Fix change log
[official-gcc.git] / gcc / function.c
blob21f8537a4a9af40a057569873c6bd142eda6b3a6
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl-error.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "hashtab.h"
55 #include "ggc.h"
56 #include "tm_p.h"
57 #include "integrate.h"
58 #include "langhooks.h"
59 #include "target.h"
60 #include "cfglayout.h"
61 #include "gimple.h"
62 #include "tree-pass.h"
63 #include "predict.h"
64 #include "df.h"
65 #include "timevar.h"
66 #include "vecprim.h"
68 /* So we can assign to cfun in this file. */
69 #undef cfun
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94 /* Nonzero if function being compiled doesn't contain any calls
95 (ignoring the prologue and epilogue). This is set prior to
96 local register allocation and is valid for the remaining
97 compiler passes. */
98 int current_function_is_leaf;
100 /* Nonzero if function being compiled doesn't modify the stack pointer
101 (ignoring the prologue and epilogue). This is only valid after
102 pass_stack_ptr_mod has run. */
103 int current_function_sp_is_unchanging;
105 /* Nonzero if the function being compiled is a leaf function which only
106 uses leaf registers. This is valid after reload (specifically after
107 sched2) and is useful only if the port defines LEAF_REGISTERS. */
108 int current_function_uses_only_leaf_regs;
110 /* Nonzero once virtual register instantiation has been done.
111 assign_stack_local uses frame_pointer_rtx when this is nonzero.
112 calls.c:emit_library_call_value_1 uses it to set up
113 post-instantiation libcalls. */
114 int virtuals_instantiated;
116 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
117 static GTY(()) int funcdef_no;
119 /* These variables hold pointers to functions to create and destroy
120 target specific, per-function data structures. */
121 struct machine_function * (*init_machine_status) (void);
123 /* The currently compiled function. */
124 struct function *cfun = 0;
126 /* These hashes record the prologue and epilogue insns. */
127 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
128 htab_t prologue_insn_hash;
129 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
130 htab_t epilogue_insn_hash;
133 htab_t types_used_by_vars_hash = NULL;
134 VEC(tree,gc) *types_used_by_cur_var_decl;
136 /* Forward declarations. */
138 static struct temp_slot *find_temp_slot_from_address (rtx);
139 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
140 static void pad_below (struct args_size *, enum machine_mode, tree);
141 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
142 static int all_blocks (tree, tree *);
143 static tree *get_block_vector (tree, int *);
144 extern tree debug_find_var_in_block_tree (tree, tree);
145 /* We always define `record_insns' even if it's not used so that we
146 can always export `prologue_epilogue_contains'. */
147 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
148 static bool contains (const_rtx, htab_t);
149 #ifdef HAVE_return
150 static void emit_return_into_block (basic_block);
151 #endif
152 static void prepare_function_start (void);
153 static void do_clobber_return_reg (rtx, void *);
154 static void do_use_return_reg (rtx, void *);
155 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
157 /* Stack of nested functions. */
158 /* Keep track of the cfun stack. */
160 typedef struct function *function_p;
162 DEF_VEC_P(function_p);
163 DEF_VEC_ALLOC_P(function_p,heap);
164 static VEC(function_p,heap) *function_context_stack;
166 /* Save the current context for compilation of a nested function.
167 This is called from language-specific code. */
169 void
170 push_function_context (void)
172 if (cfun == 0)
173 allocate_struct_function (NULL, false);
175 VEC_safe_push (function_p, heap, function_context_stack, cfun);
176 set_cfun (NULL);
179 /* Restore the last saved context, at the end of a nested function.
180 This function is called from language-specific code. */
182 void
183 pop_function_context (void)
185 struct function *p = VEC_pop (function_p, function_context_stack);
186 set_cfun (p);
187 current_function_decl = p->decl;
189 /* Reset variables that have known state during rtx generation. */
190 virtuals_instantiated = 0;
191 generating_concat_p = 1;
194 /* Clear out all parts of the state in F that can safely be discarded
195 after the function has been parsed, but not compiled, to let
196 garbage collection reclaim the memory. */
198 void
199 free_after_parsing (struct function *f)
201 f->language = 0;
204 /* Clear out all parts of the state in F that can safely be discarded
205 after the function has been compiled, to let garbage collection
206 reclaim the memory. */
208 void
209 free_after_compilation (struct function *f)
211 prologue_insn_hash = NULL;
212 epilogue_insn_hash = NULL;
214 if (crtl->emit.regno_pointer_align)
215 free (crtl->emit.regno_pointer_align);
217 memset (crtl, 0, sizeof (struct rtl_data));
218 f->eh = NULL;
219 f->machine = NULL;
220 f->cfg = NULL;
222 regno_reg_rtx = NULL;
223 insn_locators_free ();
226 /* Return size needed for stack frame based on slots so far allocated.
227 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
228 the caller may have to do that. */
230 HOST_WIDE_INT
231 get_frame_size (void)
233 if (FRAME_GROWS_DOWNWARD)
234 return -frame_offset;
235 else
236 return frame_offset;
239 /* Issue an error message and return TRUE if frame OFFSET overflows in
240 the signed target pointer arithmetics for function FUNC. Otherwise
241 return FALSE. */
243 bool
244 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
246 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
248 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
249 /* Leave room for the fixed part of the frame. */
250 - 64 * UNITS_PER_WORD)
252 error_at (DECL_SOURCE_LOCATION (func),
253 "total size of local objects too large");
254 return TRUE;
257 return FALSE;
260 /* Return stack slot alignment in bits for TYPE and MODE. */
262 static unsigned int
263 get_stack_local_alignment (tree type, enum machine_mode mode)
265 unsigned int alignment;
267 if (mode == BLKmode)
268 alignment = BIGGEST_ALIGNMENT;
269 else
270 alignment = GET_MODE_ALIGNMENT (mode);
272 /* Allow the frond-end to (possibly) increase the alignment of this
273 stack slot. */
274 if (! type)
275 type = lang_hooks.types.type_for_mode (mode, 0);
277 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
280 /* Determine whether it is possible to fit a stack slot of size SIZE and
281 alignment ALIGNMENT into an area in the stack frame that starts at
282 frame offset START and has a length of LENGTH. If so, store the frame
283 offset to be used for the stack slot in *POFFSET and return true;
284 return false otherwise. This function will extend the frame size when
285 given a start/length pair that lies at the end of the frame. */
287 static bool
288 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
289 HOST_WIDE_INT size, unsigned int alignment,
290 HOST_WIDE_INT *poffset)
292 HOST_WIDE_INT this_frame_offset;
293 int frame_off, frame_alignment, frame_phase;
295 /* Calculate how many bytes the start of local variables is off from
296 stack alignment. */
297 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
298 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
299 frame_phase = frame_off ? frame_alignment - frame_off : 0;
301 /* Round the frame offset to the specified alignment. */
303 /* We must be careful here, since FRAME_OFFSET might be negative and
304 division with a negative dividend isn't as well defined as we might
305 like. So we instead assume that ALIGNMENT is a power of two and
306 use logical operations which are unambiguous. */
307 if (FRAME_GROWS_DOWNWARD)
308 this_frame_offset
309 = (FLOOR_ROUND (start + length - size - frame_phase,
310 (unsigned HOST_WIDE_INT) alignment)
311 + frame_phase);
312 else
313 this_frame_offset
314 = (CEIL_ROUND (start - frame_phase,
315 (unsigned HOST_WIDE_INT) alignment)
316 + frame_phase);
318 /* See if it fits. If this space is at the edge of the frame,
319 consider extending the frame to make it fit. Our caller relies on
320 this when allocating a new slot. */
321 if (frame_offset == start && this_frame_offset < frame_offset)
322 frame_offset = this_frame_offset;
323 else if (this_frame_offset < start)
324 return false;
325 else if (start + length == frame_offset
326 && this_frame_offset + size > start + length)
327 frame_offset = this_frame_offset + size;
328 else if (this_frame_offset + size > start + length)
329 return false;
331 *poffset = this_frame_offset;
332 return true;
335 /* Create a new frame_space structure describing free space in the stack
336 frame beginning at START and ending at END, and chain it into the
337 function's frame_space_list. */
339 static void
340 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
342 struct frame_space *space = ggc_alloc_frame_space ();
343 space->next = crtl->frame_space_list;
344 crtl->frame_space_list = space;
345 space->start = start;
346 space->length = end - start;
349 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
350 with machine mode MODE.
352 ALIGN controls the amount of alignment for the address of the slot:
353 0 means according to MODE,
354 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
355 -2 means use BITS_PER_UNIT,
356 positive specifies alignment boundary in bits.
358 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
360 We do not round to stack_boundary here. */
363 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
364 int align,
365 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
367 rtx x, addr;
368 int bigend_correction = 0;
369 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
370 unsigned int alignment, alignment_in_bits;
372 if (align == 0)
374 alignment = get_stack_local_alignment (NULL, mode);
375 alignment /= BITS_PER_UNIT;
377 else if (align == -1)
379 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
380 size = CEIL_ROUND (size, alignment);
382 else if (align == -2)
383 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
384 else
385 alignment = align / BITS_PER_UNIT;
387 alignment_in_bits = alignment * BITS_PER_UNIT;
389 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
390 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
392 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
393 alignment = alignment_in_bits / BITS_PER_UNIT;
396 if (SUPPORTS_STACK_ALIGNMENT)
398 if (crtl->stack_alignment_estimated < alignment_in_bits)
400 if (!crtl->stack_realign_processed)
401 crtl->stack_alignment_estimated = alignment_in_bits;
402 else
404 /* If stack is realigned and stack alignment value
405 hasn't been finalized, it is OK not to increase
406 stack_alignment_estimated. The bigger alignment
407 requirement is recorded in stack_alignment_needed
408 below. */
409 gcc_assert (!crtl->stack_realign_finalized);
410 if (!crtl->stack_realign_needed)
412 /* It is OK to reduce the alignment as long as the
413 requested size is 0 or the estimated stack
414 alignment >= mode alignment. */
415 gcc_assert (reduce_alignment_ok
416 || size == 0
417 || (crtl->stack_alignment_estimated
418 >= GET_MODE_ALIGNMENT (mode)));
419 alignment_in_bits = crtl->stack_alignment_estimated;
420 alignment = alignment_in_bits / BITS_PER_UNIT;
426 if (crtl->stack_alignment_needed < alignment_in_bits)
427 crtl->stack_alignment_needed = alignment_in_bits;
428 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
429 crtl->max_used_stack_slot_alignment = alignment_in_bits;
431 if (mode != BLKmode || size != 0)
433 struct frame_space **psp;
435 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
437 struct frame_space *space = *psp;
438 if (!try_fit_stack_local (space->start, space->length, size,
439 alignment, &slot_offset))
440 continue;
441 *psp = space->next;
442 if (slot_offset > space->start)
443 add_frame_space (space->start, slot_offset);
444 if (slot_offset + size < space->start + space->length)
445 add_frame_space (slot_offset + size,
446 space->start + space->length);
447 goto found_space;
450 else if (!STACK_ALIGNMENT_NEEDED)
452 slot_offset = frame_offset;
453 goto found_space;
456 old_frame_offset = frame_offset;
458 if (FRAME_GROWS_DOWNWARD)
460 frame_offset -= size;
461 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
463 if (slot_offset > frame_offset)
464 add_frame_space (frame_offset, slot_offset);
465 if (slot_offset + size < old_frame_offset)
466 add_frame_space (slot_offset + size, old_frame_offset);
468 else
470 frame_offset += size;
471 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
473 if (slot_offset > old_frame_offset)
474 add_frame_space (old_frame_offset, slot_offset);
475 if (slot_offset + size < frame_offset)
476 add_frame_space (slot_offset + size, frame_offset);
479 found_space:
480 /* On a big-endian machine, if we are allocating more space than we will use,
481 use the least significant bytes of those that are allocated. */
482 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
483 bigend_correction = size - GET_MODE_SIZE (mode);
485 /* If we have already instantiated virtual registers, return the actual
486 address relative to the frame pointer. */
487 if (virtuals_instantiated)
488 addr = plus_constant (frame_pointer_rtx,
489 trunc_int_for_mode
490 (slot_offset + bigend_correction
491 + STARTING_FRAME_OFFSET, Pmode));
492 else
493 addr = plus_constant (virtual_stack_vars_rtx,
494 trunc_int_for_mode
495 (slot_offset + bigend_correction,
496 Pmode));
498 x = gen_rtx_MEM (mode, addr);
499 set_mem_align (x, alignment_in_bits);
500 MEM_NOTRAP_P (x) = 1;
502 stack_slot_list
503 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
505 if (frame_offset_overflow (frame_offset, current_function_decl))
506 frame_offset = 0;
508 return x;
511 /* Wrap up assign_stack_local_1 with last parameter as false. */
514 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
516 return assign_stack_local_1 (mode, size, align, false);
520 /* In order to evaluate some expressions, such as function calls returning
521 structures in memory, we need to temporarily allocate stack locations.
522 We record each allocated temporary in the following structure.
524 Associated with each temporary slot is a nesting level. When we pop up
525 one level, all temporaries associated with the previous level are freed.
526 Normally, all temporaries are freed after the execution of the statement
527 in which they were created. However, if we are inside a ({...}) grouping,
528 the result may be in a temporary and hence must be preserved. If the
529 result could be in a temporary, we preserve it if we can determine which
530 one it is in. If we cannot determine which temporary may contain the
531 result, all temporaries are preserved. A temporary is preserved by
532 pretending it was allocated at the previous nesting level.
534 Automatic variables are also assigned temporary slots, at the nesting
535 level where they are defined. They are marked a "kept" so that
536 free_temp_slots will not free them. */
538 struct GTY(()) temp_slot {
539 /* Points to next temporary slot. */
540 struct temp_slot *next;
541 /* Points to previous temporary slot. */
542 struct temp_slot *prev;
543 /* The rtx to used to reference the slot. */
544 rtx slot;
545 /* The size, in units, of the slot. */
546 HOST_WIDE_INT size;
547 /* The type of the object in the slot, or zero if it doesn't correspond
548 to a type. We use this to determine whether a slot can be reused.
549 It can be reused if objects of the type of the new slot will always
550 conflict with objects of the type of the old slot. */
551 tree type;
552 /* The alignment (in bits) of the slot. */
553 unsigned int align;
554 /* Nonzero if this temporary is currently in use. */
555 char in_use;
556 /* Nonzero if this temporary has its address taken. */
557 char addr_taken;
558 /* Nesting level at which this slot is being used. */
559 int level;
560 /* Nonzero if this should survive a call to free_temp_slots. */
561 int keep;
562 /* The offset of the slot from the frame_pointer, including extra space
563 for alignment. This info is for combine_temp_slots. */
564 HOST_WIDE_INT base_offset;
565 /* The size of the slot, including extra space for alignment. This
566 info is for combine_temp_slots. */
567 HOST_WIDE_INT full_size;
570 /* A table of addresses that represent a stack slot. The table is a mapping
571 from address RTXen to a temp slot. */
572 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
574 /* Entry for the above hash table. */
575 struct GTY(()) temp_slot_address_entry {
576 hashval_t hash;
577 rtx address;
578 struct temp_slot *temp_slot;
581 /* Removes temporary slot TEMP from LIST. */
583 static void
584 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
586 if (temp->next)
587 temp->next->prev = temp->prev;
588 if (temp->prev)
589 temp->prev->next = temp->next;
590 else
591 *list = temp->next;
593 temp->prev = temp->next = NULL;
596 /* Inserts temporary slot TEMP to LIST. */
598 static void
599 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
601 temp->next = *list;
602 if (*list)
603 (*list)->prev = temp;
604 temp->prev = NULL;
605 *list = temp;
608 /* Returns the list of used temp slots at LEVEL. */
610 static struct temp_slot **
611 temp_slots_at_level (int level)
613 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
614 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
616 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
619 /* Returns the maximal temporary slot level. */
621 static int
622 max_slot_level (void)
624 if (!used_temp_slots)
625 return -1;
627 return VEC_length (temp_slot_p, used_temp_slots) - 1;
630 /* Moves temporary slot TEMP to LEVEL. */
632 static void
633 move_slot_to_level (struct temp_slot *temp, int level)
635 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
636 insert_slot_to_list (temp, temp_slots_at_level (level));
637 temp->level = level;
640 /* Make temporary slot TEMP available. */
642 static void
643 make_slot_available (struct temp_slot *temp)
645 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
646 insert_slot_to_list (temp, &avail_temp_slots);
647 temp->in_use = 0;
648 temp->level = -1;
651 /* Compute the hash value for an address -> temp slot mapping.
652 The value is cached on the mapping entry. */
653 static hashval_t
654 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
656 int do_not_record = 0;
657 return hash_rtx (t->address, GET_MODE (t->address),
658 &do_not_record, NULL, false);
661 /* Return the hash value for an address -> temp slot mapping. */
662 static hashval_t
663 temp_slot_address_hash (const void *p)
665 const struct temp_slot_address_entry *t;
666 t = (const struct temp_slot_address_entry *) p;
667 return t->hash;
670 /* Compare two address -> temp slot mapping entries. */
671 static int
672 temp_slot_address_eq (const void *p1, const void *p2)
674 const struct temp_slot_address_entry *t1, *t2;
675 t1 = (const struct temp_slot_address_entry *) p1;
676 t2 = (const struct temp_slot_address_entry *) p2;
677 return exp_equiv_p (t1->address, t2->address, 0, true);
680 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
681 static void
682 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
684 void **slot;
685 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
686 t->address = address;
687 t->temp_slot = temp_slot;
688 t->hash = temp_slot_address_compute_hash (t);
689 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
690 *slot = t;
693 /* Remove an address -> temp slot mapping entry if the temp slot is
694 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
695 static int
696 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
698 const struct temp_slot_address_entry *t;
699 t = (const struct temp_slot_address_entry *) *slot;
700 if (! t->temp_slot->in_use)
701 *slot = NULL;
702 return 1;
705 /* Remove all mappings of addresses to unused temp slots. */
706 static void
707 remove_unused_temp_slot_addresses (void)
709 htab_traverse (temp_slot_address_table,
710 remove_unused_temp_slot_addresses_1,
711 NULL);
714 /* Find the temp slot corresponding to the object at address X. */
716 static struct temp_slot *
717 find_temp_slot_from_address (rtx x)
719 struct temp_slot *p;
720 struct temp_slot_address_entry tmp, *t;
722 /* First try the easy way:
723 See if X exists in the address -> temp slot mapping. */
724 tmp.address = x;
725 tmp.temp_slot = NULL;
726 tmp.hash = temp_slot_address_compute_hash (&tmp);
727 t = (struct temp_slot_address_entry *)
728 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
729 if (t)
730 return t->temp_slot;
732 /* If we have a sum involving a register, see if it points to a temp
733 slot. */
734 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
735 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
736 return p;
737 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
738 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
739 return p;
741 /* Last resort: Address is a virtual stack var address. */
742 if (GET_CODE (x) == PLUS
743 && XEXP (x, 0) == virtual_stack_vars_rtx
744 && CONST_INT_P (XEXP (x, 1)))
746 int i;
747 for (i = max_slot_level (); i >= 0; i--)
748 for (p = *temp_slots_at_level (i); p; p = p->next)
750 if (INTVAL (XEXP (x, 1)) >= p->base_offset
751 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
752 return p;
756 return NULL;
759 /* Allocate a temporary stack slot and record it for possible later
760 reuse.
762 MODE is the machine mode to be given to the returned rtx.
764 SIZE is the size in units of the space required. We do no rounding here
765 since assign_stack_local will do any required rounding.
767 KEEP is 1 if this slot is to be retained after a call to
768 free_temp_slots. Automatic variables for a block are allocated
769 with this flag. KEEP values of 2 or 3 were needed respectively
770 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
771 or for SAVE_EXPRs, but they are now unused.
773 TYPE is the type that will be used for the stack slot. */
776 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
777 int keep, tree type)
779 unsigned int align;
780 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
781 rtx slot;
783 /* If SIZE is -1 it means that somebody tried to allocate a temporary
784 of a variable size. */
785 gcc_assert (size != -1);
787 /* These are now unused. */
788 gcc_assert (keep <= 1);
790 align = get_stack_local_alignment (type, mode);
792 /* Try to find an available, already-allocated temporary of the proper
793 mode which meets the size and alignment requirements. Choose the
794 smallest one with the closest alignment.
