_INSNS (5), /* int_mult_di */
830 COSTS_N_INSNS (41), /* int_div_si */
831 COSTS_N_INSNS (41), /* int_div_di */
832 1, /* branch_cost */
833 4 /* memory_latency */
835 { /* M4k */
836 DEFAULT_COSTS
838 { /* R3900 */
839 COSTS_N_INSNS (2), /* fp_add */
840 COSTS_N_INSNS (4), /* fp_mult_sf */
841 COSTS_N_INSNS (5), /* fp_mult_df */
842 COSTS_N_INSNS (12), /* fp_div_sf */
843 COSTS_N_INSNS (19), /* fp_div_df */
844 COSTS_N_INSNS (2), /* int_mult_si */
845 COSTS_N_INSNS (2), /* int_mult_di */
846 COSTS_N_INSNS (35), /* int_div_si */
847 COSTS_N_INSNS (35), /* int_div_di */
848 1, /* branch_cost */
849 4 /* memory_latency */
851 { /* R6000 */
852 COSTS_N_INSNS (3), /* fp_add */
853 COSTS_N_INSNS (5), /* fp_mult_sf */
854 COSTS_N_INSNS (6), /* fp_mult_df */
855 COSTS_N_INSNS (15), /* fp_div_sf */
856 COSTS_N_INSNS (16), /* fp_div_df */
857 COSTS_N_INSNS (17), /* int_mult_si */
858 COSTS_N_INSNS (17), /* int_mult_di */
859 COSTS_N_INSNS (38), /* int_div_si */
860 COSTS_N_INSNS (38), /* int_div_di */
861 2, /* branch_cost */
862 6 /* memory_latency */
864 { /* R4000 */
865 COSTS_N_INSNS (6), /* fp_add */
866 COSTS_N_INSNS (7), /* fp_mult_sf */
867 COSTS_N_INSNS (8), /* fp_mult_df */
868 COSTS_N_INSNS (23), /* fp_div_sf */
869 COSTS_N_INSNS (36), /* fp_div_df */
870 COSTS_N_INSNS (10), /* int_mult_si */
871 COSTS_N_INSNS (10), /* int_mult_di */
872 COSTS_N_INSNS (69), /* int_div_si */
873 COSTS_N_INSNS (69), /* int_div_di */
874 2, /* branch_cost */
875 6 /* memory_latency */
877 { /* R4100 */
878 DEFAULT_COSTS
880 { /* R4111 */
881 DEFAULT_COSTS
883 { /* R4120 */
884 DEFAULT_COSTS
886 { /* R4130 */
887 /* The only costs that appear to be updated here are
888 integer multiplication. */
889 SOFT_FP_COSTS,
890 COSTS_N_INSNS (4), /* int_mult_si */
891 COSTS_N_INSNS (6), /* int_mult_di */
892 COSTS_N_INSNS (69), /* int_div_si */
893 COSTS_N_INSNS (69), /* int_div_di */
894 1, /* branch_cost */
895 4 /* memory_latency */
897 { /* R4300 */
898 DEFAULT_COSTS
900 { /* R4600 */
901 DEFAULT_COSTS
903 { /* R4650 */
904 DEFAULT_COSTS
906 { /* R5000 */
907 COSTS_N_INSNS (6), /* fp_add */
908 COSTS_N_INSNS (4), /* fp_mult_sf */
909 COSTS_N_INSNS (5), /* fp_mult_df */
910 COSTS_N_INSNS (23), /* fp_div_sf */
911 COSTS_N_INSNS (36), /* fp_div_df */
912 COSTS_N_INSNS (5), /* int_mult_si */
913 COSTS_N_INSNS (5), /* int_mult_di */
914 COSTS_N_INSNS (36), /* int_div_si */
915 COSTS_N_INSNS (36), /* int_div_di */
916 1, /* branch_cost */
917 4 /* memory_latency */
919 { /* R5400 */
920 COSTS_N_INSNS (6), /* fp_add */
921 COSTS_N_INSNS (5), /* fp_mult_sf */
922 COSTS_N_INSNS (6), /* fp_mult_df */
923 COSTS_N_INSNS (30), /* fp_div_sf */
924 COSTS_N_INSNS (59), /* fp_div_df */
925 COSTS_N_INSNS (3), /* int_mult_si */
926 COSTS_N_INSNS (4), /* int_mult_di */
927 COSTS_N_INSNS (42), /* int_div_si */
928 COSTS_N_INSNS (74), /* int_div_di */
929 1, /* branch_cost */
930 4 /* memory_latency */
932 { /* R5500 */
933 COSTS_N_INSNS (6), /* fp_add */
934 COSTS_N_INSNS (5), /* fp_mult_sf */
935 COSTS_N_INSNS (6), /* fp_mult_df */
936 COSTS_N_INSNS (30), /* fp_div_sf */
937 COSTS_N_INSNS (59), /* fp_div_df */
938 COSTS_N_INSNS (5), /* int_mult_si */
939 COSTS_N_INSNS (9), /* int_mult_di */
940 COSTS_N_INSNS (42), /* int_div_si */
941 COSTS_N_INSNS (74), /* int_div_di */
942 1, /* branch_cost */
943 4 /* memory_latency */
945 { /* R7000 */
946 /* The only costs that are changed here are
947 integer multiplication. */
948 COSTS_N_INSNS (6), /* fp_add */
949 COSTS_N_INSNS (7), /* fp_mult_sf */
950 COSTS_N_INSNS (8), /* fp_mult_df */
951 COSTS_N_INSNS (23), /* fp_div_sf */
952 COSTS_N_INSNS (36), /* fp_div_df */
953 COSTS_N_INSNS (5), /* int_mult_si */
954 COSTS_N_INSNS (9), /* int_mult_di */
955 COSTS_N_INSNS (69), /* int_div_si */
956 COSTS_N_INSNS (69), /* int_div_di */
957 1, /* branch_cost */
958 4 /* memory_latency */
960 { /* R8000 */
961 DEFAULT_COSTS
963 { /* R9000 */
964 /* The only costs that are changed here are
965 integer multiplication. */
966 COSTS_N_INSNS (6), /* fp_add */
967 COSTS_N_INSNS (7), /* fp_mult_sf */
968 COSTS_N_INSNS (8), /* fp_mult_df */
969 COSTS_N_INSNS (23), /* fp_div_sf */
970 COSTS_N_INSNS (36), /* fp_div_df */
971 COSTS_N_INSNS (3), /* int_mult_si */
972 COSTS_N_INSNS (8), /* int_mult_di */
973 COSTS_N_INSNS (69), /* int_div_si */
974 COSTS_N_INSNS (69), /* int_div_di */
975 1, /* branch_cost */
976 4 /* memory_latency */
978 { /* SB1 */
979 /* These costs are the same as the SB-1A below. */
980 COSTS_N_INSNS (4), /* fp_add */
981 COSTS_N_INSNS (4), /* fp_mult_sf */
982 COSTS_N_INSNS (4), /* fp_mult_df */
983 COSTS_N_INSNS (24), /* fp_div_sf */
984 COSTS_N_INSNS (32), /* fp_div_df */
985 COSTS_N_INSNS (3), /* int_mult_si */
986 COSTS_N_INSNS (4), /* int_mult_di */
987 COSTS_N_INSNS (36), /* int_div_si */
988 COSTS_N_INSNS (68), /* int_div_di */
989 1, /* branch_cost */
990 4 /* memory_latency */
992 { /* SB1-A */
993 /* These costs are the same as the SB-1 above. */
994 COSTS_N_INSNS (4), /* fp_add */
995 COSTS_N_INSNS (4), /* fp_mult_sf */
996 COSTS_N_INSNS (4), /* fp_mult_df */
997 COSTS_N_INSNS (24), /* fp_div_sf */
998 COSTS_N_INSNS (32), /* fp_div_df */
999 COSTS_N_INSNS (3), /* int_mult_si */
1000 COSTS_N_INSNS (4), /* int_mult_di */
1001 COSTS_N_INSNS (36), /* int_div_si */
1002 COSTS_N_INSNS (68), /* int_div_di */
1003 1, /* branch_cost */
1004 4 /* memory_latency */
1006 { /* SR71000 */
1007 DEFAULT_COSTS
1011 /* This hash table keeps track of implicit "mips16" and "nomips16" attributes
1012 for -mflip_mips16. It maps decl names onto a boolean mode setting. */
1013 struct mflip_mips16_entry GTY (()) {
1014 const char *name;
1015 bool mips16_p;
1017 static GTY ((param_is (struct mflip_mips16_entry))) htab_t mflip_mips16_htab;
1019 /* Hash table callbacks for mflip_mips16_htab. */
1021 static hashval_t
1022 mflip_mips16_htab_hash (const void *entry)
1024 return htab_hash_string (((const struct mflip_mips16_entry *) entry)->name);
1027 static int
1028 mflip_mips16_htab_eq (const void *entry, const void *name)
1030 return strcmp (((const struct mflip_mips16_entry *) entry)->name,
1031 (const char *) name) == 0;
1034 /* True if -mflip-mips16 should next add an attribute for the default MIPS16
1035 mode, false if it should next add an attribute for the opposite mode. */
1036 static GTY(()) bool mips16_flipper;
1038 /* DECL is a function that needs a default "mips16" or "nomips16" attribute
1039 for -mflip-mips16. Return true if it should use "mips16" and false if
1040 it should use "nomips16". */
1042 static bool
1043 mflip_mips16_use_mips16_p (tree decl)
1045 struct mflip_mips16_entry *entry;
1046 const char *name;
1047 hashval_t hash;
1048 void **slot;
1050 /* Use the opposite of the command-line setting for anonymous decls. */
1051 if (!DECL_NAME (decl))
1052 return !mips_base_mips16;
1054 if (!mflip_mips16_htab)
1055 mflip_mips16_htab = htab_create_ggc (37, mflip_mips16_htab_hash,
1056 mflip_mips16_htab_eq, NULL);
1058 name = IDENTIFIER_POINTER (DECL_NAME (decl));
1059 hash = htab_hash_string (name);
1060 slot = htab_find_slot_with_hash (mflip_mips16_htab, name, hash, INSERT);
1061 entry = (struct mflip_mips16_entry *) *slot;
1062 if (!entry)
1064 mips16_flipper = !mips16_flipper;
1065 entry = GGC_NEW (struct mflip_mips16_entry);
1066 entry->name = name;
1067 entry->mips16_p = mips16_flipper ? !mips_base_mips16 : mips_base_mips16;
1068 *slot = entry;
1070 return entry->mips16_p;
1073 /* Predicates to test for presence of "near" and "far"/"long_call"
1074 attributes on the given TYPE. */
1076 static bool
1077 mips_near_type_p (const_tree type)
1079 return lookup_attribute ("near", TYPE_ATTRIBUTES (type)) != NULL;
1082 static bool
1083 mips_far_type_p (const_tree type)
1085 return (lookup_attribute ("long_call", TYPE_ATTRIBUTES (type)) != NULL
1086 || lookup_attribute ("far", TYPE_ATTRIBUTES (type)) != NULL);
1089 /* Similar predicates for "mips16"/"nomips16" function attributes. */
1091 static bool
1092 mips_mips16_decl_p (const_tree decl)
1094 return lookup_attribute ("mips16", DECL_ATTRIBUTES (decl)) != NULL;
1097 static bool
1098 mips_nomips16_decl_p (const_tree decl)
1100 return lookup_attribute ("nomips16", DECL_ATTRIBUTES (decl)) != NULL;
1103 /* Return true if function DECL is a MIPS16 function. Return the ambient
1104 setting if DECL is null. */
1106 static bool
1107 mips_use_mips16_mode_p (tree decl)
1109 if (decl)
1111 /* Nested functions must use the same frame pointer as their
1112 parent and must therefore use the same ISA mode. */
1113 tree parent = decl_function_context (decl);
1114 if (parent)
1115 decl = parent;
1116 if (mips_mips16_decl_p (decl))
1117 return true;
1118 if (mips_nomips16_decl_p (decl))
1119 return false;
1121 return mips_base_mips16;
1124 /* Implement TARGET_COMP_TYPE_ATTRIBUTES. */
1126 static int
1127 mips_comp_type_attributes (const_tree type1, const_tree type2)
1129 /* Disallow mixed near/far attributes. */
1130 if (mips_far_type_p (type1) && mips_near_type_p (type2))
1131 return 0;
1132 if (mips_near_type_p (type1) && mips_far_type_p (type2))
1133 return 0;
1134 return 1;
1137 /* Implement TARGET_INSERT_ATTRIBUTES. */
1139 static void
1140 mips_insert_attributes (tree decl, tree *attributes)
1142 const char *name;
1143 bool mips16_p, nomips16_p;
1145 /* Check for "mips16" and "nomips16" attributes. */
1146 mips16_p = lookup_attribute ("mips16", *attributes) != NULL;
1147 nomips16_p = lookup_attribute ("nomips16", *attributes) != NULL;
1148 if (TREE_CODE (decl) != FUNCTION_DECL)
1150 if (mips16_p)
1151 error ("%qs attribute only applies to functions", "mips16");
1152 if (nomips16_p)
1153 error ("%qs attribute only applies to functions", "nomips16");
1155 else
1157 mips16_p |= mips_mips16_decl_p (decl);
1158 nomips16_p |= mips_nomips16_decl_p (decl);
1159 if (mips16_p || nomips16_p)
1161 /* DECL cannot be simultaneously "mips16" and "nomips16". */
1162 if (mips16_p && nomips16_p)
1163 error ("%qs cannot have both %<mips16%> and "
1164 "%<nomips16%> attributes",
1165 IDENTIFIER_POINTER (DECL_NAME (decl)));
1167 else if (TARGET_FLIP_MIPS16 && !DECL_ARTIFICIAL (decl))
1169 /* Implement -mflip-mips16. If DECL has neither a "nomips16" nor a
1170 "mips16" attribute, arbitrarily pick one. We must pick the same
1171 setting for duplicate declarations of a function. */
1172 name = mflip_mips16_use_mips16_p (decl) ? "mips16" : "nomips16";
1173 *attributes = tree_cons (get_identifier (name), NULL, *attributes);
1178 /* Implement TARGET_MERGE_DECL_ATTRIBUTES. */
1180 static tree
1181 mips_merge_decl_attributes (tree olddecl, tree newdecl)
1183 /* The decls' "mips16" and "nomips16" attributes must match exactly. */
1184 if (mips_mips16_decl_p (olddecl) != mips_mips16_decl_p (newdecl))
1185 error ("%qs redeclared with conflicting %qs attributes",
1186 IDENTIFIER_POINTER (DECL_NAME (newdecl)), "mips16");
1187 if (mips_nomips16_decl_p (olddecl) != mips_nomips16_decl_p (newdecl))
1188 error ("%qs redeclared with conflicting %qs attributes",
1189 IDENTIFIER_POINTER (DECL_NAME (newdecl)), "nomips16");
1191 return merge_attributes (DECL_ATTRIBUTES (olddecl),
1192 DECL_ATTRIBUTES (newdecl));
1195 /* If X is a PLUS of a CONST_INT, return the two terms in *BASE_PTR
1196 and *OFFSET_PTR. Return X in *BASE_PTR and 0 in *OFFSET_PTR otherwise. */
1198 static void
1199 mips_split_plus (rtx x, rtx *base_ptr, HOST_WIDE_INT *offset_ptr)
1201 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
1203 *base_ptr = XEXP (x, 0);
1204 *offset_ptr = INTVAL (XEXP (x, 1));
1206 else
1208 *base_ptr = x;
1209 *offset_ptr = 0;
1213 static unsigned int mips_build_integer (struct mips_integer_op *,
1214 unsigned HOST_WIDE_INT);
1216 /* A subroutine of mips_build_integer, with the same interface.
1217 Assume that the final action in the sequence should be a left shift. */
1219 static unsigned int
1220 mips_build_shift (struct mips_integer_op *codes, HOST_WIDE_INT value)
1222 unsigned int i, shift;
1224 /* Shift VALUE right until its lowest bit is set. Shift arithmetically
1225 since signed numbers are easier to load than unsigned ones. */
1226 shift = 0;
1227 while ((value & 1) == 0)
1228 value /= 2, shift++;
1230 i = mips_build_integer (codes, value);
1231 codes[i].code = ASHIFT;
1232 codes[i].value = shift;
1233 return i + 1;
1236 /* As for mips_build_shift, but assume that the final action will be
1237 an IOR or PLUS operation. */
1239 static unsigned int
1240 mips_build_lower (struct mips_integer_op *codes, unsigned HOST_WIDE_INT value)
1242 unsigned HOST_WIDE_INT high;
1243 unsigned int i;
1245 high = value & ~(unsigned HOST_WIDE_INT) 0xffff;
1246 if (!LUI_OPERAND (high) && (value & 0x18000) == 0x18000)
1248 /* The constant is too complex to load with a simple LUI/ORI pair,
1249 so we want to give the recursive call as many trailing zeros as
1250 possible. In this case, we know bit 16 is set and that the
1251 low 16 bits form a negative number. If we subtract that number
1252 from VALUE, we will clear at least the lowest 17 bits, maybe more. */
1253 i = mips_build_integer (codes, CONST_HIGH_PART (value));
1254 codes[i].code = PLUS;
1255 codes[i].value = CONST_LOW_PART (value);
1257 else
1259 /* Either this is a simple LUI/ORI pair, or clearing the lowest 16
1260 bits gives a value with at least 17 trailing zeros. */
1261 i = mips_build_integer (codes, high);
1262 codes[i].code = IOR;
1263 codes[i].value = value & 0xffff;
1265 return i + 1;
1268 /* Fill CODES with a sequence of rtl operations to load VALUE.
1269 Return the number of operations needed. */
1271 static unsigned int
1272 mips_build_integer (struct mips_integer_op *codes,
1273 unsigned HOST_WIDE_INT value)
1275 if (SMALL_OPERAND (value)
1276 || SMALL_OPERAND_UNSIGNED (value)
1277 || LUI_OPERAND (value))
1279 /* The value can be loaded with a single instruction. */
1280 codes[0].code = UNKNOWN;
1281 codes[0].value = value;
1282 return 1;
1284 else if ((value & 1) != 0 || LUI_OPERAND (CONST_HIGH_PART (value)))
1286 /* Either the constant is a simple LUI/ORI combination or its
1287 lowest bit is set. We don't want to shift in this case. */
1288 return mips_build_lower (codes, value);
1290 else if ((value & 0xffff) == 0)
1292 /* The constant will need at least three actions. The lowest
1293 16 bits are clear, so the final action will be a shift. */
1294 return mips_build_shift (codes, value);
1296 else
1298 /* The final action could be a shift, add or inclusive OR.
1299 Rather than use a complex condition to select the best
1300 approach, try both mips_build_shift and mips_build_lower
1301 and pick the one that gives the shortest sequence.
1302 Note that this case is only used once per constant. */
1303 struct mips_integer_op alt_codes[MIPS_MAX_INTEGER_OPS];
1304 unsigned int cost, alt_cost;
1306 cost = mips_build_shift (codes, value);
1307 alt_cost = mips_build_lower (alt_codes, value);
1308 if (alt_cost < cost)
1310 memcpy (codes, alt_codes, alt_cost * sizeof (codes[0]));
1311 cost = alt_cost;
1313 return cost;
1317 /* Return true if X is a thread-local symbol. */
1319 static bool
1320 mips_tls_symbol_p (rtx x)
1322 return GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0;
1325 /* Return true if SYMBOL_REF X is associated with a global symbol
1326 (in the STB_GLOBAL sense). */
1328 static bool
1329 mips_global_symbol_p (const_rtx x)
1331 const_tree decl = SYMBOL_REF_DECL (x);
1333 if (!decl)
1334 return !SYMBOL_REF_LOCAL_P (x);
1336 /* Weakref symbols are not TREE_PUBLIC, but their targets are global
1337 or weak symbols. Relocations in the object file will be against
1338 the target symbol, so it's that symbol's binding that matters here. */
1339 return DECL_P (decl) && (TREE_PUBLIC (decl) || DECL_WEAK (decl));
1342 /* Return true if SYMBOL_REF X binds locally. */
1344 static bool
1345 mips_symbol_binds_local_p (const_rtx x)
1347 return (SYMBOL_REF_DECL (x)
1348 ? targetm.binds_local_p (SYMBOL_REF_DECL (x))
1349 : SYMBOL_REF_LOCAL_P (x));
1352 /* Return true if rtx constants of mode MODE should be put into a small
1353 data section. */
1355 static bool
1356 mips_rtx_constant_in_small_data_p (enum machine_mode mode)
1358 return (!TARGET_EMBEDDED_DATA
1359 && TARGET_LOCAL_SDATA
1360 && GET_MODE_SIZE (mode) <= mips_small_data_threshold);
1363 /* Return true if X should not be moved directly into register $25.
1364 We need this because many versions of GAS will treat "la $25,foo" as
1365 part of a call sequence and so allow a global "foo" to be lazily bound. */
1367 bool
1368 mips_dangerous_for_la25_p (rtx x)
1370 return (!TARGET_EXPLICIT_RELOCS
1371 && TARGET_USE_GOT
1372 && GET_CODE (x) == SYMBOL_REF
1373 && mips_global_symbol_p (x));
1376 /* Return the method that should be used to access SYMBOL_REF or
1377 LABEL_REF X in context CONTEXT. */
1379 static enum mips_symbol_type
1380 mips_classify_symbol (const_rtx x, enum mips_symbol_context context)
1382 if (TARGET_RTP_PIC)
1383 return SYMBOL_GOT_DISP;
1385 if (GET_CODE (x) == LABEL_REF)
1387 /* LABEL_REFs are used for jump tables as well as text labels.
1388 Only return SYMBOL_PC_RELATIVE if we know the label is in
1389 the text section. */
1390 if (TARGET_MIPS16_SHORT_JUMP_TABLES)
1391 return SYMBOL_PC_RELATIVE;
1393 if (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
1394 return SYMBOL_GOT_PAGE_OFST;
1396 return SYMBOL_ABSOLUTE;
1399 gcc_assert (GET_CODE (x) == SYMBOL_REF);
1401 if (SYMBOL_REF_TLS_MODEL (x))
1402 return SYMBOL_TLS;
1404 if (CONSTANT_POOL_ADDRESS_P (x))
1406 if (TARGET_MIPS16_TEXT_LOADS)
1407 return SYMBOL_PC_RELATIVE;
1409 if (TARGET_MIPS16_PCREL_LOADS && context == SYMBOL_CONTEXT_MEM)
1410 return SYMBOL_PC_RELATIVE;
1412 if (mips_rtx_constant_in_small_data_p (get_pool_mode (x)))
1413 return SYMBOL_GP_RELATIVE;
1416 /* Do not use small-data accesses for weak symbols; they may end up
1417 being zero. */
1418 if (TARGET_GPOPT && SYMBOL_REF_SMALL_P (x) && !SYMBOL_REF_WEAK (x))
1419 return SYMBOL_GP_RELATIVE;
1421 /* Don't use GOT accesses for locally-binding symbols when -mno-shared
1422 is in effect. */
1423 if (TARGET_ABICALLS
1424 && !(TARGET_ABSOLUTE_ABICALLS && mips_symbol_binds_local_p (x)))
1426 /* There are three cases to consider:
1428 - o32 PIC (either with or without explicit relocs)
1429 - n32/n64 PIC without explicit relocs
1430 - n32/n64 PIC with explicit relocs
1432 In the first case, both local and global accesses will use an
1433 R_MIPS_GOT16 relocation. We must correctly predict which of
1434 the two semantics (local or global) the assembler and linker
1435 will apply. The choice depends on the symbol's binding rather
1436 than its visibility.
1438 In the second case, the assembler will not use R_MIPS_GOT16
1439 relocations, but it chooses between local and global accesses
1440 in the same way as for o32 PIC.
1442 In the third case we have more freedom since both forms of
1443 access will work for any kind of symbol. However, there seems
1444 little point in doing things differently. */
1445 if (mips_global_symbol_p (x))
1446 return SYMBOL_GOT_DISP;
1448 return SYMBOL_GOT_PAGE_OFST;
1451 if (TARGET_MIPS16_PCREL_LOADS && context != SYMBOL_CONTEXT_CALL)
1452 return SYMBOL_FORCE_TO_MEM;
1454 return SYMBOL_ABSOLUTE;
1457 /* Classify the base of symbolic expression X, given that X appears in
1458 context CONTEXT. */
1460 static enum mips_symbol_type
1461 mips_classify_symbolic_expression (rtx x, enum mips_symbol_context context)
1463 rtx offset;
1465 split_const (x, &x, &offset);
1466 if (UNSPEC_ADDRESS_P (x))
1467 return UNSPEC_ADDRESS_TYPE (x);
1469 return mips_classify_symbol (x, context);
1472 /* Return true if OFFSET is within the range [0, ALIGN), where ALIGN
1473 is the alignment in bytes of SYMBOL_REF X. */
1475 static bool
1476 mips_offset_within_alignment_p (rtx x, HOST_WIDE_INT offset)
1478 HOST_WIDE_INT align;
1480 align = SYMBOL_REF_DECL (x) ? DECL_ALIGN_UNIT (SYMBOL_REF_DECL (x)) : 1;
1481 return IN_RANGE (offset, 0, align - 1);
1484 /* Return true if X is a symbolic constant that can be used in context
1485 CONTEXT. If it is, store the type of the symbol in *SYMBOL_TYPE. */
1487 bool
1488 mips_symbolic_constant_p (rtx x, enum mips_symbol_context context,
1489 enum mips_symbol_type *symbol_type)
1491 rtx offset;
1493 split_const (x, &x, &offset);
1494 if (UNSPEC_ADDRESS_P (x))
1496 *symbol_type = UNSPEC_ADDRESS_TYPE (x);
1497 x = UNSPEC_ADDRESS (x);
1499 else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
1501 *symbol_type = mips_classify_symbol (x, context);
1502 if (*symbol_type == SYMBOL_TLS)
1503 return false;
1505 else
1506 return false;
1508 if (offset == const0_rtx)
1509 return true;
1511 /* Check whether a nonzero offset is valid for the underlying
1512 relocations. */
1513 switch (*symbol_type)
1515 case SYMBOL_ABSOLUTE:
1516 case SYMBOL_FORCE_TO_MEM:
1517 case SYMBOL_32_HIGH:
1518 case SYMBOL_64_HIGH:
1519 case SYMBOL_64_MID:
1520 case SYMBOL_64_LOW:
1521 /* If the target has 64-bit pointers and the object file only
1522 supports 32-bit symbols, the values of those symbols will be
1523 sign-extended. In this case we can't allow an arbitrary offset
1524 in case the 32-bit value X + OFFSET has a different sign from X. */
1525 if (Pmode == DImode && !ABI_HAS_64BIT_SYMBOLS)
1526 return offset_within_block_p (x, INTVAL (offset));
1528 /* In other cases the relocations can handle any offset. */
1529 return true;
1531 case SYMBOL_PC_RELATIVE:
1532 /* Allow constant pool references to be converted to LABEL+CONSTANT.
1533 In this case, we no longer have access to the underlying constant,
1534 but the original symbol-based access was known to be valid. */
1535 if (GET_CODE (x) == LABEL_REF)
1536 return true;
1538 /* Fall through. */
1540 case SYMBOL_GP_RELATIVE:
1541 /* Make sure that the offset refers to something within the
1542 same object block. This should guarantee that the final
1543 PC- or GP-relative offset is within the 16-bit limit. */
1544 return offset_within_block_p (x, INTVAL (offset));
1546 case SYMBOL_GOT_PAGE_OFST:
1547 case SYMBOL_GOTOFF_PAGE:
1548 /* If the symbol is global, the GOT entry will contain the symbol's
1549 address, and we will apply a 16-bit offset after loading it.
1550 If the symbol is local, the linker should provide enough local
1551 GOT entries for a 16-bit offset, but larger offsets may lead
1552 to GOT overflow. */
1553 return SMALL_INT (offset);
1555 case SYMBOL_TPREL:
1556 case SYMBOL_DTPREL:
1557 /* There is no carry between the HI and LO REL relocations, so the
1558 offset is only valid if we know it won't lead to such a carry. */
1559 return mips_offset_within_alignment_p (x, INTVAL (offset));
1561 case SYMBOL_GOT_DISP:
1562 case SYMBOL_GOTOFF_DISP:
1563 case SYMBOL_GOTOFF_CALL:
1564 case SYMBOL_GOTOFF_LOADGP:
1565 case SYMBOL_TLSGD:
1566 case SYMBOL_TLSLDM:
1567 case SYMBOL_GOTTPREL:
1568 case SYMBOL_TLS:
1569 case SYMBOL_HALF:
1570 return false;
1572 gcc_unreachable ();
1575 /* Like mips_symbol_insns, but treat extended MIPS16 instructions as a
1576 single instruction. We rely on the fact that, in the worst case,
1577 all instructions involved in a MIPS16 address calculation are usually
1578 extended ones. */
1580 static int
1581 mips_symbol_insns_1 (enum mips_symbol_type type, enum machine_mode mode)
1583 switch (type)
1585 case SYMBOL_ABSOLUTE:
1586 /* When using 64-bit symbols, we need 5 preparatory instructions,
1587 such as:
1589 lui $at,%highest(symbol)
1590 daddiu $at,$at,%higher(symbol)
1591 dsll $at,$at,16
1592 daddiu $at,$at,%hi(symbol)
1593 dsll $at,$at,16
1595 The final address is then $at + %lo(symbol). With 32-bit
1596 symbols we just need a preparatory LUI for normal mode and
1597 a preparatory LI and SLL for MIPS16. */
1598 return ABI_HAS_64BIT_SYMBOLS ? 6 : TARGET_MIPS16 ? 3 : 2;
1600 case SYMBOL_GP_RELATIVE:
1601 /* Treat GP-relative accesses as taking a single instruction on
1602 MIPS16 too; the copy of $gp can often be shared. */
1603 return 1;
1605 case SYMBOL_PC_RELATIVE:
1606 /* PC-relative constants can be only be used with ADDIUPC,
1607 DADDIUPC, LWPC and LDPC. */
1608 if (mode == MAX_MACHINE_MODE
1609 || GET_MODE_SIZE (mode) == 4
1610 || GET_MODE_SIZE (mode) == 8)
1611 return 1;
1613 /* The constant must be loaded using ADDIUPC or DADDIUPC first. */
1614 return 0;
1616 case SYMBOL_FORCE_TO_MEM:
1617 /* LEAs will be converted into constant-pool references by
1618 mips_reorg. */
1619 if (mode == MAX_MACHINE_MODE)
1620 return 1;
1622 /* The constant must be loaded and then dereferenced. */
1623 return 0;
1625 case SYMBOL_GOT_DISP:
1626 /* The constant will have to be loaded from the GOT before it
1627 is used in an address. */
1628 if (mode != MAX_MACHINE_MODE)
1629 return 0;
1631 /* Fall through. */
1633 case SYMBOL_GOT_PAGE_OFST:
1634 /* Unless -funit-at-a-time is in effect, we can't be sure whether the
1635 local/global classification is accurate. The worst cases are:
1637 (1) For local symbols when generating o32 or o64 code. The assembler
1638 will use:
1640 lw $at,%got(symbol)
1643 ...and the final address will be $at + %lo(symbol).
1645 (2) For global symbols when -mxgot. The assembler will use:
1647 lui $at,%got_hi(symbol)
1648 (d)addu $at,$at,$gp
1650 ...and the final address will be $at + %got_lo(symbol). */
1651 return 3;
1653 case SYMBOL_GOTOFF_PAGE:
1654 case SYMBOL_GOTOFF_DISP:
1655 case SYMBOL_GOTOFF_CALL:
1656 case SYMBOL_GOTOFF_LOADGP:
1657 case SYMBOL_32_HIGH:
1658 case SYMBOL_64_HIGH:
1659 case SYMBOL_64_MID:
1660 case SYMBOL_64_LOW:
1661 case SYMBOL_TLSGD:
1662 case SYMBOL_TLSLDM:
1663 case SYMBOL_DTPREL:
1664 case SYMBOL_GOTTPREL:
1665 case SYMBOL_TPREL:
1666 case SYMBOL_HALF:
1667 /* A 16-bit constant formed by a single relocation, or a 32-bit
1668 constant formed from a high 16-bit relocation and a low 16-bit
1669 relocation. Use mips_split_p to determine which. 32-bit
1670 constants need an "lui; addiu" sequence for normal mode and
1671 an "li; sll; addiu" sequence for MIPS16 mode. */
1672 return !mips_split_p[type] ? 1 : TARGET_MIPS16 ? 3 : 2;
1674 case SYMBOL_TLS:
1675 /* We don't treat a bare TLS symbol as a constant. */
1676 return 0;
1678 gcc_unreachable ();
1681 /* If MODE is MAX_MACHINE_MODE, return the number of instructions needed
1682 to load symbols of type TYPE into a register. Return 0 if the given
1683 type of symbol cannot be used as an immediate operand.
1685 Otherwise, return the number of instructions needed to load or store
1686 values of mode MODE to or from addresses of type TYPE. Return 0 if
1687 the given type of symbol is not valid in addresses.
1689 In both cases, treat extended MIPS16 instructions as two instructions. */
1691 static int
1692 mips_symbol_insns (enum mips_symbol_type type, enum machine_mode mode)
1694 return mips_symbol_insns_1 (type, mode) * (TARGET_MIPS16 ? 2 : 1);
1697 /* A for_each_rtx callback. Stop the search if *X references a
1698 thread-local symbol. */
1700 static int
1701 mips_tls_symbol_ref_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
1703 return mips_tls_symbol_p (*x);
1706 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
1708 static bool
1709 mips_cannot_force_const_mem (rtx x)
1711 rtx base, offset;
1713 if (!TARGET_MIPS16)
1715 /* As an optimization, reject constants that mips_legitimize_move
1716 can expand inline.
1718 Suppose we have a multi-instruction sequence that loads constant C
1719 into register R. If R does not get allocated a hard register, and
1720 R is used in an operand that allows both registers and memory
1721 references, reload will consider forcing C into memory and using
1722 one of the instruction's memory alternatives. Returning false
1723 here will force it to use an input reload instead. */
1724 if (GET_CODE (x) == CONST_INT)
1725 return true;
1727 split_const (x, &base, &offset);
1728 if (symbolic_operand (base, VOIDmode) && SMALL_INT (offset))
1729 return true;
1732 /* TLS symbols must be computed by mips_legitimize_move. */
1733 if (for_each_rtx (&x, &mips_tls_symbol_ref_1, NULL))
1734 return true;
1736 return false;
1739 /* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P. We can't use blocks for
1740 constants when we're using a per-function constant pool. */
1742 static bool
1743 mips_use_blocks_for_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1744 const_rtx x ATTRIBUTE_UNUSED)
1746 return !TARGET_MIPS16_PCREL_LOADS;
1749 /* Return true if register REGNO is a valid base register for mode MODE.
1750 STRICT_P is true if REG_OK_STRICT is in effect. */
1753 mips_regno_mode_ok_for_base_p (int regno, enum machine_mode mode,
1754 bool strict_p)
1756 if (!HARD_REGISTER_NUM_P (regno))
1758 if (!strict_p)
1759 return true;
1760 regno = reg_renumber[regno];
1763 /* These fake registers will be eliminated to either the stack or
1764 hard frame pointer, both of which are usually valid base registers.
1765 Reload deals with the cases where the eliminated form isn't valid. */
1766 if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM)
1767 return true;
1769 /* In MIPS16 mode, the stack pointer can only address word and doubleword
1770 values, nothing smaller. There are two problems here:
1772 (a) Instantiating virtual registers can introduce new uses of the
1773 stack pointer. If these virtual registers are valid addresses,
1774 the stack pointer should be too.
1776 (b) Most uses of the stack pointer are not made explicit until
1777 FRAME_POINTER_REGNUM and ARG_POINTER_REGNUM have been eliminated.
1778 We don't know until that stage whether we'll be eliminating to the
1779 stack pointer (which needs the restriction) or the hard frame
1780 pointer (which doesn't).
1782 All in all, it seems more consistent to only enforce this restriction
1783 during and after reload. */
1784 if (TARGET_MIPS16 && regno == STACK_POINTER_REGNUM)
1785 return !strict_p || GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8;
1787 return TARGET_MIPS16 ? M16_REG_P (regno) : GP_REG_P (regno);
1790 /* Return true if X is a valid base register for mode MODE.
1791 STRICT_P is true if REG_OK_STRICT is in effect. */
1793 static bool
1794 mips_valid_base_register_p (rtx x, enum machine_mode mode, bool strict_p)
1796 if (!strict_p && GET_CODE (x) == SUBREG)
1797 x = SUBREG_REG (x);
1799 return (REG_P (x)
1800 && mips_regno_mode_ok_for_base_p (REGNO (x), mode, strict_p));
1803 /* Return true if X is a valid address for machine mode MODE. If it is,
1804 fill in INFO appropriately. STRICT_P is true if REG_OK_STRICT is in
1805 effect. */
1807 static bool
1808 mips_classify_address (struct mips_address_info *info, rtx x,
1809 enum machine_mode mode, bool strict_p)
1811 switch (GET_CODE (x))
1813 case REG:
1814 case SUBREG:
1815 info->type = ADDRESS_REG;
1816 info->reg = x;
1817 info->offset = const0_rtx;
1818 return mips_valid_base_register_p (info->reg, mode, strict_p);
1820 case PLUS:
1821 info->type = ADDRESS_REG;
1822 info->reg = XEXP (x, 0);
1823 info->offset = XEXP (x, 1);
1824 return (mips_valid_base_register_p (info->reg, mode, strict_p)
1825 && const_arith_operand (info->offset, VOIDmode));
1827 case LO_SUM:
1828 info->type = ADDRESS_LO_SUM;
1829 info->reg = XEXP (x, 0);
1830 info->offset = XEXP (x, 1);
1831 /* We have to trust the creator of the LO_SUM to do something vaguely
1832 sane. Target-independent code that creates a LO_SUM should also
1833 create and verify the matching HIGH. Target-independent code that
1834 adds an offset to a LO_SUM must prove that the offset will not
1835 induce a carry. Failure to do either of these things would be
1836 a bug, and we are not required to check for it here. The MIPS
1837 backend itself should only create LO_SUMs for valid symbolic
1838 constants, with the high part being either a HIGH or a copy
1839 of _gp. */
1840 info->symbol_type
1841 = mips_classify_symbolic_expression (info->offset, SYMBOL_CONTEXT_MEM);
1842 return (mips_valid_base_register_p (info->reg, mode, strict_p)
1843 && mips_symbol_insns (info->symbol_type, mode) > 0
1844 && mips_lo_relocs[info->symbol_type] != 0);
1846 case CONST_INT:
1847 /* Small-integer addresses don't occur very often, but they
1848 are legitimate if $0 is a valid base register. */
1849 info->type = ADDRESS_CONST_INT;
1850 return !TARGET_MIPS16 && SMALL_INT (x);
1852 case CONST:
1853 case LABEL_REF:
1854 case SYMBOL_REF:
1855 info->type = ADDRESS_SYMBOLIC;
1856 return (mips_symbolic_constant_p (x, SYMBOL_CONTEXT_MEM,
1857 &info->symbol_type)
1858 && mips_symbol_insns (info->symbol_type, mode) > 0
1859 && !mips_split_p[info->symbol_type]);
1861 default:
1862 return false;
1866 /* Return true if X is a legitimate address for a memory operand of mode
1867 MODE. STRICT_P is true if REG_OK_STRICT is in effect. */
1869 bool
1870 mips_legitimate_address_p (enum machine_mode mode, rtx x, bool strict_p)
1872 struct mips_address_info addr;
1874 return mips_classify_address (&addr, x, mode, strict_p);
1877 /* Return true if X is a legitimate $sp-based address for mode MDOE. */
1879 bool
1880 mips_stack_address_p (rtx x, enum machine_mode mode)
1882 struct mips_address_info addr;
1884 return (mips_classify_address (&addr, x, mode, false)
1885 && addr.type == ADDRESS_REG
1886 && addr.reg == stack_pointer_rtx);
1889 /* Return true if ADDR matches the pattern for the LWXS load scaled indexed
1890 address instruction. Note that such addresses are not considered
1891 legitimate in the GO_IF_LEGITIMATE_ADDRESS sense, because their use
1892 is so restricted. */
1894 static bool
1895 mips_lwxs_address_p (rtx addr)
1897 if (ISA_HAS_LWXS
1898 && GET_CODE (addr) == PLUS
1899 && REG_P (XEXP (addr, 1)))
1901 rtx offset = XEXP (addr, 0);
1902 if (GET_CODE (offset) == MULT
1903 && REG_P (XEXP (offset, 0))
1904 && GET_CODE (XEXP (offset, 1)) == CONST_INT
1905 && INTVAL (XEXP (offset, 1)) == 4)
1906 return true;
1908 return false;
1911 /* Return true if a value at OFFSET bytes from base register BASE can be
1912 accessed using an unextended MIPS16 instruction. MODE is the mode of
1913 the value.
1915 Usually the offset in an unextended instruction is a 5-bit field.
1916 The offset is unsigned and shifted left once for LH and SH, twice
1917 for LW and SW, and so on. An exception is LWSP and SWSP, which have
1918 an 8-bit immediate field that's shifted left twice. */
1920 static bool
1921 mips16_unextended_reference_p (enum machine_mode mode, rtx base,
1922 unsigned HOST_WIDE_INT offset)
1924 if (offset % GET_MODE_SIZE (mode) == 0)
1926 if (GET_MODE_SIZE (mode) == 4 && base == stack_pointer_rtx)
1927 return offset < 256U * GET_MODE_SIZE (mode);
1928 return offset < 32U * GET_MODE_SIZE (mode);
1930 return false;
1933 /* Return the number of instructions needed to load or store a value
1934 of mode MODE at address X. Return 0 if X isn't valid for MODE.
1935 Assume that multiword moves may need to be split into word moves
1936 if MIGHT_SPLIT_P, otherwise assume that a single load or store is
1937 enough.
1939 For MIPS16 code, count extended instructions as two instructions. */
1942 mips_address_insns (rtx x, enum machine_mode mode, bool might_split_p)
1944 struct mips_address_info addr;
1945 int factor;
1947 /* BLKmode is used for single unaligned loads and stores and should
1948 not count as a multiword mode. (GET_MODE_SIZE (BLKmode) is pretty
1949 meaningless, so we have to single it out as a special case one way
1950 or the other.) */
1951 if (mode != BLKmode && might_split_p)
1952 factor = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1953 else
1954 factor = 1;
1956 if (mips_classify_address (&addr, x, mode, false))
1957 switch (addr.type)
1959 case ADDRESS_REG:
1960 if (TARGET_MIPS16
1961 && !mips16_unextended_reference_p (mode, addr.reg,
1962 UINTVAL (addr.offset)))
1963 return factor * 2;
1964 return factor;
1966 case ADDRESS_LO_SUM:
1967 return TARGET_MIPS16 ? factor * 2 : factor;
1969 case ADDRESS_CONST_INT:
1970 return factor;
1972 case ADDRESS_SYMBOLIC:
1973 return factor * mips_symbol_insns (addr.symbol_type, mode);
1975 return 0;
1978 /* Return the number of instructions needed to load constant X.
1979 Return 0 if X isn't a valid constant. */
1982 mips_const_insns (rtx x)
1984 struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
1985 enum mips_symbol_type symbol_type;
1986 rtx offset;
1988 switch (GET_CODE (x))
1990 case HIGH:
1991 if (!mips_symbolic_constant_p (XEXP (x, 0), SYMBOL_CONTEXT_LEA,
1992 &symbol_type)
1993 || !mips_split_p[symbol_type])
1994 return 0;
1996 /* This is simply an LUI for normal mode. It is an extended
1997 LI followed by an extended SLL for MIPS16. */
1998 return TARGET_MIPS16 ? 4 : 1;
2000 case CONST_INT:
2001 if (TARGET_MIPS16)
2002 /* Unsigned 8-bit constants can be loaded using an unextended
2003 LI instruction. Unsigned 16-bit constants can be loaded
2004 using an extended LI. Negative constants must be loaded
2005 using LI and then negated. */
2006 return (IN_RANGE (INTVAL (x), 0, 255) ? 1
2007 : SMALL_OPERAND_UNSIGNED (INTVAL (x)) ? 2
2008 : IN_RANGE (-INTVAL (x), 0, 255) ? 2
2009 : SMALL_OPERAND_UNSIGNED (-INTVAL (x)) ? 3
2010 : 0);
2012 return mips_build_integer (codes, INTVAL (x));
2014 case CONST_DOUBLE:
2015 case CONST_VECTOR:
2016 /* Allow zeros for normal mode, where we can use $0. */
2017 return !TARGET_MIPS16 && x == CONST0_RTX (GET_MODE (x)) ? 1 : 0;
2019 case CONST:
2020 if (CONST_GP_P (x))
2021 return 1;
2023 /* See if we can refer to X directly. */
2024 if (mips_symbolic_constant_p (x, SYMBOL_CONTEXT_LEA, &symbol_type))
2025 return mips_symbol_insns (symbol_type, MAX_MACHINE_MODE);
2027 /* Otherwise try splitting the constant into a base and offset.
2028 16-bit offsets can be added using an extra ADDIU. Larger offsets
2029 must be calculated separately and then added to the base. */
2030 split_const (x, &x, &offset);
2031 if (offset != 0)
2033 int n = mips_const_insns (x);
2034 if (n != 0)
2036 if (SMALL_INT (offset))
2037 return n + 1;
2038 else
2039 return n + 1 + mips_build_integer (codes, INTVAL (offset));
2042 return 0;
2044 case SYMBOL_REF:
2045 case LABEL_REF:
2046 return mips_symbol_insns (mips_classify_symbol (x, SYMBOL_CONTEXT_LEA),
2047 MAX_MACHINE_MODE);
2049 default:
2050 return 0;
2054 /* Return the number of instructions needed to implement INSN,
2055 given that it loads from or stores to MEM. Count extended
2056 MIPS16 instructions as two instructions. */
2059 mips_load_store_insns (rtx mem, rtx insn)
2061 enum machine_mode mode;
2062 bool might_split_p;
2063 rtx set;
2065 gcc_assert (MEM_P (mem));
2066 mode = GET_MODE (mem);
2068 /* Try to prove that INSN does not need to be split. */
2069 might_split_p = true;
2070 if (GET_MODE_BITSIZE (mode) == 64)
2072 set = single_set (insn);
2073 if (set && !mips_split_64bit_move_p (SET_DEST (set), SET_SRC (set)))
2074 might_split_p = false;
2077 return mips_address_insns (XEXP (mem, 0), mode, might_split_p);
2080 /* Return the number of instructions needed for an integer division. */
2083 mips_idiv_insns (void)
2085 int count;
2087 count = 1;
2088 if (TARGET_CHECK_ZERO_DIV)
2090 if (GENERATE_DIVIDE_TRAPS)
2091 count++;
2092 else
2093 count += 2;
2096 if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
2097 count++;
2098 return count;
2101 /* Emit a move from SRC to DEST. Assume that the move expanders can
2102 handle all moves if !can_create_pseudo_p (). The distinction is
2103 important because, unlike emit_move_insn, the move expanders know
2104 how to force Pmode objects into the constant pool even when the
2105 constant pool address is not itself legitimate. */
2108 mips_emit_move (rtx dest, rtx src)
2110 return (can_create_pseudo_p ()
2111 ? emit_move_insn (dest, src)
2112 : emit_move_insn_1 (dest, src));
2115 /* Emit an instruction of the form (set TARGET (CODE OP0 OP1)). */
2117 static void
2118 mips_emit_binary (enum rtx_code code, rtx target, rtx op0, rtx op1)
2120 emit_insn (gen_rtx_SET (VOIDmode, target,
2121 gen_rtx_fmt_ee (code, GET_MODE (target), op0, op1)));
2124 /* Copy VALUE to a register and return that register. If new pseudos
2125 are allowed, copy it into a new register, otherwise use DEST. */
2127 static rtx
2128 mips_force_temporary (rtx dest, rtx value)
2130 if (can_create_pseudo_p ())
2131 return force_reg (Pmode, value);
2132 else
2134 mips_emit_move (dest, value);
2135 return dest;
2139 /* Return a pseudo register that contains the value of $gp throughout
2140 the current function. Such registers are needed by MIPS16 functions,
2141 for which $gp itself is not a valid base register or addition operand. */
2143 static rtx
2144 mips16_gp_pseudo_reg (void)
2146 if (cfun->machine->mips16_gp_pseudo_rtx == NULL_RTX)
2147 cfun->machine->mips16_gp_pseudo_rtx = gen_reg_rtx (Pmode);
2149 /* Don't emit an instruction to initialize the pseudo register if
2150 we are being called from the tree optimizers' cost-calculation
2151 routines. */
2152 if (!cfun->machine->initialized_mips16_gp_pseudo_p
2153 && (current_ir_type () != IR_GIMPLE || currently_expanding_to_rtl))
2155 rtx insn, scan, after;
2157 /* We want GCC to treat the register's value as constant, so that
2158 it can be rematerialized on demand. */
2159 insn = gen_load_const_gp (cfun->machine->mips16_gp_pseudo_rtx);
2161 push_topmost_sequence ();
2162 /* We need to emit the initialization after the FUNCTION_BEG
2163 note, so that it will be integrated. */
2164 after = get_insns ();
2165 for (scan = after; scan != NULL_RTX; scan = NEXT_INSN (scan))
2166 if (NOTE_P (scan) && NOTE_KIND (scan) == NOTE_INSN_FUNCTION_BEG)
2168 after = scan;
2169 break;
2171 insn = emit_insn_after (insn, after);
2172 pop_topmost_sequence ();
2174 cfun->machine->initialized_mips16_gp_pseudo_p = true;
2177 return cfun->machine->mips16_gp_pseudo_rtx;
2180 /* If MODE is MAX_MACHINE_MODE, ADDR appears as a move operand, otherwise
2181 it appears in a MEM of that mode. Return true if ADDR is a legitimate
2182 constant in that context and can be split into a high part and a LO_SUM.
2183 If so, and if LO_SUM_OUT is nonnull, emit the high part and return
2184 the LO_SUM in *LO_SUM_OUT. Leave *LO_SUM_OUT unchanged otherwise.
2186 TEMP is as for mips_force_temporary and is used to load the high
2187 part into a register. */
2189 bool
2190 mips_split_symbol (rtx temp, rtx addr, enum machine_mode mode, rtx *lo_sum_out)
2192 enum mips_symbol_context context;
2193 enum mips_symbol_type symbol_type;
2194 rtx high;
2196 context = (mode == MAX_MACHINE_MODE
2197 ? SYMBOL_CONTEXT_LEA
2198 : SYMBOL_CONTEXT_MEM);
2199 if (!mips_symbolic_constant_p (addr, context, &symbol_type)
2200 || mips_symbol_insns (symbol_type, mode) == 0
2201 || !mips_split_p[symbol_type])
2202 return false;
2204 if (lo_sum_out)
2206 if (symbol_type == SYMBOL_GP_RELATIVE)
2208 if (!can_create_pseudo_p ())
2210 emit_insn (gen_load_const_gp (temp));
2211 high = temp;
2213 else
2214 high = mips16_gp_pseudo_reg ();
2216 else
2218 high = gen_rtx_HIGH (Pmode, copy_rtx (addr));
2219 high = mips_force_temporary (temp, high);
2221 *lo_sum_out = gen_rtx_LO_SUM (Pmode, high, addr);
2223 return true;
2226 /* Wrap symbol or label BASE in an UNSPEC address of type SYMBOL_TYPE,
2227 then add CONST_INT OFFSET to the result. */
2229 static rtx
2230 mips_unspec_address_offset (rtx base, rtx offset,
2231 enum mips_symbol_type symbol_type)
2233 base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base),
2234 UNSPEC_ADDRESS_FIRST + symbol_type);
2235 if (offset != const0_rtx)
2236 base = gen_rtx_PLUS (Pmode, base, offset);
2237 return gen_rtx_CONST (Pmode, base);
2240 /* Return an UNSPEC address with underlying address ADDRESS and symbol
2241 type SYMBOL_TYPE. */
2244 mips_unspec_address (rtx address, enum mips_symbol_type symbol_type)
2246 rtx base, offset;
2248 split_const (address, &base, &offset);
2249 return mips_unspec_address_offset (base, offset, symbol_type);
2252 /* If mips_unspec_address (ADDR, SYMBOL_TYPE) is a 32-bit value, add the
2253 high part to BASE and return the result. Just return BASE otherwise.
