1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Exp_Aggr
; use Exp_Aggr
;
33 with Exp_Atag
; use Exp_Atag
;
34 with Exp_Ch2
; use Exp_Ch2
;
35 with Exp_Ch3
; use Exp_Ch3
;
36 with Exp_Ch6
; use Exp_Ch6
;
37 with Exp_Ch7
; use Exp_Ch7
;
38 with Exp_Ch9
; use Exp_Ch9
;
39 with Exp_Disp
; use Exp_Disp
;
40 with Exp_Fixd
; use Exp_Fixd
;
41 with Exp_Intr
; use Exp_Intr
;
42 with Exp_Pakd
; use Exp_Pakd
;
43 with Exp_Tss
; use Exp_Tss
;
44 with Exp_Util
; use Exp_Util
;
45 with Freeze
; use Freeze
;
46 with Inline
; use Inline
;
47 with Namet
; use Namet
;
48 with Nlists
; use Nlists
;
49 with Nmake
; use Nmake
;
51 with Par_SCO
; use Par_SCO
;
52 with Restrict
; use Restrict
;
53 with Rident
; use Rident
;
54 with Rtsfind
; use Rtsfind
;
56 with Sem_Aux
; use Sem_Aux
;
57 with Sem_Cat
; use Sem_Cat
;
58 with Sem_Ch3
; use Sem_Ch3
;
59 with Sem_Ch13
; use Sem_Ch13
;
60 with Sem_Eval
; use Sem_Eval
;
61 with Sem_Res
; use Sem_Res
;
62 with Sem_Type
; use Sem_Type
;
63 with Sem_Util
; use Sem_Util
;
64 with Sem_Warn
; use Sem_Warn
;
65 with Sinfo
; use Sinfo
;
66 with Snames
; use Snames
;
67 with Stand
; use Stand
;
68 with SCIL_LL
; use SCIL_LL
;
69 with Targparm
; use Targparm
;
70 with Tbuild
; use Tbuild
;
71 with Ttypes
; use Ttypes
;
72 with Uintp
; use Uintp
;
73 with Urealp
; use Urealp
;
74 with Validsw
; use Validsw
;
76 package body Exp_Ch4
is
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 procedure Binary_Op_Validity_Checks
(N
: Node_Id
);
83 pragma Inline
(Binary_Op_Validity_Checks
);
84 -- Performs validity checks for a binary operator
86 procedure Build_Boolean_Array_Proc_Call
90 -- If a boolean array assignment can be done in place, build call to
91 -- corresponding library procedure.
93 procedure Displace_Allocator_Pointer
(N
: Node_Id
);
94 -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
95 -- Expand_Allocator_Expression. Allocating class-wide interface objects
96 -- this routine displaces the pointer to the allocated object to reference
97 -- the component referencing the corresponding secondary dispatch table.
99 procedure Expand_Allocator_Expression
(N
: Node_Id
);
100 -- Subsidiary to Expand_N_Allocator, for the case when the expression
101 -- is a qualified expression or an aggregate.
103 procedure Expand_Array_Comparison
(N
: Node_Id
);
104 -- This routine handles expansion of the comparison operators (N_Op_Lt,
105 -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
106 -- code for these operators is similar, differing only in the details of
107 -- the actual comparison call that is made. Special processing (call a
110 function Expand_Array_Equality
115 Typ
: Entity_Id
) return Node_Id
;
116 -- Expand an array equality into a call to a function implementing this
117 -- equality, and a call to it. Loc is the location for the generated nodes.
118 -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
119 -- on which to attach bodies of local functions that are created in the
120 -- process. It is the responsibility of the caller to insert those bodies
121 -- at the right place. Nod provides the Sloc value for the generated code.
122 -- Normally the types used for the generated equality routine are taken
123 -- from Lhs and Rhs. However, in some situations of generated code, the
124 -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
125 -- the type to be used for the formal parameters.
127 procedure Expand_Boolean_Operator
(N
: Node_Id
);
128 -- Common expansion processing for Boolean operators (And, Or, Xor) for the
129 -- case of array type arguments.
131 procedure Expand_Non_Binary_Modular_Op
(N
: Node_Id
);
132 -- Generating C code convert non-binary modular arithmetic operations into
133 -- code that relies on the frontend expansion of operator Mod. No expansion
134 -- is performed if N is not a non-binary modular operand.
136 procedure Expand_Short_Circuit_Operator
(N
: Node_Id
);
137 -- Common expansion processing for short-circuit boolean operators
139 procedure Expand_Compare_Minimize_Eliminate_Overflow
(N
: Node_Id
);
140 -- Deal with comparison in MINIMIZED/ELIMINATED overflow mode. This is
141 -- where we allow comparison of "out of range" values.
143 function Expand_Composite_Equality
148 Bodies
: List_Id
) return Node_Id
;
149 -- Local recursive function used to expand equality for nested composite
150 -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
151 -- to attach bodies of local functions that are created in the process. It
152 -- is the responsibility of the caller to insert those bodies at the right
153 -- place. Nod provides the Sloc value for generated code. Lhs and Rhs are
154 -- the left and right sides for the comparison, and Typ is the type of the
155 -- objects to compare.
157 procedure Expand_Concatenate
(Cnode
: Node_Id
; Opnds
: List_Id
);
158 -- Routine to expand concatenation of a sequence of two or more operands
159 -- (in the list Operands) and replace node Cnode with the result of the
160 -- concatenation. The operands can be of any appropriate type, and can
161 -- include both arrays and singleton elements.
163 procedure Expand_Membership_Minimize_Eliminate_Overflow
(N
: Node_Id
);
164 -- N is an N_In membership test mode, with the overflow check mode set to
165 -- MINIMIZED or ELIMINATED, and the type of the left operand is a signed
166 -- integer type. This is a case where top level processing is required to
167 -- handle overflow checks in subtrees.
169 procedure Fixup_Universal_Fixed_Operation
(N
: Node_Id
);
170 -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
171 -- fixed. We do not have such a type at runtime, so the purpose of this
172 -- routine is to find the real type by looking up the tree. We also
173 -- determine if the operation must be rounded.
175 function Has_Inferable_Discriminants
(N
: Node_Id
) return Boolean;
176 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
177 -- discriminants if it has a constrained nominal type, unless the object
178 -- is a component of an enclosing Unchecked_Union object that is subject
179 -- to a per-object constraint and the enclosing object lacks inferable
182 -- An expression of an Unchecked_Union type has inferable discriminants
183 -- if it is either a name of an object with inferable discriminants or a
184 -- qualified expression whose subtype mark denotes a constrained subtype.
186 procedure Insert_Dereference_Action
(N
: Node_Id
);
187 -- N is an expression whose type is an access. When the type of the
188 -- associated storage pool is derived from Checked_Pool, generate a
189 -- call to the 'Dereference' primitive operation.
191 function Make_Array_Comparison_Op
193 Nod
: Node_Id
) return Node_Id
;
194 -- Comparisons between arrays are expanded in line. This function produces
195 -- the body of the implementation of (a > b), where a and b are one-
196 -- dimensional arrays of some discrete type. The original node is then
197 -- expanded into the appropriate call to this function. Nod provides the
198 -- Sloc value for the generated code.
200 function Make_Boolean_Array_Op
202 N
: Node_Id
) return Node_Id
;
203 -- Boolean operations on boolean arrays are expanded in line. This function
204 -- produce the body for the node N, which is (a and b), (a or b), or (a xor
205 -- b). It is used only the normal case and not the packed case. The type
206 -- involved, Typ, is the Boolean array type, and the logical operations in
207 -- the body are simple boolean operations. Note that Typ is always a
208 -- constrained type (the caller has ensured this by using
209 -- Convert_To_Actual_Subtype if necessary).
211 function Minimized_Eliminated_Overflow_Check
(N
: Node_Id
) return Boolean;
212 -- For signed arithmetic operations when the current overflow mode is
213 -- MINIMIZED or ELIMINATED, we must call Apply_Arithmetic_Overflow_Checks
214 -- as the first thing we do. We then return. We count on the recursive
215 -- apparatus for overflow checks to call us back with an equivalent
216 -- operation that is in CHECKED mode, avoiding a recursive entry into this
217 -- routine, and that is when we will proceed with the expansion of the
218 -- operator (e.g. converting X+0 to X, or X**2 to X*X). We cannot do
219 -- these optimizations without first making this check, since there may be
220 -- operands further down the tree that are relying on the recursive calls
221 -- triggered by the top level nodes to properly process overflow checking
222 -- and remaining expansion on these nodes. Note that this call back may be
223 -- skipped if the operation is done in Bignum mode but that's fine, since
224 -- the Bignum call takes care of everything.
226 procedure Optimize_Length_Comparison
(N
: Node_Id
);
227 -- Given an expression, if it is of the form X'Length op N (or the other
228 -- way round), where N is known at compile time to be 0 or 1, and X is a
229 -- simple entity, and op is a comparison operator, optimizes it into a
230 -- comparison of First and Last.
232 procedure Process_If_Case_Statements
(N
: Node_Id
; Stmts
: List_Id
);
233 -- Inspect and process statement list Stmt of if or case expression N for
234 -- transient objects. If such objects are found, the routine generates code
235 -- to clean them up when the context of the expression is evaluated.
237 procedure Process_Transient_In_Expression
241 -- Subsidiary routine to the expansion of expression_with_actions, if and
242 -- case expressions. Generate all necessary code to finalize a transient
243 -- object when the enclosing context is elaborated or evaluated. Obj_Decl
244 -- denotes the declaration of the transient object, which is usually the
245 -- result of a controlled function call. Expr denotes the expression with
246 -- actions, if expression, or case expression node. Stmts denotes the
247 -- statement list which contains Decl, either at the top level or within a
250 procedure Rewrite_Comparison
(N
: Node_Id
);
251 -- If N is the node for a comparison whose outcome can be determined at
252 -- compile time, then the node N can be rewritten with True or False. If
253 -- the outcome cannot be determined at compile time, the call has no
254 -- effect. If N is a type conversion, then this processing is applied to
255 -- its expression. If N is neither comparison nor a type conversion, the
256 -- call has no effect.
258 procedure Tagged_Membership
260 SCIL_Node
: out Node_Id
;
261 Result
: out Node_Id
);
262 -- Construct the expression corresponding to the tagged membership test.
263 -- Deals with a second operand being (or not) a class-wide type.
265 function Safe_In_Place_Array_Op
268 Op2
: Node_Id
) return Boolean;
269 -- In the context of an assignment, where the right-hand side is a boolean
270 -- operation on arrays, check whether operation can be performed in place.
272 procedure Unary_Op_Validity_Checks
(N
: Node_Id
);
273 pragma Inline
(Unary_Op_Validity_Checks
);
274 -- Performs validity checks for a unary operator
276 -------------------------------
277 -- Binary_Op_Validity_Checks --
278 -------------------------------
280 procedure Binary_Op_Validity_Checks
(N
: Node_Id
) is
282 if Validity_Checks_On
and Validity_Check_Operands
then
283 Ensure_Valid
(Left_Opnd
(N
));
284 Ensure_Valid
(Right_Opnd
(N
));
286 end Binary_Op_Validity_Checks
;
288 ------------------------------------
289 -- Build_Boolean_Array_Proc_Call --
290 ------------------------------------
292 procedure Build_Boolean_Array_Proc_Call
297 Loc
: constant Source_Ptr
:= Sloc
(N
);
298 Kind
: constant Node_Kind
:= Nkind
(Expression
(N
));
299 Target
: constant Node_Id
:=
300 Make_Attribute_Reference
(Loc
,
302 Attribute_Name
=> Name_Address
);
304 Arg1
: Node_Id
:= Op1
;
305 Arg2
: Node_Id
:= Op2
;
307 Proc_Name
: Entity_Id
;
310 if Kind
= N_Op_Not
then
311 if Nkind
(Op1
) in N_Binary_Op
then
313 -- Use negated version of the binary operators
315 if Nkind
(Op1
) = N_Op_And
then
316 Proc_Name
:= RTE
(RE_Vector_Nand
);
318 elsif Nkind
(Op1
) = N_Op_Or
then
319 Proc_Name
:= RTE
(RE_Vector_Nor
);
321 else pragma Assert
(Nkind
(Op1
) = N_Op_Xor
);
322 Proc_Name
:= RTE
(RE_Vector_Xor
);
326 Make_Procedure_Call_Statement
(Loc
,
327 Name
=> New_Occurrence_Of
(Proc_Name
, Loc
),
329 Parameter_Associations
=> New_List
(
331 Make_Attribute_Reference
(Loc
,
332 Prefix
=> Left_Opnd
(Op1
),
333 Attribute_Name
=> Name_Address
),
335 Make_Attribute_Reference
(Loc
,
336 Prefix
=> Right_Opnd
(Op1
),
337 Attribute_Name
=> Name_Address
),
339 Make_Attribute_Reference
(Loc
,
340 Prefix
=> Left_Opnd
(Op1
),
341 Attribute_Name
=> Name_Length
)));
344 Proc_Name
:= RTE
(RE_Vector_Not
);
347 Make_Procedure_Call_Statement
(Loc
,
348 Name
=> New_Occurrence_Of
(Proc_Name
, Loc
),
349 Parameter_Associations
=> New_List
(
352 Make_Attribute_Reference
(Loc
,
354 Attribute_Name
=> Name_Address
),
356 Make_Attribute_Reference
(Loc
,
358 Attribute_Name
=> Name_Length
)));
362 -- We use the following equivalences:
364 -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
365 -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
366 -- (not X) xor (not Y) = X xor Y
367 -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
369 if Nkind
(Op1
) = N_Op_Not
then
370 Arg1
:= Right_Opnd
(Op1
);
371 Arg2
:= Right_Opnd
(Op2
);
373 if Kind
= N_Op_And
then
374 Proc_Name
:= RTE
(RE_Vector_Nor
);
375 elsif Kind
= N_Op_Or
then
376 Proc_Name
:= RTE
(RE_Vector_Nand
);
378 Proc_Name
:= RTE
(RE_Vector_Xor
);
382 if Kind
= N_Op_And
then
383 Proc_Name
:= RTE
(RE_Vector_And
);
384 elsif Kind
= N_Op_Or
then
385 Proc_Name
:= RTE
(RE_Vector_Or
);
386 elsif Nkind
(Op2
) = N_Op_Not
then
387 Proc_Name
:= RTE
(RE_Vector_Nxor
);
388 Arg2
:= Right_Opnd
(Op2
);
390 Proc_Name
:= RTE
(RE_Vector_Xor
);
395 Make_Procedure_Call_Statement
(Loc
,
396 Name
=> New_Occurrence_Of
(Proc_Name
, Loc
),
397 Parameter_Associations
=> New_List
(
399 Make_Attribute_Reference
(Loc
,
401 Attribute_Name
=> Name_Address
),
402 Make_Attribute_Reference
(Loc
,
404 Attribute_Name
=> Name_Address
),
405 Make_Attribute_Reference
(Loc
,
407 Attribute_Name
=> Name_Length
)));
410 Rewrite
(N
, Call_Node
);
414 when RE_Not_Available
=>
416 end Build_Boolean_Array_Proc_Call
;
418 --------------------------------
419 -- Displace_Allocator_Pointer --
420 --------------------------------
422 procedure Displace_Allocator_Pointer
(N
: Node_Id
) is
423 Loc
: constant Source_Ptr
:= Sloc
(N
);
424 Orig_Node
: constant Node_Id
:= Original_Node
(N
);
430 -- Do nothing in case of VM targets: the virtual machine will handle
431 -- interfaces directly.
433 if not Tagged_Type_Expansion
then
437 pragma Assert
(Nkind
(N
) = N_Identifier
438 and then Nkind
(Orig_Node
) = N_Allocator
);
440 PtrT
:= Etype
(Orig_Node
);
441 Dtyp
:= Available_View
(Designated_Type
(PtrT
));
442 Etyp
:= Etype
(Expression
(Orig_Node
));
444 if Is_Class_Wide_Type
(Dtyp
) and then Is_Interface
(Dtyp
) then
446 -- If the type of the allocator expression is not an interface type
447 -- we can generate code to reference the record component containing
448 -- the pointer to the secondary dispatch table.
450 if not Is_Interface
(Etyp
) then
452 Saved_Typ
: constant Entity_Id
:= Etype
(Orig_Node
);
455 -- 1) Get access to the allocated object
458 Make_Explicit_Dereference
(Loc
, Relocate_Node
(N
)));
462 -- 2) Add the conversion to displace the pointer to reference
463 -- the secondary dispatch table.
465 Rewrite
(N
, Convert_To
(Dtyp
, Relocate_Node
(N
)));
466 Analyze_And_Resolve
(N
, Dtyp
);
468 -- 3) The 'access to the secondary dispatch table will be used
469 -- as the value returned by the allocator.
472 Make_Attribute_Reference
(Loc
,
473 Prefix
=> Relocate_Node
(N
),
474 Attribute_Name
=> Name_Access
));
475 Set_Etype
(N
, Saved_Typ
);
479 -- If the type of the allocator expression is an interface type we
480 -- generate a run-time call to displace "this" to reference the
481 -- component containing the pointer to the secondary dispatch table
482 -- or else raise Constraint_Error if the actual object does not
483 -- implement the target interface. This case corresponds to the
484 -- following example:
486 -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
488 -- return new Iface_2'Class'(Obj);
493 Unchecked_Convert_To
(PtrT
,
494 Make_Function_Call
(Loc
,
495 Name
=> New_Occurrence_Of
(RTE
(RE_Displace
), Loc
),
496 Parameter_Associations
=> New_List
(
497 Unchecked_Convert_To
(RTE
(RE_Address
),
503 (Access_Disp_Table
(Etype
(Base_Type
(Dtyp
))))),
505 Analyze_And_Resolve
(N
, PtrT
);
508 end Displace_Allocator_Pointer
;
510 ---------------------------------
511 -- Expand_Allocator_Expression --
512 ---------------------------------
514 procedure Expand_Allocator_Expression
(N
: Node_Id
) is
515 Loc
: constant Source_Ptr
:= Sloc
(N
);
516 Exp
: constant Node_Id
:= Expression
(Expression
(N
));
517 PtrT
: constant Entity_Id
:= Etype
(N
);
518 DesigT
: constant Entity_Id
:= Designated_Type
(PtrT
);
520 procedure Apply_Accessibility_Check
522 Built_In_Place
: Boolean := False);
523 -- Ada 2005 (AI-344): For an allocator with a class-wide designated
524 -- type, generate an accessibility check to verify that the level of the
525 -- type of the created object is not deeper than the level of the access
526 -- type. If the type of the qualified expression is class-wide, then
527 -- always generate the check (except in the case where it is known to be
528 -- unnecessary, see comment below). Otherwise, only generate the check
529 -- if the level of the qualified expression type is statically deeper
530 -- than the access type.
532 -- Although the static accessibility will generally have been performed
533 -- as a legality check, it won't have been done in cases where the
534 -- allocator appears in generic body, so a run-time check is needed in
535 -- general. One special case is when the access type is declared in the
536 -- same scope as the class-wide allocator, in which case the check can
537 -- never fail, so it need not be generated.
539 -- As an open issue, there seem to be cases where the static level
540 -- associated with the class-wide object's underlying type is not
541 -- sufficient to perform the proper accessibility check, such as for
542 -- allocators in nested subprograms or accept statements initialized by
543 -- class-wide formals when the actual originates outside at a deeper
544 -- static level. The nested subprogram case might require passing
545 -- accessibility levels along with class-wide parameters, and the task
546 -- case seems to be an actual gap in the language rules that needs to
547 -- be fixed by the ARG. ???
549 -------------------------------
550 -- Apply_Accessibility_Check --
551 -------------------------------
553 procedure Apply_Accessibility_Check
555 Built_In_Place
: Boolean := False)
557 Pool_Id
: constant Entity_Id
:= Associated_Storage_Pool
(PtrT
);
565 if Ada_Version
>= Ada_2005
566 and then Is_Class_Wide_Type
(DesigT
)
567 and then Tagged_Type_Expansion
568 and then not Scope_Suppress
.Suppress
(Accessibility_Check
)
570 (Type_Access_Level
(Etype
(Exp
)) > Type_Access_Level
(PtrT
)
572 (Is_Class_Wide_Type
(Etype
(Exp
))
573 and then Scope
(PtrT
) /= Current_Scope
))
575 -- If the allocator was built in place, Ref is already a reference
576 -- to the access object initialized to the result of the allocator
577 -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). We call
578 -- Remove_Side_Effects for cases where the build-in-place call may
579 -- still be the prefix of the reference (to avoid generating
580 -- duplicate calls). Otherwise, it is the entity associated with
581 -- the object containing the address of the allocated object.
583 if Built_In_Place
then
584 Remove_Side_Effects
(Ref
);
585 Obj_Ref
:= New_Copy_Tree
(Ref
);
587 Obj_Ref
:= New_Occurrence_Of
(Ref
, Loc
);
590 -- For access to interface types we must generate code to displace
591 -- the pointer to the base of the object since the subsequent code
592 -- references components located in the TSD of the object (which
593 -- is associated with the primary dispatch table --see a-tags.ads)
594 -- and also generates code invoking Free, which requires also a
595 -- reference to the base of the unallocated object.
597 if Is_Interface
(DesigT
) and then Tagged_Type_Expansion
then
599 Unchecked_Convert_To
(Etype
(Obj_Ref
),
600 Make_Function_Call
(Loc
,
602 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
603 Parameter_Associations
=> New_List
(
604 Unchecked_Convert_To
(RTE
(RE_Address
),
605 New_Copy_Tree
(Obj_Ref
)))));
608 -- Step 1: Create the object clean up code
612 -- Deallocate the object if the accessibility check fails. This
613 -- is done only on targets or profiles that support deallocation.
617 if RTE_Available
(RE_Free
) then
618 Free_Stmt
:= Make_Free_Statement
(Loc
, New_Copy_Tree
(Obj_Ref
));
619 Set_Storage_Pool
(Free_Stmt
, Pool_Id
);
621 Append_To
(Stmts
, Free_Stmt
);
623 -- The target or profile cannot deallocate objects
629 -- Finalize the object if applicable. Generate:
631 -- [Deep_]Finalize (Obj_Ref.all);
633 if Needs_Finalization
(DesigT
) then
637 Make_Explicit_Dereference
(Loc
, New_Copy
(Obj_Ref
)),
640 -- Guard against a missing [Deep_]Finalize when the designated
641 -- type was not properly frozen.
643 if No
(Fin_Call
) then
644 Fin_Call
:= Make_Null_Statement
(Loc
);
647 -- When the target or profile supports deallocation, wrap the
648 -- finalization call in a block to ensure proper deallocation
649 -- even if finalization fails. Generate:
659 if Present
(Free_Stmt
) then
661 Make_Block_Statement
(Loc
,
662 Handled_Statement_Sequence
=>
663 Make_Handled_Sequence_Of_Statements
(Loc
,
664 Statements
=> New_List
(Fin_Call
),
666 Exception_Handlers
=> New_List
(
667 Make_Exception_Handler
(Loc
,
668 Exception_Choices
=> New_List
(
669 Make_Others_Choice
(Loc
)),
670 Statements
=> New_List
(
671 New_Copy_Tree
(Free_Stmt
),
672 Make_Raise_Statement
(Loc
))))));
675 Prepend_To
(Stmts
, Fin_Call
);
678 -- Signal the accessibility failure through a Program_Error
681 Make_Raise_Program_Error
(Loc
,
682 Condition
=> New_Occurrence_Of
(Standard_True
, Loc
),
683 Reason
=> PE_Accessibility_Check_Failed
));
685 -- Step 2: Create the accessibility comparison
691 Make_Attribute_Reference
(Loc
,
693 Attribute_Name
=> Name_Tag
);
695 -- For tagged types, determine the accessibility level by looking
696 -- at the type specific data of the dispatch table. Generate:
698 -- Type_Specific_Data (Address (Ref'Tag)).Access_Level
700 if Tagged_Type_Expansion
then
701 Cond
:= Build_Get_Access_Level
(Loc
, Obj_Ref
);
703 -- Use a runtime call to determine the accessibility level when
704 -- compiling on virtual machine targets. Generate:
706 -- Get_Access_Level (Ref'Tag)
710 Make_Function_Call
(Loc
,
712 New_Occurrence_Of
(RTE
(RE_Get_Access_Level
), Loc
),
713 Parameter_Associations
=> New_List
(Obj_Ref
));
720 Make_Integer_Literal
(Loc
, Type_Access_Level
(PtrT
)));
722 -- Due to the complexity and side effects of the check, utilize an
723 -- if statement instead of the regular Program_Error circuitry.
726 Make_Implicit_If_Statement
(N
,
728 Then_Statements
=> Stmts
));
730 end Apply_Accessibility_Check
;
734 Aggr_In_Place
: constant Boolean := Is_Delayed_Aggregate
(Exp
);
735 Indic
: constant Node_Id
:= Subtype_Mark
(Expression
(N
));
736 T
: constant Entity_Id
:= Entity
(Indic
);
739 Tag_Assign
: Node_Id
;
743 TagT
: Entity_Id
:= Empty
;
744 -- Type used as source for tag assignment
746 TagR
: Node_Id
:= Empty
;
747 -- Target reference for tag assignment
749 -- Start of processing for Expand_Allocator_Expression
752 -- Handle call to C++ constructor
754 if Is_CPP_Constructor_Call
(Exp
) then
755 Make_CPP_Constructor_Call_In_Allocator
757 Function_Call
=> Exp
);
761 -- In the case of an Ada 2012 allocator whose initial value comes from a
762 -- function call, pass "the accessibility level determined by the point
763 -- of call" (AI05-0234) to the function. Conceptually, this belongs in
764 -- Expand_Call but it couldn't be done there (because the Etype of the
765 -- allocator wasn't set then) so we generate the parameter here. See
766 -- the Boolean variable Defer in (a block within) Expand_Call.
768 if Ada_Version
>= Ada_2012
and then Nkind
(Exp
) = N_Function_Call
then
773 if Nkind
(Name
(Exp
)) = N_Explicit_Dereference
then
774 Subp
:= Designated_Type
(Etype
(Prefix
(Name
(Exp
))));
776 Subp
:= Entity
(Name
(Exp
));
779 Subp
:= Ultimate_Alias
(Subp
);
781 if Present
(Extra_Accessibility_Of_Result
(Subp
)) then
782 Add_Extra_Actual_To_Call
783 (Subprogram_Call
=> Exp
,
784 Extra_Formal
=> Extra_Accessibility_Of_Result
(Subp
),
785 Extra_Actual
=> Dynamic_Accessibility_Level
(PtrT
));
790 -- Case of tagged type or type requiring finalization
792 if Is_Tagged_Type
(T
) or else Needs_Finalization
(T
) then
794 -- Ada 2005 (AI-318-02): If the initialization expression is a call
795 -- to a build-in-place function, then access to the allocated object
796 -- must be passed to the function. Currently we limit such functions
797 -- to those with constrained limited result subtypes, but eventually
798 -- we plan to expand the allowed forms of functions that are treated
799 -- as build-in-place.
801 if Ada_Version
>= Ada_2005
802 and then Is_Build_In_Place_Function_Call
(Exp
)
804 Make_Build_In_Place_Call_In_Allocator
(N
, Exp
);
805 Apply_Accessibility_Check
(N
, Built_In_Place
=> True);
809 -- Actions inserted before:
810 -- Temp : constant ptr_T := new T'(Expression);
811 -- Temp._tag = T'tag; -- when not class-wide
812 -- [Deep_]Adjust (Temp.all);
814 -- We analyze by hand the new internal allocator to avoid any
815 -- recursion and inappropriate call to Initialize.
817 -- We don't want to remove side effects when the expression must be
818 -- built in place. In the case of a build-in-place function call,
819 -- that could lead to a duplication of the call, which was already
820 -- substituted for the allocator.
822 if not Aggr_In_Place
then
823 Remove_Side_Effects
(Exp
);
826 Temp
:= Make_Temporary
(Loc
, 'P', N
);
828 -- For a class wide allocation generate the following code:
830 -- type Equiv_Record is record ... end record;
831 -- implicit subtype CW is <Class_Wide_Subytpe>;
832 -- temp : PtrT := new CW'(CW!(expr));
834 if Is_Class_Wide_Type
(T
) then
835 Expand_Subtype_From_Expr
(Empty
, T
, Indic
, Exp
);
837 -- Ada 2005 (AI-251): If the expression is a class-wide interface
838 -- object we generate code to move up "this" to reference the
839 -- base of the object before allocating the new object.
841 -- Note that Exp'Address is recursively expanded into a call
842 -- to Base_Address (Exp.Tag)
844 if Is_Class_Wide_Type
(Etype
(Exp
))
845 and then Is_Interface
(Etype
(Exp
))
846 and then Tagged_Type_Expansion
850 Unchecked_Convert_To
(Entity
(Indic
),
851 Make_Explicit_Dereference
(Loc
,
852 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
853 Make_Attribute_Reference
(Loc
,
855 Attribute_Name
=> Name_Address
)))));
859 Unchecked_Convert_To
(Entity
(Indic
), Exp
));
862 Analyze_And_Resolve
(Expression
(N
), Entity
(Indic
));
865 -- Processing for allocators returning non-interface types
867 if not Is_Interface
(Directly_Designated_Type
(PtrT
)) then
868 if Aggr_In_Place
then
870 Make_Object_Declaration
(Loc
,
871 Defining_Identifier
=> Temp
,
872 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
876 New_Occurrence_Of
(Etype
(Exp
), Loc
)));
878 -- Copy the Comes_From_Source flag for the allocator we just
879 -- built, since logically this allocator is a replacement of
880 -- the original allocator node. This is for proper handling of
881 -- restriction No_Implicit_Heap_Allocations.
883 Set_Comes_From_Source
884 (Expression
(Temp_Decl
), Comes_From_Source
(N
));
886 Set_No_Initialization
(Expression
(Temp_Decl
));
887 Insert_Action
(N
, Temp_Decl
);
889 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
890 Convert_Aggr_In_Allocator
(N
, Temp_Decl
, Exp
);
893 Node
:= Relocate_Node
(N
);
897 Make_Object_Declaration
(Loc
,
898 Defining_Identifier
=> Temp
,
899 Constant_Present
=> True,
900 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
903 Insert_Action
(N
, Temp_Decl
);
904 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
907 -- Ada 2005 (AI-251): Handle allocators whose designated type is an
908 -- interface type. In this case we use the type of the qualified
909 -- expression to allocate the object.
913 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
918 Make_Full_Type_Declaration
(Loc
,
919 Defining_Identifier
=> Def_Id
,
921 Make_Access_To_Object_Definition
(Loc
,
923 Null_Exclusion_Present
=> False,
925 Is_Access_Constant
(Etype
(N
)),
926 Subtype_Indication
=>
927 New_Occurrence_Of
(Etype
(Exp
), Loc
)));
929 Insert_Action
(N
, New_Decl
);
931 -- Inherit the allocation-related attributes from the original
934 Set_Finalization_Master
935 (Def_Id
, Finalization_Master
(PtrT
));
937 Set_Associated_Storage_Pool
938 (Def_Id
, Associated_Storage_Pool
(PtrT
));
940 -- Declare the object using the previous type declaration
942 if Aggr_In_Place
then
944 Make_Object_Declaration
(Loc
,
945 Defining_Identifier
=> Temp
,
946 Object_Definition
=> New_Occurrence_Of
(Def_Id
, Loc
),
949 New_Occurrence_Of
(Etype
(Exp
), Loc
)));
951 -- Copy the Comes_From_Source flag for the allocator we just
952 -- built, since logically this allocator is a replacement of
953 -- the original allocator node. This is for proper handling
954 -- of restriction No_Implicit_Heap_Allocations.
956 Set_Comes_From_Source
957 (Expression
(Temp_Decl
), Comes_From_Source
(N
));
959 Set_No_Initialization
(Expression
(Temp_Decl
));
960 Insert_Action
(N
, Temp_Decl
);
962 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
963 Convert_Aggr_In_Allocator
(N
, Temp_Decl
, Exp
);
966 Node
:= Relocate_Node
(N
);
970 Make_Object_Declaration
(Loc
,
971 Defining_Identifier
=> Temp
,
972 Constant_Present
=> True,
973 Object_Definition
=> New_Occurrence_Of
(Def_Id
, Loc
),
976 Insert_Action
(N
, Temp_Decl
);
977 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
980 -- Generate an additional object containing the address of the
981 -- returned object. The type of this second object declaration
982 -- is the correct type required for the common processing that
983 -- is still performed by this subprogram. The displacement of
984 -- this pointer to reference the component associated with the
985 -- interface type will be done at the end of common processing.
988 Make_Object_Declaration
(Loc
,
989 Defining_Identifier
=> Make_Temporary
(Loc
, 'P'),
990 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
992 Unchecked_Convert_To
(PtrT
,
993 New_Occurrence_Of
(Temp
, Loc
)));
995 Insert_Action
(N
, New_Decl
);
997 Temp_Decl
:= New_Decl
;
998 Temp
:= Defining_Identifier
(New_Decl
);
1002 -- Generate the tag assignment
1004 -- Suppress the tag assignment for VM targets because VM tags are
1005 -- represented implicitly in objects.
1007 if not Tagged_Type_Expansion
then
1010 -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
1011 -- interface objects because in this case the tag does not change.
1013 elsif Is_Interface
(Directly_Designated_Type
(Etype
(N
))) then
1014 pragma Assert
(Is_Class_Wide_Type
1015 (Directly_Designated_Type
(Etype
(N
))));
1018 elsif Is_Tagged_Type
(T
) and then not Is_Class_Wide_Type
(T
) then
1020 TagR
:= New_Occurrence_Of
(Temp
, Loc
);
1022 elsif Is_Private_Type
(T
)
1023 and then Is_Tagged_Type
(Underlying_Type
(T
))
1025 TagT
:= Underlying_Type
(T
);
1027 Unchecked_Convert_To
(Underlying_Type
(T
),
1028 Make_Explicit_Dereference
(Loc
,
1029 Prefix
=> New_Occurrence_Of
(Temp
, Loc
)));
1032 if Present
(TagT
) then
1034 Full_T
: constant Entity_Id
:= Underlying_Type
(TagT
);
1038 Make_Assignment_Statement
(Loc
,
1040 Make_Selected_Component
(Loc
,
1044 (First_Tag_Component
(Full_T
), Loc
)),
1047 Unchecked_Convert_To
(RTE
(RE_Tag
),
1050 (First_Elmt
(Access_Disp_Table
(Full_T
))), Loc
)));
1053 -- The previous assignment has to be done in any case
1055 Set_Assignment_OK
(Name
(Tag_Assign
));
1056 Insert_Action
(N
, Tag_Assign
);
1059 -- Generate an Adjust call if the object will be moved. In Ada 2005,
1060 -- the object may be inherently limited, in which case there is no
1061 -- Adjust procedure, and the object is built in place. In Ada 95, the
1062 -- object can be limited but not inherently limited if this allocator
1063 -- came from a return statement (we're allocating the result on the
1064 -- secondary stack). In that case, the object will be moved, so we do
1067 if Needs_Finalization
(DesigT
)
1068 and then Needs_Finalization
(T
)
1069 and then not Aggr_In_Place
1070 and then not Is_Limited_View
(T
)
1072 -- An unchecked conversion is needed in the classwide case because
1073 -- the designated type can be an ancestor of the subtype mark of
1079 Unchecked_Convert_To
(T
,
1080 Make_Explicit_Dereference
(Loc
,
1081 Prefix
=> New_Occurrence_Of
(Temp
, Loc
))),
1084 if Present
(Adj_Call
) then
1085 Insert_Action
(N
, Adj_Call
);
1089 -- Note: the accessibility check must be inserted after the call to
1090 -- [Deep_]Adjust to ensure proper completion of the assignment.
1092 Apply_Accessibility_Check
(Temp
);
1094 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
1095 Analyze_And_Resolve
(N
, PtrT
);
1097 -- Ada 2005 (AI-251): Displace the pointer to reference the record
1098 -- component containing the secondary dispatch table of the interface
1101 if Is_Interface
(Directly_Designated_Type
(PtrT
)) then
1102 Displace_Allocator_Pointer
(N
);
1105 -- Always force the generation of a temporary for aggregates when
1106 -- generating C code, to simplify the work in the code generator.
1109 or else (Modify_Tree_For_C
and then Nkind
(Exp
) = N_Aggregate
)
1111 Temp
:= Make_Temporary
(Loc
, 'P', N
);
1113 Make_Object_Declaration
(Loc
,
1114 Defining_Identifier
=> Temp
,
1115 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
1117 Make_Allocator
(Loc
,
1118 Expression
=> New_Occurrence_Of
(Etype
(Exp
), Loc
)));
1120 -- Copy the Comes_From_Source flag for the allocator we just built,
1121 -- since logically this allocator is a replacement of the original
1122 -- allocator node. This is for proper handling of restriction
1123 -- No_Implicit_Heap_Allocations.
1125 Set_Comes_From_Source
1126 (Expression
(Temp_Decl
), Comes_From_Source
(N
));
1128 Set_No_Initialization
(Expression
(Temp_Decl
));
1129 Insert_Action
(N
, Temp_Decl
);
1131 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1132 Convert_Aggr_In_Allocator
(N
, Temp_Decl
, Exp
);
1134 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
1135 Analyze_And_Resolve
(N
, PtrT
);
1137 elsif Is_Access_Type
(T
) and then Can_Never_Be_Null
(T
) then
1138 Install_Null_Excluding_Check
(Exp
);
1140 elsif Is_Access_Type
(DesigT
)
1141 and then Nkind
(Exp
) = N_Allocator
1142 and then Nkind
(Expression
(Exp
)) /= N_Qualified_Expression
1144 -- Apply constraint to designated subtype indication
1146 Apply_Constraint_Check
1147 (Expression
(Exp
), Designated_Type
(DesigT
), No_Sliding
=> True);
1149 if Nkind
(Expression
(Exp
)) = N_Raise_Constraint_Error
then
1151 -- Propagate constraint_error to enclosing allocator
1153 Rewrite
(Exp
, New_Copy
(Expression
(Exp
)));
1157 Build_Allocate_Deallocate_Proc
(N
, True);
1160 -- type A is access T1;
1161 -- X : A := new T2'(...);
1162 -- T1 and T2 can be different subtypes, and we might need to check
1163 -- both constraints. First check against the type of the qualified
1166 Apply_Constraint_Check
(Exp
, T
, No_Sliding
=> True);
1168 if Do_Range_Check
(Exp
) then
1169 Generate_Range_Check
(Exp
, DesigT
, CE_Range_Check_Failed
);
1172 -- A check is also needed in cases where the designated subtype is
1173 -- constrained and differs from the subtype given in the qualified
1174 -- expression. Note that the check on the qualified expression does
1175 -- not allow sliding, but this check does (a relaxation from Ada 83).
1177 if Is_Constrained
(DesigT
)
1178 and then not Subtypes_Statically_Match
(T
, DesigT
)
1180 Apply_Constraint_Check
1181 (Exp
, DesigT
, No_Sliding
=> False);
1183 if Do_Range_Check
(Exp
) then
1184 Generate_Range_Check
(Exp
, DesigT
, CE_Range_Check_Failed
);
1188 -- For an access to unconstrained packed array, GIGI needs to see an
1189 -- expression with a constrained subtype in order to compute the
1190 -- proper size for the allocator.
1192 if Is_Array_Type
(T
)
1193 and then not Is_Constrained
(T
)
1194 and then Is_Packed
(T
)
1197 ConstrT
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
1198 Internal_Exp
: constant Node_Id
:= Relocate_Node
(Exp
);
1201 Make_Subtype_Declaration
(Loc
,
1202 Defining_Identifier
=> ConstrT
,
1203 Subtype_Indication
=>
1204 Make_Subtype_From_Expr
(Internal_Exp
, T
)));
1205 Freeze_Itype
(ConstrT
, Exp
);
1206 Rewrite
(Exp
, OK_Convert_To
(ConstrT
, Internal_Exp
));
1210 -- Ada 2005 (AI-318-02): If the initialization expression is a call
1211 -- to a build-in-place function, then access to the allocated object
1212 -- must be passed to the function. Currently we limit such functions
1213 -- to those with constrained limited result subtypes, but eventually
1214 -- we plan to expand the allowed forms of functions that are treated
1215 -- as build-in-place.
1217 if Ada_Version
>= Ada_2005
1218 and then Is_Build_In_Place_Function_Call
(Exp
)
1220 Make_Build_In_Place_Call_In_Allocator
(N
, Exp
);
1225 when RE_Not_Available
=>
1227 end Expand_Allocator_Expression
;
1229 -----------------------------
1230 -- Expand_Array_Comparison --
1231 -----------------------------
1233 -- Expansion is only required in the case of array types. For the unpacked
1234 -- case, an appropriate runtime routine is called. For packed cases, and
1235 -- also in some other cases where a runtime routine cannot be called, the
1236 -- form of the expansion is:
1238 -- [body for greater_nn; boolean_expression]
1240 -- The body is built by Make_Array_Comparison_Op, and the form of the
1241 -- Boolean expression depends on the operator involved.
1243 procedure Expand_Array_Comparison
(N
: Node_Id
) is
1244 Loc
: constant Source_Ptr
:= Sloc
(N
);
1245 Op1
: Node_Id
:= Left_Opnd
(N
);
1246 Op2
: Node_Id
:= Right_Opnd
(N
);
1247 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
1248 Ctyp
: constant Entity_Id
:= Component_Type
(Typ1
);
1251 Func_Body
: Node_Id
;
1252 Func_Name
: Entity_Id
;
1256 Byte_Addressable
: constant Boolean := System_Storage_Unit
= Byte
'Size;
1257 -- True for byte addressable target
1259 function Length_Less_Than_4
(Opnd
: Node_Id
) return Boolean;
1260 -- Returns True if the length of the given operand is known to be less
1261 -- than 4. Returns False if this length is known to be four or greater
1262 -- or is not known at compile time.
1264 ------------------------
1265 -- Length_Less_Than_4 --
1266 ------------------------
1268 function Length_Less_Than_4
(Opnd
: Node_Id
) return Boolean is
1269 Otyp
: constant Entity_Id
:= Etype
(Opnd
);
1272 if Ekind
(Otyp
) = E_String_Literal_Subtype
then
1273 return String_Literal_Length
(Otyp
) < 4;
1277 Ityp
: constant Entity_Id
:= Etype
(First_Index
(Otyp
));
1278 Lo
: constant Node_Id
:= Type_Low_Bound
(Ityp
);
1279 Hi
: constant Node_Id
:= Type_High_Bound
(Ityp
);
1284 if Compile_Time_Known_Value
(Lo
) then
1285 Lov
:= Expr_Value
(Lo
);
1290 if Compile_Time_Known_Value
(Hi
) then
1291 Hiv
:= Expr_Value
(Hi
);
1296 return Hiv
< Lov
+ 3;
1299 end Length_Less_Than_4
;
1301 -- Start of processing for Expand_Array_Comparison
1304 -- Deal first with unpacked case, where we can call a runtime routine
1305 -- except that we avoid this for targets for which are not addressable
1308 if not Is_Bit_Packed_Array
(Typ1
)
1309 and then Byte_Addressable
1311 -- The call we generate is:
1313 -- Compare_Array_xn[_Unaligned]
1314 -- (left'address, right'address, left'length, right'length) <op> 0
1316 -- x = U for unsigned, S for signed
1317 -- n = 8,16,32,64 for component size
1318 -- Add _Unaligned if length < 4 and component size is 8.
1319 -- <op> is the standard comparison operator
1321 if Component_Size
(Typ1
) = 8 then
1322 if Length_Less_Than_4
(Op1
)
1324 Length_Less_Than_4
(Op2
)
1326 if Is_Unsigned_Type
(Ctyp
) then
1327 Comp
:= RE_Compare_Array_U8_Unaligned
;
1329 Comp
:= RE_Compare_Array_S8_Unaligned
;
1333 if Is_Unsigned_Type
(Ctyp
) then
1334 Comp
:= RE_Compare_Array_U8
;
1336 Comp
:= RE_Compare_Array_S8
;
1340 elsif Component_Size
(Typ1
) = 16 then
1341 if Is_Unsigned_Type
(Ctyp
) then
1342 Comp
:= RE_Compare_Array_U16
;
1344 Comp
:= RE_Compare_Array_S16
;
1347 elsif Component_Size
(Typ1
) = 32 then
1348 if Is_Unsigned_Type
(Ctyp
) then
1349 Comp
:= RE_Compare_Array_U32
;
1351 Comp
:= RE_Compare_Array_S32
;
1354 else pragma Assert
(Component_Size
(Typ1
) = 64);
1355 if Is_Unsigned_Type
(Ctyp
) then
1356 Comp
:= RE_Compare_Array_U64
;
1358 Comp
:= RE_Compare_Array_S64
;
1362 if RTE_Available
(Comp
) then
1364 -- Expand to a call only if the runtime function is available,
1365 -- otherwise fall back to inline code.
1367 Remove_Side_Effects
(Op1
, Name_Req
=> True);
1368 Remove_Side_Effects
(Op2
, Name_Req
=> True);
1371 Make_Function_Call
(Sloc
(Op1
),
1372 Name
=> New_Occurrence_Of
(RTE
(Comp
), Loc
),
1374 Parameter_Associations
=> New_List
(
1375 Make_Attribute_Reference
(Loc
,
1376 Prefix
=> Relocate_Node
(Op1
),
1377 Attribute_Name
=> Name_Address
),
1379 Make_Attribute_Reference
(Loc
,
1380 Prefix
=> Relocate_Node
(Op2
),
1381 Attribute_Name
=> Name_Address
),
1383 Make_Attribute_Reference
(Loc
,
1384 Prefix
=> Relocate_Node
(Op1
),
1385 Attribute_Name
=> Name_Length
),
1387 Make_Attribute_Reference
(Loc
,
1388 Prefix
=> Relocate_Node
(Op2
),
1389 Attribute_Name
=> Name_Length
))));
1392 Make_Integer_Literal
(Sloc
(Op2
),
1395 Analyze_And_Resolve
(Op1
, Standard_Integer
);
1396 Analyze_And_Resolve
(Op2
, Standard_Integer
);
1401 -- Cases where we cannot make runtime call
1403 -- For (a <= b) we convert to not (a > b)
1405 if Chars
(N
) = Name_Op_Le
then
1411 Right_Opnd
=> Op2
)));
1412 Analyze_And_Resolve
(N
, Standard_Boolean
);
1415 -- For < the Boolean expression is
1416 -- greater__nn (op2, op1)
1418 elsif Chars
(N
) = Name_Op_Lt
then
1419 Func_Body
:= Make_Array_Comparison_Op
(Typ1
, N
);
1423 Op1
:= Right_Opnd
(N
);
1424 Op2
:= Left_Opnd
(N
);
1426 -- For (a >= b) we convert to not (a < b)
1428 elsif Chars
(N
) = Name_Op_Ge
then
1434 Right_Opnd
=> Op2
)));
1435 Analyze_And_Resolve
(N
, Standard_Boolean
);
1438 -- For > the Boolean expression is
1439 -- greater__nn (op1, op2)
1442 pragma Assert
(Chars
(N
) = Name_Op_Gt
);
1443 Func_Body
:= Make_Array_Comparison_Op
(Typ1
, N
);
1446 Func_Name
:= Defining_Unit_Name
(Specification
(Func_Body
));
1448 Make_Function_Call
(Loc
,
1449 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
1450 Parameter_Associations
=> New_List
(Op1
, Op2
));
1452 Insert_Action
(N
, Func_Body
);
1454 Analyze_And_Resolve
(N
, Standard_Boolean
);
1455 end Expand_Array_Comparison
;
1457 ---------------------------
1458 -- Expand_Array_Equality --
1459 ---------------------------
1461 -- Expand an equality function for multi-dimensional arrays. Here is an
1462 -- example of such a function for Nb_Dimension = 2
1464 -- function Enn (A : atyp; B : btyp) return boolean is
1466 -- if (A'length (1) = 0 or else A'length (2) = 0)
1468 -- (B'length (1) = 0 or else B'length (2) = 0)
1470 -- return True; -- RM 4.5.2(22)
1473 -- if A'length (1) /= B'length (1)
1475 -- A'length (2) /= B'length (2)
1477 -- return False; -- RM 4.5.2(23)
1481 -- A1 : Index_T1 := A'first (1);
1482 -- B1 : Index_T1 := B'first (1);
1486 -- A2 : Index_T2 := A'first (2);
1487 -- B2 : Index_T2 := B'first (2);
1490 -- if A (A1, A2) /= B (B1, B2) then
1494 -- exit when A2 = A'last (2);
1495 -- A2 := Index_T2'succ (A2);
1496 -- B2 := Index_T2'succ (B2);
1500 -- exit when A1 = A'last (1);
1501 -- A1 := Index_T1'succ (A1);
1502 -- B1 := Index_T1'succ (B1);
1509 -- Note on the formal types used (atyp and btyp). If either of the arrays
1510 -- is of a private type, we use the underlying type, and do an unchecked
1511 -- conversion of the actual. If either of the arrays has a bound depending
1512 -- on a discriminant, then we use the base type since otherwise we have an
1513 -- escaped discriminant in the function.
1515 -- If both arrays are constrained and have the same bounds, we can generate
1516 -- a loop with an explicit iteration scheme using a 'Range attribute over
1519 function Expand_Array_Equality
1524 Typ
: Entity_Id
) return Node_Id
1526 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
1527 Decls
: constant List_Id
:= New_List
;
1528 Index_List1
: constant List_Id
:= New_List
;
1529 Index_List2
: constant List_Id
:= New_List
;
1533 Func_Name
: Entity_Id
;
1534 Func_Body
: Node_Id
;
1536 A
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uA
);
1537 B
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uB
);
1541 -- The parameter types to be used for the formals
1546 Num
: Int
) return Node_Id
;
1547 -- This builds the attribute reference Arr'Nam (Expr)
1549 function Component_Equality
(Typ
: Entity_Id
) return Node_Id
;
1550 -- Create one statement to compare corresponding components, designated
1551 -- by a full set of indexes.
1553 function Get_Arg_Type
(N
: Node_Id
) return Entity_Id
;
1554 -- Given one of the arguments, computes the appropriate type to be used
1555 -- for that argument in the corresponding function formal
1557 function Handle_One_Dimension
1559 Index
: Node_Id
) return Node_Id
;
1560 -- This procedure returns the following code
1563 -- Bn : Index_T := B'First (N);
1567 -- exit when An = A'Last (N);
1568 -- An := Index_T'Succ (An)
1569 -- Bn := Index_T'Succ (Bn)
1573 -- If both indexes are constrained and identical, the procedure
1574 -- returns a simpler loop:
1576 -- for An in A'Range (N) loop
1580 -- N is the dimension for which we are generating a loop. Index is the
1581 -- N'th index node, whose Etype is Index_Type_n in the above code. The
1582 -- xxx statement is either the loop or declare for the next dimension
1583 -- or if this is the last dimension the comparison of corresponding
1584 -- components of the arrays.
1586 -- The actual way the code works is to return the comparison of
1587 -- corresponding components for the N+1 call. That's neater.
1589 function Test_Empty_Arrays
return Node_Id
;
1590 -- This function constructs the test for both arrays being empty
1591 -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
1593 -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
1595 function Test_Lengths_Correspond
return Node_Id
;
1596 -- This function constructs the test for arrays having different lengths
1597 -- in at least one index position, in which case the resulting code is:
1599 -- A'length (1) /= B'length (1)
1601 -- A'length (2) /= B'length (2)
1612 Num
: Int
) return Node_Id
1616 Make_Attribute_Reference
(Loc
,
1617 Attribute_Name
=> Nam
,
1618 Prefix
=> New_Occurrence_Of
(Arr
, Loc
),
1619 Expressions
=> New_List
(Make_Integer_Literal
(Loc
, Num
)));
1622 ------------------------
1623 -- Component_Equality --
1624 ------------------------
1626 function Component_Equality
(Typ
: Entity_Id
) return Node_Id
is
1631 -- if a(i1...) /= b(j1...) then return false; end if;
1634 Make_Indexed_Component
(Loc
,
1635 Prefix
=> Make_Identifier
(Loc
, Chars
(A
)),
1636 Expressions
=> Index_List1
);
1639 Make_Indexed_Component
(Loc
,
1640 Prefix
=> Make_Identifier
(Loc
, Chars
(B
)),
1641 Expressions
=> Index_List2
);
1643 Test
:= Expand_Composite_Equality
1644 (Nod
, Component_Type
(Typ
), L
, R
, Decls
);
1646 -- If some (sub)component is an unchecked_union, the whole operation
1647 -- will raise program error.
1649 if Nkind
(Test
) = N_Raise_Program_Error
then
1651 -- This node is going to be inserted at a location where a
1652 -- statement is expected: clear its Etype so analysis will set
1653 -- it to the expected Standard_Void_Type.