796 If assign_stack_temp is called outside of the tree->rtl expansion,
797 we cannot reuse the stack slots (that may still refer to
798 VIRTUAL_STACK_VARS_REGNUM). */
799 if (!virtuals_instantiated)
801 for (p = avail_temp_slots; p; p = p->next)
803 if (p->align >= align && p->size >= size
804 && GET_MODE (p->slot) == mode
805 && objects_must_conflict_p (p->type, type)
806 && (best_p == 0 || best_p->size > p->size
807 || (best_p->size == p->size && best_p->align > p->align)))
809 if (p->align == align && p->size == size)
811 selected = p;
812 cut_slot_from_list (selected, &avail_temp_slots);
813 best_p = 0;
814 break;
816 best_p = p;
821 /* Make our best, if any, the one to use. */
822 if (best_p)
824 selected = best_p;
825 cut_slot_from_list (selected, &avail_temp_slots);
827 /* If there are enough aligned bytes left over, make them into a new
828 temp_slot so that the extra bytes don't get wasted. Do this only
829 for BLKmode slots, so that we can be sure of the alignment. */
830 if (GET_MODE (best_p->slot) == BLKmode)
832 int alignment = best_p->align / BITS_PER_UNIT;
833 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
835 if (best_p->size - rounded_size >= alignment)
837 p = ggc_alloc_temp_slot ();
838 p->in_use = p->addr_taken = 0;
839 p->size = best_p->size - rounded_size;
840 p->base_offset = best_p->base_offset + rounded_size;
841 p->full_size = best_p->full_size - rounded_size;
842 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
843 p->align = best_p->align;
844 p->type = best_p->type;
845 insert_slot_to_list (p, &avail_temp_slots);
847 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
848 stack_slot_list);
850 best_p->size = rounded_size;
851 best_p->full_size = rounded_size;
856 /* If we still didn't find one, make a new temporary. */
857 if (selected == 0)
859 HOST_WIDE_INT frame_offset_old = frame_offset;
861 p = ggc_alloc_temp_slot ();
863 /* We are passing an explicit alignment request to assign_stack_local.
864 One side effect of that is assign_stack_local will not round SIZE
865 to ensure the frame offset remains suitably aligned.
867 So for requests which depended on the rounding of SIZE, we go ahead
868 and round it now. We also make sure ALIGNMENT is at least
869 BIGGEST_ALIGNMENT. */
870 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
871 p->slot = assign_stack_local (mode,
872 (mode == BLKmode
873 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
874 : size),
875 align);
877 p->align = align;
879 /* The following slot size computation is necessary because we don't
880 know the actual size of the temporary slot until assign_stack_local
881 has performed all the frame alignment and size rounding for the
882 requested temporary. Note that extra space added for alignment
883 can be either above or below this stack slot depending on which
884 way the frame grows. We include the extra space if and only if it
885 is above this slot. */
886 if (FRAME_GROWS_DOWNWARD)
887 p->size = frame_offset_old - frame_offset;
888 else
889 p->size = size;
891 /* Now define the fields used by combine_temp_slots. */
892 if (FRAME_GROWS_DOWNWARD)
894 p->base_offset = frame_offset;
895 p->full_size = frame_offset_old - frame_offset;
897 else
899 p->base_offset = frame_offset_old;
900 p->full_size = frame_offset - frame_offset_old;
903 selected = p;
906 p = selected;
907 p->in_use = 1;
908 p->addr_taken = 0;
909 p->type = type;
910 p->level = temp_slot_level;
911 p->keep = keep;
913 pp = temp_slots_at_level (p->level);
914 insert_slot_to_list (p, pp);
915 insert_temp_slot_address (XEXP (p->slot, 0), p);
917 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
918 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
919 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
921 /* If we know the alias set for the memory that will be used, use
922 it. If there's no TYPE, then we don't know anything about the
923 alias set for the memory. */
924 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
925 set_mem_align (slot, align);
927 /* If a type is specified, set the relevant flags. */
928 if (type != 0)
930 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
931 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
932 || TREE_CODE (type) == COMPLEX_TYPE));
934 MEM_NOTRAP_P (slot) = 1;
936 return slot;
939 /* Allocate a temporary stack slot and record it for possible later
940 reuse. First three arguments are same as in preceding function. */
943 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
945 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
948 /* Assign a temporary.
949 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
950 and so that should be used in error messages. In either case, we
951 allocate of the given type.
952 KEEP is as for assign_stack_temp.
953 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
954 it is 0 if a register is OK.
955 DONT_PROMOTE is 1 if we should not promote values in register
956 to wider modes. */
959 assign_temp (tree type_or_decl, int keep, int memory_required,
960 int dont_promote ATTRIBUTE_UNUSED)
962 tree type, decl;
963 enum machine_mode mode;
964 #ifdef PROMOTE_MODE
965 int unsignedp;
966 #endif
968 if (DECL_P (type_or_decl))
969 decl = type_or_decl, type = TREE_TYPE (decl);
970 else
971 decl = NULL, type = type_or_decl;
973 mode = TYPE_MODE (type);
974 #ifdef PROMOTE_MODE
975 unsignedp = TYPE_UNSIGNED (type);
976 #endif
978 if (mode == BLKmode || memory_required)
980 HOST_WIDE_INT size = int_size_in_bytes (type);
981 rtx tmp;
983 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
984 problems with allocating the stack space. */
985 if (size == 0)
986 size = 1;
988 /* Unfortunately, we don't yet know how to allocate variable-sized
989 temporaries. However, sometimes we can find a fixed upper limit on
990 the size, so try that instead. */
991 else if (size == -1)
992 size = max_int_size_in_bytes (type);
994 /* The size of the temporary may be too large to fit into an integer. */
995 /* ??? Not sure this should happen except for user silliness, so limit
996 this to things that aren't compiler-generated temporaries. The
997 rest of the time we'll die in assign_stack_temp_for_type. */
998 if (decl && size == -1
999 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1001 error ("size of variable %q+D is too large", decl);
1002 size = 1;
1005 tmp = assign_stack_temp_for_type (mode, size, keep, type);
1006 return tmp;
1009 #ifdef PROMOTE_MODE
1010 if (! dont_promote)
1011 mode = promote_mode (type, mode, &unsignedp);
1012 #endif
1014 return gen_reg_rtx (mode);
1017 /* Combine temporary stack slots which are adjacent on the stack.
1019 This allows for better use of already allocated stack space. This is only
1020 done for BLKmode slots because we can be sure that we won't have alignment
1021 problems in this case. */
1023 static void
1024 combine_temp_slots (void)
1026 struct temp_slot *p, *q, *next, *next_q;
1027 int num_slots;
1029 /* We can't combine slots, because the information about which slot
1030 is in which alias set will be lost. */
1031 if (flag_strict_aliasing)
1032 return;
1034 /* If there are a lot of temp slots, don't do anything unless
1035 high levels of optimization. */
1036 if (! flag_expensive_optimizations)
1037 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1038 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1039 return;
1041 for (p = avail_temp_slots; p; p = next)
1043 int delete_p = 0;
1045 next = p->next;
1047 if (GET_MODE (p->slot) != BLKmode)
1048 continue;
1050 for (q = p->next; q; q = next_q)
1052 int delete_q = 0;
1054 next_q = q->next;
1056 if (GET_MODE (q->slot) != BLKmode)
1057 continue;
1059 if (p->base_offset + p->full_size == q->base_offset)
1061 /* Q comes after P; combine Q into P. */
1062 p->size += q->size;
1063 p->full_size += q->full_size;
1064 delete_q = 1;
1066 else if (q->base_offset + q->full_size == p->base_offset)
1068 /* P comes after Q; combine P into Q. */
1069 q->size += p->size;
1070 q->full_size += p->full_size;
1071 delete_p = 1;
1072 break;
1074 if (delete_q)
1075 cut_slot_from_list (q, &avail_temp_slots);
1078 /* Either delete P or advance past it. */
1079 if (delete_p)
1080 cut_slot_from_list (p, &avail_temp_slots);
1084 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1085 slot that previously was known by OLD_RTX. */
1087 void
1088 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1090 struct temp_slot *p;
1092 if (rtx_equal_p (old_rtx, new_rtx))
1093 return;
1095 p = find_temp_slot_from_address (old_rtx);
1097 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1098 NEW_RTX is a register, see if one operand of the PLUS is a
1099 temporary location. If so, NEW_RTX points into it. Otherwise,
1100 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1101 in common between them. If so, try a recursive call on those
1102 values. */
1103 if (p == 0)
1105 if (GET_CODE (old_rtx) != PLUS)
1106 return;
1108 if (REG_P (new_rtx))
1110 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1111 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1112 return;
1114 else if (GET_CODE (new_rtx) != PLUS)
1115 return;
1117 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1118 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1119 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1120 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1121 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1122 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1123 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1124 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1126 return;
1129 /* Otherwise add an alias for the temp's address. */
1130 insert_temp_slot_address (new_rtx, p);
1133 /* If X could be a reference to a temporary slot, mark the fact that its
1134 address was taken. */
1136 void
1137 mark_temp_addr_taken (rtx x)
1139 struct temp_slot *p;
1141 if (x == 0)
1142 return;
1144 /* If X is not in memory or is at a constant address, it cannot be in
1145 a temporary slot. */
1146 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1147 return;
1149 p = find_temp_slot_from_address (XEXP (x, 0));
1150 if (p != 0)
1151 p->addr_taken = 1;
1154 /* If X could be a reference to a temporary slot, mark that slot as
1155 belonging to the to one level higher than the current level. If X
1156 matched one of our slots, just mark that one. Otherwise, we can't
1157 easily predict which it is, so upgrade all of them. Kept slots
1158 need not be touched.
1160 This is called when an ({...}) construct occurs and a statement
1161 returns a value in memory. */
1163 void
1164 preserve_temp_slots (rtx x)
1166 struct temp_slot *p = 0, *next;
1168 /* If there is no result, we still might have some objects whose address
1169 were taken, so we need to make sure they stay around. */
1170 if (x == 0)
1172 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1174 next = p->next;
1176 if (p->addr_taken)
1177 move_slot_to_level (p, temp_slot_level - 1);
1180 return;
1183 /* If X is a register that is being used as a pointer, see if we have
1184 a temporary slot we know it points to. To be consistent with
1185 the code below, we really should preserve all non-kept slots
1186 if we can't find a match, but that seems to be much too costly. */
1187 if (REG_P (x) && REG_POINTER (x))
1188 p = find_temp_slot_from_address (x);
1190 /* If X is not in memory or is at a constant address, it cannot be in
1191 a temporary slot, but it can contain something whose address was
1192 taken. */
1193 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1195 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1197 next = p->next;
1199 if (p->addr_taken)
1200 move_slot_to_level (p, temp_slot_level - 1);
1203 return;
1206 /* First see if we can find a match. */
1207 if (p == 0)
1208 p = find_temp_slot_from_address (XEXP (x, 0));
1210 if (p != 0)
1212 /* Move everything at our level whose address was taken to our new
1213 level in case we used its address. */
1214 struct temp_slot *q;
1216 if (p->level == temp_slot_level)
1218 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1220 next = q->next;
1222 if (p != q && q->addr_taken)
1223 move_slot_to_level (q, temp_slot_level - 1);
1226 move_slot_to_level (p, temp_slot_level - 1);
1227 p->addr_taken = 0;
1229 return;
1232 /* Otherwise, preserve all non-kept slots at this level. */
1233 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1235 next = p->next;
1237 if (!p->keep)
1238 move_slot_to_level (p, temp_slot_level - 1);
1242 /* Free all temporaries used so far. This is normally called at the
1243 end of generating code for a statement. */
1245 void
1246 free_temp_slots (void)
1248 struct temp_slot *p, *next;
1249 bool some_available = false;
1251 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1253 next = p->next;
1255 if (!p->keep)
1257 make_slot_available (p);
1258 some_available = true;
1262 if (some_available)
1264 remove_unused_temp_slot_addresses ();
1265 combine_temp_slots ();
1269 /* Push deeper into the nesting level for stack temporaries. */
1271 void
1272 push_temp_slots (void)
1274 temp_slot_level++;
1277 /* Pop a temporary nesting level. All slots in use in the current level
1278 are freed. */
1280 void
1281 pop_temp_slots (void)
1283 struct temp_slot *p, *next;
1284 bool some_available = false;
1286 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1288 next = p->next;
1289 make_slot_available (p);
1290 some_available = true;
1293 if (some_available)
1295 remove_unused_temp_slot_addresses ();
1296 combine_temp_slots ();
1299 temp_slot_level--;
1302 /* Initialize temporary slots. */
1304 void
1305 init_temp_slots (void)
1307 /* We have not allocated any temporaries yet. */
1308 avail_temp_slots = 0;
1309 used_temp_slots = 0;
1310 temp_slot_level = 0;
1312 /* Set up the table to map addresses to temp slots. */
1313 if (! temp_slot_address_table)
1314 temp_slot_address_table = htab_create_ggc (32,
1315 temp_slot_address_hash,
1316 temp_slot_address_eq,
1317 NULL);
1318 else
1319 htab_empty (temp_slot_address_table);
1322 /* These routines are responsible for converting virtual register references
1323 to the actual hard register references once RTL generation is complete.
1325 The following four variables are used for communication between the
1326 routines. They contain the offsets of the virtual registers from their
1327 respective hard registers. */
1329 static int in_arg_offset;
1330 static int var_offset;
1331 static int dynamic_offset;
1332 static int out_arg_offset;
1333 static int cfa_offset;
1335 /* In most machines, the stack pointer register is equivalent to the bottom
1336 of the stack. */
1338 #ifndef STACK_POINTER_OFFSET
1339 #define STACK_POINTER_OFFSET 0
1340 #endif
1342 /* If not defined, pick an appropriate default for the offset of dynamically
1343 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1344 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1346 #ifndef STACK_DYNAMIC_OFFSET
1348 /* The bottom of the stack points to the actual arguments. If
1349 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1350 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1351 stack space for register parameters is not pushed by the caller, but
1352 rather part of the fixed stack areas and hence not included in
1353 `crtl->outgoing_args_size'. Nevertheless, we must allow
1354 for it when allocating stack dynamic objects. */
1356 #if defined(REG_PARM_STACK_SPACE)
1357 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1358 ((ACCUMULATE_OUTGOING_ARGS \
1359 ? (crtl->outgoing_args_size \
1360 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1361 : REG_PARM_STACK_SPACE (FNDECL))) \
1362 : 0) + (STACK_POINTER_OFFSET))
1363 #else
1364 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1365 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1366 + (STACK_POINTER_OFFSET))
1367 #endif
1368 #endif
1371 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1372 is a virtual register, return the equivalent hard register and set the
1373 offset indirectly through the pointer. Otherwise, return 0. */
1375 static rtx
1376 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1378 rtx new_rtx;
1379 HOST_WIDE_INT offset;
1381 if (x == virtual_incoming_args_rtx)
1383 if (stack_realign_drap)
1385 /* Replace virtual_incoming_args_rtx with internal arg
1386 pointer if DRAP is used to realign stack. */
1387 new_rtx = crtl->args.internal_arg_pointer;
1388 offset = 0;
1390 else
1391 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1393 else if (x == virtual_stack_vars_rtx)
1394 new_rtx = frame_pointer_rtx, offset = var_offset;
1395 else if (x == virtual_stack_dynamic_rtx)
1396 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1397 else if (x == virtual_outgoing_args_rtx)
1398 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1399 else if (x == virtual_cfa_rtx)
1401 #ifdef FRAME_POINTER_CFA_OFFSET
1402 new_rtx = frame_pointer_rtx;
1403 #else
1404 new_rtx = arg_pointer_rtx;
1405 #endif
1406 offset = cfa_offset;
1408 else if (x == virtual_preferred_stack_boundary_rtx)
1410 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1411 offset = 0;
1413 else
1414 return NULL_RTX;
1416 *poffset = offset;
1417 return new_rtx;
1420 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1421 Instantiate any virtual registers present inside of *LOC. The expression
1422 is simplified, as much as possible, but is not to be considered "valid"
1423 in any sense implied by the target. If any change is made, set CHANGED
1424 to true. */
1426 static int
1427 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1429 HOST_WIDE_INT offset;
1430 bool *changed = (bool *) data;
1431 rtx x, new_rtx;
1433 x = *loc;
1434 if (x == 0)
1435 return 0;
1437 switch (GET_CODE (x))
1439 case REG:
1440 new_rtx = instantiate_new_reg (x, &offset);
1441 if (new_rtx)
1443 *loc = plus_constant (new_rtx, offset);
1444 if (changed)
1445 *changed = true;
1447 return -1;
1449 case PLUS:
1450 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1451 if (new_rtx)
1453 new_rtx = plus_constant (new_rtx, offset);
1454 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1455 if (changed)
1456 *changed = true;
1457 return -1;
1460 /* FIXME -- from old code */
1461 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1462 we can commute the PLUS and SUBREG because pointers into the
1463 frame are well-behaved. */
1464 break;
1466 default:
1467 break;
1470 return 0;
1473 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1474 matches the predicate for insn CODE operand OPERAND. */
1476 static int
1477 safe_insn_predicate (int code, int operand, rtx x)
1479 const struct insn_operand_data *op_data;
1481 if (code < 0)
1482 return true;
1484 op_data = &insn_data[code].operand[operand];
1485 if (op_data->predicate == NULL)
1486 return true;
1488 return op_data->predicate (x, op_data->mode);
1491 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1492 registers present inside of insn. The result will be a valid insn. */
1494 static void
1495 instantiate_virtual_regs_in_insn (rtx insn)
1497 HOST_WIDE_INT offset;
1498 int insn_code, i;
1499 bool any_change = false;
1500 rtx set, new_rtx, x, seq;
1502 /* There are some special cases to be handled first. */
1503 set = single_set (insn);
1504 if (set)
1506 /* We're allowed to assign to a virtual register. This is interpreted
1507 to mean that the underlying register gets assigned the inverse
1508 transformation. This is used, for example, in the handling of
1509 non-local gotos. */
1510 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1511 if (new_rtx)
1513 start_sequence ();
1515 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1516 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1517 GEN_INT (-offset));
1518 x = force_operand (x, new_rtx);
1519 if (x != new_rtx)
1520 emit_move_insn (new_rtx, x);
1522 seq = get_insns ();
1523 end_sequence ();
1525 emit_insn_before (seq, insn);
1526 delete_insn (insn);
1527 return;
1530 /* Handle a straight copy from a virtual register by generating a
1531 new add insn. The difference between this and falling through
1532 to the generic case is avoiding a new pseudo and eliminating a
1533 move insn in the initial rtl stream. */
1534 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1535 if (new_rtx && offset != 0
1536 && REG_P (SET_DEST (set))
1537 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1539 start_sequence ();
1541 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1542 new_rtx, GEN_INT (offset), SET_DEST (set),
1543 1, OPTAB_LIB_WIDEN);
1544 if (x != SET_DEST (set))
1545 emit_move_insn (SET_DEST (set), x);
1547 seq = get_insns ();
1548 end_sequence ();
1550 emit_insn_before (seq, insn);
1551 delete_insn (insn);
1552 return;
1555 extract_insn (insn);
1556 insn_code = INSN_CODE (insn);
1558 /* Handle a plus involving a virtual register by determining if the
1559 operands remain valid if they're modified in place. */
1560 if (GET_CODE (SET_SRC (set)) == PLUS
1561 && recog_data.n_operands >= 3
1562 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1563 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1564 && CONST_INT_P (recog_data.operand[2])
1565 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1567 offset += INTVAL (recog_data.operand[2]);
1569 /* If the sum is zero, then replace with a plain move. */
1570 if (offset == 0
1571 && REG_P (SET_DEST (set))
1572 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1574 start_sequence ();
1575 emit_move_insn (SET_DEST (set), new_rtx);
1576 seq = get_insns ();
1577 end_sequence ();
1579 emit_insn_before (seq, insn);
1580 delete_insn (insn);
1581 return;
1584 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1586 /* Using validate_change and apply_change_group here leaves
1587 recog_data in an invalid state. Since we know exactly what
1588 we want to check, do those two by hand. */
1589 if (safe_insn_predicate (insn_code, 1, new_rtx)
1590 && safe_insn_predicate (insn_code, 2, x))
1592 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1593 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1594 any_change = true;
1596 /* Fall through into the regular operand fixup loop in
1597 order to take care of operands other than 1 and 2. */
1601 else
1603 extract_insn (insn);
1604 insn_code = INSN_CODE (insn);
1607 /* In the general case, we expect virtual registers to appear only in
1608 operands, and then only as either bare registers or inside memories. */
1609 for (i = 0; i < recog_data.n_operands; ++i)
1611 x = recog_data.operand[i];
1612 switch (GET_CODE (x))
1614 case MEM:
1616 rtx addr = XEXP (x, 0);
1617 bool changed = false;
1619 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1620 if (!changed)
1621 continue;
1623 start_sequence ();
1624 x = replace_equiv_address (x, addr);
1625 /* It may happen that the address with the virtual reg
1626 was valid (e.g. based on the virtual stack reg, which might
1627 be acceptable to the predicates with all offsets), whereas
1628 the address now isn't anymore, for instance when the address
1629 is still offsetted, but the base reg isn't virtual-stack-reg
1630 anymore. Below we would do a force_reg on the whole operand,
1631 but this insn might actually only accept memory. Hence,
1632 before doing that last resort, try to reload the address into
1633 a register, so this operand stays a MEM. */
1634 if (!safe_insn_predicate (insn_code, i, x))
1636 addr = force_reg (GET_MODE (addr), addr);
1637 x = replace_equiv_address (x, addr);
1639 seq = get_insns ();
1640 end_sequence ();
1641 if (seq)
1642 emit_insn_before (seq, insn);
1644 break;
1646 case REG:
1647 new_rtx = instantiate_new_reg (x, &offset);
1648 if (new_rtx == NULL)
1649 continue;
1650 if (offset == 0)
1651 x = new_rtx;
1652 else
1654 start_sequence ();
1656 /* Careful, special mode predicates may have stuff in
1657 insn_data[insn_code].operand[i].mode that isn't useful
1658 to us for computing a new value. */
1659 /* ??? Recognize address_operand and/or "p" constraints
1660 to see if (plus new offset) is a valid before we put
1661 this through expand_simple_binop. */
1662 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1663 GEN_INT (offset), NULL_RTX,
1664 1, OPTAB_LIB_WIDEN);
1665 seq = get_insns ();
1666 end_sequence ();
1667 emit_insn_before (seq, insn);
1669 break;
1671 case SUBREG:
1672 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1673 if (new_rtx == NULL)
1674 continue;
1675 if (offset != 0)
1677 start_sequence ();
1678 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1679 GEN_INT (offset), NULL_RTX,
1680 1, OPTAB_LIB_WIDEN);
1681 seq = get_insns ();
1682 end_sequence ();
1683 emit_insn_before (seq, insn);
1685 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1686 GET_MODE (new_rtx), SUBREG_BYTE (x));
1687 gcc_assert (x);
1688 break;
1690 default:
1691 continue;
1694 /* At this point, X contains the new value for the operand.