2254 TEMP is as for mips_force_temporary.
2256 The returned expression can be used as the first operand to a LO_SUM. */
2258 static rtx
2259 mips_unspec_offset_high (rtx temp, rtx base, rtx addr,
2260 enum mips_symbol_type symbol_type)
2262 if (mips_split_p[symbol_type])
2264 addr = gen_rtx_HIGH (Pmode, mips_unspec_address (addr, symbol_type));
2265 addr = mips_force_temporary (temp, addr);
2266 base = mips_force_temporary (temp, gen_rtx_PLUS (Pmode, addr, base));
2268 return base;
2271 /* Return a legitimate address for REG + OFFSET. TEMP is as for
2272 mips_force_temporary; it is only needed when OFFSET is not a
2273 SMALL_OPERAND. */
2275 static rtx
2276 mips_add_offset (rtx temp, rtx reg, HOST_WIDE_INT offset)
2278 if (!SMALL_OPERAND (offset))
2280 rtx high;
2282 if (TARGET_MIPS16)
2284 /* Load the full offset into a register so that we can use
2285 an unextended instruction for the address itself. */
2286 high = GEN_INT (offset);
2287 offset = 0;
2289 else
2291 /* Leave OFFSET as a 16-bit offset and put the excess in HIGH. */
2292 high = GEN_INT (CONST_HIGH_PART (offset));
2293 offset = CONST_LOW_PART (offset);
2295 high = mips_force_temporary (temp, high);
2296 reg = mips_force_temporary (temp, gen_rtx_PLUS (Pmode, high, reg));
2298 return plus_constant (reg, offset);
2301 /* The __tls_get_attr symbol. */
2302 static GTY(()) rtx mips_tls_symbol;
2304 /* Return an instruction sequence that calls __tls_get_addr. SYM is
2305 the TLS symbol we are referencing and TYPE is the symbol type to use
2306 (either global dynamic or local dynamic). V0 is an RTX for the
2307 return value location. */
2309 static rtx
2310 mips_call_tls_get_addr (rtx sym, enum mips_symbol_type type, rtx v0)
2312 rtx insn, loc, tga, a0;
2314 a0 = gen_rtx_REG (Pmode, GP_ARG_FIRST);
2316 if (!mips_tls_symbol)
2317 mips_tls_symbol = init_one_libfunc ("__tls_get_addr");
2319 loc = mips_unspec_address (sym, type);
2321 start_sequence ();
2323 emit_insn (gen_rtx_SET (Pmode, a0,
2324 gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, loc)));
2325 tga = gen_const_mem (Pmode, mips_tls_symbol);
2326 insn = emit_call_insn (gen_call_value (v0, tga, const0_rtx, const0_rtx));
2327 CONST_OR_PURE_CALL_P (insn) = 1;
2328 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), a0);
2329 insn = get_insns ();
2331 end_sequence ();
2333 return insn;
2336 /* Generate the code to access LOC, a thread-local SYMBOL_REF, and return
2337 its address. The return value will be both a valid address and a valid
2338 SET_SRC (either a REG or a LO_SUM). */
2340 static rtx
2341 mips_legitimize_tls_address (rtx loc)
2343 rtx dest, insn, v0, v1, tmp1, tmp2, eqv;
2344 enum tls_model model;
2346 if (TARGET_MIPS16)
2348 sorry ("MIPS16 TLS");
2349 return gen_reg_rtx (Pmode);
2352 model = SYMBOL_REF_TLS_MODEL (loc);
2353 /* Only TARGET_ABICALLS code can have more than one module; other
2354 code must be be static and should not use a GOT. All TLS models
2355 reduce to local exec in this situation. */
2356 if (!TARGET_ABICALLS)
2357 model = TLS_MODEL_LOCAL_EXEC;
2359 switch (model)
2361 case TLS_MODEL_GLOBAL_DYNAMIC:
2362 v0 = gen_rtx_REG (Pmode, GP_RETURN);
2363 insn = mips_call_tls_get_addr (loc, SYMBOL_TLSGD, v0);
2364 dest = gen_reg_rtx (Pmode);
2365 emit_libcall_block (insn, dest, v0, loc);
2366 break;
2368 case TLS_MODEL_LOCAL_DYNAMIC:
2369 v0 = gen_rtx_REG (Pmode, GP_RETURN);
2370 insn = mips_call_tls_get_addr (loc, SYMBOL_TLSLDM, v0);
2371 tmp1 = gen_reg_rtx (Pmode);
2373 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2374 share the LDM result with other LD model accesses. */
2375 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
2376 UNSPEC_TLS_LDM);
2377 emit_libcall_block (insn, tmp1, v0, eqv);
2379 tmp2 = mips_unspec_offset_high (NULL, tmp1, loc, SYMBOL_DTPREL);
2380 dest = gen_rtx_LO_SUM (Pmode, tmp2,
2381 mips_unspec_address (loc, SYMBOL_DTPREL));
2382 break;
2384 case TLS_MODEL_INITIAL_EXEC:
2385 v1 = gen_rtx_REG (Pmode, GP_RETURN + 1);
2386 tmp1 = gen_reg_rtx (Pmode);
2387 tmp2 = mips_unspec_address (loc, SYMBOL_GOTTPREL);
2388 if (Pmode == DImode)
2390 emit_insn (gen_tls_get_tp_di (v1));
2391 emit_insn (gen_load_gotdi (tmp1, pic_offset_table_rtx, tmp2));
2393 else
2395 emit_insn (gen_tls_get_tp_si (v1));
2396 emit_insn (gen_load_gotsi (tmp1, pic_offset_table_rtx, tmp2));
2398 dest = gen_reg_rtx (Pmode);
2399 emit_insn (gen_add3_insn (dest, tmp1, v1));
2400 break;
2402 case TLS_MODEL_LOCAL_EXEC:
2403 v1 = gen_rtx_REG (Pmode, GP_RETURN + 1);
2404 if (Pmode == DImode)
2405 emit_insn (gen_tls_get_tp_di (v1));
2406 else
2407 emit_insn (gen_tls_get_tp_si (v1));
2409 tmp1 = mips_unspec_offset_high (NULL, v1, loc, SYMBOL_TPREL);
2410 dest = gen_rtx_LO_SUM (Pmode, tmp1,
2411 mips_unspec_address (loc, SYMBOL_TPREL));
2412 break;
2414 default:
2415 gcc_unreachable ();
2417 return dest;
2420 /* This function is used to implement LEGITIMIZE_ADDRESS. If *XLOC can
2421 be legitimized in a way that the generic machinery might not expect,
2422 put the new address in *XLOC and return true. MODE is the mode of
2423 the memory being accessed. */
2425 bool
2426 mips_legitimize_address (rtx *xloc, enum machine_mode mode)
2428 rtx base;
2429 HOST_WIDE_INT offset;
2431 if (mips_tls_symbol_p (*xloc))
2433 *xloc = mips_legitimize_tls_address (*xloc);
2434 return true;
2437 /* See if the address can split into a high part and a LO_SUM. */
2438 if (mips_split_symbol (NULL, *xloc, mode, xloc))
2439 return true;
2441 /* Handle BASE + OFFSET using mips_add_offset. */
2442 mips_split_plus (*xloc, &base, &offset);
2443 if (offset != 0)
2445 if (!mips_valid_base_register_p (base, mode, false))
2446 base = copy_to_mode_reg (Pmode, base);
2447 *xloc = mips_add_offset (NULL, base, offset);
2448 return true;
2450 return false;
2453 /* Load VALUE into DEST. TEMP is as for mips_force_temporary. */
2455 void
2456 mips_move_integer (rtx temp, rtx dest, unsigned HOST_WIDE_INT value)
2458 struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
2459 enum machine_mode mode;
2460 unsigned int i, num_ops;
2461 rtx x;
2463 mode = GET_MODE (dest);
2464 num_ops = mips_build_integer (codes, value);
2466 /* Apply each binary operation to X. Invariant: X is a legitimate
2467 source operand for a SET pattern. */
2468 x = GEN_INT (codes[0].value);
2469 for (i = 1; i < num_ops; i++)
2471 if (!can_create_pseudo_p ())
2473 emit_insn (gen_rtx_SET (VOIDmode, temp, x));
2474 x = temp;
2476 else
2477 x = force_reg (mode, x);
2478 x = gen_rtx_fmt_ee (codes[i].code, mode, x, GEN_INT (codes[i].value));
2481 emit_insn (gen_rtx_SET (VOIDmode, dest, x));
2484 /* Subroutine of mips_legitimize_move. Move constant SRC into register
2485 DEST given that SRC satisfies immediate_operand but doesn't satisfy
2486 move_operand. */
2488 static void
2489 mips_legitimize_const_move (enum machine_mode mode, rtx dest, rtx src)
2491 rtx base, offset;
2493 /* Split moves of big integers into smaller pieces. */
2494 if (splittable_const_int_operand (src, mode))
2496 mips_move_integer (dest, dest, INTVAL (src));
2497 return;
2500 /* Split moves of symbolic constants into high/low pairs. */
2501 if (mips_split_symbol (dest, src, MAX_MACHINE_MODE, &src))
2503 emit_insn (gen_rtx_SET (VOIDmode, dest, src));
2504 return;
2507 /* Generate the appropriate access sequences for TLS symbols. */
2508 if (mips_tls_symbol_p (src))
2510 mips_emit_move (dest, mips_legitimize_tls_address (src));
2511 return;
2514 /* If we have (const (plus symbol offset)), and that expression cannot
2515 be forced into memory, load the symbol first and add in the offset.
2516 In non-MIPS16 mode, prefer to do this even if the constant _can_ be
2517 forced into memory, as it usually produces better code. */
2518 split_const (src, &base, &offset);
2519 if (offset != const0_rtx
2520 && (targetm.cannot_force_const_mem (src)
2521 || (!TARGET_MIPS16 && can_create_pseudo_p ())))
2523 base = mips_force_temporary (dest, base);
2524 mips_emit_move (dest, mips_add_offset (NULL, base, INTVAL (offset)));
2525 return;
2528 src = force_const_mem (mode, src);
2530 /* When using explicit relocs, constant pool references are sometimes
2531 not legitimate addresses. */
2532 mips_split_symbol (dest, XEXP (src, 0), mode, &XEXP (src, 0));
2533 mips_emit_move (dest, src);
2536 /* If (set DEST SRC) is not a valid move instruction, emit an equivalent
2537 sequence that is valid. */
2539 bool
2540 mips_legitimize_move (enum machine_mode mode, rtx dest, rtx src)
2542 if (!register_operand (dest, mode) && !reg_or_0_operand (src, mode))
2544 mips_emit_move (dest, force_reg (mode, src));
2545 return true;
2548 /* Check for individual, fully-reloaded mflo and mfhi instructions. */
2549 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
2550 && REG_P (src) && MD_REG_P (REGNO (src))
2551 && REG_P (dest) && GP_REG_P (REGNO (dest)))
2553 int other_regno = REGNO (src) == HI_REGNUM ? LO_REGNUM : HI_REGNUM;
2554 if (GET_MODE_SIZE (mode) <= 4)
2555 emit_insn (gen_mfhilo_si (gen_lowpart (SImode, dest),
2556 gen_lowpart (SImode, src),
2557 gen_rtx_REG (SImode, other_regno)));
2558 else
2559 emit_insn (gen_mfhilo_di (gen_lowpart (DImode, dest),
2560 gen_lowpart (DImode, src),
2561 gen_rtx_REG (DImode, other_regno)));
2562 return true;
2565 /* We need to deal with constants that would be legitimate
2566 immediate_operands but aren't legitimate move_operands. */
2567 if (CONSTANT_P (src) && !move_operand (src, mode))
2569 mips_legitimize_const_move (mode, dest, src);
2570 set_unique_reg_note (get_last_insn (), REG_EQUAL, copy_rtx (src));
2571 return true;
2573 return false;
2576 /* Return true if value X in context CONTEXT is a small-data address
2577 that can be rewritten as a LO_SUM. */
2579 static bool
2580 mips_rewrite_small_data_p (rtx x, enum mips_symbol_context context)
2582 enum mips_symbol_type symbol_type;
2584 return (TARGET_EXPLICIT_RELOCS
2585 && mips_symbolic_constant_p (x, context, &symbol_type)
2586 && symbol_type == SYMBOL_GP_RELATIVE);
2589 /* A for_each_rtx callback for mips_small_data_pattern_p. DATA is the
2590 containing MEM, or null if none. */
2592 static int
2593 mips_small_data_pattern_1 (rtx *loc, void *data)
2595 enum mips_symbol_context context;
2597 if (GET_CODE (*loc) == LO_SUM)
2598 return -1;
2600 if (MEM_P (*loc))
2602 if (for_each_rtx (&XEXP (*loc, 0), mips_small_data_pattern_1, *loc))
2603 return 1;
2604 return -1;
2607 context = data ? SYMBOL_CONTEXT_MEM : SYMBOL_CONTEXT_LEA;
2608 return mips_rewrite_small_data_p (*loc, context);
2611 /* Return true if OP refers to small data symbols directly, not through
2612 a LO_SUM. */
2614 bool
2615 mips_small_data_pattern_p (rtx op)
2617 return for_each_rtx (&op, mips_small_data_pattern_1, NULL);
2620 /* A for_each_rtx callback, used by mips_rewrite_small_data.
2621 DATA is the containing MEM, or null if none. */
2623 static int
2624 mips_rewrite_small_data_1 (rtx *loc, void *data)
2626 enum mips_symbol_context context;
2628 if (MEM_P (*loc))
2630 for_each_rtx (&XEXP (*loc, 0), mips_rewrite_small_data_1, *loc);
2631 return -1;
2634 context = data ? SYMBOL_CONTEXT_MEM : SYMBOL_CONTEXT_LEA;
2635 if (mips_rewrite_small_data_p (*loc, context))
2636 *loc = gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, *loc);
2638 if (GET_CODE (*loc) == LO_SUM)
2639 return -1;
2641 return 0;
2644 /* Rewrite instruction pattern PATTERN so that it refers to small data
2645 using explicit relocations. */
2648 mips_rewrite_small_data (rtx pattern)
2650 pattern = copy_insn (pattern);
2651 for_each_rtx (&pattern, mips_rewrite_small_data_1, NULL);
2652 return pattern;
2655 /* We need a lot of little routines to check the range of MIPS16 immediate
2656 operands. */
2658 static int
2659 m16_check_op (rtx op, int low, int high, int mask)
2661 return (GET_CODE (op) == CONST_INT
2662 && IN_RANGE (INTVAL (op), low, high)
2663 && (INTVAL (op) & mask) == 0);
2667 m16_uimm3_b (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2669 return m16_check_op (op, 0x1, 0x8, 0);
2673 m16_simm4_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2675 return m16_check_op (op, -0x8, 0x7, 0);
2679 m16_nsimm4_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2681 return m16_check_op (op, -0x7, 0x8, 0);
2685 m16_simm5_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2687 return m16_check_op (op, -0x10, 0xf, 0);
2691 m16_nsimm5_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2693 return m16_check_op (op, -0xf, 0x10, 0);
2697 m16_uimm5_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2699 return m16_check_op (op, -0x10 << 2, 0xf << 2, 3);
2703 m16_nuimm5_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2705 return m16_check_op (op, -0xf << 2, 0x10 << 2, 3);
2709 m16_simm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2711 return m16_check_op (op, -0x80, 0x7f, 0);
2715 m16_nsimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2717 return m16_check_op (op, -0x7f, 0x80, 0);
2721 m16_uimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2723 return m16_check_op (op, 0x0, 0xff, 0);
2727 m16_nuimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2729 return m16_check_op (op, -0xff, 0x0, 0);
2733 m16_uimm8_m1_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2735 return m16_check_op (op, -0x1, 0xfe, 0);
2739 m16_uimm8_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2741 return m16_check_op (op, 0x0, 0xff << 2, 3);
2745 m16_nuimm8_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2747 return m16_check_op (op, -0xff << 2, 0x0, 3);
2751 m16_simm8_8 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2753 return m16_check_op (op, -0x80 << 3, 0x7f << 3, 7);
2757 m16_nsimm8_8 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2759 return m16_check_op (op, -0x7f << 3, 0x80 << 3, 7);
2762 /* The cost of loading values from the constant pool. It should be
2763 larger than the cost of any constant we want to synthesize inline. */
2764 #define CONSTANT_POOL_COST COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 8)
2766 /* Return the cost of X when used as an operand to the MIPS16 instruction
2767 that implements CODE. Return -1 if there is no such instruction, or if
2768 X is not a valid immediate operand for it. */
2770 static int
2771 mips16_constant_cost (int code, HOST_WIDE_INT x)
2773 switch (code)
2775 case ASHIFT:
2776 case ASHIFTRT:
2777 case LSHIFTRT:
2778 /* Shifts by between 1 and 8 bits (inclusive) are unextended,
2779 other shifts are extended. The shift patterns truncate the shift
2780 count to the right size, so there are no out-of-range values. */
2781 if (IN_RANGE (x, 1, 8))
2782 return 0;
2783 return COSTS_N_INSNS (1);
2785 case PLUS:
2786 if (IN_RANGE (x, -128, 127))
2787 return 0;
2788 if (SMALL_OPERAND (x))
2789 return COSTS_N_INSNS (1);
2790 return -1;
2792 case LEU:
2793 /* Like LE, but reject the always-true case. */
2794 if (x == -1)
2795 return -1;
2796 case LE:
2797 /* We add 1 to the immediate and use SLT. */
2798 x += 1;
2799 case XOR:
2800 /* We can use CMPI for an xor with an unsigned 16-bit X. */
2801 case LT:
2802 case LTU:
2803 if (IN_RANGE (x, 0, 255))
2804 return 0;
2805 if (SMALL_OPERAND_UNSIGNED (x))
2806 return COSTS_N_INSNS (1);
2807 return -1;
2809 case EQ:
2810 case NE:
2811 /* Equality comparisons with 0 are cheap. */
2812 if (x == 0)
2813 return 0;
2814 return -1;
2816 default:
2817 return -1;
2821 /* Return true if there is a non-MIPS16 instruction that implements CODE
2822 and if that instruction accepts X as an immediate operand. */
2824 static int
2825 mips_immediate_operand_p (int code, HOST_WIDE_INT x)
2827 switch (code)
2829 case ASHIFT:
2830 case ASHIFTRT:
2831 case LSHIFTRT:
2832 /* All shift counts are truncated to a valid constant. */
2833 return true;
2835 case ROTATE:
2836 case ROTATERT:
2837 /* Likewise rotates, if the target supports rotates at all. */
2838 return ISA_HAS_ROR;
2840 case AND:
2841 case IOR:
2842 case XOR:
2843 /* These instructions take 16-bit unsigned immediates. */
2844 return SMALL_OPERAND_UNSIGNED (x);
2846 case PLUS:
2847 case LT:
2848 case LTU:
2849 /* These instructions take 16-bit signed immediates. */
2850 return SMALL_OPERAND (x);
2852 case EQ:
2853 case NE:
2854 case GT:
2855 case GTU:
2856 /* The "immediate" forms of these instructions are really
2857 implemented as comparisons with register 0. */
2858 return x == 0;
2860 case GE:
2861 case GEU:
2862 /* Likewise, meaning that the only valid immediate operand is 1. */
2863 return x == 1;
2865 case LE:
2866 /* We add 1 to the immediate and use SLT. */
2867 return SMALL_OPERAND (x + 1);
2869 case LEU:
2870 /* Likewise SLTU, but reject the always-true case. */
2871 return SMALL_OPERAND (x + 1) && x + 1 != 0;
2873 case SIGN_EXTRACT:
2874 case ZERO_EXTRACT:
2875 /* The bit position and size are immediate operands. */
2876 return ISA_HAS_EXT_INS;
2878 default:
2879 /* By default assume that $0 can be used for 0. */
2880 return x == 0;
2884 /* Return the cost of binary operation X, given that the instruction
2885 sequence for a word-sized or smaller operation has cost SINGLE_COST
2886 and that the sequence of a double-word operation has cost DOUBLE_COST. */
2888 static int
2889 mips_binary_cost (rtx x, int single_cost, int double_cost)
2891 int cost;
2893 if (GET_MODE_SIZE (GET_MODE (x)) == UNITS_PER_WORD * 2)
2894 cost = double_cost;
2895 else
2896 cost = single_cost;
2897 return (cost
2898 + rtx_cost (XEXP (x, 0), 0)
2899 + rtx_cost (XEXP (x, 1), GET_CODE (x)));
2902 /* Return the cost of floating-point multiplications of mode MODE. */
2904 static int
2905 mips_fp_mult_cost (enum machine_mode mode)
2907 return mode == DFmode ? mips_cost->fp_mult_df : mips_cost->fp_mult_sf;
2910 /* Return the cost of floating-point divisions of mode MODE. */
2912 static int
2913 mips_fp_div_cost (enum machine_mode mode)
2915 return mode == DFmode ? mips_cost->fp_div_df : mips_cost->fp_div_sf;
2918 /* Return the cost of sign-extending OP to mode MODE, not including the
2919 cost of OP itself. */
2921 static int
2922 mips_sign_extend_cost (enum machine_mode mode, rtx op)
2924 if (MEM_P (op))
2925 /* Extended loads are as cheap as unextended ones. */
2926 return 0;
2928 if (TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode)
2929 /* A sign extension from SImode to DImode in 64-bit mode is free. */
2930 return 0;
2932 if (ISA_HAS_SEB_SEH || GENERATE_MIPS16E)
2933 /* We can use SEB or SEH. */
2934 return COSTS_N_INSNS (1);
2936 /* We need to use a shift left and a shift right. */
2937 return COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 2);
2940 /* Return the cost of zero-extending OP to mode MODE, not including the
2941 cost of OP itself. */
2943 static int
2944 mips_zero_extend_cost (enum machine_mode mode, rtx op)
2946 if (MEM_P (op))
2947 /* Extended loads are as cheap as unextended ones. */
2948 return 0;
2950 if (TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode)
2951 /* We need a shift left by 32 bits and a shift right by 32 bits. */
2952 return COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 2);
2954 if (GENERATE_MIPS16E)
2955 /* We can use ZEB or ZEH. */
2956 return COSTS_N_INSNS (1);
2958 if (TARGET_MIPS16)
2959 /* We need to load 0xff or 0xffff into a register and use AND. */
2960 return COSTS_N_INSNS (GET_MODE (op) == QImode ? 2 : 3);
2962 /* We can use ANDI. */
2963 return COSTS_N_INSNS (1);
2966 /* Implement TARGET_RTX_COSTS. */
2968 static bool
2969 mips_rtx_costs (rtx x, int code, int outer_code, int *total)
2971 enum machine_mode mode = GET_MODE (x);
2972 bool float_mode_p = FLOAT_MODE_P (mode);
2973 int cost;
2974 rtx addr;
2976 /* The cost of a COMPARE is hard to define for MIPS. COMPAREs don't
2977 appear in the instruction stream, and the cost of a comparison is
2978 really the cost of the branch or scc condition. At the time of
2979 writing, GCC only uses an explicit outer COMPARE code when optabs
2980 is testing whether a constant is expensive enough to force into a
2981 register. We want optabs to pass such constants through the MIPS
2982 expanders instead, so make all constants very cheap here. */
2983 if (outer_code == COMPARE)
2985 gcc_assert (CONSTANT_P (x));
2986 *total = 0;
2987 return true;
2990 switch (code)
2992 case CONST_INT:
2993 /* Treat *clear_upper32-style ANDs as having zero cost in the
2994 second operand. The cost is entirely in the first operand.
2996 ??? This is needed because we would otherwise try to CSE
2997 the constant operand. Although that's the right thing for
2998 instructions that continue to be a register operation throughout
2999 compilation, it is disastrous for instructions that could
3000 later be converted into a memory operation. */
3001 if (TARGET_64BIT
3002 && outer_code == AND
3003 && UINTVAL (x) == 0xffffffff)
3005 *total = 0;
3006 return true;
3009 if (TARGET_MIPS16)
3011 cost = mips16_constant_cost (outer_code, INTVAL (x));
3012 if (cost >= 0)
3014 *total = cost;
3015 return true;
3018 else
3020 /* When not optimizing for size, we care more about the cost
3021 of hot code, and hot code is often in a loop. If a constant
3022 operand needs to be forced into a register, we will often be
3023 able to hoist the constant load out of the loop, so the load
3024 should not contribute to the cost. */
3025 if (!optimize_size
3026 || mips_immediate_operand_p (outer_code, INTVAL (x)))
3028 *total = 0;
3029 return true;
3032 /* Fall through. */
3034 case CONST:
3035 case SYMBOL_REF:
3036 case LABEL_REF:
3037 case CONST_DOUBLE:
3038 if (force_to_mem_operand (x, VOIDmode))
3040 *total = COSTS_N_INSNS (1);
3041 return true;
3043 cost = mips_const_insns (x);
3044 if (cost > 0)
3046 /* If the constant is likely to be stored in a GPR, SETs of
3047 single-insn constants are as cheap as register sets; we
3048 never want to CSE them.
3050 Don't reduce the cost of storing a floating-point zero in
3051 FPRs. If we have a zero in an FPR for other reasons, we
3052 can get better cfg-cleanup and delayed-branch results by
3053 using it consistently, rather than using $0 sometimes and
3054 an FPR at other times. Also, moves between floating-point
3055 registers are sometimes cheaper than (D)MTC1 $0. */
3056 if (cost == 1
3057 && outer_code == SET
3058 && !(float_mode_p && TARGET_HARD_FLOAT))
3059 cost = 0;
3060 /* When non-MIPS16 code loads a constant N>1 times, we rarely
3061 want to CSE the constant itself. It is usually better to
3062 have N copies of the last operation in the sequence and one
3063 shared copy of the other operations. (Note that this is
3064 not true for MIPS16 code, where the final operation in the
3065 sequence is often an extended instruction.)
3067 Also, if we have a CONST_INT, we don't know whether it is
3068 for a word or doubleword operation, so we cannot rely on
3069 the result of mips_build_integer. */
3070 else if (!TARGET_MIPS16
3071 && (outer_code == SET || mode == VOIDmode))
3072 cost = 1;
3073 *total = COSTS_N_INSNS (cost);
3074 return true;
3076 /* The value will need to be fetched from the constant pool. */
3077 *total = CONSTANT_POOL_COST;
3078 return true;
3080 case MEM:
3081 /* If the address is legitimate, return the number of
3082 instructions it needs. */
3083 addr = XEXP (x, 0);
3084 cost = mips_address_insns (addr, mode, true);
3085 if (cost > 0)
3087 *total = COSTS_N_INSNS (cost + 1);
3088 return true;
3090 /* Check for a scaled indexed address. */
3091 if (mips_lwxs_address_p (addr))
3093 *total = COSTS_N_INSNS (2);
3094 return true;
3096 /* Otherwise use the default handling. */
3097 return false;
3099 case FFS:
3100 *total = COSTS_N_INSNS (6);
3101 return false;
3103 case NOT:
3104 *total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 2 : 1);
3105 return false;
3107 case AND:
3108 /* Check for a *clear_upper32 pattern and treat it like a zero
3109 extension. See the pattern's comment for details. */
3110 if (TARGET_64BIT
3111 && mode == DImode
3112 && CONST_INT_P (XEXP (x, 1))
3113 && UINTVAL (XEXP (x, 1)) == 0xffffffff)
3115 *total = (mips_zero_extend_cost (mode, XEXP (x, 0))
3116 + rtx_cost (XEXP (x, 0), 0));
3117 return true;
3119 /* Fall through. */
3121 case IOR:
3122 case XOR:
3123 /* Double-word operations use two single-word operations. */
3124 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (2));
3125 return true;
3127 case ASHIFT:
3128 case ASHIFTRT:
3129 case LSHIFTRT:
3130 case ROTATE:
3131 case ROTATERT:
3132 if (CONSTANT_P (XEXP (x, 1)))
3133 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (4));
3134 else
3135 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (12));
3136 return true;
3138 case ABS:
3139 if (float_mode_p)
3140 *total = mips_cost->fp_add;
3141 else
3142 *total = COSTS_N_INSNS (4);
3143 return false;
3145 case LO_SUM:
3146 /* Low-part immediates need an extended MIPS16 instruction. */
3147 *total = (COSTS_N_INSNS (TARGET_MIPS16 ? 2 : 1)
3148 + rtx_cost (XEXP (x, 0), 0));
3149 return true;
3151 case LT:
3152 case LTU:
3153 case LE:
3154 case LEU:
3155 case GT:
3156 case GTU:
3157 case GE:
3158 case GEU:
3159 case EQ:
3160 case NE:
3161 case UNORDERED:
3162 case LTGT:
3163 /* Branch comparisons have VOIDmode, so use the first operand's
3164 mode instead. */
3165 mode = GET_MODE (XEXP (x, 0));
3166 if (FLOAT_MODE_P (mode))
3168 *total = mips_cost->fp_add;
3169 return false;
3171 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (4));
3172 return true;
3174 case MINUS:
3175 if (float_mode_p
3176 && ISA_HAS_NMADD_NMSUB (mode)
3177 && TARGET_FUSED_MADD
3178 && !HONOR_NANS (mode)
3179 && !HONOR_SIGNED_ZEROS (mode))
3181 /* See if we can use NMADD or NMSUB. See mips.md for the
3182 associated patterns. */
3183 rtx op0 = XEXP (x, 0);
3184 rtx op1 = XEXP (x, 1);
3185 if (GET_CODE (op0) == MULT && GET_CODE (XEXP (op0, 0)) == NEG)
3187 *total = (mips_fp_mult_cost (mode)
3188 + rtx_cost (XEXP (XEXP (op0, 0), 0), 0)
3189 + rtx_cost (XEXP (op0, 1), 0)
3190 + rtx_cost (op1, 0));
3191 return true;
3193 if (GET_CODE (op1) == MULT)
3195 *total = (mips_fp_mult_cost (mode)
3196 + rtx_cost (op0, 0)
3197 + rtx_cost (XEXP (op1, 0), 0)
3198 + rtx_cost (XEXP (op1, 1), 0));
3199 return true;
3202 /* Fall through. */
3204 case PLUS:
3205 if (float_mode_p)
3207 /* If this is part of a MADD or MSUB, treat the PLUS as
3208 being free. */
3209 if (ISA_HAS_FP4
3210 && TARGET_FUSED_MADD
3211 && GET_CODE (XEXP (x, 0)) == MULT)
3212 *total = 0;
3213 else
3214 *total = mips_cost->fp_add;
3215 return false;
3218 /* Double-word operations require three single-word operations and
3219 an SLTU. The MIPS16 version then needs to move the result of
3220 the SLTU from $24 to a MIPS16 register. */
3221 *total = mips_binary_cost (x, COSTS_N_INSNS (1),
3222 COSTS_N_INSNS (TARGET_MIPS16 ? 5 : 4));
3223 return true;
3225 case NEG:
3226 if (float_mode_p
3227 && ISA_HAS_NMADD_NMSUB (mode)
3228 && TARGET_FUSED_MADD
3229 && !HONOR_NANS (mode)
3230 && HONOR_SIGNED_ZEROS (mode))
3232 /* See if we can use NMADD or NMSUB. See mips.md for the
3233 associated patterns. */
3234 rtx op = XEXP (x, 0);
3235 if ((GET_CODE (op) == PLUS || GET_CODE (op) == MINUS)
3236 && GET_CODE (XEXP (op, 0)) == MULT)
3238 *total = (mips_fp_mult_cost (mode)
3239 + rtx_cost (XEXP (XEXP (op, 0), 0), 0)
3240 + rtx_cost (XEXP (XEXP (op, 0), 1), 0)
3241 + rtx_cost (XEXP (op, 1), 0));
3242 return true;
3246 if (float_mode_p)
3247 *total = mips_cost->fp_add;
3248 else
3249 *total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 4 : 1);
3250 return false;
3252 case MULT:
3253 if (float_mode_p)
3254 *total = mips_fp_mult_cost (mode);
3255 else if (mode == DImode && !TARGET_64BIT)
3256 /* Synthesized from 2 mulsi3s, 1 mulsidi3 and two additions,
3257 where the mulsidi3 always includes an MFHI and an MFLO. */
3258 *total = (optimize_size
3259 ? COSTS_N_INSNS (ISA_HAS_MUL3 ? 7 : 9)
3260 : mips_cost->int_mult_si * 3 + 6);
3261 else if (optimize_size)
3262 *total = (ISA_HAS_MUL3 ? 1 : 2);
3263 else if (mode == DImode)
3264 *total = mips_cost->int_mult_di;
3265 else
3266 *total = mips_cost->int_mult_si;
3267 return false;
3269 case DIV:
3270 /* Check for a reciprocal. */
3271 if (float_mode_p
3272 && ISA_HAS_FP4
3273 && flag_unsafe_math_optimizations
3274 && XEXP (x, 0) == CONST1_RTX (mode))
3276 if (outer_code == SQRT || GET_CODE (XEXP (x, 1)) == SQRT)
3277 /* An rsqrt<mode>a or rsqrt<mode>b pattern. Count the
3278 division as being free. */
3279 *total = rtx_cost (XEXP (x, 1), 0);
3280 else
3281 *total = mips_fp_div_cost (mode) + rtx_cost (XEXP (x, 1), 0);
3282 return true;
3284 /* Fall through. */
3286 case SQRT:
3287 case MOD:
3288 if (float_mode_p)
3290 *total = mips_fp_div_cost (mode);
3291 return false;
3293 /* Fall through. */
3295 case UDIV:
3296 case UMOD:
3297 if (optimize_size)
3299 /* It is our responsibility to make division by a power of 2
3300 as cheap as 2 register additions if we want the division
3301 expanders to be used for such operations; see the setting
3302 of sdiv_pow2_cheap in optabs.c. Using (D)DIV for MIPS16
3303 should always produce shorter code than using
3304 expand_sdiv2_pow2. */
3305 if (TARGET_MIPS16
3306 && CONST_INT_P (XEXP (x, 1))
3307 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
3309 *total = COSTS_N_INSNS (2) + rtx_cost (XEXP (x, 0), 0);
3310 return true;
3312 *total = COSTS_N_INSNS (mips_idiv_insns ());
3314 else if (mode == DImode)
3315 *total = mips_cost->int_div_di;
3316 else
3317 *total = mips_cost->int_div_si;
3318 return false;
3320 case SIGN_EXTEND:
3321 *total = mips_sign_extend_cost (mode, XEXP (x, 0));
3322 return false;
3324 case ZERO_EXTEND:
3325 *total = mips_zero_extend_cost (mode, XEXP (x, 0));
3326 return false;
3328 case FLOAT:
3329 case UNSIGNED_FLOAT:
3330 case FIX:
3331 case FLOAT_EXTEND:
3332 case FLOAT_TRUNCATE:
3333 *total = mips_cost->fp_add;
3334 return false;
3336 default:
3337 return false;
3341 /* Implement TARGET_ADDRESS_COST. */
3343 static int
3344 mips_address_cost (rtx addr)
3346 return mips_address_insns (addr, SImode, false);
3349 /* Return one word of double-word value OP, taking into account the fixed
3350 endianness of certain registers. HIGH_P is true to select the high part,
3351 false to select the low part. */
3354 mips_subword (rtx op, bool high_p)
3356 unsigned int byte, offset;
3357 enum machine_mode mode;
3359 mode = GET_MODE (op);
3360 if (mode == VOIDmode)
3361 mode = DImode;
3363 if (TARGET_BIG_ENDIAN ? !high_p : high_p)
3364 byte = UNITS_PER_WORD;
3365 else
3366 byte = 0;
3368 if (FP_REG_RTX_P (op))
3370 /* Paired FPRs are always ordered little-endian. */
3371 offset = (UNITS_PER_WORD < UNITS_PER_HWFPVALUE ? high_p : byte != 0);
3372 return gen_rtx_REG (word_mode, REGNO (op) + offset);
3375 if (MEM_P (op))
3376 return mips_rewrite_small_data (adjust_address (op, word_mode, byte));
3378 return simplify_gen_subreg (word_mode, op, mode, byte);
3381 /* Return true if a 64-bit move from SRC to DEST should be split into two. */
3383 bool
3384 mips_split_64bit_move_p (rtx dest, rtx src)
3386 if (TARGET_64BIT)
3387 return false;
3389 /* FPR-to-FPR moves can be done in a single instruction, if they're
3390 allowed at all. */
3391 if (FP_REG_RTX_P (src) && FP_REG_RTX_P (dest))
3392 return false;
3394 /* Check for floating-point loads and stores. */
3395 if (ISA_HAS_LDC1_SDC1)
3397 if (FP_REG_RTX_P (dest) && MEM_P (src))
3398 return false;
3399 if (FP_REG_RTX_P (src) && MEM_P (dest))
3400 return false;
3402 return true;
3405 /* Split a doubleword move from SRC to DEST. On 32-bit targets,
3406 this function handles 64-bit moves for which mips_split_64bit_move_p
3407 holds. For 64-bit targets, this function handles 128-bit moves. */
3409 void
3410 mips_split_doubleword_move (rtx dest, rtx src)
3412 if (FP_REG_RTX_P (dest) || FP_REG_RTX_P (src))
3414 if (!TARGET_64BIT && GET_MODE (dest) == DImode)
3415 emit_insn (gen_move_doubleword_fprdi (dest, src));
3416 else if (!TARGET_64BIT && GET_MODE (dest) == DFmode)
3417 emit_insn (gen_move_doubleword_fprdf (dest, src));
3418 else if (!TARGET_64BIT && GET_MODE (dest) == V2SFmode)
3419 emit_insn (gen_move_doubleword_fprv2sf (dest, src));
3420 else if (TARGET_64BIT && GET_MODE (dest) == TFmode)
3421 emit_insn (gen_move_doubleword_fprtf (dest, src));
3422 else
3423 gcc_unreachable ();
3425 else
3427 /* The operation can be split into two normal moves. Decide in
3428 which order to do them. */
3429 rtx low_dest;
3431 low_dest = mips_subword (dest, false);
3432 if (REG_P (low_dest)
3433 && reg_overlap_mentioned_p (low_dest, src))
3435 mips_emit_move (mips_subword (dest, true), mips_subword (src, true));
3436 mips_emit_move (low_dest, mips_subword (src, false));
3438 else
3440 mips_emit_move (low_dest, mips_subword (src, false));
3441 mips_emit_move (mips_subword (dest, true), mips_subword (src, true));
3446 /* Return the appropriate instructions to move SRC into DEST. Assume
3447 that SRC is operand 1 and DEST is operand 0. */
3449 const char *
3450 mips_output_move (rtx dest, rtx src)
3452 enum rtx_code dest_code, src_code;
3453 enum machine_mode mode;
3454 enum mips_symbol_type symbol_type;
3455 bool dbl_p;
3457 dest_code = GET_CODE (dest);
3458 src_code = GET_CODE (src);
3459 mode = GET_MODE (dest);
3460 dbl_p = (GET_MODE_SIZE (mode) == 8);
3462 if (dbl_p && mips_split_64bit_move_p (dest, src))
3463 return "#";
3465 if ((src_code == REG && GP_REG_P (REGNO (src)))
3466 || (!TARGET_MIPS16 && src == CONST0_RTX (mode)))
3468 if (dest_code == REG)
3470 if (GP_REG_P (REGNO (dest)))
3471 return "move\t%0,%z1";
3473 if (MD_REG_P (REGNO (dest)))
3474 return "mt%0\t%z1";
3476 if (DSP_ACC_REG_P (REGNO (dest)))
3478 static char retval[] = "mt__\t%z1,%q0";
3480 retval[2] = reg_names[REGNO (dest)][4];
3481 retval[3] = reg_names[REGNO (dest)][5];
3482 return retval;
3485 if (FP_REG_P (REGNO (dest)))
3486 return dbl_p ? "dmtc1\t%z1,%0" : "mtc1\t%z1,%0";
3488 if (ALL_COP_REG_P (REGNO (dest)))
3490 static char retval[] = "dmtc_\t%z1,%0";
3492 retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
3493 return dbl_p ? retval : retval + 1;
3496 if (dest_code == MEM)
3497 return dbl_p ? "sd\t%z1,%0" : "sw\t%z1,%0";
3499 if (dest_code == REG && GP_REG_P (REGNO (dest)))
3501 if (src_code == REG)
3503 /* Handled by separate patterns. */
3504 gcc_assert (!MD_REG_P (REGNO (src)));
3506 if (DSP_ACC_REG_P (REGNO (src)))
3508 static char retval[] = "mf__\t%0,%q1";
3510 retval[2] = reg_names[REGNO (src)][4];
3511 retval[3] = reg_names[REGNO (src)][5];
3512 return retval;
3515 if (FP_REG_P (REGNO (src)))
3516 return dbl_p ? "dmfc1\t%0,%1" : "mfc1\t%0,%1";
3518 if (ALL_COP_REG_P (REGNO (src)))
3520 static char retval[] = "dmfc_\t%0,%1";
3522 retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
3523 return dbl_p ? retval : retval + 1;
3526 if (ST_REG_P (REGNO (src)) && ISA_HAS_8CC)
3527 return "lui\t%0,0x3f80\n\tmovf\t%0,%.,%1";
3530 if (src_code == MEM)
3531 return dbl_p ? "ld\t%0,%1" : "lw\t%0,%1";
3533 if (src_code == CONST_INT)
3535 /* Don't use the X format for the operand itself, because that
3536 will give out-of-range numbers for 64-bit hosts and 32-bit
3537 targets. */
3538 if (!TARGET_MIPS16)
3539 return "li\t%0,%1\t\t\t# %X1";
3541 if (SMALL_OPERAND_UNSIGNED (INTVAL (src)))
3542 return "li\t%0,%1";
3544 if (SMALL_OPERAND_UNSIGNED (-INTVAL (src)))
3545 return "#";
3548 if (src_code == HIGH)
3549 return TARGET_MIPS16 ? "#" : "lui\t%0,%h1";
3551 if (CONST_GP_P (src))
3552 return "move\t%0,%1";
3554 if (mips_symbolic_constant_p (src, SYMBOL_CONTEXT_LEA, &symbol_type)
3555 && mips_lo_relocs[symbol_type] != 0)
3557 /* A signed 16-bit constant formed by applying a relocation
3558 operator to a symbolic address. */
3559 gcc_assert (!mips_split_p[symbol_type]);
3560 return "li\t%0,%R1";
3563 if (symbolic_operand (src, VOIDmode))
3565 gcc_assert (TARGET_MIPS16
3566 ? TARGET_MIPS16_TEXT_LOADS
3567 : !TARGET_EXPLICIT_RELOCS);
3568 return dbl_p ? "dla\t%0,%1" : "la\t%0,%1";
3571 if (src_code == REG && FP_REG_P (REGNO (src)))
3573 if (dest_code == REG && FP_REG_P (REGNO (dest)))
3575 if (GET_MODE (dest) == V2SFmode)
3576 return "mov.ps\t%0,%1";
3577 else
3578 return dbl_p ? "mov.d\t%0,%1" : "mov.s\t%0,%1";
3581 if (dest_code == MEM)
3582 return dbl_p ? "sdc1\t%1,%0" : "swc1\t%1,%0";
3584 if (dest_code == REG && FP_REG_P (REGNO (dest)))
3586 if (src_code == MEM)
3587 return dbl_p ? "ldc1\t%0,%1" : "lwc1\t%0,%1";
3589 if (dest_code == REG && ALL_COP_REG_P (REGNO (dest)) && src_code == MEM)
3591 static char retval[] = "l_c_\t%0,%1";
3593 retval[1] = (dbl_p ? 'd' : 'w');
3594 retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
3595 return retval;
3597 if (dest_code == MEM && src_code == REG && ALL_COP_REG_P (REGNO (src)))
3599 static char retval[] = "s_c_\t%1,%0";
3601 retval[1] = (dbl_p ? 'd' : 'w');
3602 retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
3603 return retval;
3605 gcc_unreachable ();
3608 /* Return true if CMP1 is a suitable second operand for integer ordering
3609 test CODE. See also the *sCC patterns in mips.md. */
3611 static bool
3612 mips_int_order_operand_ok_p (enum rtx_code code, rtx cmp1)
3614 switch (code)
3616 case GT:
3617 case GTU:
3618 return reg_or_0_operand (cmp1, VOIDmode);
3620 case GE:
3621 case GEU:
3622 return !TARGET_MIPS16 && cmp1 == const1_rtx;
3624 case LT:
3625 case LTU:
3626 return arith_operand (cmp1, VOIDmode);
3628 case LE:
3629 return sle_operand (cmp1, VOIDmode);
3631 case LEU:
3632 return sleu_operand (cmp1, VOIDmode);
3634 default:
3635 gcc_unreachable ();
3639 /* Return true if *CMP1 (of mode MODE) is a valid second operand for
3640 integer ordering test *CODE, or if an equivalent combination can
3641 be formed by adjusting *CODE and *CMP1. When returning true, update
3642 *CODE and *CMP1 with the chosen code and operand, otherwise leave
3643 them alone. */
3645 static bool
3646 mips_canonicalize_int_order_test (enum rtx_code *code, rtx *cmp1,
3647 enum machine_mode mode)
3649 HOST_WIDE_INT plus_one;
3651 if (mips_int_order_operand_ok_p (*code, *cmp1))
3652 return true;
3654 if (GET_CODE (*cmp1) == CONST_INT)
3655 switch (*code)
3657 case LE:
3658 plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
3659 if (INTVAL (*cmp1) < plus_one)
3661 *code = LT;
3662 *cmp1 = force_reg (mode, GEN_INT (plus_one));
3663 return true;
3665 break;
3667 case LEU:
3668 plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
3669 if (plus_one != 0)
3671 *code = LTU;
3672 *cmp1 = force_reg (mode, GEN_INT (plus_one));
3673 return true;
3675 break;
3677 default:
3678 break;
3680 return false;
3683 /* Compare CMP0 and CMP1 using ordering test CODE and store the result
3684 in TARGET. CMP0 and TARGET are register_operands that have the same
3685 integer mode. If INVERT_PTR is nonnull, it's OK to set TARGET to the
3686 inverse of the result and flip *INVERT_PTR instead. */
3688 static void
3689 mips_emit_int_order_test (enum rtx_code code, bool *invert_ptr,
3690 rtx target, rtx cmp0, rtx cmp1)
3692 enum machine_mode mode;
3694 /* First see if there is a MIPS instruction that can do this operation.
3695 If not, try doing the same for the inverse operation. If that also
3696 fails, force CMP1 into a register and try again. */
3697 mode = GET_MODE (target);
3698 if (mips_canonicalize_int_order_test (&code, &cmp1, mode))
3699 mips_emit_binary (code, target, cmp0, cmp1);
3700 else
3702 enum rtx_code inv_code = reverse_condition (code);
3703 if (!mips_canonicalize_int_order_test (&inv_code, &cmp1, mode))
3705 cmp1 = force_reg (mode, cmp1);
3706 mips_emit_int_order_test (code, invert_ptr, target, cmp0, cmp1);
3708 else if (invert_ptr == 0)
3710 rtx inv_target = gen_reg_rtx (mode);
3711 mips_emit_binary (inv_code, inv_target, cmp0, cmp1);
3712 mips_emit_binary (XOR, target, inv_target, const1_rtx);
3714 else
3716 *invert_ptr = !*invert_ptr;
3717 mips_emit_binary (inv_code, target, cmp0, cmp1);
3722 /* Return a register that is zero iff CMP0 and CMP1 are equal.
3723 The register will have the same mode as CMP0. */
3725 static rtx
3726 mips_zero_if_equal (rtx cmp0, rtx cmp1)
3728 if (cmp1 == const0_rtx)
3729 return cmp0;
3731 if (uns_arith_operand (cmp1, VOIDmode))
3732 return expand_binop (GET_MODE (cmp0), xor_optab,
3733 cmp0, cmp1, 0, 0, OPTAB_DIRECT);
3735 return expand_binop (GET_MODE (cmp0), sub_optab,
3736 cmp0, cmp1, 0, 0, OPTAB_DIRECT);
3739 /* Convert *CODE into a code that can be used in a floating-point
3740 scc instruction (C.cond.fmt). Return true if the values of
3741 the condition code registers will be inverted, with 0 indicating
3742 that the condition holds. */
3744 static bool
3745 mips_reversed_fp_cond (enum rtx_code *code)
3747 switch (*code)
3749 case NE:
3750 case LTGT:
3751 case ORDERED:
3752 *code = reverse_condition_maybe_unordered (*code);
3753 return true;
3755 default:
3756 return false;
3760 /* Convert a comparison into something that can be used in a branch or
3761 conditional move. cmp_operands[0] and cmp_operands[1] are the values
3762 being compared and *CODE is the code used to compare them.
3764 Update *CODE, *OP0 and *OP1 so that they describe the final comparison.
3765 If NEED_EQ_NE_P, then only EQ or NE comparisons against zero are possible,
3766 otherwise any standard branch condition can be used. The standard branch
3767 conditions are:
3769 - EQ or NE between two registers.
3770 - any comparison between a register and zero. */
3772 static void
3773 mips_emit_compare (enum rtx_code *code, rtx *op0, rtx *op1, bool need_eq_ne_p)
3775 if (GET_MODE_CLASS (GET_MODE (cmp_operands[0])) == MODE_INT)
3777 if (!need_eq_ne_p && cmp_operands[1] == const0_rtx)
3779 *op0 = cmp_operands[0];
3780 *op1 = cmp_operands[1];
3782 else if (*code == EQ || *code == NE)
3784 if (need_eq_ne_p)
3786 *op0 = mips_zero_if_equal (cmp_operands[0], cmp_operands[1]);
3787 *op1 = const0_rtx;
3789 else
3791 *op0 = cmp_operands[0];
3792 *op1 = force_reg (GET_MODE (*op0), cmp_operands[1]);
3795 else
3797 /* The comparison needs a separate scc instruction. Store the
3798 result of the scc in *OP0 and compare it against zero. */
3799 bool invert = false;
3800 *op0 = gen_reg_rtx (GET_MODE (cmp_operands[0]));
3801 mips_emit_int_order_test (*code, &invert, *op0,
3802 cmp_operands[0], cmp_operands[1]);
3803 *code = (invert ? EQ : NE);
3804 *op1 = const0_rtx;
3807 else if (ALL_FIXED_POINT_MODE_P (GET_MODE (cmp_operands[0])))
3809 *op0 = gen_rtx_REG (CCDSPmode, CCDSP_CC_REGNUM);
3810 mips_emit_binary (*code, *op0, cmp_operands[0], cmp_operands[1]);
3811 *code = NE;
3812 *op1 = const0_rtx;
3814 else
3816 enum rtx_code cmp_code;
3818 /* Floating-point tests use a separate C.cond.fmt comparison to
3819 set a condition code register. The branch or conditional move
3820 will then compare that register against zero.
3822 Set CMP_CODE to the code of the comparison instruction and
3823 *CODE to the code that the branch or move should use. */
3824 cmp_code = *code;
3825 *code = mips_reversed_fp_cond (&cmp_code) ? EQ : NE;
3826 *op0 = (ISA_HAS_8CC
3827 ? gen_reg_rtx (CCmode)
3828 : gen_rtx_REG (CCmode, FPSW_REGNUM));
3829 *op1 = const0_rtx;
3830 mips_emit_binary (cmp_code, *op0, cmp_operands[0], cmp_operands[1]);
3834 /* Try comparing cmp_operands[0] and cmp_operands[1] using rtl code CODE.