1655 Set_Etype
(Test
, Empty
);
1660 Make_Implicit_If_Statement
(Nod
,
1661 Condition
=> Make_Op_Not
(Loc
, Right_Opnd
=> Test
),
1662 Then_Statements
=> New_List
(
1663 Make_Simple_Return_Statement
(Loc
,
1664 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
))));
1666 end Component_Equality
;
1672 function Get_Arg_Type
(N
: Node_Id
) return Entity_Id
is
1683 T
:= Underlying_Type
(T
);
1685 X
:= First_Index
(T
);
1686 while Present
(X
) loop
1687 if Denotes_Discriminant
(Type_Low_Bound
(Etype
(X
)))
1689 Denotes_Discriminant
(Type_High_Bound
(Etype
(X
)))
1702 --------------------------
1703 -- Handle_One_Dimension --
1704 ---------------------------
1706 function Handle_One_Dimension
1708 Index
: Node_Id
) return Node_Id
1710 Need_Separate_Indexes
: constant Boolean :=
1711 Ltyp
/= Rtyp
or else not Is_Constrained
(Ltyp
);
1712 -- If the index types are identical, and we are working with
1713 -- constrained types, then we can use the same index for both
1716 An
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
1719 Index_T
: Entity_Id
;
1724 if N
> Number_Dimensions
(Ltyp
) then
1725 return Component_Equality
(Ltyp
);
1728 -- Case where we generate a loop
1730 Index_T
:= Base_Type
(Etype
(Index
));
1732 if Need_Separate_Indexes
then
1733 Bn
:= Make_Temporary
(Loc
, 'B');
1738 Append
(New_Occurrence_Of
(An
, Loc
), Index_List1
);
1739 Append
(New_Occurrence_Of
(Bn
, Loc
), Index_List2
);
1741 Stm_List
:= New_List
(
1742 Handle_One_Dimension
(N
+ 1, Next_Index
(Index
)));
1744 if Need_Separate_Indexes
then
1746 -- Generate guard for loop, followed by increments of indexes
1748 Append_To
(Stm_List
,
1749 Make_Exit_Statement
(Loc
,
1752 Left_Opnd
=> New_Occurrence_Of
(An
, Loc
),
1753 Right_Opnd
=> Arr_Attr
(A
, Name_Last
, N
))));
1755 Append_To
(Stm_List
,
1756 Make_Assignment_Statement
(Loc
,
1757 Name
=> New_Occurrence_Of
(An
, Loc
),
1759 Make_Attribute_Reference
(Loc
,
1760 Prefix
=> New_Occurrence_Of
(Index_T
, Loc
),
1761 Attribute_Name
=> Name_Succ
,
1762 Expressions
=> New_List
(
1763 New_Occurrence_Of
(An
, Loc
)))));
1765 Append_To
(Stm_List
,
1766 Make_Assignment_Statement
(Loc
,
1767 Name
=> New_Occurrence_Of
(Bn
, Loc
),
1769 Make_Attribute_Reference
(Loc
,
1770 Prefix
=> New_Occurrence_Of
(Index_T
, Loc
),
1771 Attribute_Name
=> Name_Succ
,
1772 Expressions
=> New_List
(
1773 New_Occurrence_Of
(Bn
, Loc
)))));
1776 -- If separate indexes, we need a declare block for An and Bn, and a
1777 -- loop without an iteration scheme.
1779 if Need_Separate_Indexes
then
1781 Make_Implicit_Loop_Statement
(Nod
, Statements
=> Stm_List
);
1784 Make_Block_Statement
(Loc
,
1785 Declarations
=> New_List
(
1786 Make_Object_Declaration
(Loc
,
1787 Defining_Identifier
=> An
,
1788 Object_Definition
=> New_Occurrence_Of
(Index_T
, Loc
),
1789 Expression
=> Arr_Attr
(A
, Name_First
, N
)),
1791 Make_Object_Declaration
(Loc
,
1792 Defining_Identifier
=> Bn
,
1793 Object_Definition
=> New_Occurrence_Of
(Index_T
, Loc
),
1794 Expression
=> Arr_Attr
(B
, Name_First
, N
))),
1796 Handled_Statement_Sequence
=>
1797 Make_Handled_Sequence_Of_Statements
(Loc
,
1798 Statements
=> New_List
(Loop_Stm
)));
1800 -- If no separate indexes, return loop statement with explicit
1801 -- iteration scheme on its own
1805 Make_Implicit_Loop_Statement
(Nod
,
1806 Statements
=> Stm_List
,
1808 Make_Iteration_Scheme
(Loc
,
1809 Loop_Parameter_Specification
=>
1810 Make_Loop_Parameter_Specification
(Loc
,
1811 Defining_Identifier
=> An
,
1812 Discrete_Subtype_Definition
=>
1813 Arr_Attr
(A
, Name_Range
, N
))));
1816 end Handle_One_Dimension
;
1818 -----------------------
1819 -- Test_Empty_Arrays --
1820 -----------------------
1822 function Test_Empty_Arrays
return Node_Id
is
1832 for J
in 1 .. Number_Dimensions
(Ltyp
) loop
1835 Left_Opnd
=> Arr_Attr
(A
, Name_Length
, J
),
1836 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
1840 Left_Opnd
=> Arr_Attr
(B
, Name_Length
, J
),
1841 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
1850 Left_Opnd
=> Relocate_Node
(Alist
),
1851 Right_Opnd
=> Atest
);
1855 Left_Opnd
=> Relocate_Node
(Blist
),
1856 Right_Opnd
=> Btest
);
1863 Right_Opnd
=> Blist
);
1864 end Test_Empty_Arrays
;
1866 -----------------------------
1867 -- Test_Lengths_Correspond --
1868 -----------------------------
1870 function Test_Lengths_Correspond
return Node_Id
is
1876 for J
in 1 .. Number_Dimensions
(Ltyp
) loop
1879 Left_Opnd
=> Arr_Attr
(A
, Name_Length
, J
),
1880 Right_Opnd
=> Arr_Attr
(B
, Name_Length
, J
));
1887 Left_Opnd
=> Relocate_Node
(Result
),
1888 Right_Opnd
=> Rtest
);
1893 end Test_Lengths_Correspond
;
1895 -- Start of processing for Expand_Array_Equality
1898 Ltyp
:= Get_Arg_Type
(Lhs
);
1899 Rtyp
:= Get_Arg_Type
(Rhs
);
1901 -- For now, if the argument types are not the same, go to the base type,
1902 -- since the code assumes that the formals have the same type. This is
1903 -- fixable in future ???
1905 if Ltyp
/= Rtyp
then
1906 Ltyp
:= Base_Type
(Ltyp
);
1907 Rtyp
:= Base_Type
(Rtyp
);
1908 pragma Assert
(Ltyp
= Rtyp
);
1911 -- Build list of formals for function
1913 Formals
:= New_List
(
1914 Make_Parameter_Specification
(Loc
,
1915 Defining_Identifier
=> A
,
1916 Parameter_Type
=> New_Occurrence_Of
(Ltyp
, Loc
)),
1918 Make_Parameter_Specification
(Loc
,
1919 Defining_Identifier
=> B
,
1920 Parameter_Type
=> New_Occurrence_Of
(Rtyp
, Loc
)));
1922 Func_Name
:= Make_Temporary
(Loc
, 'E');
1924 -- Build statement sequence for function
1927 Make_Subprogram_Body
(Loc
,
1929 Make_Function_Specification
(Loc
,
1930 Defining_Unit_Name
=> Func_Name
,
1931 Parameter_Specifications
=> Formals
,
1932 Result_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
)),
1934 Declarations
=> Decls
,
1936 Handled_Statement_Sequence
=>
1937 Make_Handled_Sequence_Of_Statements
(Loc
,
1938 Statements
=> New_List
(
1940 Make_Implicit_If_Statement
(Nod
,
1941 Condition
=> Test_Empty_Arrays
,
1942 Then_Statements
=> New_List
(
1943 Make_Simple_Return_Statement
(Loc
,
1945 New_Occurrence_Of
(Standard_True
, Loc
)))),
1947 Make_Implicit_If_Statement
(Nod
,
1948 Condition
=> Test_Lengths_Correspond
,
1949 Then_Statements
=> New_List
(
1950 Make_Simple_Return_Statement
(Loc
,
1951 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
)))),
1953 Handle_One_Dimension
(1, First_Index
(Ltyp
)),
1955 Make_Simple_Return_Statement
(Loc
,
1956 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)))));
1958 Set_Has_Completion
(Func_Name
, True);
1959 Set_Is_Inlined
(Func_Name
);
1961 -- If the array type is distinct from the type of the arguments, it
1962 -- is the full view of a private type. Apply an unchecked conversion
1963 -- to insure that analysis of the call succeeds.
1973 or else Base_Type
(Etype
(Lhs
)) /= Base_Type
(Ltyp
)
1975 L
:= OK_Convert_To
(Ltyp
, Lhs
);
1979 or else Base_Type
(Etype
(Rhs
)) /= Base_Type
(Rtyp
)
1981 R
:= OK_Convert_To
(Rtyp
, Rhs
);
1984 Actuals
:= New_List
(L
, R
);
1987 Append_To
(Bodies
, Func_Body
);
1990 Make_Function_Call
(Loc
,
1991 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
1992 Parameter_Associations
=> Actuals
);
1993 end Expand_Array_Equality
;
1995 -----------------------------
1996 -- Expand_Boolean_Operator --
1997 -----------------------------
1999 -- Note that we first get the actual subtypes of the operands, since we
2000 -- always want to deal with types that have bounds.
2002 procedure Expand_Boolean_Operator
(N
: Node_Id
) is
2003 Typ
: constant Entity_Id
:= Etype
(N
);
2006 -- Special case of bit packed array where both operands are known to be
2007 -- properly aligned. In this case we use an efficient run time routine
2008 -- to carry out the operation (see System.Bit_Ops).
2010 if Is_Bit_Packed_Array
(Typ
)
2011 and then not Is_Possibly_Unaligned_Object
(Left_Opnd
(N
))
2012 and then not Is_Possibly_Unaligned_Object
(Right_Opnd
(N
))
2014 Expand_Packed_Boolean_Operator
(N
);
2018 -- For the normal non-packed case, the general expansion is to build
2019 -- function for carrying out the comparison (use Make_Boolean_Array_Op)
2020 -- and then inserting it into the tree. The original operator node is
2021 -- then rewritten as a call to this function. We also use this in the
2022 -- packed case if either operand is a possibly unaligned object.
2025 Loc
: constant Source_Ptr
:= Sloc
(N
);
2026 L
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
2027 R
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
2028 Func_Body
: Node_Id
;
2029 Func_Name
: Entity_Id
;
2032 Convert_To_Actual_Subtype
(L
);
2033 Convert_To_Actual_Subtype
(R
);
2034 Ensure_Defined
(Etype
(L
), N
);
2035 Ensure_Defined
(Etype
(R
), N
);
2036 Apply_Length_Check
(R
, Etype
(L
));
2038 if Nkind
(N
) = N_Op_Xor
then
2039 Silly_Boolean_Array_Xor_Test
(N
, Etype
(L
));
2042 if Nkind
(Parent
(N
)) = N_Assignment_Statement
2043 and then Safe_In_Place_Array_Op
(Name
(Parent
(N
)), L
, R
)
2045 Build_Boolean_Array_Proc_Call
(Parent
(N
), L
, R
);
2047 elsif Nkind
(Parent
(N
)) = N_Op_Not
2048 and then Nkind
(N
) = N_Op_And
2049 and then Nkind
(Parent
(Parent
(N
))) = N_Assignment_Statement
2050 and then Safe_In_Place_Array_Op
(Name
(Parent
(Parent
(N
))), L
, R
)
2055 Func_Body
:= Make_Boolean_Array_Op
(Etype
(L
), N
);
2056 Func_Name
:= Defining_Unit_Name
(Specification
(Func_Body
));
2057 Insert_Action
(N
, Func_Body
);
2059 -- Now rewrite the expression with a call
2062 Make_Function_Call
(Loc
,
2063 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
2064 Parameter_Associations
=>
2067 Make_Type_Conversion
2068 (Loc
, New_Occurrence_Of
(Etype
(L
), Loc
), R
))));
2070 Analyze_And_Resolve
(N
, Typ
);
2073 end Expand_Boolean_Operator
;
2075 ------------------------------------------------
2076 -- Expand_Compare_Minimize_Eliminate_Overflow --
2077 ------------------------------------------------
2079 procedure Expand_Compare_Minimize_Eliminate_Overflow
(N
: Node_Id
) is
2080 Loc
: constant Source_Ptr
:= Sloc
(N
);
2082 Result_Type
: constant Entity_Id
:= Etype
(N
);
2083 -- Capture result type (could be a derived boolean type)
2088 LLIB
: constant Entity_Id
:= Base_Type
(Standard_Long_Long_Integer
);
2089 -- Entity for Long_Long_Integer'Base
2091 Check
: constant Overflow_Mode_Type
:= Overflow_Check_Mode
;
2092 -- Current overflow checking mode
2095 procedure Set_False
;
2096 -- These procedures rewrite N with an occurrence of Standard_True or
2097 -- Standard_False, and then makes a call to Warn_On_Known_Condition.
2103 procedure Set_False
is
2105 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
2106 Warn_On_Known_Condition
(N
);
2113 procedure Set_True
is
2115 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
2116 Warn_On_Known_Condition
(N
);
2119 -- Start of processing for Expand_Compare_Minimize_Eliminate_Overflow
2122 -- Nothing to do unless we have a comparison operator with operands
2123 -- that are signed integer types, and we are operating in either
2124 -- MINIMIZED or ELIMINATED overflow checking mode.
2126 if Nkind
(N
) not in N_Op_Compare
2127 or else Check
not in Minimized_Or_Eliminated
2128 or else not Is_Signed_Integer_Type
(Etype
(Left_Opnd
(N
)))
2133 -- OK, this is the case we are interested in. First step is to process
2134 -- our operands using the Minimize_Eliminate circuitry which applies
2135 -- this processing to the two operand subtrees.
2137 Minimize_Eliminate_Overflows
2138 (Left_Opnd
(N
), Llo
, Lhi
, Top_Level
=> False);
2139 Minimize_Eliminate_Overflows
2140 (Right_Opnd
(N
), Rlo
, Rhi
, Top_Level
=> False);
2142 -- See if the range information decides the result of the comparison.
2143 -- We can only do this if we in fact have full range information (which
2144 -- won't be the case if either operand is bignum at this stage).
2146 if Llo
/= No_Uint
and then Rlo
/= No_Uint
then
2147 case N_Op_Compare
(Nkind
(N
)) is
2149 if Llo
= Lhi
and then Rlo
= Rhi
and then Llo
= Rlo
then
2151 elsif Llo
> Rhi
or else Lhi
< Rlo
then
2158 elsif Lhi
< Rlo
then
2165 elsif Lhi
<= Rlo
then
2172 elsif Lhi
<= Rlo
then
2179 elsif Lhi
< Rlo
then
2184 if Llo
= Lhi
and then Rlo
= Rhi
and then Llo
= Rlo
then
2186 elsif Llo
> Rhi
or else Lhi
< Rlo
then
2191 -- All done if we did the rewrite
2193 if Nkind
(N
) not in N_Op_Compare
then
2198 -- Otherwise, time to do the comparison
2201 Ltype
: constant Entity_Id
:= Etype
(Left_Opnd
(N
));
2202 Rtype
: constant Entity_Id
:= Etype
(Right_Opnd
(N
));
2205 -- If the two operands have the same signed integer type we are
2206 -- all set, nothing more to do. This is the case where either
2207 -- both operands were unchanged, or we rewrote both of them to
2208 -- be Long_Long_Integer.
2210 -- Note: Entity for the comparison may be wrong, but it's not worth
2211 -- the effort to change it, since the back end does not use it.
2213 if Is_Signed_Integer_Type
(Ltype
)
2214 and then Base_Type
(Ltype
) = Base_Type
(Rtype
)
2218 -- Here if bignums are involved (can only happen in ELIMINATED mode)
2220 elsif Is_RTE
(Ltype
, RE_Bignum
) or else Is_RTE
(Rtype
, RE_Bignum
) then
2222 Left
: Node_Id
:= Left_Opnd
(N
);
2223 Right
: Node_Id
:= Right_Opnd
(N
);
2224 -- Bignum references for left and right operands
2227 if not Is_RTE
(Ltype
, RE_Bignum
) then
2228 Left
:= Convert_To_Bignum
(Left
);
2229 elsif not Is_RTE
(Rtype
, RE_Bignum
) then
2230 Right
:= Convert_To_Bignum
(Right
);
2233 -- We rewrite our node with:
2236 -- Bnn : Result_Type;
2238 -- M : Mark_Id := SS_Mark;
2240 -- Bnn := Big_xx (Left, Right); (xx = EQ, NT etc)
2248 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
2249 Bnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'B', N
);
2253 case N_Op_Compare
(Nkind
(N
)) is
2254 when N_Op_Eq
=> Ent
:= RE_Big_EQ
;
2255 when N_Op_Ge
=> Ent
:= RE_Big_GE
;
2256 when N_Op_Gt
=> Ent
:= RE_Big_GT
;
2257 when N_Op_Le
=> Ent
:= RE_Big_LE
;
2258 when N_Op_Lt
=> Ent
:= RE_Big_LT
;
2259 when N_Op_Ne
=> Ent
:= RE_Big_NE
;
2262 -- Insert assignment to Bnn into the bignum block
2265 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
2266 Make_Assignment_Statement
(Loc
,
2267 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
2269 Make_Function_Call
(Loc
,
2271 New_Occurrence_Of
(RTE
(Ent
), Loc
),
2272 Parameter_Associations
=> New_List
(Left
, Right
))));
2274 -- Now do the rewrite with expression actions
2277 Make_Expression_With_Actions
(Loc
,
2278 Actions
=> New_List
(
2279 Make_Object_Declaration
(Loc
,
2280 Defining_Identifier
=> Bnn
,
2281 Object_Definition
=>
2282 New_Occurrence_Of
(Result_Type
, Loc
)),
2284 Expression
=> New_Occurrence_Of
(Bnn
, Loc
)));
2285 Analyze_And_Resolve
(N
, Result_Type
);
2289 -- No bignums involved, but types are different, so we must have
2290 -- rewritten one of the operands as a Long_Long_Integer but not
2293 -- If left operand is Long_Long_Integer, convert right operand
2294 -- and we are done (with a comparison of two Long_Long_Integers).
2296 elsif Ltype
= LLIB
then
2297 Convert_To_And_Rewrite
(LLIB
, Right_Opnd
(N
));
2298 Analyze_And_Resolve
(Right_Opnd
(N
), LLIB
, Suppress
=> All_Checks
);
2301 -- If right operand is Long_Long_Integer, convert left operand
2302 -- and we are done (with a comparison of two Long_Long_Integers).
2304 -- This is the only remaining possibility
2306 else pragma Assert
(Rtype
= LLIB
);
2307 Convert_To_And_Rewrite
(LLIB
, Left_Opnd
(N
));
2308 Analyze_And_Resolve
(Left_Opnd
(N
), LLIB
, Suppress
=> All_Checks
);
2312 end Expand_Compare_Minimize_Eliminate_Overflow
;
2314 -------------------------------
2315 -- Expand_Composite_Equality --
2316 -------------------------------
2318 -- This function is only called for comparing internal fields of composite
2319 -- types when these fields are themselves composites. This is a special
2320 -- case because it is not possible to respect normal Ada visibility rules.
2322 function Expand_Composite_Equality
2327 Bodies
: List_Id
) return Node_Id
2329 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
2330 Full_Type
: Entity_Id
;
2334 function Find_Primitive_Eq
return Node_Id
;
2335 -- AI05-0123: Locate primitive equality for type if it exists, and
2336 -- build the corresponding call. If operation is abstract, replace
2337 -- call with an explicit raise. Return Empty if there is no primitive.
2339 -----------------------
2340 -- Find_Primitive_Eq --
2341 -----------------------
2343 function Find_Primitive_Eq
return Node_Id
is
2348 Prim_E
:= First_Elmt
(Collect_Primitive_Operations
(Typ
));
2349 while Present
(Prim_E
) loop
2350 Prim
:= Node
(Prim_E
);
2352 -- Locate primitive equality with the right signature
2354 if Chars
(Prim
) = Name_Op_Eq
2355 and then Etype
(First_Formal
(Prim
)) =
2356 Etype
(Next_Formal
(First_Formal
(Prim
)))
2357 and then Etype
(Prim
) = Standard_Boolean
2359 if Is_Abstract_Subprogram
(Prim
) then
2361 Make_Raise_Program_Error
(Loc
,
2362 Reason
=> PE_Explicit_Raise
);
2366 Make_Function_Call
(Loc
,
2367 Name
=> New_Occurrence_Of
(Prim
, Loc
),
2368 Parameter_Associations
=> New_List
(Lhs
, Rhs
));
2375 -- If not found, predefined operation will be used
2378 end Find_Primitive_Eq
;
2380 -- Start of processing for Expand_Composite_Equality
2383 if Is_Private_Type
(Typ
) then
2384 Full_Type
:= Underlying_Type
(Typ
);
2389 -- If the private type has no completion the context may be the
2390 -- expansion of a composite equality for a composite type with some
2391 -- still incomplete components. The expression will not be analyzed
2392 -- until the enclosing type is completed, at which point this will be
2393 -- properly expanded, unless there is a bona fide completion error.
2395 if No
(Full_Type
) then
2396 return Make_Op_Eq
(Loc
, Left_Opnd
=> Lhs
, Right_Opnd
=> Rhs
);
2399 Full_Type
:= Base_Type
(Full_Type
);
2401 -- When the base type itself is private, use the full view to expand
2402 -- the composite equality.
2404 if Is_Private_Type
(Full_Type
) then
2405 Full_Type
:= Underlying_Type
(Full_Type
);
2408 -- Case of array types
2410 if Is_Array_Type
(Full_Type
) then
2412 -- If the operand is an elementary type other than a floating-point
2413 -- type, then we can simply use the built-in block bitwise equality,
2414 -- since the predefined equality operators always apply and bitwise
2415 -- equality is fine for all these cases.
2417 if Is_Elementary_Type
(Component_Type
(Full_Type
))
2418 and then not Is_Floating_Point_Type
(Component_Type
(Full_Type
))
2420 return Make_Op_Eq
(Loc
, Left_Opnd
=> Lhs
, Right_Opnd
=> Rhs
);
2422 -- For composite component types, and floating-point types, use the
2423 -- expansion. This deals with tagged component types (where we use
2424 -- the applicable equality routine) and floating-point, (where we
2425 -- need to worry about negative zeroes), and also the case of any
2426 -- composite type recursively containing such fields.
2429 return Expand_Array_Equality
(Nod
, Lhs
, Rhs
, Bodies
, Full_Type
);
2432 -- Case of tagged record types
2434 elsif Is_Tagged_Type
(Full_Type
) then
2436 -- Call the primitive operation "=" of this type
2438 if Is_Class_Wide_Type
(Full_Type
) then
2439 Full_Type
:= Root_Type
(Full_Type
);
2442 -- If this is derived from an untagged private type completed with a
2443 -- tagged type, it does not have a full view, so we use the primitive
2444 -- operations of the private type. This check should no longer be
2445 -- necessary when these types receive their full views ???
2447 if Is_Private_Type
(Typ
)
2448 and then not Is_Tagged_Type
(Typ
)
2449 and then not Is_Controlled
(Typ
)
2450 and then Is_Derived_Type
(Typ
)
2451 and then No
(Full_View
(Typ
))
2453 Prim
:= First_Elmt
(Collect_Primitive_Operations
(Typ
));
2455 Prim
:= First_Elmt
(Primitive_Operations
(Full_Type
));
2459 Eq_Op
:= Node
(Prim
);
2460 exit when Chars
(Eq_Op
) = Name_Op_Eq
2461 and then Etype
(First_Formal
(Eq_Op
)) =
2462 Etype
(Next_Formal
(First_Formal
(Eq_Op
)))
2463 and then Base_Type
(Etype
(Eq_Op
)) = Standard_Boolean
;
2465 pragma Assert
(Present
(Prim
));
2468 Eq_Op
:= Node
(Prim
);
2471 Make_Function_Call
(Loc
,
2472 Name
=> New_Occurrence_Of
(Eq_Op
, Loc
),
2473 Parameter_Associations
=>
2475 (Unchecked_Convert_To
(Etype
(First_Formal
(Eq_Op
)), Lhs
),
2476 Unchecked_Convert_To
(Etype
(First_Formal
(Eq_Op
)), Rhs
)));
2478 -- Case of untagged record types
2480 elsif Is_Record_Type
(Full_Type
) then
2481 Eq_Op
:= TSS
(Full_Type
, TSS_Composite_Equality
);
2483 if Present
(Eq_Op
) then
2484 if Etype
(First_Formal
(Eq_Op
)) /= Full_Type
then
2486 -- Inherited equality from parent type. Convert the actuals to
2487 -- match signature of operation.
2490 T
: constant Entity_Id
:= Etype
(First_Formal
(Eq_Op
));
2494 Make_Function_Call
(Loc
,
2495 Name
=> New_Occurrence_Of
(Eq_Op
, Loc
),
2496 Parameter_Associations
=> New_List
(
2497 OK_Convert_To
(T
, Lhs
),
2498 OK_Convert_To
(T
, Rhs
)));
2502 -- Comparison between Unchecked_Union components
2504 if Is_Unchecked_Union
(Full_Type
) then
2506 Lhs_Type
: Node_Id
:= Full_Type
;
2507 Rhs_Type
: Node_Id
:= Full_Type
;
2508 Lhs_Discr_Val
: Node_Id
;
2509 Rhs_Discr_Val
: Node_Id
;
2514 if Nkind
(Lhs
) = N_Selected_Component
then
2515 Lhs_Type
:= Etype
(Entity
(Selector_Name
(Lhs
)));
2520 if Nkind
(Rhs
) = N_Selected_Component
then
2521 Rhs_Type
:= Etype
(Entity
(Selector_Name
(Rhs
)));
2524 -- Lhs of the composite equality
2526 if Is_Constrained
(Lhs_Type
) then
2528 -- Since the enclosing record type can never be an
2529 -- Unchecked_Union (this code is executed for records
2530 -- that do not have variants), we may reference its
2533 if Nkind
(Lhs
) = N_Selected_Component
2534 and then Has_Per_Object_Constraint
2535 (Entity
(Selector_Name
(Lhs
)))
2538 Make_Selected_Component
(Loc
,
2539 Prefix
=> Prefix
(Lhs
),
2542 (Get_Discriminant_Value
2543 (First_Discriminant
(Lhs_Type
),
2545 Stored_Constraint
(Lhs_Type
))));
2550 (Get_Discriminant_Value
2551 (First_Discriminant
(Lhs_Type
),
2553 Stored_Constraint
(Lhs_Type
)));
2557 -- It is not possible to infer the discriminant since
2558 -- the subtype is not constrained.
2561 Make_Raise_Program_Error
(Loc
,
2562 Reason
=> PE_Unchecked_Union_Restriction
);
2565 -- Rhs of the composite equality
2567 if Is_Constrained
(Rhs_Type
) then
2568 if Nkind
(Rhs
) = N_Selected_Component
2569 and then Has_Per_Object_Constraint
2570 (Entity
(Selector_Name
(Rhs
)))
2573 Make_Selected_Component
(Loc
,
2574 Prefix
=> Prefix
(Rhs
),
2577 (Get_Discriminant_Value
2578 (First_Discriminant
(Rhs_Type
),
2580 Stored_Constraint
(Rhs_Type
))));
2585 (Get_Discriminant_Value
2586 (First_Discriminant
(Rhs_Type
),
2588 Stored_Constraint
(Rhs_Type
)));
2593 Make_Raise_Program_Error
(Loc
,
2594 Reason
=> PE_Unchecked_Union_Restriction
);
2597 -- Call the TSS equality function with the inferred
2598 -- discriminant values.
2601 Make_Function_Call
(Loc
,
2602 Name
=> New_Occurrence_Of
(Eq_Op
, Loc
),
2603 Parameter_Associations
=> New_List
(
2610 -- All cases other than comparing Unchecked_Union types
2614 T
: constant Entity_Id
:= Etype
(First_Formal
(Eq_Op
));
2617 Make_Function_Call
(Loc
,
2619 New_Occurrence_Of
(Eq_Op
, Loc
),
2620 Parameter_Associations
=> New_List
(
2621 OK_Convert_To
(T
, Lhs
),
2622 OK_Convert_To
(T
, Rhs
)));
2627 -- Equality composes in Ada 2012 for untagged record types. It also
2628 -- composes for bounded strings, because they are part of the
2629 -- predefined environment. We could make it compose for bounded
2630 -- strings by making them tagged, or by making sure all subcomponents
2631 -- are set to the same value, even when not used. Instead, we have
2632 -- this special case in the compiler, because it's more efficient.
2634 elsif Ada_Version
>= Ada_2012
or else Is_Bounded_String
(Typ
) then
2636 -- If no TSS has been created for the type, check whether there is
2637 -- a primitive equality declared for it.
2640 Op
: constant Node_Id
:= Find_Primitive_Eq
;
2643 -- Use user-defined primitive if it exists, otherwise use
2644 -- predefined equality.
2646 if Present
(Op
) then
2649 return Make_Op_Eq
(Loc
, Lhs
, Rhs
);
2654 return Expand_Record_Equality
(Nod
, Full_Type
, Lhs
, Rhs
, Bodies
);
2657 -- Non-composite types (always use predefined equality)
2660 return Make_Op_Eq
(Loc
, Left_Opnd
=> Lhs
, Right_Opnd
=> Rhs
);
2662 end Expand_Composite_Equality
;
2664 ------------------------
2665 -- Expand_Concatenate --
2666 ------------------------
2668 procedure Expand_Concatenate
(Cnode
: Node_Id
; Opnds
: List_Id
) is
2669 Loc
: constant Source_Ptr
:= Sloc
(Cnode
);
2671 Atyp
: constant Entity_Id
:= Base_Type
(Etype
(Cnode
));
2672 -- Result type of concatenation
2674 Ctyp
: constant Entity_Id
:= Base_Type
(Component_Type
(Etype
(Cnode
)));
2675 -- Component type. Elements of this component type can appear as one
2676 -- of the operands of concatenation as well as arrays.
2678 Istyp
: constant Entity_Id
:= Etype
(First_Index
(Atyp
));
2681 Ityp
: constant Entity_Id
:= Base_Type
(Istyp
);
2682 -- Index type. This is the base type of the index subtype, and is used
2683 -- for all computed bounds (which may be out of range of Istyp in the
2684 -- case of null ranges).
2687 -- This is the type we use to do arithmetic to compute the bounds and
2688 -- lengths of operands. The choice of this type is a little subtle and
2689 -- is discussed in a separate section at the start of the body code.
2691 Concatenation_Error
: exception;
2692 -- Raised if concatenation is sure to raise a CE
2694 Result_May_Be_Null
: Boolean := True;
2695 -- Reset to False if at least one operand is encountered which is known
2696 -- at compile time to be non-null. Used for handling the special case
2697 -- of setting the high bound to the last operand high bound for a null
2698 -- result, thus ensuring a proper high bound in the super-flat case.
2700 N
: constant Nat
:= List_Length
(Opnds
);
2701 -- Number of concatenation operands including possibly null operands
2704 -- Number of operands excluding any known to be null, except that the
2705 -- last operand is always retained, in case it provides the bounds for
2708 Opnd
: Node_Id
:= Empty
;
2709 -- Current operand being processed in the loop through operands. After
2710 -- this loop is complete, always contains the last operand (which is not
2711 -- the same as Operands (NN), since null operands are skipped).
2713 -- Arrays describing the operands, only the first NN entries of each
2714 -- array are set (NN < N when we exclude known null operands).
2716 Is_Fixed_Length
: array (1 .. N
) of Boolean;
2717 -- True if length of corresponding operand known at compile time
2719 Operands
: array (1 .. N
) of Node_Id
;
2720 -- Set to the corresponding entry in the Opnds list (but note that null
2721 -- operands are excluded, so not all entries in the list are stored).
2723 Fixed_Length
: array (1 .. N
) of Uint
;
2724 -- Set to length of operand. Entries in this array are set only if the
2725 -- corresponding entry in Is_Fixed_Length is True.
2727 Opnd_Low_Bound
: array (1 .. N
) of Node_Id
;
2728 -- Set to lower bound of operand. Either an integer literal in the case
2729 -- where the bound is known at compile time, else actual lower bound.
2730 -- The operand low bound is of type Ityp.
2732 Var_Length
: array (1 .. N
) of Entity_Id
;
2733 -- Set to an entity of type Natural that contains the length of an
2734 -- operand whose length is not known at compile time. Entries in this
2735 -- array are set only if the corresponding entry in Is_Fixed_Length
2736 -- is False. The entity is of type Artyp.
2738 Aggr_Length
: array (0 .. N
) of Node_Id
;
2739 -- The J'th entry in an expression node that represents the total length
2740 -- of operands 1 through J. It is either an integer literal node, or a
2741 -- reference to a constant entity with the right value, so it is fine
2742 -- to just do a Copy_Node to get an appropriate copy. The extra zero'th
2743 -- entry always is set to zero. The length is of type Artyp.
2745 Low_Bound
: Node_Id
;
2746 -- A tree node representing the low bound of the result (of type Ityp).
2747 -- This is either an integer literal node, or an identifier reference to
2748 -- a constant entity initialized to the appropriate value.
2750 Last_Opnd_Low_Bound
: Node_Id
:= Empty
;
2751 -- A tree node representing the low bound of the last operand. This
2752 -- need only be set if the result could be null. It is used for the
2753 -- special case of setting the right low bound for a null result.
2754 -- This is of type Ityp.
2756 Last_Opnd_High_Bound
: Node_Id
:= Empty
;
2757 -- A tree node representing the high bound of the last operand. This
2758 -- need only be set if the result could be null. It is used for the
2759 -- special case of setting the right high bound for a null result.
2760 -- This is of type Ityp.
2762 High_Bound
: Node_Id
;
2763 -- A tree node representing the high bound of the result (of type Ityp)
2766 -- Result of the concatenation (of type Ityp)
2768 Actions
: constant List_Id
:= New_List
;
2769 -- Collect actions to be inserted
2771 Known_Non_Null_Operand_Seen
: Boolean;
2772 -- Set True during generation of the assignments of operands into
2773 -- result once an operand known to be non-null has been seen.
2775 function Library_Level_Target
return Boolean;
2776 -- Return True if the concatenation is within the expression of the
2777 -- declaration of a library-level object.
2779 function Make_Artyp_Literal
(Val
: Nat
) return Node_Id
;
2780 -- This function makes an N_Integer_Literal node that is returned in
2781 -- analyzed form with the type set to Artyp. Importantly this literal
2782 -- is not flagged as static, so that if we do computations with it that
2783 -- result in statically detected out of range conditions, we will not
2784 -- generate error messages but instead warning messages.
2786 function To_Artyp
(X
: Node_Id
) return Node_Id
;
2787 -- Given a node of type Ityp, returns the corresponding value of type
2788 -- Artyp. For non-enumeration types, this is a plain integer conversion.
2789 -- For enum types, the Pos of the value is returned.
2791 function To_Ityp
(X
: Node_Id
) return Node_Id
;
2792 -- The inverse function (uses Val in the case of enumeration types)
2794 --------------------------
2795 -- Library_Level_Target --
2796 --------------------------
2798 function Library_Level_Target
return Boolean is
2799 P
: Node_Id
:= Parent
(Cnode
);
2802 while Present
(P
) loop
2803 if Nkind
(P
) = N_Object_Declaration
then
2804 return Is_Library_Level_Entity
(Defining_Identifier
(P
));
2806 -- Prevent the search from going too far
2808 elsif Is_Body_Or_Package_Declaration
(P
) then
2816 end Library_Level_Target
;
2818 ------------------------
2819 -- Make_Artyp_Literal --
2820 ------------------------
2822 function Make_Artyp_Literal
(Val
: Nat
) return Node_Id
is
2823 Result
: constant Node_Id
:= Make_Integer_Literal
(Loc
, Val
);
2825 Set_Etype
(Result
, Artyp
);
2826 Set_Analyzed
(Result
, True);
2827 Set_Is_Static_Expression
(Result
, False);
2829 end Make_Artyp_Literal
;
2835 function To_Artyp
(X
: Node_Id
) return Node_Id
is
2837 if Ityp
= Base_Type
(Artyp
) then
2840 elsif Is_Enumeration_Type
(Ityp
) then
2842 Make_Attribute_Reference
(Loc
,
2843 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
2844 Attribute_Name
=> Name_Pos
,
2845 Expressions
=> New_List
(X
));
2848 return Convert_To
(Artyp
, X
);
2856 function To_Ityp
(X
: Node_Id
) return Node_Id
is
2858 if Is_Enumeration_Type
(Ityp
) then
2860 Make_Attribute_Reference
(Loc
,
2861 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
2862 Attribute_Name
=> Name_Val
,
2863 Expressions
=> New_List
(X
));
2865 -- Case where we will do a type conversion
2868 if Ityp
= Base_Type
(Artyp
) then
2871 return Convert_To
(Ityp
, X
);
2876 -- Local Declarations
2878 Opnd_Typ
: Entity_Id
;
2885 -- Start of processing for Expand_Concatenate
2888 -- Choose an appropriate computational type
2890 -- We will be doing calculations of lengths and bounds in this routine
2891 -- and computing one from the other in some cases, e.g. getting the high
2892 -- bound by adding the length-1 to the low bound.
2894 -- We can't just use the index type, or even its base type for this
2895 -- purpose for two reasons. First it might be an enumeration type which
2896 -- is not suitable for computations of any kind, and second it may
2897 -- simply not have enough range. For example if the index type is
2898 -- -128..+127 then lengths can be up to 256, which is out of range of
2901 -- For enumeration types, we can simply use Standard_Integer, this is
2902 -- sufficient since the actual number of enumeration literals cannot
2903 -- possibly exceed the range of integer (remember we will be doing the
2904 -- arithmetic with POS values, not representation values).
2906 if Is_Enumeration_Type
(Ityp
) then
2907 Artyp
:= Standard_Integer
;
2909 -- If index type is Positive, we use the standard unsigned type, to give
2910 -- more room on the top of the range, obviating the need for an overflow
2911 -- check when creating the upper bound. This is needed to avoid junk
2912 -- overflow checks in the common case of String types.
2914 -- ??? Disabled for now
2916 -- elsif Istyp = Standard_Positive then
2917 -- Artyp := Standard_Unsigned;
2919 -- For modular types, we use a 32-bit modular type for types whose size
2920 -- is in the range 1-31 bits. For 32-bit unsigned types, we use the
2921 -- identity type, and for larger unsigned types we use 64-bits.
2923 elsif Is_Modular_Integer_Type
(Ityp
) then
2924 if RM_Size
(Ityp
) < RM_Size
(Standard_Unsigned
) then
2925 Artyp
:= Standard_Unsigned
;
2926 elsif RM_Size
(Ityp
) = RM_Size
(Standard_Unsigned
) then
2929 Artyp
:= RTE
(RE_Long_Long_Unsigned
);
2932 -- Similar treatment for signed types
2935 if RM_Size
(Ityp
) < RM_Size
(Standard_Integer
) then
2936 Artyp
:= Standard_Integer
;
2937 elsif RM_Size
(Ityp
) = RM_Size
(Standard_Integer
) then
2940 Artyp
:= Standard_Long_Long_Integer
;
2944 -- Supply dummy entry at start of length array
2946 Aggr_Length
(0) := Make_Artyp_Literal
(0);
2948 -- Go through operands setting up the above arrays
2952 Opnd
:= Remove_Head
(Opnds
);
2953 Opnd_Typ
:= Etype
(Opnd
);
2955 -- The parent got messed up when we put the operands in a list,
2956 -- so now put back the proper parent for the saved operand, that
2957 -- is to say the concatenation node, to make sure that each operand
2958 -- is seen as a subexpression, e.g. if actions must be inserted.
2960 Set_Parent
(Opnd
, Cnode
);
2962 -- Set will be True when we have setup one entry in the array
2966 -- Singleton element (or character literal) case
2968 if Base_Type
(Opnd_Typ
) = Ctyp
then
2970 Operands
(NN
) := Opnd
;
2971 Is_Fixed_Length
(NN
) := True;
2972 Fixed_Length
(NN
) := Uint_1
;
2973 Result_May_Be_Null
:= False;
2975 -- Set low bound of operand (no need to set Last_Opnd_High_Bound
2976 -- since we know that the result cannot be null).
2978 Opnd_Low_Bound
(NN
) :=
2979 Make_Attribute_Reference
(Loc
,
2980 Prefix
=> New_Occurrence_Of
(Istyp
, Loc
),
2981 Attribute_Name
=> Name_First
);
2985 -- String literal case (can only occur for strings of course)
2987 elsif Nkind
(Opnd
) = N_String_Literal
then
2988 Len
:= String_Literal_Length
(Opnd_Typ
);
2991 Result_May_Be_Null
:= False;
2994 -- Capture last operand low and high bound if result could be null
2996 if J
= N
and then Result_May_Be_Null
then
2997 Last_Opnd_Low_Bound
:=
2998 New_Copy_Tree
(String_Literal_Low_Bound
(Opnd_Typ
));
3000 Last_Opnd_High_Bound
:=
3001 Make_Op_Subtract
(Loc
,
3003 New_Copy_Tree
(String_Literal_Low_Bound
(Opnd_Typ
)),
3004 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1));
3007 -- Skip null string literal
3009 if J
< N
and then Len
= 0 then
3014 Operands
(NN
) := Opnd
;
3015 Is_Fixed_Length
(NN
) := True;
3017 -- Set length and bounds
3019 Fixed_Length
(NN
) := Len
;
3021 Opnd_Low_Bound
(NN
) :=
3022 New_Copy_Tree
(String_Literal_Low_Bound
(Opnd_Typ
));
3029 -- Check constrained case with known bounds
3031 if Is_Constrained
(Opnd_Typ
) then
3033 Index
: constant Node_Id
:= First_Index
(Opnd_Typ
);
3034 Indx_Typ
: constant Entity_Id
:= Etype
(Index
);
3035 Lo
: constant Node_Id
:= Type_Low_Bound
(Indx_Typ
);
3036 Hi
: constant Node_Id
:= Type_High_Bound
(Indx_Typ
);
3039 -- Fixed length constrained array type with known at compile
3040 -- time bounds is last case of fixed length operand.
3042 if Compile_Time_Known_Value
(Lo
)
3044 Compile_Time_Known_Value
(Hi
)
3047 Loval
: constant Uint
:= Expr_Value
(Lo
);
3048 Hival
: constant Uint
:= Expr_Value
(Hi
);
3049 Len
: constant Uint
:=
3050 UI_Max
(Hival
- Loval
+ 1, Uint_0
);
3054 Result_May_Be_Null
:= False;
3057 -- Capture last operand bounds if result could be null
3059 if J
= N
and then Result_May_Be_Null
then
3060 Last_Opnd_Low_Bound
:=
3062 Make_Integer_Literal
(Loc
, Expr_Value
(Lo
)));
3064 Last_Opnd_High_Bound
:=
3066 Make_Integer_Literal
(Loc
, Expr_Value
(Hi
)));
3069 -- Exclude null length case unless last operand
3071 if J
< N
and then Len
= 0 then
3076 Operands
(NN
) := Opnd
;
3077 Is_Fixed_Length
(NN
) := True;
3078 Fixed_Length
(NN
) := Len
;
3080 Opnd_Low_Bound
(NN
) :=
3082 (Make_Integer_Literal
(Loc
, Expr_Value
(Lo
)));
3089 -- All cases where the length is not known at compile time, or the
3090 -- special case of an operand which is known to be null but has a
3091 -- lower bound other than 1 or is other than a string type.
3096 -- Capture operand bounds
3098 Opnd_Low_Bound
(NN
) :=
3099 Make_Attribute_Reference
(Loc
,
3101 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3102 Attribute_Name
=> Name_First
);
3104 -- Capture last operand bounds if result could be null
3106 if J
= N
and Result_May_Be_Null
then
3107 Last_Opnd_Low_Bound
:=
3109 Make_Attribute_Reference
(Loc
,
3111 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3112 Attribute_Name
=> Name_First
));
3114 Last_Opnd_High_Bound
:=
3116 Make_Attribute_Reference
(Loc
,
3118 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3119 Attribute_Name
=> Name_Last
));
3122 -- Capture length of operand in entity
3124 Operands
(NN
) := Opnd
;
3125 Is_Fixed_Length
(NN
) := False;
3127 Var_Length
(NN
) := Make_Temporary
(Loc
, 'L');
3130 Make_Object_Declaration
(Loc
,
3131 Defining_Identifier
=> Var_Length
(NN
),
3132 Constant_Present
=> True,
3133 Object_Definition
=> New_Occurrence_Of
(Artyp
, Loc
),
3135 Make_Attribute_Reference
(Loc
,
3137 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3138 Attribute_Name
=> Name_Length
)));
3142 -- Set next entry in aggregate length array
3144 -- For first entry, make either integer literal for fixed length
3145 -- or a reference to the saved length for variable length.
3148 if Is_Fixed_Length
(1) then
3149 Aggr_Length
(1) := Make_Integer_Literal
(Loc
, Fixed_Length
(1));
3151 Aggr_Length
(1) := New_Occurrence_Of
(Var_Length
(1), Loc
);
3154 -- If entry is fixed length and only fixed lengths so far, make
3155 -- appropriate new integer literal adding new length.
3157 elsif Is_Fixed_Length
(NN
)
3158 and then Nkind
(Aggr_Length
(NN
- 1)) = N_Integer_Literal
3161 Make_Integer_Literal
(Loc
,
3162 Intval
=> Fixed_Length
(NN
) + Intval
(Aggr_Length
(NN
- 1)));
3164 -- All other cases, construct an addition node for the length and
3165 -- create an entity initialized to this length.
3168 Ent
:= Make_Temporary
(Loc
, 'L');
3170 if Is_Fixed_Length
(NN
) then
3171 Clen
:= Make_Integer_Literal
(Loc
, Fixed_Length
(NN
));
3173 Clen
:= New_Occurrence_Of
(Var_Length
(NN
), Loc
);
3177 Make_Object_Declaration
(Loc
,
3178 Defining_Identifier
=> Ent
,
3179 Constant_Present
=> True,
3180 Object_Definition
=> New_Occurrence_Of
(Artyp
, Loc
),
3183 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
- 1)),
3184 Right_Opnd
=> Clen
)));
3186 Aggr_Length
(NN
) := Make_Identifier
(Loc
, Chars
=> Chars
(Ent
));
3193 -- If we have only skipped null operands, return the last operand
3200 -- If we have only one non-null operand, return it and we are done.
3201 -- There is one case in which this cannot be done, and that is when
3202 -- the sole operand is of the element type, in which case it must be
3203 -- converted to an array, and the easiest way of doing that is to go
3204 -- through the normal general circuit.
3206 if NN
= 1 and then Base_Type
(Etype
(Operands
(1))) /= Ctyp
then
3207 Result
:= Operands
(1);
3211 -- Cases where we have a real concatenation
3213 -- Next step is to find the low bound for the result array that we
3214 -- will allocate. The rules for this are in (RM 4.5.6(5-7)).
3216 -- If the ultimate ancestor of the index subtype is a constrained array
3217 -- definition, then the lower bound is that of the index subtype as
3218 -- specified by (RM 4.5.3(6)).
3220 -- The right test here is to go to the root type, and then the ultimate
3221 -- ancestor is the first subtype of this root type.
3223 if Is_Constrained
(First_Subtype
(Root_Type
(Atyp
))) then
3225 Make_Attribute_Reference
(Loc
,
3227 New_Occurrence_Of
(First_Subtype
(Root_Type
(Atyp
)), Loc
),
3228 Attribute_Name
=> Name_First
);
3230 -- If the first operand in the list has known length we know that
3231 -- the lower bound of the result is the lower bound of this operand.
3233 elsif Is_Fixed_Length
(1) then
3234 Low_Bound
:= Opnd_Low_Bound
(1);
3236 -- OK, we don't know the lower bound, we have to build a horrible
3237 -- if expression node of the form
3239 -- if Cond1'Length /= 0 then
3242 -- if Opnd2'Length /= 0 then
3247 -- The nesting ends either when we hit an operand whose length is known
3248 -- at compile time, or on reaching the last operand, whose low bound we
3249 -- take unconditionally whether or not it is null. It's easiest to do
3250 -- this with a recursive procedure:
3254 function Get_Known_Bound
(J
: Nat
) return Node_Id
;
3255 -- Returns the lower bound determined by operands J .. NN
3257 ---------------------
3258 -- Get_Known_Bound --
3259 ---------------------
3261 function Get_Known_Bound
(J
: Nat
) return Node_Id
is
3263 if Is_Fixed_Length
(J
) or else J
= NN
then
3264 return New_Copy
(Opnd_Low_Bound
(J
));
3268 Make_If_Expression
(Loc
,
3269 Expressions
=> New_List
(
3273 New_Occurrence_Of
(Var_Length
(J
), Loc
),
3275 Make_Integer_Literal
(Loc
, 0)),
3277 New_Copy
(Opnd_Low_Bound
(J
)),
3278 Get_Known_Bound
(J
+ 1)));
3280 end Get_Known_Bound
;
3283 Ent
:= Make_Temporary
(Loc
, 'L');
3286 Make_Object_Declaration
(Loc
,
3287 Defining_Identifier
=> Ent
,
3288 Constant_Present
=> True,
3289 Object_Definition
=> New_Occurrence_Of
(Ityp
, Loc
),
3290 Expression
=> Get_Known_Bound
(1)));
3292 Low_Bound
:= New_Occurrence_Of
(Ent
, Loc
);
3296 -- Now we can safely compute the upper bound, normally
3297 -- Low_Bound + Length - 1.
3302 Left_Opnd
=> To_Artyp
(New_Copy
(Low_Bound
)),
3304 Make_Op_Subtract
(Loc
,
3305 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
)),
3306 Right_Opnd
=> Make_Artyp_Literal
(1))));
3308 -- Note that calculation of the high bound may cause overflow in some
3309 -- very weird cases, so in the general case we need an overflow check on
3310 -- the high bound. We can avoid this for the common case of string types
3311 -- and other types whose index is Positive, since we chose a wider range
3312 -- for the arithmetic type. If checks are suppressed we do not set the
3313 -- flag, and possibly superfluous warnings will be omitted.
3315 if Istyp
/= Standard_Positive
3316 and then not Overflow_Checks_Suppressed
(Istyp
)
3318 Activate_Overflow_Check
(High_Bound
);
3321 -- Handle the exceptional case where the result is null, in which case
3322 -- case the bounds come from the last operand (so that we get the proper
3323 -- bounds if the last operand is super-flat).
3325 if Result_May_Be_Null
then
3327 Make_If_Expression
(Loc
,
3328 Expressions
=> New_List
(
3330 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
)),
3331 Right_Opnd
=> Make_Artyp_Literal
(0)),
3332 Last_Opnd_Low_Bound
,
3336 Make_If_Expression
(Loc
,
3337 Expressions
=> New_List
(
3339 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
)),
3340 Right_Opnd
=> Make_Artyp_Literal
(0)),
3341 Last_Opnd_High_Bound
,
3345 -- Here is where we insert the saved up actions
3347 Insert_Actions
(Cnode
, Actions
, Suppress
=> All_Checks
);
3349 -- Now we construct an array object with appropriate bounds. We mark
3350 -- the target as internal to prevent useless initialization when
3351 -- Initialize_Scalars is enabled. Also since this is the actual result
3352 -- entity, we make sure we have debug information for the result.
3354 Ent
:= Make_Temporary
(Loc
, 'S');
3355 Set_Is_Internal
(Ent
);
3356 Set_Needs_Debug_Info
(Ent
);
3358 -- If the bound is statically known to be out of range, we do not want
3359 -- to abort, we want a warning and a runtime constraint error. Note that
3360 -- we have arranged that the result will not be treated as a static
3361 -- constant, so we won't get an illegality during this insertion.
3363 Insert_Action
(Cnode
,
3364 Make_Object_Declaration
(Loc
,
3365 Defining_Identifier
=> Ent
,
3366 Object_Definition
=>
3367 Make_Subtype_Indication
(Loc
,
3368 Subtype_Mark
=> New_Occurrence_Of
(Atyp
, Loc
),
3370 Make_Index_Or_Discriminant_Constraint
(Loc
,
3371 Constraints
=> New_List
(
3373 Low_Bound
=> Low_Bound
,
3374 High_Bound
=> High_Bound
))))),
3375 Suppress
=> All_Checks
);
3377 -- If the result of the concatenation appears as the initializing
3378 -- expression of an object declaration, we can just rename the
3379 -- result, rather than copying it.
3381 Set_OK_To_Rename
(Ent
);
3383 -- Catch the static out of range case now
3385 if Raises_Constraint_Error
(High_Bound
) then
3386 raise Concatenation_Error
;
3389 -- Now we will generate the assignments to do the actual concatenation
3391 -- There is one case in which we will not do this, namely when all the
3392 -- following conditions are met:
3394 -- The result type is Standard.String
3396 -- There are nine or fewer retained (non-null) operands
3398 -- The optimization level is -O0 or the debug flag gnatd.C is set,
3399 -- and the debug flag gnatd.c is not set.
3401 -- The corresponding System.Concat_n.Str_Concat_n routine is
3402 -- available in the run time.
3404 -- If all these conditions are met then we generate a call to the
3405 -- relevant concatenation routine. The purpose of this is to avoid
3406 -- undesirable code bloat at -O0.
3408 -- If the concatenation is within the declaration of a library-level
3409 -- object, we call the built-in concatenation routines to prevent code
3410 -- bloat, regardless of the optimization level. This is space efficient
3411 -- and prevents linking problems when units are compiled with different
3412 -- optimization levels.