1695 Validate the new value vs the insn predicate. Note that
1696 asm insns will have insn_code -1 here. */
1697 if (!safe_insn_predicate (insn_code, i, x))
1699 start_sequence ();
1700 if (REG_P (x))
1702 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1703 x = copy_to_reg (x);
1705 else
1706 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1707 seq = get_insns ();
1708 end_sequence ();
1709 if (seq)
1710 emit_insn_before (seq, insn);
1713 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1714 any_change = true;
1717 if (any_change)
1719 /* Propagate operand changes into the duplicates. */
1720 for (i = 0; i < recog_data.n_dups; ++i)
1721 *recog_data.dup_loc[i]
1722 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1724 /* Force re-recognition of the instruction for validation. */
1725 INSN_CODE (insn) = -1;
1728 if (asm_noperands (PATTERN (insn)) >= 0)
1730 if (!check_asm_operands (PATTERN (insn)))
1732 error_for_asm (insn, "impossible constraint in %<asm%>");
1733 delete_insn (insn);
1736 else
1738 if (recog_memoized (insn) < 0)
1739 fatal_insn_not_found (insn);
1743 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1744 do any instantiation required. */
1746 void
1747 instantiate_decl_rtl (rtx x)
1749 rtx addr;
1751 if (x == 0)
1752 return;
1754 /* If this is a CONCAT, recurse for the pieces. */
1755 if (GET_CODE (x) == CONCAT)
1757 instantiate_decl_rtl (XEXP (x, 0));
1758 instantiate_decl_rtl (XEXP (x, 1));
1759 return;
1762 /* If this is not a MEM, no need to do anything. Similarly if the
1763 address is a constant or a register that is not a virtual register. */
1764 if (!MEM_P (x))
1765 return;
1767 addr = XEXP (x, 0);
1768 if (CONSTANT_P (addr)
1769 || (REG_P (addr)
1770 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1771 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1772 return;
1774 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1777 /* Helper for instantiate_decls called via walk_tree: Process all decls
1778 in the given DECL_VALUE_EXPR. */
1780 static tree
1781 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1783 tree t = *tp;
1784 if (! EXPR_P (t))
1786 *walk_subtrees = 0;
1787 if (DECL_P (t) && DECL_RTL_SET_P (t))
1788 instantiate_decl_rtl (DECL_RTL (t));
1790 return NULL;
1793 /* Subroutine of instantiate_decls: Process all decls in the given
1794 BLOCK node and all its subblocks. */
1796 static void
1797 instantiate_decls_1 (tree let)
1799 tree t;
1801 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1803 if (DECL_RTL_SET_P (t))
1804 instantiate_decl_rtl (DECL_RTL (t));
1805 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1807 tree v = DECL_VALUE_EXPR (t);
1808 walk_tree (&v, instantiate_expr, NULL, NULL);
1812 /* Process all subblocks. */
1813 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1814 instantiate_decls_1 (t);
1817 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1818 all virtual registers in their DECL_RTL's. */
1820 static void
1821 instantiate_decls (tree fndecl)
1823 tree decl;
1824 unsigned ix;
1826 /* Process all parameters of the function. */
1827 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1829 instantiate_decl_rtl (DECL_RTL (decl));
1830 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1831 if (DECL_HAS_VALUE_EXPR_P (decl))
1833 tree v = DECL_VALUE_EXPR (decl);
1834 walk_tree (&v, instantiate_expr, NULL, NULL);
1838 /* Now process all variables defined in the function or its subblocks. */
1839 instantiate_decls_1 (DECL_INITIAL (fndecl));
1841 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1842 if (DECL_RTL_SET_P (decl))
1843 instantiate_decl_rtl (DECL_RTL (decl));
1844 VEC_free (tree, gc, cfun->local_decls);
1847 /* Pass through the INSNS of function FNDECL and convert virtual register
1848 references to hard register references. */
1850 static unsigned int
1851 instantiate_virtual_regs (void)
1853 rtx insn;
1855 /* Compute the offsets to use for this function. */
1856 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1857 var_offset = STARTING_FRAME_OFFSET;
1858 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1859 out_arg_offset = STACK_POINTER_OFFSET;
1860 #ifdef FRAME_POINTER_CFA_OFFSET
1861 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1862 #else
1863 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1864 #endif
1866 /* Initialize recognition, indicating that volatile is OK. */
1867 init_recog ();
1869 /* Scan through all the insns, instantiating every virtual register still
1870 present. */
1871 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1872 if (INSN_P (insn))
1874 /* These patterns in the instruction stream can never be recognized.
1875 Fortunately, they shouldn't contain virtual registers either. */
1876 if (GET_CODE (PATTERN (insn)) == USE
1877 || GET_CODE (PATTERN (insn)) == CLOBBER
1878 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1879 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1880 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1881 continue;
1882 else if (DEBUG_INSN_P (insn))
1883 for_each_rtx (&INSN_VAR_LOCATION (insn),
1884 instantiate_virtual_regs_in_rtx, NULL);
1885 else
1886 instantiate_virtual_regs_in_insn (insn);
1888 if (INSN_DELETED_P (insn))
1889 continue;
1891 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1893 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1894 if (CALL_P (insn))
1895 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1896 instantiate_virtual_regs_in_rtx, NULL);
1899 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1900 instantiate_decls (current_function_decl);
1902 targetm.instantiate_decls ();
1904 /* Indicate that, from now on, assign_stack_local should use
1905 frame_pointer_rtx. */
1906 virtuals_instantiated = 1;
1908 /* See allocate_dynamic_stack_space for the rationale. */
1909 #ifdef SETJMP_VIA_SAVE_AREA
1910 if (flag_stack_usage && cfun->calls_setjmp)
1912 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1913 dynamic_offset = (dynamic_offset + align - 1) / align * align;
1914 current_function_dynamic_stack_size
1915 += current_function_dynamic_alloc_count * dynamic_offset;
1917 #endif
1919 return 0;
1922 struct rtl_opt_pass pass_instantiate_virtual_regs =
1925 RTL_PASS,
1926 "vregs", /* name */
1927 NULL, /* gate */
1928 instantiate_virtual_regs, /* execute */
1929 NULL, /* sub */
1930 NULL, /* next */
1931 0, /* static_pass_number */
1932 TV_NONE, /* tv_id */
1933 0, /* properties_required */
1934 0, /* properties_provided */
1935 0, /* properties_destroyed */
1936 0, /* todo_flags_start */
1937 TODO_dump_func /* todo_flags_finish */
1942 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1943 This means a type for which function calls must pass an address to the
1944 function or get an address back from the function.
1945 EXP may be a type node or an expression (whose type is tested). */
1948 aggregate_value_p (const_tree exp, const_tree fntype)
1950 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1951 int i, regno, nregs;
1952 rtx reg;
1954 if (fntype)
1955 switch (TREE_CODE (fntype))
1957 case CALL_EXPR:
1959 tree fndecl = get_callee_fndecl (fntype);
1960 fntype = (fndecl
1961 ? TREE_TYPE (fndecl)
1962 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1964 break;
1965 case FUNCTION_DECL:
1966 fntype = TREE_TYPE (fntype);
1967 break;
1968 case FUNCTION_TYPE:
1969 case METHOD_TYPE:
1970 break;
1971 case IDENTIFIER_NODE:
1972 fntype = NULL_TREE;
1973 break;
1974 default:
1975 /* We don't expect other tree types here. */
1976 gcc_unreachable ();
1979 if (VOID_TYPE_P (type))
1980 return 0;
1982 /* If a record should be passed the same as its first (and only) member
1983 don't pass it as an aggregate. */
1984 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
1985 return aggregate_value_p (first_field (type), fntype);
1987 /* If the front end has decided that this needs to be passed by
1988 reference, do so. */
1989 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1990 && DECL_BY_REFERENCE (exp))
1991 return 1;
1993 /* Function types that are TREE_ADDRESSABLE force return in memory. */
1994 if (fntype && TREE_ADDRESSABLE (fntype))
1995 return 1;
1997 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1998 and thus can't be returned in registers. */
1999 if (TREE_ADDRESSABLE (type))
2000 return 1;
2002 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2003 return 1;
2005 if (targetm.calls.return_in_memory (type, fntype))
2006 return 1;
2008 /* Make sure we have suitable call-clobbered regs to return
2009 the value in; if not, we must return it in memory. */
2010 reg = hard_function_value (type, 0, fntype, 0);
2012 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2013 it is OK. */
2014 if (!REG_P (reg))
2015 return 0;
2017 regno = REGNO (reg);
2018 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2019 for (i = 0; i < nregs; i++)
2020 if (! call_used_regs[regno + i])
2021 return 1;
2023 return 0;
2026 /* Return true if we should assign DECL a pseudo register; false if it
2027 should live on the local stack. */
2029 bool
2030 use_register_for_decl (const_tree decl)
2032 if (!targetm.calls.allocate_stack_slots_for_args())
2033 return true;
2035 /* Honor volatile. */
2036 if (TREE_SIDE_EFFECTS (decl))
2037 return false;
2039 /* Honor addressability. */
2040 if (TREE_ADDRESSABLE (decl))
2041 return false;
2043 /* Only register-like things go in registers. */
2044 if (DECL_MODE (decl) == BLKmode)
2045 return false;
2047 /* If -ffloat-store specified, don't put explicit float variables
2048 into registers. */
2049 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2050 propagates values across these stores, and it probably shouldn't. */
2051 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2052 return false;
2054 /* If we're not interested in tracking debugging information for
2055 this decl, then we can certainly put it in a register. */
2056 if (DECL_IGNORED_P (decl))
2057 return true;
2059 if (optimize)
2060 return true;
2062 if (!DECL_REGISTER (decl))
2063 return false;
2065 switch (TREE_CODE (TREE_TYPE (decl)))
2067 case RECORD_TYPE:
2068 case UNION_TYPE:
2069 case QUAL_UNION_TYPE:
2070 /* When not optimizing, disregard register keyword for variables with
2071 types containing methods, otherwise the methods won't be callable
2072 from the debugger. */
2073 if (TYPE_METHODS (TREE_TYPE (decl)))
2074 return false;
2075 break;
2076 default:
2077 break;
2080 return true;
2083 /* Return true if TYPE should be passed by invisible reference. */
2085 bool
2086 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2087 tree type, bool named_arg)
2089 if (type)
2091 /* If this type contains non-trivial constructors, then it is
2092 forbidden for the middle-end to create any new copies. */
2093 if (TREE_ADDRESSABLE (type))
2094 return true;
2096 /* GCC post 3.4 passes *all* variable sized types by reference. */
2097 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2098 return true;
2100 /* If a record type should be passed the same as its first (and only)
2101 member, use the type and mode of that member. */
2102 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2104 type = TREE_TYPE (first_field (type));
2105 mode = TYPE_MODE (type);
2109 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
2112 /* Return true if TYPE, which is passed by reference, should be callee
2113 copied instead of caller copied. */
2115 bool
2116 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2117 tree type, bool named_arg)
2119 if (type && TREE_ADDRESSABLE (type))
2120 return false;
2121 return targetm.calls.callee_copies (ca, mode, type, named_arg);
2124 /* Structures to communicate between the subroutines of assign_parms.
2125 The first holds data persistent across all parameters, the second
2126 is cleared out for each parameter. */
2128 struct assign_parm_data_all
2130 CUMULATIVE_ARGS args_so_far;
2131 struct args_size stack_args_size;
2132 tree function_result_decl;
2133 tree orig_fnargs;
2134 rtx first_conversion_insn;
2135 rtx last_conversion_insn;
2136 HOST_WIDE_INT pretend_args_size;
2137 HOST_WIDE_INT extra_pretend_bytes;
2138 int reg_parm_stack_space;
2141 struct assign_parm_data_one
2143 tree nominal_type;
2144 tree passed_type;
2145 rtx entry_parm;
2146 rtx stack_parm;
2147 enum machine_mode nominal_mode;
2148 enum machine_mode passed_mode;
2149 enum machine_mode promoted_mode;
2150 struct locate_and_pad_arg_data locate;
2151 int partial;
2152 BOOL_BITFIELD named_arg : 1;
2153 BOOL_BITFIELD passed_pointer : 1;
2154 BOOL_BITFIELD on_stack : 1;
2155 BOOL_BITFIELD loaded_in_reg : 1;
2158 /* A subroutine of assign_parms. Initialize ALL. */
2160 static void
2161 assign_parms_initialize_all (struct assign_parm_data_all *all)
2163 tree fntype ATTRIBUTE_UNUSED;
2165 memset (all, 0, sizeof (*all));
2167 fntype = TREE_TYPE (current_function_decl);
2169 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2170 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2171 #else
2172 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2173 current_function_decl, -1);
2174 #endif
2176 #ifdef REG_PARM_STACK_SPACE
2177 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2178 #endif
2181 /* If ARGS contains entries with complex types, split the entry into two
2182 entries of the component type. Return a new list of substitutions are
2183 needed, else the old list. */
2185 static void
2186 split_complex_args (VEC(tree, heap) **args)
2188 unsigned i;
2189 tree p;
2191 FOR_EACH_VEC_ELT (tree, *args, i, p)
2193 tree type = TREE_TYPE (p);
2194 if (TREE_CODE (type) == COMPLEX_TYPE
2195 && targetm.calls.split_complex_arg (type))
2197 tree decl;
2198 tree subtype = TREE_TYPE (type);
2199 bool addressable = TREE_ADDRESSABLE (p);
2201 /* Rewrite the PARM_DECL's type with its component. */
2202 p = copy_node (p);
2203 TREE_TYPE (p) = subtype;
2204 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2205 DECL_MODE (p) = VOIDmode;
2206 DECL_SIZE (p) = NULL;
2207 DECL_SIZE_UNIT (p) = NULL;
2208 /* If this arg must go in memory, put it in a pseudo here.
2209 We can't allow it to go in memory as per normal parms,
2210 because the usual place might not have the imag part
2211 adjacent to the real part. */
2212 DECL_ARTIFICIAL (p) = addressable;
2213 DECL_IGNORED_P (p) = addressable;
2214 TREE_ADDRESSABLE (p) = 0;
2215 layout_decl (p, 0);
2216 VEC_replace (tree, *args, i, p);
2218 /* Build a second synthetic decl. */
2219 decl = build_decl (EXPR_LOCATION (p),
2220 PARM_DECL, NULL_TREE, subtype);
2221 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2222 DECL_ARTIFICIAL (decl) = addressable;
2223 DECL_IGNORED_P (decl) = addressable;
2224 layout_decl (decl, 0);
2225 VEC_safe_insert (tree, heap, *args, ++i, decl);
2230 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2231 the hidden struct return argument, and (abi willing) complex args.
2232 Return the new parameter list. */
2234 static VEC(tree, heap) *
2235 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2237 tree fndecl = current_function_decl;
2238 tree fntype = TREE_TYPE (fndecl);
2239 VEC(tree, heap) *fnargs = NULL;
2240 tree arg;
2242 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2243 VEC_safe_push (tree, heap, fnargs, arg);
2245 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2247 /* If struct value address is treated as the first argument, make it so. */
2248 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2249 && ! cfun->returns_pcc_struct
2250 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2252 tree type = build_pointer_type (TREE_TYPE (fntype));
2253 tree decl;
2255 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2256 PARM_DECL, NULL_TREE, type);
2257 DECL_ARG_TYPE (decl) = type;
2258 DECL_ARTIFICIAL (decl) = 1;
2259 DECL_IGNORED_P (decl) = 1;
2261 DECL_CHAIN (decl) = all->orig_fnargs;
2262 all->orig_fnargs = decl;
2263 VEC_safe_insert (tree, heap, fnargs, 0, decl);
2265 all->function_result_decl = decl;
2268 /* If the target wants to split complex arguments into scalars, do so. */
2269 if (targetm.calls.split_complex_arg)
2270 split_complex_args (&fnargs);
2272 return fnargs;
2275 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2276 data for the parameter. Incorporate ABI specifics such as pass-by-
2277 reference and type promotion. */
2279 static void
2280 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2281 struct assign_parm_data_one *data)
2283 tree nominal_type, passed_type;
2284 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2285 int unsignedp;
2287 memset (data, 0, sizeof (*data));
2289 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2290 if (!cfun->stdarg)
2291 data->named_arg = 1; /* No variadic parms. */
2292 else if (DECL_CHAIN (parm))
2293 data->named_arg = 1; /* Not the last non-variadic parm. */
2294 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2295 data->named_arg = 1; /* Only variadic ones are unnamed. */
2296 else
2297 data->named_arg = 0; /* Treat as variadic. */
2299 nominal_type = TREE_TYPE (parm);
2300 passed_type = DECL_ARG_TYPE (parm);
2302 /* Look out for errors propagating this far. Also, if the parameter's
2303 type is void then its value doesn't matter. */
2304 if (TREE_TYPE (parm) == error_mark_node
2305 /* This can happen after weird syntax errors
2306 or if an enum type is defined among the parms. */
2307 || TREE_CODE (parm) != PARM_DECL
2308 || passed_type == NULL
2309 || VOID_TYPE_P (nominal_type))
2311 nominal_type = passed_type = void_type_node;
2312 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2313 goto egress;
2316 /* Find mode of arg as it is passed, and mode of arg as it should be
2317 during execution of this function. */
2318 passed_mode = TYPE_MODE (passed_type);
2319 nominal_mode = TYPE_MODE (nominal_type);
2321 /* If the parm is to be passed as a transparent union or record, use the
2322 type of the first field for the tests below. We have already verified
2323 that the modes are the same. */
2324 if ((TREE_CODE (passed_type) == UNION_TYPE
2325 || TREE_CODE (passed_type) == RECORD_TYPE)
2326 && TYPE_TRANSPARENT_AGGR (passed_type))
2327 passed_type = TREE_TYPE (first_field (passed_type));
2329 /* See if this arg was passed by invisible reference. */
2330 if (pass_by_reference (&all->args_so_far, passed_mode,
2331 passed_type, data->named_arg))
2333 passed_type = nominal_type = build_pointer_type (passed_type);
2334 data->passed_pointer = true;
2335 passed_mode = nominal_mode = Pmode;
2338 /* Find mode as it is passed by the ABI. */
2339 unsignedp = TYPE_UNSIGNED (passed_type);
2340 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2341 TREE_TYPE (current_function_decl), 0);
2343 egress:
2344 data->nominal_type = nominal_type;
2345 data->passed_type = passed_type;
2346 data->nominal_mode = nominal_mode;
2347 data->passed_mode = passed_mode;
2348 data->promoted_mode = promoted_mode;
2351 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2353 static void
2354 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2355 struct assign_parm_data_one *data, bool no_rtl)
2357 int varargs_pretend_bytes = 0;
2359 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2360 data->promoted_mode,
2361 data->passed_type,
2362 &varargs_pretend_bytes, no_rtl);
2364 /* If the back-end has requested extra stack space, record how much is
2365 needed. Do not change pretend_args_size otherwise since it may be
2366 nonzero from an earlier partial argument. */
2367 if (varargs_pretend_bytes > 0)
2368 all->pretend_args_size = varargs_pretend_bytes;
2371 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2372 the incoming location of the current parameter. */
2374 static void
2375 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2376 struct assign_parm_data_one *data)
2378 HOST_WIDE_INT pretend_bytes = 0;
2379 rtx entry_parm;
2380 bool in_regs;
2382 if (data->promoted_mode == VOIDmode)
2384 data->entry_parm = data->stack_parm = const0_rtx;
2385 return;
2388 entry_parm = targetm.calls.function_incoming_arg (&all->args_so_far,
2389 data->promoted_mode,
2390 data->passed_type,
2391 data->named_arg);
2393 if (entry_parm == 0)
2394 data->promoted_mode = data->passed_mode;
2396 /* Determine parm's home in the stack, in case it arrives in the stack
2397 or we should pretend it did. Compute the stack position and rtx where
2398 the argument arrives and its size.
