1 ;; FR30 machine description.
2 ;; Copyright (C) 1998, 1999, 2000, 2002, 2004, 2005, 2007
3 ;; Free Software Foundation, Inc.
4 ;; Contributed by Cygnus Solutions.
6 ;; This file is part of GCC.
8 ;; GCC is free software; you can redistribute it and/or modify
9 ;; it under the terms of the GNU General Public License as published by
10 ;; the Free Software Foundation; either version 3, or (at your option)
13 ;; GCC is distributed in the hope that it will be useful,
14 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
15 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 ;; GNU General Public License for more details.
18 ;; You should have received a copy of the GNU General Public License
19 ;; along with GCC; see the file COPYING3. If not see
20 ;; <http://www.gnu.org/licenses/>.
22 ;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.
26 (define_attr "length" "" (const_int 2))
28 ;; Used to distinguish between small memory model targets and big mode targets.
30 (define_attr "size" "small,big"
31 (const (if_then_else (symbol_ref "TARGET_SMALL_MODEL")
32 (const_string "small")
33 (const_string "big"))))
36 ;; Define an attribute to be used by the delay slot code.
37 ;; An instruction by default is considered to be 'delayable'
38 ;; that is, it can be placed into a delay slot, but it is not
39 ;; itself a delayed branch type instruction. An instruction
40 ;; whose type is 'delayed' is one which has a delay slot, and
41 ;; an instruction whose delay_type is 'other' is one which does
42 ;; not have a delay slot, nor can it be placed into a delay slot.
44 (define_attr "delay_type" "delayable,delayed,other" (const_string "delayable"))
47 ;;{{{ Delay Slot Specifications
49 (define_delay (eq_attr "delay_type" "delayed")
50 [(and (eq_attr "delay_type" "delayable")
51 (eq_attr "length" "2"))
56 (include "predicates.md")
63 ;; Wrap moves in define_expand to prevent memory->memory moves from being
64 ;; generated at the RTL level, which generates better code for most machines
65 ;; which can't do mem->mem moves.
67 ;; If operand 0 is a `subreg' with mode M of a register whose own mode is wider
68 ;; than M, the effect of this instruction is to store the specified value in
69 ;; the part of the register that corresponds to mode M. The effect on the rest
70 ;; of the register is undefined.
72 ;; This class of patterns is special in several ways. First of all, each of
73 ;; these names *must* be defined, because there is no other way to copy a datum
74 ;; from one place to another.
76 ;; Second, these patterns are not used solely in the RTL generation pass. Even
77 ;; the reload pass can generate move insns to copy values from stack slots into
78 ;; temporary registers. When it does so, one of the operands is a hard
79 ;; register and the other is an operand that can need to be reloaded into a
82 ;; Therefore, when given such a pair of operands, the pattern must
83 ;; generate RTL which needs no reloading and needs no temporary
84 ;; registers--no registers other than the operands. For example, if
85 ;; you support the pattern with a `define_expand', then in such a
86 ;; case the `define_expand' mustn't call `force_reg' or any other such
87 ;; function which might generate new pseudo registers.
89 ;; This requirement exists even for subword modes on a RISC machine
90 ;; where fetching those modes from memory normally requires several
91 ;; insns and some temporary registers. Look in `spur.md' to see how
92 ;; the requirement can be satisfied.
94 ;; During reload a memory reference with an invalid address may be passed as an
95 ;; operand. Such an address will be replaced with a valid address later in the
96 ;; reload pass. In this case, nothing may be done with the address except to
97 ;; use it as it stands. If it is copied, it will not be replaced with a valid
98 ;; address. No attempt should be made to make such an address into a valid
99 ;; address and no routine (such as `change_address') that will do so may be
100 ;; called. Note that `general_operand' will fail when applied to such an
103 ;; The global variable `reload_in_progress' (which must be explicitly declared
104 ;; if required) can be used to determine whether such special handling is
107 ;; The variety of operands that have reloads depends on the rest of
108 ;; the machine description, but typically on a RISC machine these can
109 ;; only be pseudo registers that did not get hard registers, while on
110 ;; other machines explicit memory references will get optional
113 ;; If a scratch register is required to move an object to or from memory, it
114 ;; can be allocated using `gen_reg_rtx' prior to reload. But this is
115 ;; impossible during and after reload. If there are cases needing scratch
116 ;; registers after reload, you must define `SECONDARY_INPUT_RELOAD_CLASS' and
117 ;; perhaps also `SECONDARY_OUTPUT_RELOAD_CLASS' to detect them, and provide
118 ;; patterns `reload_inM' or `reload_outM' to handle them.
120 ;; The constraints on a `moveM' must permit moving any hard register to any
121 ;; other hard register provided that `HARD_REGNO_MODE_OK' permits mode M in
122 ;; both registers and `REGISTER_MOVE_COST' applied to their classes returns a
125 ;; It is obligatory to support floating point `moveM' instructions
126 ;; into and out of any registers that can hold fixed point values,
127 ;; because unions and structures (which have modes `SImode' or
128 ;; `DImode') can be in those registers and they may have floating
131 ;; There may also be a need to support fixed point `moveM' instructions in and
132 ;; out of floating point registers. Unfortunately, I have forgotten why this
133 ;; was so, and I don't know whether it is still true. If `HARD_REGNO_MODE_OK'
134 ;; rejects fixed point values in floating point registers, then the constraints
135 ;; of the fixed point `moveM' instructions must be designed to avoid ever
136 ;; trying to reload into a floating point register.
