* config/sparc/driver-sparc.c (cpu_names): Add SPARC-T5 entry.
[official-gcc.git] / gcc / ada / sem_ch8.adb
blobf765bb8dda310a4a61ea04534147b4bb1d5f568f
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 8 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Disp; use Exp_Disp;
32 with Exp_Tss; use Exp_Tss;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Ghost; use Ghost;
36 with Impunit; use Impunit;
37 with Lib; use Lib;
38 with Lib.Load; use Lib.Load;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Namet.Sp; use Namet.Sp;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Output; use Output;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch4; use Sem_Ch4;
54 with Sem_Ch6; use Sem_Ch6;
55 with Sem_Ch12; use Sem_Ch12;
56 with Sem_Ch13; use Sem_Ch13;
57 with Sem_Dim; use Sem_Dim;
58 with Sem_Disp; use Sem_Disp;
59 with Sem_Dist; use Sem_Dist;
60 with Sem_Eval; use Sem_Eval;
61 with Sem_Res; use Sem_Res;
62 with Sem_Util; use Sem_Util;
63 with Sem_Type; use Sem_Type;
64 with Stand; use Stand;
65 with Sinfo; use Sinfo;
66 with Sinfo.CN; use Sinfo.CN;
67 with Snames; use Snames;
68 with Style; use Style;
69 with Table;
70 with Tbuild; use Tbuild;
71 with Uintp; use Uintp;
73 package body Sem_Ch8 is
75 ------------------------------------
76 -- Visibility and Name Resolution --
77 ------------------------------------
79 -- This package handles name resolution and the collection of possible
80 -- interpretations for overloaded names, prior to overload resolution.
82 -- Name resolution is the process that establishes a mapping between source
83 -- identifiers and the entities they denote at each point in the program.
84 -- Each entity is represented by a defining occurrence. Each identifier
85 -- that denotes an entity points to the corresponding defining occurrence.
86 -- This is the entity of the applied occurrence. Each occurrence holds
87 -- an index into the names table, where source identifiers are stored.
89 -- Each entry in the names table for an identifier or designator uses the
90 -- Info pointer to hold a link to the currently visible entity that has
91 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
92 -- in package Sem_Util). The visibility is initialized at the beginning of
93 -- semantic processing to make entities in package Standard immediately
94 -- visible. The visibility table is used in a more subtle way when
95 -- compiling subunits (see below).
97 -- Entities that have the same name (i.e. homonyms) are chained. In the
98 -- case of overloaded entities, this chain holds all the possible meanings
99 -- of a given identifier. The process of overload resolution uses type
100 -- information to select from this chain the unique meaning of a given
101 -- identifier.
103 -- Entities are also chained in their scope, through the Next_Entity link.
104 -- As a consequence, the name space is organized as a sparse matrix, where
105 -- each row corresponds to a scope, and each column to a source identifier.
106 -- Open scopes, that is to say scopes currently being compiled, have their
107 -- corresponding rows of entities in order, innermost scope first.
109 -- The scopes of packages that are mentioned in context clauses appear in
110 -- no particular order, interspersed among open scopes. This is because
111 -- in the course of analyzing the context of a compilation, a package
112 -- declaration is first an open scope, and subsequently an element of the
113 -- context. If subunits or child units are present, a parent unit may
114 -- appear under various guises at various times in the compilation.
116 -- When the compilation of the innermost scope is complete, the entities
117 -- defined therein are no longer visible. If the scope is not a package
118 -- declaration, these entities are never visible subsequently, and can be
119 -- removed from visibility chains. If the scope is a package declaration,
120 -- its visible declarations may still be accessible. Therefore the entities
121 -- defined in such a scope are left on the visibility chains, and only
122 -- their visibility (immediately visibility or potential use-visibility)
123 -- is affected.
125 -- The ordering of homonyms on their chain does not necessarily follow
126 -- the order of their corresponding scopes on the scope stack. For
127 -- example, if package P and the enclosing scope both contain entities
128 -- named E, then when compiling the package body the chain for E will
129 -- hold the global entity first, and the local one (corresponding to
130 -- the current inner scope) next. As a result, name resolution routines
131 -- do not assume any relative ordering of the homonym chains, either
132 -- for scope nesting or to order of appearance of context clauses.
134 -- When compiling a child unit, entities in the parent scope are always
135 -- immediately visible. When compiling the body of a child unit, private
136 -- entities in the parent must also be made immediately visible. There
137 -- are separate routines to make the visible and private declarations
138 -- visible at various times (see package Sem_Ch7).
140 -- +--------+ +-----+
141 -- | In use |-------->| EU1 |-------------------------->
142 -- +--------+ +-----+
143 -- | |
144 -- +--------+ +-----+ +-----+
145 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
146 -- +--------+ +-----+ +-----+
147 -- | |
148 -- +---------+ | +-----+
149 -- | with'ed |------------------------------>| EW2 |--->
150 -- +---------+ | +-----+
151 -- | |
152 -- +--------+ +-----+ +-----+
153 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
154 -- +--------+ +-----+ +-----+
155 -- | |
156 -- +--------+ +-----+ +-----+
157 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
158 -- +--------+ +-----+ +-----+
159 -- ^ | |
160 -- | | |
161 -- | +---------+ | |
162 -- | | with'ed |----------------------------------------->
163 -- | +---------+ | |
164 -- | | |
165 -- Scope stack | |
166 -- (innermost first) | |
167 -- +----------------------------+
168 -- Names table => | Id1 | | | | Id2 |
169 -- +----------------------------+
171 -- Name resolution must deal with several syntactic forms: simple names,
172 -- qualified names, indexed names, and various forms of calls.
174 -- Each identifier points to an entry in the names table. The resolution
175 -- of a simple name consists in traversing the homonym chain, starting
176 -- from the names table. If an entry is immediately visible, it is the one
177 -- designated by the identifier. If only potentially use-visible entities
178 -- are on the chain, we must verify that they do not hide each other. If
179 -- the entity we find is overloadable, we collect all other overloadable
180 -- entities on the chain as long as they are not hidden.
182 -- To resolve expanded names, we must find the entity at the intersection
183 -- of the entity chain for the scope (the prefix) and the homonym chain
184 -- for the selector. In general, homonym chains will be much shorter than
185 -- entity chains, so it is preferable to start from the names table as
186 -- well. If the entity found is overloadable, we must collect all other
187 -- interpretations that are defined in the scope denoted by the prefix.
189 -- For records, protected types, and tasks, their local entities are
190 -- removed from visibility chains on exit from the corresponding scope.
191 -- From the outside, these entities are always accessed by selected
192 -- notation, and the entity chain for the record type, protected type,
193 -- etc. is traversed sequentially in order to find the designated entity.
195 -- The discriminants of a type and the operations of a protected type or
196 -- task are unchained on exit from the first view of the type, (such as
197 -- a private or incomplete type declaration, or a protected type speci-
198 -- fication) and re-chained when compiling the second view.
200 -- In the case of operators, we do not make operators on derived types
201 -- explicit. As a result, the notation P."+" may denote either a user-
202 -- defined function with name "+", or else an implicit declaration of the
203 -- operator "+" in package P. The resolution of expanded names always
204 -- tries to resolve an operator name as such an implicitly defined entity,
205 -- in addition to looking for explicit declarations.
207 -- All forms of names that denote entities (simple names, expanded names,
208 -- character literals in some cases) have a Entity attribute, which
209 -- identifies the entity denoted by the name.
211 ---------------------
212 -- The Scope Stack --
213 ---------------------
215 -- The Scope stack keeps track of the scopes currently been compiled.
216 -- Every entity that contains declarations (including records) is placed
217 -- on the scope stack while it is being processed, and removed at the end.
218 -- Whenever a non-package scope is exited, the entities defined therein
219 -- are removed from the visibility table, so that entities in outer scopes
220 -- become visible (see previous description). On entry to Sem, the scope
221 -- stack only contains the package Standard. As usual, subunits complicate
222 -- this picture ever so slightly.
224 -- The Rtsfind mechanism can force a call to Semantics while another
225 -- compilation is in progress. The unit retrieved by Rtsfind must be
226 -- compiled in its own context, and has no access to the visibility of
227 -- the unit currently being compiled. The procedures Save_Scope_Stack and
228 -- Restore_Scope_Stack make entities in current open scopes invisible
229 -- before compiling the retrieved unit, and restore the compilation
230 -- environment afterwards.
232 ------------------------
233 -- Compiling subunits --
234 ------------------------
236 -- Subunits must be compiled in the environment of the corresponding stub,
237 -- that is to say with the same visibility into the parent (and its
238 -- context) that is available at the point of the stub declaration, but
239 -- with the additional visibility provided by the context clause of the
240 -- subunit itself. As a result, compilation of a subunit forces compilation
241 -- of the parent (see description in lib-). At the point of the stub
242 -- declaration, Analyze is called recursively to compile the proper body of
243 -- the subunit, but without reinitializing the names table, nor the scope
244 -- stack (i.e. standard is not pushed on the stack). In this fashion the
245 -- context of the subunit is added to the context of the parent, and the
246 -- subunit is compiled in the correct environment. Note that in the course
247 -- of processing the context of a subunit, Standard will appear twice on
248 -- the scope stack: once for the parent of the subunit, and once for the
249 -- unit in the context clause being compiled. However, the two sets of
250 -- entities are not linked by homonym chains, so that the compilation of
251 -- any context unit happens in a fresh visibility environment.
253 -------------------------------
254 -- Processing of USE Clauses --
255 -------------------------------
257 -- Every defining occurrence has a flag indicating if it is potentially use
258 -- visible. Resolution of simple names examines this flag. The processing
259 -- of use clauses consists in setting this flag on all visible entities
260 -- defined in the corresponding package. On exit from the scope of the use
261 -- clause, the corresponding flag must be reset. However, a package may
262 -- appear in several nested use clauses (pathological but legal, alas)
263 -- which forces us to use a slightly more involved scheme:
265 -- a) The defining occurrence for a package holds a flag -In_Use- to
266 -- indicate that it is currently in the scope of a use clause. If a
267 -- redundant use clause is encountered, then the corresponding occurrence
268 -- of the package name is flagged -Redundant_Use-.
270 -- b) On exit from a scope, the use clauses in its declarative part are
271 -- scanned. The visibility flag is reset in all entities declared in
272 -- package named in a use clause, as long as the package is not flagged
273 -- as being in a redundant use clause (in which case the outer use
274 -- clause is still in effect, and the direct visibility of its entities
275 -- must be retained).
277 -- Note that entities are not removed from their homonym chains on exit
278 -- from the package specification. A subsequent use clause does not need
279 -- to rechain the visible entities, but only to establish their direct
280 -- visibility.
282 -----------------------------------
283 -- Handling private declarations --
284 -----------------------------------
286 -- The principle that each entity has a single defining occurrence clashes
287 -- with the presence of two separate definitions for private types: the
288 -- first is the private type declaration, and second is the full type
289 -- declaration. It is important that all references to the type point to
290 -- the same defining occurrence, namely the first one. To enforce the two
291 -- separate views of the entity, the corresponding information is swapped
292 -- between the two declarations. Outside of the package, the defining
293 -- occurrence only contains the private declaration information, while in
294 -- the private part and the body of the package the defining occurrence
295 -- contains the full declaration. To simplify the swap, the defining
296 -- occurrence that currently holds the private declaration points to the
297 -- full declaration. During semantic processing the defining occurrence
298 -- also points to a list of private dependents, that is to say access types
299 -- or composite types whose designated types or component types are
300 -- subtypes or derived types of the private type in question. After the
301 -- full declaration has been seen, the private dependents are updated to
302 -- indicate that they have full definitions.
304 ------------------------------------
305 -- Handling of Undefined Messages --
306 ------------------------------------
308 -- In normal mode, only the first use of an undefined identifier generates
309 -- a message. The table Urefs is used to record error messages that have
310 -- been issued so that second and subsequent ones do not generate further
311 -- messages. However, the second reference causes text to be added to the
312 -- original undefined message noting "(more references follow)". The
313 -- full error list option (-gnatf) forces messages to be generated for
314 -- every reference and disconnects the use of this table.
316 type Uref_Entry is record
317 Node : Node_Id;
318 -- Node for identifier for which original message was posted. The
319 -- Chars field of this identifier is used to detect later references
320 -- to the same identifier.
322 Err : Error_Msg_Id;
323 -- Records error message Id of original undefined message. Reset to
324 -- No_Error_Msg after the second occurrence, where it is used to add
325 -- text to the original message as described above.
327 Nvis : Boolean;
328 -- Set if the message is not visible rather than undefined
330 Loc : Source_Ptr;
331 -- Records location of error message. Used to make sure that we do
332 -- not consider a, b : undefined as two separate instances, which
333 -- would otherwise happen, since the parser converts this sequence
334 -- to a : undefined; b : undefined.
336 end record;
338 package Urefs is new Table.Table (
339 Table_Component_Type => Uref_Entry,
340 Table_Index_Type => Nat,
341 Table_Low_Bound => 1,
342 Table_Initial => 10,
343 Table_Increment => 100,
344 Table_Name => "Urefs");
346 Candidate_Renaming : Entity_Id;
347 -- Holds a candidate interpretation that appears in a subprogram renaming
348 -- declaration and does not match the given specification, but matches at
349 -- least on the first formal. Allows better error message when given
350 -- specification omits defaulted parameters, a common error.
352 -----------------------
353 -- Local Subprograms --
354 -----------------------
356 procedure Analyze_Generic_Renaming
357 (N : Node_Id;
358 K : Entity_Kind);
359 -- Common processing for all three kinds of generic renaming declarations.
360 -- Enter new name and indicate that it renames the generic unit.
362 procedure Analyze_Renamed_Character
363 (N : Node_Id;
364 New_S : Entity_Id;
365 Is_Body : Boolean);
366 -- Renamed entity is given by a character literal, which must belong
367 -- to the return type of the new entity. Is_Body indicates whether the
368 -- declaration is a renaming_as_body. If the original declaration has
369 -- already been frozen (because of an intervening body, e.g.) the body of
370 -- the function must be built now. The same applies to the following
371 -- various renaming procedures.
373 procedure Analyze_Renamed_Dereference
374 (N : Node_Id;
375 New_S : Entity_Id;
376 Is_Body : Boolean);
377 -- Renamed entity is given by an explicit dereference. Prefix must be a
378 -- conformant access_to_subprogram type.
380 procedure Analyze_Renamed_Entry
381 (N : Node_Id;
382 New_S : Entity_Id;
383 Is_Body : Boolean);
384 -- If the renamed entity in a subprogram renaming is an entry or protected
385 -- subprogram, build a body for the new entity whose only statement is a
386 -- call to the renamed entity.
388 procedure Analyze_Renamed_Family_Member
389 (N : Node_Id;
390 New_S : Entity_Id;
391 Is_Body : Boolean);
392 -- Used when the renamed entity is an indexed component. The prefix must
393 -- denote an entry family.
395 procedure Analyze_Renamed_Primitive_Operation
396 (N : Node_Id;
397 New_S : Entity_Id;
398 Is_Body : Boolean);
399 -- If the renamed entity in a subprogram renaming is a primitive operation
400 -- or a class-wide operation in prefix form, save the target object,
401 -- which must be added to the list of actuals in any subsequent call.
402 -- The renaming operation is intrinsic because the compiler must in
403 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
405 function Applicable_Use (Pack_Name : Node_Id) return Boolean;
406 -- Common code to Use_One_Package and Set_Use, to determine whether use
407 -- clause must be processed. Pack_Name is an entity name that references
408 -- the package in question.
410 procedure Attribute_Renaming (N : Node_Id);
411 -- Analyze renaming of attribute as subprogram. The renaming declaration N
412 -- is rewritten as a subprogram body that returns the attribute reference
413 -- applied to the formals of the function.
415 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id);
416 -- Set Entity, with style check if need be. For a discriminant reference,
417 -- replace by the corresponding discriminal, i.e. the parameter of the
418 -- initialization procedure that corresponds to the discriminant.
420 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id);
421 -- A renaming_as_body may occur after the entity of the original decla-
422 -- ration has been frozen. In that case, the body of the new entity must
423 -- be built now, because the usual mechanism of building the renamed
424 -- body at the point of freezing will not work. Subp is the subprogram
425 -- for which N provides the Renaming_As_Body.
427 procedure Check_In_Previous_With_Clause
428 (N : Node_Id;
429 Nam : Node_Id);
430 -- N is a use_package clause and Nam the package name, or N is a use_type
431 -- clause and Nam is the prefix of the type name. In either case, verify
432 -- that the package is visible at that point in the context: either it
433 -- appears in a previous with_clause, or because it is a fully qualified
434 -- name and the root ancestor appears in a previous with_clause.
436 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id);
437 -- Verify that the entity in a renaming declaration that is a library unit
438 -- is itself a library unit and not a nested unit or subunit. Also check
439 -- that if the renaming is a child unit of a generic parent, then the
440 -- renamed unit must also be a child unit of that parent. Finally, verify
441 -- that a renamed generic unit is not an implicit child declared within
442 -- an instance of the parent.
444 procedure Chain_Use_Clause (N : Node_Id);
445 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
446 -- the proper scope table entry. This is usually the current scope, but it
447 -- will be an inner scope when installing the use clauses of the private
448 -- declarations of a parent unit prior to compiling the private part of a
449 -- child unit. This chain is traversed when installing/removing use clauses
450 -- when compiling a subunit or instantiating a generic body on the fly,
451 -- when it is necessary to save and restore full environments.
453 function Enclosing_Instance return Entity_Id;
454 -- In an instance nested within another one, several semantic checks are
455 -- unnecessary because the legality of the nested instance has been checked
456 -- in the enclosing generic unit. This applies in particular to legality
457 -- checks on actuals for formal subprograms of the inner instance, which
458 -- are checked as subprogram renamings, and may be complicated by confusion
459 -- in private/full views. This function returns the instance enclosing the
460 -- current one if there is such, else it returns Empty.
462 -- If the renaming determines the entity for the default of a formal
463 -- subprogram nested within another instance, choose the innermost
464 -- candidate. This is because if the formal has a box, and we are within
465 -- an enclosing instance where some candidate interpretations are local
466 -- to this enclosing instance, we know that the default was properly
467 -- resolved when analyzing the generic, so we prefer the local
468 -- candidates to those that are external. This is not always the case
469 -- but is a reasonable heuristic on the use of nested generics. The
470 -- proper solution requires a full renaming model.
472 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean;
473 -- Find a type derived from Character or Wide_Character in the prefix of N.
474 -- Used to resolved qualified names whose selector is a character literal.
476 function Has_Private_With (E : Entity_Id) return Boolean;
477 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
478 -- private with on E.
480 procedure Find_Expanded_Name (N : Node_Id);
481 -- The input is a selected component known to be an expanded name. Verify
482 -- legality of selector given the scope denoted by prefix, and change node
483 -- N into a expanded name with a properly set Entity field.
485 function Find_Renamed_Entity
486 (N : Node_Id;
487 Nam : Node_Id;
488 New_S : Entity_Id;
489 Is_Actual : Boolean := False) return Entity_Id;
490 -- Find the renamed entity that corresponds to the given parameter profile
491 -- in a subprogram renaming declaration. The renamed entity may be an
492 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
493 -- indicates that the renaming is the one generated for an actual subpro-
494 -- gram in an instance, for which special visibility checks apply.
496 function Has_Implicit_Operator (N : Node_Id) return Boolean;
497 -- N is an expanded name whose selector is an operator name (e.g. P."+").
498 -- declarative part contains an implicit declaration of an operator if it
499 -- has a declaration of a type to which one of the predefined operators
500 -- apply. The existence of this routine is an implementation artifact. A
501 -- more straightforward but more space-consuming choice would be to make
502 -- all inherited operators explicit in the symbol table.
504 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id);
505 -- A subprogram defined by a renaming declaration inherits the parameter
506 -- profile of the renamed entity. The subtypes given in the subprogram
507 -- specification are discarded and replaced with those of the renamed
508 -- subprogram, which are then used to recheck the default values.
510 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean;
511 -- Prefix is appropriate for record if it is of a record type, or an access
512 -- to such.
514 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean;
515 -- True if it is of a task type, a protected type, or else an access to one
516 -- of these types.
518 procedure Note_Redundant_Use (Clause : Node_Id);
519 -- Mark the name in a use clause as redundant if the corresponding entity
520 -- is already use-visible. Emit a warning if the use clause comes from
521 -- source and the proper warnings are enabled.
523 procedure Premature_Usage (N : Node_Id);
524 -- Diagnose usage of an entity before it is visible
526 procedure Use_One_Package (P : Entity_Id; N : Node_Id);
527 -- Make visible entities declared in package P potentially use-visible
528 -- in the current context. Also used in the analysis of subunits, when
529 -- re-installing use clauses of parent units. N is the use_clause that
530 -- names P (and possibly other packages).
532 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False);
533 -- Id is the subtype mark from a use type clause. This procedure makes
534 -- the primitive operators of the type potentially use-visible. The
535 -- boolean flag Installed indicates that the clause is being reinstalled
536 -- after previous analysis, and primitive operations are already chained
537 -- on the Used_Operations list of the clause.
539 procedure Write_Info;
540 -- Write debugging information on entities declared in current scope
542 --------------------------------
543 -- Analyze_Exception_Renaming --
544 --------------------------------
546 -- The language only allows a single identifier, but the tree holds an
547 -- identifier list. The parser has already issued an error message if
548 -- there is more than one element in the list.
550 procedure Analyze_Exception_Renaming (N : Node_Id) is
551 Id : constant Entity_Id := Defining_Entity (N);
552 Nam : constant Node_Id := Name (N);
554 begin
555 Check_SPARK_05_Restriction ("exception renaming is not allowed", N);
557 Enter_Name (Id);
558 Analyze (Nam);
560 Set_Ekind (Id, E_Exception);
561 Set_Etype (Id, Standard_Exception_Type);
562 Set_Is_Pure (Id, Is_Pure (Current_Scope));
564 if Is_Entity_Name (Nam)
565 and then Present (Entity (Nam))
566 and then Ekind (Entity (Nam)) = E_Exception
567 then
568 if Present (Renamed_Object (Entity (Nam))) then
569 Set_Renamed_Object (Id, Renamed_Object (Entity (Nam)));
570 else
571 Set_Renamed_Object (Id, Entity (Nam));
572 end if;
574 -- The exception renaming declaration may become Ghost if it renames
575 -- a Ghost entity.
577 Mark_Ghost_Renaming (N, Entity (Nam));
578 else
579 Error_Msg_N ("invalid exception name in renaming", Nam);
580 end if;
582 -- Implementation-defined aspect specifications can appear in a renaming
583 -- declaration, but not language-defined ones. The call to procedure
584 -- Analyze_Aspect_Specifications will take care of this error check.
586 if Has_Aspects (N) then
587 Analyze_Aspect_Specifications (N, Id);
588 end if;
589 end Analyze_Exception_Renaming;
591 ---------------------------
592 -- Analyze_Expanded_Name --
593 ---------------------------
595 procedure Analyze_Expanded_Name (N : Node_Id) is
596 begin
597 -- If the entity pointer is already set, this is an internal node, or a
598 -- node that is analyzed more than once, after a tree modification. In
599 -- such a case there is no resolution to perform, just set the type. In
600 -- either case, start by analyzing the prefix.
602 Analyze (Prefix (N));
604 if Present (Entity (N)) then
605 if Is_Type (Entity (N)) then
606 Set_Etype (N, Entity (N));
607 else
608 Set_Etype (N, Etype (Entity (N)));
609 end if;
611 else
612 Find_Expanded_Name (N);
613 end if;
615 -- In either case, propagate dimension of entity to expanded name
617 Analyze_Dimension (N);
618 end Analyze_Expanded_Name;
620 ---------------------------------------
621 -- Analyze_Generic_Function_Renaming --
622 ---------------------------------------
624 procedure Analyze_Generic_Function_Renaming (N : Node_Id) is
625 begin
626 Analyze_Generic_Renaming (N, E_Generic_Function);
627 end Analyze_Generic_Function_Renaming;
629 --------------------------------------
630 -- Analyze_Generic_Package_Renaming --
631 --------------------------------------
633 procedure Analyze_Generic_Package_Renaming (N : Node_Id) is
634 begin
635 -- Test for the Text_IO special unit case here, since we may be renaming
636 -- one of the subpackages of Text_IO, then join common routine.
638 Check_Text_IO_Special_Unit (Name (N));
640 Analyze_Generic_Renaming (N, E_Generic_Package);
641 end Analyze_Generic_Package_Renaming;
643 ----------------------------------------
644 -- Analyze_Generic_Procedure_Renaming --
645 ----------------------------------------
647 procedure Analyze_Generic_Procedure_Renaming (N : Node_Id) is
648 begin
649 Analyze_Generic_Renaming (N, E_Generic_Procedure);
650 end Analyze_Generic_Procedure_Renaming;
652 ------------------------------
653 -- Analyze_Generic_Renaming --
654 ------------------------------
656 procedure Analyze_Generic_Renaming
657 (N : Node_Id;
658 K : Entity_Kind)
660 New_P : constant Entity_Id := Defining_Entity (N);
661 Inst : Boolean := False;
662 Old_P : Entity_Id;
664 begin
665 if Name (N) = Error then
666 return;
667 end if;
669 Check_SPARK_05_Restriction ("generic renaming is not allowed", N);
671 Generate_Definition (New_P);
673 if Current_Scope /= Standard_Standard then
674 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
675 end if;
677 if Nkind (Name (N)) = N_Selected_Component then
678 Check_Generic_Child_Unit (Name (N), Inst);
679 else
680 Analyze (Name (N));
681 end if;
683 if not Is_Entity_Name (Name (N)) then
684 Error_Msg_N ("expect entity name in renaming declaration", Name (N));
685 Old_P := Any_Id;
686 else
687 Old_P := Entity (Name (N));
688 end if;
690 Enter_Name (New_P);
691 Set_Ekind (New_P, K);
693 if Etype (Old_P) = Any_Type then
694 null;
696 elsif Ekind (Old_P) /= K then
697 Error_Msg_N ("invalid generic unit name", Name (N));
699 else
700 if Present (Renamed_Object (Old_P)) then
701 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
702 else
703 Set_Renamed_Object (New_P, Old_P);
704 end if;
706 -- The generic renaming declaration may become Ghost if it renames a
707 -- Ghost entity.
709 Mark_Ghost_Renaming (N, Old_P);
711 Set_Is_Pure (New_P, Is_Pure (Old_P));
712 Set_Is_Preelaborated (New_P, Is_Preelaborated (Old_P));
714 Set_Etype (New_P, Etype (Old_P));
715 Set_Has_Completion (New_P);
717 if In_Open_Scopes (Old_P) then
718 Error_Msg_N ("within its scope, generic denotes its instance", N);
719 end if;
721 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
722 -- renamings and subsequent instantiations of Unchecked_Conversion.
724 if Ekind_In (Old_P, E_Generic_Function, E_Generic_Procedure) then
725 Set_Is_Intrinsic_Subprogram
726 (New_P, Is_Intrinsic_Subprogram (Old_P));
727 end if;
729 Check_Library_Unit_Renaming (N, Old_P);
730 end if;
732 -- Implementation-defined aspect specifications can appear in a renaming
733 -- declaration, but not language-defined ones. The call to procedure
734 -- Analyze_Aspect_Specifications will take care of this error check.
736 if Has_Aspects (N) then
737 Analyze_Aspect_Specifications (N, New_P);
738 end if;
739 end Analyze_Generic_Renaming;
741 -----------------------------
742 -- Analyze_Object_Renaming --
743 -----------------------------
745 procedure Analyze_Object_Renaming (N : Node_Id) is
746 Id : constant Entity_Id := Defining_Identifier (N);
747 Loc : constant Source_Ptr := Sloc (N);
748 Nam : constant Node_Id := Name (N);
749 Dec : Node_Id;
750 T : Entity_Id;
751 T2 : Entity_Id;
753 procedure Check_Constrained_Object;
754 -- If the nominal type is unconstrained but the renamed object is
755 -- constrained, as can happen with renaming an explicit dereference or
756 -- a function return, build a constrained subtype from the object. If
757 -- the renaming is for a formal in an accept statement, the analysis
758 -- has already established its actual subtype. This is only relevant
759 -- if the renamed object is an explicit dereference.
761 ------------------------------
762 -- Check_Constrained_Object --
763 ------------------------------
765 procedure Check_Constrained_Object is
766 Typ : constant Entity_Id := Etype (Nam);
767 Subt : Entity_Id;
769 begin
770 if Nkind_In (Nam, N_Function_Call, N_Explicit_Dereference)
771 and then Is_Composite_Type (Etype (Nam))
772 and then not Is_Constrained (Etype (Nam))
773 and then not Has_Unknown_Discriminants (Etype (Nam))
774 and then Expander_Active
775 then
776 -- If Actual_Subtype is already set, nothing to do
778 if Ekind_In (Id, E_Variable, E_Constant)
779 and then Present (Actual_Subtype (Id))
780 then
781 null;
783 -- A renaming of an unchecked union has no actual subtype
785 elsif Is_Unchecked_Union (Typ) then
786 null;
788 -- If a record is limited its size is invariant. This is the case
789 -- in particular with record types with an access discirminant
790 -- that are used in iterators. This is an optimization, but it
791 -- also prevents typing anomalies when the prefix is further
792 -- expanded. Limited types with discriminants are included.
794 elsif Is_Limited_Record (Typ)
795 or else
796 (Ekind (Typ) = E_Limited_Private_Type
797 and then Has_Discriminants (Typ)
798 and then Is_Access_Type (Etype (First_Discriminant (Typ))))
799 then
800 null;
802 else
803 Subt := Make_Temporary (Loc, 'T');
804 Remove_Side_Effects (Nam);
805 Insert_Action (N,
806 Make_Subtype_Declaration (Loc,
807 Defining_Identifier => Subt,
808 Subtype_Indication =>
809 Make_Subtype_From_Expr (Nam, Typ)));
810 Rewrite (Subtype_Mark (N), New_Occurrence_Of (Subt, Loc));
811 Set_Etype (Nam, Subt);
813 -- Freeze subtype at once, to prevent order of elaboration
814 -- issues in the backend. The renamed object exists, so its
815 -- type is already frozen in any case.
817 Freeze_Before (N, Subt);
818 end if;
819 end if;
820 end Check_Constrained_Object;
822 -- Start of processing for Analyze_Object_Renaming
824 begin
825 if Nam = Error then
826 return;
827 end if;
829 Check_SPARK_05_Restriction ("object renaming is not allowed", N);
831 Set_Is_Pure (Id, Is_Pure (Current_Scope));
832 Enter_Name (Id);
834 -- The renaming of a component that depends on a discriminant requires
835 -- an actual subtype, because in subsequent use of the object Gigi will
836 -- be unable to locate the actual bounds. This explicit step is required
837 -- when the renaming is generated in removing side effects of an
838 -- already-analyzed expression.
840 if Nkind (Nam) = N_Selected_Component and then Analyzed (Nam) then
842 -- The object renaming declaration may become Ghost if it renames a
843 -- Ghost entity.
845 if Is_Entity_Name (Nam) then
846 Mark_Ghost_Renaming (N, Entity (Nam));
847 end if;
849 T := Etype (Nam);
850 Dec := Build_Actual_Subtype_Of_Component (Etype (Nam), Nam);
852 if Present (Dec) then
853 Insert_Action (N, Dec);
854 T := Defining_Identifier (Dec);
855 Set_Etype (Nam, T);
856 end if;
858 -- Complete analysis of the subtype mark in any case, for ASIS use
860 if Present (Subtype_Mark (N)) then
861 Find_Type (Subtype_Mark (N));
862 end if;
864 elsif Present (Subtype_Mark (N)) then
865 Find_Type (Subtype_Mark (N));
866 T := Entity (Subtype_Mark (N));
867 Analyze (Nam);
869 -- The object renaming declaration may become Ghost if it renames a
870 -- Ghost entity.
872 if Is_Entity_Name (Nam) then
873 Mark_Ghost_Renaming (N, Entity (Nam));
874 end if;
876 -- Reject renamings of conversions unless the type is tagged, or
877 -- the conversion is implicit (which can occur for cases of anonymous
878 -- access types in Ada 2012).
880 if Nkind (Nam) = N_Type_Conversion
881 and then Comes_From_Source (Nam)
882 and then not Is_Tagged_Type (T)
883 then
884 Error_Msg_N
885 ("renaming of conversion only allowed for tagged types", Nam);
886 end if;
888 Resolve (Nam, T);
890 -- If the renamed object is a function call of a limited type,
891 -- the expansion of the renaming is complicated by the presence
892 -- of various temporaries and subtypes that capture constraints
893 -- of the renamed object. Rewrite node as an object declaration,
894 -- whose expansion is simpler. Given that the object is limited
895 -- there is no copy involved and no performance hit.
897 if Nkind (Nam) = N_Function_Call
898 and then Is_Limited_View (Etype (Nam))
899 and then not Is_Constrained (Etype (Nam))
900 and then Comes_From_Source (N)
901 then
902 Set_Etype (Id, T);
903 Set_Ekind (Id, E_Constant);
904 Rewrite (N,
905 Make_Object_Declaration (Loc,
906 Defining_Identifier => Id,
907 Constant_Present => True,
908 Object_Definition => New_Occurrence_Of (Etype (Nam), Loc),
909 Expression => Relocate_Node (Nam)));
910 return;
911 end if;
913 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
914 -- when renaming declaration has a named access type. The Ada 2012
915 -- coverage rules allow an anonymous access type in the context of
916 -- an expected named general access type, but the renaming rules
917 -- require the types to be the same. (An exception is when the type
918 -- of the renaming is also an anonymous access type, which can only
919 -- happen due to a renaming created by the expander.)
921 if Nkind (Nam) = N_Type_Conversion
922 and then not Comes_From_Source (Nam)
923 and then Ekind (Etype (Expression (Nam))) = E_Anonymous_Access_Type
924 and then Ekind (T) /= E_Anonymous_Access_Type
925 then
926 Wrong_Type (Expression (Nam), T); -- Should we give better error???
927 end if;
929 -- Check that a class-wide object is not being renamed as an object
930 -- of a specific type. The test for access types is needed to exclude
931 -- cases where the renamed object is a dynamically tagged access
932 -- result, such as occurs in certain expansions.
934 if Is_Tagged_Type (T) then
935 Check_Dynamically_Tagged_Expression
936 (Expr => Nam,
937 Typ => T,
938 Related_Nod => N);
939 end if;
941 -- Ada 2005 (AI-230/AI-254): Access renaming
943 else pragma Assert (Present (Access_Definition (N)));
944 T :=
945 Access_Definition
946 (Related_Nod => N,
947 N => Access_Definition (N));
949 Analyze (Nam);
951 -- The object renaming declaration may become Ghost if it renames a
952 -- Ghost entity.
954 if Is_Entity_Name (Nam) then
955 Mark_Ghost_Renaming (N, Entity (Nam));
956 end if;
958 -- Ada 2005 AI05-105: if the declaration has an anonymous access
959 -- type, the renamed object must also have an anonymous type, and
960 -- this is a name resolution rule. This was implicit in the last part
961 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
962 -- recent AI.
964 if not Is_Overloaded (Nam) then
965 if Ekind (Etype (Nam)) /= Ekind (T) then
966 Error_Msg_N
967 ("expect anonymous access type in object renaming", N);
968 end if;
970 else
971 declare
972 I : Interp_Index;
973 It : Interp;
974 Typ : Entity_Id := Empty;
975 Seen : Boolean := False;
977 begin
978 Get_First_Interp (Nam, I, It);
979 while Present (It.Typ) loop
981 -- Renaming is ambiguous if more than one candidate
982 -- interpretation is type-conformant with the context.
984 if Ekind (It.Typ) = Ekind (T) then
985 if Ekind (T) = E_Anonymous_Access_Subprogram_Type
986 and then
987 Type_Conformant
988 (Designated_Type (T), Designated_Type (It.Typ))
989 then
990 if not Seen then
991 Seen := True;
992 else
993 Error_Msg_N
994 ("ambiguous expression in renaming", Nam);
995 end if;
997 elsif Ekind (T) = E_Anonymous_Access_Type
998 and then
999 Covers (Designated_Type (T), Designated_Type (It.Typ))
1000 then
1001 if not Seen then
1002 Seen := True;
1003 else
1004 Error_Msg_N
1005 ("ambiguous expression in renaming", Nam);
1006 end if;
1007 end if;
1009 if Covers (T, It.Typ) then
1010 Typ := It.Typ;
1011 Set_Etype (Nam, Typ);
1012 Set_Is_Overloaded (Nam, False);
1013 end if;
1014 end if;
1016 Get_Next_Interp (I, It);
1017 end loop;
1018 end;
1019 end if;
1021 Resolve (Nam, T);
1023 -- Do not perform the legality checks below when the resolution of
1024 -- the renaming name failed because the associated type is Any_Type.
1026 if Etype (Nam) = Any_Type then
1027 null;
1029 -- Ada 2005 (AI-231): In the case where the type is defined by an
1030 -- access_definition, the renamed entity shall be of an access-to-
1031 -- constant type if and only if the access_definition defines an
1032 -- access-to-constant type. ARM 8.5.1(4)
1034 elsif Constant_Present (Access_Definition (N))
1035 and then not Is_Access_Constant (Etype (Nam))
1036 then
1037 Error_Msg_N
1038 ("(Ada 2005): the renamed object is not access-to-constant "
1039 & "(RM 8.5.1(6))", N);
1041 elsif not Constant_Present (Access_Definition (N))
1042 and then Is_Access_Constant (Etype (Nam))
1043 then
1044 Error_Msg_N
1045 ("(Ada 2005): the renamed object is not access-to-variable "
1046 & "(RM 8.5.1(6))", N);
1047 end if;
1049 if Is_Access_Subprogram_Type (Etype (Nam)) then
1050 Check_Subtype_Conformant
1051 (Designated_Type (T), Designated_Type (Etype (Nam)));
1053 elsif not Subtypes_Statically_Match
1054 (Designated_Type (T),
1055 Available_View (Designated_Type (Etype (Nam))))
1056 then
1057 Error_Msg_N
1058 ("subtype of renamed object does not statically match", N);
1059 end if;
1060 end if;
1062 -- Special processing for renaming function return object. Some errors
1063 -- and warnings are produced only for calls that come from source.
1065 if Nkind (Nam) = N_Function_Call then
1066 case Ada_Version is
1068 -- Usage is illegal in Ada 83, but renamings are also introduced
1069 -- during expansion, and error does not apply to those.
1071 when Ada_83 =>
1072 if Comes_From_Source (N) then
1073 Error_Msg_N
1074 ("(Ada 83) cannot rename function return object", Nam);
1075 end if;
1077 -- In Ada 95, warn for odd case of renaming parameterless function
1078 -- call if this is not a limited type (where this is useful).
1080 when others =>
1081 if Warn_On_Object_Renames_Function
1082 and then No (Parameter_Associations (Nam))
1083 and then not Is_Limited_Type (Etype (Nam))
1084 and then Comes_From_Source (Nam)
1085 then
1086 Error_Msg_N
1087 ("renaming function result object is suspicious?R?", Nam);
1088 Error_Msg_NE
1089 ("\function & will be called only once?R?", Nam,
1090 Entity (Name (Nam)));
1091 Error_Msg_N -- CODEFIX
1092 ("\suggest using an initialized constant object "
1093 & "instead?R?", Nam);
1094 end if;
1095 end case;
1096 end if;
1098 Check_Constrained_Object;
1100 -- An object renaming requires an exact match of the type. Class-wide
1101 -- matching is not allowed.