2400 There is one complexity here: If this was a parameter that would
2401 have been passed in registers, but wasn't only because it is
2402 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2403 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2404 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2405 as it was the previous time. */
2406 in_regs = entry_parm != 0;
2407 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2408 in_regs = true;
2409 #endif
2410 if (!in_regs && !data->named_arg)
2412 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2414 rtx tem;
2415 tem = targetm.calls.function_incoming_arg (&all->args_so_far,
2416 data->promoted_mode,
2417 data->passed_type, true);
2418 in_regs = tem != NULL;
2422 /* If this parameter was passed both in registers and in the stack, use
2423 the copy on the stack. */
2424 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2425 data->passed_type))
2426 entry_parm = 0;
2428 if (entry_parm)
2430 int partial;
2432 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2433 data->promoted_mode,
2434 data->passed_type,
2435 data->named_arg);
2436 data->partial = partial;
2438 /* The caller might already have allocated stack space for the
2439 register parameters. */
2440 if (partial != 0 && all->reg_parm_stack_space == 0)
2442 /* Part of this argument is passed in registers and part
2443 is passed on the stack. Ask the prologue code to extend
2444 the stack part so that we can recreate the full value.
2446 PRETEND_BYTES is the size of the registers we need to store.
2447 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2448 stack space that the prologue should allocate.
2450 Internally, gcc assumes that the argument pointer is aligned
2451 to STACK_BOUNDARY bits. This is used both for alignment
2452 optimizations (see init_emit) and to locate arguments that are
2453 aligned to more than PARM_BOUNDARY bits. We must preserve this
2454 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2455 a stack boundary. */
2457 /* We assume at most one partial arg, and it must be the first
2458 argument on the stack. */
2459 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2461 pretend_bytes = partial;
2462 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2464 /* We want to align relative to the actual stack pointer, so
2465 don't include this in the stack size until later. */
2466 all->extra_pretend_bytes = all->pretend_args_size;
2470 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2471 entry_parm ? data->partial : 0, current_function_decl,
2472 &all->stack_args_size, &data->locate);
2474 /* Update parm_stack_boundary if this parameter is passed in the
2475 stack. */
2476 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2477 crtl->parm_stack_boundary = data->locate.boundary;
2479 /* Adjust offsets to include the pretend args. */
2480 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2481 data->locate.slot_offset.constant += pretend_bytes;
2482 data->locate.offset.constant += pretend_bytes;
2484 data->entry_parm = entry_parm;
2487 /* A subroutine of assign_parms. If there is actually space on the stack
2488 for this parm, count it in stack_args_size and return true. */
2490 static bool
2491 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2492 struct assign_parm_data_one *data)
2494 /* Trivially true if we've no incoming register. */
2495 if (data->entry_parm == NULL)
2497 /* Also true if we're partially in registers and partially not,
2498 since we've arranged to drop the entire argument on the stack. */
2499 else if (data->partial != 0)
2501 /* Also true if the target says that it's passed in both registers
2502 and on the stack. */
2503 else if (GET_CODE (data->entry_parm) == PARALLEL
2504 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2506 /* Also true if the target says that there's stack allocated for
2507 all register parameters. */
2508 else if (all->reg_parm_stack_space > 0)
2510 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2511 else
2512 return false;
2514 all->stack_args_size.constant += data->locate.size.constant;
2515 if (data->locate.size.var)
2516 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2518 return true;
2521 /* A subroutine of assign_parms. Given that this parameter is allocated
2522 stack space by the ABI, find it. */
2524 static void
2525 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2527 rtx offset_rtx, stack_parm;
2528 unsigned int align, boundary;
2530 /* If we're passing this arg using a reg, make its stack home the
2531 aligned stack slot. */
2532 if (data->entry_parm)
2533 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2534 else
2535 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2537 stack_parm = crtl->args.internal_arg_pointer;
2538 if (offset_rtx != const0_rtx)
2539 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2540 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2542 if (!data->passed_pointer)
2544 set_mem_attributes (stack_parm, parm, 1);
2545 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2546 while promoted mode's size is needed. */
2547 if (data->promoted_mode != BLKmode
2548 && data->promoted_mode != DECL_MODE (parm))
2550 set_mem_size (stack_parm,
2551 GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2552 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2554 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2555 data->promoted_mode);
2556 if (offset)
2557 set_mem_offset (stack_parm,
2558 plus_constant (MEM_OFFSET (stack_parm),
2559 -offset));
2564 boundary = data->locate.boundary;
2565 align = BITS_PER_UNIT;
2567 /* If we're padding upward, we know that the alignment of the slot
2568 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2569 intentionally forcing upward padding. Otherwise we have to come
2570 up with a guess at the alignment based on OFFSET_RTX. */
2571 if (data->locate.where_pad != downward || data->entry_parm)
2572 align = boundary;
2573 else if (CONST_INT_P (offset_rtx))
2575 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2576 align = align & -align;
2578 set_mem_align (stack_parm, align);
2580 if (data->entry_parm)
2581 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2583 data->stack_parm = stack_parm;
2586 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2587 always valid and contiguous. */
2589 static void
2590 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2592 rtx entry_parm = data->entry_parm;
2593 rtx stack_parm = data->stack_parm;
2595 /* If this parm was passed part in regs and part in memory, pretend it
2596 arrived entirely in memory by pushing the register-part onto the stack.
2597 In the special case of a DImode or DFmode that is split, we could put
2598 it together in a pseudoreg directly, but for now that's not worth
2599 bothering with. */
2600 if (data->partial != 0)
2602 /* Handle calls that pass values in multiple non-contiguous
2603 locations. The Irix 6 ABI has examples of this. */
2604 if (GET_CODE (entry_parm) == PARALLEL)
2605 emit_group_store (validize_mem (stack_parm), entry_parm,
2606 data->passed_type,
2607 int_size_in_bytes (data->passed_type));
2608 else
2610 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2611 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2612 data->partial / UNITS_PER_WORD);
2615 entry_parm = stack_parm;
2618 /* If we didn't decide this parm came in a register, by default it came
2619 on the stack. */
2620 else if (entry_parm == NULL)
2621 entry_parm = stack_parm;
2623 /* When an argument is passed in multiple locations, we can't make use
2624 of this information, but we can save some copying if the whole argument
2625 is passed in a single register. */
2626 else if (GET_CODE (entry_parm) == PARALLEL
2627 && data->nominal_mode != BLKmode
2628 && data->passed_mode != BLKmode)
2630 size_t i, len = XVECLEN (entry_parm, 0);
2632 for (i = 0; i < len; i++)
2633 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2634 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2635 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2636 == data->passed_mode)
2637 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2639 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2640 break;
2644 data->entry_parm = entry_parm;
2647 /* A subroutine of assign_parms. Reconstitute any values which were
2648 passed in multiple registers and would fit in a single register. */
2650 static void
2651 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2653 rtx entry_parm = data->entry_parm;
2655 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2656 This can be done with register operations rather than on the
2657 stack, even if we will store the reconstituted parameter on the
2658 stack later. */
2659 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2661 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2662 emit_group_store (parmreg, entry_parm, data->passed_type,
2663 GET_MODE_SIZE (GET_MODE (entry_parm)));
2664 entry_parm = parmreg;
2667 data->entry_parm = entry_parm;
2670 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2671 always valid and properly aligned. */
2673 static void
2674 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2676 rtx stack_parm = data->stack_parm;
2678 /* If we can't trust the parm stack slot to be aligned enough for its
2679 ultimate type, don't use that slot after entry. We'll make another
2680 stack slot, if we need one. */
2681 if (stack_parm
2682 && ((STRICT_ALIGNMENT
2683 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2684 || (data->nominal_type
2685 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2686 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2687 stack_parm = NULL;
2689 /* If parm was passed in memory, and we need to convert it on entry,
2690 don't store it back in that same slot. */
2691 else if (data->entry_parm == stack_parm
2692 && data->nominal_mode != BLKmode
2693 && data->nominal_mode != data->passed_mode)
2694 stack_parm = NULL;
2696 /* If stack protection is in effect for this function, don't leave any
2697 pointers in their passed stack slots. */
2698 else if (crtl->stack_protect_guard
2699 && (flag_stack_protect == 2
2700 || data->passed_pointer
2701 || POINTER_TYPE_P (data->nominal_type)))
2702 stack_parm = NULL;
2704 data->stack_parm = stack_parm;
2707 /* A subroutine of assign_parms. Return true if the current parameter
2708 should be stored as a BLKmode in the current frame. */
2710 static bool
2711 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2713 if (data->nominal_mode == BLKmode)
2714 return true;
2715 if (GET_MODE (data->entry_parm) == BLKmode)
2716 return true;
2718 #ifdef BLOCK_REG_PADDING
2719 /* Only assign_parm_setup_block knows how to deal with register arguments
2720 that are padded at the least significant end. */
2721 if (REG_P (data->entry_parm)
2722 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2723 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2724 == (BYTES_BIG_ENDIAN ? upward : downward)))
2725 return true;
2726 #endif
2728 return false;
2731 /* A subroutine of assign_parms. Arrange for the parameter to be
2732 present and valid in DATA->STACK_RTL. */
2734 static void
2735 assign_parm_setup_block (struct assign_parm_data_all *all,
2736 tree parm, struct assign_parm_data_one *data)
2738 rtx entry_parm = data->entry_parm;
2739 rtx stack_parm = data->stack_parm;
2740 HOST_WIDE_INT size;
2741 HOST_WIDE_INT size_stored;
2743 if (GET_CODE (entry_parm) == PARALLEL)
2744 entry_parm = emit_group_move_into_temps (entry_parm);
2746 size = int_size_in_bytes (data->passed_type);
2747 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2748 if (stack_parm == 0)
2750 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2751 stack_parm = assign_stack_local (BLKmode, size_stored,
2752 DECL_ALIGN (parm));
2753 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2754 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2755 set_mem_attributes (stack_parm, parm, 1);
2758 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2759 calls that pass values in multiple non-contiguous locations. */
2760 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2762 rtx mem;
2764 /* Note that we will be storing an integral number of words.
2765 So we have to be careful to ensure that we allocate an
2766 integral number of words. We do this above when we call
2767 assign_stack_local if space was not allocated in the argument
2768 list. If it was, this will not work if PARM_BOUNDARY is not
2769 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2770 if it becomes a problem. Exception is when BLKmode arrives
2771 with arguments not conforming to word_mode. */
2773 if (data->stack_parm == 0)
2775 else if (GET_CODE (entry_parm) == PARALLEL)
2777 else
2778 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2780 mem = validize_mem (stack_parm);
2782 /* Handle values in multiple non-contiguous locations. */
2783 if (GET_CODE (entry_parm) == PARALLEL)
2785 push_to_sequence2 (all->first_conversion_insn,
2786 all->last_conversion_insn);
2787 emit_group_store (mem, entry_parm, data->passed_type, size);
2788 all->first_conversion_insn = get_insns ();
2789 all->last_conversion_insn = get_last_insn ();
2790 end_sequence ();
2793 else if (size == 0)
2796 /* If SIZE is that of a mode no bigger than a word, just use
2797 that mode's store operation. */
2798 else if (size <= UNITS_PER_WORD)
2800 enum machine_mode mode
2801 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2803 if (mode != BLKmode
2804 #ifdef BLOCK_REG_PADDING
2805 && (size == UNITS_PER_WORD
2806 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2807 != (BYTES_BIG_ENDIAN ? upward : downward)))
2808 #endif
2811 rtx reg;
2813 /* We are really truncating a word_mode value containing
2814 SIZE bytes into a value of mode MODE. If such an
2815 operation requires no actual instructions, we can refer
2816 to the value directly in mode MODE, otherwise we must
2817 start with the register in word_mode and explicitly
2818 convert it. */
2819 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2820 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2821 else
2823 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2824 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2826 emit_move_insn (change_address (mem, mode, 0), reg);
2829 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2830 machine must be aligned to the left before storing
2831 to memory. Note that the previous test doesn't
2832 handle all cases (e.g. SIZE == 3). */
2833 else if (size != UNITS_PER_WORD
2834 #ifdef BLOCK_REG_PADDING
2835 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2836 == downward)
2837 #else
2838 && BYTES_BIG_ENDIAN
2839 #endif
2842 rtx tem, x;
2843 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2844 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2846 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2847 build_int_cst (NULL_TREE, by),
2848 NULL_RTX, 1);
2849 tem = change_address (mem, word_mode, 0);
2850 emit_move_insn (tem, x);
2852 else
2853 move_block_from_reg (REGNO (entry_parm), mem,
2854 size_stored / UNITS_PER_WORD);
2856 else
2857 move_block_from_reg (REGNO (entry_parm), mem,
2858 size_stored / UNITS_PER_WORD);
2860 else if (data->stack_parm == 0)
2862 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2863 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2864 BLOCK_OP_NORMAL);
2865 all->first_conversion_insn = get_insns ();
2866 all->last_conversion_insn = get_last_insn ();
2867 end_sequence ();
2870 data->stack_parm = stack_parm;
2871 SET_DECL_RTL (parm, stack_parm);
2874 /* A subroutine of assign_parm_setup_reg, called through note_stores.
2875 This collects sets and clobbers of hard registers in a HARD_REG_SET,
2876 which is pointed to by DATA. */
2877 static void
2878 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2880 HARD_REG_SET *pset = (HARD_REG_SET *)data;
2881 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
2883 int nregs = hard_regno_nregs[REGNO (x)][GET_MODE (x)];
2884 while (nregs-- > 0)
2885 SET_HARD_REG_BIT (*pset, REGNO (x) + nregs);
2889 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2890 parameter. Get it there. Perform all ABI specified conversions. */
2892 static void
2893 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2894 struct assign_parm_data_one *data)
2896 rtx parmreg, validated_mem;
2897 rtx equiv_stack_parm;
2898 enum machine_mode promoted_nominal_mode;
2899 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2900 bool did_conversion = false;
2901 bool need_conversion, moved;
2903 /* Store the parm in a pseudoregister during the function, but we may
2904 need to do it in a wider mode. Using 2 here makes the result
2905 consistent with promote_decl_mode and thus expand_expr_real_1. */
2906 promoted_nominal_mode
2907 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2908 TREE_TYPE (current_function_decl), 2);
2910 parmreg = gen_reg_rtx (promoted_nominal_mode);
2912 if (!DECL_ARTIFICIAL (parm))
2913 mark_user_reg (parmreg);
2915 /* If this was an item that we received a pointer to,
2916 set DECL_RTL appropriately. */
2917 if (data->passed_pointer)
2919 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2920 set_mem_attributes (x, parm, 1);
2921 SET_DECL_RTL (parm, x);
2923 else
2924 SET_DECL_RTL (parm, parmreg);
2926 assign_parm_remove_parallels (data);
2928 /* Copy the value into the register, thus bridging between
2929 assign_parm_find_data_types and expand_expr_real_1. */
2931 equiv_stack_parm = data->stack_parm;
2932 validated_mem = validize_mem (data->entry_parm);
2934 need_conversion = (data->nominal_mode != data->passed_mode
2935 || promoted_nominal_mode != data->promoted_mode);
2936 moved = false;
2938 if (need_conversion
2939 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2940 && data->nominal_mode == data->passed_mode
2941 && data->nominal_mode == GET_MODE (data->entry_parm))
2943 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2944 mode, by the caller. We now have to convert it to
2945 NOMINAL_MODE, if different. However, PARMREG may be in
2946 a different mode than NOMINAL_MODE if it is being stored
2947 promoted.
2949 If ENTRY_PARM is a hard register, it might be in a register
2950 not valid for operating in its mode (e.g., an odd-numbered
2951 register for a DFmode). In that case, moves are the only
2952 thing valid, so we can't do a convert from there. This
2953 occurs when the calling sequence allow such misaligned
2954 usages.
2956 In addition, the conversion may involve a call, which could
2957 clobber parameters which haven't been copied to pseudo
2958 registers yet.