3414 if Atyp
= Standard_String
3415 and then NN
in 2 .. 9
3416 and then (((Optimization_Level
= 0 or else Debug_Flag_Dot_CC
)
3417 and then not Debug_Flag_Dot_C
)
3418 or else Library_Level_Target
)
3421 RR
: constant array (Nat
range 2 .. 9) of RE_Id
:=
3432 if RTE_Available
(RR
(NN
)) then
3434 Opnds
: constant List_Id
:=
3435 New_List
(New_Occurrence_Of
(Ent
, Loc
));
3438 for J
in 1 .. NN
loop
3439 if Is_List_Member
(Operands
(J
)) then
3440 Remove
(Operands
(J
));
3443 if Base_Type
(Etype
(Operands
(J
))) = Ctyp
then
3445 Make_Aggregate
(Loc
,
3446 Component_Associations
=> New_List
(
3447 Make_Component_Association
(Loc
,
3448 Choices
=> New_List
(
3449 Make_Integer_Literal
(Loc
, 1)),
3450 Expression
=> Operands
(J
)))));
3453 Append_To
(Opnds
, Operands
(J
));
3457 Insert_Action
(Cnode
,
3458 Make_Procedure_Call_Statement
(Loc
,
3459 Name
=> New_Occurrence_Of
(RTE
(RR
(NN
)), Loc
),
3460 Parameter_Associations
=> Opnds
));
3462 Result
:= New_Occurrence_Of
(Ent
, Loc
);
3469 -- Not special case so generate the assignments
3471 Known_Non_Null_Operand_Seen
:= False;
3473 for J
in 1 .. NN
loop
3475 Lo
: constant Node_Id
:=
3477 Left_Opnd
=> To_Artyp
(New_Copy
(Low_Bound
)),
3478 Right_Opnd
=> Aggr_Length
(J
- 1));
3480 Hi
: constant Node_Id
:=
3482 Left_Opnd
=> To_Artyp
(New_Copy
(Low_Bound
)),
3484 Make_Op_Subtract
(Loc
,
3485 Left_Opnd
=> Aggr_Length
(J
),
3486 Right_Opnd
=> Make_Artyp_Literal
(1)));
3489 -- Singleton case, simple assignment
3491 if Base_Type
(Etype
(Operands
(J
))) = Ctyp
then
3492 Known_Non_Null_Operand_Seen
:= True;
3493 Insert_Action
(Cnode
,
3494 Make_Assignment_Statement
(Loc
,
3496 Make_Indexed_Component
(Loc
,
3497 Prefix
=> New_Occurrence_Of
(Ent
, Loc
),
3498 Expressions
=> New_List
(To_Ityp
(Lo
))),
3499 Expression
=> Operands
(J
)),
3500 Suppress
=> All_Checks
);
3502 -- Array case, slice assignment, skipped when argument is fixed
3503 -- length and known to be null.
3505 elsif (not Is_Fixed_Length
(J
)) or else (Fixed_Length
(J
) > 0) then
3508 Make_Assignment_Statement
(Loc
,
3512 New_Occurrence_Of
(Ent
, Loc
),
3515 Low_Bound
=> To_Ityp
(Lo
),
3516 High_Bound
=> To_Ityp
(Hi
))),
3517 Expression
=> Operands
(J
));
3519 if Is_Fixed_Length
(J
) then
3520 Known_Non_Null_Operand_Seen
:= True;
3522 elsif not Known_Non_Null_Operand_Seen
then
3524 -- Here if operand length is not statically known and no
3525 -- operand known to be non-null has been processed yet.
3526 -- If operand length is 0, we do not need to perform the
3527 -- assignment, and we must avoid the evaluation of the
3528 -- high bound of the slice, since it may underflow if the
3529 -- low bound is Ityp'First.
3532 Make_Implicit_If_Statement
(Cnode
,
3536 New_Occurrence_Of
(Var_Length
(J
), Loc
),
3537 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)),
3538 Then_Statements
=> New_List
(Assign
));
3541 Insert_Action
(Cnode
, Assign
, Suppress
=> All_Checks
);
3547 -- Finally we build the result, which is a reference to the array object
3549 Result
:= New_Occurrence_Of
(Ent
, Loc
);
3552 Rewrite
(Cnode
, Result
);
3553 Analyze_And_Resolve
(Cnode
, Atyp
);
3556 when Concatenation_Error
=>
3558 -- Kill warning generated for the declaration of the static out of
3559 -- range high bound, and instead generate a Constraint_Error with
3560 -- an appropriate specific message.
3562 Kill_Dead_Code
(Declaration_Node
(Entity
(High_Bound
)));
3563 Apply_Compile_Time_Constraint_Error
3565 Msg
=> "concatenation result upper bound out of range??",
3566 Reason
=> CE_Range_Check_Failed
);
3567 end Expand_Concatenate
;
3569 ---------------------------------------------------
3570 -- Expand_Membership_Minimize_Eliminate_Overflow --
3571 ---------------------------------------------------
3573 procedure Expand_Membership_Minimize_Eliminate_Overflow
(N
: Node_Id
) is
3574 pragma Assert
(Nkind
(N
) = N_In
);
3575 -- Despite the name, this routine applies only to N_In, not to
3576 -- N_Not_In. The latter is always rewritten as not (X in Y).
3578 Result_Type
: constant Entity_Id
:= Etype
(N
);
3579 -- Capture result type, may be a derived boolean type
3581 Loc
: constant Source_Ptr
:= Sloc
(N
);
3582 Lop
: constant Node_Id
:= Left_Opnd
(N
);
3583 Rop
: constant Node_Id
:= Right_Opnd
(N
);
3585 -- Note: there are many referencs to Etype (Lop) and Etype (Rop). It
3586 -- is thus tempting to capture these values, but due to the rewrites
3587 -- that occur as a result of overflow checking, these values change
3588 -- as we go along, and it is safe just to always use Etype explicitly.
3590 Restype
: constant Entity_Id
:= Etype
(N
);
3594 -- Bounds in Minimize calls, not used currently
3596 LLIB
: constant Entity_Id
:= Base_Type
(Standard_Long_Long_Integer
);
3597 -- Entity for Long_Long_Integer'Base (Standard should export this???)
3600 Minimize_Eliminate_Overflows
(Lop
, Lo
, Hi
, Top_Level
=> False);
3602 -- If right operand is a subtype name, and the subtype name has no
3603 -- predicate, then we can just replace the right operand with an
3604 -- explicit range T'First .. T'Last, and use the explicit range code.
3606 if Nkind
(Rop
) /= N_Range
3607 and then No
(Predicate_Function
(Etype
(Rop
)))
3610 Rtyp
: constant Entity_Id
:= Etype
(Rop
);
3615 Make_Attribute_Reference
(Loc
,
3616 Attribute_Name
=> Name_First
,
3617 Prefix
=> New_Occurrence_Of
(Rtyp
, Loc
)),
3619 Make_Attribute_Reference
(Loc
,
3620 Attribute_Name
=> Name_Last
,
3621 Prefix
=> New_Occurrence_Of
(Rtyp
, Loc
))));
3622 Analyze_And_Resolve
(Rop
, Rtyp
, Suppress
=> All_Checks
);
3626 -- Here for the explicit range case. Note that the bounds of the range
3627 -- have not been processed for minimized or eliminated checks.
3629 if Nkind
(Rop
) = N_Range
then
3630 Minimize_Eliminate_Overflows
3631 (Low_Bound
(Rop
), Lo
, Hi
, Top_Level
=> False);
3632 Minimize_Eliminate_Overflows
3633 (High_Bound
(Rop
), Lo
, Hi
, Top_Level
=> False);
3635 -- We have A in B .. C, treated as A >= B and then A <= C
3639 if Is_RTE
(Etype
(Lop
), RE_Bignum
)
3640 or else Is_RTE
(Etype
(Low_Bound
(Rop
)), RE_Bignum
)
3641 or else Is_RTE
(Etype
(High_Bound
(Rop
)), RE_Bignum
)
3644 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
3645 Bnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'B', N
);
3646 L
: constant Entity_Id
:=
3647 Make_Defining_Identifier
(Loc
, Name_uL
);
3648 Lopnd
: constant Node_Id
:= Convert_To_Bignum
(Lop
);
3649 Lbound
: constant Node_Id
:=
3650 Convert_To_Bignum
(Low_Bound
(Rop
));
3651 Hbound
: constant Node_Id
:=
3652 Convert_To_Bignum
(High_Bound
(Rop
));
3654 -- Now we rewrite the membership test node to look like
3657 -- Bnn : Result_Type;
3659 -- M : Mark_Id := SS_Mark;
3660 -- L : Bignum := Lopnd;
3662 -- Bnn := Big_GE (L, Lbound) and then Big_LE (L, Hbound)
3670 -- Insert declaration of L into declarations of bignum block
3673 (Last
(Declarations
(Blk
)),
3674 Make_Object_Declaration
(Loc
,
3675 Defining_Identifier
=> L
,
3676 Object_Definition
=>
3677 New_Occurrence_Of
(RTE
(RE_Bignum
), Loc
),
3678 Expression
=> Lopnd
));
3680 -- Insert assignment to Bnn into expressions of bignum block
3683 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
3684 Make_Assignment_Statement
(Loc
,
3685 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
3689 Make_Function_Call
(Loc
,
3691 New_Occurrence_Of
(RTE
(RE_Big_GE
), Loc
),
3692 Parameter_Associations
=> New_List
(
3693 New_Occurrence_Of
(L
, Loc
),
3697 Make_Function_Call
(Loc
,
3699 New_Occurrence_Of
(RTE
(RE_Big_LE
), Loc
),
3700 Parameter_Associations
=> New_List
(
3701 New_Occurrence_Of
(L
, Loc
),
3704 -- Now rewrite the node
3707 Make_Expression_With_Actions
(Loc
,
3708 Actions
=> New_List
(
3709 Make_Object_Declaration
(Loc
,
3710 Defining_Identifier
=> Bnn
,
3711 Object_Definition
=>
3712 New_Occurrence_Of
(Result_Type
, Loc
)),
3714 Expression
=> New_Occurrence_Of
(Bnn
, Loc
)));
3715 Analyze_And_Resolve
(N
, Result_Type
);
3719 -- Here if no bignums around
3722 -- Case where types are all the same
3724 if Base_Type
(Etype
(Lop
)) = Base_Type
(Etype
(Low_Bound
(Rop
)))
3726 Base_Type
(Etype
(Lop
)) = Base_Type
(Etype
(High_Bound
(Rop
)))
3730 -- If types are not all the same, it means that we have rewritten
3731 -- at least one of them to be of type Long_Long_Integer, and we
3732 -- will convert the other operands to Long_Long_Integer.
3735 Convert_To_And_Rewrite
(LLIB
, Lop
);
3736 Set_Analyzed
(Lop
, False);
3737 Analyze_And_Resolve
(Lop
, LLIB
);
3739 -- For the right operand, avoid unnecessary recursion into
3740 -- this routine, we know that overflow is not possible.
3742 Convert_To_And_Rewrite
(LLIB
, Low_Bound
(Rop
));
3743 Convert_To_And_Rewrite
(LLIB
, High_Bound
(Rop
));
3744 Set_Analyzed
(Rop
, False);
3745 Analyze_And_Resolve
(Rop
, LLIB
, Suppress
=> Overflow_Check
);
3748 -- Now the three operands are of the same signed integer type,
3749 -- so we can use the normal expansion routine for membership,
3750 -- setting the flag to prevent recursion into this procedure.
3752 Set_No_Minimize_Eliminate
(N
);
3756 -- Right operand is a subtype name and the subtype has a predicate. We
3757 -- have to make sure the predicate is checked, and for that we need to
3758 -- use the standard N_In circuitry with appropriate types.
3761 pragma Assert
(Present
(Predicate_Function
(Etype
(Rop
))));
3763 -- If types are "right", just call Expand_N_In preventing recursion
3765 if Base_Type
(Etype
(Lop
)) = Base_Type
(Etype
(Rop
)) then
3766 Set_No_Minimize_Eliminate
(N
);
3771 elsif Is_RTE
(Etype
(Lop
), RE_Bignum
) then
3773 -- For X in T, we want to rewrite our node as
3776 -- Bnn : Result_Type;
3779 -- M : Mark_Id := SS_Mark;
3780 -- Lnn : Long_Long_Integer'Base
3786 -- if not Bignum_In_LLI_Range (Nnn) then
3789 -- Lnn := From_Bignum (Nnn);
3791 -- Lnn in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3792 -- and then T'Base (Lnn) in T;
3801 -- A bit gruesome, but there doesn't seem to be a simpler way
3804 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
3805 Bnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'B', N
);
3806 Lnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L', N
);
3807 Nnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'N', N
);
3808 T
: constant Entity_Id
:= Etype
(Rop
);
3809 TB
: constant Entity_Id
:= Base_Type
(T
);
3813 -- Mark the last membership operation to prevent recursion
3817 Left_Opnd
=> Convert_To
(TB
, New_Occurrence_Of
(Lnn
, Loc
)),
3818 Right_Opnd
=> New_Occurrence_Of
(T
, Loc
));
3819 Set_No_Minimize_Eliminate
(Nin
);
3821 -- Now decorate the block
3824 (Last
(Declarations
(Blk
)),
3825 Make_Object_Declaration
(Loc
,
3826 Defining_Identifier
=> Lnn
,
3827 Object_Definition
=> New_Occurrence_Of
(LLIB
, Loc
)));
3830 (Last
(Declarations
(Blk
)),
3831 Make_Object_Declaration
(Loc
,
3832 Defining_Identifier
=> Nnn
,
3833 Object_Definition
=>
3834 New_Occurrence_Of
(RTE
(RE_Bignum
), Loc
)));
3837 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
3839 Make_Assignment_Statement
(Loc
,
3840 Name
=> New_Occurrence_Of
(Nnn
, Loc
),
3841 Expression
=> Relocate_Node
(Lop
)),
3843 Make_Implicit_If_Statement
(N
,
3847 Make_Function_Call
(Loc
,
3850 (RTE
(RE_Bignum_In_LLI_Range
), Loc
),
3851 Parameter_Associations
=> New_List
(
3852 New_Occurrence_Of
(Nnn
, Loc
)))),
3854 Then_Statements
=> New_List
(
3855 Make_Assignment_Statement
(Loc
,
3856 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
3858 New_Occurrence_Of
(Standard_False
, Loc
))),
3860 Else_Statements
=> New_List
(
3861 Make_Assignment_Statement
(Loc
,
3862 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
3864 Make_Function_Call
(Loc
,
3866 New_Occurrence_Of
(RTE
(RE_From_Bignum
), Loc
),
3867 Parameter_Associations
=> New_List
(
3868 New_Occurrence_Of
(Nnn
, Loc
)))),
3870 Make_Assignment_Statement
(Loc
,
3871 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
3876 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
3881 Make_Attribute_Reference
(Loc
,
3882 Attribute_Name
=> Name_First
,
3884 New_Occurrence_Of
(TB
, Loc
))),
3888 Make_Attribute_Reference
(Loc
,
3889 Attribute_Name
=> Name_Last
,
3891 New_Occurrence_Of
(TB
, Loc
))))),
3893 Right_Opnd
=> Nin
))))));
3895 -- Now we can do the rewrite
3898 Make_Expression_With_Actions
(Loc
,
3899 Actions
=> New_List
(
3900 Make_Object_Declaration
(Loc
,
3901 Defining_Identifier
=> Bnn
,
3902 Object_Definition
=>
3903 New_Occurrence_Of
(Result_Type
, Loc
)),
3905 Expression
=> New_Occurrence_Of
(Bnn
, Loc
)));
3906 Analyze_And_Resolve
(N
, Result_Type
);
3910 -- Not bignum case, but types don't match (this means we rewrote the
3911 -- left operand to be Long_Long_Integer).
3914 pragma Assert
(Base_Type
(Etype
(Lop
)) = LLIB
);
3916 -- We rewrite the membership test as (where T is the type with
3917 -- the predicate, i.e. the type of the right operand)
3919 -- Lop in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3920 -- and then T'Base (Lop) in T
3923 T
: constant Entity_Id
:= Etype
(Rop
);
3924 TB
: constant Entity_Id
:= Base_Type
(T
);
3928 -- The last membership test is marked to prevent recursion
3932 Left_Opnd
=> Convert_To
(TB
, Duplicate_Subexpr
(Lop
)),
3933 Right_Opnd
=> New_Occurrence_Of
(T
, Loc
));
3934 Set_No_Minimize_Eliminate
(Nin
);
3936 -- Now do the rewrite
3947 Make_Attribute_Reference
(Loc
,
3948 Attribute_Name
=> Name_First
,
3950 New_Occurrence_Of
(TB
, Loc
))),
3953 Make_Attribute_Reference
(Loc
,
3954 Attribute_Name
=> Name_Last
,
3956 New_Occurrence_Of
(TB
, Loc
))))),
3957 Right_Opnd
=> Nin
));
3958 Set_Analyzed
(N
, False);
3959 Analyze_And_Resolve
(N
, Restype
);
3963 end Expand_Membership_Minimize_Eliminate_Overflow
;
3965 ----------------------------------
3966 -- Expand_Non_Binary_Modular_Op --
3967 ----------------------------------
3969 procedure Expand_Non_Binary_Modular_Op
(N
: Node_Id
) is
3970 Loc
: constant Source_Ptr
:= Sloc
(N
);
3971 Typ
: constant Entity_Id
:= Etype
(N
);
3973 procedure Expand_Modular_Addition
;
3974 -- Expand the modular addition handling the special case of adding a
3977 procedure Expand_Modular_Op
;
3978 -- Compute the general rule: (lhs OP rhs) mod Modulus
3980 procedure Expand_Modular_Subtraction
;
3981 -- Expand the modular addition handling the special case of subtracting
3984 -----------------------------
3985 -- Expand_Modular_Addition --
3986 -----------------------------
3988 procedure Expand_Modular_Addition
is
3990 -- If this is not the addition of a constant then compute it using
3991 -- the general rule: (lhs + rhs) mod Modulus
3993 if Nkind
(Right_Opnd
(N
)) /= N_Integer_Literal
then
3996 -- If this is an addition of a constant, convert it to a subtraction
3997 -- plus a conditional expression since we can compute it faster than
3998 -- computing the modulus.
4000 -- modMinusRhs = Modulus - rhs
4001 -- if lhs < modMinusRhs then lhs + rhs
4002 -- else lhs - modMinusRhs
4006 Mod_Minus_Right
: constant Uint
:=
4007 Modulus
(Typ
) - Intval
(Right_Opnd
(N
));
4009 Exprs
: constant List_Id
:= New_List
;
4010 Cond_Expr
: constant Node_Id
:= New_Op_Node
(N_Op_Lt
, Loc
);
4011 Then_Expr
: constant Node_Id
:= New_Op_Node
(N_Op_Add
, Loc
);
4012 Else_Expr
: constant Node_Id
:= New_Op_Node
(N_Op_Subtract
,
4015 Set_Left_Opnd
(Cond_Expr
,
4016 New_Copy_Tree
(Left_Opnd
(N
)));
4017 Set_Right_Opnd
(Cond_Expr
,
4018 Make_Integer_Literal
(Loc
, Mod_Minus_Right
));
4019 Append_To
(Exprs
, Cond_Expr
);
4021 Set_Left_Opnd
(Then_Expr
,
4022 Unchecked_Convert_To
(Standard_Unsigned
,
4023 New_Copy_Tree
(Left_Opnd
(N
))));
4024 Set_Right_Opnd
(Then_Expr
,
4025 Make_Integer_Literal
(Loc
, Intval
(Right_Opnd
(N
))));
4026 Append_To
(Exprs
, Then_Expr
);
4028 Set_Left_Opnd
(Else_Expr
,
4029 Unchecked_Convert_To
(Standard_Unsigned
,
4030 New_Copy_Tree
(Left_Opnd
(N
))));
4031 Set_Right_Opnd
(Else_Expr
,
4032 Make_Integer_Literal
(Loc
, Mod_Minus_Right
));
4033 Append_To
(Exprs
, Else_Expr
);
4036 Unchecked_Convert_To
(Typ
,
4037 Make_If_Expression
(Loc
, Expressions
=> Exprs
)));
4040 end Expand_Modular_Addition
;
4042 -----------------------
4043 -- Expand_Modular_Op --
4044 -----------------------
4046 procedure Expand_Modular_Op
is
4047 Op_Expr
: constant Node_Id
:= New_Op_Node
(Nkind
(N
), Loc
);
4048 Mod_Expr
: constant Node_Id
:= New_Op_Node
(N_Op_Mod
, Loc
);
4051 -- Convert non-binary modular type operands into integer or integer
4052 -- values. Thus we avoid never-ending loops expanding them, and we
4053 -- also ensure that the backend never receives non-binary modular
4054 -- type expressions.
4056 if Nkind_In
(Nkind
(N
), N_Op_And
, N_Op_Or
) then
4057 Set_Left_Opnd
(Op_Expr
,
4058 Unchecked_Convert_To
(Standard_Unsigned
,
4059 New_Copy_Tree
(Left_Opnd
(N
))));
4060 Set_Right_Opnd
(Op_Expr
,
4061 Unchecked_Convert_To
(Standard_Unsigned
,
4062 New_Copy_Tree
(Right_Opnd
(N
))));
4063 Set_Left_Opnd
(Mod_Expr
,
4064 Unchecked_Convert_To
(Standard_Integer
, Op_Expr
));
4066 Set_Left_Opnd
(Op_Expr
,
4067 Unchecked_Convert_To
(Standard_Integer
,
4068 New_Copy_Tree
(Left_Opnd
(N
))));
4069 Set_Right_Opnd
(Op_Expr
,
4070 Unchecked_Convert_To
(Standard_Integer
,
4071 New_Copy_Tree
(Right_Opnd
(N
))));
4072 Set_Left_Opnd
(Mod_Expr
, Op_Expr
);
4075 Set_Right_Opnd
(Mod_Expr
,
4076 Make_Integer_Literal
(Loc
, Modulus
(Typ
)));
4079 Unchecked_Convert_To
(Typ
, Mod_Expr
));
4080 end Expand_Modular_Op
;
4082 --------------------------------
4083 -- Expand_Modular_Subtraction --
4084 --------------------------------
4086 procedure Expand_Modular_Subtraction
is
4088 -- If this is not the addition of a constant then compute it using
4089 -- the general rule: (lhs + rhs) mod Modulus
4091 if Nkind
(Right_Opnd
(N
)) /= N_Integer_Literal
then
4094 -- If this is an addition of a constant, convert it to a subtraction
4095 -- plus a conditional expression since we can compute it faster than
4096 -- computing the modulus.
4098 -- modMinusRhs = Modulus - rhs
4099 -- if lhs < rhs then lhs + modMinusRhs
4104 Mod_Minus_Right
: constant Uint
:=
4105 Modulus
(Typ
) - Intval
(Right_Opnd
(N
));
4107 Exprs
: constant List_Id
:= New_List
;
4108 Cond_Expr
: constant Node_Id
:= New_Op_Node
(N_Op_Lt
, Loc
);
4109 Then_Expr
: constant Node_Id
:= New_Op_Node
(N_Op_Add
, Loc
);
4110 Else_Expr
: constant Node_Id
:= New_Op_Node
(N_Op_Subtract
,
4113 Set_Left_Opnd
(Cond_Expr
,
4114 New_Copy_Tree
(Left_Opnd
(N
)));
4115 Set_Right_Opnd
(Cond_Expr
,
4116 Make_Integer_Literal
(Loc
, Intval
(Right_Opnd
(N
))));
4117 Append_To
(Exprs
, Cond_Expr
);
4119 Set_Left_Opnd
(Then_Expr
,
4120 Unchecked_Convert_To
(Standard_Unsigned
,
4121 New_Copy_Tree
(Left_Opnd
(N
))));
4122 Set_Right_Opnd
(Then_Expr
,
4123 Make_Integer_Literal
(Loc
, Mod_Minus_Right
));
4124 Append_To
(Exprs
, Then_Expr
);
4126 Set_Left_Opnd
(Else_Expr
,
4127 Unchecked_Convert_To
(Standard_Unsigned
,
4128 New_Copy_Tree
(Left_Opnd
(N
))));
4129 Set_Right_Opnd
(Else_Expr
,
4130 Unchecked_Convert_To
(Standard_Unsigned
,
4131 New_Copy_Tree
(Right_Opnd
(N
))));
4132 Append_To
(Exprs
, Else_Expr
);
4135 Unchecked_Convert_To
(Typ
,
4136 Make_If_Expression
(Loc
, Expressions
=> Exprs
)));
4139 end Expand_Modular_Subtraction
;
4141 -- Start of processing for Expand_Non_Binary_Modular_Op
4144 -- No action needed if we are not generating C code for a non-binary
4147 if not Modify_Tree_For_C
4148 or else not Non_Binary_Modulus
(Typ
)
4155 Expand_Modular_Addition
;
4157 when N_Op_Subtract
=>
4158 Expand_Modular_Subtraction
;
4161 -- Expand -expr into (0 - expr)
4164 Make_Op_Subtract
(Loc
,
4165 Left_Opnd
=> Make_Integer_Literal
(Loc
, 0),
4166 Right_Opnd
=> Right_Opnd
(N
)));
4167 Analyze_And_Resolve
(N
, Typ
);
4173 Analyze_And_Resolve
(N
, Typ
);
4174 end Expand_Non_Binary_Modular_Op
;
4176 ------------------------
4177 -- Expand_N_Allocator --
4178 ------------------------
4180 procedure Expand_N_Allocator
(N
: Node_Id
) is
4181 Etyp
: constant Entity_Id
:= Etype
(Expression
(N
));
4182 Loc
: constant Source_Ptr
:= Sloc
(N
);
4183 PtrT
: constant Entity_Id
:= Etype
(N
);
4185 procedure Rewrite_Coextension
(N
: Node_Id
);
4186 -- Static coextensions have the same lifetime as the entity they
4187 -- constrain. Such occurrences can be rewritten as aliased objects
4188 -- and their unrestricted access used instead of the coextension.
4190 function Size_In_Storage_Elements
(E
: Entity_Id
) return Node_Id
;
4191 -- Given a constrained array type E, returns a node representing the
4192 -- code to compute the size in storage elements for the given type.
4193 -- This is done without using the attribute (which malfunctions for
4196 -------------------------
4197 -- Rewrite_Coextension --
4198 -------------------------
4200 procedure Rewrite_Coextension
(N
: Node_Id
) is
4201 Temp_Id
: constant Node_Id
:= Make_Temporary
(Loc
, 'C');
4202 Temp_Decl
: Node_Id
;
4206 -- Cnn : aliased Etyp;
4209 Make_Object_Declaration
(Loc
,
4210 Defining_Identifier
=> Temp_Id
,
4211 Aliased_Present
=> True,
4212 Object_Definition
=> New_Occurrence_Of
(Etyp
, Loc
));
4214 if Nkind
(Expression
(N
)) = N_Qualified_Expression
then
4215 Set_Expression
(Temp_Decl
, Expression
(Expression
(N
)));
4218 Insert_Action
(N
, Temp_Decl
);
4220 Make_Attribute_Reference
(Loc
,
4221 Prefix
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4222 Attribute_Name
=> Name_Unrestricted_Access
));
4224 Analyze_And_Resolve
(N
, PtrT
);
4225 end Rewrite_Coextension
;
4227 ------------------------------
4228 -- Size_In_Storage_Elements --
4229 ------------------------------
4231 function Size_In_Storage_Elements
(E
: Entity_Id
) return Node_Id
is
4233 -- Logically this just returns E'Max_Size_In_Storage_Elements.
4234 -- However, the reason for the existence of this function is
4235 -- to construct a test for sizes too large, which means near the
4236 -- 32-bit limit on a 32-bit machine, and precisely the trouble
4237 -- is that we get overflows when sizes are greater than 2**31.
4239 -- So what we end up doing for array types is to use the expression:
4241 -- number-of-elements * component_type'Max_Size_In_Storage_Elements
4243 -- which avoids this problem. All this is a bit bogus, but it does
4244 -- mean we catch common cases of trying to allocate arrays that
4245 -- are too large, and which in the absence of a check results in
4246 -- undetected chaos ???
4248 -- Note in particular that this is a pessimistic estimate in the
4249 -- case of packed array types, where an array element might occupy
4250 -- just a fraction of a storage element???
4255 pragma Warnings
(Off
, Res
);
4258 for J
in 1 .. Number_Dimensions
(E
) loop
4260 Make_Attribute_Reference
(Loc
,
4261 Prefix
=> New_Occurrence_Of
(E
, Loc
),
4262 Attribute_Name
=> Name_Length
,
4263 Expressions
=> New_List
(Make_Integer_Literal
(Loc
, J
)));
4270 Make_Op_Multiply
(Loc
,
4277 Make_Op_Multiply
(Loc
,
4280 Make_Attribute_Reference
(Loc
,
4281 Prefix
=> New_Occurrence_Of
(Component_Type
(E
), Loc
),
4282 Attribute_Name
=> Name_Max_Size_In_Storage_Elements
));
4284 end Size_In_Storage_Elements
;
4288 Dtyp
: constant Entity_Id
:= Available_View
(Designated_Type
(PtrT
));
4292 Rel_Typ
: Entity_Id
;
4295 -- Start of processing for Expand_N_Allocator
4298 -- RM E.2.3(22). We enforce that the expected type of an allocator
4299 -- shall not be a remote access-to-class-wide-limited-private type
4301 -- Why is this being done at expansion time, seems clearly wrong ???
4303 Validate_Remote_Access_To_Class_Wide_Type
(N
);
4305 -- Processing for anonymous access-to-controlled types. These access
4306 -- types receive a special finalization master which appears in the
4307 -- declarations of the enclosing semantic unit. This expansion is done
4308 -- now to ensure that any additional types generated by this routine or
4309 -- Expand_Allocator_Expression inherit the proper type attributes.
4311 if (Ekind
(PtrT
) = E_Anonymous_Access_Type
4312 or else (Is_Itype
(PtrT
) and then No
(Finalization_Master
(PtrT
))))
4313 and then Needs_Finalization
(Dtyp
)
4315 -- Detect the allocation of an anonymous controlled object where the
4316 -- type of the context is named. For example:
4318 -- procedure Proc (Ptr : Named_Access_Typ);
4319 -- Proc (new Designated_Typ);
4321 -- Regardless of the anonymous-to-named access type conversion, the
4322 -- lifetime of the object must be associated with the named access
4323 -- type. Use the finalization-related attributes of this type.
4325 if Nkind_In
(Parent
(N
), N_Type_Conversion
,
4326 N_Unchecked_Type_Conversion
)
4327 and then Ekind_In
(Etype
(Parent
(N
)), E_Access_Subtype
,
4329 E_General_Access_Type
)
4331 Rel_Typ
:= Etype
(Parent
(N
));
4336 -- Anonymous access-to-controlled types allocate on the global pool.
4337 -- Note that this is a "root type only" attribute.
4339 if No
(Associated_Storage_Pool
(PtrT
)) then
4340 if Present
(Rel_Typ
) then
4341 Set_Associated_Storage_Pool
4342 (Root_Type
(PtrT
), Associated_Storage_Pool
(Rel_Typ
));
4344 Set_Associated_Storage_Pool
4345 (Root_Type
(PtrT
), RTE
(RE_Global_Pool_Object
));
4349 -- The finalization master must be inserted and analyzed as part of
4350 -- the current semantic unit. Note that the master is updated when
4351 -- analysis changes current units. Note that this is a "root type
4354 if Present
(Rel_Typ
) then
4355 Set_Finalization_Master
4356 (Root_Type
(PtrT
), Finalization_Master
(Rel_Typ
));
4358 Build_Anonymous_Master
(Root_Type
(PtrT
));
4362 -- Set the storage pool and find the appropriate version of Allocate to
4363 -- call. Do not overwrite the storage pool if it is already set, which
4364 -- can happen for build-in-place function returns (see
4365 -- Exp_Ch4.Expand_N_Extended_Return_Statement).
4367 if No
(Storage_Pool
(N
)) then
4368 Pool
:= Associated_Storage_Pool
(Root_Type
(PtrT
));
4370 if Present
(Pool
) then
4371 Set_Storage_Pool
(N
, Pool
);
4373 if Is_RTE
(Pool
, RE_SS_Pool
) then
4374 Set_Procedure_To_Call
(N
, RTE
(RE_SS_Allocate
));
4376 -- In the case of an allocator for a simple storage pool, locate
4377 -- and save a reference to the pool type's Allocate routine.
4379 elsif Present
(Get_Rep_Pragma
4380 (Etype
(Pool
), Name_Simple_Storage_Pool_Type
))
4383 Pool_Type
: constant Entity_Id
:= Base_Type
(Etype
(Pool
));
4384 Alloc_Op
: Entity_Id
;
4386 Alloc_Op
:= Get_Name_Entity_Id
(Name_Allocate
);
4387 while Present
(Alloc_Op
) loop
4388 if Scope
(Alloc_Op
) = Scope
(Pool_Type
)
4389 and then Present
(First_Formal
(Alloc_Op
))
4390 and then Etype
(First_Formal
(Alloc_Op
)) = Pool_Type
4392 Set_Procedure_To_Call
(N
, Alloc_Op
);
4395 Alloc_Op
:= Homonym
(Alloc_Op
);
4400 elsif Is_Class_Wide_Type
(Etype
(Pool
)) then
4401 Set_Procedure_To_Call
(N
, RTE
(RE_Allocate_Any
));
4404 Set_Procedure_To_Call
(N
,
4405 Find_Prim_Op
(Etype
(Pool
), Name_Allocate
));
4410 -- Under certain circumstances we can replace an allocator by an access
4411 -- to statically allocated storage. The conditions, as noted in AARM
4412 -- 3.10 (10c) are as follows:
4414 -- Size and initial value is known at compile time
4415 -- Access type is access-to-constant
4417 -- The allocator is not part of a constraint on a record component,
4418 -- because in that case the inserted actions are delayed until the
4419 -- record declaration is fully analyzed, which is too late for the
4420 -- analysis of the rewritten allocator.
4422 if Is_Access_Constant
(PtrT
)
4423 and then Nkind
(Expression
(N
)) = N_Qualified_Expression
4424 and then Compile_Time_Known_Value
(Expression
(Expression
(N
)))
4425 and then Size_Known_At_Compile_Time
4426 (Etype
(Expression
(Expression
(N
))))
4427 and then not Is_Record_Type
(Current_Scope
)
4429 -- Here we can do the optimization. For the allocator
4433 -- We insert an object declaration
4435 -- Tnn : aliased x := y;
4437 -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
4438 -- marked as requiring static allocation.
4440 Temp
:= Make_Temporary
(Loc
, 'T', Expression
(Expression
(N
)));
4441 Desig
:= Subtype_Mark
(Expression
(N
));
4443 -- If context is constrained, use constrained subtype directly,
4444 -- so that the constant is not labelled as having a nominally
4445 -- unconstrained subtype.
4447 if Entity
(Desig
) = Base_Type
(Dtyp
) then
4448 Desig
:= New_Occurrence_Of
(Dtyp
, Loc
);
4452 Make_Object_Declaration
(Loc
,
4453 Defining_Identifier
=> Temp
,
4454 Aliased_Present
=> True,
4455 Constant_Present
=> Is_Access_Constant
(PtrT
),
4456 Object_Definition
=> Desig
,
4457 Expression
=> Expression
(Expression
(N
))));
4460 Make_Attribute_Reference
(Loc
,
4461 Prefix
=> New_Occurrence_Of
(Temp
, Loc
),
4462 Attribute_Name
=> Name_Unrestricted_Access
));
4464 Analyze_And_Resolve
(N
, PtrT
);
4466 -- We set the variable as statically allocated, since we don't want
4467 -- it going on the stack of the current procedure.
4469 Set_Is_Statically_Allocated
(Temp
);
4473 -- Same if the allocator is an access discriminant for a local object:
4474 -- instead of an allocator we create a local value and constrain the
4475 -- enclosing object with the corresponding access attribute.
4477 if Is_Static_Coextension
(N
) then
4478 Rewrite_Coextension
(N
);
4482 -- Check for size too large, we do this because the back end misses
4483 -- proper checks here and can generate rubbish allocation calls when
4484 -- we are near the limit. We only do this for the 32-bit address case
4485 -- since that is from a practical point of view where we see a problem.
4487 if System_Address_Size
= 32
4488 and then not Storage_Checks_Suppressed
(PtrT
)
4489 and then not Storage_Checks_Suppressed
(Dtyp
)
4490 and then not Storage_Checks_Suppressed
(Etyp
)
4492 -- The check we want to generate should look like
4494 -- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
4495 -- raise Storage_Error;
4498 -- where 3.5 gigabytes is a constant large enough to accommodate any
4499 -- reasonable request for. But we can't do it this way because at
4500 -- least at the moment we don't compute this attribute right, and
4501 -- can silently give wrong results when the result gets large. Since
4502 -- this is all about large results, that's bad, so instead we only
4503 -- apply the check for constrained arrays, and manually compute the
4504 -- value of the attribute ???
4506 if Is_Array_Type
(Etyp
) and then Is_Constrained
(Etyp
) then
4508 Make_Raise_Storage_Error
(Loc
,
4511 Left_Opnd
=> Size_In_Storage_Elements
(Etyp
),
4513 Make_Integer_Literal
(Loc
, Uint_7
* (Uint_2
** 29))),
4514 Reason
=> SE_Object_Too_Large
));
4518 -- If no storage pool has been specified and we have the restriction
4519 -- No_Standard_Allocators_After_Elaboration is present, then generate
4520 -- a call to Elaboration_Allocators.Check_Standard_Allocator.
4522 if Nkind
(N
) = N_Allocator
4523 and then No
(Storage_Pool
(N
))
4524 and then Restriction_Active
(No_Standard_Allocators_After_Elaboration
)
4527 Make_Procedure_Call_Statement
(Loc
,
4529 New_Occurrence_Of
(RTE
(RE_Check_Standard_Allocator
), Loc
)));
4532 -- Handle case of qualified expression (other than optimization above)
4533 -- First apply constraint checks, because the bounds or discriminants
4534 -- in the aggregate might not match the subtype mark in the allocator.
4536 if Nkind
(Expression
(N
)) = N_Qualified_Expression
then
4538 Exp
: constant Node_Id
:= Expression
(Expression
(N
));
4539 Typ
: constant Entity_Id
:= Etype
(Expression
(N
));
4542 Apply_Constraint_Check
(Exp
, Typ
);
4543 Apply_Predicate_Check
(Exp
, Typ
);
4546 Expand_Allocator_Expression
(N
);
4550 -- If the allocator is for a type which requires initialization, and
4551 -- there is no initial value (i.e. operand is a subtype indication
4552 -- rather than a qualified expression), then we must generate a call to
4553 -- the initialization routine using an expressions action node:
4555 -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
4557 -- Here ptr_T is the pointer type for the allocator, and T is the
4558 -- subtype of the allocator. A special case arises if the designated
4559 -- type of the access type is a task or contains tasks. In this case
4560 -- the call to Init (Temp.all ...) is replaced by code that ensures
4561 -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
4562 -- for details). In addition, if the type T is a task type, then the
4563 -- first argument to Init must be converted to the task record type.
4566 T
: constant Entity_Id
:= Entity
(Expression
(N
));
4572 Init_Arg1
: Node_Id
;
4573 Init_Call
: Node_Id
;
4574 Temp_Decl
: Node_Id
;
4575 Temp_Type
: Entity_Id
;
4578 if No_Initialization
(N
) then
4580 -- Even though this might be a simple allocation, create a custom
4581 -- Allocate if the context requires it.
4583 if Present
(Finalization_Master
(PtrT
)) then
4584 Build_Allocate_Deallocate_Proc
4586 Is_Allocate
=> True);
4589 -- Case of no initialization procedure present
4591 elsif not Has_Non_Null_Base_Init_Proc
(T
) then
4593 -- Case of simple initialization required
4595 if Needs_Simple_Initialization
(T
) then
4596 Check_Restriction
(No_Default_Initialization
, N
);
4597 Rewrite
(Expression
(N
),
4598 Make_Qualified_Expression
(Loc
,
4599 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
4600 Expression
=> Get_Simple_Init_Val
(T
, N
)));
4602 Analyze_And_Resolve
(Expression
(Expression
(N
)), T
);
4603 Analyze_And_Resolve
(Expression
(N
), T
);
4604 Set_Paren_Count
(Expression
(Expression
(N
)), 1);
4605 Expand_N_Allocator
(N
);
4607 -- No initialization required
4613 -- Case of initialization procedure present, must be called
4616 Check_Restriction
(No_Default_Initialization
, N
);
4618 if not Restriction_Active
(No_Default_Initialization
) then
4619 Init
:= Base_Init_Proc
(T
);
4621 Temp
:= Make_Temporary
(Loc
, 'P');
4623 -- Construct argument list for the initialization routine call
4626 Make_Explicit_Dereference
(Loc
,
4628 New_Occurrence_Of
(Temp
, Loc
));
4630 Set_Assignment_OK
(Init_Arg1
);
4633 -- The initialization procedure expects a specific type. if the
4634 -- context is access to class wide, indicate that the object
4635 -- being allocated has the right specific type.
4637 if Is_Class_Wide_Type
(Dtyp
) then
4638 Init_Arg1
:= Unchecked_Convert_To
(T
, Init_Arg1
);
4641 -- If designated type is a concurrent type or if it is private
4642 -- type whose definition is a concurrent type, the first
4643 -- argument in the Init routine has to be unchecked conversion
4644 -- to the corresponding record type. If the designated type is
4645 -- a derived type, also convert the argument to its root type.
4647 if Is_Concurrent_Type
(T
) then
4649 Unchecked_Convert_To
(
4650 Corresponding_Record_Type
(T
), Init_Arg1
);
4652 elsif Is_Private_Type
(T
)
4653 and then Present
(Full_View
(T
))
4654 and then Is_Concurrent_Type
(Full_View
(T
))
4657 Unchecked_Convert_To
4658 (Corresponding_Record_Type
(Full_View
(T
)), Init_Arg1
);
4660 elsif Etype
(First_Formal
(Init
)) /= Base_Type
(T
) then
4662 Ftyp
: constant Entity_Id
:= Etype
(First_Formal
(Init
));
4665 Init_Arg1
:= OK_Convert_To
(Etype
(Ftyp
), Init_Arg1
);
4666 Set_Etype
(Init_Arg1
, Ftyp
);
4670 Args
:= New_List
(Init_Arg1
);
4672 -- For the task case, pass the Master_Id of the access type as
4673 -- the value of the _Master parameter, and _Chain as the value
4674 -- of the _Chain parameter (_Chain will be defined as part of
4675 -- the generated code for the allocator).
4677 -- In Ada 2005, the context may be a function that returns an
4678 -- anonymous access type. In that case the Master_Id has been
4679 -- created when expanding the function declaration.
4681 if Has_Task
(T
) then
4682 if No
(Master_Id
(Base_Type
(PtrT
))) then
4684 -- The designated type was an incomplete type, and the
4685 -- access type did not get expanded. Salvage it now.
4687 if not Restriction_Active
(No_Task_Hierarchy
) then
4688 if Present
(Parent
(Base_Type
(PtrT
))) then
4689 Expand_N_Full_Type_Declaration
4690 (Parent
(Base_Type
(PtrT
)));
4692 -- The only other possibility is an itype. For this
4693 -- case, the master must exist in the context. This is
4694 -- the case when the allocator initializes an access
4695 -- component in an init-proc.
4698 pragma Assert
(Is_Itype
(PtrT
));
4699 Build_Master_Renaming
(PtrT
, N
);
4704 -- If the context of the allocator is a declaration or an
4705 -- assignment, we can generate a meaningful image for it,
4706 -- even though subsequent assignments might remove the
4707 -- connection between task and entity. We build this image
4708 -- when the left-hand side is a simple variable, a simple
4709 -- indexed assignment or a simple selected component.
4711 if Nkind
(Parent
(N
)) = N_Assignment_Statement
then
4713 Nam
: constant Node_Id
:= Name
(Parent
(N
));
4716 if Is_Entity_Name
(Nam
) then
4718 Build_Task_Image_Decls
4721 (Entity
(Nam
), Sloc
(Nam
)), T
);
4723 elsif Nkind_In
(Nam
, N_Indexed_Component
,
4724 N_Selected_Component
)
4725 and then Is_Entity_Name
(Prefix
(Nam
))
4728 Build_Task_Image_Decls
4729 (Loc
, Nam
, Etype
(Prefix
(Nam
)));
4731 Decls
:= Build_Task_Image_Decls
(Loc
, T
, T
);
4735 elsif Nkind
(Parent
(N
)) = N_Object_Declaration
then
4737 Build_Task_Image_Decls
4738 (Loc
, Defining_Identifier
(Parent
(N
)), T
);
4741 Decls
:= Build_Task_Image_Decls
(Loc
, T
, T
);
4744 if Restriction_Active
(No_Task_Hierarchy
) then
4746 New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
));
4750 (Master_Id
(Base_Type
(Root_Type
(PtrT
))), Loc
));
4753 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
4755 Decl
:= Last
(Decls
);
4757 New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
));
4759 -- Has_Task is false, Decls not used
4765 -- Add discriminants if discriminated type
4768 Dis
: Boolean := False;
4772 if Has_Discriminants
(T
) then
4776 -- Type may be a private type with no visible discriminants
4777 -- in which case check full view if in scope, or the
4778 -- underlying_full_view if dealing with a type whose full
4779 -- view may be derived from a private type whose own full
4780 -- view has discriminants.
4782 elsif Is_Private_Type
(T
) then
4783 if Present
(Full_View
(T
))
4784 and then Has_Discriminants
(Full_View
(T
))
4787 Typ
:= Full_View
(T
);
4789 elsif Present
(Underlying_Full_View
(T
))
4790 and then Has_Discriminants
(Underlying_Full_View
(T
))
4793 Typ
:= Underlying_Full_View
(T
);
4799 -- If the allocated object will be constrained by the
4800 -- default values for discriminants, then build a subtype
4801 -- with those defaults, and change the allocated subtype
4802 -- to that. Note that this happens in fewer cases in Ada
4805 if not Is_Constrained
(Typ
)
4806 and then Present
(Discriminant_Default_Value
4807 (First_Discriminant
(Typ
)))
4808 and then (Ada_Version
< Ada_2005
4810 Object_Type_Has_Constrained_Partial_View
4811 (Typ
, Current_Scope
))
4813 Typ
:= Build_Default_Subtype
(Typ
, N
);
4814 Set_Expression
(N
, New_Occurrence_Of
(Typ
, Loc
));
4817 Discr
:= First_Elmt
(Discriminant_Constraint
(Typ
));
4818 while Present
(Discr
) loop
4819 Nod
:= Node
(Discr
);
4820 Append
(New_Copy_Tree
(Node
(Discr
)), Args
);
4822 -- AI-416: when the discriminant constraint is an
4823 -- anonymous access type make sure an accessibility
4824 -- check is inserted if necessary (3.10.2(22.q/2))
4826 if Ada_Version
>= Ada_2005
4828 Ekind
(Etype
(Nod
)) = E_Anonymous_Access_Type
4830 Apply_Accessibility_Check
4831 (Nod
, Typ
, Insert_Node
=> Nod
);
4839 -- We set the allocator as analyzed so that when we analyze
4840 -- the if expression node, we do not get an unwanted recursive
4841 -- expansion of the allocator expression.
4843 Set_Analyzed
(N
, True);
4844 Nod
:= Relocate_Node
(N
);
4846 -- Here is the transformation:
4847 -- input: new Ctrl_Typ
4848 -- output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
4849 -- Ctrl_TypIP (Temp.all, ...);
4850 -- [Deep_]Initialize (Temp.all);
4852 -- Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
4853 -- is the subtype of the allocator.
4856 Make_Object_Declaration
(Loc
,
4857 Defining_Identifier
=> Temp
,
4858 Constant_Present
=> True,
4859 Object_Definition
=> New_Occurrence_Of
(Temp_Type
, Loc
),
4862 Set_Assignment_OK
(Temp_Decl
);
4863 Insert_Action
(N
, Temp_Decl
, Suppress
=> All_Checks
);
4865 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
4867 -- If the designated type is a task type or contains tasks,
4868 -- create block to activate created tasks, and insert
4869 -- declaration for Task_Image variable ahead of call.
4871 if Has_Task
(T
) then
4873 L
: constant List_Id
:= New_List
;
4876 Build_Task_Allocate_Block
(L
, Nod
, Args
);
4878 Insert_List_Before
(First
(Declarations
(Blk
)), Decls
);
4879 Insert_Actions
(N
, L
);
4884 Make_Procedure_Call_Statement
(Loc
,
4885 Name
=> New_Occurrence_Of
(Init
, Loc
),
4886 Parameter_Associations
=> Args
));
4889 if Needs_Finalization
(T
) then
4892 -- [Deep_]Initialize (Init_Arg1);
4896 (Obj_Ref
=> New_Copy_Tree
(Init_Arg1
),
4899 -- Guard against a missing [Deep_]Initialize when the
4900 -- designated type was not properly frozen.
4902 if Present
(Init_Call
) then
4903 Insert_Action
(N
, Init_Call
);
4907 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
4908 Analyze_And_Resolve
(N
, PtrT
);
4913 -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
4914 -- object that has been rewritten as a reference, we displace "this"
4915 -- to reference properly its secondary dispatch table.
4917 if Nkind
(N
) = N_Identifier
and then Is_Interface
(Dtyp
) then
4918 Displace_Allocator_Pointer
(N
);
4922 when RE_Not_Available
=>
4924 end Expand_N_Allocator
;
4926 -----------------------
4927 -- Expand_N_And_Then --
4928 -----------------------
4930 procedure Expand_N_And_Then
(N
: Node_Id
)
4931 renames Expand_Short_Circuit_Operator
;
4933 ------------------------------
4934 -- Expand_N_Case_Expression --
4935 ------------------------------
4937 procedure Expand_N_Case_Expression
(N
: Node_Id
) is
4939 function Is_Copy_Type
(Typ
: Entity_Id
) return Boolean;
4940 -- Return True if we can copy objects of this type when expanding a case
4947 function Is_Copy_Type
(Typ
: Entity_Id
) return Boolean is
4949 -- If Minimize_Expression_With_Actions is True, we can afford to copy
4950 -- large objects, as long as they are constrained and not limited.
4953 Is_Elementary_Type
(Underlying_Type
(Typ
))
4955 (Minimize_Expression_With_Actions
4956 and then Is_Constrained
(Underlying_Type
(Typ
))
4957 and then not Is_Limited_View
(Underlying_Type
(Typ
)));
4962 Loc
: constant Source_Ptr
:= Sloc
(N
);
4963 Par
: constant Node_Id
:= Parent
(N
);
4964 Typ
: constant Entity_Id
:= Etype
(N
);
4968 Case_Stmt
: Node_Id
;
4972 Target_Typ
: Entity_Id
;
4974 In_Predicate
: Boolean := False;
4975 -- Flag set when the case expression appears within a predicate
4977 Optimize_Return_Stmt
: Boolean := False;
4978 -- Flag set when the case expression can be optimized in the context of
4979 -- a simple return statement.
4981 -- Start of processing for Expand_N_Case_Expression
4984 -- Check for MINIMIZED/ELIMINATED overflow mode
4986 if Minimized_Eliminated_Overflow_Check
(N
) then
4987 Apply_Arithmetic_Overflow_Check
(N
);
4991 -- If the case expression is a predicate specification, and the type
4992 -- to which it applies has a static predicate aspect, do not expand,
4993 -- because it will be converted to the proper predicate form later.
4995 if Ekind_In
(Current_Scope
, E_Function
, E_Procedure
)
4996 and then Is_Predicate_Function
(Current_Scope
)
4998 In_Predicate
:= True;
5000 if Has_Static_Predicate_Aspect
(Etype
(First_Entity
(Current_Scope
)))
5006 -- When the type of the case expression is elementary, expand
5008 -- (case X is when A => AX, when B => BX ...)
5023 -- In all other cases expand into
5026 -- type Ptr_Typ is access all Typ;
5027 -- Target : Ptr_Typ;
5030 -- Target := AX'Unrestricted_Access;
5032 -- Target := BX'Unrestricted_Access;
5035 -- in Target.all end;
5037 -- This approach avoids extra copies of potentially large objects. It
5038 -- also allows handling of values of limited or unconstrained types.
5039 -- Note that we do the copy also for constrained, nonlimited types
5040 -- when minimizing expressions with actions (e.g. when generating C
5041 -- code) since it allows us to do the optimization below in more cases.
5043 -- Small optimization: when the case expression appears in the context
5044 -- of a simple return statement, expand into
5055 Make_Case_Statement
(Loc
,
5056 Expression
=> Expression
(N
),
5057 Alternatives
=> New_List
);
5059 -- Preserve the original context for which the case statement is being
5060 -- generated. This is needed by the finalization machinery to prevent
5061 -- the premature finalization of controlled objects found within the
5064 Set_From_Conditional_Expression
(Case_Stmt
);
5069 if Is_Copy_Type
(Typ
) then
5072 -- ??? Do not perform the optimization when the return statement is
5073 -- within a predicate function, as this causes spurious errors. Could
5074 -- this be a possible mismatch in handling this case somewhere else
5075 -- in semantic analysis?
5077 Optimize_Return_Stmt
:=
5078 Nkind
(Par
) = N_Simple_Return_Statement
and then not In_Predicate
;
5080 -- Otherwise create an access type to handle the general case using
5081 -- 'Unrestricted_Access.
5084 -- type Ptr_Typ is access all Typ;
5087 if Generate_C_Code
then
5089 -- We cannot ensure that correct C code will be generated if any
5090 -- temporary is created down the line (to e.g. handle checks or
5091 -- capture values) since we might end up with dangling references
5092 -- to local variables, so better be safe and reject the construct.
5095 ("case expression too complex, use case statement instead", N
);
5098 Target_Typ
:= Make_Temporary
(Loc
, 'P');
5101 Make_Full_Type_Declaration
(Loc
,
5102 Defining_Identifier
=> Target_Typ
,
5104 Make_Access_To_Object_Definition
(Loc
,
5105 All_Present
=> True,
5106 Subtype_Indication
=> New_Occurrence_Of
(Typ
, Loc
))));
5109 -- Create the declaration of the target which captures the value of the
5113 -- Target : [Ptr_]Typ;
5115 if not Optimize_Return_Stmt
then
5116 Target
:= Make_Temporary
(Loc
, 'T');
5119 Make_Object_Declaration
(Loc
,
5120 Defining_Identifier
=> Target
,
5121 Object_Definition
=> New_Occurrence_Of
(Target_Typ
, Loc
));
5122 Set_No_Initialization
(Decl
);
5124 Append_To
(Acts
, Decl
);
5127 -- Process the alternatives
5129 Alt
:= First
(Alternatives
(N
));
5130 while Present
(Alt
) loop
5132 Alt_Expr
: Node_Id
:= Expression
(Alt
);
5133 Alt_Loc
: constant Source_Ptr
:= Sloc
(Alt_Expr
);
5137 -- Take the unrestricted access of the expression value for non-
5138 -- scalar types. This approach avoids big copies and covers the
5139 -- limited and unconstrained cases.
