Fix change log
[official-gcc.git] / gcc / combine.c
bloba5088b0f72bcf974c3c8f84ffe84be3742f77ef8
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras;
121 /* Number of instructions combined in this function. */
123 static int combine_successes;
125 /* Totals over entire compilation. */
127 static int total_attempts, total_merges, total_extras, total_successes;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
136 static rtx i2mod;
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs;
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
258 static VEC(reg_stat_type,heap) *reg_stat;
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
263 static int mem_last_set;
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
268 static int last_call_luid;
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
276 static rtx subst_insn;
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
285 static int subst_low_luid;
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
290 static HARD_REG_SET newpat_used_regs;
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
296 static rtx added_links_insn;
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
303 /* Length of the currently allocated uid_insn_cost array. */
305 static int max_uid_known;
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
310 static int *uid_insn_cost;
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as an INSN_LIST rtx. */
315 static rtx *uid_log_links;
317 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
318 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
320 /* Incremented for each basic block. */
322 static int label_tick;
324 /* Reset to label_tick for each extended basic block in scanning order. */
326 static int label_tick_ebb_start;
328 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
329 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
331 static enum machine_mode nonzero_bits_mode;
333 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
334 be safely used. It is zero while computing them and after combine has
335 completed. This former test prevents propagating values based on
336 previously set values, which can be incorrect if a variable is modified
337 in a loop. */
339 static int nonzero_sign_valid;
342 /* Record one modification to rtl structure
343 to be undone by storing old_contents into *where. */
345 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE };
347 struct undo
349 struct undo *next;
350 enum undo_kind kind;
351 union { rtx r; int i; enum machine_mode m; } old_contents;
352 union { rtx *r; int *i; } where;
355 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
356 num_undo says how many are currently recorded.
358 other_insn is nonzero if we have modified some other insn in the process
359 of working on subst_insn. It must be verified too. */
361 struct undobuf
363 struct undo *undos;
364 struct undo *frees;
365 rtx other_insn;
368 static struct undobuf undobuf;
370 /* Number of times the pseudo being substituted for
371 was found and replaced. */
373 static int n_occurrences;
375 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
376 enum machine_mode,
377 unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
380 enum machine_mode,
381 unsigned int, unsigned int *);
382 static void do_SUBST (rtx *, rtx);
383 static void do_SUBST_INT (int *, int);
384 static void init_reg_last (void);
385 static void setup_incoming_promotions (rtx);
386 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
387 static int cant_combine_insn_p (rtx);
388 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
389 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
390 static int contains_muldiv (rtx);
391 static rtx try_combine (rtx, rtx, rtx, rtx, int *);
392 static void undo_all (void);
393 static void undo_commit (void);
394 static rtx *find_split_point (rtx *, rtx, bool);
395 static rtx subst (rtx, rtx, rtx, int, int);
396 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
397 static rtx simplify_if_then_else (rtx);
398 static rtx simplify_set (rtx);
399 static rtx simplify_logical (rtx);
400 static rtx expand_compound_operation (rtx);
401 static const_rtx expand_field_assignment (const_rtx);
402 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
403 rtx, unsigned HOST_WIDE_INT, int, int, int);
404 static rtx extract_left_shift (rtx, int);
405 static rtx make_compound_operation (rtx, enum rtx_code);
406 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
407 unsigned HOST_WIDE_INT *);
408 static rtx canon_reg_for_combine (rtx, rtx);
409 static rtx force_to_mode (rtx, enum machine_mode,
410 unsigned HOST_WIDE_INT, int);
411 static rtx if_then_else_cond (rtx, rtx *, rtx *);
412 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
413 static int rtx_equal_for_field_assignment_p (rtx, rtx);
414 static rtx make_field_assignment (rtx);
415 static rtx apply_distributive_law (rtx);
416 static rtx distribute_and_simplify_rtx (rtx, int);
417 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
418 unsigned HOST_WIDE_INT);
419 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
420 unsigned HOST_WIDE_INT);
421 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
422 HOST_WIDE_INT, enum machine_mode, int *);
423 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
424 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
425 int);
426 static int recog_for_combine (rtx *, rtx, rtx *);
427 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
428 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
429 static void update_table_tick (rtx);
430 static void record_value_for_reg (rtx, rtx, rtx);
431 static void check_promoted_subreg (rtx, rtx);
432 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
433 static void record_dead_and_set_regs (rtx);
434 static int get_last_value_validate (rtx *, rtx, int, int);
435 static rtx get_last_value (const_rtx);
436 static int use_crosses_set_p (const_rtx, int);
437 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
438 static int reg_dead_at_p (rtx, rtx);
439 static void move_deaths (rtx, rtx, int, rtx, rtx *);
440 static int reg_bitfield_target_p (rtx, rtx);
441 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
442 static void distribute_links (rtx);
443 static void mark_used_regs_combine (rtx);
444 static void record_promoted_value (rtx, rtx);
445 static int unmentioned_reg_p_1 (rtx *, void *);
446 static bool unmentioned_reg_p (rtx, rtx);
447 static int record_truncated_value (rtx *, void *);
448 static void record_truncated_values (rtx *, void *);
449 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
450 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
453 /* It is not safe to use ordinary gen_lowpart in combine.