141 ;; Push a register onto the stack
142 (define_insn "movsi_push"
143 [(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
144 (match_operand:SI 0 "register_operand" "a"))]
149 ;; Pop a register off the stack
150 (define_insn "movsi_pop"
151 [(set:SI (match_operand:SI 0 "register_operand" "=a")
152 (mem:SI (post_inc:SI (reg:SI 15))))]
160 (define_expand "movqi"
161 [(set (match_operand:QI 0 "general_operand" "")
162 (match_operand:QI 1 "general_operand" ""))]
166 if (!reload_in_progress
168 && GET_CODE (operands[0]) == MEM
169 && (GET_CODE (operands[1]) == MEM
170 || immediate_operand (operands[1], QImode)))
171 operands[1] = copy_to_mode_reg (QImode, operands[1]);
174 (define_insn "movqi_unsigned_register_load"
175 [(set (match_operand:SI 0 "register_operand" "=r")
176 (zero_extend:SI (match_operand:QI 1 "memory_operand" "m")))]
181 (define_expand "movqi_signed_register_load"
182 [(set (match_operand:SI 0 "register_operand" "")
183 (sign_extend:SI (match_operand:QI 1 "memory_operand" "")))]
186 emit_insn (gen_movqi_unsigned_register_load (operands[0], operands[1]));
187 emit_insn (gen_extendqisi2 (operands[0], operands[0]));
192 (define_insn "*movqi_internal"
193 [(set (match_operand:QI 0 "nonimmediate_operand" "=r,red,m,r")
194 (match_operand:QI 1 "general_operand" "i,red,r,rm"))]
206 (define_expand "movhi"
207 [(set (match_operand:HI 0 "general_operand" "")
208 (match_operand:HI 1 "general_operand" ""))]
212 if (!reload_in_progress
214 && GET_CODE (operands[0]) == MEM
215 && (GET_CODE (operands[1]) == MEM
216 || immediate_operand (operands[1], HImode)))
217 operands[1] = copy_to_mode_reg (HImode, operands[1]);
220 (define_insn "movhi_unsigned_register_load"
221 [(set (match_operand:SI 0 "register_operand" "=r")
222 (zero_extend:SI (match_operand:HI 1 "memory_operand" "m")))]
227 (define_expand "movhi_signed_register_load"
228 [(set (match_operand:SI 0 "register_operand" "")
229 (sign_extend:SI (match_operand:HI 1 "memory_operand" "")))]
232 emit_insn (gen_movhi_unsigned_register_load (operands[0], operands[1]));
233 emit_insn (gen_extendhisi2 (operands[0], operands[0]));
238 (define_insn "*movhi_internal"
239 [(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,r,red,m,r")
240 (match_operand:HI 1 "general_operand" "L,M,n,red,r,rm"))]
249 [(set_attr "length" "*,4,6,*,*,*")]
255 ;; If the destination is a MEM and the source is a
256 ;; MEM or an CONST_INT move the source into a register.
257 (define_expand "movsi"
258 [(set (match_operand:SI 0 "nonimmediate_operand" "")
259 (match_operand:SI 1 "general_operand" ""))]
262 if (!reload_in_progress
264 && GET_CODE(operands[0]) == MEM
265 && (GET_CODE (operands[1]) == MEM
266 || immediate_operand (operands[1], SImode)))
267 operands[1] = copy_to_mode_reg (SImode, operands[1]);
271 ;; We can do some clever tricks when loading certain immediate
272 ;; values. We implement these tricks as define_splits, rather
273 ;; than putting the code into the define_expand "movsi" above,
274 ;; because if we put them there, they will be evaluated at RTL
275 ;; generation time and then the combiner pass will come along
276 ;; and replace the multiple insns that have been generated with
277 ;; the original, slower, load insns. (The combiner pass only
278 ;; cares about reducing the number of instructions, it does not
279 ;; care about instruction lengths or speeds). Splits are
280 ;; evaluated after the combine pass and before the scheduling
281 ;; passes, so that they are the perfect place to put this
284 ;; XXX we probably ought to implement these for QI and HI mode
287 ;; If we are loading a small negative constant we can save space
288 ;; and time by loading the positive value and then sign extending it.
290 [(set (match_operand:SI 0 "register_operand" "")
291 (match_operand:SI 1 "const_int_operand" ""))]
292 "INTVAL (operands[1]) <= -1 && INTVAL (operands[1]) >= -128
293 && (GET_CODE (operands[0]) != SUBREG
294 || SCALAR_INT_MODE_P (GET_MODE (XEXP (operands[0], 0))))"
295 [(set:SI (match_dup 0) (match_dup 1))
296 (set:SI (match_dup 0) (sign_extend:SI (match_dup 2)))]
298 operands[1] = GEN_INT (INTVAL (operands[1]) & 0xff);
299 operands[2] = gen_lowpart (QImode, operands[0]);
303 ;; If we are loading a large negative constant, one which does
304 ;; not have any of its bottom 24 bit set, then we can save time
305 ;; and space by loading the byte value and shifting it into place.