3835 Store the result in TARGET and return true if successful.
3837 On 64-bit targets, TARGET may be wider than cmp_operands[0]. */
3839 bool
3840 mips_expand_scc (enum rtx_code code, rtx target)
3842 if (GET_MODE_CLASS (GET_MODE (cmp_operands[0])) != MODE_INT)
3843 return false;
3845 target = gen_lowpart (GET_MODE (cmp_operands[0]), target);
3846 if (code == EQ || code == NE)
3848 rtx zie = mips_zero_if_equal (cmp_operands[0], cmp_operands[1]);
3849 mips_emit_binary (code, target, zie, const0_rtx);
3851 else
3852 mips_emit_int_order_test (code, 0, target,
3853 cmp_operands[0], cmp_operands[1]);
3854 return true;
3857 /* Compare cmp_operands[0] with cmp_operands[1] using comparison code
3858 CODE and jump to OPERANDS[0] if the condition holds. */
3860 void
3861 mips_expand_conditional_branch (rtx *operands, enum rtx_code code)
3863 rtx op0, op1, condition;
3865 mips_emit_compare (&code, &op0, &op1, TARGET_MIPS16);
3866 condition = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
3867 emit_jump_insn (gen_condjump (condition, operands[0]));
3870 /* Implement:
3872 (set temp (COND:CCV2 CMP_OP0 CMP_OP1))
3873 (set DEST (unspec [TRUE_SRC FALSE_SRC temp] UNSPEC_MOVE_TF_PS)) */
3875 void
3876 mips_expand_vcondv2sf (rtx dest, rtx true_src, rtx false_src,
3877 enum rtx_code cond, rtx cmp_op0, rtx cmp_op1)
3879 rtx cmp_result;
3880 bool reversed_p;
3882 reversed_p = mips_reversed_fp_cond (&cond);
3883 cmp_result = gen_reg_rtx (CCV2mode);
3884 emit_insn (gen_scc_ps (cmp_result,
3885 gen_rtx_fmt_ee (cond, VOIDmode, cmp_op0, cmp_op1)));
3886 if (reversed_p)
3887 emit_insn (gen_mips_cond_move_tf_ps (dest, false_src, true_src,
3888 cmp_result));
3889 else
3890 emit_insn (gen_mips_cond_move_tf_ps (dest, true_src, false_src,
3891 cmp_result));
3894 /* Compare cmp_operands[0] with cmp_operands[1] using the code of
3895 OPERANDS[1]. Move OPERANDS[2] into OPERANDS[0] if the condition
3896 holds, otherwise move OPERANDS[3] into OPERANDS[0]. */
3898 void
3899 mips_expand_conditional_move (rtx *operands)
3901 enum rtx_code code;
3902 rtx cond, op0, op1;
3904 code = GET_CODE (operands[1]);
3905 mips_emit_compare (&code, &op0, &op1, true);
3906 cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1),
3907 emit_insn (gen_rtx_SET (VOIDmode, operands[0],
3908 gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]), cond,
3909 operands[2], operands[3])));
3912 /* Compare cmp_operands[0] with cmp_operands[1] using rtl code CODE,
3913 then trap if the condition holds. */
3915 void
3916 mips_expand_conditional_trap (enum rtx_code code)
3918 rtx op0, op1;
3919 enum machine_mode mode;
3921 /* MIPS conditional trap instructions don't have GT or LE flavors,
3922 so we must swap the operands and convert to LT and GE respectively. */
3923 switch (code)
3925 case GT:
3926 case LE:
3927 case GTU:
3928 case LEU:
3929 code = swap_condition (code);
3930 op0 = cmp_operands[1];
3931 op1 = cmp_operands[0];
3932 break;
3934 default:
3935 op0 = cmp_operands[0];
3936 op1 = cmp_operands[1];
3937 break;
3940 mode = GET_MODE (cmp_operands[0]);
3941 op0 = force_reg (mode, op0);
3942 if (!arith_operand (op1, mode))
3943 op1 = force_reg (mode, op1);
3945 emit_insn (gen_rtx_TRAP_IF (VOIDmode,
3946 gen_rtx_fmt_ee (code, mode, op0, op1),
3947 const0_rtx));
3950 /* Initialize *CUM for a call to a function of type FNTYPE. */
3952 void
3953 mips_init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype)
3955 memset (cum, 0, sizeof (*cum));
3956 cum->prototype = (fntype && prototype_p (fntype));
3957 cum->gp_reg_found = (cum->prototype && stdarg_p (fntype));
3960 /* Fill INFO with information about a single argument. CUM is the
3961 cumulative state for earlier arguments. MODE is the mode of this
3962 argument and TYPE is its type (if known). NAMED is true if this
3963 is a named (fixed) argument rather than a variable one. */
3965 static void
3966 mips_get_arg_info (struct mips_arg_info *info, const CUMULATIVE_ARGS *cum,
3967 enum machine_mode mode, tree type, int named)
3969 bool doubleword_aligned_p;
3970 unsigned int num_bytes, num_words, max_regs;
3972 /* Work out the size of the argument. */
3973 num_bytes = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
3974 num_words = (num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
3976 /* Decide whether it should go in a floating-point register, assuming
3977 one is free. Later code checks for availability.
3979 The checks against UNITS_PER_FPVALUE handle the soft-float and
3980 single-float cases. */
3981 switch (mips_abi)
3983 case ABI_EABI:
3984 /* The EABI conventions have traditionally been defined in terms
3985 of TYPE_MODE, regardless of the actual type. */
3986 info->fpr_p = ((GET_MODE_CLASS (mode) == MODE_FLOAT
3987 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
3988 && GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
3989 break;
3991 case ABI_32:
3992 case ABI_O64:
3993 /* Only leading floating-point scalars are passed in
3994 floating-point registers. We also handle vector floats the same
3995 say, which is OK because they are not covered by the standard ABI. */
3996 info->fpr_p = (!cum->gp_reg_found
3997 && cum->arg_number < 2
3998 && (type == 0
3999 || SCALAR_FLOAT_TYPE_P (type)
4000 || VECTOR_FLOAT_TYPE_P (type))
4001 && (GET_MODE_CLASS (mode) == MODE_FLOAT
4002 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
4003 && GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
4004 break;
4006 case ABI_N32:
4007 case ABI_64:
4008 /* Scalar, complex and vector floating-point types are passed in
4009 floating-point registers, as long as this is a named rather
4010 than a variable argument. */
4011 info->fpr_p = (named
4012 && (type == 0 || FLOAT_TYPE_P (type))
4013 && (GET_MODE_CLASS (mode) == MODE_FLOAT
4014 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
4015 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
4016 && GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_FPVALUE);
4018 /* ??? According to the ABI documentation, the real and imaginary
4019 parts of complex floats should be passed in individual registers.
4020 The real and imaginary parts of stack arguments are supposed
4021 to be contiguous and there should be an extra word of padding
4022 at the end.
4024 This has two problems. First, it makes it impossible to use a
4025 single "void *" va_list type, since register and stack arguments
4026 are passed differently. (At the time of writing, MIPSpro cannot
4027 handle complex float varargs correctly.) Second, it's unclear
4028 what should happen when there is only one register free.
4030 For now, we assume that named complex floats should go into FPRs
4031 if there are two FPRs free, otherwise they should be passed in the
4032 same way as a struct containing two floats. */
4033 if (info->fpr_p
4034 && GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
4035 && GET_MODE_UNIT_SIZE (mode) < UNITS_PER_FPVALUE)
4037 if (cum->num_gprs >= MAX_ARGS_IN_REGISTERS - 1)
4038 info->fpr_p = false;
4039 else
4040 num_words = 2;
4042 break;
4044 default:
4045 gcc_unreachable ();
4048 /* See whether the argument has doubleword alignment. */
4049 doubleword_aligned_p = FUNCTION_ARG_BOUNDARY (mode, type) > BITS_PER_WORD;
4051 /* Set REG_OFFSET to the register count we're interested in.
4052 The EABI allocates the floating-point registers separately,
4053 but the other ABIs allocate them like integer registers. */
4054 info->reg_offset = (mips_abi == ABI_EABI && info->fpr_p
4055 ? cum->num_fprs
4056 : cum->num_gprs);
4058 /* Advance to an even register if the argument is doubleword-aligned. */
4059 if (doubleword_aligned_p)
4060 info->reg_offset += info->reg_offset & 1;
4062 /* Work out the offset of a stack argument. */
4063 info->stack_offset = cum->stack_words;
4064 if (doubleword_aligned_p)
4065 info->stack_offset += info->stack_offset & 1;
4067 max_regs = MAX_ARGS_IN_REGISTERS - info->reg_offset;
4069 /* Partition the argument between registers and stack. */
4070 info->reg_words = MIN (num_words, max_regs);
4071 info->stack_words = num_words - info->reg_words;
4074 /* INFO describes a register argument that has the normal format for the
4075 argument's mode. Return the register it uses, assuming that FPRs are
4076 available if HARD_FLOAT_P. */
4078 static unsigned int
4079 mips_arg_regno (const struct mips_arg_info *info, bool hard_float_p)
4081 if (!info->fpr_p || !hard_float_p)
4082 return GP_ARG_FIRST + info->reg_offset;
4083 else if (mips_abi == ABI_32 && TARGET_DOUBLE_FLOAT && info->reg_offset > 0)
4084 /* In o32, the second argument is always passed in $f14
4085 for TARGET_DOUBLE_FLOAT, regardless of whether the
4086 first argument was a word or doubleword. */
4087 return FP_ARG_FIRST + 2;
4088 else
4089 return FP_ARG_FIRST + info->reg_offset;
4092 /* Implement TARGET_STRICT_ARGUMENT_NAMING. */
4094 static bool
4095 mips_strict_argument_naming (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED)
4097 return !TARGET_OLDABI;
4100 /* Implement FUNCTION_ARG. */
4103 mips_function_arg (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
4104 tree type, int named)
4106 struct mips_arg_info info;
4108 /* We will be called with a mode of VOIDmode after the last argument
4109 has been seen. Whatever we return will be passed to the call expander.
4110 If we need a MIPS16 fp_code, return a REG with the code stored as
4111 the mode. */
4112 if (mode == VOIDmode)
4114 if (TARGET_MIPS16 && cum->fp_code != 0)
4115 return gen_rtx_REG ((enum machine_mode) cum->fp_code, 0);
4116 else
4117 return NULL;
4120 mips_get_arg_info (&info, cum, mode, type, named);
4122 /* Return straight away if the whole argument is passed on the stack. */
4123 if (info.reg_offset == MAX_ARGS_IN_REGISTERS)
4124 return NULL;
4126 /* The n32 and n64 ABIs say that if any 64-bit chunk of the structure
4127 contains a double in its entirety, then that 64-bit chunk is passed
4128 in a floating-point register. */
4129 if (TARGET_NEWABI
4130 && TARGET_HARD_FLOAT
4131 && named
4132 && type != 0
4133 && TREE_CODE (type) == RECORD_TYPE
4134 && TYPE_SIZE_UNIT (type)
4135 && host_integerp (TYPE_SIZE_UNIT (type), 1))
4137 tree field;
4139 /* First check to see if there is any such field. */
4140 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
4141 if (TREE_CODE (field) == FIELD_DECL
4142 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (field))
4143 && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD
4144 && host_integerp (bit_position (field), 0)
4145 && int_bit_position (field) % BITS_PER_WORD == 0)
4146 break;
4148 if (field != 0)
4150 /* Now handle the special case by returning a PARALLEL
4151 indicating where each 64-bit chunk goes. INFO.REG_WORDS
4152 chunks are passed in registers. */
4153 unsigned int i;
4154 HOST_WIDE_INT bitpos;
4155 rtx ret;
4157 /* assign_parms checks the mode of ENTRY_PARM, so we must
4158 use the actual mode here. */
4159 ret = gen_rtx_PARALLEL (mode, rtvec_alloc (info.reg_words));
4161 bitpos = 0;
4162 field = TYPE_FIELDS (type);
4163 for (i = 0; i < info.reg_words; i++)
4165 rtx reg;
4167 for (; field; field = TREE_CHAIN (field))
4168 if (TREE_CODE (field) == FIELD_DECL
4169 && int_bit_position (field) >= bitpos)
4170 break;
4172 if (field
4173 && int_bit_position (field) == bitpos
4174 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (field))
4175 && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD)
4176 reg = gen_rtx_REG (DFmode, FP_ARG_FIRST + info.reg_offset + i);
4177 else
4178 reg = gen_rtx_REG (DImode, GP_ARG_FIRST + info.reg_offset + i);
4180 XVECEXP (ret, 0, i)
4181 = gen_rtx_EXPR_LIST (VOIDmode, reg,
4182 GEN_INT (bitpos / BITS_PER_UNIT));
4184 bitpos += BITS_PER_WORD;
4186 return ret;
4190 /* Handle the n32/n64 conventions for passing complex floating-point
4191 arguments in FPR pairs. The real part goes in the lower register
4192 and the imaginary part goes in the upper register. */
4193 if (TARGET_NEWABI
4194 && info.fpr_p
4195 && GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
4197 rtx real, imag;
4198 enum machine_mode inner;
4199 unsigned int regno;
4201 inner = GET_MODE_INNER (mode);
4202 regno = FP_ARG_FIRST + info.reg_offset;
4203 if (info.reg_words * UNITS_PER_WORD == GET_MODE_SIZE (inner))
4205 /* Real part in registers, imaginary part on stack. */
4206 gcc_assert (info.stack_words == info.reg_words);
4207 return gen_rtx_REG (inner, regno);
4209 else
4211 gcc_assert (info.stack_words == 0);
4212 real = gen_rtx_EXPR_LIST (VOIDmode,
4213 gen_rtx_REG (inner, regno),
4214 const0_rtx);
4215 imag = gen_rtx_EXPR_LIST (VOIDmode,
4216 gen_rtx_REG (inner,
4217 regno + info.reg_words / 2),
4218 GEN_INT (GET_MODE_SIZE (inner)));
4219 return gen_rtx_PARALLEL (mode, gen_rtvec (2, real, imag));
4223 return gen_rtx_REG (mode, mips_arg_regno (&info, TARGET_HARD_FLOAT));
4226 /* Implement FUNCTION_ARG_ADVANCE. */
4228 void
4229 mips_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
4230 tree type, int named)
4232 struct mips_arg_info info;
4234 mips_get_arg_info (&info, cum, mode, type, named);
4236 if (!info.fpr_p)
4237 cum->gp_reg_found = true;
4239 /* See the comment above the CUMULATIVE_ARGS structure in mips.h for
4240 an explanation of what this code does. It assumes that we're using
4241 either the o32 or the o64 ABI, both of which pass at most 2 arguments
4242 in FPRs. */
4243 if (cum->arg_number < 2 && info.fpr_p)
4244 cum->fp_code += (mode == SFmode ? 1 : 2) << (cum->arg_number * 2);
4246 /* Advance the register count. This has the effect of setting
4247 num_gprs to MAX_ARGS_IN_REGISTERS if a doubleword-aligned
4248 argument required us to skip the final GPR and pass the whole
4249 argument on the stack. */
4250 if (mips_abi != ABI_EABI || !info.fpr_p)
4251 cum->num_gprs = info.reg_offset + info.reg_words;
4252 else if (info.reg_words > 0)
4253 cum->num_fprs += MAX_FPRS_PER_FMT;
4255 /* Advance the stack word count. */
4256 if (info.stack_words > 0)
4257 cum->stack_words = info.stack_offset + info.stack_words;
4259 cum->arg_number++;
4262 /* Implement TARGET_ARG_PARTIAL_BYTES. */
4264 static int
4265 mips_arg_partial_bytes (CUMULATIVE_ARGS *cum,
4266 enum machine_mode mode, tree type, bool named)
4268 struct mips_arg_info info;
4270 mips_get_arg_info (&info, cum, mode, type, named);
4271 return info.stack_words > 0 ? info.reg_words * UNITS_PER_WORD : 0;
4274 /* Implement FUNCTION_ARG_BOUNDARY. Every parameter gets at least
4275 PARM_BOUNDARY bits of alignment, but will be given anything up
4276 to STACK_BOUNDARY bits if the type requires it. */
4279 mips_function_arg_boundary (enum machine_mode mode, tree type)
4281 unsigned int alignment;
4283 alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
4284 if (alignment < PARM_BOUNDARY)
4285 alignment = PARM_BOUNDARY;
4286 if (alignment > STACK_BOUNDARY)
4287 alignment = STACK_BOUNDARY;
4288 return alignment;
4291 /* Return true if FUNCTION_ARG_PADDING (MODE, TYPE) should return
4292 upward rather than downward. In other words, return true if the
4293 first byte of the stack slot has useful data, false if the last
4294 byte does. */
4296 bool
4297 mips_pad_arg_upward (enum machine_mode mode, const_tree type)
4299 /* On little-endian targets, the first byte of every stack argument
4300 is passed in the first byte of the stack slot. */
4301 if (!BYTES_BIG_ENDIAN)
4302 return true;
4304 /* Otherwise, integral types are padded downward: the last byte of a
4305 stack argument is passed in the last byte of the stack slot. */
4306 if (type != 0
4307 ? (INTEGRAL_TYPE_P (type)
4308 || POINTER_TYPE_P (type)
4309 || FIXED_POINT_TYPE_P (type))
4310 : (SCALAR_INT_MODE_P (mode)
4311 || ALL_SCALAR_FIXED_POINT_MODE_P (mode)))
4312 return false;
4314 /* Big-endian o64 pads floating-point arguments downward. */
4315 if (mips_abi == ABI_O64)
4316 if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
4317 return false;
4319 /* Other types are padded upward for o32, o64, n32 and n64. */
4320 if (mips_abi != ABI_EABI)
4321 return true;
4323 /* Arguments smaller than a stack slot are padded downward. */
4324 if (mode != BLKmode)
4325 return GET_MODE_BITSIZE (mode) >= PARM_BOUNDARY;
4326 else
4327 return int_size_in_bytes (type) >= (PARM_BOUNDARY / BITS_PER_UNIT);
4330 /* Likewise BLOCK_REG_PADDING (MODE, TYPE, ...). Return !BYTES_BIG_ENDIAN
4331 if the least significant byte of the register has useful data. Return
4332 the opposite if the most significant byte does. */
4334 bool
4335 mips_pad_reg_upward (enum machine_mode mode, tree type)
4337 /* No shifting is required for floating-point arguments. */
4338 if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
4339 return !BYTES_BIG_ENDIAN;
4341 /* Otherwise, apply the same padding to register arguments as we do
4342 to stack arguments. */
4343 return mips_pad_arg_upward (mode, type);
4346 /* Return nonzero when an argument must be passed by reference. */
4348 static bool
4349 mips_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
4350 enum machine_mode mode, const_tree type,
4351 bool named ATTRIBUTE_UNUSED)
4353 if (mips_abi == ABI_EABI)
4355 int size;
4357 /* ??? How should SCmode be handled? */
4358 if (mode == DImode || mode == DFmode
4359 || mode == DQmode || mode == UDQmode
4360 || mode == DAmode || mode == UDAmode)
4361 return 0;
4363 size = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
4364 return size == -1 || size > UNITS_PER_WORD;
4366 else
4368 /* If we have a variable-sized parameter, we have no choice. */
4369 return targetm.calls.must_pass_in_stack (mode, type);
4373 /* Implement TARGET_CALLEE_COPIES. */
4375 static bool
4376 mips_callee_copies (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
4377 enum machine_mode mode ATTRIBUTE_UNUSED,
4378 const_tree type ATTRIBUTE_UNUSED, bool named)
4380 return mips_abi == ABI_EABI && named;
4383 /* See whether VALTYPE is a record whose fields should be returned in
4384 floating-point registers. If so, return the number of fields and
4385 list them in FIELDS (which should have two elements). Return 0
4386 otherwise.
4388 For n32 & n64, a structure with one or two fields is returned in
4389 floating-point registers as long as every field has a floating-point
4390 type. */
4392 static int
4393 mips_fpr_return_fields (const_tree valtype, tree *fields)
4395 tree field;
4396 int i;
4398 if (!TARGET_NEWABI)
4399 return 0;
4401 if (TREE_CODE (valtype) != RECORD_TYPE)
4402 return 0;
4404 i = 0;
4405 for (field = TYPE_FIELDS (valtype); field != 0; field = TREE_CHAIN (field))
4407 if (TREE_CODE (field) != FIELD_DECL)
4408 continue;
4410 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (field)))
4411 return 0;
4413 if (i == 2)
4414 return 0;
4416 fields[i++] = field;
4418 return i;
4421 /* Implement TARGET_RETURN_IN_MSB. For n32 & n64, we should return
4422 a value in the most significant part of $2/$3 if:
4424 - the target is big-endian;
4426 - the value has a structure or union type (we generalize this to
4427 cover aggregates from other languages too); and
4429 - the structure is not returned in floating-point registers. */
4431 static bool
4432 mips_return_in_msb (const_tree valtype)
4434 tree fields[2];
4436 return (TARGET_NEWABI
4437 && TARGET_BIG_ENDIAN
4438 && AGGREGATE_TYPE_P (valtype)
4439 && mips_fpr_return_fields (valtype, fields) == 0);
4442 /* Return true if the function return value MODE will get returned in a
4443 floating-point register. */
4445 static bool
4446 mips_return_mode_in_fpr_p (enum machine_mode mode)
4448 return ((GET_MODE_CLASS (mode) == MODE_FLOAT
4449 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
4450 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
4451 && GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_HWFPVALUE);
4454 /* Return a composite value in a pair of floating-point registers.
4455 MODE1 and OFFSET1 are the mode and byte offset for the first value,
4456 likewise MODE2 and OFFSET2 for the second. MODE is the mode of the
4457 complete value.
4459 For n32 & n64, $f0 always holds the first value and $f2 the second.
4460 Otherwise the values are packed together as closely as possible. */
4462 static rtx
4463 mips_return_fpr_pair (enum machine_mode mode,
4464 enum machine_mode mode1, HOST_WIDE_INT offset1,
4465 enum machine_mode mode2, HOST_WIDE_INT offset2)
4467 int inc;
4469 inc = (TARGET_NEWABI ? 2 : MAX_FPRS_PER_FMT);
4470 return gen_rtx_PARALLEL
4471 (mode,
4472 gen_rtvec (2,
4473 gen_rtx_EXPR_LIST (VOIDmode,
4474 gen_rtx_REG (mode1, FP_RETURN),
4475 GEN_INT (offset1)),
4476 gen_rtx_EXPR_LIST (VOIDmode,
4477 gen_rtx_REG (mode2, FP_RETURN + inc),
4478 GEN_INT (offset2))));
4482 /* Implement FUNCTION_VALUE and LIBCALL_VALUE. For normal calls,
4483 VALTYPE is the return type and MODE is VOIDmode. For libcalls,
4484 VALTYPE is null and MODE is the mode of the return value. */
4487 mips_function_value (const_tree valtype, enum machine_mode mode)
4489 if (valtype)
4491 tree fields[2];
4492 int unsigned_p;
4494 mode = TYPE_MODE (valtype);
4495 unsigned_p = TYPE_UNSIGNED (valtype);
4497 /* Since TARGET_PROMOTE_FUNCTION_RETURN unconditionally returns true,
4498 we must promote the mode just as PROMOTE_MODE does. */
4499 mode = promote_mode (valtype, mode, &unsigned_p, 1);
4501 /* Handle structures whose fields are returned in $f0/$f2. */
4502 switch (mips_fpr_return_fields (valtype, fields))
4504 case 1:
4505 return gen_rtx_REG (mode, FP_RETURN);
4507 case 2:
4508 return mips_return_fpr_pair (mode,
4509 TYPE_MODE (TREE_TYPE (fields[0])),
4510 int_byte_position (fields[0]),
4511 TYPE_MODE (TREE_TYPE (fields[1])),
4512 int_byte_position (fields[1]));
4515 /* If a value is passed in the most significant part of a register, see
4516 whether we have to round the mode up to a whole number of words. */
4517 if (mips_return_in_msb (valtype))
4519 HOST_WIDE_INT size = int_size_in_bytes (valtype);
4520 if (size % UNITS_PER_WORD != 0)
4522 size += UNITS_PER_WORD - size % UNITS_PER_WORD;
4523 mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
4527 /* For EABI, the class of return register depends entirely on MODE.
4528 For example, "struct { some_type x; }" and "union { some_type x; }"
4529 are returned in the same way as a bare "some_type" would be.
4530 Other ABIs only use FPRs for scalar, complex or vector types. */
4531 if (mips_abi != ABI_EABI && !FLOAT_TYPE_P (valtype))
4532 return gen_rtx_REG (mode, GP_RETURN);
4535 if (!TARGET_MIPS16)
4537 /* Handle long doubles for n32 & n64. */
4538 if (mode == TFmode)
4539 return mips_return_fpr_pair (mode,
4540 DImode, 0,
4541 DImode, GET_MODE_SIZE (mode) / 2);
4543 if (mips_return_mode_in_fpr_p (mode))
4545 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
4546 return mips_return_fpr_pair (mode,
4547 GET_MODE_INNER (mode), 0,
4548 GET_MODE_INNER (mode),
4549 GET_MODE_SIZE (mode) / 2);
4550 else
4551 return gen_rtx_REG (mode, FP_RETURN);
4555 return gen_rtx_REG (mode, GP_RETURN);
4558 /* Implement TARGET_RETURN_IN_MEMORY. Under the o32 and o64 ABIs,
4559 all BLKmode objects are returned in memory. Under the n32, n64
4560 and embedded ABIs, small structures are returned in a register.
4561 Objects with varying size must still be returned in memory, of
4562 course. */
4564 static bool
4565 mips_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED)
4567 return (TARGET_OLDABI
4568 ? TYPE_MODE (type) == BLKmode
4569 : !IN_RANGE (int_size_in_bytes (type), 0, 2 * UNITS_PER_WORD));
4572 /* Implement TARGET_SETUP_INCOMING_VARARGS. */
4574 static void
4575 mips_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
4576 tree type, int *pretend_size ATTRIBUTE_UNUSED,
4577 int no_rtl)
4579 CUMULATIVE_ARGS local_cum;
4580 int gp_saved, fp_saved;
4582 /* The caller has advanced CUM up to, but not beyond, the last named
4583 argument. Advance a local copy of CUM past the last "real" named
4584 argument, to find out how many registers are left over. */
4585 local_cum = *cum;
4586 FUNCTION_ARG_ADVANCE (local_cum, mode, type, true);
4588 /* Found out how many registers we need to save. */
4589 gp_saved = MAX_ARGS_IN_REGISTERS - local_cum.num_gprs;
4590 fp_saved = (EABI_FLOAT_VARARGS_P
4591 ? MAX_ARGS_IN_REGISTERS - local_cum.num_fprs
4592 : 0);
4594 if (!no_rtl)
4596 if (gp_saved > 0)
4598 rtx ptr, mem;
4600 ptr = plus_constant (virtual_incoming_args_rtx,
4601 REG_PARM_STACK_SPACE (cfun->decl)
4602 - gp_saved * UNITS_PER_WORD);
4603 mem = gen_frame_mem (BLKmode, ptr);
4604 set_mem_alias_set (mem, get_varargs_alias_set ());
4606 move_block_from_reg (local_cum.num_gprs + GP_ARG_FIRST,
4607 mem, gp_saved);
4609 if (fp_saved > 0)
4611 /* We can't use move_block_from_reg, because it will use
4612 the wrong mode. */
4613 enum machine_mode mode;
4614 int off, i;
4616 /* Set OFF to the offset from virtual_incoming_args_rtx of
4617 the first float register. The FP save area lies below
4618 the integer one, and is aligned to UNITS_PER_FPVALUE bytes. */
4619 off = (-gp_saved * UNITS_PER_WORD) & -UNITS_PER_FPVALUE;
4620 off -= fp_saved * UNITS_PER_FPREG;
4622 mode = TARGET_SINGLE_FLOAT ? SFmode : DFmode;
4624 for (i = local_cum.num_fprs; i < MAX_ARGS_IN_REGISTERS;
4625 i += MAX_FPRS_PER_FMT)
4627 rtx ptr, mem;
4629 ptr = plus_constant (virtual_incoming_args_rtx, off);
4630 mem = gen_frame_mem (mode, ptr);
4631 set_mem_alias_set (mem, get_varargs_alias_set ());
4632 mips_emit_move (mem, gen_rtx_REG (mode, FP_ARG_FIRST + i));
4633 off += UNITS_PER_HWFPVALUE;
4637 if (REG_PARM_STACK_SPACE (cfun->decl) == 0)
4638 cfun->machine->varargs_size = (gp_saved * UNITS_PER_WORD
4639 + fp_saved * UNITS_PER_FPREG);
4642 /* Implement TARGET_BUILTIN_VA_LIST. */
4644 static tree
4645 mips_build_builtin_va_list (void)
4647 if (EABI_FLOAT_VARARGS_P)
4649 /* We keep 3 pointers, and two offsets.
4651 Two pointers are to the overflow area, which starts at the CFA.
4652 One of these is constant, for addressing into the GPR save area
4653 below it. The other is advanced up the stack through the
4654 overflow region.
4656 The third pointer is to the bottom of the GPR save area.
4657 Since the FPR save area is just below it, we can address
4658 FPR slots off this pointer.
4660 We also keep two one-byte offsets, which are to be subtracted
4661 from the constant pointers to yield addresses in the GPR and
4662 FPR save areas. These are downcounted as float or non-float
4663 arguments are used, and when they get to zero, the argument
4664 must be obtained from the overflow region. */
4665 tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff, f_res, record;
4666 tree array, index;
4668 record = lang_hooks.types.make_type (RECORD_TYPE);
4670 f_ovfl = build_decl (FIELD_DECL, get_identifier ("__overflow_argptr"),
4671 ptr_type_node);
4672 f_gtop = build_decl (FIELD_DECL, get_identifier ("__gpr_top"),
4673 ptr_type_node);
4674 f_ftop = build_decl (FIELD_DECL, get_identifier ("__fpr_top"),
4675 ptr_type_node);
4676 f_goff = build_decl (FIELD_DECL, get_identifier ("__gpr_offset"),
4677 unsigned_char_type_node);
4678 f_foff = build_decl (FIELD_DECL, get_identifier ("__fpr_offset"),
4679 unsigned_char_type_node);
4680 /* Explicitly pad to the size of a pointer, so that -Wpadded won't
4681 warn on every user file. */
4682 index = build_int_cst (NULL_TREE, GET_MODE_SIZE (ptr_mode) - 2 - 1);
4683 array = build_array_type (unsigned_char_type_node,
4684 build_index_type (index));
4685 f_res = build_decl (FIELD_DECL, get_identifier ("__reserved"), array);
4687 DECL_FIELD_CONTEXT (f_ovfl) = record;
4688 DECL_FIELD_CONTEXT (f_gtop) = record;
4689 DECL_FIELD_CONTEXT (f_ftop) = record;
4690 DECL_FIELD_CONTEXT (f_goff) = record;
4691 DECL_FIELD_CONTEXT (f_foff) = record;
4692 DECL_FIELD_CONTEXT (f_res) = record;
4694 TYPE_FIELDS (record) = f_ovfl;
4695 TREE_CHAIN (f_ovfl) = f_gtop;
4696 TREE_CHAIN (f_gtop) = f_ftop;
4697 TREE_CHAIN (f_ftop) = f_goff;
4698 TREE_CHAIN (f_goff) = f_foff;
4699 TREE_CHAIN (f_foff) = f_res;
4701 layout_type (record);
4702 return record;
4704 else if (TARGET_IRIX && TARGET_IRIX6)
4705 /* On IRIX 6, this type is 'char *'. */
4706 return build_pointer_type (char_type_node);
4707 else
4708 /* Otherwise, we use 'void *'. */
4709 return ptr_type_node;
4712 /* Implement EXPAND_BUILTIN_VA_START. */
4714 void
4715 mips_va_start (tree valist, rtx nextarg)
4717 if (EABI_FLOAT_VARARGS_P)
4719 const CUMULATIVE_ARGS *cum;
4720 tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
4721 tree ovfl, gtop, ftop, goff, foff;
4722 tree t;
4723 int gpr_save_area_size;
4724 int fpr_save_area_size;
4725 int fpr_offset;
4727 cum = &current_function_args_info;
4728 gpr_save_area_size
4729 = (MAX_ARGS_IN_REGISTERS - cum->num_gprs) * UNITS_PER_WORD;
4730 fpr_save_area_size
4731 = (MAX_ARGS_IN_REGISTERS - cum->num_fprs) * UNITS_PER_FPREG;
4733 f_ovfl = TYPE_FIELDS (va_list_type_node);
4734 f_gtop = TREE_CHAIN (f_ovfl);
4735 f_ftop = TREE_CHAIN (f_gtop);
4736 f_goff = TREE_CHAIN (f_ftop);
4737 f_foff = TREE_CHAIN (f_goff);
4739 ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
4740 NULL_TREE);
4741 gtop = build3 (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop,
4742 NULL_TREE);
4743 ftop = build3 (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop,
4744 NULL_TREE);
4745 goff = build3 (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff,
4746 NULL_TREE);
4747 foff = build3 (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff,
4748 NULL_TREE);
4750 /* Emit code to initialize OVFL, which points to the next varargs
4751 stack argument. CUM->STACK_WORDS gives the number of stack
4752 words used by named arguments. */
4753 t = make_tree (TREE_TYPE (ovfl), virtual_incoming_args_rtx);
4754 if (cum->stack_words > 0)
4755 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (ovfl), t,
4756 size_int (cum->stack_words * UNITS_PER_WORD));
4757 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (ovfl), ovfl, t);
4758 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
4760 /* Emit code to initialize GTOP, the top of the GPR save area. */
4761 t = make_tree (TREE_TYPE (gtop), virtual_incoming_args_rtx);
4762 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (gtop), gtop, t);
4763 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
4765 /* Emit code to initialize FTOP, the top of the FPR save area.
4766 This address is gpr_save_area_bytes below GTOP, rounded
4767 down to the next fp-aligned boundary. */
4768 t = make_tree (TREE_TYPE (ftop), virtual_incoming_args_rtx);
4769 fpr_offset = gpr_save_area_size + UNITS_PER_FPVALUE - 1;
4770 fpr_offset &= -UNITS_PER_FPVALUE;
4771 if (fpr_offset)
4772 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (ftop), t,
4773 size_int (-fpr_offset));
4774 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (ftop), ftop, t);
4775 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
4777 /* Emit code to initialize GOFF, the offset from GTOP of the
4778 next GPR argument. */
4779 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (goff), goff,
4780 build_int_cst (TREE_TYPE (goff), gpr_save_area_size));
4781 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
4783 /* Likewise emit code to initialize FOFF, the offset from FTOP
4784 of the next FPR argument. */
4785 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (foff), foff,
4786 build_int_cst (TREE_TYPE (foff), fpr_save_area_size));
4787 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
4789 else
4791 nextarg = plus_constant (nextarg, -cfun->machine->varargs_size);
4792 std_expand_builtin_va_start (valist, nextarg);
4796 /* Implement TARGET_GIMPLIFY_VA_ARG_EXPR. */
4798 static tree
4799 mips_gimplify_va_arg_expr (tree valist, tree type, tree *pre_p, tree *post_p)
4801 tree addr;
4802 bool indirect_p;
4804 indirect_p = pass_by_reference (NULL, TYPE_MODE (type), type, 0);
4805 if (indirect_p)
4806 type = build_pointer_type (type);
4808 if (!EABI_FLOAT_VARARGS_P)
4809 addr = std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
4810 else
4812 tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
4813 tree ovfl, top, off, align;
4814 HOST_WIDE_INT size, rsize, osize;
4815 tree t, u;
4817 f_ovfl = TYPE_FIELDS (va_list_type_node);
4818 f_gtop = TREE_CHAIN (f_ovfl);
4819 f_ftop = TREE_CHAIN (f_gtop);
4820 f_goff = TREE_CHAIN (f_ftop);
4821 f_foff = TREE_CHAIN (f_goff);
4823 /* Let:
4825 TOP be the top of the GPR or FPR save area;
4826 OFF be the offset from TOP of the next register;
4827 ADDR_RTX be the address of the argument;
4828 SIZE be the number of bytes in the argument type;
4829 RSIZE be the number of bytes used to store the argument
4830 when it's in the register save area; and
4831 OSIZE be the number of bytes used to store it when it's
4832 in the stack overflow area.
4834 The code we want is:
4836 1: off &= -rsize; // round down
4837 2: if (off != 0)
4838 3: {
4839 4: addr_rtx = top - off + (BYTES_BIG_ENDIAN ? RSIZE - SIZE : 0);
4840 5: off -= rsize;
4841 6: }
4842 7: else
4843 8: {
4844 9: ovfl = ((intptr_t) ovfl + osize - 1) & -osize;
4845 10: addr_rtx = ovfl + (BYTES_BIG_ENDIAN ? OSIZE - SIZE : 0);
4846 11: ovfl += osize;
4847 14: }
4849 [1] and [9] can sometimes be optimized away. */
4851 ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
4852 NULL_TREE);
4853 size = int_size_in_bytes (type);
4855 if (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_FLOAT
4856 && GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_FPVALUE)
4858 top = build3 (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop,
4859 NULL_TREE);
4860 off = build3 (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff,
4861 NULL_TREE);
4863 /* When va_start saves FPR arguments to the stack, each slot
4864 takes up UNITS_PER_HWFPVALUE bytes, regardless of the
4865 argument's precision. */
4866 rsize = UNITS_PER_HWFPVALUE;
4868 /* Overflow arguments are padded to UNITS_PER_WORD bytes
4869 (= PARM_BOUNDARY bits). This can be different from RSIZE
4870 in two cases:
4872 (1) On 32-bit targets when TYPE is a structure such as:
4874 struct s { float f; };
4876 Such structures are passed in paired FPRs, so RSIZE
4877 will be 8 bytes. However, the structure only takes
4878 up 4 bytes of memory, so OSIZE will only be 4.
4880 (2) In combinations such as -mgp64 -msingle-float
4881 -fshort-double. Doubles passed in registers will then take
4882 up 4 (UNITS_PER_HWFPVALUE) bytes, but those passed on the
4883 stack take up UNITS_PER_WORD bytes. */
4884 osize = MAX (GET_MODE_SIZE (TYPE_MODE (type)), UNITS_PER_WORD);
4886 else
4888 top = build3 (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop,
4889 NULL_TREE);
4890 off = build3 (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff,
4891 NULL_TREE);
4892 rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
4893 if (rsize > UNITS_PER_WORD)
4895 /* [1] Emit code for: off &= -rsize. */
4896 t = build2 (BIT_AND_EXPR, TREE_TYPE (off), off,
4897 build_int_cst (NULL_TREE, -rsize));
4898 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (off), off, t);
4899 gimplify_and_add (t, pre_p);
4901 osize = rsize;
4904 /* [2] Emit code to branch if off == 0. */
4905 t = build2 (NE_EXPR, boolean_type_node, off,
4906 build_int_cst (TREE_TYPE (off), 0));
4907 addr = build3 (COND_EXPR, ptr_type_node, t, NULL_TREE, NULL_TREE);
4909 /* [5] Emit code for: off -= rsize. We do this as a form of
4910 post-decrement not available to C. */
4911 t = fold_convert (TREE_TYPE (off), build_int_cst (NULL_TREE, rsize));
4912 t = build2 (POSTDECREMENT_EXPR, TREE_TYPE (off), off, t);
4914 /* [4] Emit code for:
4915 addr_rtx = top - off + (BYTES_BIG_ENDIAN ? RSIZE - SIZE : 0). */
4916 t = fold_convert (sizetype, t);
4917 t = fold_build1 (NEGATE_EXPR, sizetype, t);
4918 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (top), top, t);
4919 if (BYTES_BIG_ENDIAN && rsize > size)
4921 u = size_int (rsize - size);
4922 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, u);
4924 COND_EXPR_THEN (addr) = t;
4926 if (osize > UNITS_PER_WORD)
4928 /* [9] Emit: ovfl = ((intptr_t) ovfl + osize - 1) & -osize. */
4929 u = size_int (osize - 1);
4930 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (ovfl), ovfl, u);
4931 t = fold_convert (sizetype, t);
4932 u = size_int (-osize);
4933 t = build2 (BIT_AND_EXPR, sizetype, t, u);
4934 t = fold_convert (TREE_TYPE (ovfl), t);
4935 align = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (ovfl), ovfl, t);
4937 else
4938 align = NULL;
4940 /* [10, 11] Emit code for:
4941 addr_rtx = ovfl + (BYTES_BIG_ENDIAN ? OSIZE - SIZE : 0)
4942 ovfl += osize. */
4943 u = fold_convert (TREE_TYPE (ovfl), build_int_cst (NULL_TREE, osize));
4944 t = build2 (POSTINCREMENT_EXPR, TREE_TYPE (ovfl), ovfl, u);
4945 if (BYTES_BIG_ENDIAN && osize > size)
4947 u = size_int (osize - size);
4948 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, u);
4951 /* String [9] and [10, 11] together. */
4952 if (align)
4953 t = build2 (COMPOUND_EXPR, TREE_TYPE (t), align, t);
4954 COND_EXPR_ELSE (addr) = t;
4956 addr = fold_convert (build_pointer_type (type), addr);
4957 addr = build_va_arg_indirect_ref (addr);
4960 if (indirect_p)
4961 addr = build_va_arg_indirect_ref (addr);
4963 return addr;
4966 /* A chained list of functions for which mips16_build_call_stub has already
4967 generated a stub. NAME is the name of the function and FP_RET_P is true
4968 if the function returns a value in floating-point registers. */
4969 struct mips16_stub {
4970 struct mips16_stub *next;
4971 char *name;
4972 bool fp_ret_p;
4974 static struct mips16_stub *mips16_stubs;
4976 /* Return the two-character string that identifies floating-point
4977 return mode MODE in the name of a MIPS16 function stub. */
4979 static const char *
4980 mips16_call_stub_mode_suffix (enum machine_mode mode)
4982 if (mode == SFmode)
4983 return "sf";
4984 else if (mode == DFmode)
4985 return "df";
4986 else if (mode == SCmode)
4987 return "sc";
4988 else if (mode == DCmode)
4989 return "dc";
4990 else if (mode == V2SFmode)
4991 return "df";
4992 else
4993 gcc_unreachable ();
4996 /* Write instructions to move a 32-bit value between general register
4997 GPREG and floating-point register FPREG. DIRECTION is 't' to move
4998 from GPREG to FPREG and 'f' to move in the opposite direction. */
5000 static void
5001 mips_output_32bit_xfer (char direction, unsigned int gpreg, unsigned int fpreg)
5003 fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
5004 reg_names[gpreg], reg_names[fpreg]);
5007 /* Likewise for 64-bit values. */
5009 static void
5010 mips_output_64bit_xfer (char direction, unsigned int gpreg, unsigned int fpreg)
5012 if (TARGET_64BIT)
5013 fprintf (asm_out_file, "\tdm%cc1\t%s,%s\n", direction,
5014 reg_names[gpreg], reg_names[fpreg]);
5015 else if (TARGET_FLOAT64)
5017 fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
5018 reg_names[gpreg + TARGET_BIG_ENDIAN], reg_names[fpreg]);
5019 fprintf (asm_out_file, "\tm%chc1\t%s,%s\n", direction,
5020 reg_names[gpreg + TARGET_LITTLE_ENDIAN], reg_names[fpreg]);
5022 else
5024 /* Move the least-significant word. */
5025 fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
5026 reg_names[gpreg + TARGET_BIG_ENDIAN], reg_names[fpreg]);
5027 /* ...then the most significant word. */
5028 fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
5029 reg_names[gpreg + TARGET_LITTLE_ENDIAN], reg_names[fpreg + 1]);
5033 /* Write out code to move floating-point arguments into or out of
5034 general registers. FP_CODE is the code describing which arguments
5035 are present (see the comment above the definition of CUMULATIVE_ARGS
5036 in mips.h). DIRECTION is as for mips_output_32bit_xfer. */
5038 static void
5039 mips_output_args_xfer (int fp_code, char direction)
5041 unsigned int gparg, fparg, f;
5042 CUMULATIVE_ARGS cum;
5044 /* This code only works for o32 and o64. */
5045 gcc_assert (TARGET_OLDABI);
5047 mips_init_cumulative_args (&cum, NULL);
5049 for (f = (unsigned int) fp_code; f != 0; f >>= 2)
5051 enum machine_mode mode;
5052 struct mips_arg_info info;
5054 if ((f & 3) == 1)
5055 mode = SFmode;
5056 else if ((f & 3) == 2)
5057 mode = DFmode;
5058 else
5059 gcc_unreachable ();
5061 mips_get_arg_info (&info, &cum, mode, NULL, true);
5062 gparg = mips_arg_regno (&info, false);
5063 fparg = mips_arg_regno (&info, true);
5065 if (mode == SFmode)
5066 mips_output_32bit_xfer (direction, gparg, fparg);
5067 else
5068 mips_output_64bit_xfer (direction, gparg, fparg);
5070 mips_function_arg_advance (&cum, mode, NULL, true);
5074 /* Write a MIPS16 stub for the current function. This stub is used
5075 for functions which take arguments in the floating-point registers.
5076 It is normal-mode code that moves the floating-point arguments
5077 into the general registers and then jumps to the MIPS16 code. */
5079 static void
5080 mips16_build_function_stub (void)
5082 const char *fnname, *separator;
5083 char *secname, *stubname;
5084 tree stubdecl;
5085 unsigned int f;
5087 /* Create the name of the stub, and its unique section. */
5088 fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
5089 fnname = targetm.strip_name_encoding (fnname);
5090 secname = ACONCAT ((".mips16.fn.", fnname, NULL));
5091 stubname = ACONCAT (("__fn_stub_", fnname, NULL));
5093 /* Build a decl for the stub. */
5094 stubdecl = build_decl (FUNCTION_DECL, get_identifier (stubname),
5095 build_function_type (void_type_node, NULL_TREE));
5096 DECL_SECTION_NAME (stubdecl) = build_string (strlen (secname), secname);
5097 DECL_RESULT (stubdecl) = build_decl (RESULT_DECL, NULL_TREE, void_type_node);
5099 /* Output a comment. */
5100 fprintf (asm_out_file, "\t# Stub function for %s (",
5101 current_function_name ());
5102 separator = "";
5103 for (f = (unsigned int) current_function_args_info.fp_code; f != 0; f >>= 2)
5105 fprintf (asm_out_file, "%s%s", separator,
5106 (f & 3) == 1 ? "float" : "double");
5107 separator = ", ";
5109 fprintf (asm_out_file, ")\n");
5111 /* Write the preamble leading up to the function declaration. */
5112 fprintf (asm_out_file, "\t.set\tnomips16\n");
5113 switch_to_section (function_section (stubdecl));
5114 ASM_OUTPUT_ALIGN (asm_out_file,
5115 floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT));
5117 /* ??? If FUNCTION_NAME_ALREADY_DECLARED is defined, then we are
5118 within a .ent, and we cannot emit another .ent. */
5119 if (!FUNCTION_NAME_ALREADY_DECLARED)
5121 fputs ("\t.ent\t", asm_out_file);
5122 assemble_name (asm_out_file, stubname);
5123 fputs ("\n", asm_out_file);
5126 /* Start the definition proper. */
5127 assemble_name (asm_out_file, stubname);
5128 fputs (":\n", asm_out_file);
5130 /* Load the address of the MIPS16 function into $at. Do this first so
5131 that targets with coprocessor interlocks can use an MFC1 to fill the
5132 delay slot. */
5133 fprintf (asm_out_file, "\t.set\tnoat\n");
5134 fprintf (asm_out_file, "\tla\t%s,", reg_names[GP_REG_FIRST + 1]);
5135 assemble_name (asm_out_file, fnname);
5136 fprintf (asm_out_file, "\n");
5138 /* Move the arguments from floating-point registers to general registers. */
5139 mips_output_args_xfer (current_function_args_info.fp_code, 'f');
5141 /* Jump to the MIPS16 function. */
5142 fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 1]);
5143 fprintf (asm_out_file, "\t.set\tat\n");
5145 if (!FUNCTION_NAME_ALREADY_DECLARED)
5147 fputs ("\t.end\t", asm_out_file);
5148 assemble_name (asm_out_file, stubname);
5149 fputs ("\n", asm_out_file);
5152 switch_to_section (function_section (current_function_decl));
5155 /* The current function is a MIPS16 function that returns a value in an FPR.
5156 Copy the return value from its soft-float to its hard-float location.
5157 libgcc2 has special non-MIPS16 helper functions for each case. */
5159 static void
5160 mips16_copy_fpr_return_value (void)
5162 rtx fn, insn, arg, call;
5163 tree id, return_type;
5164 enum machine_mode return_mode;
5166 return_type = DECL_RESULT (current_function_decl);
5167 return_mode = DECL_MODE (return_type);
5169 id = get_identifier (ACONCAT (("__mips16_ret_",
5170 mips16_call_stub_mode_suffix (return_mode),
5171 NULL)));
5172 fn = gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (id));
5173 arg = gen_rtx_REG (return_mode, GP_RETURN);
5174 call = gen_call_value_internal (arg, fn, const0_rtx);
5175 insn = emit_call_insn (call);
5176 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), arg);
5179 /* Consider building a stub for a MIPS16 call to function FN.
5180 RETVAL is the location of the return value, or null if this is
5181 a "call" rather than a "call_value". ARGS_SIZE is the size of the
5182 arguments and FP_CODE is the code built by mips_function_arg;
5183 see the comment above CUMULATIVE_ARGS for details.
5185 Return true if a stub was needed, and emit the call if so.
5187 A stub is needed for calls to functions that, in normal mode,
5188 receive arguments in FPRs or return values in FPRs. The stub
5189 copies the arguments from their soft-float positions to their
5190 hard-float positions, calls the real function, then copies the
5191 return value from its hard-float position to its soft-float
5192 position.
5194 We emit a JAL to FN even when FN might need a stub. If FN turns out
5195 to be to a non-MIPS16 function, the linker automatically redirects
5196 the JAL to the stub, otherwise the JAL continues to call FN directly. */
5198 static bool
5199 mips16_build_call_stub (rtx retval, rtx fn, rtx args_size, int fp_code)
5201 const char *fnname;
5202 bool fp_ret_p;
5203 struct mips16_stub *l;
5204 rtx insn;
5206 /* We don't need to do anything if we aren't in MIPS16 mode, or if
5207 we were invoked with the -msoft-float option. */
5208 if (!TARGET_MIPS16 || TARGET_SOFT_FLOAT_ABI)
5209 return false;
5211 /* Figure out whether the value might come back in a floating-point
5212 register. */
5213 fp_ret_p = retval && mips_return_mode_in_fpr_p (GET_MODE (retval));
5215 /* We don't need to do anything if there were no floating-point
5216 arguments and the value will not be returned in a floating-point
5217 register. */
5218 if (fp_code == 0 && !fp_ret_p)
5219 return false;
5221 /* We don't need to do anything if this is a call to a special
5222 MIPS16 support function. */
5223 if (GET_CODE (fn) == SYMBOL_REF
5224 && strncmp (XSTR (fn, 0), "__mips16_", 9) == 0)
5225 return false;
5227 /* This code will only work for o32 and o64 abis. The other ABI's
5228 require more sophisticated support. */
5229 gcc_assert (TARGET_OLDABI);
5231 /* If we're calling via a function pointer, use one of the magic
5232 libgcc.a stubs provided for each (FP_CODE, FP_RET_P) combination.
5233 Each stub expects the function address to arrive in register $2. */
5234 if (GET_CODE (fn) != SYMBOL_REF)
5236 char buf[30];
5237 tree id;
5238 rtx stub_fn, insn;
5240 /* Create a SYMBOL_REF for the libgcc.a function. */
5241 if (fp_ret_p)
5242 sprintf (buf, "__mips16_call_stub_%s_%d",
5243 mips16_call_stub_mode_suffix (GET_MODE (retval)),
5244 fp_code);
5245 else
5246 sprintf (buf, "__mips16_call_stub_%d", fp_code);
5247 id = get_identifier (buf);
5248 stub_fn = gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (id));
5250 /* Load the target function into $2. */
5251 mips_emit_move (gen_rtx_REG (Pmode, 2), fn);
5253 /* Emit the call. */
5254 if (retval == NULL_RTX)
5255 insn = gen_call_internal (stub_fn, args_size);
5256 else
5257 insn = gen_call_value_internal (retval, stub_fn, args_size);
5258 insn = emit_call_insn (insn);
5260 /* Tell GCC that this call does indeed use the value of $2. */
5261 CALL_INSN_FUNCTION_USAGE (insn) =
5262 gen_rtx_EXPR_LIST (VOIDmode,
5263 gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, 2)),
5264 CALL_INSN_FUNCTION_USAGE (insn));
5266 /* If we are handling a floating-point return value, we need to
5267 save $18 in the function prologue. Putting a note on the
5268 call will mean that df_regs_ever_live_p ($18) will be true if the
5269 call is not eliminated, and we can check that in the prologue
5270 code. */
5271 if (fp_ret_p)
5272 CALL_INSN_FUNCTION_USAGE (insn) =
5273 gen_rtx_EXPR_LIST (VOIDmode,
5274 gen_rtx_USE (VOIDmode,
5275 gen_rtx_REG (word_mode, 18)),
5276 CALL_INSN_FUNCTION_USAGE (insn));
5278 return true;
5281 /* We know the function we are going to call. If we have already
5282 built a stub, we don't need to do anything further. */
5283 fnname = targetm.strip_name_encoding (XSTR (fn, 0));
5284 for (l = mips16_stubs; l != NULL; l = l->next)
5285 if (strcmp (l->name, fnname) == 0)
5286 break;
5288 if (l == NULL)
5290 const char *separator;
5291 char *secname, *stubname;
5292 tree stubid, stubdecl;
5293 unsigned int f;
5295 /* If the function does not return in FPRs, the special stub
5296 section is named
5297 .mips16.call.FNNAME
5299 If the function does return in FPRs, the stub section is named
5300 .mips16.call.fp.FNNAME
5302 Build a decl for the stub. */
5303 secname = ACONCAT ((".mips16.call.", fp_ret_p ? "fp." : "",
5304 fnname, NULL));
5305 stubname = ACONCAT (("__call_stub_", fp_ret_p ? "fp_" : "",
5306 fnname, NULL));
5307 stubid = get_identifier (stubname);
5308 stubdecl = build_decl (FUNCTION_DECL, stubid,
5309 build_function_type (void_type_node, NULL_TREE));
5310 DECL_SECTION_NAME (stubdecl) = build_string (strlen (secname), secname);
5311 DECL_RESULT (stubdecl) = build_decl (RESULT_DECL, NULL_TREE,
5312 void_type_node);
5314 /* Output a comment. */
5315 fprintf (asm_out_file, "\t# Stub function to call %s%s (",
5316 (fp_ret_p
5317 ? (GET_MODE (retval) == SFmode ? "float " : "double ")
5318 : ""),
5319 fnname);
5320 separator = "";
5321 for (f = (unsigned int) fp_code; f != 0; f >>= 2)
5323 fprintf (asm_out_file, "%s%s", separator,
5324 (f & 3) == 1 ? "float" : "double");
5325 separator = ", ";
5327 fprintf (asm_out_file, ")\n");
5329 /* Write the preamble leading up to the function declaration. */
5330 fprintf (asm_out_file, "\t.set\tnomips16\n");
5331 assemble_start_function (stubdecl, stubname);
5333 if (!FUNCTION_NAME_ALREADY_DECLARED)
5335 fputs ("\t.ent\t", asm_out_file);
5336 assemble_name (asm_out_file, stubname);
5337 fputs ("\n", asm_out_file);
5339 assemble_name (asm_out_file, stubname);
5340 fputs (":\n", asm_out_file);
5343 if (!fp_ret_p)
5345 /* Load the address of the MIPS16 function into $at. Do this
5346 first so that targets with coprocessor interlocks can use
5347 an MFC1 to fill the delay slot. */
5348 fprintf (asm_out_file, "\t.set\tnoat\n");
5349 fprintf (asm_out_file, "\tla\t%s,%s\n", reg_names[GP_REG_FIRST + 1],
5350 fnname);
5353 /* Move the arguments from general registers to floating-point
5354 registers. */
5355 mips_output_args_xfer (fp_code, 't');
5357 if (!fp_ret_p)
5359 /* Jump to the previously-loaded address. */
5360 fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 1]);
5361 fprintf (asm_out_file, "\t.set\tat\n");
5363 else
5365 /* Save the return address in $18 and call the non-MIPS16 function.