454 See comments in gen_lowpart_for_combine. */
455 #undef RTL_HOOKS_GEN_LOWPART
456 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
458 /* Our implementation of gen_lowpart never emits a new pseudo. */
459 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
460 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
462 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
463 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
465 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
466 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
468 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
469 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
471 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
474 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
475 PATTERN can not be split. Otherwise, it returns an insn sequence.
476 This is a wrapper around split_insns which ensures that the
477 reg_stat vector is made larger if the splitter creates a new
478 register. */
480 static rtx
481 combine_split_insns (rtx pattern, rtx insn)
483 rtx ret;
484 unsigned int nregs;
486 ret = split_insns (pattern, insn);
487 nregs = max_reg_num ();
488 if (nregs > VEC_length (reg_stat_type, reg_stat))
489 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
490 return ret;
493 /* This is used by find_single_use to locate an rtx in LOC that
494 contains exactly one use of DEST, which is typically either a REG
495 or CC0. It returns a pointer to the innermost rtx expression
496 containing DEST. Appearances of DEST that are being used to
497 totally replace it are not counted. */
499 static rtx *
500 find_single_use_1 (rtx dest, rtx *loc)
502 rtx x = *loc;
503 enum rtx_code code = GET_CODE (x);
504 rtx *result = NULL;
505 rtx *this_result;
506 int i;
507 const char *fmt;
509 switch (code)
511 case CONST_INT:
512 case CONST:
513 case LABEL_REF:
514 case SYMBOL_REF:
515 case CONST_DOUBLE:
516 case CONST_VECTOR:
517 case CLOBBER:
518 return 0;
520 case SET:
521 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
522 of a REG that occupies all of the REG, the insn uses DEST if
523 it is mentioned in the destination or the source. Otherwise, we
524 need just check the source. */
525 if (GET_CODE (SET_DEST (x)) != CC0
526 && GET_CODE (SET_DEST (x)) != PC
527 && !REG_P (SET_DEST (x))
528 && ! (GET_CODE (SET_DEST (x)) == SUBREG
529 && REG_P (SUBREG_REG (SET_DEST (x)))
530 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
532 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
533 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
534 break;
536 return find_single_use_1 (dest, &SET_SRC (x));
538 case MEM:
539 case SUBREG:
540 return find_single_use_1 (dest, &XEXP (x, 0));
542 default:
543 break;
546 /* If it wasn't one of the common cases above, check each expression and
547 vector of this code. Look for a unique usage of DEST. */
549 fmt = GET_RTX_FORMAT (code);
550 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
552 if (fmt[i] == 'e')
554 if (dest == XEXP (x, i)
555 || (REG_P (dest) && REG_P (XEXP (x, i))
556 && REGNO (dest) == REGNO (XEXP (x, i))))
557 this_result = loc;
558 else
559 this_result = find_single_use_1 (dest, &XEXP (x, i));
561 if (result == NULL)
562 result = this_result;
563 else if (this_result)
564 /* Duplicate usage. */
565 return NULL;
567 else if (fmt[i] == 'E')
569 int j;
571 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
573 if (XVECEXP (x, i, j) == dest
574 || (REG_P (dest)
575 && REG_P (XVECEXP (x, i, j))
576 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
577 this_result = loc;
578 else
579 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
581 if (result == NULL)
582 result = this_result;
583 else if (this_result)
584 return NULL;
589 return result;
593 /* See if DEST, produced in INSN, is used only a single time in the
594 sequel. If so, return a pointer to the innermost rtx expression in which
595 it is used.