2960 First, we try to emit an insn which performs the necessary
2961 conversion. We verify that this insn does not clobber any
2962 hard registers. */
2964 enum insn_code icode;
2965 rtx op0, op1;
2967 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2968 unsignedp);
2970 op0 = parmreg;
2971 op1 = validated_mem;
2972 if (icode != CODE_FOR_nothing
2973 && insn_data[icode].operand[0].predicate (op0, promoted_nominal_mode)
2974 && insn_data[icode].operand[1].predicate (op1, data->passed_mode))
2976 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
2977 rtx insn, insns;
2978 HARD_REG_SET hardregs;
2980 start_sequence ();
2981 insn = gen_extend_insn (op0, op1, promoted_nominal_mode,
2982 data->passed_mode, unsignedp);
2983 emit_insn (insn);
2984 insns = get_insns ();
2986 moved = true;
2987 CLEAR_HARD_REG_SET (hardregs);
2988 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
2990 if (INSN_P (insn))
2991 note_stores (PATTERN (insn), record_hard_reg_sets,
2992 &hardregs);
2993 if (!hard_reg_set_empty_p (hardregs))
2994 moved = false;
2997 end_sequence ();
2999 if (moved)
3001 emit_insn (insns);
3002 if (equiv_stack_parm != NULL_RTX)
3003 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3004 equiv_stack_parm);
3009 if (moved)
3010 /* Nothing to do. */
3012 else if (need_conversion)
3014 /* We did not have an insn to convert directly, or the sequence
3015 generated appeared unsafe. We must first copy the parm to a
3016 pseudo reg, and save the conversion until after all
3017 parameters have been moved. */
3019 int save_tree_used;
3020 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3022 emit_move_insn (tempreg, validated_mem);
3024 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3025 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3027 if (GET_CODE (tempreg) == SUBREG
3028 && GET_MODE (tempreg) == data->nominal_mode
3029 && REG_P (SUBREG_REG (tempreg))
3030 && data->nominal_mode == data->passed_mode
3031 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3032 && GET_MODE_SIZE (GET_MODE (tempreg))
3033 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3035 /* The argument is already sign/zero extended, so note it
3036 into the subreg. */
3037 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3038 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3041 /* TREE_USED gets set erroneously during expand_assignment. */
3042 save_tree_used = TREE_USED (parm);
3043 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3044 TREE_USED (parm) = save_tree_used;
3045 all->first_conversion_insn = get_insns ();
3046 all->last_conversion_insn = get_last_insn ();
3047 end_sequence ();
3049 did_conversion = true;
3051 else
3052 emit_move_insn (parmreg, validated_mem);
3054 /* If we were passed a pointer but the actual value can safely live
3055 in a register, put it in one. */
3056 if (data->passed_pointer
3057 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3058 /* If by-reference argument was promoted, demote it. */
3059 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3060 || use_register_for_decl (parm)))
3062 /* We can't use nominal_mode, because it will have been set to
3063 Pmode above. We must use the actual mode of the parm. */
3064 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3065 mark_user_reg (parmreg);
3067 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3069 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3070 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3072 push_to_sequence2 (all->first_conversion_insn,
3073 all->last_conversion_insn);
3074 emit_move_insn (tempreg, DECL_RTL (parm));
3075 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3076 emit_move_insn (parmreg, tempreg);
3077 all->first_conversion_insn = get_insns ();
3078 all->last_conversion_insn = get_last_insn ();
3079 end_sequence ();
3081 did_conversion = true;
3083 else
3084 emit_move_insn (parmreg, DECL_RTL (parm));
3086 SET_DECL_RTL (parm, parmreg);
3088 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3089 now the parm. */
3090 data->stack_parm = NULL;
3093 /* Mark the register as eliminable if we did no conversion and it was
3094 copied from memory at a fixed offset, and the arg pointer was not
3095 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3096 offset formed an invalid address, such memory-equivalences as we
3097 make here would screw up life analysis for it. */
3098 if (data->nominal_mode == data->passed_mode
3099 && !did_conversion
3100 && data->stack_parm != 0
3101 && MEM_P (data->stack_parm)
3102 && data->locate.offset.var == 0
3103 && reg_mentioned_p (virtual_incoming_args_rtx,
3104 XEXP (data->stack_parm, 0)))
3106 rtx linsn = get_last_insn ();
3107 rtx sinsn, set;
3109 /* Mark complex types separately. */
3110 if (GET_CODE (parmreg) == CONCAT)
3112 enum machine_mode submode
3113 = GET_MODE_INNER (GET_MODE (parmreg));
3114 int regnor = REGNO (XEXP (parmreg, 0));
3115 int regnoi = REGNO (XEXP (parmreg, 1));
3116 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3117 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3118 GET_MODE_SIZE (submode));
3120 /* Scan backwards for the set of the real and
3121 imaginary parts. */
3122 for (sinsn = linsn; sinsn != 0;
3123 sinsn = prev_nonnote_insn (sinsn))
3125 set = single_set (sinsn);
3126 if (set == 0)
3127 continue;
3129 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3130 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3131 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3132 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3135 else if ((set = single_set (linsn)) != 0
3136 && SET_DEST (set) == parmreg)
3137 set_unique_reg_note (linsn, REG_EQUIV, equiv_stack_parm);
3140 /* For pointer data type, suggest pointer register. */
3141 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3142 mark_reg_pointer (parmreg,
3143 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3146 /* A subroutine of assign_parms. Allocate stack space to hold the current
3147 parameter. Get it there. Perform all ABI specified conversions. */
3149 static void
3150 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3151 struct assign_parm_data_one *data)
3153 /* Value must be stored in the stack slot STACK_PARM during function
3154 execution. */
3155 bool to_conversion = false;
3157 assign_parm_remove_parallels (data);
3159 if (data->promoted_mode != data->nominal_mode)
3161 /* Conversion is required. */
3162 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3164 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3166 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3167 to_conversion = true;
3169 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3170 TYPE_UNSIGNED (TREE_TYPE (parm)));
3172 if (data->stack_parm)
3174 int offset = subreg_lowpart_offset (data->nominal_mode,
3175 GET_MODE (data->stack_parm));
3176 /* ??? This may need a big-endian conversion on sparc64. */
3177 data->stack_parm
3178 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3179 if (offset && MEM_OFFSET (data->stack_parm))
3180 set_mem_offset (data->stack_parm,
3181 plus_constant (MEM_OFFSET (data->stack_parm),
3182 offset));
3186 if (data->entry_parm != data->stack_parm)
3188 rtx src, dest;
3190 if (data->stack_parm == 0)
3192 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3193 GET_MODE (data->entry_parm),
3194 TYPE_ALIGN (data->passed_type));
3195 data->stack_parm
3196 = assign_stack_local (GET_MODE (data->entry_parm),
3197 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3198 align);
3199 set_mem_attributes (data->stack_parm, parm, 1);
3202 dest = validize_mem (data->stack_parm);
3203 src = validize_mem (data->entry_parm);
3205 if (MEM_P (src))
3207 /* Use a block move to handle potentially misaligned entry_parm. */
3208 if (!to_conversion)
3209 push_to_sequence2 (all->first_conversion_insn,
3210 all->last_conversion_insn);
3211 to_conversion = true;
3213 emit_block_move (dest, src,
3214 GEN_INT (int_size_in_bytes (data->passed_type)),
3215 BLOCK_OP_NORMAL);
3217 else
3218 emit_move_insn (dest, src);
3221 if (to_conversion)
3223 all->first_conversion_insn = get_insns ();
3224 all->last_conversion_insn = get_last_insn ();
3225 end_sequence ();
3228 SET_DECL_RTL (parm, data->stack_parm);
3231 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3232 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3234 static void
3235 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3236 VEC(tree, heap) *fnargs)
3238 tree parm;
3239 tree orig_fnargs = all->orig_fnargs;
3240 unsigned i = 0;
3242 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3244 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3245 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3247 rtx tmp, real, imag;
3248 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3250 real = DECL_RTL (VEC_index (tree, fnargs, i));
3251 imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
3252 if (inner != GET_MODE (real))
3254 real = gen_lowpart_SUBREG (inner, real);
3255 imag = gen_lowpart_SUBREG (inner, imag);
3258 if (TREE_ADDRESSABLE (parm))
3260 rtx rmem, imem;
3261 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3262 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3263 DECL_MODE (parm),
3264 TYPE_ALIGN (TREE_TYPE (parm)));
3266 /* split_complex_arg put the real and imag parts in
3267 pseudos. Move them to memory. */
3268 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3269 set_mem_attributes (tmp, parm, 1);
3270 rmem = adjust_address_nv (tmp, inner, 0);
3271 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3272 push_to_sequence2 (all->first_conversion_insn,
3273 all->last_conversion_insn);
3274 emit_move_insn (rmem, real);
3275 emit_move_insn (imem, imag);
3276 all->first_conversion_insn = get_insns ();
3277 all->last_conversion_insn = get_last_insn ();
3278 end_sequence ();
3280 else
3281 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3282 SET_DECL_RTL (parm, tmp);
3284 real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3285 imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
3286 if (inner != GET_MODE (real))
3288 real = gen_lowpart_SUBREG (inner, real);
3289 imag = gen_lowpart_SUBREG (inner, imag);
3291 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3292 set_decl_incoming_rtl (parm, tmp, false);
3293 i++;
3298 /* Assign RTL expressions to the function's parameters. This may involve
3299 copying them into registers and using those registers as the DECL_RTL. */
3301 static void
3302 assign_parms (tree fndecl)
3304 struct assign_parm_data_all all;
3305 tree parm;
3306 VEC(tree, heap) *fnargs;
3307 unsigned i;
3309 crtl->args.internal_arg_pointer
3310 = targetm.calls.internal_arg_pointer ();
3312 assign_parms_initialize_all (&all);
3313 fnargs = assign_parms_augmented_arg_list (&all);
3315 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3317 struct assign_parm_data_one data;
3319 /* Extract the type of PARM; adjust it according to ABI. */
3320 assign_parm_find_data_types (&all, parm, &data);
3322 /* Early out for errors and void parameters. */
3323 if (data.passed_mode == VOIDmode)
3325 SET_DECL_RTL (parm, const0_rtx);
3326 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3327 continue;
3330 /* Estimate stack alignment from parameter alignment. */
3331 if (SUPPORTS_STACK_ALIGNMENT)
3333 unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3334 data.passed_type);
3335 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3336 align);
3337 if (TYPE_ALIGN (data.nominal_type) > align)
3338 align = MINIMUM_ALIGNMENT (data.nominal_type,
3339 TYPE_MODE (data.nominal_type),
3340 TYPE_ALIGN (data.nominal_type));
3341 if (crtl->stack_alignment_estimated < align)
3343 gcc_assert (!crtl->stack_realign_processed);
3344 crtl->stack_alignment_estimated = align;
3348 if (cfun->stdarg && !DECL_CHAIN (parm))
3349 assign_parms_setup_varargs (&all, &data, false);
3351 /* Find out where the parameter arrives in this function. */
3352 assign_parm_find_entry_rtl (&all, &data);
3354 /* Find out where stack space for this parameter might be. */
3355 if (assign_parm_is_stack_parm (&all, &data))
3357 assign_parm_find_stack_rtl (parm, &data);
3358 assign_parm_adjust_entry_rtl (&data);
3361 /* Record permanently how this parm was passed. */
3362 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3364 /* Update info on where next arg arrives in registers. */
3365 targetm.calls.function_arg_advance (&all.args_so_far, data.promoted_mode,
3366 data.passed_type, data.named_arg);
3368 assign_parm_adjust_stack_rtl (&data);
3370 if (assign_parm_setup_block_p (&data))
3371 assign_parm_setup_block (&all, parm, &data);
3372 else if (data.passed_pointer || use_register_for_decl (parm))
3373 assign_parm_setup_reg (&all, parm, &data);
3374 else
3375 assign_parm_setup_stack (&all, parm, &data);
3378 if (targetm.calls.split_complex_arg)
3379 assign_parms_unsplit_complex (&all, fnargs);
3381 VEC_free (tree, heap, fnargs);
3383 /* Output all parameter conversion instructions (possibly including calls)
3384 now that all parameters have been copied out of hard registers. */
3385 emit_insn (all.first_conversion_insn);
3387 /* Estimate reload stack alignment from scalar return mode. */
3388 if (SUPPORTS_STACK_ALIGNMENT)
3390 if (DECL_RESULT (fndecl))
3392 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3393 enum machine_mode mode = TYPE_MODE (type);
3395 if (mode != BLKmode
3396 && mode != VOIDmode
3397 && !AGGREGATE_TYPE_P (type))
3399 unsigned int align = GET_MODE_ALIGNMENT (mode);
3400 if (crtl->stack_alignment_estimated < align)
3402 gcc_assert (!crtl->stack_realign_processed);
3403 crtl->stack_alignment_estimated = align;
3409 /* If we are receiving a struct value address as the first argument, set up
3410 the RTL for the function result. As this might require code to convert
3411 the transmitted address to Pmode, we do this here to ensure that possible
3412 preliminary conversions of the address have been emitted already. */
3413 if (all.function_result_decl)
3415 tree result = DECL_RESULT (current_function_decl);
3416 rtx addr = DECL_RTL (all.function_result_decl);
3417 rtx x;
3419 if (DECL_BY_REFERENCE (result))
3420 x = addr;
3421 else
3423 addr = convert_memory_address (Pmode, addr);
3424 x = gen_rtx_MEM (DECL_MODE (result), addr);
3425 set_mem_attributes (x, result, 1);
3427 SET_DECL_RTL (result, x);
3430 /* We have aligned all the args, so add space for the pretend args. */
3431 crtl->args.pretend_args_size = all.pretend_args_size;
3432 all.stack_args_size.constant += all.extra_pretend_bytes;
3433 crtl->args.size = all.stack_args_size.constant;
3435 /* Adjust function incoming argument size for alignment and
3436 minimum length. */
3438 #ifdef REG_PARM_STACK_SPACE
3439 crtl->args.size = MAX (crtl->args.size,
3440 REG_PARM_STACK_SPACE (fndecl));
3441 #endif
3443 crtl->args.size = CEIL_ROUND (crtl->args.size,
3444 PARM_BOUNDARY / BITS_PER_UNIT);
3446 #ifdef ARGS_GROW_DOWNWARD
3447 crtl->args.arg_offset_rtx
3448 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3449 : expand_expr (size_diffop (all.stack_args_size.var,
3450 size_int (-all.stack_args_size.constant)),
3451 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3452 #else
3453 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3454 #endif
3456 /* See how many bytes, if any, of its args a function should try to pop
3457 on return. */
3459 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3460 TREE_TYPE (fndecl),
3461 crtl->args.size);
3463 /* For stdarg.h function, save info about
3464 regs and stack space used by the named args. */
3466 crtl->args.info = all.args_so_far;
3468 /* Set the rtx used for the function return value. Put this in its
3469 own variable so any optimizers that need this information don't have
3470 to include tree.h. Do this here so it gets done when an inlined
3471 function gets output. */
3473 crtl->return_rtx
3474 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3475 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3477 /* If scalar return value was computed in a pseudo-reg, or was a named
3478 return value that got dumped to the stack, copy that to the hard
3479 return register. */
3480 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3482 tree decl_result = DECL_RESULT (fndecl);
3483 rtx decl_rtl = DECL_RTL (decl_result);
3485 if (REG_P (decl_rtl)
3486 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3487 : DECL_REGISTER (decl_result))
3489 rtx real_decl_rtl;
3491 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3492 fndecl, true);
3493 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3494 /* The delay slot scheduler assumes that crtl->return_rtx
3495 holds the hard register containing the return value, not a
3496 temporary pseudo. */
3497 crtl->return_rtx = real_decl_rtl;
3502 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3503 For all seen types, gimplify their sizes. */
3505 static tree
3506 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3508 tree t = *tp;
3510 *walk_subtrees = 0;
3511 if (TYPE_P (t))
3513 if (POINTER_TYPE_P (t))
3514 *walk_subtrees = 1;
3515 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3516 && !TYPE_SIZES_GIMPLIFIED (t))
3518 gimplify_type_sizes (t, (gimple_seq *) data);
3519 *walk_subtrees = 1;
3523 return NULL;
3526 /* Gimplify the parameter list for current_function_decl. This involves
3527 evaluating SAVE_EXPRs of variable sized parameters and generating code
3528 to implement callee-copies reference parameters. Returns a sequence of
3529 statements to add to the beginning of the function. */
3531 gimple_seq
3532 gimplify_parameters (void)
3534 struct assign_parm_data_all all;
3535 tree parm;
3536 gimple_seq stmts = NULL;
3537 VEC(tree, heap) *fnargs;
3538 unsigned i;
3540 assign_parms_initialize_all (&all);
3541 fnargs = assign_parms_augmented_arg_list (&all);
3543 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3545 struct assign_parm_data_one data;
3547 /* Extract the type of PARM; adjust it according to ABI. */
3548 assign_parm_find_data_types (&all, parm, &data);
3550 /* Early out for errors and void parameters. */
3551 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3552 continue;
3554 /* Update info on where next arg arrives in registers. */
3555 targetm.calls.function_arg_advance (&all.args_so_far, data.promoted_mode,
3556 data.passed_type, data.named_arg);
3558 /* ??? Once upon a time variable_size stuffed parameter list
3559 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3560 turned out to be less than manageable in the gimple world.
3561 Now we have to hunt them down ourselves. */
3562 walk_tree_without_duplicates (&data.passed_type,
3563 gimplify_parm_type, &stmts);
3565 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3567 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3568 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3571 if (data.passed_pointer)
3573 tree type = TREE_TYPE (data.passed_type);
3574 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3575 type, data.named_arg))
3577 tree local, t;
3579 /* For constant-sized objects, this is trivial; for
3580 variable-sized objects, we have to play games. */
3581 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3582 && !(flag_stack_check == GENERIC_STACK_CHECK
3583 && compare_tree_int (DECL_SIZE_UNIT (parm),
3584 STACK_CHECK_MAX_VAR_SIZE) > 0))
3586 local = create_tmp_reg (type, get_name (parm));
3587 DECL_IGNORED_P (local) = 0;
3588 /* If PARM was addressable, move that flag over
3589 to the local copy, as its address will be taken,
3590 not the PARMs. Keep the parms address taken
3591 as we'll query that flag during gimplification. */
3592 if (TREE_ADDRESSABLE (parm))
3593 TREE_ADDRESSABLE (local) = 1;
3595 else
3597 tree ptr_type, addr;
3599 ptr_type = build_pointer_type (type);
3600 addr = create_tmp_reg (ptr_type, get_name (parm));
3601 DECL_IGNORED_P (addr) = 0;
3602 local = build_fold_indirect_ref (addr);
3604 t = built_in_decls[BUILT_IN_ALLOCA];
3605 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3606 /* The call has been built for a variable-sized object. */
3607 ALLOCA_FOR_VAR_P (t) = 1;
3608 t = fold_convert (ptr_type, t);
3609 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3610 gimplify_and_add (t, &stmts);
3613 gimplify_assign (local, parm, &stmts);
3615 SET_DECL_VALUE_EXPR (parm, local);
3616 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3621 VEC_free (tree, heap, fnargs);
3623 return stmts;
3626 /* Compute the size and offset from the start of the stacked arguments for a
3627 parm passed in mode PASSED_MODE and with type TYPE.
3629 INITIAL_OFFSET_PTR points to the current offset into the stacked
3630 arguments.
3632 The starting offset and size for this parm are returned in
3633 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3634 nonzero, the offset is that of stack slot, which is returned in
3635 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3636 padding required from the initial offset ptr to the stack slot.
3638 IN_REGS is nonzero if the argument will be passed in registers. It will
3639 never be set if REG_PARM_STACK_SPACE is not defined.
3641 FNDECL is the function in which the argument was defined.
3643 There are two types of rounding that are done. The first, controlled by
3644 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3645 list to be aligned to the specific boundary (in bits). This rounding
3646 affects the initial and starting offsets, but not the argument size.