1103 if Is_Class_Wide_Type (T)
1104 and then Base_Type (Etype (Nam)) /= Base_Type (T)
1105 then
1106 Wrong_Type (Nam, T);
1107 end if;
1109 T2 := Etype (Nam);
1111 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1113 if Nkind (Nam) = N_Explicit_Dereference
1114 and then Ekind (Etype (T2)) = E_Incomplete_Type
1115 then
1116 Error_Msg_NE ("invalid use of incomplete type&", Id, T2);
1117 return;
1119 elsif Ekind (Etype (T)) = E_Incomplete_Type then
1120 Error_Msg_NE ("invalid use of incomplete type&", Id, T);
1121 return;
1122 end if;
1124 -- Ada 2005 (AI-327)
1126 if Ada_Version >= Ada_2005
1127 and then Nkind (Nam) = N_Attribute_Reference
1128 and then Attribute_Name (Nam) = Name_Priority
1129 then
1130 null;
1132 elsif Ada_Version >= Ada_2005 and then Nkind (Nam) in N_Has_Entity then
1133 declare
1134 Nam_Decl : Node_Id;
1135 Nam_Ent : Entity_Id;
1137 begin
1138 if Nkind (Nam) = N_Attribute_Reference then
1139 Nam_Ent := Entity (Prefix (Nam));
1140 else
1141 Nam_Ent := Entity (Nam);
1142 end if;
1144 Nam_Decl := Parent (Nam_Ent);
1146 if Has_Null_Exclusion (N)
1147 and then not Has_Null_Exclusion (Nam_Decl)
1148 then
1149 -- Ada 2005 (AI-423): If the object name denotes a generic
1150 -- formal object of a generic unit G, and the object renaming
1151 -- declaration occurs within the body of G or within the body
1152 -- of a generic unit declared within the declarative region
1153 -- of G, then the declaration of the formal object of G must
1154 -- have a null exclusion or a null-excluding subtype.
1156 if Is_Formal_Object (Nam_Ent)
1157 and then In_Generic_Scope (Id)
1158 then
1159 if not Can_Never_Be_Null (Etype (Nam_Ent)) then
1160 Error_Msg_N
1161 ("renamed formal does not exclude `NULL` "
1162 & "(RM 8.5.1(4.6/2))", N);
1164 elsif In_Package_Body (Scope (Id)) then
1165 Error_Msg_N
1166 ("formal object does not have a null exclusion"
1167 & "(RM 8.5.1(4.6/2))", N);
1168 end if;
1170 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1171 -- shall exclude null.
1173 elsif not Can_Never_Be_Null (Etype (Nam_Ent)) then
1174 Error_Msg_N
1175 ("renamed object does not exclude `NULL` "
1176 & "(RM 8.5.1(4.6/2))", N);
1178 -- An instance is illegal if it contains a renaming that
1179 -- excludes null, and the actual does not. The renaming
1180 -- declaration has already indicated that the declaration
1181 -- of the renamed actual in the instance will raise
1182 -- constraint_error.
1184 elsif Nkind (Nam_Decl) = N_Object_Declaration
1185 and then In_Instance
1186 and then
1187 Present (Corresponding_Generic_Association (Nam_Decl))
1188 and then Nkind (Expression (Nam_Decl)) =
1189 N_Raise_Constraint_Error
1190 then
1191 Error_Msg_N
1192 ("renamed actual does not exclude `NULL` "
1193 & "(RM 8.5.1(4.6/2))", N);
1195 -- Finally, if there is a null exclusion, the subtype mark
1196 -- must not be null-excluding.
1198 elsif No (Access_Definition (N))
1199 and then Can_Never_Be_Null (T)
1200 then
1201 Error_Msg_NE
1202 ("`NOT NULL` not allowed (& already excludes null)",
1203 N, T);
1205 end if;
1207 elsif Can_Never_Be_Null (T)
1208 and then not Can_Never_Be_Null (Etype (Nam_Ent))
1209 then
1210 Error_Msg_N
1211 ("renamed object does not exclude `NULL` "
1212 & "(RM 8.5.1(4.6/2))", N);
1214 elsif Has_Null_Exclusion (N)
1215 and then No (Access_Definition (N))
1216 and then Can_Never_Be_Null (T)
1217 then
1218 Error_Msg_NE
1219 ("`NOT NULL` not allowed (& already excludes null)", N, T);
1220 end if;
1221 end;
1222 end if;
1224 -- Set the Ekind of the entity, unless it has been set already, as is
1225 -- the case for the iteration object over a container with no variable
1226 -- indexing. In that case it's been marked as a constant, and we do not
1227 -- want to change it to a variable.
1229 if Ekind (Id) /= E_Constant then
1230 Set_Ekind (Id, E_Variable);
1231 end if;
1233 -- Initialize the object size and alignment. Note that we used to call
1234 -- Init_Size_Align here, but that's wrong for objects which have only
1235 -- an Esize, not an RM_Size field.
1237 Init_Object_Size_Align (Id);
1239 if T = Any_Type or else Etype (Nam) = Any_Type then
1240 return;
1242 -- Verify that the renamed entity is an object or a function call. It
1243 -- may have been rewritten in several ways.
1245 elsif Is_Object_Reference (Nam) then
1246 if Comes_From_Source (N) then
1247 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
1248 Error_Msg_N
1249 ("illegal renaming of discriminant-dependent component", Nam);
1250 end if;
1252 -- If the renaming comes from source and the renamed object is a
1253 -- dereference, then mark the prefix as needing debug information,
1254 -- since it might have been rewritten hence internally generated
1255 -- and Debug_Renaming_Declaration will link the renaming to it.
1257 if Nkind (Nam) = N_Explicit_Dereference
1258 and then Is_Entity_Name (Prefix (Nam))
1259 then
1260 Set_Debug_Info_Needed (Entity (Prefix (Nam)));
1261 end if;
1262 end if;
1264 -- A static function call may have been folded into a literal
1266 elsif Nkind (Original_Node (Nam)) = N_Function_Call
1268 -- When expansion is disabled, attribute reference is not rewritten
1269 -- as function call. Otherwise it may be rewritten as a conversion,
1270 -- so check original node.
1272 or else (Nkind (Original_Node (Nam)) = N_Attribute_Reference
1273 and then Is_Function_Attribute_Name
1274 (Attribute_Name (Original_Node (Nam))))
1276 -- Weird but legal, equivalent to renaming a function call. Illegal
1277 -- if the literal is the result of constant-folding an attribute
1278 -- reference that is not a function.
1280 or else (Is_Entity_Name (Nam)
1281 and then Ekind (Entity (Nam)) = E_Enumeration_Literal
1282 and then
1283 Nkind (Original_Node (Nam)) /= N_Attribute_Reference)
1285 or else (Nkind (Nam) = N_Type_Conversion
1286 and then Is_Tagged_Type (Entity (Subtype_Mark (Nam))))
1287 then
1288 null;
1290 elsif Nkind (Nam) = N_Type_Conversion then
1291 Error_Msg_N
1292 ("renaming of conversion only allowed for tagged types", Nam);
1294 -- Ada 2005 (AI-327)
1296 elsif Ada_Version >= Ada_2005
1297 and then Nkind (Nam) = N_Attribute_Reference
1298 and then Attribute_Name (Nam) = Name_Priority
1299 then
1300 null;
1302 -- Allow internally generated x'Ref resulting in N_Reference node
1304 elsif Nkind (Nam) = N_Reference then
1305 null;
1307 else
1308 Error_Msg_N ("expect object name in renaming", Nam);
1309 end if;
1311 Set_Etype (Id, T2);
1313 if not Is_Variable (Nam) then
1314 Set_Ekind (Id, E_Constant);
1315 Set_Never_Set_In_Source (Id, True);
1316 Set_Is_True_Constant (Id, True);
1317 end if;
1319 -- The entity of the renaming declaration needs to reflect whether the
1320 -- renamed object is volatile. Is_Volatile is set if the renamed object
1321 -- is volatile in the RM legality sense.
1323 Set_Is_Volatile (Id, Is_Volatile_Object (Nam));
1325 -- Also copy settings of Atomic/Independent/Volatile_Full_Access
1327 if Is_Entity_Name (Nam) then
1328 Set_Is_Atomic (Id, Is_Atomic (Entity (Nam)));
1329 Set_Is_Independent (Id, Is_Independent (Entity (Nam)));
1330 Set_Is_Volatile_Full_Access (Id,
1331 Is_Volatile_Full_Access (Entity (Nam)));
1332 end if;
1334 -- Treat as volatile if we just set the Volatile flag
1336 if Is_Volatile (Id)
1338 -- Or if we are renaming an entity which was marked this way
1340 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1342 or else (Is_Entity_Name (Nam)
1343 and then Treat_As_Volatile (Entity (Nam)))
1344 then
1345 Set_Treat_As_Volatile (Id, True);
1346 end if;
1348 -- Now make the link to the renamed object
1350 Set_Renamed_Object (Id, Nam);
1352 -- Implementation-defined aspect specifications can appear in a renaming
1353 -- declaration, but not language-defined ones. The call to procedure
1354 -- Analyze_Aspect_Specifications will take care of this error check.
1356 if Has_Aspects (N) then
1357 Analyze_Aspect_Specifications (N, Id);
1358 end if;
1360 -- Deal with dimensions
1362 Analyze_Dimension (N);
1363 end Analyze_Object_Renaming;
1365 ------------------------------
1366 -- Analyze_Package_Renaming --
1367 ------------------------------
1369 procedure Analyze_Package_Renaming (N : Node_Id) is
1370 New_P : constant Entity_Id := Defining_Entity (N);
1371 Old_P : Entity_Id;
1372 Spec : Node_Id;
1374 begin
1375 if Name (N) = Error then
1376 return;
1377 end if;
1379 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1381 Check_Text_IO_Special_Unit (Name (N));
1383 if Current_Scope /= Standard_Standard then
1384 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
1385 end if;
1387 Enter_Name (New_P);
1388 Analyze (Name (N));
1390 if Is_Entity_Name (Name (N)) then
1391 Old_P := Entity (Name (N));
1392 else
1393 Old_P := Any_Id;
1394 end if;
1396 if Etype (Old_P) = Any_Type then
1397 Error_Msg_N ("expect package name in renaming", Name (N));
1399 elsif Ekind (Old_P) /= E_Package
1400 and then not (Ekind (Old_P) = E_Generic_Package
1401 and then In_Open_Scopes (Old_P))
1402 then
1403 if Ekind (Old_P) = E_Generic_Package then
1404 Error_Msg_N
1405 ("generic package cannot be renamed as a package", Name (N));
1406 else
1407 Error_Msg_Sloc := Sloc (Old_P);
1408 Error_Msg_NE
1409 ("expect package name in renaming, found& declared#",
1410 Name (N), Old_P);
1411 end if;
1413 -- Set basic attributes to minimize cascaded errors
1415 Set_Ekind (New_P, E_Package);
1416 Set_Etype (New_P, Standard_Void_Type);
1418 -- Here for OK package renaming
1420 else
1421 -- Entities in the old package are accessible through the renaming
1422 -- entity. The simplest implementation is to have both packages share
1423 -- the entity list.
1425 Set_Ekind (New_P, E_Package);
1426 Set_Etype (New_P, Standard_Void_Type);
1428 if Present (Renamed_Object (Old_P)) then
1429 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
1430 else
1431 Set_Renamed_Object (New_P, Old_P);
1432 end if;
1434 -- The package renaming declaration may become Ghost if it renames a
1435 -- Ghost entity.
1437 Mark_Ghost_Renaming (N, Old_P);
1439 Set_Has_Completion (New_P);
1440 Set_First_Entity (New_P, First_Entity (Old_P));
1441 Set_Last_Entity (New_P, Last_Entity (Old_P));
1442 Set_First_Private_Entity (New_P, First_Private_Entity (Old_P));
1443 Check_Library_Unit_Renaming (N, Old_P);
1444 Generate_Reference (Old_P, Name (N));
1446 -- If the renaming is in the visible part of a package, then we set
1447 -- Renamed_In_Spec for the renamed package, to prevent giving
1448 -- warnings about no entities referenced. Such a warning would be
1449 -- overenthusiastic, since clients can see entities in the renamed
1450 -- package via the visible package renaming.
1452 declare
1453 Ent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
1454 begin
1455 if Ekind (Ent) = E_Package
1456 and then not In_Private_Part (Ent)
1457 and then In_Extended_Main_Source_Unit (N)
1458 and then Ekind (Old_P) = E_Package
1459 then
1460 Set_Renamed_In_Spec (Old_P);
1461 end if;
1462 end;
1464 -- If this is the renaming declaration of a package instantiation
1465 -- within itself, it is the declaration that ends the list of actuals
1466 -- for the instantiation. At this point, the subtypes that rename
1467 -- the actuals are flagged as generic, to avoid spurious ambiguities
1468 -- if the actuals for two distinct formals happen to coincide. If
1469 -- the actual is a private type, the subtype has a private completion
1470 -- that is flagged in the same fashion.
1472 -- Resolution is identical to what is was in the original generic.
1473 -- On exit from the generic instance, these are turned into regular
1474 -- subtypes again, so they are compatible with types in their class.
1476 if not Is_Generic_Instance (Old_P) then
1477 return;
1478 else
1479 Spec := Specification (Unit_Declaration_Node (Old_P));
1480 end if;
1482 if Nkind (Spec) = N_Package_Specification
1483 and then Present (Generic_Parent (Spec))
1484 and then Old_P = Current_Scope
1485 and then Chars (New_P) = Chars (Generic_Parent (Spec))
1486 then
1487 declare
1488 E : Entity_Id;
1490 begin
1491 E := First_Entity (Old_P);
1492 while Present (E) and then E /= New_P loop
1493 if Is_Type (E)
1494 and then Nkind (Parent (E)) = N_Subtype_Declaration
1495 then
1496 Set_Is_Generic_Actual_Type (E);
1498 if Is_Private_Type (E)
1499 and then Present (Full_View (E))
1500 then
1501 Set_Is_Generic_Actual_Type (Full_View (E));
1502 end if;
1503 end if;
1505 Next_Entity (E);
1506 end loop;
1507 end;
1508 end if;
1509 end if;
1511 -- Implementation-defined aspect specifications can appear in a renaming
1512 -- declaration, but not language-defined ones. The call to procedure
1513 -- Analyze_Aspect_Specifications will take care of this error check.
1515 if Has_Aspects (N) then
1516 Analyze_Aspect_Specifications (N, New_P);
1517 end if;
1518 end Analyze_Package_Renaming;
1520 -------------------------------
1521 -- Analyze_Renamed_Character --
1522 -------------------------------
1524 procedure Analyze_Renamed_Character
1525 (N : Node_Id;
1526 New_S : Entity_Id;
1527 Is_Body : Boolean)
1529 C : constant Node_Id := Name (N);
1531 begin
1532 if Ekind (New_S) = E_Function then
1533 Resolve (C, Etype (New_S));
1535 if Is_Body then
1536 Check_Frozen_Renaming (N, New_S);
1537 end if;
1539 else
1540 Error_Msg_N ("character literal can only be renamed as function", N);
1541 end if;
1542 end Analyze_Renamed_Character;
1544 ---------------------------------
1545 -- Analyze_Renamed_Dereference --
1546 ---------------------------------
1548 procedure Analyze_Renamed_Dereference
1549 (N : Node_Id;
1550 New_S : Entity_Id;
1551 Is_Body : Boolean)
1553 Nam : constant Node_Id := Name (N);
1554 P : constant Node_Id := Prefix (Nam);
1555 Typ : Entity_Id;
1556 Ind : Interp_Index;
1557 It : Interp;
1559 begin
1560 if not Is_Overloaded (P) then
1561 if Ekind (Etype (Nam)) /= E_Subprogram_Type
1562 or else not Type_Conformant (Etype (Nam), New_S)
1563 then
1564 Error_Msg_N ("designated type does not match specification", P);
1565 else
1566 Resolve (P);
1567 end if;
1569 return;
1571 else
1572 Typ := Any_Type;
1573 Get_First_Interp (Nam, Ind, It);
1575 while Present (It.Nam) loop
1577 if Ekind (It.Nam) = E_Subprogram_Type
1578 and then Type_Conformant (It.Nam, New_S)
1579 then
1580 if Typ /= Any_Id then
1581 Error_Msg_N ("ambiguous renaming", P);
1582 return;
1583 else
1584 Typ := It.Nam;
1585 end if;
1586 end if;
1588 Get_Next_Interp (Ind, It);
1589 end loop;
1591 if Typ = Any_Type then
1592 Error_Msg_N ("designated type does not match specification", P);
1593 else
1594 Resolve (N, Typ);
1596 if Is_Body then
1597 Check_Frozen_Renaming (N, New_S);
1598 end if;
1599 end if;
1600 end if;
1601 end Analyze_Renamed_Dereference;
1603 ---------------------------
1604 -- Analyze_Renamed_Entry --
1605 ---------------------------
1607 procedure Analyze_Renamed_Entry
1608 (N : Node_Id;
1609 New_S : Entity_Id;
1610 Is_Body : Boolean)
1612 Nam : constant Node_Id := Name (N);
1613 Sel : constant Node_Id := Selector_Name (Nam);
1614 Is_Actual : constant Boolean := Present (Corresponding_Formal_Spec (N));
1615 Old_S : Entity_Id;
1617 begin
1618 if Entity (Sel) = Any_Id then
1620 -- Selector is undefined on prefix. Error emitted already
1622 Set_Has_Completion (New_S);
1623 return;
1624 end if;
1626 -- Otherwise find renamed entity and build body of New_S as a call to it
1628 Old_S := Find_Renamed_Entity (N, Selector_Name (Nam), New_S);
1630 if Old_S = Any_Id then
1631 Error_Msg_N (" no subprogram or entry matches specification", N);
1632 else
1633 if Is_Body then
1634 Check_Subtype_Conformant (New_S, Old_S, N);
1635 Generate_Reference (New_S, Defining_Entity (N), 'b');
1636 Style.Check_Identifier (Defining_Entity (N), New_S);
1638 else
1639 -- Only mode conformance required for a renaming_as_declaration
1641 Check_Mode_Conformant (New_S, Old_S, N);
1642 end if;
1644 Inherit_Renamed_Profile (New_S, Old_S);
1646 -- The prefix can be an arbitrary expression that yields a task or
1647 -- protected object, so it must be resolved.
1649 Resolve (Prefix (Nam), Scope (Old_S));
1650 end if;
1652 Set_Convention (New_S, Convention (Old_S));
1653 Set_Has_Completion (New_S, Inside_A_Generic);
1655 -- AI05-0225: If the renamed entity is a procedure or entry of a
1656 -- protected object, the target object must be a variable.
1658 if Ekind (Scope (Old_S)) in Protected_Kind
1659 and then Ekind (New_S) = E_Procedure
1660 and then not Is_Variable (Prefix (Nam))
1661 then
1662 if Is_Actual then
1663 Error_Msg_N
1664 ("target object of protected operation used as actual for "
1665 & "formal procedure must be a variable", Nam);
1666 else
1667 Error_Msg_N
1668 ("target object of protected operation renamed as procedure, "
1669 & "must be a variable", Nam);
1670 end if;
1671 end if;
1673 if Is_Body then
1674 Check_Frozen_Renaming (N, New_S);
1675 end if;
1676 end Analyze_Renamed_Entry;
1678 -----------------------------------
1679 -- Analyze_Renamed_Family_Member --
1680 -----------------------------------
1682 procedure Analyze_Renamed_Family_Member
1683 (N : Node_Id;
1684 New_S : Entity_Id;
1685 Is_Body : Boolean)
1687 Nam : constant Node_Id := Name (N);
1688 P : constant Node_Id := Prefix (Nam);
1689 Old_S : Entity_Id;
1691 begin
1692 if (Is_Entity_Name (P) and then Ekind (Entity (P)) = E_Entry_Family)
1693 or else (Nkind (P) = N_Selected_Component
1694 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1695 then
1696 if Is_Entity_Name (P) then
1697 Old_S := Entity (P);
1698 else
1699 Old_S := Entity (Selector_Name (P));
1700 end if;
1702 if not Entity_Matches_Spec (Old_S, New_S) then
1703 Error_Msg_N ("entry family does not match specification", N);
1705 elsif Is_Body then
1706 Check_Subtype_Conformant (New_S, Old_S, N);
1707 Generate_Reference (New_S, Defining_Entity (N), 'b');
1708 Style.Check_Identifier (Defining_Entity (N), New_S);
1709 end if;
1711 else
1712 Error_Msg_N ("no entry family matches specification", N);
1713 end if;
1715 Set_Has_Completion (New_S, Inside_A_Generic);
1717 if Is_Body then
1718 Check_Frozen_Renaming (N, New_S);
1719 end if;
1720 end Analyze_Renamed_Family_Member;
1722 -----------------------------------------
1723 -- Analyze_Renamed_Primitive_Operation --
1724 -----------------------------------------
1726 procedure Analyze_Renamed_Primitive_Operation
1727 (N : Node_Id;
1728 New_S : Entity_Id;
1729 Is_Body : Boolean)
1731 Old_S : Entity_Id;
1733 function Conforms
1734 (Subp : Entity_Id;
1735 Ctyp : Conformance_Type) return Boolean;
1736 -- Verify that the signatures of the renamed entity and the new entity
1737 -- match. The first formal of the renamed entity is skipped because it
1738 -- is the target object in any subsequent call.
1740 --------------
1741 -- Conforms --
1742 --------------
1744 function Conforms
1745 (Subp : Entity_Id;
1746 Ctyp : Conformance_Type) return Boolean
1748 Old_F : Entity_Id;
1749 New_F : Entity_Id;
1751 begin
1752 if Ekind (Subp) /= Ekind (New_S) then
1753 return False;
1754 end if;
1756 Old_F := Next_Formal (First_Formal (Subp));
1757 New_F := First_Formal (New_S);
1758 while Present (Old_F) and then Present (New_F) loop
1759 if not Conforming_Types (Etype (Old_F), Etype (New_F), Ctyp) then
1760 return False;
1761 end if;
1763 if Ctyp >= Mode_Conformant
1764 and then Ekind (Old_F) /= Ekind (New_F)
1765 then
1766 return False;
1767 end if;
1769 Next_Formal (New_F);
1770 Next_Formal (Old_F);
1771 end loop;
1773 return True;
1774 end Conforms;
1776 -- Start of processing for Analyze_Renamed_Primitive_Operation
1778 begin
1779 if not Is_Overloaded (Selector_Name (Name (N))) then
1780 Old_S := Entity (Selector_Name (Name (N)));
1782 if not Conforms (Old_S, Type_Conformant) then
1783 Old_S := Any_Id;
1784 end if;
1786 else
1787 -- Find the operation that matches the given signature
1789 declare
1790 It : Interp;
1791 Ind : Interp_Index;
1793 begin
1794 Old_S := Any_Id;
1795 Get_First_Interp (Selector_Name (Name (N)), Ind, It);
1797 while Present (It.Nam) loop
1798 if Conforms (It.Nam, Type_Conformant) then
1799 Old_S := It.Nam;
1800 end if;
1802 Get_Next_Interp (Ind, It);
1803 end loop;
1804 end;
1805 end if;
1807 if Old_S = Any_Id then
1808 Error_Msg_N (" no subprogram or entry matches specification", N);
1810 else
1811 if Is_Body then
1812 if not Conforms (Old_S, Subtype_Conformant) then
1813 Error_Msg_N ("subtype conformance error in renaming", N);
1814 end if;
1816 Generate_Reference (New_S, Defining_Entity (N), 'b');
1817 Style.Check_Identifier (Defining_Entity (N), New_S);
1819 else
1820 -- Only mode conformance required for a renaming_as_declaration
1822 if not Conforms (Old_S, Mode_Conformant) then
1823 Error_Msg_N ("mode conformance error in renaming", N);
1824 end if;
1826 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1827 -- view of a subprogram is intrinsic, because the compiler has
1828 -- to generate a wrapper for any call to it. If the name in a
1829 -- subprogram renaming is a prefixed view, the entity is thus
1830 -- intrinsic, and 'Access cannot be applied to it.
1832 Set_Convention (New_S, Convention_Intrinsic);
1833 end if;
1835 -- Inherit_Renamed_Profile (New_S, Old_S);
1837 -- The prefix can be an arbitrary expression that yields an
1838 -- object, so it must be resolved.
1840 Resolve (Prefix (Name (N)));
1841 end if;
1842 end Analyze_Renamed_Primitive_Operation;
1844 ---------------------------------
1845 -- Analyze_Subprogram_Renaming --
1846 ---------------------------------
1848 procedure Analyze_Subprogram_Renaming (N : Node_Id) is
1849 Formal_Spec : constant Entity_Id := Corresponding_Formal_Spec (N);
1850 Is_Actual : constant Boolean := Present (Formal_Spec);
1851 Nam : constant Node_Id := Name (N);
1852 Save_AV : constant Ada_Version_Type := Ada_Version;
1853 Save_AVP : constant Node_Id := Ada_Version_Pragma;
1854 Save_AV_Exp : constant Ada_Version_Type := Ada_Version_Explicit;
1855 Spec : constant Node_Id := Specification (N);
1857 Old_S : Entity_Id := Empty;
1858 Rename_Spec : Entity_Id;
1860 procedure Build_Class_Wide_Wrapper
1861 (Ren_Id : out Entity_Id;
1862 Wrap_Id : out Entity_Id);
1863 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1864 -- type with unknown discriminants and a generic primitive operation of
1865 -- the said type with a box require special processing when the actual
1866 -- is a class-wide type:
1868 -- generic
1869 -- type Formal_Typ (<>) is private;
1870 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1871 -- package Gen is ...
1873 -- package Inst is new Gen (Actual_Typ'Class);
1875 -- In this case the general renaming mechanism used in the prologue of
1876 -- an instance no longer applies:
1878 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1880 -- The above is replaced the following wrapper/renaming combination:
1882 -- procedure Wrapper (Param : Formal_Typ) is -- wrapper
1883 -- begin
1884 -- Prim_Op (Param); -- primitive
1885 -- end Wrapper;
1887 -- procedure Prim_Op (Param : Formal_Typ) renames Wrapper;
1889 -- This transformation applies only if there is no explicit visible
1890 -- class-wide operation at the point of the instantiation. Ren_Id is
1891 -- the entity of the renaming declaration. When the transformation
1892 -- applies, Wrap_Id is the entity of the generated class-wide wrapper
1893 -- (or Any_Id). Otherwise, Wrap_Id is the entity of the class-wide
1894 -- operation.
1896 procedure Check_Null_Exclusion
1897 (Ren : Entity_Id;
1898 Sub : Entity_Id);
1899 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1900 -- following AI rules:
1902 -- If Ren is a renaming of a formal subprogram and one of its
1903 -- parameters has a null exclusion, then the corresponding formal
1904 -- in Sub must also have one. Otherwise the subtype of the Sub's
1905 -- formal parameter must exclude null.
1907 -- If Ren is a renaming of a formal function and its return
1908 -- profile has a null exclusion, then Sub's return profile must
1909 -- have one. Otherwise the subtype of Sub's return profile must
1910 -- exclude null.
1912 procedure Freeze_Actual_Profile;
1913 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1914 -- types: a callable entity freezes its profile, unless it has an
1915 -- incomplete untagged formal (RM 13.14(10.2/3)).
1917 function Has_Class_Wide_Actual return Boolean;
1918 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1919 -- defaulted formal subprogram where the actual for the controlling
1920 -- formal type is class-wide.
1922 function Original_Subprogram (Subp : Entity_Id) return Entity_Id;
1923 -- Find renamed entity when the declaration is a renaming_as_body and
1924 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1925 -- rule that a renaming_as_body is illegal if the declaration occurs
1926 -- before the subprogram it completes is frozen, and renaming indirectly
1927 -- renames the subprogram itself.(Defect Report 8652/0027).
1929 ------------------------------
1930 -- Build_Class_Wide_Wrapper --
1931 ------------------------------
1933 procedure Build_Class_Wide_Wrapper
1934 (Ren_Id : out Entity_Id;
1935 Wrap_Id : out Entity_Id)
1937 Loc : constant Source_Ptr := Sloc (N);
1939 function Build_Call
1940 (Subp_Id : Entity_Id;
1941 Params : List_Id) return Node_Id;
1942 -- Create a dispatching call to invoke routine Subp_Id with actuals
1943 -- built from the parameter specifications of list Params.
1945 function Build_Expr_Fun_Call
1946 (Subp_Id : Entity_Id;
1947 Params : List_Id) return Node_Id;
1948 -- Create a dispatching call to invoke function Subp_Id with actuals
1949 -- built from the parameter specifications of list Params. Return
1950 -- directly the call, so that it can be used inside an expression
1951 -- function. This is a specificity of the GNATprove mode.
1953 function Build_Spec (Subp_Id : Entity_Id) return Node_Id;
1954 -- Create a subprogram specification based on the subprogram profile
1955 -- of Subp_Id.
1957 function Find_Primitive (Typ : Entity_Id) return Entity_Id;
1958 -- Find a primitive subprogram of type Typ which matches the profile
1959 -- of the renaming declaration.
1961 procedure Interpretation_Error (Subp_Id : Entity_Id);
1962 -- Emit a continuation error message suggesting subprogram Subp_Id as
1963 -- a possible interpretation.
1965 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean;
1966 -- Determine whether subprogram Subp_Id denotes the intrinsic "="
1967 -- operator.
1969 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean;
1970 -- Determine whether subprogram Subp_Id is a suitable candidate for
1971 -- the role of a wrapped subprogram.
1973 ----------------
1974 -- Build_Call --
1975 ----------------
1977 function Build_Call
1978 (Subp_Id : Entity_Id;
1979 Params : List_Id) return Node_Id
1981 Actuals : constant List_Id := New_List;
1982 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
1983 Formal : Node_Id;
1985 begin
1986 -- Build the actual parameters of the call
1988 Formal := First (Params);
1989 while Present (Formal) loop
1990 Append_To (Actuals,
1991 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
1992 Next (Formal);
1993 end loop;
1995 -- Generate:
1996 -- return Subp_Id (Actuals);
1998 if Ekind_In (Subp_Id, E_Function, E_Operator) then
1999 return
2000 Make_Simple_Return_Statement (Loc,
2001 Expression =>
2002 Make_Function_Call (Loc,
2003 Name => Call_Ref,
2004 Parameter_Associations => Actuals));
2006 -- Generate:
2007 -- Subp_Id (Actuals);
2009 else
2010 return
2011 Make_Procedure_Call_Statement (Loc,
2012 Name => Call_Ref,
2013 Parameter_Associations => Actuals);
2014 end if;
2015 end Build_Call;
2017 -------------------------
2018 -- Build_Expr_Fun_Call --
2019 -------------------------
2021 function Build_Expr_Fun_Call
2022 (Subp_Id : Entity_Id;
2023 Params : List_Id) return Node_Id
2025 Actuals : constant List_Id := New_List;
2026 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
2027 Formal : Node_Id;
2029 begin
2030 pragma Assert (Ekind_In (Subp_Id, E_Function, E_Operator));
2032 -- Build the actual parameters of the call
2034 Formal := First (Params);
2035 while Present (Formal) loop
2036 Append_To (Actuals,
2037 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2038 Next (Formal);
2039 end loop;
2041 -- Generate:
2042 -- Subp_Id (Actuals);
2044 return
2045 Make_Function_Call (Loc,
2046 Name => Call_Ref,
2047 Parameter_Associations => Actuals);
2048 end Build_Expr_Fun_Call;
2050 ----------------
2051 -- Build_Spec --
2052 ----------------
2054 function Build_Spec (Subp_Id : Entity_Id) return Node_Id is
2055 Params : constant List_Id := Copy_Parameter_List (Subp_Id);
2056 Spec_Id : constant Entity_Id :=
2057 Make_Defining_Identifier (Loc,
2058 Chars => New_External_Name (Chars (Subp_Id), 'R'));
2060 begin
2061 if Ekind (Formal_Spec) = E_Procedure then
2062 return
2063 Make_Procedure_Specification (Loc,
2064 Defining_Unit_Name => Spec_Id,
2065 Parameter_Specifications => Params);
2066 else
2067 return
2068 Make_Function_Specification (Loc,
2069 Defining_Unit_Name => Spec_Id,
2070 Parameter_Specifications => Params,
2071 Result_Definition =>
2072 New_Copy_Tree (Result_Definition (Spec)));
2073 end if;
2074 end Build_Spec;
2076 --------------------
2077 -- Find_Primitive --
2078 --------------------
2080 function Find_Primitive (Typ : Entity_Id) return Entity_Id is
2081 procedure Replace_Parameter_Types (Spec : Node_Id);
2082 -- Given a specification Spec, replace all class-wide parameter
2083 -- types with reference to type Typ.
2085 -----------------------------
2086 -- Replace_Parameter_Types --
2087 -----------------------------
2089 procedure Replace_Parameter_Types (Spec : Node_Id) is
2090 Formal : Node_Id;
2091 Formal_Id : Entity_Id;
2092 Formal_Typ : Node_Id;
2094 begin
2095 Formal := First (Parameter_Specifications (Spec));
2096 while Present (Formal) loop
2097 Formal_Id := Defining_Identifier (Formal);
2098 Formal_Typ := Parameter_Type (Formal);
2100 -- Create a new entity for each class-wide formal to prevent
2101 -- aliasing with the original renaming. Replace the type of
2102 -- such a parameter with the candidate type.
2104 if Nkind (Formal_Typ) = N_Identifier
2105 and then Is_Class_Wide_Type (Etype (Formal_Typ))
2106 then
2107 Set_Defining_Identifier (Formal,
2108 Make_Defining_Identifier (Loc, Chars (Formal_Id)));
2110 Set_Parameter_Type (Formal, New_Occurrence_Of (Typ, Loc));
2111 end if;
2113 Next (Formal);
2114 end loop;
2115 end Replace_Parameter_Types;
2117 -- Local variables
2119 Alt_Ren : constant Node_Id := New_Copy_Tree (N);
2120 Alt_Nam : constant Node_Id := Name (Alt_Ren);
2121 Alt_Spec : constant Node_Id := Specification (Alt_Ren);
2122 Subp_Id : Entity_Id;
2124 -- Start of processing for Find_Primitive
2126 begin
2127 -- Each attempt to find a suitable primitive of a particular type
2128 -- operates on its own copy of the original renaming. As a result
2129 -- the original renaming is kept decoration and side-effect free.
2131 -- Inherit the overloaded status of the renamed subprogram name
2133 if Is_Overloaded (Nam) then
2134 Set_Is_Overloaded (Alt_Nam);
2135 Save_Interps (Nam, Alt_Nam);
2136 end if;
2138 -- The copied renaming is hidden from visibility to prevent the
2139 -- pollution of the enclosing context.
2141 Set_Defining_Unit_Name (Alt_Spec, Make_Temporary (Loc, 'R'));
2143 -- The types of all class-wide parameters must be changed to the
2144 -- candidate type.
2146 Replace_Parameter_Types (Alt_Spec);
2148 -- Try to find a suitable primitive which matches the altered
2149 -- profile of the renaming specification.
2151 Subp_Id :=
2152 Find_Renamed_Entity
2153 (N => Alt_Ren,
2154 Nam => Name (Alt_Ren),
2155 New_S => Analyze_Subprogram_Specification (Alt_Spec),
2156 Is_Actual => Is_Actual);
2158 -- Do not return Any_Id if the resolion of the altered profile
2159 -- failed as this complicates further checks on the caller side,
2160 -- return Empty instead.
2162 if Subp_Id = Any_Id then
2163 return Empty;
2164 else
2165 return Subp_Id;
2166 end if;
2167 end Find_Primitive;
2169 --------------------------
2170 -- Interpretation_Error --
2171 --------------------------
2173 procedure Interpretation_Error (Subp_Id : Entity_Id) is
2174 begin
2175 Error_Msg_Sloc := Sloc (Subp_Id);
2177 if Is_Internal (Subp_Id) then
2178 Error_Msg_NE
2179 ("\\possible interpretation: predefined & #",
2180 Spec, Formal_Spec);
2181 else
2182 Error_Msg_NE
2183 ("\\possible interpretation: & defined #", Spec, Formal_Spec);
2184 end if;
2185 end Interpretation_Error;
2187 ---------------------------
2188 -- Is_Intrinsic_Equality --
2189 ---------------------------
2191 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean is
2192 begin
2193 return
2194 Ekind (Subp_Id) = E_Operator
2195 and then Chars (Subp_Id) = Name_Op_Eq
2196 and then Is_Intrinsic_Subprogram (Subp_Id);
2197 end Is_Intrinsic_Equality;
2199 ---------------------------
2200 -- Is_Suitable_Candidate --
2201 ---------------------------
2203 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean is
2204 begin
2205 if No (Subp_Id) then
2206 return False;
2208 -- An intrinsic subprogram is never a good candidate. This is an
2209 -- indication of a missing primitive, either defined directly or
2210 -- inherited from a parent tagged type.
2212 elsif Is_Intrinsic_Subprogram (Subp_Id) then
2213 return False;
2215 else
2216 return True;
2217 end if;
2218 end Is_Suitable_Candidate;
2220 -- Local variables
2222 Actual_Typ : Entity_Id := Empty;
2223 -- The actual class-wide type for Formal_Typ
2225 CW_Prim_OK : Boolean;
2226 CW_Prim_Op : Entity_Id;
2227 -- The class-wide subprogram (if available) which corresponds to the
2228 -- renamed generic formal subprogram.
2230 Formal_Typ : Entity_Id := Empty;
2231 -- The generic formal type with unknown discriminants
2233 Root_Prim_OK : Boolean;
2234 Root_Prim_Op : Entity_Id;
2235 -- The root type primitive (if available) which corresponds to the
2236 -- renamed generic formal subprogram.
2238 Root_Typ : Entity_Id := Empty;
2239 -- The root type of Actual_Typ
2241 Body_Decl : Node_Id;
2242 Formal : Node_Id;
2243 Prim_Op : Entity_Id;
2244 Spec_Decl : Node_Id;
2245 New_Spec : Node_Id;
2247 -- Start of processing for Build_Class_Wide_Wrapper
2249 begin
2250 -- Analyze the specification of the renaming in case the generation
2251 -- of the class-wide wrapper fails.
2253 Ren_Id := Analyze_Subprogram_Specification (Spec);
2254 Wrap_Id := Any_Id;
2256 -- Do not attempt to build a wrapper if the renaming is in error
2258 if Error_Posted (Nam) then
2259 return;
2260 end if;
2262 -- Analyze the renamed name, but do not resolve it. The resolution is
2263 -- completed once a suitable subprogram is found.
2265 Analyze (Nam);
2267 -- When the renamed name denotes the intrinsic operator equals, the
2268 -- name must be treated as overloaded. This allows for a potential
2269 -- match against the root type's predefined equality function.
2271 if Is_Intrinsic_Equality (Entity (Nam)) then
2272 Set_Is_Overloaded (Nam);
2273 Collect_Interps (Nam);
2274 end if;
2276 -- Step 1: Find the generic formal type with unknown discriminants
2277 -- and its corresponding class-wide actual type from the renamed
2278 -- generic formal subprogram.