597 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
599 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
600 care about REG_DEAD notes or LOG_LINKS.
602 Otherwise, we find the single use by finding an insn that has a
603 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
604 only referenced once in that insn, we know that it must be the first
605 and last insn referencing DEST. */
607 static rtx *
608 find_single_use (rtx dest, rtx insn, rtx *ploc)
610 basic_block bb;
611 rtx next;
612 rtx *result;
613 rtx link;
615 #ifdef HAVE_cc0
616 if (dest == cc0_rtx)
618 next = NEXT_INSN (insn);
619 if (next == 0
620 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
621 return 0;
623 result = find_single_use_1 (dest, &PATTERN (next));
624 if (result && ploc)
625 *ploc = next;
626 return result;
628 #endif
630 if (!REG_P (dest))
631 return 0;
633 bb = BLOCK_FOR_INSN (insn);
634 for (next = NEXT_INSN (insn);
635 next && BLOCK_FOR_INSN (next) == bb;
636 next = NEXT_INSN (next))
637 if (INSN_P (next) && dead_or_set_p (next, dest))
639 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
640 if (XEXP (link, 0) == insn)
641 break;
643 if (link)
645 result = find_single_use_1 (dest, &PATTERN (next));
646 if (ploc)
647 *ploc = next;
648 return result;
652 return 0;
655 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
656 insn. The substitution can be undone by undo_all. If INTO is already
657 set to NEWVAL, do not record this change. Because computing NEWVAL might
658 also call SUBST, we have to compute it before we put anything into
659 the undo table. */
661 static void
662 do_SUBST (rtx *into, rtx newval)
664 struct undo *buf;
665 rtx oldval = *into;
667 if (oldval == newval)
668 return;
670 /* We'd like to catch as many invalid transformations here as
671 possible. Unfortunately, there are way too many mode changes
672 that are perfectly valid, so we'd waste too much effort for
673 little gain doing the checks here. Focus on catching invalid
674 transformations involving integer constants. */
675 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
676 && CONST_INT_P (newval))
678 /* Sanity check that we're replacing oldval with a CONST_INT
679 that is a valid sign-extension for the original mode. */
680 gcc_assert (INTVAL (newval)
681 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
683 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
684 CONST_INT is not valid, because after the replacement, the
685 original mode would be gone. Unfortunately, we can't tell
686 when do_SUBST is called to replace the operand thereof, so we
687 perform this test on oldval instead, checking whether an
688 invalid replacement took place before we got here. */
689 gcc_assert (!(GET_CODE (oldval) == SUBREG
690 && CONST_INT_P (SUBREG_REG (oldval))));
691 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
692 && CONST_INT_P (XEXP (oldval, 0))));
695 if (undobuf.frees)
696 buf = undobuf.frees, undobuf.frees = buf->next;
697 else
698 buf = XNEW (struct undo);
700 buf->kind = UNDO_RTX;
701 buf->where.r = into;
702 buf->old_contents.r = oldval;
703 *into = newval;
705 buf->next = undobuf.undos, undobuf.undos = buf;
708 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
710 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
711 for the value of a HOST_WIDE_INT value (including CONST_INT) is
712 not safe. */
714 static void
715 do_SUBST_INT (int *into, int newval)
717 struct undo *buf;
718 int oldval = *into;
720 if (oldval == newval)
721 return;
723 if (undobuf.frees)
724 buf = undobuf.frees, undobuf.frees = buf->next;
725 else
726 buf = XNEW (struct undo);
728 buf->kind = UNDO_INT;
729 buf->where.i = into;
730 buf->old_contents.i = oldval;
731 *into = newval;
733 buf->next = undobuf.undos, undobuf.undos = buf;
736 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
738 /* Similar to SUBST, but just substitute the mode. This is used when
739 changing the mode of a pseudo-register, so that any other
740 references to the entry in the regno_reg_rtx array will change as
741 well. */
743 static void
744 do_SUBST_MODE (rtx *into, enum machine_mode newval)
746 struct undo *buf;
747 enum machine_mode oldval = GET_MODE (*into);
749 if (oldval == newval)
750 return;
752 if (undobuf.frees)
753 buf = undobuf.frees, undobuf.frees = buf->next;
754 else
755 buf = XNEW (struct undo);