3648 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3649 optionally rounds the size of the parm to PARM_BOUNDARY. The
3650 initial offset is not affected by this rounding, while the size always
3651 is and the starting offset may be. */
3653 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3654 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3655 callers pass in the total size of args so far as
3656 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3658 void
3659 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3660 int partial, tree fndecl ATTRIBUTE_UNUSED,
3661 struct args_size *initial_offset_ptr,
3662 struct locate_and_pad_arg_data *locate)
3664 tree sizetree;
3665 enum direction where_pad;
3666 unsigned int boundary;
3667 int reg_parm_stack_space = 0;
3668 int part_size_in_regs;
3670 #ifdef REG_PARM_STACK_SPACE
3671 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3673 /* If we have found a stack parm before we reach the end of the
3674 area reserved for registers, skip that area. */
3675 if (! in_regs)
3677 if (reg_parm_stack_space > 0)
3679 if (initial_offset_ptr->var)
3681 initial_offset_ptr->var
3682 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3683 ssize_int (reg_parm_stack_space));
3684 initial_offset_ptr->constant = 0;
3686 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3687 initial_offset_ptr->constant = reg_parm_stack_space;
3690 #endif /* REG_PARM_STACK_SPACE */
3692 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3694 sizetree
3695 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3696 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3697 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3698 locate->where_pad = where_pad;
3700 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3701 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3702 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3704 locate->boundary = boundary;
3706 if (SUPPORTS_STACK_ALIGNMENT)
3708 /* stack_alignment_estimated can't change after stack has been
3709 realigned. */
3710 if (crtl->stack_alignment_estimated < boundary)
3712 if (!crtl->stack_realign_processed)
3713 crtl->stack_alignment_estimated = boundary;
3714 else
3716 /* If stack is realigned and stack alignment value
3717 hasn't been finalized, it is OK not to increase
3718 stack_alignment_estimated. The bigger alignment
3719 requirement is recorded in stack_alignment_needed
3720 below. */
3721 gcc_assert (!crtl->stack_realign_finalized
3722 && crtl->stack_realign_needed);
3727 /* Remember if the outgoing parameter requires extra alignment on the
3728 calling function side. */
3729 if (crtl->stack_alignment_needed < boundary)
3730 crtl->stack_alignment_needed = boundary;
3731 if (crtl->preferred_stack_boundary < boundary)
3732 crtl->preferred_stack_boundary = boundary;
3734 #ifdef ARGS_GROW_DOWNWARD
3735 locate->slot_offset.constant = -initial_offset_ptr->constant;
3736 if (initial_offset_ptr->var)
3737 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3738 initial_offset_ptr->var);
3741 tree s2 = sizetree;
3742 if (where_pad != none
3743 && (!host_integerp (sizetree, 1)
3744 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3745 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3746 SUB_PARM_SIZE (locate->slot_offset, s2);
3749 locate->slot_offset.constant += part_size_in_regs;
3751 if (!in_regs
3752 #ifdef REG_PARM_STACK_SPACE
3753 || REG_PARM_STACK_SPACE (fndecl) > 0
3754 #endif
3756 pad_to_arg_alignment (&locate->slot_offset, boundary,
3757 &locate->alignment_pad);
3759 locate->size.constant = (-initial_offset_ptr->constant
3760 - locate->slot_offset.constant);
3761 if (initial_offset_ptr->var)
3762 locate->size.var = size_binop (MINUS_EXPR,
3763 size_binop (MINUS_EXPR,
3764 ssize_int (0),
3765 initial_offset_ptr->var),
3766 locate->slot_offset.var);
3768 /* Pad_below needs the pre-rounded size to know how much to pad
3769 below. */
3770 locate->offset = locate->slot_offset;
3771 if (where_pad == downward)
3772 pad_below (&locate->offset, passed_mode, sizetree);
3774 #else /* !ARGS_GROW_DOWNWARD */
3775 if (!in_regs
3776 #ifdef REG_PARM_STACK_SPACE
3777 || REG_PARM_STACK_SPACE (fndecl) > 0
3778 #endif
3780 pad_to_arg_alignment (initial_offset_ptr, boundary,
3781 &locate->alignment_pad);
3782 locate->slot_offset = *initial_offset_ptr;
3784 #ifdef PUSH_ROUNDING
3785 if (passed_mode != BLKmode)
3786 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3787 #endif
3789 /* Pad_below needs the pre-rounded size to know how much to pad below
3790 so this must be done before rounding up. */
3791 locate->offset = locate->slot_offset;
3792 if (where_pad == downward)
3793 pad_below (&locate->offset, passed_mode, sizetree);
3795 if (where_pad != none
3796 && (!host_integerp (sizetree, 1)
3797 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3798 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3800 ADD_PARM_SIZE (locate->size, sizetree);
3802 locate->size.constant -= part_size_in_regs;
3803 #endif /* ARGS_GROW_DOWNWARD */
3805 #ifdef FUNCTION_ARG_OFFSET
3806 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3807 #endif
3810 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3811 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3813 static void
3814 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3815 struct args_size *alignment_pad)
3817 tree save_var = NULL_TREE;
3818 HOST_WIDE_INT save_constant = 0;
3819 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3820 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3822 #ifdef SPARC_STACK_BOUNDARY_HACK
3823 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3824 the real alignment of %sp. However, when it does this, the
3825 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3826 if (SPARC_STACK_BOUNDARY_HACK)
3827 sp_offset = 0;
3828 #endif
3830 if (boundary > PARM_BOUNDARY)
3832 save_var = offset_ptr->var;
3833 save_constant = offset_ptr->constant;
3836 alignment_pad->var = NULL_TREE;
3837 alignment_pad->constant = 0;
3839 if (boundary > BITS_PER_UNIT)
3841 if (offset_ptr->var)
3843 tree sp_offset_tree = ssize_int (sp_offset);
3844 tree offset = size_binop (PLUS_EXPR,
3845 ARGS_SIZE_TREE (*offset_ptr),
3846 sp_offset_tree);
3847 #ifdef ARGS_GROW_DOWNWARD
3848 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3849 #else
3850 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3851 #endif
3853 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3854 /* ARGS_SIZE_TREE includes constant term. */
3855 offset_ptr->constant = 0;
3856 if (boundary > PARM_BOUNDARY)
3857 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3858 save_var);
3860 else
3862 offset_ptr->constant = -sp_offset +
3863 #ifdef ARGS_GROW_DOWNWARD
3864 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3865 #else
3866 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3867 #endif
3868 if (boundary > PARM_BOUNDARY)
3869 alignment_pad->constant = offset_ptr->constant - save_constant;
3874 static void
3875 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3877 if (passed_mode != BLKmode)
3879 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3880 offset_ptr->constant
3881 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3882 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3883 - GET_MODE_SIZE (passed_mode));
3885 else
3887 if (TREE_CODE (sizetree) != INTEGER_CST
3888 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3890 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3891 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3892 /* Add it in. */
3893 ADD_PARM_SIZE (*offset_ptr, s2);
3894 SUB_PARM_SIZE (*offset_ptr, sizetree);
3900 /* True if register REGNO was alive at a place where `setjmp' was
3901 called and was set more than once or is an argument. Such regs may
3902 be clobbered by `longjmp'. */
3904 static bool
3905 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3907 /* There appear to be cases where some local vars never reach the
3908 backend but have bogus regnos. */
3909 if (regno >= max_reg_num ())
3910 return false;
3912 return ((REG_N_SETS (regno) > 1
3913 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3914 && REGNO_REG_SET_P (setjmp_crosses, regno));
3917 /* Walk the tree of blocks describing the binding levels within a
3918 function and warn about variables the might be killed by setjmp or
3919 vfork. This is done after calling flow_analysis before register
3920 allocation since that will clobber the pseudo-regs to hard
3921 regs. */
3923 static void
3924 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3926 tree decl, sub;
3928 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3930 if (TREE_CODE (decl) == VAR_DECL
3931 && DECL_RTL_SET_P (decl)
3932 && REG_P (DECL_RTL (decl))
3933 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3934 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3935 " %<longjmp%> or %<vfork%>", decl);
3938 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3939 setjmp_vars_warning (setjmp_crosses, sub);
3942 /* Do the appropriate part of setjmp_vars_warning
3943 but for arguments instead of local variables. */
3945 static void
3946 setjmp_args_warning (bitmap setjmp_crosses)
3948 tree decl;
3949 for (decl = DECL_ARGUMENTS (current_function_decl);
3950 decl; decl = DECL_CHAIN (decl))
3951 if (DECL_RTL (decl) != 0
3952 && REG_P (DECL_RTL (decl))
3953 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3954 warning (OPT_Wclobbered,
3955 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3956 decl);
3959 /* Generate warning messages for variables live across setjmp. */
3961 void
3962 generate_setjmp_warnings (void)
3964 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3966 if (n_basic_blocks == NUM_FIXED_BLOCKS
3967 || bitmap_empty_p (setjmp_crosses))
3968 return;
3970 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3971 setjmp_args_warning (setjmp_crosses);
3975 /* Reverse the order of elements in the fragment chain T of blocks,
3976 and return the new head of the chain (old last element). */
3978 static tree
3979 block_fragments_nreverse (tree t)
3981 tree prev = 0, block, next;
3982 for (block = t; block; block = next)
3984 next = BLOCK_FRAGMENT_CHAIN (block);
3985 BLOCK_FRAGMENT_CHAIN (block) = prev;
3986 prev = block;
3988 return prev;
3991 /* Reverse the order of elements in the chain T of blocks,
3992 and return the new head of the chain (old last element).
3993 Also do the same on subblocks and reverse the order of elements
3994 in BLOCK_FRAGMENT_CHAIN as well. */
3996 static tree
3997 blocks_nreverse_all (tree t)
3999 tree prev = 0, block, next;
4000 for (block = t; block; block = next)
4002 next = BLOCK_CHAIN (block);
4003 BLOCK_CHAIN (block) = prev;
4004 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4005 if (BLOCK_FRAGMENT_CHAIN (block)
4006 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4007 BLOCK_FRAGMENT_CHAIN (block)
4008 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4009 prev = block;
4011 return prev;
4015 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4016 and create duplicate blocks. */
4017 /* ??? Need an option to either create block fragments or to create
4018 abstract origin duplicates of a source block. It really depends
4019 on what optimization has been performed. */
4021 void
4022 reorder_blocks (void)
4024 tree block = DECL_INITIAL (current_function_decl);
4025 VEC(tree,heap) *block_stack;
4027 if (block == NULL_TREE)
4028 return;
4030 block_stack = VEC_alloc (tree, heap, 10);
4032 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4033 clear_block_marks (block);
4035 /* Prune the old trees away, so that they don't get in the way. */
4036 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4037 BLOCK_CHAIN (block) = NULL_TREE;
4039 /* Recreate the block tree from the note nesting. */
4040 reorder_blocks_1 (get_insns (), block, &block_stack);
4041 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4043 VEC_free (tree, heap, block_stack);
4046 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4048 void
4049 clear_block_marks (tree block)
4051 while (block)
4053 TREE_ASM_WRITTEN (block) = 0;
4054 clear_block_marks (BLOCK_SUBBLOCKS (block));
4055 block = BLOCK_CHAIN (block);
4059 static void
4060 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
4062 rtx insn;
4064 for (insn = insns; insn; insn = NEXT_INSN (insn))
4066 if (NOTE_P (insn))
4068 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4070 tree block = NOTE_BLOCK (insn);
4071 tree origin;
4073 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4074 origin = block;
4076 /* If we have seen this block before, that means it now
4077 spans multiple address regions. Create a new fragment. */
4078 if (TREE_ASM_WRITTEN (block))
4080 tree new_block = copy_node (block);
4082 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4083 BLOCK_FRAGMENT_CHAIN (new_block)
4084 = BLOCK_FRAGMENT_CHAIN (origin);
4085 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4087 NOTE_BLOCK (insn) = new_block;
4088 block = new_block;
4091 BLOCK_SUBBLOCKS (block) = 0;
4092 TREE_ASM_WRITTEN (block) = 1;
4093 /* When there's only one block for the entire function,
4094 current_block == block and we mustn't do this, it
4095 will cause infinite recursion. */
4096 if (block != current_block)
4098 if (block != origin)
4099 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
4101 BLOCK_SUPERCONTEXT (block) = current_block;
4102 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4103 BLOCK_SUBBLOCKS (current_block) = block;
4104 current_block = origin;
4106 VEC_safe_push (tree, heap, *p_block_stack, block);
4108 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4110 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
4111 current_block = BLOCK_SUPERCONTEXT (current_block);
4117 /* Reverse the order of elements in the chain T of blocks,
4118 and return the new head of the chain (old last element). */
4120 tree
4121 blocks_nreverse (tree t)
4123 tree prev = 0, block, next;
4124 for (block = t; block; block = next)
4126 next = BLOCK_CHAIN (block);
4127 BLOCK_CHAIN (block) = prev;
4128 prev = block;
4130 return prev;
4133 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4134 non-NULL, list them all into VECTOR, in a depth-first preorder
4135 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4136 blocks. */
4138 static int
4139 all_blocks (tree block, tree *vector)
4141 int n_blocks = 0;
4143 while (block)
4145 TREE_ASM_WRITTEN (block) = 0;
4147 /* Record this block. */
4148 if (vector)
4149 vector[n_blocks] = block;
4151 ++n_blocks;
4153 /* Record the subblocks, and their subblocks... */
4154 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4155 vector ? vector + n_blocks : 0);
4156 block = BLOCK_CHAIN (block);
4159 return n_blocks;
4162 /* Return a vector containing all the blocks rooted at BLOCK. The
4163 number of elements in the vector is stored in N_BLOCKS_P. The
4164 vector is dynamically allocated; it is the caller's responsibility
4165 to call `free' on the pointer returned. */
4167 static tree *
4168 get_block_vector (tree block, int *n_blocks_p)
4170 tree *block_vector;
4172 *n_blocks_p = all_blocks (block, NULL);
4173 block_vector = XNEWVEC (tree, *n_blocks_p);
4174 all_blocks (block, block_vector);
4176 return block_vector;
4179 static GTY(()) int next_block_index = 2;
4181 /* Set BLOCK_NUMBER for all the blocks in FN. */
4183 void
4184 number_blocks (tree fn)
4186 int i;
4187 int n_blocks;
4188 tree *block_vector;
4190 /* For SDB and XCOFF debugging output, we start numbering the blocks
4191 from 1 within each function, rather than keeping a running
4192 count. */
4193 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4194 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4195 next_block_index = 1;
4196 #endif
4198 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4200 /* The top-level BLOCK isn't numbered at all. */
4201 for (i = 1; i < n_blocks; ++i)
4202 /* We number the blocks from two. */
4203 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4205 free (block_vector);
4207 return;
4210 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4212 DEBUG_FUNCTION tree
4213 debug_find_var_in_block_tree (tree var, tree block)
4215 tree t;
4217 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4218 if (t == var)
4219 return block;
4221 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4223 tree ret = debug_find_var_in_block_tree (var, t);
4224 if (ret)
4225 return ret;
4228 return NULL_TREE;
4231 /* Keep track of whether we're in a dummy function context. If we are,
4232 we don't want to invoke the set_current_function hook, because we'll
4233 get into trouble if the hook calls target_reinit () recursively or
4234 when the initial initialization is not yet complete. */
4236 static bool in_dummy_function;
4238 /* Invoke the target hook when setting cfun. Update the optimization options
4239 if the function uses different options than the default. */
4241 static void
4242 invoke_set_current_function_hook (tree fndecl)
4244 if (!in_dummy_function)
4246 tree opts = ((fndecl)
4247 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4248 : optimization_default_node);
4250 if (!opts)
4251 opts = optimization_default_node;
4253 /* Change optimization options if needed. */
4254 if (optimization_current_node != opts)
4256 optimization_current_node = opts;
4257 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4260 targetm.set_current_function (fndecl);
4264 /* cfun should never be set directly; use this function. */
4266 void
4267 set_cfun (struct function *new_cfun)
4269 if (cfun != new_cfun)
4271 cfun = new_cfun;
4272 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4276 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4278 static VEC(function_p,heap) *cfun_stack;
4280 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4282 void
4283 push_cfun (struct function *new_cfun)
4285 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4286 set_cfun (new_cfun);
4289 /* Pop cfun from the stack. */
4291 void
4292 pop_cfun (void)
4294 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4295 set_cfun (new_cfun);
4298 /* Return value of funcdef and increase it. */
4300 get_next_funcdef_no (void)
4302 return funcdef_no++;
4305 /* Allocate a function structure for FNDECL and set its contents
4306 to the defaults. Set cfun to the newly-allocated object.
4307 Some of the helper functions invoked during initialization assume
4308 that cfun has already been set. Therefore, assign the new object
4309 directly into cfun and invoke the back end hook explicitly at the
4310 very end, rather than initializing a temporary and calling set_cfun
4311 on it.
4313 ABSTRACT_P is true if this is a function that will never be seen by
4314 the middle-end. Such functions are front-end concepts (like C++
4315 function templates) that do not correspond directly to functions
4316 placed in object files. */
4318 void
4319 allocate_struct_function (tree fndecl, bool abstract_p)
4321 tree result;
4322 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4324 cfun = ggc_alloc_cleared_function ();
4326 init_eh_for_function ();
4328 if (init_machine_status)
4329 cfun->machine = (*init_machine_status) ();
4331 #ifdef OVERRIDE_ABI_FORMAT
4332 OVERRIDE_ABI_FORMAT (fndecl);
4333 #endif
4335 invoke_set_current_function_hook (fndecl);
4337 if (fndecl != NULL_TREE)
4339 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4340 cfun->decl = fndecl;
4341 current_function_funcdef_no = get_next_funcdef_no ();
4343 result = DECL_RESULT (fndecl);
4344 if (!abstract_p && aggregate_value_p (result, fndecl))
4346 #ifdef PCC_STATIC_STRUCT_RETURN
4347 cfun->returns_pcc_struct = 1;
4348 #endif
4349 cfun->returns_struct = 1;
4352 cfun->stdarg = stdarg_p (fntype);
4354 /* Assume all registers in stdarg functions need to be saved. */
4355 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4356 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4358 /* ??? This could be set on a per-function basis by the front-end
4359 but is this worth the hassle? */
4360 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4364 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4365 instead of just setting it. */
4367 void
4368 push_struct_function (tree fndecl)
4370 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4371 allocate_struct_function (fndecl, false);
4374 /* Reset crtl and other non-struct-function variables to defaults as
4375 appropriate for emitting rtl at the start of a function. */
4377 static void
4378 prepare_function_start (void)
4380 gcc_assert (!crtl->emit.x_last_insn);
4381 init_temp_slots ();
4382 init_emit ();
4383 init_varasm_status ();
4384 init_expr ();
4385 default_rtl_profile ();
4387 if (flag_stack_usage)
4389 cfun->su = ggc_alloc_cleared_stack_usage ();
4390 cfun->su->static_stack_size = -1;
4393 cse_not_expected = ! optimize;
4395 /* Caller save not needed yet. */
4396 caller_save_needed = 0;
4398 /* We haven't done register allocation yet. */
4399 reg_renumber = 0;
4401 /* Indicate that we have not instantiated virtual registers yet. */
4402 virtuals_instantiated = 0;
4404 /* Indicate that we want CONCATs now. */
4405 generating_concat_p = 1;
4407 /* Indicate we have no need of a frame pointer yet. */
4408 frame_pointer_needed = 0;
4411 /* Initialize the rtl expansion mechanism so that we can do simple things
4412 like generate sequences. This is used to provide a context during global
4413 initialization of some passes. You must call expand_dummy_function_end
4414 to exit this context. */
4416 void
4417 init_dummy_function_start (void)
4419 gcc_assert (!in_dummy_function);
4420 in_dummy_function = true;
4421 push_struct_function (NULL_TREE);
4422 prepare_function_start ();
4425 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4426 and initialize static variables for generating RTL for the statements
4427 of the function. */
4429 void
4430 init_function_start (tree subr)
4432 if (subr && DECL_STRUCT_FUNCTION (subr))
4433 set_cfun (DECL_STRUCT_FUNCTION (subr));
4434 else
4435 allocate_struct_function (subr, false);
4436 prepare_function_start ();
4438 /* Warn if this value is an aggregate type,
4439 regardless of which calling convention we are using for it. */
4440 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4441 warning (OPT_Waggregate_return, "function returns an aggregate");
4444 /* Make sure all values used by the optimization passes have sane defaults. */
4445 unsigned int
4446 init_function_for_compilation (void)
4448 reg_renumber = 0;
4449 return 0;
4452 struct rtl_opt_pass pass_init_function =
4455 RTL_PASS,
4456 "*init_function", /* name */
4457 NULL, /* gate */
4458 init_function_for_compilation, /* execute */
4459 NULL, /* sub */
4460 NULL, /* next */
4461 0, /* static_pass_number */
4462 TV_NONE, /* tv_id */
4463 0, /* properties_required */
4464 0, /* properties_provided */
4465 0, /* properties_destroyed */
4466 0, /* todo_flags_start */
4467 0 /* todo_flags_finish */
4472 void
4473 expand_main_function (void)
4475 #if (defined(INVOKE__main) \
4476 || (!defined(HAS_INIT_SECTION) \
4477 && !defined(INIT_SECTION_ASM_OP) \
4478 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4479 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4480 #endif
4483 /* Expand code to initialize the stack_protect_guard. This is invoked at
4484 the beginning of a function to be protected. */
4486 #ifndef HAVE_stack_protect_set
4487 # define HAVE_stack_protect_set 0
4488 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4489 #endif
4491 void
4492 stack_protect_prologue (void)
4494 tree guard_decl = targetm.stack_protect_guard ();
4495 rtx x, y;
4497 x = expand_normal (crtl->stack_protect_guard);
4498 y = expand_normal (guard_decl);
4500 /* Allow the target to copy from Y to X without leaking Y into a
4501 register. */
4502 if (HAVE_stack_protect_set)
4504 rtx insn = gen_stack_protect_set (x, y);
4505 if (insn)
4507 emit_insn (insn);
4508 return;
4512 /* Otherwise do a straight move. */
4513 emit_move_insn (x, y);
4516 /* Expand code to verify the stack_protect_guard. This is invoked at
4517 the end of a function to be protected. */
4519 #ifndef HAVE_stack_protect_test
4520 # define HAVE_stack_protect_test 0
4521 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4522 #endif
4524 void
4525 stack_protect_epilogue (void)
4527 tree guard_decl = targetm.stack_protect_guard ();
4528 rtx label = gen_label_rtx ();
4529 rtx x, y, tmp;
4531 x = expand_normal (crtl->stack_protect_guard);
4532 y = expand_normal (guard_decl);
4534 /* Allow the target to compare Y with X without leaking either into
4535 a register. */
4536 switch (HAVE_stack_protect_test != 0)
4538 case 1:
4539 tmp = gen_stack_protect_test (x, y, label);
4540 if (tmp)
4542 emit_insn (tmp);
4543 break;
4545 /* FALLTHRU */
4547 default:
4548 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4549 break;
4552 /* The noreturn predictor has been moved to the tree level. The rtl-level
4553 predictors estimate this branch about 20%, which isn't enough to get
4554 things moved out of line. Since this is the only extant case of adding
4555 a noreturn function at the rtl level, it doesn't seem worth doing ought
4556 except adding the prediction by hand. */
4557 tmp = get_last_insn ();
4558 if (JUMP_P (tmp))
4559 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4561 expand_expr_stmt (targetm.stack_protect_fail ());
4562 emit_label (label);
4565 /* Start the RTL for a new function, and set variables used for
4566 emitting RTL.