2280 Formal := First_Formal (Formal_Spec);
2281 while Present (Formal) loop
2282 if Has_Unknown_Discriminants (Etype (Formal))
2283 and then not Is_Class_Wide_Type (Etype (Formal))
2284 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (Formal)))
2285 then
2286 Formal_Typ := Etype (Formal);
2287 Actual_Typ := Get_Instance_Of (Formal_Typ);
2288 Root_Typ := Etype (Actual_Typ);
2289 exit;
2290 end if;
2292 Next_Formal (Formal);
2293 end loop;
2295 -- The specification of the generic formal subprogram should always
2296 -- contain a formal type with unknown discriminants whose actual is
2297 -- a class-wide type, otherwise this indicates a failure in routine
2298 -- Has_Class_Wide_Actual.
2300 pragma Assert (Present (Formal_Typ));
2302 -- Step 2: Find the proper class-wide subprogram or primitive which
2303 -- corresponds to the renamed generic formal subprogram.
2305 CW_Prim_Op := Find_Primitive (Actual_Typ);
2306 CW_Prim_OK := Is_Suitable_Candidate (CW_Prim_Op);
2307 Root_Prim_Op := Find_Primitive (Root_Typ);
2308 Root_Prim_OK := Is_Suitable_Candidate (Root_Prim_Op);
2310 -- The class-wide actual type has two subprograms which correspond to
2311 -- the renamed generic formal subprogram:
2313 -- with procedure Prim_Op (Param : Formal_Typ);
2315 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2316 -- procedure Prim_Op (Param : Actual_Typ'Class);
2318 -- Even though the declaration of the two subprograms is legal, a
2319 -- call to either one is ambiguous and therefore illegal.
2321 if CW_Prim_OK and Root_Prim_OK then
2323 -- A user-defined primitive has precedence over a predefined one
2325 if Is_Internal (CW_Prim_Op)
2326 and then not Is_Internal (Root_Prim_Op)
2327 then
2328 Prim_Op := Root_Prim_Op;
2330 elsif Is_Internal (Root_Prim_Op)
2331 and then not Is_Internal (CW_Prim_Op)
2332 then
2333 Prim_Op := CW_Prim_Op;
2335 elsif CW_Prim_Op = Root_Prim_Op then
2336 Prim_Op := Root_Prim_Op;
2338 -- Otherwise both candidate subprograms are user-defined and
2339 -- ambiguous.
2341 else
2342 Error_Msg_NE
2343 ("ambiguous actual for generic subprogram &",
2344 Spec, Formal_Spec);
2345 Interpretation_Error (Root_Prim_Op);
2346 Interpretation_Error (CW_Prim_Op);
2347 return;
2348 end if;
2350 elsif CW_Prim_OK and not Root_Prim_OK then
2351 Prim_Op := CW_Prim_Op;
2353 elsif not CW_Prim_OK and Root_Prim_OK then
2354 Prim_Op := Root_Prim_Op;
2356 -- An intrinsic equality may act as a suitable candidate in the case
2357 -- of a null type extension where the parent's equality is hidden. A
2358 -- call to an intrinsic equality is expanded as dispatching.
2360 elsif Present (Root_Prim_Op)
2361 and then Is_Intrinsic_Equality (Root_Prim_Op)
2362 then
2363 Prim_Op := Root_Prim_Op;
2365 -- Otherwise there are no candidate subprograms. Let the caller
2366 -- diagnose the error.
2368 else
2369 return;
2370 end if;
2372 -- At this point resolution has taken place and the name is no longer
2373 -- overloaded. Mark the primitive as referenced.
2375 Set_Is_Overloaded (Name (N), False);
2376 Set_Referenced (Prim_Op);
2378 -- Do not generate a wrapper when the only candidate is a class-wide
2379 -- subprogram. Instead modify the renaming to directly map the actual
2380 -- to the generic formal.
2382 if CW_Prim_OK and then Prim_Op = CW_Prim_Op then
2383 Wrap_Id := Prim_Op;
2384 Rewrite (Nam, New_Occurrence_Of (Prim_Op, Loc));
2385 return;
2386 end if;
2388 -- Step 3: Create the declaration and the body of the wrapper, insert
2389 -- all the pieces into the tree.
2391 -- In GNATprove mode, create a function wrapper in the form of an
2392 -- expression function, so that an implicit postcondition relating
2393 -- the result of calling the wrapper function and the result of the
2394 -- dispatching call to the wrapped function is known during proof.
2396 if GNATprove_Mode
2397 and then Ekind_In (Ren_Id, E_Function, E_Operator)
2398 then
2399 New_Spec := Build_Spec (Ren_Id);
2400 Body_Decl :=
2401 Make_Expression_Function (Loc,
2402 Specification => New_Spec,
2403 Expression =>
2404 Build_Expr_Fun_Call
2405 (Subp_Id => Prim_Op,
2406 Params => Parameter_Specifications (New_Spec)));
2408 Wrap_Id := Defining_Entity (Body_Decl);
2410 -- Otherwise, create separate spec and body for the subprogram
2412 else
2413 Spec_Decl :=
2414 Make_Subprogram_Declaration (Loc,
2415 Specification => Build_Spec (Ren_Id));
2416 Insert_Before_And_Analyze (N, Spec_Decl);
2418 Wrap_Id := Defining_Entity (Spec_Decl);
2420 Body_Decl :=
2421 Make_Subprogram_Body (Loc,
2422 Specification => Build_Spec (Ren_Id),
2423 Declarations => New_List,
2424 Handled_Statement_Sequence =>
2425 Make_Handled_Sequence_Of_Statements (Loc,
2426 Statements => New_List (
2427 Build_Call
2428 (Subp_Id => Prim_Op,
2429 Params =>
2430 Parameter_Specifications
2431 (Specification (Spec_Decl))))));
2433 Set_Corresponding_Body (Spec_Decl, Defining_Entity (Body_Decl));
2434 end if;
2436 -- If the operator carries an Eliminated pragma, indicate that the
2437 -- wrapper is also to be eliminated, to prevent spurious error when
2438 -- using gnatelim on programs that include box-initialization of
2439 -- equality operators.
2441 Set_Is_Eliminated (Wrap_Id, Is_Eliminated (Prim_Op));
2443 -- In GNATprove mode, insert the body in the tree for analysis
2445 if GNATprove_Mode then
2446 Insert_Before_And_Analyze (N, Body_Decl);
2447 end if;
2449 -- The generated body does not freeze and must be analyzed when the
2450 -- class-wide wrapper is frozen. The body is only needed if expansion
2451 -- is enabled.
2453 if Expander_Active then
2454 Append_Freeze_Action (Wrap_Id, Body_Decl);
2455 end if;
2457 -- Step 4: The subprogram renaming aliases the wrapper
2459 Rewrite (Nam, New_Occurrence_Of (Wrap_Id, Loc));
2460 end Build_Class_Wide_Wrapper;
2462 --------------------------
2463 -- Check_Null_Exclusion --
2464 --------------------------
2466 procedure Check_Null_Exclusion
2467 (Ren : Entity_Id;
2468 Sub : Entity_Id)
2470 Ren_Formal : Entity_Id;
2471 Sub_Formal : Entity_Id;
2473 begin
2474 -- Parameter check
2476 Ren_Formal := First_Formal (Ren);
2477 Sub_Formal := First_Formal (Sub);
2478 while Present (Ren_Formal) and then Present (Sub_Formal) loop
2479 if Has_Null_Exclusion (Parent (Ren_Formal))
2480 and then
2481 not (Has_Null_Exclusion (Parent (Sub_Formal))
2482 or else Can_Never_Be_Null (Etype (Sub_Formal)))
2483 then
2484 Error_Msg_NE
2485 ("`NOT NULL` required for parameter &",
2486 Parent (Sub_Formal), Sub_Formal);
2487 end if;
2489 Next_Formal (Ren_Formal);
2490 Next_Formal (Sub_Formal);
2491 end loop;
2493 -- Return profile check
2495 if Nkind (Parent (Ren)) = N_Function_Specification
2496 and then Nkind (Parent (Sub)) = N_Function_Specification
2497 and then Has_Null_Exclusion (Parent (Ren))
2498 and then not (Has_Null_Exclusion (Parent (Sub))
2499 or else Can_Never_Be_Null (Etype (Sub)))
2500 then
2501 Error_Msg_N
2502 ("return must specify `NOT NULL`",
2503 Result_Definition (Parent (Sub)));
2504 end if;
2505 end Check_Null_Exclusion;
2507 ---------------------------
2508 -- Freeze_Actual_Profile --
2509 ---------------------------
2511 procedure Freeze_Actual_Profile is
2512 F : Entity_Id;
2513 Has_Untagged_Inc : Boolean;
2514 Instantiation_Node : constant Node_Id := Parent (N);
2516 begin
2517 if Ada_Version >= Ada_2012 then
2518 F := First_Formal (Formal_Spec);
2519 Has_Untagged_Inc := False;
2520 while Present (F) loop
2521 if Ekind (Etype (F)) = E_Incomplete_Type
2522 and then not Is_Tagged_Type (Etype (F))
2523 then
2524 Has_Untagged_Inc := True;
2525 exit;
2526 end if;
2528 F := Next_Formal (F);
2529 end loop;
2531 if Ekind (Formal_Spec) = E_Function
2532 and then not Is_Tagged_Type (Etype (Formal_Spec))
2533 then
2534 Has_Untagged_Inc := True;
2535 end if;
2537 if not Has_Untagged_Inc then
2538 F := First_Formal (Old_S);
2539 while Present (F) loop
2540 Freeze_Before (Instantiation_Node, Etype (F));
2542 if Is_Incomplete_Or_Private_Type (Etype (F))
2543 and then No (Underlying_Type (Etype (F)))
2544 then
2545 -- Exclude generic types, or types derived from them.
2546 -- They will be frozen in the enclosing instance.
2548 if Is_Generic_Type (Etype (F))
2549 or else Is_Generic_Type (Root_Type (Etype (F)))
2550 then
2551 null;
2553 -- A limited view of a type declared elsewhere needs no
2554 -- freezing actions.
2556 elsif From_Limited_With (Etype (F)) then
2557 null;
2559 else
2560 Error_Msg_NE
2561 ("type& must be frozen before this point",
2562 Instantiation_Node, Etype (F));
2563 end if;
2564 end if;
2566 F := Next_Formal (F);
2567 end loop;
2568 end if;
2569 end if;
2570 end Freeze_Actual_Profile;
2572 ---------------------------
2573 -- Has_Class_Wide_Actual --
2574 ---------------------------
2576 function Has_Class_Wide_Actual return Boolean is
2577 Formal : Entity_Id;
2578 Formal_Typ : Entity_Id;
2580 begin
2581 if Is_Actual then
2582 Formal := First_Formal (Formal_Spec);
2583 while Present (Formal) loop
2584 Formal_Typ := Etype (Formal);
2586 if Has_Unknown_Discriminants (Formal_Typ)
2587 and then not Is_Class_Wide_Type (Formal_Typ)
2588 and then Is_Class_Wide_Type (Get_Instance_Of (Formal_Typ))
2589 then
2590 return True;
2591 end if;
2593 Next_Formal (Formal);
2594 end loop;
2595 end if;
2597 return False;
2598 end Has_Class_Wide_Actual;
2600 -------------------------
2601 -- Original_Subprogram --
2602 -------------------------
2604 function Original_Subprogram (Subp : Entity_Id) return Entity_Id is
2605 Orig_Decl : Node_Id;
2606 Orig_Subp : Entity_Id;
2608 begin
2609 -- First case: renamed entity is itself a renaming
2611 if Present (Alias (Subp)) then
2612 return Alias (Subp);
2614 elsif Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
2615 and then Present (Corresponding_Body (Unit_Declaration_Node (Subp)))
2616 then
2617 -- Check if renamed entity is a renaming_as_body
2619 Orig_Decl :=
2620 Unit_Declaration_Node
2621 (Corresponding_Body (Unit_Declaration_Node (Subp)));
2623 if Nkind (Orig_Decl) = N_Subprogram_Renaming_Declaration then
2624 Orig_Subp := Entity (Name (Orig_Decl));
2626 if Orig_Subp = Rename_Spec then
2628 -- Circularity detected
2630 return Orig_Subp;
2632 else
2633 return (Original_Subprogram (Orig_Subp));
2634 end if;
2635 else
2636 return Subp;
2637 end if;
2638 else
2639 return Subp;
2640 end if;
2641 end Original_Subprogram;
2643 -- Local variables
2645 CW_Actual : constant Boolean := Has_Class_Wide_Actual;
2646 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2647 -- defaulted formal subprogram when the actual for a related formal
2648 -- type is class-wide.
2650 Inst_Node : Node_Id := Empty;
2651 New_S : Entity_Id;
2653 -- Start of processing for Analyze_Subprogram_Renaming
2655 begin
2656 -- We must test for the attribute renaming case before the Analyze
2657 -- call because otherwise Sem_Attr will complain that the attribute
2658 -- is missing an argument when it is analyzed.
2660 if Nkind (Nam) = N_Attribute_Reference then
2662 -- In the case of an abstract formal subprogram association, rewrite
2663 -- an actual given by a stream attribute as the name of the
2664 -- corresponding stream primitive of the type.
2666 -- In a generic context the stream operations are not generated, and
2667 -- this must be treated as a normal attribute reference, to be
2668 -- expanded in subsequent instantiations.
2670 if Is_Actual
2671 and then Is_Abstract_Subprogram (Formal_Spec)
2672 and then Expander_Active
2673 then
2674 declare
2675 Prefix_Type : constant Entity_Id := Entity (Prefix (Nam));
2676 Stream_Prim : Entity_Id;
2678 begin
2679 -- The class-wide forms of the stream attributes are not
2680 -- primitive dispatching operations (even though they
2681 -- internally dispatch to a stream attribute).
2683 if Is_Class_Wide_Type (Prefix_Type) then
2684 Error_Msg_N
2685 ("attribute must be a primitive dispatching operation",
2686 Nam);
2687 return;
2688 end if;
2690 -- Retrieve the primitive subprogram associated with the
2691 -- attribute. This can only be a stream attribute, since those
2692 -- are the only ones that are dispatching (and the actual for
2693 -- an abstract formal subprogram must be dispatching
2694 -- operation).
2696 case Attribute_Name (Nam) is
2697 when Name_Input =>
2698 Stream_Prim :=
2699 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Input);
2701 when Name_Output =>
2702 Stream_Prim :=
2703 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Output);
2705 when Name_Read =>
2706 Stream_Prim :=
2707 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Read);
2709 when Name_Write =>
2710 Stream_Prim :=
2711 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Write);
2713 when others =>
2714 Error_Msg_N
2715 ("attribute must be a primitive dispatching operation",
2716 Nam);
2717 return;
2718 end case;
2720 -- If no operation was found, and the type is limited, the user
2721 -- should have defined one.
2723 if No (Stream_Prim) then
2724 if Is_Limited_Type (Prefix_Type) then
2725 Error_Msg_NE
2726 ("stream operation not defined for type&",
2727 N, Prefix_Type);
2728 return;
2730 -- Otherwise, compiler should have generated default
2732 else
2733 raise Program_Error;
2734 end if;
2735 end if;
2737 -- Rewrite the attribute into the name of its corresponding
2738 -- primitive dispatching subprogram. We can then proceed with
2739 -- the usual processing for subprogram renamings.
2741 declare
2742 Prim_Name : constant Node_Id :=
2743 Make_Identifier (Sloc (Nam),
2744 Chars => Chars (Stream_Prim));
2745 begin
2746 Set_Entity (Prim_Name, Stream_Prim);
2747 Rewrite (Nam, Prim_Name);
2748 Analyze (Nam);
2749 end;
2750 end;
2752 -- Normal processing for a renaming of an attribute
2754 else
2755 Attribute_Renaming (N);
2756 return;
2757 end if;
2758 end if;
2760 -- Check whether this declaration corresponds to the instantiation of a
2761 -- formal subprogram.
2763 -- If this is an instantiation, the corresponding actual is frozen and
2764 -- error messages can be made more precise. If this is a default
2765 -- subprogram, the entity is already established in the generic, and is
2766 -- not retrieved by visibility. If it is a default with a box, the
2767 -- candidate interpretations, if any, have been collected when building
2768 -- the renaming declaration. If overloaded, the proper interpretation is
2769 -- determined in Find_Renamed_Entity. If the entity is an operator,
2770 -- Find_Renamed_Entity applies additional visibility checks.
2772 if Is_Actual then
2773 Inst_Node := Unit_Declaration_Node (Formal_Spec);
2775 -- Check whether the renaming is for a defaulted actual subprogram
2776 -- with a class-wide actual.
2778 -- The class-wide wrapper is not needed in GNATprove_Mode and there
2779 -- is an external axiomatization on the package.
2781 if CW_Actual
2782 and then Box_Present (Inst_Node)
2783 and then not
2784 (GNATprove_Mode
2785 and then
2786 Present (Containing_Package_With_Ext_Axioms (Formal_Spec)))
2787 then
2788 Build_Class_Wide_Wrapper (New_S, Old_S);
2790 elsif Is_Entity_Name (Nam)
2791 and then Present (Entity (Nam))
2792 and then not Comes_From_Source (Nam)
2793 and then not Is_Overloaded (Nam)
2794 then
2795 Old_S := Entity (Nam);
2797 -- The subprogram renaming declaration may become Ghost if it
2798 -- renames a Ghost entity.
2800 Mark_Ghost_Renaming (N, Old_S);
2802 New_S := Analyze_Subprogram_Specification (Spec);
2804 -- Operator case
2806 if Ekind (Old_S) = E_Operator then
2808 -- Box present
2810 if Box_Present (Inst_Node) then
2811 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2813 -- If there is an immediately visible homonym of the operator
2814 -- and the declaration has a default, this is worth a warning
2815 -- because the user probably did not intend to get the pre-
2816 -- defined operator, visible in the generic declaration. To
2817 -- find if there is an intended candidate, analyze the renaming
2818 -- again in the current context.
2820 elsif Scope (Old_S) = Standard_Standard
2821 and then Present (Default_Name (Inst_Node))
2822 then
2823 declare
2824 Decl : constant Node_Id := New_Copy_Tree (N);
2825 Hidden : Entity_Id;
2827 begin
2828 Set_Entity (Name (Decl), Empty);
2829 Analyze (Name (Decl));
2830 Hidden :=
2831 Find_Renamed_Entity (Decl, Name (Decl), New_S, True);
2833 if Present (Hidden)
2834 and then In_Open_Scopes (Scope (Hidden))
2835 and then Is_Immediately_Visible (Hidden)
2836 and then Comes_From_Source (Hidden)
2837 and then Hidden /= Old_S
2838 then
2839 Error_Msg_Sloc := Sloc (Hidden);
2840 Error_Msg_N
2841 ("default subprogram is resolved in the generic "
2842 & "declaration (RM 12.6(17))??", N);
2843 Error_Msg_NE ("\and will not use & #??", N, Hidden);
2844 end if;
2845 end;
2846 end if;
2847 end if;
2849 else
2850 Analyze (Nam);
2852 -- The subprogram renaming declaration may become Ghost if it
2853 -- renames a Ghost entity.
2855 if Is_Entity_Name (Nam) then
2856 Mark_Ghost_Renaming (N, Entity (Nam));
2857 end if;
2859 New_S := Analyze_Subprogram_Specification (Spec);
2860 end if;
2862 else
2863 -- Renamed entity must be analyzed first, to avoid being hidden by
2864 -- new name (which might be the same in a generic instance).
2866 Analyze (Nam);
2868 -- The subprogram renaming declaration may become Ghost if it renames
2869 -- a Ghost entity.
2871 if Is_Entity_Name (Nam) then
2872 Mark_Ghost_Renaming (N, Entity (Nam));
2873 end if;
2875 -- The renaming defines a new overloaded entity, which is analyzed
2876 -- like a subprogram declaration.
2878 New_S := Analyze_Subprogram_Specification (Spec);
2879 end if;
2881 if Current_Scope /= Standard_Standard then
2882 Set_Is_Pure (New_S, Is_Pure (Current_Scope));
2883 end if;
2885 -- Set SPARK mode from current context
2887 Set_SPARK_Pragma (New_S, SPARK_Mode_Pragma);
2888 Set_SPARK_Pragma_Inherited (New_S);
2890 Rename_Spec := Find_Corresponding_Spec (N);
2892 -- Case of Renaming_As_Body
2894 if Present (Rename_Spec) then
2896 -- Renaming declaration is the completion of the declaration of
2897 -- Rename_Spec. We build an actual body for it at the freezing point.
2899 Set_Corresponding_Spec (N, Rename_Spec);
2901 -- Deal with special case of stream functions of abstract types
2902 -- and interfaces.
2904 if Nkind (Unit_Declaration_Node (Rename_Spec)) =
2905 N_Abstract_Subprogram_Declaration
2906 then
2907 -- Input stream functions are abstract if the object type is
2908 -- abstract. Similarly, all default stream functions for an
2909 -- interface type are abstract. However, these subprograms may
2910 -- receive explicit declarations in representation clauses, making
2911 -- the attribute subprograms usable as defaults in subsequent
2912 -- type extensions.
2913 -- In this case we rewrite the declaration to make the subprogram
2914 -- non-abstract. We remove the previous declaration, and insert
2915 -- the new one at the point of the renaming, to prevent premature
2916 -- access to unfrozen types. The new declaration reuses the
2917 -- specification of the previous one, and must not be analyzed.
2919 pragma Assert
2920 (Is_Primitive (Entity (Nam))
2921 and then
2922 Is_Abstract_Type (Find_Dispatching_Type (Entity (Nam))));
2923 declare
2924 Old_Decl : constant Node_Id :=
2925 Unit_Declaration_Node (Rename_Spec);
2926 New_Decl : constant Node_Id :=
2927 Make_Subprogram_Declaration (Sloc (N),
2928 Specification =>
2929 Relocate_Node (Specification (Old_Decl)));
2930 begin
2931 Remove (Old_Decl);
2932 Insert_After (N, New_Decl);
2933 Set_Is_Abstract_Subprogram (Rename_Spec, False);
2934 Set_Analyzed (New_Decl);
2935 end;
2936 end if;
2938 Set_Corresponding_Body (Unit_Declaration_Node (Rename_Spec), New_S);
2940 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2941 Error_Msg_N ("(Ada 83) renaming cannot serve as a body", N);
2942 end if;
2944 Set_Convention (New_S, Convention (Rename_Spec));
2945 Check_Fully_Conformant (New_S, Rename_Spec);
2946 Set_Public_Status (New_S);
2948 -- The specification does not introduce new formals, but only
2949 -- repeats the formals of the original subprogram declaration.
2950 -- For cross-reference purposes, and for refactoring tools, we
2951 -- treat the formals of the renaming declaration as body formals.
2953 Reference_Body_Formals (Rename_Spec, New_S);
2955 -- Indicate that the entity in the declaration functions like the
2956 -- corresponding body, and is not a new entity. The body will be
2957 -- constructed later at the freeze point, so indicate that the
2958 -- completion has not been seen yet.
2960 Set_Ekind (New_S, E_Subprogram_Body);
2961 New_S := Rename_Spec;
2962 Set_Has_Completion (Rename_Spec, False);
2964 -- Ada 2005: check overriding indicator
2966 if Present (Overridden_Operation (Rename_Spec)) then
2967 if Must_Not_Override (Specification (N)) then
2968 Error_Msg_NE
2969 ("subprogram& overrides inherited operation",
2970 N, Rename_Spec);
2972 elsif Style_Check
2973 and then not Must_Override (Specification (N))
2974 then
2975 Style.Missing_Overriding (N, Rename_Spec);
2976 end if;
2978 elsif Must_Override (Specification (N)) then
2979 Error_Msg_NE ("subprogram& is not overriding", N, Rename_Spec);
2980 end if;
2982 -- Normal subprogram renaming (not renaming as body)
2984 else
2985 Generate_Definition (New_S);
2986 New_Overloaded_Entity (New_S);
2988 if Is_Entity_Name (Nam)
2989 and then Is_Intrinsic_Subprogram (Entity (Nam))
2990 then
2991 null;
2992 else
2993 Check_Delayed_Subprogram (New_S);
2994 end if;
2995 end if;
2997 -- There is no need for elaboration checks on the new entity, which may
2998 -- be called before the next freezing point where the body will appear.
2999 -- Elaboration checks refer to the real entity, not the one created by
3000 -- the renaming declaration.
3002 Set_Kill_Elaboration_Checks (New_S, True);
3004 -- If we had a previous error, indicate a completely is present to stop
3005 -- junk cascaded messages, but don't take any further action.
3007 if Etype (Nam) = Any_Type then
3008 Set_Has_Completion (New_S);
3009 return;
3011 -- Case where name has the form of a selected component
3013 elsif Nkind (Nam) = N_Selected_Component then
3015 -- A name which has the form A.B can designate an entry of task A, a
3016 -- protected operation of protected object A, or finally a primitive
3017 -- operation of object A. In the later case, A is an object of some
3018 -- tagged type, or an access type that denotes one such. To further
3019 -- distinguish these cases, note that the scope of a task entry or
3020 -- protected operation is type of the prefix.
3022 -- The prefix could be an overloaded function call that returns both
3023 -- kinds of operations. This overloading pathology is left to the
3024 -- dedicated reader ???
3026 declare
3027 T : constant Entity_Id := Etype (Prefix (Nam));
3029 begin
3030 if Present (T)
3031 and then
3032 (Is_Tagged_Type (T)
3033 or else
3034 (Is_Access_Type (T)
3035 and then Is_Tagged_Type (Designated_Type (T))))
3036 and then Scope (Entity (Selector_Name (Nam))) /= T
3037 then
3038 Analyze_Renamed_Primitive_Operation
3039 (N, New_S, Present (Rename_Spec));
3040 return;
3042 else
3043 -- Renamed entity is an entry or protected operation. For those
3044 -- cases an explicit body is built (at the point of freezing of
3045 -- this entity) that contains a call to the renamed entity.
3047 -- This is not allowed for renaming as body if the renamed
3048 -- spec is already frozen (see RM 8.5.4(5) for details).
3050 if Present (Rename_Spec) and then Is_Frozen (Rename_Spec) then
3051 Error_Msg_N
3052 ("renaming-as-body cannot rename entry as subprogram", N);
3053 Error_Msg_NE
3054 ("\since & is already frozen (RM 8.5.4(5))",
3055 N, Rename_Spec);
3056 else
3057 Analyze_Renamed_Entry (N, New_S, Present (Rename_Spec));
3058 end if;
3060 return;
3061 end if;
3062 end;
3064 -- Case where name is an explicit dereference X.all
3066 elsif Nkind (Nam) = N_Explicit_Dereference then
3068 -- Renamed entity is designated by access_to_subprogram expression.
3069 -- Must build body to encapsulate call, as in the entry case.
3071 Analyze_Renamed_Dereference (N, New_S, Present (Rename_Spec));
3072 return;
3074 -- Indexed component
3076 elsif Nkind (Nam) = N_Indexed_Component then
3077 Analyze_Renamed_Family_Member (N, New_S, Present (Rename_Spec));
3078 return;
3080 -- Character literal
3082 elsif Nkind (Nam) = N_Character_Literal then
3083 Analyze_Renamed_Character (N, New_S, Present (Rename_Spec));
3084 return;
3086 -- Only remaining case is where we have a non-entity name, or a renaming
3087 -- of some other non-overloadable entity.
3089 elsif not Is_Entity_Name (Nam)
3090 or else not Is_Overloadable (Entity (Nam))
3091 then
3092 -- Do not mention the renaming if it comes from an instance
3094 if not Is_Actual then
3095 Error_Msg_N ("expect valid subprogram name in renaming", N);
3096 else
3097 Error_Msg_NE ("no visible subprogram for formal&", N, Nam);
3098 end if;
3100 return;
3101 end if;
3103 -- Find the renamed entity that matches the given specification. Disable
3104 -- Ada_83 because there is no requirement of full conformance between
3105 -- renamed entity and new entity, even though the same circuit is used.
3107 -- This is a bit of an odd case, which introduces a really irregular use
3108 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
3109 -- this. ???
3111 Ada_Version := Ada_Version_Type'Max (Ada_Version, Ada_95);
3112 Ada_Version_Pragma := Empty;
3113 Ada_Version_Explicit := Ada_Version;
3115 if No (Old_S) then
3116 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
3118 -- The visible operation may be an inherited abstract operation that
3119 -- was overridden in the private part, in which case a call will
3120 -- dispatch to the overriding operation. Use the overriding one in
3121 -- the renaming declaration, to prevent spurious errors below.
3123 if Is_Overloadable (Old_S)
3124 and then Is_Abstract_Subprogram (Old_S)
3125 and then No (DTC_Entity (Old_S))
3126 and then Present (Alias (Old_S))
3127 and then not Is_Abstract_Subprogram (Alias (Old_S))
3128 and then Present (Overridden_Operation (Alias (Old_S)))
3129 then
3130 Old_S := Alias (Old_S);
3131 end if;
3133 -- When the renamed subprogram is overloaded and used as an actual
3134 -- of a generic, its entity is set to the first available homonym.
3135 -- We must first disambiguate the name, then set the proper entity.
3137 if Is_Actual and then Is_Overloaded (Nam) then
3138 Set_Entity (Nam, Old_S);
3139 end if;
3140 end if;
3142 -- Most common case: subprogram renames subprogram. No body is generated
3143 -- in this case, so we must indicate the declaration is complete as is.
3144 -- and inherit various attributes of the renamed subprogram.
3146 if No (Rename_Spec) then
3147 Set_Has_Completion (New_S);
3148 Set_Is_Imported (New_S, Is_Imported (Entity (Nam)));
3149 Set_Is_Pure (New_S, Is_Pure (Entity (Nam)));
3150 Set_Is_Preelaborated (New_S, Is_Preelaborated (Entity (Nam)));
3152 -- Ada 2005 (AI-423): Check the consistency of null exclusions
3153 -- between a subprogram and its correct renaming.
3155 -- Note: the Any_Id check is a guard that prevents compiler crashes
3156 -- when performing a null exclusion check between a renaming and a
3157 -- renamed subprogram that has been found to be illegal.
3159 if Ada_Version >= Ada_2005 and then Entity (Nam) /= Any_Id then
3160 Check_Null_Exclusion
3161 (Ren => New_S,
3162 Sub => Entity (Nam));
3163 end if;
3165 -- Enforce the Ada 2005 rule that the renamed entity cannot require
3166 -- overriding. The flag Requires_Overriding is set very selectively
3167 -- and misses some other illegal cases. The additional conditions
3168 -- checked below are sufficient but not necessary ???
3170 -- The rule does not apply to the renaming generated for an actual
3171 -- subprogram in an instance.
3173 if Is_Actual then
3174 null;
3176 -- Guard against previous errors, and omit renamings of predefined
3177 -- operators.
3179 elsif not Ekind_In (Old_S, E_Function, E_Procedure) then
3180 null;
3182 elsif Requires_Overriding (Old_S)
3183 or else
3184 (Is_Abstract_Subprogram (Old_S)
3185 and then Present (Find_Dispatching_Type (Old_S))
3186 and then
3187 not Is_Abstract_Type (Find_Dispatching_Type (Old_S)))
3188 then
3189 Error_Msg_N
3190 ("renamed entity cannot be subprogram that requires overriding "
3191 & "(RM 8.5.4 (5.1))", N);
3192 end if;
3194 declare
3195 Prev : constant Entity_Id := Overridden_Operation (New_S);
3196 begin
3197 if Present (Prev)
3198 and then
3199 (Has_Non_Trivial_Precondition (Prev)
3200 or else Has_Non_Trivial_Precondition (Old_S))
3201 then
3202 Error_Msg_NE
3203 ("conflicting inherited classwide preconditions in renaming "
3204 & "of& (RM 6.1.1 (17)", N, Old_S);
3205 end if;
3206 end;
3207 end if;
3209 if Old_S /= Any_Id then
3210 if Is_Actual and then From_Default (N) then
3212 -- This is an implicit reference to the default actual
3214 Generate_Reference (Old_S, Nam, Typ => 'i', Force => True);
3216 else
3217 Generate_Reference (Old_S, Nam);
3218 end if;
3220 Check_Internal_Protected_Use (N, Old_S);
3222 -- For a renaming-as-body, require subtype conformance, but if the
3223 -- declaration being completed has not been frozen, then inherit the
3224 -- convention of the renamed subprogram prior to checking conformance
3225 -- (unless the renaming has an explicit convention established; the
3226 -- rule stated in the RM doesn't seem to address this ???).
3228 if Present (Rename_Spec) then
3229 Generate_Reference (Rename_Spec, Defining_Entity (Spec), 'b');
3230 Style.Check_Identifier (Defining_Entity (Spec), Rename_Spec);
3232 if not Is_Frozen (Rename_Spec) then
3233 if not Has_Convention_Pragma (Rename_Spec) then
3234 Set_Convention (New_S, Convention (Old_S));
3235 end if;
3237 if Ekind (Old_S) /= E_Operator then
3238 Check_Mode_Conformant (New_S, Old_S, Spec);
3239 end if;
3241 if Original_Subprogram (Old_S) = Rename_Spec then
3242 Error_Msg_N ("unfrozen subprogram cannot rename itself ", N);
3243 end if;
3244 else
3245 Check_Subtype_Conformant (New_S, Old_S, Spec);
3246 end if;
3248 Check_Frozen_Renaming (N, Rename_Spec);
3250 -- Check explicitly that renamed entity is not intrinsic, because
3251 -- in a generic the renamed body is not built. In this case,
3252 -- the renaming_as_body is a completion.
3254 if Inside_A_Generic then
3255 if Is_Frozen (Rename_Spec)
3256 and then Is_Intrinsic_Subprogram (Old_S)
3257 then
3258 Error_Msg_N
3259 ("subprogram in renaming_as_body cannot be intrinsic",
3260 Name (N));
3261 end if;
3263 Set_Has_Completion (Rename_Spec);
3264 end if;
3266 elsif Ekind (Old_S) /= E_Operator then
3268 -- If this a defaulted subprogram for a class-wide actual there is
3269 -- no check for mode conformance, given that the signatures don't
3270 -- match (the source mentions T but the actual mentions T'Class).
3272 if CW_Actual then
3273 null;
3274 elsif not Is_Actual or else No (Enclosing_Instance) then
3275 Check_Mode_Conformant (New_S, Old_S);
3276 end if;
3278 if Is_Actual and then Error_Posted (New_S) then
3279 Error_Msg_NE ("invalid actual subprogram: & #!", N, Old_S);
3280 end if;
3281 end if;
3283 if No (Rename_Spec) then
3285 -- The parameter profile of the new entity is that of the renamed
3286 -- entity: the subtypes given in the specification are irrelevant.
3288 Inherit_Renamed_Profile (New_S, Old_S);
3290 -- A call to the subprogram is transformed into a call to the
3291 -- renamed entity. This is transitive if the renamed entity is
3292 -- itself a renaming.
3294 if Present (Alias (Old_S)) then
3295 Set_Alias (New_S, Alias (Old_S));
3296 else
3297 Set_Alias (New_S, Old_S);
3298 end if;
3300 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3301 -- renaming as body, since the entity in this case is not an
3302 -- intrinsic (it calls an intrinsic, but we have a real body for
3303 -- this call, and it is in this body that the required intrinsic
3304 -- processing will take place).
3306 -- Also, if this is a renaming of inequality, the renamed operator
3307 -- is intrinsic, but what matters is the corresponding equality
3308 -- operator, which may be user-defined.
3310 Set_Is_Intrinsic_Subprogram
3311 (New_S,
3312 Is_Intrinsic_Subprogram (Old_S)
3313 and then
3314 (Chars (Old_S) /= Name_Op_Ne
3315 or else Ekind (Old_S) = E_Operator
3316 or else Is_Intrinsic_Subprogram
3317 (Corresponding_Equality (Old_S))));
3319 if Ekind (Alias (New_S)) = E_Operator then
3320 Set_Has_Delayed_Freeze (New_S, False);
3321 end if;
3323 -- If the renaming corresponds to an association for an abstract
3324 -- formal subprogram, then various attributes must be set to
3325 -- indicate that the renaming is an abstract dispatching operation
3326 -- with a controlling type.
3328 if Is_Actual and then Is_Abstract_Subprogram (Formal_Spec) then
3330 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3331 -- see it as corresponding to a generic association for a
3332 -- formal abstract subprogram
3334 Set_Is_Abstract_Subprogram (New_S);
3336 declare
3337 New_S_Ctrl_Type : constant Entity_Id :=
3338 Find_Dispatching_Type (New_S);
3339 Old_S_Ctrl_Type : constant Entity_Id :=
3340 Find_Dispatching_Type (Old_S);
3342 begin
3344 -- The actual must match the (instance of the) formal,
3345 -- and must be a controlling type.
3347 if Old_S_Ctrl_Type /= New_S_Ctrl_Type
3348 or else No (New_S_Ctrl_Type)
3349 then
3350 Error_Msg_NE
3351 ("actual must be dispatching subprogram for type&",
3352 Nam, New_S_Ctrl_Type);
3354 else
3355 Set_Is_Dispatching_Operation (New_S);
3356 Check_Controlling_Formals (New_S_Ctrl_Type, New_S);
3358 -- If the actual in the formal subprogram is itself a
3359 -- formal abstract subprogram association, there's no
3360 -- dispatch table component or position to inherit.
3362 if Present (DTC_Entity (Old_S)) then
3363 Set_DTC_Entity (New_S, DTC_Entity (Old_S));
3364 Set_DT_Position_Value (New_S, DT_Position (Old_S));
3365 end if;
3366 end if;
3367 end;
3368 end if;
3369 end if;
3371 if Is_Actual then
3372 null;
3374 -- The following is illegal, because F hides whatever other F may
3375 -- be around:
3376 -- function F (...) renames F;
3378 elsif Old_S = New_S
3379 or else (Nkind (Nam) /= N_Expanded_Name
3380 and then Chars (Old_S) = Chars (New_S))
3381 then
3382 Error_Msg_N ("subprogram cannot rename itself", N);
3384 -- This is illegal even if we use a selector:
3385 -- function F (...) renames Pkg.F;
3386 -- because F is still hidden.
3388 elsif Nkind (Nam) = N_Expanded_Name
3389 and then Entity (Prefix (Nam)) = Current_Scope
3390 and then Chars (Selector_Name (Nam)) = Chars (New_S)
3391 then
3392 -- This is an error, but we overlook the error and accept the
3393 -- renaming if the special Overriding_Renamings mode is in effect.
3395 if not Overriding_Renamings then
3396 Error_Msg_NE
3397 ("implicit operation& is not visible (RM 8.3 (15))",
3398 Nam, Old_S);
3399 end if;
3400 end if;
3402 Set_Convention (New_S, Convention (Old_S));
3404 if Is_Abstract_Subprogram (Old_S) then
3405 if Present (Rename_Spec) then
3406 Error_Msg_N
3407 ("a renaming-as-body cannot rename an abstract subprogram",
3409 Set_Has_Completion (Rename_Spec);
3410 else
3411 Set_Is_Abstract_Subprogram (New_S);
3412 end if;
3413 end if;
3415 Check_Library_Unit_Renaming (N, Old_S);
3417 -- Pathological case: procedure renames entry in the scope of its
3418 -- task. Entry is given by simple name, but body must be built for
3419 -- procedure. Of course if called it will deadlock.