5366 The stub's caller knows that $18 might be clobbered, even though
5367 $18 is usually a call-saved register. */
5368 fprintf (asm_out_file, "\tmove\t%s,%s\n",
5369 reg_names[GP_REG_FIRST + 18], reg_names[GP_REG_FIRST + 31]);
5370 fprintf (asm_out_file, "\tjal\t%s\n", fnname);
5372 /* Move the result from floating-point registers to
5373 general registers. */
5374 switch (GET_MODE (retval))
5376 case SCmode:
5377 mips_output_32bit_xfer ('f', GP_RETURN + 1,
5378 FP_REG_FIRST + MAX_FPRS_PER_FMT);
5379 /* Fall though. */
5380 case SFmode:
5381 mips_output_32bit_xfer ('f', GP_RETURN, FP_REG_FIRST);
5382 if (GET_MODE (retval) == SCmode && TARGET_64BIT)
5384 /* On 64-bit targets, complex floats are returned in
5385 a single GPR, such that "sd" on a suitably-aligned
5386 target would store the value correctly. */
5387 fprintf (asm_out_file, "\tdsll\t%s,%s,32\n",
5388 reg_names[GP_RETURN + TARGET_LITTLE_ENDIAN],
5389 reg_names[GP_RETURN + TARGET_LITTLE_ENDIAN]);
5390 fprintf (asm_out_file, "\tor\t%s,%s,%s\n",
5391 reg_names[GP_RETURN],
5392 reg_names[GP_RETURN],
5393 reg_names[GP_RETURN + 1]);
5395 break;
5397 case DCmode:
5398 mips_output_64bit_xfer ('f', GP_RETURN + (8 / UNITS_PER_WORD),
5399 FP_REG_FIRST + MAX_FPRS_PER_FMT);
5400 /* Fall though. */
5401 case DFmode:
5402 case V2SFmode:
5403 mips_output_64bit_xfer ('f', GP_RETURN, FP_REG_FIRST);
5404 break;
5406 default:
5407 gcc_unreachable ();
5409 fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 18]);
5412 #ifdef ASM_DECLARE_FUNCTION_SIZE
5413 ASM_DECLARE_FUNCTION_SIZE (asm_out_file, stubname, stubdecl);
5414 #endif
5416 if (!FUNCTION_NAME_ALREADY_DECLARED)
5418 fputs ("\t.end\t", asm_out_file);
5419 assemble_name (asm_out_file, stubname);
5420 fputs ("\n", asm_out_file);
5423 /* Record this stub. */
5424 l = XNEW (struct mips16_stub);
5425 l->name = xstrdup (fnname);
5426 l->fp_ret_p = fp_ret_p;
5427 l->next = mips16_stubs;
5428 mips16_stubs = l;
5431 /* If we expect a floating-point return value, but we've built a
5432 stub which does not expect one, then we're in trouble. We can't
5433 use the existing stub, because it won't handle the floating-point
5434 value. We can't build a new stub, because the linker won't know
5435 which stub to use for the various calls in this object file.
5436 Fortunately, this case is illegal, since it means that a function
5437 was declared in two different ways in a single compilation. */
5438 if (fp_ret_p && !l->fp_ret_p)
5439 error ("cannot handle inconsistent calls to %qs", fnname);
5441 if (retval == NULL_RTX)
5442 insn = gen_call_internal_direct (fn, args_size);
5443 else
5444 insn = gen_call_value_internal_direct (retval, fn, args_size);
5445 insn = emit_call_insn (insn);
5447 /* If we are calling a stub which handles a floating-point return
5448 value, we need to arrange to save $18 in the prologue. We do this
5449 by marking the function call as using the register. The prologue
5450 will later see that it is used, and emit code to save it. */
5451 if (fp_ret_p)
5452 CALL_INSN_FUNCTION_USAGE (insn) =
5453 gen_rtx_EXPR_LIST (VOIDmode,
5454 gen_rtx_USE (VOIDmode, gen_rtx_REG (word_mode, 18)),
5455 CALL_INSN_FUNCTION_USAGE (insn));
5457 return true;
5460 /* Return true if calls to X can use R_MIPS_CALL* relocations. */
5462 static bool
5463 mips_ok_for_lazy_binding_p (rtx x)
5465 return (TARGET_USE_GOT
5466 && GET_CODE (x) == SYMBOL_REF
5467 && !mips_symbol_binds_local_p (x));
5470 /* Load function address ADDR into register DEST. SIBCALL_P is true
5471 if the address is needed for a sibling call. Return true if we
5472 used an explicit lazy-binding sequence. */
5474 static bool
5475 mips_load_call_address (rtx dest, rtx addr, bool sibcall_p)
5477 /* If we're generating PIC, and this call is to a global function,
5478 try to allow its address to be resolved lazily. This isn't
5479 possible for sibcalls when $gp is call-saved because the value
5480 of $gp on entry to the stub would be our caller's gp, not ours. */
5481 if (TARGET_EXPLICIT_RELOCS
5482 && !(sibcall_p && TARGET_CALL_SAVED_GP)
5483 && mips_ok_for_lazy_binding_p (addr))
5485 rtx high, lo_sum_symbol;
5487 high = mips_unspec_offset_high (dest, pic_offset_table_rtx,
5488 addr, SYMBOL_GOTOFF_CALL);
5489 lo_sum_symbol = mips_unspec_address (addr, SYMBOL_GOTOFF_CALL);
5490 if (Pmode == SImode)
5491 emit_insn (gen_load_callsi (dest, high, lo_sum_symbol));
5492 else
5493 emit_insn (gen_load_calldi (dest, high, lo_sum_symbol));
5494 return true;
5496 else
5498 mips_emit_move (dest, addr);
5499 return false;
5503 /* Expand a "call", "sibcall", "call_value" or "sibcall_value" instruction.
5504 RESULT is where the result will go (null for "call"s and "sibcall"s),
5505 ADDR is the address of the function, ARGS_SIZE is the size of the
5506 arguments and AUX is the value passed to us by mips_function_arg.
5507 SIBCALL_P is true if we are expanding a sibling call, false if we're
5508 expanding a normal call. */
5510 void
5511 mips_expand_call (rtx result, rtx addr, rtx args_size, rtx aux, bool sibcall_p)
5513 rtx orig_addr, pattern, insn;
5514 bool lazy_p;
5516 orig_addr = addr;
5517 lazy_p = false;
5518 if (!call_insn_operand (addr, VOIDmode))
5520 addr = gen_reg_rtx (Pmode);
5521 lazy_p = mips_load_call_address (addr, orig_addr, sibcall_p);
5524 if (TARGET_MIPS16
5525 && TARGET_HARD_FLOAT_ABI
5526 && mips16_build_call_stub (result, addr, args_size,
5527 aux == 0 ? 0 : (int) GET_MODE (aux)))
5529 gcc_assert (!sibcall_p);
5530 return;
5533 if (result == 0)
5534 pattern = (sibcall_p
5535 ? gen_sibcall_internal (addr, args_size)
5536 : gen_call_internal (addr, args_size));
5537 else if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 2)
5539 rtx reg1, reg2;
5541 reg1 = XEXP (XVECEXP (result, 0, 0), 0);
5542 reg2 = XEXP (XVECEXP (result, 0, 1), 0);
5543 pattern =
5544 (sibcall_p
5545 ? gen_sibcall_value_multiple_internal (reg1, addr, args_size, reg2)
5546 : gen_call_value_multiple_internal (reg1, addr, args_size, reg2));
5548 else
5549 pattern = (sibcall_p
5550 ? gen_sibcall_value_internal (result, addr, args_size)
5551 : gen_call_value_internal (result, addr, args_size));
5553 insn = emit_call_insn (pattern);
5555 /* Lazy-binding stubs require $gp to be valid on entry. We also pretend
5556 that they use FAKE_CALL_REGNO; see the load_call<mode> patterns for
5557 details. */
5558 if (lazy_p)
5560 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
5561 use_reg (&CALL_INSN_FUNCTION_USAGE (insn),
5562 gen_rtx_REG (Pmode, FAKE_CALL_REGNO));
5566 /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL. */
5568 static bool
5569 mips_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
5571 if (!TARGET_SIBCALLS)
5572 return false;
5574 /* We can't do a sibcall if the called function is a MIPS16 function
5575 because there is no direct "jx" instruction equivalent to "jalx" to
5576 switch the ISA mode. We only care about cases where the sibling
5577 and normal calls would both be direct. */
5578 if (mips_use_mips16_mode_p (decl)
5579 && const_call_insn_operand (XEXP (DECL_RTL (decl), 0), VOIDmode))
5580 return false;
5582 /* When -minterlink-mips16 is in effect, assume that external
5583 functions could be MIPS16 ones unless an attribute explicitly
5584 tells us otherwise. */
5585 if (TARGET_INTERLINK_MIPS16
5586 && decl
5587 && DECL_EXTERNAL (decl)
5588 && !mips_nomips16_decl_p (decl)
5589 && const_call_insn_operand (XEXP (DECL_RTL (decl), 0), VOIDmode))
5590 return false;
5592 /* Otherwise OK. */
5593 return true;
5596 /* Emit code to move general operand SRC into condition-code
5597 register DEST given that SCRATCH is a scratch TFmode FPR.
5598 The sequence is:
5600 FP1 = SRC
5601 FP2 = 0.0f
5602 DEST = FP2 < FP1
5604 where FP1 and FP2 are single-precision FPRs taken from SCRATCH. */
5606 void
5607 mips_expand_fcc_reload (rtx dest, rtx src, rtx scratch)
5609 rtx fp1, fp2;
5611 /* Change the source to SFmode. */
5612 if (MEM_P (src))
5613 src = adjust_address (src, SFmode, 0);
5614 else if (REG_P (src) || GET_CODE (src) == SUBREG)
5615 src = gen_rtx_REG (SFmode, true_regnum (src));
5617 fp1 = gen_rtx_REG (SFmode, REGNO (scratch));
5618 fp2 = gen_rtx_REG (SFmode, REGNO (scratch) + MAX_FPRS_PER_FMT);
5620 mips_emit_move (copy_rtx (fp1), src);
5621 mips_emit_move (copy_rtx (fp2), CONST0_RTX (SFmode));
5622 emit_insn (gen_slt_sf (dest, fp2, fp1));
5625 #define MAX_MOVE_REGS 4
5626 #define MAX_MOVE_BYTES (MAX_MOVE_REGS * UNITS_PER_WORD)
5628 /* Emit straight-line code to move LENGTH bytes from SRC to DEST.
5629 Assume that the areas do not overlap. */
5631 static void
5632 mips_block_move_straight (rtx dest, rtx src, HOST_WIDE_INT length)
5634 HOST_WIDE_INT offset, delta;
5635 unsigned HOST_WIDE_INT bits;
5636 int i;
5637 enum machine_mode mode;
5638 rtx *regs;
5640 /* Work out how many bits to move at a time. If both operands have
5641 half-word alignment, it is usually better to move in half words.
5642 For instance, lh/lh/sh/sh is usually better than lwl/lwr/swl/swr
5643 and lw/lw/sw/sw is usually better than ldl/ldr/sdl/sdr.
5644 Otherwise move word-sized chunks. */
5645 if (MEM_ALIGN (src) == BITS_PER_WORD / 2
5646 && MEM_ALIGN (dest) == BITS_PER_WORD / 2)
5647 bits = BITS_PER_WORD / 2;
5648 else
5649 bits = BITS_PER_WORD;
5651 mode = mode_for_size (bits, MODE_INT, 0);
5652 delta = bits / BITS_PER_UNIT;
5654 /* Allocate a buffer for the temporary registers. */
5655 regs = alloca (sizeof (rtx) * length / delta);
5657 /* Load as many BITS-sized chunks as possible. Use a normal load if
5658 the source has enough alignment, otherwise use left/right pairs. */
5659 for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
5661 regs[i] = gen_reg_rtx (mode);
5662 if (MEM_ALIGN (src) >= bits)
5663 mips_emit_move (regs[i], adjust_address (src, mode, offset));
5664 else
5666 rtx part = adjust_address (src, BLKmode, offset);
5667 if (!mips_expand_ext_as_unaligned_load (regs[i], part, bits, 0))
5668 gcc_unreachable ();
5672 /* Copy the chunks to the destination. */
5673 for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
5674 if (MEM_ALIGN (dest) >= bits)
5675 mips_emit_move (adjust_address (dest, mode, offset), regs[i]);
5676 else
5678 rtx part = adjust_address (dest, BLKmode, offset);
5679 if (!mips_expand_ins_as_unaligned_store (part, regs[i], bits, 0))
5680 gcc_unreachable ();
5683 /* Mop up any left-over bytes. */
5684 if (offset < length)
5686 src = adjust_address (src, BLKmode, offset);
5687 dest = adjust_address (dest, BLKmode, offset);
5688 move_by_pieces (dest, src, length - offset,
5689 MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), 0);
5693 /* Helper function for doing a loop-based block operation on memory
5694 reference MEM. Each iteration of the loop will operate on LENGTH
5695 bytes of MEM.
5697 Create a new base register for use within the loop and point it to
5698 the start of MEM. Create a new memory reference that uses this
5699 register. Store them in *LOOP_REG and *LOOP_MEM respectively. */
5701 static void
5702 mips_adjust_block_mem (rtx mem, HOST_WIDE_INT length,
5703 rtx *loop_reg, rtx *loop_mem)
5705 *loop_reg = copy_addr_to_reg (XEXP (mem, 0));
5707 /* Although the new mem does not refer to a known location,
5708 it does keep up to LENGTH bytes of alignment. */
5709 *loop_mem = change_address (mem, BLKmode, *loop_reg);
5710 set_mem_align (*loop_mem, MIN (MEM_ALIGN (mem), length * BITS_PER_UNIT));
5713 /* Move LENGTH bytes from SRC to DEST using a loop that moves MAX_MOVE_BYTES
5714 per iteration. LENGTH must be at least MAX_MOVE_BYTES. Assume that the
5715 memory regions do not overlap. */
5717 static void
5718 mips_block_move_loop (rtx dest, rtx src, HOST_WIDE_INT length)
5720 rtx label, src_reg, dest_reg, final_src;
5721 HOST_WIDE_INT leftover;
5723 leftover = length % MAX_MOVE_BYTES;
5724 length -= leftover;
5726 /* Create registers and memory references for use within the loop. */
5727 mips_adjust_block_mem (src, MAX_MOVE_BYTES, &src_reg, &src);
5728 mips_adjust_block_mem (dest, MAX_MOVE_BYTES, &dest_reg, &dest);
5730 /* Calculate the value that SRC_REG should have after the last iteration
5731 of the loop. */
5732 final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length),
5733 0, 0, OPTAB_WIDEN);
5735 /* Emit the start of the loop. */
5736 label = gen_label_rtx ();
5737 emit_label (label);
5739 /* Emit the loop body. */
5740 mips_block_move_straight (dest, src, MAX_MOVE_BYTES);
5742 /* Move on to the next block. */
5743 mips_emit_move (src_reg, plus_constant (src_reg, MAX_MOVE_BYTES));
5744 mips_emit_move (dest_reg, plus_constant (dest_reg, MAX_MOVE_BYTES));
5746 /* Emit the loop condition. */
5747 if (Pmode == DImode)
5748 emit_insn (gen_cmpdi (src_reg, final_src));
5749 else
5750 emit_insn (gen_cmpsi (src_reg, final_src));
5751 emit_jump_insn (gen_bne (label));
5753 /* Mop up any left-over bytes. */
5754 if (leftover)
5755 mips_block_move_straight (dest, src, leftover);
5758 /* Expand a movmemsi instruction, which copies LENGTH bytes from
5759 memory reference SRC to memory reference DEST. */
5761 bool
5762 mips_expand_block_move (rtx dest, rtx src, rtx length)
5764 if (GET_CODE (length) == CONST_INT)
5766 if (INTVAL (length) <= 2 * MAX_MOVE_BYTES)
5768 mips_block_move_straight (dest, src, INTVAL (length));
5769 return true;
5771 else if (optimize)
5773 mips_block_move_loop (dest, src, INTVAL (length));
5774 return true;
5777 return false;
5780 /* Expand a loop of synci insns for the address range [BEGIN, END). */
5782 void
5783 mips_expand_synci_loop (rtx begin, rtx end)
5785 rtx inc, label, cmp, cmp_result;
5787 /* Load INC with the cache line size (rdhwr INC,$1). */
5788 inc = gen_reg_rtx (SImode);
5789 emit_insn (gen_rdhwr (inc, const1_rtx));
5791 /* Loop back to here. */
5792 label = gen_label_rtx ();
5793 emit_label (label);
5795 emit_insn (gen_synci (begin));
5797 cmp = gen_reg_rtx (Pmode);
5798 mips_emit_binary (GTU, cmp, begin, end);
5800 mips_emit_binary (PLUS, begin, begin, inc);
5802 cmp_result = gen_rtx_EQ (VOIDmode, cmp, const0_rtx);
5803 emit_jump_insn (gen_condjump (cmp_result, label));
5806 /* Return true if it is possible to use left/right accesses for a
5807 bitfield of WIDTH bits starting BITPOS bits into *OP. When
5808 returning true, update *OP, *LEFT and *RIGHT as follows:
5810 *OP is a BLKmode reference to the whole field.
5812 *LEFT is a QImode reference to the first byte if big endian or
5813 the last byte if little endian. This address can be used in the
5814 left-side instructions (LWL, SWL, LDL, SDL).
5816 *RIGHT is a QImode reference to the opposite end of the field and
5817 can be used in the patterning right-side instruction. */
5819 static bool
5820 mips_get_unaligned_mem (rtx *op, HOST_WIDE_INT width, HOST_WIDE_INT bitpos,
5821 rtx *left, rtx *right)
5823 rtx first, last;
5825 /* Check that the operand really is a MEM. Not all the extv and
5826 extzv predicates are checked. */
5827 if (!MEM_P (*op))
5828 return false;
5830 /* Check that the size is valid. */
5831 if (width != 32 && (!TARGET_64BIT || width != 64))
5832 return false;
5834 /* We can only access byte-aligned values. Since we are always passed
5835 a reference to the first byte of the field, it is not necessary to
5836 do anything with BITPOS after this check. */
5837 if (bitpos % BITS_PER_UNIT != 0)
5838 return false;
5840 /* Reject aligned bitfields: we want to use a normal load or store
5841 instead of a left/right pair. */
5842 if (MEM_ALIGN (*op) >= width)
5843 return false;
5845 /* Adjust *OP to refer to the whole field. This also has the effect
5846 of legitimizing *OP's address for BLKmode, possibly simplifying it. */
5847 *op = adjust_address (*op, BLKmode, 0);
5848 set_mem_size (*op, GEN_INT (width / BITS_PER_UNIT));
5850 /* Get references to both ends of the field. We deliberately don't
5851 use the original QImode *OP for FIRST since the new BLKmode one
5852 might have a simpler address. */
5853 first = adjust_address (*op, QImode, 0);
5854 last = adjust_address (*op, QImode, width / BITS_PER_UNIT - 1);
5856 /* Allocate to LEFT and RIGHT according to endianness. LEFT should
5857 correspond to the MSB and RIGHT to the LSB. */
5858 if (TARGET_BIG_ENDIAN)
5859 *left = first, *right = last;
5860 else
5861 *left = last, *right = first;
5863 return true;
5866 /* Try to use left/right loads to expand an "extv" or "extzv" pattern.
5867 DEST, SRC, WIDTH and BITPOS are the operands passed to the expander;
5868 the operation is the equivalent of:
5870 (set DEST (*_extract SRC WIDTH BITPOS))
5872 Return true on success. */
5874 bool
5875 mips_expand_ext_as_unaligned_load (rtx dest, rtx src, HOST_WIDE_INT width,
5876 HOST_WIDE_INT bitpos)
5878 rtx left, right, temp;
5880 /* If TARGET_64BIT, the destination of a 32-bit "extz" or "extzv" will
5881 be a paradoxical word_mode subreg. This is the only case in which
5882 we allow the destination to be larger than the source. */
5883 if (GET_CODE (dest) == SUBREG
5884 && GET_MODE (dest) == DImode
5885 && GET_MODE (SUBREG_REG (dest)) == SImode)
5886 dest = SUBREG_REG (dest);
5888 /* After the above adjustment, the destination must be the same
5889 width as the source. */
5890 if (GET_MODE_BITSIZE (GET_MODE (dest)) != width)
5891 return false;
5893 if (!mips_get_unaligned_mem (&src, width, bitpos, &left, &right))
5894 return false;
5896 temp = gen_reg_rtx (GET_MODE (dest));
5897 if (GET_MODE (dest) == DImode)
5899 emit_insn (gen_mov_ldl (temp, src, left));
5900 emit_insn (gen_mov_ldr (dest, copy_rtx (src), right, temp));
5902 else
5904 emit_insn (gen_mov_lwl (temp, src, left));
5905 emit_insn (gen_mov_lwr (dest, copy_rtx (src), right, temp));
5907 return true;
5910 /* Try to use left/right stores to expand an "ins" pattern. DEST, WIDTH,
5911 BITPOS and SRC are the operands passed to the expander; the operation
5912 is the equivalent of:
5914 (set (zero_extract DEST WIDTH BITPOS) SRC)
5916 Return true on success. */
5918 bool
5919 mips_expand_ins_as_unaligned_store (rtx dest, rtx src, HOST_WIDE_INT width,
5920 HOST_WIDE_INT bitpos)
5922 rtx left, right;
5923 enum machine_mode mode;
5925 if (!mips_get_unaligned_mem (&dest, width, bitpos, &left, &right))
5926 return false;
5928 mode = mode_for_size (width, MODE_INT, 0);
5929 src = gen_lowpart (mode, src);
5930 if (mode == DImode)
5932 emit_insn (gen_mov_sdl (dest, src, left));
5933 emit_insn (gen_mov_sdr (copy_rtx (dest), copy_rtx (src), right));
5935 else
5937 emit_insn (gen_mov_swl (dest, src, left));
5938 emit_insn (gen_mov_swr (copy_rtx (dest), copy_rtx (src), right));
5940 return true;
5943 /* Return true if X is a MEM with the same size as MODE. */
5945 bool
5946 mips_mem_fits_mode_p (enum machine_mode mode, rtx x)
5948 rtx size;
5950 if (!MEM_P (x))
5951 return false;
5953 size = MEM_SIZE (x);
5954 return size && INTVAL (size) == GET_MODE_SIZE (mode);
5957 /* Return true if (zero_extract OP WIDTH BITPOS) can be used as the
5958 source of an "ext" instruction or the destination of an "ins"
5959 instruction. OP must be a register operand and the following
5960 conditions must hold:
5962 0 <= BITPOS < GET_MODE_BITSIZE (GET_MODE (op))
5963 0 < WIDTH <= GET_MODE_BITSIZE (GET_MODE (op))
5964 0 < BITPOS + WIDTH <= GET_MODE_BITSIZE (GET_MODE (op))
5966 Also reject lengths equal to a word as they are better handled
5967 by the move patterns. */
5969 bool
5970 mips_use_ins_ext_p (rtx op, HOST_WIDE_INT width, HOST_WIDE_INT bitpos)
5972 if (!ISA_HAS_EXT_INS
5973 || !register_operand (op, VOIDmode)
5974 || GET_MODE_BITSIZE (GET_MODE (op)) > BITS_PER_WORD)
5975 return false;
5977 if (!IN_RANGE (width, 1, GET_MODE_BITSIZE (GET_MODE (op)) - 1))
5978 return false;
5980 if (bitpos < 0 || bitpos + width > GET_MODE_BITSIZE (GET_MODE (op)))
5981 return false;
5983 return true;
5986 /* Return true if -msplit-addresses is selected and should be honored.
5988 -msplit-addresses is a half-way house between explicit relocations
5989 and the traditional assembler macros. It can split absolute 32-bit
5990 symbolic constants into a high/lo_sum pair but uses macros for other
5991 sorts of access.
5993 Like explicit relocation support for REL targets, it relies
5994 on GNU extensions in the assembler and the linker.
5996 Although this code should work for -O0, it has traditionally
5997 been treated as an optimization. */
5999 static bool
6000 mips_split_addresses_p (void)
6002 return (TARGET_SPLIT_ADDRESSES
6003 && optimize
6004 && !TARGET_MIPS16
6005 && !flag_pic
6006 && !ABI_HAS_64BIT_SYMBOLS);
6009 /* (Re-)Initialize mips_split_p, mips_lo_relocs and mips_hi_relocs. */
6011 static void
6012 mips_init_relocs (void)
6014 memset (mips_split_p, '\0', sizeof (mips_split_p));
6015 memset (mips_hi_relocs, '\0', sizeof (mips_hi_relocs));
6016 memset (mips_lo_relocs, '\0', sizeof (mips_lo_relocs));
6018 if (ABI_HAS_64BIT_SYMBOLS)
6020 if (TARGET_EXPLICIT_RELOCS)
6022 mips_split_p[SYMBOL_64_HIGH] = true;
6023 mips_hi_relocs[SYMBOL_64_HIGH] = "%highest(";
6024 mips_lo_relocs[SYMBOL_64_HIGH] = "%higher(";
6026 mips_split_p[SYMBOL_64_MID] = true;
6027 mips_hi_relocs[SYMBOL_64_MID] = "%higher(";
6028 mips_lo_relocs[SYMBOL_64_MID] = "%hi(";
6030 mips_split_p[SYMBOL_64_LOW] = true;
6031 mips_hi_relocs[SYMBOL_64_LOW] = "%hi(";
6032 mips_lo_relocs[SYMBOL_64_LOW] = "%lo(";
6034 mips_split_p[SYMBOL_ABSOLUTE] = true;
6035 mips_lo_relocs[SYMBOL_ABSOLUTE] = "%lo(";
6038 else
6040 if (TARGET_EXPLICIT_RELOCS || mips_split_addresses_p () || TARGET_MIPS16)
6042 mips_split_p[SYMBOL_ABSOLUTE] = true;
6043 mips_hi_relocs[SYMBOL_ABSOLUTE] = "%hi(";
6044 mips_lo_relocs[SYMBOL_ABSOLUTE] = "%lo(";
6046 mips_lo_relocs[SYMBOL_32_HIGH] = "%hi(";
6050 if (TARGET_MIPS16)
6052 /* The high part is provided by a pseudo copy of $gp. */
6053 mips_split_p[SYMBOL_GP_RELATIVE] = true;
6054 mips_lo_relocs[SYMBOL_GP_RELATIVE] = "%gprel(";
6057 if (TARGET_EXPLICIT_RELOCS)
6059 /* Small data constants are kept whole until after reload,
6060 then lowered by mips_rewrite_small_data. */
6061 mips_lo_relocs[SYMBOL_GP_RELATIVE] = "%gp_rel(";
6063 mips_split_p[SYMBOL_GOT_PAGE_OFST] = true;
6064 if (TARGET_NEWABI)
6066 mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got_page(";
6067 mips_lo_relocs[SYMBOL_GOT_PAGE_OFST] = "%got_ofst(";
6069 else
6071 mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got(";
6072 mips_lo_relocs[SYMBOL_GOT_PAGE_OFST] = "%lo(";
6075 if (TARGET_XGOT)
6077 /* The HIGH and LO_SUM are matched by special .md patterns. */
6078 mips_split_p[SYMBOL_GOT_DISP] = true;
6080 mips_split_p[SYMBOL_GOTOFF_DISP] = true;
6081 mips_hi_relocs[SYMBOL_GOTOFF_DISP] = "%got_hi(";
6082 mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got_lo(";
6084 mips_split_p[SYMBOL_GOTOFF_CALL] = true;
6085 mips_hi_relocs[SYMBOL_GOTOFF_CALL] = "%call_hi(";
6086 mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call_lo(";
6088 else
6090 if (TARGET_NEWABI)
6091 mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got_disp(";
6092 else
6093 mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got(";
6094 mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call16(";
6098 if (TARGET_NEWABI)
6100 mips_split_p[SYMBOL_GOTOFF_LOADGP] = true;
6101 mips_hi_relocs[SYMBOL_GOTOFF_LOADGP] = "%hi(%neg(%gp_rel(";
6102 mips_lo_relocs[SYMBOL_GOTOFF_LOADGP] = "%lo(%neg(%gp_rel(";
6105 mips_lo_relocs[SYMBOL_TLSGD] = "%tlsgd(";
6106 mips_lo_relocs[SYMBOL_TLSLDM] = "%tlsldm(";
6108 mips_split_p[SYMBOL_DTPREL] = true;
6109 mips_hi_relocs[SYMBOL_DTPREL] = "%dtprel_hi(";
6110 mips_lo_relocs[SYMBOL_DTPREL] = "%dtprel_lo(";
6112 mips_lo_relocs[SYMBOL_GOTTPREL] = "%gottprel(";
6114 mips_split_p[SYMBOL_TPREL] = true;
6115 mips_hi_relocs[SYMBOL_TPREL] = "%tprel_hi(";
6116 mips_lo_relocs[SYMBOL_TPREL] = "%tprel_lo(";
6118 mips_lo_relocs[SYMBOL_HALF] = "%half(";
6121 /* If OP is an UNSPEC address, return the address to which it refers,
6122 otherwise return OP itself. */
6124 static rtx
6125 mips_strip_unspec_address (rtx op)
6127 rtx base, offset;
6129 split_const (op, &base, &offset);
6130 if (UNSPEC_ADDRESS_P (base))
6131 op = plus_constant (UNSPEC_ADDRESS (base), INTVAL (offset));
6132 return op;
6135 /* Print symbolic operand OP, which is part of a HIGH or LO_SUM
6136 in context CONTEXT. RELOCS is the array of relocations to use. */
6138 static void
6139 mips_print_operand_reloc (FILE *file, rtx op, enum mips_symbol_context context,
6140 const char **relocs)
6142 enum mips_symbol_type symbol_type;
6143 const char *p;
6145 symbol_type = mips_classify_symbolic_expression (op, context);
6146 gcc_assert (relocs[symbol_type]);
6148 fputs (relocs[symbol_type], file);
6149 output_addr_const (file, mips_strip_unspec_address (op));
6150 for (p = relocs[symbol_type]; *p != 0; p++)
6151 if (*p == '(')
6152 fputc (')', file);
6155 /* Print the text for PRINT_OPERAND punctation character CH to FILE.
6156 The punctuation characters are:
6158 '(' Start a nested ".set noreorder" block.
6159 ')' End a nested ".set noreorder" block.
6160 '[' Start a nested ".set noat" block.
6161 ']' End a nested ".set noat" block.
6162 '<' Start a nested ".set nomacro" block.
6163 '>' End a nested ".set nomacro" block.
6164 '*' Behave like %(%< if generating a delayed-branch sequence.
6165 '#' Print a nop if in a ".set noreorder" block.
6166 '/' Like '#', but do nothing within a delayed-branch sequence.
6167 '?' Print "l" if mips_branch_likely is true
6168 '.' Print the name of the register with a hard-wired zero (zero or $0).
6169 '@' Print the name of the assembler temporary register (at or $1).
6170 '^' Print the name of the pic call-through register (t9 or $25).
6171 '+' Print the name of the gp register (usually gp or $28).
6172 '$' Print the name of the stack pointer register (sp or $29).
6173 '|' Print ".set push; .set mips2" if !ISA_HAS_LL_SC.
6174 '-' Print ".set pop" under the same conditions for '|'.
6176 See also mips_init_print_operand_pucnt. */
6178 static void
6179 mips_print_operand_punctuation (FILE *file, int ch)
6181 switch (ch)
6183 case '(':
6184 if (set_noreorder++ == 0)
6185 fputs (".set\tnoreorder\n\t", file);
6186 break;
6188 case ')':
6189 gcc_assert (set_noreorder > 0);
6190 if (--set_noreorder == 0)
6191 fputs ("\n\t.set\treorder", file);
6192 break;
6194 case '[':
6195 if (set_noat++ == 0)
6196 fputs (".set\tnoat\n\t", file);
6197 break;
6199 case ']':
6200 gcc_assert (set_noat > 0);
6201 if (--set_noat == 0)
6202 fputs ("\n\t.set\tat", file);
6203 break;
6205 case '<':
6206 if (set_nomacro++ == 0)
6207 fputs (".set\tnomacro\n\t", file);
6208 break;
6210 case '>':
6211 gcc_assert (set_nomacro > 0);
6212 if (--set_nomacro == 0)
6213 fputs ("\n\t.set\tmacro", file);
6214 break;
6216 case '*':
6217 if (final_sequence != 0)
6219 mips_print_operand_punctuation (file, '(');
6220 mips_print_operand_punctuation (file, '<');
6222 break;
6224 case '#':
6225 if (set_noreorder != 0)
6226 fputs ("\n\tnop", file);
6227 break;
6229 case '/':
6230 /* Print an extra newline so that the delayed insn is separated
6231 from the following ones. This looks neater and is consistent
6232 with non-nop delayed sequences. */
6233 if (set_noreorder != 0 && final_sequence == 0)
6234 fputs ("\n\tnop\n", file);
6235 break;
6237 case '?':
6238 if (mips_branch_likely)
6239 putc ('l', file);
6240 break;
6242 case '.':
6243 fputs (reg_names[GP_REG_FIRST + 0], file);
6244 break;
6246 case '@':
6247 fputs (reg_names[GP_REG_FIRST + 1], file);
6248 break;
6250 case '^':
6251 fputs (reg_names[PIC_FUNCTION_ADDR_REGNUM], file);
6252 break;
6254 case '+':
6255 fputs (reg_names[PIC_OFFSET_TABLE_REGNUM], file);
6256 break;
6258 case '$':
6259 fputs (reg_names[STACK_POINTER_REGNUM], file);
6260 break;
6262 case '|':
6263 if (!ISA_HAS_LL_SC)
6264 fputs (".set\tpush\n\t.set\tmips2\n\t", file);
6265 break;
6267 case '-':
6268 if (!ISA_HAS_LL_SC)
6269 fputs ("\n\t.set\tpop", file);
6270 break;
6272 default:
6273 gcc_unreachable ();
6274 break;
6278 /* Initialize mips_print_operand_punct. */
6280 static void
6281 mips_init_print_operand_punct (void)
6283 const char *p;
6285 for (p = "()[]<>*#/?.@^+$|-"; *p; p++)
6286 mips_print_operand_punct[(unsigned char) *p] = true;
6289 /* PRINT_OPERAND prefix LETTER refers to the integer branch instruction
6290 associated with condition CODE. Print the condition part of the
6291 opcode to FILE. */
6293 static void
6294 mips_print_int_branch_condition (FILE *file, enum rtx_code code, int letter)
6296 switch (code)
6298 case EQ:
6299 case NE:
6300 case GT:
6301 case GE:
6302 case LT:
6303 case LE:
6304 case GTU:
6305 case GEU:
6306 case LTU:
6307 case LEU:
6308 /* Conveniently, the MIPS names for these conditions are the same
6309 as their RTL equivalents. */
6310 fputs (GET_RTX_NAME (code), file);
6311 break;
6313 default:
6314 output_operand_lossage ("'%%%c' is not a valid operand prefix", letter);
6315 break;
6319 /* Likewise floating-point branches. */
6321 static void
6322 mips_print_float_branch_condition (FILE *file, enum rtx_code code, int letter)
6324 switch (code)
6326 case EQ:
6327 fputs ("c1f", file);
6328 break;
6330 case NE:
6331 fputs ("c1t", file);
6332 break;
6334 default:
6335 output_operand_lossage ("'%%%c' is not a valid operand prefix", letter);
6336 break;
6340 /* Implement the PRINT_OPERAND macro. The MIPS-specific operand codes are:
6342 'X' Print CONST_INT OP in hexadecimal format.
6343 'x' Print the low 16 bits of CONST_INT OP in hexadecimal format.
6344 'd' Print CONST_INT OP in decimal.
6345 'h' Print the high-part relocation associated with OP, after stripping
6346 any outermost HIGH.
6347 'R' Print the low-part relocation associated with OP.
6348 'C' Print the integer branch condition for comparison OP.
6349 'N' Print the inverse of the integer branch condition for comparison OP.
6350 'F' Print the FPU branch condition for comparison OP.
6351 'W' Print the inverse of the FPU branch condition for comparison OP.
6352 'T' Print 'f' for (eq:CC ...), 't' for (ne:CC ...),
6353 'z' for (eq:?I ...), 'n' for (ne:?I ...).
6354 't' Like 'T', but with the EQ/NE cases reversed
6355 'Y' Print mips_fp_conditions[INTVAL (OP)]
6356 'Z' Print OP and a comma for ISA_HAS_8CC, otherwise print nothing.
6357 'q' Print a DSP accumulator register.
6358 'D' Print the second part of a double-word register or memory operand.
6359 'L' Print the low-order register in a double-word register operand.
6360 'M' Print high-order register in a double-word register operand.
6361 'z' Print $0 if OP is zero, otherwise print OP normally. */
6363 void
6364 mips_print_operand (FILE *file, rtx op, int letter)
6366 enum rtx_code code;
6368 if (PRINT_OPERAND_PUNCT_VALID_P (letter))
6370 mips_print_operand_punctuation (file, letter);
6371 return;
6374 gcc_assert (op);
6375 code = GET_CODE (op);
6377 switch (letter)
6379 case 'X':
6380 if (GET_CODE (op) == CONST_INT)
6381 fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op));
6382 else
6383 output_operand_lossage ("invalid use of '%%%c'", letter);
6384 break;
6386 case 'x':
6387 if (GET_CODE (op) == CONST_INT)
6388 fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op) & 0xffff);
6389 else
6390 output_operand_lossage ("invalid use of '%%%c'", letter);
6391 break;
6393 case 'd':
6394 if (GET_CODE (op) == CONST_INT)
6395 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (op));
6396 else
6397 output_operand_lossage ("invalid use of '%%%c'", letter);
6398 break;
6400 case 'h':
6401 if (code == HIGH)
6402 op = XEXP (op, 0);
6403 mips_print_operand_reloc (file, op, SYMBOL_CONTEXT_LEA, mips_hi_relocs);
6404 break;
6406 case 'R':
6407 mips_print_operand_reloc (file, op, SYMBOL_CONTEXT_LEA, mips_lo_relocs);
6408 break;
6410 case 'C':
6411 mips_print_int_branch_condition (file, code, letter);
6412 break;
6414 case 'N':
6415 mips_print_int_branch_condition (file, reverse_condition (code), letter);
6416 break;
6418 case 'F':
6419 mips_print_float_branch_condition (file, code, letter);
6420 break;
6422 case 'W':
6423 mips_print_float_branch_condition (file, reverse_condition (code),
6424 letter);
6425 break;
6427 case 'T':
6428 case 't':
6430 int truth = (code == NE) == (letter == 'T');
6431 fputc ("zfnt"[truth * 2 + (GET_MODE (op) == CCmode)], file);
6433 break;
6435 case 'Y':
6436 if (code == CONST_INT && UINTVAL (op) < ARRAY_SIZE (mips_fp_conditions))
6437 fputs (mips_fp_conditions[UINTVAL (op)], file);
6438 else
6439 output_operand_lossage ("'%%%c' is not a valid operand prefix",
6440 letter);
6441 break;
6443 case 'Z':
6444 if (ISA_HAS_8CC)
6446 mips_print_operand (file, op, 0);
6447 fputc (',', file);
6449 break;
6451 case 'q':
6452 if (code == REG && MD_REG_P (REGNO (op)))
6453 fprintf (file, "$ac0");
6454 else if (code == REG && DSP_ACC_REG_P (REGNO (op)))
6455 fprintf (file, "$ac%c", reg_names[REGNO (op)][3]);
6456 else
6457 output_operand_lossage ("invalid use of '%%%c'", letter);
6458 break;
6460 default:
6461 switch (code)
6463 case REG:
6465 unsigned int regno = REGNO (op);
6466 if ((letter == 'M' && TARGET_LITTLE_ENDIAN)
6467 || (letter == 'L' && TARGET_BIG_ENDIAN)
6468 || letter == 'D')
6469 regno++;
6470 fprintf (file, "%s", reg_names[regno]);
6472 break;
6474 case MEM:
6475 if (letter == 'D')
6476 output_address (plus_constant (XEXP (op, 0), 4));
6477 else
6478 output_address (XEXP (op, 0));
6479 break;
6481 default:
6482 if (letter == 'z' && op == CONST0_RTX (GET_MODE (op)))
6483 fputs (reg_names[GP_REG_FIRST], file);
6484 else if (CONST_GP_P (op))
6485 fputs (reg_names[GLOBAL_POINTER_REGNUM], file);
6486 else
6487 output_addr_const (file, mips_strip_unspec_address (op));
6488 break;
6493 /* Output address operand X to FILE. */
6495 void
6496 mips_print_operand_address (FILE *file, rtx x)
6498 struct mips_address_info addr;
6500 if (mips_classify_address (&addr, x, word_mode, true))
6501 switch (addr.type)
6503 case ADDRESS_REG:
6504 mips_print_operand (file, addr.offset, 0);
6505 fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
6506 return;
6508 case ADDRESS_LO_SUM:
6509 mips_print_operand_reloc (file, addr.offset, SYMBOL_CONTEXT_MEM,
6510 mips_lo_relocs);
6511 fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
6512 return;
6514 case ADDRESS_CONST_INT:
6515 output_addr_const (file, x);
6516 fprintf (file, "(%s)", reg_names[GP_REG_FIRST]);
6517 return;
6519 case ADDRESS_SYMBOLIC:
6520 output_addr_const (file, mips_strip_unspec_address (x));
6521 return;
6523 gcc_unreachable ();
6526 /* Implement TARGET_ENCODE_SECTION_INFO. */
6528 static void
6529 mips_encode_section_info (tree decl, rtx rtl, int first)
6531 default_encode_section_info (decl, rtl, first);
6533 if (TREE_CODE (decl) == FUNCTION_DECL)
6535 rtx symbol = XEXP (rtl, 0);
6536 tree type = TREE_TYPE (decl);
6538 /* Encode whether the symbol is short or long. */
6539 if ((TARGET_LONG_CALLS && !mips_near_type_p (type))
6540 || mips_far_type_p (type))
6541 SYMBOL_REF_FLAGS (symbol) |= SYMBOL_FLAG_LONG_CALL;
6545 /* Implement TARGET_SELECT_RTX_SECTION. */
6547 static section *
6548 mips_select_rtx_section (enum machine_mode mode, rtx x,
6549 unsigned HOST_WIDE_INT align)
6551 /* ??? Consider using mergeable small data sections. */
6552 if (mips_rtx_constant_in_small_data_p (mode))
6553 return get_named_section (NULL, ".sdata", 0);
6555 return default_elf_select_rtx_section (mode, x, align);
6558 /* Implement TARGET_ASM_FUNCTION_RODATA_SECTION.
6560 The complication here is that, with the combination TARGET_ABICALLS
6561 && !TARGET_GPWORD, jump tables will use absolute addresses, and should
6562 therefore not be included in the read-only part of a DSO. Handle such
6563 cases by selecting a normal data section instead of a read-only one.
6564 The logic apes that in default_function_rodata_section. */
6566 static section *
6567 mips_function_rodata_section (tree decl)
6569 if (!TARGET_ABICALLS || TARGET_GPWORD)
6570 return default_function_rodata_section (decl);
6572 if (decl && DECL_SECTION_NAME (decl))
6574 const char *name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
6575 if (DECL_ONE_ONLY (decl) && strncmp (name, ".gnu.linkonce.t.", 16) == 0)
6577 char *rname = ASTRDUP (name);
6578 rname[14] = 'd';
6579 return get_section (rname, SECTION_LINKONCE | SECTION_WRITE, decl);
6581 else if (flag_function_sections
6582 && flag_data_sections
6583 && strncmp (name, ".text.", 6) == 0)
6585 char *rname = ASTRDUP (name);
6586 memcpy (rname + 1, "data", 4);
6587 return get_section (rname, SECTION_WRITE, decl);
6590 return data_section;
6593 /* Implement TARGET_IN_SMALL_DATA_P. */
6595 static bool
6596 mips_in_small_data_p (const_tree decl)
6598 unsigned HOST_WIDE_INT size;
6600 if (TREE_CODE (decl) == STRING_CST || TREE_CODE (decl) == FUNCTION_DECL)
6601 return false;
6603 /* We don't yet generate small-data references for -mabicalls
6604 or VxWorks RTP code. See the related -G handling in
6605 mips_override_options. */
6606 if (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
6607 return false;
6609 if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl) != 0)
6611 const char *name;
6613 /* Reject anything that isn't in a known small-data section. */
6614 name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
6615 if (strcmp (name, ".sdata") != 0 && strcmp (name, ".sbss") != 0)
6616 return false;
6618 /* If a symbol is defined externally, the assembler will use the
6619 usual -G rules when deciding how to implement macros. */
6620 if (mips_lo_relocs[SYMBOL_GP_RELATIVE] || !DECL_EXTERNAL (decl))
6621 return true;
6623 else if (TARGET_EMBEDDED_DATA)
6625 /* Don't put constants into the small data section: we want them
6626 to be in ROM rather than RAM. */
6627 if (TREE_CODE (decl) != VAR_DECL)
6628 return false;
6630 if (TREE_READONLY (decl)
6631 && !TREE_SIDE_EFFECTS (decl)
6632 && (!DECL_INITIAL (decl) || TREE_CONSTANT (DECL_INITIAL (decl))))
6633 return false;
6636 /* Enforce -mlocal-sdata. */
6637 if (!TARGET_LOCAL_SDATA && !TREE_PUBLIC (decl))
6638 return false;
6640 /* Enforce -mextern-sdata. */
6641 if (!TARGET_EXTERN_SDATA && DECL_P (decl))
6643 if (DECL_EXTERNAL (decl))
6644 return false;
6645 if (DECL_COMMON (decl) && DECL_INITIAL (decl) == NULL)
6646 return false;
6649 size = int_size_in_bytes (TREE_TYPE (decl));
6650 return size <= mips_small_data_threshold;
6653 /* Implement TARGET_USE_ANCHORS_FOR_SYMBOL_P. We don't want to use
6654 anchors for small data: the GP register acts as an anchor in that
6655 case. We also don't want to use them for PC-relative accesses,
6656 where the PC acts as an anchor. */
6658 static bool
6659 mips_use_anchors_for_symbol_p (const_rtx symbol)
6661 switch (mips_classify_symbol (symbol, SYMBOL_CONTEXT_MEM))
6663 case SYMBOL_PC_RELATIVE:
6664 case SYMBOL_GP_RELATIVE:
6665 return false;
6667 default:
6668 return default_use_anchors_for_symbol_p (symbol);
6672 /* The MIPS debug format wants all automatic variables and arguments
6673 to be in terms of the virtual frame pointer (stack pointer before
6674 any adjustment in the function), while the MIPS 3.0 linker wants
6675 the frame pointer to be the stack pointer after the initial
6676 adjustment. So, we do the adjustment here. The arg pointer (which
6677 is eliminated) points to the virtual frame pointer, while the frame
6678 pointer (which may be eliminated) points to the stack pointer after
6679 the initial adjustments. */
6681 HOST_WIDE_INT
6682 mips_debugger_offset (rtx addr, HOST_WIDE_INT offset)
6684 rtx offset2 = const0_rtx;
6685 rtx reg = eliminate_constant_term (addr, &offset2);
6687 if (offset == 0)
6688 offset = INTVAL (offset2);
6690 if (reg == stack_pointer_rtx
6691 || reg == frame_pointer_rtx
6692 || reg == hard_frame_pointer_rtx)
6694 offset -= cfun->machine->frame.total_size;
6695 if (reg == hard_frame_pointer_rtx)
6696 offset += cfun->machine->frame.hard_frame_pointer_offset;
6699 /* sdbout_parms does not want this to crash for unrecognized cases. */
6700 #if 0
6701 else if (reg != arg_pointer_rtx)
6702 fatal_insn ("mips_debugger_offset called with non stack/frame/arg pointer",
6703 addr);
6704 #endif
6706 return offset;
6709 /* Implement ASM_OUTPUT_EXTERNAL. */
6711 void
6712 mips_output_external (FILE *file, tree decl, const char *name)
6714 default_elf_asm_output_external (file, decl, name);
6716 /* We output the name if and only if TREE_SYMBOL_REFERENCED is
6717 set in order to avoid putting out names that are never really
6718 used. */
6719 if (TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)))
6721 if (!TARGET_EXPLICIT_RELOCS && mips_in_small_data_p (decl))
6723 /* When using assembler macros, emit .extern directives for
6724 all small-data externs so that the assembler knows how
6725 big they are.
6727 In most cases it would be safe (though pointless) to emit
6728 .externs for other symbols too. One exception is when an
6729 object is within the -G limit but declared by the user to
6730 be in a section other than .sbss or .sdata. */
6731 fputs ("\t.extern\t", file);
6732 assemble_name (file, name);
6733 fprintf (file, ", " HOST_WIDE_INT_PRINT_DEC "\n",
6734 int_size_in_bytes (TREE_TYPE (decl)));
6736 else if (TARGET_IRIX
6737 && mips_abi == ABI_32
6738 && TREE_CODE (decl) == FUNCTION_DECL)
6740 /* In IRIX 5 or IRIX 6 for the O32 ABI, we must output a
6741 `.global name .text' directive for every used but
6742 undefined function. If we don't, the linker may perform
6743 an optimization (skipping over the insns that set $gp)
6744 when it is unsafe. */
6745 fputs ("\t.globl ", file);
6746 assemble_name (file, name);
6747 fputs (" .text\n", file);
6752 /* Implement ASM_OUTPUT_SOURCE_FILENAME. */
6754 void
6755 mips_output_filename (FILE *stream, const char *name)
6757 /* If we are emitting DWARF-2, let dwarf2out handle the ".file"
6758 directives. */
6759 if (write_symbols == DWARF2_DEBUG)
6760 return;
6761 else if (mips_output_filename_first_time)
6763 mips_output_filename_first_time = 0;
6764 num_source_filenames += 1;
6765 current_function_file = name;
6766 fprintf (stream, "\t.file\t%d ", num_source_filenames);
6767 output_quoted_string (stream, name);
6768 putc ('\n', stream);
6770 /* If we are emitting stabs, let dbxout.c handle this (except for
6771 the mips_output_filename_first_time case). */
6772 else if (write_symbols == DBX_DEBUG)
6773 return;
6774 else if (name != current_function_file
6775 && strcmp (name, current_function_file) != 0)
6777 num_source_filenames += 1;
6778 current_function_file = name;
6779 fprintf (stream, "\t.file\t%d ", num_source_filenames);
6780 output_quoted_string (stream, name);
6781 putc ('\n', stream);
6785 /* Implement TARGET_ASM_OUTPUT_DWARF_DTPREL. */
6787 static void
6788 mips_output_dwarf_dtprel (FILE *file, int size, rtx x)
6790 switch (size)
6792 case 4:
6793 fputs ("\t.dtprelword\t", file);
6794 break;
6796 case 8:
6797 fputs ("\t.dtpreldword\t", file);
6798 break;
6800 default:
6801 gcc_unreachable ();
6803 output_addr_const (file, x);
6804 fputs ("+0x8000", file);
6807 /* Implement TARGET_DWARF_REGISTER_SPAN. */
6809 static rtx
6810 mips_dwarf_register_span (rtx reg)
6812 rtx high, low;
6813 enum machine_mode mode;
6815 /* By default, GCC maps increasing register numbers to increasing
6816 memory locations, but paired FPRs are always little-endian,
6817 regardless of the prevailing endianness. */
6818 mode = GET_MODE (reg);
6819 if (FP_REG_P (REGNO (reg))
6820 && TARGET_BIG_ENDIAN
6821 && MAX_FPRS_PER_FMT > 1
6822 && GET_MODE_SIZE (mode) > UNITS_PER_FPREG)
6824 gcc_assert (GET_MODE_SIZE (mode) == UNITS_PER_HWFPVALUE);
6825 high = mips_subword (reg, true);
6826 low = mips_subword (reg, false);
6827 return gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, high, low));
6830 return NULL_RTX;
6833 /* Implement ASM_OUTPUT_ASCII. */
6835 void
6836 mips_output_ascii (FILE *stream, const char *string, size_t len)
6838 size_t i;
6839 int cur_pos;
6841 cur_pos = 17;
6842 fprintf (stream, "\t.ascii\t\"");
6843 for (i = 0; i < len; i++)
6845 int c;
6847 c = (unsigned char) string[i];
6848 if (ISPRINT (c))
6850 if (c == '\\' || c == '\"')
6852 putc ('\\', stream);
6853 cur_pos++;
6855 putc (c, stream);
6856 cur_pos++;
6858 else
6860 fprintf (stream, "\\%03o", c);
6861 cur_pos += 4;
6864 if (cur_pos > 72 && i+1 < len)
6866 cur_pos = 17;
6867 fprintf (stream, "\"\n\t.ascii\t\"");
6870 fprintf (stream, "\"\n");
6873 /* Emit either a label, .comm, or .lcomm directive. When using assembler
6874 macros, mark the symbol as written so that mips_asm_output_external
6875 won't emit an .extern for it. STREAM is the output file, NAME is the
6876 name of the symbol, INIT_STRING is the string that should be written
6877 before the symbol and FINAL_STRING is the string that should be
6878 written after it. FINAL_STRING is a printf format that consumes the
6879 remaining arguments. */
6881 void
6882 mips_declare_object (FILE *stream, const char *name, const char *init_string,
6883 const char *final_string, ...)