757 buf->kind = UNDO_MODE;
758 buf->where.r = into;
759 buf->old_contents.m = oldval;
760 adjust_reg_mode (*into, newval);
762 buf->next = undobuf.undos, undobuf.undos = buf;
765 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
767 /* Subroutine of try_combine. Determine whether the combine replacement
768 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
769 insn_rtx_cost that the original instruction sequence I0, I1, I2, I3 and
770 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
771 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
772 function returns false, if the costs of all instructions can be
773 estimated, and the replacements are more expensive than the original
774 sequence. */
776 static bool
777 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
778 rtx newi2pat, rtx newotherpat)
780 int i0_cost, i1_cost, i2_cost, i3_cost;
781 int new_i2_cost, new_i3_cost;
782 int old_cost, new_cost;
784 /* Lookup the original insn_rtx_costs. */
785 i2_cost = INSN_COST (i2);
786 i3_cost = INSN_COST (i3);
788 if (i1)
790 i1_cost = INSN_COST (i1);
791 if (i0)
793 i0_cost = INSN_COST (i0);
794 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
795 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
797 else
799 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
800 ? i1_cost + i2_cost + i3_cost : 0);
801 i0_cost = 0;
804 else
806 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
807 i1_cost = i0_cost = 0;
810 /* Calculate the replacement insn_rtx_costs. */
811 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
812 if (newi2pat)
814 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
815 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
816 ? new_i2_cost + new_i3_cost : 0;
818 else
820 new_cost = new_i3_cost;
821 new_i2_cost = 0;
824 if (undobuf.other_insn)
826 int old_other_cost, new_other_cost;
828 old_other_cost = INSN_COST (undobuf.other_insn);
829 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
830 if (old_other_cost > 0 && new_other_cost > 0)
832 old_cost += old_other_cost;
833 new_cost += new_other_cost;
835 else
836 old_cost = 0;
839 /* Disallow this recombination if both new_cost and old_cost are
840 greater than zero, and new_cost is greater than old cost. */
841 if (old_cost > 0
842 && new_cost > old_cost)
844 if (dump_file)
846 if (i0)
848 fprintf (dump_file,
849 "rejecting combination of insns %d, %d, %d and %d\n",
850 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
851 INSN_UID (i3));
852 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
853 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
855 else if (i1)
857 fprintf (dump_file,
858 "rejecting combination of insns %d, %d and %d\n",
859 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
860 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
861 i1_cost, i2_cost, i3_cost, old_cost);
863 else
865 fprintf (dump_file,
866 "rejecting combination of insns %d and %d\n",
867 INSN_UID (i2), INSN_UID (i3));
868 fprintf (dump_file, "original costs %d + %d = %d\n",
869 i2_cost, i3_cost, old_cost);
872 if (newi2pat)
874 fprintf (dump_file, "replacement costs %d + %d = %d\n",
875 new_i2_cost, new_i3_cost, new_cost);
877 else
878 fprintf (dump_file, "replacement cost %d\n", new_cost);
881 return false;
884 /* Update the uid_insn_cost array with the replacement costs. */
885 INSN_COST (i2) = new_i2_cost;
886 INSN_COST (i3) = new_i3_cost;
887 if (i1)
888 INSN_COST (i1) = 0;
890 return true;
894 /* Delete any insns that copy a register to itself. */
896 static void
897 delete_noop_moves (void)
899 rtx insn, next;
900 basic_block bb;
902 FOR_EACH_BB (bb)
904 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
906 next = NEXT_INSN (insn);
907 if (INSN_P (insn) && noop_move_p (insn))
909 if (dump_file)
910 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
912 delete_insn_and_edges (insn);
919 /* Fill in log links field for all insns. */
921 static void
922 create_log_links (void)
924 basic_block bb;
925 rtx *next_use, insn;
926 df_ref *def_vec, *use_vec;
928 next_use = XCNEWVEC (rtx, max_reg_num ());
930 /* Pass through each block from the end, recording the uses of each
931 register and establishing log links when def is encountered.
932 Note that we do not clear next_use array in order to save time,
933 so we have to test whether the use is in the same basic block as def.