3421 if Ekind (Old_S) = E_Entry then
3422 Set_Has_Completion (New_S, False);
3423 Set_Alias (New_S, Empty);
3424 end if;
3426 -- Do not freeze the renaming nor the renamed entity when the context
3427 -- is an enclosing generic. Freezing is an expansion activity, and in
3428 -- addition the renamed entity may depend on the generic formals of
3429 -- the enclosing generic.
3431 if Is_Actual and not Inside_A_Generic then
3432 Freeze_Before (N, Old_S);
3433 Freeze_Actual_Profile;
3434 Set_Has_Delayed_Freeze (New_S, False);
3435 Freeze_Before (N, New_S);
3437 -- An abstract subprogram is only allowed as an actual in the case
3438 -- where the formal subprogram is also abstract.
3440 if (Ekind (Old_S) = E_Procedure or else Ekind (Old_S) = E_Function)
3441 and then Is_Abstract_Subprogram (Old_S)
3442 and then not Is_Abstract_Subprogram (Formal_Spec)
3443 then
3444 Error_Msg_N
3445 ("abstract subprogram not allowed as generic actual", Nam);
3446 end if;
3447 end if;
3449 else
3450 -- A common error is to assume that implicit operators for types are
3451 -- defined in Standard, or in the scope of a subtype. In those cases
3452 -- where the renamed entity is given with an expanded name, it is
3453 -- worth mentioning that operators for the type are not declared in
3454 -- the scope given by the prefix.
3456 if Nkind (Nam) = N_Expanded_Name
3457 and then Nkind (Selector_Name (Nam)) = N_Operator_Symbol
3458 and then Scope (Entity (Nam)) = Standard_Standard
3459 then
3460 declare
3461 T : constant Entity_Id :=
3462 Base_Type (Etype (First_Formal (New_S)));
3463 begin
3464 Error_Msg_Node_2 := Prefix (Nam);
3465 Error_Msg_NE
3466 ("operator for type& is not declared in&", Prefix (Nam), T);
3467 end;
3469 else
3470 Error_Msg_NE
3471 ("no visible subprogram matches the specification for&",
3472 Spec, New_S);
3473 end if;
3475 if Present (Candidate_Renaming) then
3476 declare
3477 F1 : Entity_Id;
3478 F2 : Entity_Id;
3479 T1 : Entity_Id;
3481 begin
3482 F1 := First_Formal (Candidate_Renaming);
3483 F2 := First_Formal (New_S);
3484 T1 := First_Subtype (Etype (F1));
3485 while Present (F1) and then Present (F2) loop
3486 Next_Formal (F1);
3487 Next_Formal (F2);
3488 end loop;
3490 if Present (F1) and then Present (Default_Value (F1)) then
3491 if Present (Next_Formal (F1)) then
3492 Error_Msg_NE
3493 ("\missing specification for & and other formals with "
3494 & "defaults", Spec, F1);
3495 else
3496 Error_Msg_NE ("\missing specification for &", Spec, F1);
3497 end if;
3498 end if;
3500 if Nkind (Nam) = N_Operator_Symbol
3501 and then From_Default (N)
3502 then
3503 Error_Msg_Node_2 := T1;
3504 Error_Msg_NE
3505 ("default & on & is not directly visible", Nam, Nam);
3506 end if;
3507 end;
3508 end if;
3509 end if;
3511 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3512 -- controlling access parameters are known non-null for the renamed
3513 -- subprogram. Test also applies to a subprogram instantiation that
3514 -- is dispatching. Test is skipped if some previous error was detected
3515 -- that set Old_S to Any_Id.
3517 if Ada_Version >= Ada_2005
3518 and then Old_S /= Any_Id
3519 and then not Is_Dispatching_Operation (Old_S)
3520 and then Is_Dispatching_Operation (New_S)
3521 then
3522 declare
3523 Old_F : Entity_Id;
3524 New_F : Entity_Id;
3526 begin
3527 Old_F := First_Formal (Old_S);
3528 New_F := First_Formal (New_S);
3529 while Present (Old_F) loop
3530 if Ekind (Etype (Old_F)) = E_Anonymous_Access_Type
3531 and then Is_Controlling_Formal (New_F)
3532 and then not Can_Never_Be_Null (Old_F)
3533 then
3534 Error_Msg_N ("access parameter is controlling,", New_F);
3535 Error_Msg_NE
3536 ("\corresponding parameter of& must be explicitly null "
3537 & "excluding", New_F, Old_S);
3538 end if;
3540 Next_Formal (Old_F);
3541 Next_Formal (New_F);
3542 end loop;
3543 end;
3544 end if;
3546 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3547 -- is to warn if an operator is being renamed as a different operator.
3548 -- If the operator is predefined, examine the kind of the entity, not
3549 -- the abbreviated declaration in Standard.
3551 if Comes_From_Source (N)
3552 and then Present (Old_S)
3553 and then (Nkind (Old_S) = N_Defining_Operator_Symbol
3554 or else Ekind (Old_S) = E_Operator)
3555 and then Nkind (New_S) = N_Defining_Operator_Symbol
3556 and then Chars (Old_S) /= Chars (New_S)
3557 then
3558 Error_Msg_NE
3559 ("& is being renamed as a different operator??", N, Old_S);
3560 end if;
3562 -- Check for renaming of obsolescent subprogram
3564 Check_Obsolescent_2005_Entity (Entity (Nam), Nam);
3566 -- Another warning or some utility: if the new subprogram as the same
3567 -- name as the old one, the old one is not hidden by an outer homograph,
3568 -- the new one is not a public symbol, and the old one is otherwise
3569 -- directly visible, the renaming is superfluous.
3571 if Chars (Old_S) = Chars (New_S)
3572 and then Comes_From_Source (N)
3573 and then Scope (Old_S) /= Standard_Standard
3574 and then Warn_On_Redundant_Constructs
3575 and then (Is_Immediately_Visible (Old_S)
3576 or else Is_Potentially_Use_Visible (Old_S))
3577 and then Is_Overloadable (Current_Scope)
3578 and then Chars (Current_Scope) /= Chars (Old_S)
3579 then
3580 Error_Msg_N
3581 ("redundant renaming, entity is directly visible?r?", Name (N));
3582 end if;
3584 -- Implementation-defined aspect specifications can appear in a renaming
3585 -- declaration, but not language-defined ones. The call to procedure
3586 -- Analyze_Aspect_Specifications will take care of this error check.
3588 if Has_Aspects (N) then
3589 Analyze_Aspect_Specifications (N, New_S);
3590 end if;
3592 Ada_Version := Save_AV;
3593 Ada_Version_Pragma := Save_AVP;
3594 Ada_Version_Explicit := Save_AV_Exp;
3596 -- In GNATprove mode, the renamings of actual subprograms are replaced
3597 -- with wrapper functions that make it easier to propagate axioms to the
3598 -- points of call within an instance. Wrappers are generated if formal
3599 -- subprogram is subject to axiomatization.
3601 -- The types in the wrapper profiles are obtained from (instances of)
3602 -- the types of the formal subprogram.
3604 if Is_Actual
3605 and then GNATprove_Mode
3606 and then Present (Containing_Package_With_Ext_Axioms (Formal_Spec))
3607 and then not Inside_A_Generic
3608 then
3609 if Ekind (Old_S) = E_Function then
3610 Rewrite (N, Build_Function_Wrapper (Formal_Spec, Old_S));
3611 Analyze (N);
3613 elsif Ekind (Old_S) = E_Operator then
3614 Rewrite (N, Build_Operator_Wrapper (Formal_Spec, Old_S));
3615 Analyze (N);
3616 end if;
3617 end if;
3618 end Analyze_Subprogram_Renaming;
3620 -------------------------
3621 -- Analyze_Use_Package --
3622 -------------------------
3624 -- Resolve the package names in the use clause, and make all the visible
3625 -- entities defined in the package potentially use-visible. If the package
3626 -- is already in use from a previous use clause, its visible entities are
3627 -- already use-visible. In that case, mark the occurrence as a redundant
3628 -- use. If the package is an open scope, i.e. if the use clause occurs
3629 -- within the package itself, ignore it.
3631 procedure Analyze_Use_Package (N : Node_Id) is
3632 Ghost_Id : Entity_Id := Empty;
3633 Living_Id : Entity_Id := Empty;
3634 Pack : Entity_Id;
3635 Pack_Name : Node_Id;
3637 begin
3638 Check_SPARK_05_Restriction ("use clause is not allowed", N);
3640 Set_Hidden_By_Use_Clause (N, No_Elist);
3642 -- Use clause not allowed in a spec of a predefined package declaration
3643 -- except that packages whose file name starts a-n are OK (these are
3644 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3646 if Is_Predefined_Unit (Current_Sem_Unit)
3647 and then Get_Name_String
3648 (Unit_File_Name (Current_Sem_Unit)) (1 .. 3) /= "a-n"
3649 and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
3650 N_Package_Declaration
3651 then
3652 Error_Msg_N ("use clause not allowed in predefined spec", N);
3653 end if;
3655 -- Chain clause to list of use clauses in current scope
3657 if Nkind (Parent (N)) /= N_Compilation_Unit then
3658 Chain_Use_Clause (N);
3659 end if;
3661 -- Loop through package names to identify referenced packages
3663 Pack_Name := First (Names (N));
3664 while Present (Pack_Name) loop
3665 Analyze (Pack_Name);
3667 if Nkind (Parent (N)) = N_Compilation_Unit
3668 and then Nkind (Pack_Name) = N_Expanded_Name
3669 then
3670 declare
3671 Pref : Node_Id;
3673 begin
3674 Pref := Prefix (Pack_Name);
3675 while Nkind (Pref) = N_Expanded_Name loop
3676 Pref := Prefix (Pref);
3677 end loop;
3679 if Entity (Pref) = Standard_Standard then
3680 Error_Msg_N
3681 ("predefined package Standard cannot appear in a context "
3682 & "clause", Pref);
3683 end if;
3684 end;
3685 end if;
3687 Next (Pack_Name);
3688 end loop;
3690 -- Loop through package names to mark all entities as potentially use
3691 -- visible.
3693 Pack_Name := First (Names (N));
3694 while Present (Pack_Name) loop
3695 if Is_Entity_Name (Pack_Name) then
3696 Pack := Entity (Pack_Name);
3698 if Ekind (Pack) /= E_Package and then Etype (Pack) /= Any_Type then
3699 if Ekind (Pack) = E_Generic_Package then
3700 Error_Msg_N -- CODEFIX
3701 ("a generic package is not allowed in a use clause",
3702 Pack_Name);
3704 elsif Ekind_In (Pack, E_Generic_Function, E_Generic_Package)
3705 then
3706 Error_Msg_N -- CODEFIX
3707 ("a generic subprogram is not allowed in a use clause",
3708 Pack_Name);
3710 elsif Ekind_In (Pack, E_Function, E_Procedure, E_Operator) then
3711 Error_Msg_N -- CODEFIX
3712 ("a subprogram is not allowed in a use clause",
3713 Pack_Name);
3715 else
3716 Error_Msg_N ("& is not allowed in a use clause", Pack_Name);
3717 end if;
3719 else
3720 if Nkind (Parent (N)) = N_Compilation_Unit then
3721 Check_In_Previous_With_Clause (N, Pack_Name);
3722 end if;
3724 if Applicable_Use (Pack_Name) then
3725 Use_One_Package (Pack, N);
3726 end if;
3728 -- Capture the first Ghost package and the first living package
3730 if Is_Entity_Name (Pack_Name) then
3731 Pack := Entity (Pack_Name);
3733 if Is_Ghost_Entity (Pack) then
3734 if No (Ghost_Id) then
3735 Ghost_Id := Pack;
3736 end if;
3738 elsif No (Living_Id) then
3739 Living_Id := Pack;
3740 end if;
3741 end if;
3742 end if;
3744 -- Report error because name denotes something other than a package
3746 else
3747 Error_Msg_N ("& is not a package", Pack_Name);
3748 end if;
3750 Next (Pack_Name);
3751 end loop;
3753 -- Detect a mixture of Ghost packages and living packages within the
3754 -- same use package clause. Ideally one would split a use package clause
3755 -- with multiple names into multiple use package clauses with a single
3756 -- name, however clients of the front end would have to adapt to this
3757 -- change.
3759 if Present (Ghost_Id) and then Present (Living_Id) then
3760 Error_Msg_N
3761 ("use clause cannot mention ghost and non-ghost ghost units", N);
3763 Error_Msg_Sloc := Sloc (Ghost_Id);
3764 Error_Msg_NE ("\& # declared as ghost", N, Ghost_Id);
3766 Error_Msg_Sloc := Sloc (Living_Id);
3767 Error_Msg_NE ("\& # declared as non-ghost", N, Living_Id);
3768 end if;
3770 Mark_Ghost_Clause (N);
3771 end Analyze_Use_Package;
3773 ----------------------
3774 -- Analyze_Use_Type --
3775 ----------------------
3777 procedure Analyze_Use_Type (N : Node_Id) is
3778 E : Entity_Id;
3779 Ghost_Id : Entity_Id := Empty;
3780 Id : Node_Id;
3781 Living_Id : Entity_Id := Empty;
3783 begin
3784 Set_Hidden_By_Use_Clause (N, No_Elist);
3786 -- Chain clause to list of use clauses in current scope
3788 if Nkind (Parent (N)) /= N_Compilation_Unit then
3789 Chain_Use_Clause (N);
3790 end if;
3792 -- If the Used_Operations list is already initialized, the clause has
3793 -- been analyzed previously, and it is being reinstalled, for example
3794 -- when the clause appears in a package spec and we are compiling the
3795 -- corresponding package body. In that case, make the entities on the
3796 -- existing list use_visible, and mark the corresponding types In_Use.
3798 if Present (Used_Operations (N)) then
3799 declare
3800 Mark : Node_Id;
3801 Elmt : Elmt_Id;
3803 begin
3804 Mark := First (Subtype_Marks (N));
3805 while Present (Mark) loop
3806 Use_One_Type (Mark, Installed => True);
3807 Next (Mark);
3808 end loop;
3810 Elmt := First_Elmt (Used_Operations (N));
3811 while Present (Elmt) loop
3812 Set_Is_Potentially_Use_Visible (Node (Elmt));
3813 Next_Elmt (Elmt);
3814 end loop;
3815 end;
3817 return;
3818 end if;
3820 -- Otherwise, create new list and attach to it the operations that are
3821 -- made use-visible by the clause.
3823 Set_Used_Operations (N, New_Elmt_List);
3824 Id := First (Subtype_Marks (N));
3825 while Present (Id) loop
3826 Find_Type (Id);
3827 E := Entity (Id);
3829 if E /= Any_Type then
3830 Use_One_Type (Id);
3832 if Nkind (Parent (N)) = N_Compilation_Unit then
3833 if Nkind (Id) = N_Identifier then
3834 Error_Msg_N ("type is not directly visible", Id);
3836 elsif Is_Child_Unit (Scope (E))
3837 and then Scope (E) /= System_Aux_Id
3838 then
3839 Check_In_Previous_With_Clause (N, Prefix (Id));
3840 end if;
3841 end if;
3843 else
3844 -- If the use_type_clause appears in a compilation unit context,
3845 -- check whether it comes from a unit that may appear in a
3846 -- limited_with_clause, for a better error message.
3848 if Nkind (Parent (N)) = N_Compilation_Unit
3849 and then Nkind (Id) /= N_Identifier
3850 then
3851 declare
3852 Item : Node_Id;
3853 Pref : Node_Id;
3855 function Mentioned (Nam : Node_Id) return Boolean;
3856 -- Check whether the prefix of expanded name for the type
3857 -- appears in the prefix of some limited_with_clause.
3859 ---------------
3860 -- Mentioned --
3861 ---------------
3863 function Mentioned (Nam : Node_Id) return Boolean is
3864 begin
3865 return Nkind (Name (Item)) = N_Selected_Component
3866 and then Chars (Prefix (Name (Item))) = Chars (Nam);
3867 end Mentioned;
3869 begin
3870 Pref := Prefix (Id);
3871 Item := First (Context_Items (Parent (N)));
3872 while Present (Item) and then Item /= N loop
3873 if Nkind (Item) = N_With_Clause
3874 and then Limited_Present (Item)
3875 and then Mentioned (Pref)
3876 then
3877 Change_Error_Text
3878 (Get_Msg_Id, "premature usage of incomplete type");
3879 end if;
3881 Next (Item);
3882 end loop;
3883 end;
3884 end if;
3885 end if;
3887 -- Capture the first Ghost type and the first living type
3889 if Is_Ghost_Entity (E) then
3890 if No (Ghost_Id) then
3891 Ghost_Id := E;
3892 end if;
3894 elsif No (Living_Id) then
3895 Living_Id := E;
3896 end if;
3898 Next (Id);
3899 end loop;
3901 -- Detect a mixture of Ghost types and living types within the same use
3902 -- type clause. Ideally one would split a use type clause with multiple
3903 -- marks into multiple use type clauses with a single mark, however
3904 -- clients of the front end will have to adapt to this change.
3906 if Present (Ghost_Id) and then Present (Living_Id) then
3907 Error_Msg_N
3908 ("use clause cannot mention ghost and non-ghost ghost types", N);
3910 Error_Msg_Sloc := Sloc (Ghost_Id);
3911 Error_Msg_NE ("\& # declared as ghost", N, Ghost_Id);
3913 Error_Msg_Sloc := Sloc (Living_Id);
3914 Error_Msg_NE ("\& # declared as non-ghost", N, Living_Id);
3915 end if;
3917 Mark_Ghost_Clause (N);
3918 end Analyze_Use_Type;
3920 --------------------
3921 -- Applicable_Use --
3922 --------------------
3924 function Applicable_Use (Pack_Name : Node_Id) return Boolean is
3925 Pack : constant Entity_Id := Entity (Pack_Name);
3927 begin
3928 if In_Open_Scopes (Pack) then
3929 if Warn_On_Redundant_Constructs and then Pack = Current_Scope then
3930 Error_Msg_NE -- CODEFIX
3931 ("& is already use-visible within itself?r?", Pack_Name, Pack);
3932 end if;
3934 return False;
3936 elsif In_Use (Pack) then
3937 Note_Redundant_Use (Pack_Name);
3938 return False;
3940 elsif Present (Renamed_Object (Pack))
3941 and then In_Use (Renamed_Object (Pack))
3942 then
3943 Note_Redundant_Use (Pack_Name);
3944 return False;
3946 else
3947 return True;
3948 end if;
3949 end Applicable_Use;
3951 ------------------------
3952 -- Attribute_Renaming --
3953 ------------------------
3955 procedure Attribute_Renaming (N : Node_Id) is
3956 Loc : constant Source_Ptr := Sloc (N);
3957 Nam : constant Node_Id := Name (N);
3958 Spec : constant Node_Id := Specification (N);
3959 New_S : constant Entity_Id := Defining_Unit_Name (Spec);
3960 Aname : constant Name_Id := Attribute_Name (Nam);
3962 Form_Num : Nat := 0;
3963 Expr_List : List_Id := No_List;
3965 Attr_Node : Node_Id;
3966 Body_Node : Node_Id;
3967 Param_Spec : Node_Id;
3969 begin
3970 Generate_Definition (New_S);
3972 -- This procedure is called in the context of subprogram renaming, and
3973 -- thus the attribute must be one that is a subprogram. All of those
3974 -- have at least one formal parameter, with the exceptions of the GNAT
3975 -- attribute 'Img, which GNAT treats as renameable.
3977 if not Is_Non_Empty_List (Parameter_Specifications (Spec)) then
3978 if Aname /= Name_Img then
3979 Error_Msg_N
3980 ("subprogram renaming an attribute must have formals", N);
3981 return;
3982 end if;
3984 else
3985 Param_Spec := First (Parameter_Specifications (Spec));
3986 while Present (Param_Spec) loop
3987 Form_Num := Form_Num + 1;
3989 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
3990 Find_Type (Parameter_Type (Param_Spec));
3992 -- The profile of the new entity denotes the base type (s) of
3993 -- the types given in the specification. For access parameters
3994 -- there are no subtypes involved.
3996 Rewrite (Parameter_Type (Param_Spec),
3997 New_Occurrence_Of
3998 (Base_Type (Entity (Parameter_Type (Param_Spec))), Loc));
3999 end if;
4001 if No (Expr_List) then
4002 Expr_List := New_List;
4003 end if;
4005 Append_To (Expr_List,
4006 Make_Identifier (Loc,
4007 Chars => Chars (Defining_Identifier (Param_Spec))));
4009 -- The expressions in the attribute reference are not freeze
4010 -- points. Neither is the attribute as a whole, see below.
4012 Set_Must_Not_Freeze (Last (Expr_List));
4013 Next (Param_Spec);
4014 end loop;
4015 end if;
4017 -- Immediate error if too many formals. Other mismatches in number or
4018 -- types of parameters are detected when we analyze the body of the
4019 -- subprogram that we construct.
4021 if Form_Num > 2 then
4022 Error_Msg_N ("too many formals for attribute", N);
4024 -- Error if the attribute reference has expressions that look like
4025 -- formal parameters.
4027 elsif Present (Expressions (Nam)) then
4028 Error_Msg_N ("illegal expressions in attribute reference", Nam);
4030 elsif
4031 Nam_In (Aname, Name_Compose, Name_Exponent, Name_Leading_Part,
4032 Name_Pos, Name_Round, Name_Scaling,
4033 Name_Val)
4034 then
4035 if Nkind (N) = N_Subprogram_Renaming_Declaration
4036 and then Present (Corresponding_Formal_Spec (N))
4037 then
4038 Error_Msg_N
4039 ("generic actual cannot be attribute involving universal type",
4040 Nam);
4041 else
4042 Error_Msg_N
4043 ("attribute involving a universal type cannot be renamed",
4044 Nam);
4045 end if;
4046 end if;
4048 -- Rewrite attribute node to have a list of expressions corresponding to
4049 -- the subprogram formals. A renaming declaration is not a freeze point,
4050 -- and the analysis of the attribute reference should not freeze the
4051 -- type of the prefix. We use the original node in the renaming so that
4052 -- its source location is preserved, and checks on stream attributes are
4053 -- properly applied.
4055 Attr_Node := Relocate_Node (Nam);
4056 Set_Expressions (Attr_Node, Expr_List);
4058 Set_Must_Not_Freeze (Attr_Node);
4059 Set_Must_Not_Freeze (Prefix (Nam));
4061 -- Case of renaming a function
4063 if Nkind (Spec) = N_Function_Specification then
4064 if Is_Procedure_Attribute_Name (Aname) then
4065 Error_Msg_N ("attribute can only be renamed as procedure", Nam);
4066 return;
4067 end if;
4069 Find_Type (Result_Definition (Spec));
4070 Rewrite (Result_Definition (Spec),
4071 New_Occurrence_Of
4072 (Base_Type (Entity (Result_Definition (Spec))), Loc));
4074 Body_Node :=
4075 Make_Subprogram_Body (Loc,
4076 Specification => Spec,
4077 Declarations => New_List,
4078 Handled_Statement_Sequence =>
4079 Make_Handled_Sequence_Of_Statements (Loc,
4080 Statements => New_List (
4081 Make_Simple_Return_Statement (Loc,
4082 Expression => Attr_Node))));
4084 -- Case of renaming a procedure
4086 else
4087 if not Is_Procedure_Attribute_Name (Aname) then
4088 Error_Msg_N ("attribute can only be renamed as function", Nam);
4089 return;
4090 end if;
4092 Body_Node :=
4093 Make_Subprogram_Body (Loc,
4094 Specification => Spec,
4095 Declarations => New_List,
4096 Handled_Statement_Sequence =>
4097 Make_Handled_Sequence_Of_Statements (Loc,
4098 Statements => New_List (Attr_Node)));
4099 end if;
4101 -- In case of tagged types we add the body of the generated function to
4102 -- the freezing actions of the type (because in the general case such
4103 -- type is still not frozen). We exclude from this processing generic
4104 -- formal subprograms found in instantiations.
4106 -- We must exclude restricted run-time libraries because
4107 -- entity AST_Handler is defined in package System.Aux_Dec which is not
4108 -- available in those platforms. Note that we cannot use the function
4109 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
4110 -- the ZFP run-time library is not defined as a profile, and we do not
4111 -- want to deal with AST_Handler in ZFP mode.
4113 if not Configurable_Run_Time_Mode
4114 and then not Present (Corresponding_Formal_Spec (N))
4115 and then Etype (Nam) /= RTE (RE_AST_Handler)
4116 then
4117 declare
4118 P : constant Node_Id := Prefix (Nam);
4120 begin
4121 -- The prefix of 'Img is an object that is evaluated for each call
4122 -- of the function that renames it.
4124 if Aname = Name_Img then
4125 Preanalyze_And_Resolve (P);
4127 -- For all other attribute renamings, the prefix is a subtype
4129 else
4130 Find_Type (P);
4131 end if;
4133 -- If the target type is not yet frozen, add the body to the
4134 -- actions to be elaborated at freeze time.
4136 if Is_Tagged_Type (Etype (P))
4137 and then In_Open_Scopes (Scope (Etype (P)))
4138 then
4139 Ensure_Freeze_Node (Etype (P));
4140 Append_Freeze_Action (Etype (P), Body_Node);
4141 else
4142 Rewrite (N, Body_Node);
4143 Analyze (N);
4144 Set_Etype (New_S, Base_Type (Etype (New_S)));
4145 end if;
4146 end;
4148 -- Generic formal subprograms or AST_Handler renaming
4150 else
4151 Rewrite (N, Body_Node);
4152 Analyze (N);
4153 Set_Etype (New_S, Base_Type (Etype (New_S)));
4154 end if;
4156 if Is_Compilation_Unit (New_S) then
4157 Error_Msg_N
4158 ("a library unit can only rename another library unit", N);
4159 end if;
4161 -- We suppress elaboration warnings for the resulting entity, since
4162 -- clearly they are not needed, and more particularly, in the case
4163 -- of a generic formal subprogram, the resulting entity can appear
4164 -- after the instantiation itself, and thus look like a bogus case
4165 -- of access before elaboration.
4167 Set_Suppress_Elaboration_Warnings (New_S);
4169 end Attribute_Renaming;
4171 ----------------------
4172 -- Chain_Use_Clause --
4173 ----------------------
4175 procedure Chain_Use_Clause (N : Node_Id) is
4176 Pack : Entity_Id;
4177 Level : Int := Scope_Stack.Last;
4179 begin
4180 if not Is_Compilation_Unit (Current_Scope)
4181 or else not Is_Child_Unit (Current_Scope)
4182 then
4183 null; -- Common case
4185 elsif Defining_Entity (Parent (N)) = Current_Scope then
4186 null; -- Common case for compilation unit
4188 else
4189 -- If declaration appears in some other scope, it must be in some
4190 -- parent unit when compiling a child.
4192 Pack := Defining_Entity (Parent (N));
4193 if not In_Open_Scopes (Pack) then
4194 null; -- default as well
4196 -- If the use clause appears in an ancestor and we are in the
4197 -- private part of the immediate parent, the use clauses are
4198 -- already installed.
4200 elsif Pack /= Scope (Current_Scope)
4201 and then In_Private_Part (Scope (Current_Scope))
4202 then
4203 null;
4205 else
4206 -- Find entry for parent unit in scope stack
4208 while Scope_Stack.Table (Level).Entity /= Pack loop
4209 Level := Level - 1;
4210 end loop;
4211 end if;
4212 end if;
4214 Set_Next_Use_Clause (N,
4215 Scope_Stack.Table (Level).First_Use_Clause);
4216 Scope_Stack.Table (Level).First_Use_Clause := N;
4217 end Chain_Use_Clause;
4219 ---------------------------
4220 -- Check_Frozen_Renaming --
4221 ---------------------------
4223 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id) is
4224 B_Node : Node_Id;
4225 Old_S : Entity_Id;
4227 begin
4228 if Is_Frozen (Subp) and then not Has_Completion (Subp) then
4229 B_Node :=
4230 Build_Renamed_Body
4231 (Parent (Declaration_Node (Subp)), Defining_Entity (N));
4233 if Is_Entity_Name (Name (N)) then
4234 Old_S := Entity (Name (N));
4236 if not Is_Frozen (Old_S)
4237 and then Operating_Mode /= Check_Semantics
4238 then
4239 Append_Freeze_Action (Old_S, B_Node);
4240 else
4241 Insert_After (N, B_Node);
4242 Analyze (B_Node);
4243 end if;
4245 if Is_Intrinsic_Subprogram (Old_S) and then not In_Instance then
4246 Error_Msg_N
4247 ("subprogram used in renaming_as_body cannot be intrinsic",
4248 Name (N));
4249 end if;
4251 else
4252 Insert_After (N, B_Node);
4253 Analyze (B_Node);
4254 end if;
4255 end if;
4256 end Check_Frozen_Renaming;
4258 -------------------------------
4259 -- Set_Entity_Or_Discriminal --
4260 -------------------------------
4262 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id) is
4263 P : Node_Id;
4265 begin
4266 -- If the entity is not a discriminant, or else expansion is disabled,
4267 -- simply set the entity.
4269 if not In_Spec_Expression
4270 or else Ekind (E) /= E_Discriminant
4271 or else Inside_A_Generic
4272 then
4273 Set_Entity_With_Checks (N, E);
4275 -- The replacement of a discriminant by the corresponding discriminal
4276 -- is not done for a task discriminant that appears in a default
4277 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
4278 -- for details on their handling.
4280 elsif Is_Concurrent_Type (Scope (E)) then
4281 P := Parent (N);
4282 while Present (P)
4283 and then not Nkind_In (P, N_Parameter_Specification,
4284 N_Component_Declaration)
4285 loop
4286 P := Parent (P);
4287 end loop;
4289 if Present (P)
4290 and then Nkind (P) = N_Parameter_Specification
4291 then
4292 null;
4294 else
4295 Set_Entity (N, Discriminal (E));
4296 end if;
4298 -- Otherwise, this is a discriminant in a context in which
4299 -- it is a reference to the corresponding parameter of the
4300 -- init proc for the enclosing type.
4302 else
4303 Set_Entity (N, Discriminal (E));
4304 end if;
4305 end Set_Entity_Or_Discriminal;
4307 -----------------------------------
4308 -- Check_In_Previous_With_Clause --
4309 -----------------------------------
4311 procedure Check_In_Previous_With_Clause
4312 (N : Node_Id;
4313 Nam : Entity_Id)
4315 Pack : constant Entity_Id := Entity (Original_Node (Nam));
4316 Item : Node_Id;
4317 Par : Node_Id;
4319 begin
4320 Item := First (Context_Items (Parent (N)));
4321 while Present (Item) and then Item /= N loop
4322 if Nkind (Item) = N_With_Clause
4324 -- Protect the frontend against previous critical errors
4326 and then Nkind (Name (Item)) /= N_Selected_Component
4327 and then Entity (Name (Item)) = Pack
4328 then
4329 Par := Nam;
4331 -- Find root library unit in with_clause
4333 while Nkind (Par) = N_Expanded_Name loop
4334 Par := Prefix (Par);
4335 end loop;
4337 if Is_Child_Unit (Entity (Original_Node (Par))) then
4338 Error_Msg_NE ("& is not directly visible", Par, Entity (Par));
4339 else
4340 return;
4341 end if;
4342 end if;
4344 Next (Item);
4345 end loop;
4347 -- On exit, package is not mentioned in a previous with_clause.
4348 -- Check if its prefix is.
4350 if Nkind (Nam) = N_Expanded_Name then
4351 Check_In_Previous_With_Clause (N, Prefix (Nam));
4353 elsif Pack /= Any_Id then
4354 Error_Msg_NE ("& is not visible", Nam, Pack);
4355 end if;
4356 end Check_In_Previous_With_Clause;
4358 ---------------------------------
4359 -- Check_Library_Unit_Renaming --
4360 ---------------------------------
4362 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id) is
4363 New_E : Entity_Id;
4365 begin
4366 if Nkind (Parent (N)) /= N_Compilation_Unit then
4367 return;
4369 -- Check for library unit. Note that we used to check for the scope
4370 -- being Standard here, but that was wrong for Standard itself.
4372 elsif not Is_Compilation_Unit (Old_E)
4373 and then not Is_Child_Unit (Old_E)
4374 then
4375 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4377 -- Entities defined in Standard (operators and boolean literals) cannot
4378 -- be renamed as library units.
4380 elsif Scope (Old_E) = Standard_Standard
4381 and then Sloc (Old_E) = Standard_Location
4382 then
4383 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4385 elsif Present (Parent_Spec (N))
4386 and then Nkind (Unit (Parent_Spec (N))) = N_Generic_Package_Declaration
4387 and then not Is_Child_Unit (Old_E)
4388 then
4389 Error_Msg_N
4390 ("renamed unit must be a child unit of generic parent", Name (N));
4392 elsif Nkind (N) in N_Generic_Renaming_Declaration
4393 and then Nkind (Name (N)) = N_Expanded_Name
4394 and then Is_Generic_Instance (Entity (Prefix (Name (N))))
4395 and then Is_Generic_Unit (Old_E)
4396 then
4397 Error_Msg_N
4398 ("renamed generic unit must be a library unit", Name (N));
4400 elsif Is_Package_Or_Generic_Package (Old_E) then
4402 -- Inherit categorization flags
4404 New_E := Defining_Entity (N);
4405 Set_Is_Pure (New_E, Is_Pure (Old_E));
4406 Set_Is_Preelaborated (New_E, Is_Preelaborated (Old_E));
4407 Set_Is_Remote_Call_Interface (New_E,
4408 Is_Remote_Call_Interface (Old_E));
4409 Set_Is_Remote_Types (New_E, Is_Remote_Types (Old_E));
4410 Set_Is_Shared_Passive (New_E, Is_Shared_Passive (Old_E));
4411 end if;
4412 end Check_Library_Unit_Renaming;
4414 ------------------------
4415 -- Enclosing_Instance --
4416 ------------------------
4418 function Enclosing_Instance return Entity_Id is
4419 S : Entity_Id;
4421 begin
4422 if not Is_Generic_Instance (Current_Scope) then
4423 return Empty;
4424 end if;
4426 S := Scope (Current_Scope);
4427 while S /= Standard_Standard loop
4428 if Is_Generic_Instance (S) then
4429 return S;
4430 end if;
4432 S := Scope (S);
4433 end loop;
4435 return Empty;
4436 end Enclosing_Instance;
4438 ---------------
4439 -- End_Scope --
4440 ---------------
4442 procedure End_Scope is
4443 Id : Entity_Id;
4444 Prev : Entity_Id;
4445 Outer : Entity_Id;
4447 begin
4448 Id := First_Entity (Current_Scope);
4449 while Present (Id) loop
4450 -- An entity in the current scope is not necessarily the first one
4451 -- on its homonym chain. Find its predecessor if any,
4452 -- If it is an internal entity, it will not be in the visibility
4453 -- chain altogether, and there is nothing to unchain.
4455 if Id /= Current_Entity (Id) then
4456 Prev := Current_Entity (Id);
4457 while Present (Prev)
4458 and then Present (Homonym (Prev))
4459 and then Homonym (Prev) /= Id
4460 loop
4461 Prev := Homonym (Prev);
4462 end loop;
4464 -- Skip to end of loop if Id is not in the visibility chain
4466 if No (Prev) or else Homonym (Prev) /= Id then
4467 goto Next_Ent;
4468 end if;
4470 else
4471 Prev := Empty;
4472 end if;
4474 Set_Is_Immediately_Visible (Id, False);
4476 Outer := Homonym (Id);
4477 while Present (Outer) and then Scope (Outer) = Current_Scope loop
4478 Outer := Homonym (Outer);
4479 end loop;
4481 -- Reset homonym link of other entities, but do not modify link
4482 -- between entities in current scope, so that the back-end can have
4483 -- a proper count of local overloadings.
4485 if No (Prev) then
4486 Set_Name_Entity_Id (Chars (Id), Outer);
4488 elsif Scope (Prev) /= Scope (Id) then
4489 Set_Homonym (Prev, Outer);
4490 end if;
4492 <<Next_Ent>>
4493 Next_Entity (Id);
4494 end loop;
4496 -- If the scope generated freeze actions, place them before the
4497 -- current declaration and analyze them. Type declarations and
4498 -- the bodies of initialization procedures can generate such nodes.
4499 -- We follow the parent chain until we reach a list node, which is
4500 -- the enclosing list of declarations. If the list appears within
4501 -- a protected definition, move freeze nodes outside the protected
4502 -- type altogether.
4504 if Present
4505 (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions)
4506 then
4507 declare
4508 Decl : Node_Id;
4509 L : constant List_Id := Scope_Stack.Table
4510 (Scope_Stack.Last).Pending_Freeze_Actions;
4512 begin
4513 if Is_Itype (Current_Scope) then
4514 Decl := Associated_Node_For_Itype (Current_Scope);
4515 else
4516 Decl := Parent (Current_Scope);
4517 end if;
4519 Pop_Scope;
4521 while not (Is_List_Member (Decl))
4522 or else Nkind_In (Parent (Decl), N_Protected_Definition,
4523 N_Task_Definition)
4524 loop
4525 Decl := Parent (Decl);
4526 end loop;
4528 Insert_List_Before_And_Analyze (Decl, L);
4529 end;
4531 else
4532 Pop_Scope;
4533 end if;
4534 end End_Scope;
4536 ---------------------
4537 -- End_Use_Clauses --
4538 ---------------------
4540 procedure End_Use_Clauses (Clause : Node_Id) is
4541 U : Node_Id;
4543 begin
4544 -- Remove Use_Type clauses first, because they affect the
4545 -- visibility of operators in subsequent used packages.
4547 U := Clause;
4548 while Present (U) loop
4549 if Nkind (U) = N_Use_Type_Clause then
4550 End_Use_Type (U);
4551 end if;
4553 Next_Use_Clause (U);
4554 end loop;
4556 U := Clause;
4557 while Present (U) loop
4558 if Nkind (U) = N_Use_Package_Clause then
4559 End_Use_Package (U);
4560 end if;
4562 Next_Use_Clause (U);
4563 end loop;
4564 end End_Use_Clauses;
4566 ---------------------
4567 -- End_Use_Package --
4568 ---------------------
4570 procedure End_Use_Package (N : Node_Id) is
4571 Pack_Name : Node_Id;
4572 Pack : Entity_Id;
4573 Id : Entity_Id;
4574 Elmt : Elmt_Id;
4576 function Is_Primitive_Operator_In_Use
4577 (Op : Entity_Id;
4578 F : Entity_Id) return Boolean;
4579 -- Check whether Op is a primitive operator of a use-visible type
4581 ----------------------------------
4582 -- Is_Primitive_Operator_In_Use --
4583 ----------------------------------
4585 function Is_Primitive_Operator_In_Use
4586 (Op : Entity_Id;
4587 F : Entity_Id) return Boolean
4589 T : constant Entity_Id := Base_Type (Etype (F));
4590 begin
4591 return In_Use (T) and then Scope (T) = Scope (Op);
4592 end Is_Primitive_Operator_In_Use;
4594 -- Start of processing for End_Use_Package
4596 begin
4597 Pack_Name := First (Names (N));
4598 while Present (Pack_Name) loop
4600 -- Test that Pack_Name actually denotes a package before processing
4602 if Is_Entity_Name (Pack_Name)
4603 and then Ekind (Entity (Pack_Name)) = E_Package
4604 then
4605 Pack := Entity (Pack_Name);
4607 if In_Open_Scopes (Pack) then
4608 null;
4610 elsif not Redundant_Use (Pack_Name) then
4611 Set_In_Use (Pack, False);
4612 Set_Current_Use_Clause (Pack, Empty);
4614 Id := First_Entity (Pack);
4615 while Present (Id) loop
4617 -- Preserve use-visibility of operators that are primitive
4618 -- operators of a type that is use-visible through an active
4619 -- use_type clause.