6885 va_list ap;
6887 fputs (init_string, stream);
6888 assemble_name (stream, name);
6889 va_start (ap, final_string);
6890 vfprintf (stream, final_string, ap);
6891 va_end (ap);
6893 if (!TARGET_EXPLICIT_RELOCS)
6895 tree name_tree = get_identifier (name);
6896 TREE_ASM_WRITTEN (name_tree) = 1;
6900 /* Declare a common object of SIZE bytes using asm directive INIT_STRING.
6901 NAME is the name of the object and ALIGN is the required alignment
6902 in bytes. TAKES_ALIGNMENT_P is true if the directive takes a third
6903 alignment argument. */
6905 void
6906 mips_declare_common_object (FILE *stream, const char *name,
6907 const char *init_string,
6908 unsigned HOST_WIDE_INT size,
6909 unsigned int align, bool takes_alignment_p)
6911 if (!takes_alignment_p)
6913 size += (align / BITS_PER_UNIT) - 1;
6914 size -= size % (align / BITS_PER_UNIT);
6915 mips_declare_object (stream, name, init_string,
6916 "," HOST_WIDE_INT_PRINT_UNSIGNED "\n", size);
6918 else
6919 mips_declare_object (stream, name, init_string,
6920 "," HOST_WIDE_INT_PRINT_UNSIGNED ",%u\n",
6921 size, align / BITS_PER_UNIT);
6924 /* Implement ASM_OUTPUT_ALIGNED_DECL_COMMON. This is usually the same as the
6925 elfos.h version, but we also need to handle -muninit-const-in-rodata. */
6927 void
6928 mips_output_aligned_decl_common (FILE *stream, tree decl, const char *name,
6929 unsigned HOST_WIDE_INT size,
6930 unsigned int align)
6932 /* If the target wants uninitialized const declarations in
6933 .rdata then don't put them in .comm. */
6934 if (TARGET_EMBEDDED_DATA
6935 && TARGET_UNINIT_CONST_IN_RODATA
6936 && TREE_CODE (decl) == VAR_DECL
6937 && TREE_READONLY (decl)
6938 && (DECL_INITIAL (decl) == 0 || DECL_INITIAL (decl) == error_mark_node))
6940 if (TREE_PUBLIC (decl) && DECL_NAME (decl))
6941 targetm.asm_out.globalize_label (stream, name);
6943 switch_to_section (readonly_data_section);
6944 ASM_OUTPUT_ALIGN (stream, floor_log2 (align / BITS_PER_UNIT));
6945 mips_declare_object (stream, name, "",
6946 ":\n\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED "\n",
6947 size);
6949 else
6950 mips_declare_common_object (stream, name, "\n\t.comm\t",
6951 size, align, true);
6954 #ifdef ASM_OUTPUT_SIZE_DIRECTIVE
6955 extern int size_directive_output;
6957 /* Implement ASM_DECLARE_OBJECT_NAME. This is like most of the standard ELF
6958 definitions except that it uses mips_declare_object to emit the label. */
6960 void
6961 mips_declare_object_name (FILE *stream, const char *name,
6962 tree decl ATTRIBUTE_UNUSED)
6964 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
6965 ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "object");
6966 #endif
6968 size_directive_output = 0;
6969 if (!flag_inhibit_size_directive && DECL_SIZE (decl))
6971 HOST_WIDE_INT size;
6973 size_directive_output = 1;
6974 size = int_size_in_bytes (TREE_TYPE (decl));
6975 ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
6978 mips_declare_object (stream, name, "", ":\n");
6981 /* Implement ASM_FINISH_DECLARE_OBJECT. This is generic ELF stuff. */
6983 void
6984 mips_finish_declare_object (FILE *stream, tree decl, int top_level, int at_end)
6986 const char *name;
6988 name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
6989 if (!flag_inhibit_size_directive
6990 && DECL_SIZE (decl) != 0
6991 && !at_end
6992 && top_level
6993 && DECL_INITIAL (decl) == error_mark_node
6994 && !size_directive_output)
6996 HOST_WIDE_INT size;
6998 size_directive_output = 1;
6999 size = int_size_in_bytes (TREE_TYPE (decl));
7000 ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
7003 #endif
7005 /* Return the FOO in the name of the ".mdebug.FOO" section associated
7006 with the current ABI. */
7008 static const char *
7009 mips_mdebug_abi_name (void)
7011 switch (mips_abi)
7013 case ABI_32:
7014 return "abi32";
7015 case ABI_O64:
7016 return "abiO64";
7017 case ABI_N32:
7018 return "abiN32";
7019 case ABI_64:
7020 return "abiN64";
7021 case ABI_EABI:
7022 return TARGET_64BIT ? "eabi64" : "eabi32";
7023 default:
7024 gcc_unreachable ();
7028 /* Implement TARGET_ASM_FILE_START. */
7030 static void
7031 mips_file_start (void)
7033 default_file_start ();
7035 /* Generate a special section to describe the ABI switches used to
7036 produce the resultant binary. This is unnecessary on IRIX and
7037 causes unwanted warnings from the native linker. */
7038 if (!TARGET_IRIX)
7040 /* Record the ABI itself. Modern versions of binutils encode
7041 this information in the ELF header flags, but GDB needs the
7042 information in order to correctly debug binaries produced by
7043 older binutils. See the function mips_gdbarch_init in
7044 gdb/mips-tdep.c. */
7045 fprintf (asm_out_file, "\t.section .mdebug.%s\n\t.previous\n",
7046 mips_mdebug_abi_name ());
7048 /* There is no ELF header flag to distinguish long32 forms of the
7049 EABI from long64 forms. Emit a special section to help tools
7050 such as GDB. Do the same for o64, which is sometimes used with
7051 -mlong64. */
7052 if (mips_abi == ABI_EABI || mips_abi == ABI_O64)
7053 fprintf (asm_out_file, "\t.section .gcc_compiled_long%d\n"
7054 "\t.previous\n", TARGET_LONG64 ? 64 : 32);
7056 #ifdef HAVE_AS_GNU_ATTRIBUTE
7057 fprintf (asm_out_file, "\t.gnu_attribute 4, %d\n",
7058 TARGET_HARD_FLOAT_ABI ? (TARGET_DOUBLE_FLOAT ? 1 : 2) : 3);
7059 #endif
7062 /* If TARGET_ABICALLS, tell GAS to generate -KPIC code. */
7063 if (TARGET_ABICALLS)
7064 fprintf (asm_out_file, "\t.abicalls\n");
7066 if (flag_verbose_asm)
7067 fprintf (asm_out_file, "\n%s -G value = %d, Arch = %s, ISA = %d\n",
7068 ASM_COMMENT_START,
7069 mips_small_data_threshold, mips_arch_info->name, mips_isa);
7072 /* Make the last instruction frame-related and note that it performs
7073 the operation described by FRAME_PATTERN. */
7075 static void
7076 mips_set_frame_expr (rtx frame_pattern)
7078 rtx insn;
7080 insn = get_last_insn ();
7081 RTX_FRAME_RELATED_P (insn) = 1;
7082 REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
7083 frame_pattern,
7084 REG_NOTES (insn));
7087 /* Return a frame-related rtx that stores REG at MEM.
7088 REG must be a single register. */
7090 static rtx
7091 mips_frame_set (rtx mem, rtx reg)
7093 rtx set;
7095 /* If we're saving the return address register and the DWARF return
7096 address column differs from the hard register number, adjust the
7097 note reg to refer to the former. */
7098 if (REGNO (reg) == GP_REG_FIRST + 31
7099 && DWARF_FRAME_RETURN_COLUMN != GP_REG_FIRST + 31)
7100 reg = gen_rtx_REG (GET_MODE (reg), DWARF_FRAME_RETURN_COLUMN);
7102 set = gen_rtx_SET (VOIDmode, mem, reg);
7103 RTX_FRAME_RELATED_P (set) = 1;
7105 return set;
7108 /* If a MIPS16e SAVE or RESTORE instruction saves or restores register
7109 mips16e_s2_s8_regs[X], it must also save the registers in indexes
7110 X + 1 onwards. Likewise mips16e_a0_a3_regs. */
7111 static const unsigned char mips16e_s2_s8_regs[] = {
7112 30, 23, 22, 21, 20, 19, 18
7114 static const unsigned char mips16e_a0_a3_regs[] = {
7115 4, 5, 6, 7
7118 /* A list of the registers that can be saved by the MIPS16e SAVE instruction,
7119 ordered from the uppermost in memory to the lowest in memory. */
7120 static const unsigned char mips16e_save_restore_regs[] = {
7121 31, 30, 23, 22, 21, 20, 19, 18, 17, 16, 7, 6, 5, 4
7124 /* Return the index of the lowest X in the range [0, SIZE) for which
7125 bit REGS[X] is set in MASK. Return SIZE if there is no such X. */
7127 static unsigned int
7128 mips16e_find_first_register (unsigned int mask, const unsigned char *regs,
7129 unsigned int size)
7131 unsigned int i;
7133 for (i = 0; i < size; i++)
7134 if (BITSET_P (mask, regs[i]))
7135 break;
7137 return i;
7140 /* *MASK_PTR is a mask of general-purpose registers and *NUM_REGS_PTR
7141 is the number of set bits. If *MASK_PTR contains REGS[X] for some X
7142 in [0, SIZE), adjust *MASK_PTR and *NUM_REGS_PTR so that the same
7143 is true for all indexes (X, SIZE). */
7145 static void
7146 mips16e_mask_registers (unsigned int *mask_ptr, const unsigned char *regs,
7147 unsigned int size, unsigned int *num_regs_ptr)
7149 unsigned int i;
7151 i = mips16e_find_first_register (*mask_ptr, regs, size);
7152 for (i++; i < size; i++)
7153 if (!BITSET_P (*mask_ptr, regs[i]))
7155 *num_regs_ptr += 1;
7156 *mask_ptr |= 1 << regs[i];
7160 /* Return a simplified form of X using the register values in REG_VALUES.
7161 REG_VALUES[R] is the last value assigned to hard register R, or null
7162 if R has not been modified.
7164 This function is rather limited, but is good enough for our purposes. */
7166 static rtx
7167 mips16e_collect_propagate_value (rtx x, rtx *reg_values)
7169 x = avoid_constant_pool_reference (x);
7171 if (UNARY_P (x))
7173 rtx x0 = mips16e_collect_propagate_value (XEXP (x, 0), reg_values);
7174 return simplify_gen_unary (GET_CODE (x), GET_MODE (x),
7175 x0, GET_MODE (XEXP (x, 0)));
7178 if (ARITHMETIC_P (x))
7180 rtx x0 = mips16e_collect_propagate_value (XEXP (x, 0), reg_values);
7181 rtx x1 = mips16e_collect_propagate_value (XEXP (x, 1), reg_values);
7182 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), x0, x1);
7185 if (REG_P (x)
7186 && reg_values[REGNO (x)]
7187 && !rtx_unstable_p (reg_values[REGNO (x)]))
7188 return reg_values[REGNO (x)];
7190 return x;
7193 /* Return true if (set DEST SRC) stores an argument register into its
7194 caller-allocated save slot, storing the number of that argument
7195 register in *REGNO_PTR if so. REG_VALUES is as for
7196 mips16e_collect_propagate_value. */
7198 static bool
7199 mips16e_collect_argument_save_p (rtx dest, rtx src, rtx *reg_values,
7200 unsigned int *regno_ptr)
7202 unsigned int argno, regno;
7203 HOST_WIDE_INT offset, required_offset;
7204 rtx addr, base;
7206 /* Check that this is a word-mode store. */
7207 if (!MEM_P (dest) || !REG_P (src) || GET_MODE (dest) != word_mode)
7208 return false;
7210 /* Check that the register being saved is an unmodified argument
7211 register. */
7212 regno = REGNO (src);
7213 if (!IN_RANGE (regno, GP_ARG_FIRST, GP_ARG_LAST) || reg_values[regno])
7214 return false;
7215 argno = regno - GP_ARG_FIRST;
7217 /* Check whether the address is an appropriate stack-pointer or
7218 frame-pointer access. */
7219 addr = mips16e_collect_propagate_value (XEXP (dest, 0), reg_values);
7220 mips_split_plus (addr, &base, &offset);
7221 required_offset = cfun->machine->frame.total_size + argno * UNITS_PER_WORD;
7222 if (base == hard_frame_pointer_rtx)
7223 required_offset -= cfun->machine->frame.hard_frame_pointer_offset;
7224 else if (base != stack_pointer_rtx)
7225 return false;
7226 if (offset != required_offset)
7227 return false;
7229 *regno_ptr = regno;
7230 return true;
7233 /* A subroutine of mips_expand_prologue, called only when generating
7234 MIPS16e SAVE instructions. Search the start of the function for any
7235 instructions that save argument registers into their caller-allocated
7236 save slots. Delete such instructions and return a value N such that
7237 saving [GP_ARG_FIRST, GP_ARG_FIRST + N) would make all the deleted
7238 instructions redundant. */
7240 static unsigned int
7241 mips16e_collect_argument_saves (void)
7243 rtx reg_values[FIRST_PSEUDO_REGISTER];
7244 rtx insn, next, set, dest, src;
7245 unsigned int nargs, regno;
7247 push_topmost_sequence ();
7248 nargs = 0;
7249 memset (reg_values, 0, sizeof (reg_values));
7250 for (insn = get_insns (); insn; insn = next)
7252 next = NEXT_INSN (insn);
7253 if (NOTE_P (insn))
7254 continue;
7256 if (!INSN_P (insn))
7257 break;
7259 set = PATTERN (insn);
7260 if (GET_CODE (set) != SET)
7261 break;
7263 dest = SET_DEST (set);
7264 src = SET_SRC (set);
7265 if (mips16e_collect_argument_save_p (dest, src, reg_values, &regno))
7267 if (!BITSET_P (cfun->machine->frame.mask, regno))
7269 delete_insn (insn);
7270 nargs = MAX (nargs, (regno - GP_ARG_FIRST) + 1);
7273 else if (REG_P (dest) && GET_MODE (dest) == word_mode)
7274 reg_values[REGNO (dest)]
7275 = mips16e_collect_propagate_value (src, reg_values);
7276 else
7277 break;
7279 pop_topmost_sequence ();
7281 return nargs;
7284 /* Return a move between register REGNO and memory location SP + OFFSET.
7285 Make the move a load if RESTORE_P, otherwise make it a frame-related
7286 store. */
7288 static rtx
7289 mips16e_save_restore_reg (bool restore_p, HOST_WIDE_INT offset,
7290 unsigned int regno)
7292 rtx reg, mem;
7294 mem = gen_frame_mem (SImode, plus_constant (stack_pointer_rtx, offset));
7295 reg = gen_rtx_REG (SImode, regno);
7296 return (restore_p
7297 ? gen_rtx_SET (VOIDmode, reg, mem)
7298 : mips_frame_set (mem, reg));
7301 /* Return RTL for a MIPS16e SAVE or RESTORE instruction; RESTORE_P says which.
7302 The instruction must:
7304 - Allocate or deallocate SIZE bytes in total; SIZE is known
7305 to be nonzero.
7307 - Save or restore as many registers in *MASK_PTR as possible.
7308 The instruction saves the first registers at the top of the
7309 allocated area, with the other registers below it.
7311 - Save NARGS argument registers above the allocated area.
7313 (NARGS is always zero if RESTORE_P.)
7315 The SAVE and RESTORE instructions cannot save and restore all general
7316 registers, so there may be some registers left over for the caller to
7317 handle. Destructively modify *MASK_PTR so that it contains the registers
7318 that still need to be saved or restored. The caller can save these
7319 registers in the memory immediately below *OFFSET_PTR, which is a
7320 byte offset from the bottom of the allocated stack area. */
7322 static rtx
7323 mips16e_build_save_restore (bool restore_p, unsigned int *mask_ptr,
7324 HOST_WIDE_INT *offset_ptr, unsigned int nargs,
7325 HOST_WIDE_INT size)
7327 rtx pattern, set;
7328 HOST_WIDE_INT offset, top_offset;
7329 unsigned int i, regno;
7330 int n;
7332 gcc_assert (cfun->machine->frame.num_fp == 0);
7334 /* Calculate the number of elements in the PARALLEL. We need one element
7335 for the stack adjustment, one for each argument register save, and one
7336 for each additional register move. */
7337 n = 1 + nargs;
7338 for (i = 0; i < ARRAY_SIZE (mips16e_save_restore_regs); i++)
7339 if (BITSET_P (*mask_ptr, mips16e_save_restore_regs[i]))
7340 n++;
7342 /* Create the final PARALLEL. */
7343 pattern = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (n));
7344 n = 0;
7346 /* Add the stack pointer adjustment. */
7347 set = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
7348 plus_constant (stack_pointer_rtx,
7349 restore_p ? size : -size));
7350 RTX_FRAME_RELATED_P (set) = 1;
7351 XVECEXP (pattern, 0, n++) = set;
7353 /* Stack offsets in the PARALLEL are relative to the old stack pointer. */
7354 top_offset = restore_p ? size : 0;
7356 /* Save the arguments. */
7357 for (i = 0; i < nargs; i++)
7359 offset = top_offset + i * UNITS_PER_WORD;
7360 set = mips16e_save_restore_reg (restore_p, offset, GP_ARG_FIRST + i);
7361 XVECEXP (pattern, 0, n++) = set;
7364 /* Then fill in the other register moves. */
7365 offset = top_offset;
7366 for (i = 0; i < ARRAY_SIZE (mips16e_save_restore_regs); i++)
7368 regno = mips16e_save_restore_regs[i];
7369 if (BITSET_P (*mask_ptr, regno))
7371 offset -= UNITS_PER_WORD;
7372 set = mips16e_save_restore_reg (restore_p, offset, regno);
7373 XVECEXP (pattern, 0, n++) = set;
7374 *mask_ptr &= ~(1 << regno);
7378 /* Tell the caller what offset it should use for the remaining registers. */
7379 *offset_ptr = size + (offset - top_offset);
7381 gcc_assert (n == XVECLEN (pattern, 0));
7383 return pattern;
7386 /* PATTERN is a PARALLEL whose first element adds ADJUST to the stack
7387 pointer. Return true if PATTERN matches the kind of instruction
7388 generated by mips16e_build_save_restore. If INFO is nonnull,
7389 initialize it when returning true. */
7391 bool
7392 mips16e_save_restore_pattern_p (rtx pattern, HOST_WIDE_INT adjust,
7393 struct mips16e_save_restore_info *info)
7395 unsigned int i, nargs, mask, extra;
7396 HOST_WIDE_INT top_offset, save_offset, offset;
7397 rtx set, reg, mem, base;
7398 int n;
7400 if (!GENERATE_MIPS16E_SAVE_RESTORE)
7401 return false;
7403 /* Stack offsets in the PARALLEL are relative to the old stack pointer. */
7404 top_offset = adjust > 0 ? adjust : 0;
7406 /* Interpret all other members of the PARALLEL. */
7407 save_offset = top_offset - UNITS_PER_WORD;
7408 mask = 0;
7409 nargs = 0;
7410 i = 0;
7411 for (n = 1; n < XVECLEN (pattern, 0); n++)
7413 /* Check that we have a SET. */
7414 set = XVECEXP (pattern, 0, n);
7415 if (GET_CODE (set) != SET)
7416 return false;
7418 /* Check that the SET is a load (if restoring) or a store
7419 (if saving). */
7420 mem = adjust > 0 ? SET_SRC (set) : SET_DEST (set);
7421 if (!MEM_P (mem))
7422 return false;
7424 /* Check that the address is the sum of the stack pointer and a
7425 possibly-zero constant offset. */
7426 mips_split_plus (XEXP (mem, 0), &base, &offset);
7427 if (base != stack_pointer_rtx)
7428 return false;
7430 /* Check that SET's other operand is a register. */
7431 reg = adjust > 0 ? SET_DEST (set) : SET_SRC (set);
7432 if (!REG_P (reg))
7433 return false;
7435 /* Check for argument saves. */
7436 if (offset == top_offset + nargs * UNITS_PER_WORD
7437 && REGNO (reg) == GP_ARG_FIRST + nargs)
7438 nargs++;
7439 else if (offset == save_offset)
7441 while (mips16e_save_restore_regs[i++] != REGNO (reg))
7442 if (i == ARRAY_SIZE (mips16e_save_restore_regs))
7443 return false;
7445 mask |= 1 << REGNO (reg);
7446 save_offset -= UNITS_PER_WORD;
7448 else
7449 return false;
7452 /* Check that the restrictions on register ranges are met. */
7453 extra = 0;
7454 mips16e_mask_registers (&mask, mips16e_s2_s8_regs,
7455 ARRAY_SIZE (mips16e_s2_s8_regs), &extra);
7456 mips16e_mask_registers (&mask, mips16e_a0_a3_regs,
7457 ARRAY_SIZE (mips16e_a0_a3_regs), &extra);
7458 if (extra != 0)
7459 return false;
7461 /* Make sure that the topmost argument register is not saved twice.
7462 The checks above ensure that the same is then true for the other
7463 argument registers. */
7464 if (nargs > 0 && BITSET_P (mask, GP_ARG_FIRST + nargs - 1))
7465 return false;
7467 /* Pass back information, if requested. */
7468 if (info)
7470 info->nargs = nargs;
7471 info->mask = mask;
7472 info->size = (adjust > 0 ? adjust : -adjust);
7475 return true;
7478 /* Add a MIPS16e SAVE or RESTORE register-range argument to string S
7479 for the register range [MIN_REG, MAX_REG]. Return a pointer to
7480 the null terminator. */
7482 static char *
7483 mips16e_add_register_range (char *s, unsigned int min_reg,
7484 unsigned int max_reg)
7486 if (min_reg != max_reg)
7487 s += sprintf (s, ",%s-%s", reg_names[min_reg], reg_names[max_reg]);
7488 else
7489 s += sprintf (s, ",%s", reg_names[min_reg]);
7490 return s;
7493 /* Return the assembly instruction for a MIPS16e SAVE or RESTORE instruction.
7494 PATTERN and ADJUST are as for mips16e_save_restore_pattern_p. */
7496 const char *
7497 mips16e_output_save_restore (rtx pattern, HOST_WIDE_INT adjust)
7499 static char buffer[300];
7501 struct mips16e_save_restore_info info;
7502 unsigned int i, end;
7503 char *s;
7505 /* Parse the pattern. */
7506 if (!mips16e_save_restore_pattern_p (pattern, adjust, &info))
7507 gcc_unreachable ();
7509 /* Add the mnemonic. */
7510 s = strcpy (buffer, adjust > 0 ? "restore\t" : "save\t");
7511 s += strlen (s);
7513 /* Save the arguments. */
7514 if (info.nargs > 1)
7515 s += sprintf (s, "%s-%s,", reg_names[GP_ARG_FIRST],
7516 reg_names[GP_ARG_FIRST + info.nargs - 1]);
7517 else if (info.nargs == 1)
7518 s += sprintf (s, "%s,", reg_names[GP_ARG_FIRST]);
7520 /* Emit the amount of stack space to allocate or deallocate. */
7521 s += sprintf (s, "%d", (int) info.size);
7523 /* Save or restore $16. */
7524 if (BITSET_P (info.mask, 16))
7525 s += sprintf (s, ",%s", reg_names[GP_REG_FIRST + 16]);
7527 /* Save or restore $17. */
7528 if (BITSET_P (info.mask, 17))
7529 s += sprintf (s, ",%s", reg_names[GP_REG_FIRST + 17]);
7531 /* Save or restore registers in the range $s2...$s8, which
7532 mips16e_s2_s8_regs lists in decreasing order. Note that this
7533 is a software register range; the hardware registers are not
7534 numbered consecutively. */
7535 end = ARRAY_SIZE (mips16e_s2_s8_regs);
7536 i = mips16e_find_first_register (info.mask, mips16e_s2_s8_regs, end);
7537 if (i < end)
7538 s = mips16e_add_register_range (s, mips16e_s2_s8_regs[end - 1],
7539 mips16e_s2_s8_regs[i]);
7541 /* Save or restore registers in the range $a0...$a3. */
7542 end = ARRAY_SIZE (mips16e_a0_a3_regs);
7543 i = mips16e_find_first_register (info.mask, mips16e_a0_a3_regs, end);
7544 if (i < end)
7545 s = mips16e_add_register_range (s, mips16e_a0_a3_regs[i],
7546 mips16e_a0_a3_regs[end - 1]);
7548 /* Save or restore $31. */
7549 if (BITSET_P (info.mask, 31))
7550 s += sprintf (s, ",%s", reg_names[GP_REG_FIRST + 31]);
7552 return buffer;
7555 /* Return true if the current function has an insn that implicitly
7556 refers to $gp. */
7558 static bool
7559 mips_function_has_gp_insn (void)
7561 /* Don't bother rechecking if we found one last time. */
7562 if (!cfun->machine->has_gp_insn_p)
7564 rtx insn;
7566 push_topmost_sequence ();
7567 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
7568 if (USEFUL_INSN_P (insn)
7569 && (get_attr_got (insn) != GOT_UNSET
7570 || mips_small_data_pattern_p (PATTERN (insn))))
7572 cfun->machine->has_gp_insn_p = true;
7573 break;
7575 pop_topmost_sequence ();
7577 return cfun->machine->has_gp_insn_p;
7580 /* Return the register that should be used as the global pointer
7581 within this function. Return 0 if the function doesn't need
7582 a global pointer. */
7584 static unsigned int
7585 mips_global_pointer (void)
7587 unsigned int regno;
7589 /* $gp is always available unless we're using a GOT. */
7590 if (!TARGET_USE_GOT)
7591 return GLOBAL_POINTER_REGNUM;
7593 /* We must always provide $gp when it is used implicitly. */
7594 if (!TARGET_EXPLICIT_RELOCS)
7595 return GLOBAL_POINTER_REGNUM;
7597 /* FUNCTION_PROFILER includes a jal macro, so we need to give it
7598 a valid gp. */
7599 if (current_function_profile)
7600 return GLOBAL_POINTER_REGNUM;
7602 /* If the function has a nonlocal goto, $gp must hold the correct
7603 global pointer for the target function. */
7604 if (current_function_has_nonlocal_goto)
7605 return GLOBAL_POINTER_REGNUM;
7607 /* If the gp is never referenced, there's no need to initialize it.
7608 Note that reload can sometimes introduce constant pool references
7609 into a function that otherwise didn't need them. For example,
7610 suppose we have an instruction like:
7612 (set (reg:DF R1) (float:DF (reg:SI R2)))
7614 If R2 turns out to be constant such as 1, the instruction may have a
7615 REG_EQUAL note saying that R1 == 1.0. Reload then has the option of
7616 using this constant if R2 doesn't get allocated to a register.
7618 In cases like these, reload will have added the constant to the pool
7619 but no instruction will yet refer to it. */
7620 if (!df_regs_ever_live_p (GLOBAL_POINTER_REGNUM)
7621 && !current_function_uses_const_pool
7622 && !mips_function_has_gp_insn ())
7623 return 0;
7625 /* We need a global pointer, but perhaps we can use a call-clobbered
7626 register instead of $gp. */
7627 if (TARGET_CALL_SAVED_GP && current_function_is_leaf)
7628 for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
7629 if (!df_regs_ever_live_p (regno)
7630 && call_really_used_regs[regno]
7631 && !fixed_regs[regno]
7632 && regno != PIC_FUNCTION_ADDR_REGNUM)
7633 return regno;
7635 return GLOBAL_POINTER_REGNUM;
7638 /* Return true if the current function returns its value in a floating-point
7639 register in MIPS16 mode. */
7641 static bool
7642 mips16_cfun_returns_in_fpr_p (void)
7644 tree return_type = DECL_RESULT (current_function_decl);
7645 return (TARGET_MIPS16
7646 && TARGET_HARD_FLOAT_ABI
7647 && !aggregate_value_p (return_type, current_function_decl)
7648 && mips_return_mode_in_fpr_p (DECL_MODE (return_type)));
7651 /* Return true if the current function must save register REGNO. */
7653 static bool
7654 mips_save_reg_p (unsigned int regno)
7656 /* We only need to save $gp if TARGET_CALL_SAVED_GP and only then
7657 if we have not chosen a call-clobbered substitute. */
7658 if (regno == GLOBAL_POINTER_REGNUM)
7659 return TARGET_CALL_SAVED_GP && cfun->machine->global_pointer == regno;
7661 /* Check call-saved registers. */
7662 if ((current_function_saves_all_registers || df_regs_ever_live_p (regno))
7663 && !call_really_used_regs[regno])
7664 return true;
7666 /* Save both registers in an FPR pair if either one is used. This is
7667 needed for the case when MIN_FPRS_PER_FMT == 1, which allows the odd
7668 register to be used without the even register. */
7669 if (FP_REG_P (regno)
7670 && MAX_FPRS_PER_FMT == 2
7671 && df_regs_ever_live_p (regno + 1)
7672 && !call_really_used_regs[regno + 1])
7673 return true;
7675 /* We need to save the old frame pointer before setting up a new one. */
7676 if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
7677 return true;
7679 /* Check for registers that must be saved for FUNCTION_PROFILER. */
7680 if (current_function_profile && MIPS_SAVE_REG_FOR_PROFILING_P (regno))
7681 return true;
7683 /* We need to save the incoming return address if it is ever clobbered
7684 within the function, if __builtin_eh_return is being used to set a
7685 different return address, or if a stub is being used to return a
7686 value in FPRs. */
7687 if (regno == GP_REG_FIRST + 31
7688 && (df_regs_ever_live_p (regno)
7689 || current_function_calls_eh_return
7690 || mips16_cfun_returns_in_fpr_p ()))
7691 return true;
7693 return false;
7696 /* Populate the current function's mips_frame_info structure.
7698 MIPS stack frames look like:
7700 +-------------------------------+
7702 | incoming stack arguments |
7704 +-------------------------------+
7706 | caller-allocated save area |
7707 A | for register arguments |
7709 +-------------------------------+ <-- incoming stack pointer
7711 | callee-allocated save area |
7712 B | for arguments that are |
7713 | split between registers and |
7714 | the stack |
7716 +-------------------------------+ <-- arg_pointer_rtx
7718 C | callee-allocated save area |
7719 | for register varargs |
7721 +-------------------------------+ <-- frame_pointer_rtx + fp_sp_offset
7722 | | + UNITS_PER_HWFPVALUE
7723 | FPR save area |
7725 +-------------------------------+ <-- frame_pointer_rtx + gp_sp_offset
7726 | | + UNITS_PER_WORD
7727 | GPR save area |
7729 +-------------------------------+
7730 | | \
7731 | local variables | | var_size
7732 | | /
7733 +-------------------------------+
7734 | | \
7735 | $gp save area | | cprestore_size
7736 | | /
7737 P +-------------------------------+ <-- hard_frame_pointer_rtx for
7738 | | MIPS16 code
7739 | outgoing stack arguments |
7741 +-------------------------------+
7743 | caller-allocated save area |
7744 | for register arguments |
7746 +-------------------------------+ <-- stack_pointer_rtx
7747 frame_pointer_rtx
7748 hard_frame_pointer_rtx for
7749 non-MIPS16 code.
7751 At least two of A, B and C will be empty.
7753 Dynamic stack allocations such as alloca insert data at point P.
7754 They decrease stack_pointer_rtx but leave frame_pointer_rtx and
7755 hard_frame_pointer_rtx unchanged. */
7757 static void
7758 mips_compute_frame_info (void)
7760 struct mips_frame_info *frame;
7761 HOST_WIDE_INT offset, size;
7762 unsigned int regno, i;
7764 frame = &cfun->machine->frame;
7765 memset (frame, 0, sizeof (*frame));
7766 size = get_frame_size ();
7768 cfun->machine->global_pointer = mips_global_pointer ();
7770 /* The first STARTING_FRAME_OFFSET bytes contain the outgoing argument
7771 area and the $gp save slot. This area isn't needed in leaf functions,
7772 but if the target-independent frame size is nonzero, we're committed
7773 to allocating it anyway. */
7774 if (size == 0 && current_function_is_leaf)
7776 /* The MIPS 3.0 linker does not like functions that dynamically
7777 allocate the stack and have 0 for STACK_DYNAMIC_OFFSET, since it
7778 looks like we are trying to create a second frame pointer to the
7779 function, so allocate some stack space to make it happy. */
7780 if (current_function_calls_alloca)
7781 frame->args_size = REG_PARM_STACK_SPACE (cfun->decl);
7782 else
7783 frame->args_size = 0;
7784 frame->cprestore_size = 0;
7786 else
7788 frame->args_size = current_function_outgoing_args_size;
7789 frame->cprestore_size = STARTING_FRAME_OFFSET - frame->args_size;
7791 offset = frame->args_size + frame->cprestore_size;
7793 /* Move above the local variables. */
7794 frame->var_size = MIPS_STACK_ALIGN (size);
7795 offset += frame->var_size;
7797 /* Find out which GPRs we need to save. */
7798 for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
7799 if (mips_save_reg_p (regno))
7801 frame->num_gp++;
7802 frame->mask |= 1 << (regno - GP_REG_FIRST);
7805 /* If this function calls eh_return, we must also save and restore the
7806 EH data registers. */
7807 if (current_function_calls_eh_return)
7808 for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; i++)
7810 frame->num_gp++;
7811 frame->mask |= 1 << (EH_RETURN_DATA_REGNO (i) - GP_REG_FIRST);
7814 /* The MIPS16e SAVE and RESTORE instructions have two ranges of registers:
7815 $a3-$a0 and $s2-$s8. If we save one register in the range, we must
7816 save all later registers too. */
7817 if (GENERATE_MIPS16E_SAVE_RESTORE)
7819 mips16e_mask_registers (&frame->mask, mips16e_s2_s8_regs,
7820 ARRAY_SIZE (mips16e_s2_s8_regs), &frame->num_gp);
7821 mips16e_mask_registers (&frame->mask, mips16e_a0_a3_regs,
7822 ARRAY_SIZE (mips16e_a0_a3_regs), &frame->num_gp);
7825 /* Move above the GPR save area. */
7826 if (frame->num_gp > 0)
7828 offset += MIPS_STACK_ALIGN (frame->num_gp * UNITS_PER_WORD);
7829 frame->gp_sp_offset = offset - UNITS_PER_WORD;
7832 /* Find out which FPRs we need to save. This loop must iterate over
7833 the same space as its companion in mips_for_each_saved_reg. */
7834 if (TARGET_HARD_FLOAT)
7835 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno += MAX_FPRS_PER_FMT)
7836 if (mips_save_reg_p (regno))
7838 frame->num_fp += MAX_FPRS_PER_FMT;
7839 frame->fmask |= ~(~0 << MAX_FPRS_PER_FMT) << (regno - FP_REG_FIRST);
7842 /* Move above the FPR save area. */
7843 if (frame->num_fp > 0)
7845 offset += MIPS_STACK_ALIGN (frame->num_fp * UNITS_PER_FPREG);
7846 frame->fp_sp_offset = offset - UNITS_PER_HWFPVALUE;
7849 /* Move above the callee-allocated varargs save area. */
7850 offset += MIPS_STACK_ALIGN (cfun->machine->varargs_size);
7851 frame->arg_pointer_offset = offset;
7853 /* Move above the callee-allocated area for pretend stack arguments. */
7854 offset += current_function_pretend_args_size;
7855 frame->total_size = offset;
7857 /* Work out the offsets of the save areas from the top of the frame. */
7858 if (frame->gp_sp_offset > 0)
7859 frame->gp_save_offset = frame->gp_sp_offset - offset;
7860 if (frame->fp_sp_offset > 0)
7861 frame->fp_save_offset = frame->fp_sp_offset - offset;
7863 /* MIPS16 code offsets the frame pointer by the size of the outgoing
7864 arguments. This tends to increase the chances of using unextended
7865 instructions for local variables and incoming arguments. */
7866 if (TARGET_MIPS16)
7867 frame->hard_frame_pointer_offset = frame->args_size;
7870 /* Return the style of GP load sequence that is being used for the
7871 current function. */
7873 enum mips_loadgp_style
7874 mips_current_loadgp_style (void)
7876 if (!TARGET_USE_GOT || cfun->machine->global_pointer == 0)
7877 return LOADGP_NONE;
7879 if (TARGET_RTP_PIC)
7880 return LOADGP_RTP;
7882 if (TARGET_ABSOLUTE_ABICALLS)
7883 return LOADGP_ABSOLUTE;
7885 return TARGET_NEWABI ? LOADGP_NEWABI : LOADGP_OLDABI;
7888 /* Implement FRAME_POINTER_REQUIRED. */
7890 bool
7891 mips_frame_pointer_required (void)
7893 /* If the function contains dynamic stack allocations, we need to
7894 use the frame pointer to access the static parts of the frame. */
7895 if (current_function_calls_alloca)
7896 return true;
7898 /* In MIPS16 mode, we need a frame pointer for a large frame; otherwise,
7899 reload may be unable to compute the address of a local variable,
7900 since there is no way to add a large constant to the stack pointer
7901 without using a second temporary register. */
7902 if (TARGET_MIPS16)
7904 mips_compute_frame_info ();
7905 if (!SMALL_OPERAND (cfun->machine->frame.total_size))
7906 return true;
7909 return false;
7912 /* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame pointer
7913 or argument pointer. TO is either the stack pointer or hard frame
7914 pointer. */
7916 HOST_WIDE_INT
7917 mips_initial_elimination_offset (int from, int to)
7919 HOST_WIDE_INT offset;
7921 mips_compute_frame_info ();
7923 /* Set OFFSET to the offset from the soft frame pointer, which is also
7924 the offset from the end-of-prologue stack pointer. */
7925 switch (from)
7927 case FRAME_POINTER_REGNUM:
7928 offset = 0;
7929 break;
7931 case ARG_POINTER_REGNUM:
7932 offset = cfun->machine->frame.arg_pointer_offset;
7933 break;
7935 default:
7936 gcc_unreachable ();
7939 if (to == HARD_FRAME_POINTER_REGNUM)
7940 offset -= cfun->machine->frame.hard_frame_pointer_offset;
7942 return offset;
7945 /* Implement TARGET_EXTRA_LIVE_ON_ENTRY. Some code models use the incoming
7946 value of PIC_FUNCTION_ADDR_REGNUM to set up the global pointer. */
7948 static void
7949 mips_extra_live_on_entry (bitmap regs)
7951 if (TARGET_USE_GOT && !TARGET_ABSOLUTE_ABICALLS)
7952 bitmap_set_bit (regs, PIC_FUNCTION_ADDR_REGNUM);
7955 /* Implement RETURN_ADDR_RTX. We do not support moving back to a
7956 previous frame. */
7959 mips_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
7961 if (count != 0)
7962 return const0_rtx;
7964 return get_hard_reg_initial_val (Pmode, GP_REG_FIRST + 31);
7967 /* Emit code to change the current function's return address to
7968 ADDRESS. SCRATCH is available as a scratch register, if needed.
7969 ADDRESS and SCRATCH are both word-mode GPRs. */
7971 void
7972 mips_set_return_address (rtx address, rtx scratch)
7974 rtx slot_address;
7976 gcc_assert (BITSET_P (cfun->machine->frame.mask, 31));
7977 slot_address = mips_add_offset (scratch, stack_pointer_rtx,
7978 cfun->machine->frame.gp_sp_offset);
7979 mips_emit_move (gen_frame_mem (GET_MODE (address), slot_address), address);
7982 /* Restore $gp from its save slot. Valid only when using o32 or
7983 o64 abicalls. */
7985 void
7986 mips_restore_gp (void)
7988 rtx base, address;
7990 gcc_assert (TARGET_ABICALLS && TARGET_OLDABI);
7992 base = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
7993 address = mips_add_offset (pic_offset_table_rtx, base,
7994 current_function_outgoing_args_size);
7995 mips_emit_move (pic_offset_table_rtx, gen_frame_mem (Pmode, address));
7996 if (!TARGET_EXPLICIT_RELOCS)
7997 emit_insn (gen_blockage ());
8000 /* A function to save or store a register. The first argument is the
8001 register and the second is the stack slot. */
8002 typedef void (*mips_save_restore_fn) (rtx, rtx);
8004 /* Use FN to save or restore register REGNO. MODE is the register's
8005 mode and OFFSET is the offset of its save slot from the current
8006 stack pointer. */
8008 static void
8009 mips_save_restore_reg (enum machine_mode mode, int regno,
8010 HOST_WIDE_INT offset, mips_save_restore_fn fn)
8012 rtx mem;
8014 mem = gen_frame_mem (mode, plus_constant (stack_pointer_rtx, offset));
8015 fn (gen_rtx_REG (mode, regno), mem);
8018 /* Call FN for each register that is saved by the current function.
8019 SP_OFFSET is the offset of the current stack pointer from the start
8020 of the frame. */
8022 static void
8023 mips_for_each_saved_reg (HOST_WIDE_INT sp_offset, mips_save_restore_fn fn)
8025 enum machine_mode fpr_mode;
8026 HOST_WIDE_INT offset;
8027 int regno;
8029 /* Save registers starting from high to low. The debuggers prefer at least
8030 the return register be stored at func+4, and also it allows us not to
8031 need a nop in the epilogue if at least one register is reloaded in
8032 addition to return address. */
8033 offset = cfun->machine->frame.gp_sp_offset - sp_offset;
8034 for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
8035 if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST))
8037 mips_save_restore_reg (word_mode, regno, offset, fn);
8038 offset -= UNITS_PER_WORD;
8041 /* This loop must iterate over the same space as its companion in
8042 mips_compute_frame_info. */
8043 offset = cfun->machine->frame.fp_sp_offset - sp_offset;
8044 fpr_mode = (TARGET_SINGLE_FLOAT ? SFmode : DFmode);
8045 for (regno = FP_REG_LAST - MAX_FPRS_PER_FMT + 1;
8046 regno >= FP_REG_FIRST;
8047 regno -= MAX_FPRS_PER_FMT)
8048 if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST))
8050 mips_save_restore_reg (fpr_mode, regno, offset, fn);
8051 offset -= GET_MODE_SIZE (fpr_mode);
8055 /* If we're generating n32 or n64 abicalls, and the current function
8056 does not use $28 as its global pointer, emit a cplocal directive.
8057 Use pic_offset_table_rtx as the argument to the directive. */
8059 static void
8060 mips_output_cplocal (void)
8062 if (!TARGET_EXPLICIT_RELOCS
8063 && cfun->machine->global_pointer > 0
8064 && cfun->machine->global_pointer != GLOBAL_POINTER_REGNUM)
8065 output_asm_insn (".cplocal %+", 0);
8068 /* Implement TARGET_OUTPUT_FUNCTION_PROLOGUE. */
8070 static void
8071 mips_output_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
8073 const char *fnname;
8075 #ifdef SDB_DEBUGGING_INFO
8076 if (debug_info_level != DINFO_LEVEL_TERSE && write_symbols == SDB_DEBUG)
8077 SDB_OUTPUT_SOURCE_LINE (file, DECL_SOURCE_LINE (current_function_decl));
8078 #endif
8080 /* In MIPS16 mode, we may need to generate a non-MIPS16 stub to handle
8081 floating-point arguments. */
8082 if (TARGET_MIPS16
8083 && TARGET_HARD_FLOAT_ABI
8084 && current_function_args_info.fp_code != 0)
8085 mips16_build_function_stub ();
8087 /* Select the MIPS16 mode for this function. */
8088 if (TARGET_MIPS16)
8089 fprintf (file, "\t.set\tmips16\n");
8090 else
8091 fprintf (file, "\t.set\tnomips16\n");
8093 if (!FUNCTION_NAME_ALREADY_DECLARED)
8095 /* Get the function name the same way that toplev.c does before calling
8096 assemble_start_function. This is needed so that the name used here
8097 exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
8098 fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
8100 if (!flag_inhibit_size_directive)
8102 fputs ("\t.ent\t", file);
8103 assemble_name (file, fnname);
8104 fputs ("\n", file);
8107 assemble_name (file, fnname);
8108 fputs (":\n", file);
8111 /* Stop mips_file_end from treating this function as external. */
8112 if (TARGET_IRIX && mips_abi == ABI_32)
8113 TREE_ASM_WRITTEN (DECL_NAME (cfun->decl)) = 1;
8115 /* Output MIPS-specific frame information. */
8116 if (!flag_inhibit_size_directive)
8118 const struct mips_frame_info *frame;
8120 frame = &cfun->machine->frame;
8122 /* .frame FRAMEREG, FRAMESIZE, RETREG. */
8123 fprintf (file,
8124 "\t.frame\t%s," HOST_WIDE_INT_PRINT_DEC ",%s\t\t"
8125 "# vars= " HOST_WIDE_INT_PRINT_DEC
8126 ", regs= %d/%d"
8127 ", args= " HOST_WIDE_INT_PRINT_DEC
8128 ", gp= " HOST_WIDE_INT_PRINT_DEC "\n",
8129 reg_names[frame_pointer_needed
8130 ? HARD_FRAME_POINTER_REGNUM
8131 : STACK_POINTER_REGNUM],
8132 (frame_pointer_needed
8133 ? frame->total_size - frame->hard_frame_pointer_offset
8134 : frame->total_size),
8135 reg_names[GP_REG_FIRST + 31],
8136 frame->var_size,
8137 frame->num_gp, frame->num_fp,
8138 frame->args_size,
8139 frame->cprestore_size);
8141 /* .mask MASK, OFFSET. */
8142 fprintf (file, "\t.mask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
8143 frame->mask, frame->gp_save_offset);
8145 /* .fmask MASK, OFFSET. */
8146 fprintf (file, "\t.fmask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
8147 frame->fmask, frame->fp_save_offset);
8150 /* Handle the initialization of $gp for SVR4 PIC, if applicable.
8151 Also emit the ".set noreorder; .set nomacro" sequence for functions
8152 that need it. */
8153 if (mips_current_loadgp_style () == LOADGP_OLDABI)
8155 /* .cpload must be in a .set noreorder but not a .set nomacro block. */
8156 if (!cfun->machine->all_noreorder_p)
8157 output_asm_insn ("%(.cpload\t%^%)", 0);
8158 else
8159 output_asm_insn ("%(.cpload\t%^\n\t%<", 0);
8161 else if (cfun->machine->all_noreorder_p)
8162 output_asm_insn ("%(%<", 0);
8164 /* Tell the assembler which register we're using as the global
8165 pointer. This is needed for thunks, since they can use either
8166 explicit relocs or assembler macros. */
8167 mips_output_cplocal ();
8170 /* Implement TARGET_OUTPUT_FUNCTION_EPILOGUE. */
8172 static void
8173 mips_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
8174 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
8176 /* Reinstate the normal $gp. */
8177 SET_REGNO (pic_offset_table_rtx, GLOBAL_POINTER_REGNUM);
8178 mips_output_cplocal ();
8180 if (cfun->machine->all_noreorder_p)
8182 /* Avoid using %>%) since it adds excess whitespace. */
8183 output_asm_insn (".set\tmacro", 0);
8184 output_asm_insn (".set\treorder", 0);
8185 set_noreorder = set_nomacro = 0;
8188 if (!FUNCTION_NAME_ALREADY_DECLARED && !flag_inhibit_size_directive)
8190 const char *fnname;
8192 /* Get the function name the same way that toplev.c does before calling
8193 assemble_start_function. This is needed so that the name used here
8194 exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
8195 fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
8196 fputs ("\t.end\t", file);
8197 assemble_name (file, fnname);
8198 fputs ("\n", file);
8202 /* Save register REG to MEM. Make the instruction frame-related. */
8204 static void
8205 mips_save_reg (rtx reg, rtx mem)
8207 if (GET_MODE (reg) == DFmode && !TARGET_FLOAT64)
8209 rtx x1, x2;
8211 if (mips_split_64bit_move_p (mem, reg))
8212 mips_split_doubleword_move (mem, reg);
8213 else
8214 mips_emit_move (mem, reg);
8216 x1 = mips_frame_set (mips_subword (mem, false),
8217 mips_subword (reg, false));
8218 x2 = mips_frame_set (mips_subword (mem, true),
8219 mips_subword (reg, true));
8220 mips_set_frame_expr (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, x1, x2)));
8222 else
8224 if (TARGET_MIPS16
8225 && REGNO (reg) != GP_REG_FIRST + 31
8226 && !M16_REG_P (REGNO (reg)))
8228 /* Save a non-MIPS16 register by moving it through a temporary.