5142 -- AX'Unrestricted_Access
5144 if not Is_Copy_Type
(Typ
) then
5146 Make_Attribute_Reference
(Alt_Loc
,
5147 Prefix
=> Relocate_Node
(Alt_Expr
),
5148 Attribute_Name
=> Name_Unrestricted_Access
);
5152 -- return AX['Unrestricted_Access];
5154 if Optimize_Return_Stmt
then
5156 Make_Simple_Return_Statement
(Alt_Loc
,
5157 Expression
=> Alt_Expr
));
5160 -- Target := AX['Unrestricted_Access];
5164 Make_Assignment_Statement
(Alt_Loc
,
5165 Name
=> New_Occurrence_Of
(Target
, Loc
),
5166 Expression
=> Alt_Expr
));
5169 -- Propagate declarations inserted in the node by Insert_Actions
5170 -- (for example, temporaries generated to remove side effects).
5171 -- These actions must remain attached to the alternative, given
5172 -- that they are generated by the corresponding expression.
5174 if Present
(Actions
(Alt
)) then
5175 Prepend_List
(Actions
(Alt
), Stmts
);
5178 -- Finalize any transient objects on exit from the alternative.
5179 -- This is done only in the return optimization case because
5180 -- otherwise the case expression is converted into an expression
5181 -- with actions which already contains this form of processing.
5183 if Optimize_Return_Stmt
then
5184 Process_If_Case_Statements
(N
, Stmts
);
5188 (Alternatives
(Case_Stmt
),
5189 Make_Case_Statement_Alternative
(Sloc
(Alt
),
5190 Discrete_Choices
=> Discrete_Choices
(Alt
),
5191 Statements
=> Stmts
));
5197 -- Rewrite the parent return statement as a case statement
5199 if Optimize_Return_Stmt
then
5200 Rewrite
(Par
, Case_Stmt
);
5203 -- Otherwise convert the case expression into an expression with actions
5206 Append_To
(Acts
, Case_Stmt
);
5208 if Is_Copy_Type
(Typ
) then
5209 Expr
:= New_Occurrence_Of
(Target
, Loc
);
5213 Make_Explicit_Dereference
(Loc
,
5214 Prefix
=> New_Occurrence_Of
(Target
, Loc
));
5220 -- in Target[.all] end;
5223 Make_Expression_With_Actions
(Loc
,
5227 Analyze_And_Resolve
(N
, Typ
);
5229 end Expand_N_Case_Expression
;
5231 -----------------------------------
5232 -- Expand_N_Explicit_Dereference --
5233 -----------------------------------
5235 procedure Expand_N_Explicit_Dereference
(N
: Node_Id
) is
5237 -- Insert explicit dereference call for the checked storage pool case
5239 Insert_Dereference_Action
(Prefix
(N
));
5241 -- If the type is an Atomic type for which Atomic_Sync is enabled, then
5242 -- we set the atomic sync flag.
5244 if Is_Atomic
(Etype
(N
))
5245 and then not Atomic_Synchronization_Disabled
(Etype
(N
))
5247 Activate_Atomic_Synchronization
(N
);
5249 end Expand_N_Explicit_Dereference
;
5251 --------------------------------------
5252 -- Expand_N_Expression_With_Actions --
5253 --------------------------------------
5255 procedure Expand_N_Expression_With_Actions
(N
: Node_Id
) is
5256 Acts
: constant List_Id
:= Actions
(N
);
5258 procedure Force_Boolean_Evaluation
(Expr
: Node_Id
);
5259 -- Force the evaluation of Boolean expression Expr
5261 function Process_Action
(Act
: Node_Id
) return Traverse_Result
;
5262 -- Inspect and process a single action of an expression_with_actions for
5263 -- transient objects. If such objects are found, the routine generates
5264 -- code to clean them up when the context of the expression is evaluated
5267 ------------------------------
5268 -- Force_Boolean_Evaluation --
5269 ------------------------------
5271 procedure Force_Boolean_Evaluation
(Expr
: Node_Id
) is
5272 Loc
: constant Source_Ptr
:= Sloc
(N
);
5273 Flag_Decl
: Node_Id
;
5274 Flag_Id
: Entity_Id
;
5277 -- Relocate the expression to the actions list by capturing its value
5278 -- in a Boolean flag. Generate:
5279 -- Flag : constant Boolean := Expr;
5281 Flag_Id
:= Make_Temporary
(Loc
, 'F');
5284 Make_Object_Declaration
(Loc
,
5285 Defining_Identifier
=> Flag_Id
,
5286 Constant_Present
=> True,
5287 Object_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
),
5288 Expression
=> Relocate_Node
(Expr
));
5290 Append
(Flag_Decl
, Acts
);
5291 Analyze
(Flag_Decl
);
5293 -- Replace the expression with a reference to the flag
5295 Rewrite
(Expression
(N
), New_Occurrence_Of
(Flag_Id
, Loc
));
5296 Analyze
(Expression
(N
));
5297 end Force_Boolean_Evaluation
;
5299 --------------------
5300 -- Process_Action --
5301 --------------------
5303 function Process_Action
(Act
: Node_Id
) return Traverse_Result
is
5305 if Nkind
(Act
) = N_Object_Declaration
5306 and then Is_Finalizable_Transient
(Act
, N
)
5308 Process_Transient_In_Expression
(Act
, N
, Acts
);
5311 -- Avoid processing temporary function results multiple times when
5312 -- dealing with nested expression_with_actions.
5314 elsif Nkind
(Act
) = N_Expression_With_Actions
then
5317 -- Do not process temporary function results in loops. This is done
5318 -- by Expand_N_Loop_Statement and Build_Finalizer.
5320 elsif Nkind
(Act
) = N_Loop_Statement
then
5327 procedure Process_Single_Action
is new Traverse_Proc
(Process_Action
);
5333 -- Start of processing for Expand_N_Expression_With_Actions
5336 -- Do not evaluate the expression when it denotes an entity because the
5337 -- expression_with_actions node will be replaced by the reference.
5339 if Is_Entity_Name
(Expression
(N
)) then
5342 -- Do not evaluate the expression when there are no actions because the
5343 -- expression_with_actions node will be replaced by the expression.
5345 elsif No
(Acts
) or else Is_Empty_List
(Acts
) then
5348 -- Force the evaluation of the expression by capturing its value in a
5349 -- temporary. This ensures that aliases of transient objects do not leak
5350 -- to the expression of the expression_with_actions node:
5353 -- Trans_Id : Ctrl_Typ := ...;
5354 -- Alias : ... := Trans_Id;
5355 -- in ... Alias ... end;
5357 -- In the example above, Trans_Id cannot be finalized at the end of the
5358 -- actions list because this may affect the alias and the final value of
5359 -- the expression_with_actions. Forcing the evaluation encapsulates the
5360 -- reference to the Alias within the actions list:
5363 -- Trans_Id : Ctrl_Typ := ...;
5364 -- Alias : ... := Trans_Id;
5365 -- Val : constant Boolean := ... Alias ...;
5366 -- <finalize Trans_Id>
5369 -- Once this transformation is performed, it is safe to finalize the
5370 -- transient object at the end of the actions list.
5372 -- Note that Force_Evaluation does not remove side effects in operators
5373 -- because it assumes that all operands are evaluated and side effect
5374 -- free. This is not the case when an operand depends implicitly on the
5375 -- transient object through the use of access types.
5377 elsif Is_Boolean_Type
(Etype
(Expression
(N
))) then
5378 Force_Boolean_Evaluation
(Expression
(N
));
5380 -- The expression of an expression_with_actions node may not necessarily
5381 -- be Boolean when the node appears in an if expression. In this case do
5382 -- the usual forced evaluation to encapsulate potential aliasing.
5385 Force_Evaluation
(Expression
(N
));
5388 -- Process all transient objects found within the actions of the EWA
5391 Act
:= First
(Acts
);
5392 while Present
(Act
) loop
5393 Process_Single_Action
(Act
);
5397 -- Deal with case where there are no actions. In this case we simply
5398 -- rewrite the node with its expression since we don't need the actions
5399 -- and the specification of this node does not allow a null action list.
5401 -- Note: we use Rewrite instead of Replace, because Codepeer is using
5402 -- the expanded tree and relying on being able to retrieve the original
5403 -- tree in cases like this. This raises a whole lot of issues of whether
5404 -- we have problems elsewhere, which will be addressed in the future???
5406 if Is_Empty_List
(Acts
) then
5407 Rewrite
(N
, Relocate_Node
(Expression
(N
)));
5409 end Expand_N_Expression_With_Actions
;
5411 ----------------------------
5412 -- Expand_N_If_Expression --
5413 ----------------------------
5415 -- Deal with limited types and condition actions
5417 procedure Expand_N_If_Expression
(N
: Node_Id
) is
5418 Cond
: constant Node_Id
:= First
(Expressions
(N
));
5419 Loc
: constant Source_Ptr
:= Sloc
(N
);
5420 Thenx
: constant Node_Id
:= Next
(Cond
);
5421 Elsex
: constant Node_Id
:= Next
(Thenx
);
5422 Typ
: constant Entity_Id
:= Etype
(N
);
5430 Ptr_Typ
: Entity_Id
;
5433 -- Check for MINIMIZED/ELIMINATED overflow mode
5435 if Minimized_Eliminated_Overflow_Check
(N
) then
5436 Apply_Arithmetic_Overflow_Check
(N
);
5440 -- Fold at compile time if condition known. We have already folded
5441 -- static if expressions, but it is possible to fold any case in which
5442 -- the condition is known at compile time, even though the result is
5445 -- Note that we don't do the fold of such cases in Sem_Elab because
5446 -- it can cause infinite loops with the expander adding a conditional
5447 -- expression, and Sem_Elab circuitry removing it repeatedly.
5449 if Compile_Time_Known_Value
(Cond
) then
5451 function Fold_Known_Value
(Cond
: Node_Id
) return Boolean;
5452 -- Fold at compile time. Assumes condition known. Return True if
5453 -- folding occurred, meaning we're done.
5455 ----------------------
5456 -- Fold_Known_Value --
5457 ----------------------
5459 function Fold_Known_Value
(Cond
: Node_Id
) return Boolean is
5461 if Is_True
(Expr_Value
(Cond
)) then
5463 Actions
:= Then_Actions
(N
);
5466 Actions
:= Else_Actions
(N
);
5471 if Present
(Actions
) then
5473 -- To minimize the use of Expression_With_Actions, just skip
5474 -- the optimization as it is not critical for correctness.
5476 if Minimize_Expression_With_Actions
then
5481 Make_Expression_With_Actions
(Loc
,
5482 Expression
=> Relocate_Node
(Expr
),
5483 Actions
=> Actions
));
5484 Analyze_And_Resolve
(N
, Typ
);
5487 Rewrite
(N
, Relocate_Node
(Expr
));
5490 -- Note that the result is never static (legitimate cases of
5491 -- static if expressions were folded in Sem_Eval).
5493 Set_Is_Static_Expression
(N
, False);
5495 end Fold_Known_Value
;
5498 if Fold_Known_Value
(Cond
) then
5504 -- If the type is limited, and the back end does not handle limited
5505 -- types, then we expand as follows to avoid the possibility of
5506 -- improper copying.
5508 -- type Ptr is access all Typ;
5512 -- Cnn := then-expr'Unrestricted_Access;
5515 -- Cnn := else-expr'Unrestricted_Access;
5518 -- and replace the if expression by a reference to Cnn.all.
5520 -- This special case can be skipped if the back end handles limited
5521 -- types properly and ensures that no incorrect copies are made.
5523 if Is_By_Reference_Type
(Typ
)
5524 and then not Back_End_Handles_Limited_Types
5526 -- When the "then" or "else" expressions involve controlled function
5527 -- calls, generated temporaries are chained on the corresponding list
5528 -- of actions. These temporaries need to be finalized after the if
5529 -- expression is evaluated.
5531 Process_If_Case_Statements
(N
, Then_Actions
(N
));
5532 Process_If_Case_Statements
(N
, Else_Actions
(N
));
5535 -- type Ann is access all Typ;
5537 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
5540 Make_Full_Type_Declaration
(Loc
,
5541 Defining_Identifier
=> Ptr_Typ
,
5543 Make_Access_To_Object_Definition
(Loc
,
5544 All_Present
=> True,
5545 Subtype_Indication
=> New_Occurrence_Of
(Typ
, Loc
))));
5550 Cnn
:= Make_Temporary
(Loc
, 'C', N
);
5553 Make_Object_Declaration
(Loc
,
5554 Defining_Identifier
=> Cnn
,
5555 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
));
5559 -- Cnn := <Thenx>'Unrestricted_Access;
5561 -- Cnn := <Elsex>'Unrestricted_Access;
5565 Make_Implicit_If_Statement
(N
,
5566 Condition
=> Relocate_Node
(Cond
),
5567 Then_Statements
=> New_List
(
5568 Make_Assignment_Statement
(Sloc
(Thenx
),
5569 Name
=> New_Occurrence_Of
(Cnn
, Sloc
(Thenx
)),
5571 Make_Attribute_Reference
(Loc
,
5572 Prefix
=> Relocate_Node
(Thenx
),
5573 Attribute_Name
=> Name_Unrestricted_Access
))),
5575 Else_Statements
=> New_List
(
5576 Make_Assignment_Statement
(Sloc
(Elsex
),
5577 Name
=> New_Occurrence_Of
(Cnn
, Sloc
(Elsex
)),
5579 Make_Attribute_Reference
(Loc
,
5580 Prefix
=> Relocate_Node
(Elsex
),
5581 Attribute_Name
=> Name_Unrestricted_Access
))));
5583 -- Preserve the original context for which the if statement is being
5584 -- generated. This is needed by the finalization machinery to prevent
5585 -- the premature finalization of controlled objects found within the
5588 Set_From_Conditional_Expression
(New_If
);
5591 Make_Explicit_Dereference
(Loc
,
5592 Prefix
=> New_Occurrence_Of
(Cnn
, Loc
));
5594 -- If the result is an unconstrained array and the if expression is in a
5595 -- context other than the initializing expression of the declaration of
5596 -- an object, then we pull out the if expression as follows:
5598 -- Cnn : constant typ := if-expression
5600 -- and then replace the if expression with an occurrence of Cnn. This
5601 -- avoids the need in the back end to create on-the-fly variable length
5602 -- temporaries (which it cannot do!)
5604 -- Note that the test for being in an object declaration avoids doing an
5605 -- unnecessary expansion, and also avoids infinite recursion.
5607 elsif Is_Array_Type
(Typ
) and then not Is_Constrained
(Typ
)
5608 and then (Nkind
(Parent
(N
)) /= N_Object_Declaration
5609 or else Expression
(Parent
(N
)) /= N
)
5612 Cnn
: constant Node_Id
:= Make_Temporary
(Loc
, 'C', N
);
5615 Make_Object_Declaration
(Loc
,
5616 Defining_Identifier
=> Cnn
,
5617 Constant_Present
=> True,
5618 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
5619 Expression
=> Relocate_Node
(N
),
5620 Has_Init_Expression
=> True));
5622 Rewrite
(N
, New_Occurrence_Of
(Cnn
, Loc
));
5626 -- For other types, we only need to expand if there are other actions
5627 -- associated with either branch.
5629 elsif Present
(Then_Actions
(N
)) or else Present
(Else_Actions
(N
)) then
5631 -- We now wrap the actions into the appropriate expression
5633 if Minimize_Expression_With_Actions
5634 and then (Is_Elementary_Type
(Underlying_Type
(Typ
))
5635 or else Is_Constrained
(Underlying_Type
(Typ
)))
5637 -- If we can't use N_Expression_With_Actions nodes, then we insert
5638 -- the following sequence of actions (using Insert_Actions):
5643 -- Cnn := then-expr;
5649 -- and replace the if expression by a reference to Cnn
5651 Cnn
:= Make_Temporary
(Loc
, 'C', N
);
5654 Make_Object_Declaration
(Loc
,
5655 Defining_Identifier
=> Cnn
,
5656 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
));
5659 Make_Implicit_If_Statement
(N
,
5660 Condition
=> Relocate_Node
(Cond
),
5662 Then_Statements
=> New_List
(
5663 Make_Assignment_Statement
(Sloc
(Thenx
),
5664 Name
=> New_Occurrence_Of
(Cnn
, Sloc
(Thenx
)),
5665 Expression
=> Relocate_Node
(Thenx
))),
5667 Else_Statements
=> New_List
(
5668 Make_Assignment_Statement
(Sloc
(Elsex
),
5669 Name
=> New_Occurrence_Of
(Cnn
, Sloc
(Elsex
)),
5670 Expression
=> Relocate_Node
(Elsex
))));
5672 Set_Assignment_OK
(Name
(First
(Then_Statements
(New_If
))));
5673 Set_Assignment_OK
(Name
(First
(Else_Statements
(New_If
))));
5675 New_N
:= New_Occurrence_Of
(Cnn
, Loc
);
5677 -- Regular path using Expression_With_Actions
5680 if Present
(Then_Actions
(N
)) then
5682 Make_Expression_With_Actions
(Sloc
(Thenx
),
5683 Actions
=> Then_Actions
(N
),
5684 Expression
=> Relocate_Node
(Thenx
)));
5686 Set_Then_Actions
(N
, No_List
);
5687 Analyze_And_Resolve
(Thenx
, Typ
);
5690 if Present
(Else_Actions
(N
)) then
5692 Make_Expression_With_Actions
(Sloc
(Elsex
),
5693 Actions
=> Else_Actions
(N
),
5694 Expression
=> Relocate_Node
(Elsex
)));
5696 Set_Else_Actions
(N
, No_List
);
5697 Analyze_And_Resolve
(Elsex
, Typ
);
5703 -- If no actions then no expansion needed, gigi will handle it using the
5704 -- same approach as a C conditional expression.
5710 -- Fall through here for either the limited expansion, or the case of
5711 -- inserting actions for nonlimited types. In both these cases, we must
5712 -- move the SLOC of the parent If statement to the newly created one and
5713 -- change it to the SLOC of the expression which, after expansion, will
5714 -- correspond to what is being evaluated.
5716 if Present
(Parent
(N
)) and then Nkind
(Parent
(N
)) = N_If_Statement
then
5717 Set_Sloc
(New_If
, Sloc
(Parent
(N
)));
5718 Set_Sloc
(Parent
(N
), Loc
);
5721 -- Make sure Then_Actions and Else_Actions are appropriately moved
5722 -- to the new if statement.
5724 if Present
(Then_Actions
(N
)) then
5726 (First
(Then_Statements
(New_If
)), Then_Actions
(N
));
5729 if Present
(Else_Actions
(N
)) then
5731 (First
(Else_Statements
(New_If
)), Else_Actions
(N
));
5734 Insert_Action
(N
, Decl
);
5735 Insert_Action
(N
, New_If
);
5737 Analyze_And_Resolve
(N
, Typ
);
5738 end Expand_N_If_Expression
;
5744 procedure Expand_N_In
(N
: Node_Id
) is
5745 Loc
: constant Source_Ptr
:= Sloc
(N
);
5746 Restyp
: constant Entity_Id
:= Etype
(N
);
5747 Lop
: constant Node_Id
:= Left_Opnd
(N
);
5748 Rop
: constant Node_Id
:= Right_Opnd
(N
);
5749 Static
: constant Boolean := Is_OK_Static_Expression
(N
);
5751 procedure Substitute_Valid_Check
;
5752 -- Replaces node N by Lop'Valid. This is done when we have an explicit
5753 -- test for the left operand being in range of its subtype.
5755 ----------------------------
5756 -- Substitute_Valid_Check --
5757 ----------------------------
5759 procedure Substitute_Valid_Check
is
5760 function Is_OK_Object_Reference
(Nod
: Node_Id
) return Boolean;
5761 -- Determine whether arbitrary node Nod denotes a source object that
5762 -- may safely act as prefix of attribute 'Valid.
5764 ----------------------------
5765 -- Is_OK_Object_Reference --
5766 ----------------------------
5768 function Is_OK_Object_Reference
(Nod
: Node_Id
) return Boolean is
5772 -- Inspect the original operand
5774 Obj_Ref
:= Original_Node
(Nod
);
5776 -- The object reference must be a source construct, otherwise the
5777 -- codefix suggestion may refer to nonexistent code from a user
5780 if Comes_From_Source
(Obj_Ref
) then
5782 -- Recover the actual object reference. There may be more cases
5786 if Nkind_In
(Obj_Ref
, N_Type_Conversion
,
5787 N_Unchecked_Type_Conversion
)
5789 Obj_Ref
:= Expression
(Obj_Ref
);
5795 return Is_Object_Reference
(Obj_Ref
);
5799 end Is_OK_Object_Reference
;
5801 -- Start of processing for Substitute_Valid_Check
5805 Make_Attribute_Reference
(Loc
,
5806 Prefix
=> Relocate_Node
(Lop
),
5807 Attribute_Name
=> Name_Valid
));
5809 Analyze_And_Resolve
(N
, Restyp
);
5811 -- Emit a warning when the left-hand operand of the membership test
5812 -- is a source object, otherwise the use of attribute 'Valid would be
5813 -- illegal. The warning is not given when overflow checking is either
5814 -- MINIMIZED or ELIMINATED, as the danger of optimization has been
5815 -- eliminated above.
5817 if Is_OK_Object_Reference
(Lop
)
5818 and then Overflow_Check_Mode
not in Minimized_Or_Eliminated
5821 ("??explicit membership test may be optimized away", N
);
5822 Error_Msg_N
-- CODEFIX
5823 ("\??use ''Valid attribute instead", N
);
5825 end Substitute_Valid_Check
;
5832 -- Start of processing for Expand_N_In
5835 -- If set membership case, expand with separate procedure
5837 if Present
(Alternatives
(N
)) then
5838 Expand_Set_Membership
(N
);
5842 -- Not set membership, proceed with expansion
5844 Ltyp
:= Etype
(Left_Opnd
(N
));
5845 Rtyp
:= Etype
(Right_Opnd
(N
));
5847 -- If MINIMIZED/ELIMINATED overflow mode and type is a signed integer
5848 -- type, then expand with a separate procedure. Note the use of the
5849 -- flag No_Minimize_Eliminate to prevent infinite recursion.
5851 if Overflow_Check_Mode
in Minimized_Or_Eliminated
5852 and then Is_Signed_Integer_Type
(Ltyp
)
5853 and then not No_Minimize_Eliminate
(N
)
5855 Expand_Membership_Minimize_Eliminate_Overflow
(N
);
5859 -- Check case of explicit test for an expression in range of its
5860 -- subtype. This is suspicious usage and we replace it with a 'Valid
5861 -- test and give a warning for scalar types.
5863 if Is_Scalar_Type
(Ltyp
)
5865 -- Only relevant for source comparisons
5867 and then Comes_From_Source
(N
)
5869 -- In floating-point this is a standard way to check for finite values
5870 -- and using 'Valid would typically be a pessimization.
5872 and then not Is_Floating_Point_Type
(Ltyp
)
5874 -- Don't give the message unless right operand is a type entity and
5875 -- the type of the left operand matches this type. Note that this
5876 -- eliminates the cases where MINIMIZED/ELIMINATED mode overflow
5877 -- checks have changed the type of the left operand.
5879 and then Nkind
(Rop
) in N_Has_Entity
5880 and then Ltyp
= Entity
(Rop
)
5882 -- Skip this for predicated types, where such expressions are a
5883 -- reasonable way of testing if something meets the predicate.
5885 and then not Present
(Predicate_Function
(Ltyp
))
5887 Substitute_Valid_Check
;
5891 -- Do validity check on operands
5893 if Validity_Checks_On
and Validity_Check_Operands
then
5894 Ensure_Valid
(Left_Opnd
(N
));
5895 Validity_Check_Range
(Right_Opnd
(N
));
5898 -- Case of explicit range
5900 if Nkind
(Rop
) = N_Range
then
5902 Lo
: constant Node_Id
:= Low_Bound
(Rop
);
5903 Hi
: constant Node_Id
:= High_Bound
(Rop
);
5905 Lo_Orig
: constant Node_Id
:= Original_Node
(Lo
);
5906 Hi_Orig
: constant Node_Id
:= Original_Node
(Hi
);
5908 Lcheck
: Compare_Result
;
5909 Ucheck
: Compare_Result
;
5911 Warn1
: constant Boolean :=
5912 Constant_Condition_Warnings
5913 and then Comes_From_Source
(N
)
5914 and then not In_Instance
;
5915 -- This must be true for any of the optimization warnings, we
5916 -- clearly want to give them only for source with the flag on. We
5917 -- also skip these warnings in an instance since it may be the
5918 -- case that different instantiations have different ranges.
5920 Warn2
: constant Boolean :=
5922 and then Nkind
(Original_Node
(Rop
)) = N_Range
5923 and then Is_Integer_Type
(Etype
(Lo
));
5924 -- For the case where only one bound warning is elided, we also
5925 -- insist on an explicit range and an integer type. The reason is
5926 -- that the use of enumeration ranges including an end point is
5927 -- common, as is the use of a subtype name, one of whose bounds is
5928 -- the same as the type of the expression.
5931 -- If test is explicit x'First .. x'Last, replace by valid check
5933 -- Could use some individual comments for this complex test ???
5935 if Is_Scalar_Type
(Ltyp
)
5937 -- And left operand is X'First where X matches left operand
5938 -- type (this eliminates cases of type mismatch, including
5939 -- the cases where ELIMINATED/MINIMIZED mode has changed the
5940 -- type of the left operand.
5942 and then Nkind
(Lo_Orig
) = N_Attribute_Reference
5943 and then Attribute_Name
(Lo_Orig
) = Name_First
5944 and then Nkind
(Prefix
(Lo_Orig
)) in N_Has_Entity
5945 and then Entity
(Prefix
(Lo_Orig
)) = Ltyp
5947 -- Same tests for right operand
5949 and then Nkind
(Hi_Orig
) = N_Attribute_Reference
5950 and then Attribute_Name
(Hi_Orig
) = Name_Last
5951 and then Nkind
(Prefix
(Hi_Orig
)) in N_Has_Entity
5952 and then Entity
(Prefix
(Hi_Orig
)) = Ltyp
5954 -- Relevant only for source cases
5956 and then Comes_From_Source
(N
)
5958 Substitute_Valid_Check
;
5962 -- If bounds of type are known at compile time, and the end points
5963 -- are known at compile time and identical, this is another case
5964 -- for substituting a valid test. We only do this for discrete
5965 -- types, since it won't arise in practice for float types.
5967 if Comes_From_Source
(N
)
5968 and then Is_Discrete_Type
(Ltyp
)
5969 and then Compile_Time_Known_Value
(Type_High_Bound
(Ltyp
))
5970 and then Compile_Time_Known_Value
(Type_Low_Bound
(Ltyp
))
5971 and then Compile_Time_Known_Value
(Lo
)
5972 and then Compile_Time_Known_Value
(Hi
)
5973 and then Expr_Value
(Type_High_Bound
(Ltyp
)) = Expr_Value
(Hi
)
5974 and then Expr_Value
(Type_Low_Bound
(Ltyp
)) = Expr_Value
(Lo
)
5976 -- Kill warnings in instances, since they may be cases where we
5977 -- have a test in the generic that makes sense with some types
5978 -- and not with other types.
5980 and then not In_Instance
5982 Substitute_Valid_Check
;
5986 -- If we have an explicit range, do a bit of optimization based on
5987 -- range analysis (we may be able to kill one or both checks).
5989 Lcheck
:= Compile_Time_Compare
(Lop
, Lo
, Assume_Valid
=> False);
5990 Ucheck
:= Compile_Time_Compare
(Lop
, Hi
, Assume_Valid
=> False);
5992 -- If either check is known to fail, replace result by False since
5993 -- the other check does not matter. Preserve the static flag for
5994 -- legality checks, because we are constant-folding beyond RM 4.9.
5996 if Lcheck
= LT
or else Ucheck
= GT
then
5998 Error_Msg_N
("?c?range test optimized away", N
);
5999 Error_Msg_N
("\?c?value is known to be out of range", N
);
6002 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
6003 Analyze_And_Resolve
(N
, Restyp
);
6004 Set_Is_Static_Expression
(N
, Static
);
6007 -- If both checks are known to succeed, replace result by True,
6008 -- since we know we are in range.
6010 elsif Lcheck
in Compare_GE
and then Ucheck
in Compare_LE
then
6012 Error_Msg_N
("?c?range test optimized away", N
);
6013 Error_Msg_N
("\?c?value is known to be in range", N
);
6016 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
6017 Analyze_And_Resolve
(N
, Restyp
);
6018 Set_Is_Static_Expression
(N
, Static
);
6021 -- If lower bound check succeeds and upper bound check is not
6022 -- known to succeed or fail, then replace the range check with
6023 -- a comparison against the upper bound.
6025 elsif Lcheck
in Compare_GE
then
6026 if Warn2
and then not In_Instance
then
6027 Error_Msg_N
("??lower bound test optimized away", Lo
);
6028 Error_Msg_N
("\??value is known to be in range", Lo
);
6034 Right_Opnd
=> High_Bound
(Rop
)));
6035 Analyze_And_Resolve
(N
, Restyp
);
6038 -- If upper bound check succeeds and lower bound check is not
6039 -- known to succeed or fail, then replace the range check with
6040 -- a comparison against the lower bound.
6042 elsif Ucheck
in Compare_LE
then
6043 if Warn2
and then not In_Instance
then
6044 Error_Msg_N
("??upper bound test optimized away", Hi
);
6045 Error_Msg_N
("\??value is known to be in range", Hi
);
6051 Right_Opnd
=> Low_Bound
(Rop
)));
6052 Analyze_And_Resolve
(N
, Restyp
);
6056 -- We couldn't optimize away the range check, but there is one
6057 -- more issue. If we are checking constant conditionals, then we
6058 -- see if we can determine the outcome assuming everything is
6059 -- valid, and if so give an appropriate warning.
6061 if Warn1
and then not Assume_No_Invalid_Values
then
6062 Lcheck
:= Compile_Time_Compare
(Lop
, Lo
, Assume_Valid
=> True);
6063 Ucheck
:= Compile_Time_Compare
(Lop
, Hi
, Assume_Valid
=> True);
6065 -- Result is out of range for valid value
6067 if Lcheck
= LT
or else Ucheck
= GT
then
6069 ("?c?value can only be in range if it is invalid", N
);
6071 -- Result is in range for valid value
6073 elsif Lcheck
in Compare_GE
and then Ucheck
in Compare_LE
then
6075 ("?c?value can only be out of range if it is invalid", N
);
6077 -- Lower bound check succeeds if value is valid
6079 elsif Warn2
and then Lcheck
in Compare_GE
then
6081 ("?c?lower bound check only fails if it is invalid", Lo
);
6083 -- Upper bound check succeeds if value is valid
6085 elsif Warn2
and then Ucheck
in Compare_LE
then
6087 ("?c?upper bound check only fails for invalid values", Hi
);
6092 -- For all other cases of an explicit range, nothing to be done
6096 -- Here right operand is a subtype mark
6100 Typ
: Entity_Id
:= Etype
(Rop
);
6101 Is_Acc
: constant Boolean := Is_Access_Type
(Typ
);
6102 Cond
: Node_Id
:= Empty
;
6104 Obj
: Node_Id
:= Lop
;
6105 SCIL_Node
: Node_Id
;
6108 Remove_Side_Effects
(Obj
);
6110 -- For tagged type, do tagged membership operation
6112 if Is_Tagged_Type
(Typ
) then
6114 -- No expansion will be performed for VM targets, as the VM
6115 -- back-ends will handle the membership tests directly.
6117 if Tagged_Type_Expansion
then
6118 Tagged_Membership
(N
, SCIL_Node
, New_N
);
6120 Analyze_And_Resolve
(N
, Restyp
, Suppress
=> All_Checks
);
6122 -- Update decoration of relocated node referenced by the
6125 if Generate_SCIL
and then Present
(SCIL_Node
) then
6126 Set_SCIL_Node
(N
, SCIL_Node
);
6132 -- If type is scalar type, rewrite as x in t'First .. t'Last.
6133 -- This reason we do this is that the bounds may have the wrong
6134 -- type if they come from the original type definition. Also this
6135 -- way we get all the processing above for an explicit range.
6137 -- Don't do this for predicated types, since in this case we
6138 -- want to check the predicate.
6140 elsif Is_Scalar_Type
(Typ
) then
6141 if No
(Predicate_Function
(Typ
)) then
6145 Make_Attribute_Reference
(Loc
,
6146 Attribute_Name
=> Name_First
,
6147 Prefix
=> New_Occurrence_Of
(Typ
, Loc
)),
6150 Make_Attribute_Reference
(Loc
,
6151 Attribute_Name
=> Name_Last
,
6152 Prefix
=> New_Occurrence_Of
(Typ
, Loc
))));
6153 Analyze_And_Resolve
(N
, Restyp
);
6158 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
6159 -- a membership test if the subtype mark denotes a constrained
6160 -- Unchecked_Union subtype and the expression lacks inferable
6163 elsif Is_Unchecked_Union
(Base_Type
(Typ
))
6164 and then Is_Constrained
(Typ
)
6165 and then not Has_Inferable_Discriminants
(Lop
)
6168 Make_Raise_Program_Error
(Loc
,
6169 Reason
=> PE_Unchecked_Union_Restriction
));
6171 -- Prevent Gigi from generating incorrect code by rewriting the
6172 -- test as False. What is this undocumented thing about ???
6174 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
6178 -- Here we have a non-scalar type
6181 Typ
:= Designated_Type
(Typ
);
6184 if not Is_Constrained
(Typ
) then
6185 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
6186 Analyze_And_Resolve
(N
, Restyp
);
6188 -- For the constrained array case, we have to check the subscripts
6189 -- for an exact match if the lengths are non-zero (the lengths
6190 -- must match in any case).
6192 elsif Is_Array_Type
(Typ
) then
6193 Check_Subscripts
: declare
6194 function Build_Attribute_Reference
6197 Dim
: Nat
) return Node_Id
;
6198 -- Build attribute reference E'Nam (Dim)
6200 -------------------------------
6201 -- Build_Attribute_Reference --
6202 -------------------------------
6204 function Build_Attribute_Reference
6207 Dim
: Nat
) return Node_Id
6211 Make_Attribute_Reference
(Loc
,
6213 Attribute_Name
=> Nam
,
6214 Expressions
=> New_List
(
6215 Make_Integer_Literal
(Loc
, Dim
)));
6216 end Build_Attribute_Reference
;
6218 -- Start of processing for Check_Subscripts
6221 for J
in 1 .. Number_Dimensions
(Typ
) loop
6222 Evolve_And_Then
(Cond
,
6225 Build_Attribute_Reference
6226 (Duplicate_Subexpr_No_Checks
(Obj
),
6229 Build_Attribute_Reference
6230 (New_Occurrence_Of
(Typ
, Loc
), Name_First
, J
)));
6232 Evolve_And_Then
(Cond
,
6235 Build_Attribute_Reference
6236 (Duplicate_Subexpr_No_Checks
(Obj
),
6239 Build_Attribute_Reference
6240 (New_Occurrence_Of
(Typ
, Loc
), Name_Last
, J
)));
6249 Right_Opnd
=> Make_Null
(Loc
)),
6250 Right_Opnd
=> Cond
);
6254 Analyze_And_Resolve
(N
, Restyp
);
6255 end Check_Subscripts
;
6257 -- These are the cases where constraint checks may be required,
6258 -- e.g. records with possible discriminants
6261 -- Expand the test into a series of discriminant comparisons.
6262 -- The expression that is built is the negation of the one that
6263 -- is used for checking discriminant constraints.
6265 Obj
:= Relocate_Node
(Left_Opnd
(N
));
6267 if Has_Discriminants
(Typ
) then
6268 Cond
:= Make_Op_Not
(Loc
,
6269 Right_Opnd
=> Build_Discriminant_Checks
(Obj
, Typ
));
6272 Cond
:= Make_Or_Else
(Loc
,
6276 Right_Opnd
=> Make_Null
(Loc
)),
6277 Right_Opnd
=> Cond
);
6281 Cond
:= New_Occurrence_Of
(Standard_True
, Loc
);
6285 Analyze_And_Resolve
(N
, Restyp
);
6288 -- Ada 2012 (AI05-0149): Handle membership tests applied to an
6289 -- expression of an anonymous access type. This can involve an
6290 -- accessibility test and a tagged type membership test in the
6291 -- case of tagged designated types.
6293 if Ada_Version
>= Ada_2012
6295 and then Ekind
(Ltyp
) = E_Anonymous_Access_Type
6298 Expr_Entity
: Entity_Id
:= Empty
;
6300 Param_Level
: Node_Id
;
6301 Type_Level
: Node_Id
;
6304 if Is_Entity_Name
(Lop
) then
6305 Expr_Entity
:= Param_Entity
(Lop
);
6307 if not Present
(Expr_Entity
) then
6308 Expr_Entity
:= Entity
(Lop
);
6312 -- If a conversion of the anonymous access value to the
6313 -- tested type would be illegal, then the result is False.
6315 if not Valid_Conversion
6316 (Lop
, Rtyp
, Lop
, Report_Errs
=> False)
6318 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
6319 Analyze_And_Resolve
(N
, Restyp
);
6321 -- Apply an accessibility check if the access object has an
6322 -- associated access level and when the level of the type is
6323 -- less deep than the level of the access parameter. This
6324 -- only occur for access parameters and stand-alone objects
6325 -- of an anonymous access type.
6328 if Present
(Expr_Entity
)
6331 (Effective_Extra_Accessibility
(Expr_Entity
))
6332 and then UI_Gt
(Object_Access_Level
(Lop
),
6333 Type_Access_Level
(Rtyp
))
6337 (Effective_Extra_Accessibility
(Expr_Entity
), Loc
);
6340 Make_Integer_Literal
(Loc
, Type_Access_Level
(Rtyp
));
6342 -- Return True only if the accessibility level of the
6343 -- expression entity is not deeper than the level of
6344 -- the tested access type.
6348 Left_Opnd
=> Relocate_Node
(N
),
6349 Right_Opnd
=> Make_Op_Le
(Loc
,
6350 Left_Opnd
=> Param_Level
,
6351 Right_Opnd
=> Type_Level
)));
6353 Analyze_And_Resolve
(N
);
6356 -- If the designated type is tagged, do tagged membership
6359 -- *** NOTE: we have to check not null before doing the
6360 -- tagged membership test (but maybe that can be done
6361 -- inside Tagged_Membership?).
6363 if Is_Tagged_Type
(Typ
) then
6366 Left_Opnd
=> Relocate_Node
(N
),
6370 Right_Opnd
=> Make_Null
(Loc
))));
6372 -- No expansion will be performed for VM targets, as
6373 -- the VM back-ends will handle the membership tests
6376 if Tagged_Type_Expansion
then
6378 -- Note that we have to pass Original_Node, because
6379 -- the membership test might already have been
6380 -- rewritten by earlier parts of membership test.
6383 (Original_Node
(N
), SCIL_Node
, New_N
);
6385 -- Update decoration of relocated node referenced
6386 -- by the SCIL node.
6388 if Generate_SCIL
and then Present
(SCIL_Node
) then
6389 Set_SCIL_Node
(New_N
, SCIL_Node
);
6394 Left_Opnd
=> Relocate_Node
(N
),
6395 Right_Opnd
=> New_N
));
6397 Analyze_And_Resolve
(N
, Restyp
);
6406 -- At this point, we have done the processing required for the basic
6407 -- membership test, but not yet dealt with the predicate.
6411 -- If a predicate is present, then we do the predicate test, but we
6412 -- most certainly want to omit this if we are within the predicate
6413 -- function itself, since otherwise we have an infinite recursion.
6414 -- The check should also not be emitted when testing against a range
6415 -- (the check is only done when the right operand is a subtype; see
6416 -- RM12-4.5.2 (28.1/3-30/3)).
6418 Predicate_Check
: declare
6419 function In_Range_Check
return Boolean;
6420 -- Within an expanded range check that may raise Constraint_Error do
6421 -- not generate a predicate check as well. It is redundant because
6422 -- the context will add an explicit predicate check, and it will
6423 -- raise the wrong exception if it fails.
6425 --------------------
6426 -- In_Range_Check --
6427 --------------------
6429 function In_Range_Check
return Boolean is
6433 while Present
(P
) loop
6434 if Nkind
(P
) = N_Raise_Constraint_Error
then
6437 elsif Nkind
(P
) in N_Statement_Other_Than_Procedure_Call
6438 or else Nkind
(P
) = N_Procedure_Call_Statement
6439 or else Nkind
(P
) in N_Declaration
6452 PFunc
: constant Entity_Id
:= Predicate_Function
(Rtyp
);
6455 -- Start of processing for Predicate_Check
6459 and then Current_Scope
/= PFunc
6460 and then Nkind
(Rop
) /= N_Range
6462 if not In_Range_Check
then
6463 R_Op
:= Make_Predicate_Call
(Rtyp
, Lop
, Mem
=> True);
6465 R_Op
:= New_Occurrence_Of
(Standard_True
, Loc
);
6470 Left_Opnd
=> Relocate_Node
(N
),
6471 Right_Opnd
=> R_Op
));
6473 -- Analyze new expression, mark left operand as analyzed to
6474 -- avoid infinite recursion adding predicate calls. Similarly,
6475 -- suppress further range checks on the call.
6477 Set_Analyzed
(Left_Opnd
(N
));
6478 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
6480 -- All done, skip attempt at compile time determination of result
6484 end Predicate_Check
;
6487 --------------------------------
6488 -- Expand_N_Indexed_Component --
6489 --------------------------------
6491 procedure Expand_N_Indexed_Component
(N
: Node_Id
) is
6492 Loc
: constant Source_Ptr
:= Sloc
(N
);
6493 Typ
: constant Entity_Id
:= Etype
(N
);
6494 P
: constant Node_Id
:= Prefix
(N
);
6495 T
: constant Entity_Id
:= Etype
(P
);
6499 -- A special optimization, if we have an indexed component that is
6500 -- selecting from a slice, then we can eliminate the slice, since, for
6501 -- example, x (i .. j)(k) is identical to x(k). The only difference is
6502 -- the range check required by the slice. The range check for the slice
6503 -- itself has already been generated. The range check for the
6504 -- subscripting operation is ensured by converting the subject to
6505 -- the subtype of the slice.
6507 -- This optimization not only generates better code, avoiding slice
6508 -- messing especially in the packed case, but more importantly bypasses
6509 -- some problems in handling this peculiar case, for example, the issue
6510 -- of dealing specially with object renamings.
6512 if Nkind
(P
) = N_Slice
6514 -- This optimization is disabled for CodePeer because it can transform
6515 -- an index-check constraint_error into a range-check constraint_error
6516 -- and CodePeer cares about that distinction.
6518 and then not CodePeer_Mode
6521 Make_Indexed_Component
(Loc
,
6522 Prefix
=> Prefix
(P
),
6523 Expressions
=> New_List
(
6525 (Etype
(First_Index
(Etype
(P
))),
6526 First
(Expressions
(N
))))));
6527 Analyze_And_Resolve
(N
, Typ
);
6531 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
6532 -- function, then additional actuals must be passed.
6534 if Ada_Version
>= Ada_2005
6535 and then Is_Build_In_Place_Function_Call
(P
)
6537 Make_Build_In_Place_Call_In_Anonymous_Context
(P
);
6540 -- If the prefix is an access type, then we unconditionally rewrite if
6541 -- as an explicit dereference. This simplifies processing for several
6542 -- cases, including packed array cases and certain cases in which checks
6543 -- must be generated. We used to try to do this only when it was
6544 -- necessary, but it cleans up the code to do it all the time.
6546 if Is_Access_Type
(T
) then
6547 Insert_Explicit_Dereference
(P
);
6548 Analyze_And_Resolve
(P
, Designated_Type
(T
));
6549 Atp
:= Designated_Type
(T
);
6554 -- Generate index and validity checks
6556 Generate_Index_Checks
(N
);
6558 if Validity_Checks_On
and then Validity_Check_Subscripts
then
6559 Apply_Subscript_Validity_Checks
(N
);
6562 -- If selecting from an array with atomic components, and atomic sync
6563 -- is not suppressed for this array type, set atomic sync flag.
6565 if (Has_Atomic_Components
(Atp
)
6566 and then not Atomic_Synchronization_Disabled
(Atp
))
6567 or else (Is_Atomic
(Typ
)
6568 and then not Atomic_Synchronization_Disabled
(Typ
))
6569 or else (Is_Entity_Name
(P
)
6570 and then Has_Atomic_Components
(Entity
(P
))
6571 and then not Atomic_Synchronization_Disabled
(Entity
(P
)))
6573 Activate_Atomic_Synchronization
(N
);
6576 -- All done if the prefix is not a packed array implemented specially
6578 if not (Is_Packed
(Etype
(Prefix
(N
)))
6579 and then Present
(Packed_Array_Impl_Type
(Etype
(Prefix
(N
)))))
6584 -- For packed arrays that are not bit-packed (i.e. the case of an array
6585 -- with one or more index types with a non-contiguous enumeration type),
6586 -- we can always use the normal packed element get circuit.
6588 if not Is_Bit_Packed_Array
(Etype
(Prefix
(N
))) then
6589 Expand_Packed_Element_Reference
(N
);
6593 -- For a reference to a component of a bit packed array, we convert it
6594 -- to a reference to the corresponding Packed_Array_Impl_Type. We only
6595 -- want to do this for simple references, and not for:
6597 -- Left side of assignment, or prefix of left side of assignment, or
6598 -- prefix of the prefix, to handle packed arrays of packed arrays,
6599 -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
6601 -- Renaming objects in renaming associations
6602 -- This case is handled when a use of the renamed variable occurs
6604 -- Actual parameters for a procedure call
6605 -- This case is handled in Exp_Ch6.Expand_Actuals
6607 -- The second expression in a 'Read attribute reference
6609 -- The prefix of an address or bit or size attribute reference
6611 -- The following circuit detects these exceptions. Note that we need to
6612 -- deal with implicit dereferences when climbing up the parent chain,
6613 -- with the additional difficulty that the type of parents may have yet
6614 -- to be resolved since prefixes are usually resolved first.
6617 Child
: Node_Id
:= N
;
6618 Parnt
: Node_Id
:= Parent
(N
);
6622 if Nkind
(Parnt
) = N_Unchecked_Expression
then
6625 elsif Nkind_In
(Parnt
, N_Object_Renaming_Declaration
,
6626 N_Procedure_Call_Statement
)
6627 or else (Nkind
(Parnt
) = N_Parameter_Association
6629 Nkind
(Parent
(Parnt
)) = N_Procedure_Call_Statement
)
6633 elsif Nkind
(Parnt
) = N_Attribute_Reference
6634 and then Nam_In
(Attribute_Name
(Parnt
), Name_Address
,
6637 and then Prefix
(Parnt
) = Child
6641 elsif Nkind
(Parnt
) = N_Assignment_Statement
6642 and then Name
(Parnt
) = Child
6646 -- If the expression is an index of an indexed component, it must
6647 -- be expanded regardless of context.
6649 elsif Nkind
(Parnt
) = N_Indexed_Component
6650 and then Child
/= Prefix
(Parnt
)
6652 Expand_Packed_Element_Reference
(N
);
6655 elsif Nkind
(Parent
(Parnt
)) = N_Assignment_Statement
6656 and then Name
(Parent
(Parnt
)) = Parnt
6660 elsif Nkind
(Parnt
) = N_Attribute_Reference
6661 and then Attribute_Name
(Parnt
) = Name_Read
6662 and then Next
(First
(Expressions
(Parnt
))) = Child
6666 elsif Nkind
(Parnt
) = N_Indexed_Component
6667 and then Prefix
(Parnt
) = Child
6671 elsif Nkind
(Parnt
) = N_Selected_Component
6672 and then Prefix
(Parnt
) = Child
6673 and then not (Present
(Etype
(Selector_Name
(Parnt
)))
6675 Is_Access_Type
(Etype
(Selector_Name
(Parnt
))))
6679 -- If the parent is a dereference, either implicit or explicit,
6680 -- then the packed reference needs to be expanded.
6683 Expand_Packed_Element_Reference
(N
);
6687 -- Keep looking up tree for unchecked expression, or if we are the
6688 -- prefix of a possible assignment left side.
6691 Parnt
:= Parent
(Child
);
6694 end Expand_N_Indexed_Component
;
6696 ---------------------
6697 -- Expand_N_Not_In --
6698 ---------------------
6700 -- Replace a not in b by not (a in b) so that the expansions for (a in b)
6701 -- can be done. This avoids needing to duplicate this expansion code.
6703 procedure Expand_N_Not_In
(N
: Node_Id
) is
6704 Loc
: constant Source_Ptr
:= Sloc
(N
);
6705 Typ
: constant Entity_Id
:= Etype
(N
);
6706 Cfs
: constant Boolean := Comes_From_Source
(N
);
6713 Left_Opnd
=> Left_Opnd
(N
),
6714 Right_Opnd
=> Right_Opnd
(N
))));
6716 -- If this is a set membership, preserve list of alternatives
6718 Set_Alternatives
(Right_Opnd
(N
), Alternatives
(Original_Node
(N
)));
6720 -- We want this to appear as coming from source if original does (see
6721 -- transformations in Expand_N_In).
6723 Set_Comes_From_Source
(N
, Cfs
);
6724 Set_Comes_From_Source
(Right_Opnd
(N
), Cfs
);
6726 -- Now analyze transformed node
6728 Analyze_And_Resolve
(N
, Typ
);
6729 end Expand_N_Not_In
;
6735 -- The only replacement required is for the case of a null of a type that
6736 -- is an access to protected subprogram, or a subtype thereof. We represent
6737 -- such access values as a record, and so we must replace the occurrence of
6738 -- null by the equivalent record (with a null address and a null pointer in
6739 -- it), so that the backend creates the proper value.
6741 procedure Expand_N_Null
(N
: Node_Id
) is
6742 Loc
: constant Source_Ptr
:= Sloc
(N
);
6743 Typ
: constant Entity_Id
:= Base_Type
(Etype
(N
));
6747 if Is_Access_Protected_Subprogram_Type
(Typ
) then
6749 Make_Aggregate
(Loc
,
6750 Expressions
=> New_List
(
6751 New_Occurrence_Of
(RTE
(RE_Null_Address
), Loc
),
6755 Analyze_And_Resolve
(N
, Equivalent_Type
(Typ
));
6757 -- For subsequent semantic analysis, the node must retain its type.
6758 -- Gigi in any case replaces this type by the corresponding record
6759 -- type before processing the node.
6765 when RE_Not_Available
=>
6769 ---------------------
6770 -- Expand_N_Op_Abs --
6771 ---------------------
6773 procedure Expand_N_Op_Abs
(N
: Node_Id
) is
6774 Loc
: constant Source_Ptr
:= Sloc
(N
);
6775 Expr
: constant Node_Id
:= Right_Opnd
(N
);
6778 Unary_Op_Validity_Checks
(N
);
6780 -- Check for MINIMIZED/ELIMINATED overflow mode
6782 if Minimized_Eliminated_Overflow_Check
(N
) then
6783 Apply_Arithmetic_Overflow_Check
(N
);
6787 -- Deal with software overflow checking
6789 if not Backend_Overflow_Checks_On_Target
6790 and then Is_Signed_Integer_Type
(Etype
(N
))
6791 and then Do_Overflow_Check
(N
)
6793 -- The only case to worry about is when the argument is equal to the
6794 -- largest negative number, so what we do is to insert the check:
6796 -- [constraint_error when Expr = typ'Base'First]
6798 -- with the usual Duplicate_Subexpr use coding for expr
6801 Make_Raise_Constraint_Error
(Loc
,
6804 Left_Opnd
=> Duplicate_Subexpr
(Expr
),
6806 Make_Attribute_Reference
(Loc
,
6808 New_Occurrence_Of
(Base_Type
(Etype
(Expr
)), Loc
),
6809 Attribute_Name
=> Name_First
)),
6810 Reason
=> CE_Overflow_Check_Failed
));
6812 end Expand_N_Op_Abs
;
6814 ---------------------
6815 -- Expand_N_Op_Add --
6816 ---------------------
6818 procedure Expand_N_Op_Add
(N
: Node_Id
) is
6819 Typ
: constant Entity_Id
:= Etype
(N
);
6822 Binary_Op_Validity_Checks
(N
);
6824 -- Check for MINIMIZED/ELIMINATED overflow mode
6826 if Minimized_Eliminated_Overflow_Check
(N
) then
6827 Apply_Arithmetic_Overflow_Check
(N
);
6831 -- N + 0 = 0 + N = N for integer types
6833 if Is_Integer_Type
(Typ
) then
6834 if Compile_Time_Known_Value
(Right_Opnd
(N
))
6835 and then Expr_Value
(Right_Opnd
(N
)) = Uint_0
6837 Rewrite
(N
, Left_Opnd
(N
));
6840 elsif Compile_Time_Known_Value
(Left_Opnd
(N
))
6841 and then Expr_Value
(Left_Opnd
(N
)) = Uint_0
6843 Rewrite
(N
, Right_Opnd
(N
));
6848 -- Arithmetic overflow checks for signed integer/fixed point types
6850 if Is_Signed_Integer_Type
(Typ
) or else Is_Fixed_Point_Type
(Typ
) then
6851 Apply_Arithmetic_Overflow_Check
(N
);
6855 -- Overflow checks for floating-point if -gnateF mode active
6857 Check_Float_Op_Overflow
(N
);
6859 -- Generating C code convert non-binary modular additions into code that
6860 -- relies on the frontend expansion of operator Mod.