4621 if Nkind (Id) = N_Defining_Operator_Symbol
4622 and then
4623 (Is_Primitive_Operator_In_Use (Id, First_Formal (Id))
4624 or else
4625 (Present (Next_Formal (First_Formal (Id)))
4626 and then
4627 Is_Primitive_Operator_In_Use
4628 (Id, Next_Formal (First_Formal (Id)))))
4629 then
4630 null;
4631 else
4632 Set_Is_Potentially_Use_Visible (Id, False);
4633 end if;
4635 if Is_Private_Type (Id)
4636 and then Present (Full_View (Id))
4637 then
4638 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4639 end if;
4641 Next_Entity (Id);
4642 end loop;
4644 if Present (Renamed_Object (Pack)) then
4645 Set_In_Use (Renamed_Object (Pack), False);
4646 Set_Current_Use_Clause (Renamed_Object (Pack), Empty);
4647 end if;
4649 if Chars (Pack) = Name_System
4650 and then Scope (Pack) = Standard_Standard
4651 and then Present_System_Aux
4652 then
4653 Id := First_Entity (System_Aux_Id);
4654 while Present (Id) loop
4655 Set_Is_Potentially_Use_Visible (Id, False);
4657 if Is_Private_Type (Id)
4658 and then Present (Full_View (Id))
4659 then
4660 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4661 end if;
4663 Next_Entity (Id);
4664 end loop;
4666 Set_In_Use (System_Aux_Id, False);
4667 end if;
4669 else
4670 Set_Redundant_Use (Pack_Name, False);
4671 end if;
4672 end if;
4674 Next (Pack_Name);
4675 end loop;
4677 if Present (Hidden_By_Use_Clause (N)) then
4678 Elmt := First_Elmt (Hidden_By_Use_Clause (N));
4679 while Present (Elmt) loop
4680 declare
4681 E : constant Entity_Id := Node (Elmt);
4683 begin
4684 -- Reset either Use_Visibility or Direct_Visibility, depending
4685 -- on how the entity was hidden by the use clause.
4687 if In_Use (Scope (E))
4688 and then Used_As_Generic_Actual (Scope (E))
4689 then
4690 Set_Is_Potentially_Use_Visible (Node (Elmt));
4691 else
4692 Set_Is_Immediately_Visible (Node (Elmt));
4693 end if;
4695 Next_Elmt (Elmt);
4696 end;
4697 end loop;
4699 Set_Hidden_By_Use_Clause (N, No_Elist);
4700 end if;
4701 end End_Use_Package;
4703 ------------------
4704 -- End_Use_Type --
4705 ------------------
4707 procedure End_Use_Type (N : Node_Id) is
4708 Elmt : Elmt_Id;
4709 Id : Entity_Id;
4710 T : Entity_Id;
4712 -- Start of processing for End_Use_Type
4714 begin
4715 Id := First (Subtype_Marks (N));
4716 while Present (Id) loop
4718 -- A call to Rtsfind may occur while analyzing a use_type clause,
4719 -- in which case the type marks are not resolved yet, and there is
4720 -- nothing to remove.
4722 if not Is_Entity_Name (Id) or else No (Entity (Id)) then
4723 goto Continue;
4724 end if;
4726 T := Entity (Id);
4728 if T = Any_Type or else From_Limited_With (T) then
4729 null;
4731 -- Note that the use_type clause may mention a subtype of the type
4732 -- whose primitive operations have been made visible. Here as
4733 -- elsewhere, it is the base type that matters for visibility.
4735 elsif In_Open_Scopes (Scope (Base_Type (T))) then
4736 null;
4738 elsif not Redundant_Use (Id) then
4739 Set_In_Use (T, False);
4740 Set_In_Use (Base_Type (T), False);
4741 Set_Current_Use_Clause (T, Empty);
4742 Set_Current_Use_Clause (Base_Type (T), Empty);
4743 end if;
4745 <<Continue>>
4746 Next (Id);
4747 end loop;
4749 if Is_Empty_Elmt_List (Used_Operations (N)) then
4750 return;
4752 else
4753 Elmt := First_Elmt (Used_Operations (N));
4754 while Present (Elmt) loop
4755 Set_Is_Potentially_Use_Visible (Node (Elmt), False);
4756 Next_Elmt (Elmt);
4757 end loop;
4758 end if;
4759 end End_Use_Type;
4761 ----------------------
4762 -- Find_Direct_Name --
4763 ----------------------
4765 procedure Find_Direct_Name (N : Node_Id) is
4766 E : Entity_Id;
4767 E2 : Entity_Id;
4768 Msg : Boolean;
4770 Homonyms : Entity_Id;
4771 -- Saves start of homonym chain
4773 Inst : Entity_Id := Empty;
4774 -- Enclosing instance, if any
4776 Nvis_Entity : Boolean;
4777 -- Set True to indicate that there is at least one entity on the homonym
4778 -- chain which, while not visible, is visible enough from the user point
4779 -- of view to warrant an error message of "not visible" rather than
4780 -- undefined.
4782 Nvis_Is_Private_Subprg : Boolean := False;
4783 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4784 -- effect concerning library subprograms has been detected. Used to
4785 -- generate the precise error message.
4787 function From_Actual_Package (E : Entity_Id) return Boolean;
4788 -- Returns true if the entity is an actual for a package that is itself
4789 -- an actual for a formal package of the current instance. Such an
4790 -- entity requires special handling because it may be use-visible but
4791 -- hides directly visible entities defined outside the instance, because
4792 -- the corresponding formal did so in the generic.
4794 function Is_Actual_Parameter return Boolean;
4795 -- This function checks if the node N is an identifier that is an actual
4796 -- parameter of a procedure call. If so it returns True, otherwise it
4797 -- return False. The reason for this check is that at this stage we do
4798 -- not know what procedure is being called if the procedure might be
4799 -- overloaded, so it is premature to go setting referenced flags or
4800 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4801 -- for that processing
4803 function Known_But_Invisible (E : Entity_Id) return Boolean;
4804 -- This function determines whether a reference to the entity E, which
4805 -- is not visible, can reasonably be considered to be known to the
4806 -- writer of the reference. This is a heuristic test, used only for
4807 -- the purposes of figuring out whether we prefer to complain that an
4808 -- entity is undefined or invisible (and identify the declaration of
4809 -- the invisible entity in the latter case). The point here is that we
4810 -- don't want to complain that something is invisible and then point to
4811 -- something entirely mysterious to the writer.
4813 procedure Nvis_Messages;
4814 -- Called if there are no visible entries for N, but there is at least
4815 -- one non-directly visible, or hidden declaration. This procedure
4816 -- outputs an appropriate set of error messages.
4818 procedure Undefined (Nvis : Boolean);
4819 -- This function is called if the current node has no corresponding
4820 -- visible entity or entities. The value set in Msg indicates whether
4821 -- an error message was generated (multiple error messages for the
4822 -- same variable are generally suppressed, see body for details).
4823 -- Msg is True if an error message was generated, False if not. This
4824 -- value is used by the caller to determine whether or not to output
4825 -- additional messages where appropriate. The parameter is set False
4826 -- to get the message "X is undefined", and True to get the message
4827 -- "X is not visible".
4829 -------------------------
4830 -- From_Actual_Package --
4831 -------------------------
4833 function From_Actual_Package (E : Entity_Id) return Boolean is
4834 Scop : constant Entity_Id := Scope (E);
4835 -- Declared scope of candidate entity
4837 function Declared_In_Actual (Pack : Entity_Id) return Boolean;
4838 -- Recursive function that does the work and examines actuals of
4839 -- actual packages of current instance.
4841 ------------------------
4842 -- Declared_In_Actual --
4843 ------------------------
4845 function Declared_In_Actual (Pack : Entity_Id) return Boolean is
4846 Act : Entity_Id;
4848 begin
4849 if No (Associated_Formal_Package (Pack)) then
4850 return False;
4852 else
4853 Act := First_Entity (Pack);
4854 while Present (Act) loop
4855 if Renamed_Object (Pack) = Scop then
4856 return True;
4858 -- Check for end of list of actuals
4860 elsif Ekind (Act) = E_Package
4861 and then Renamed_Object (Act) = Pack
4862 then
4863 return False;
4865 elsif Ekind (Act) = E_Package
4866 and then Declared_In_Actual (Act)
4867 then
4868 return True;
4869 end if;
4871 Next_Entity (Act);
4872 end loop;
4874 return False;
4875 end if;
4876 end Declared_In_Actual;
4878 -- Local variables
4880 Act : Entity_Id;
4882 -- Start of processing for From_Actual_Package
4884 begin
4885 if not In_Instance then
4886 return False;
4888 else
4889 Inst := Current_Scope;
4890 while Present (Inst)
4891 and then Ekind (Inst) /= E_Package
4892 and then not Is_Generic_Instance (Inst)
4893 loop
4894 Inst := Scope (Inst);
4895 end loop;
4897 if No (Inst) then
4898 return False;
4899 end if;
4901 Act := First_Entity (Inst);
4902 while Present (Act) loop
4903 if Ekind (Act) = E_Package
4904 and then Declared_In_Actual (Act)
4905 then
4906 return True;
4907 end if;
4909 Next_Entity (Act);
4910 end loop;
4912 return False;
4913 end if;
4914 end From_Actual_Package;
4916 -------------------------
4917 -- Is_Actual_Parameter --
4918 -------------------------
4920 function Is_Actual_Parameter return Boolean is
4921 begin
4922 return
4923 Nkind (N) = N_Identifier
4924 and then
4925 (Nkind (Parent (N)) = N_Procedure_Call_Statement
4926 or else
4927 (Nkind (Parent (N)) = N_Parameter_Association
4928 and then N = Explicit_Actual_Parameter (Parent (N))
4929 and then Nkind (Parent (Parent (N))) =
4930 N_Procedure_Call_Statement));
4931 end Is_Actual_Parameter;
4933 -------------------------
4934 -- Known_But_Invisible --
4935 -------------------------
4937 function Known_But_Invisible (E : Entity_Id) return Boolean is
4938 Fname : File_Name_Type;
4940 begin
4941 -- Entities in Standard are always considered to be known
4943 if Sloc (E) <= Standard_Location then
4944 return True;
4946 -- An entity that does not come from source is always considered
4947 -- to be unknown, since it is an artifact of code expansion.
4949 elsif not Comes_From_Source (E) then
4950 return False;
4952 -- In gnat internal mode, we consider all entities known. The
4953 -- historical reason behind this discrepancy is not known??? But the
4954 -- only effect is to modify the error message given, so it is not
4955 -- critical. Since it only affects the exact wording of error
4956 -- messages in illegal programs, we do not mention this as an
4957 -- effect of -gnatg, since it is not a language modification.
4959 elsif GNAT_Mode then
4960 return True;
4961 end if;
4963 -- Here we have an entity that is not from package Standard, and
4964 -- which comes from Source. See if it comes from an internal file.
4966 Fname := Unit_File_Name (Get_Source_Unit (E));
4968 -- Case of from internal file
4970 if In_Internal_Unit (E) then
4972 -- Private part entities in internal files are never considered
4973 -- to be known to the writer of normal application code.
4975 if Is_Hidden (E) then
4976 return False;
4977 end if;
4979 -- Entities from System packages other than System and
4980 -- System.Storage_Elements are not considered to be known.
4981 -- System.Auxxxx files are also considered known to the user.
4983 -- Should refine this at some point to generally distinguish
4984 -- between known and unknown internal files ???
4986 Get_Name_String (Fname);
4988 return
4989 Name_Len < 2
4990 or else
4991 Name_Buffer (1 .. 2) /= "s-"
4992 or else
4993 Name_Buffer (3 .. 8) = "stoele"
4994 or else
4995 Name_Buffer (3 .. 5) = "aux";
4997 -- If not an internal file, then entity is definitely known, even if
4998 -- it is in a private part (the message generated will note that it
4999 -- is in a private part).
5001 else
5002 return True;
5003 end if;
5004 end Known_But_Invisible;
5006 -------------------
5007 -- Nvis_Messages --
5008 -------------------
5010 procedure Nvis_Messages is
5011 Comp_Unit : Node_Id;
5012 Ent : Entity_Id;
5013 Found : Boolean := False;
5014 Hidden : Boolean := False;
5015 Item : Node_Id;
5017 begin
5018 -- Ada 2005 (AI-262): Generate a precise error concerning the
5019 -- Beaujolais effect that was previously detected
5021 if Nvis_Is_Private_Subprg then
5023 pragma Assert (Nkind (E2) = N_Defining_Identifier
5024 and then Ekind (E2) = E_Function
5025 and then Scope (E2) = Standard_Standard
5026 and then Has_Private_With (E2));
5028 -- Find the sloc corresponding to the private with'ed unit
5030 Comp_Unit := Cunit (Current_Sem_Unit);
5031 Error_Msg_Sloc := No_Location;
5033 Item := First (Context_Items (Comp_Unit));
5034 while Present (Item) loop
5035 if Nkind (Item) = N_With_Clause
5036 and then Private_Present (Item)
5037 and then Entity (Name (Item)) = E2
5038 then
5039 Error_Msg_Sloc := Sloc (Item);
5040 exit;
5041 end if;
5043 Next (Item);
5044 end loop;
5046 pragma Assert (Error_Msg_Sloc /= No_Location);
5048 Error_Msg_N ("(Ada 2005): hidden by private with clause #", N);
5049 return;
5050 end if;
5052 Undefined (Nvis => True);
5054 if Msg then
5056 -- First loop does hidden declarations
5058 Ent := Homonyms;
5059 while Present (Ent) loop
5060 if Is_Potentially_Use_Visible (Ent) then
5061 if not Hidden then
5062 Error_Msg_N -- CODEFIX
5063 ("multiple use clauses cause hiding!", N);
5064 Hidden := True;
5065 end if;
5067 Error_Msg_Sloc := Sloc (Ent);
5068 Error_Msg_N -- CODEFIX
5069 ("hidden declaration#!", N);
5070 end if;
5072 Ent := Homonym (Ent);
5073 end loop;
5075 -- If we found hidden declarations, then that's enough, don't
5076 -- bother looking for non-visible declarations as well.
5078 if Hidden then
5079 return;
5080 end if;
5082 -- Second loop does non-directly visible declarations
5084 Ent := Homonyms;
5085 while Present (Ent) loop
5086 if not Is_Potentially_Use_Visible (Ent) then
5088 -- Do not bother the user with unknown entities
5090 if not Known_But_Invisible (Ent) then
5091 goto Continue;
5092 end if;
5094 Error_Msg_Sloc := Sloc (Ent);
5096 -- Output message noting that there is a non-visible
5097 -- declaration, distinguishing the private part case.
5099 if Is_Hidden (Ent) then
5100 Error_Msg_N ("non-visible (private) declaration#!", N);
5102 -- If the entity is declared in a generic package, it
5103 -- cannot be visible, so there is no point in adding it
5104 -- to the list of candidates if another homograph from a
5105 -- non-generic package has been seen.
5107 elsif Ekind (Scope (Ent)) = E_Generic_Package
5108 and then Found
5109 then
5110 null;
5112 else
5113 Error_Msg_N -- CODEFIX
5114 ("non-visible declaration#!", N);
5116 if Ekind (Scope (Ent)) /= E_Generic_Package then
5117 Found := True;
5118 end if;
5120 if Is_Compilation_Unit (Ent)
5121 and then
5122 Nkind (Parent (Parent (N))) = N_Use_Package_Clause
5123 then
5124 Error_Msg_Qual_Level := 99;
5125 Error_Msg_NE -- CODEFIX
5126 ("\\missing `WITH &;`", N, Ent);
5127 Error_Msg_Qual_Level := 0;
5128 end if;
5130 if Ekind (Ent) = E_Discriminant
5131 and then Present (Corresponding_Discriminant (Ent))
5132 and then Scope (Corresponding_Discriminant (Ent)) =
5133 Etype (Scope (Ent))
5134 then
5135 Error_Msg_N
5136 ("inherited discriminant not allowed here" &
5137 " (RM 3.8 (12), 3.8.1 (6))!", N);
5138 end if;
5139 end if;
5141 -- Set entity and its containing package as referenced. We
5142 -- can't be sure of this, but this seems a better choice
5143 -- to avoid unused entity messages.
5145 if Comes_From_Source (Ent) then
5146 Set_Referenced (Ent);
5147 Set_Referenced (Cunit_Entity (Get_Source_Unit (Ent)));
5148 end if;
5149 end if;
5151 <<Continue>>
5152 Ent := Homonym (Ent);
5153 end loop;
5154 end if;
5155 end Nvis_Messages;
5157 ---------------
5158 -- Undefined --
5159 ---------------
5161 procedure Undefined (Nvis : Boolean) is
5162 Emsg : Error_Msg_Id;
5164 begin
5165 -- We should never find an undefined internal name. If we do, then
5166 -- see if we have previous errors. If so, ignore on the grounds that
5167 -- it is probably a cascaded message (e.g. a block label from a badly
5168 -- formed block). If no previous errors, then we have a real internal
5169 -- error of some kind so raise an exception.
5171 if Is_Internal_Name (Chars (N)) then
5172 if Total_Errors_Detected /= 0 then
5173 return;
5174 else
5175 raise Program_Error;
5176 end if;
5177 end if;
5179 -- A very specialized error check, if the undefined variable is
5180 -- a case tag, and the case type is an enumeration type, check
5181 -- for a possible misspelling, and if so, modify the identifier
5183 -- Named aggregate should also be handled similarly ???
5185 if Nkind (N) = N_Identifier
5186 and then Nkind (Parent (N)) = N_Case_Statement_Alternative
5187 then
5188 declare
5189 Case_Stm : constant Node_Id := Parent (Parent (N));
5190 Case_Typ : constant Entity_Id := Etype (Expression (Case_Stm));
5192 Lit : Node_Id;
5194 begin
5195 if Is_Enumeration_Type (Case_Typ)
5196 and then not Is_Standard_Character_Type (Case_Typ)
5197 then
5198 Lit := First_Literal (Case_Typ);
5199 Get_Name_String (Chars (Lit));
5201 if Chars (Lit) /= Chars (N)
5202 and then Is_Bad_Spelling_Of (Chars (N), Chars (Lit))
5203 then
5204 Error_Msg_Node_2 := Lit;
5205 Error_Msg_N -- CODEFIX
5206 ("& is undefined, assume misspelling of &", N);
5207 Rewrite (N, New_Occurrence_Of (Lit, Sloc (N)));
5208 return;
5209 end if;
5211 Lit := Next_Literal (Lit);
5212 end if;
5213 end;
5214 end if;
5216 -- Normal processing
5218 Set_Entity (N, Any_Id);
5219 Set_Etype (N, Any_Type);
5221 -- We use the table Urefs to keep track of entities for which we
5222 -- have issued errors for undefined references. Multiple errors
5223 -- for a single name are normally suppressed, however we modify
5224 -- the error message to alert the programmer to this effect.
5226 for J in Urefs.First .. Urefs.Last loop
5227 if Chars (N) = Chars (Urefs.Table (J).Node) then
5228 if Urefs.Table (J).Err /= No_Error_Msg
5229 and then Sloc (N) /= Urefs.Table (J).Loc
5230 then
5231 Error_Msg_Node_1 := Urefs.Table (J).Node;
5233 if Urefs.Table (J).Nvis then
5234 Change_Error_Text (Urefs.Table (J).Err,
5235 "& is not visible (more references follow)");
5236 else
5237 Change_Error_Text (Urefs.Table (J).Err,
5238 "& is undefined (more references follow)");
5239 end if;
5241 Urefs.Table (J).Err := No_Error_Msg;
5242 end if;
5244 -- Although we will set Msg False, and thus suppress the
5245 -- message, we also set Error_Posted True, to avoid any
5246 -- cascaded messages resulting from the undefined reference.
5248 Msg := False;
5249 Set_Error_Posted (N, True);
5250 return;
5251 end if;
5252 end loop;
5254 -- If entry not found, this is first undefined occurrence
5256 if Nvis then
5257 Error_Msg_N ("& is not visible!", N);
5258 Emsg := Get_Msg_Id;
5260 else
5261 Error_Msg_N ("& is undefined!", N);
5262 Emsg := Get_Msg_Id;
5264 -- A very bizarre special check, if the undefined identifier
5265 -- is put or put_line, then add a special error message (since
5266 -- this is a very common error for beginners to make).
5268 if Nam_In (Chars (N), Name_Put, Name_Put_Line) then
5269 Error_Msg_N -- CODEFIX
5270 ("\\possible missing `WITH Ada.Text_'I'O; " &
5271 "USE Ada.Text_'I'O`!", N);
5273 -- Another special check if N is the prefix of a selected
5274 -- component which is a known unit, add message complaining
5275 -- about missing with for this unit.
5277 elsif Nkind (Parent (N)) = N_Selected_Component
5278 and then N = Prefix (Parent (N))
5279 and then Is_Known_Unit (Parent (N))
5280 then
5281 Error_Msg_Node_2 := Selector_Name (Parent (N));
5282 Error_Msg_N -- CODEFIX
5283 ("\\missing `WITH &.&;`", Prefix (Parent (N)));
5284 end if;
5286 -- Now check for possible misspellings
5288 declare
5289 E : Entity_Id;
5290 Ematch : Entity_Id := Empty;
5292 Last_Name_Id : constant Name_Id :=
5293 Name_Id (Nat (First_Name_Id) +
5294 Name_Entries_Count - 1);
5296 begin
5297 for Nam in First_Name_Id .. Last_Name_Id loop
5298 E := Get_Name_Entity_Id (Nam);
5300 if Present (E)
5301 and then (Is_Immediately_Visible (E)
5302 or else
5303 Is_Potentially_Use_Visible (E))
5304 then
5305 if Is_Bad_Spelling_Of (Chars (N), Nam) then
5306 Ematch := E;
5307 exit;
5308 end if;
5309 end if;
5310 end loop;
5312 if Present (Ematch) then
5313 Error_Msg_NE -- CODEFIX
5314 ("\possible misspelling of&", N, Ematch);
5315 end if;
5316 end;
5317 end if;
5319 -- Make entry in undefined references table unless the full errors
5320 -- switch is set, in which case by refraining from generating the
5321 -- table entry, we guarantee that we get an error message for every
5322 -- undefined reference.
5324 if not All_Errors_Mode then
5325 Urefs.Append (
5326 (Node => N,
5327 Err => Emsg,
5328 Nvis => Nvis,
5329 Loc => Sloc (N)));
5330 end if;
5332 Msg := True;
5333 end Undefined;
5335 -- Local variables
5337 Nested_Inst : Entity_Id := Empty;
5338 -- The entity of a nested instance which appears within Inst (if any)
5340 -- Start of processing for Find_Direct_Name
5342 begin
5343 -- If the entity pointer is already set, this is an internal node, or
5344 -- a node that is analyzed more than once, after a tree modification.
5345 -- In such a case there is no resolution to perform, just set the type.
5347 if Present (Entity (N)) then
5348 if Is_Type (Entity (N)) then
5349 Set_Etype (N, Entity (N));
5351 else
5352 declare
5353 Entyp : constant Entity_Id := Etype (Entity (N));
5355 begin
5356 -- One special case here. If the Etype field is already set,
5357 -- and references the packed array type corresponding to the
5358 -- etype of the referenced entity, then leave it alone. This
5359 -- happens for trees generated from Exp_Pakd, where expressions
5360 -- can be deliberately "mis-typed" to the packed array type.
5362 if Is_Array_Type (Entyp)
5363 and then Is_Packed (Entyp)
5364 and then Present (Etype (N))
5365 and then Etype (N) = Packed_Array_Impl_Type (Entyp)
5366 then
5367 null;
5369 -- If not that special case, then just reset the Etype
5371 else
5372 Set_Etype (N, Etype (Entity (N)));
5373 end if;
5374 end;
5375 end if;
5377 return;
5378 end if;
5380 -- Here if Entity pointer was not set, we need full visibility analysis
5381 -- First we generate debugging output if the debug E flag is set.
5383 if Debug_Flag_E then
5384 Write_Str ("Looking for ");
5385 Write_Name (Chars (N));
5386 Write_Eol;
5387 end if;
5389 Homonyms := Current_Entity (N);
5390 Nvis_Entity := False;
5392 E := Homonyms;
5393 while Present (E) loop
5395 -- If entity is immediately visible or potentially use visible, then
5396 -- process the entity and we are done.
5398 if Is_Immediately_Visible (E) then
5399 goto Immediately_Visible_Entity;
5401 elsif Is_Potentially_Use_Visible (E) then
5402 goto Potentially_Use_Visible_Entity;
5404 -- Note if a known but invisible entity encountered
5406 elsif Known_But_Invisible (E) then
5407 Nvis_Entity := True;
5408 end if;
5410 -- Move to next entity in chain and continue search
5412 E := Homonym (E);
5413 end loop;
5415 -- If no entries on homonym chain that were potentially visible,
5416 -- and no entities reasonably considered as non-visible, then
5417 -- we have a plain undefined reference, with no additional
5418 -- explanation required.
5420 if not Nvis_Entity then
5421 Undefined (Nvis => False);
5423 -- Otherwise there is at least one entry on the homonym chain that
5424 -- is reasonably considered as being known and non-visible.
5426 else
5427 Nvis_Messages;
5428 end if;
5430 goto Done;
5432 -- Processing for a potentially use visible entry found. We must search
5433 -- the rest of the homonym chain for two reasons. First, if there is a
5434 -- directly visible entry, then none of the potentially use-visible
5435 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5436 -- for the case of multiple potentially use-visible entries hiding one
5437 -- another and as a result being non-directly visible (RM 8.4(11)).
5439 <<Potentially_Use_Visible_Entity>> declare
5440 Only_One_Visible : Boolean := True;
5441 All_Overloadable : Boolean := Is_Overloadable (E);
5443 begin
5444 E2 := Homonym (E);
5445 while Present (E2) loop
5446 if Is_Immediately_Visible (E2) then
5448 -- If the use-visible entity comes from the actual for a
5449 -- formal package, it hides a directly visible entity from
5450 -- outside the instance.
5452 if From_Actual_Package (E)
5453 and then Scope_Depth (E2) < Scope_Depth (Inst)
5454 then
5455 goto Found;
5456 else
5457 E := E2;
5458 goto Immediately_Visible_Entity;
5459 end if;
5461 elsif Is_Potentially_Use_Visible (E2) then
5462 Only_One_Visible := False;
5463 All_Overloadable := All_Overloadable and Is_Overloadable (E2);
5465 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5466 -- that can occur in private_with clauses. Example:
5468 -- with A;
5469 -- private with B; package A is
5470 -- package C is function B return Integer;
5471 -- use A; end A;
5472 -- V1 : Integer := B;
5473 -- private function B return Integer;
5474 -- V2 : Integer := B;
5475 -- end C;
5477 -- V1 resolves to A.B, but V2 resolves to library unit B
5479 elsif Ekind (E2) = E_Function
5480 and then Scope (E2) = Standard_Standard
5481 and then Has_Private_With (E2)
5482 then
5483 Only_One_Visible := False;
5484 All_Overloadable := False;
5485 Nvis_Is_Private_Subprg := True;
5486 exit;
5487 end if;
5489 E2 := Homonym (E2);
5490 end loop;
5492 -- On falling through this loop, we have checked that there are no
5493 -- immediately visible entities. Only_One_Visible is set if exactly
5494 -- one potentially use visible entity exists. All_Overloadable is
5495 -- set if all the potentially use visible entities are overloadable.
5496 -- The condition for legality is that either there is one potentially
5497 -- use visible entity, or if there is more than one, then all of them
5498 -- are overloadable.
5500 if Only_One_Visible or All_Overloadable then
5501 goto Found;
5503 -- If there is more than one potentially use-visible entity and at
5504 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5505 -- Note that E points to the first such entity on the homonym list.
5507 else
5508 -- If one of the entities is declared in an actual package, it
5509 -- was visible in the generic, and takes precedence over other
5510 -- entities that are potentially use-visible. The same applies
5511 -- if the entity is declared in a local instantiation of the
5512 -- current instance.
5514 if In_Instance then
5516 -- Find the current instance
5518 Inst := Current_Scope;
5519 while Present (Inst) and then Inst /= Standard_Standard loop
5520 if Is_Generic_Instance (Inst) then
5521 exit;
5522 end if;
5524 Inst := Scope (Inst);
5525 end loop;
5527 -- Reexamine the candidate entities, giving priority to those
5528 -- that were visible within the generic.
5530 E2 := E;
5531 while Present (E2) loop
5532 Nested_Inst := Nearest_Enclosing_Instance (E2);
5534 -- The entity is declared within an actual package, or in a
5535 -- nested instance. The ">=" accounts for the case where the
5536 -- current instance and the nested instance are the same.
5538 if From_Actual_Package (E2)
5539 or else (Present (Nested_Inst)
5540 and then Scope_Depth (Nested_Inst) >=
5541 Scope_Depth (Inst))
5542 then
5543 E := E2;
5544 goto Found;
5545 end if;
5547 E2 := Homonym (E2);
5548 end loop;
5550 Nvis_Messages;
5551 goto Done;
5553 elsif Is_Predefined_Unit (Current_Sem_Unit) then
5554 -- A use-clause in the body of a system file creates conflict
5555 -- with some entity in a user scope, while rtsfind is active.
5556 -- Keep only the entity coming from another predefined unit.
5558 E2 := E;
5559 while Present (E2) loop
5560 if In_Predefined_Unit (E2) then
5561 E := E2;
5562 goto Found;
5563 end if;
5565 E2 := Homonym (E2);
5566 end loop;
5568 -- Entity must exist because predefined unit is correct
5570 raise Program_Error;
5572 else
5573 Nvis_Messages;
5574 goto Done;
5575 end if;
5576 end if;
5577 end;
5579 -- Come here with E set to the first immediately visible entity on
5580 -- the homonym chain. This is the one we want unless there is another
5581 -- immediately visible entity further on in the chain for an inner
5582 -- scope (RM 8.3(8)).
5584 <<Immediately_Visible_Entity>> declare
5585 Level : Int;
5586 Scop : Entity_Id;
5588 begin
5589 -- Find scope level of initial entity. When compiling through
5590 -- Rtsfind, the previous context is not completely invisible, and
5591 -- an outer entity may appear on the chain, whose scope is below
5592 -- the entry for Standard that delimits the current scope stack.
5593 -- Indicate that the level for this spurious entry is outside of
5594 -- the current scope stack.
5596 Level := Scope_Stack.Last;
5597 loop
5598 Scop := Scope_Stack.Table (Level).Entity;
5599 exit when Scop = Scope (E);
5600 Level := Level - 1;
5601 exit when Scop = Standard_Standard;
5602 end loop;
5604 -- Now search remainder of homonym chain for more inner entry
5605 -- If the entity is Standard itself, it has no scope, and we
5606 -- compare it with the stack entry directly.
5608 E2 := Homonym (E);
5609 while Present (E2) loop
5610 if Is_Immediately_Visible (E2) then
5612 -- If a generic package contains a local declaration that
5613 -- has the same name as the generic, there may be a visibility
5614 -- conflict in an instance, where the local declaration must
5615 -- also hide the name of the corresponding package renaming.
5616 -- We check explicitly for a package declared by a renaming,
5617 -- whose renamed entity is an instance that is on the scope
5618 -- stack, and that contains a homonym in the same scope. Once
5619 -- we have found it, we know that the package renaming is not
5620 -- immediately visible, and that the identifier denotes the
5621 -- other entity (and its homonyms if overloaded).
5623 if Scope (E) = Scope (E2)
5624 and then Ekind (E) = E_Package
5625 and then Present (Renamed_Object (E))
5626 and then Is_Generic_Instance (Renamed_Object (E))
5627 and then In_Open_Scopes (Renamed_Object (E))
5628 and then Comes_From_Source (N)
5629 then
5630 Set_Is_Immediately_Visible (E, False);
5631 E := E2;
5633 else
5634 for J in Level + 1 .. Scope_Stack.Last loop
5635 if Scope_Stack.Table (J).Entity = Scope (E2)
5636 or else Scope_Stack.Table (J).Entity = E2
5637 then
5638 Level := J;
5639 E := E2;
5640 exit;
5641 end if;
5642 end loop;
5643 end if;
5644 end if;
5646 E2 := Homonym (E2);
5647 end loop;
5649 -- At the end of that loop, E is the innermost immediately
5650 -- visible entity, so we are all set.
5651 end;
5653 -- Come here with entity found, and stored in E
5655 <<Found>> begin
5657 -- Check violation of No_Wide_Characters restriction
5659 Check_Wide_Character_Restriction (E, N);
5661 -- When distribution features are available (Get_PCS_Name /=
5662 -- Name_No_DSA), a remote access-to-subprogram type is converted
5663 -- into a record type holding whatever information is needed to
5664 -- perform a remote call on an RCI subprogram. In that case we
5665 -- rewrite any occurrence of the RAS type into the equivalent record
5666 -- type here. 'Access attribute references and RAS dereferences are
5667 -- then implemented using specific TSSs. However when distribution is
5668 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5669 -- generation of these TSSs, and we must keep the RAS type in its
5670 -- original access-to-subprogram form (since all calls through a
5671 -- value of such type will be local anyway in the absence of a PCS).
5673 if Comes_From_Source (N)
5674 and then Is_Remote_Access_To_Subprogram_Type (E)
5675 and then Ekind (E) = E_Access_Subprogram_Type
5676 and then Expander_Active
5677 and then Get_PCS_Name /= Name_No_DSA
5678 then
5679 Rewrite (N, New_Occurrence_Of (Equivalent_Type (E), Sloc (N)));
5680 goto Done;
5681 end if;
5683 -- Set the entity. Note that the reason we call Set_Entity for the
5684 -- overloadable case, as opposed to Set_Entity_With_Checks is
5685 -- that in the overloaded case, the initial call can set the wrong
5686 -- homonym. The call that sets the right homonym is in Sem_Res and
5687 -- that call does use Set_Entity_With_Checks, so we don't miss
5688 -- a style check.
5690 if Is_Overloadable (E) then
5691 Set_Entity (N, E);
5692 else
5693 Set_Entity_With_Checks (N, E);
5694 end if;
5696 if Is_Type (E) then
5697 Set_Etype (N, E);
5698 else
5699 Set_Etype (N, Get_Full_View (Etype (E)));
5700 end if;
5702 if Debug_Flag_E then
5703 Write_Str (" found ");
5704 Write_Entity_Info (E, " ");
5705 end if;
5707 -- If the Ekind of the entity is Void, it means that all homonyms
5708 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5709 -- test is skipped if the current scope is a record and the name is
5710 -- a pragma argument expression (case of Atomic and Volatile pragmas
5711 -- and possibly other similar pragmas added later, which are allowed
5712 -- to reference components in the current record).
5714 if Ekind (E) = E_Void
5715 and then
5716 (not Is_Record_Type (Current_Scope)
5717 or else Nkind (Parent (N)) /= N_Pragma_Argument_Association)
5718 then
5719 Premature_Usage (N);
5721 -- If the entity is overloadable, collect all interpretations of the
5722 -- name for subsequent overload resolution. We optimize a bit here to
5723 -- do this only if we have an overloadable entity that is not on its
5724 -- own on the homonym chain.
5726 elsif Is_Overloadable (E)
5727 and then (Present (Homonym (E)) or else Current_Entity (N) /= E)
5728 then
5729 Collect_Interps (N);
5731 -- If no homonyms were visible, the entity is unambiguous
5733 if not Is_Overloaded (N) then
5734 if not Is_Actual_Parameter then
5735 Generate_Reference (E, N);
5736 end if;
5737 end if;
5739 -- Case of non-overloadable entity, set the entity providing that
5740 -- we do not have the case of a discriminant reference within a
5741 -- default expression. Such references are replaced with the
5742 -- corresponding discriminal, which is the formal corresponding to
5743 -- to the discriminant in the initialization procedure.
5745 else
5746 -- Entity is unambiguous, indicate that it is referenced here
5748 -- For a renaming of an object, always generate simple reference,
5749 -- we don't try to keep track of assignments in this case, except
5750 -- in SPARK mode where renamings are traversed for generating
5751 -- local effects of subprograms.
5753 if Is_Object (E)
5754 and then Present (Renamed_Object (E))
5755 and then not GNATprove_Mode
5756 then
5757 Generate_Reference (E, N);
5759 -- If the renamed entity is a private protected component,
5760 -- reference the original component as well. This needs to be
5761 -- done because the private renamings are installed before any
5762 -- analysis has occurred. Reference to a private component will
5763 -- resolve to the renaming and the original component will be
5764 -- left unreferenced, hence the following.
5766 if Is_Prival (E) then
5767 Generate_Reference (Prival_Link (E), N);
5768 end if;
5770 -- One odd case is that we do not want to set the Referenced flag
5771 -- if the entity is a label, and the identifier is the label in
5772 -- the source, since this is not a reference from the point of
5773 -- view of the user.
5775 elsif Nkind (Parent (N)) = N_Label then
5776 declare
5777 R : constant Boolean := Referenced (E);
5779 begin
5780 -- Generate reference unless this is an actual parameter
5781 -- (see comment below)
5783 if Is_Actual_Parameter then
5784 Generate_Reference (E, N);
5785 Set_Referenced (E, R);
5786 end if;
5787 end;
5789 -- Normal case, not a label: generate reference
5791 else
5792 if not Is_Actual_Parameter then
5794 -- Package or generic package is always a simple reference
5796 if Ekind_In (E, E_Package, E_Generic_Package) then
5797 Generate_Reference (E, N, 'r');
5799 -- Else see if we have a left hand side
5801 else
5802 case Is_LHS (N) is
5803 when Yes =>
5804 Generate_Reference (E, N, 'm');
5806 when No =>
5807 Generate_Reference (E, N, 'r');
5809 -- If we don't know now, generate reference later
5811 when Unknown =>
5812 Deferred_References.Append ((E, N));
5813 end case;
5814 end if;
5815 end if;
5816 end if;
5818 Set_Entity_Or_Discriminal (N, E);
5820 -- The name may designate a generalized reference, in which case
5821 -- the dereference interpretation will be included. Context is
5822 -- one in which a name is legal.
5824 if Ada_Version >= Ada_2012
5825 and then
5826 (Nkind (Parent (N)) in N_Subexpr
5827 or else Nkind_In (Parent (N), N_Assignment_Statement,
5828 N_Object_Declaration,
5829 N_Parameter_Association))
5830 then
5831 Check_Implicit_Dereference (N, Etype (E));
5832 end if;
5833 end if;
5834 end;
5836 -- Come here with entity set
5838 <<Done>>
5839 Check_Restriction_No_Use_Of_Entity (N);
5840 end Find_Direct_Name;
5842 ------------------------
5843 -- Find_Expanded_Name --
5844 ------------------------
5846 -- This routine searches the homonym chain of the entity until it finds
5847 -- an entity declared in the scope denoted by the prefix. If the entity
5848 -- is private, it may nevertheless be immediately visible, if we are in
5849 -- the scope of its declaration.