307 [(set (match_operand:SI 0 "register_operand" "")
308 (match_operand:SI 1 "const_int_operand" ""))]
309 "(INTVAL (operands[1]) < 0) && ((INTVAL (operands[1]) & 0x00ffffff) == 0)"
310 [(set:SI (match_dup 0) (match_dup 2))
311 (parallel [(set:SI (match_dup 0) (ashift:SI (match_dup 0) (const_int 24)))
312 (clobber (reg:CC 16))])]
314 HOST_WIDE_INT val = INTVAL (operands[1]);
315 operands[2] = GEN_INT (val >> 24);
319 ;; If we are loading a large positive constant, one which has bits
320 ;; in the top byte set, but whose set bits all lie within an 8 bit
321 ;; range, then we can save time and space by loading the byte value
322 ;; and shifting it into place.
324 [(set (match_operand:SI 0 "register_operand" "")
325 (match_operand:SI 1 "const_int_operand" ""))]
326 "(INTVAL (operands[1]) > 0x00ffffff)
327 && ((INTVAL (operands[1]) >> exact_log2 (INTVAL (operands[1]) & (- INTVAL (operands[1])))) < 0x100)"
328 [(set:SI (match_dup 0) (match_dup 2))
329 (parallel [(set:SI (match_dup 0) (ashift:SI (match_dup 0) (match_dup 3)))
330 (clobber (reg:CC 16))])]
332 HOST_WIDE_INT val = INTVAL (operands[1]);
333 int shift = exact_log2 (val & ( - val));
334 operands[2] = GEN_INT (val >> shift);
335 operands[3] = GEN_INT (shift);
339 ;; When TARGET_SMALL_MODEL is defined we assume that all symbolic
340 ;; values are addresses which will fit in 20 bits.
342 (define_insn "movsi_internal"
343 [(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,r,r,red,V,r,m")
344 (match_operand:SI 1 "general_operand" "L,M,n,i,rde,r,rm,r"))]
348 switch (which_alternative)
350 case 0: return \"ldi:8 \\t#%1, %0\";
351 case 1: return \"ldi:20\\t#%1, %0\";
352 case 2: return \"ldi:32\\t#%1, %0\";
353 case 3: if (TARGET_SMALL_MODEL)
354 return \"ldi:20\\t%1, %0\";
356 return \"ldi:32\\t%1, %0\";
357 case 4: return \"mov \\t%1, %0\";
358 case 5: return \"st \\t%1, %0\";
359 case 6: return \"ld \\t%1, %0\";
360 case 7: return \"st \\t%1, %0\";
361 default: gcc_unreachable ();
364 [(set (attr "length") (cond [(eq_attr "alternative" "1") (const_int 4)
365 (eq_attr "alternative" "2") (const_int 6)
366 (eq_attr "alternative" "3")
367 (if_then_else (eq_attr "size" "small")
376 ;; Note - the FR30 does not have an 8 byte load/store instruction
377 ;; but we have to support this pattern because some other patterns
378 ;; (e.g. muldisi2) can produce a DImode result.
379 ;; (This code is stolen from the M32R port.)
381 (define_expand "movdi"
382 [(set (match_operand:DI 0 "nonimmediate_operand" "")
383 (match_operand:DI 1 "general_operand" ""))]
386 /* Everything except mem = const or mem = mem can be done easily. */
388 if (GET_CODE (operands[0]) == MEM)
389 operands[1] = force_reg (DImode, operands[1]);
393 ;; We use an insn and a split so that we can generate
394 ;; RTL rather than text from fr30_move_double().
396 (define_insn "*movdi_insn"
397 [(set (match_operand:DI 0 "nonimmediate_di_operand" "=r,r,m,r")
398 (match_operand:DI 1 "di_operand" "r,m,r,nF"))]
399 "register_operand (operands[0], DImode) || register_operand (operands[1], DImode)"
401 [(set_attr "length" "4,8,12,12")]
405 [(set (match_operand:DI 0 "nonimmediate_di_operand" "")
406 (match_operand:DI 1 "di_operand" ""))]
409 "operands[2] = fr30_move_double (operands);"
413 ;;{{{ Load & Store Multiple Registers
415 ;; The load multiple and store multiple patterns are implemented
416 ;; as peepholes because the only time they are expected to occur
417 ;; is during function prologues and epilogues.