6862 if Modify_Tree_For_C
then
6863 Expand_Non_Binary_Modular_Op
(N
);
6865 end Expand_N_Op_Add
;
6867 ---------------------
6868 -- Expand_N_Op_And --
6869 ---------------------
6871 procedure Expand_N_Op_And
(N
: Node_Id
) is
6872 Typ
: constant Entity_Id
:= Etype
(N
);
6875 Binary_Op_Validity_Checks
(N
);
6877 if Is_Array_Type
(Etype
(N
)) then
6878 Expand_Boolean_Operator
(N
);
6880 elsif Is_Boolean_Type
(Etype
(N
)) then
6881 Adjust_Condition
(Left_Opnd
(N
));
6882 Adjust_Condition
(Right_Opnd
(N
));
6883 Set_Etype
(N
, Standard_Boolean
);
6884 Adjust_Result_Type
(N
, Typ
);
6886 elsif Is_Intrinsic_Subprogram
(Entity
(N
)) then
6887 Expand_Intrinsic_Call
(N
, Entity
(N
));
6890 -- Generating C code convert non-binary modular operators into code that
6891 -- relies on the frontend expansion of operator Mod.
6893 if Modify_Tree_For_C
then
6894 Expand_Non_Binary_Modular_Op
(N
);
6896 end Expand_N_Op_And
;
6898 ------------------------
6899 -- Expand_N_Op_Concat --
6900 ------------------------
6902 procedure Expand_N_Op_Concat
(N
: Node_Id
) is
6904 -- List of operands to be concatenated
6907 -- Node which is to be replaced by the result of concatenating the nodes
6908 -- in the list Opnds.
6911 -- Ensure validity of both operands
6913 Binary_Op_Validity_Checks
(N
);
6915 -- If we are the left operand of a concatenation higher up the tree,
6916 -- then do nothing for now, since we want to deal with a series of
6917 -- concatenations as a unit.
6919 if Nkind
(Parent
(N
)) = N_Op_Concat
6920 and then N
= Left_Opnd
(Parent
(N
))
6925 -- We get here with a concatenation whose left operand may be a
6926 -- concatenation itself with a consistent type. We need to process
6927 -- these concatenation operands from left to right, which means
6928 -- from the deepest node in the tree to the highest node.
6931 while Nkind
(Left_Opnd
(Cnode
)) = N_Op_Concat
loop
6932 Cnode
:= Left_Opnd
(Cnode
);
6935 -- Now Cnode is the deepest concatenation, and its parents are the
6936 -- concatenation nodes above, so now we process bottom up, doing the
6939 -- The outer loop runs more than once if more than one concatenation
6940 -- type is involved.
6943 Opnds
:= New_List
(Left_Opnd
(Cnode
), Right_Opnd
(Cnode
));
6944 Set_Parent
(Opnds
, N
);
6946 -- The inner loop gathers concatenation operands
6948 Inner
: while Cnode
/= N
6949 and then Base_Type
(Etype
(Cnode
)) =
6950 Base_Type
(Etype
(Parent
(Cnode
)))
6952 Cnode
:= Parent
(Cnode
);
6953 Append
(Right_Opnd
(Cnode
), Opnds
);
6956 -- Note: The following code is a temporary workaround for N731-034
6957 -- and N829-028 and will be kept until the general issue of internal
6958 -- symbol serialization is addressed. The workaround is kept under a
6959 -- debug switch to avoid permiating into the general case.
6961 -- Wrap the node to concatenate into an expression actions node to
6962 -- keep it nicely packaged. This is useful in the case of an assert
6963 -- pragma with a concatenation where we want to be able to delete
6964 -- the concatenation and all its expansion stuff.
6966 if Debug_Flag_Dot_H
then
6968 Cnod
: constant Node_Id
:= Relocate_Node
(Cnode
);
6969 Typ
: constant Entity_Id
:= Base_Type
(Etype
(Cnode
));
6972 -- Note: use Rewrite rather than Replace here, so that for
6973 -- example Why_Not_Static can find the original concatenation
6977 Make_Expression_With_Actions
(Sloc
(Cnode
),
6978 Actions
=> New_List
(Make_Null_Statement
(Sloc
(Cnode
))),
6979 Expression
=> Cnod
));
6981 Expand_Concatenate
(Cnod
, Opnds
);
6982 Analyze_And_Resolve
(Cnode
, Typ
);
6988 Expand_Concatenate
(Cnode
, Opnds
);
6991 exit Outer
when Cnode
= N
;
6992 Cnode
:= Parent
(Cnode
);
6994 end Expand_N_Op_Concat
;
6996 ------------------------
6997 -- Expand_N_Op_Divide --
6998 ------------------------
7000 procedure Expand_N_Op_Divide
(N
: Node_Id
) is
7001 Loc
: constant Source_Ptr
:= Sloc
(N
);
7002 Lopnd
: constant Node_Id
:= Left_Opnd
(N
);
7003 Ropnd
: constant Node_Id
:= Right_Opnd
(N
);
7004 Ltyp
: constant Entity_Id
:= Etype
(Lopnd
);
7005 Rtyp
: constant Entity_Id
:= Etype
(Ropnd
);
7006 Typ
: Entity_Id
:= Etype
(N
);
7007 Rknow
: constant Boolean := Is_Integer_Type
(Typ
)
7009 Compile_Time_Known_Value
(Ropnd
);
7013 Binary_Op_Validity_Checks
(N
);
7015 -- Check for MINIMIZED/ELIMINATED overflow mode
7017 if Minimized_Eliminated_Overflow_Check
(N
) then
7018 Apply_Arithmetic_Overflow_Check
(N
);
7022 -- Otherwise proceed with expansion of division
7025 Rval
:= Expr_Value
(Ropnd
);
7028 -- N / 1 = N for integer types
7030 if Rknow
and then Rval
= Uint_1
then
7035 -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
7036 -- Is_Power_Of_2_For_Shift is set means that we know that our left
7037 -- operand is an unsigned integer, as required for this to work.
7039 if Nkind
(Ropnd
) = N_Op_Expon
7040 and then Is_Power_Of_2_For_Shift
(Ropnd
)
7042 -- We cannot do this transformation in configurable run time mode if we
7043 -- have 64-bit integers and long shifts are not available.
7045 and then (Esize
(Ltyp
) <= 32 or else Support_Long_Shifts_On_Target
)
7048 Make_Op_Shift_Right
(Loc
,
7051 Convert_To
(Standard_Natural
, Right_Opnd
(Ropnd
))));
7052 Analyze_And_Resolve
(N
, Typ
);
7056 -- Do required fixup of universal fixed operation
7058 if Typ
= Universal_Fixed
then
7059 Fixup_Universal_Fixed_Operation
(N
);
7063 -- Divisions with fixed-point results
7065 if Is_Fixed_Point_Type
(Typ
) then
7067 -- Deal with divide-by-zero check if back end cannot handle them
7068 -- and the flag is set indicating that we need such a check. Note
7069 -- that we don't need to bother here with the case of mixed-mode
7070 -- (Right operand an integer type), since these will be rewritten
7071 -- with conversions to a divide with a fixed-point right operand.
7073 if Do_Division_Check
(N
)
7074 and then not Backend_Divide_Checks_On_Target
7075 and then not Is_Integer_Type
(Rtyp
)
7077 Set_Do_Division_Check
(N
, False);
7079 Make_Raise_Constraint_Error
(Loc
,
7082 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Ropnd
),
7083 Right_Opnd
=> Make_Real_Literal
(Loc
, Ureal_0
)),
7084 Reason
=> CE_Divide_By_Zero
));
7087 -- No special processing if Treat_Fixed_As_Integer is set, since
7088 -- from a semantic point of view such operations are simply integer
7089 -- operations and will be treated that way.
7091 if not Treat_Fixed_As_Integer
(N
) then
7092 if Is_Integer_Type
(Rtyp
) then
7093 Expand_Divide_Fixed_By_Integer_Giving_Fixed
(N
);
7095 Expand_Divide_Fixed_By_Fixed_Giving_Fixed
(N
);
7099 -- Other cases of division of fixed-point operands. Again we exclude the
7100 -- case where Treat_Fixed_As_Integer is set.
7102 elsif (Is_Fixed_Point_Type
(Ltyp
) or else Is_Fixed_Point_Type
(Rtyp
))
7103 and then not Treat_Fixed_As_Integer
(N
)
7105 if Is_Integer_Type
(Typ
) then
7106 Expand_Divide_Fixed_By_Fixed_Giving_Integer
(N
);
7108 pragma Assert
(Is_Floating_Point_Type
(Typ
));
7109 Expand_Divide_Fixed_By_Fixed_Giving_Float
(N
);
7112 -- Mixed-mode operations can appear in a non-static universal context,
7113 -- in which case the integer argument must be converted explicitly.
7115 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Rtyp
) then
7117 Convert_To
(Universal_Real
, Relocate_Node
(Ropnd
)));
7119 Analyze_And_Resolve
(Ropnd
, Universal_Real
);
7121 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Ltyp
) then
7123 Convert_To
(Universal_Real
, Relocate_Node
(Lopnd
)));
7125 Analyze_And_Resolve
(Lopnd
, Universal_Real
);
7127 -- Non-fixed point cases, do integer zero divide and overflow checks
7129 elsif Is_Integer_Type
(Typ
) then
7130 Apply_Divide_Checks
(N
);
7133 -- Overflow checks for floating-point if -gnateF mode active
7135 Check_Float_Op_Overflow
(N
);
7137 -- Generating C code convert non-binary modular divisions into code that
7138 -- relies on the frontend expansion of operator Mod.
7140 if Modify_Tree_For_C
then
7141 Expand_Non_Binary_Modular_Op
(N
);
7143 end Expand_N_Op_Divide
;
7145 --------------------
7146 -- Expand_N_Op_Eq --
7147 --------------------
7149 procedure Expand_N_Op_Eq
(N
: Node_Id
) is
7150 Loc
: constant Source_Ptr
:= Sloc
(N
);
7151 Typ
: constant Entity_Id
:= Etype
(N
);
7152 Lhs
: constant Node_Id
:= Left_Opnd
(N
);
7153 Rhs
: constant Node_Id
:= Right_Opnd
(N
);
7154 Bodies
: constant List_Id
:= New_List
;
7155 A_Typ
: constant Entity_Id
:= Etype
(Lhs
);
7157 Typl
: Entity_Id
:= A_Typ
;
7158 Op_Name
: Entity_Id
;
7161 procedure Build_Equality_Call
(Eq
: Entity_Id
);
7162 -- If a constructed equality exists for the type or for its parent,
7163 -- build and analyze call, adding conversions if the operation is
7166 function Has_Unconstrained_UU_Component
(Typ
: Node_Id
) return Boolean;
7167 -- Determines whether a type has a subcomponent of an unconstrained
7168 -- Unchecked_Union subtype. Typ is a record type.
7170 -------------------------
7171 -- Build_Equality_Call --
7172 -------------------------
7174 procedure Build_Equality_Call
(Eq
: Entity_Id
) is
7175 Op_Type
: constant Entity_Id
:= Etype
(First_Formal
(Eq
));
7176 L_Exp
: Node_Id
:= Relocate_Node
(Lhs
);
7177 R_Exp
: Node_Id
:= Relocate_Node
(Rhs
);
7180 -- Adjust operands if necessary to comparison type
7182 if Base_Type
(Op_Type
) /= Base_Type
(A_Typ
)
7183 and then not Is_Class_Wide_Type
(A_Typ
)
7185 L_Exp
:= OK_Convert_To
(Op_Type
, L_Exp
);
7186 R_Exp
:= OK_Convert_To
(Op_Type
, R_Exp
);
7189 -- If we have an Unchecked_Union, we need to add the inferred
7190 -- discriminant values as actuals in the function call. At this
7191 -- point, the expansion has determined that both operands have
7192 -- inferable discriminants.
7194 if Is_Unchecked_Union
(Op_Type
) then
7196 Lhs_Type
: constant Node_Id
:= Etype
(L_Exp
);
7197 Rhs_Type
: constant Node_Id
:= Etype
(R_Exp
);
7199 Lhs_Discr_Vals
: Elist_Id
;
7200 -- List of inferred discriminant values for left operand.
7202 Rhs_Discr_Vals
: Elist_Id
;
7203 -- List of inferred discriminant values for right operand.
7208 Lhs_Discr_Vals
:= New_Elmt_List
;
7209 Rhs_Discr_Vals
:= New_Elmt_List
;
7211 -- Per-object constrained selected components require special
7212 -- attention. If the enclosing scope of the component is an
7213 -- Unchecked_Union, we cannot reference its discriminants
7214 -- directly. This is why we use the extra parameters of the
7215 -- equality function of the enclosing Unchecked_Union.
7217 -- type UU_Type (Discr : Integer := 0) is
7220 -- pragma Unchecked_Union (UU_Type);
7222 -- 1. Unchecked_Union enclosing record:
7224 -- type Enclosing_UU_Type (Discr : Integer := 0) is record
7226 -- Comp : UU_Type (Discr);
7228 -- end Enclosing_UU_Type;
7229 -- pragma Unchecked_Union (Enclosing_UU_Type);
7231 -- Obj1 : Enclosing_UU_Type;
7232 -- Obj2 : Enclosing_UU_Type (1);
7234 -- [. . .] Obj1 = Obj2 [. . .]
7238 -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
7240 -- A and B are the formal parameters of the equality function
7241 -- of Enclosing_UU_Type. The function always has two extra
7242 -- formals to capture the inferred discriminant values for
7243 -- each discriminant of the type.
7245 -- 2. Non-Unchecked_Union enclosing record:
7248 -- Enclosing_Non_UU_Type (Discr : Integer := 0)
7251 -- Comp : UU_Type (Discr);
7253 -- end Enclosing_Non_UU_Type;
7255 -- Obj1 : Enclosing_Non_UU_Type;
7256 -- Obj2 : Enclosing_Non_UU_Type (1);
7258 -- ... Obj1 = Obj2 ...
7262 -- if not (uu_typeEQ (obj1.comp, obj2.comp,
7263 -- obj1.discr, obj2.discr)) then
7265 -- In this case we can directly reference the discriminants of
7266 -- the enclosing record.
7268 -- Process left operand of equality
7270 if Nkind
(Lhs
) = N_Selected_Component
7272 Has_Per_Object_Constraint
(Entity
(Selector_Name
(Lhs
)))
7274 -- If enclosing record is an Unchecked_Union, use formals
7275 -- corresponding to each discriminant. The name of the
7276 -- formal is that of the discriminant, with added suffix,
7277 -- see Exp_Ch3.Build_Record_Equality for details.
7279 if Is_Unchecked_Union
(Scope
(Entity
(Selector_Name
(Lhs
))))
7283 (Scope
(Entity
(Selector_Name
(Lhs
))));
7284 while Present
(Discr
) loop
7286 (Make_Identifier
(Loc
,
7287 Chars
=> New_External_Name
(Chars
(Discr
), 'A')),
7288 To
=> Lhs_Discr_Vals
);
7289 Next_Discriminant
(Discr
);
7292 -- If enclosing record is of a non-Unchecked_Union type, it
7293 -- is possible to reference its discriminants directly.
7296 Discr
:= First_Discriminant
(Lhs_Type
);
7297 while Present
(Discr
) loop
7299 (Make_Selected_Component
(Loc
,
7300 Prefix
=> Prefix
(Lhs
),
7303 (Get_Discriminant_Value
(Discr
,
7305 Stored_Constraint
(Lhs_Type
)))),
7306 To
=> Lhs_Discr_Vals
);
7307 Next_Discriminant
(Discr
);
7311 -- Otherwise operand is on object with a constrained type.
7312 -- Infer the discriminant values from the constraint.
7316 Discr
:= First_Discriminant
(Lhs_Type
);
7317 while Present
(Discr
) loop
7320 (Get_Discriminant_Value
(Discr
,
7322 Stored_Constraint
(Lhs_Type
))),
7323 To
=> Lhs_Discr_Vals
);
7324 Next_Discriminant
(Discr
);
7328 -- Similar processing for right operand of equality
7330 if Nkind
(Rhs
) = N_Selected_Component
7332 Has_Per_Object_Constraint
(Entity
(Selector_Name
(Rhs
)))
7334 if Is_Unchecked_Union
7335 (Scope
(Entity
(Selector_Name
(Rhs
))))
7339 (Scope
(Entity
(Selector_Name
(Rhs
))));
7340 while Present
(Discr
) loop
7342 (Make_Identifier
(Loc
,
7343 Chars
=> New_External_Name
(Chars
(Discr
), 'B')),
7344 To
=> Rhs_Discr_Vals
);
7345 Next_Discriminant
(Discr
);
7349 Discr
:= First_Discriminant
(Rhs_Type
);
7350 while Present
(Discr
) loop
7352 (Make_Selected_Component
(Loc
,
7353 Prefix
=> Prefix
(Rhs
),
7355 New_Copy
(Get_Discriminant_Value
7358 Stored_Constraint
(Rhs_Type
)))),
7359 To
=> Rhs_Discr_Vals
);
7360 Next_Discriminant
(Discr
);
7365 Discr
:= First_Discriminant
(Rhs_Type
);
7366 while Present
(Discr
) loop
7368 (New_Copy
(Get_Discriminant_Value
7371 Stored_Constraint
(Rhs_Type
))),
7372 To
=> Rhs_Discr_Vals
);
7373 Next_Discriminant
(Discr
);
7377 -- Now merge the list of discriminant values so that values
7378 -- of corresponding discriminants are adjacent.
7386 Params
:= New_List
(L_Exp
, R_Exp
);
7387 L_Elmt
:= First_Elmt
(Lhs_Discr_Vals
);
7388 R_Elmt
:= First_Elmt
(Rhs_Discr_Vals
);
7389 while Present
(L_Elmt
) loop
7390 Append_To
(Params
, Node
(L_Elmt
));
7391 Append_To
(Params
, Node
(R_Elmt
));
7397 Make_Function_Call
(Loc
,
7398 Name
=> New_Occurrence_Of
(Eq
, Loc
),
7399 Parameter_Associations
=> Params
));
7403 -- Normal case, not an unchecked union
7407 Make_Function_Call
(Loc
,
7408 Name
=> New_Occurrence_Of
(Eq
, Loc
),
7409 Parameter_Associations
=> New_List
(L_Exp
, R_Exp
)));
7412 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
7413 end Build_Equality_Call
;
7415 ------------------------------------
7416 -- Has_Unconstrained_UU_Component --
7417 ------------------------------------
7419 function Has_Unconstrained_UU_Component
7420 (Typ
: Node_Id
) return Boolean
7422 Tdef
: constant Node_Id
:=
7423 Type_Definition
(Declaration_Node
(Base_Type
(Typ
)));
7427 function Component_Is_Unconstrained_UU
7428 (Comp
: Node_Id
) return Boolean;
7429 -- Determines whether the subtype of the component is an
7430 -- unconstrained Unchecked_Union.
7432 function Variant_Is_Unconstrained_UU
7433 (Variant
: Node_Id
) return Boolean;
7434 -- Determines whether a component of the variant has an unconstrained
7435 -- Unchecked_Union subtype.
7437 -----------------------------------
7438 -- Component_Is_Unconstrained_UU --
7439 -----------------------------------
7441 function Component_Is_Unconstrained_UU
7442 (Comp
: Node_Id
) return Boolean
7445 if Nkind
(Comp
) /= N_Component_Declaration
then
7450 Sindic
: constant Node_Id
:=
7451 Subtype_Indication
(Component_Definition
(Comp
));
7454 -- Unconstrained nominal type. In the case of a constraint
7455 -- present, the node kind would have been N_Subtype_Indication.
7457 if Nkind
(Sindic
) = N_Identifier
then
7458 return Is_Unchecked_Union
(Base_Type
(Etype
(Sindic
)));
7463 end Component_Is_Unconstrained_UU
;
7465 ---------------------------------
7466 -- Variant_Is_Unconstrained_UU --
7467 ---------------------------------
7469 function Variant_Is_Unconstrained_UU
7470 (Variant
: Node_Id
) return Boolean
7472 Clist
: constant Node_Id
:= Component_List
(Variant
);
7475 if Is_Empty_List
(Component_Items
(Clist
)) then
7479 -- We only need to test one component
7482 Comp
: Node_Id
:= First
(Component_Items
(Clist
));
7485 while Present
(Comp
) loop
7486 if Component_Is_Unconstrained_UU
(Comp
) then
7494 -- None of the components withing the variant were of
7495 -- unconstrained Unchecked_Union type.
7498 end Variant_Is_Unconstrained_UU
;
7500 -- Start of processing for Has_Unconstrained_UU_Component
7503 if Null_Present
(Tdef
) then
7507 Clist
:= Component_List
(Tdef
);
7508 Vpart
:= Variant_Part
(Clist
);
7510 -- Inspect available components
7512 if Present
(Component_Items
(Clist
)) then
7514 Comp
: Node_Id
:= First
(Component_Items
(Clist
));
7517 while Present
(Comp
) loop
7519 -- One component is sufficient
7521 if Component_Is_Unconstrained_UU
(Comp
) then
7530 -- Inspect available components withing variants
7532 if Present
(Vpart
) then
7534 Variant
: Node_Id
:= First
(Variants
(Vpart
));
7537 while Present
(Variant
) loop
7539 -- One component within a variant is sufficient
7541 if Variant_Is_Unconstrained_UU
(Variant
) then
7550 -- Neither the available components, nor the components inside the
7551 -- variant parts were of an unconstrained Unchecked_Union subtype.
7554 end Has_Unconstrained_UU_Component
;
7556 -- Start of processing for Expand_N_Op_Eq
7559 Binary_Op_Validity_Checks
(N
);
7561 -- Deal with private types
7563 if Ekind
(Typl
) = E_Private_Type
then
7564 Typl
:= Underlying_Type
(Typl
);
7565 elsif Ekind
(Typl
) = E_Private_Subtype
then
7566 Typl
:= Underlying_Type
(Base_Type
(Typl
));
7571 -- It may happen in error situations that the underlying type is not
7572 -- set. The error will be detected later, here we just defend the
7579 -- Now get the implementation base type (note that plain Base_Type here
7580 -- might lead us back to the private type, which is not what we want!)
7582 Typl
:= Implementation_Base_Type
(Typl
);
7584 -- Equality between variant records results in a call to a routine
7585 -- that has conditional tests of the discriminant value(s), and hence
7586 -- violates the No_Implicit_Conditionals restriction.
7588 if Has_Variant_Part
(Typl
) then
7593 Check_Restriction
(Msg
, No_Implicit_Conditionals
, N
);
7597 ("\comparison of variant records tests discriminants", N
);
7603 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7604 -- means we no longer have a comparison operation, we are all done.
7606 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
7608 if Nkind
(N
) /= N_Op_Eq
then
7612 -- Boolean types (requiring handling of non-standard case)
7614 if Is_Boolean_Type
(Typl
) then
7615 Adjust_Condition
(Left_Opnd
(N
));
7616 Adjust_Condition
(Right_Opnd
(N
));
7617 Set_Etype
(N
, Standard_Boolean
);
7618 Adjust_Result_Type
(N
, Typ
);
7622 elsif Is_Array_Type
(Typl
) then
7624 -- If we are doing full validity checking, and it is possible for the
7625 -- array elements to be invalid then expand out array comparisons to
7626 -- make sure that we check the array elements.
7628 if Validity_Check_Operands
7629 and then not Is_Known_Valid
(Component_Type
(Typl
))
7632 Save_Force_Validity_Checks
: constant Boolean :=
7633 Force_Validity_Checks
;
7635 Force_Validity_Checks
:= True;
7637 Expand_Array_Equality
7639 Relocate_Node
(Lhs
),
7640 Relocate_Node
(Rhs
),
7643 Insert_Actions
(N
, Bodies
);
7644 Analyze_And_Resolve
(N
, Standard_Boolean
);
7645 Force_Validity_Checks
:= Save_Force_Validity_Checks
;
7648 -- Packed case where both operands are known aligned
7650 elsif Is_Bit_Packed_Array
(Typl
)
7651 and then not Is_Possibly_Unaligned_Object
(Lhs
)
7652 and then not Is_Possibly_Unaligned_Object
(Rhs
)
7654 Expand_Packed_Eq
(N
);
7656 -- Where the component type is elementary we can use a block bit
7657 -- comparison (if supported on the target) exception in the case
7658 -- of floating-point (negative zero issues require element by
7659 -- element comparison), and atomic/VFA types (where we must be sure
7660 -- to load elements independently) and possibly unaligned arrays.
7662 elsif Is_Elementary_Type
(Component_Type
(Typl
))
7663 and then not Is_Floating_Point_Type
(Component_Type
(Typl
))
7664 and then not Is_Atomic_Or_VFA
(Component_Type
(Typl
))
7665 and then not Is_Possibly_Unaligned_Object
(Lhs
)
7666 and then not Is_Possibly_Unaligned_Object
(Rhs
)
7667 and then Support_Composite_Compare_On_Target
7671 -- For composite and floating-point cases, expand equality loop to
7672 -- make sure of using proper comparisons for tagged types, and
7673 -- correctly handling the floating-point case.
7677 Expand_Array_Equality
7679 Relocate_Node
(Lhs
),
7680 Relocate_Node
(Rhs
),
7683 Insert_Actions
(N
, Bodies
, Suppress
=> All_Checks
);
7684 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
7689 elsif Is_Record_Type
(Typl
) then
7691 -- For tagged types, use the primitive "="
7693 if Is_Tagged_Type
(Typl
) then
7695 -- No need to do anything else compiling under restriction
7696 -- No_Dispatching_Calls. During the semantic analysis we
7697 -- already notified such violation.
7699 if Restriction_Active
(No_Dispatching_Calls
) then
7703 -- If this is derived from an untagged private type completed with
7704 -- a tagged type, it does not have a full view, so we use the
7705 -- primitive operations of the private type. This check should no
7706 -- longer be necessary when these types get their full views???
7708 if Is_Private_Type
(A_Typ
)
7709 and then not Is_Tagged_Type
(A_Typ
)
7710 and then Is_Derived_Type
(A_Typ
)
7711 and then No
(Full_View
(A_Typ
))
7713 -- Search for equality operation, checking that the operands
7714 -- have the same type. Note that we must find a matching entry,
7715 -- or something is very wrong.
7717 Prim
:= First_Elmt
(Collect_Primitive_Operations
(A_Typ
));
7719 while Present
(Prim
) loop
7720 exit when Chars
(Node
(Prim
)) = Name_Op_Eq
7721 and then Etype
(First_Formal
(Node
(Prim
))) =
7722 Etype
(Next_Formal
(First_Formal
(Node
(Prim
))))
7724 Base_Type
(Etype
(Node
(Prim
))) = Standard_Boolean
;
7729 pragma Assert
(Present
(Prim
));
7730 Op_Name
:= Node
(Prim
);
7732 -- Find the type's predefined equality or an overriding
7733 -- user-defined equality. The reason for not simply calling
7734 -- Find_Prim_Op here is that there may be a user-defined
7735 -- overloaded equality op that precedes the equality that we
7736 -- want, so we have to explicitly search (e.g., there could be
7737 -- an equality with two different parameter types).
7740 if Is_Class_Wide_Type
(Typl
) then
7741 Typl
:= Find_Specific_Type
(Typl
);
7744 Prim
:= First_Elmt
(Primitive_Operations
(Typl
));
7745 while Present
(Prim
) loop
7746 exit when Chars
(Node
(Prim
)) = Name_Op_Eq
7747 and then Etype
(First_Formal
(Node
(Prim
))) =
7748 Etype
(Next_Formal
(First_Formal
(Node
(Prim
))))
7750 Base_Type
(Etype
(Node
(Prim
))) = Standard_Boolean
;
7755 pragma Assert
(Present
(Prim
));
7756 Op_Name
:= Node
(Prim
);
7759 Build_Equality_Call
(Op_Name
);
7761 -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
7762 -- predefined equality operator for a type which has a subcomponent
7763 -- of an Unchecked_Union type whose nominal subtype is unconstrained.
7765 elsif Has_Unconstrained_UU_Component
(Typl
) then
7767 Make_Raise_Program_Error
(Loc
,
7768 Reason
=> PE_Unchecked_Union_Restriction
));
7770 -- Prevent Gigi from generating incorrect code by rewriting the
7771 -- equality as a standard False. (is this documented somewhere???)
7774 New_Occurrence_Of
(Standard_False
, Loc
));
7776 elsif Is_Unchecked_Union
(Typl
) then
7778 -- If we can infer the discriminants of the operands, we make a
7779 -- call to the TSS equality function.
7781 if Has_Inferable_Discriminants
(Lhs
)
7783 Has_Inferable_Discriminants
(Rhs
)
7786 (TSS
(Root_Type
(Typl
), TSS_Composite_Equality
));
7789 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
7790 -- the predefined equality operator for an Unchecked_Union type
7791 -- if either of the operands lack inferable discriminants.
7794 Make_Raise_Program_Error
(Loc
,
7795 Reason
=> PE_Unchecked_Union_Restriction
));
7797 -- Emit a warning on source equalities only, otherwise the
7798 -- message may appear out of place due to internal use. The
7799 -- warning is unconditional because it is required by the
7802 if Comes_From_Source
(N
) then
7804 ("Unchecked_Union discriminants cannot be determined??",
7807 ("\Program_Error will be raised for equality operation??",
7811 -- Prevent Gigi from generating incorrect code by rewriting
7812 -- the equality as a standard False (documented where???).
7815 New_Occurrence_Of
(Standard_False
, Loc
));
7818 -- If a type support function is present (for complex cases), use it
7820 elsif Present
(TSS
(Root_Type
(Typl
), TSS_Composite_Equality
)) then
7822 (TSS
(Root_Type
(Typl
), TSS_Composite_Equality
));
7824 -- When comparing two Bounded_Strings, use the primitive equality of
7825 -- the root Super_String type.
7827 elsif Is_Bounded_String
(Typl
) then
7829 First_Elmt
(Collect_Primitive_Operations
(Root_Type
(Typl
)));
7831 while Present
(Prim
) loop
7832 exit when Chars
(Node
(Prim
)) = Name_Op_Eq
7833 and then Etype
(First_Formal
(Node
(Prim
))) =
7834 Etype
(Next_Formal
(First_Formal
(Node
(Prim
))))
7835 and then Base_Type
(Etype
(Node
(Prim
))) = Standard_Boolean
;
7840 -- A Super_String type should always have a primitive equality
7842 pragma Assert
(Present
(Prim
));
7843 Build_Equality_Call
(Node
(Prim
));
7845 -- Otherwise expand the component by component equality. Note that
7846 -- we never use block-bit comparisons for records, because of the
7847 -- problems with gaps. The backend will often be able to recombine
7848 -- the separate comparisons that we generate here.
7851 Remove_Side_Effects
(Lhs
);
7852 Remove_Side_Effects
(Rhs
);
7854 Expand_Record_Equality
(N
, Typl
, Lhs
, Rhs
, Bodies
));
7856 Insert_Actions
(N
, Bodies
, Suppress
=> All_Checks
);
7857 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
7861 -- Test if result is known at compile time
7863 Rewrite_Comparison
(N
);
7865 -- Special optimization of length comparison
7867 Optimize_Length_Comparison
(N
);
7869 -- One more special case: if we have a comparison of X'Result = expr
7870 -- in floating-point, then if not already there, change expr to be
7871 -- f'Machine (expr) to eliminate surprise from extra precision.
7873 if Is_Floating_Point_Type
(Typl
)
7874 and then Nkind
(Original_Node
(Lhs
)) = N_Attribute_Reference
7875 and then Attribute_Name
(Original_Node
(Lhs
)) = Name_Result
7877 -- Stick in the Typ'Machine call if not already there
7879 if Nkind
(Rhs
) /= N_Attribute_Reference
7880 or else Attribute_Name
(Rhs
) /= Name_Machine
7883 Make_Attribute_Reference
(Loc
,
7884 Prefix
=> New_Occurrence_Of
(Typl
, Loc
),
7885 Attribute_Name
=> Name_Machine
,
7886 Expressions
=> New_List
(Relocate_Node
(Rhs
))));
7887 Analyze_And_Resolve
(Rhs
, Typl
);
7892 -----------------------
7893 -- Expand_N_Op_Expon --
7894 -----------------------
7896 procedure Expand_N_Op_Expon
(N
: Node_Id
) is
7897 Loc
: constant Source_Ptr
:= Sloc
(N
);
7898 Ovflo
: constant Boolean := Do_Overflow_Check
(N
);
7899 Typ
: constant Entity_Id
:= Etype
(N
);
7900 Rtyp
: constant Entity_Id
:= Root_Type
(Typ
);
7904 function Wrap_MA
(Exp
: Node_Id
) return Node_Id
;
7905 -- Given an expression Exp, if the root type is Float or Long_Float,
7906 -- then wrap the expression in a call of Bastyp'Machine, to stop any
7907 -- extra precision. This is done to ensure that X**A = X**B when A is
7908 -- a static constant and B is a variable with the same value. For any
7909 -- other type, the node Exp is returned unchanged.
7915 function Wrap_MA
(Exp
: Node_Id
) return Node_Id
is
7916 Loc
: constant Source_Ptr
:= Sloc
(Exp
);
7919 if Rtyp
= Standard_Float
or else Rtyp
= Standard_Long_Float
then
7921 Make_Attribute_Reference
(Loc
,
7922 Attribute_Name
=> Name_Machine
,
7923 Prefix
=> New_Occurrence_Of
(Bastyp
, Loc
),
7924 Expressions
=> New_List
(Relocate_Node
(Exp
)));
7942 -- Start of processing for Expand_N_Op_Expon
7945 Binary_Op_Validity_Checks
(N
);
7947 -- CodePeer wants to see the unexpanded N_Op_Expon node
7949 if CodePeer_Mode
then
7953 -- Relocation of left and right operands must be done after performing
7954 -- the validity checks since the generation of validation checks may
7955 -- remove side effects.
7957 Base
:= Relocate_Node
(Left_Opnd
(N
));
7958 Bastyp
:= Etype
(Base
);
7959 Exp
:= Relocate_Node
(Right_Opnd
(N
));
7960 Exptyp
:= Etype
(Exp
);
7962 -- If either operand is of a private type, then we have the use of an
7963 -- intrinsic operator, and we get rid of the privateness, by using root
7964 -- types of underlying types for the actual operation. Otherwise the
7965 -- private types will cause trouble if we expand multiplications or
7966 -- shifts etc. We also do this transformation if the result type is
7967 -- different from the base type.
7969 if Is_Private_Type
(Etype
(Base
))
7970 or else Is_Private_Type
(Typ
)
7971 or else Is_Private_Type
(Exptyp
)
7972 or else Rtyp
/= Root_Type
(Bastyp
)
7975 Bt
: constant Entity_Id
:= Root_Type
(Underlying_Type
(Bastyp
));
7976 Et
: constant Entity_Id
:= Root_Type
(Underlying_Type
(Exptyp
));
7979 Unchecked_Convert_To
(Typ
,
7981 Left_Opnd
=> Unchecked_Convert_To
(Bt
, Base
),
7982 Right_Opnd
=> Unchecked_Convert_To
(Et
, Exp
))));
7983 Analyze_And_Resolve
(N
, Typ
);
7988 -- Check for MINIMIZED/ELIMINATED overflow mode
7990 if Minimized_Eliminated_Overflow_Check
(N
) then
7991 Apply_Arithmetic_Overflow_Check
(N
);
7995 -- Test for case of known right argument where we can replace the
7996 -- exponentiation by an equivalent expression using multiplication.
7998 -- Note: use CRT_Safe version of Compile_Time_Known_Value because in
7999 -- configurable run-time mode, we may not have the exponentiation
8000 -- routine available, and we don't want the legality of the program
8001 -- to depend on how clever the compiler is in knowing values.
8003 if CRT_Safe_Compile_Time_Known_Value
(Exp
) then
8004 Expv
:= Expr_Value
(Exp
);
8006 -- We only fold small non-negative exponents. You might think we
8007 -- could fold small negative exponents for the real case, but we
8008 -- can't because we are required to raise Constraint_Error for
8009 -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
8010 -- See ACVC test C4A012B, and it is not worth generating the test.
8012 -- For small negative exponents, we return the reciprocal of
8013 -- the folding of the exponentiation for the opposite (positive)
8014 -- exponent, as required by Ada RM 4.5.6(11/3).
8016 if abs Expv
<= 4 then
8018 -- X ** 0 = 1 (or 1.0)
8022 -- Call Remove_Side_Effects to ensure that any side effects
8023 -- in the ignored left operand (in particular function calls
8024 -- to user defined functions) are properly executed.
8026 Remove_Side_Effects
(Base
);
8028 if Ekind
(Typ
) in Integer_Kind
then
8029 Xnode
:= Make_Integer_Literal
(Loc
, Intval
=> 1);
8031 Xnode
:= Make_Real_Literal
(Loc
, Ureal_1
);
8044 Make_Op_Multiply
(Loc
,
8045 Left_Opnd
=> Duplicate_Subexpr
(Base
),
8046 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Base
)));
8048 -- X ** 3 = X * X * X
8053 Make_Op_Multiply
(Loc
,
8055 Make_Op_Multiply
(Loc
,
8056 Left_Opnd
=> Duplicate_Subexpr
(Base
),
8057 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Base
)),
8058 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Base
)));
8063 -- En : constant base'type := base * base;
8068 Temp
:= Make_Temporary
(Loc
, 'E', Base
);
8071 Make_Expression_With_Actions
(Loc
,
8072 Actions
=> New_List
(
8073 Make_Object_Declaration
(Loc
,
8074 Defining_Identifier
=> Temp
,
8075 Constant_Present
=> True,
8076 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
8079 Make_Op_Multiply
(Loc
,
8081 Duplicate_Subexpr
(Base
),
8083 Duplicate_Subexpr_No_Checks
(Base
))))),
8087 Make_Op_Multiply
(Loc
,
8088 Left_Opnd
=> New_Occurrence_Of
(Temp
, Loc
),
8089 Right_Opnd
=> New_Occurrence_Of
(Temp
, Loc
))));
8091 -- X ** N = 1.0 / X ** (-N)
8096 (Expv
= -1 or Expv
= -2 or Expv
= -3 or Expv
= -4);
8099 Make_Op_Divide
(Loc
,
8101 Make_Float_Literal
(Loc
,
8103 Significand
=> Uint_1
,
8104 Exponent
=> Uint_0
),
8107 Left_Opnd
=> Duplicate_Subexpr
(Base
),
8109 Make_Integer_Literal
(Loc
,
8114 Analyze_And_Resolve
(N
, Typ
);
8119 -- Deal with optimizing 2 ** expression to shift where possible
8121 -- Note: we used to check that Exptyp was an unsigned type. But that is
8122 -- an unnecessary check, since if Exp is negative, we have a run-time
8123 -- error that is either caught (so we get the right result) or we have
8124 -- suppressed the check, in which case the code is erroneous anyway.
8126 if Is_Integer_Type
(Rtyp
)
8128 -- The base value must be "safe compile-time known", and exactly 2
8130 and then Nkind
(Base
) = N_Integer_Literal
8131 and then CRT_Safe_Compile_Time_Known_Value
(Base
)
8132 and then Expr_Value
(Base
) = Uint_2
8134 -- We only handle cases where the right type is a integer
8136 and then Is_Integer_Type
(Root_Type
(Exptyp
))
8137 and then Esize
(Root_Type
(Exptyp
)) <= Esize
(Standard_Integer
)
8139 -- This transformation is not applicable for a modular type with a
8140 -- nonbinary modulus because we do not handle modular reduction in
8141 -- a correct manner if we attempt this transformation in this case.
8143 and then not Non_Binary_Modulus
(Typ
)
8145 -- Handle the cases where our parent is a division or multiplication
8146 -- specially. In these cases we can convert to using a shift at the
8147 -- parent level if we are not doing overflow checking, since it is
8148 -- too tricky to combine the overflow check at the parent level.
8151 and then Nkind_In
(Parent
(N
), N_Op_Divide
, N_Op_Multiply
)
8154 P
: constant Node_Id
:= Parent
(N
);
8155 L
: constant Node_Id
:= Left_Opnd
(P
);
8156 R
: constant Node_Id
:= Right_Opnd
(P
);
8159 if (Nkind
(P
) = N_Op_Multiply
8161 ((Is_Integer_Type
(Etype
(L
)) and then R
= N
)
8163 (Is_Integer_Type
(Etype
(R
)) and then L
= N
))
8164 and then not Do_Overflow_Check
(P
))
8167 (Nkind
(P
) = N_Op_Divide
8168 and then Is_Integer_Type
(Etype
(L
))
8169 and then Is_Unsigned_Type
(Etype
(L
))
8171 and then not Do_Overflow_Check
(P
))
8173 Set_Is_Power_Of_2_For_Shift
(N
);
8178 -- Here we just have 2 ** N on its own, so we can convert this to a
8179 -- shift node. We are prepared to deal with overflow here, and we
8180 -- also have to handle proper modular reduction for binary modular.
8189 -- Maximum shift count with no overflow
8192 -- Set True if we must test the shift count
8195 -- Node for test against TestS
8198 -- Compute maximum shift based on the underlying size. For a
8199 -- modular type this is one less than the size.
8201 if Is_Modular_Integer_Type
(Typ
) then
8203 -- For modular integer types, this is the size of the value
8204 -- being shifted minus one. Any larger values will cause
8205 -- modular reduction to a result of zero. Note that we do
8206 -- want the RM_Size here (e.g. mod 2 ** 7, we want a result
8207 -- of 6, since 2**7 should be reduced to zero).
8209 MaxS
:= RM_Size
(Rtyp
) - 1;
8211 -- For signed integer types, we use the size of the value
8212 -- being shifted minus 2. Larger values cause overflow.
8215 MaxS
:= Esize
(Rtyp
) - 2;
8218 -- Determine range to see if it can be larger than MaxS
8221 (Right_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
8222 TestS
:= (not OK
) or else Hi
> MaxS
;
8224 -- Signed integer case
8226 if Is_Signed_Integer_Type
(Typ
) then
8228 -- Generate overflow check if overflow is active. Note that
8229 -- we can simply ignore the possibility of overflow if the
8230 -- flag is not set (means that overflow cannot happen or
8231 -- that overflow checks are suppressed).
8233 if Ovflo
and TestS
then
8235 Make_Raise_Constraint_Error
(Loc
,
8238 Left_Opnd
=> Duplicate_Subexpr
(Right_Opnd
(N
)),
8239 Right_Opnd
=> Make_Integer_Literal
(Loc
, MaxS
)),
8240 Reason
=> CE_Overflow_Check_Failed
));
8243 -- Now rewrite node as Shift_Left (1, right-operand)
8246 Make_Op_Shift_Left
(Loc
,
8247 Left_Opnd
=> Make_Integer_Literal
(Loc
, Uint_1
),
8248 Right_Opnd
=> Right_Opnd
(N
)));
8250 -- Modular integer case
8252 else pragma Assert
(Is_Modular_Integer_Type
(Typ
));
8254 -- If shift count can be greater than MaxS, we need to wrap
8255 -- the shift in a test that will reduce the result value to
8256 -- zero if this shift count is exceeded.
8260 -- Note: build node for the comparison first, before we
8261 -- reuse the Right_Opnd, so that we have proper parents
8262 -- in place for the Duplicate_Subexpr call.
8266 Left_Opnd
=> Duplicate_Subexpr
(Right_Opnd
(N
)),
8267 Right_Opnd
=> Make_Integer_Literal
(Loc
, MaxS
));
8270 Make_If_Expression
(Loc
,
8271 Expressions
=> New_List
(
8273 Make_Integer_Literal
(Loc
, Uint_0
),
8274 Make_Op_Shift_Left
(Loc
,
8275 Left_Opnd
=> Make_Integer_Literal
(Loc
, Uint_1
),
8276 Right_Opnd
=> Right_Opnd
(N
)))));
8278 -- If we know shift count cannot be greater than MaxS, then
8279 -- it is safe to just rewrite as a shift with no test.
8283 Make_Op_Shift_Left
(Loc
,
8284 Left_Opnd
=> Make_Integer_Literal
(Loc
, Uint_1
),
8285 Right_Opnd
=> Right_Opnd
(N
)));
8289 Analyze_And_Resolve
(N
, Typ
);
8295 -- Fall through if exponentiation must be done using a runtime routine
8297 -- First deal with modular case
8299 if Is_Modular_Integer_Type
(Rtyp
) then
8301 -- Nonbinary modular case, we call the special exponentiation
8302 -- routine for the nonbinary case, converting the argument to
8303 -- Long_Long_Integer and passing the modulus value. Then the
8304 -- result is converted back to the base type.
8306 if Non_Binary_Modulus
(Rtyp
) then
8309 Make_Function_Call
(Loc
,
8311 New_Occurrence_Of
(RTE
(RE_Exp_Modular
), Loc
),
8312 Parameter_Associations
=> New_List
(
8313 Convert_To
(RTE
(RE_Unsigned
), Base
),
8314 Make_Integer_Literal
(Loc
, Modulus
(Rtyp
)),
8317 -- Binary modular case, in this case, we call one of two routines,
8318 -- either the unsigned integer case, or the unsigned long long
8319 -- integer case, with a final "and" operation to do the required mod.
8322 if UI_To_Int
(Esize
(Rtyp
)) <= Standard_Integer_Size
then
8323 Ent
:= RTE
(RE_Exp_Unsigned
);
8325 Ent
:= RTE
(RE_Exp_Long_Long_Unsigned
);
8332 Make_Function_Call
(Loc
,
8333 Name
=> New_Occurrence_Of
(Ent
, Loc
),
8334 Parameter_Associations
=> New_List
(
8335 Convert_To
(Etype
(First_Formal
(Ent
)), Base
),
8338 Make_Integer_Literal
(Loc
, Modulus
(Rtyp
) - 1))));
8342 -- Common exit point for modular type case
8344 Analyze_And_Resolve
(N
, Typ
);
8347 -- Signed integer cases, done using either Integer or Long_Long_Integer.
8348 -- It is not worth having routines for Short_[Short_]Integer, since for
8349 -- most machines it would not help, and it would generate more code that
8350 -- might need certification when a certified run time is required.
8352 -- In the integer cases, we have two routines, one for when overflow
8353 -- checks are required, and one when they are not required, since there
8354 -- is a real gain in omitting checks on many machines.
8356 elsif Rtyp
= Base_Type
(Standard_Long_Long_Integer
)
8357 or else (Rtyp
= Base_Type
(Standard_Long_Integer
)
8359 Esize
(Standard_Long_Integer
) > Esize
(Standard_Integer
))
8360 or else Rtyp
= Universal_Integer
8362 Etyp
:= Standard_Long_Long_Integer
;
8365 Rent
:= RE_Exp_Long_Long_Integer
;
8367 Rent
:= RE_Exn_Long_Long_Integer
;
8370 elsif Is_Signed_Integer_Type
(Rtyp
) then
8371 Etyp
:= Standard_Integer
;
8374 Rent
:= RE_Exp_Integer
;
8376 Rent
:= RE_Exn_Integer
;
8379 -- Floating-point cases. We do not need separate routines for the
8380 -- overflow case here, since in the case of floating-point, we generate
8381 -- infinities anyway as a rule (either that or we automatically trap
8382 -- overflow), and if there is an infinity generated and a range check
8383 -- is required, the check will fail anyway.
8385 -- Historical note: we used to convert everything to Long_Long_Float
8386 -- and call a single common routine, but this had the undesirable effect
8387 -- of giving different results for small static exponent values and the
8388 -- same dynamic values.
8391 pragma Assert
(Is_Floating_Point_Type
(Rtyp
));
8393 if Rtyp
= Standard_Float
then
8394 Etyp
:= Standard_Float
;
8395 Rent
:= RE_Exn_Float
;
8397 elsif Rtyp
= Standard_Long_Float
then
8398 Etyp
:= Standard_Long_Float
;
8399 Rent
:= RE_Exn_Long_Float
;
8402 Etyp
:= Standard_Long_Long_Float
;
8403 Rent
:= RE_Exn_Long_Long_Float
;
8407 -- Common processing for integer cases and floating-point cases.
8408 -- If we are in the right type, we can call runtime routine directly
8411 and then Rtyp
/= Universal_Integer
8412 and then Rtyp
/= Universal_Real
8416 Make_Function_Call
(Loc
,
8417 Name
=> New_Occurrence_Of
(RTE
(Rent
), Loc
),
8418 Parameter_Associations
=> New_List
(Base
, Exp
))));
8420 -- Otherwise we have to introduce conversions (conversions are also
8421 -- required in the universal cases, since the runtime routine is
8422 -- typed using one of the standard types).
8427 Make_Function_Call
(Loc
,
8428 Name
=> New_Occurrence_Of
(RTE
(Rent
), Loc
),
8429 Parameter_Associations
=> New_List
(
8430 Convert_To
(Etyp
, Base
),
8434 Analyze_And_Resolve
(N
, Typ
);
8438 when RE_Not_Available
=>
8440 end Expand_N_Op_Expon
;
8442 --------------------
8443 -- Expand_N_Op_Ge --
8444 --------------------
8446 procedure Expand_N_Op_Ge
(N
: Node_Id
) is
8447 Typ
: constant Entity_Id
:= Etype
(N
);
8448 Op1
: constant Node_Id
:= Left_Opnd
(N
);
8449 Op2
: constant Node_Id
:= Right_Opnd
(N
);
8450 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
8453 Binary_Op_Validity_Checks
(N
);
8455 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
8456 -- means we no longer have a comparison operation, we are all done.
8458 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
8460 if Nkind
(N
) /= N_Op_Ge
then
8466 if Is_Array_Type
(Typ1
) then
8467 Expand_Array_Comparison
(N
);
8471 -- Deal with boolean operands
8473 if Is_Boolean_Type
(Typ1
) then
8474 Adjust_Condition
(Op1
);
8475 Adjust_Condition
(Op2
);
8476 Set_Etype
(N
, Standard_Boolean
);
8477 Adjust_Result_Type
(N
, Typ
);
8480 Rewrite_Comparison
(N
);
8482 Optimize_Length_Comparison
(N
);
8485 --------------------
8486 -- Expand_N_Op_Gt --
8487 --------------------
8489 procedure Expand_N_Op_Gt
(N
: Node_Id
) is
8490 Typ
: constant Entity_Id
:= Etype
(N
);
8491 Op1
: constant Node_Id
:= Left_Opnd
(N
);
8492 Op2
: constant Node_Id
:= Right_Opnd
(N
);
8493 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
8496 Binary_Op_Validity_Checks
(N
);
8498 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
8499 -- means we no longer have a comparison operation, we are all done.
8501 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
8503 if Nkind
(N
) /= N_Op_Gt
then
8507 -- Deal with array type operands
8509 if Is_Array_Type
(Typ1
) then
8510 Expand_Array_Comparison
(N
);
8514 -- Deal with boolean type operands
8516 if Is_Boolean_Type
(Typ1
) then
8517 Adjust_Condition
(Op1
);
8518 Adjust_Condition
(Op2
);
8519 Set_Etype
(N
, Standard_Boolean
);
8520 Adjust_Result_Type
(N
, Typ
);
8523 Rewrite_Comparison
(N
);
8525 Optimize_Length_Comparison
(N
);
8528 --------------------
8529 -- Expand_N_Op_Le --
8530 --------------------
8532 procedure Expand_N_Op_Le
(N
: Node_Id
) is
8533 Typ
: constant Entity_Id
:= Etype
(N
);
8534 Op1
: constant Node_Id
:= Left_Opnd
(N
);
8535 Op2
: constant Node_Id
:= Right_Opnd
(N
);
8536 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
8539 Binary_Op_Validity_Checks
(N
);
8541 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
8542 -- means we no longer have a comparison operation, we are all done.
8544 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
8546 if Nkind
(N
) /= N_Op_Le
then
8550 -- Deal with array type operands
8552 if Is_Array_Type
(Typ1
) then
8553 Expand_Array_Comparison
(N
);
8557 -- Deal with Boolean type operands
8559 if Is_Boolean_Type
(Typ1
) then
8560 Adjust_Condition
(Op1
);
8561 Adjust_Condition
(Op2
);
8562 Set_Etype
(N
, Standard_Boolean
);
8563 Adjust_Result_Type
(N
, Typ
);
8566 Rewrite_Comparison
(N
);
8568 Optimize_Length_Comparison
(N
);
8571 --------------------
8572 -- Expand_N_Op_Lt --
8573 --------------------
8575 procedure Expand_N_Op_Lt
(N
: Node_Id
) is
8576 Typ
: constant Entity_Id
:= Etype
(N
);
8577 Op1
: constant Node_Id
:= Left_Opnd
(N
);
8578 Op2
: constant Node_Id
:= Right_Opnd
(N
);
8579 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
8582 Binary_Op_Validity_Checks
(N
);
8584 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
8585 -- means we no longer have a comparison operation, we are all done.
8587 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
8589 if Nkind
(N
) /= N_Op_Lt
then
8593 -- Deal with array type operands
8595 if Is_Array_Type
(Typ1
) then
8596 Expand_Array_Comparison
(N
);
8600 -- Deal with Boolean type operands
8602 if Is_Boolean_Type
(Typ1
) then
8603 Adjust_Condition
(Op1
);
8604 Adjust_Condition
(Op2
);
8605 Set_Etype
(N
, Standard_Boolean
);
8606 Adjust_Result_Type
(N
, Typ
);
8609 Rewrite_Comparison
(N
);
8611 Optimize_Length_Comparison
(N
);
8614 -----------------------
8615 -- Expand_N_Op_Minus --
8616 -----------------------
8618 procedure Expand_N_Op_Minus
(N
: Node_Id
) is
8619 Loc
: constant Source_Ptr
:= Sloc
(N
);
8620 Typ
: constant Entity_Id
:= Etype
(N
);
8623 Unary_Op_Validity_Checks
(N
);
8625 -- Check for MINIMIZED/ELIMINATED overflow mode
8627 if Minimized_Eliminated_Overflow_Check
(N
) then
8628 Apply_Arithmetic_Overflow_Check
(N
);
8632 if not Backend_Overflow_Checks_On_Target
8633 and then Is_Signed_Integer_Type
(Etype
(N
))
8634 and then Do_Overflow_Check
(N
)
8636 -- Software overflow checking expands -expr into (0 - expr)
8639 Make_Op_Subtract
(Loc
,
8640 Left_Opnd
=> Make_Integer_Literal
(Loc
, 0),
8641 Right_Opnd
=> Right_Opnd
(N
)));
8643 Analyze_And_Resolve
(N
, Typ
);
8646 -- Generating C code convert non-binary modular minus into code that
8647 -- relies on the frontend expansion of operator Mod.