4567 SUBR is the FUNCTION_DECL node.
4568 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4569 the function's parameters, which must be run at any return statement. */
4571 void
4572 expand_function_start (tree subr)
4574 /* Make sure volatile mem refs aren't considered
4575 valid operands of arithmetic insns. */
4576 init_recog_no_volatile ();
4578 crtl->profile
4579 = (profile_flag
4580 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4582 crtl->limit_stack
4583 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4585 /* Make the label for return statements to jump to. Do not special
4586 case machines with special return instructions -- they will be
4587 handled later during jump, ifcvt, or epilogue creation. */
4588 return_label = gen_label_rtx ();
4590 /* Initialize rtx used to return the value. */
4591 /* Do this before assign_parms so that we copy the struct value address
4592 before any library calls that assign parms might generate. */
4594 /* Decide whether to return the value in memory or in a register. */
4595 if (aggregate_value_p (DECL_RESULT (subr), subr))
4597 /* Returning something that won't go in a register. */
4598 rtx value_address = 0;
4600 #ifdef PCC_STATIC_STRUCT_RETURN
4601 if (cfun->returns_pcc_struct)
4603 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4604 value_address = assemble_static_space (size);
4606 else
4607 #endif
4609 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4610 /* Expect to be passed the address of a place to store the value.
4611 If it is passed as an argument, assign_parms will take care of
4612 it. */
4613 if (sv)
4615 value_address = gen_reg_rtx (Pmode);
4616 emit_move_insn (value_address, sv);
4619 if (value_address)
4621 rtx x = value_address;
4622 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4624 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4625 set_mem_attributes (x, DECL_RESULT (subr), 1);
4627 SET_DECL_RTL (DECL_RESULT (subr), x);
4630 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4631 /* If return mode is void, this decl rtl should not be used. */
4632 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4633 else
4635 /* Compute the return values into a pseudo reg, which we will copy
4636 into the true return register after the cleanups are done. */
4637 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4638 if (TYPE_MODE (return_type) != BLKmode
4639 && targetm.calls.return_in_msb (return_type))
4640 /* expand_function_end will insert the appropriate padding in
4641 this case. Use the return value's natural (unpadded) mode
4642 within the function proper. */
4643 SET_DECL_RTL (DECL_RESULT (subr),
4644 gen_reg_rtx (TYPE_MODE (return_type)));
4645 else
4647 /* In order to figure out what mode to use for the pseudo, we
4648 figure out what the mode of the eventual return register will
4649 actually be, and use that. */
4650 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4652 /* Structures that are returned in registers are not
4653 aggregate_value_p, so we may see a PARALLEL or a REG. */
4654 if (REG_P (hard_reg))
4655 SET_DECL_RTL (DECL_RESULT (subr),
4656 gen_reg_rtx (GET_MODE (hard_reg)));
4657 else
4659 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4660 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4664 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4665 result to the real return register(s). */
4666 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4669 /* Initialize rtx for parameters and local variables.
4670 In some cases this requires emitting insns. */
4671 assign_parms (subr);
4673 /* If function gets a static chain arg, store it. */
4674 if (cfun->static_chain_decl)
4676 tree parm = cfun->static_chain_decl;
4677 rtx local, chain, insn;
4679 local = gen_reg_rtx (Pmode);
4680 chain = targetm.calls.static_chain (current_function_decl, true);
4682 set_decl_incoming_rtl (parm, chain, false);
4683 SET_DECL_RTL (parm, local);
4684 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4686 insn = emit_move_insn (local, chain);
4688 /* Mark the register as eliminable, similar to parameters. */
4689 if (MEM_P (chain)
4690 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4691 set_unique_reg_note (insn, REG_EQUIV, chain);
4694 /* If the function receives a non-local goto, then store the
4695 bits we need to restore the frame pointer. */
4696 if (cfun->nonlocal_goto_save_area)
4698 tree t_save;
4699 rtx r_save;
4701 /* ??? We need to do this save early. Unfortunately here is
4702 before the frame variable gets declared. Help out... */
4703 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4704 if (!DECL_RTL_SET_P (var))
4705 expand_decl (var);
4707 t_save = build4 (ARRAY_REF, ptr_type_node,
4708 cfun->nonlocal_goto_save_area,
4709 integer_zero_node, NULL_TREE, NULL_TREE);
4710 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4711 r_save = convert_memory_address (Pmode, r_save);
4713 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4714 update_nonlocal_goto_save_area ();
4717 /* The following was moved from init_function_start.
4718 The move is supposed to make sdb output more accurate. */
4719 /* Indicate the beginning of the function body,
4720 as opposed to parm setup. */
4721 emit_note (NOTE_INSN_FUNCTION_BEG);
4723 gcc_assert (NOTE_P (get_last_insn ()));
4725 parm_birth_insn = get_last_insn ();
4727 if (crtl->profile)
4729 #ifdef PROFILE_HOOK
4730 PROFILE_HOOK (current_function_funcdef_no);
4731 #endif
4734 /* After the display initializations is where the stack checking
4735 probe should go. */
4736 if(flag_stack_check)
4737 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4739 /* Make sure there is a line number after the function entry setup code. */
4740 force_next_line_note ();
4743 /* Undo the effects of init_dummy_function_start. */
4744 void
4745 expand_dummy_function_end (void)
4747 gcc_assert (in_dummy_function);
4749 /* End any sequences that failed to be closed due to syntax errors. */
4750 while (in_sequence_p ())
4751 end_sequence ();
4753 /* Outside function body, can't compute type's actual size
4754 until next function's body starts. */
4756 free_after_parsing (cfun);
4757 free_after_compilation (cfun);
4758 pop_cfun ();
4759 in_dummy_function = false;
4762 /* Call DOIT for each hard register used as a return value from
4763 the current function. */
4765 void
4766 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4768 rtx outgoing = crtl->return_rtx;
4770 if (! outgoing)
4771 return;
4773 if (REG_P (outgoing))
4774 (*doit) (outgoing, arg);
4775 else if (GET_CODE (outgoing) == PARALLEL)
4777 int i;
4779 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4781 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4783 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4784 (*doit) (x, arg);
4789 static void
4790 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4792 emit_clobber (reg);
4795 void
4796 clobber_return_register (void)
4798 diddle_return_value (do_clobber_return_reg, NULL);
4800 /* In case we do use pseudo to return value, clobber it too. */
4801 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4803 tree decl_result = DECL_RESULT (current_function_decl);
4804 rtx decl_rtl = DECL_RTL (decl_result);
4805 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4807 do_clobber_return_reg (decl_rtl, NULL);
4812 static void
4813 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4815 emit_use (reg);
4818 static void
4819 use_return_register (void)
4821 diddle_return_value (do_use_return_reg, NULL);
4824 /* Possibly warn about unused parameters. */
4825 void
4826 do_warn_unused_parameter (tree fn)
4828 tree decl;
4830 for (decl = DECL_ARGUMENTS (fn);
4831 decl; decl = DECL_CHAIN (decl))
4832 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4833 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4834 && !TREE_NO_WARNING (decl))
4835 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4838 static GTY(()) rtx initial_trampoline;
4840 /* Generate RTL for the end of the current function. */
4842 void
4843 expand_function_end (void)
4845 rtx clobber_after;
4847 /* If arg_pointer_save_area was referenced only from a nested
4848 function, we will not have initialized it yet. Do that now. */
4849 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4850 get_arg_pointer_save_area ();
4852 /* If we are doing generic stack checking and this function makes calls,
4853 do a stack probe at the start of the function to ensure we have enough
4854 space for another stack frame. */
4855 if (flag_stack_check == GENERIC_STACK_CHECK)
4857 rtx insn, seq;
4859 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4860 if (CALL_P (insn))
4862 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4863 start_sequence ();
4864 if (STACK_CHECK_MOVING_SP)
4865 anti_adjust_stack_and_probe (max_frame_size, true);
4866 else
4867 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4868 seq = get_insns ();
4869 end_sequence ();
4870 emit_insn_before (seq, stack_check_probe_note);
4871 break;
4875 /* End any sequences that failed to be closed due to syntax errors. */
4876 while (in_sequence_p ())
4877 end_sequence ();
4879 clear_pending_stack_adjust ();
4880 do_pending_stack_adjust ();
4882 /* Output a linenumber for the end of the function.
4883 SDB depends on this. */
4884 force_next_line_note ();
4885 set_curr_insn_source_location (input_location);
4887 /* Before the return label (if any), clobber the return
4888 registers so that they are not propagated live to the rest of
4889 the function. This can only happen with functions that drop
4890 through; if there had been a return statement, there would
4891 have either been a return rtx, or a jump to the return label.
4893 We delay actual code generation after the current_function_value_rtx
4894 is computed. */
4895 clobber_after = get_last_insn ();
4897 /* Output the label for the actual return from the function. */
4898 emit_label (return_label);
4900 if (targetm.except_unwind_info () == UI_SJLJ)
4902 /* Let except.c know where it should emit the call to unregister
4903 the function context for sjlj exceptions. */
4904 if (flag_exceptions)
4905 sjlj_emit_function_exit_after (get_last_insn ());
4907 else
4909 /* We want to ensure that instructions that may trap are not
4910 moved into the epilogue by scheduling, because we don't
4911 always emit unwind information for the epilogue. */
4912 if (cfun->can_throw_non_call_exceptions)
4913 emit_insn (gen_blockage ());
4916 /* If this is an implementation of throw, do what's necessary to
4917 communicate between __builtin_eh_return and the epilogue. */
4918 expand_eh_return ();
4920 /* If scalar return value was computed in a pseudo-reg, or was a named
4921 return value that got dumped to the stack, copy that to the hard
4922 return register. */
4923 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4925 tree decl_result = DECL_RESULT (current_function_decl);
4926 rtx decl_rtl = DECL_RTL (decl_result);
4928 if (REG_P (decl_rtl)
4929 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4930 : DECL_REGISTER (decl_result))
4932 rtx real_decl_rtl = crtl->return_rtx;
4934 /* This should be set in assign_parms. */
4935 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4937 /* If this is a BLKmode structure being returned in registers,
4938 then use the mode computed in expand_return. Note that if
4939 decl_rtl is memory, then its mode may have been changed,
4940 but that crtl->return_rtx has not. */
4941 if (GET_MODE (real_decl_rtl) == BLKmode)
4942 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4944 /* If a non-BLKmode return value should be padded at the least
4945 significant end of the register, shift it left by the appropriate
4946 amount. BLKmode results are handled using the group load/store
4947 machinery. */
4948 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4949 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4951 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4952 REGNO (real_decl_rtl)),
4953 decl_rtl);
4954 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4956 /* If a named return value dumped decl_return to memory, then
4957 we may need to re-do the PROMOTE_MODE signed/unsigned
4958 extension. */
4959 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4961 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4962 promote_function_mode (TREE_TYPE (decl_result),
4963 GET_MODE (decl_rtl), &unsignedp,
4964 TREE_TYPE (current_function_decl), 1);
4966 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4968 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4970 /* If expand_function_start has created a PARALLEL for decl_rtl,
4971 move the result to the real return registers. Otherwise, do
4972 a group load from decl_rtl for a named return. */
4973 if (GET_CODE (decl_rtl) == PARALLEL)
4974 emit_group_move (real_decl_rtl, decl_rtl);
4975 else
4976 emit_group_load (real_decl_rtl, decl_rtl,
4977 TREE_TYPE (decl_result),
4978 int_size_in_bytes (TREE_TYPE (decl_result)));
4980 /* In the case of complex integer modes smaller than a word, we'll
4981 need to generate some non-trivial bitfield insertions. Do that
4982 on a pseudo and not the hard register. */
4983 else if (GET_CODE (decl_rtl) == CONCAT
4984 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4985 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4987 int old_generating_concat_p;
4988 rtx tmp;
4990 old_generating_concat_p = generating_concat_p;
4991 generating_concat_p = 0;
4992 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4993 generating_concat_p = old_generating_concat_p;
4995 emit_move_insn (tmp, decl_rtl);
4996 emit_move_insn (real_decl_rtl, tmp);
4998 else
4999 emit_move_insn (real_decl_rtl, decl_rtl);
5003 /* If returning a structure, arrange to return the address of the value
5004 in a place where debuggers expect to find it.
5006 If returning a structure PCC style,
5007 the caller also depends on this value.
5008 And cfun->returns_pcc_struct is not necessarily set. */
5009 if (cfun->returns_struct
5010 || cfun->returns_pcc_struct)
5012 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5013 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5014 rtx outgoing;
5016 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5017 type = TREE_TYPE (type);
5018 else
5019 value_address = XEXP (value_address, 0);
5021 outgoing = targetm.calls.function_value (build_pointer_type (type),
5022 current_function_decl, true);
5024 /* Mark this as a function return value so integrate will delete the
5025 assignment and USE below when inlining this function. */
5026 REG_FUNCTION_VALUE_P (outgoing) = 1;
5028 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5029 value_address = convert_memory_address (GET_MODE (outgoing),
5030 value_address);
5032 emit_move_insn (outgoing, value_address);
5034 /* Show return register used to hold result (in this case the address
5035 of the result. */
5036 crtl->return_rtx = outgoing;
5039 /* Emit the actual code to clobber return register. */
5041 rtx seq;
5043 start_sequence ();
5044 clobber_return_register ();
5045 seq = get_insns ();
5046 end_sequence ();
5048 emit_insn_after (seq, clobber_after);
5051 /* Output the label for the naked return from the function. */
5052 if (naked_return_label)
5053 emit_label (naked_return_label);
5055 /* @@@ This is a kludge. We want to ensure that instructions that
5056 may trap are not moved into the epilogue by scheduling, because
5057 we don't always emit unwind information for the epilogue. */
5058 if (cfun->can_throw_non_call_exceptions
5059 && targetm.except_unwind_info () != UI_SJLJ)
5060 emit_insn (gen_blockage ());
5062 /* If stack protection is enabled for this function, check the guard. */
5063 if (crtl->stack_protect_guard)
5064 stack_protect_epilogue ();
5066 /* If we had calls to alloca, and this machine needs
5067 an accurate stack pointer to exit the function,
5068 insert some code to save and restore the stack pointer. */
5069 if (! EXIT_IGNORE_STACK
5070 && cfun->calls_alloca)
5072 rtx tem = 0;
5074 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
5075 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
5078 /* ??? This should no longer be necessary since stupid is no longer with
5079 us, but there are some parts of the compiler (eg reload_combine, and
5080 sh mach_dep_reorg) that still try and compute their own lifetime info
5081 instead of using the general framework. */
5082 use_return_register ();
5086 get_arg_pointer_save_area (void)
5088 rtx ret = arg_pointer_save_area;
5090 if (! ret)
5092 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5093 arg_pointer_save_area = ret;
5096 if (! crtl->arg_pointer_save_area_init)
5098 rtx seq;
5100 /* Save the arg pointer at the beginning of the function. The
5101 generated stack slot may not be a valid memory address, so we
5102 have to check it and fix it if necessary. */
5103 start_sequence ();
5104 emit_move_insn (validize_mem (ret),
5105 crtl->args.internal_arg_pointer);
5106 seq = get_insns ();
5107 end_sequence ();
5109 push_topmost_sequence ();
5110 emit_insn_after (seq, entry_of_function ());
5111 pop_topmost_sequence ();
5113 crtl->arg_pointer_save_area_init = true;
5116 return ret;
5119 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5120 for the first time. */
5122 static void
5123 record_insns (rtx insns, rtx end, htab_t *hashp)
5125 rtx tmp;
5126 htab_t hash = *hashp;
5128 if (hash == NULL)
5129 *hashp = hash
5130 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5132 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5134 void **slot = htab_find_slot (hash, tmp, INSERT);
5135 gcc_assert (*slot == NULL);
5136 *slot = tmp;
5140 /* INSN has been duplicated as COPY, as part of duping a basic block.
5141 If INSN is an epilogue insn, then record COPY as epilogue as well. */
5143 void
5144 maybe_copy_epilogue_insn (rtx insn, rtx copy)
5146 void **slot;
5148 if (epilogue_insn_hash == NULL
5149 || htab_find (epilogue_insn_hash, insn) == NULL)
5150 return;
5152 slot = htab_find_slot (epilogue_insn_hash, copy, INSERT);
5153 gcc_assert (*slot == NULL);
5154 *slot = copy;
5157 /* Set the locator of the insn chain starting at INSN to LOC. */
5158 static void
5159 set_insn_locators (rtx insn, int loc)
5161 while (insn != NULL_RTX)
5163 if (INSN_P (insn))
5164 INSN_LOCATOR (insn) = loc;
5165 insn = NEXT_INSN (insn);
5169 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5170 we can be running after reorg, SEQUENCE rtl is possible. */
5172 static bool
5173 contains (const_rtx insn, htab_t hash)
5175 if (hash == NULL)
5176 return false;
5178 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5180 int i;
5181 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5182 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5183 return true;
5184 return false;
5187 return htab_find (hash, insn) != NULL;
5191 prologue_epilogue_contains (const_rtx insn)
5193 if (contains (insn, prologue_insn_hash))
5194 return 1;
5195 if (contains (insn, epilogue_insn_hash))
5196 return 1;
5197 return 0;
5200 #ifdef HAVE_return
5201 /* Insert gen_return at the end of block BB. This also means updating
5202 block_for_insn appropriately. */
5204 static void
5205 emit_return_into_block (basic_block bb)
5207 emit_jump_insn_after (gen_return (), BB_END (bb));
5209 #endif /* HAVE_return */
5211 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5212 this into place with notes indicating where the prologue ends and where
5213 the epilogue begins. Update the basic block information when possible. */
5215 static void
5216 thread_prologue_and_epilogue_insns (void)
5218 bool inserted;
5219 rtx seq, epilogue_end;
5220 edge entry_edge;
5221 edge e;
5222 edge_iterator ei;
5224 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5226 inserted = false;
5227 seq = NULL_RTX;
5228 epilogue_end = NULL_RTX;
5230 /* Can't deal with multiple successors of the entry block at the
5231 moment. Function should always have at least one entry
5232 point. */
5233 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5234 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5236 if (flag_split_stack
5237 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5238 == NULL))
5240 #ifndef HAVE_split_stack_prologue
5241 gcc_unreachable ();
5242 #else
5243 gcc_assert (HAVE_split_stack_prologue);
5245 start_sequence ();
5246 emit_insn (gen_split_stack_prologue ());
5247 seq = get_insns ();
5248 end_sequence ();
5250 record_insns (seq, NULL, &prologue_insn_hash);
5251 set_insn_locators (seq, prologue_locator);
5253 /* This relies on the fact that committing the edge insertion
5254 will look for basic blocks within the inserted instructions,
5255 which in turn relies on the fact that we are not in CFG
5256 layout mode here. */
5257 insert_insn_on_edge (seq, entry_edge);
5258 inserted = true;
5259 #endif
5262 #ifdef HAVE_prologue
5263 if (HAVE_prologue)
5265 start_sequence ();
5266 seq = gen_prologue ();
5267 emit_insn (seq);
5269 /* Insert an explicit USE for the frame pointer
5270 if the profiling is on and the frame pointer is required. */
5271 if (crtl->profile && frame_pointer_needed)
5272 emit_use (hard_frame_pointer_rtx);
5274 /* Retain a map of the prologue insns. */
5275 record_insns (seq, NULL, &prologue_insn_hash);
5276 emit_note (NOTE_INSN_PROLOGUE_END);
5278 /* Ensure that instructions are not moved into the prologue when
5279 profiling is on. The call to the profiling routine can be
5280 emitted within the live range of a call-clobbered register. */
5281 if (!targetm.profile_before_prologue () && crtl->profile)
5282 emit_insn (gen_blockage ());
5284 seq = get_insns ();
5285 end_sequence ();
5286 set_insn_locators (seq, prologue_locator);
5288 insert_insn_on_edge (seq, entry_edge);
5289 inserted = true;
5291 #endif
5293 /* If the exit block has no non-fake predecessors, we don't need
5294 an epilogue. */
5295 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5296 if ((e->flags & EDGE_FAKE) == 0)
5297 break;
5298 if (e == NULL)
5299 goto epilogue_done;
5301 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5302 #ifdef HAVE_return
5303 if (optimize && HAVE_return)
5305 /* If we're allowed to generate a simple return instruction,
5306 then by definition we don't need a full epilogue. Examine
5307 the block that falls through to EXIT. If it does not
5308 contain any code, examine its predecessors and try to
5309 emit (conditional) return instructions. */
5311 basic_block last;
5312 rtx label;
5314 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5315 if (e->flags & EDGE_FALLTHRU)
5316 break;
5317 if (e == NULL)
5318 goto epilogue_done;
5319 last = e->src;
5321 /* Verify that there are no active instructions in the last block. */
5322 label = BB_END (last);
5323 while (label && !LABEL_P (label))
5325 if (active_insn_p (label))
5326 break;
5327 label = PREV_INSN (label);
5330 if (BB_HEAD (last) == label && LABEL_P (label))
5332 edge_iterator ei2;
5334 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5336 basic_block bb = e->src;
5337 rtx jump;
5339 if (bb == ENTRY_BLOCK_PTR)
5341 ei_next (&ei2);
5342 continue;
5345 jump = BB_END (bb);
5346 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5348 ei_next (&ei2);
5349 continue;
5352 /* If we have an unconditional jump, we can replace that
5353 with a simple return instruction. */
5354 if (simplejump_p (jump))
5356 emit_return_into_block (bb);
5357 delete_insn (jump);
5360 /* If we have a conditional jump, we can try to replace
5361 that with a conditional return instruction. */
5362 else if (condjump_p (jump))
5364 if (! redirect_jump (jump, 0, 0))
5366 ei_next (&ei2);
5367 continue;
5370 /* If this block has only one successor, it both jumps
5371 and falls through to the fallthru block, so we can't
5372 delete the edge. */
5373 if (single_succ_p (bb))
5375 ei_next (&ei2);
5376 continue;
5379 else
5381 ei_next (&ei2);
5382 continue;
5385 /* Fix up the CFG for the successful change we just made. */
5386 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5389 /* Emit a return insn for the exit fallthru block. Whether
5390 this is still reachable will be determined later. */
5392 emit_barrier_after (BB_END (last));
5393 emit_return_into_block (last);
5394 epilogue_end = BB_END (last);
5395 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5396 goto epilogue_done;
5399 #endif
5401 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5402 this marker for the splits of EH_RETURN patterns, and nothing else
5403 uses the flag in the meantime. */
5404 epilogue_completed = 1;
5406 #ifdef HAVE_eh_return
5407 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5408 some targets, these get split to a special version of the epilogue
5409 code. In order to be able to properly annotate these with unwind
5410 info, try to split them now. If we get a valid split, drop an
5411 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5412 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5414 rtx prev, last, trial;
5416 if (e->flags & EDGE_FALLTHRU)
5417 continue;
5418 last = BB_END (e->src);
5419 if (!eh_returnjump_p (last))
5420 continue;
5422 prev = PREV_INSN (last);
5423 trial = try_split (PATTERN (last), last, 1);
5424 if (trial == last)
5425 continue;
5427 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5428 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5430 #endif
5432 /* Find the edge that falls through to EXIT. Other edges may exist
5433 due to RETURN instructions, but those don't need epilogues.