420 [(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
421 (match_operand:SI 0 "high_register_operand" "h"))
422 (set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
423 (match_operand:SI 1 "high_register_operand" "h"))
424 (set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
425 (match_operand:SI 2 "high_register_operand" "h"))
426 (set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
427 (match_operand:SI 3 "high_register_operand" "h"))]
428 "fr30_check_multiple_regs (operands, 4, 1)"
429 "stm1 (%0, %1, %2, %3)"
430 [(set_attr "delay_type" "other")]
434 [(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
435 (match_operand:SI 0 "high_register_operand" "h"))
436 (set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
437 (match_operand:SI 1 "high_register_operand" "h"))
438 (set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
439 (match_operand:SI 2 "high_register_operand" "h"))]
440 "fr30_check_multiple_regs (operands, 3, 1)"
442 [(set_attr "delay_type" "other")]
446 [(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
447 (match_operand:SI 0 "high_register_operand" "h"))
448 (set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
449 (match_operand:SI 1 "high_register_operand" "h"))]
450 "fr30_check_multiple_regs (operands, 2, 1)"
452 [(set_attr "delay_type" "other")]
456 [(set:SI (match_operand:SI 0 "high_register_operand" "h")
457 (mem:SI (post_inc:SI (reg:SI 15))))
458 (set:SI (match_operand:SI 1 "high_register_operand" "h")
459 (mem:SI (post_inc:SI (reg:SI 15))))
460 (set:SI (match_operand:SI 2 "high_register_operand" "h")
461 (mem:SI (post_inc:SI (reg:SI 15))))
462 (set:SI (match_operand:SI 3 "high_register_operand" "h")
463 (mem:SI (post_inc:SI (reg:SI 15))))]
464 "fr30_check_multiple_regs (operands, 4, 0)"
465 "ldm1 (%0, %1, %2, %3)"
466 [(set_attr "delay_type" "other")]
470 [(set:SI (match_operand:SI 0 "high_register_operand" "h")
471 (mem:SI (post_inc:SI (reg:SI 15))))
472 (set:SI (match_operand:SI 1 "high_register_operand" "h")
473 (mem:SI (post_inc:SI (reg:SI 15))))
474 (set:SI (match_operand:SI 2 "high_register_operand" "h")
475 (mem:SI (post_inc:SI (reg:SI 15))))]
476 "fr30_check_multiple_regs (operands, 3, 0)"
478 [(set_attr "delay_type" "other")]
482 [(set:SI (match_operand:SI 0 "high_register_operand" "h")
483 (mem:SI (post_inc:SI (reg:SI 15))))
484 (set:SI (match_operand:SI 1 "high_register_operand" "h")
485 (mem:SI (post_inc:SI (reg:SI 15))))]
486 "fr30_check_multiple_regs (operands, 2, 0)"
488 [(set_attr "delay_type" "other")]
492 [(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
493 (match_operand:SI 0 "low_register_operand" "l"))
494 (set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
495 (match_operand:SI 1 "low_register_operand" "l"))
496 (set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
497 (match_operand:SI 2 "low_register_operand" "l"))
498 (set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
499 (match_operand:SI 3 "low_register_operand" "l"))]
500 "fr30_check_multiple_regs (operands, 4, 1)"
501 "stm0 (%0, %1, %2, %3)"
502 [(set_attr "delay_type" "other")]
506 [(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
507 (match_operand:SI 0 "low_register_operand" "l"))
508 (set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
509 (match_operand:SI 1 "low_register_operand" "l"))
510 (set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
511 (match_operand:SI 2 "low_register_operand" "l"))]
512 "fr30_check_multiple_regs (operands, 3, 1)"
514 [(set_attr "delay_type" "other")]
518 [(set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
519 (match_operand:SI 0 "low_register_operand" "l"))
520 (set:SI (mem:SI (pre_dec:SI (reg:SI 15)))
521 (match_operand:SI 1 "low_register_operand" "l"))]
522 "fr30_check_multiple_regs (operands, 2, 1)"
524 [(set_attr "delay_type" "other")]
528 ;;{{{ Floating Point Moves
530 ;; Note - Patterns for SF mode moves are compulsory, but
531 ;; patterns for DF are optional, as GCC can synthesize them.