8649 if Modify_Tree_For_C
then
8650 Expand_Non_Binary_Modular_Op
(N
);
8652 end Expand_N_Op_Minus
;
8654 ---------------------
8655 -- Expand_N_Op_Mod --
8656 ---------------------
8658 procedure Expand_N_Op_Mod
(N
: Node_Id
) is
8659 Loc
: constant Source_Ptr
:= Sloc
(N
);
8660 Typ
: constant Entity_Id
:= Etype
(N
);
8661 DDC
: constant Boolean := Do_Division_Check
(N
);
8674 pragma Warnings
(Off
, Lhi
);
8677 Binary_Op_Validity_Checks
(N
);
8679 -- Check for MINIMIZED/ELIMINATED overflow mode
8681 if Minimized_Eliminated_Overflow_Check
(N
) then
8682 Apply_Arithmetic_Overflow_Check
(N
);
8686 if Is_Integer_Type
(Etype
(N
)) then
8687 Apply_Divide_Checks
(N
);
8689 -- All done if we don't have a MOD any more, which can happen as a
8690 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
8692 if Nkind
(N
) /= N_Op_Mod
then
8697 -- Proceed with expansion of mod operator
8699 Left
:= Left_Opnd
(N
);
8700 Right
:= Right_Opnd
(N
);
8702 Determine_Range
(Right
, ROK
, Rlo
, Rhi
, Assume_Valid
=> True);
8703 Determine_Range
(Left
, LOK
, Llo
, Lhi
, Assume_Valid
=> True);
8705 -- Convert mod to rem if operands are both known to be non-negative, or
8706 -- both known to be non-positive (these are the cases in which rem and
8707 -- mod are the same, see (RM 4.5.5(28-30)). We do this since it is quite
8708 -- likely that this will improve the quality of code, (the operation now
8709 -- corresponds to the hardware remainder), and it does not seem likely
8710 -- that it could be harmful. It also avoids some cases of the elaborate
8711 -- expansion in Modify_Tree_For_C mode below (since Ada rem = C %).
8714 and then ((Llo
>= 0 and then Rlo
>= 0)
8716 (Lhi
<= 0 and then Rhi
<= 0))
8719 Make_Op_Rem
(Sloc
(N
),
8720 Left_Opnd
=> Left_Opnd
(N
),
8721 Right_Opnd
=> Right_Opnd
(N
)));
8723 -- Instead of reanalyzing the node we do the analysis manually. This
8724 -- avoids anomalies when the replacement is done in an instance and
8725 -- is epsilon more efficient.
8727 Set_Entity
(N
, Standard_Entity
(S_Op_Rem
));
8729 Set_Do_Division_Check
(N
, DDC
);
8730 Expand_N_Op_Rem
(N
);
8734 -- Otherwise, normal mod processing
8737 -- Apply optimization x mod 1 = 0. We don't really need that with
8738 -- gcc, but it is useful with other back ends and is certainly
8741 if Is_Integer_Type
(Etype
(N
))
8742 and then Compile_Time_Known_Value
(Right
)
8743 and then Expr_Value
(Right
) = Uint_1
8745 -- Call Remove_Side_Effects to ensure that any side effects in
8746 -- the ignored left operand (in particular function calls to
8747 -- user defined functions) are properly executed.
8749 Remove_Side_Effects
(Left
);
8751 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
8752 Analyze_And_Resolve
(N
, Typ
);
8756 -- If we still have a mod operator and we are in Modify_Tree_For_C
8757 -- mode, and we have a signed integer type, then here is where we do
8758 -- the rewrite in terms of Rem. Note this rewrite bypasses the need
8759 -- for the special handling of the annoying case of largest negative
8760 -- number mod minus one.
8762 if Nkind
(N
) = N_Op_Mod
8763 and then Is_Signed_Integer_Type
(Typ
)
8764 and then Modify_Tree_For_C
8766 -- In the general case, we expand A mod B as
8768 -- Tnn : constant typ := A rem B;
8770 -- (if (A >= 0) = (B >= 0) then Tnn
8771 -- elsif Tnn = 0 then 0
8774 -- The comparison can be written simply as A >= 0 if we know that
8775 -- B >= 0 which is a very common case.
8777 -- An important optimization is when B is known at compile time
8778 -- to be 2**K for some constant. In this case we can simply AND
8779 -- the left operand with the bit string 2**K-1 (i.e. K 1-bits)
8780 -- and that works for both the positive and negative cases.
8783 P2
: constant Nat
:= Power_Of_Two
(Right
);
8788 Unchecked_Convert_To
(Typ
,
8791 Unchecked_Convert_To
8792 (Corresponding_Unsigned_Type
(Typ
), Left
),
8794 Make_Integer_Literal
(Loc
, 2 ** P2
- 1))));
8795 Analyze_And_Resolve
(N
, Typ
);
8800 -- Here for the full rewrite
8803 Tnn
: constant Entity_Id
:= Make_Temporary
(Sloc
(N
), 'T', N
);
8809 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left
),
8810 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
8812 if not LOK
or else Rlo
< 0 then
8818 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Right
),
8819 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)));
8823 Make_Object_Declaration
(Loc
,
8824 Defining_Identifier
=> Tnn
,
8825 Constant_Present
=> True,
8826 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
8830 Right_Opnd
=> Right
)));
8833 Make_If_Expression
(Loc
,
8834 Expressions
=> New_List
(
8836 New_Occurrence_Of
(Tnn
, Loc
),
8837 Make_If_Expression
(Loc
,
8839 Expressions
=> New_List
(
8841 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
8842 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)),
8843 Make_Integer_Literal
(Loc
, 0),
8845 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
8847 Duplicate_Subexpr_No_Checks
(Right
)))))));
8849 Analyze_And_Resolve
(N
, Typ
);
8854 -- Deal with annoying case of largest negative number mod minus one.
8855 -- Gigi may not handle this case correctly, because on some targets,
8856 -- the mod value is computed using a divide instruction which gives
8857 -- an overflow trap for this case.
8859 -- It would be a bit more efficient to figure out which targets
8860 -- this is really needed for, but in practice it is reasonable
8861 -- to do the following special check in all cases, since it means
8862 -- we get a clearer message, and also the overhead is minimal given
8863 -- that division is expensive in any case.
8865 -- In fact the check is quite easy, if the right operand is -1, then
8866 -- the mod value is always 0, and we can just ignore the left operand
8867 -- completely in this case.
8869 -- This only applies if we still have a mod operator. Skip if we
8870 -- have already rewritten this (e.g. in the case of eliminated
8871 -- overflow checks which have driven us into bignum mode).
8873 if Nkind
(N
) = N_Op_Mod
then
8875 -- The operand type may be private (e.g. in the expansion of an
8876 -- intrinsic operation) so we must use the underlying type to get
8877 -- the bounds, and convert the literals explicitly.
8881 (Type_Low_Bound
(Base_Type
(Underlying_Type
(Etype
(Left
)))));
8883 if ((not ROK
) or else (Rlo
<= (-1) and then (-1) <= Rhi
))
8884 and then ((not LOK
) or else (Llo
= LLB
))
8887 Make_If_Expression
(Loc
,
8888 Expressions
=> New_List
(
8890 Left_Opnd
=> Duplicate_Subexpr
(Right
),
8892 Unchecked_Convert_To
(Typ
,
8893 Make_Integer_Literal
(Loc
, -1))),
8894 Unchecked_Convert_To
(Typ
,
8895 Make_Integer_Literal
(Loc
, Uint_0
)),
8896 Relocate_Node
(N
))));
8898 Set_Analyzed
(Next
(Next
(First
(Expressions
(N
)))));
8899 Analyze_And_Resolve
(N
, Typ
);
8903 end Expand_N_Op_Mod
;
8905 --------------------------
8906 -- Expand_N_Op_Multiply --
8907 --------------------------
8909 procedure Expand_N_Op_Multiply
(N
: Node_Id
) is
8910 Loc
: constant Source_Ptr
:= Sloc
(N
);
8911 Lop
: constant Node_Id
:= Left_Opnd
(N
);
8912 Rop
: constant Node_Id
:= Right_Opnd
(N
);
8914 Lp2
: constant Boolean :=
8915 Nkind
(Lop
) = N_Op_Expon
and then Is_Power_Of_2_For_Shift
(Lop
);
8916 Rp2
: constant Boolean :=
8917 Nkind
(Rop
) = N_Op_Expon
and then Is_Power_Of_2_For_Shift
(Rop
);
8919 Ltyp
: constant Entity_Id
:= Etype
(Lop
);
8920 Rtyp
: constant Entity_Id
:= Etype
(Rop
);
8921 Typ
: Entity_Id
:= Etype
(N
);
8924 Binary_Op_Validity_Checks
(N
);
8926 -- Check for MINIMIZED/ELIMINATED overflow mode
8928 if Minimized_Eliminated_Overflow_Check
(N
) then
8929 Apply_Arithmetic_Overflow_Check
(N
);
8933 -- Special optimizations for integer types
8935 if Is_Integer_Type
(Typ
) then
8937 -- N * 0 = 0 for integer types
8939 if Compile_Time_Known_Value
(Rop
)
8940 and then Expr_Value
(Rop
) = Uint_0
8942 -- Call Remove_Side_Effects to ensure that any side effects in
8943 -- the ignored left operand (in particular function calls to
8944 -- user defined functions) are properly executed.
8946 Remove_Side_Effects
(Lop
);
8948 Rewrite
(N
, Make_Integer_Literal
(Loc
, Uint_0
));
8949 Analyze_And_Resolve
(N
, Typ
);
8953 -- Similar handling for 0 * N = 0
8955 if Compile_Time_Known_Value
(Lop
)
8956 and then Expr_Value
(Lop
) = Uint_0
8958 Remove_Side_Effects
(Rop
);
8959 Rewrite
(N
, Make_Integer_Literal
(Loc
, Uint_0
));
8960 Analyze_And_Resolve
(N
, Typ
);
8964 -- N * 1 = 1 * N = N for integer types
8966 -- This optimisation is not done if we are going to
8967 -- rewrite the product 1 * 2 ** N to a shift.
8969 if Compile_Time_Known_Value
(Rop
)
8970 and then Expr_Value
(Rop
) = Uint_1
8976 elsif Compile_Time_Known_Value
(Lop
)
8977 and then Expr_Value
(Lop
) = Uint_1
8985 -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
8986 -- Is_Power_Of_2_For_Shift is set means that we know that our left
8987 -- operand is an integer, as required for this to work.
8992 -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
8996 Left_Opnd
=> Make_Integer_Literal
(Loc
, 2),
8999 Left_Opnd
=> Right_Opnd
(Lop
),
9000 Right_Opnd
=> Right_Opnd
(Rop
))));
9001 Analyze_And_Resolve
(N
, Typ
);
9005 -- If the result is modular, perform the reduction of the result
9008 if Is_Modular_Integer_Type
(Typ
)
9009 and then not Non_Binary_Modulus
(Typ
)
9014 Make_Op_Shift_Left
(Loc
,
9017 Convert_To
(Standard_Natural
, Right_Opnd
(Rop
))),
9019 Make_Integer_Literal
(Loc
, Modulus
(Typ
) - 1)));
9023 Make_Op_Shift_Left
(Loc
,
9026 Convert_To
(Standard_Natural
, Right_Opnd
(Rop
))));
9029 Analyze_And_Resolve
(N
, Typ
);
9033 -- Same processing for the operands the other way round
9036 if Is_Modular_Integer_Type
(Typ
)
9037 and then not Non_Binary_Modulus
(Typ
)
9042 Make_Op_Shift_Left
(Loc
,
9045 Convert_To
(Standard_Natural
, Right_Opnd
(Lop
))),
9047 Make_Integer_Literal
(Loc
, Modulus
(Typ
) - 1)));
9051 Make_Op_Shift_Left
(Loc
,
9054 Convert_To
(Standard_Natural
, Right_Opnd
(Lop
))));
9057 Analyze_And_Resolve
(N
, Typ
);
9061 -- Do required fixup of universal fixed operation
9063 if Typ
= Universal_Fixed
then
9064 Fixup_Universal_Fixed_Operation
(N
);
9068 -- Multiplications with fixed-point results
9070 if Is_Fixed_Point_Type
(Typ
) then
9072 -- No special processing if Treat_Fixed_As_Integer is set, since from
9073 -- a semantic point of view such operations are simply integer
9074 -- operations and will be treated that way.
9076 if not Treat_Fixed_As_Integer
(N
) then
9078 -- Case of fixed * integer => fixed
9080 if Is_Integer_Type
(Rtyp
) then
9081 Expand_Multiply_Fixed_By_Integer_Giving_Fixed
(N
);
9083 -- Case of integer * fixed => fixed
9085 elsif Is_Integer_Type
(Ltyp
) then
9086 Expand_Multiply_Integer_By_Fixed_Giving_Fixed
(N
);
9088 -- Case of fixed * fixed => fixed
9091 Expand_Multiply_Fixed_By_Fixed_Giving_Fixed
(N
);
9095 -- Other cases of multiplication of fixed-point operands. Again we
9096 -- exclude the cases where Treat_Fixed_As_Integer flag is set.
9098 elsif (Is_Fixed_Point_Type
(Ltyp
) or else Is_Fixed_Point_Type
(Rtyp
))
9099 and then not Treat_Fixed_As_Integer
(N
)
9101 if Is_Integer_Type
(Typ
) then
9102 Expand_Multiply_Fixed_By_Fixed_Giving_Integer
(N
);
9104 pragma Assert
(Is_Floating_Point_Type
(Typ
));
9105 Expand_Multiply_Fixed_By_Fixed_Giving_Float
(N
);
9108 -- Mixed-mode operations can appear in a non-static universal context,
9109 -- in which case the integer argument must be converted explicitly.
9111 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Rtyp
) then
9112 Rewrite
(Rop
, Convert_To
(Universal_Real
, Relocate_Node
(Rop
)));
9113 Analyze_And_Resolve
(Rop
, Universal_Real
);
9115 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Ltyp
) then
9116 Rewrite
(Lop
, Convert_To
(Universal_Real
, Relocate_Node
(Lop
)));
9117 Analyze_And_Resolve
(Lop
, Universal_Real
);
9119 -- Non-fixed point cases, check software overflow checking required
9121 elsif Is_Signed_Integer_Type
(Etype
(N
)) then
9122 Apply_Arithmetic_Overflow_Check
(N
);
9125 -- Overflow checks for floating-point if -gnateF mode active
9127 Check_Float_Op_Overflow
(N
);
9129 -- Generating C code convert non-binary modular multiplications into
9130 -- code that relies on the frontend expansion of operator Mod.
9132 if Modify_Tree_For_C
then
9133 Expand_Non_Binary_Modular_Op
(N
);
9135 end Expand_N_Op_Multiply
;
9137 --------------------
9138 -- Expand_N_Op_Ne --
9139 --------------------
9141 procedure Expand_N_Op_Ne
(N
: Node_Id
) is
9142 Typ
: constant Entity_Id
:= Etype
(Left_Opnd
(N
));
9145 -- Case of elementary type with standard operator
9147 if Is_Elementary_Type
(Typ
)
9148 and then Sloc
(Entity
(N
)) = Standard_Location
9150 Binary_Op_Validity_Checks
(N
);
9152 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if
9153 -- means we no longer have a /= operation, we are all done.
9155 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
9157 if Nkind
(N
) /= N_Op_Ne
then
9161 -- Boolean types (requiring handling of non-standard case)
9163 if Is_Boolean_Type
(Typ
) then
9164 Adjust_Condition
(Left_Opnd
(N
));
9165 Adjust_Condition
(Right_Opnd
(N
));
9166 Set_Etype
(N
, Standard_Boolean
);
9167 Adjust_Result_Type
(N
, Typ
);
9170 Rewrite_Comparison
(N
);
9172 -- For all cases other than elementary types, we rewrite node as the
9173 -- negation of an equality operation, and reanalyze. The equality to be
9174 -- used is defined in the same scope and has the same signature. This
9175 -- signature must be set explicitly since in an instance it may not have
9176 -- the same visibility as in the generic unit. This avoids duplicating
9177 -- or factoring the complex code for record/array equality tests etc.
9179 -- This case is also used for the minimal expansion performed in
9184 Loc
: constant Source_Ptr
:= Sloc
(N
);
9186 Ne
: constant Entity_Id
:= Entity
(N
);
9189 Binary_Op_Validity_Checks
(N
);
9195 Left_Opnd
=> Left_Opnd
(N
),
9196 Right_Opnd
=> Right_Opnd
(N
)));
9198 -- The level of parentheses is useless in GNATprove mode, and
9199 -- bumping its level here leads to wrong columns being used in
9200 -- check messages, hence skip it in this mode.
9202 if not GNATprove_Mode
then
9203 Set_Paren_Count
(Right_Opnd
(Neg
), 1);
9206 if Scope
(Ne
) /= Standard_Standard
then
9207 Set_Entity
(Right_Opnd
(Neg
), Corresponding_Equality
(Ne
));
9210 -- For navigation purposes, we want to treat the inequality as an
9211 -- implicit reference to the corresponding equality. Preserve the
9212 -- Comes_From_ source flag to generate proper Xref entries.
9214 Preserve_Comes_From_Source
(Neg
, N
);
9215 Preserve_Comes_From_Source
(Right_Opnd
(Neg
), N
);
9217 Analyze_And_Resolve
(N
, Standard_Boolean
);
9221 -- No need for optimization in GNATprove mode, where we would rather see
9222 -- the original source expression.
9224 if not GNATprove_Mode
then
9225 Optimize_Length_Comparison
(N
);
9229 ---------------------
9230 -- Expand_N_Op_Not --
9231 ---------------------
9233 -- If the argument is other than a Boolean array type, there is no special
9234 -- expansion required, except for dealing with validity checks, and non-
9235 -- standard boolean representations.
9237 -- For the packed array case, we call the special routine in Exp_Pakd,
9238 -- except that if the component size is greater than one, we use the
9239 -- standard routine generating a gruesome loop (it is so peculiar to have
9240 -- packed arrays with non-standard Boolean representations anyway, so it
9241 -- does not matter that we do not handle this case efficiently).
9243 -- For the unpacked array case (and for the special packed case where we
9244 -- have non standard Booleans, as discussed above), we generate and insert
9245 -- into the tree the following function definition:
9247 -- function Nnnn (A : arr) is
9250 -- for J in a'range loop
9251 -- B (J) := not A (J);
9256 -- Here arr is the actual subtype of the parameter (and hence always
9257 -- constrained). Then we replace the not with a call to this function.
9259 procedure Expand_N_Op_Not
(N
: Node_Id
) is
9260 Loc
: constant Source_Ptr
:= Sloc
(N
);
9261 Typ
: constant Entity_Id
:= Etype
(N
);
9270 Func_Name
: Entity_Id
;
9271 Loop_Statement
: Node_Id
;
9274 Unary_Op_Validity_Checks
(N
);
9276 -- For boolean operand, deal with non-standard booleans
9278 if Is_Boolean_Type
(Typ
) then
9279 Adjust_Condition
(Right_Opnd
(N
));
9280 Set_Etype
(N
, Standard_Boolean
);
9281 Adjust_Result_Type
(N
, Typ
);
9285 -- Only array types need any other processing
9287 if not Is_Array_Type
(Typ
) then
9291 -- Case of array operand. If bit packed with a component size of 1,
9292 -- handle it in Exp_Pakd if the operand is known to be aligned.
9294 if Is_Bit_Packed_Array
(Typ
)
9295 and then Component_Size
(Typ
) = 1
9296 and then not Is_Possibly_Unaligned_Object
(Right_Opnd
(N
))
9298 Expand_Packed_Not
(N
);
9302 -- Case of array operand which is not bit-packed. If the context is
9303 -- a safe assignment, call in-place operation, If context is a larger
9304 -- boolean expression in the context of a safe assignment, expansion is
9305 -- done by enclosing operation.
9307 Opnd
:= Relocate_Node
(Right_Opnd
(N
));
9308 Convert_To_Actual_Subtype
(Opnd
);
9309 Arr
:= Etype
(Opnd
);
9310 Ensure_Defined
(Arr
, N
);
9311 Silly_Boolean_Array_Not_Test
(N
, Arr
);
9313 if Nkind
(Parent
(N
)) = N_Assignment_Statement
then
9314 if Safe_In_Place_Array_Op
(Name
(Parent
(N
)), N
, Empty
) then
9315 Build_Boolean_Array_Proc_Call
(Parent
(N
), Opnd
, Empty
);
9318 -- Special case the negation of a binary operation
9320 elsif Nkind_In
(Opnd
, N_Op_And
, N_Op_Or
, N_Op_Xor
)
9321 and then Safe_In_Place_Array_Op
9322 (Name
(Parent
(N
)), Left_Opnd
(Opnd
), Right_Opnd
(Opnd
))
9324 Build_Boolean_Array_Proc_Call
(Parent
(N
), Opnd
, Empty
);
9328 elsif Nkind
(Parent
(N
)) in N_Binary_Op
9329 and then Nkind
(Parent
(Parent
(N
))) = N_Assignment_Statement
9332 Op1
: constant Node_Id
:= Left_Opnd
(Parent
(N
));
9333 Op2
: constant Node_Id
:= Right_Opnd
(Parent
(N
));
9334 Lhs
: constant Node_Id
:= Name
(Parent
(Parent
(N
)));
9337 if Safe_In_Place_Array_Op
(Lhs
, Op1
, Op2
) then
9339 -- (not A) op (not B) can be reduced to a single call
9341 if N
= Op1
and then Nkind
(Op2
) = N_Op_Not
then
9344 elsif N
= Op2
and then Nkind
(Op1
) = N_Op_Not
then
9347 -- A xor (not B) can also be special-cased
9349 elsif N
= Op2
and then Nkind
(Parent
(N
)) = N_Op_Xor
then
9356 A
:= Make_Defining_Identifier
(Loc
, Name_uA
);
9357 B
:= Make_Defining_Identifier
(Loc
, Name_uB
);
9358 J
:= Make_Defining_Identifier
(Loc
, Name_uJ
);
9361 Make_Indexed_Component
(Loc
,
9362 Prefix
=> New_Occurrence_Of
(A
, Loc
),
9363 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
9366 Make_Indexed_Component
(Loc
,
9367 Prefix
=> New_Occurrence_Of
(B
, Loc
),
9368 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
9371 Make_Implicit_Loop_Statement
(N
,
9372 Identifier
=> Empty
,
9375 Make_Iteration_Scheme
(Loc
,
9376 Loop_Parameter_Specification
=>
9377 Make_Loop_Parameter_Specification
(Loc
,
9378 Defining_Identifier
=> J
,
9379 Discrete_Subtype_Definition
=>
9380 Make_Attribute_Reference
(Loc
,
9381 Prefix
=> Make_Identifier
(Loc
, Chars
(A
)),
9382 Attribute_Name
=> Name_Range
))),
9384 Statements
=> New_List
(
9385 Make_Assignment_Statement
(Loc
,
9387 Expression
=> Make_Op_Not
(Loc
, A_J
))));
9389 Func_Name
:= Make_Temporary
(Loc
, 'N');
9390 Set_Is_Inlined
(Func_Name
);
9393 Make_Subprogram_Body
(Loc
,
9395 Make_Function_Specification
(Loc
,
9396 Defining_Unit_Name
=> Func_Name
,
9397 Parameter_Specifications
=> New_List
(
9398 Make_Parameter_Specification
(Loc
,
9399 Defining_Identifier
=> A
,
9400 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
9401 Result_Definition
=> New_Occurrence_Of
(Typ
, Loc
)),
9403 Declarations
=> New_List
(
9404 Make_Object_Declaration
(Loc
,
9405 Defining_Identifier
=> B
,
9406 Object_Definition
=> New_Occurrence_Of
(Arr
, Loc
))),
9408 Handled_Statement_Sequence
=>
9409 Make_Handled_Sequence_Of_Statements
(Loc
,
9410 Statements
=> New_List
(
9412 Make_Simple_Return_Statement
(Loc
,
9413 Expression
=> Make_Identifier
(Loc
, Chars
(B
)))))));
9416 Make_Function_Call
(Loc
,
9417 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
9418 Parameter_Associations
=> New_List
(Opnd
)));
9420 Analyze_And_Resolve
(N
, Typ
);
9421 end Expand_N_Op_Not
;
9423 --------------------
9424 -- Expand_N_Op_Or --
9425 --------------------
9427 procedure Expand_N_Op_Or
(N
: Node_Id
) is
9428 Typ
: constant Entity_Id
:= Etype
(N
);
9431 Binary_Op_Validity_Checks
(N
);
9433 if Is_Array_Type
(Etype
(N
)) then
9434 Expand_Boolean_Operator
(N
);
9436 elsif Is_Boolean_Type
(Etype
(N
)) then
9437 Adjust_Condition
(Left_Opnd
(N
));
9438 Adjust_Condition
(Right_Opnd
(N
));
9439 Set_Etype
(N
, Standard_Boolean
);
9440 Adjust_Result_Type
(N
, Typ
);
9442 elsif Is_Intrinsic_Subprogram
(Entity
(N
)) then
9443 Expand_Intrinsic_Call
(N
, Entity
(N
));
9446 -- Generating C code convert non-binary modular operators into code that
9447 -- relies on the frontend expansion of operator Mod.
9449 if Modify_Tree_For_C
then
9450 Expand_Non_Binary_Modular_Op
(N
);
9454 ----------------------
9455 -- Expand_N_Op_Plus --
9456 ----------------------
9458 procedure Expand_N_Op_Plus
(N
: Node_Id
) is
9460 Unary_Op_Validity_Checks
(N
);
9462 -- Check for MINIMIZED/ELIMINATED overflow mode
9464 if Minimized_Eliminated_Overflow_Check
(N
) then
9465 Apply_Arithmetic_Overflow_Check
(N
);
9468 end Expand_N_Op_Plus
;
9470 ---------------------
9471 -- Expand_N_Op_Rem --
9472 ---------------------
9474 procedure Expand_N_Op_Rem
(N
: Node_Id
) is
9475 Loc
: constant Source_Ptr
:= Sloc
(N
);
9476 Typ
: constant Entity_Id
:= Etype
(N
);
9487 -- Set if corresponding operand can be negative
9489 pragma Unreferenced
(Hi
);
9492 Binary_Op_Validity_Checks
(N
);
9494 -- Check for MINIMIZED/ELIMINATED overflow mode
9496 if Minimized_Eliminated_Overflow_Check
(N
) then
9497 Apply_Arithmetic_Overflow_Check
(N
);
9501 if Is_Integer_Type
(Etype
(N
)) then
9502 Apply_Divide_Checks
(N
);
9504 -- All done if we don't have a REM any more, which can happen as a
9505 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
9507 if Nkind
(N
) /= N_Op_Rem
then
9512 -- Proceed with expansion of REM
9514 Left
:= Left_Opnd
(N
);
9515 Right
:= Right_Opnd
(N
);
9517 -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
9518 -- but it is useful with other back ends, and is certainly harmless.
9520 if Is_Integer_Type
(Etype
(N
))
9521 and then Compile_Time_Known_Value
(Right
)
9522 and then Expr_Value
(Right
) = Uint_1
9524 -- Call Remove_Side_Effects to ensure that any side effects in the
9525 -- ignored left operand (in particular function calls to user defined
9526 -- functions) are properly executed.
9528 Remove_Side_Effects
(Left
);
9530 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
9531 Analyze_And_Resolve
(N
, Typ
);
9535 -- Deal with annoying case of largest negative number remainder minus
9536 -- one. Gigi may not handle this case correctly, because on some
9537 -- targets, the mod value is computed using a divide instruction
9538 -- which gives an overflow trap for this case.
9540 -- It would be a bit more efficient to figure out which targets this
9541 -- is really needed for, but in practice it is reasonable to do the
9542 -- following special check in all cases, since it means we get a clearer
9543 -- message, and also the overhead is minimal given that division is
9544 -- expensive in any case.
9546 -- In fact the check is quite easy, if the right operand is -1, then
9547 -- the remainder is always 0, and we can just ignore the left operand
9548 -- completely in this case.
9550 Determine_Range
(Right
, OK
, Lo
, Hi
, Assume_Valid
=> True);
9551 Lneg
:= (not OK
) or else Lo
< 0;
9553 Determine_Range
(Left
, OK
, Lo
, Hi
, Assume_Valid
=> True);
9554 Rneg
:= (not OK
) or else Lo
< 0;
9556 -- We won't mess with trying to find out if the left operand can really
9557 -- be the largest negative number (that's a pain in the case of private
9558 -- types and this is really marginal). We will just assume that we need
9559 -- the test if the left operand can be negative at all.
9561 if Lneg
and Rneg
then
9563 Make_If_Expression
(Loc
,
9564 Expressions
=> New_List
(
9566 Left_Opnd
=> Duplicate_Subexpr
(Right
),
9568 Unchecked_Convert_To
(Typ
, Make_Integer_Literal
(Loc
, -1))),
9570 Unchecked_Convert_To
(Typ
,
9571 Make_Integer_Literal
(Loc
, Uint_0
)),
9573 Relocate_Node
(N
))));
9575 Set_Analyzed
(Next
(Next
(First
(Expressions
(N
)))));
9576 Analyze_And_Resolve
(N
, Typ
);
9578 end Expand_N_Op_Rem
;
9580 -----------------------------
9581 -- Expand_N_Op_Rotate_Left --
9582 -----------------------------
9584 procedure Expand_N_Op_Rotate_Left
(N
: Node_Id
) is
9586 Binary_Op_Validity_Checks
(N
);
9588 -- If we are in Modify_Tree_For_C mode, there is no rotate left in C,
9589 -- so we rewrite in terms of logical shifts
9591 -- Shift_Left (Num, Bits) or Shift_Right (num, Esize - Bits)
9593 -- where Bits is the shift count mod Esize (the mod operation here
9594 -- deals with ludicrous large shift counts, which are apparently OK).
9596 -- What about nonbinary modulus ???
9599 Loc
: constant Source_Ptr
:= Sloc
(N
);
9600 Rtp
: constant Entity_Id
:= Etype
(Right_Opnd
(N
));
9601 Typ
: constant Entity_Id
:= Etype
(N
);
9604 if Modify_Tree_For_C
then
9605 Rewrite
(Right_Opnd
(N
),
9607 Left_Opnd
=> Relocate_Node
(Right_Opnd
(N
)),
9608 Right_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
))));
9610 Analyze_And_Resolve
(Right_Opnd
(N
), Rtp
);
9615 Make_Op_Shift_Left
(Loc
,
9616 Left_Opnd
=> Left_Opnd
(N
),
9617 Right_Opnd
=> Right_Opnd
(N
)),
9620 Make_Op_Shift_Right
(Loc
,
9621 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left_Opnd
(N
)),
9623 Make_Op_Subtract
(Loc
,
9624 Left_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
)),
9626 Duplicate_Subexpr_No_Checks
(Right_Opnd
(N
))))));
9628 Analyze_And_Resolve
(N
, Typ
);
9631 end Expand_N_Op_Rotate_Left
;
9633 ------------------------------
9634 -- Expand_N_Op_Rotate_Right --
9635 ------------------------------
9637 procedure Expand_N_Op_Rotate_Right
(N
: Node_Id
) is
9639 Binary_Op_Validity_Checks
(N
);
9641 -- If we are in Modify_Tree_For_C mode, there is no rotate right in C,
9642 -- so we rewrite in terms of logical shifts
9644 -- Shift_Right (Num, Bits) or Shift_Left (num, Esize - Bits)
9646 -- where Bits is the shift count mod Esize (the mod operation here
9647 -- deals with ludicrous large shift counts, which are apparently OK).
9649 -- What about nonbinary modulus ???
9652 Loc
: constant Source_Ptr
:= Sloc
(N
);
9653 Rtp
: constant Entity_Id
:= Etype
(Right_Opnd
(N
));
9654 Typ
: constant Entity_Id
:= Etype
(N
);
9657 Rewrite
(Right_Opnd
(N
),
9659 Left_Opnd
=> Relocate_Node
(Right_Opnd
(N
)),
9660 Right_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
))));
9662 Analyze_And_Resolve
(Right_Opnd
(N
), Rtp
);
9664 if Modify_Tree_For_C
then
9668 Make_Op_Shift_Right
(Loc
,
9669 Left_Opnd
=> Left_Opnd
(N
),
9670 Right_Opnd
=> Right_Opnd
(N
)),
9673 Make_Op_Shift_Left
(Loc
,
9674 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left_Opnd
(N
)),
9676 Make_Op_Subtract
(Loc
,
9677 Left_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
)),
9679 Duplicate_Subexpr_No_Checks
(Right_Opnd
(N
))))));
9681 Analyze_And_Resolve
(N
, Typ
);
9684 end Expand_N_Op_Rotate_Right
;
9686 ----------------------------
9687 -- Expand_N_Op_Shift_Left --
9688 ----------------------------
9690 -- Note: nothing in this routine depends on left as opposed to right shifts
9691 -- so we share the routine for expanding shift right operations.
9693 procedure Expand_N_Op_Shift_Left
(N
: Node_Id
) is
9695 Binary_Op_Validity_Checks
(N
);
9697 -- If we are in Modify_Tree_For_C mode, then ensure that the right
9698 -- operand is not greater than the word size (since that would not
9699 -- be defined properly by the corresponding C shift operator).
9701 if Modify_Tree_For_C
then
9703 Right
: constant Node_Id
:= Right_Opnd
(N
);
9704 Loc
: constant Source_Ptr
:= Sloc
(Right
);
9705 Typ
: constant Entity_Id
:= Etype
(N
);
9706 Siz
: constant Uint
:= Esize
(Typ
);
9713 if Compile_Time_Known_Value
(Right
) then
9714 if Expr_Value
(Right
) >= Siz
then
9715 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
9716 Analyze_And_Resolve
(N
, Typ
);
9719 -- Not compile time known, find range
9722 Determine_Range
(Right
, OK
, Lo
, Hi
, Assume_Valid
=> True);
9724 -- Nothing to do if known to be OK range, otherwise expand
9726 if not OK
or else Hi
>= Siz
then
9728 -- Prevent recursion on copy of shift node
9730 Orig
:= Relocate_Node
(N
);
9731 Set_Analyzed
(Orig
);
9733 -- Now do the rewrite
9736 Make_If_Expression
(Loc
,
9737 Expressions
=> New_List
(
9739 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Right
),
9740 Right_Opnd
=> Make_Integer_Literal
(Loc
, Siz
)),
9741 Make_Integer_Literal
(Loc
, 0),
9743 Analyze_And_Resolve
(N
, Typ
);
9748 end Expand_N_Op_Shift_Left
;
9750 -----------------------------
9751 -- Expand_N_Op_Shift_Right --
9752 -----------------------------
9754 procedure Expand_N_Op_Shift_Right
(N
: Node_Id
) is
9756 -- Share shift left circuit
9758 Expand_N_Op_Shift_Left
(N
);
9759 end Expand_N_Op_Shift_Right
;
9761 ----------------------------------------
9762 -- Expand_N_Op_Shift_Right_Arithmetic --
9763 ----------------------------------------
9765 procedure Expand_N_Op_Shift_Right_Arithmetic
(N
: Node_Id
) is
9767 Binary_Op_Validity_Checks
(N
);
9769 -- If we are in Modify_Tree_For_C mode, there is no shift right
9770 -- arithmetic in C, so we rewrite in terms of logical shifts.
9772 -- Shift_Right (Num, Bits) or
9774 -- then not (Shift_Right (Mask, bits))
9777 -- Here Mask is all 1 bits (2**size - 1), and Sign is 2**(size - 1)
9779 -- Note: in almost all C compilers it would work to just shift a
9780 -- signed integer right, but it's undefined and we cannot rely on it.
9782 -- Note: the above works fine for shift counts greater than or equal
9783 -- to the word size, since in this case (not (Shift_Right (Mask, bits)))
9784 -- generates all 1'bits.
9786 -- What about nonbinary modulus ???
9789 Loc
: constant Source_Ptr
:= Sloc
(N
);
9790 Typ
: constant Entity_Id
:= Etype
(N
);
9791 Sign
: constant Uint
:= 2 ** (Esize
(Typ
) - 1);
9792 Mask
: constant Uint
:= (2 ** Esize
(Typ
)) - 1;
9793 Left
: constant Node_Id
:= Left_Opnd
(N
);
9794 Right
: constant Node_Id
:= Right_Opnd
(N
);
9798 if Modify_Tree_For_C
then
9800 -- Here if not (Shift_Right (Mask, bits)) can be computed at
9801 -- compile time as a single constant.
9803 if Compile_Time_Known_Value
(Right
) then
9805 Val
: constant Uint
:= Expr_Value
(Right
);
9808 if Val
>= Esize
(Typ
) then
9809 Maskx
:= Make_Integer_Literal
(Loc
, Mask
);
9813 Make_Integer_Literal
(Loc
,
9814 Intval
=> Mask
- (Mask
/ (2 ** Expr_Value
(Right
))));
9822 Make_Op_Shift_Right
(Loc
,
9823 Left_Opnd
=> Make_Integer_Literal
(Loc
, Mask
),
9824 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Right
)));
9827 -- Now do the rewrite
9832 Make_Op_Shift_Right
(Loc
,
9834 Right_Opnd
=> Right
),
9836 Make_If_Expression
(Loc
,
9837 Expressions
=> New_List
(
9839 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left
),
9840 Right_Opnd
=> Make_Integer_Literal
(Loc
, Sign
)),
9842 Make_Integer_Literal
(Loc
, 0)))));
9843 Analyze_And_Resolve
(N
, Typ
);
9846 end Expand_N_Op_Shift_Right_Arithmetic
;
9848 --------------------------
9849 -- Expand_N_Op_Subtract --
9850 --------------------------
9852 procedure Expand_N_Op_Subtract
(N
: Node_Id
) is
9853 Typ
: constant Entity_Id
:= Etype
(N
);
9856 Binary_Op_Validity_Checks
(N
);
9858 -- Check for MINIMIZED/ELIMINATED overflow mode
9860 if Minimized_Eliminated_Overflow_Check
(N
) then
9861 Apply_Arithmetic_Overflow_Check
(N
);
9865 -- N - 0 = N for integer types
9867 if Is_Integer_Type
(Typ
)
9868 and then Compile_Time_Known_Value
(Right_Opnd
(N
))
9869 and then Expr_Value
(Right_Opnd
(N
)) = 0
9871 Rewrite
(N
, Left_Opnd
(N
));
9875 -- Arithmetic overflow checks for signed integer/fixed point types
9877 if Is_Signed_Integer_Type
(Typ
) or else Is_Fixed_Point_Type
(Typ
) then
9878 Apply_Arithmetic_Overflow_Check
(N
);
9881 -- Overflow checks for floating-point if -gnateF mode active
9883 Check_Float_Op_Overflow
(N
);
9885 -- Generating C code convert non-binary modular subtractions into code
9886 -- that relies on the frontend expansion of operator Mod.
9888 if Modify_Tree_For_C
then
9889 Expand_Non_Binary_Modular_Op
(N
);
9891 end Expand_N_Op_Subtract
;
9893 ---------------------
9894 -- Expand_N_Op_Xor --
9895 ---------------------
9897 procedure Expand_N_Op_Xor
(N
: Node_Id
) is
9898 Typ
: constant Entity_Id
:= Etype
(N
);
9901 Binary_Op_Validity_Checks
(N
);
9903 if Is_Array_Type
(Etype
(N
)) then
9904 Expand_Boolean_Operator
(N
);
9906 elsif Is_Boolean_Type
(Etype
(N
)) then
9907 Adjust_Condition
(Left_Opnd
(N
));
9908 Adjust_Condition
(Right_Opnd
(N
));
9909 Set_Etype
(N
, Standard_Boolean
);
9910 Adjust_Result_Type
(N
, Typ
);
9912 elsif Is_Intrinsic_Subprogram
(Entity
(N
)) then
9913 Expand_Intrinsic_Call
(N
, Entity
(N
));
9916 end Expand_N_Op_Xor
;
9918 ----------------------
9919 -- Expand_N_Or_Else --
9920 ----------------------
9922 procedure Expand_N_Or_Else
(N
: Node_Id
)
9923 renames Expand_Short_Circuit_Operator
;
9925 -----------------------------------
9926 -- Expand_N_Qualified_Expression --
9927 -----------------------------------
9929 procedure Expand_N_Qualified_Expression
(N
: Node_Id
) is
9930 Operand
: constant Node_Id
:= Expression
(N
);
9931 Target_Type
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
9934 -- Do validity check if validity checking operands
9936 if Validity_Checks_On
and Validity_Check_Operands
then
9937 Ensure_Valid
(Operand
);
9940 -- Apply possible constraint check
9942 Apply_Constraint_Check
(Operand
, Target_Type
, No_Sliding
=> True);
9944 if Do_Range_Check
(Operand
) then
9945 Set_Do_Range_Check
(Operand
, False);
9946 Generate_Range_Check
(Operand
, Target_Type
, CE_Range_Check_Failed
);
9948 end Expand_N_Qualified_Expression
;
9950 ------------------------------------
9951 -- Expand_N_Quantified_Expression --
9952 ------------------------------------
9956 -- for all X in range => Cond
9961 -- for X in range loop
9968 -- Similarly, an existentially quantified expression:
9970 -- for some X in range => Cond
9975 -- for X in range loop
9982 -- In both cases, the iteration may be over a container in which case it is
9983 -- given by an iterator specification, not a loop parameter specification.
9985 procedure Expand_N_Quantified_Expression
(N
: Node_Id
) is
9986 Actions
: constant List_Id
:= New_List
;
9987 For_All
: constant Boolean := All_Present
(N
);
9988 Iter_Spec
: constant Node_Id
:= Iterator_Specification
(N
);
9989 Loc
: constant Source_Ptr
:= Sloc
(N
);
9990 Loop_Spec
: constant Node_Id
:= Loop_Parameter_Specification
(N
);
9997 -- Create the declaration of the flag which tracks the status of the
9998 -- quantified expression. Generate:
10000 -- Flag : Boolean := (True | False);
10002 Flag
:= Make_Temporary
(Loc
, 'T', N
);
10004 Append_To
(Actions
,
10005 Make_Object_Declaration
(Loc
,
10006 Defining_Identifier
=> Flag
,
10007 Object_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
),
10009 New_Occurrence_Of
(Boolean_Literals
(For_All
), Loc
)));
10011 -- Construct the circuitry which tracks the status of the quantified
10012 -- expression. Generate:
10014 -- if [not] Cond then
10015 -- Flag := (False | True);
10019 Cond
:= Relocate_Node
(Condition
(N
));
10022 Cond
:= Make_Op_Not
(Loc
, Cond
);
10025 Stmts
:= New_List
(
10026 Make_Implicit_If_Statement
(N
,
10028 Then_Statements
=> New_List
(
10029 Make_Assignment_Statement
(Loc
,
10030 Name
=> New_Occurrence_Of
(Flag
, Loc
),
10032 New_Occurrence_Of
(Boolean_Literals
(not For_All
), Loc
)),
10033 Make_Exit_Statement
(Loc
))));
10035 -- Build the loop equivalent of the quantified expression
10037 if Present
(Iter_Spec
) then
10039 Make_Iteration_Scheme
(Loc
,
10040 Iterator_Specification
=> Iter_Spec
);
10043 Make_Iteration_Scheme
(Loc
,
10044 Loop_Parameter_Specification
=> Loop_Spec
);
10047 Append_To
(Actions
,
10048 Make_Loop_Statement
(Loc
,
10049 Iteration_Scheme
=> Scheme
,
10050 Statements
=> Stmts
,
10051 End_Label
=> Empty
));
10053 -- Transform the quantified expression
10056 Make_Expression_With_Actions
(Loc
,
10057 Expression
=> New_Occurrence_Of
(Flag
, Loc
),
10058 Actions
=> Actions
));
10059 Analyze_And_Resolve
(N
, Standard_Boolean
);
10060 end Expand_N_Quantified_Expression
;
10062 ---------------------------------
10063 -- Expand_N_Selected_Component --
10064 ---------------------------------
10066 procedure Expand_N_Selected_Component
(N
: Node_Id
) is
10067 Loc
: constant Source_Ptr
:= Sloc
(N
);
10068 Par
: constant Node_Id
:= Parent
(N
);
10069 P
: constant Node_Id
:= Prefix
(N
);
10070 S
: constant Node_Id
:= Selector_Name
(N
);
10071 Ptyp
: Entity_Id
:= Underlying_Type
(Etype
(P
));
10077 function In_Left_Hand_Side
(Comp
: Node_Id
) return Boolean;
10078 -- Gigi needs a temporary for prefixes that depend on a discriminant,
10079 -- unless the context of an assignment can provide size information.
10080 -- Don't we have a general routine that does this???
10082 function Is_Subtype_Declaration
return Boolean;
10083 -- The replacement of a discriminant reference by its value is required
10084 -- if this is part of the initialization of an temporary generated by a
10085 -- change of representation. This shows up as the construction of a
10086 -- discriminant constraint for a subtype declared at the same point as
10087 -- the entity in the prefix of the selected component. We recognize this
10088 -- case when the context of the reference is:
10089 -- subtype ST is T(Obj.D);
10090 -- where the entity for Obj comes from source, and ST has the same sloc.
10092 -----------------------
10093 -- In_Left_Hand_Side --
10094 -----------------------
10096 function In_Left_Hand_Side
(Comp
: Node_Id
) return Boolean is
10098 return (Nkind
(Parent
(Comp
)) = N_Assignment_Statement
10099 and then Comp
= Name
(Parent
(Comp
)))
10100 or else (Present
(Parent
(Comp
))
10101 and then Nkind
(Parent
(Comp
)) in N_Subexpr
10102 and then In_Left_Hand_Side
(Parent
(Comp
)));
10103 end In_Left_Hand_Side
;
10105 -----------------------------
10106 -- Is_Subtype_Declaration --
10107 -----------------------------
10109 function Is_Subtype_Declaration
return Boolean is
10110 Par
: constant Node_Id
:= Parent
(N
);
10113 Nkind
(Par
) = N_Index_Or_Discriminant_Constraint
10114 and then Nkind
(Parent
(Parent
(Par
))) = N_Subtype_Declaration
10115 and then Comes_From_Source
(Entity
(Prefix
(N
)))
10116 and then Sloc
(Par
) = Sloc
(Entity
(Prefix
(N
)));
10117 end Is_Subtype_Declaration
;
10119 -- Start of processing for Expand_N_Selected_Component
10122 -- Insert explicit dereference if required
10124 if Is_Access_Type
(Ptyp
) then
10126 -- First set prefix type to proper access type, in case it currently
10127 -- has a private (non-access) view of this type.
10129 Set_Etype
(P
, Ptyp
);
10131 Insert_Explicit_Dereference
(P
);
10132 Analyze_And_Resolve
(P
, Designated_Type
(Ptyp
));
10134 if Ekind
(Etype
(P
)) = E_Private_Subtype
10135 and then Is_For_Access_Subtype
(Etype
(P
))
10137 Set_Etype
(P
, Base_Type
(Etype
(P
)));
10143 -- Deal with discriminant check required
10145 if Do_Discriminant_Check
(N
) then
10146 if Present
(Discriminant_Checking_Func
10147 (Original_Record_Component
(Entity
(S
))))
10149 -- Present the discriminant checking function to the backend, so
10150 -- that it can inline the call to the function.
10153 (Discriminant_Checking_Func
10154 (Original_Record_Component
(Entity
(S
))),
10157 -- Now reset the flag and generate the call
10159 Set_Do_Discriminant_Check
(N
, False);
10160 Generate_Discriminant_Check
(N
);
10162 -- In the case of Unchecked_Union, no discriminant checking is
10163 -- actually performed.
10166 Set_Do_Discriminant_Check
(N
, False);
10170 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
10171 -- function, then additional actuals must be passed.
10173 if Ada_Version
>= Ada_2005
10174 and then Is_Build_In_Place_Function_Call
(P
)
10176 Make_Build_In_Place_Call_In_Anonymous_Context
(P
);
10179 -- Gigi cannot handle unchecked conversions that are the prefix of a
10180 -- selected component with discriminants. This must be checked during
10181 -- expansion, because during analysis the type of the selector is not
10182 -- known at the point the prefix is analyzed. If the conversion is the
10183 -- target of an assignment, then we cannot force the evaluation.
10185 if Nkind
(Prefix
(N
)) = N_Unchecked_Type_Conversion
10186 and then Has_Discriminants
(Etype
(N
))
10187 and then not In_Left_Hand_Side
(N
)
10189 Force_Evaluation
(Prefix
(N
));
10192 -- Remaining processing applies only if selector is a discriminant
10194 if Ekind
(Entity
(Selector_Name
(N
))) = E_Discriminant
then
10196 -- If the selector is a discriminant of a constrained record type,
10197 -- we may be able to rewrite the expression with the actual value
10198 -- of the discriminant, a useful optimization in some cases.
10200 if Is_Record_Type
(Ptyp
)
10201 and then Has_Discriminants
(Ptyp
)
10202 and then Is_Constrained
(Ptyp
)
10204 -- Do this optimization for discrete types only, and not for
10205 -- access types (access discriminants get us into trouble).
10207 if not Is_Discrete_Type
(Etype
(N
)) then
10210 -- Don't do this on the left-hand side of an assignment statement.
10211 -- Normally one would think that references like this would not
10212 -- occur, but they do in generated code, and mean that we really
10213 -- do want to assign the discriminant.
10215 elsif Nkind
(Par
) = N_Assignment_Statement
10216 and then Name
(Par
) = N
10220 -- Don't do this optimization for the prefix of an attribute or
10221 -- the name of an object renaming declaration since these are
10222 -- contexts where we do not want the value anyway.
10224 elsif (Nkind
(Par
) = N_Attribute_Reference
10225 and then Prefix
(Par
) = N
)
10226 or else Is_Renamed_Object
(N
)
10230 -- Don't do this optimization if we are within the code for a
10231 -- discriminant check, since the whole point of such a check may
10232 -- be to verify the condition on which the code below depends.
10234 elsif Is_In_Discriminant_Check
(N
) then
10237 -- Green light to see if we can do the optimization. There is
10238 -- still one condition that inhibits the optimization below but
10239 -- now is the time to check the particular discriminant.
10242 -- Loop through discriminants to find the matching discriminant
10243 -- constraint to see if we can copy it.
10245 Disc
:= First_Discriminant
(Ptyp
);
10246 Dcon
:= First_Elmt
(Discriminant_Constraint
(Ptyp
));
10247 Discr_Loop
: while Present
(Dcon
) loop
10248 Dval
:= Node
(Dcon
);
10250 -- Check if this is the matching discriminant and if the
10251 -- discriminant value is simple enough to make sense to
10252 -- copy. We don't want to copy complex expressions, and
10253 -- indeed to do so can cause trouble (before we put in
10254 -- this guard, a discriminant expression containing an
10255 -- AND THEN was copied, causing problems for coverage
10256 -- analysis tools).
10258 -- However, if the reference is part of the initialization
10259 -- code generated for an object declaration, we must use
10260 -- the discriminant value from the subtype constraint,
10261 -- because the selected component may be a reference to the
10262 -- object being initialized, whose discriminant is not yet
10263 -- set. This only happens in complex cases involving changes
10264 -- or representation.
10266 if Disc
= Entity
(Selector_Name
(N
))
10267 and then (Is_Entity_Name
(Dval
)
10268 or else Compile_Time_Known_Value
(Dval
)
10269 or else Is_Subtype_Declaration
)
10271 -- Here we have the matching discriminant. Check for
10272 -- the case of a discriminant of a component that is
10273 -- constrained by an outer discriminant, which cannot
10274 -- be optimized away.
10276 if Denotes_Discriminant
10277 (Dval
, Check_Concurrent
=> True)
10281 elsif Nkind
(Original_Node
(Dval
)) = N_Selected_Component
10283 Denotes_Discriminant
10284 (Selector_Name
(Original_Node
(Dval
)), True)
10288 -- Do not retrieve value if constraint is not static. It
10289 -- is generally not useful, and the constraint may be a
10290 -- rewritten outer discriminant in which case it is in
10293 elsif Is_Entity_Name
(Dval
)
10295 Nkind
(Parent
(Entity
(Dval
))) = N_Object_Declaration
10296 and then Present
(Expression
(Parent
(Entity
(Dval
))))
10298 Is_OK_Static_Expression
10299 (Expression
(Parent
(Entity
(Dval
))))
10303 -- In the context of a case statement, the expression may
10304 -- have the base type of the discriminant, and we need to
10305 -- preserve the constraint to avoid spurious errors on
10308 elsif Nkind
(Parent
(N
)) = N_Case_Statement
10309 and then Etype
(Dval
) /= Etype
(Disc
)
10312 Make_Qualified_Expression
(Loc
,
10314 New_Occurrence_Of
(Etype
(Disc
), Loc
),
10316 New_Copy_Tree
(Dval
)));
10317 Analyze_And_Resolve
(N
, Etype
(Disc
));
10319 -- In case that comes out as a static expression,
10320 -- reset it (a selected component is never static).
10322 Set_Is_Static_Expression
(N
, False);
10325 -- Otherwise we can just copy the constraint, but the
10326 -- result is certainly not static. In some cases the
10327 -- discriminant constraint has been analyzed in the
10328 -- context of the original subtype indication, but for
10329 -- itypes the constraint might not have been analyzed
10330 -- yet, and this must be done now.