5434 There really shouldn't be a mixture -- either all should have
5435 been converted or none, however... */
5437 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5438 if (e->flags & EDGE_FALLTHRU)
5439 break;
5440 if (e == NULL)
5441 goto epilogue_done;
5443 #ifdef HAVE_epilogue
5444 if (HAVE_epilogue)
5446 start_sequence ();
5447 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5448 seq = gen_epilogue ();
5449 emit_jump_insn (seq);
5451 /* Retain a map of the epilogue insns. */
5452 record_insns (seq, NULL, &epilogue_insn_hash);
5453 set_insn_locators (seq, epilogue_locator);
5455 seq = get_insns ();
5456 end_sequence ();
5458 insert_insn_on_edge (seq, e);
5459 inserted = true;
5461 else
5462 #endif
5464 basic_block cur_bb;
5466 if (! next_active_insn (BB_END (e->src)))
5467 goto epilogue_done;
5468 /* We have a fall-through edge to the exit block, the source is not
5469 at the end of the function, and there will be an assembler epilogue
5470 at the end of the function.
5471 We can't use force_nonfallthru here, because that would try to
5472 use return. Inserting a jump 'by hand' is extremely messy, so
5473 we take advantage of cfg_layout_finalize using
5474 fixup_fallthru_exit_predecessor. */
5475 cfg_layout_initialize (0);
5476 FOR_EACH_BB (cur_bb)
5477 if (cur_bb->index >= NUM_FIXED_BLOCKS
5478 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5479 cur_bb->aux = cur_bb->next_bb;
5480 cfg_layout_finalize ();
5482 epilogue_done:
5483 default_rtl_profile ();
5485 if (inserted)
5487 commit_edge_insertions ();
5489 /* The epilogue insns we inserted may cause the exit edge to no longer
5490 be fallthru. */
5491 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5493 if (((e->flags & EDGE_FALLTHRU) != 0)
5494 && returnjump_p (BB_END (e->src)))
5495 e->flags &= ~EDGE_FALLTHRU;
5499 #ifdef HAVE_sibcall_epilogue
5500 /* Emit sibling epilogues before any sibling call sites. */
5501 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5503 basic_block bb = e->src;
5504 rtx insn = BB_END (bb);
5506 if (!CALL_P (insn)
5507 || ! SIBLING_CALL_P (insn))
5509 ei_next (&ei);
5510 continue;
5513 start_sequence ();
5514 emit_note (NOTE_INSN_EPILOGUE_BEG);
5515 emit_insn (gen_sibcall_epilogue ());
5516 seq = get_insns ();
5517 end_sequence ();
5519 /* Retain a map of the epilogue insns. Used in life analysis to
5520 avoid getting rid of sibcall epilogue insns. Do this before we
5521 actually emit the sequence. */
5522 record_insns (seq, NULL, &epilogue_insn_hash);
5523 set_insn_locators (seq, epilogue_locator);
5525 emit_insn_before (seq, insn);
5526 ei_next (&ei);
5528 #endif
5530 #ifdef HAVE_epilogue
5531 if (epilogue_end)
5533 rtx insn, next;
5535 /* Similarly, move any line notes that appear after the epilogue.
5536 There is no need, however, to be quite so anal about the existence
5537 of such a note. Also possibly move
5538 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5539 info generation. */
5540 for (insn = epilogue_end; insn; insn = next)
5542 next = NEXT_INSN (insn);
5543 if (NOTE_P (insn)
5544 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5545 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5548 #endif
5550 /* Threading the prologue and epilogue changes the artificial refs
5551 in the entry and exit blocks. */
5552 epilogue_completed = 1;
5553 df_update_entry_exit_and_calls ();
5556 /* Reposition the prologue-end and epilogue-begin notes after
5557 instruction scheduling. */
5559 void
5560 reposition_prologue_and_epilogue_notes (void)
5562 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5563 || defined (HAVE_sibcall_epilogue)
5564 /* Since the hash table is created on demand, the fact that it is
5565 non-null is a signal that it is non-empty. */
5566 if (prologue_insn_hash != NULL)
5568 size_t len = htab_elements (prologue_insn_hash);
5569 rtx insn, last = NULL, note = NULL;
5571 /* Scan from the beginning until we reach the last prologue insn. */
5572 /* ??? While we do have the CFG intact, there are two problems:
5573 (1) The prologue can contain loops (typically probing the stack),
5574 which means that the end of the prologue isn't in the first bb.
5575 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5576 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5578 if (NOTE_P (insn))
5580 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5581 note = insn;
5583 else if (contains (insn, prologue_insn_hash))
5585 last = insn;
5586 if (--len == 0)
5587 break;
5591 if (last)
5593 if (note == NULL)
5595 /* Scan forward looking for the PROLOGUE_END note. It should
5596 be right at the beginning of the block, possibly with other
5597 insn notes that got moved there. */
5598 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5600 if (NOTE_P (note)
5601 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5602 break;
5606 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5607 if (LABEL_P (last))
5608 last = NEXT_INSN (last);
5609 reorder_insns (note, note, last);
5613 if (epilogue_insn_hash != NULL)
5615 edge_iterator ei;
5616 edge e;
5618 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5620 rtx insn, first = NULL, note = NULL;
5621 basic_block bb = e->src;
5623 /* Scan from the beginning until we reach the first epilogue insn. */
5624 FOR_BB_INSNS (bb, insn)
5626 if (NOTE_P (insn))
5628 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5630 note = insn;
5631 if (first != NULL)
5632 break;
5635 else if (first == NULL && contains (insn, epilogue_insn_hash))
5637 first = insn;
5638 if (note != NULL)
5639 break;
5643 if (note)
5645 /* If the function has a single basic block, and no real
5646 epilogue insns (e.g. sibcall with no cleanup), the
5647 epilogue note can get scheduled before the prologue
5648 note. If we have frame related prologue insns, having
5649 them scanned during the epilogue will result in a crash.
5650 In this case re-order the epilogue note to just before
5651 the last insn in the block. */
5652 if (first == NULL)
5653 first = BB_END (bb);
5655 if (PREV_INSN (first) != note)
5656 reorder_insns (note, note, PREV_INSN (first));
5660 #endif /* HAVE_prologue or HAVE_epilogue */
5663 /* Returns the name of the current function. */
5664 const char *
5665 current_function_name (void)
5667 if (cfun == NULL)
5668 return "<none>";
5669 return lang_hooks.decl_printable_name (cfun->decl, 2);
5673 static unsigned int
5674 rest_of_handle_check_leaf_regs (void)
5676 #ifdef LEAF_REGISTERS
5677 current_function_uses_only_leaf_regs
5678 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5679 #endif
5680 return 0;
5683 /* Insert a TYPE into the used types hash table of CFUN. */
5685 static void
5686 used_types_insert_helper (tree type, struct function *func)
5688 if (type != NULL && func != NULL)
5690 void **slot;
5692 if (func->used_types_hash == NULL)
5693 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5694 htab_eq_pointer, NULL);
5695 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5696 if (*slot == NULL)
5697 *slot = type;
5701 /* Given a type, insert it into the used hash table in cfun. */
5702 void
5703 used_types_insert (tree t)
5705 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5706 if (TYPE_NAME (t))
5707 break;
5708 else
5709 t = TREE_TYPE (t);
5710 if (TYPE_NAME (t) == NULL_TREE
5711 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
5712 t = TYPE_MAIN_VARIANT (t);
5713 if (debug_info_level > DINFO_LEVEL_NONE)
5715 if (cfun)
5716 used_types_insert_helper (t, cfun);
5717 else
5718 /* So this might be a type referenced by a global variable.
5719 Record that type so that we can later decide to emit its debug
5720 information. */
5721 VEC_safe_push (tree, gc, types_used_by_cur_var_decl, t);
5725 /* Helper to Hash a struct types_used_by_vars_entry. */
5727 static hashval_t
5728 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
5730 gcc_assert (entry && entry->var_decl && entry->type);
5732 return iterative_hash_object (entry->type,
5733 iterative_hash_object (entry->var_decl, 0));
5736 /* Hash function of the types_used_by_vars_entry hash table. */
5738 hashval_t
5739 types_used_by_vars_do_hash (const void *x)
5741 const struct types_used_by_vars_entry *entry =
5742 (const struct types_used_by_vars_entry *) x;
5744 return hash_types_used_by_vars_entry (entry);
5747 /*Equality function of the types_used_by_vars_entry hash table. */
5750 types_used_by_vars_eq (const void *x1, const void *x2)
5752 const struct types_used_by_vars_entry *e1 =
5753 (const struct types_used_by_vars_entry *) x1;
5754 const struct types_used_by_vars_entry *e2 =
5755 (const struct types_used_by_vars_entry *)x2;
5757 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
5760 /* Inserts an entry into the types_used_by_vars_hash hash table. */
5762 void
5763 types_used_by_var_decl_insert (tree type, tree var_decl)
5765 if (type != NULL && var_decl != NULL)
5767 void **slot;
5768 struct types_used_by_vars_entry e;
5769 e.var_decl = var_decl;
5770 e.type = type;
5771 if (types_used_by_vars_hash == NULL)
5772 types_used_by_vars_hash =
5773 htab_create_ggc (37, types_used_by_vars_do_hash,
5774 types_used_by_vars_eq, NULL);
5775 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
5776 hash_types_used_by_vars_entry (&e), INSERT);
5777 if (*slot == NULL)
5779 struct types_used_by_vars_entry *entry;
5780 entry = ggc_alloc_types_used_by_vars_entry ();
5781 entry->type = type;
5782 entry->var_decl = var_decl;
5783 *slot = entry;
5788 struct rtl_opt_pass pass_leaf_regs =
5791 RTL_PASS,
5792 "*leaf_regs", /* name */
5793 NULL, /* gate */
5794 rest_of_handle_check_leaf_regs, /* execute */
5795 NULL, /* sub */
5796 NULL, /* next */
5797 0, /* static_pass_number */
5798 TV_NONE, /* tv_id */
5799 0, /* properties_required */
5800 0, /* properties_provided */
5801 0, /* properties_destroyed */
5802 0, /* todo_flags_start */
5803 0 /* todo_flags_finish */
5807 static unsigned int
5808 rest_of_handle_thread_prologue_and_epilogue (void)
5810 if (optimize)
5811 cleanup_cfg (CLEANUP_EXPENSIVE);
5813 /* On some machines, the prologue and epilogue code, or parts thereof,
5814 can be represented as RTL. Doing so lets us schedule insns between
5815 it and the rest of the code and also allows delayed branch
5816 scheduling to operate in the epilogue. */
5817 thread_prologue_and_epilogue_insns ();
5819 /* The stack usage info is finalized during prologue expansion. */
5820 if (flag_stack_usage)
5821 output_stack_usage ();
5823 return 0;
5826 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5829 RTL_PASS,
5830 "pro_and_epilogue", /* name */
5831 NULL, /* gate */
5832 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5833 NULL, /* sub */
5834 NULL, /* next */
5835 0, /* static_pass_number */
5836 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5837 0, /* properties_required */
5838 0, /* properties_provided */
5839 0, /* properties_destroyed */
5840 TODO_verify_flow, /* todo_flags_start */
5841 TODO_dump_func |
5842 TODO_df_verify |
5843 TODO_df_finish | TODO_verify_rtl_sharing |
5844 TODO_ggc_collect /* todo_flags_finish */
5849 /* This mini-pass fixes fall-out from SSA in asm statements that have
5850 in-out constraints. Say you start with
5852 orig = inout;
5853 asm ("": "+mr" (inout));
5854 use (orig);
5856 which is transformed very early to use explicit output and match operands:
5858 orig = inout;
5859 asm ("": "=mr" (inout) : "0" (inout));
5860 use (orig);
5862 Or, after SSA and copyprop,
5864 asm ("": "=mr" (inout_2) : "0" (inout_1));
5865 use (inout_1);
5867 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5868 they represent two separate values, so they will get different pseudo
5869 registers during expansion. Then, since the two operands need to match
5870 per the constraints, but use different pseudo registers, reload can
5871 only register a reload for these operands. But reloads can only be
5872 satisfied by hardregs, not by memory, so we need a register for this
5873 reload, just because we are presented with non-matching operands.
5874 So, even though we allow memory for this operand, no memory can be
5875 used for it, just because the two operands don't match. This can
5876 cause reload failures on register-starved targets.
5878 So it's a symptom of reload not being able to use memory for reloads
5879 or, alternatively it's also a symptom of both operands not coming into
5880 reload as matching (in which case the pseudo could go to memory just
5881 fine, as the alternative allows it, and no reload would be necessary).
5882 We fix the latter problem here, by transforming
5884 asm ("": "=mr" (inout_2) : "0" (inout_1));
5886 back to
5888 inout_2 = inout_1;
5889 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5891 static void
5892 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5894 int i;
5895 bool changed = false;
5896 rtx op = SET_SRC (p_sets[0]);
5897 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5898 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5899 bool *output_matched = XALLOCAVEC (bool, noutputs);
5901 memset (output_matched, 0, noutputs * sizeof (bool));
5902 for (i = 0; i < ninputs; i++)
5904 rtx input, output, insns;
5905 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5906 char *end;
5907 int match, j;
5909 if (*constraint == '%')
5910 constraint++;
5912 match = strtoul (constraint, &end, 10);
5913 if (end == constraint)
5914 continue;
5916 gcc_assert (match < noutputs);
5917 output = SET_DEST (p_sets[match]);
5918 input = RTVEC_ELT (inputs, i);
5919 /* Only do the transformation for pseudos. */
5920 if (! REG_P (output)
5921 || rtx_equal_p (output, input)
5922 || (GET_MODE (input) != VOIDmode
5923 && GET_MODE (input) != GET_MODE (output)))
5924 continue;
5926 /* We can't do anything if the output is also used as input,
5927 as we're going to overwrite it. */
5928 for (j = 0; j < ninputs; j++)
5929 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5930 break;
5931 if (j != ninputs)
5932 continue;
5934 /* Avoid changing the same input several times. For
5935 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5936 only change in once (to out1), rather than changing it
5937 first to out1 and afterwards to out2. */
5938 if (i > 0)
5940 for (j = 0; j < noutputs; j++)
5941 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5942 break;
5943 if (j != noutputs)
5944 continue;
5946 output_matched[match] = true;
5948 start_sequence ();
5949 emit_move_insn (output, input);
5950 insns = get_insns ();
5951 end_sequence ();
5952 emit_insn_before (insns, insn);
5954 /* Now replace all mentions of the input with output. We can't
5955 just replace the occurrence in inputs[i], as the register might
5956 also be used in some other input (or even in an address of an
5957 output), which would mean possibly increasing the number of
5958 inputs by one (namely 'output' in addition), which might pose
5959 a too complicated problem for reload to solve. E.g. this situation:
5961 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5963 Here 'input' is used in two occurrences as input (once for the
5964 input operand, once for the address in the second output operand).
5965 If we would replace only the occurrence of the input operand (to
5966 make the matching) we would be left with this:
5968 output = input
5969 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5971 Now we suddenly have two different input values (containing the same
5972 value, but different pseudos) where we formerly had only one.
5973 With more complicated asms this might lead to reload failures
5974 which wouldn't have happen without this pass. So, iterate over
5975 all operands and replace all occurrences of the register used. */
5976 for (j = 0; j < noutputs; j++)
5977 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5978 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5979 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5980 input, output);
5981 for (j = 0; j < ninputs; j++)
5982 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5983 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5984 input, output);
5986 changed = true;
5989 if (changed)
5990 df_insn_rescan (insn);
5993 static unsigned
5994 rest_of_match_asm_constraints (void)
5996 basic_block bb;
5997 rtx insn, pat, *p_sets;
5998 int noutputs;
6000 if (!crtl->has_asm_statement)
6001 return 0;
6003 df_set_flags (DF_DEFER_INSN_RESCAN);
6004 FOR_EACH_BB (bb)
6006 FOR_BB_INSNS (bb, insn)
6008 if (!INSN_P (insn))
6009 continue;
6011 pat = PATTERN (insn);
6012 if (GET_CODE (pat) == PARALLEL)
6013 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6014 else if (GET_CODE (pat) == SET)
6015 p_sets = &PATTERN (insn), noutputs = 1;
6016 else
6017 continue;
6019 if (GET_CODE (*p_sets) == SET
6020 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6021 match_asm_constraints_1 (insn, p_sets, noutputs);
6025 return TODO_df_finish;
6028 struct rtl_opt_pass pass_match_asm_constraints =
6031 RTL_PASS,
6032 "asmcons", /* name */
6033 NULL, /* gate */
6034 rest_of_match_asm_constraints, /* execute */
6035 NULL, /* sub */
6036 NULL, /* next */
6037 0, /* static_pass_number */
6038 TV_NONE, /* tv_id */
6039 0, /* properties_required */
6040 0, /* properties_provided */
6041 0, /* properties_destroyed */
6042 0, /* todo_flags_start */
6043 TODO_dump_func /* todo_flags_finish */
6048 #include "gt-function.h"