533 (define_expand "movsf"
534 [(set (match_operand:SF 0 "general_operand" "")
535 (match_operand:SF 1 "general_operand" ""))]
538 if (!reload_in_progress && !reload_completed
539 && memory_operand (operands[0], SFmode)
540 && memory_operand (operands[1], SFmode))
541 operands[1] = copy_to_mode_reg (SFmode, operands[1]);
545 (define_insn "*movsf_internal"
546 [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,red,m,r")
547 (match_operand:SF 1 "general_operand" "Fn,i,rde,r,rm"))]
551 switch (which_alternative)
553 case 0: return \"ldi:32\\t%1, %0\";
554 case 1: if (TARGET_SMALL_MODEL)
555 return \"ldi:20\\t%1, %0\";
557 return \"ldi:32\\t%1, %0\";
558 case 2: return \"mov \\t%1, %0\";
559 case 3: return \"st \\t%1, %0\";
560 case 4: return \"ld \\t%1, %0\";
561 default: gcc_unreachable ();
564 [(set (attr "length") (cond [(eq_attr "alternative" "0") (const_int 6)
565 (eq_attr "alternative" "1")
566 (if_then_else (eq_attr "size" "small")
572 (define_insn "*movsf_constant_store"
573 [(set (match_operand:SF 0 "memory_operand" "=m")
574 (match_operand:SF 1 "immediate_operand" "F"))]
578 const char * ldi_instr;
579 const char * tmp_reg;
580 static char buffer[100];
582 ldi_instr = fr30_const_double_is_zero (operands[1])
583 ? ldi_instr = \"ldi:8\" : \"ldi:32\";
585 tmp_reg = reg_names [COMPILER_SCRATCH_REGISTER];
587 sprintf (buffer, \"%s\\t#%%1, %s\\t;\\n\\tst\\t%s, %%0\\t; Created by movsf_constant_store\",
588 ldi_instr, tmp_reg, tmp_reg);
592 [(set_attr "length" "8")]
600 ;; Signed conversions from a smaller integer to a larger integer
602 (define_insn "extendqisi2"
603 [(set (match_operand:SI 0 "register_operand" "=r")
604 (sign_extend:SI (match_operand:QI 1 "register_operand" "0")))]
609 (define_insn "extendhisi2"
610 [(set (match_operand:SI 0 "register_operand" "=r")
611 (sign_extend:SI (match_operand:HI 1 "register_operand" "0")))]
616 ;; Unsigned conversions from a smaller integer to a larger integer
618 (define_insn "zero_extendqisi2"
619 [(set (match_operand:SI 0 "register_operand" "=r")
620 (zero_extend:SI (match_operand:QI 1 "register_operand" "0")))]
625 (define_insn "zero_extendhisi2"
626 [(set (match_operand:SI 0 "register_operand" "=r")
627 (zero_extend:SI (match_operand:HI 1 "register_operand" "0")))]
637 ;; This is a special pattern just for adjusting the stack size.
638 (define_insn "add_to_stack"
641 (match_operand:SI 0 "stack_add_operand" "i")))]
646 ;; We need some trickery to be able to handle the addition of
647 ;; large (i.e. outside +/- 16) constants. We need to be able to
648 ;; handle this because reload assumes that it can generate add
649 ;; instructions with arbitrary sized constants.
650 (define_expand "addsi3"
651 [(set (match_operand:SI 0 "register_operand" "")
652 (plus:SI (match_operand:SI 1 "register_operand" "")
653 (match_operand:SI 2 "nonmemory_operand" "")))]
656 if ( GET_CODE (operands[2]) == REG
657 || GET_CODE (operands[2]) == SUBREG)
658 emit_insn (gen_addsi_regs (operands[0], operands[1], operands[2]));
659 else if (GET_CODE (operands[2]) != CONST_INT)
660 emit_insn (gen_addsi_big_int (operands[0], operands[1], operands[2]));
661 else if (INTVAL (operands[2]) >= -16
662 && INTVAL (operands[2]) <= 15
663 && (!REG_P (operands[1])
664 || !REGNO_PTR_FRAME_P (REGNO (operands[1]))
665 || REGNO (operands[1]) == STACK_POINTER_REGNUM))
666 emit_insn (gen_addsi_small_int (operands[0], operands[1], operands[2]));
668 emit_insn (gen_addsi_big_int (operands[0], operands[1], operands[2]));
673 (define_insn "addsi_regs"
674 [(set (match_operand:SI 0 "register_operand" "=r")
675 (plus:SI (match_operand:SI 1 "register_operand" "%0")
676 (match_operand:SI 2 "register_operand" "r")))]
681 ;; Do not allow an eliminable register in the source register. It
682 ;; might be eliminated in favor of the stack pointer, probably
683 ;; increasing the offset, and so rendering the instruction illegal.
684 (define_insn "addsi_small_int"
685 [(set (match_operand:SI 0 "register_operand" "=r,r")
686 (plus:SI (match_operand:SI 1 "register_operand" "0,0")
687 (match_operand:SI 2 "add_immediate_operand" "I,J")))]
688 "!REG_P (operands[1])
689 || !REGNO_PTR_FRAME_P (REGNO (operands[1]))
690 || REGNO (operands[1]) == STACK_POINTER_REGNUM"
696 (define_expand "addsi_big_int"
697 [(set (match_operand:SI 0 "register_operand" "")
698 (plus:SI (match_operand:SI 1 "register_operand" "")
699 (match_operand:SI 2 "immediate_operand" "")))]