10333 Rewrite
(N
, New_Copy_Tree
(Dval
));
10334 Analyze_And_Resolve
(N
);
10335 Set_Is_Static_Expression
(N
, False);
10341 Next_Discriminant
(Disc
);
10342 end loop Discr_Loop
;
10344 -- Note: the above loop should always find a matching
10345 -- discriminant, but if it does not, we just missed an
10346 -- optimization due to some glitch (perhaps a previous
10347 -- error), so ignore.
10352 -- The only remaining processing is in the case of a discriminant of
10353 -- a concurrent object, where we rewrite the prefix to denote the
10354 -- corresponding record type. If the type is derived and has renamed
10355 -- discriminants, use corresponding discriminant, which is the one
10356 -- that appears in the corresponding record.
10358 if not Is_Concurrent_Type
(Ptyp
) then
10362 Disc
:= Entity
(Selector_Name
(N
));
10364 if Is_Derived_Type
(Ptyp
)
10365 and then Present
(Corresponding_Discriminant
(Disc
))
10367 Disc
:= Corresponding_Discriminant
(Disc
);
10371 Make_Selected_Component
(Loc
,
10373 Unchecked_Convert_To
(Corresponding_Record_Type
(Ptyp
),
10374 New_Copy_Tree
(P
)),
10375 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Disc
)));
10377 Rewrite
(N
, New_N
);
10381 -- Set Atomic_Sync_Required if necessary for atomic component
10383 if Nkind
(N
) = N_Selected_Component
then
10385 E
: constant Entity_Id
:= Entity
(Selector_Name
(N
));
10389 -- If component is atomic, but type is not, setting depends on
10390 -- disable/enable state for the component.
10392 if Is_Atomic
(E
) and then not Is_Atomic
(Etype
(E
)) then
10393 Set
:= not Atomic_Synchronization_Disabled
(E
);
10395 -- If component is not atomic, but its type is atomic, setting
10396 -- depends on disable/enable state for the type.
10398 elsif not Is_Atomic
(E
) and then Is_Atomic
(Etype
(E
)) then
10399 Set
:= not Atomic_Synchronization_Disabled
(Etype
(E
));
10401 -- If both component and type are atomic, we disable if either
10402 -- component or its type have sync disabled.
10404 elsif Is_Atomic
(E
) and then Is_Atomic
(Etype
(E
)) then
10405 Set
:= (not Atomic_Synchronization_Disabled
(E
))
10407 (not Atomic_Synchronization_Disabled
(Etype
(E
)));
10413 -- Set flag if required
10416 Activate_Atomic_Synchronization
(N
);
10420 end Expand_N_Selected_Component
;
10422 --------------------
10423 -- Expand_N_Slice --
10424 --------------------
10426 procedure Expand_N_Slice
(N
: Node_Id
) is
10427 Loc
: constant Source_Ptr
:= Sloc
(N
);
10428 Typ
: constant Entity_Id
:= Etype
(N
);
10430 function Is_Procedure_Actual
(N
: Node_Id
) return Boolean;
10431 -- Check whether the argument is an actual for a procedure call, in
10432 -- which case the expansion of a bit-packed slice is deferred until the
10433 -- call itself is expanded. The reason this is required is that we might
10434 -- have an IN OUT or OUT parameter, and the copy out is essential, and
10435 -- that copy out would be missed if we created a temporary here in
10436 -- Expand_N_Slice. Note that we don't bother to test specifically for an
10437 -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
10438 -- is harmless to defer expansion in the IN case, since the call
10439 -- processing will still generate the appropriate copy in operation,
10440 -- which will take care of the slice.
10442 procedure Make_Temporary_For_Slice
;
10443 -- Create a named variable for the value of the slice, in cases where
10444 -- the back-end cannot handle it properly, e.g. when packed types or
10445 -- unaligned slices are involved.
10447 -------------------------
10448 -- Is_Procedure_Actual --
10449 -------------------------
10451 function Is_Procedure_Actual
(N
: Node_Id
) return Boolean is
10452 Par
: Node_Id
:= Parent
(N
);
10456 -- If our parent is a procedure call we can return
10458 if Nkind
(Par
) = N_Procedure_Call_Statement
then
10461 -- If our parent is a type conversion, keep climbing the tree,
10462 -- since a type conversion can be a procedure actual. Also keep
10463 -- climbing if parameter association or a qualified expression,
10464 -- since these are additional cases that do can appear on
10465 -- procedure actuals.
10467 elsif Nkind_In
(Par
, N_Type_Conversion
,
10468 N_Parameter_Association
,
10469 N_Qualified_Expression
)
10471 Par
:= Parent
(Par
);
10473 -- Any other case is not what we are looking for
10479 end Is_Procedure_Actual
;
10481 ------------------------------
10482 -- Make_Temporary_For_Slice --
10483 ------------------------------
10485 procedure Make_Temporary_For_Slice
is
10486 Ent
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', N
);
10491 Make_Object_Declaration
(Loc
,
10492 Defining_Identifier
=> Ent
,
10493 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
));
10495 Set_No_Initialization
(Decl
);
10497 Insert_Actions
(N
, New_List
(
10499 Make_Assignment_Statement
(Loc
,
10500 Name
=> New_Occurrence_Of
(Ent
, Loc
),
10501 Expression
=> Relocate_Node
(N
))));
10503 Rewrite
(N
, New_Occurrence_Of
(Ent
, Loc
));
10504 Analyze_And_Resolve
(N
, Typ
);
10505 end Make_Temporary_For_Slice
;
10509 Pref
: constant Node_Id
:= Prefix
(N
);
10510 Pref_Typ
: Entity_Id
:= Etype
(Pref
);
10512 -- Start of processing for Expand_N_Slice
10515 -- Special handling for access types
10517 if Is_Access_Type
(Pref_Typ
) then
10518 Pref_Typ
:= Designated_Type
(Pref_Typ
);
10521 Make_Explicit_Dereference
(Sloc
(N
),
10522 Prefix
=> Relocate_Node
(Pref
)));
10524 Analyze_And_Resolve
(Pref
, Pref_Typ
);
10527 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
10528 -- function, then additional actuals must be passed.
10530 if Ada_Version
>= Ada_2005
10531 and then Is_Build_In_Place_Function_Call
(Pref
)
10533 Make_Build_In_Place_Call_In_Anonymous_Context
(Pref
);
10536 -- The remaining case to be handled is packed slices. We can leave
10537 -- packed slices as they are in the following situations:
10539 -- 1. Right or left side of an assignment (we can handle this
10540 -- situation correctly in the assignment statement expansion).
10542 -- 2. Prefix of indexed component (the slide is optimized away in this
10543 -- case, see the start of Expand_N_Slice.)
10545 -- 3. Object renaming declaration, since we want the name of the
10546 -- slice, not the value.
10548 -- 4. Argument to procedure call, since copy-in/copy-out handling may
10549 -- be required, and this is handled in the expansion of call
10552 -- 5. Prefix of an address attribute (this is an error which is caught
10553 -- elsewhere, and the expansion would interfere with generating the
10556 if not Is_Packed
(Typ
) then
10558 -- Apply transformation for actuals of a function call, where
10559 -- Expand_Actuals is not used.
10561 if Nkind
(Parent
(N
)) = N_Function_Call
10562 and then Is_Possibly_Unaligned_Slice
(N
)
10564 Make_Temporary_For_Slice
;
10567 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
10568 or else (Nkind
(Parent
(Parent
(N
))) = N_Assignment_Statement
10569 and then Parent
(N
) = Name
(Parent
(Parent
(N
))))
10573 elsif Nkind
(Parent
(N
)) = N_Indexed_Component
10574 or else Is_Renamed_Object
(N
)
10575 or else Is_Procedure_Actual
(N
)
10579 elsif Nkind
(Parent
(N
)) = N_Attribute_Reference
10580 and then Attribute_Name
(Parent
(N
)) = Name_Address
10585 Make_Temporary_For_Slice
;
10587 end Expand_N_Slice
;
10589 ------------------------------
10590 -- Expand_N_Type_Conversion --
10591 ------------------------------
10593 procedure Expand_N_Type_Conversion
(N
: Node_Id
) is
10594 Loc
: constant Source_Ptr
:= Sloc
(N
);
10595 Operand
: constant Node_Id
:= Expression
(N
);
10596 Target_Type
: constant Entity_Id
:= Etype
(N
);
10597 Operand_Type
: Entity_Id
:= Etype
(Operand
);
10599 procedure Handle_Changed_Representation
;
10600 -- This is called in the case of record and array type conversions to
10601 -- see if there is a change of representation to be handled. Change of
10602 -- representation is actually handled at the assignment statement level,
10603 -- and what this procedure does is rewrite node N conversion as an
10604 -- assignment to temporary. If there is no change of representation,
10605 -- then the conversion node is unchanged.
10607 procedure Raise_Accessibility_Error
;
10608 -- Called when we know that an accessibility check will fail. Rewrites
10609 -- node N to an appropriate raise statement and outputs warning msgs.
10610 -- The Etype of the raise node is set to Target_Type. Note that in this
10611 -- case the rest of the processing should be skipped (i.e. the call to
10612 -- this procedure will be followed by "goto Done").
10614 procedure Real_Range_Check
;
10615 -- Handles generation of range check for real target value
10617 function Has_Extra_Accessibility
(Id
: Entity_Id
) return Boolean;
10618 -- True iff Present (Effective_Extra_Accessibility (Id)) successfully
10619 -- evaluates to True.
10621 -----------------------------------
10622 -- Handle_Changed_Representation --
10623 -----------------------------------
10625 procedure Handle_Changed_Representation
is
10634 -- Nothing else to do if no change of representation
10636 if Same_Representation
(Operand_Type
, Target_Type
) then
10639 -- The real change of representation work is done by the assignment
10640 -- statement processing. So if this type conversion is appearing as
10641 -- the expression of an assignment statement, nothing needs to be
10642 -- done to the conversion.
10644 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
then
10647 -- Otherwise we need to generate a temporary variable, and do the
10648 -- change of representation assignment into that temporary variable.
10649 -- The conversion is then replaced by a reference to this variable.
10654 -- If type is unconstrained we have to add a constraint, copied
10655 -- from the actual value of the left-hand side.
10657 if not Is_Constrained
(Target_Type
) then
10658 if Has_Discriminants
(Operand_Type
) then
10659 Disc
:= First_Discriminant
(Operand_Type
);
10661 if Disc
/= First_Stored_Discriminant
(Operand_Type
) then
10662 Disc
:= First_Stored_Discriminant
(Operand_Type
);
10666 while Present
(Disc
) loop
10668 Make_Selected_Component
(Loc
,
10670 Duplicate_Subexpr_Move_Checks
(Operand
),
10672 Make_Identifier
(Loc
, Chars
(Disc
))));
10673 Next_Discriminant
(Disc
);
10676 elsif Is_Array_Type
(Operand_Type
) then
10677 N_Ix
:= First_Index
(Target_Type
);
10680 for J
in 1 .. Number_Dimensions
(Operand_Type
) loop
10682 -- We convert the bounds explicitly. We use an unchecked
10683 -- conversion because bounds checks are done elsewhere.
10688 Unchecked_Convert_To
(Etype
(N_Ix
),
10689 Make_Attribute_Reference
(Loc
,
10691 Duplicate_Subexpr_No_Checks
10692 (Operand
, Name_Req
=> True),
10693 Attribute_Name
=> Name_First
,
10694 Expressions
=> New_List
(
10695 Make_Integer_Literal
(Loc
, J
)))),
10698 Unchecked_Convert_To
(Etype
(N_Ix
),
10699 Make_Attribute_Reference
(Loc
,
10701 Duplicate_Subexpr_No_Checks
10702 (Operand
, Name_Req
=> True),
10703 Attribute_Name
=> Name_Last
,
10704 Expressions
=> New_List
(
10705 Make_Integer_Literal
(Loc
, J
))))));
10712 Odef
:= New_Occurrence_Of
(Target_Type
, Loc
);
10714 if Present
(Cons
) then
10716 Make_Subtype_Indication
(Loc
,
10717 Subtype_Mark
=> Odef
,
10719 Make_Index_Or_Discriminant_Constraint
(Loc
,
10720 Constraints
=> Cons
));
10723 Temp
:= Make_Temporary
(Loc
, 'C');
10725 Make_Object_Declaration
(Loc
,
10726 Defining_Identifier
=> Temp
,
10727 Object_Definition
=> Odef
);
10729 Set_No_Initialization
(Decl
, True);
10731 -- Insert required actions. It is essential to suppress checks
10732 -- since we have suppressed default initialization, which means
10733 -- that the variable we create may have no discriminants.
10738 Make_Assignment_Statement
(Loc
,
10739 Name
=> New_Occurrence_Of
(Temp
, Loc
),
10740 Expression
=> Relocate_Node
(N
))),
10741 Suppress
=> All_Checks
);
10743 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
10746 end Handle_Changed_Representation
;
10748 -------------------------------
10749 -- Raise_Accessibility_Error --
10750 -------------------------------
10752 procedure Raise_Accessibility_Error
is
10754 Error_Msg_Warn
:= SPARK_Mode
/= On
;
10756 Make_Raise_Program_Error
(Sloc
(N
),
10757 Reason
=> PE_Accessibility_Check_Failed
));
10758 Set_Etype
(N
, Target_Type
);
10760 Error_Msg_N
("<<accessibility check failure", N
);
10761 Error_Msg_NE
("\<<& [", N
, Standard_Program_Error
);
10762 end Raise_Accessibility_Error
;
10764 ----------------------
10765 -- Real_Range_Check --
10766 ----------------------
10768 -- Case of conversions to floating-point or fixed-point. If range checks
10769 -- are enabled and the target type has a range constraint, we convert:
10775 -- Tnn : typ'Base := typ'Base (x);
10776 -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
10779 -- This is necessary when there is a conversion of integer to float or
10780 -- to fixed-point to ensure that the correct checks are made. It is not
10781 -- necessary for float to float where it is enough to simply set the
10782 -- Do_Range_Check flag.
10784 procedure Real_Range_Check
is
10785 Btyp
: constant Entity_Id
:= Base_Type
(Target_Type
);
10786 Lo
: constant Node_Id
:= Type_Low_Bound
(Target_Type
);
10787 Hi
: constant Node_Id
:= Type_High_Bound
(Target_Type
);
10788 Xtyp
: constant Entity_Id
:= Etype
(Operand
);
10793 -- Nothing to do if conversion was rewritten
10795 if Nkind
(N
) /= N_Type_Conversion
then
10799 -- Nothing to do if range checks suppressed, or target has the same
10800 -- range as the base type (or is the base type).
10802 if Range_Checks_Suppressed
(Target_Type
)
10803 or else (Lo
= Type_Low_Bound
(Btyp
)
10805 Hi
= Type_High_Bound
(Btyp
))
10810 -- Nothing to do if expression is an entity on which checks have been
10813 if Is_Entity_Name
(Operand
)
10814 and then Range_Checks_Suppressed
(Entity
(Operand
))
10819 -- Nothing to do if bounds are all static and we can tell that the
10820 -- expression is within the bounds of the target. Note that if the
10821 -- operand is of an unconstrained floating-point type, then we do
10822 -- not trust it to be in range (might be infinite)
10825 S_Lo
: constant Node_Id
:= Type_Low_Bound
(Xtyp
);
10826 S_Hi
: constant Node_Id
:= Type_High_Bound
(Xtyp
);
10829 if (not Is_Floating_Point_Type
(Xtyp
)
10830 or else Is_Constrained
(Xtyp
))
10831 and then Compile_Time_Known_Value
(S_Lo
)
10832 and then Compile_Time_Known_Value
(S_Hi
)
10833 and then Compile_Time_Known_Value
(Hi
)
10834 and then Compile_Time_Known_Value
(Lo
)
10837 D_Lov
: constant Ureal
:= Expr_Value_R
(Lo
);
10838 D_Hiv
: constant Ureal
:= Expr_Value_R
(Hi
);
10843 if Is_Real_Type
(Xtyp
) then
10844 S_Lov
:= Expr_Value_R
(S_Lo
);
10845 S_Hiv
:= Expr_Value_R
(S_Hi
);
10847 S_Lov
:= UR_From_Uint
(Expr_Value
(S_Lo
));
10848 S_Hiv
:= UR_From_Uint
(Expr_Value
(S_Hi
));
10852 and then S_Lov
>= D_Lov
10853 and then S_Hiv
<= D_Hiv
10855 -- Unset the range check flag on the current value of
10856 -- Expression (N), since the captured Operand may have
10857 -- been rewritten (such as for the case of a conversion
10858 -- to a fixed-point type).
10860 Set_Do_Range_Check
(Expression
(N
), False);
10868 -- For float to float conversions, we are done
10870 if Is_Floating_Point_Type
(Xtyp
)
10872 Is_Floating_Point_Type
(Btyp
)
10877 -- Otherwise rewrite the conversion as described above
10879 Conv
:= Relocate_Node
(N
);
10880 Rewrite
(Subtype_Mark
(Conv
), New_Occurrence_Of
(Btyp
, Loc
));
10881 Set_Etype
(Conv
, Btyp
);
10883 -- Enable overflow except for case of integer to float conversions,
10884 -- where it is never required, since we can never have overflow in
10887 if not Is_Integer_Type
(Etype
(Operand
)) then
10888 Enable_Overflow_Check
(Conv
);
10891 Tnn
:= Make_Temporary
(Loc
, 'T', Conv
);
10893 Insert_Actions
(N
, New_List
(
10894 Make_Object_Declaration
(Loc
,
10895 Defining_Identifier
=> Tnn
,
10896 Object_Definition
=> New_Occurrence_Of
(Btyp
, Loc
),
10897 Constant_Present
=> True,
10898 Expression
=> Conv
),
10900 Make_Raise_Constraint_Error
(Loc
,
10905 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
10907 Make_Attribute_Reference
(Loc
,
10908 Attribute_Name
=> Name_First
,
10910 New_Occurrence_Of
(Target_Type
, Loc
))),
10914 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
10916 Make_Attribute_Reference
(Loc
,
10917 Attribute_Name
=> Name_Last
,
10919 New_Occurrence_Of
(Target_Type
, Loc
)))),
10920 Reason
=> CE_Range_Check_Failed
)));
10922 Rewrite
(N
, New_Occurrence_Of
(Tnn
, Loc
));
10923 Analyze_And_Resolve
(N
, Btyp
);
10924 end Real_Range_Check
;
10926 -----------------------------
10927 -- Has_Extra_Accessibility --
10928 -----------------------------
10930 -- Returns true for a formal of an anonymous access type or for
10931 -- an Ada 2012-style stand-alone object of an anonymous access type.
10933 function Has_Extra_Accessibility
(Id
: Entity_Id
) return Boolean is
10935 if Is_Formal
(Id
) or else Ekind_In
(Id
, E_Constant
, E_Variable
) then
10936 return Present
(Effective_Extra_Accessibility
(Id
));
10940 end Has_Extra_Accessibility
;
10942 -- Start of processing for Expand_N_Type_Conversion
10945 -- First remove check marks put by the semantic analysis on the type
10946 -- conversion between array types. We need these checks, and they will
10947 -- be generated by this expansion routine, but we do not depend on these
10948 -- flags being set, and since we do intend to expand the checks in the
10949 -- front end, we don't want them on the tree passed to the back end.
10951 if Is_Array_Type
(Target_Type
) then
10952 if Is_Constrained
(Target_Type
) then
10953 Set_Do_Length_Check
(N
, False);
10955 Set_Do_Range_Check
(Operand
, False);
10959 -- Nothing at all to do if conversion is to the identical type so remove
10960 -- the conversion completely, it is useless, except that it may carry
10961 -- an Assignment_OK attribute, which must be propagated to the operand.
10963 if Operand_Type
= Target_Type
then
10964 if Assignment_OK
(N
) then
10965 Set_Assignment_OK
(Operand
);
10968 Rewrite
(N
, Relocate_Node
(Operand
));
10972 -- Nothing to do if this is the second argument of read. This is a
10973 -- "backwards" conversion that will be handled by the specialized code
10974 -- in attribute processing.
10976 if Nkind
(Parent
(N
)) = N_Attribute_Reference
10977 and then Attribute_Name
(Parent
(N
)) = Name_Read
10978 and then Next
(First
(Expressions
(Parent
(N
)))) = N
10983 -- Check for case of converting to a type that has an invariant
10984 -- associated with it. This requires an invariant check. We insert
10987 -- invariant_check (typ (expr))
10989 -- in the code, after removing side effects from the expression.
10990 -- This is clearer than replacing the conversion into an expression
10991 -- with actions, because the context may impose additional actions
10992 -- (tag checks, membership tests, etc.) that conflict with this
10993 -- rewriting (used previously).
10995 -- Note: the Comes_From_Source check, and then the resetting of this
10996 -- flag prevents what would otherwise be an infinite recursion.
10998 if Has_Invariants
(Target_Type
)
10999 and then Present
(Invariant_Procedure
(Target_Type
))
11000 and then Comes_From_Source
(N
)
11002 Set_Comes_From_Source
(N
, False);
11003 Remove_Side_Effects
(N
);
11004 Insert_Action
(N
, Make_Invariant_Call
(Duplicate_Subexpr
(N
)));
11008 -- Here if we may need to expand conversion
11010 -- If the operand of the type conversion is an arithmetic operation on
11011 -- signed integers, and the based type of the signed integer type in
11012 -- question is smaller than Standard.Integer, we promote both of the
11013 -- operands to type Integer.
11015 -- For example, if we have
11017 -- target-type (opnd1 + opnd2)
11019 -- and opnd1 and opnd2 are of type short integer, then we rewrite
11022 -- target-type (integer(opnd1) + integer(opnd2))
11024 -- We do this because we are always allowed to compute in a larger type
11025 -- if we do the right thing with the result, and in this case we are
11026 -- going to do a conversion which will do an appropriate check to make
11027 -- sure that things are in range of the target type in any case. This
11028 -- avoids some unnecessary intermediate overflows.
11030 -- We might consider a similar transformation in the case where the
11031 -- target is a real type or a 64-bit integer type, and the operand
11032 -- is an arithmetic operation using a 32-bit integer type. However,
11033 -- we do not bother with this case, because it could cause significant
11034 -- inefficiencies on 32-bit machines. On a 64-bit machine it would be
11035 -- much cheaper, but we don't want different behavior on 32-bit and
11036 -- 64-bit machines. Note that the exclusion of the 64-bit case also
11037 -- handles the configurable run-time cases where 64-bit arithmetic
11038 -- may simply be unavailable.
11040 -- Note: this circuit is partially redundant with respect to the circuit
11041 -- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
11042 -- the processing here. Also we still need the Checks circuit, since we
11043 -- have to be sure not to generate junk overflow checks in the first
11044 -- place, since it would be trick to remove them here.
11046 if Integer_Promotion_Possible
(N
) then
11048 -- All conditions met, go ahead with transformation
11056 Make_Type_Conversion
(Loc
,
11057 Subtype_Mark
=> New_Occurrence_Of
(Standard_Integer
, Loc
),
11058 Expression
=> Relocate_Node
(Right_Opnd
(Operand
)));
11060 Opnd
:= New_Op_Node
(Nkind
(Operand
), Loc
);
11061 Set_Right_Opnd
(Opnd
, R
);
11063 if Nkind
(Operand
) in N_Binary_Op
then
11065 Make_Type_Conversion
(Loc
,
11066 Subtype_Mark
=> New_Occurrence_Of
(Standard_Integer
, Loc
),
11067 Expression
=> Relocate_Node
(Left_Opnd
(Operand
)));
11069 Set_Left_Opnd
(Opnd
, L
);
11073 Make_Type_Conversion
(Loc
,
11074 Subtype_Mark
=> Relocate_Node
(Subtype_Mark
(N
)),
11075 Expression
=> Opnd
));
11077 Analyze_And_Resolve
(N
, Target_Type
);
11082 -- Do validity check if validity checking operands
11084 if Validity_Checks_On
and Validity_Check_Operands
then
11085 Ensure_Valid
(Operand
);
11088 -- Special case of converting from non-standard boolean type
11090 if Is_Boolean_Type
(Operand_Type
)
11091 and then (Nonzero_Is_True
(Operand_Type
))
11093 Adjust_Condition
(Operand
);
11094 Set_Etype
(Operand
, Standard_Boolean
);
11095 Operand_Type
:= Standard_Boolean
;
11098 -- Case of converting to an access type
11100 if Is_Access_Type
(Target_Type
) then
11102 -- If this type conversion was internally generated by the front end
11103 -- to displace the pointer to the object to reference an interface
11104 -- type and the original node was an Unrestricted_Access attribute,
11105 -- then skip applying accessibility checks (because, according to the
11106 -- GNAT Reference Manual, this attribute is similar to 'Access except
11107 -- that all accessibility and aliased view checks are omitted).
11109 if not Comes_From_Source
(N
)
11110 and then Is_Interface
(Designated_Type
(Target_Type
))
11111 and then Nkind
(Original_Node
(N
)) = N_Attribute_Reference
11112 and then Attribute_Name
(Original_Node
(N
)) =
11113 Name_Unrestricted_Access
11117 -- Apply an accessibility check when the conversion operand is an
11118 -- access parameter (or a renaming thereof), unless conversion was
11119 -- expanded from an Unchecked_ or Unrestricted_Access attribute.
11120 -- Note that other checks may still need to be applied below (such
11121 -- as tagged type checks).
11123 elsif Is_Entity_Name
(Operand
)
11124 and then Has_Extra_Accessibility
(Entity
(Operand
))
11125 and then Ekind
(Etype
(Operand
)) = E_Anonymous_Access_Type
11126 and then (Nkind
(Original_Node
(N
)) /= N_Attribute_Reference
11127 or else Attribute_Name
(Original_Node
(N
)) = Name_Access
)
11129 Apply_Accessibility_Check
11130 (Operand
, Target_Type
, Insert_Node
=> Operand
);
11132 -- If the level of the operand type is statically deeper than the
11133 -- level of the target type, then force Program_Error. Note that this
11134 -- can only occur for cases where the attribute is within the body of
11135 -- an instantiation, otherwise the conversion will already have been
11136 -- rejected as illegal.
11138 -- Note: warnings are issued by the analyzer for the instance cases
11140 elsif In_Instance_Body
11142 -- The case where the target type is an anonymous access type of
11143 -- a discriminant is excluded, because the level of such a type
11144 -- depends on the context and currently the level returned for such
11145 -- types is zero, resulting in warnings about about check failures
11146 -- in certain legal cases involving class-wide interfaces as the
11147 -- designated type (some cases, such as return statements, are
11148 -- checked at run time, but not clear if these are handled right
11149 -- in general, see 3.10.2(12/2-12.5/3) ???).
11152 not (Ekind
(Target_Type
) = E_Anonymous_Access_Type
11153 and then Present
(Associated_Node_For_Itype
(Target_Type
))
11154 and then Nkind
(Associated_Node_For_Itype
(Target_Type
)) =
11155 N_Discriminant_Specification
)
11157 Type_Access_Level
(Operand_Type
) > Type_Access_Level
(Target_Type
)
11159 Raise_Accessibility_Error
;
11162 -- When the operand is a selected access discriminant the check needs
11163 -- to be made against the level of the object denoted by the prefix
11164 -- of the selected name. Force Program_Error for this case as well
11165 -- (this accessibility violation can only happen if within the body
11166 -- of an instantiation).
11168 elsif In_Instance_Body
11169 and then Ekind
(Operand_Type
) = E_Anonymous_Access_Type
11170 and then Nkind
(Operand
) = N_Selected_Component
11171 and then Object_Access_Level
(Operand
) >
11172 Type_Access_Level
(Target_Type
)
11174 Raise_Accessibility_Error
;
11179 -- Case of conversions of tagged types and access to tagged types
11181 -- When needed, that is to say when the expression is class-wide, Add
11182 -- runtime a tag check for (strict) downward conversion by using the
11183 -- membership test, generating:
11185 -- [constraint_error when Operand not in Target_Type'Class]
11187 -- or in the access type case
11189 -- [constraint_error
11190 -- when Operand /= null
11191 -- and then Operand.all not in
11192 -- Designated_Type (Target_Type)'Class]
11194 if (Is_Access_Type
(Target_Type
)
11195 and then Is_Tagged_Type
(Designated_Type
(Target_Type
)))
11196 or else Is_Tagged_Type
(Target_Type
)
11198 -- Do not do any expansion in the access type case if the parent is a
11199 -- renaming, since this is an error situation which will be caught by
11200 -- Sem_Ch8, and the expansion can interfere with this error check.
11202 if Is_Access_Type
(Target_Type
) and then Is_Renamed_Object
(N
) then
11206 -- Otherwise, proceed with processing tagged conversion
11208 Tagged_Conversion
: declare
11209 Actual_Op_Typ
: Entity_Id
;
11210 Actual_Targ_Typ
: Entity_Id
;
11211 Make_Conversion
: Boolean := False;
11212 Root_Op_Typ
: Entity_Id
;
11214 procedure Make_Tag_Check
(Targ_Typ
: Entity_Id
);
11215 -- Create a membership check to test whether Operand is a member
11216 -- of Targ_Typ. If the original Target_Type is an access, include
11217 -- a test for null value. The check is inserted at N.
11219 --------------------
11220 -- Make_Tag_Check --
11221 --------------------
11223 procedure Make_Tag_Check
(Targ_Typ
: Entity_Id
) is
11228 -- [Constraint_Error
11229 -- when Operand /= null
11230 -- and then Operand.all not in Targ_Typ]
11232 if Is_Access_Type
(Target_Type
) then
11234 Make_And_Then
(Loc
,
11237 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Operand
),
11238 Right_Opnd
=> Make_Null
(Loc
)),
11243 Make_Explicit_Dereference
(Loc
,
11244 Prefix
=> Duplicate_Subexpr_No_Checks
(Operand
)),
11245 Right_Opnd
=> New_Occurrence_Of
(Targ_Typ
, Loc
)));
11248 -- [Constraint_Error when Operand not in Targ_Typ]
11253 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Operand
),
11254 Right_Opnd
=> New_Occurrence_Of
(Targ_Typ
, Loc
));
11258 Make_Raise_Constraint_Error
(Loc
,
11260 Reason
=> CE_Tag_Check_Failed
),
11261 Suppress
=> All_Checks
);
11262 end Make_Tag_Check
;
11264 -- Start of processing for Tagged_Conversion
11267 -- Handle entities from the limited view
11269 if Is_Access_Type
(Operand_Type
) then
11271 Available_View
(Designated_Type
(Operand_Type
));
11273 Actual_Op_Typ
:= Operand_Type
;
11276 if Is_Access_Type
(Target_Type
) then
11278 Available_View
(Designated_Type
(Target_Type
));
11280 Actual_Targ_Typ
:= Target_Type
;
11283 Root_Op_Typ
:= Root_Type
(Actual_Op_Typ
);
11285 -- Ada 2005 (AI-251): Handle interface type conversion
11287 if Is_Interface
(Actual_Op_Typ
)
11289 Is_Interface
(Actual_Targ_Typ
)
11291 Expand_Interface_Conversion
(N
);
11295 if not Tag_Checks_Suppressed
(Actual_Targ_Typ
) then
11297 -- Create a runtime tag check for a downward class-wide type
11300 if Is_Class_Wide_Type
(Actual_Op_Typ
)
11301 and then Actual_Op_Typ
/= Actual_Targ_Typ
11302 and then Root_Op_Typ
/= Actual_Targ_Typ
11303 and then Is_Ancestor
(Root_Op_Typ
, Actual_Targ_Typ
,
11304 Use_Full_View
=> True)
11306 Make_Tag_Check
(Class_Wide_Type
(Actual_Targ_Typ
));
11307 Make_Conversion
:= True;
11310 -- AI05-0073: If the result subtype of the function is defined
11311 -- by an access_definition designating a specific tagged type
11312 -- T, a check is made that the result value is null or the tag
11313 -- of the object designated by the result value identifies T.
11314 -- Constraint_Error is raised if this check fails.
11316 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
then
11319 Func_Typ
: Entity_Id
;
11322 -- Climb scope stack looking for the enclosing function
11324 Func
:= Current_Scope
;
11325 while Present
(Func
)
11326 and then Ekind
(Func
) /= E_Function
11328 Func
:= Scope
(Func
);
11331 -- The function's return subtype must be defined using
11332 -- an access definition.
11334 if Nkind
(Result_Definition
(Parent
(Func
))) =
11335 N_Access_Definition
11337 Func_Typ
:= Directly_Designated_Type
(Etype
(Func
));
11339 -- The return subtype denotes a specific tagged type,
11340 -- in other words, a non class-wide type.
11342 if Is_Tagged_Type
(Func_Typ
)
11343 and then not Is_Class_Wide_Type
(Func_Typ
)
11345 Make_Tag_Check
(Actual_Targ_Typ
);
11346 Make_Conversion
:= True;
11352 -- We have generated a tag check for either a class-wide type
11353 -- conversion or for AI05-0073.
11355 if Make_Conversion
then
11360 Make_Unchecked_Type_Conversion
(Loc
,
11361 Subtype_Mark
=> New_Occurrence_Of
(Target_Type
, Loc
),
11362 Expression
=> Relocate_Node
(Expression
(N
)));
11364 Analyze_And_Resolve
(N
, Target_Type
);
11368 end Tagged_Conversion
;
11370 -- Case of other access type conversions
11372 elsif Is_Access_Type
(Target_Type
) then
11373 Apply_Constraint_Check
(Operand
, Target_Type
);
11375 -- Case of conversions from a fixed-point type
11377 -- These conversions require special expansion and processing, found in
11378 -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
11379 -- since from a semantic point of view, these are simple integer
11380 -- conversions, which do not need further processing.
11382 elsif Is_Fixed_Point_Type
(Operand_Type
)
11383 and then not Conversion_OK
(N
)
11385 -- We should never see universal fixed at this case, since the
11386 -- expansion of the constituent divide or multiply should have
11387 -- eliminated the explicit mention of universal fixed.
11389 pragma Assert
(Operand_Type
/= Universal_Fixed
);
11391 -- Check for special case of the conversion to universal real that
11392 -- occurs as a result of the use of a round attribute. In this case,
11393 -- the real type for the conversion is taken from the target type of
11394 -- the Round attribute and the result must be marked as rounded.
11396 if Target_Type
= Universal_Real
11397 and then Nkind
(Parent
(N
)) = N_Attribute_Reference
11398 and then Attribute_Name
(Parent
(N
)) = Name_Round
11400 Set_Rounded_Result
(N
);
11401 Set_Etype
(N
, Etype
(Parent
(N
)));
11404 -- Otherwise do correct fixed-conversion, but skip these if the
11405 -- Conversion_OK flag is set, because from a semantic point of view
11406 -- these are simple integer conversions needing no further processing
11407 -- (the backend will simply treat them as integers).
11409 if not Conversion_OK
(N
) then
11410 if Is_Fixed_Point_Type
(Etype
(N
)) then
11411 Expand_Convert_Fixed_To_Fixed
(N
);
11414 elsif Is_Integer_Type
(Etype
(N
)) then
11415 Expand_Convert_Fixed_To_Integer
(N
);
11418 pragma Assert
(Is_Floating_Point_Type
(Etype
(N
)));
11419 Expand_Convert_Fixed_To_Float
(N
);
11424 -- Case of conversions to a fixed-point type
11426 -- These conversions require special expansion and processing, found in
11427 -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
11428 -- since from a semantic point of view, these are simple integer
11429 -- conversions, which do not need further processing.
11431 elsif Is_Fixed_Point_Type
(Target_Type
)
11432 and then not Conversion_OK
(N
)
11434 if Is_Integer_Type
(Operand_Type
) then
11435 Expand_Convert_Integer_To_Fixed
(N
);
11438 pragma Assert
(Is_Floating_Point_Type
(Operand_Type
));
11439 Expand_Convert_Float_To_Fixed
(N
);
11443 -- Case of float-to-integer conversions
11445 -- We also handle float-to-fixed conversions with Conversion_OK set
11446 -- since semantically the fixed-point target is treated as though it
11447 -- were an integer in such cases.
11449 elsif Is_Floating_Point_Type
(Operand_Type
)
11451 (Is_Integer_Type
(Target_Type
)
11453 (Is_Fixed_Point_Type
(Target_Type
) and then Conversion_OK
(N
)))
11455 -- One more check here, gcc is still not able to do conversions of
11456 -- this type with proper overflow checking, and so gigi is doing an
11457 -- approximation of what is required by doing floating-point compares
11458 -- with the end-point. But that can lose precision in some cases, and
11459 -- give a wrong result. Converting the operand to Universal_Real is
11460 -- helpful, but still does not catch all cases with 64-bit integers
11461 -- on targets with only 64-bit floats.
11463 -- The above comment seems obsoleted by Apply_Float_Conversion_Check
11464 -- Can this code be removed ???
11466 if Do_Range_Check
(Operand
) then
11468 Make_Type_Conversion
(Loc
,
11470 New_Occurrence_Of
(Universal_Real
, Loc
),
11472 Relocate_Node
(Operand
)));
11474 Set_Etype
(Operand
, Universal_Real
);
11475 Enable_Range_Check
(Operand
);
11476 Set_Do_Range_Check
(Expression
(Operand
), False);
11479 -- Case of array conversions
11481 -- Expansion of array conversions, add required length/range checks but
11482 -- only do this if there is no change of representation. For handling of
11483 -- this case, see Handle_Changed_Representation.
11485 elsif Is_Array_Type
(Target_Type
) then
11486 if Is_Constrained
(Target_Type
) then
11487 Apply_Length_Check
(Operand
, Target_Type
);
11489 Apply_Range_Check
(Operand
, Target_Type
);
11492 Handle_Changed_Representation
;
11494 -- Case of conversions of discriminated types
11496 -- Add required discriminant checks if target is constrained. Again this
11497 -- change is skipped if we have a change of representation.
11499 elsif Has_Discriminants
(Target_Type
)
11500 and then Is_Constrained
(Target_Type
)
11502 Apply_Discriminant_Check
(Operand
, Target_Type
);
11503 Handle_Changed_Representation
;
11505 -- Case of all other record conversions. The only processing required
11506 -- is to check for a change of representation requiring the special
11507 -- assignment processing.
11509 elsif Is_Record_Type
(Target_Type
) then
11511 -- Ada 2005 (AI-216): Program_Error is raised when converting from
11512 -- a derived Unchecked_Union type to an unconstrained type that is
11513 -- not Unchecked_Union if the operand lacks inferable discriminants.
11515 if Is_Derived_Type
(Operand_Type
)
11516 and then Is_Unchecked_Union
(Base_Type
(Operand_Type
))
11517 and then not Is_Constrained
(Target_Type
)
11518 and then not Is_Unchecked_Union
(Base_Type
(Target_Type
))
11519 and then not Has_Inferable_Discriminants
(Operand
)
11521 -- To prevent Gigi from generating illegal code, we generate a
11522 -- Program_Error node, but we give it the target type of the
11523 -- conversion (is this requirement documented somewhere ???)
11526 PE
: constant Node_Id
:= Make_Raise_Program_Error
(Loc
,
11527 Reason
=> PE_Unchecked_Union_Restriction
);
11530 Set_Etype
(PE
, Target_Type
);
11535 Handle_Changed_Representation
;
11538 -- Case of conversions of enumeration types
11540 elsif Is_Enumeration_Type
(Target_Type
) then
11542 -- Special processing is required if there is a change of
11543 -- representation (from enumeration representation clauses).
11545 if not Same_Representation
(Target_Type
, Operand_Type
) then
11547 -- Convert: x(y) to x'val (ytyp'val (y))
11550 Make_Attribute_Reference
(Loc
,
11551 Prefix
=> New_Occurrence_Of
(Target_Type
, Loc
),
11552 Attribute_Name
=> Name_Val
,
11553 Expressions
=> New_List
(
11554 Make_Attribute_Reference
(Loc
,
11555 Prefix
=> New_Occurrence_Of
(Operand_Type
, Loc
),
11556 Attribute_Name
=> Name_Pos
,
11557 Expressions
=> New_List
(Operand
)))));
11559 Analyze_And_Resolve
(N
, Target_Type
);
11562 -- Case of conversions to floating-point
11564 elsif Is_Floating_Point_Type
(Target_Type
) then
11568 -- At this stage, either the conversion node has been transformed into
11569 -- some other equivalent expression, or left as a conversion that can be
11570 -- handled by Gigi, in the following cases:
11572 -- Conversions with no change of representation or type
11574 -- Numeric conversions involving integer, floating- and fixed-point
11575 -- values. Fixed-point values are allowed only if Conversion_OK is
11576 -- set, i.e. if the fixed-point values are to be treated as integers.
11578 -- No other conversions should be passed to Gigi
11580 -- Check: are these rules stated in sinfo??? if so, why restate here???
11582 -- The only remaining step is to generate a range check if we still have
11583 -- a type conversion at this stage and Do_Range_Check is set. For now we
11584 -- do this only for conversions of discrete types and for float-to-float
11587 if Nkind
(N
) = N_Type_Conversion
then
11589 -- For now we only support floating-point cases where both source
11590 -- and target are floating-point types. Conversions where the source
11591 -- and target involve integer or fixed-point types are still TBD,
11592 -- though not clear whether those can even happen at this point, due
11593 -- to transformations above. ???
11595 if Is_Floating_Point_Type
(Etype
(N
))
11596 and then Is_Floating_Point_Type
(Etype
(Expression
(N
)))
11598 if Do_Range_Check
(Expression
(N
))
11599 and then Is_Floating_Point_Type
(Target_Type
)
11601 Generate_Range_Check
11602 (Expression
(N
), Target_Type
, CE_Range_Check_Failed
);
11605 -- Discrete-to-discrete conversions
11607 elsif Is_Discrete_Type
(Etype
(N
)) then
11609 Expr
: constant Node_Id
:= Expression
(N
);
11614 if Do_Range_Check
(Expr
)
11615 and then Is_Discrete_Type
(Etype
(Expr
))
11617 Set_Do_Range_Check
(Expr
, False);
11619 -- Before we do a range check, we have to deal with treating
11620 -- a fixed-point operand as an integer. The way we do this
11621 -- is simply to do an unchecked conversion to an appropriate
11622 -- integer type large enough to hold the result.
11624 -- This code is not active yet, because we are only dealing
11625 -- with discrete types so far ???
11627 if Nkind
(Expr
) in N_Has_Treat_Fixed_As_Integer
11628 and then Treat_Fixed_As_Integer
(Expr
)
11630 Ftyp
:= Base_Type
(Etype
(Expr
));
11632 if Esize
(Ftyp
) >= Esize
(Standard_Integer
) then
11633 Ityp
:= Standard_Long_Long_Integer
;
11635 Ityp
:= Standard_Integer
;
11638 Rewrite
(Expr
, Unchecked_Convert_To
(Ityp
, Expr
));
11641 -- Reset overflow flag, since the range check will include
11642 -- dealing with possible overflow, and generate the check.
11643 -- If Address is either a source type or target type,
11644 -- suppress range check to avoid typing anomalies when
11645 -- it is a visible integer type.
11647 Set_Do_Overflow_Check
(N
, False);
11649 if not Is_Descendant_Of_Address
(Etype
(Expr
))
11650 and then not Is_Descendant_Of_Address
(Target_Type
)
11652 Generate_Range_Check
11653 (Expr
, Target_Type
, CE_Range_Check_Failed
);
11660 -- Here at end of processing
11663 -- Apply predicate check if required. Note that we can't just call
11664 -- Apply_Predicate_Check here, because the type looks right after
11665 -- the conversion and it would omit the check. The Comes_From_Source
11666 -- guard is necessary to prevent infinite recursions when we generate
11667 -- internal conversions for the purpose of checking predicates.
11669 if Present
(Predicate_Function
(Target_Type
))
11670 and then not Predicates_Ignored
(Target_Type
)
11671 and then Target_Type
/= Operand_Type
11672 and then Comes_From_Source
(N
)
11675 New_Expr
: constant Node_Id
:= Duplicate_Subexpr
(N
);
11678 -- Avoid infinite recursion on the subsequent expansion of
11679 -- of the copy of the original type conversion.
11681 Set_Comes_From_Source
(New_Expr
, False);
11682 Insert_Action
(N
, Make_Predicate_Check
(Target_Type
, New_Expr
));
11685 end Expand_N_Type_Conversion
;
11687 -----------------------------------
11688 -- Expand_N_Unchecked_Expression --
11689 -----------------------------------
11691 -- Remove the unchecked expression node from the tree. Its job was simply
11692 -- to make sure that its constituent expression was handled with checks
11693 -- off, and now that that is done, we can remove it from the tree, and
11694 -- indeed must, since Gigi does not expect to see these nodes.
11696 procedure Expand_N_Unchecked_Expression
(N
: Node_Id
) is
11697 Exp
: constant Node_Id
:= Expression
(N
);
11699 Set_Assignment_OK
(Exp
, Assignment_OK
(N
) or else Assignment_OK
(Exp
));
11701 end Expand_N_Unchecked_Expression
;
11703 ----------------------------------------
11704 -- Expand_N_Unchecked_Type_Conversion --
11705 ----------------------------------------
11707 -- If this cannot be handled by Gigi and we haven't already made a
11708 -- temporary for it, do it now.
11710 procedure Expand_N_Unchecked_Type_Conversion
(N
: Node_Id
) is
11711 Target_Type
: constant Entity_Id
:= Etype
(N
);
11712 Operand
: constant Node_Id
:= Expression
(N
);
11713 Operand_Type
: constant Entity_Id
:= Etype
(Operand
);
11716 -- Nothing at all to do if conversion is to the identical type so remove
11717 -- the conversion completely, it is useless, except that it may carry
11718 -- an Assignment_OK indication which must be propagated to the operand.
11720 if Operand_Type
= Target_Type
then
11722 -- Code duplicates Expand_N_Unchecked_Expression above, factor???
11724 if Assignment_OK
(N
) then
11725 Set_Assignment_OK
(Operand
);
11728 Rewrite
(N
, Relocate_Node
(Operand
));
11732 -- If we have a conversion of a compile time known value to a target
11733 -- type and the value is in range of the target type, then we can simply
11734 -- replace the construct by an integer literal of the correct type. We
11735 -- only apply this to integer types being converted. Possibly it may
11736 -- apply in other cases, but it is too much trouble to worry about.
11738 -- Note that we do not do this transformation if the Kill_Range_Check
11739 -- flag is set, since then the value may be outside the expected range.
11740 -- This happens in the Normalize_Scalars case.
11742 -- We also skip this if either the target or operand type is biased
11743 -- because in this case, the unchecked conversion is supposed to
11744 -- preserve the bit pattern, not the integer value.
11746 if Is_Integer_Type
(Target_Type
)
11747 and then not Has_Biased_Representation
(Target_Type
)
11748 and then Is_Integer_Type
(Operand_Type
)
11749 and then not Has_Biased_Representation
(Operand_Type
)
11750 and then Compile_Time_Known_Value
(Operand
)
11751 and then not Kill_Range_Check
(N
)
11754 Val
: constant Uint
:= Expr_Value
(Operand
);
11757 if Compile_Time_Known_Value
(Type_Low_Bound
(Target_Type
))
11759 Compile_Time_Known_Value
(Type_High_Bound
(Target_Type
))
11761 Val
>= Expr_Value
(Type_Low_Bound
(Target_Type
))
11763 Val
<= Expr_Value
(Type_High_Bound
(Target_Type
))
11765 Rewrite
(N
, Make_Integer_Literal
(Sloc
(N
), Val
));
11767 -- If Address is the target type, just set the type to avoid a
11768 -- spurious type error on the literal when Address is a visible
11771 if Is_Descendant_Of_Address
(Target_Type
) then
11772 Set_Etype
(N
, Target_Type
);
11774 Analyze_And_Resolve
(N
, Target_Type
);
11782 -- Nothing to do if conversion is safe
11784 if Safe_Unchecked_Type_Conversion
(N
) then
11788 -- Otherwise force evaluation unless Assignment_OK flag is set (this
11789 -- flag indicates ??? More comments needed here)
11791 if Assignment_OK
(N
) then
11794 Force_Evaluation
(N
);
11796 end Expand_N_Unchecked_Type_Conversion
;
11798 ----------------------------
11799 -- Expand_Record_Equality --
11800 ----------------------------
11802 -- For non-variant records, Equality is expanded when needed into:
11804 -- and then Lhs.Discr1 = Rhs.Discr1
11806 -- and then Lhs.Discrn = Rhs.Discrn
11807 -- and then Lhs.Cmp1 = Rhs.Cmp1
11809 -- and then Lhs.Cmpn = Rhs.Cmpn
11811 -- The expression is folded by the back-end for adjacent fields. This
11812 -- function is called for tagged record in only one occasion: for imple-
11813 -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
11814 -- otherwise the primitive "=" is used directly.
11816 function Expand_Record_Equality
11821 Bodies
: List_Id
) return Node_Id
11823 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
11828 First_Time
: Boolean := True;
11830 function Element_To_Compare
(C
: Entity_Id
) return Entity_Id
;
11831 -- Return the next discriminant or component to compare, starting with
11832 -- C, skipping inherited components.
11834 ------------------------
11835 -- Element_To_Compare --
11836 ------------------------
11838 function Element_To_Compare
(C
: Entity_Id
) return Entity_Id
is
11844 -- Exit loop when the next element to be compared is found, or
11845 -- there is no more such element.
11847 exit when No
(Comp
);
11849 exit when Ekind_In
(Comp
, E_Discriminant
, E_Component
)
11852 -- Skip inherited components
11854 -- Note: for a tagged type, we always generate the "=" primitive
11855 -- for the base type (not on the first subtype), so the test for
11856 -- Comp /= Original_Record_Component (Comp) is True for
11857 -- inherited components only.
11859 (Is_Tagged_Type
(Typ
)
11860 and then Comp
/= Original_Record_Component
(Comp
))
11864 or else Chars
(Comp
) = Name_uTag
11866 -- Skip interface elements (secondary tags???)
11868 or else Is_Interface
(Etype
(Comp
)));
11870 Next_Entity
(Comp
);
11874 end Element_To_Compare
;
11876 -- Start of processing for Expand_Record_Equality
11879 -- Generates the following code: (assuming that Typ has one Discr and
11880 -- component C2 is also a record)
11883 -- and then Lhs.Discr1 = Rhs.Discr1
11884 -- and then Lhs.C1 = Rhs.C1
11885 -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
11887 -- and then Lhs.Cmpn = Rhs.Cmpn
11889 Result
:= New_Occurrence_Of
(Standard_True
, Loc
);
11890 C
:= Element_To_Compare
(First_Entity
(Typ
));
11891 while Present
(C
) loop
11899 First_Time
:= False;
11903 New_Lhs
:= New_Copy_Tree
(Lhs
);
11904 New_Rhs
:= New_Copy_Tree
(Rhs
);
11908 Expand_Composite_Equality
(Nod
, Etype
(C
),
11910 Make_Selected_Component
(Loc
,
11912 Selector_Name
=> New_Occurrence_Of
(C
, Loc
)),
11914 Make_Selected_Component
(Loc
,
11916 Selector_Name
=> New_Occurrence_Of
(C
, Loc
)),
11919 -- If some (sub)component is an unchecked_union, the whole
11920 -- operation will raise program error.
11922 if Nkind
(Check
) = N_Raise_Program_Error
then
11924 Set_Etype
(Result
, Standard_Boolean
);
11928 Make_And_Then
(Loc
,
11929 Left_Opnd
=> Result
,
11930 Right_Opnd
=> Check
);
11934 C
:= Element_To_Compare
(Next_Entity
(C
));
11938 end Expand_Record_Equality
;
11940 ---------------------------
11941 -- Expand_Set_Membership --
11942 ---------------------------
11944 procedure Expand_Set_Membership
(N
: Node_Id
) is
11945 Lop
: constant Node_Id
:= Left_Opnd
(N
);
11949 function Make_Cond
(Alt
: Node_Id
) return Node_Id
;
11950 -- If the alternative is a subtype mark, create a simple membership
11951 -- test. Otherwise create an equality test for it.
11957 function Make_Cond
(Alt
: Node_Id
) return Node_Id
is
11959 L
: constant Node_Id
:= New_Copy
(Lop
);
11960 R
: constant Node_Id
:= Relocate_Node
(Alt
);
11963 if (Is_Entity_Name
(Alt
) and then Is_Type
(Entity
(Alt
)))
11964 or else Nkind
(Alt
) = N_Range
11967 Make_In
(Sloc
(Alt
),
11972 Make_Op_Eq
(Sloc
(Alt
),
11980 -- Start of processing for Expand_Set_Membership
11983 Remove_Side_Effects
(Lop
);
11985 Alt
:= Last
(Alternatives
(N
));
11986 Res
:= Make_Cond
(Alt
);
11989 while Present
(Alt
) loop
11991 Make_Or_Else
(Sloc
(Alt
),
11992 Left_Opnd
=> Make_Cond
(Alt
),
11993 Right_Opnd
=> Res
);
11998 Analyze_And_Resolve
(N
, Standard_Boolean
);
11999 end Expand_Set_Membership
;
12001 -----------------------------------
12002 -- Expand_Short_Circuit_Operator --
12003 -----------------------------------
12005 -- Deal with special expansion if actions are present for the right operand
12006 -- and deal with optimizing case of arguments being True or False. We also
12007 -- deal with the special case of non-standard boolean values.
12009 procedure Expand_Short_Circuit_Operator
(N
: Node_Id
) is
12010 Loc
: constant Source_Ptr
:= Sloc
(N
);
12011 Typ
: constant Entity_Id
:= Etype
(N
);
12012 Left
: constant Node_Id
:= Left_Opnd
(N
);
12013 Right
: constant Node_Id
:= Right_Opnd
(N
);
12014 LocR
: constant Source_Ptr
:= Sloc
(Right
);
12017 Shortcut_Value
: constant Boolean := Nkind
(N
) = N_Or_Else
;
12018 Shortcut_Ent
: constant Entity_Id
:= Boolean_Literals
(Shortcut_Value
);
12019 -- If Left = Shortcut_Value then Right need not be evaluated
12021 function Make_Test_Expr
(Opnd
: Node_Id
) return Node_Id
;
12022 -- For Opnd a boolean expression, return a Boolean expression equivalent
12023 -- to Opnd /= Shortcut_Value.
