1 ! { dg-do run { xfail spu-*-* } }
2 ! { dg-add-options ieee }
7 ! XFAILed for SPU targets since we don't have an accurate library
8 ! implementation of the single-precision Bessel functions.
10 ! Run-time tests for transformations BESSEL_JN
13 real,parameter :: values(*) = [0.0, 0.5, 1.0, 0.9, 1.8,2.0,3.0,4.0,4.25,8.0,34.53, 475.78]
14 real,parameter :: myeps(size(values
)) = epsilon(0.0) &
15 * [2, 7, 5, 6, 9, 12, 12, 7, 7, 8, 98, 15 ]
16 ! The following is sufficient for me - the values above are a bit
18 ! * [0, 5, 3, 4, 6, 7, 7, 5, 5, 6, 66, 4 ]
19 integer,parameter :: mymax(size(values
)) = &
20 [100, 17, 23, 21, 27, 28, 32, 35, 31, 41, 47, 37 ]
21 integer, parameter :: Nmax
= 100
22 real :: rec(0:Nmax
), lib(0:Nmax
)
25 do i
= 1, ubound(values
,dim
=1)
26 call compare(mymax(i
), values(i
), myeps(i
))
31 subroutine compare(mymax
, X
, myeps
)
33 integer :: i
, nit
, mymax
36 rec(0:mymax
) = BESSEL_JN(0, mymax
, X
)
37 lib(0:mymax
) = [ (BESSEL_JN(i
, X
), i
=0,mymax
) ]
39 !print *, 'YN for X = ', X, ' -- Epsilon = ',epsilon(x)
41 ! print '(i2,2e17.9,e12.2,f18.10,2l3)', i, rec(i), lib(i), &
42 ! rec(i)-lib(i), ((rec(i)-lib(i))/rec(i))/epsilon(x), &
43 ! rec(i) == lib(i), abs((rec(i)-lib(i))/rec(i)) < myeps
44 if (rec(i
) == lib(i
)) CYCLE
45 if (abs((rec(i
)-lib(i
))/rec(i
)) > myeps
) &