702 /* Cope with the possibility that ops 0 and 1 are the same register. */
703 if (rtx_equal_p (operands[0], operands[1]))
705 if (reload_in_progress || reload_completed)
707 rtx reg = gen_rtx_REG (SImode, 0/*COMPILER_SCRATCH_REGISTER*/);
709 emit_insn (gen_movsi (reg, operands[2]));
710 emit_insn (gen_addsi_regs (operands[0], operands[0], reg));
714 operands[2] = force_reg (SImode, operands[2]);
715 emit_insn (gen_addsi_regs (operands[0], operands[0], operands[2]));
720 emit_insn (gen_movsi (operands[0], operands[2]));
721 emit_insn (gen_addsi_regs (operands[0], operands[0], operands[1]));
727 (define_insn "*addsi_for_reload"
728 [(set (match_operand:SI 0 "register_operand" "=&r,r,r")
729 (plus:SI (match_operand:SI 1 "register_operand" "r,r,r")
730 (match_operand:SI 2 "immediate_operand" "L,M,n")))]
731 "reload_in_progress || reload_completed"
733 ldi:8\\t#%2, %0 \\n\\taddn\\t%1, %0
734 ldi:20\\t#%2, %0 \\n\\taddn\\t%1, %0
735 ldi:32\\t#%2, %0 \\n\\taddn\\t%1, %0"
736 [(set_attr "length" "4,6,8")]
742 (define_insn "subsi3"
743 [(set (match_operand:SI 0 "register_operand" "=r")
744 (minus:SI (match_operand:SI 1 "register_operand" "0")
745 (match_operand:SI 2 "register_operand" "r")))]
753 ;; Signed multiplication producing 64-bit results from 32-bit inputs
754 (define_insn "mulsidi3"
755 [(set (match_operand:DI 0 "register_operand" "=r")
756 (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "%r"))
757 (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))
758 (clobber (reg:CC 16))]
760 "mul %2, %1\\n\\tmov\\tmdh, %0\\n\\tmov\\tmdl, %p0"
761 [(set_attr "length" "6")]
764 ;; Unsigned multiplication producing 64-bit results from 32-bit inputs
765 (define_insn "umulsidi3"
766 [(set (match_operand:DI 0 "register_operand" "=r")
767 (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "%r"))
768 (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))
769 (clobber (reg:CC 16))]
771 "mulu %2, %1\\n\\tmov\\tmdh, %0\\n\\tmov\\tmdl, %p0"
772 [(set_attr "length" "6")]
775 ;; Signed multiplication producing 32-bit result from 16-bit inputs
776 (define_insn "mulhisi3"
777 [(set (match_operand:SI 0 "register_operand" "=r")
778 (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r"))
779 (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))
780 (clobber (reg:CC 16))]
782 "mulh %2, %1\\n\\tmov\\tmdl, %0"
783 [(set_attr "length" "4")]
786 ;; Unsigned multiplication producing 32-bit result from 16-bit inputs
787 (define_insn "umulhisi3"
788 [(set (match_operand:SI 0 "register_operand" "=r")
789 (mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "%r"))
790 (zero_extend:SI (match_operand:HI 2 "register_operand" "r"))))
791 (clobber (reg:CC 16))]
793 "muluh %2, %1\\n\\tmov\\tmdl, %0"
794 [(set_attr "length" "4")]
797 ;; Signed multiplication producing 32-bit result from 32-bit inputs
798 (define_insn "mulsi3"
799 [(set (match_operand:SI 0 "register_operand" "=r")
800 (mult:SI (match_operand:SI 1 "register_operand" "%r")
801 (match_operand:SI 2 "register_operand" "r")))
802 (clobber (reg:CC 16))]
804 "mul %2, %1\\n\\tmov\\tmdl, %0"
805 [(set_attr "length" "4")]
812 ;; Arithmetic Shift Left
813 (define_insn "ashlsi3"
814 [(set (match_operand:SI 0 "register_operand" "=r,r,r")
815 (ashift:SI (match_operand:SI 1 "register_operand" "0,0,0")
816 (match_operand:SI 2 "nonmemory_operand" "r,I,K")))
817 (clobber (reg:CC 16))]
825 ;; Arithmetic Shift Right
826 (define_insn "ashrsi3"
827 [(set (match_operand:SI 0 "register_operand" "=r,r,r")
828 (ashiftrt:SI (match_operand:SI 1 "register_operand" "0,0,0")
829 (match_operand:SI 2 "nonmemory_operand" "r,I,K")))
830 (clobber (reg:CC 16))]
838 ;; Logical Shift Right
839 (define_insn "lshrsi3"
840 [(set (match_operand:SI 0 "register_operand" "=r,r,r")
841 (lshiftrt:SI (match_operand:SI 1 "register_operand" "0,0,0")
842 (match_operand:SI 2 "nonmemory_operand" "r,I,K")))
843 (clobber (reg:CC 16))]
852 ;;{{{ Logical Operations
854 ;; Logical AND, 32-bit integers
855 (define_insn "andsi3"
856 [(set (match_operand:SI 0 "register_operand" "=r")
857 (and:SI (match_operand:SI 1 "register_operand" "%r")
858 (match_operand:SI 2 "register_operand" "0")))
859 (clobber (reg:CC 16))]
864 ;; Inclusive OR, 32-bit integers
865 (define_insn "iorsi3"
866 [(set (match_operand:SI 0 "register_operand" "=r")
867 (ior:SI (match_operand:SI 1 "register_operand" "%r")
868 (match_operand:SI 2 "register_operand" "0")))
869 (clobber (reg:CC 16))]
874 ;; Exclusive OR, 32-bit integers