12025 --------------------
12026 -- Make_Test_Expr --
12027 --------------------
12029 function Make_Test_Expr
(Opnd
: Node_Id
) return Node_Id
is
12031 if Shortcut_Value
then
12032 return Make_Op_Not
(Sloc
(Opnd
), Opnd
);
12036 end Make_Test_Expr
;
12040 Op_Var
: Entity_Id
;
12041 -- Entity for a temporary variable holding the value of the operator,
12042 -- used for expansion in the case where actions are present.
12044 -- Start of processing for Expand_Short_Circuit_Operator
12047 -- Deal with non-standard booleans
12049 if Is_Boolean_Type
(Typ
) then
12050 Adjust_Condition
(Left
);
12051 Adjust_Condition
(Right
);
12052 Set_Etype
(N
, Standard_Boolean
);
12055 -- Check for cases where left argument is known to be True or False
12057 if Compile_Time_Known_Value
(Left
) then
12059 -- Mark SCO for left condition as compile time known
12061 if Generate_SCO
and then Comes_From_Source
(Left
) then
12062 Set_SCO_Condition
(Left
, Expr_Value_E
(Left
) = Standard_True
);
12065 -- Rewrite True AND THEN Right / False OR ELSE Right to Right.
12066 -- Any actions associated with Right will be executed unconditionally
12067 -- and can thus be inserted into the tree unconditionally.
12069 if Expr_Value_E
(Left
) /= Shortcut_Ent
then
12070 if Present
(Actions
(N
)) then
12071 Insert_Actions
(N
, Actions
(N
));
12074 Rewrite
(N
, Right
);
12076 -- Rewrite False AND THEN Right / True OR ELSE Right to Left.
12077 -- In this case we can forget the actions associated with Right,
12078 -- since they will never be executed.
12081 Kill_Dead_Code
(Right
);
12082 Kill_Dead_Code
(Actions
(N
));
12083 Rewrite
(N
, New_Occurrence_Of
(Shortcut_Ent
, Loc
));
12086 Adjust_Result_Type
(N
, Typ
);
12090 -- If Actions are present for the right operand, we have to do some
12091 -- special processing. We can't just let these actions filter back into
12092 -- code preceding the short circuit (which is what would have happened
12093 -- if we had not trapped them in the short-circuit form), since they
12094 -- must only be executed if the right operand of the short circuit is
12095 -- executed and not otherwise.
12097 if Present
(Actions
(N
)) then
12098 Actlist
:= Actions
(N
);
12100 -- The old approach is to expand:
12102 -- left AND THEN right
12106 -- C : Boolean := False;
12114 -- and finally rewrite the operator into a reference to C. Similarly
12115 -- for left OR ELSE right, with negated values. Note that this
12116 -- rewrite causes some difficulties for coverage analysis because
12117 -- of the introduction of the new variable C, which obscures the
12118 -- structure of the test.
12120 -- We use this "old approach" if Minimize_Expression_With_Actions
12123 if Minimize_Expression_With_Actions
then
12124 Op_Var
:= Make_Temporary
(Loc
, 'C', Related_Node
=> N
);
12127 Make_Object_Declaration
(Loc
,
12128 Defining_Identifier
=> Op_Var
,
12129 Object_Definition
=>
12130 New_Occurrence_Of
(Standard_Boolean
, Loc
),
12132 New_Occurrence_Of
(Shortcut_Ent
, Loc
)));
12134 Append_To
(Actlist
,
12135 Make_Implicit_If_Statement
(Right
,
12136 Condition
=> Make_Test_Expr
(Right
),
12137 Then_Statements
=> New_List
(
12138 Make_Assignment_Statement
(LocR
,
12139 Name
=> New_Occurrence_Of
(Op_Var
, LocR
),
12142 (Boolean_Literals
(not Shortcut_Value
), LocR
)))));
12145 Make_Implicit_If_Statement
(Left
,
12146 Condition
=> Make_Test_Expr
(Left
),
12147 Then_Statements
=> Actlist
));
12149 Rewrite
(N
, New_Occurrence_Of
(Op_Var
, Loc
));
12150 Analyze_And_Resolve
(N
, Standard_Boolean
);
12152 -- The new approach (the default) is to use an
12153 -- Expression_With_Actions node for the right operand of the
12154 -- short-circuit form. Note that this solves the traceability
12155 -- problems for coverage analysis.
12159 Make_Expression_With_Actions
(LocR
,
12160 Expression
=> Relocate_Node
(Right
),
12161 Actions
=> Actlist
));
12163 Set_Actions
(N
, No_List
);
12164 Analyze_And_Resolve
(Right
, Standard_Boolean
);
12167 Adjust_Result_Type
(N
, Typ
);
12171 -- No actions present, check for cases of right argument True/False
12173 if Compile_Time_Known_Value
(Right
) then
12175 -- Mark SCO for left condition as compile time known
12177 if Generate_SCO
and then Comes_From_Source
(Right
) then
12178 Set_SCO_Condition
(Right
, Expr_Value_E
(Right
) = Standard_True
);
12181 -- Change (Left and then True), (Left or else False) to Left. Note
12182 -- that we know there are no actions associated with the right
12183 -- operand, since we just checked for this case above.
12185 if Expr_Value_E
(Right
) /= Shortcut_Ent
then
12188 -- Change (Left and then False), (Left or else True) to Right,
12189 -- making sure to preserve any side effects associated with the Left
12193 Remove_Side_Effects
(Left
);
12194 Rewrite
(N
, New_Occurrence_Of
(Shortcut_Ent
, Loc
));
12198 Adjust_Result_Type
(N
, Typ
);
12199 end Expand_Short_Circuit_Operator
;
12201 -------------------------------------
12202 -- Fixup_Universal_Fixed_Operation --
12203 -------------------------------------
12205 procedure Fixup_Universal_Fixed_Operation
(N
: Node_Id
) is
12206 Conv
: constant Node_Id
:= Parent
(N
);
12209 -- We must have a type conversion immediately above us
12211 pragma Assert
(Nkind
(Conv
) = N_Type_Conversion
);
12213 -- Normally the type conversion gives our target type. The exception
12214 -- occurs in the case of the Round attribute, where the conversion
12215 -- will be to universal real, and our real type comes from the Round
12216 -- attribute (as well as an indication that we must round the result)
12218 if Nkind
(Parent
(Conv
)) = N_Attribute_Reference
12219 and then Attribute_Name
(Parent
(Conv
)) = Name_Round
12221 Set_Etype
(N
, Etype
(Parent
(Conv
)));
12222 Set_Rounded_Result
(N
);
12224 -- Normal case where type comes from conversion above us
12227 Set_Etype
(N
, Etype
(Conv
));
12229 end Fixup_Universal_Fixed_Operation
;
12231 ---------------------------------
12232 -- Has_Inferable_Discriminants --
12233 ---------------------------------
12235 function Has_Inferable_Discriminants
(N
: Node_Id
) return Boolean is
12237 function Prefix_Is_Formal_Parameter
(N
: Node_Id
) return Boolean;
12238 -- Determines whether the left-most prefix of a selected component is a
12239 -- formal parameter in a subprogram. Assumes N is a selected component.
12241 --------------------------------
12242 -- Prefix_Is_Formal_Parameter --
12243 --------------------------------
12245 function Prefix_Is_Formal_Parameter
(N
: Node_Id
) return Boolean is
12246 Sel_Comp
: Node_Id
;
12249 -- Move to the left-most prefix by climbing up the tree
12252 while Present
(Parent
(Sel_Comp
))
12253 and then Nkind
(Parent
(Sel_Comp
)) = N_Selected_Component
12255 Sel_Comp
:= Parent
(Sel_Comp
);
12258 return Ekind
(Entity
(Prefix
(Sel_Comp
))) in Formal_Kind
;
12259 end Prefix_Is_Formal_Parameter
;
12261 -- Start of processing for Has_Inferable_Discriminants
12264 -- For selected components, the subtype of the selector must be a
12265 -- constrained Unchecked_Union. If the component is subject to a
12266 -- per-object constraint, then the enclosing object must have inferable
12269 if Nkind
(N
) = N_Selected_Component
then
12270 if Has_Per_Object_Constraint
(Entity
(Selector_Name
(N
))) then
12272 -- A small hack. If we have a per-object constrained selected
12273 -- component of a formal parameter, return True since we do not
12274 -- know the actual parameter association yet.
12276 if Prefix_Is_Formal_Parameter
(N
) then
12279 -- Otherwise, check the enclosing object and the selector
12282 return Has_Inferable_Discriminants
(Prefix
(N
))
12283 and then Has_Inferable_Discriminants
(Selector_Name
(N
));
12286 -- The call to Has_Inferable_Discriminants will determine whether
12287 -- the selector has a constrained Unchecked_Union nominal type.
12290 return Has_Inferable_Discriminants
(Selector_Name
(N
));
12293 -- A qualified expression has inferable discriminants if its subtype
12294 -- mark is a constrained Unchecked_Union subtype.
12296 elsif Nkind
(N
) = N_Qualified_Expression
then
12297 return Is_Unchecked_Union
(Etype
(Subtype_Mark
(N
)))
12298 and then Is_Constrained
(Etype
(Subtype_Mark
(N
)));
12300 -- For all other names, it is sufficient to have a constrained
12301 -- Unchecked_Union nominal subtype.
12304 return Is_Unchecked_Union
(Base_Type
(Etype
(N
)))
12305 and then Is_Constrained
(Etype
(N
));
12307 end Has_Inferable_Discriminants
;
12309 -------------------------------
12310 -- Insert_Dereference_Action --
12311 -------------------------------
12313 procedure Insert_Dereference_Action
(N
: Node_Id
) is
12314 function Is_Checked_Storage_Pool
(P
: Entity_Id
) return Boolean;
12315 -- Return true if type of P is derived from Checked_Pool;
12317 -----------------------------
12318 -- Is_Checked_Storage_Pool --
12319 -----------------------------
12321 function Is_Checked_Storage_Pool
(P
: Entity_Id
) return Boolean is
12330 while T
/= Etype
(T
) loop
12331 if Is_RTE
(T
, RE_Checked_Pool
) then
12339 end Is_Checked_Storage_Pool
;
12343 Context
: constant Node_Id
:= Parent
(N
);
12344 Ptr_Typ
: constant Entity_Id
:= Etype
(N
);
12345 Desig_Typ
: constant Entity_Id
:=
12346 Available_View
(Designated_Type
(Ptr_Typ
));
12347 Loc
: constant Source_Ptr
:= Sloc
(N
);
12348 Pool
: constant Entity_Id
:= Associated_Storage_Pool
(Ptr_Typ
);
12354 Size_Bits
: Node_Id
;
12357 -- Start of processing for Insert_Dereference_Action
12360 pragma Assert
(Nkind
(Context
) = N_Explicit_Dereference
);
12362 -- Do not re-expand a dereference which has already been processed by
12365 if Has_Dereference_Action
(Context
) then
12368 -- Do not perform this type of expansion for internally-generated
12371 elsif not Comes_From_Source
(Original_Node
(Context
)) then
12374 -- A dereference action is only applicable to objects which have been
12375 -- allocated on a checked pool.
12377 elsif not Is_Checked_Storage_Pool
(Pool
) then
12381 -- Extract the address of the dereferenced object. Generate:
12383 -- Addr : System.Address := <N>'Pool_Address;
12385 Addr
:= Make_Temporary
(Loc
, 'P');
12388 Make_Object_Declaration
(Loc
,
12389 Defining_Identifier
=> Addr
,
12390 Object_Definition
=>
12391 New_Occurrence_Of
(RTE
(RE_Address
), Loc
),
12393 Make_Attribute_Reference
(Loc
,
12394 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
),
12395 Attribute_Name
=> Name_Pool_Address
)));
12397 -- Calculate the size of the dereferenced object. Generate:
12399 -- Size : Storage_Count := <N>.all'Size / Storage_Unit;
12402 Make_Explicit_Dereference
(Loc
,
12403 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
));
12404 Set_Has_Dereference_Action
(Deref
);
12407 Make_Attribute_Reference
(Loc
,
12409 Attribute_Name
=> Name_Size
);
12411 -- Special case of an unconstrained array: need to add descriptor size
12413 if Is_Array_Type
(Desig_Typ
)
12414 and then not Is_Constrained
(First_Subtype
(Desig_Typ
))
12419 Make_Attribute_Reference
(Loc
,
12421 New_Occurrence_Of
(First_Subtype
(Desig_Typ
), Loc
),
12422 Attribute_Name
=> Name_Descriptor_Size
),
12423 Right_Opnd
=> Size_Bits
);
12426 Size
:= Make_Temporary
(Loc
, 'S');
12428 Make_Object_Declaration
(Loc
,
12429 Defining_Identifier
=> Size
,
12430 Object_Definition
=>
12431 New_Occurrence_Of
(RTE
(RE_Storage_Count
), Loc
),
12433 Make_Op_Divide
(Loc
,
12434 Left_Opnd
=> Size_Bits
,
12435 Right_Opnd
=> Make_Integer_Literal
(Loc
, System_Storage_Unit
))));
12437 -- Calculate the alignment of the dereferenced object. Generate:
12438 -- Alig : constant Storage_Count := <N>.all'Alignment;
12441 Make_Explicit_Dereference
(Loc
,
12442 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
));
12443 Set_Has_Dereference_Action
(Deref
);
12445 Alig
:= Make_Temporary
(Loc
, 'A');
12447 Make_Object_Declaration
(Loc
,
12448 Defining_Identifier
=> Alig
,
12449 Object_Definition
=>
12450 New_Occurrence_Of
(RTE
(RE_Storage_Count
), Loc
),
12452 Make_Attribute_Reference
(Loc
,
12454 Attribute_Name
=> Name_Alignment
)));
12456 -- A dereference of a controlled object requires special processing. The
12457 -- finalization machinery requests additional space from the underlying
12458 -- pool to allocate and hide two pointers. As a result, a checked pool
12459 -- may mark the wrong memory as valid. Since checked pools do not have
12460 -- knowledge of hidden pointers, we have to bring the two pointers back
12461 -- in view in order to restore the original state of the object.
12463 -- The address manipulation is not performed for access types that are
12464 -- subject to pragma No_Heap_Finalization because the two pointers do
12465 -- not exist in the first place.
12467 if No_Heap_Finalization
(Ptr_Typ
) then
12470 elsif Needs_Finalization
(Desig_Typ
) then
12472 -- Adjust the address and size of the dereferenced object. Generate:
12473 -- Adjust_Controlled_Dereference (Addr, Size, Alig);
12476 Make_Procedure_Call_Statement
(Loc
,
12478 New_Occurrence_Of
(RTE
(RE_Adjust_Controlled_Dereference
), Loc
),
12479 Parameter_Associations
=> New_List
(
12480 New_Occurrence_Of
(Addr
, Loc
),
12481 New_Occurrence_Of
(Size
, Loc
),
12482 New_Occurrence_Of
(Alig
, Loc
)));
12484 -- Class-wide types complicate things because we cannot determine
12485 -- statically whether the actual object is truly controlled. We must
12486 -- generate a runtime check to detect this property. Generate:
12488 -- if Needs_Finalization (<N>.all'Tag) then
12492 if Is_Class_Wide_Type
(Desig_Typ
) then
12494 Make_Explicit_Dereference
(Loc
,
12495 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
));
12496 Set_Has_Dereference_Action
(Deref
);
12499 Make_Implicit_If_Statement
(N
,
12501 Make_Function_Call
(Loc
,
12503 New_Occurrence_Of
(RTE
(RE_Needs_Finalization
), Loc
),
12504 Parameter_Associations
=> New_List
(
12505 Make_Attribute_Reference
(Loc
,
12507 Attribute_Name
=> Name_Tag
))),
12508 Then_Statements
=> New_List
(Stmt
));
12511 Insert_Action
(N
, Stmt
);
12515 -- Dereference (Pool, Addr, Size, Alig);
12518 Make_Procedure_Call_Statement
(Loc
,
12521 (Find_Prim_Op
(Etype
(Pool
), Name_Dereference
), Loc
),
12522 Parameter_Associations
=> New_List
(
12523 New_Occurrence_Of
(Pool
, Loc
),
12524 New_Occurrence_Of
(Addr
, Loc
),
12525 New_Occurrence_Of
(Size
, Loc
),
12526 New_Occurrence_Of
(Alig
, Loc
))));
12528 -- Mark the explicit dereference as processed to avoid potential
12529 -- infinite expansion.
12531 Set_Has_Dereference_Action
(Context
);
12534 when RE_Not_Available
=>
12536 end Insert_Dereference_Action
;
12538 --------------------------------
12539 -- Integer_Promotion_Possible --
12540 --------------------------------
12542 function Integer_Promotion_Possible
(N
: Node_Id
) return Boolean is
12543 Operand
: constant Node_Id
:= Expression
(N
);
12544 Operand_Type
: constant Entity_Id
:= Etype
(Operand
);
12545 Root_Operand_Type
: constant Entity_Id
:= Root_Type
(Operand_Type
);
12548 pragma Assert
(Nkind
(N
) = N_Type_Conversion
);
12552 -- We only do the transformation for source constructs. We assume
12553 -- that the expander knows what it is doing when it generates code.
12555 Comes_From_Source
(N
)
12557 -- If the operand type is Short_Integer or Short_Short_Integer,
12558 -- then we will promote to Integer, which is available on all
12559 -- targets, and is sufficient to ensure no intermediate overflow.
12560 -- Furthermore it is likely to be as efficient or more efficient
12561 -- than using the smaller type for the computation so we do this
12562 -- unconditionally.
12565 (Root_Operand_Type
= Base_Type
(Standard_Short_Integer
)
12567 Root_Operand_Type
= Base_Type
(Standard_Short_Short_Integer
))
12569 -- Test for interesting operation, which includes addition,
12570 -- division, exponentiation, multiplication, subtraction, absolute
12571 -- value and unary negation. Unary "+" is omitted since it is a
12572 -- no-op and thus can't overflow.
12574 and then Nkind_In
(Operand
, N_Op_Abs
,
12581 end Integer_Promotion_Possible
;
12583 ------------------------------
12584 -- Make_Array_Comparison_Op --
12585 ------------------------------
12587 -- This is a hand-coded expansion of the following generic function:
12590 -- type elem is (<>);
12591 -- type index is (<>);
12592 -- type a is array (index range <>) of elem;
12594 -- function Gnnn (X : a; Y: a) return boolean is
12595 -- J : index := Y'first;
12598 -- if X'length = 0 then
12601 -- elsif Y'length = 0 then
12605 -- for I in X'range loop
12606 -- if X (I) = Y (J) then
12607 -- if J = Y'last then
12610 -- J := index'succ (J);
12614 -- return X (I) > Y (J);
12618 -- return X'length > Y'length;
12622 -- Note that since we are essentially doing this expansion by hand, we
12623 -- do not need to generate an actual or formal generic part, just the
12624 -- instantiated function itself.
12626 -- Perhaps we could have the actual generic available in the run-time,
12627 -- obtained by rtsfind, and actually expand a real instantiation ???
12629 function Make_Array_Comparison_Op
12631 Nod
: Node_Id
) return Node_Id
12633 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
12635 X
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uX
);
12636 Y
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uY
);
12637 I
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uI
);
12638 J
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uJ
);
12640 Index
: constant Entity_Id
:= Base_Type
(Etype
(First_Index
(Typ
)));
12642 Loop_Statement
: Node_Id
;
12643 Loop_Body
: Node_Id
;
12645 Inner_If
: Node_Id
;
12646 Final_Expr
: Node_Id
;
12647 Func_Body
: Node_Id
;
12648 Func_Name
: Entity_Id
;
12654 -- if J = Y'last then
12657 -- J := index'succ (J);
12661 Make_Implicit_If_Statement
(Nod
,
12664 Left_Opnd
=> New_Occurrence_Of
(J
, Loc
),
12666 Make_Attribute_Reference
(Loc
,
12667 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
12668 Attribute_Name
=> Name_Last
)),
12670 Then_Statements
=> New_List
(
12671 Make_Exit_Statement
(Loc
)),
12675 Make_Assignment_Statement
(Loc
,
12676 Name
=> New_Occurrence_Of
(J
, Loc
),
12678 Make_Attribute_Reference
(Loc
,
12679 Prefix
=> New_Occurrence_Of
(Index
, Loc
),
12680 Attribute_Name
=> Name_Succ
,
12681 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
))))));
12683 -- if X (I) = Y (J) then
12686 -- return X (I) > Y (J);
12690 Make_Implicit_If_Statement
(Nod
,
12694 Make_Indexed_Component
(Loc
,
12695 Prefix
=> New_Occurrence_Of
(X
, Loc
),
12696 Expressions
=> New_List
(New_Occurrence_Of
(I
, Loc
))),
12699 Make_Indexed_Component
(Loc
,
12700 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
12701 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)))),
12703 Then_Statements
=> New_List
(Inner_If
),
12705 Else_Statements
=> New_List
(
12706 Make_Simple_Return_Statement
(Loc
,
12710 Make_Indexed_Component
(Loc
,
12711 Prefix
=> New_Occurrence_Of
(X
, Loc
),
12712 Expressions
=> New_List
(New_Occurrence_Of
(I
, Loc
))),
12715 Make_Indexed_Component
(Loc
,
12716 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
12717 Expressions
=> New_List
(
12718 New_Occurrence_Of
(J
, Loc
)))))));
12720 -- for I in X'range loop
12725 Make_Implicit_Loop_Statement
(Nod
,
12726 Identifier
=> Empty
,
12728 Iteration_Scheme
=>
12729 Make_Iteration_Scheme
(Loc
,
12730 Loop_Parameter_Specification
=>
12731 Make_Loop_Parameter_Specification
(Loc
,
12732 Defining_Identifier
=> I
,
12733 Discrete_Subtype_Definition
=>
12734 Make_Attribute_Reference
(Loc
,
12735 Prefix
=> New_Occurrence_Of
(X
, Loc
),
12736 Attribute_Name
=> Name_Range
))),
12738 Statements
=> New_List
(Loop_Body
));
12740 -- if X'length = 0 then
12742 -- elsif Y'length = 0 then
12745 -- for ... loop ... end loop;
12746 -- return X'length > Y'length;
12750 Make_Attribute_Reference
(Loc
,
12751 Prefix
=> New_Occurrence_Of
(X
, Loc
),
12752 Attribute_Name
=> Name_Length
);
12755 Make_Attribute_Reference
(Loc
,
12756 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
12757 Attribute_Name
=> Name_Length
);
12761 Left_Opnd
=> Length1
,
12762 Right_Opnd
=> Length2
);
12765 Make_Implicit_If_Statement
(Nod
,
12769 Make_Attribute_Reference
(Loc
,
12770 Prefix
=> New_Occurrence_Of
(X
, Loc
),
12771 Attribute_Name
=> Name_Length
),
12773 Make_Integer_Literal
(Loc
, 0)),
12777 Make_Simple_Return_Statement
(Loc
,
12778 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
))),
12780 Elsif_Parts
=> New_List
(
12781 Make_Elsif_Part
(Loc
,
12785 Make_Attribute_Reference
(Loc
,
12786 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
12787 Attribute_Name
=> Name_Length
),
12789 Make_Integer_Literal
(Loc
, 0)),
12793 Make_Simple_Return_Statement
(Loc
,
12794 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
))))),
12796 Else_Statements
=> New_List
(
12798 Make_Simple_Return_Statement
(Loc
,
12799 Expression
=> Final_Expr
)));
12803 Formals
:= New_List
(
12804 Make_Parameter_Specification
(Loc
,
12805 Defining_Identifier
=> X
,
12806 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)),
12808 Make_Parameter_Specification
(Loc
,
12809 Defining_Identifier
=> Y
,
12810 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
12812 -- function Gnnn (...) return boolean is
12813 -- J : index := Y'first;
12818 Func_Name
:= Make_Temporary
(Loc
, 'G');
12821 Make_Subprogram_Body
(Loc
,
12823 Make_Function_Specification
(Loc
,
12824 Defining_Unit_Name
=> Func_Name
,
12825 Parameter_Specifications
=> Formals
,
12826 Result_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
)),
12828 Declarations
=> New_List
(
12829 Make_Object_Declaration
(Loc
,
12830 Defining_Identifier
=> J
,
12831 Object_Definition
=> New_Occurrence_Of
(Index
, Loc
),
12833 Make_Attribute_Reference
(Loc
,
12834 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
12835 Attribute_Name
=> Name_First
))),
12837 Handled_Statement_Sequence
=>
12838 Make_Handled_Sequence_Of_Statements
(Loc
,
12839 Statements
=> New_List
(If_Stat
)));
12842 end Make_Array_Comparison_Op
;
12844 ---------------------------
12845 -- Make_Boolean_Array_Op --
12846 ---------------------------
12848 -- For logical operations on boolean arrays, expand in line the following,
12849 -- replacing 'and' with 'or' or 'xor' where needed:
12851 -- function Annn (A : typ; B: typ) return typ is
12854 -- for J in A'range loop
12855 -- C (J) := A (J) op B (J);
12860 -- Here typ is the boolean array type
12862 function Make_Boolean_Array_Op
12864 N
: Node_Id
) return Node_Id
12866 Loc
: constant Source_Ptr
:= Sloc
(N
);
12868 A
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uA
);
12869 B
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uB
);
12870 C
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uC
);
12871 J
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uJ
);
12879 Func_Name
: Entity_Id
;
12880 Func_Body
: Node_Id
;
12881 Loop_Statement
: Node_Id
;
12885 Make_Indexed_Component
(Loc
,
12886 Prefix
=> New_Occurrence_Of
(A
, Loc
),
12887 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
12890 Make_Indexed_Component
(Loc
,
12891 Prefix
=> New_Occurrence_Of
(B
, Loc
),
12892 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
12895 Make_Indexed_Component
(Loc
,
12896 Prefix
=> New_Occurrence_Of
(C
, Loc
),
12897 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
12899 if Nkind
(N
) = N_Op_And
then
12903 Right_Opnd
=> B_J
);
12905 elsif Nkind
(N
) = N_Op_Or
then
12909 Right_Opnd
=> B_J
);
12915 Right_Opnd
=> B_J
);
12919 Make_Implicit_Loop_Statement
(N
,
12920 Identifier
=> Empty
,
12922 Iteration_Scheme
=>
12923 Make_Iteration_Scheme
(Loc
,
12924 Loop_Parameter_Specification
=>
12925 Make_Loop_Parameter_Specification
(Loc
,
12926 Defining_Identifier
=> J
,
12927 Discrete_Subtype_Definition
=>
12928 Make_Attribute_Reference
(Loc
,
12929 Prefix
=> New_Occurrence_Of
(A
, Loc
),
12930 Attribute_Name
=> Name_Range
))),
12932 Statements
=> New_List
(
12933 Make_Assignment_Statement
(Loc
,
12935 Expression
=> Op
)));
12937 Formals
:= New_List
(
12938 Make_Parameter_Specification
(Loc
,
12939 Defining_Identifier
=> A
,
12940 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)),
12942 Make_Parameter_Specification
(Loc
,
12943 Defining_Identifier
=> B
,
12944 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
12946 Func_Name
:= Make_Temporary
(Loc
, 'A');
12947 Set_Is_Inlined
(Func_Name
);
12950 Make_Subprogram_Body
(Loc
,
12952 Make_Function_Specification
(Loc
,
12953 Defining_Unit_Name
=> Func_Name
,
12954 Parameter_Specifications
=> Formals
,
12955 Result_Definition
=> New_Occurrence_Of
(Typ
, Loc
)),
12957 Declarations
=> New_List
(
12958 Make_Object_Declaration
(Loc
,
12959 Defining_Identifier
=> C
,
12960 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
))),
12962 Handled_Statement_Sequence
=>
12963 Make_Handled_Sequence_Of_Statements
(Loc
,
12964 Statements
=> New_List
(
12966 Make_Simple_Return_Statement
(Loc
,
12967 Expression
=> New_Occurrence_Of
(C
, Loc
)))));
12970 end Make_Boolean_Array_Op
;
12972 -----------------------------------------
12973 -- Minimized_Eliminated_Overflow_Check --
12974 -----------------------------------------
12976 function Minimized_Eliminated_Overflow_Check
(N
: Node_Id
) return Boolean is
12979 Is_Signed_Integer_Type
(Etype
(N
))
12980 and then Overflow_Check_Mode
in Minimized_Or_Eliminated
;
12981 end Minimized_Eliminated_Overflow_Check
;
12983 --------------------------------
12984 -- Optimize_Length_Comparison --
12985 --------------------------------
12987 procedure Optimize_Length_Comparison
(N
: Node_Id
) is
12988 Loc
: constant Source_Ptr
:= Sloc
(N
);
12989 Typ
: constant Entity_Id
:= Etype
(N
);
12994 -- First and Last attribute reference nodes, which end up as left and
12995 -- right operands of the optimized result.
12998 -- True for comparison operand of zero
13001 -- Comparison operand, set only if Is_Zero is false
13004 -- Entity whose length is being compared
13007 -- Integer_Literal node for length attribute expression, or Empty
13008 -- if there is no such expression present.
13011 -- Type of array index to which 'Length is applied
13013 Op
: Node_Kind
:= Nkind
(N
);
13014 -- Kind of comparison operator, gets flipped if operands backwards
13016 function Is_Optimizable
(N
: Node_Id
) return Boolean;
13017 -- Tests N to see if it is an optimizable comparison value (defined as
13018 -- constant zero or one, or something else where the value is known to
13019 -- be positive and in the range of 32-bits, and where the corresponding
13020 -- Length value is also known to be 32-bits. If result is true, sets
13021 -- Is_Zero, Ityp, and Comp accordingly.
13023 function Is_Entity_Length
(N
: Node_Id
) return Boolean;
13024 -- Tests if N is a length attribute applied to a simple entity. If so,
13025 -- returns True, and sets Ent to the entity, and Index to the integer
13026 -- literal provided as an attribute expression, or to Empty if none.
13027 -- Also returns True if the expression is a generated type conversion
13028 -- whose expression is of the desired form. This latter case arises
13029 -- when Apply_Universal_Integer_Attribute_Check installs a conversion
13030 -- to check for being in range, which is not needed in this context.
13031 -- Returns False if neither condition holds.
13033 function Prepare_64
(N
: Node_Id
) return Node_Id
;
13034 -- Given a discrete expression, returns a Long_Long_Integer typed
13035 -- expression representing the underlying value of the expression.
13036 -- This is done with an unchecked conversion to the result type. We
13037 -- use unchecked conversion to handle the enumeration type case.
13039 ----------------------
13040 -- Is_Entity_Length --
13041 ----------------------
13043 function Is_Entity_Length
(N
: Node_Id
) return Boolean is
13045 if Nkind
(N
) = N_Attribute_Reference
13046 and then Attribute_Name
(N
) = Name_Length
13047 and then Is_Entity_Name
(Prefix
(N
))
13049 Ent
:= Entity
(Prefix
(N
));
13051 if Present
(Expressions
(N
)) then
13052 Index
:= First
(Expressions
(N
));
13059 elsif Nkind
(N
) = N_Type_Conversion
13060 and then not Comes_From_Source
(N
)
13062 return Is_Entity_Length
(Expression
(N
));
13067 end Is_Entity_Length
;
13069 --------------------
13070 -- Is_Optimizable --
13071 --------------------
13073 function Is_Optimizable
(N
: Node_Id
) return Boolean is
13081 if Compile_Time_Known_Value
(N
) then
13082 Val
:= Expr_Value
(N
);
13084 if Val
= Uint_0
then
13089 elsif Val
= Uint_1
then
13096 -- Here we have to make sure of being within 32-bits
13098 Determine_Range
(N
, OK
, Lo
, Hi
, Assume_Valid
=> True);
13101 or else Lo
< Uint_1
13102 or else Hi
> UI_From_Int
(Int
'Last)
13107 -- Comparison value was within range, so now we must check the index
13108 -- value to make sure it is also within 32-bits.
13110 Indx
:= First_Index
(Etype
(Ent
));
13112 if Present
(Index
) then
13113 for J
in 2 .. UI_To_Int
(Intval
(Index
)) loop
13118 Ityp
:= Etype
(Indx
);
13120 if Esize
(Ityp
) > 32 then
13127 end Is_Optimizable
;
13133 function Prepare_64
(N
: Node_Id
) return Node_Id
is
13135 return Unchecked_Convert_To
(Standard_Long_Long_Integer
, N
);
13138 -- Start of processing for Optimize_Length_Comparison
13141 -- Nothing to do if not a comparison
13143 if Op
not in N_Op_Compare
then
13147 -- Nothing to do if special -gnatd.P debug flag set.
13149 if Debug_Flag_Dot_PP
then
13153 -- Ent'Length op 0/1
13155 if Is_Entity_Length
(Left_Opnd
(N
))
13156 and then Is_Optimizable
(Right_Opnd
(N
))
13160 -- 0/1 op Ent'Length
13162 elsif Is_Entity_Length
(Right_Opnd
(N
))
13163 and then Is_Optimizable
(Left_Opnd
(N
))
13165 -- Flip comparison to opposite sense
13168 when N_Op_Lt
=> Op
:= N_Op_Gt
;
13169 when N_Op_Le
=> Op
:= N_Op_Ge
;
13170 when N_Op_Gt
=> Op
:= N_Op_Lt
;
13171 when N_Op_Ge
=> Op
:= N_Op_Le
;
13172 when others => null;
13175 -- Else optimization not possible
13181 -- Fall through if we will do the optimization
13183 -- Cases to handle:
13185 -- X'Length = 0 => X'First > X'Last
13186 -- X'Length = 1 => X'First = X'Last
13187 -- X'Length = n => X'First + (n - 1) = X'Last
13189 -- X'Length /= 0 => X'First <= X'Last
13190 -- X'Length /= 1 => X'First /= X'Last
13191 -- X'Length /= n => X'First + (n - 1) /= X'Last
13193 -- X'Length >= 0 => always true, warn
13194 -- X'Length >= 1 => X'First <= X'Last
13195 -- X'Length >= n => X'First + (n - 1) <= X'Last
13197 -- X'Length > 0 => X'First <= X'Last
13198 -- X'Length > 1 => X'First < X'Last
13199 -- X'Length > n => X'First + (n - 1) < X'Last
13201 -- X'Length <= 0 => X'First > X'Last (warn, could be =)
13202 -- X'Length <= 1 => X'First >= X'Last
13203 -- X'Length <= n => X'First + (n - 1) >= X'Last
13205 -- X'Length < 0 => always false (warn)
13206 -- X'Length < 1 => X'First > X'Last
13207 -- X'Length < n => X'First + (n - 1) > X'Last
13209 -- Note: for the cases of n (not constant 0,1), we require that the
13210 -- corresponding index type be integer or shorter (i.e. not 64-bit),
13211 -- and the same for the comparison value. Then we do the comparison
13212 -- using 64-bit arithmetic (actually long long integer), so that we
13213 -- cannot have overflow intefering with the result.
13215 -- First deal with warning cases
13224 Convert_To
(Typ
, New_Occurrence_Of
(Standard_True
, Loc
)));
13225 Analyze_And_Resolve
(N
, Typ
);
13226 Warn_On_Known_Condition
(N
);
13233 Convert_To
(Typ
, New_Occurrence_Of
(Standard_False
, Loc
)));
13234 Analyze_And_Resolve
(N
, Typ
);
13235 Warn_On_Known_Condition
(N
);
13239 if Constant_Condition_Warnings
13240 and then Comes_From_Source
(Original_Node
(N
))
13242 Error_Msg_N
("could replace by ""'=""?c?", N
);
13252 -- Build the First reference we will use
13255 Make_Attribute_Reference
(Loc
,
13256 Prefix
=> New_Occurrence_Of
(Ent
, Loc
),
13257 Attribute_Name
=> Name_First
);
13259 if Present
(Index
) then
13260 Set_Expressions
(Left
, New_List
(New_Copy
(Index
)));
13263 -- If general value case, then do the addition of (n - 1), and
13264 -- also add the needed conversions to type Long_Long_Integer.
13266 if Present
(Comp
) then
13269 Left_Opnd
=> Prepare_64
(Left
),
13271 Make_Op_Subtract
(Loc
,
13272 Left_Opnd
=> Prepare_64
(Comp
),
13273 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)));
13276 -- Build the Last reference we will use
13279 Make_Attribute_Reference
(Loc
,
13280 Prefix
=> New_Occurrence_Of
(Ent
, Loc
),
13281 Attribute_Name
=> Name_Last
);
13283 if Present
(Index
) then
13284 Set_Expressions
(Right
, New_List
(New_Copy
(Index
)));
13287 -- If general operand, convert Last reference to Long_Long_Integer
13289 if Present
(Comp
) then
13290 Right
:= Prepare_64
(Right
);
13293 -- Check for cases to optimize
13295 -- X'Length = 0 => X'First > X'Last
13296 -- X'Length < 1 => X'First > X'Last
13297 -- X'Length < n => X'First + (n - 1) > X'Last
13299 if (Is_Zero
and then Op
= N_Op_Eq
)
13300 or else (not Is_Zero
and then Op
= N_Op_Lt
)
13305 Right_Opnd
=> Right
);
13307 -- X'Length = 1 => X'First = X'Last
13308 -- X'Length = n => X'First + (n - 1) = X'Last
13310 elsif not Is_Zero
and then Op
= N_Op_Eq
then
13314 Right_Opnd
=> Right
);
13316 -- X'Length /= 0 => X'First <= X'Last
13317 -- X'Length > 0 => X'First <= X'Last
13319 elsif Is_Zero
and (Op
= N_Op_Ne
or else Op
= N_Op_Gt
) then
13323 Right_Opnd
=> Right
);
13325 -- X'Length /= 1 => X'First /= X'Last
13326 -- X'Length /= n => X'First + (n - 1) /= X'Last
13328 elsif not Is_Zero
and then Op
= N_Op_Ne
then
13332 Right_Opnd
=> Right
);
13334 -- X'Length >= 1 => X'First <= X'Last
13335 -- X'Length >= n => X'First + (n - 1) <= X'Last
13337 elsif not Is_Zero
and then Op
= N_Op_Ge
then
13341 Right_Opnd
=> Right
);
13343 -- X'Length > 1 => X'First < X'Last
13344 -- X'Length > n => X'First + (n = 1) < X'Last
13346 elsif not Is_Zero
and then Op
= N_Op_Gt
then
13350 Right_Opnd
=> Right
);
13352 -- X'Length <= 1 => X'First >= X'Last
13353 -- X'Length <= n => X'First + (n - 1) >= X'Last
13355 elsif not Is_Zero
and then Op
= N_Op_Le
then
13359 Right_Opnd
=> Right
);
13361 -- Should not happen at this stage
13364 raise Program_Error
;
13367 -- Rewrite and finish up
13369 Rewrite
(N
, Result
);
13370 Analyze_And_Resolve
(N
, Typ
);
13372 end Optimize_Length_Comparison
;
13374 --------------------------------
13375 -- Process_If_Case_Statements --
13376 --------------------------------
13378 procedure Process_If_Case_Statements
(N
: Node_Id
; Stmts
: List_Id
) is
13382 Decl
:= First
(Stmts
);
13383 while Present
(Decl
) loop
13384 if Nkind
(Decl
) = N_Object_Declaration
13385 and then Is_Finalizable_Transient
(Decl
, N
)
13387 Process_Transient_In_Expression
(Decl
, N
, Stmts
);
13392 end Process_If_Case_Statements
;
13394 -------------------------------------
13395 -- Process_Transient_In_Expression --
13396 -------------------------------------
13398 procedure Process_Transient_In_Expression
13399 (Obj_Decl
: Node_Id
;
13403 Loc
: constant Source_Ptr
:= Sloc
(Obj_Decl
);
13404 Obj_Id
: constant Entity_Id
:= Defining_Identifier
(Obj_Decl
);
13406 Hook_Context
: constant Node_Id
:= Find_Hook_Context
(Expr
);
13407 -- The node on which to insert the hook as an action. This is usually
13408 -- the innermost enclosing non-transient construct.
13410 Fin_Call
: Node_Id
;
13411 Hook_Assign
: Node_Id
;
13412 Hook_Clear
: Node_Id
;
13413 Hook_Decl
: Node_Id
;
13414 Hook_Insert
: Node_Id
;
13415 Ptr_Decl
: Node_Id
;
13417 Fin_Context
: Node_Id
;
13418 -- The node after which to insert the finalization actions of the
13419 -- transient object.
13422 pragma Assert
(Nkind_In
(Expr
, N_Case_Expression
,
13423 N_Expression_With_Actions
,
13426 -- When the context is a Boolean evaluation, all three nodes capture the
13427 -- result of their computation in a local temporary:
13430 -- Trans_Id : Ctrl_Typ := ...;
13431 -- Result : constant Boolean := ... Trans_Id ...;
13432 -- <finalize Trans_Id>
13435 -- As a result, the finalization of any transient objects can safely
13436 -- take place after the result capture.
13438 -- ??? could this be extended to elementary types?
13440 if Is_Boolean_Type
(Etype
(Expr
)) then
13441 Fin_Context
:= Last
(Stmts
);
13443 -- Otherwise the immediate context may not be safe enough to carry
13444 -- out transient object finalization due to aliasing and nesting of
13445 -- constructs. Insert calls to [Deep_]Finalize after the innermost
13446 -- enclosing non-transient construct.
13449 Fin_Context
:= Hook_Context
;
13452 -- Mark the transient object as successfully processed to avoid double
13455 Set_Is_Finalized_Transient
(Obj_Id
);
13457 -- Construct all the pieces necessary to hook and finalize a transient
13460 Build_Transient_Object_Statements
13461 (Obj_Decl
=> Obj_Decl
,
13462 Fin_Call
=> Fin_Call
,
13463 Hook_Assign
=> Hook_Assign
,
13464 Hook_Clear
=> Hook_Clear
,
13465 Hook_Decl
=> Hook_Decl
,
13466 Ptr_Decl
=> Ptr_Decl
,
13467 Finalize_Obj
=> False);
13469 -- Add the access type which provides a reference to the transient
13470 -- object. Generate:
13472 -- type Ptr_Typ is access all Desig_Typ;
13474 Insert_Action
(Hook_Context
, Ptr_Decl
);
13476 -- Add the temporary which acts as a hook to the transient object.
13479 -- Hook : Ptr_Id := null;
13481 Insert_Action
(Hook_Context
, Hook_Decl
);
13483 -- When the transient object is initialized by an aggregate, the hook
13484 -- must capture the object after the last aggregate assignment takes
13485 -- place. Only then is the object considered initialized. Generate:
13487 -- Hook := Ptr_Typ (Obj_Id);
13489 -- Hook := Obj_Id'Unrestricted_Access;
13491 if Ekind_In
(Obj_Id
, E_Constant
, E_Variable
)
13492 and then Present
(Last_Aggregate_Assignment
(Obj_Id
))
13494 Hook_Insert
:= Last_Aggregate_Assignment
(Obj_Id
);
13496 -- Otherwise the hook seizes the related object immediately
13499 Hook_Insert
:= Obj_Decl
;
13502 Insert_After_And_Analyze
(Hook_Insert
, Hook_Assign
);
13504 -- When the node is part of a return statement, there is no need to
13505 -- insert a finalization call, as the general finalization mechanism
13506 -- (see Build_Finalizer) would take care of the transient object on
13507 -- subprogram exit. Note that it would also be impossible to insert the
13508 -- finalization code after the return statement as this will render it
13511 if Nkind
(Fin_Context
) = N_Simple_Return_Statement
then
13514 -- Finalize the hook after the context has been evaluated. Generate:
13516 -- if Hook /= null then
13517 -- [Deep_]Finalize (Hook.all);
13522 Insert_Action_After
(Fin_Context
,
13523 Make_Implicit_If_Statement
(Obj_Decl
,
13527 New_Occurrence_Of
(Defining_Entity
(Hook_Decl
), Loc
),
13528 Right_Opnd
=> Make_Null
(Loc
)),
13530 Then_Statements
=> New_List
(
13534 end Process_Transient_In_Expression
;
13536 ------------------------
13537 -- Rewrite_Comparison --
13538 ------------------------
13540 procedure Rewrite_Comparison
(N
: Node_Id
) is
13541 Typ
: constant Entity_Id
:= Etype
(N
);
13543 False_Result
: Boolean;
13544 True_Result
: Boolean;
13547 if Nkind
(N
) = N_Type_Conversion
then
13548 Rewrite_Comparison
(Expression
(N
));
13551 elsif Nkind
(N
) not in N_Op_Compare
then
13555 -- Determine the potential outcome of the comparison assuming that the
13556 -- operands are valid and emit a warning when the comparison evaluates
13557 -- to True or False only in the presence of invalid values.
13559 Warn_On_Constant_Valid_Condition
(N
);
13561 -- Determine the potential outcome of the comparison assuming that the
13562 -- operands are not valid.
13566 Assume_Valid
=> False,
13567 True_Result
=> True_Result
,
13568 False_Result
=> False_Result
);
13570 -- The outcome is a decisive False or True, rewrite the operator
13572 if False_Result
or True_Result
then
13575 New_Occurrence_Of
(Boolean_Literals
(True_Result
), Sloc
(N
))));
13577 Analyze_And_Resolve
(N
, Typ
);
13578 Warn_On_Known_Condition
(N
);
13580 end Rewrite_Comparison
;
13582 ----------------------------
13583 -- Safe_In_Place_Array_Op --
13584 ----------------------------
13586 function Safe_In_Place_Array_Op
13589 Op2
: Node_Id
) return Boolean
13591 Target
: Entity_Id
;
13593 function Is_Safe_Operand
(Op
: Node_Id
) return Boolean;
13594 -- Operand is safe if it cannot overlap part of the target of the
13595 -- operation. If the operand and the target are identical, the operand
13596 -- is safe. The operand can be empty in the case of negation.
13598 function Is_Unaliased
(N
: Node_Id
) return Boolean;
13599 -- Check that N is a stand-alone entity
13605 function Is_Unaliased
(N
: Node_Id
) return Boolean is
13609 and then No
(Address_Clause
(Entity
(N
)))
13610 and then No
(Renamed_Object
(Entity
(N
)));
13613 ---------------------
13614 -- Is_Safe_Operand --
13615 ---------------------
13617 function Is_Safe_Operand
(Op
: Node_Id
) return Boolean is
13622 elsif Is_Entity_Name
(Op
) then
13623 return Is_Unaliased
(Op
);
13625 elsif Nkind_In
(Op
, N_Indexed_Component
, N_Selected_Component
) then
13626 return Is_Unaliased
(Prefix
(Op
));
13628 elsif Nkind
(Op
) = N_Slice
then
13630 Is_Unaliased
(Prefix
(Op
))
13631 and then Entity
(Prefix
(Op
)) /= Target
;
13633 elsif Nkind
(Op
) = N_Op_Not
then
13634 return Is_Safe_Operand
(Right_Opnd
(Op
));
13639 end Is_Safe_Operand
;
13641 -- Start of processing for Safe_In_Place_Array_Op
13644 -- Skip this processing if the component size is different from system
13645 -- storage unit (since at least for NOT this would cause problems).
13647 if Component_Size
(Etype
(Lhs
)) /= System_Storage_Unit
then
13650 -- Cannot do in place stuff if non-standard Boolean representation
13652 elsif Has_Non_Standard_Rep
(Component_Type
(Etype
(Lhs
))) then
13655 elsif not Is_Unaliased
(Lhs
) then
13659 Target
:= Entity
(Lhs
);
13660 return Is_Safe_Operand
(Op1
) and then Is_Safe_Operand
(Op2
);
13662 end Safe_In_Place_Array_Op
;
13664 -----------------------
13665 -- Tagged_Membership --
13666 -----------------------
13668 -- There are two different cases to consider depending on whether the right
13669 -- operand is a class-wide type or not. If not we just compare the actual
13670 -- tag of the left expr to the target type tag:
13672 -- Left_Expr.Tag = Right_Type'Tag;
13674 -- If it is a class-wide type we use the RT function CW_Membership which is
13675 -- usually implemented by looking in the ancestor tables contained in the
13676 -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
13678 -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
13679 -- function IW_Membership which is usually implemented by looking in the
13680 -- table of abstract interface types plus the ancestor table contained in
13681 -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
13683 procedure Tagged_Membership
13685 SCIL_Node
: out Node_Id
;
13686 Result
: out Node_Id
)
13688 Left
: constant Node_Id
:= Left_Opnd
(N
);
13689 Right
: constant Node_Id
:= Right_Opnd
(N
);
13690 Loc
: constant Source_Ptr
:= Sloc
(N
);
13692 Full_R_Typ
: Entity_Id
;
13693 Left_Type
: Entity_Id
;
13694 New_Node
: Node_Id
;
13695 Right_Type
: Entity_Id
;
13699 SCIL_Node
:= Empty
;
13701 -- Handle entities from the limited view
13703 Left_Type
:= Available_View
(Etype
(Left
));
13704 Right_Type
:= Available_View
(Etype
(Right
));
13706 -- In the case where the type is an access type, the test is applied
13707 -- using the designated types (needed in Ada 2012 for implicit anonymous
13708 -- access conversions, for AI05-0149).
13710 if Is_Access_Type
(Right_Type
) then
13711 Left_Type
:= Designated_Type
(Left_Type
);
13712 Right_Type
:= Designated_Type
(Right_Type
);
13715 if Is_Class_Wide_Type
(Left_Type
) then
13716 Left_Type
:= Root_Type
(Left_Type
);
13719 if Is_Class_Wide_Type
(Right_Type
) then
13720 Full_R_Typ
:= Underlying_Type
(Root_Type
(Right_Type
));
13722 Full_R_Typ
:= Underlying_Type
(Right_Type
);
13726 Make_Selected_Component
(Loc
,
13727 Prefix
=> Relocate_Node
(Left
),
13729 New_Occurrence_Of
(First_Tag_Component
(Left_Type
), Loc
));
13731 if Is_Class_Wide_Type
(Right_Type
) then
13733 -- No need to issue a run-time check if we statically know that the
13734 -- result of this membership test is always true. For example,
13735 -- considering the following declarations:
13737 -- type Iface is interface;
13738 -- type T is tagged null record;
13739 -- type DT is new T and Iface with null record;
13744 -- These membership tests are always true:
13747 -- Obj2 in T'Class;
13748 -- Obj2 in Iface'Class;
13750 -- We do not need to handle cases where the membership is illegal.
13753 -- Obj1 in DT'Class; -- Compile time error
13754 -- Obj1 in Iface'Class; -- Compile time error
13756 if not Is_Class_Wide_Type
(Left_Type
)
13757 and then (Is_Ancestor
(Etype
(Right_Type
), Left_Type
,
13758 Use_Full_View
=> True)
13759 or else (Is_Interface
(Etype
(Right_Type
))
13760 and then Interface_Present_In_Ancestor
13762 Iface
=> Etype
(Right_Type
))))
13764 Result
:= New_Occurrence_Of
(Standard_True
, Loc
);
13768 -- Ada 2005 (AI-251): Class-wide applied to interfaces
13770 if Is_Interface
(Etype
(Class_Wide_Type
(Right_Type
)))
13772 -- Support to: "Iface_CW_Typ in Typ'Class"
13774 or else Is_Interface
(Left_Type
)
13776 -- Issue error if IW_Membership operation not available in a
13777 -- configurable run time setting.
13779 if not RTE_Available
(RE_IW_Membership
) then
13781 ("dynamic membership test on interface types", N
);
13787 Make_Function_Call
(Loc
,
13788 Name
=> New_Occurrence_Of
(RTE
(RE_IW_Membership
), Loc
),
13789 Parameter_Associations
=> New_List
(
13790 Make_Attribute_Reference
(Loc
,
13792 Attribute_Name
=> Name_Address
),
13793 New_Occurrence_Of
(
13794 Node
(First_Elmt
(Access_Disp_Table
(Full_R_Typ
))),
13797 -- Ada 95: Normal case
13800 Build_CW_Membership
(Loc
,
13801 Obj_Tag_Node
=> Obj_Tag
,
13803 New_Occurrence_Of
(
13804 Node
(First_Elmt
(Access_Disp_Table
(Full_R_Typ
))), Loc
),
13806 New_Node
=> New_Node
);
13808 -- Generate the SCIL node for this class-wide membership test.
13809 -- Done here because the previous call to Build_CW_Membership
13810 -- relocates Obj_Tag.
13812 if Generate_SCIL
then
13813 SCIL_Node
:= Make_SCIL_Membership_Test
(Sloc
(N
));
13814 Set_SCIL_Entity
(SCIL_Node
, Etype
(Right_Type
));
13815 Set_SCIL_Tag_Value
(SCIL_Node
, Obj_Tag
);
13818 Result
:= New_Node
;
13821 -- Right_Type is not a class-wide type
13824 -- No need to check the tag of the object if Right_Typ is abstract
13826 if Is_Abstract_Type
(Right_Type
) then
13827 Result
:= New_Occurrence_Of
(Standard_False
, Loc
);
13832 Left_Opnd
=> Obj_Tag
,
13835 (Node
(First_Elmt
(Access_Disp_Table
(Full_R_Typ
))), Loc
));
13838 end Tagged_Membership
;
13840 ------------------------------
13841 -- Unary_Op_Validity_Checks --
13842 ------------------------------
13844 procedure Unary_Op_Validity_Checks
(N
: Node_Id
) is
13846 if Validity_Checks_On
and Validity_Check_Operands
then
13847 Ensure_Valid
(Right_Opnd
(N
));
13849 end Unary_Op_Validity_Checks
;