5851 procedure Find_Expanded_Name (N : Node_Id) is
5852 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean;
5853 -- Determine whether expanded name Nod appears within a pragma which is
5854 -- a suitable context for an abstract view of a state or variable. The
5855 -- following pragmas fall in this category:
5856 -- Depends
5857 -- Global
5858 -- Initializes
5859 -- Refined_Depends
5860 -- Refined_Global
5862 -- In addition, pragma Abstract_State is also considered suitable even
5863 -- though it is an illegal context for an abstract view as this allows
5864 -- for proper resolution of abstract views of variables. This illegal
5865 -- context is later flagged in the analysis of indicator Part_Of.
5867 -----------------------------
5868 -- In_Abstract_View_Pragma --
5869 -----------------------------
5871 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean is
5872 Par : Node_Id;
5874 begin
5875 -- Climb the parent chain looking for a pragma
5877 Par := Nod;
5878 while Present (Par) loop
5879 if Nkind (Par) = N_Pragma then
5880 if Nam_In (Pragma_Name_Unmapped (Par),
5881 Name_Abstract_State,
5882 Name_Depends,
5883 Name_Global,
5884 Name_Initializes,
5885 Name_Refined_Depends,
5886 Name_Refined_Global)
5887 then
5888 return True;
5890 -- Otherwise the pragma is not a legal context for an abstract
5891 -- view.
5893 else
5894 exit;
5895 end if;
5897 -- Prevent the search from going too far
5899 elsif Is_Body_Or_Package_Declaration (Par) then
5900 exit;
5901 end if;
5903 Par := Parent (Par);
5904 end loop;
5906 return False;
5907 end In_Abstract_View_Pragma;
5909 -- Local variables
5911 Selector : constant Node_Id := Selector_Name (N);
5912 Candidate : Entity_Id := Empty;
5913 P_Name : Entity_Id;
5914 Id : Entity_Id;
5916 -- Start of processing for Find_Expanded_Name
5918 begin
5919 P_Name := Entity (Prefix (N));
5921 -- If the prefix is a renamed package, look for the entity in the
5922 -- original package.
5924 if Ekind (P_Name) = E_Package
5925 and then Present (Renamed_Object (P_Name))
5926 then
5927 P_Name := Renamed_Object (P_Name);
5929 -- Rewrite node with entity field pointing to renamed object
5931 Rewrite (Prefix (N), New_Copy (Prefix (N)));
5932 Set_Entity (Prefix (N), P_Name);
5934 -- If the prefix is an object of a concurrent type, look for
5935 -- the entity in the associated task or protected type.
5937 elsif Is_Concurrent_Type (Etype (P_Name)) then
5938 P_Name := Etype (P_Name);
5939 end if;
5941 Id := Current_Entity (Selector);
5943 declare
5944 Is_New_Candidate : Boolean;
5946 begin
5947 while Present (Id) loop
5948 if Scope (Id) = P_Name then
5949 Candidate := Id;
5950 Is_New_Candidate := True;
5952 -- Handle abstract views of states and variables. These are
5953 -- acceptable candidates only when the reference to the view
5954 -- appears in certain pragmas.
5956 if Ekind (Id) = E_Abstract_State
5957 and then From_Limited_With (Id)
5958 and then Present (Non_Limited_View (Id))
5959 then
5960 if In_Abstract_View_Pragma (N) then
5961 Candidate := Non_Limited_View (Id);
5962 Is_New_Candidate := True;
5964 -- Hide the candidate because it is not used in a proper
5965 -- context.
5967 else
5968 Candidate := Empty;
5969 Is_New_Candidate := False;
5970 end if;
5971 end if;
5973 -- Ada 2005 (AI-217): Handle shadow entities associated with
5974 -- types declared in limited-withed nested packages. We don't need
5975 -- to handle E_Incomplete_Subtype entities because the entities
5976 -- in the limited view are always E_Incomplete_Type and
5977 -- E_Class_Wide_Type entities (see Build_Limited_Views).
5979 -- Regarding the expression used to evaluate the scope, it
5980 -- is important to note that the limited view also has shadow
5981 -- entities associated nested packages. For this reason the
5982 -- correct scope of the entity is the scope of the real entity.
5983 -- The non-limited view may itself be incomplete, in which case
5984 -- get the full view if available.
5986 elsif Ekind_In (Id, E_Incomplete_Type, E_Class_Wide_Type)
5987 and then From_Limited_With (Id)
5988 and then Present (Non_Limited_View (Id))
5989 and then Scope (Non_Limited_View (Id)) = P_Name
5990 then
5991 Candidate := Get_Full_View (Non_Limited_View (Id));
5992 Is_New_Candidate := True;
5994 else
5995 Is_New_Candidate := False;
5996 end if;
5998 if Is_New_Candidate then
6000 -- If entity is a child unit, either it is a visible child of
6001 -- the prefix, or we are in the body of a generic prefix, as
6002 -- will happen when a child unit is instantiated in the body
6003 -- of a generic parent. This is because the instance body does
6004 -- not restore the full compilation context, given that all
6005 -- non-local references have been captured.
6007 if Is_Child_Unit (Id) or else P_Name = Standard_Standard then
6008 exit when Is_Visible_Lib_Unit (Id)
6009 or else (Is_Child_Unit (Id)
6010 and then In_Open_Scopes (Scope (Id))
6011 and then In_Instance_Body);
6012 else
6013 exit when not Is_Hidden (Id);
6014 end if;
6016 exit when Is_Immediately_Visible (Id);
6017 end if;
6019 Id := Homonym (Id);
6020 end loop;
6021 end;
6023 if No (Id)
6024 and then Ekind_In (P_Name, E_Procedure, E_Function)
6025 and then Is_Generic_Instance (P_Name)
6026 then
6027 -- Expanded name denotes entity in (instance of) generic subprogram.
6028 -- The entity may be in the subprogram instance, or may denote one of
6029 -- the formals, which is declared in the enclosing wrapper package.
6031 P_Name := Scope (P_Name);
6033 Id := Current_Entity (Selector);
6034 while Present (Id) loop
6035 exit when Scope (Id) = P_Name;
6036 Id := Homonym (Id);
6037 end loop;
6038 end if;
6040 if No (Id) or else Chars (Id) /= Chars (Selector) then
6041 Set_Etype (N, Any_Type);
6043 -- If we are looking for an entity defined in System, try to find it
6044 -- in the child package that may have been provided as an extension
6045 -- to System. The Extend_System pragma will have supplied the name of
6046 -- the extension, which may have to be loaded.
6048 if Chars (P_Name) = Name_System
6049 and then Scope (P_Name) = Standard_Standard
6050 and then Present (System_Extend_Unit)
6051 and then Present_System_Aux (N)
6052 then
6053 Set_Entity (Prefix (N), System_Aux_Id);
6054 Find_Expanded_Name (N);
6055 return;
6057 -- There is an implicit instance of the predefined operator in
6058 -- the given scope. The operator entity is defined in Standard.
6059 -- Has_Implicit_Operator makes the node into an Expanded_Name.
6061 elsif Nkind (Selector) = N_Operator_Symbol
6062 and then Has_Implicit_Operator (N)
6063 then
6064 return;
6066 -- If there is no literal defined in the scope denoted by the
6067 -- prefix, the literal may belong to (a type derived from)
6068 -- Standard_Character, for which we have no explicit literals.
6070 elsif Nkind (Selector) = N_Character_Literal
6071 and then Has_Implicit_Character_Literal (N)
6072 then
6073 return;
6075 else
6076 -- If the prefix is a single concurrent object, use its name in
6077 -- the error message, rather than that of the anonymous type.
6079 if Is_Concurrent_Type (P_Name)
6080 and then Is_Internal_Name (Chars (P_Name))
6081 then
6082 Error_Msg_Node_2 := Entity (Prefix (N));
6083 else
6084 Error_Msg_Node_2 := P_Name;
6085 end if;
6087 if P_Name = System_Aux_Id then
6088 P_Name := Scope (P_Name);
6089 Set_Entity (Prefix (N), P_Name);
6090 end if;
6092 if Present (Candidate) then
6094 -- If we know that the unit is a child unit we can give a more
6095 -- accurate error message.
6097 if Is_Child_Unit (Candidate) then
6099 -- If the candidate is a private child unit and we are in
6100 -- the visible part of a public unit, specialize the error
6101 -- message. There might be a private with_clause for it,
6102 -- but it is not currently active.
6104 if Is_Private_Descendant (Candidate)
6105 and then Ekind (Current_Scope) = E_Package
6106 and then not In_Private_Part (Current_Scope)
6107 and then not Is_Private_Descendant (Current_Scope)
6108 then
6109 Error_Msg_N
6110 ("private child unit& is not visible here", Selector);
6112 -- Normal case where we have a missing with for a child unit
6114 else
6115 Error_Msg_Qual_Level := 99;
6116 Error_Msg_NE -- CODEFIX
6117 ("missing `WITH &;`", Selector, Candidate);
6118 Error_Msg_Qual_Level := 0;
6119 end if;
6121 -- Here we don't know that this is a child unit
6123 else
6124 Error_Msg_NE ("& is not a visible entity of&", N, Selector);
6125 end if;
6127 else
6128 -- Within the instantiation of a child unit, the prefix may
6129 -- denote the parent instance, but the selector has the name
6130 -- of the original child. That is to say, when A.B appears
6131 -- within an instantiation of generic child unit B, the scope
6132 -- stack includes an instance of A (P_Name) and an instance
6133 -- of B under some other name. We scan the scope to find this
6134 -- child instance, which is the desired entity.
6135 -- Note that the parent may itself be a child instance, if
6136 -- the reference is of the form A.B.C, in which case A.B has
6137 -- already been rewritten with the proper entity.
6139 if In_Open_Scopes (P_Name)
6140 and then Is_Generic_Instance (P_Name)
6141 then
6142 declare
6143 Gen_Par : constant Entity_Id :=
6144 Generic_Parent (Specification
6145 (Unit_Declaration_Node (P_Name)));
6146 S : Entity_Id := Current_Scope;
6147 P : Entity_Id;
6149 begin
6150 for J in reverse 0 .. Scope_Stack.Last loop
6151 S := Scope_Stack.Table (J).Entity;
6153 exit when S = Standard_Standard;
6155 if Ekind_In (S, E_Function,
6156 E_Package,
6157 E_Procedure)
6158 then
6159 P :=
6160 Generic_Parent (Specification
6161 (Unit_Declaration_Node (S)));
6163 -- Check that P is a generic child of the generic
6164 -- parent of the prefix.
6166 if Present (P)
6167 and then Chars (P) = Chars (Selector)
6168 and then Scope (P) = Gen_Par
6169 then
6170 Id := S;
6171 goto Found;
6172 end if;
6173 end if;
6175 end loop;
6176 end;
6177 end if;
6179 -- If this is a selection from Ada, System or Interfaces, then
6180 -- we assume a missing with for the corresponding package.
6182 if Is_Known_Unit (N) then
6183 if not Error_Posted (N) then
6184 Error_Msg_Node_2 := Selector;
6185 Error_Msg_N -- CODEFIX
6186 ("missing `WITH &.&;`", Prefix (N));
6187 end if;
6189 -- If this is a selection from a dummy package, then suppress
6190 -- the error message, of course the entity is missing if the
6191 -- package is missing.
6193 elsif Sloc (Error_Msg_Node_2) = No_Location then
6194 null;
6196 -- Here we have the case of an undefined component
6198 else
6199 -- The prefix may hide a homonym in the context that
6200 -- declares the desired entity. This error can use a
6201 -- specialized message.
6203 if In_Open_Scopes (P_Name) then
6204 declare
6205 H : constant Entity_Id := Homonym (P_Name);
6207 begin
6208 if Present (H)
6209 and then Is_Compilation_Unit (H)
6210 and then
6211 (Is_Immediately_Visible (H)
6212 or else Is_Visible_Lib_Unit (H))
6213 then
6214 Id := First_Entity (H);
6215 while Present (Id) loop
6216 if Chars (Id) = Chars (Selector) then
6217 Error_Msg_Qual_Level := 99;
6218 Error_Msg_Name_1 := Chars (Selector);
6219 Error_Msg_NE
6220 ("% not declared in&", N, P_Name);
6221 Error_Msg_NE
6222 ("\use fully qualified name starting with "
6223 & "Standard to make& visible", N, H);
6224 Error_Msg_Qual_Level := 0;
6225 goto Done;
6226 end if;
6228 Next_Entity (Id);
6229 end loop;
6230 end if;
6232 -- If not found, standard error message
6234 Error_Msg_NE ("& not declared in&", N, Selector);
6236 <<Done>> null;
6237 end;
6239 else
6240 Error_Msg_NE ("& not declared in&", N, Selector);
6241 end if;
6243 -- Check for misspelling of some entity in prefix
6245 Id := First_Entity (P_Name);
6246 while Present (Id) loop
6247 if Is_Bad_Spelling_Of (Chars (Id), Chars (Selector))
6248 and then not Is_Internal_Name (Chars (Id))
6249 then
6250 Error_Msg_NE -- CODEFIX
6251 ("possible misspelling of&", Selector, Id);
6252 exit;
6253 end if;
6255 Next_Entity (Id);
6256 end loop;
6258 -- Specialize the message if this may be an instantiation
6259 -- of a child unit that was not mentioned in the context.
6261 if Nkind (Parent (N)) = N_Package_Instantiation
6262 and then Is_Generic_Instance (Entity (Prefix (N)))
6263 and then Is_Compilation_Unit
6264 (Generic_Parent (Parent (Entity (Prefix (N)))))
6265 then
6266 Error_Msg_Node_2 := Selector;
6267 Error_Msg_N -- CODEFIX
6268 ("\missing `WITH &.&;`", Prefix (N));
6269 end if;
6270 end if;
6271 end if;
6273 Id := Any_Id;
6274 end if;
6275 end if;
6277 <<Found>>
6278 if Comes_From_Source (N)
6279 and then Is_Remote_Access_To_Subprogram_Type (Id)
6280 and then Ekind (Id) = E_Access_Subprogram_Type
6281 and then Present (Equivalent_Type (Id))
6282 then
6283 -- If we are not actually generating distribution code (i.e. the
6284 -- current PCS is the dummy non-distributed version), then the
6285 -- Equivalent_Type will be missing, and Id should be treated as
6286 -- a regular access-to-subprogram type.
6288 Id := Equivalent_Type (Id);
6289 Set_Chars (Selector, Chars (Id));
6290 end if;
6292 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
6294 if Ekind (P_Name) = E_Package and then From_Limited_With (P_Name) then
6295 if From_Limited_With (Id)
6296 or else Is_Type (Id)
6297 or else Ekind (Id) = E_Package
6298 then
6299 null;
6300 else
6301 Error_Msg_N
6302 ("limited withed package can only be used to access incomplete "
6303 & "types", N);
6304 end if;
6305 end if;
6307 if Is_Task_Type (P_Name)
6308 and then ((Ekind (Id) = E_Entry
6309 and then Nkind (Parent (N)) /= N_Attribute_Reference)
6310 or else
6311 (Ekind (Id) = E_Entry_Family
6312 and then
6313 Nkind (Parent (Parent (N))) /= N_Attribute_Reference))
6314 then
6315 -- If both the task type and the entry are in scope, this may still
6316 -- be the expanded name of an entry formal.
6318 if In_Open_Scopes (Id)
6319 and then Nkind (Parent (N)) = N_Selected_Component
6320 then
6321 null;
6323 else
6324 -- It is an entry call after all, either to the current task
6325 -- (which will deadlock) or to an enclosing task.
6327 Analyze_Selected_Component (N);
6328 return;
6329 end if;
6330 end if;
6332 Change_Selected_Component_To_Expanded_Name (N);
6334 -- Set appropriate type
6336 if Is_Type (Id) then
6337 Set_Etype (N, Id);
6338 else
6339 Set_Etype (N, Get_Full_View (Etype (Id)));
6340 end if;
6342 -- Do style check and generate reference, but skip both steps if this
6343 -- entity has homonyms, since we may not have the right homonym set yet.
6344 -- The proper homonym will be set during the resolve phase.
6346 if Has_Homonym (Id) then
6347 Set_Entity (N, Id);
6349 else
6350 Set_Entity_Or_Discriminal (N, Id);
6352 case Is_LHS (N) is
6353 when Yes =>
6354 Generate_Reference (Id, N, 'm');
6356 when No =>
6357 Generate_Reference (Id, N, 'r');
6359 when Unknown =>
6360 Deferred_References.Append ((Id, N));
6361 end case;
6362 end if;
6364 -- Check for violation of No_Wide_Characters
6366 Check_Wide_Character_Restriction (Id, N);
6368 -- If the Ekind of the entity is Void, it means that all homonyms are
6369 -- hidden from all visibility (RM 8.3(5,14-20)).
6371 if Ekind (Id) = E_Void then
6372 Premature_Usage (N);
6374 elsif Is_Overloadable (Id) and then Present (Homonym (Id)) then
6375 declare
6376 H : Entity_Id := Homonym (Id);
6378 begin
6379 while Present (H) loop
6380 if Scope (H) = Scope (Id)
6381 and then (not Is_Hidden (H)
6382 or else Is_Immediately_Visible (H))
6383 then
6384 Collect_Interps (N);
6385 exit;
6386 end if;
6388 H := Homonym (H);
6389 end loop;
6391 -- If an extension of System is present, collect possible explicit
6392 -- overloadings declared in the extension.
6394 if Chars (P_Name) = Name_System
6395 and then Scope (P_Name) = Standard_Standard
6396 and then Present (System_Extend_Unit)
6397 and then Present_System_Aux (N)
6398 then
6399 H := Current_Entity (Id);
6401 while Present (H) loop
6402 if Scope (H) = System_Aux_Id then
6403 Add_One_Interp (N, H, Etype (H));
6404 end if;
6406 H := Homonym (H);
6407 end loop;
6408 end if;
6409 end;
6410 end if;
6412 if Nkind (Selector_Name (N)) = N_Operator_Symbol
6413 and then Scope (Id) /= Standard_Standard
6414 then
6415 -- In addition to user-defined operators in the given scope, there
6416 -- may be an implicit instance of the predefined operator. The
6417 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6418 -- and added to the interpretations. Procedure Add_One_Interp will
6419 -- determine which hides which.
6421 if Has_Implicit_Operator (N) then
6422 null;
6423 end if;
6424 end if;
6426 -- If there is a single interpretation for N we can generate a
6427 -- reference to the unique entity found.
6429 if Is_Overloadable (Id) and then not Is_Overloaded (N) then
6430 Generate_Reference (Id, N);
6431 end if;
6433 Check_Restriction_No_Use_Of_Entity (N);
6434 end Find_Expanded_Name;
6436 -------------------------
6437 -- Find_Renamed_Entity --
6438 -------------------------
6440 function Find_Renamed_Entity
6441 (N : Node_Id;
6442 Nam : Node_Id;
6443 New_S : Entity_Id;
6444 Is_Actual : Boolean := False) return Entity_Id
6446 Ind : Interp_Index;
6447 I1 : Interp_Index := 0; -- Suppress junk warnings
6448 It : Interp;
6449 It1 : Interp;
6450 Old_S : Entity_Id;
6451 Inst : Entity_Id;
6453 function Is_Visible_Operation (Op : Entity_Id) return Boolean;
6454 -- If the renamed entity is an implicit operator, check whether it is
6455 -- visible because its operand type is properly visible. This check
6456 -- applies to explicit renamed entities that appear in the source in a
6457 -- renaming declaration or a formal subprogram instance, but not to
6458 -- default generic actuals with a name.
6460 function Report_Overload return Entity_Id;
6461 -- List possible interpretations, and specialize message in the
6462 -- case of a generic actual.
6464 function Within (Inner, Outer : Entity_Id) return Boolean;
6465 -- Determine whether a candidate subprogram is defined within the
6466 -- enclosing instance. If yes, it has precedence over outer candidates.
6468 --------------------------
6469 -- Is_Visible_Operation --
6470 --------------------------
6472 function Is_Visible_Operation (Op : Entity_Id) return Boolean is
6473 Scop : Entity_Id;
6474 Typ : Entity_Id;
6475 Btyp : Entity_Id;
6477 begin
6478 if Ekind (Op) /= E_Operator
6479 or else Scope (Op) /= Standard_Standard
6480 or else (In_Instance
6481 and then (not Is_Actual
6482 or else Present (Enclosing_Instance)))
6483 then
6484 return True;
6486 else
6487 -- For a fixed point type operator, check the resulting type,
6488 -- because it may be a mixed mode integer * fixed operation.
6490 if Present (Next_Formal (First_Formal (New_S)))
6491 and then Is_Fixed_Point_Type (Etype (New_S))
6492 then
6493 Typ := Etype (New_S);
6494 else
6495 Typ := Etype (First_Formal (New_S));
6496 end if;
6498 Btyp := Base_Type (Typ);
6500 if Nkind (Nam) /= N_Expanded_Name then
6501 return (In_Open_Scopes (Scope (Btyp))
6502 or else Is_Potentially_Use_Visible (Btyp)
6503 or else In_Use (Btyp)
6504 or else In_Use (Scope (Btyp)));
6506 else
6507 Scop := Entity (Prefix (Nam));
6509 if Ekind (Scop) = E_Package
6510 and then Present (Renamed_Object (Scop))
6511 then
6512 Scop := Renamed_Object (Scop);
6513 end if;
6515 -- Operator is visible if prefix of expanded name denotes
6516 -- scope of type, or else type is defined in System_Aux
6517 -- and the prefix denotes System.
6519 return Scope (Btyp) = Scop
6520 or else (Scope (Btyp) = System_Aux_Id
6521 and then Scope (Scope (Btyp)) = Scop);
6522 end if;
6523 end if;
6524 end Is_Visible_Operation;
6526 ------------
6527 -- Within --
6528 ------------
6530 function Within (Inner, Outer : Entity_Id) return Boolean is
6531 Sc : Entity_Id;
6533 begin
6534 Sc := Scope (Inner);
6535 while Sc /= Standard_Standard loop
6536 if Sc = Outer then
6537 return True;
6538 else
6539 Sc := Scope (Sc);
6540 end if;
6541 end loop;
6543 return False;
6544 end Within;
6546 ---------------------
6547 -- Report_Overload --
6548 ---------------------
6550 function Report_Overload return Entity_Id is
6551 begin
6552 if Is_Actual then
6553 Error_Msg_NE -- CODEFIX
6554 ("ambiguous actual subprogram&, " &
6555 "possible interpretations:", N, Nam);
6556 else
6557 Error_Msg_N -- CODEFIX
6558 ("ambiguous subprogram, " &
6559 "possible interpretations:", N);
6560 end if;
6562 List_Interps (Nam, N);
6563 return Old_S;
6564 end Report_Overload;
6566 -- Start of processing for Find_Renamed_Entity
6568 begin
6569 Old_S := Any_Id;
6570 Candidate_Renaming := Empty;
6572 if Is_Overloaded (Nam) then
6573 Get_First_Interp (Nam, Ind, It);
6574 while Present (It.Nam) loop
6575 if Entity_Matches_Spec (It.Nam, New_S)
6576 and then Is_Visible_Operation (It.Nam)
6577 then
6578 if Old_S /= Any_Id then
6580 -- Note: The call to Disambiguate only happens if a
6581 -- previous interpretation was found, in which case I1
6582 -- has received a value.
6584 It1 := Disambiguate (Nam, I1, Ind, Etype (Old_S));
6586 if It1 = No_Interp then
6587 Inst := Enclosing_Instance;
6589 if Present (Inst) then
6590 if Within (It.Nam, Inst) then
6591 if Within (Old_S, Inst) then
6593 -- Choose the innermost subprogram, which would
6594 -- have hidden the outer one in the generic.
6596 if Scope_Depth (It.Nam) <
6597 Scope_Depth (Old_S)
6598 then
6599 return Old_S;
6600 else
6601 return It.Nam;
6602 end if;
6603 end if;
6605 elsif Within (Old_S, Inst) then
6606 return (Old_S);
6608 else
6609 return Report_Overload;
6610 end if;
6612 -- If not within an instance, ambiguity is real
6614 else
6615 return Report_Overload;
6616 end if;
6618 else
6619 Old_S := It1.Nam;
6620 exit;
6621 end if;
6623 else
6624 I1 := Ind;
6625 Old_S := It.Nam;
6626 end if;
6628 elsif
6629 Present (First_Formal (It.Nam))
6630 and then Present (First_Formal (New_S))
6631 and then (Base_Type (Etype (First_Formal (It.Nam))) =
6632 Base_Type (Etype (First_Formal (New_S))))
6633 then
6634 Candidate_Renaming := It.Nam;
6635 end if;
6637 Get_Next_Interp (Ind, It);
6638 end loop;
6640 Set_Entity (Nam, Old_S);
6642 if Old_S /= Any_Id then
6643 Set_Is_Overloaded (Nam, False);
6644 end if;
6646 -- Non-overloaded case
6648 else
6649 if Is_Actual
6650 and then Present (Enclosing_Instance)
6651 and then Entity_Matches_Spec (Entity (Nam), New_S)
6652 then
6653 Old_S := Entity (Nam);
6655 elsif Entity_Matches_Spec (Entity (Nam), New_S) then
6656 Candidate_Renaming := New_S;
6658 if Is_Visible_Operation (Entity (Nam)) then
6659 Old_S := Entity (Nam);
6660 end if;
6662 elsif Present (First_Formal (Entity (Nam)))
6663 and then Present (First_Formal (New_S))
6664 and then (Base_Type (Etype (First_Formal (Entity (Nam)))) =
6665 Base_Type (Etype (First_Formal (New_S))))
6666 then
6667 Candidate_Renaming := Entity (Nam);
6668 end if;
6669 end if;
6671 return Old_S;
6672 end Find_Renamed_Entity;
6674 -----------------------------
6675 -- Find_Selected_Component --
6676 -----------------------------
6678 procedure Find_Selected_Component (N : Node_Id) is
6679 P : constant Node_Id := Prefix (N);
6681 P_Name : Entity_Id;
6682 -- Entity denoted by prefix
6684 P_Type : Entity_Id;
6685 -- and its type
6687 Nam : Node_Id;
6689 function Available_Subtype return Boolean;
6690 -- A small optimization: if the prefix is constrained and the component
6691 -- is an array type we may already have a usable subtype for it, so we
6692 -- can use it rather than generating a new one, because the bounds
6693 -- will be the values of the discriminants and not discriminant refs.
6694 -- This simplifies value tracing in GNATProve. For consistency, both
6695 -- the entity name and the subtype come from the constrained component.
6697 -- This is only used in GNATProve mode: when generating code it may be
6698 -- necessary to create an itype in the scope of use of the selected
6699 -- component, e.g. in the context of a expanded record equality.
6701 function Is_Reference_In_Subunit return Boolean;
6702 -- In a subunit, the scope depth is not a proper measure of hiding,
6703 -- because the context of the proper body may itself hide entities in
6704 -- parent units. This rare case requires inspecting the tree directly
6705 -- because the proper body is inserted in the main unit and its context
6706 -- is simply added to that of the parent.
6708 -----------------------
6709 -- Available_Subtype --
6710 -----------------------
6712 function Available_Subtype return Boolean is
6713 Comp : Entity_Id;
6715 begin
6716 if GNATprove_Mode then
6717 Comp := First_Entity (Etype (P));
6718 while Present (Comp) loop
6719 if Chars (Comp) = Chars (Selector_Name (N)) then
6720 Set_Etype (N, Etype (Comp));
6721 Set_Entity (Selector_Name (N), Comp);
6722 Set_Etype (Selector_Name (N), Etype (Comp));
6723 return True;
6724 end if;
6726 Next_Component (Comp);
6727 end loop;
6728 end if;
6730 return False;
6731 end Available_Subtype;
6733 -----------------------------
6734 -- Is_Reference_In_Subunit --
6735 -----------------------------
6737 function Is_Reference_In_Subunit return Boolean is
6738 Clause : Node_Id;
6739 Comp_Unit : Node_Id;
6741 begin
6742 Comp_Unit := N;
6743 while Present (Comp_Unit)
6744 and then Nkind (Comp_Unit) /= N_Compilation_Unit
6745 loop
6746 Comp_Unit := Parent (Comp_Unit);
6747 end loop;
6749 if No (Comp_Unit) or else Nkind (Unit (Comp_Unit)) /= N_Subunit then
6750 return False;
6751 end if;
6753 -- Now check whether the package is in the context of the subunit
6755 Clause := First (Context_Items (Comp_Unit));
6756 while Present (Clause) loop
6757 if Nkind (Clause) = N_With_Clause
6758 and then Entity (Name (Clause)) = P_Name
6759 then
6760 return True;
6761 end if;
6763 Clause := Next (Clause);
6764 end loop;
6766 return False;
6767 end Is_Reference_In_Subunit;
6769 -- Start of processing for Find_Selected_Component
6771 begin
6772 Analyze (P);
6774 if Nkind (P) = N_Error then
6775 return;
6776 end if;
6778 -- Selector name cannot be a character literal or an operator symbol in
6779 -- SPARK, except for the operator symbol in a renaming.
6781 if Restriction_Check_Required (SPARK_05) then
6782 if Nkind (Selector_Name (N)) = N_Character_Literal then
6783 Check_SPARK_05_Restriction
6784 ("character literal cannot be prefixed", N);
6785 elsif Nkind (Selector_Name (N)) = N_Operator_Symbol
6786 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
6787 then
6788 Check_SPARK_05_Restriction
6789 ("operator symbol cannot be prefixed", N);
6790 end if;
6791 end if;
6793 -- If the selector already has an entity, the node has been constructed
6794 -- in the course of expansion, and is known to be valid. Do not verify
6795 -- that it is defined for the type (it may be a private component used
6796 -- in the expansion of record equality).
6798 if Present (Entity (Selector_Name (N))) then
6799 if No (Etype (N)) or else Etype (N) = Any_Type then
6800 declare
6801 Sel_Name : constant Node_Id := Selector_Name (N);
6802 Selector : constant Entity_Id := Entity (Sel_Name);
6803 C_Etype : Node_Id;
6805 begin
6806 Set_Etype (Sel_Name, Etype (Selector));
6808 if not Is_Entity_Name (P) then
6809 Resolve (P);
6810 end if;
6812 -- Build an actual subtype except for the first parameter
6813 -- of an init proc, where this actual subtype is by
6814 -- definition incorrect, since the object is uninitialized
6815 -- (and does not even have defined discriminants etc.)
6817 if Is_Entity_Name (P)
6818 and then Ekind (Entity (P)) = E_Function
6819 then
6820 Nam := New_Copy (P);
6822 if Is_Overloaded (P) then
6823 Save_Interps (P, Nam);
6824 end if;
6826 Rewrite (P, Make_Function_Call (Sloc (P), Name => Nam));
6827 Analyze_Call (P);
6828 Analyze_Selected_Component (N);
6829 return;
6831 elsif Ekind (Selector) = E_Component
6832 and then (not Is_Entity_Name (P)
6833 or else Chars (Entity (P)) /= Name_uInit)
6834 then
6835 -- Check if we already have an available subtype we can use
6837 if Ekind (Etype (P)) = E_Record_Subtype
6838 and then Nkind (Parent (Etype (P))) = N_Subtype_Declaration
6839 and then Is_Array_Type (Etype (Selector))
6840 and then not Is_Packed (Etype (Selector))
6841 and then Available_Subtype
6842 then
6843 return;
6845 -- Do not build the subtype when referencing components of
6846 -- dispatch table wrappers. Required to avoid generating
6847 -- elaboration code with HI runtimes.
6849 elsif RTU_Loaded (Ada_Tags)
6850 and then
6851 ((RTE_Available (RE_Dispatch_Table_Wrapper)
6852 and then Scope (Selector) =
6853 RTE (RE_Dispatch_Table_Wrapper))
6854 or else
6855 (RTE_Available (RE_No_Dispatch_Table_Wrapper)
6856 and then Scope (Selector) =
6857 RTE (RE_No_Dispatch_Table_Wrapper)))
6858 then
6859 C_Etype := Empty;
6860 else
6861 C_Etype :=
6862 Build_Actual_Subtype_Of_Component
6863 (Etype (Selector), N);
6864 end if;
6866 else
6867 C_Etype := Empty;
6868 end if;
6870 if No (C_Etype) then
6871 C_Etype := Etype (Selector);
6872 else
6873 Insert_Action (N, C_Etype);
6874 C_Etype := Defining_Identifier (C_Etype);
6875 end if;
6877 Set_Etype (N, C_Etype);
6878 end;
6880 -- If this is the name of an entry or protected operation, and
6881 -- the prefix is an access type, insert an explicit dereference,
6882 -- so that entry calls are treated uniformly.
6884 if Is_Access_Type (Etype (P))
6885 and then Is_Concurrent_Type (Designated_Type (Etype (P)))
6886 then
6887 declare
6888 New_P : constant Node_Id :=
6889 Make_Explicit_Dereference (Sloc (P),
6890 Prefix => Relocate_Node (P));
6891 begin
6892 Rewrite (P, New_P);
6893 Set_Etype (P, Designated_Type (Etype (Prefix (P))));
6894 end;
6895 end if;
6897 -- If the selected component appears within a default expression
6898 -- and it has an actual subtype, the pre-analysis has not yet
6899 -- completed its analysis, because Insert_Actions is disabled in
6900 -- that context. Within the init proc of the enclosing type we
6901 -- must complete this analysis, if an actual subtype was created.
6903 elsif Inside_Init_Proc then
6904 declare
6905 Typ : constant Entity_Id := Etype (N);
6906 Decl : constant Node_Id := Declaration_Node (Typ);
6907 begin
6908 if Nkind (Decl) = N_Subtype_Declaration
6909 and then not Analyzed (Decl)
6910 and then Is_List_Member (Decl)
6911 and then No (Parent (Decl))
6912 then
6913 Remove (Decl);
6914 Insert_Action (N, Decl);
6915 end if;
6916 end;
6917 end if;
6919 return;
6921 elsif Is_Entity_Name (P) then
6922 P_Name := Entity (P);
6924 -- The prefix may denote an enclosing type which is the completion
6925 -- of an incomplete type declaration.
6927 if Is_Type (P_Name) then
6928 Set_Entity (P, Get_Full_View (P_Name));
6929 Set_Etype (P, Entity (P));
6930 P_Name := Entity (P);
6931 end if;
6933 P_Type := Base_Type (Etype (P));
6935 if Debug_Flag_E then
6936 Write_Str ("Found prefix type to be ");
6937 Write_Entity_Info (P_Type, " "); Write_Eol;
6938 end if;
6940 -- The designated type may be a limited view with no components.
6941 -- Check whether the non-limited view is available, because in some
6942 -- cases this will not be set when installing the context. Rewrite
6943 -- the node by introducing an explicit dereference at once, and
6944 -- setting the type of the rewritten prefix to the non-limited view
6945 -- of the original designated type.
6947 if Is_Access_Type (P_Type) then
6948 declare
6949 Desig_Typ : constant Entity_Id :=
6950 Directly_Designated_Type (P_Type);
6952 begin
6953 if Is_Incomplete_Type (Desig_Typ)
6954 and then From_Limited_With (Desig_Typ)
6955 and then Present (Non_Limited_View (Desig_Typ))
6956 then
6957 Rewrite (P,
6958 Make_Explicit_Dereference (Sloc (P),
6959 Prefix => Relocate_Node (P)));
6961 Set_Etype (P, Get_Full_View (Non_Limited_View (Desig_Typ)));
6962 P_Type := Etype (P);
6963 end if;
6964 end;
6965 end if;
6967 -- First check for components of a record object (not the
6968 -- result of a call, which is handled below).
6970 if Is_Appropriate_For_Record (P_Type)
6971 and then not Is_Overloadable (P_Name)
6972 and then not Is_Type (P_Name)
6973 then
6974 -- Selected component of record. Type checking will validate
6975 -- name of selector.
6977 -- ??? Could we rewrite an implicit dereference into an explicit
6978 -- one here?
6980 Analyze_Selected_Component (N);
6982 -- Reference to type name in predicate/invariant expression
6984 elsif Is_Appropriate_For_Entry_Prefix (P_Type)
6985 and then not In_Open_Scopes (P_Name)
6986 and then (not Is_Concurrent_Type (Etype (P_Name))
6987 or else not In_Open_Scopes (Etype (P_Name)))
6988 then
6989 -- Call to protected operation or entry. Type checking is
6990 -- needed on the prefix.
6992 Analyze_Selected_Component (N);
6994 elsif (In_Open_Scopes (P_Name)
6995 and then Ekind (P_Name) /= E_Void
6996 and then not Is_Overloadable (P_Name))
6997 or else (Is_Concurrent_Type (Etype (P_Name))
6998 and then In_Open_Scopes (Etype (P_Name)))
6999 then
7000 -- Prefix denotes an enclosing loop, block, or task, i.e. an
7001 -- enclosing construct that is not a subprogram or accept.
7003 -- A special case: a protected body may call an operation
7004 -- on an external object of the same type, in which case it
7005 -- is not an expanded name. If the prefix is the type itself,
7006 -- or the context is a single synchronized object it can only
7007 -- be interpreted as an expanded name.
7009 if Is_Concurrent_Type (Etype (P_Name)) then
7010 if Is_Type (P_Name)
7011 or else Present (Anonymous_Object (Etype (P_Name)))
7012 then
7013 Find_Expanded_Name (N);
7015 else
7016 Analyze_Selected_Component (N);
7017 return;
7018 end if;
7020 else
7021 Find_Expanded_Name (N);
7022 end if;
7024 elsif Ekind (P_Name) = E_Package then
7025 Find_Expanded_Name (N);
7027 elsif Is_Overloadable (P_Name) then
7029 -- The subprogram may be a renaming (of an enclosing scope) as
7030 -- in the case of the name of the generic within an instantiation.
7032 if Ekind_In (P_Name, E_Procedure, E_Function)
7033 and then Present (Alias (P_Name))
7034 and then Is_Generic_Instance (Alias (P_Name))
7035 then
7036 P_Name := Alias (P_Name);
7037 end if;
7039 if Is_Overloaded (P) then
7041 -- The prefix must resolve to a unique enclosing construct
7043 declare
7044 Found : Boolean := False;
7045 Ind : Interp_Index;
7046 It : Interp;
7048 begin
7049 Get_First_Interp (P, Ind, It);
7050 while Present (It.Nam) loop
7051 if In_Open_Scopes (It.Nam) then
7052 if Found then
7053 Error_Msg_N (
7054 "prefix must be unique enclosing scope", N);
7055 Set_Entity (N, Any_Id);
7056 Set_Etype (N, Any_Type);
7057 return;
7059 else
7060 Found := True;
7061 P_Name := It.Nam;
7062 end if;
7063 end if;
7065 Get_Next_Interp (Ind, It);
7066 end loop;
7067 end;
7068 end if;
7070 if In_Open_Scopes (P_Name) then
7071 Set_Entity (P, P_Name);
7072 Set_Is_Overloaded (P, False);
7073 Find_Expanded_Name (N);
7075 else
7076 -- If no interpretation as an expanded name is possible, it
7077 -- must be a selected component of a record returned by a
7078 -- function call. Reformat prefix as a function call, the rest
7079 -- is done by type resolution.
7081 -- Error if the prefix is procedure or entry, as is P.X
7083 if Ekind (P_Name) /= E_Function
7084 and then
7085 (not Is_Overloaded (P)
7086 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
7087 then
7088 -- Prefix may mention a package that is hidden by a local
7089 -- declaration: let the user know. Scan the full homonym
7090 -- chain, the candidate package may be anywhere on it.