875 (define_insn "xorsi3"
876 [(set (match_operand:SI 0 "register_operand" "=r")
877 (xor:SI (match_operand:SI 1 "register_operand" "%r")
878 (match_operand:SI 2 "register_operand" "0")))
879 (clobber (reg:CC 16))]
884 ;; One's complement, 32-bit integers
885 (define_expand "one_cmplsi2"
886 [(set (match_operand:SI 0 "register_operand" "")
887 (not:SI (match_operand:SI 1 "register_operand" "")))]
890 if (rtx_equal_p (operands[0], operands[1]))
892 if (reload_in_progress || reload_completed)
894 rtx reg = gen_rtx_REG (SImode, 0/*COMPILER_SCRATCH_REGISTER*/);
896 emit_insn (gen_movsi (reg, constm1_rtx));
897 emit_insn (gen_xorsi3 (operands[0], operands[0], reg));
901 rtx reg = gen_reg_rtx (SImode);
903 emit_insn (gen_movsi (reg, constm1_rtx));
904 emit_insn (gen_xorsi3 (operands[0], operands[0], reg));
909 emit_insn (gen_movsi_internal (operands[0], constm1_rtx));
910 emit_insn (gen_xorsi3 (operands[0], operands[1], operands[0]));
919 ;; The actual comparisons, generated by the cbranch and/or cstore expanders
921 (define_insn "*cmpsi_internal"
923 (compare:CC (match_operand:SI 0 "register_operand" "r,r,r")
924 (match_operand:SI 1 "nonmemory_operand" "r,I,J")))]
935 ;; Define_expands called by the machine independent part of the compiler
936 ;; to allocate a new comparison register
938 (define_expand "cbranchsi4"
940 (compare:CC (match_operand:SI 1 "register_operand" "")
941 (match_operand:SI 2 "nonmemory_operand" "")))
943 (if_then_else (match_operator:CC 0 "ordered_comparison_operator"
944 [(reg:CC 16) (const_int 0)])
945 (label_ref (match_operand 3 "" ""))
952 ;; Actual branches. We must allow for the (label_ref) and the (pc) to be
953 ;; swapped. If they are swapped, it reverses the sense of the branch.
955 ;; This pattern matches the (branch-if-true) branches generated above.
956 ;; It generates two different instruction sequences depending upon how
957 ;; far away the destination is.
959 ;; The calculation for the instruction length is derived as follows:
960 ;; The branch instruction has a 9-bit signed displacement so we have
961 ;; this inequality for the displacement:
965 ;; -256 + 256 <= pc + 256 < 256 + 256
967 ;; 0 <= pc + 256 < 512
969 ;; if we consider the displacement as an unsigned value, then negative
970 ;; displacements become very large positive displacements, and the
971 ;; inequality becomes:
975 ;; In order to allow for the fact that the real branch instruction works
976 ;; from pc + 2, we increase the offset to 258.
978 ;; Note - we do not have to worry about whether the branch is delayed or
979 ;; not, as branch shortening happens after delay slot reorganization.
981 (define_insn "*branch_true"
983 (if_then_else (match_operator:CC 0 "comparison_operator"
986 (label_ref (match_operand 1 "" ""))
991 if (get_attr_length (insn) == 2)
992 return \"b%b0%#\\t%l1\";
995 static char buffer [100];
996 const char * tmp_reg;
997 const char * ldi_insn;
999 tmp_reg = reg_names [COMPILER_SCRATCH_REGISTER];
1001 ldi_insn = TARGET_SMALL_MODEL ? \"ldi:20\" : \"ldi:32\";
1003 /* The code produced here is, for say the EQ case:
1011 \"b%%B0\\t1f\\t;\\n\\t%s\\t%%l1, %s\\t;\\n\\tjmp%%#\\t@%s\\t;\\n1:\",
1012 ldi_insn, tmp_reg, tmp_reg);
1017 [(set (attr "length") (if_then_else
1026 (if_then_else (eq_attr "size" "small")
1029 (set_attr "delay_type" "delayed")]
1033 ;; This pattern is a duplicate of the previous one, except that the
1034 ;; branch occurs if the test is false, so the %B operator is used.
1035 (define_insn "*branch_false"
1037 (if_then_else (match_operator:CC 0 "comparison_operator"
1041 (label_ref (match_operand 1 "" ""))))]
1045 if (get_attr_length (insn) == 2)
1046 return \"b%B0%#\\t%l1 \";
1049 static char buffer [100];
1050 const char * tmp_reg;
1051 const char * ldi_insn;
1053 tmp_reg = reg_names [COMPILER_SCRATCH_REGISTER];
1055 ldi_insn = TARGET_SMALL_MODEL ? \"ldi:20\" : \"ldi:32\";
1058 \"b%%b0\\t1f\\t;\\n\\t%s\\t%%l1, %s\\t;\\n\\tjmp%%#\\t@%s\\t;\\n1:\",
1059 ldi_insn, tmp_reg, tmp_reg);
1064 [(set (attr "length") (if_then_else (ltu (plus (minus (match_dup 1) (pc))
1068 (if_then_else (eq_attr "size" "small")
1071 (set_attr "delay_type" "delayed")]
1077 ;; Subroutine call instruction returning no value. Operand 0 is the function
1078 ;; to call; operand 1 is the number of bytes of arguments pushed (in mode
1079 ;; `SImode', except it is normally a `const_int'); operand 2 is the number of
1080 ;; registers used as operands.