8229 We don't need to do this for $31 since there's a special
8230 instruction for it. */
8231 mips_emit_move (MIPS_PROLOGUE_TEMP (GET_MODE (reg)), reg);
8232 mips_emit_move (mem, MIPS_PROLOGUE_TEMP (GET_MODE (reg)));
8234 else
8235 mips_emit_move (mem, reg);
8237 mips_set_frame_expr (mips_frame_set (mem, reg));
8241 /* The __gnu_local_gp symbol. */
8243 static GTY(()) rtx mips_gnu_local_gp;
8245 /* If we're generating n32 or n64 abicalls, emit instructions
8246 to set up the global pointer. */
8248 static void
8249 mips_emit_loadgp (void)
8251 rtx addr, offset, incoming_address, base, index;
8253 switch (mips_current_loadgp_style ())
8255 case LOADGP_ABSOLUTE:
8256 if (mips_gnu_local_gp == NULL)
8258 mips_gnu_local_gp = gen_rtx_SYMBOL_REF (Pmode, "__gnu_local_gp");
8259 SYMBOL_REF_FLAGS (mips_gnu_local_gp) |= SYMBOL_FLAG_LOCAL;
8261 emit_insn (gen_loadgp_absolute (mips_gnu_local_gp));
8262 break;
8264 case LOADGP_NEWABI:
8265 addr = XEXP (DECL_RTL (current_function_decl), 0);
8266 offset = mips_unspec_address (addr, SYMBOL_GOTOFF_LOADGP);
8267 incoming_address = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
8268 emit_insn (gen_loadgp_newabi (offset, incoming_address));
8269 if (!TARGET_EXPLICIT_RELOCS)
8270 emit_insn (gen_loadgp_blockage ());
8271 break;
8273 case LOADGP_RTP:
8274 base = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (VXWORKS_GOTT_BASE));
8275 index = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (VXWORKS_GOTT_INDEX));
8276 emit_insn (gen_loadgp_rtp (base, index));
8277 if (!TARGET_EXPLICIT_RELOCS)
8278 emit_insn (gen_loadgp_blockage ());
8279 break;
8281 default:
8282 break;
8286 /* Expand the "prologue" pattern. */
8288 void
8289 mips_expand_prologue (void)
8291 const struct mips_frame_info *frame;
8292 HOST_WIDE_INT size;
8293 unsigned int nargs;
8294 rtx insn;
8296 if (cfun->machine->global_pointer > 0)
8297 SET_REGNO (pic_offset_table_rtx, cfun->machine->global_pointer);
8299 frame = &cfun->machine->frame;
8300 size = frame->total_size;
8302 /* Save the registers. Allocate up to MIPS_MAX_FIRST_STACK_STEP
8303 bytes beforehand; this is enough to cover the register save area
8304 without going out of range. */
8305 if ((frame->mask | frame->fmask) != 0)
8307 HOST_WIDE_INT step1;
8309 step1 = MIN (size, MIPS_MAX_FIRST_STACK_STEP);
8310 if (GENERATE_MIPS16E_SAVE_RESTORE)
8312 HOST_WIDE_INT offset;
8313 unsigned int mask, regno;
8315 /* Try to merge argument stores into the save instruction. */
8316 nargs = mips16e_collect_argument_saves ();
8318 /* Build the save instruction. */
8319 mask = frame->mask;
8320 insn = mips16e_build_save_restore (false, &mask, &offset,
8321 nargs, step1);
8322 RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
8323 size -= step1;
8325 /* Check if we need to save other registers. */
8326 for (regno = GP_REG_FIRST; regno < GP_REG_LAST; regno++)
8327 if (BITSET_P (mask, regno - GP_REG_FIRST))
8329 offset -= UNITS_PER_WORD;
8330 mips_save_restore_reg (word_mode, regno,
8331 offset, mips_save_reg);
8334 else
8336 insn = gen_add3_insn (stack_pointer_rtx,
8337 stack_pointer_rtx,
8338 GEN_INT (-step1));
8339 RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
8340 size -= step1;
8341 mips_for_each_saved_reg (size, mips_save_reg);
8345 /* Allocate the rest of the frame. */
8346 if (size > 0)
8348 if (SMALL_OPERAND (-size))
8349 RTX_FRAME_RELATED_P (emit_insn (gen_add3_insn (stack_pointer_rtx,
8350 stack_pointer_rtx,
8351 GEN_INT (-size)))) = 1;
8352 else
8354 mips_emit_move (MIPS_PROLOGUE_TEMP (Pmode), GEN_INT (size));
8355 if (TARGET_MIPS16)
8357 /* There are no instructions to add or subtract registers
8358 from the stack pointer, so use the frame pointer as a
8359 temporary. We should always be using a frame pointer
8360 in this case anyway. */
8361 gcc_assert (frame_pointer_needed);
8362 mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx);
8363 emit_insn (gen_sub3_insn (hard_frame_pointer_rtx,
8364 hard_frame_pointer_rtx,
8365 MIPS_PROLOGUE_TEMP (Pmode)));
8366 mips_emit_move (stack_pointer_rtx, hard_frame_pointer_rtx);
8368 else
8369 emit_insn (gen_sub3_insn (stack_pointer_rtx,
8370 stack_pointer_rtx,
8371 MIPS_PROLOGUE_TEMP (Pmode)));
8373 /* Describe the combined effect of the previous instructions. */
8374 mips_set_frame_expr
8375 (gen_rtx_SET (VOIDmode, stack_pointer_rtx,
8376 plus_constant (stack_pointer_rtx, -size)));
8380 /* Set up the frame pointer, if we're using one. */
8381 if (frame_pointer_needed)
8383 HOST_WIDE_INT offset;
8385 offset = frame->hard_frame_pointer_offset;
8386 if (offset == 0)
8388 insn = mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx);
8389 RTX_FRAME_RELATED_P (insn) = 1;
8391 else if (SMALL_OPERAND (offset))
8393 insn = gen_add3_insn (hard_frame_pointer_rtx,
8394 stack_pointer_rtx, GEN_INT (offset));
8395 RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
8397 else
8399 mips_emit_move (MIPS_PROLOGUE_TEMP (Pmode), GEN_INT (offset));
8400 mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx);
8401 emit_insn (gen_add3_insn (hard_frame_pointer_rtx,
8402 hard_frame_pointer_rtx,
8403 MIPS_PROLOGUE_TEMP (Pmode)));
8404 mips_set_frame_expr
8405 (gen_rtx_SET (VOIDmode, hard_frame_pointer_rtx,
8406 plus_constant (stack_pointer_rtx, offset)));
8410 mips_emit_loadgp ();
8412 /* Initialize the $gp save slot. */
8413 if (frame->cprestore_size > 0)
8414 emit_insn (gen_cprestore (GEN_INT (current_function_outgoing_args_size)));
8416 /* If we are profiling, make sure no instructions are scheduled before
8417 the call to mcount. */
8418 if (current_function_profile)
8419 emit_insn (gen_blockage ());
8422 /* Emit instructions to restore register REG from slot MEM. */
8424 static void
8425 mips_restore_reg (rtx reg, rtx mem)
8427 /* There's no MIPS16 instruction to load $31 directly. Load into
8428 $7 instead and adjust the return insn appropriately. */
8429 if (TARGET_MIPS16 && REGNO (reg) == GP_REG_FIRST + 31)
8430 reg = gen_rtx_REG (GET_MODE (reg), GP_REG_FIRST + 7);
8432 if (TARGET_MIPS16 && !M16_REG_P (REGNO (reg)))
8434 /* Can't restore directly; move through a temporary. */
8435 mips_emit_move (MIPS_EPILOGUE_TEMP (GET_MODE (reg)), mem);
8436 mips_emit_move (reg, MIPS_EPILOGUE_TEMP (GET_MODE (reg)));
8438 else
8439 mips_emit_move (reg, mem);
8442 /* Expand an "epilogue" or "sibcall_epilogue" pattern; SIBCALL_P
8443 says which. */
8445 void
8446 mips_expand_epilogue (bool sibcall_p)
8448 const struct mips_frame_info *frame;
8449 HOST_WIDE_INT step1, step2;
8450 rtx base, target;
8452 if (!sibcall_p && mips_can_use_return_insn ())
8454 emit_jump_insn (gen_return ());
8455 return;
8458 /* In MIPS16 mode, if the return value should go into a floating-point
8459 register, we need to call a helper routine to copy it over. */
8460 if (mips16_cfun_returns_in_fpr_p ())
8461 mips16_copy_fpr_return_value ();
8463 /* Split the frame into two. STEP1 is the amount of stack we should
8464 deallocate before restoring the registers. STEP2 is the amount we
8465 should deallocate afterwards.
8467 Start off by assuming that no registers need to be restored. */
8468 frame = &cfun->machine->frame;
8469 step1 = frame->total_size;
8470 step2 = 0;
8472 /* Work out which register holds the frame address. */
8473 if (!frame_pointer_needed)
8474 base = stack_pointer_rtx;
8475 else
8477 base = hard_frame_pointer_rtx;
8478 step1 -= frame->hard_frame_pointer_offset;
8481 /* If we need to restore registers, deallocate as much stack as
8482 possible in the second step without going out of range. */
8483 if ((frame->mask | frame->fmask) != 0)
8485 step2 = MIN (step1, MIPS_MAX_FIRST_STACK_STEP);
8486 step1 -= step2;
8489 /* Set TARGET to BASE + STEP1. */
8490 target = base;
8491 if (step1 > 0)
8493 rtx adjust;
8495 /* Get an rtx for STEP1 that we can add to BASE. */
8496 adjust = GEN_INT (step1);
8497 if (!SMALL_OPERAND (step1))
8499 mips_emit_move (MIPS_EPILOGUE_TEMP (Pmode), adjust);
8500 adjust = MIPS_EPILOGUE_TEMP (Pmode);
8503 /* Normal mode code can copy the result straight into $sp. */
8504 if (!TARGET_MIPS16)
8505 target = stack_pointer_rtx;
8507 emit_insn (gen_add3_insn (target, base, adjust));
8510 /* Copy TARGET into the stack pointer. */
8511 if (target != stack_pointer_rtx)
8512 mips_emit_move (stack_pointer_rtx, target);
8514 /* If we're using addressing macros, $gp is implicitly used by all
8515 SYMBOL_REFs. We must emit a blockage insn before restoring $gp
8516 from the stack. */
8517 if (TARGET_CALL_SAVED_GP && !TARGET_EXPLICIT_RELOCS)
8518 emit_insn (gen_blockage ());
8520 if (GENERATE_MIPS16E_SAVE_RESTORE && frame->mask != 0)
8522 unsigned int regno, mask;
8523 HOST_WIDE_INT offset;
8524 rtx restore;
8526 /* Generate the restore instruction. */
8527 mask = frame->mask;
8528 restore = mips16e_build_save_restore (true, &mask, &offset, 0, step2);
8530 /* Restore any other registers manually. */
8531 for (regno = GP_REG_FIRST; regno < GP_REG_LAST; regno++)
8532 if (BITSET_P (mask, regno - GP_REG_FIRST))
8534 offset -= UNITS_PER_WORD;
8535 mips_save_restore_reg (word_mode, regno, offset, mips_restore_reg);
8538 /* Restore the remaining registers and deallocate the final bit
8539 of the frame. */
8540 emit_insn (restore);
8542 else
8544 /* Restore the registers. */
8545 mips_for_each_saved_reg (frame->total_size - step2, mips_restore_reg);
8547 /* Deallocate the final bit of the frame. */
8548 if (step2 > 0)
8549 emit_insn (gen_add3_insn (stack_pointer_rtx,
8550 stack_pointer_rtx,
8551 GEN_INT (step2)));
8554 /* Add in the __builtin_eh_return stack adjustment. We need to
8555 use a temporary in MIPS16 code. */
8556 if (current_function_calls_eh_return)
8558 if (TARGET_MIPS16)
8560 mips_emit_move (MIPS_EPILOGUE_TEMP (Pmode), stack_pointer_rtx);
8561 emit_insn (gen_add3_insn (MIPS_EPILOGUE_TEMP (Pmode),
8562 MIPS_EPILOGUE_TEMP (Pmode),
8563 EH_RETURN_STACKADJ_RTX));
8564 mips_emit_move (stack_pointer_rtx, MIPS_EPILOGUE_TEMP (Pmode));
8566 else
8567 emit_insn (gen_add3_insn (stack_pointer_rtx,
8568 stack_pointer_rtx,
8569 EH_RETURN_STACKADJ_RTX));
8572 if (!sibcall_p)
8574 unsigned int regno;
8576 /* When generating MIPS16 code, the normal mips_for_each_saved_reg
8577 path will restore the return address into $7 rather than $31. */
8578 if (TARGET_MIPS16
8579 && !GENERATE_MIPS16E_SAVE_RESTORE
8580 && BITSET_P (frame->mask, 31))
8581 regno = GP_REG_FIRST + 7;
8582 else
8583 regno = GP_REG_FIRST + 31;
8584 emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode, regno)));
8588 /* Return nonzero if this function is known to have a null epilogue.
8589 This allows the optimizer to omit jumps to jumps if no stack
8590 was created. */
8592 bool
8593 mips_can_use_return_insn (void)
8595 if (!reload_completed)
8596 return false;
8598 if (current_function_profile)
8599 return false;
8601 /* In MIPS16 mode, a function that returns a floating-point value
8602 needs to arrange to copy the return value into the floating-point
8603 registers. */
8604 if (mips16_cfun_returns_in_fpr_p ())
8605 return false;
8607 return cfun->machine->frame.total_size == 0;
8610 /* Return true if register REGNO can store a value of mode MODE.
8611 The result of this function is cached in mips_hard_regno_mode_ok. */
8613 static bool
8614 mips_hard_regno_mode_ok_p (unsigned int regno, enum machine_mode mode)
8616 unsigned int size;
8617 enum mode_class class;
8619 if (mode == CCV2mode)
8620 return (ISA_HAS_8CC
8621 && ST_REG_P (regno)
8622 && (regno - ST_REG_FIRST) % 2 == 0);
8624 if (mode == CCV4mode)
8625 return (ISA_HAS_8CC
8626 && ST_REG_P (regno)
8627 && (regno - ST_REG_FIRST) % 4 == 0);
8629 if (mode == CCmode)
8631 if (!ISA_HAS_8CC)
8632 return regno == FPSW_REGNUM;
8634 return (ST_REG_P (regno)
8635 || GP_REG_P (regno)
8636 || FP_REG_P (regno));
8639 size = GET_MODE_SIZE (mode);
8640 class = GET_MODE_CLASS (mode);
8642 if (GP_REG_P (regno))
8643 return ((regno - GP_REG_FIRST) & 1) == 0 || size <= UNITS_PER_WORD;
8645 if (FP_REG_P (regno)
8646 && (((regno - FP_REG_FIRST) % MAX_FPRS_PER_FMT) == 0
8647 || (MIN_FPRS_PER_FMT == 1 && size <= UNITS_PER_FPREG)))
8649 /* Allow TFmode for CCmode reloads. */
8650 if (mode == TFmode && ISA_HAS_8CC)
8651 return true;
8653 if (class == MODE_FLOAT
8654 || class == MODE_COMPLEX_FLOAT
8655 || class == MODE_VECTOR_FLOAT)
8656 return size <= UNITS_PER_FPVALUE;
8658 /* Allow integer modes that fit into a single register. We need
8659 to put integers into FPRs when using instructions like CVT
8660 and TRUNC. There's no point allowing sizes smaller than a word,
8661 because the FPU has no appropriate load/store instructions. */
8662 if (class == MODE_INT)
8663 return size >= MIN_UNITS_PER_WORD && size <= UNITS_PER_FPREG;
8666 if (ACC_REG_P (regno)
8667 && (INTEGRAL_MODE_P (mode) || ALL_FIXED_POINT_MODE_P (mode)))
8669 if (size <= UNITS_PER_WORD)
8670 return true;
8672 if (size <= UNITS_PER_WORD * 2)
8673 return (DSP_ACC_REG_P (regno)
8674 ? ((regno - DSP_ACC_REG_FIRST) & 1) == 0
8675 : regno == MD_REG_FIRST);
8678 if (ALL_COP_REG_P (regno))
8679 return class == MODE_INT && size <= UNITS_PER_WORD;
8681 return false;
8684 /* Implement HARD_REGNO_NREGS. */
8686 unsigned int
8687 mips_hard_regno_nregs (int regno, enum machine_mode mode)
8689 if (ST_REG_P (regno))
8690 /* The size of FP status registers is always 4, because they only hold
8691 CCmode values, and CCmode is always considered to be 4 bytes wide. */
8692 return (GET_MODE_SIZE (mode) + 3) / 4;
8694 if (FP_REG_P (regno))
8695 return (GET_MODE_SIZE (mode) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG;
8697 /* All other registers are word-sized. */
8698 return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
8701 /* Implement CLASS_MAX_NREGS, taking the maximum of the cases
8702 in mips_hard_regno_nregs. */
8705 mips_class_max_nregs (enum reg_class class, enum machine_mode mode)
8707 int size;
8708 HARD_REG_SET left;
8710 size = 0x8000;
8711 COPY_HARD_REG_SET (left, reg_class_contents[(int) class]);
8712 if (hard_reg_set_intersect_p (left, reg_class_contents[(int) ST_REGS]))
8714 size = MIN (size, 4);
8715 AND_COMPL_HARD_REG_SET (left, reg_class_contents[(int) ST_REGS]);
8717 if (hard_reg_set_intersect_p (left, reg_class_contents[(int) FP_REGS]))
8719 size = MIN (size, UNITS_PER_FPREG);
8720 AND_COMPL_HARD_REG_SET (left, reg_class_contents[(int) FP_REGS]);
8722 if (!hard_reg_set_empty_p (left))
8723 size = MIN (size, UNITS_PER_WORD);
8724 return (GET_MODE_SIZE (mode) + size - 1) / size;
8727 /* Implement CANNOT_CHANGE_MODE_CLASS. */
8729 bool
8730 mips_cannot_change_mode_class (enum machine_mode from ATTRIBUTE_UNUSED,
8731 enum machine_mode to ATTRIBUTE_UNUSED,
8732 enum reg_class class)
8734 /* There are several problems with changing the modes of values
8735 in floating-point registers:
8737 - When a multi-word value is stored in paired floating-point
8738 registers, the first register always holds the low word.
8739 We therefore can't allow FPRs to change between single-word
8740 and multi-word modes on big-endian targets.
8742 - GCC assumes that each word of a multiword register can be accessed
8743 individually using SUBREGs. This is not true for floating-point
8744 registers if they are bigger than a word.
8746 - Loading a 32-bit value into a 64-bit floating-point register
8747 will not sign-extend the value, despite what LOAD_EXTEND_OP says.
8748 We can't allow FPRs to change from SImode to to a wider mode on
8749 64-bit targets.
8751 - If the FPU has already interpreted a value in one format, we must
8752 not ask it to treat the value as having a different format.
8754 We therefore disallow all mode changes involving FPRs. */
8755 return reg_classes_intersect_p (FP_REGS, class);
8758 /* Return true if moves in mode MODE can use the FPU's mov.fmt instruction. */
8760 static bool
8761 mips_mode_ok_for_mov_fmt_p (enum machine_mode mode)
8763 switch (mode)
8765 case SFmode:
8766 return TARGET_HARD_FLOAT;
8768 case DFmode:
8769 return TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT;
8771 case V2SFmode:
8772 return TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT;
8774 default:
8775 return false;
8779 /* Implement MODES_TIEABLE_P. */
8781 bool
8782 mips_modes_tieable_p (enum machine_mode mode1, enum machine_mode mode2)
8784 /* FPRs allow no mode punning, so it's not worth tying modes if we'd
8785 prefer to put one of them in FPRs. */
8786 return (mode1 == mode2
8787 || (!mips_mode_ok_for_mov_fmt_p (mode1)
8788 && !mips_mode_ok_for_mov_fmt_p (mode2)));
8791 /* Implement PREFERRED_RELOAD_CLASS. */
8793 enum reg_class
8794 mips_preferred_reload_class (rtx x, enum reg_class class)
8796 if (mips_dangerous_for_la25_p (x) && reg_class_subset_p (LEA_REGS, class))
8797 return LEA_REGS;
8799 if (reg_class_subset_p (FP_REGS, class)
8800 && mips_mode_ok_for_mov_fmt_p (GET_MODE (x)))
8801 return FP_REGS;
8803 if (reg_class_subset_p (GR_REGS, class))
8804 class = GR_REGS;
8806 if (TARGET_MIPS16 && reg_class_subset_p (M16_REGS, class))
8807 class = M16_REGS;
8809 return class;
8812 /* Implement REGISTER_MOVE_COST. */
8815 mips_register_move_cost (enum machine_mode mode,
8816 enum reg_class to, enum reg_class from)
8818 if (TARGET_MIPS16)
8820 /* ??? We cannot move general registers into HI and LO because
8821 MIPS16 has no MTHI and MTLO instructions. Make the cost of
8822 moves in the opposite direction just as high, which stops the
8823 register allocators from using HI and LO for pseudos. */
8824 if (reg_class_subset_p (from, GENERAL_REGS)
8825 && reg_class_subset_p (to, GENERAL_REGS))
8827 if (reg_class_subset_p (from, M16_REGS)
8828 || reg_class_subset_p (to, M16_REGS))
8829 return 2;
8830 /* Two MOVEs. */
8831 return 4;
8834 else if (reg_class_subset_p (from, GENERAL_REGS))
8836 if (reg_class_subset_p (to, GENERAL_REGS))
8837 return 2;
8838 if (reg_class_subset_p (to, FP_REGS))
8839 return 4;
8840 if (reg_class_subset_p (to, ALL_COP_AND_GR_REGS))
8841 return 5;
8842 if (reg_class_subset_p (to, ACC_REGS))
8843 return 6;
8845 else if (reg_class_subset_p (to, GENERAL_REGS))
8847 if (reg_class_subset_p (from, FP_REGS))
8848 return 4;
8849 if (reg_class_subset_p (from, ST_REGS))
8850 /* LUI followed by MOVF. */
8851 return 4;
8852 if (reg_class_subset_p (from, ALL_COP_AND_GR_REGS))
8853 return 5;
8854 if (reg_class_subset_p (from, ACC_REGS))
8855 return 6;
8857 else if (reg_class_subset_p (from, FP_REGS))
8859 if (reg_class_subset_p (to, FP_REGS)
8860 && mips_mode_ok_for_mov_fmt_p (mode))
8861 return 4;
8862 if (reg_class_subset_p (to, ST_REGS))
8863 /* An expensive sequence. */
8864 return 8;
8867 return 12;
8870 /* Return the register class required for a secondary register when
8871 copying between one of the registers in CLASS and value X, which
8872 has mode MODE. X is the source of the move if IN_P, otherwise it
8873 is the destination. Return NO_REGS if no secondary register is
8874 needed. */
8876 enum reg_class
8877 mips_secondary_reload_class (enum reg_class class,
8878 enum machine_mode mode, rtx x, bool in_p)
8880 int regno;
8882 /* If X is a constant that cannot be loaded into $25, it must be loaded
8883 into some other GPR. No other register class allows a direct move. */
8884 if (mips_dangerous_for_la25_p (x))
8885 return reg_class_subset_p (class, LEA_REGS) ? NO_REGS : LEA_REGS;
8887 regno = true_regnum (x);
8888 if (TARGET_MIPS16)
8890 /* In MIPS16 mode, every move must involve a member of M16_REGS. */
8891 if (!reg_class_subset_p (class, M16_REGS) && !M16_REG_P (regno))
8892 return M16_REGS;
8894 /* We can't really copy to HI or LO at all in MIPS16 mode. */
8895 if (in_p ? reg_classes_intersect_p (class, ACC_REGS) : ACC_REG_P (regno))
8896 return M16_REGS;
8898 return NO_REGS;
8901 /* Copying from accumulator registers to anywhere other than a general
8902 register requires a temporary general register. */
8903 if (reg_class_subset_p (class, ACC_REGS))
8904 return GP_REG_P (regno) ? NO_REGS : GR_REGS;
8905 if (ACC_REG_P (regno))
8906 return reg_class_subset_p (class, GR_REGS) ? NO_REGS : GR_REGS;
8908 /* We can only copy a value to a condition code register from a
8909 floating-point register, and even then we require a scratch
8910 floating-point register. We can only copy a value out of a
8911 condition-code register into a general register. */
8912 if (reg_class_subset_p (class, ST_REGS))
8914 if (in_p)
8915 return FP_REGS;
8916 return GP_REG_P (regno) ? NO_REGS : GR_REGS;
8918 if (ST_REG_P (regno))
8920 if (!in_p)
8921 return FP_REGS;
8922 return reg_class_subset_p (class, GR_REGS) ? NO_REGS : GR_REGS;
8925 if (reg_class_subset_p (class, FP_REGS))
8927 if (MEM_P (x)
8928 && (GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8))
8929 /* In this case we can use lwc1, swc1, ldc1 or sdc1. We'll use
8930 pairs of lwc1s and swc1s if ldc1 and sdc1 are not supported. */
8931 return NO_REGS;
8933 if (GP_REG_P (regno) || x == CONST0_RTX (mode))
8934 /* In this case we can use mtc1, mfc1, dmtc1 or dmfc1. */
8935 return NO_REGS;
8937 if (CONSTANT_P (x) && !targetm.cannot_force_const_mem (x))
8938 /* We can force the constant to memory and use lwc1
8939 and ldc1. As above, we will use pairs of lwc1s if
8940 ldc1 is not supported. */
8941 return NO_REGS;
8943 if (FP_REG_P (regno) && mips_mode_ok_for_mov_fmt_p (mode))
8944 /* In this case we can use mov.fmt. */
8945 return NO_REGS;
8947 /* Otherwise, we need to reload through an integer register. */
8948 return GR_REGS;
8950 if (FP_REG_P (regno))
8951 return reg_class_subset_p (class, GR_REGS) ? NO_REGS : GR_REGS;
8953 return NO_REGS;
8956 /* Implement TARGET_MODE_REP_EXTENDED. */
8958 static int
8959 mips_mode_rep_extended (enum machine_mode mode, enum machine_mode mode_rep)
8961 /* On 64-bit targets, SImode register values are sign-extended to DImode. */
8962 if (TARGET_64BIT && mode == SImode && mode_rep == DImode)
8963 return SIGN_EXTEND;
8965 return UNKNOWN;
8968 /* Implement TARGET_VALID_POINTER_MODE. */
8970 static bool
8971 mips_valid_pointer_mode (enum machine_mode mode)
8973 return mode == SImode || (TARGET_64BIT && mode == DImode);
8976 /* Implement TARGET_VECTOR_MODE_SUPPORTED_P. */
8978 static bool
8979 mips_vector_mode_supported_p (enum machine_mode mode)
8981 switch (mode)
8983 case V2SFmode:
8984 return TARGET_PAIRED_SINGLE_FLOAT;
8986 case V2HImode:
8987 case V4QImode:
8988 case V2HQmode:
8989 case V2UHQmode:
8990 case V2HAmode:
8991 case V2UHAmode:
8992 case V4QQmode:
8993 case V4UQQmode:
8994 return TARGET_DSP;
8996 default:
8997 return false;
9001 /* Implement TARGET_SCALAR_MODE_SUPPORTED_P. */
9003 static bool
9004 mips_scalar_mode_supported_p (enum machine_mode mode)
9006 if (ALL_FIXED_POINT_MODE_P (mode)
9007 && GET_MODE_PRECISION (mode) <= 2 * BITS_PER_WORD)
9008 return true;
9010 return default_scalar_mode_supported_p (mode);
9013 /* Implement TARGET_INIT_LIBFUNCS. */
9015 #include "config/gofast.h"
9017 static void
9018 mips_init_libfuncs (void)
9020 if (TARGET_FIX_VR4120)
9022 /* Register the special divsi3 and modsi3 functions needed to work
9023 around VR4120 division errata. */
9024 set_optab_libfunc (sdiv_optab, SImode, "__vr4120_divsi3");
9025 set_optab_libfunc (smod_optab, SImode, "__vr4120_modsi3");
9028 if (TARGET_MIPS16 && TARGET_HARD_FLOAT_ABI)
9030 /* Register the MIPS16 -mhard-float stubs. */
9031 set_optab_libfunc (add_optab, SFmode, "__mips16_addsf3");
9032 set_optab_libfunc (sub_optab, SFmode, "__mips16_subsf3");
9033 set_optab_libfunc (smul_optab, SFmode, "__mips16_mulsf3");
9034 set_optab_libfunc (sdiv_optab, SFmode, "__mips16_divsf3");
9036 set_optab_libfunc (eq_optab, SFmode, "__mips16_eqsf2");
9037 set_optab_libfunc (ne_optab, SFmode, "__mips16_nesf2");
9038 set_optab_libfunc (gt_optab, SFmode, "__mips16_gtsf2");
9039 set_optab_libfunc (ge_optab, SFmode, "__mips16_gesf2");
9040 set_optab_libfunc (lt_optab, SFmode, "__mips16_ltsf2");
9041 set_optab_libfunc (le_optab, SFmode, "__mips16_lesf2");
9042 set_optab_libfunc (unord_optab, SFmode, "__mips16_unordsf2");
9044 set_conv_libfunc (sfix_optab, SImode, SFmode, "__mips16_fix_truncsfsi");
9045 set_conv_libfunc (sfloat_optab, SFmode, SImode, "__mips16_floatsisf");
9046 set_conv_libfunc (ufloat_optab, SFmode, SImode, "__mips16_floatunsisf");
9048 if (TARGET_DOUBLE_FLOAT)
9050 set_optab_libfunc (add_optab, DFmode, "__mips16_adddf3");
9051 set_optab_libfunc (sub_optab, DFmode, "__mips16_subdf3");
9052 set_optab_libfunc (smul_optab, DFmode, "__mips16_muldf3");
9053 set_optab_libfunc (sdiv_optab, DFmode, "__mips16_divdf3");
9055 set_optab_libfunc (eq_optab, DFmode, "__mips16_eqdf2");
9056 set_optab_libfunc (ne_optab, DFmode, "__mips16_nedf2");
9057 set_optab_libfunc (gt_optab, DFmode, "__mips16_gtdf2");
9058 set_optab_libfunc (ge_optab, DFmode, "__mips16_gedf2");
9059 set_optab_libfunc (lt_optab, DFmode, "__mips16_ltdf2");
9060 set_optab_libfunc (le_optab, DFmode, "__mips16_ledf2");
9061 set_optab_libfunc (unord_optab, DFmode, "__mips16_unorddf2");
9063 set_conv_libfunc (sext_optab, DFmode, SFmode,
9064 "__mips16_extendsfdf2");
9065 set_conv_libfunc (trunc_optab, SFmode, DFmode,
9066 "__mips16_truncdfsf2");
9067 set_conv_libfunc (sfix_optab, SImode, DFmode,
9068 "__mips16_fix_truncdfsi");
9069 set_conv_libfunc (sfloat_optab, DFmode, SImode,
9070 "__mips16_floatsidf");
9071 set_conv_libfunc (ufloat_optab, DFmode, SImode,
9072 "__mips16_floatunsidf");
9075 else
9076 /* Register the gofast functions if selected using --enable-gofast. */
9077 gofast_maybe_init_libfuncs ();
9080 /* Return the length of INSN. LENGTH is the initial length computed by
9081 attributes in the machine-description file. */
9084 mips_adjust_insn_length (rtx insn, int length)
9086 /* A unconditional jump has an unfilled delay slot if it is not part
9087 of a sequence. A conditional jump normally has a delay slot, but
9088 does not on MIPS16. */
9089 if (CALL_P (insn) || (TARGET_MIPS16 ? simplejump_p (insn) : JUMP_P (insn)))
9090 length += 4;
9092 /* See how many nops might be needed to avoid hardware hazards. */
9093 if (!cfun->machine->ignore_hazard_length_p && INSN_CODE (insn) >= 0)
9094 switch (get_attr_hazard (insn))
9096 case HAZARD_NONE:
9097 break;
9099 case HAZARD_DELAY:
9100 length += 4;
9101 break;
9103 case HAZARD_HILO:
9104 length += 8;
9105 break;
9108 /* In order to make it easier to share MIPS16 and non-MIPS16 patterns,
9109 the .md file length attributes are 4-based for both modes.
9110 Adjust the MIPS16 ones here. */
9111 if (TARGET_MIPS16)
9112 length /= 2;
9114 return length;
9117 /* Return an asm sequence to start a noat block and load the address
9118 of a label into $1. */
9120 const char *
9121 mips_output_load_label (void)
9123 if (TARGET_EXPLICIT_RELOCS)
9124 switch (mips_abi)
9126 case ABI_N32:
9127 return "%[lw\t%@,%%got_page(%0)(%+)\n\taddiu\t%@,%@,%%got_ofst(%0)";
9129 case ABI_64:
9130 return "%[ld\t%@,%%got_page(%0)(%+)\n\tdaddiu\t%@,%@,%%got_ofst(%0)";
9132 default:
9133 if (ISA_HAS_LOAD_DELAY)
9134 return "%[lw\t%@,%%got(%0)(%+)%#\n\taddiu\t%@,%@,%%lo(%0)";
9135 return "%[lw\t%@,%%got(%0)(%+)\n\taddiu\t%@,%@,%%lo(%0)";
9137 else
9139 if (Pmode == DImode)
9140 return "%[dla\t%@,%0";
9141 else
9142 return "%[la\t%@,%0";
9146 /* Return the assembly code for INSN, which has the operands given by
9147 OPERANDS, and which branches to OPERANDS[1] if some condition is true.
9148 BRANCH_IF_TRUE is the asm template that should be used if OPERANDS[1]
9149 is in range of a direct branch. BRANCH_IF_FALSE is an inverted
9150 version of BRANCH_IF_TRUE. */
9152 const char *
9153 mips_output_conditional_branch (rtx insn, rtx *operands,
9154 const char *branch_if_true,
9155 const char *branch_if_false)
9157 unsigned int length;
9158 rtx taken, not_taken;
9160 length = get_attr_length (insn);
9161 if (length <= 8)
9163 /* Just a simple conditional branch. */
9164 mips_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn));
9165 return branch_if_true;
9168 /* Generate a reversed branch around a direct jump. This fallback does
9169 not use branch-likely instructions. */
9170 mips_branch_likely = false;
9171 not_taken = gen_label_rtx ();
9172 taken = operands[1];
9174 /* Generate the reversed branch to NOT_TAKEN. */
9175 operands[1] = not_taken;
9176 output_asm_insn (branch_if_false, operands);
9178 /* If INSN has a delay slot, we must provide delay slots for both the
9179 branch to NOT_TAKEN and the conditional jump. We must also ensure
9180 that INSN's delay slot is executed in the appropriate cases. */
9181 if (final_sequence)
9183 /* This first delay slot will always be executed, so use INSN's
9184 delay slot if is not annulled. */
9185 if (!INSN_ANNULLED_BRANCH_P (insn))
9187 final_scan_insn (XVECEXP (final_sequence, 0, 1),
9188 asm_out_file, optimize, 1, NULL);
9189 INSN_DELETED_P (XVECEXP (final_sequence, 0, 1)) = 1;
9191 else
9192 output_asm_insn ("nop", 0);
9193 fprintf (asm_out_file, "\n");
9196 /* Output the unconditional branch to TAKEN. */
9197 if (length <= 16)
9198 output_asm_insn ("j\t%0%/", &taken);
9199 else
9201 output_asm_insn (mips_output_load_label (), &taken);
9202 output_asm_insn ("jr\t%@%]%/", 0);
9205 /* Now deal with its delay slot; see above. */
9206 if (final_sequence)
9208 /* This delay slot will only be executed if the branch is taken.
9209 Use INSN's delay slot if is annulled. */
9210 if (INSN_ANNULLED_BRANCH_P (insn))
9212 final_scan_insn (XVECEXP (final_sequence, 0, 1),
9213 asm_out_file, optimize, 1, NULL);
9214 INSN_DELETED_P (XVECEXP (final_sequence, 0, 1)) = 1;
9216 else
9217 output_asm_insn ("nop", 0);
9218 fprintf (asm_out_file, "\n");
9221 /* Output NOT_TAKEN. */
9222 targetm.asm_out.internal_label (asm_out_file, "L",
9223 CODE_LABEL_NUMBER (not_taken));
9224 return "";
9227 /* Return the assembly code for INSN, which branches to OPERANDS[1]
9228 if some ordering condition is true. The condition is given by
9229 OPERANDS[0] if !INVERTED_P, otherwise it is the inverse of
9230 OPERANDS[0]. OPERANDS[2] is the comparison's first operand;
9231 its second is always zero. */
9233 const char *
9234 mips_output_order_conditional_branch (rtx insn, rtx *operands, bool inverted_p)
9236 const char *branch[2];
9238 /* Make BRANCH[1] branch to OPERANDS[1] when the condition is true.
9239 Make BRANCH[0] branch on the inverse condition. */
9240 switch (GET_CODE (operands[0]))
9242 /* These cases are equivalent to comparisons against zero. */
9243 case LEU:
9244 inverted_p = !inverted_p;
9245 /* Fall through. */
9246 case GTU:
9247 branch[!inverted_p] = MIPS_BRANCH ("bne", "%2,%.,%1");
9248 branch[inverted_p] = MIPS_BRANCH ("beq", "%2,%.,%1");
9249 break;
9251 /* These cases are always true or always false. */
9252 case LTU:
9253 inverted_p = !inverted_p;
9254 /* Fall through. */
9255 case GEU:
9256 branch[!inverted_p] = MIPS_BRANCH ("beq", "%.,%.,%1");
9257 branch[inverted_p] = MIPS_BRANCH ("bne", "%.,%.,%1");
9258 break;
9260 default:
9261 branch[!inverted_p] = MIPS_BRANCH ("b%C0z", "%2,%1");
9262 branch[inverted_p] = MIPS_BRANCH ("b%N0z", "%2,%1");
9263 break;
9265 return mips_output_conditional_branch (insn, operands, branch[1], branch[0]);
9268 /* Return the assembly code for DIV or DDIV instruction DIVISION, which has
9269 the operands given by OPERANDS. Add in a divide-by-zero check if needed.
9271 When working around R4000 and R4400 errata, we need to make sure that
9272 the division is not immediately followed by a shift[1][2]. We also
9273 need to stop the division from being put into a branch delay slot[3].
9274 The easiest way to avoid both problems is to add a nop after the
9275 division. When a divide-by-zero check is needed, this nop can be
9276 used to fill the branch delay slot.
9278 [1] If a double-word or a variable shift executes immediately
9279 after starting an integer division, the shift may give an
9280 incorrect result. See quotations of errata #16 and #28 from
9281 "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
9282 in mips.md for details.
9284 [2] A similar bug to [1] exists for all revisions of the
9285 R4000 and the R4400 when run in an MC configuration.
9286 From "MIPS R4000MC Errata, Processor Revision 2.2 and 3.0":
9288 "19. In this following sequence:
9290 ddiv (or ddivu or div or divu)
9291 dsll32 (or dsrl32, dsra32)
9293 if an MPT stall occurs, while the divide is slipping the cpu
9294 pipeline, then the following double shift would end up with an
9295 incorrect result.
9297 Workaround: The compiler needs to avoid generating any
9298 sequence with divide followed by extended double shift."
9300 This erratum is also present in "MIPS R4400MC Errata, Processor
9301 Revision 1.0" and "MIPS R4400MC Errata, Processor Revision 2.0
9302 & 3.0" as errata #10 and #4, respectively.
9304 [3] From "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
9305 (also valid for MIPS R4000MC processors):
9307 "52. R4000SC: This bug does not apply for the R4000PC.
9309 There are two flavors of this bug:
9311 1) If the instruction just after divide takes an RF exception
9312 (tlb-refill, tlb-invalid) and gets an instruction cache
9313 miss (both primary and secondary) and the line which is
9314 currently in secondary cache at this index had the first
9315 data word, where the bits 5..2 are set, then R4000 would
9316 get a wrong result for the div.
9320 div r8, r9
9321 ------------------- # end-of page. -tlb-refill
9325 div r8, r9
9326 ------------------- # end-of page. -tlb-invalid
9329 2) If the divide is in the taken branch delay slot, where the
9330 target takes RF exception and gets an I-cache miss for the
9331 exception vector or where I-cache miss occurs for the
9332 target address, under the above mentioned scenarios, the
9333 div would get wrong results.
9336 j r2 # to next page mapped or unmapped
9337 div r8,r9 # this bug would be there as long
9338 # as there is an ICache miss and
9339 nop # the "data pattern" is present
9342 beq r0, r0, NextPage # to Next page
9343 div r8,r9
9346 This bug is present for div, divu, ddiv, and ddivu
9347 instructions.
9349 Workaround: For item 1), OS could make sure that the next page
9350 after the divide instruction is also mapped. For item 2), the
9351 compiler could make sure that the divide instruction is not in
9352 the branch delay slot."
9354 These processors have PRId values of 0x00004220 and 0x00004300 for
9355 the R4000 and 0x00004400, 0x00004500 and 0x00004600 for the R4400. */
9357 const char *
9358 mips_output_division (const char *division, rtx *operands)
9360 const char *s;
9362 s = division;
9363 if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
9365 output_asm_insn (s, operands);
9366 s = "nop";
9368 if (TARGET_CHECK_ZERO_DIV)
9370 if (TARGET_MIPS16)
9372 output_asm_insn (s, operands);
9373 s = "bnez\t%2,1f\n\tbreak\t7\n1:";
9375 else if (GENERATE_DIVIDE_TRAPS)
9377 output_asm_insn (s, operands);
9378 s = "teq\t%2,%.,7";
9380 else
9382 output_asm_insn ("%(bne\t%2,%.,1f", operands);
9383 output_asm_insn (s, operands);
9384 s = "break\t7%)\n1:";
9387 return s;
9390 /* Return true if IN_INSN is a multiply-add or multiply-subtract
9391 instruction and if OUT_INSN assigns to the accumulator operand. */
9393 bool
9394 mips_linked_madd_p (rtx out_insn, rtx in_insn)
9396 rtx x;
9398 x = single_set (in_insn);
9399 if (x == 0)
9400 return false;
9402 x = SET_SRC (x);
9404 if (GET_CODE (x) == PLUS
9405 && GET_CODE (XEXP (x, 0)) == MULT
9406 && reg_set_p (XEXP (x, 1), out_insn))
9407 return true;
9409 if (GET_CODE (x) == MINUS
9410 && GET_CODE (XEXP (x, 1)) == MULT
9411 && reg_set_p (XEXP (x, 0), out_insn))
9412 return true;
9414 return false;
9417 /* True if the dependency between OUT_INSN and IN_INSN is on the store
9418 data rather than the address. We need this because the cprestore
9419 pattern is type "store", but is defined using an UNSPEC_VOLATILE,
9420 which causes the default routine to abort. We just return false
9421 for that case. */
9423 bool
9424 mips_store_data_bypass_p (rtx out_insn, rtx in_insn)
9426 if (GET_CODE (PATTERN (in_insn)) == UNSPEC_VOLATILE)
9427 return false;
9429 return !store_data_bypass_p (out_insn, in_insn);
9432 /* Implement TARGET_SCHED_ADJUST_COST. We assume that anti and output
9433 dependencies have no cost, except on the 20Kc where output-dependence
9434 is treated like input-dependence. */
9436 static int
9437 mips_adjust_cost (rtx insn ATTRIBUTE_UNUSED, rtx link,
9438 rtx dep ATTRIBUTE_UNUSED, int cost)
9440 if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT
9441 && TUNE_20KC)
9442 return cost;
9443 if (REG_NOTE_KIND (link) != 0)
9444 return 0;
9445 return cost;
9448 /* Return the number of instructions that can be issued per cycle. */
9450 static int
9451 mips_issue_rate (void)
9453 switch (mips_tune)
9455 case PROCESSOR_74KC:
9456 case PROCESSOR_74KF2_1:
9457 case PROCESSOR_74KF1_1:
9458 case PROCESSOR_74KF3_2:
9459 /* The 74k is not strictly quad-issue cpu, but can be seen as one
9460 by the scheduler. It can issue 1 ALU, 1 AGEN and 2 FPU insns,
9461 but in reality only a maximum of 3 insns can be issued as
9462 floating-point loads and stores also require a slot in the
9463 AGEN pipe. */
9464 return 4;
9466 case PROCESSOR_20KC:
9467 case PROCESSOR_R4130:
9468 case PROCESSOR_R5400:
9469 case PROCESSOR_R5500:
9470 case PROCESSOR_R7000:
9471 case PROCESSOR_R9000:
9472 return 2;
9474 case PROCESSOR_SB1:
9475 case PROCESSOR_SB1A:
9476 /* This is actually 4, but we get better performance if we claim 3.
9477 This is partly because of unwanted speculative code motion with the
9478 larger number, and partly because in most common cases we can't
9479 reach the theoretical max of 4. */
9480 return 3;
9482 default:
9483 return 1;
9487 /* Implement TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD. This should
9488 be as wide as the scheduling freedom in the DFA. */
9490 static int
9491 mips_multipass_dfa_lookahead (void)
9493 /* Can schedule up to 4 of the 6 function units in any one cycle. */
9494 if (TUNE_SB1)
9495 return 4;
9497 return 0;
9500 /* Remove the instruction at index LOWER from ready queue READY and
9501 reinsert it in front of the instruction at index HIGHER. LOWER must
9502 be <= HIGHER. */
9504 static void
9505 mips_promote_ready (rtx *ready, int lower, int higher)
9507 rtx new_head;
9508 int i;
9510 new_head = ready[lower];
9511 for (i = lower; i < higher; i++)
9512 ready[i] = ready[i + 1];
9513 ready[i] = new_head;
9516 /* If the priority of the instruction at POS2 in the ready queue READY
9517 is within LIMIT units of that of the instruction at POS1, swap the
9518 instructions if POS2 is not already less than POS1. */
9520 static void
9521 mips_maybe_swap_ready (rtx *ready, int pos1, int pos2, int limit)
9523 if (pos1 < pos2
9524 && INSN_PRIORITY (ready[pos1]) + limit >= INSN_PRIORITY (ready[pos2]))
9526 rtx temp;
9528 temp = ready[pos1];
9529 ready[pos1] = ready[pos2];
9530 ready[pos2] = temp;
9534 /* Used by TUNE_MACC_CHAINS to record the last scheduled instruction
9535 that may clobber hi or lo. */
9536 static rtx mips_macc_chains_last_hilo;
9538 /* A TUNE_MACC_CHAINS helper function. Record that instruction INSN has
9539 been scheduled, updating mips_macc_chains_last_hilo appropriately. */
9541 static void
9542 mips_macc_chains_record (rtx insn)
9544 if (get_attr_may_clobber_hilo (insn))
9545 mips_macc_chains_last_hilo = insn;
9548 /* A TUNE_MACC_CHAINS helper function. Search ready queue READY, which
9549 has NREADY elements, looking for a multiply-add or multiply-subtract
9550 instruction that is cumulative with mips_macc_chains_last_hilo.
9551 If there is one, promote it ahead of anything else that might
9552 clobber hi or lo. */
9554 static void
9555 mips_macc_chains_reorder (rtx *ready, int nready)
9557 int i, j;
9559 if (mips_macc_chains_last_hilo != 0)
9560 for (i = nready - 1; i >= 0; i--)
9561 if (mips_linked_madd_p (mips_macc_chains_last_hilo, ready[i]))
9563 for (j = nready - 1; j > i; j--)
9564 if (recog_memoized (ready[j]) >= 0
9565 && get_attr_may_clobber_hilo (ready[j]))
9567 mips_promote_ready (ready, i, j);
9568 break;
9570 break;
9574 /* The last instruction to be scheduled. */
9575 static rtx vr4130_last_insn;
9577 /* A note_stores callback used by vr4130_true_reg_dependence_p. DATA
9578 points to an rtx that is initially an instruction. Nullify the rtx
9579 if the instruction uses the value of register X. */
9581 static void
9582 vr4130_true_reg_dependence_p_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED,
9583 void *data)
9585 rtx *insn_ptr;
9587 insn_ptr = (rtx *) data;
9588 if (REG_P (x)
9589 && *insn_ptr != 0
9590 && reg_referenced_p (x, PATTERN (*insn_ptr)))
9591 *insn_ptr = 0;
9594 /* Return true if there is true register dependence between vr4130_last_insn
9595 and INSN. */
9597 static bool
9598 vr4130_true_reg_dependence_p (rtx insn)
9600 note_stores (PATTERN (vr4130_last_insn),
9601 vr4130_true_reg_dependence_p_1, &insn);
9602 return insn == 0;
9605 /* A TUNE_MIPS4130 helper function. Given that INSN1 is at the head of
9606 the ready queue and that INSN2 is the instruction after it, return
9607 true if it is worth promoting INSN2 ahead of INSN1. Look for cases
9608 in which INSN1 and INSN2 can probably issue in parallel, but for
9609 which (INSN2, INSN1) should be less sensitive to instruction
9610 alignment than (INSN1, INSN2). See 4130.md for more details. */
9612 static bool
9613 vr4130_swap_insns_p (rtx insn1, rtx insn2)
9615 sd_iterator_def sd_it;
9616 dep_t dep;
9618 /* Check for the following case:
9620 1) there is some other instruction X with an anti dependence on INSN1;
9621 2) X has a higher priority than INSN2; and
9622 3) X is an arithmetic instruction (and thus has no unit restrictions).
9624 If INSN1 is the last instruction blocking X, it would better to
9625 choose (INSN1, X) over (INSN2, INSN1). */
9626 FOR_EACH_DEP (insn1, SD_LIST_FORW, sd_it, dep)
9627 if (DEP_TYPE (dep) == REG_DEP_ANTI
9628 && INSN_PRIORITY (DEP_CON (dep)) > INSN_PRIORITY (insn2)
9629 && recog_memoized (DEP_CON (dep)) >= 0
9630 && get_attr_vr4130_class (DEP_CON (dep)) == VR4130_CLASS_ALU)
9631 return false;
9633 if (vr4130_last_insn != 0
9634 && recog_memoized (insn1) >= 0
9635 && recog_memoized (insn2) >= 0)
9637 /* See whether INSN1 and INSN2 use different execution units,
9638 or if they are both ALU-type instructions. If so, they can
9639 probably execute in parallel. */
9640 enum attr_vr4130_class class1 = get_attr_vr4130_class (insn1);
9641 enum attr_vr4130_class class2 = get_attr_vr4130_class (insn2);
9642 if (class1 != class2 || class1 == VR4130_CLASS_ALU)
9644 /* If only one of the instructions has a dependence on
9645 vr4130_last_insn, prefer to schedule the other one first. */
9646 bool dep1_p = vr4130_true_reg_dependence_p (insn1);
9647 bool dep2_p = vr4130_true_reg_dependence_p (insn2);
9648 if (dep1_p != dep2_p)
9649 return dep1_p;
9651 /* Prefer to schedule INSN2 ahead of INSN1 if vr4130_last_insn
9652 is not an ALU-type instruction and if INSN1 uses the same
9653 execution unit. (Note that if this condition holds, we already
9654 know that INSN2 uses a different execution unit.) */
9655 if (class1 != VR4130_CLASS_ALU
9656 && recog_memoized (vr4130_last_insn) >= 0
9657 && class1 == get_attr_vr4130_class (vr4130_last_insn))
9658 return true;
9661 return false;
9664 /* A TUNE_MIPS4130 helper function. (READY, NREADY) describes a ready
9665 queue with at least two instructions. Swap the first two if
9666 vr4130_swap_insns_p says that it could be worthwhile. */
9668 static void
9669 vr4130_reorder (rtx *ready, int nready)
9671 if (vr4130_swap_insns_p (ready[nready - 1], ready[nready - 2]))
9672 mips_promote_ready (ready, nready - 2, nready - 1);
9675 /* Record whether last 74k AGEN instruction was a load or store. */
9676 static enum attr_type mips_last_74k_agen_insn = TYPE_UNKNOWN;
9678 /* Initialize mips_last_74k_agen_insn from INSN. A null argument
9679 resets to TYPE_UNKNOWN state. */
9681 static void
9682 mips_74k_agen_init (rtx insn)
9684 if (!insn || !NONJUMP_INSN_P (insn))
9685 mips_last_74k_agen_insn = TYPE_UNKNOWN;
9686 else
9688 enum attr_type type = get_attr_type (insn);
9689 if (type == TYPE_LOAD || type == TYPE_STORE)
9690 mips_last_74k_agen_insn = type;
9694 /* A TUNE_74K helper function. The 74K AGEN pipeline likes multiple
9695 loads to be grouped together, and multiple stores to be grouped
9696 together. Swap things around in the ready queue to make this happen. */
9698 static void
9699 mips_74k_agen_reorder (rtx *ready, int nready)
9701 int i;
9702 int store_pos, load_pos;
9704 store_pos = -1;
9705 load_pos = -1;
9707 for (i = nready - 1; i >= 0; i--)
9709 rtx insn = ready[i];
9710 if (USEFUL_INSN_P (insn))
9711 switch (get_attr_type (insn))
9713 case TYPE_STORE:
9714 if (store_pos == -1)
9715 store_pos = i;
9716 break;
9718 case TYPE_LOAD:
9719 if (load_pos == -1)
9720 load_pos = i;
9721 break;
9723 default:
9724 break;
9728 if (load_pos == -1 || store_pos == -1)
9729 return;
9731 switch (mips_last_74k_agen_insn)
9733 case TYPE_UNKNOWN:
9734 /* Prefer to schedule loads since they have a higher latency. */
9735 case TYPE_LOAD:
9736 /* Swap loads to the front of the queue. */
9737 mips_maybe_swap_ready (ready, load_pos, store_pos, 4);
9738 break;
9739 case TYPE_STORE:
9740 /* Swap stores to the front of the queue. */
9741 mips_maybe_swap_ready (ready, store_pos, load_pos, 4);
9742 break;
9743 default:
9744 break;
9748 /* Implement TARGET_SCHED_INIT. */
9750 static void
9751 mips_sched_init (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
9752 int max_ready ATTRIBUTE_UNUSED)
9754 mips_macc_chains_last_hilo = 0;
9755 vr4130_last_insn = 0;
9756 mips_74k_agen_init (NULL_RTX);
9759 /* Implement TARGET_SCHED_REORDER and TARGET_SCHED_REORDER2. */
9761 static int
9762 mips_sched_reorder (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
9763 rtx *ready, int *nreadyp, int cycle ATTRIBUTE_UNUSED)
9765 if (!reload_completed
9766 && TUNE_MACC_CHAINS
9767 && *nreadyp > 0)
9768 mips_macc_chains_reorder (ready, *nreadyp);
9770 if (reload_completed
9771 && TUNE_MIPS4130
9772 && !TARGET_VR4130_ALIGN
9773 && *nreadyp > 1)
9774 vr4130_reorder (ready, *nreadyp);
9776 if (TUNE_74K)
9777 mips_74k_agen_reorder (ready, *nreadyp);
9779 return mips_issue_rate ();
9782 /* Implement TARGET_SCHED_VARIABLE_ISSUE. */
9784 static int
9785 mips_variable_issue (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
9786 rtx insn, int more)
9788 /* Ignore USEs and CLOBBERs; don't count them against the issue rate. */
9789 if (USEFUL_INSN_P (insn))
9791 more--;
9792 if (!reload_completed && TUNE_MACC_CHAINS)
9793 mips_macc_chains_record (insn);
9794 vr4130_last_insn = insn;
9795 if (TUNE_74K)
9796 mips_74k_agen_init (insn);
9798 return more;
9801 /* Given that we have an rtx of the form (prefetch ... WRITE LOCALITY),
9802 return the first operand of the associated PREF or PREFX insn. */
9805 mips_prefetch_cookie (rtx write, rtx locality)
9807 /* store_streamed / load_streamed. */
9808 if (INTVAL (locality) <= 0)
9809 return GEN_INT (INTVAL (write) + 4);
9811 /* store / load. */
9812 if (INTVAL (locality) <= 2)
9813 return write;
9815 /* store_retained / load_retained. */
9816 return GEN_INT (INTVAL (write) + 6);
9819 /* This structure describes a single built-in function. */
9820 struct mips_builtin_description {
9821 /* The code of the main .md file instruction. See mips_builtin_type
9822 for more information. */
9823 enum insn_code icode;
9825 /* The floating-point comparison code to use with ICODE, if any. */
9826 enum mips_fp_condition cond;
9828 /* The name of the built-in function. */
9829 const char *name;
9831 /* Specifies how the function should be expanded. */
9832 enum mips_builtin_type builtin_type;
9834 /* The function's prototype. */
9835 enum mips_function_type function_type;
9837 /* The target flags required for this function. */
9838 int target_flags;
9841 /* Define a MIPS_BUILTIN_DIRECT function for instruction CODE_FOR_mips_<INSN>.