7092 if Present (Homonym (Current_Entity (P_Name))) then
7093 P_Name := Current_Entity (P_Name);
7095 while Present (P_Name) loop
7096 exit when Ekind (P_Name) = E_Package;
7097 P_Name := Homonym (P_Name);
7098 end loop;
7100 if Present (P_Name) then
7101 if not Is_Reference_In_Subunit then
7102 Error_Msg_Sloc := Sloc (Entity (Prefix (N)));
7103 Error_Msg_NE
7104 ("package& is hidden by declaration#", N, P_Name);
7105 end if;
7107 Set_Entity (Prefix (N), P_Name);
7108 Find_Expanded_Name (N);
7109 return;
7111 else
7112 P_Name := Entity (Prefix (N));
7113 end if;
7114 end if;
7116 Error_Msg_NE
7117 ("invalid prefix in selected component&", N, P_Name);
7118 Change_Selected_Component_To_Expanded_Name (N);
7119 Set_Entity (N, Any_Id);
7120 Set_Etype (N, Any_Type);
7122 -- Here we have a function call, so do the reformatting
7124 else
7125 Nam := New_Copy (P);
7126 Save_Interps (P, Nam);
7128 -- We use Replace here because this is one of those cases
7129 -- where the parser has missclassified the node, and we fix
7130 -- things up and then do the semantic analysis on the fixed
7131 -- up node. Normally we do this using one of the Sinfo.CN
7132 -- routines, but this is too tricky for that.
7134 -- Note that using Rewrite would be wrong, because we would
7135 -- have a tree where the original node is unanalyzed, and
7136 -- this violates the required interface for ASIS.
7138 Replace (P,
7139 Make_Function_Call (Sloc (P), Name => Nam));
7141 -- Now analyze the reformatted node
7143 Analyze_Call (P);
7145 -- If the prefix is illegal after this transformation, there
7146 -- may be visibility errors on the prefix. The safest is to
7147 -- treat the selected component as an error.
7149 if Error_Posted (P) then
7150 Set_Etype (N, Any_Type);
7151 return;
7153 else
7154 Analyze_Selected_Component (N);
7155 end if;
7156 end if;
7157 end if;
7159 -- Remaining cases generate various error messages
7161 else
7162 -- Format node as expanded name, to avoid cascaded errors
7164 -- If the limited_with transformation was applied earlier, restore
7165 -- source for proper error reporting.
7167 if not Comes_From_Source (P)
7168 and then Nkind (P) = N_Explicit_Dereference
7169 then
7170 Rewrite (P, Prefix (P));
7171 P_Type := Etype (P);
7172 end if;
7174 Change_Selected_Component_To_Expanded_Name (N);
7175 Set_Entity (N, Any_Id);
7176 Set_Etype (N, Any_Type);
7178 -- Issue error message, but avoid this if error issued already.
7179 -- Use identifier of prefix if one is available.
7181 if P_Name = Any_Id then
7182 null;
7184 -- It is not an error if the prefix is the current instance of
7185 -- type name, e.g. the expression of a type aspect, when it is
7186 -- analyzed for ASIS use.
7188 elsif Is_Entity_Name (P) and then Is_Current_Instance (P) then
7189 null;
7191 elsif Ekind (P_Name) = E_Void then
7192 Premature_Usage (P);
7194 elsif Nkind (P) /= N_Attribute_Reference then
7196 -- This may have been meant as a prefixed call to a primitive
7197 -- of an untagged type. If it is a function call check type of
7198 -- its first formal and add explanation.
7200 declare
7201 F : constant Entity_Id :=
7202 Current_Entity (Selector_Name (N));
7203 begin
7204 if Present (F)
7205 and then Is_Overloadable (F)
7206 and then Present (First_Entity (F))
7207 and then not Is_Tagged_Type (Etype (First_Entity (F)))
7208 then
7209 Error_Msg_N
7210 ("prefixed call is only allowed for objects of a "
7211 & "tagged type", N);
7212 end if;
7213 end;
7215 Error_Msg_N ("invalid prefix in selected component&", P);
7217 if Is_Access_Type (P_Type)
7218 and then Ekind (Designated_Type (P_Type)) = E_Incomplete_Type
7219 then
7220 Error_Msg_N
7221 ("\dereference must not be of an incomplete type "
7222 & "(RM 3.10.1)", P);
7223 end if;
7225 else
7226 Error_Msg_N ("invalid prefix in selected component", P);
7227 end if;
7228 end if;
7230 -- Selector name is restricted in SPARK
7232 if Nkind (N) = N_Expanded_Name
7233 and then Restriction_Check_Required (SPARK_05)
7234 then
7235 if Is_Subprogram (P_Name) then
7236 Check_SPARK_05_Restriction
7237 ("prefix of expanded name cannot be a subprogram", P);
7238 elsif Ekind (P_Name) = E_Loop then
7239 Check_SPARK_05_Restriction
7240 ("prefix of expanded name cannot be a loop statement", P);
7241 end if;
7242 end if;
7244 else
7245 -- If prefix is not the name of an entity, it must be an expression,
7246 -- whose type is appropriate for a record. This is determined by
7247 -- type resolution.
7249 Analyze_Selected_Component (N);
7250 end if;
7252 Analyze_Dimension (N);
7253 end Find_Selected_Component;
7255 ---------------
7256 -- Find_Type --
7257 ---------------
7259 procedure Find_Type (N : Node_Id) is
7260 C : Entity_Id;
7261 Typ : Entity_Id;
7262 T : Entity_Id;
7263 T_Name : Entity_Id;
7265 begin
7266 if N = Error then
7267 return;
7269 elsif Nkind (N) = N_Attribute_Reference then
7271 -- Class attribute. This is not valid in Ada 83 mode, but we do not
7272 -- need to enforce that at this point, since the declaration of the
7273 -- tagged type in the prefix would have been flagged already.
7275 if Attribute_Name (N) = Name_Class then
7276 Check_Restriction (No_Dispatch, N);
7277 Find_Type (Prefix (N));
7279 -- Propagate error from bad prefix
7281 if Etype (Prefix (N)) = Any_Type then
7282 Set_Entity (N, Any_Type);
7283 Set_Etype (N, Any_Type);
7284 return;
7285 end if;
7287 T := Base_Type (Entity (Prefix (N)));
7289 -- Case where type is not known to be tagged. Its appearance in
7290 -- the prefix of the 'Class attribute indicates that the full view
7291 -- will be tagged.
7293 if not Is_Tagged_Type (T) then
7294 if Ekind (T) = E_Incomplete_Type then
7296 -- It is legal to denote the class type of an incomplete
7297 -- type. The full type will have to be tagged, of course.
7298 -- In Ada 2005 this usage is declared obsolescent, so we
7299 -- warn accordingly. This usage is only legal if the type
7300 -- is completed in the current scope, and not for a limited
7301 -- view of a type.
7303 if Ada_Version >= Ada_2005 then
7305 -- Test whether the Available_View of a limited type view
7306 -- is tagged, since the limited view may not be marked as
7307 -- tagged if the type itself has an untagged incomplete
7308 -- type view in its package.
7310 if From_Limited_With (T)
7311 and then not Is_Tagged_Type (Available_View (T))
7312 then
7313 Error_Msg_N
7314 ("prefix of Class attribute must be tagged", N);
7315 Set_Etype (N, Any_Type);
7316 Set_Entity (N, Any_Type);
7317 return;
7319 -- ??? This test is temporarily disabled (always
7320 -- False) because it causes an unwanted warning on
7321 -- GNAT sources (built with -gnatg, which includes
7322 -- Warn_On_Obsolescent_ Feature). Once this issue
7323 -- is cleared in the sources, it can be enabled.
7325 elsif Warn_On_Obsolescent_Feature and then False then
7326 Error_Msg_N
7327 ("applying 'Class to an untagged incomplete type"
7328 & " is an obsolescent feature (RM J.11)?r?", N);
7329 end if;
7330 end if;
7332 Set_Is_Tagged_Type (T);
7333 Set_Direct_Primitive_Operations (T, New_Elmt_List);
7334 Make_Class_Wide_Type (T);
7335 Set_Entity (N, Class_Wide_Type (T));
7336 Set_Etype (N, Class_Wide_Type (T));
7338 elsif Ekind (T) = E_Private_Type
7339 and then not Is_Generic_Type (T)
7340 and then In_Private_Part (Scope (T))
7341 then
7342 -- The Class attribute can be applied to an untagged private
7343 -- type fulfilled by a tagged type prior to the full type
7344 -- declaration (but only within the parent package's private
7345 -- part). Create the class-wide type now and check that the
7346 -- full type is tagged later during its analysis. Note that
7347 -- we do not mark the private type as tagged, unlike the
7348 -- case of incomplete types, because the type must still
7349 -- appear untagged to outside units.
7351 if No (Class_Wide_Type (T)) then
7352 Make_Class_Wide_Type (T);
7353 end if;
7355 Set_Entity (N, Class_Wide_Type (T));
7356 Set_Etype (N, Class_Wide_Type (T));
7358 else
7359 -- Should we introduce a type Any_Tagged and use Wrong_Type
7360 -- here, it would be a bit more consistent???
7362 Error_Msg_NE
7363 ("tagged type required, found}",
7364 Prefix (N), First_Subtype (T));
7365 Set_Entity (N, Any_Type);
7366 return;
7367 end if;
7369 -- Case of tagged type
7371 else
7372 if Is_Concurrent_Type (T) then
7373 if No (Corresponding_Record_Type (Entity (Prefix (N)))) then
7375 -- Previous error. Create a class-wide type for the
7376 -- synchronized type itself, with minimal semantic
7377 -- attributes, to catch other errors in some ACATS tests.
7379 pragma Assert (Serious_Errors_Detected > 0);
7380 Make_Class_Wide_Type (T);
7381 C := Class_Wide_Type (T);
7382 Set_First_Entity (C, First_Entity (T));
7384 else
7385 C := Class_Wide_Type
7386 (Corresponding_Record_Type (Entity (Prefix (N))));
7387 end if;
7389 else
7390 C := Class_Wide_Type (Entity (Prefix (N)));
7391 end if;
7393 Set_Entity_With_Checks (N, C);
7394 Generate_Reference (C, N);
7395 Set_Etype (N, C);
7396 end if;
7398 -- Base attribute, not allowed in Ada 83
7400 elsif Attribute_Name (N) = Name_Base then
7401 Error_Msg_Name_1 := Name_Base;
7402 Check_SPARK_05_Restriction
7403 ("attribute% is only allowed as prefix of another attribute", N);
7405 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
7406 Error_Msg_N
7407 ("(Ada 83) Base attribute not allowed in subtype mark", N);
7409 else
7410 Find_Type (Prefix (N));
7411 Typ := Entity (Prefix (N));
7413 if Ada_Version >= Ada_95
7414 and then not Is_Scalar_Type (Typ)
7415 and then not Is_Generic_Type (Typ)
7416 then
7417 Error_Msg_N
7418 ("prefix of Base attribute must be scalar type",
7419 Prefix (N));
7421 elsif Warn_On_Redundant_Constructs
7422 and then Base_Type (Typ) = Typ
7423 then
7424 Error_Msg_NE -- CODEFIX
7425 ("redundant attribute, & is its own base type?r?", N, Typ);
7426 end if;
7428 T := Base_Type (Typ);
7430 -- Rewrite attribute reference with type itself (see similar
7431 -- processing in Analyze_Attribute, case Base). Preserve prefix
7432 -- if present, for other legality checks.
7434 if Nkind (Prefix (N)) = N_Expanded_Name then
7435 Rewrite (N,
7436 Make_Expanded_Name (Sloc (N),
7437 Chars => Chars (T),
7438 Prefix => New_Copy (Prefix (Prefix (N))),
7439 Selector_Name => New_Occurrence_Of (T, Sloc (N))));
7441 else
7442 Rewrite (N, New_Occurrence_Of (T, Sloc (N)));
7443 end if;
7445 Set_Entity (N, T);
7446 Set_Etype (N, T);
7447 end if;
7449 elsif Attribute_Name (N) = Name_Stub_Type then
7451 -- This is handled in Analyze_Attribute
7453 Analyze (N);
7455 -- All other attributes are invalid in a subtype mark
7457 else
7458 Error_Msg_N ("invalid attribute in subtype mark", N);
7459 end if;
7461 else
7462 Analyze (N);
7464 if Is_Entity_Name (N) then
7465 T_Name := Entity (N);
7466 else
7467 Error_Msg_N ("subtype mark required in this context", N);
7468 Set_Etype (N, Any_Type);
7469 return;
7470 end if;
7472 if T_Name = Any_Id or else Etype (N) = Any_Type then
7474 -- Undefined id. Make it into a valid type
7476 Set_Entity (N, Any_Type);
7478 elsif not Is_Type (T_Name)
7479 and then T_Name /= Standard_Void_Type
7480 then
7481 Error_Msg_Sloc := Sloc (T_Name);
7482 Error_Msg_N ("subtype mark required in this context", N);
7483 Error_Msg_NE ("\\found & declared#", N, T_Name);
7484 Set_Entity (N, Any_Type);
7486 else
7487 -- If the type is an incomplete type created to handle
7488 -- anonymous access components of a record type, then the
7489 -- incomplete type is the visible entity and subsequent
7490 -- references will point to it. Mark the original full
7491 -- type as referenced, to prevent spurious warnings.
7493 if Is_Incomplete_Type (T_Name)
7494 and then Present (Full_View (T_Name))
7495 and then not Comes_From_Source (T_Name)
7496 then
7497 Set_Referenced (Full_View (T_Name));
7498 end if;
7500 T_Name := Get_Full_View (T_Name);
7502 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
7503 -- limited-with clauses
7505 if From_Limited_With (T_Name)
7506 and then Ekind (T_Name) in Incomplete_Kind
7507 and then Present (Non_Limited_View (T_Name))
7508 and then Is_Interface (Non_Limited_View (T_Name))
7509 then
7510 T_Name := Non_Limited_View (T_Name);
7511 end if;
7513 if In_Open_Scopes (T_Name) then
7514 if Ekind (Base_Type (T_Name)) = E_Task_Type then
7516 -- In Ada 2005, a task name can be used in an access
7517 -- definition within its own body. It cannot be used
7518 -- in the discriminant part of the task declaration,
7519 -- nor anywhere else in the declaration because entries
7520 -- cannot have access parameters.
7522 if Ada_Version >= Ada_2005
7523 and then Nkind (Parent (N)) = N_Access_Definition
7524 then
7525 Set_Entity (N, T_Name);
7526 Set_Etype (N, T_Name);
7528 if Has_Completion (T_Name) then
7529 return;
7531 else
7532 Error_Msg_N
7533 ("task type cannot be used as type mark " &
7534 "within its own declaration", N);
7535 end if;
7537 else
7538 Error_Msg_N
7539 ("task type cannot be used as type mark " &
7540 "within its own spec or body", N);
7541 end if;
7543 elsif Ekind (Base_Type (T_Name)) = E_Protected_Type then
7545 -- In Ada 2005, a protected name can be used in an access
7546 -- definition within its own body.
7548 if Ada_Version >= Ada_2005
7549 and then Nkind (Parent (N)) = N_Access_Definition
7550 then
7551 Set_Entity (N, T_Name);
7552 Set_Etype (N, T_Name);
7553 return;
7555 else
7556 Error_Msg_N
7557 ("protected type cannot be used as type mark " &
7558 "within its own spec or body", N);
7559 end if;
7561 else
7562 Error_Msg_N ("type declaration cannot refer to itself", N);
7563 end if;
7565 Set_Etype (N, Any_Type);
7566 Set_Entity (N, Any_Type);
7567 Set_Error_Posted (T_Name);
7568 return;
7569 end if;
7571 Set_Entity (N, T_Name);
7572 Set_Etype (N, T_Name);
7573 end if;
7574 end if;
7576 if Present (Etype (N)) and then Comes_From_Source (N) then
7577 if Is_Fixed_Point_Type (Etype (N)) then
7578 Check_Restriction (No_Fixed_Point, N);
7579 elsif Is_Floating_Point_Type (Etype (N)) then
7580 Check_Restriction (No_Floating_Point, N);
7581 end if;
7583 -- A Ghost type must appear in a specific context
7585 if Is_Ghost_Entity (Etype (N)) then
7586 Check_Ghost_Context (Etype (N), N);
7587 end if;
7588 end if;
7589 end Find_Type;
7591 ------------------------------------
7592 -- Has_Implicit_Character_Literal --
7593 ------------------------------------
7595 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean is
7596 Id : Entity_Id;
7597 Found : Boolean := False;
7598 P : constant Entity_Id := Entity (Prefix (N));
7599 Priv_Id : Entity_Id := Empty;
7601 begin
7602 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7603 Priv_Id := First_Private_Entity (P);
7604 end if;
7606 if P = Standard_Standard then
7607 Change_Selected_Component_To_Expanded_Name (N);
7608 Rewrite (N, Selector_Name (N));
7609 Analyze (N);
7610 Set_Etype (Original_Node (N), Standard_Character);
7611 return True;
7612 end if;
7614 Id := First_Entity (P);
7615 while Present (Id) and then Id /= Priv_Id loop
7616 if Is_Standard_Character_Type (Id) and then Is_Base_Type (Id) then
7618 -- We replace the node with the literal itself, resolve as a
7619 -- character, and set the type correctly.
7621 if not Found then
7622 Change_Selected_Component_To_Expanded_Name (N);
7623 Rewrite (N, Selector_Name (N));
7624 Analyze (N);
7625 Set_Etype (N, Id);
7626 Set_Etype (Original_Node (N), Id);
7627 Found := True;
7629 else
7630 -- More than one type derived from Character in given scope.
7631 -- Collect all possible interpretations.
7633 Add_One_Interp (N, Id, Id);
7634 end if;
7635 end if;
7637 Next_Entity (Id);
7638 end loop;
7640 return Found;
7641 end Has_Implicit_Character_Literal;
7643 ----------------------
7644 -- Has_Private_With --
7645 ----------------------
7647 function Has_Private_With (E : Entity_Id) return Boolean is
7648 Comp_Unit : constant Node_Id := Cunit (Current_Sem_Unit);
7649 Item : Node_Id;
7651 begin
7652 Item := First (Context_Items (Comp_Unit));
7653 while Present (Item) loop
7654 if Nkind (Item) = N_With_Clause
7655 and then Private_Present (Item)
7656 and then Entity (Name (Item)) = E
7657 then
7658 return True;
7659 end if;
7661 Next (Item);
7662 end loop;
7664 return False;
7665 end Has_Private_With;
7667 ---------------------------
7668 -- Has_Implicit_Operator --
7669 ---------------------------
7671 function Has_Implicit_Operator (N : Node_Id) return Boolean is
7672 Op_Id : constant Name_Id := Chars (Selector_Name (N));
7673 P : constant Entity_Id := Entity (Prefix (N));
7674 Id : Entity_Id;
7675 Priv_Id : Entity_Id := Empty;
7677 procedure Add_Implicit_Operator
7678 (T : Entity_Id;
7679 Op_Type : Entity_Id := Empty);
7680 -- Add implicit interpretation to node N, using the type for which a
7681 -- predefined operator exists. If the operator yields a boolean type,
7682 -- the Operand_Type is implicitly referenced by the operator, and a
7683 -- reference to it must be generated.
7685 ---------------------------
7686 -- Add_Implicit_Operator --
7687 ---------------------------
7689 procedure Add_Implicit_Operator
7690 (T : Entity_Id;
7691 Op_Type : Entity_Id := Empty)
7693 Predef_Op : Entity_Id;
7695 begin
7696 Predef_Op := Current_Entity (Selector_Name (N));
7697 while Present (Predef_Op)
7698 and then Scope (Predef_Op) /= Standard_Standard
7699 loop
7700 Predef_Op := Homonym (Predef_Op);
7701 end loop;
7703 if Nkind (N) = N_Selected_Component then
7704 Change_Selected_Component_To_Expanded_Name (N);
7705 end if;
7707 -- If the context is an unanalyzed function call, determine whether
7708 -- a binary or unary interpretation is required.
7710 if Nkind (Parent (N)) = N_Indexed_Component then
7711 declare
7712 Is_Binary_Call : constant Boolean :=
7713 Present
7714 (Next (First (Expressions (Parent (N)))));
7715 Is_Binary_Op : constant Boolean :=
7716 First_Entity
7717 (Predef_Op) /= Last_Entity (Predef_Op);
7718 Predef_Op2 : constant Entity_Id := Homonym (Predef_Op);
7720 begin
7721 if Is_Binary_Call then
7722 if Is_Binary_Op then
7723 Add_One_Interp (N, Predef_Op, T);
7724 else
7725 Add_One_Interp (N, Predef_Op2, T);
7726 end if;
7728 else
7729 if not Is_Binary_Op then
7730 Add_One_Interp (N, Predef_Op, T);
7731 else
7732 Add_One_Interp (N, Predef_Op2, T);
7733 end if;
7734 end if;
7735 end;
7737 else
7738 Add_One_Interp (N, Predef_Op, T);
7740 -- For operators with unary and binary interpretations, if
7741 -- context is not a call, add both
7743 if Present (Homonym (Predef_Op)) then
7744 Add_One_Interp (N, Homonym (Predef_Op), T);
7745 end if;
7746 end if;
7748 -- The node is a reference to a predefined operator, and
7749 -- an implicit reference to the type of its operands.
7751 if Present (Op_Type) then
7752 Generate_Operator_Reference (N, Op_Type);
7753 else
7754 Generate_Operator_Reference (N, T);
7755 end if;
7756 end Add_Implicit_Operator;
7758 -- Start of processing for Has_Implicit_Operator
7760 begin
7761 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7762 Priv_Id := First_Private_Entity (P);
7763 end if;
7765 Id := First_Entity (P);
7767 case Op_Id is
7769 -- Boolean operators: an implicit declaration exists if the scope
7770 -- contains a declaration for a derived Boolean type, or for an
7771 -- array of Boolean type.
7773 when Name_Op_And
7774 | Name_Op_Not
7775 | Name_Op_Or
7776 | Name_Op_Xor
7778 while Id /= Priv_Id loop
7779 if Valid_Boolean_Arg (Id) and then Is_Base_Type (Id) then
7780 Add_Implicit_Operator (Id);
7781 return True;
7782 end if;
7784 Next_Entity (Id);
7785 end loop;
7787 -- Equality: look for any non-limited type (result is Boolean)
7789 when Name_Op_Eq
7790 | Name_Op_Ne
7792 while Id /= Priv_Id loop
7793 if Is_Type (Id)
7794 and then not Is_Limited_Type (Id)
7795 and then Is_Base_Type (Id)
7796 then
7797 Add_Implicit_Operator (Standard_Boolean, Id);
7798 return True;
7799 end if;
7801 Next_Entity (Id);
7802 end loop;
7804 -- Comparison operators: scalar type, or array of scalar
7806 when Name_Op_Ge
7807 | Name_Op_Gt
7808 | Name_Op_Le
7809 | Name_Op_Lt
7811 while Id /= Priv_Id loop
7812 if (Is_Scalar_Type (Id)
7813 or else (Is_Array_Type (Id)
7814 and then Is_Scalar_Type (Component_Type (Id))))
7815 and then Is_Base_Type (Id)
7816 then
7817 Add_Implicit_Operator (Standard_Boolean, Id);
7818 return True;
7819 end if;
7821 Next_Entity (Id);
7822 end loop;
7824 -- Arithmetic operators: any numeric type
7826 when Name_Op_Abs
7827 | Name_Op_Add
7828 | Name_Op_Divide
7829 | Name_Op_Expon
7830 | Name_Op_Mod
7831 | Name_Op_Multiply
7832 | Name_Op_Rem
7833 | Name_Op_Subtract
7835 while Id /= Priv_Id loop
7836 if Is_Numeric_Type (Id) and then Is_Base_Type (Id) then
7837 Add_Implicit_Operator (Id);
7838 return True;
7839 end if;
7841 Next_Entity (Id);
7842 end loop;
7844 -- Concatenation: any one-dimensional array type
7846 when Name_Op_Concat =>
7847 while Id /= Priv_Id loop
7848 if Is_Array_Type (Id)
7849 and then Number_Dimensions (Id) = 1
7850 and then Is_Base_Type (Id)
7851 then
7852 Add_Implicit_Operator (Id);
7853 return True;
7854 end if;
7856 Next_Entity (Id);
7857 end loop;
7859 -- What is the others condition here? Should we be using a
7860 -- subtype of Name_Id that would restrict to operators ???
7862 when others =>
7863 null;
7864 end case;
7866 -- If we fall through, then we do not have an implicit operator
7868 return False;
7869 end Has_Implicit_Operator;
7871 -----------------------------------
7872 -- Has_Loop_In_Inner_Open_Scopes --
7873 -----------------------------------
7875 function Has_Loop_In_Inner_Open_Scopes (S : Entity_Id) return Boolean is
7876 begin
7877 -- Several scope stacks are maintained by Scope_Stack. The base of the
7878 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7879 -- flag in the scope stack entry. Note that the scope stacks used to
7880 -- simply be delimited implicitly by the presence of Standard_Standard
7881 -- at their base, but there now are cases where this is not sufficient
7882 -- because Standard_Standard actually may appear in the middle of the
7883 -- active set of scopes.
7885 for J in reverse 0 .. Scope_Stack.Last loop
7887 -- S was reached without seing a loop scope first
7889 if Scope_Stack.Table (J).Entity = S then
7890 return False;
7892 -- S was not yet reached, so it contains at least one inner loop
7894 elsif Ekind (Scope_Stack.Table (J).Entity) = E_Loop then
7895 return True;
7896 end if;
7898 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7899 -- cases where Standard_Standard appears in the middle of the active
7900 -- set of scopes. This affects the declaration and overriding of
7901 -- private inherited operations in instantiations of generic child
7902 -- units.
7904 pragma Assert (not Scope_Stack.Table (J).Is_Active_Stack_Base);
7905 end loop;
7907 raise Program_Error; -- unreachable
7908 end Has_Loop_In_Inner_Open_Scopes;
7910 --------------------
7911 -- In_Open_Scopes --
7912 --------------------
7914 function In_Open_Scopes (S : Entity_Id) return Boolean is
7915 begin
7916 -- Several scope stacks are maintained by Scope_Stack. The base of the
7917 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7918 -- flag in the scope stack entry. Note that the scope stacks used to
7919 -- simply be delimited implicitly by the presence of Standard_Standard
7920 -- at their base, but there now are cases where this is not sufficient
7921 -- because Standard_Standard actually may appear in the middle of the
7922 -- active set of scopes.
7924 for J in reverse 0 .. Scope_Stack.Last loop
7925 if Scope_Stack.Table (J).Entity = S then
7926 return True;
7927 end if;
7929 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7930 -- cases where Standard_Standard appears in the middle of the active
7931 -- set of scopes. This affects the declaration and overriding of
7932 -- private inherited operations in instantiations of generic child
7933 -- units.
7935 exit when Scope_Stack.Table (J).Is_Active_Stack_Base;
7936 end loop;
7938 return False;
7939 end In_Open_Scopes;
7941 -----------------------------
7942 -- Inherit_Renamed_Profile --
7943 -----------------------------
7945 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id) is
7946 New_F : Entity_Id;
7947 Old_F : Entity_Id;
7948 Old_T : Entity_Id;
7949 New_T : Entity_Id;
7951 begin
7952 if Ekind (Old_S) = E_Operator then
7953 New_F := First_Formal (New_S);
7955 while Present (New_F) loop
7956 Set_Etype (New_F, Base_Type (Etype (New_F)));
7957 Next_Formal (New_F);
7958 end loop;
7960 Set_Etype (New_S, Base_Type (Etype (New_S)));
7962 else
7963 New_F := First_Formal (New_S);
7964 Old_F := First_Formal (Old_S);
7966 while Present (New_F) loop
7967 New_T := Etype (New_F);
7968 Old_T := Etype (Old_F);
7970 -- If the new type is a renaming of the old one, as is the case
7971 -- for actuals in instances, retain its name, to simplify later
7972 -- disambiguation.
7974 if Nkind (Parent (New_T)) = N_Subtype_Declaration
7975 and then Is_Entity_Name (Subtype_Indication (Parent (New_T)))
7976 and then Entity (Subtype_Indication (Parent (New_T))) = Old_T
7977 then
7978 null;
7979 else
7980 Set_Etype (New_F, Old_T);
7981 end if;
7983 Next_Formal (New_F);
7984 Next_Formal (Old_F);
7985 end loop;
7987 pragma Assert (No (Old_F));
7989 if Ekind_In (Old_S, E_Function, E_Enumeration_Literal) then
7990 Set_Etype (New_S, Etype (Old_S));
7991 end if;
7992 end if;
7993 end Inherit_Renamed_Profile;
7995 ----------------
7996 -- Initialize --
7997 ----------------
7999 procedure Initialize is
8000 begin
8001 Urefs.Init;
8002 end Initialize;
8004 -------------------------
8005 -- Install_Use_Clauses --
8006 -------------------------
8008 procedure Install_Use_Clauses
8009 (Clause : Node_Id;
8010 Force_Installation : Boolean := False)
8012 U : Node_Id;
8013 P : Node_Id;
8014 Id : Entity_Id;
8016 begin
8017 U := Clause;
8018 while Present (U) loop
8020 -- Case of USE package
8022 if Nkind (U) = N_Use_Package_Clause then
8023 P := First (Names (U));
8024 while Present (P) loop
8025 Id := Entity (P);
8027 if Ekind (Id) = E_Package then
8028 if In_Use (Id) then
8029 Note_Redundant_Use (P);
8031 elsif Present (Renamed_Object (Id))
8032 and then In_Use (Renamed_Object (Id))
8033 then
8034 Note_Redundant_Use (P);
8036 elsif Force_Installation or else Applicable_Use (P) then
8037 Use_One_Package (Id, U);
8039 end if;
8040 end if;
8042 Next (P);
8043 end loop;
8045 -- Case of USE TYPE
8047 else
8048 P := First (Subtype_Marks (U));
8049 while Present (P) loop
8050 if not Is_Entity_Name (P)
8051 or else No (Entity (P))
8052 then
8053 null;
8055 elsif Entity (P) /= Any_Type then
8056 Use_One_Type (P);
8057 end if;
8059 Next (P);
8060 end loop;
8061 end if;
8063 Next_Use_Clause (U);
8064 end loop;
8065 end Install_Use_Clauses;
8067 -------------------------------------
8068 -- Is_Appropriate_For_Entry_Prefix --
8069 -------------------------------------
8071 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean is
8072 P_Type : Entity_Id := T;
8074 begin
8075 if Is_Access_Type (P_Type) then
8076 P_Type := Designated_Type (P_Type);
8077 end if;
8079 return Is_Task_Type (P_Type) or else Is_Protected_Type (P_Type);
8080 end Is_Appropriate_For_Entry_Prefix;
8082 -------------------------------
8083 -- Is_Appropriate_For_Record --
8084 -------------------------------
8086 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean is
8088 function Has_Components (T1 : Entity_Id) return Boolean;
8089 -- Determine if given type has components (i.e. is either a record
8090 -- type or a type that has discriminants).
8092 --------------------
8093 -- Has_Components --
8094 --------------------
8096 function Has_Components (T1 : Entity_Id) return Boolean is
8097 begin
8098 return Is_Record_Type (T1)
8099 or else (Is_Private_Type (T1) and then Has_Discriminants (T1))
8100 or else (Is_Task_Type (T1) and then Has_Discriminants (T1))
8101 or else (Is_Incomplete_Type (T1)
8102 and then From_Limited_With (T1)
8103 and then Present (Non_Limited_View (T1))
8104 and then Is_Record_Type
8105 (Get_Full_View (Non_Limited_View (T1))));
8106 end Has_Components;
8108 -- Start of processing for Is_Appropriate_For_Record
8110 begin
8111 return
8112 Present (T)
8113 and then (Has_Components (T)
8114 or else (Is_Access_Type (T)
8115 and then Has_Components (Designated_Type (T))));
8116 end Is_Appropriate_For_Record;
8118 ------------------------
8119 -- Note_Redundant_Use --
8120 ------------------------
8122 procedure Note_Redundant_Use (Clause : Node_Id) is
8123 Pack_Name : constant Entity_Id := Entity (Clause);
8124 Cur_Use : constant Node_Id := Current_Use_Clause (Pack_Name);
8125 Decl : constant Node_Id := Parent (Clause);
8127 Prev_Use : Node_Id := Empty;
8128 Redundant : Node_Id := Empty;
8129 -- The Use_Clause which is actually redundant. In the simplest case it
8130 -- is Pack itself, but when we compile a body we install its context
8131 -- before that of its spec, in which case it is the use_clause in the
8132 -- spec that will appear to be redundant, and we want the warning to be
8133 -- placed on the body. Similar complications appear when the redundancy
8134 -- is between a child unit and one of its ancestors.
8136 begin
8137 Set_Redundant_Use (Clause, True);
8139 if not Comes_From_Source (Clause)
8140 or else In_Instance
8141 or else not Warn_On_Redundant_Constructs
8142 then
8143 return;
8144 end if;
8146 if not Is_Compilation_Unit (Current_Scope) then
8148 -- If the use_clause is in an inner scope, it is made redundant by
8149 -- some clause in the current context, with one exception: If we're
8150 -- compiling a nested package body, and the use_clause comes from the
8151 -- corresponding spec, the clause is not necessarily fully redundant,
8152 -- so we should not warn. If a warning was warranted, it would have
8153 -- been given when the spec was processed.
8155 if Nkind (Parent (Decl)) = N_Package_Specification then
8156 declare
8157 Package_Spec_Entity : constant Entity_Id :=
8158 Defining_Unit_Name (Parent (Decl));
8159 begin
8160 if In_Package_Body (Package_Spec_Entity) then
8161 return;
8162 end if;
8163 end;
8164 end if;
8166 Redundant := Clause;
8167 Prev_Use := Cur_Use;
8169 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
8170 declare
8171 Cur_Unit : constant Unit_Number_Type := Get_Source_Unit (Cur_Use);
8172 New_Unit : constant Unit_Number_Type := Get_Source_Unit (Clause);
8173 Scop : Entity_Id;
8175 begin
8176 if Cur_Unit = New_Unit then
8178 -- Redundant clause in same body
8180 Redundant := Clause;
8181 Prev_Use := Cur_Use;
8183 elsif Cur_Unit = Current_Sem_Unit then
8185 -- If the new clause is not in the current unit it has been
8186 -- analyzed first, and it makes the other one redundant.
8187 -- However, if the new clause appears in a subunit, Cur_Unit
8188 -- is still the parent, and in that case the redundant one
8189 -- is the one appearing in the subunit.
8191 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
8192 Redundant := Clause;
8193 Prev_Use := Cur_Use;
8195 -- Most common case: redundant clause in body,
8196 -- original clause in spec. Current scope is spec entity.
8198 elsif
8199 Current_Scope =
8200 Defining_Entity (
8201 Unit (Library_Unit (Cunit (Current_Sem_Unit))))
8202 then
8203 Redundant := Cur_Use;
8204 Prev_Use := Clause;
8206 else
8207 -- The new clause may appear in an unrelated unit, when
8208 -- the parents of a generic are being installed prior to
8209 -- instantiation. In this case there must be no warning.
8210 -- We detect this case by checking whether the current top
8211 -- of the stack is related to the current compilation.
8213 Scop := Current_Scope;
8214 while Present (Scop) and then Scop /= Standard_Standard loop
8215 if Is_Compilation_Unit (Scop)
8216 and then not Is_Child_Unit (Scop)
8217 then
8218 return;
8220 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
8221 exit;
8222 end if;
8224 Scop := Scope (Scop);
8225 end loop;
8227 Redundant := Cur_Use;
8228 Prev_Use := Clause;
8229 end if;
8231 elsif New_Unit = Current_Sem_Unit then
8232 Redundant := Clause;
8233 Prev_Use := Cur_Use;
8235 else
8236 -- Neither is the current unit, so they appear in parent or
8237 -- sibling units. Warning will be emitted elsewhere.
8239 return;
8240 end if;
8241 end;
8243 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
8244 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
8245 then
8246 -- Use_clause is in child unit of current unit, and the child unit
8247 -- appears in the context of the body of the parent, so it has been
8248 -- installed first, even though it is the redundant one. Depending on
8249 -- their placement in the context, the visible or the private parts
8250 -- of the two units, either might appear as redundant, but the
8251 -- message has to be on the current unit.
8253 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
8254 Redundant := Cur_Use;
8255 Prev_Use := Clause;
8256 else
8257 Redundant := Clause;
8258 Prev_Use := Cur_Use;
8259 end if;
8261 -- If the new use clause appears in the private part of a parent unit
8262 -- it may appear to be redundant w.r.t. a use clause in a child unit,
8263 -- but the previous use clause was needed in the visible part of the
8264 -- child, and no warning should be emitted.
8266 if Nkind (Parent (Decl)) = N_Package_Specification
8267 and then
8268 List_Containing (Decl) = Private_Declarations (Parent (Decl))
8269 then
8270 declare
8271 Par : constant Entity_Id := Defining_Entity (Parent (Decl));
8272 Spec : constant Node_Id :=
8273 Specification (Unit (Cunit (Current_Sem_Unit)));
8275 begin
8276 if Is_Compilation_Unit (Par)
8277 and then Par /= Cunit_Entity (Current_Sem_Unit)
8278 and then Parent (Cur_Use) = Spec
8279 and then
8280 List_Containing (Cur_Use) = Visible_Declarations (Spec)
8281 then
8282 return;
8283 end if;
8284 end;
8285 end if;
8287 -- Finally, if the current use clause is in the context then
8288 -- the clause is redundant when it is nested within the unit.
8290 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
8291 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
8292 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
8293 then
8294 Redundant := Clause;
8295 Prev_Use := Cur_Use;
8297 else
8298 null;
8299 end if;
8301 if Present (Redundant) then
8302 Error_Msg_Sloc := Sloc (Prev_Use);
8303 Error_Msg_NE -- CODEFIX
8304 ("& is already use-visible through previous use clause #??",
8305 Redundant, Pack_Name);
8306 end if;
8307 end Note_Redundant_Use;
8309 ---------------
8310 -- Pop_Scope --
8311 ---------------
8313 procedure Pop_Scope is
8314 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8315 S : constant Entity_Id := SST.Entity;
8317 begin
8318 if Debug_Flag_E then
8319 Write_Info;
8320 end if;
8322 -- Set Default_Storage_Pool field of the library unit if necessary
8324 if Ekind_In (S, E_Package, E_Generic_Package)
8325 and then
8326 Nkind (Parent (Unit_Declaration_Node (S))) = N_Compilation_Unit
8327 then
8328 declare
8329 Aux : constant Node_Id :=
8330 Aux_Decls_Node (Parent (Unit_Declaration_Node (S)));
8331 begin
8332 if No (Default_Storage_Pool (Aux)) then
8333 Set_Default_Storage_Pool (Aux, Default_Pool);
8334 end if;
8335 end;
8336 end if;
8338 Scope_Suppress := SST.Save_Scope_Suppress;
8339 Local_Suppress_Stack_Top := SST.Save_Local_Suppress_Stack_Top;
8340 Check_Policy_List := SST.Save_Check_Policy_List;
8341 Default_Pool := SST.Save_Default_Storage_Pool;
8342 No_Tagged_Streams := SST.Save_No_Tagged_Streams;
8343 SPARK_Mode := SST.Save_SPARK_Mode;
8344 SPARK_Mode_Pragma := SST.Save_SPARK_Mode_Pragma;
8345 Default_SSO := SST.Save_Default_SSO;
8346 Uneval_Old := SST.Save_Uneval_Old;
8348 if Debug_Flag_W then
8349 Write_Str ("<-- exiting scope: ");
8350 Write_Name (Chars (Current_Scope));
8351 Write_Str (", Depth=");
8352 Write_Int (Int (Scope_Stack.Last));
8353 Write_Eol;
8354 end if;
8356 End_Use_Clauses (SST.First_Use_Clause);
8358 -- If the actions to be wrapped are still there they will get lost
8359 -- causing incomplete code to be generated. It is better to abort in
8360 -- this case (and we do the abort even with assertions off since the
8361 -- penalty is incorrect code generation).