1083 [(call (match_operand 0 "call_operand" "Qm")
1084 (match_operand 1 "" "g"))
1085 (clobber (reg:SI 17))]
1088 [(set_attr "delay_type" "delayed")]
1091 ;; Subroutine call instruction returning a value. Operand 0 is the hard
1092 ;; register in which the value is returned. There are three more operands, the
1093 ;; same as the three operands of the `call' instruction (but with numbers
1094 ;; increased by one).
1096 ;; Subroutines that return `BLKmode' objects use the `call' insn.
1098 (define_insn "call_value"
1099 [(set (match_operand 0 "register_operand" "=r")
1100 (call (match_operand 1 "call_operand" "Qm")
1101 (match_operand 2 "" "g")))
1102 (clobber (reg:SI 17))]
1105 [(set_attr "delay_type" "delayed")]
1108 ;; Normal unconditional jump.
1109 ;; For a description of the computation of the length
1110 ;; attribute see the branch patterns above.
1112 ;; Although this instruction really clobbers r0, flow
1113 ;; relies on jump being simplejump_p in several places
1114 ;; and as r0 is fixed, this doesn't change anything
1116 [(set (pc) (label_ref (match_operand 0 "" "")))]
1120 if (get_attr_length (insn) == 2)
1121 return \"bra%#\\t%0\";
1124 static char buffer [100];
1125 const char * tmp_reg;
1126 const char * ldi_insn;
1128 tmp_reg = reg_names [COMPILER_SCRATCH_REGISTER];
1130 ldi_insn = TARGET_SMALL_MODEL ? \"ldi:20\" : \"ldi:32\";
1132 sprintf (buffer, \"%s\\t%%0, %s\\t;\\n\\tjmp%%#\\t@%s\\t;\",
1133 ldi_insn, tmp_reg, tmp_reg);
1138 [(set (attr "length") (if_then_else (ltu (plus (minus (match_dup 0) (pc))
1142 (if_then_else (eq_attr "size" "small")
1145 (set_attr "delay_type" "delayed")]
1148 ;; Indirect jump through a register
1149 (define_insn "indirect_jump"
1150 [(set (pc) (match_operand:SI 0 "nonimmediate_operand" "r"))]
1151 "GET_CODE (operands[0]) != MEM || GET_CODE (XEXP (operands[0], 0)) != PLUS"
1153 [(set_attr "delay_type" "delayed")]
1156 (define_insn "tablejump"
1157 [(set (pc) (match_operand:SI 0 "register_operand" "r"))
1158 (use (label_ref (match_operand 1 "" "")))]
1161 [(set_attr "delay_type" "delayed")]
1165 ;;{{{ Function Prologues and Epilogues
1167 ;; Called after register allocation to add any instructions needed for the
1168 ;; prologue. Using a prologue insn is favored compared to putting all of the
1169 ;; instructions in output_function_prologue(), since it allows the scheduler
1170 ;; to intermix instructions with the saves of the caller saved registers. In
1171 ;; some cases, it might be necessary to emit a barrier instruction as the last
1172 ;; insn to prevent such scheduling.
1173 (define_expand "prologue"
1174 [(clobber (const_int 0))]
1177 fr30_expand_prologue ();
1182 ;; Called after register allocation to add any instructions needed for the
1183 ;; epilogue. Using an epilogue insn is favored compared to putting all of the
1184 ;; instructions in output_function_epilogue(), since it allows the scheduler
1185 ;; to intermix instructions with the restores of the caller saved registers.
1186 ;; In some cases, it might be necessary to emit a barrier instruction as the
1187 ;; first insn to prevent such scheduling.
1188 (define_expand "epilogue"
1192 fr30_expand_epilogue ();
1197 (define_insn "return_from_func"
1202 [(set_attr "delay_type" "delayed")]
1205 (define_insn "leave_func"
1206 [(set (reg:SI 15) (plus:SI (reg:SI 14) (const_int 4)))
1207 (set (reg:SI 14) (mem:SI (minus:SI (reg:SI 15) (const_int 4))))]
1212 (define_expand "enter_func"
1214 [(set:SI (mem:SI (minus:SI (match_dup 1)
1217 (set:SI (match_dup 2)
1218 (minus:SI (match_dup 1)
1220 (set:SI (match_dup 1)
1221 (minus:SI (match_dup 1)
1222 (match_operand:SI 0 "immediate_operand")))]
1226 operands[1] = stack_pointer_rtx;
1227 operands[2] = hard_frame_pointer_rtx;
1230 (define_insn "*enter_func"
1231 [(set:SI (mem:SI (minus:SI (reg:SI 15)
1235 (minus:SI (reg:SI 15)
1238 (minus:SI (reg:SI 15)
1239 (match_operand 0 "immediate_operand" "i")))]
1242 [(set_attr "delay_type" "other")]
1248 ;; No operation, needed in case the user uses -g but not -O.
1255 ;; Pseudo instruction that prevents the scheduler from moving code above this
1257 (define_insn "blockage"
1258 [(unspec_volatile [(const_int 0)] 0)]
1261 [(set_attr "length" "0")]