9842 FUNCTION_TYPE and TARGET_FLAGS are mips_builtin_description fields. */
9843 #define DIRECT_BUILTIN(INSN, FUNCTION_TYPE, TARGET_FLAGS) \
9844 { CODE_FOR_mips_ ## INSN, 0, "__builtin_mips_" #INSN, \
9845 MIPS_BUILTIN_DIRECT, FUNCTION_TYPE, TARGET_FLAGS }
9847 /* Define __builtin_mips_<INSN>_<COND>_{s,d} functions, both of which
9848 require TARGET_FLAGS. */
9849 #define CMP_SCALAR_BUILTINS(INSN, COND, TARGET_FLAGS) \
9850 { CODE_FOR_mips_ ## INSN ## _cond_s, MIPS_FP_COND_ ## COND, \
9851 "__builtin_mips_" #INSN "_" #COND "_s", \
9852 MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_SF_SF, TARGET_FLAGS }, \
9853 { CODE_FOR_mips_ ## INSN ## _cond_d, MIPS_FP_COND_ ## COND, \
9854 "__builtin_mips_" #INSN "_" #COND "_d", \
9855 MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_DF_DF, TARGET_FLAGS }
9857 /* Define __builtin_mips_{any,all,upper,lower}_<INSN>_<COND>_ps.
9858 The lower and upper forms require TARGET_FLAGS while the any and all
9859 forms require MASK_MIPS3D. */
9860 #define CMP_PS_BUILTINS(INSN, COND, TARGET_FLAGS) \
9861 { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
9862 "__builtin_mips_any_" #INSN "_" #COND "_ps", \
9863 MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF, MASK_MIPS3D }, \
9864 { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
9865 "__builtin_mips_all_" #INSN "_" #COND "_ps", \
9866 MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF, MASK_MIPS3D }, \
9867 { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
9868 "__builtin_mips_lower_" #INSN "_" #COND "_ps", \
9869 MIPS_BUILTIN_CMP_LOWER, MIPS_INT_FTYPE_V2SF_V2SF, TARGET_FLAGS }, \
9870 { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
9871 "__builtin_mips_upper_" #INSN "_" #COND "_ps", \
9872 MIPS_BUILTIN_CMP_UPPER, MIPS_INT_FTYPE_V2SF_V2SF, TARGET_FLAGS }
9874 /* Define __builtin_mips_{any,all}_<INSN>_<COND>_4s. The functions
9875 require MASK_MIPS3D. */
9876 #define CMP_4S_BUILTINS(INSN, COND) \
9877 { CODE_FOR_mips_ ## INSN ## _cond_4s, MIPS_FP_COND_ ## COND, \
9878 "__builtin_mips_any_" #INSN "_" #COND "_4s", \
9879 MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, \
9880 MASK_MIPS3D }, \
9881 { CODE_FOR_mips_ ## INSN ## _cond_4s, MIPS_FP_COND_ ## COND, \
9882 "__builtin_mips_all_" #INSN "_" #COND "_4s", \
9883 MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, \
9884 MASK_MIPS3D }
9886 /* Define __builtin_mips_mov{t,f}_<INSN>_<COND>_ps. The comparison
9887 instruction requires TARGET_FLAGS. */
9888 #define MOVTF_BUILTINS(INSN, COND, TARGET_FLAGS) \
9889 { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
9890 "__builtin_mips_movt_" #INSN "_" #COND "_ps", \
9891 MIPS_BUILTIN_MOVT, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \
9892 TARGET_FLAGS }, \
9893 { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
9894 "__builtin_mips_movf_" #INSN "_" #COND "_ps", \
9895 MIPS_BUILTIN_MOVF, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \
9896 TARGET_FLAGS }
9898 /* Define all the built-in functions related to C.cond.fmt condition COND. */
9899 #define CMP_BUILTINS(COND) \
9900 MOVTF_BUILTINS (c, COND, MASK_PAIRED_SINGLE_FLOAT), \
9901 MOVTF_BUILTINS (cabs, COND, MASK_MIPS3D), \
9902 CMP_SCALAR_BUILTINS (cabs, COND, MASK_MIPS3D), \
9903 CMP_PS_BUILTINS (c, COND, MASK_PAIRED_SINGLE_FLOAT), \
9904 CMP_PS_BUILTINS (cabs, COND, MASK_MIPS3D), \
9905 CMP_4S_BUILTINS (c, COND), \
9906 CMP_4S_BUILTINS (cabs, COND)
9908 static const struct mips_builtin_description mips_ps_bdesc[] = {
9909 DIRECT_BUILTIN (pll_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
9910 DIRECT_BUILTIN (pul_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
9911 DIRECT_BUILTIN (plu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
9912 DIRECT_BUILTIN (puu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
9913 DIRECT_BUILTIN (cvt_ps_s, MIPS_V2SF_FTYPE_SF_SF, MASK_PAIRED_SINGLE_FLOAT),
9914 DIRECT_BUILTIN (cvt_s_pl, MIPS_SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT),
9915 DIRECT_BUILTIN (cvt_s_pu, MIPS_SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT),
9916 DIRECT_BUILTIN (abs_ps, MIPS_V2SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT),
9918 DIRECT_BUILTIN (alnv_ps, MIPS_V2SF_FTYPE_V2SF_V2SF_INT,
9919 MASK_PAIRED_SINGLE_FLOAT),
9920 DIRECT_BUILTIN (addr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
9921 DIRECT_BUILTIN (mulr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
9922 DIRECT_BUILTIN (cvt_pw_ps, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
9923 DIRECT_BUILTIN (cvt_ps_pw, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
9925 DIRECT_BUILTIN (recip1_s, MIPS_SF_FTYPE_SF, MASK_MIPS3D),
9926 DIRECT_BUILTIN (recip1_d, MIPS_DF_FTYPE_DF, MASK_MIPS3D),
9927 DIRECT_BUILTIN (recip1_ps, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
9928 DIRECT_BUILTIN (recip2_s, MIPS_SF_FTYPE_SF_SF, MASK_MIPS3D),
9929 DIRECT_BUILTIN (recip2_d, MIPS_DF_FTYPE_DF_DF, MASK_MIPS3D),
9930 DIRECT_BUILTIN (recip2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
9932 DIRECT_BUILTIN (rsqrt1_s, MIPS_SF_FTYPE_SF, MASK_MIPS3D),
9933 DIRECT_BUILTIN (rsqrt1_d, MIPS_DF_FTYPE_DF, MASK_MIPS3D),
9934 DIRECT_BUILTIN (rsqrt1_ps, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
9935 DIRECT_BUILTIN (rsqrt2_s, MIPS_SF_FTYPE_SF_SF, MASK_MIPS3D),
9936 DIRECT_BUILTIN (rsqrt2_d, MIPS_DF_FTYPE_DF_DF, MASK_MIPS3D),
9937 DIRECT_BUILTIN (rsqrt2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
9939 MIPS_FP_CONDITIONS (CMP_BUILTINS)
9942 /* Built-in functions for the SB-1 processor. */
9944 #define CODE_FOR_mips_sqrt_ps CODE_FOR_sqrtv2sf2
9946 static const struct mips_builtin_description mips_sb1_bdesc[] = {
9947 DIRECT_BUILTIN (sqrt_ps, MIPS_V2SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT)
9950 /* Built-in functions for the DSP ASE. */
9952 #define CODE_FOR_mips_addq_ph CODE_FOR_addv2hi3
9953 #define CODE_FOR_mips_addu_qb CODE_FOR_addv4qi3
9954 #define CODE_FOR_mips_subq_ph CODE_FOR_subv2hi3
9955 #define CODE_FOR_mips_subu_qb CODE_FOR_subv4qi3
9956 #define CODE_FOR_mips_mul_ph CODE_FOR_mulv2hi3
9958 /* Define a MIPS_BUILTIN_DIRECT_NO_TARGET function for instruction
9959 CODE_FOR_mips_<INSN>. FUNCTION_TYPE and TARGET_FLAGS are
9960 mips_builtin_description fields. */
9961 #define DIRECT_NO_TARGET_BUILTIN(INSN, FUNCTION_TYPE, TARGET_FLAGS) \
9962 { CODE_FOR_mips_ ## INSN, 0, "__builtin_mips_" #INSN, \
9963 MIPS_BUILTIN_DIRECT_NO_TARGET, FUNCTION_TYPE, TARGET_FLAGS }
9965 /* Define __builtin_mips_bposge<VALUE>. <VALUE> is 32 for the MIPS32 DSP
9966 branch instruction. TARGET_FLAGS is a mips_builtin_description field. */
9967 #define BPOSGE_BUILTIN(VALUE, TARGET_FLAGS) \
9968 { CODE_FOR_mips_bposge, 0, "__builtin_mips_bposge" #VALUE, \
9969 MIPS_BUILTIN_BPOSGE ## VALUE, MIPS_SI_FTYPE_VOID, TARGET_FLAGS }
9971 static const struct mips_builtin_description mips_dsp_bdesc[] = {
9972 DIRECT_BUILTIN (addq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
9973 DIRECT_BUILTIN (addq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
9974 DIRECT_BUILTIN (addq_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
9975 DIRECT_BUILTIN (addu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
9976 DIRECT_BUILTIN (addu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
9977 DIRECT_BUILTIN (subq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
9978 DIRECT_BUILTIN (subq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
9979 DIRECT_BUILTIN (subq_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
9980 DIRECT_BUILTIN (subu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
9981 DIRECT_BUILTIN (subu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
9982 DIRECT_BUILTIN (addsc, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
9983 DIRECT_BUILTIN (addwc, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
9984 DIRECT_BUILTIN (modsub, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
9985 DIRECT_BUILTIN (raddu_w_qb, MIPS_SI_FTYPE_V4QI, MASK_DSP),
9986 DIRECT_BUILTIN (absq_s_ph, MIPS_V2HI_FTYPE_V2HI, MASK_DSP),
9987 DIRECT_BUILTIN (absq_s_w, MIPS_SI_FTYPE_SI, MASK_DSP),
9988 DIRECT_BUILTIN (precrq_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, MASK_DSP),
9989 DIRECT_BUILTIN (precrq_ph_w, MIPS_V2HI_FTYPE_SI_SI, MASK_DSP),
9990 DIRECT_BUILTIN (precrq_rs_ph_w, MIPS_V2HI_FTYPE_SI_SI, MASK_DSP),
9991 DIRECT_BUILTIN (precrqu_s_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, MASK_DSP),
9992 DIRECT_BUILTIN (preceq_w_phl, MIPS_SI_FTYPE_V2HI, MASK_DSP),
9993 DIRECT_BUILTIN (preceq_w_phr, MIPS_SI_FTYPE_V2HI, MASK_DSP),
9994 DIRECT_BUILTIN (precequ_ph_qbl, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
9995 DIRECT_BUILTIN (precequ_ph_qbr, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
9996 DIRECT_BUILTIN (precequ_ph_qbla, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
9997 DIRECT_BUILTIN (precequ_ph_qbra, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
9998 DIRECT_BUILTIN (preceu_ph_qbl, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
9999 DIRECT_BUILTIN (preceu_ph_qbr, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
10000 DIRECT_BUILTIN (preceu_ph_qbla, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
10001 DIRECT_BUILTIN (preceu_ph_qbra, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
10002 DIRECT_BUILTIN (shll_qb, MIPS_V4QI_FTYPE_V4QI_SI, MASK_DSP),
10003 DIRECT_BUILTIN (shll_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
10004 DIRECT_BUILTIN (shll_s_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
10005 DIRECT_BUILTIN (shll_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
10006 DIRECT_BUILTIN (shrl_qb, MIPS_V4QI_FTYPE_V4QI_SI, MASK_DSP),
10007 DIRECT_BUILTIN (shra_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
10008 DIRECT_BUILTIN (shra_r_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
10009 DIRECT_BUILTIN (shra_r_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
10010 DIRECT_BUILTIN (muleu_s_ph_qbl, MIPS_V2HI_FTYPE_V4QI_V2HI, MASK_DSP),
10011 DIRECT_BUILTIN (muleu_s_ph_qbr, MIPS_V2HI_FTYPE_V4QI_V2HI, MASK_DSP),
10012 DIRECT_BUILTIN (mulq_rs_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
10013 DIRECT_BUILTIN (muleq_s_w_phl, MIPS_SI_FTYPE_V2HI_V2HI, MASK_DSP),
10014 DIRECT_BUILTIN (muleq_s_w_phr, MIPS_SI_FTYPE_V2HI_V2HI, MASK_DSP),
10015 DIRECT_BUILTIN (bitrev, MIPS_SI_FTYPE_SI, MASK_DSP),
10016 DIRECT_BUILTIN (insv, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
10017 DIRECT_BUILTIN (repl_qb, MIPS_V4QI_FTYPE_SI, MASK_DSP),
10018 DIRECT_BUILTIN (repl_ph, MIPS_V2HI_FTYPE_SI, MASK_DSP),
10019 DIRECT_NO_TARGET_BUILTIN (cmpu_eq_qb, MIPS_VOID_FTYPE_V4QI_V4QI, MASK_DSP),
10020 DIRECT_NO_TARGET_BUILTIN (cmpu_lt_qb, MIPS_VOID_FTYPE_V4QI_V4QI, MASK_DSP),
10021 DIRECT_NO_TARGET_BUILTIN (cmpu_le_qb, MIPS_VOID_FTYPE_V4QI_V4QI, MASK_DSP),
10022 DIRECT_BUILTIN (cmpgu_eq_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSP),
10023 DIRECT_BUILTIN (cmpgu_lt_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSP),
10024 DIRECT_BUILTIN (cmpgu_le_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSP),
10025 DIRECT_NO_TARGET_BUILTIN (cmp_eq_ph, MIPS_VOID_FTYPE_V2HI_V2HI, MASK_DSP),
10026 DIRECT_NO_TARGET_BUILTIN (cmp_lt_ph, MIPS_VOID_FTYPE_V2HI_V2HI, MASK_DSP),
10027 DIRECT_NO_TARGET_BUILTIN (cmp_le_ph, MIPS_VOID_FTYPE_V2HI_V2HI, MASK_DSP),
10028 DIRECT_BUILTIN (pick_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
10029 DIRECT_BUILTIN (pick_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
10030 DIRECT_BUILTIN (packrl_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
10031 DIRECT_NO_TARGET_BUILTIN (wrdsp, MIPS_VOID_FTYPE_SI_SI, MASK_DSP),
10032 DIRECT_BUILTIN (rddsp, MIPS_SI_FTYPE_SI, MASK_DSP),
10033 DIRECT_BUILTIN (lbux, MIPS_SI_FTYPE_POINTER_SI, MASK_DSP),
10034 DIRECT_BUILTIN (lhx, MIPS_SI_FTYPE_POINTER_SI, MASK_DSP),
10035 DIRECT_BUILTIN (lwx, MIPS_SI_FTYPE_POINTER_SI, MASK_DSP),
10036 BPOSGE_BUILTIN (32, MASK_DSP),
10038 /* The following are for the MIPS DSP ASE REV 2. */
10039 DIRECT_BUILTIN (absq_s_qb, MIPS_V4QI_FTYPE_V4QI, MASK_DSPR2),
10040 DIRECT_BUILTIN (addu_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
10041 DIRECT_BUILTIN (addu_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
10042 DIRECT_BUILTIN (adduh_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSPR2),
10043 DIRECT_BUILTIN (adduh_r_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSPR2),
10044 DIRECT_BUILTIN (append, MIPS_SI_FTYPE_SI_SI_SI, MASK_DSPR2),
10045 DIRECT_BUILTIN (balign, MIPS_SI_FTYPE_SI_SI_SI, MASK_DSPR2),
10046 DIRECT_BUILTIN (cmpgdu_eq_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSPR2),
10047 DIRECT_BUILTIN (cmpgdu_lt_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSPR2),
10048 DIRECT_BUILTIN (cmpgdu_le_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSPR2),
10049 DIRECT_BUILTIN (mul_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
10050 DIRECT_BUILTIN (mul_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
10051 DIRECT_BUILTIN (mulq_rs_w, MIPS_SI_FTYPE_SI_SI, MASK_DSPR2),
10052 DIRECT_BUILTIN (mulq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
10053 DIRECT_BUILTIN (mulq_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSPR2),
10054 DIRECT_BUILTIN (precr_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, MASK_DSPR2),
10055 DIRECT_BUILTIN (precr_sra_ph_w, MIPS_V2HI_FTYPE_SI_SI_SI, MASK_DSPR2),
10056 DIRECT_BUILTIN (precr_sra_r_ph_w, MIPS_V2HI_FTYPE_SI_SI_SI, MASK_DSPR2),
10057 DIRECT_BUILTIN (prepend, MIPS_SI_FTYPE_SI_SI_SI, MASK_DSPR2),
10058 DIRECT_BUILTIN (shra_qb, MIPS_V4QI_FTYPE_V4QI_SI, MASK_DSPR2),
10059 DIRECT_BUILTIN (shra_r_qb, MIPS_V4QI_FTYPE_V4QI_SI, MASK_DSPR2),
10060 DIRECT_BUILTIN (shrl_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSPR2),
10061 DIRECT_BUILTIN (subu_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
10062 DIRECT_BUILTIN (subu_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
10063 DIRECT_BUILTIN (subuh_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSPR2),
10064 DIRECT_BUILTIN (subuh_r_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSPR2),
10065 DIRECT_BUILTIN (addqh_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
10066 DIRECT_BUILTIN (addqh_r_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
10067 DIRECT_BUILTIN (addqh_w, MIPS_SI_FTYPE_SI_SI, MASK_DSPR2),
10068 DIRECT_BUILTIN (addqh_r_w, MIPS_SI_FTYPE_SI_SI, MASK_DSPR2),
10069 DIRECT_BUILTIN (subqh_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
10070 DIRECT_BUILTIN (subqh_r_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
10071 DIRECT_BUILTIN (subqh_w, MIPS_SI_FTYPE_SI_SI, MASK_DSPR2),
10072 DIRECT_BUILTIN (subqh_r_w, MIPS_SI_FTYPE_SI_SI, MASK_DSPR2)
10075 static const struct mips_builtin_description mips_dsp_32only_bdesc[] = {
10076 DIRECT_BUILTIN (dpau_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
10077 DIRECT_BUILTIN (dpau_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
10078 DIRECT_BUILTIN (dpsu_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
10079 DIRECT_BUILTIN (dpsu_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
10080 DIRECT_BUILTIN (dpaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
10081 DIRECT_BUILTIN (dpsq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
10082 DIRECT_BUILTIN (mulsaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
10083 DIRECT_BUILTIN (dpaq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, MASK_DSP),
10084 DIRECT_BUILTIN (dpsq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, MASK_DSP),
10085 DIRECT_BUILTIN (maq_s_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
10086 DIRECT_BUILTIN (maq_s_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
10087 DIRECT_BUILTIN (maq_sa_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
10088 DIRECT_BUILTIN (maq_sa_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
10089 DIRECT_BUILTIN (extr_w, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
10090 DIRECT_BUILTIN (extr_r_w, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
10091 DIRECT_BUILTIN (extr_rs_w, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
10092 DIRECT_BUILTIN (extr_s_h, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
10093 DIRECT_BUILTIN (extp, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
10094 DIRECT_BUILTIN (extpdp, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
10095 DIRECT_BUILTIN (shilo, MIPS_DI_FTYPE_DI_SI, MASK_DSP),
10096 DIRECT_BUILTIN (mthlip, MIPS_DI_FTYPE_DI_SI, MASK_DSP),
10098 /* The following are for the MIPS DSP ASE REV 2. */
10099 DIRECT_BUILTIN (dpa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSPR2),
10100 DIRECT_BUILTIN (dps_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSPR2),
10101 DIRECT_BUILTIN (madd, MIPS_DI_FTYPE_DI_SI_SI, MASK_DSPR2),
10102 DIRECT_BUILTIN (maddu, MIPS_DI_FTYPE_DI_USI_USI, MASK_DSPR2),
10103 DIRECT_BUILTIN (msub, MIPS_DI_FTYPE_DI_SI_SI, MASK_DSPR2),
10104 DIRECT_BUILTIN (msubu, MIPS_DI_FTYPE_DI_USI_USI, MASK_DSPR2),
10105 DIRECT_BUILTIN (mulsa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSPR2),
10106 DIRECT_BUILTIN (mult, MIPS_DI_FTYPE_SI_SI, MASK_DSPR2),
10107 DIRECT_BUILTIN (multu, MIPS_DI_FTYPE_USI_USI, MASK_DSPR2),
10108 DIRECT_BUILTIN (dpax_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSPR2),
10109 DIRECT_BUILTIN (dpsx_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSPR2),
10110 DIRECT_BUILTIN (dpaqx_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSPR2),
10111 DIRECT_BUILTIN (dpaqx_sa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSPR2),
10112 DIRECT_BUILTIN (dpsqx_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSPR2),
10113 DIRECT_BUILTIN (dpsqx_sa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSPR2)
10116 /* This structure describes an array of mips_builtin_description entries. */
10117 struct mips_bdesc_map {
10118 /* The array that this entry describes. */
10119 const struct mips_builtin_description *bdesc;
10121 /* The number of entries in BDESC. */
10122 unsigned int size;
10124 /* The target processor that supports the functions in BDESC.
10125 PROCESSOR_MAX means we enable them for all processors. */
10126 enum processor_type proc;
10128 /* The functions in BDESC are not supported if any of these
10129 target flags are set. */
10130 int unsupported_target_flags;
10133 /* All MIPS-specific built-in functions. */
10134 static const struct mips_bdesc_map mips_bdesc_arrays[] = {
10135 { mips_ps_bdesc, ARRAY_SIZE (mips_ps_bdesc), PROCESSOR_MAX, 0 },
10136 { mips_sb1_bdesc, ARRAY_SIZE (mips_sb1_bdesc), PROCESSOR_SB1, 0 },
10137 { mips_dsp_bdesc, ARRAY_SIZE (mips_dsp_bdesc), PROCESSOR_MAX, 0 },
10138 { mips_dsp_32only_bdesc, ARRAY_SIZE (mips_dsp_32only_bdesc),
10139 PROCESSOR_MAX, MASK_64BIT }
10142 /* MODE is a vector mode whose elements have type TYPE. Return the type
10143 of the vector itself. */
10145 static tree
10146 mips_builtin_vector_type (tree type, enum machine_mode mode)
10148 static tree types[(int) MAX_MACHINE_MODE];
10150 if (types[(int) mode] == NULL_TREE)
10151 types[(int) mode] = build_vector_type_for_mode (type, mode);
10152 return types[(int) mode];
10155 /* Source-level argument types. */
10156 #define MIPS_ATYPE_VOID void_type_node
10157 #define MIPS_ATYPE_INT integer_type_node
10158 #define MIPS_ATYPE_POINTER ptr_type_node
10160 /* Standard mode-based argument types. */
10161 #define MIPS_ATYPE_SI intSI_type_node
10162 #define MIPS_ATYPE_USI unsigned_intSI_type_node
10163 #define MIPS_ATYPE_DI intDI_type_node
10164 #define MIPS_ATYPE_SF float_type_node
10165 #define MIPS_ATYPE_DF double_type_node
10167 /* Vector argument types. */
10168 #define MIPS_ATYPE_V2SF mips_builtin_vector_type (float_type_node, V2SFmode)
10169 #define MIPS_ATYPE_V2HI mips_builtin_vector_type (intHI_type_node, V2HImode)
10170 #define MIPS_ATYPE_V4QI mips_builtin_vector_type (intQI_type_node, V4QImode)
10172 /* MIPS_FTYPE_ATYPESN takes N MIPS_FTYPES-like type codes and lists
10173 their associated MIPS_ATYPEs. */
10174 #define MIPS_FTYPE_ATYPES1(A, B) \
10175 MIPS_ATYPE_##A, MIPS_ATYPE_##B
10177 #define MIPS_FTYPE_ATYPES2(A, B, C) \
10178 MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C
10180 #define MIPS_FTYPE_ATYPES3(A, B, C, D) \
10181 MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C, MIPS_ATYPE_##D
10183 #define MIPS_FTYPE_ATYPES4(A, B, C, D, E) \
10184 MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C, MIPS_ATYPE_##D, \
10185 MIPS_ATYPE_##E
10187 /* Return the function type associated with function prototype TYPE. */
10189 static tree
10190 mips_build_function_type (enum mips_function_type type)
10192 static tree types[(int) MIPS_MAX_FTYPE_MAX];
10194 if (types[(int) type] == NULL_TREE)
10195 switch (type)
10197 #define DEF_MIPS_FTYPE(NUM, ARGS) \
10198 case MIPS_FTYPE_NAME##NUM ARGS: \
10199 types[(int) type] \
10200 = build_function_type_list (MIPS_FTYPE_ATYPES##NUM ARGS, \
10201 NULL_TREE); \
10202 break;
10203 #include "config/mips/mips-ftypes.def"
10204 #undef DEF_MIPS_FTYPE
10205 default:
10206 gcc_unreachable ();
10209 return types[(int) type];
10212 /* Implement TARGET_INIT_BUILTINS. */
10214 static void
10215 mips_init_builtins (void)
10217 const struct mips_builtin_description *d;
10218 const struct mips_bdesc_map *m;
10219 unsigned int offset;
10221 /* Iterate through all of the bdesc arrays, initializing all of the
10222 builtin functions. */
10223 offset = 0;
10224 for (m = mips_bdesc_arrays;
10225 m < &mips_bdesc_arrays[ARRAY_SIZE (mips_bdesc_arrays)];
10226 m++)
10228 if ((m->proc == PROCESSOR_MAX || m->proc == mips_arch)
10229 && (m->unsupported_target_flags & target_flags) == 0)
10230 for (d = m->bdesc; d < &m->bdesc[m->size]; d++)
10231 if ((d->target_flags & target_flags) == d->target_flags)
10232 add_builtin_function (d->name,
10233 mips_build_function_type (d->function_type),
10234 d - m->bdesc + offset,
10235 BUILT_IN_MD, NULL, NULL);
10236 offset += m->size;
10240 /* Take argument ARGNO from EXP's argument list and convert it into a
10241 form suitable for input operand OPNO of instruction ICODE. Return the
10242 value. */
10244 static rtx
10245 mips_prepare_builtin_arg (enum insn_code icode,
10246 unsigned int opno, tree exp, unsigned int argno)
10248 rtx value;
10249 enum machine_mode mode;
10251 value = expand_normal (CALL_EXPR_ARG (exp, argno));
10252 mode = insn_data[icode].operand[opno].mode;
10253 if (!insn_data[icode].operand[opno].predicate (value, mode))
10255 value = copy_to_mode_reg (mode, value);
10256 /* Check the predicate again. */
10257 if (!insn_data[icode].operand[opno].predicate (value, mode))
10259 error ("invalid argument to built-in function");
10260 return const0_rtx;
10264 return value;
10267 /* Return an rtx suitable for output operand OP of instruction ICODE.
10268 If TARGET is non-null, try to use it where possible. */
10270 static rtx
10271 mips_prepare_builtin_target (enum insn_code icode, unsigned int op, rtx target)
10273 enum machine_mode mode;
10275 mode = insn_data[icode].operand[op].mode;
10276 if (target == 0 || !insn_data[icode].operand[op].predicate (target, mode))
10277 target = gen_reg_rtx (mode);
10279 return target;
10282 /* Expand a MIPS_BUILTIN_DIRECT or MIPS_BUILTIN_DIRECT_NO_TARGET function;
10283 HAS_TARGET_P says which. EXP is the CALL_EXPR that calls the function
10284 and ICODE is the code of the associated .md pattern. TARGET, if nonnull,
10285 suggests a good place to put the result. */
10287 static rtx
10288 mips_expand_builtin_direct (enum insn_code icode, rtx target, tree exp,
10289 bool has_target_p)
10291 rtx ops[MAX_RECOG_OPERANDS];
10292 int opno, argno;
10294 /* Map any target to operand 0. */
10295 opno = 0;
10296 if (has_target_p)
10298 ops[opno] = mips_prepare_builtin_target (icode, opno, target);
10299 opno++;
10302 /* Map the arguments to the other operands. The n_operands value
10303 for an expander includes match_dups and match_scratches as well as
10304 match_operands, so n_operands is only an upper bound on the number
10305 of arguments to the expander function. */
10306 gcc_assert (opno + call_expr_nargs (exp) <= insn_data[icode].n_operands);
10307 for (argno = 0; argno < call_expr_nargs (exp); argno++, opno++)
10308 ops[opno] = mips_prepare_builtin_arg (icode, opno, exp, argno);
10310 switch (opno)
10312 case 2:
10313 emit_insn (GEN_FCN (icode) (ops[0], ops[1]));
10314 break;
10316 case 3:
10317 emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2]));
10318 break;
10320 case 4:
10321 emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3]));
10322 break;
10324 default:
10325 gcc_unreachable ();
10327 return target;
10330 /* Expand a __builtin_mips_movt_*_ps or __builtin_mips_movf_*_ps
10331 function; TYPE says which. EXP is the CALL_EXPR that calls the
10332 function, ICODE is the instruction that should be used to compare
10333 the first two arguments, and COND is the condition it should test.
10334 TARGET, if nonnull, suggests a good place to put the result. */
10336 static rtx
10337 mips_expand_builtin_movtf (enum mips_builtin_type type,
10338 enum insn_code icode, enum mips_fp_condition cond,
10339 rtx target, tree exp)
10341 rtx cmp_result, op0, op1;
10343 cmp_result = mips_prepare_builtin_target (icode, 0, 0);
10344 op0 = mips_prepare_builtin_arg (icode, 1, exp, 0);
10345 op1 = mips_prepare_builtin_arg (icode, 2, exp, 1);
10346 emit_insn (GEN_FCN (icode) (cmp_result, op0, op1, GEN_INT (cond)));
10348 icode = CODE_FOR_mips_cond_move_tf_ps;
10349 target = mips_prepare_builtin_target (icode, 0, target);
10350 if (type == MIPS_BUILTIN_MOVT)
10352 op1 = mips_prepare_builtin_arg (icode, 2, exp, 2);
10353 op0 = mips_prepare_builtin_arg (icode, 1, exp, 3);
10355 else
10357 op0 = mips_prepare_builtin_arg (icode, 1, exp, 2);
10358 op1 = mips_prepare_builtin_arg (icode, 2, exp, 3);
10360 emit_insn (gen_mips_cond_move_tf_ps (target, op0, op1, cmp_result));
10361 return target;
10364 /* Move VALUE_IF_TRUE into TARGET if CONDITION is true; move VALUE_IF_FALSE
10365 into TARGET otherwise. Return TARGET. */
10367 static rtx
10368 mips_builtin_branch_and_move (rtx condition, rtx target,
10369 rtx value_if_true, rtx value_if_false)
10371 rtx true_label, done_label;
10373 true_label = gen_label_rtx ();
10374 done_label = gen_label_rtx ();
10376 /* First assume that CONDITION is false. */
10377 mips_emit_move (target, value_if_false);
10379 /* Branch to TRUE_LABEL if CONDITION is true and DONE_LABEL otherwise. */
10380 emit_jump_insn (gen_condjump (condition, true_label));
10381 emit_jump_insn (gen_jump (done_label));
10382 emit_barrier ();
10384 /* Fix TARGET if CONDITION is true. */
10385 emit_label (true_label);
10386 mips_emit_move (target, value_if_true);
10388 emit_label (done_label);
10389 return target;
10392 /* Expand a comparison built-in function of type BUILTIN_TYPE. EXP is
10393 the CALL_EXPR that calls the function, ICODE is the code of the
10394 comparison instruction, and COND is the condition it should test.
10395 TARGET, if nonnull, suggests a good place to put the boolean result. */
10397 static rtx
10398 mips_expand_builtin_compare (enum mips_builtin_type builtin_type,
10399 enum insn_code icode, enum mips_fp_condition cond,
10400 rtx target, tree exp)
10402 rtx offset, condition, cmp_result, args[MAX_RECOG_OPERANDS];
10403 int argno;
10405 if (target == 0 || GET_MODE (target) != SImode)
10406 target = gen_reg_rtx (SImode);
10408 /* The instruction should have a target operand, an operand for each
10409 argument, and an operand for COND. */
10410 gcc_assert (call_expr_nargs (exp) + 2 == insn_data[icode].n_operands);
10412 /* Prepare the operands to the comparison. */
10413 cmp_result = mips_prepare_builtin_target (icode, 0, 0);
10414 for (argno = 0; argno < call_expr_nargs (exp); argno++)
10415 args[argno] = mips_prepare_builtin_arg (icode, argno + 1, exp, argno);
10417 switch (insn_data[icode].n_operands)
10419 case 4:
10420 emit_insn (GEN_FCN (icode) (cmp_result, args[0], args[1],
10421 GEN_INT (cond)));
10422 break;
10424 case 6:
10425 emit_insn (GEN_FCN (icode) (cmp_result, args[0], args[1],
10426 args[2], args[3], GEN_INT (cond)));
10427 break;
10429 default:
10430 gcc_unreachable ();
10433 /* If the comparison sets more than one register, we define the result
10434 to be 0 if all registers are false and -1 if all registers are true.
10435 The value of the complete result is indeterminate otherwise. */
10436 switch (builtin_type)
10438 case MIPS_BUILTIN_CMP_ALL:
10439 condition = gen_rtx_NE (VOIDmode, cmp_result, constm1_rtx);
10440 return mips_builtin_branch_and_move (condition, target,
10441 const0_rtx, const1_rtx);
10443 case MIPS_BUILTIN_CMP_UPPER:
10444 case MIPS_BUILTIN_CMP_LOWER:
10445 offset = GEN_INT (builtin_type == MIPS_BUILTIN_CMP_UPPER);
10446 condition = gen_single_cc (cmp_result, offset);
10447 return mips_builtin_branch_and_move (condition, target,
10448 const1_rtx, const0_rtx);
10450 default:
10451 condition = gen_rtx_NE (VOIDmode, cmp_result, const0_rtx);
10452 return mips_builtin_branch_and_move (condition, target,
10453 const1_rtx, const0_rtx);
10457 /* Expand a bposge built-in function of type BUILTIN_TYPE. TARGET,
10458 if nonnull, suggests a good place to put the boolean result. */
10460 static rtx
10461 mips_expand_builtin_bposge (enum mips_builtin_type builtin_type, rtx target)
10463 rtx condition, cmp_result;
10464 int cmp_value;
10466 if (target == 0 || GET_MODE (target) != SImode)
10467 target = gen_reg_rtx (SImode);
10469 cmp_result = gen_rtx_REG (CCDSPmode, CCDSP_PO_REGNUM);
10471 if (builtin_type == MIPS_BUILTIN_BPOSGE32)
10472 cmp_value = 32;
10473 else
10474 gcc_assert (0);
10476 condition = gen_rtx_GE (VOIDmode, cmp_result, GEN_INT (cmp_value));
10477 return mips_builtin_branch_and_move (condition, target,
10478 const1_rtx, const0_rtx);
10481 /* EXP is a CALL_EXPR that calls the function described by BDESC.
10482 Expand the call and return an rtx for its return value.
10483 TARGET, if nonnull, suggests a good place to put this value. */
10485 static rtx
10486 mips_expand_builtin_1 (const struct mips_builtin_description *bdesc,
10487 tree exp, rtx target)
10489 switch (bdesc->builtin_type)
10491 case MIPS_BUILTIN_DIRECT:
10492 return mips_expand_builtin_direct (bdesc->icode, target, exp, true);
10494 case MIPS_BUILTIN_DIRECT_NO_TARGET:
10495 return mips_expand_builtin_direct (bdesc->icode, target, exp, false);
10497 case MIPS_BUILTIN_MOVT:
10498 case MIPS_BUILTIN_MOVF:
10499 return mips_expand_builtin_movtf (bdesc->builtin_type, bdesc->icode,
10500 bdesc->cond, target, exp);
10502 case MIPS_BUILTIN_CMP_ANY:
10503 case MIPS_BUILTIN_CMP_ALL:
10504 case MIPS_BUILTIN_CMP_UPPER:
10505 case MIPS_BUILTIN_CMP_LOWER:
10506 case MIPS_BUILTIN_CMP_SINGLE:
10507 return mips_expand_builtin_compare (bdesc->builtin_type, bdesc->icode,
10508 bdesc->cond, target, exp);
10510 case MIPS_BUILTIN_BPOSGE32:
10511 return mips_expand_builtin_bposge (bdesc->builtin_type, target);
10513 gcc_unreachable ();
10516 /* Implement TARGET_EXPAND_BUILTIN. */
10518 static rtx
10519 mips_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
10520 enum machine_mode mode ATTRIBUTE_UNUSED,
10521 int ignore ATTRIBUTE_UNUSED)
10523 tree fndecl;
10524 unsigned int fcode;
10525 const struct mips_bdesc_map *m;
10527 fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
10528 fcode = DECL_FUNCTION_CODE (fndecl);
10529 if (TARGET_MIPS16)
10531 error ("built-in function %qs not supported for MIPS16",
10532 IDENTIFIER_POINTER (DECL_NAME (fndecl)));
10533 return const0_rtx;
10536 for (m = mips_bdesc_arrays;
10537 m < &mips_bdesc_arrays[ARRAY_SIZE (mips_bdesc_arrays)];
10538 m++)
10540 if (fcode < m->size)
10541 return mips_expand_builtin_1 (m->bdesc + fcode, exp, target);
10542 fcode -= m->size;
10544 gcc_unreachable ();
10547 /* An entry in the MIPS16 constant pool. VALUE is the pool constant,
10548 MODE is its mode, and LABEL is the CODE_LABEL associated with it. */
10549 struct mips16_constant {
10550 struct mips16_constant *next;
10551 rtx value;
10552 rtx label;
10553 enum machine_mode mode;
10556 /* Information about an incomplete MIPS16 constant pool. FIRST is the
10557 first constant, HIGHEST_ADDRESS is the highest address that the first
10558 byte of the pool can have, and INSN_ADDRESS is the current instruction
10559 address. */
10560 struct mips16_constant_pool {
10561 struct mips16_constant *first;
10562 int highest_address;
10563 int insn_address;
10566 /* Add constant VALUE to POOL and return its label. MODE is the
10567 value's mode (used for CONST_INTs, etc.). */
10569 static rtx
10570 mips16_add_constant (struct mips16_constant_pool *pool,
10571 rtx value, enum machine_mode mode)
10573 struct mips16_constant **p, *c;
10574 bool first_of_size_p;
10576 /* See whether the constant is already in the pool. If so, return the
10577 existing label, otherwise leave P pointing to the place where the
10578 constant should be added.
10580 Keep the pool sorted in increasing order of mode size so that we can
10581 reduce the number of alignments needed. */
10582 first_of_size_p = true;
10583 for (p = &pool->first; *p != 0; p = &(*p)->next)
10585 if (mode == (*p)->mode && rtx_equal_p (value, (*p)->value))
10586 return (*p)->label;
10587 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE ((*p)->mode))
10588 break;
10589 if (GET_MODE_SIZE (mode) == GET_MODE_SIZE ((*p)->mode))
10590 first_of_size_p = false;
10593 /* In the worst case, the constant needed by the earliest instruction
10594 will end up at the end of the pool. The entire pool must then be
10595 accessible from that instruction.
10597 When adding the first constant, set the pool's highest address to
10598 the address of the first out-of-range byte. Adjust this address
10599 downwards each time a new constant is added. */
10600 if (pool->first == 0)
10601 /* For LWPC, ADDIUPC and DADDIUPC, the base PC value is the address
10602 of the instruction with the lowest two bits clear. The base PC
10603 value for LDPC has the lowest three bits clear. Assume the worst
10604 case here; namely that the PC-relative instruction occupies the
10605 last 2 bytes in an aligned word. */
10606 pool->highest_address = pool->insn_address - (UNITS_PER_WORD - 2) + 0x8000;
10607 pool->highest_address -= GET_MODE_SIZE (mode);
10608 if (first_of_size_p)
10609 /* Take into account the worst possible padding due to alignment. */
10610 pool->highest_address -= GET_MODE_SIZE (mode) - 1;
10612 /* Create a new entry. */
10613 c = XNEW (struct mips16_constant);
10614 c->value = value;
10615 c->mode = mode;
10616 c->label = gen_label_rtx ();
10617 c->next = *p;
10618 *p = c;
10620 return c->label;
10623 /* Output constant VALUE after instruction INSN and return the last
10624 instruction emitted. MODE is the mode of the constant. */
10626 static rtx
10627 mips16_emit_constants_1 (enum machine_mode mode, rtx value, rtx insn)
10629 if (SCALAR_INT_MODE_P (mode) || ALL_SCALAR_FIXED_POINT_MODE_P (mode))
10631 rtx size = GEN_INT (GET_MODE_SIZE (mode));
10632 return emit_insn_after (gen_consttable_int (value, size), insn);
10635 if (SCALAR_FLOAT_MODE_P (mode))
10636 return emit_insn_after (gen_consttable_float (value), insn);
10638 if (VECTOR_MODE_P (mode))
10640 int i;
10642 for (i = 0; i < CONST_VECTOR_NUNITS (value); i++)
10643 insn = mips16_emit_constants_1 (GET_MODE_INNER (mode),
10644 CONST_VECTOR_ELT (value, i), insn);
10645 return insn;
10648 gcc_unreachable ();
10651 /* Dump out the constants in CONSTANTS after INSN. */
10653 static void
10654 mips16_emit_constants (struct mips16_constant *constants, rtx insn)
10656 struct mips16_constant *c, *next;
10657 int align;
10659 align = 0;
10660 for (c = constants; c != NULL; c = next)
10662 /* If necessary, increase the alignment of PC. */
10663 if (align < GET_MODE_SIZE (c->mode))
10665 int align_log = floor_log2 (GET_MODE_SIZE (c->mode));
10666 insn = emit_insn_after (gen_align (GEN_INT (align_log)), insn);
10668 align = GET_MODE_SIZE (c->mode);
10670 insn = emit_label_after (c->label, insn);
10671 insn = mips16_emit_constants_1 (c->mode, c->value, insn);
10673 next = c->next;
10674 free (c);
10677 emit_barrier_after (insn);
10680 /* Return the length of instruction INSN. */
10682 static int
10683 mips16_insn_length (rtx insn)
10685 if (JUMP_P (insn))
10687 rtx body = PATTERN (insn);
10688 if (GET_CODE (body) == ADDR_VEC)
10689 return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 0);
10690 if (GET_CODE (body) == ADDR_DIFF_VEC)
10691 return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 1);
10693 return get_attr_length (insn);
10696 /* If *X is a symbolic constant that refers to the constant pool, add
10697 the constant to POOL and rewrite *X to use the constant's label. */
10699 static void
10700 mips16_rewrite_pool_constant (struct mips16_constant_pool *pool, rtx *x)
10702 rtx base, offset, label;
10704 split_const (*x, &base, &offset);
10705 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
10707 label = mips16_add_constant (pool, get_pool_constant (base),
10708 get_pool_mode (base));
10709 base = gen_rtx_LABEL_REF (Pmode, label);
10710 *x = mips_unspec_address_offset (base, offset, SYMBOL_PC_RELATIVE);
10714 /* This structure is used to communicate with mips16_rewrite_pool_refs.
10715 INSN is the instruction we're rewriting and POOL points to the current
10716 constant pool. */
10717 struct mips16_rewrite_pool_refs_info {
10718 rtx insn;
10719 struct mips16_constant_pool *pool;
10722 /* Rewrite *X so that constant pool references refer to the constant's
10723 label instead. DATA points to a mips16_rewrite_pool_refs_info
10724 structure. */
10726 static int
10727 mips16_rewrite_pool_refs (rtx *x, void *data)
10729 struct mips16_rewrite_pool_refs_info *info = data;
10731 if (force_to_mem_operand (*x, Pmode))
10733 rtx mem = force_const_mem (GET_MODE (*x), *x);
10734 validate_change (info->insn, x, mem, false);
10737 if (MEM_P (*x))
10739 mips16_rewrite_pool_constant (info->pool, &XEXP (*x, 0));
10740 return -1;
10743 if (TARGET_MIPS16_TEXT_LOADS)
10744 mips16_rewrite_pool_constant (info->pool, x);
10746 return GET_CODE (*x) == CONST ? -1 : 0;
10749 /* Build MIPS16 constant pools. */
10751 static void
10752 mips16_lay_out_constants (void)
10754 struct mips16_constant_pool pool;
10755 struct mips16_rewrite_pool_refs_info info;
10756 rtx insn, barrier;
10758 if (!TARGET_MIPS16_PCREL_LOADS)
10759 return;
10761 barrier = 0;
10762 memset (&pool, 0, sizeof (pool));
10763 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
10765 /* Rewrite constant pool references in INSN. */
10766 if (INSN_P (insn))
10768 info.insn = insn;
10769 info.pool = &pool;
10770 for_each_rtx (&PATTERN (insn), mips16_rewrite_pool_refs, &info);
10773 pool.insn_address += mips16_insn_length (insn);
10775 if (pool.first != NULL)
10777 /* If there are no natural barriers between the first user of
10778 the pool and the highest acceptable address, we'll need to
10779 create a new instruction to jump around the constant pool.
10780 In the worst case, this instruction will be 4 bytes long.
10782 If it's too late to do this transformation after INSN,
10783 do it immediately before INSN. */
10784 if (barrier == 0 && pool.insn_address + 4 > pool.highest_address)
10786 rtx label, jump;
10788 label = gen_label_rtx ();
10790 jump = emit_jump_insn_before (gen_jump (label), insn);
10791 JUMP_LABEL (jump) = label;
10792 LABEL_NUSES (label) = 1;
10793 barrier = emit_barrier_after (jump);
10795 emit_label_after (label, barrier);
10796 pool.insn_address += 4;
10799 /* See whether the constant pool is now out of range of the first
10800 user. If so, output the constants after the previous barrier.
10801 Note that any instructions between BARRIER and INSN (inclusive)
10802 will use negative offsets to refer to the pool. */
10803 if (pool.insn_address > pool.highest_address)
10805 mips16_emit_constants (pool.first, barrier);
10806 pool.first = NULL;
10807 barrier = 0;
10809 else if (BARRIER_P (insn))
10810 barrier = insn;
10813 mips16_emit_constants (pool.first, get_last_insn ());
10816 /* A temporary variable used by for_each_rtx callbacks, etc. */
10817 static rtx mips_sim_insn;
10819 /* A structure representing the state of the processor pipeline.
10820 Used by the mips_sim_* family of functions. */
10821 struct mips_sim {
10822 /* The maximum number of instructions that can be issued in a cycle.
10823 (Caches mips_issue_rate.) */
10824 unsigned int issue_rate;
10826 /* The current simulation time. */
10827 unsigned int time;
10829 /* How many more instructions can be issued in the current cycle. */
10830 unsigned int insns_left;
10832 /* LAST_SET[X].INSN is the last instruction to set register X.
10833 LAST_SET[X].TIME is the time at which that instruction was issued.
10834 INSN is null if no instruction has yet set register X. */
10835 struct {
10836 rtx insn;
10837 unsigned int time;
10838 } last_set[FIRST_PSEUDO_REGISTER];
10840 /* The pipeline's current DFA state. */
10841 state_t dfa_state;
10844 /* Reset STATE to the initial simulation state. */
10846 static void
10847 mips_sim_reset (struct mips_sim *state)
10849 state->time = 0;
10850 state->insns_left = state->issue_rate;
10851 memset (&state->last_set, 0, sizeof (state->last_set));
10852 state_reset (state->dfa_state);
10855 /* Initialize STATE before its first use. DFA_STATE points to an
10856 allocated but uninitialized DFA state. */
10858 static void
10859 mips_sim_init (struct mips_sim *state, state_t dfa_state)
10861 state->issue_rate = mips_issue_rate ();
10862 state->dfa_state = dfa_state;
10863 mips_sim_reset (state);
10866 /* Advance STATE by one clock cycle. */
10868 static void
10869 mips_sim_next_cycle (struct mips_sim *state)
10871 state->time++;
10872 state->insns_left = state->issue_rate;
10873 state_transition (state->dfa_state, 0);
10876 /* Advance simulation state STATE until instruction INSN can read
10877 register REG. */
10879 static void
10880 mips_sim_wait_reg (struct mips_sim *state, rtx insn, rtx reg)
10882 unsigned int regno, end_regno;
10884 end_regno = END_REGNO (reg);
10885 for (regno = REGNO (reg); regno < end_regno; regno++)
10886 if (state->last_set[regno].insn != 0)
10888 unsigned int t;
10890 t = (state->last_set[regno].time
10891 + insn_latency (state->last_set[regno].insn, insn));
10892 while (state->time < t)
10893 mips_sim_next_cycle (state);
10897 /* A for_each_rtx callback. If *X is a register, advance simulation state
10898 DATA until mips_sim_insn can read the register's value. */
10900 static int
10901 mips_sim_wait_regs_2 (rtx *x, void *data)
10903 if (REG_P (*x))
10904 mips_sim_wait_reg (data, mips_sim_insn, *x);
10905 return 0;
10908 /* Call mips_sim_wait_regs_2 (R, DATA) for each register R mentioned in *X. */
10910 static void
10911 mips_sim_wait_regs_1 (rtx *x, void *data)
10913 for_each_rtx (x, mips_sim_wait_regs_2, data);
10916 /* Advance simulation state STATE until all of INSN's register
10917 dependencies are satisfied. */
10919 static void
10920 mips_sim_wait_regs (struct mips_sim *state, rtx insn)
10922 mips_sim_insn = insn;
10923 note_uses (&PATTERN (insn), mips_sim_wait_regs_1, state);
10926 /* Advance simulation state STATE until the units required by
10927 instruction INSN are available. */
10929 static void
10930 mips_sim_wait_units (struct mips_sim *state, rtx insn)
10932 state_t tmp_state;
10934 tmp_state = alloca (state_size ());
10935 while (state->insns_left == 0
10936 || (memcpy (tmp_state, state->dfa_state, state_size ()),
10937 state_transition (tmp_state, insn) >= 0))
10938 mips_sim_next_cycle (state);
10941 /* Advance simulation state STATE until INSN is ready to issue. */
10943 static void
10944 mips_sim_wait_insn (struct mips_sim *state, rtx insn)
10946 mips_sim_wait_regs (state, insn);
10947 mips_sim_wait_units (state, insn);
10950 /* mips_sim_insn has just set X. Update the LAST_SET array
10951 in simulation state DATA. */
10953 static void
10954 mips_sim_record_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
10956 struct mips_sim *state;
10958 state = data;
10959 if (REG_P (x))
10961 unsigned int regno, end_regno;
10963 end_regno = END_REGNO (x);
10964 for (regno = REGNO (x); regno < end_regno; regno++)
10966 state->last_set[regno].insn = mips_sim_insn;
10967 state->last_set[regno].time = state->time;
10972 /* Issue instruction INSN in scheduler state STATE. Assume that INSN
10973 can issue immediately (i.e., that mips_sim_wait_insn has already
10974 been called). */
10976 static void
10977 mips_sim_issue_insn (struct mips_sim *state, rtx insn)
10979 state_transition (state->dfa_state, insn);
10980 state->insns_left--;
10982 mips_sim_insn = insn;
10983 note_stores (PATTERN (insn), mips_sim_record_set, state);
10986 /* Simulate issuing a NOP in state STATE. */
10988 static void
10989 mips_sim_issue_nop (struct mips_sim *state)
10991 if (state->insns_left == 0)
10992 mips_sim_next_cycle (state);
10993 state->insns_left--;
10996 /* Update simulation state STATE so that it's ready to accept the instruction
10997 after INSN. INSN should be part of the main rtl chain, not a member of a
10998 SEQUENCE. */
11000 static void
11001 mips_sim_finish_insn (struct mips_sim *state, rtx insn)
11003 /* If INSN is a jump with an implicit delay slot, simulate a nop. */
11004 if (JUMP_P (insn))
11005 mips_sim_issue_nop (state);
11007 switch (GET_CODE (SEQ_BEGIN (insn)))
11009 case CODE_LABEL:
11010 case CALL_INSN:
11011 /* We can't predict the processor state after a call or label. */
11012 mips_sim_reset (state);
11013 break;
11015 case JUMP_INSN:
11016 /* The delay slots of branch likely instructions are only executed
11017 when the branch is taken. Therefore, if the caller has simulated
11018 the delay slot instruction, STATE does not really reflect the state
11019 of the pipeline for the instruction after the delay slot. Also,
11020 branch likely instructions tend to incur a penalty when not taken,
11021 so there will probably be an extra delay between the branch and
11022 the instruction after the delay slot. */
11023 if (INSN_ANNULLED_BRANCH_P (SEQ_BEGIN (insn)))
11024 mips_sim_reset (state);
11025 break;
11027 default:
11028 break;
11032 /* The VR4130 pipeline issues aligned pairs of instructions together,
11033 but it stalls the second instruction if it depends on the first.