8363 if SST.Actions_To_Be_Wrapped /= Scope_Actions'(others => No_List) then
8364 raise Program_Error;
8365 end if;
8367 -- Free last subprogram name if allocated, and pop scope
8369 Free (SST.Last_Subprogram_Name);
8370 Scope_Stack.Decrement_Last;
8371 end Pop_Scope;
8373 ---------------
8374 -- Push_Scope --
8375 ---------------
8377 procedure Push_Scope (S : Entity_Id) is
8378 E : constant Entity_Id := Scope (S);
8380 begin
8381 if Ekind (S) = E_Void then
8382 null;
8384 -- Set scope depth if not a non-concurrent type, and we have not yet set
8385 -- the scope depth. This means that we have the first occurrence of the
8386 -- scope, and this is where the depth is set.
8388 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
8389 and then not Scope_Depth_Set (S)
8390 then
8391 if S = Standard_Standard then
8392 Set_Scope_Depth_Value (S, Uint_0);
8394 elsif Is_Child_Unit (S) then
8395 Set_Scope_Depth_Value (S, Uint_1);
8397 elsif not Is_Record_Type (Current_Scope) then
8398 if Ekind (S) = E_Loop then
8399 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
8400 else
8401 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
8402 end if;
8403 end if;
8404 end if;
8406 Scope_Stack.Increment_Last;
8408 declare
8409 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8411 begin
8412 SST.Entity := S;
8413 SST.Save_Scope_Suppress := Scope_Suppress;
8414 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
8415 SST.Save_Check_Policy_List := Check_Policy_List;
8416 SST.Save_Default_Storage_Pool := Default_Pool;
8417 SST.Save_No_Tagged_Streams := No_Tagged_Streams;
8418 SST.Save_SPARK_Mode := SPARK_Mode;
8419 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
8420 SST.Save_Default_SSO := Default_SSO;
8421 SST.Save_Uneval_Old := Uneval_Old;
8423 -- Each new scope pushed onto the scope stack inherits the component
8424 -- alignment of the previous scope. This emulates the "visibility"
8425 -- semantics of pragma Component_Alignment.
8427 if Scope_Stack.Last > Scope_Stack.First then
8428 SST.Component_Alignment_Default :=
8429 Scope_Stack.Table
8430 (Scope_Stack.Last - 1). Component_Alignment_Default;
8432 -- Otherwise, this is the first scope being pushed on the scope
8433 -- stack. Inherit the component alignment from the configuration
8434 -- form of pragma Component_Alignment (if any).
8436 else
8437 SST.Component_Alignment_Default :=
8438 Configuration_Component_Alignment;
8439 end if;
8441 SST.Last_Subprogram_Name := null;
8442 SST.Is_Transient := False;
8443 SST.Node_To_Be_Wrapped := Empty;
8444 SST.Pending_Freeze_Actions := No_List;
8445 SST.Actions_To_Be_Wrapped := (others => No_List);
8446 SST.First_Use_Clause := Empty;
8447 SST.Is_Active_Stack_Base := False;
8448 SST.Previous_Visibility := False;
8449 SST.Locked_Shared_Objects := No_Elist;
8450 end;
8452 if Debug_Flag_W then
8453 Write_Str ("--> new scope: ");
8454 Write_Name (Chars (Current_Scope));
8455 Write_Str (", Id=");
8456 Write_Int (Int (Current_Scope));
8457 Write_Str (", Depth=");
8458 Write_Int (Int (Scope_Stack.Last));
8459 Write_Eol;
8460 end if;
8462 -- Deal with copying flags from the previous scope to this one. This is
8463 -- not necessary if either scope is standard, or if the new scope is a
8464 -- child unit.
8466 if S /= Standard_Standard
8467 and then Scope (S) /= Standard_Standard
8468 and then not Is_Child_Unit (S)
8469 then
8470 if Nkind (E) not in N_Entity then
8471 return;
8472 end if;
8474 -- Copy categorization flags from Scope (S) to S, this is not done
8475 -- when Scope (S) is Standard_Standard since propagation is from
8476 -- library unit entity inwards. Copy other relevant attributes as
8477 -- well (Discard_Names in particular).
8479 -- We only propagate inwards for library level entities,
8480 -- inner level subprograms do not inherit the categorization.
8482 if Is_Library_Level_Entity (S) then
8483 Set_Is_Preelaborated (S, Is_Preelaborated (E));
8484 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
8485 Set_Discard_Names (S, Discard_Names (E));
8486 Set_Suppress_Value_Tracking_On_Call
8487 (S, Suppress_Value_Tracking_On_Call (E));
8488 Set_Categorization_From_Scope (E => S, Scop => E);
8489 end if;
8490 end if;
8492 if Is_Child_Unit (S)
8493 and then Present (E)
8494 and then Ekind_In (E, E_Package, E_Generic_Package)
8495 and then
8496 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8497 then
8498 declare
8499 Aux : constant Node_Id :=
8500 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
8501 begin
8502 if Present (Default_Storage_Pool (Aux)) then
8503 Default_Pool := Default_Storage_Pool (Aux);
8504 end if;
8505 end;
8506 end if;
8507 end Push_Scope;
8509 ---------------------
8510 -- Premature_Usage --
8511 ---------------------
8513 procedure Premature_Usage (N : Node_Id) is
8514 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
8515 E : Entity_Id := Entity (N);
8517 begin
8518 -- Within an instance, the analysis of the actual for a formal object
8519 -- does not see the name of the object itself. This is significant only
8520 -- if the object is an aggregate, where its analysis does not do any
8521 -- name resolution on component associations. (see 4717-008). In such a
8522 -- case, look for the visible homonym on the chain.
8524 if In_Instance and then Present (Homonym (E)) then
8525 E := Homonym (E);
8526 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
8527 E := Homonym (E);
8528 end loop;
8530 if Present (E) then
8531 Set_Entity (N, E);
8532 Set_Etype (N, Etype (E));
8533 return;
8534 end if;
8535 end if;
8537 if Kind = N_Component_Declaration then
8538 Error_Msg_N
8539 ("component&! cannot be used before end of record declaration", N);
8541 elsif Kind = N_Parameter_Specification then
8542 Error_Msg_N
8543 ("formal parameter&! cannot be used before end of specification",
8546 elsif Kind = N_Discriminant_Specification then
8547 Error_Msg_N
8548 ("discriminant&! cannot be used before end of discriminant part",
8551 elsif Kind = N_Procedure_Specification
8552 or else Kind = N_Function_Specification
8553 then
8554 Error_Msg_N
8555 ("subprogram&! cannot be used before end of its declaration",
8558 elsif Kind = N_Full_Type_Declaration then
8559 Error_Msg_N
8560 ("type& cannot be used before end of its declaration!", N);
8562 else
8563 Error_Msg_N
8564 ("object& cannot be used before end of its declaration!", N);
8566 -- If the premature reference appears as the expression in its own
8567 -- declaration, rewrite it to prevent compiler loops in subsequent
8568 -- uses of this mangled declaration in address clauses.
8570 if Nkind (Parent (N)) = N_Object_Declaration then
8571 Set_Entity (N, Any_Id);
8572 end if;
8573 end if;
8574 end Premature_Usage;
8576 ------------------------
8577 -- Present_System_Aux --
8578 ------------------------
8580 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8581 Loc : Source_Ptr;
8582 Aux_Name : Unit_Name_Type;
8583 Unum : Unit_Number_Type;
8584 Withn : Node_Id;
8585 With_Sys : Node_Id;
8586 The_Unit : Node_Id;
8588 function Find_System (C_Unit : Node_Id) return Entity_Id;
8589 -- Scan context clause of compilation unit to find with_clause
8590 -- for System.
8592 -----------------
8593 -- Find_System --
8594 -----------------
8596 function Find_System (C_Unit : Node_Id) return Entity_Id is
8597 With_Clause : Node_Id;
8599 begin
8600 With_Clause := First (Context_Items (C_Unit));
8601 while Present (With_Clause) loop
8602 if (Nkind (With_Clause) = N_With_Clause
8603 and then Chars (Name (With_Clause)) = Name_System)
8604 and then Comes_From_Source (With_Clause)
8605 then
8606 return With_Clause;
8607 end if;
8609 Next (With_Clause);
8610 end loop;
8612 return Empty;
8613 end Find_System;
8615 -- Start of processing for Present_System_Aux
8617 begin
8618 -- The child unit may have been loaded and analyzed already
8620 if Present (System_Aux_Id) then
8621 return True;
8623 -- If no previous pragma for System.Aux, nothing to load
8625 elsif No (System_Extend_Unit) then
8626 return False;
8628 -- Use the unit name given in the pragma to retrieve the unit.
8629 -- Verify that System itself appears in the context clause of the
8630 -- current compilation. If System is not present, an error will
8631 -- have been reported already.
8633 else
8634 With_Sys := Find_System (Cunit (Current_Sem_Unit));
8636 The_Unit := Unit (Cunit (Current_Sem_Unit));
8638 if No (With_Sys)
8639 and then
8640 (Nkind (The_Unit) = N_Package_Body
8641 or else (Nkind (The_Unit) = N_Subprogram_Body
8642 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
8643 then
8644 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
8645 end if;
8647 if No (With_Sys) and then Present (N) then
8649 -- If we are compiling a subunit, we need to examine its
8650 -- context as well (Current_Sem_Unit is the parent unit);
8652 The_Unit := Parent (N);
8653 while Nkind (The_Unit) /= N_Compilation_Unit loop
8654 The_Unit := Parent (The_Unit);
8655 end loop;
8657 if Nkind (Unit (The_Unit)) = N_Subunit then
8658 With_Sys := Find_System (The_Unit);
8659 end if;
8660 end if;
8662 if No (With_Sys) then
8663 return False;
8664 end if;
8666 Loc := Sloc (With_Sys);
8667 Get_Name_String (Chars (Expression (System_Extend_Unit)));
8668 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
8669 Name_Buffer (1 .. 7) := "system.";
8670 Name_Buffer (Name_Len + 8) := '%';
8671 Name_Buffer (Name_Len + 9) := 's';
8672 Name_Len := Name_Len + 9;
8673 Aux_Name := Name_Find;
8675 Unum :=
8676 Load_Unit
8677 (Load_Name => Aux_Name,
8678 Required => False,
8679 Subunit => False,
8680 Error_Node => With_Sys);
8682 if Unum /= No_Unit then
8683 Semantics (Cunit (Unum));
8684 System_Aux_Id :=
8685 Defining_Entity (Specification (Unit (Cunit (Unum))));
8687 Withn :=
8688 Make_With_Clause (Loc,
8689 Name =>
8690 Make_Expanded_Name (Loc,
8691 Chars => Chars (System_Aux_Id),
8692 Prefix => New_Occurrence_Of (Scope (System_Aux_Id), Loc),
8693 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
8695 Set_Entity (Name (Withn), System_Aux_Id);
8697 Set_Library_Unit (Withn, Cunit (Unum));
8698 Set_Corresponding_Spec (Withn, System_Aux_Id);
8699 Set_First_Name (Withn, True);
8700 Set_Implicit_With (Withn, True);
8702 Insert_After (With_Sys, Withn);
8703 Mark_Rewrite_Insertion (Withn);
8704 Set_Context_Installed (Withn);
8706 return True;
8708 -- Here if unit load failed
8710 else
8711 Error_Msg_Name_1 := Name_System;
8712 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
8713 Error_Msg_N
8714 ("extension package `%.%` does not exist",
8715 Opt.System_Extend_Unit);
8716 return False;
8717 end if;
8718 end if;
8719 end Present_System_Aux;
8721 -------------------------
8722 -- Restore_Scope_Stack --
8723 -------------------------
8725 procedure Restore_Scope_Stack
8726 (List : Elist_Id;
8727 Handle_Use : Boolean := True)
8729 SS_Last : constant Int := Scope_Stack.Last;
8730 Elmt : Elmt_Id;
8732 begin
8733 -- Restore visibility of previous scope stack, if any, using the list
8734 -- we saved (we use Remove, since this list will not be used again).
8736 loop
8737 Elmt := Last_Elmt (List);
8738 exit when Elmt = No_Elmt;
8739 Set_Is_Immediately_Visible (Node (Elmt));
8740 Remove_Last_Elmt (List);
8741 end loop;
8743 -- Restore use clauses
8745 if SS_Last >= Scope_Stack.First
8746 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8747 and then Handle_Use
8748 then
8749 Install_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8750 end if;
8751 end Restore_Scope_Stack;
8753 ----------------------
8754 -- Save_Scope_Stack --
8755 ----------------------
8757 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
8758 -- consuming any memory. That is, Save_Scope_Stack took care of removing
8759 -- from immediate visibility entities and Restore_Scope_Stack took care
8760 -- of restoring their visibility analyzing the context of each entity. The
8761 -- problem of such approach is that it was fragile and caused unexpected
8762 -- visibility problems, and indeed one test was found where there was a
8763 -- real problem.
8765 -- Furthermore, the following experiment was carried out:
8767 -- - Save_Scope_Stack was modified to store in an Elist1 all those
8768 -- entities whose attribute Is_Immediately_Visible is modified
8769 -- from True to False.
8771 -- - Restore_Scope_Stack was modified to store in another Elist2
8772 -- all the entities whose attribute Is_Immediately_Visible is
8773 -- modified from False to True.
8775 -- - Extra code was added to verify that all the elements of Elist1
8776 -- are found in Elist2
8778 -- This test shows that there may be more occurrences of this problem which
8779 -- have not yet been detected. As a result, we replaced that approach by
8780 -- the current one in which Save_Scope_Stack returns the list of entities
8781 -- whose visibility is changed, and that list is passed to Restore_Scope_
8782 -- Stack to undo that change. This approach is simpler and safer, although
8783 -- it consumes more memory.
8785 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
8786 Result : constant Elist_Id := New_Elmt_List;
8787 E : Entity_Id;
8788 S : Entity_Id;
8789 SS_Last : constant Int := Scope_Stack.Last;
8791 procedure Remove_From_Visibility (E : Entity_Id);
8792 -- If E is immediately visible then append it to the result and remove
8793 -- it temporarily from visibility.
8795 ----------------------------
8796 -- Remove_From_Visibility --
8797 ----------------------------
8799 procedure Remove_From_Visibility (E : Entity_Id) is
8800 begin
8801 if Is_Immediately_Visible (E) then
8802 Append_Elmt (E, Result);
8803 Set_Is_Immediately_Visible (E, False);
8804 end if;
8805 end Remove_From_Visibility;
8807 -- Start of processing for Save_Scope_Stack
8809 begin
8810 if SS_Last >= Scope_Stack.First
8811 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8812 then
8813 if Handle_Use then
8814 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8815 end if;
8817 -- If the call is from within a compilation unit, as when called from
8818 -- Rtsfind, make current entries in scope stack invisible while we
8819 -- analyze the new unit.
8821 for J in reverse 0 .. SS_Last loop
8822 exit when Scope_Stack.Table (J).Entity = Standard_Standard
8823 or else No (Scope_Stack.Table (J).Entity);
8825 S := Scope_Stack.Table (J).Entity;
8827 Remove_From_Visibility (S);
8829 E := First_Entity (S);
8830 while Present (E) loop
8831 Remove_From_Visibility (E);
8832 Next_Entity (E);
8833 end loop;
8834 end loop;
8836 end if;
8838 return Result;
8839 end Save_Scope_Stack;
8841 -------------
8842 -- Set_Use --
8843 -------------
8845 procedure Set_Use (L : List_Id) is
8846 Decl : Node_Id;
8847 Pack_Name : Node_Id;
8848 Pack : Entity_Id;
8849 Id : Entity_Id;
8851 begin
8852 if Present (L) then
8853 Decl := First (L);
8854 while Present (Decl) loop
8855 if Nkind (Decl) = N_Use_Package_Clause then
8856 Chain_Use_Clause (Decl);
8858 Pack_Name := First (Names (Decl));
8859 while Present (Pack_Name) loop
8860 Pack := Entity (Pack_Name);
8862 if Ekind (Pack) = E_Package
8863 and then Applicable_Use (Pack_Name)
8864 then
8865 Use_One_Package (Pack, Decl);
8866 end if;
8868 Next (Pack_Name);
8869 end loop;
8871 elsif Nkind (Decl) = N_Use_Type_Clause then
8872 Chain_Use_Clause (Decl);
8874 Id := First (Subtype_Marks (Decl));
8875 while Present (Id) loop
8876 if Entity (Id) /= Any_Type then
8877 Use_One_Type (Id);
8878 end if;
8880 Next (Id);
8881 end loop;
8882 end if;
8884 Next (Decl);
8885 end loop;
8886 end if;
8887 end Set_Use;
8889 ---------------------
8890 -- Use_One_Package --
8891 ---------------------
8893 procedure Use_One_Package (P : Entity_Id; N : Node_Id) is
8894 Id : Entity_Id;
8895 Prev : Entity_Id;
8896 Current_Instance : Entity_Id := Empty;
8897 Real_P : Entity_Id;
8898 Private_With_OK : Boolean := False;
8900 begin
8901 if Ekind (P) /= E_Package then
8902 return;
8903 end if;
8905 Set_In_Use (P);
8906 Set_Current_Use_Clause (P, N);
8908 -- Ada 2005 (AI-50217): Check restriction
8910 if From_Limited_With (P) then
8911 Error_Msg_N ("limited withed package cannot appear in use clause", N);
8912 end if;
8914 -- Find enclosing instance, if any
8916 if In_Instance then
8917 Current_Instance := Current_Scope;
8918 while not Is_Generic_Instance (Current_Instance) loop
8919 Current_Instance := Scope (Current_Instance);
8920 end loop;
8922 if No (Hidden_By_Use_Clause (N)) then
8923 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
8924 end if;
8925 end if;
8927 -- If unit is a package renaming, indicate that the renamed
8928 -- package is also in use (the flags on both entities must
8929 -- remain consistent, and a subsequent use of either of them
8930 -- should be recognized as redundant).
8932 if Present (Renamed_Object (P)) then
8933 Set_In_Use (Renamed_Object (P));
8934 Set_Current_Use_Clause (Renamed_Object (P), N);
8935 Real_P := Renamed_Object (P);
8936 else
8937 Real_P := P;
8938 end if;
8940 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
8941 -- found in the private part of a package specification
8943 if In_Private_Part (Current_Scope)
8944 and then Has_Private_With (P)
8945 and then Is_Child_Unit (Current_Scope)
8946 and then Is_Child_Unit (P)
8947 and then Is_Ancestor_Package (Scope (Current_Scope), P)
8948 then
8949 Private_With_OK := True;
8950 end if;
8952 -- Loop through entities in one package making them potentially
8953 -- use-visible.
8955 Id := First_Entity (P);
8956 while Present (Id)
8957 and then (Id /= First_Private_Entity (P)
8958 or else Private_With_OK) -- Ada 2005 (AI-262)
8959 loop
8960 Prev := Current_Entity (Id);
8961 while Present (Prev) loop
8962 if Is_Immediately_Visible (Prev)
8963 and then (not Is_Overloadable (Prev)
8964 or else not Is_Overloadable (Id)
8965 or else (Type_Conformant (Id, Prev)))
8966 then
8967 if No (Current_Instance) then
8969 -- Potentially use-visible entity remains hidden
8971 goto Next_Usable_Entity;
8973 -- A use clause within an instance hides outer global entities,
8974 -- which are not used to resolve local entities in the
8975 -- instance. Note that the predefined entities in Standard
8976 -- could not have been hidden in the generic by a use clause,
8977 -- and therefore remain visible. Other compilation units whose
8978 -- entities appear in Standard must be hidden in an instance.
8980 -- To determine whether an entity is external to the instance
8981 -- we compare the scope depth of its scope with that of the
8982 -- current instance. However, a generic actual of a subprogram
8983 -- instance is declared in the wrapper package but will not be
8984 -- hidden by a use-visible entity. similarly, an entity that is
8985 -- declared in an enclosing instance will not be hidden by an
8986 -- an entity declared in a generic actual, which can only have
8987 -- been use-visible in the generic and will not have hidden the
8988 -- entity in the generic parent.
8990 -- If Id is called Standard, the predefined package with the
8991 -- same name is in the homonym chain. It has to be ignored
8992 -- because it has no defined scope (being the only entity in
8993 -- the system with this mandated behavior).
8995 elsif not Is_Hidden (Id)
8996 and then Present (Scope (Prev))
8997 and then not Is_Wrapper_Package (Scope (Prev))
8998 and then Scope_Depth (Scope (Prev)) <
8999 Scope_Depth (Current_Instance)
9000 and then (Scope (Prev) /= Standard_Standard
9001 or else Sloc (Prev) > Standard_Location)
9002 then
9003 if In_Open_Scopes (Scope (Prev))
9004 and then Is_Generic_Instance (Scope (Prev))
9005 and then Present (Associated_Formal_Package (P))
9006 then
9007 null;
9009 else
9010 Set_Is_Potentially_Use_Visible (Id);
9011 Set_Is_Immediately_Visible (Prev, False);
9012 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9013 end if;
9014 end if;
9016 -- A user-defined operator is not use-visible if the predefined
9017 -- operator for the type is immediately visible, which is the case
9018 -- if the type of the operand is in an open scope. This does not
9019 -- apply to user-defined operators that have operands of different
9020 -- types, because the predefined mixed mode operations (multiply
9021 -- and divide) apply to universal types and do not hide anything.
9023 elsif Ekind (Prev) = E_Operator
9024 and then Operator_Matches_Spec (Prev, Id)
9025 and then In_Open_Scopes
9026 (Scope (Base_Type (Etype (First_Formal (Id)))))
9027 and then (No (Next_Formal (First_Formal (Id)))
9028 or else Etype (First_Formal (Id)) =
9029 Etype (Next_Formal (First_Formal (Id)))
9030 or else Chars (Prev) = Name_Op_Expon)
9031 then
9032 goto Next_Usable_Entity;
9034 -- In an instance, two homonyms may become use_visible through the
9035 -- actuals of distinct formal packages. In the generic, only the
9036 -- current one would have been visible, so make the other one
9037 -- not use_visible.
9039 elsif Present (Current_Instance)
9040 and then Is_Potentially_Use_Visible (Prev)
9041 and then not Is_Overloadable (Prev)
9042 and then Scope (Id) /= Scope (Prev)
9043 and then Used_As_Generic_Actual (Scope (Prev))
9044 and then Used_As_Generic_Actual (Scope (Id))
9045 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
9046 Current_Use_Clause (Scope (Id)))
9047 then
9048 Set_Is_Potentially_Use_Visible (Prev, False);
9049 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9050 end if;
9052 Prev := Homonym (Prev);
9053 end loop;
9055 -- On exit, we know entity is not hidden, unless it is private
9057 if not Is_Hidden (Id)
9058 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
9059 then
9060 Set_Is_Potentially_Use_Visible (Id);
9062 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
9063 Set_Is_Potentially_Use_Visible (Full_View (Id));
9064 end if;
9065 end if;
9067 <<Next_Usable_Entity>>
9068 Next_Entity (Id);
9069 end loop;
9071 -- Child units are also made use-visible by a use clause, but they may
9072 -- appear after all visible declarations in the parent entity list.
9074 while Present (Id) loop
9075 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
9076 Set_Is_Potentially_Use_Visible (Id);
9077 end if;
9079 Next_Entity (Id);
9080 end loop;
9082 if Chars (Real_P) = Name_System
9083 and then Scope (Real_P) = Standard_Standard
9084 and then Present_System_Aux (N)
9085 then
9086 Use_One_Package (System_Aux_Id, N);
9087 end if;
9089 end Use_One_Package;
9091 ------------------
9092 -- Use_One_Type --
9093 ------------------
9095 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False) is
9096 Elmt : Elmt_Id;
9097 Is_Known_Used : Boolean;
9098 Op_List : Elist_Id;
9099 T : Entity_Id;
9101 function Spec_Reloaded_For_Body return Boolean;
9102 -- Determine whether the compilation unit is a package body and the use
9103 -- type clause is in the spec of the same package. Even though the spec
9104 -- was analyzed first, its context is reloaded when analysing the body.
9106 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
9107 -- AI05-150: if the use_type_clause carries the "all" qualifier,
9108 -- class-wide operations of ancestor types are use-visible if the
9109 -- ancestor type is visible.
9111 ----------------------------
9112 -- Spec_Reloaded_For_Body --
9113 ----------------------------
9115 function Spec_Reloaded_For_Body return Boolean is
9116 begin
9117 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9118 declare
9119 Spec : constant Node_Id :=
9120 Parent (List_Containing (Parent (Id)));
9122 begin
9123 -- Check whether type is declared in a package specification,
9124 -- and current unit is the corresponding package body. The
9125 -- use clauses themselves may be within a nested package.
9127 return
9128 Nkind (Spec) = N_Package_Specification
9129 and then
9130 In_Same_Source_Unit (Corresponding_Body (Parent (Spec)),
9131 Cunit_Entity (Current_Sem_Unit));
9132 end;
9133 end if;
9135 return False;
9136 end Spec_Reloaded_For_Body;
9138 -------------------------------
9139 -- Use_Class_Wide_Operations --
9140 -------------------------------
9142 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
9143 Scop : Entity_Id;
9144 Ent : Entity_Id;
9146 function Is_Class_Wide_Operation_Of
9147 (Op : Entity_Id;
9148 T : Entity_Id) return Boolean;
9149 -- Determine whether a subprogram has a class-wide parameter or
9150 -- result that is T'Class.
9152 ---------------------------------
9153 -- Is_Class_Wide_Operation_Of --
9154 ---------------------------------
9156 function Is_Class_Wide_Operation_Of
9157 (Op : Entity_Id;
9158 T : Entity_Id) return Boolean
9160 Formal : Entity_Id;
9162 begin
9163 Formal := First_Formal (Op);
9164 while Present (Formal) loop
9165 if Etype (Formal) = Class_Wide_Type (T) then
9166 return True;
9167 end if;
9168 Next_Formal (Formal);
9169 end loop;
9171 if Etype (Op) = Class_Wide_Type (T) then
9172 return True;
9173 end if;
9175 return False;
9176 end Is_Class_Wide_Operation_Of;
9178 -- Start of processing for Use_Class_Wide_Operations
9180 begin
9181 Scop := Scope (Typ);
9182 if not Is_Hidden (Scop) then
9183 Ent := First_Entity (Scop);
9184 while Present (Ent) loop
9185 if Is_Overloadable (Ent)
9186 and then Is_Class_Wide_Operation_Of (Ent, Typ)
9187 and then not Is_Potentially_Use_Visible (Ent)
9188 then
9189 Set_Is_Potentially_Use_Visible (Ent);
9190 Append_Elmt (Ent, Used_Operations (Parent (Id)));
9191 end if;
9193 Next_Entity (Ent);
9194 end loop;
9195 end if;
9197 if Is_Derived_Type (Typ) then
9198 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
9199 end if;
9200 end Use_Class_Wide_Operations;
9202 -- Start of processing for Use_One_Type
9204 begin
9205 -- It is the type determined by the subtype mark (8.4(8)) whose
9206 -- operations become potentially use-visible.
9208 T := Base_Type (Entity (Id));
9210 -- Either the type itself is used, the package where it is declared
9211 -- is in use or the entity is declared in the current package, thus
9212 -- use-visible.
9214 Is_Known_Used :=
9215 In_Use (T)
9216 or else In_Use (Scope (T))
9217 or else Scope (T) = Current_Scope;
9219 Set_Redundant_Use (Id,
9220 Is_Known_Used or else Is_Potentially_Use_Visible (T));
9222 if Ekind (T) = E_Incomplete_Type then
9223 Error_Msg_N ("premature usage of incomplete type", Id);
9225 elsif In_Open_Scopes (Scope (T)) then
9226 null;
9228 -- A limited view cannot appear in a use_type clause. However, an access
9229 -- type whose designated type is limited has the flag but is not itself
9230 -- a limited view unless we only have a limited view of its enclosing
9231 -- package.
9233 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
9234 Error_Msg_N
9235 ("incomplete type from limited view cannot appear in use clause",
9236 Id);
9238 -- If the use clause is redundant, Used_Operations will usually be
9239 -- empty, but we need to set it to empty here in one case: If we are
9240 -- instantiating a generic library unit, then we install the ancestors
9241 -- of that unit in the scope stack, which involves reprocessing use
9242 -- clauses in those ancestors. Such a use clause will typically have a
9243 -- nonempty Used_Operations unless it was redundant in the generic unit,
9244 -- even if it is redundant at the place of the instantiation.
9246 elsif Redundant_Use (Id) then
9247 Set_Used_Operations (Parent (Id), New_Elmt_List);
9249 -- If the subtype mark designates a subtype in a different package,
9250 -- we have to check that the parent type is visible, otherwise the
9251 -- use type clause is a noop. Not clear how to do that???
9253 else
9254 Set_In_Use (T);
9256 -- If T is tagged, primitive operators on class-wide operands
9257 -- are also available.
9259 if Is_Tagged_Type (T) then
9260 Set_In_Use (Class_Wide_Type (T));
9261 end if;
9263 Set_Current_Use_Clause (T, Parent (Id));
9265 -- Iterate over primitive operations of the type. If an operation is
9266 -- already use_visible, it is the result of a previous use_clause,
9267 -- and already appears on the corresponding entity chain. If the
9268 -- clause is being reinstalled, operations are already use-visible.
9270 if Installed then
9271 null;
9273 else
9274 Op_List := Collect_Primitive_Operations (T);
9275 Elmt := First_Elmt (Op_List);
9276 while Present (Elmt) loop
9277 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
9278 or else Chars (Node (Elmt)) in Any_Operator_Name)
9279 and then not Is_Hidden (Node (Elmt))
9280 and then not Is_Potentially_Use_Visible (Node (Elmt))
9281 then
9282 Set_Is_Potentially_Use_Visible (Node (Elmt));
9283 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9285 elsif Ada_Version >= Ada_2012
9286 and then All_Present (Parent (Id))
9287 and then not Is_Hidden (Node (Elmt))
9288 and then not Is_Potentially_Use_Visible (Node (Elmt))
9289 then
9290 Set_Is_Potentially_Use_Visible (Node (Elmt));
9291 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9292 end if;
9294 Next_Elmt (Elmt);
9295 end loop;
9296 end if;
9298 if Ada_Version >= Ada_2012
9299 and then All_Present (Parent (Id))
9300 and then Is_Tagged_Type (T)
9301 then
9302 Use_Class_Wide_Operations (T);
9303 end if;
9304 end if;
9306 -- If warning on redundant constructs, check for unnecessary WITH
9308 if Warn_On_Redundant_Constructs
9309 and then Is_Known_Used
9311 -- with P; with P; use P;
9312 -- package P is package X is package body X is
9313 -- type T ... use P.T;
9315 -- The compilation unit is the body of X. GNAT first compiles the
9316 -- spec of X, then proceeds to the body. At that point P is marked
9317 -- as use visible. The analysis then reinstalls the spec along with
9318 -- its context. The use clause P.T is now recognized as redundant,
9319 -- but in the wrong context. Do not emit a warning in such cases.
9320 -- Do not emit a warning either if we are in an instance, there is
9321 -- no redundancy between an outer use_clause and one that appears
9322 -- within the generic.
9324 and then not Spec_Reloaded_For_Body
9325 and then not In_Instance
9326 then
9327 -- The type already has a use clause
9329 if In_Use (T) then
9331 -- Case where we know the current use clause for the type
9333 if Present (Current_Use_Clause (T)) then
9334 Use_Clause_Known : declare
9335 Clause1 : constant Node_Id := Parent (Id);
9336 Clause2 : constant Node_Id := Current_Use_Clause (T);
9337 Ent1 : Entity_Id;
9338 Ent2 : Entity_Id;
9339 Err_No : Node_Id;
9340 Unit1 : Node_Id;
9341 Unit2 : Node_Id;
9343 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
9344 -- Return the appropriate entity for determining which unit
9345 -- has a deeper scope: the defining entity for U, unless U
9346 -- is a package instance, in which case we retrieve the
9347 -- entity of the instance spec.
9349 --------------------
9350 -- Entity_Of_Unit --
9351 --------------------
9353 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
9354 begin
9355 if Nkind (U) = N_Package_Instantiation
9356 and then Analyzed (U)
9357 then
9358 return Defining_Entity (Instance_Spec (U));
9359 else
9360 return Defining_Entity (U);
9361 end if;
9362 end Entity_Of_Unit;
9364 -- Start of processing for Use_Clause_Known
9366 begin
9367 -- If both current use type clause and the use type clause
9368 -- for the type are at the compilation unit level, one of
9369 -- the units must be an ancestor of the other, and the
9370 -- warning belongs on the descendant.
9372 if Nkind (Parent (Clause1)) = N_Compilation_Unit
9373 and then
9374 Nkind (Parent (Clause2)) = N_Compilation_Unit
9375 then
9376 -- If the unit is a subprogram body that acts as spec,
9377 -- the context clause is shared with the constructed
9378 -- subprogram spec. Clearly there is no redundancy.
9380 if Clause1 = Clause2 then
9381 return;
9382 end if;
9384 Unit1 := Unit (Parent (Clause1));
9385 Unit2 := Unit (Parent (Clause2));
9387 -- If both clauses are on same unit, or one is the body
9388 -- of the other, or one of them is in a subunit, report
9389 -- redundancy on the later one.
9391 if Unit1 = Unit2 then
9392 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9393 Error_Msg_NE -- CODEFIX
9394 ("& is already use-visible through previous "
9395 & "use_type_clause #??", Clause1, T);
9396 return;
9398 elsif Nkind (Unit1) = N_Subunit then
9399 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9400 Error_Msg_NE -- CODEFIX
9401 ("& is already use-visible through previous "
9402 & "use_type_clause #??", Clause1, T);
9403 return;
9405 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
9406 and then Nkind (Unit1) /= Nkind (Unit2)
9407 and then Nkind (Unit1) /= N_Subunit
9408 then
9409 Error_Msg_Sloc := Sloc (Clause1);
9410 Error_Msg_NE -- CODEFIX
9411 ("& is already use-visible through previous "
9412 & "use_type_clause #??", Current_Use_Clause (T), T);
9413 return;
9414 end if;
9416 -- There is a redundant use type clause in a child unit.
9417 -- Determine which of the units is more deeply nested.
9418 -- If a unit is a package instance, retrieve the entity
9419 -- and its scope from the instance spec.
9421 Ent1 := Entity_Of_Unit (Unit1);
9422 Ent2 := Entity_Of_Unit (Unit2);
9424 if Scope (Ent2) = Standard_Standard then
9425 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9426 Err_No := Clause1;
9428 elsif Scope (Ent1) = Standard_Standard then
9429 Error_Msg_Sloc := Sloc (Id);
9430 Err_No := Clause2;
9432 -- If both units are child units, we determine which one
9433 -- is the descendant by the scope distance to the
9434 -- ultimate parent unit.
9436 else
9437 declare
9438 S1, S2 : Entity_Id;
9440 begin
9441 S1 := Scope (Ent1);
9442 S2 := Scope (Ent2);
9443 while Present (S1)
9444 and then Present (S2)
9445 and then S1 /= Standard_Standard
9446 and then S2 /= Standard_Standard
9447 loop
9448 S1 := Scope (S1);
9449 S2 := Scope (S2);
9450 end loop;
9452 if S1 = Standard_Standard then
9453 Error_Msg_Sloc := Sloc (Id);
9454 Err_No := Clause2;
9455 else
9456 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9457 Err_No := Clause1;
9458 end if;
9459 end;
9460 end if;
9462 Error_Msg_NE -- CODEFIX
9463 ("& is already use-visible through previous "
9464 & "use_type_clause #??", Err_No, Id);
9466 -- Case where current use type clause and the use type
9467 -- clause for the type are not both at the compilation unit
9468 -- level. In this case we don't have location information.
9470 else
9471 Error_Msg_NE -- CODEFIX
9472 ("& is already use-visible through previous "
9473 & "use type clause??", Id, T);
9474 end if;
9475 end Use_Clause_Known;
9477 -- Here if Current_Use_Clause is not set for T, another case
9478 -- where we do not have the location information available.
9480 else
9481 Error_Msg_NE -- CODEFIX
9482 ("& is already use-visible through previous "
9483 & "use type clause??", Id, T);
9484 end if;
9486 -- The package where T is declared is already used
9488 elsif In_Use (Scope (T)) then
9489 Error_Msg_Sloc := Sloc (Current_Use_Clause (Scope (T)));
9490 Error_Msg_NE -- CODEFIX
9491 ("& is already use-visible through package use clause #??",
9492 Id, T);
9494 -- The current scope is the package where T is declared
9496 else
9497 Error_Msg_Node_2 := Scope (T);
9498 Error_Msg_NE -- CODEFIX
9499 ("& is already use-visible inside package &??", Id, T);
9500 end if;
9501 end if;
9502 end Use_One_Type;
9504 ----------------
9505 -- Write_Info --
9506 ----------------
9508 procedure Write_Info is
9509 Id : Entity_Id := First_Entity (Current_Scope);
9511 begin
9512 -- No point in dumping standard entities
9514 if Current_Scope = Standard_Standard then
9515 return;
9516 end if;
9518 Write_Str ("========================================================");
9519 Write_Eol;
9520 Write_Str (" Defined Entities in ");
9521 Write_Name (Chars (Current_Scope));
9522 Write_Eol;
9523 Write_Str ("========================================================");
9524 Write_Eol;
9526 if No (Id) then
9527 Write_Str ("-- none --");
9528 Write_Eol;
9530 else
9531 while Present (Id) loop
9532 Write_Entity_Info (Id, " ");
9533 Next_Entity (Id);
9534 end loop;
9535 end if;
9537 if Scope (Current_Scope) = Standard_Standard then
9539 -- Print information on the current unit itself
9541 Write_Entity_Info (Current_Scope, " ");
9542 end if;
9544 Write_Eol;
9545 end Write_Info;
9547 --------
9548 -- ws --
9549 --------
9551 procedure ws is
9552 S : Entity_Id;
9553 begin
9554 for J in reverse 1 .. Scope_Stack.Last loop
9555 S := Scope_Stack.Table (J).Entity;
9556 Write_Int (Int (S));
9557 Write_Str (" === ");
9558 Write_Name (Chars (S));
9559 Write_Eol;
9560 end loop;
9561 end ws;
9563 --------
9564 -- we --
9565 --------
9567 procedure we (S : Entity_Id) is
9568 E : Entity_Id;
9569 begin
9570 E := First_Entity (S);
9571 while Present (E) loop
9572 Write_Int (Int (E));
9573 Write_Str (" === ");
9574 Write_Name (Chars (E));
9575 Write_Eol;
9576 Next_Entity (E);
9577 end loop;
9578 end we;
9579 end Sem_Ch8;