11034 In order to cut down the amount of logic required, this dependence
11035 check is not based on a full instruction decode. Instead, any non-SPECIAL
11036 instruction is assumed to modify the register specified by bits 20-16
11037 (which is usually the "rt" field).
11039 In BEQ, BEQL, BNE and BNEL instructions, the rt field is actually an
11040 input, so we can end up with a false dependence between the branch
11041 and its delay slot. If this situation occurs in instruction INSN,
11042 try to avoid it by swapping rs and rt. */
11044 static void
11045 vr4130_avoid_branch_rt_conflict (rtx insn)
11047 rtx first, second;
11049 first = SEQ_BEGIN (insn);
11050 second = SEQ_END (insn);
11051 if (JUMP_P (first)
11052 && NONJUMP_INSN_P (second)
11053 && GET_CODE (PATTERN (first)) == SET
11054 && GET_CODE (SET_DEST (PATTERN (first))) == PC
11055 && GET_CODE (SET_SRC (PATTERN (first))) == IF_THEN_ELSE)
11057 /* Check for the right kind of condition. */
11058 rtx cond = XEXP (SET_SRC (PATTERN (first)), 0);
11059 if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
11060 && REG_P (XEXP (cond, 0))
11061 && REG_P (XEXP (cond, 1))
11062 && reg_referenced_p (XEXP (cond, 1), PATTERN (second))
11063 && !reg_referenced_p (XEXP (cond, 0), PATTERN (second)))
11065 /* SECOND mentions the rt register but not the rs register. */
11066 rtx tmp = XEXP (cond, 0);
11067 XEXP (cond, 0) = XEXP (cond, 1);
11068 XEXP (cond, 1) = tmp;
11073 /* Implement -mvr4130-align. Go through each basic block and simulate the
11074 processor pipeline. If we find that a pair of instructions could execute
11075 in parallel, and the first of those instructions is not 8-byte aligned,
11076 insert a nop to make it aligned. */
11078 static void
11079 vr4130_align_insns (void)
11081 struct mips_sim state;
11082 rtx insn, subinsn, last, last2, next;
11083 bool aligned_p;
11085 dfa_start ();
11087 /* LAST is the last instruction before INSN to have a nonzero length.
11088 LAST2 is the last such instruction before LAST. */
11089 last = 0;
11090 last2 = 0;
11092 /* ALIGNED_P is true if INSN is known to be at an aligned address. */
11093 aligned_p = true;
11095 mips_sim_init (&state, alloca (state_size ()));
11096 for (insn = get_insns (); insn != 0; insn = next)
11098 unsigned int length;
11100 next = NEXT_INSN (insn);
11102 /* See the comment above vr4130_avoid_branch_rt_conflict for details.
11103 This isn't really related to the alignment pass, but we do it on
11104 the fly to avoid a separate instruction walk. */
11105 vr4130_avoid_branch_rt_conflict (insn);
11107 if (USEFUL_INSN_P (insn))
11108 FOR_EACH_SUBINSN (subinsn, insn)
11110 mips_sim_wait_insn (&state, subinsn);
11112 /* If we want this instruction to issue in parallel with the
11113 previous one, make sure that the previous instruction is
11114 aligned. There are several reasons why this isn't worthwhile
11115 when the second instruction is a call:
11117 - Calls are less likely to be performance critical,
11118 - There's a good chance that the delay slot can execute
11119 in parallel with the call.
11120 - The return address would then be unaligned.
11122 In general, if we're going to insert a nop between instructions
11123 X and Y, it's better to insert it immediately after X. That
11124 way, if the nop makes Y aligned, it will also align any labels
11125 between X and Y. */
11126 if (state.insns_left != state.issue_rate
11127 && !CALL_P (subinsn))
11129 if (subinsn == SEQ_BEGIN (insn) && aligned_p)
11131 /* SUBINSN is the first instruction in INSN and INSN is
11132 aligned. We want to align the previous instruction
11133 instead, so insert a nop between LAST2 and LAST.
11135 Note that LAST could be either a single instruction
11136 or a branch with a delay slot. In the latter case,
11137 LAST, like INSN, is already aligned, but the delay
11138 slot must have some extra delay that stops it from
11139 issuing at the same time as the branch. We therefore
11140 insert a nop before the branch in order to align its
11141 delay slot. */
11142 emit_insn_after (gen_nop (), last2);
11143 aligned_p = false;
11145 else if (subinsn != SEQ_BEGIN (insn) && !aligned_p)
11147 /* SUBINSN is the delay slot of INSN, but INSN is
11148 currently unaligned. Insert a nop between
11149 LAST and INSN to align it. */
11150 emit_insn_after (gen_nop (), last);
11151 aligned_p = true;
11154 mips_sim_issue_insn (&state, subinsn);
11156 mips_sim_finish_insn (&state, insn);
11158 /* Update LAST, LAST2 and ALIGNED_P for the next instruction. */
11159 length = get_attr_length (insn);
11160 if (length > 0)
11162 /* If the instruction is an asm statement or multi-instruction
11163 mips.md patern, the length is only an estimate. Insert an
11164 8 byte alignment after it so that the following instructions
11165 can be handled correctly. */
11166 if (NONJUMP_INSN_P (SEQ_BEGIN (insn))
11167 && (recog_memoized (insn) < 0 || length >= 8))
11169 next = emit_insn_after (gen_align (GEN_INT (3)), insn);
11170 next = NEXT_INSN (next);
11171 mips_sim_next_cycle (&state);
11172 aligned_p = true;
11174 else if (length & 4)
11175 aligned_p = !aligned_p;
11176 last2 = last;
11177 last = insn;
11180 /* See whether INSN is an aligned label. */
11181 if (LABEL_P (insn) && label_to_alignment (insn) >= 3)
11182 aligned_p = true;
11184 dfa_finish ();
11187 /* Subroutine of mips_reorg. If there is a hazard between INSN
11188 and a previous instruction, avoid it by inserting nops after
11189 instruction AFTER.
11191 *DELAYED_REG and *HILO_DELAY describe the hazards that apply at
11192 this point. If *DELAYED_REG is non-null, INSN must wait a cycle
11193 before using the value of that register. *HILO_DELAY counts the
11194 number of instructions since the last hilo hazard (that is,
11195 the number of instructions since the last MFLO or MFHI).
11197 After inserting nops for INSN, update *DELAYED_REG and *HILO_DELAY
11198 for the next instruction.
11200 LO_REG is an rtx for the LO register, used in dependence checking. */
11202 static void
11203 mips_avoid_hazard (rtx after, rtx insn, int *hilo_delay,
11204 rtx *delayed_reg, rtx lo_reg)
11206 rtx pattern, set;
11207 int nops, ninsns, hazard_set;
11209 if (!INSN_P (insn))
11210 return;
11212 pattern = PATTERN (insn);
11214 /* Do not put the whole function in .set noreorder if it contains
11215 an asm statement. We don't know whether there will be hazards
11216 between the asm statement and the gcc-generated code. */
11217 if (GET_CODE (pattern) == ASM_INPUT || asm_noperands (pattern) >= 0)
11218 cfun->machine->all_noreorder_p = false;
11220 /* Ignore zero-length instructions (barriers and the like). */
11221 ninsns = get_attr_length (insn) / 4;
11222 if (ninsns == 0)
11223 return;
11225 /* Work out how many nops are needed. Note that we only care about
11226 registers that are explicitly mentioned in the instruction's pattern.
11227 It doesn't matter that calls use the argument registers or that they
11228 clobber hi and lo. */
11229 if (*hilo_delay < 2 && reg_set_p (lo_reg, pattern))
11230 nops = 2 - *hilo_delay;
11231 else if (*delayed_reg != 0 && reg_referenced_p (*delayed_reg, pattern))
11232 nops = 1;
11233 else
11234 nops = 0;
11236 /* Insert the nops between this instruction and the previous one.
11237 Each new nop takes us further from the last hilo hazard. */
11238 *hilo_delay += nops;
11239 while (nops-- > 0)
11240 emit_insn_after (gen_hazard_nop (), after);
11242 /* Set up the state for the next instruction. */
11243 *hilo_delay += ninsns;
11244 *delayed_reg = 0;
11245 if (INSN_CODE (insn) >= 0)
11246 switch (get_attr_hazard (insn))
11248 case HAZARD_NONE:
11249 break;
11251 case HAZARD_HILO:
11252 *hilo_delay = 0;
11253 break;
11255 case HAZARD_DELAY:
11256 hazard_set = (int) get_attr_hazard_set (insn);
11257 if (hazard_set == 0)
11258 set = single_set (insn);
11259 else
11261 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
11262 set = XVECEXP (PATTERN (insn), 0, hazard_set - 1);
11264 gcc_assert (set && GET_CODE (set) == SET);
11265 *delayed_reg = SET_DEST (set);
11266 break;
11270 /* Go through the instruction stream and insert nops where necessary.
11271 See if the whole function can then be put into .set noreorder &
11272 .set nomacro. */
11274 static void
11275 mips_avoid_hazards (void)
11277 rtx insn, last_insn, lo_reg, delayed_reg;
11278 int hilo_delay, i;
11280 /* Force all instructions to be split into their final form. */
11281 split_all_insns_noflow ();
11283 /* Recalculate instruction lengths without taking nops into account. */
11284 cfun->machine->ignore_hazard_length_p = true;
11285 shorten_branches (get_insns ());
11287 cfun->machine->all_noreorder_p = true;
11289 /* Profiled functions can't be all noreorder because the profiler
11290 support uses assembler macros. */
11291 if (current_function_profile)
11292 cfun->machine->all_noreorder_p = false;
11294 /* Code compiled with -mfix-vr4120 can't be all noreorder because
11295 we rely on the assembler to work around some errata. */
11296 if (TARGET_FIX_VR4120)
11297 cfun->machine->all_noreorder_p = false;
11299 /* The same is true for -mfix-vr4130 if we might generate MFLO or
11300 MFHI instructions. Note that we avoid using MFLO and MFHI if
11301 the VR4130 MACC and DMACC instructions are available instead;
11302 see the *mfhilo_{si,di}_macc patterns. */
11303 if (TARGET_FIX_VR4130 && !ISA_HAS_MACCHI)
11304 cfun->machine->all_noreorder_p = false;
11306 last_insn = 0;
11307 hilo_delay = 2;
11308 delayed_reg = 0;
11309 lo_reg = gen_rtx_REG (SImode, LO_REGNUM);
11311 for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn))
11312 if (INSN_P (insn))
11314 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
11315 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
11316 mips_avoid_hazard (last_insn, XVECEXP (PATTERN (insn), 0, i),
11317 &hilo_delay, &delayed_reg, lo_reg);
11318 else
11319 mips_avoid_hazard (last_insn, insn, &hilo_delay,
11320 &delayed_reg, lo_reg);
11322 last_insn = insn;
11326 /* Implement TARGET_MACHINE_DEPENDENT_REORG. */
11328 static void
11329 mips_reorg (void)
11331 mips16_lay_out_constants ();
11332 if (TARGET_EXPLICIT_RELOCS)
11334 if (mips_base_delayed_branch)
11335 dbr_schedule (get_insns ());
11336 mips_avoid_hazards ();
11337 if (TUNE_MIPS4130 && TARGET_VR4130_ALIGN)
11338 vr4130_align_insns ();
11342 /* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text
11343 in order to avoid duplicating too much logic from elsewhere. */
11345 static void
11346 mips_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
11347 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
11348 tree function)
11350 rtx this, temp1, temp2, insn, fnaddr;
11351 bool use_sibcall_p;
11353 /* Pretend to be a post-reload pass while generating rtl. */
11354 reload_completed = 1;
11356 /* Mark the end of the (empty) prologue. */
11357 emit_note (NOTE_INSN_PROLOGUE_END);
11359 /* Determine if we can use a sibcall to call FUNCTION directly. */
11360 fnaddr = XEXP (DECL_RTL (function), 0);
11361 use_sibcall_p = (mips_function_ok_for_sibcall (function, NULL)
11362 && const_call_insn_operand (fnaddr, Pmode));
11364 /* Determine if we need to load FNADDR from the GOT. */
11365 if (!use_sibcall_p)
11366 switch (mips_classify_symbol (fnaddr, SYMBOL_CONTEXT_LEA))
11368 case SYMBOL_GOT_PAGE_OFST:
11369 case SYMBOL_GOT_DISP:
11370 /* Pick a global pointer. Use a call-clobbered register if
11371 TARGET_CALL_SAVED_GP. */
11372 cfun->machine->global_pointer =
11373 TARGET_CALL_SAVED_GP ? 15 : GLOBAL_POINTER_REGNUM;
11374 SET_REGNO (pic_offset_table_rtx, cfun->machine->global_pointer);
11376 /* Set up the global pointer for n32 or n64 abicalls. */
11377 mips_emit_loadgp ();
11378 break;
11380 default:
11381 break;
11384 /* We need two temporary registers in some cases. */
11385 temp1 = gen_rtx_REG (Pmode, 2);
11386 temp2 = gen_rtx_REG (Pmode, 3);
11388 /* Find out which register contains the "this" pointer. */
11389 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
11390 this = gen_rtx_REG (Pmode, GP_ARG_FIRST + 1);
11391 else
11392 this = gen_rtx_REG (Pmode, GP_ARG_FIRST);
11394 /* Add DELTA to THIS. */
11395 if (delta != 0)
11397 rtx offset = GEN_INT (delta);
11398 if (!SMALL_OPERAND (delta))
11400 mips_emit_move (temp1, offset);
11401 offset = temp1;
11403 emit_insn (gen_add3_insn (this, this, offset));
11406 /* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
11407 if (vcall_offset != 0)
11409 rtx addr;
11411 /* Set TEMP1 to *THIS. */
11412 mips_emit_move (temp1, gen_rtx_MEM (Pmode, this));
11414 /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
11415 addr = mips_add_offset (temp2, temp1, vcall_offset);
11417 /* Load the offset and add it to THIS. */
11418 mips_emit_move (temp1, gen_rtx_MEM (Pmode, addr));
11419 emit_insn (gen_add3_insn (this, this, temp1));
11422 /* Jump to the target function. Use a sibcall if direct jumps are
11423 allowed, otherwise load the address into a register first. */
11424 if (use_sibcall_p)
11426 insn = emit_call_insn (gen_sibcall_internal (fnaddr, const0_rtx));
11427 SIBLING_CALL_P (insn) = 1;
11429 else
11431 /* This is messy. GAS treats "la $25,foo" as part of a call
11432 sequence and may allow a global "foo" to be lazily bound.
11433 The general move patterns therefore reject this combination.
11435 In this context, lazy binding would actually be OK
11436 for TARGET_CALL_CLOBBERED_GP, but it's still wrong for
11437 TARGET_CALL_SAVED_GP; see mips_load_call_address.
11438 We must therefore load the address via a temporary
11439 register if mips_dangerous_for_la25_p.
11441 If we jump to the temporary register rather than $25, the assembler
11442 can use the move insn to fill the jump's delay slot. */
11443 if (TARGET_USE_PIC_FN_ADDR_REG
11444 && !mips_dangerous_for_la25_p (fnaddr))
11445 temp1 = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
11446 mips_load_call_address (temp1, fnaddr, true);
11448 if (TARGET_USE_PIC_FN_ADDR_REG
11449 && REGNO (temp1) != PIC_FUNCTION_ADDR_REGNUM)
11450 mips_emit_move (gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM), temp1);
11451 emit_jump_insn (gen_indirect_jump (temp1));
11454 /* Run just enough of rest_of_compilation. This sequence was
11455 "borrowed" from alpha.c. */
11456 insn = get_insns ();
11457 insn_locators_alloc ();
11458 split_all_insns_noflow ();
11459 mips16_lay_out_constants ();
11460 shorten_branches (insn);
11461 final_start_function (insn, file, 1);
11462 final (insn, file, 1);
11463 final_end_function ();
11465 /* Clean up the vars set above. Note that final_end_function resets
11466 the global pointer for us. */
11467 reload_completed = 0;
11470 /* The last argument passed to mips_set_mips16_mode, or negative if the
11471 function hasn't been called yet. */
11472 static GTY(()) int was_mips16_p = -1;
11474 /* Set up the target-dependent global state so that it matches the
11475 current function's ISA mode. */
11477 static void
11478 mips_set_mips16_mode (int mips16_p)
11480 if (mips16_p == was_mips16_p)
11481 return;
11483 /* Restore base settings of various flags. */
11484 target_flags = mips_base_target_flags;
11485 flag_delayed_branch = mips_base_delayed_branch;
11486 flag_schedule_insns = mips_base_schedule_insns;
11487 flag_reorder_blocks_and_partition = mips_base_reorder_blocks_and_partition;
11488 flag_move_loop_invariants = mips_base_move_loop_invariants;
11489 align_loops = mips_base_align_loops;
11490 align_jumps = mips_base_align_jumps;
11491 align_functions = mips_base_align_functions;
11493 if (mips16_p)
11495 /* Switch to MIPS16 mode. */
11496 target_flags |= MASK_MIPS16;
11498 /* Don't run the scheduler before reload, since it tends to
11499 increase register pressure. */
11500 flag_schedule_insns = 0;
11502 /* Don't do hot/cold partitioning. mips16_lay_out_constants expects
11503 the whole function to be in a single section. */
11504 flag_reorder_blocks_and_partition = 0;
11506 /* Don't move loop invariants, because it tends to increase
11507 register pressure. It also introduces an extra move in cases
11508 where the constant is the first operand in a two-operand binary
11509 instruction, or when it forms a register argument to a functon
11510 call. */
11511 flag_move_loop_invariants = 0;
11513 /* Silently disable -mexplicit-relocs since it doesn't apply
11514 to MIPS16 code. Even so, it would overly pedantic to warn
11515 about "-mips16 -mexplicit-relocs", especially given that
11516 we use a %gprel() operator. */
11517 target_flags &= ~MASK_EXPLICIT_RELOCS;
11519 /* Experiments suggest we get the best overall section-anchor
11520 results from using the range of an unextended LW or SW. Code
11521 that makes heavy use of byte or short accesses can do better
11522 with ranges of 0...31 and 0...63 respectively, but most code is
11523 sensitive to the range of LW and SW instead. */
11524 targetm.min_anchor_offset = 0;
11525 targetm.max_anchor_offset = 127;
11527 if (flag_pic || TARGET_ABICALLS)
11528 sorry ("MIPS16 PIC");
11530 if (TARGET_HARD_FLOAT_ABI && !TARGET_OLDABI)
11531 sorry ("hard-float MIPS16 code for ABIs other than o32 and o64");
11533 else
11535 /* Switch to normal (non-MIPS16) mode. */
11536 target_flags &= ~MASK_MIPS16;
11538 /* When using explicit relocs, we call dbr_schedule from within
11539 mips_reorg. */
11540 if (TARGET_EXPLICIT_RELOCS)
11541 flag_delayed_branch = 0;
11543 /* Provide default values for align_* for 64-bit targets. */
11544 if (TARGET_64BIT)
11546 if (align_loops == 0)
11547 align_loops = 8;
11548 if (align_jumps == 0)
11549 align_jumps = 8;
11550 if (align_functions == 0)
11551 align_functions = 8;
11554 targetm.min_anchor_offset = -32768;
11555 targetm.max_anchor_offset = 32767;
11558 /* (Re)initialize MIPS target internals for new ISA. */
11559 mips_init_relocs ();
11561 if (was_mips16_p >= 0)
11562 /* Reinitialize target-dependent state. */
11563 target_reinit ();
11565 was_mips16_p = mips16_p;
11568 /* Implement TARGET_SET_CURRENT_FUNCTION. Decide whether the current
11569 function should use the MIPS16 ISA and switch modes accordingly. */
11571 static void
11572 mips_set_current_function (tree fndecl)
11574 mips_set_mips16_mode (mips_use_mips16_mode_p (fndecl));
11577 /* Allocate a chunk of memory for per-function machine-dependent data. */
11579 static struct machine_function *
11580 mips_init_machine_status (void)
11582 return ((struct machine_function *)
11583 ggc_alloc_cleared (sizeof (struct machine_function)));
11586 /* Return the processor associated with the given ISA level, or null
11587 if the ISA isn't valid. */
11589 static const struct mips_cpu_info *
11590 mips_cpu_info_from_isa (int isa)
11592 unsigned int i;
11594 for (i = 0; i < ARRAY_SIZE (mips_cpu_info_table); i++)
11595 if (mips_cpu_info_table[i].isa == isa)
11596 return mips_cpu_info_table + i;
11598 return NULL;
11601 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
11602 with a final "000" replaced by "k". Ignore case.
11604 Note: this function is shared between GCC and GAS. */
11606 static bool
11607 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
11609 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
11610 given++, canonical++;
11612 return ((*given == 0 && *canonical == 0)
11613 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
11616 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
11617 CPU name. We've traditionally allowed a lot of variation here.
11619 Note: this function is shared between GCC and GAS. */
11621 static bool
11622 mips_matching_cpu_name_p (const char *canonical, const char *given)
11624 /* First see if the name matches exactly, or with a final "000"
11625 turned into "k". */
11626 if (mips_strict_matching_cpu_name_p (canonical, given))
11627 return true;
11629 /* If not, try comparing based on numerical designation alone.
11630 See if GIVEN is an unadorned number, or 'r' followed by a number. */
11631 if (TOLOWER (*given) == 'r')
11632 given++;
11633 if (!ISDIGIT (*given))
11634 return false;
11636 /* Skip over some well-known prefixes in the canonical name,
11637 hoping to find a number there too. */
11638 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
11639 canonical += 2;
11640 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
11641 canonical += 2;
11642 else if (TOLOWER (canonical[0]) == 'r')
11643 canonical += 1;
11645 return mips_strict_matching_cpu_name_p (canonical, given);
11648 /* Return the mips_cpu_info entry for the processor or ISA given
11649 by CPU_STRING. Return null if the string isn't recognized.
11651 A similar function exists in GAS. */
11653 static const struct mips_cpu_info *
11654 mips_parse_cpu (const char *cpu_string)
11656 unsigned int i;
11657 const char *s;
11659 /* In the past, we allowed upper-case CPU names, but it doesn't
11660 work well with the multilib machinery. */
11661 for (s = cpu_string; *s != 0; s++)
11662 if (ISUPPER (*s))
11664 warning (0, "CPU names must be lower case");
11665 break;
11668 /* 'from-abi' selects the most compatible architecture for the given
11669 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
11670 EABIs, we have to decide whether we're using the 32-bit or 64-bit
11671 version. */
11672 if (strcasecmp (cpu_string, "from-abi") == 0)
11673 return mips_cpu_info_from_isa (ABI_NEEDS_32BIT_REGS ? 1
11674 : ABI_NEEDS_64BIT_REGS ? 3
11675 : (TARGET_64BIT ? 3 : 1));
11677 /* 'default' has traditionally been a no-op. Probably not very useful. */
11678 if (strcasecmp (cpu_string, "default") == 0)
11679 return NULL;
11681 for (i = 0; i < ARRAY_SIZE (mips_cpu_info_table); i++)
11682 if (mips_matching_cpu_name_p (mips_cpu_info_table[i].name, cpu_string))
11683 return mips_cpu_info_table + i;
11685 return NULL;
11688 /* Set up globals to generate code for the ISA or processor
11689 described by INFO. */
11691 static void
11692 mips_set_architecture (const struct mips_cpu_info *info)
11694 if (info != 0)
11696 mips_arch_info = info;
11697 mips_arch = info->cpu;
11698 mips_isa = info->isa;
11702 /* Likewise for tuning. */
11704 static void
11705 mips_set_tune (const struct mips_cpu_info *info)
11707 if (info != 0)
11709 mips_tune_info = info;
11710 mips_tune = info->cpu;
11714 /* Implement TARGET_HANDLE_OPTION. */
11716 static bool
11717 mips_handle_option (size_t code, const char *arg, int value ATTRIBUTE_UNUSED)
11719 switch (code)
11721 case OPT_mabi_:
11722 if (strcmp (arg, "32") == 0)
11723 mips_abi = ABI_32;
11724 else if (strcmp (arg, "o64") == 0)
11725 mips_abi = ABI_O64;
11726 else if (strcmp (arg, "n32") == 0)
11727 mips_abi = ABI_N32;
11728 else if (strcmp (arg, "64") == 0)
11729 mips_abi = ABI_64;
11730 else if (strcmp (arg, "eabi") == 0)
11731 mips_abi = ABI_EABI;
11732 else
11733 return false;
11734 return true;
11736 case OPT_march_:
11737 case OPT_mtune_:
11738 return mips_parse_cpu (arg) != 0;
11740 case OPT_mips:
11741 mips_isa_option_info = mips_parse_cpu (ACONCAT (("mips", arg, NULL)));
11742 return mips_isa_option_info != 0;
11744 case OPT_mno_flush_func:
11745 mips_cache_flush_func = NULL;
11746 return true;
11748 case OPT_mcode_readable_:
11749 if (strcmp (arg, "yes") == 0)
11750 mips_code_readable = CODE_READABLE_YES;
11751 else if (strcmp (arg, "pcrel") == 0)
11752 mips_code_readable = CODE_READABLE_PCREL;
11753 else if (strcmp (arg, "no") == 0)
11754 mips_code_readable = CODE_READABLE_NO;
11755 else
11756 return false;
11757 return true;
11759 default:
11760 return true;
11764 /* Implement OVERRIDE_OPTIONS. */
11766 void
11767 mips_override_options (void)
11769 int i, start, regno, mode;
11771 #ifdef SUBTARGET_OVERRIDE_OPTIONS
11772 SUBTARGET_OVERRIDE_OPTIONS;
11773 #endif
11775 /* Set the small data limit. */
11776 mips_small_data_threshold = (g_switch_set
11777 ? g_switch_value
11778 : MIPS_DEFAULT_GVALUE);
11780 /* The following code determines the architecture and register size.
11781 Similar code was added to GAS 2.14 (see tc-mips.c:md_after_parse_args()).
11782 The GAS and GCC code should be kept in sync as much as possible. */
11784 if (mips_arch_string != 0)
11785 mips_set_architecture (mips_parse_cpu (mips_arch_string));
11787 if (mips_isa_option_info != 0)
11789 if (mips_arch_info == 0)
11790 mips_set_architecture (mips_isa_option_info);
11791 else if (mips_arch_info->isa != mips_isa_option_info->isa)
11792 error ("%<-%s%> conflicts with the other architecture options, "
11793 "which specify a %s processor",
11794 mips_isa_option_info->name,
11795 mips_cpu_info_from_isa (mips_arch_info->isa)->name);
11798 if (mips_arch_info == 0)
11800 #ifdef MIPS_CPU_STRING_DEFAULT
11801 mips_set_architecture (mips_parse_cpu (MIPS_CPU_STRING_DEFAULT));
11802 #else
11803 mips_set_architecture (mips_cpu_info_from_isa (MIPS_ISA_DEFAULT));
11804 #endif
11807 if (ABI_NEEDS_64BIT_REGS && !ISA_HAS_64BIT_REGS)
11808 error ("%<-march=%s%> is not compatible with the selected ABI",
11809 mips_arch_info->name);
11811 /* Optimize for mips_arch, unless -mtune selects a different processor. */
11812 if (mips_tune_string != 0)
11813 mips_set_tune (mips_parse_cpu (mips_tune_string));
11815 if (mips_tune_info == 0)
11816 mips_set_tune (mips_arch_info);
11818 if ((target_flags_explicit & MASK_64BIT) != 0)
11820 /* The user specified the size of the integer registers. Make sure
11821 it agrees with the ABI and ISA. */
11822 if (TARGET_64BIT && !ISA_HAS_64BIT_REGS)
11823 error ("%<-mgp64%> used with a 32-bit processor");
11824 else if (!TARGET_64BIT && ABI_NEEDS_64BIT_REGS)
11825 error ("%<-mgp32%> used with a 64-bit ABI");
11826 else if (TARGET_64BIT && ABI_NEEDS_32BIT_REGS)
11827 error ("%<-mgp64%> used with a 32-bit ABI");
11829 else
11831 /* Infer the integer register size from the ABI and processor.
11832 Restrict ourselves to 32-bit registers if that's all the
11833 processor has, or if the ABI cannot handle 64-bit registers. */
11834 if (ABI_NEEDS_32BIT_REGS || !ISA_HAS_64BIT_REGS)
11835 target_flags &= ~MASK_64BIT;
11836 else
11837 target_flags |= MASK_64BIT;
11840 if ((target_flags_explicit & MASK_FLOAT64) != 0)
11842 if (TARGET_SINGLE_FLOAT && TARGET_FLOAT64)
11843 error ("unsupported combination: %s", "-mfp64 -msingle-float");
11844 else if (TARGET_64BIT && TARGET_DOUBLE_FLOAT && !TARGET_FLOAT64)
11845 error ("unsupported combination: %s", "-mgp64 -mfp32 -mdouble-float");
11846 else if (!TARGET_64BIT && TARGET_FLOAT64)
11848 if (!ISA_HAS_MXHC1)
11849 error ("%<-mgp32%> and %<-mfp64%> can only be combined if"
11850 " the target supports the mfhc1 and mthc1 instructions");
11851 else if (mips_abi != ABI_32)
11852 error ("%<-mgp32%> and %<-mfp64%> can only be combined when using"
11853 " the o32 ABI");
11856 else
11858 /* -msingle-float selects 32-bit float registers. Otherwise the
11859 float registers should be the same size as the integer ones. */
11860 if (TARGET_64BIT && TARGET_DOUBLE_FLOAT)
11861 target_flags |= MASK_FLOAT64;
11862 else
11863 target_flags &= ~MASK_FLOAT64;
11866 /* End of code shared with GAS. */
11868 /* If no -mlong* option was given, infer it from the other options. */
11869 if ((target_flags_explicit & MASK_LONG64) == 0)
11871 if ((mips_abi == ABI_EABI && TARGET_64BIT) || mips_abi == ABI_64)
11872 target_flags |= MASK_LONG64;
11873 else
11874 target_flags &= ~MASK_LONG64;
11877 if (!TARGET_OLDABI)
11878 flag_pcc_struct_return = 0;
11880 /* Decide which rtx_costs structure to use. */
11881 if (optimize_size)
11882 mips_cost = &mips_rtx_cost_optimize_size;
11883 else
11884 mips_cost = &mips_rtx_cost_data[mips_tune];
11886 /* If the user hasn't specified a branch cost, use the processor's
11887 default. */
11888 if (mips_branch_cost == 0)
11889 mips_branch_cost = mips_cost->branch_cost;
11891 /* If neither -mbranch-likely nor -mno-branch-likely was given
11892 on the command line, set MASK_BRANCHLIKELY based on the target
11893 architecture and tuning flags. Annulled delay slots are a
11894 size win, so we only consider the processor-specific tuning
11895 for !optimize_size. */
11896 if ((target_flags_explicit & MASK_BRANCHLIKELY) == 0)
11898 if (ISA_HAS_BRANCHLIKELY
11899 && (optimize_size
11900 || (mips_tune_info->tune_flags & PTF_AVOID_BRANCHLIKELY) == 0))
11901 target_flags |= MASK_BRANCHLIKELY;
11902 else
11903 target_flags &= ~MASK_BRANCHLIKELY;
11905 else if (TARGET_BRANCHLIKELY && !ISA_HAS_BRANCHLIKELY)
11906 warning (0, "the %qs architecture does not support branch-likely"
11907 " instructions", mips_arch_info->name);
11909 /* The effect of -mabicalls isn't defined for the EABI. */
11910 if (mips_abi == ABI_EABI && TARGET_ABICALLS)
11912 error ("unsupported combination: %s", "-mabicalls -mabi=eabi");
11913 target_flags &= ~MASK_ABICALLS;
11916 /* MIPS16 cannot generate PIC yet. */
11917 if (TARGET_MIPS16 && (flag_pic || TARGET_ABICALLS))
11919 sorry ("MIPS16 PIC");
11920 target_flags &= ~MASK_ABICALLS;
11921 flag_pic = flag_pie = flag_shlib = 0;
11924 if (TARGET_ABICALLS)
11925 /* We need to set flag_pic for executables as well as DSOs
11926 because we may reference symbols that are not defined in
11927 the final executable. (MIPS does not use things like
11928 copy relocs, for example.)
11930 Also, there is a body of code that uses __PIC__ to distinguish
11931 between -mabicalls and -mno-abicalls code. */
11932 flag_pic = 1;
11934 /* -mvr4130-align is a "speed over size" optimization: it usually produces
11935 faster code, but at the expense of more nops. Enable it at -O3 and
11936 above. */
11937 if (optimize > 2 && (target_flags_explicit & MASK_VR4130_ALIGN) == 0)
11938 target_flags |= MASK_VR4130_ALIGN;
11940 /* Prefer a call to memcpy over inline code when optimizing for size,
11941 though see MOVE_RATIO in mips.h. */
11942 if (optimize_size && (target_flags_explicit & MASK_MEMCPY) == 0)
11943 target_flags |= MASK_MEMCPY;
11945 /* If we have a nonzero small-data limit, check that the -mgpopt
11946 setting is consistent with the other target flags. */
11947 if (mips_small_data_threshold > 0)
11949 if (!TARGET_GPOPT)
11951 if (!TARGET_MIPS16 && !TARGET_EXPLICIT_RELOCS)
11952 error ("%<-mno-gpopt%> needs %<-mexplicit-relocs%>");
11954 TARGET_LOCAL_SDATA = false;
11955 TARGET_EXTERN_SDATA = false;
11957 else
11959 if (TARGET_VXWORKS_RTP)
11960 warning (0, "cannot use small-data accesses for %qs", "-mrtp");
11962 if (TARGET_ABICALLS)
11963 warning (0, "cannot use small-data accesses for %qs",
11964 "-mabicalls");
11968 #ifdef MIPS_TFMODE_FORMAT
11969 REAL_MODE_FORMAT (TFmode) = &MIPS_TFMODE_FORMAT;
11970 #endif
11972 /* Make sure that the user didn't turn off paired single support when
11973 MIPS-3D support is requested. */
11974 if (TARGET_MIPS3D
11975 && (target_flags_explicit & MASK_PAIRED_SINGLE_FLOAT)
11976 && !TARGET_PAIRED_SINGLE_FLOAT)
11977 error ("%<-mips3d%> requires %<-mpaired-single%>");
11979 /* If TARGET_MIPS3D, enable MASK_PAIRED_SINGLE_FLOAT. */
11980 if (TARGET_MIPS3D)
11981 target_flags |= MASK_PAIRED_SINGLE_FLOAT;
11983 /* Make sure that when TARGET_PAIRED_SINGLE_FLOAT is true, TARGET_FLOAT64
11984 and TARGET_HARD_FLOAT_ABI are both true. */
11985 if (TARGET_PAIRED_SINGLE_FLOAT && !(TARGET_FLOAT64 && TARGET_HARD_FLOAT_ABI))
11986 error ("%qs must be used with %qs",
11987 TARGET_MIPS3D ? "-mips3d" : "-mpaired-single",
11988 TARGET_HARD_FLOAT_ABI ? "-mfp64" : "-mhard-float");
11990 /* Make sure that the ISA supports TARGET_PAIRED_SINGLE_FLOAT when it is
11991 enabled. */
11992 if (TARGET_PAIRED_SINGLE_FLOAT && !ISA_HAS_PAIRED_SINGLE)
11993 warning (0, "the %qs architecture does not support paired-single"
11994 " instructions", mips_arch_info->name);
11996 /* If TARGET_DSPR2, enable MASK_DSP. */
11997 if (TARGET_DSPR2)
11998 target_flags |= MASK_DSP;
12000 mips_init_print_operand_punct ();
12002 /* Set up array to map GCC register number to debug register number.
12003 Ignore the special purpose register numbers. */
12005 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
12007 mips_dbx_regno[i] = INVALID_REGNUM;
12008 if (GP_REG_P (i) || FP_REG_P (i) || ALL_COP_REG_P (i))
12009 mips_dwarf_regno[i] = i;
12010 else
12011 mips_dwarf_regno[i] = INVALID_REGNUM;
12014 start = GP_DBX_FIRST - GP_REG_FIRST;
12015 for (i = GP_REG_FIRST; i <= GP_REG_LAST; i++)
12016 mips_dbx_regno[i] = i + start;
12018 start = FP_DBX_FIRST - FP_REG_FIRST;
12019 for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)
12020 mips_dbx_regno[i] = i + start;
12022 /* Accumulator debug registers use big-endian ordering. */
12023 mips_dbx_regno[HI_REGNUM] = MD_DBX_FIRST + 0;
12024 mips_dbx_regno[LO_REGNUM] = MD_DBX_FIRST + 1;
12025 mips_dwarf_regno[HI_REGNUM] = MD_REG_FIRST + 0;
12026 mips_dwarf_regno[LO_REGNUM] = MD_REG_FIRST + 1;
12027 for (i = DSP_ACC_REG_FIRST; i <= DSP_ACC_REG_LAST; i += 2)
12029 mips_dwarf_regno[i + TARGET_LITTLE_ENDIAN] = i;
12030 mips_dwarf_regno[i + TARGET_BIG_ENDIAN] = i + 1;
12033 /* Set up mips_hard_regno_mode_ok. */
12034 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
12035 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
12036 mips_hard_regno_mode_ok[(int)mode][regno]
12037 = mips_hard_regno_mode_ok_p (regno, mode);
12039 /* Function to allocate machine-dependent function status. */
12040 init_machine_status = &mips_init_machine_status;
12042 /* Default to working around R4000 errata only if the processor
12043 was selected explicitly. */
12044 if ((target_flags_explicit & MASK_FIX_R4000) == 0
12045 && mips_matching_cpu_name_p (mips_arch_info->name, "r4000"))
12046 target_flags |= MASK_FIX_R4000;
12048 /* Default to working around R4400 errata only if the processor
12049 was selected explicitly. */
12050 if ((target_flags_explicit & MASK_FIX_R4400) == 0
12051 && mips_matching_cpu_name_p (mips_arch_info->name, "r4400"))
12052 target_flags |= MASK_FIX_R4400;
12054 /* Save base state of options. */
12055 mips_base_mips16 = TARGET_MIPS16;
12056 mips_base_target_flags = target_flags;
12057 mips_base_delayed_branch = flag_delayed_branch;
12058 mips_base_schedule_insns = flag_schedule_insns;
12059 mips_base_reorder_blocks_and_partition = flag_reorder_blocks_and_partition;
12060 mips_base_move_loop_invariants = flag_move_loop_invariants;
12061 mips_base_align_loops = align_loops;
12062 mips_base_align_jumps = align_jumps;
12063 mips_base_align_functions = align_functions;
12065 /* Now select the ISA mode. */
12066 mips_set_mips16_mode (mips_base_mips16);
12069 /* Swap the register information for registers I and I + 1, which
12070 currently have the wrong endianness. Note that the registers'
12071 fixedness and call-clobberedness might have been set on the
12072 command line. */
12074 static void
12075 mips_swap_registers (unsigned int i)
12077 int tmpi;
12078 const char *tmps;
12080 #define SWAP_INT(X, Y) (tmpi = (X), (X) = (Y), (Y) = tmpi)
12081 #define SWAP_STRING(X, Y) (tmps = (X), (X) = (Y), (Y) = tmps)
12083 SWAP_INT (fixed_regs[i], fixed_regs[i + 1]);
12084 SWAP_INT (call_used_regs[i], call_used_regs[i + 1]);
12085 SWAP_INT (call_really_used_regs[i], call_really_used_regs[i + 1]);
12086 SWAP_STRING (reg_names[i], reg_names[i + 1]);
12088 #undef SWAP_STRING
12089 #undef SWAP_INT
12092 /* Implement CONDITIONAL_REGISTER_USAGE. */
12094 void
12095 mips_conditional_register_usage (void)
12097 if (!ISA_HAS_DSP)
12099 int regno;
12101 for (regno = DSP_ACC_REG_FIRST; regno <= DSP_ACC_REG_LAST; regno++)
12102 fixed_regs[regno] = call_used_regs[regno] = 1;
12104 if (!TARGET_HARD_FLOAT)
12106 int regno;
12108 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
12109 fixed_regs[regno] = call_used_regs[regno] = 1;
12110 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++)
12111 fixed_regs[regno] = call_used_regs[regno] = 1;
12113 else if (! ISA_HAS_8CC)
12115 int regno;
12117 /* We only have a single condition-code register. We implement
12118 this by fixing all the condition-code registers and generating
12119 RTL that refers directly to ST_REG_FIRST. */
12120 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++)
12121 fixed_regs[regno] = call_used_regs[regno] = 1;
12123 /* In MIPS16 mode, we permit the $t temporary registers to be used
12124 for reload. We prohibit the unused $s registers, since they
12125 are call-saved, and saving them via a MIPS16 register would
12126 probably waste more time than just reloading the value. */
12127 if (TARGET_MIPS16)
12129 fixed_regs[18] = call_used_regs[18] = 1;
12130 fixed_regs[19] = call_used_regs[19] = 1;
12131 fixed_regs[20] = call_used_regs[20] = 1;
12132 fixed_regs[21] = call_used_regs[21] = 1;
12133 fixed_regs[22] = call_used_regs[22] = 1;
12134 fixed_regs[23] = call_used_regs[23] = 1;
12135 fixed_regs[26] = call_used_regs[26] = 1;
12136 fixed_regs[27] = call_used_regs[27] = 1;
12137 fixed_regs[30] = call_used_regs[30] = 1;
12139 /* $f20-$f23 are call-clobbered for n64. */
12140 if (mips_abi == ABI_64)
12142 int regno;
12143 for (regno = FP_REG_FIRST + 20; regno < FP_REG_FIRST + 24; regno++)
12144 call_really_used_regs[regno] = call_used_regs[regno] = 1;
12146 /* Odd registers in the range $f21-$f31 (inclusive) are call-clobbered
12147 for n32. */
12148 if (mips_abi == ABI_N32)
12150 int regno;
12151 for (regno = FP_REG_FIRST + 21; regno <= FP_REG_FIRST + 31; regno+=2)
12152 call_really_used_regs[regno] = call_used_regs[regno] = 1;
12154 /* Make sure that double-register accumulator values are correctly
12155 ordered for the current endianness. */
12156 if (TARGET_LITTLE_ENDIAN)
12158 unsigned int regno;
12160 mips_swap_registers (MD_REG_FIRST);
12161 for (regno = DSP_ACC_REG_FIRST; regno <= DSP_ACC_REG_LAST; regno += 2)
12162 mips_swap_registers (regno);
12166 /* When generating MIPS16 code, we want to allocate $24 (T_REG) before
12167 other registers for instructions for which it is possible. This
12168 encourages the compiler to use CMP in cases where an XOR would
12169 require some register shuffling. */
12171 void
12172 mips_order_regs_for_local_alloc (void)
12174 int i;
12176 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
12177 reg_alloc_order[i] = i;
12179 if (TARGET_MIPS16)
12181 /* It really doesn't matter where we put register 0, since it is
12182 a fixed register anyhow. */
12183 reg_alloc_order[0] = 24;
12184 reg_alloc_order[24] = 0;
12188 /* Initialize the GCC target structure. */
12189 #undef TARGET_ASM_ALIGNED_HI_OP
12190 #define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
12191 #undef TARGET_ASM_ALIGNED_SI_OP
12192 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
12193 #undef TARGET_ASM_ALIGNED_DI_OP
12194 #define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"
12196 #undef TARGET_ASM_FUNCTION_PROLOGUE
12197 #define TARGET_ASM_FUNCTION_PROLOGUE mips_output_function_prologue
12198 #undef TARGET_ASM_FUNCTION_EPILOGUE
12199 #define TARGET_ASM_FUNCTION_EPILOGUE mips_output_function_epilogue
12200 #undef TARGET_ASM_SELECT_RTX_SECTION
12201 #define TARGET_ASM_SELECT_RTX_SECTION mips_select_rtx_section
12202 #undef TARGET_ASM_FUNCTION_RODATA_SECTION
12203 #define TARGET_ASM_FUNCTION_RODATA_SECTION mips_function_rodata_section
12205 #undef TARGET_SCHED_INIT
12206 #define TARGET_SCHED_INIT mips_sched_init
12207 #undef TARGET_SCHED_REORDER
12208 #define TARGET_SCHED_REORDER mips_sched_reorder
12209 #undef TARGET_SCHED_REORDER2
12210 #define TARGET_SCHED_REORDER2 mips_sched_reorder
12211 #undef TARGET_SCHED_VARIABLE_ISSUE
12212 #define TARGET_SCHED_VARIABLE_ISSUE mips_variable_issue
12213 #undef TARGET_SCHED_ADJUST_COST
12214 #define TARGET_SCHED_ADJUST_COST mips_adjust_cost
12215 #undef TARGET_SCHED_ISSUE_RATE
12216 #define TARGET_SCHED_ISSUE_RATE mips_issue_rate
12217 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
12218 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
12219 mips_multipass_dfa_lookahead
12221 #undef TARGET_DEFAULT_TARGET_FLAGS
12222 #define TARGET_DEFAULT_TARGET_FLAGS \
12223 (TARGET_DEFAULT \
12224 | TARGET_CPU_DEFAULT \
12225 | TARGET_ENDIAN_DEFAULT \
12226 | TARGET_FP_EXCEPTIONS_DEFAULT \
12227 | MASK_CHECK_ZERO_DIV \
12228 | MASK_FUSED_MADD)
12229 #undef TARGET_HANDLE_OPTION
12230 #define TARGET_HANDLE_OPTION mips_handle_option
12232 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
12233 #define TARGET_FUNCTION_OK_FOR_SIBCALL mips_function_ok_for_sibcall
12235 #undef TARGET_INSERT_ATTRIBUTES
12236 #define TARGET_INSERT_ATTRIBUTES mips_insert_attributes
12237 #undef TARGET_MERGE_DECL_ATTRIBUTES
12238 #define TARGET_MERGE_DECL_ATTRIBUTES mips_merge_decl_attributes
12239 #undef TARGET_SET_CURRENT_FUNCTION
12240 #define TARGET_SET_CURRENT_FUNCTION mips_set_current_function
12242 #undef TARGET_VALID_POINTER_MODE
12243 #define TARGET_VALID_POINTER_MODE mips_valid_pointer_mode
12244 #undef TARGET_RTX_COSTS
12245 #define TARGET_RTX_COSTS mips_rtx_costs
12246 #undef TARGET_ADDRESS_COST
12247 #define TARGET_ADDRESS_COST mips_address_cost
12249 #undef TARGET_IN_SMALL_DATA_P
12250 #define TARGET_IN_SMALL_DATA_P mips_in_small_data_p
12252 #undef TARGET_MACHINE_DEPENDENT_REORG
12253 #define TARGET_MACHINE_DEPENDENT_REORG mips_reorg
12255 #undef TARGET_ASM_FILE_START
12256 #define TARGET_ASM_FILE_START mips_file_start
12257 #undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
12258 #define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
12260 #undef TARGET_INIT_LIBFUNCS
12261 #define TARGET_INIT_LIBFUNCS mips_init_libfuncs
12263 #undef TARGET_BUILD_BUILTIN_VA_LIST
12264 #define TARGET_BUILD_BUILTIN_VA_LIST mips_build_builtin_va_list
12265 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
12266 #define TARGET_GIMPLIFY_VA_ARG_EXPR mips_gimplify_va_arg_expr
12268 #undef TARGET_PROMOTE_FUNCTION_ARGS
12269 #define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_const_tree_true
12270 #undef TARGET_PROMOTE_FUNCTION_RETURN
12271 #define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_const_tree_true
12272 #undef TARGET_PROMOTE_PROTOTYPES
12273 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
12275 #undef TARGET_RETURN_IN_MEMORY
12276 #define TARGET_RETURN_IN_MEMORY mips_return_in_memory
12277 #undef TARGET_RETURN_IN_MSB
12278 #define TARGET_RETURN_IN_MSB mips_return_in_msb
12280 #undef TARGET_ASM_OUTPUT_MI_THUNK
12281 #define TARGET_ASM_OUTPUT_MI_THUNK mips_output_mi_thunk
12282 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
12283 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
12285 #undef TARGET_SETUP_INCOMING_VARARGS
12286 #define TARGET_SETUP_INCOMING_VARARGS mips_setup_incoming_varargs
12287 #undef TARGET_STRICT_ARGUMENT_NAMING
12288 #define TARGET_STRICT_ARGUMENT_NAMING mips_strict_argument_naming
12289 #undef TARGET_MUST_PASS_IN_STACK
12290 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
12291 #undef TARGET_PASS_BY_REFERENCE
12292 #define TARGET_PASS_BY_REFERENCE mips_pass_by_reference
12293 #undef TARGET_CALLEE_COPIES
12294 #define TARGET_CALLEE_COPIES mips_callee_copies
12295 #undef TARGET_ARG_PARTIAL_BYTES
12296 #define TARGET_ARG_PARTIAL_BYTES mips_arg_partial_bytes
12298 #undef TARGET_MODE_REP_EXTENDED
12299 #define TARGET_MODE_REP_EXTENDED mips_mode_rep_extended
12301 #undef TARGET_VECTOR_MODE_SUPPORTED_P
12302 #define TARGET_VECTOR_MODE_SUPPORTED_P mips_vector_mode_supported_p
12304 #undef TARGET_SCALAR_MODE_SUPPORTED_P
12305 #define TARGET_SCALAR_MODE_SUPPORTED_P mips_scalar_mode_supported_p
12307 #undef TARGET_INIT_BUILTINS
12308 #define TARGET_INIT_BUILTINS mips_init_builtins
12309 #undef TARGET_EXPAND_BUILTIN
12310 #define TARGET_EXPAND_BUILTIN mips_expand_builtin
12312 #undef TARGET_HAVE_TLS
12313 #define TARGET_HAVE_TLS HAVE_AS_TLS
12315 #undef TARGET_CANNOT_FORCE_CONST_MEM
12316 #define TARGET_CANNOT_FORCE_CONST_MEM mips_cannot_force_const_mem
12318 #undef TARGET_ENCODE_SECTION_INFO
12319 #define TARGET_ENCODE_SECTION_INFO mips_encode_section_info
12321 #undef TARGET_ATTRIBUTE_TABLE
12322 #define TARGET_ATTRIBUTE_TABLE mips_attribute_table
12323 /* All our function attributes are related to how out-of-line copies should
12324 be compiled or called. They don't in themselves prevent inlining. */
12325 #undef TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P
12326 #define TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P hook_bool_const_tree_true
12328 #undef TARGET_EXTRA_LIVE_ON_ENTRY
12329 #define TARGET_EXTRA_LIVE_ON_ENTRY mips_extra_live_on_entry
12331 #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
12332 #define TARGET_USE_BLOCKS_FOR_CONSTANT_P mips_use_blocks_for_constant_p
12333 #undef TARGET_USE_ANCHORS_FOR_SYMBOL_P
12334 #define TARGET_USE_ANCHORS_FOR_SYMBOL_P mips_use_anchors_for_symbol_p
12336 #undef TARGET_COMP_TYPE_ATTRIBUTES
12337 #define TARGET_COMP_TYPE_ATTRIBUTES mips_comp_type_attributes
12339 #ifdef HAVE_AS_DTPRELWORD
12340 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
12341 #define TARGET_ASM_OUTPUT_DWARF_DTPREL mips_output_dwarf_dtprel
12342 #endif
12343 #undef TARGET_DWARF_REGISTER_SPAN
12344 #define TARGET_DWARF_REGISTER_SPAN mips_dwarf_register_span
12346 struct gcc_target targetm = TARGET_INITIALIZER;
12348 #include "gt-mips.h"