935 There are a few cases below when we do not consider the definition or
936 usage -- these are taken from original flow.c did. Don't ask me why it is
937 done this way; I don't know and if it works, I don't want to know. */
939 FOR_EACH_BB (bb)
941 FOR_BB_INSNS_REVERSE (bb, insn)
943 if (!NONDEBUG_INSN_P (insn))
944 continue;
946 /* Log links are created only once. */
947 gcc_assert (!LOG_LINKS (insn));
949 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
951 df_ref def = *def_vec;
952 int regno = DF_REF_REGNO (def);
953 rtx use_insn;
955 if (!next_use[regno])
956 continue;
958 /* Do not consider if it is pre/post modification in MEM. */
959 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
960 continue;
962 /* Do not make the log link for frame pointer. */
963 if ((regno == FRAME_POINTER_REGNUM
964 && (! reload_completed || frame_pointer_needed))
965 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
966 || (regno == HARD_FRAME_POINTER_REGNUM
967 && (! reload_completed || frame_pointer_needed))
968 #endif
969 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
970 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
971 #endif
973 continue;
975 use_insn = next_use[regno];
976 if (BLOCK_FOR_INSN (use_insn) == bb)
978 /* flow.c claimed:
980 We don't build a LOG_LINK for hard registers contained
981 in ASM_OPERANDs. If these registers get replaced,
982 we might wind up changing the semantics of the insn,
983 even if reload can make what appear to be valid
984 assignments later. */
985 if (regno >= FIRST_PSEUDO_REGISTER
986 || asm_noperands (PATTERN (use_insn)) < 0)
988 /* Don't add duplicate links between instructions. */
989 rtx links;
990 for (links = LOG_LINKS (use_insn); links;
991 links = XEXP (links, 1))
992 if (insn == XEXP (links, 0))
993 break;
995 if (!links)
996 LOG_LINKS (use_insn) =
997 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
1000 next_use[regno] = NULL_RTX;
1003 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1005 df_ref use = *use_vec;
1006 int regno = DF_REF_REGNO (use);
1008 /* Do not consider the usage of the stack pointer
1009 by function call. */
1010 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1011 continue;
1013 next_use[regno] = insn;
1018 free (next_use);
1021 /* Clear LOG_LINKS fields of insns. */
1023 static void
1024 clear_log_links (void)
1026 rtx insn;
1028 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1029 if (INSN_P (insn))
1030 free_INSN_LIST_list (&LOG_LINKS (insn));
1033 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1034 true if we found a LOG_LINK that proves that A feeds B. This only works
1035 if there are no instructions between A and B which could have a link
1036 depending on A, since in that case we would not record a link for B. */
1038 static bool
1039 insn_a_feeds_b (rtx a, rtx b)
1041 rtx links;
1042 for (links = LOG_LINKS (b); links; links = XEXP (links, 1))
1043 if (XEXP (links, 0) == a)
1044 return true;
1045 return false;
1048 /* Main entry point for combiner. F is the first insn of the function.
1049 NREGS is the first unused pseudo-reg number.
1051 Return nonzero if the combiner has turned an indirect jump
1052 instruction into a direct jump. */
1053 static int
1054 combine_instructions (rtx f, unsigned int nregs)
1056 rtx insn, next;
1057 #ifdef HAVE_cc0
1058 rtx prev;
1059 #endif
1060 rtx links, nextlinks;
1061 rtx first;
1062 basic_block last_bb;
1064 int new_direct_jump_p = 0;
1066 for (first = f; first && !INSN_P (first); )
1067 first = NEXT_INSN (first);
1068 if (!first)
1069 return 0;
1071 combine_attempts = 0;
1072 combine_merges = 0;
1073 combine_extras = 0;
1074 combine_successes = 0;
1076 rtl_hooks = combine_rtl_hooks;
1078 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1080 init_recog_no_volatile ();
1082 /* Allocate array for insn info. */
1083 max_uid_known = get_max_uid ();
1084 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1085 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1087 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1089 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1090 problems when, for example, we have j <<= 1 in a loop. */
1092 nonzero_sign_valid = 0;
1093 label_tick = label_tick_ebb_start = 1;
1095 /* Scan all SETs and see if we can deduce anything about what
1096 bits are known to be zero for some registers and how many copies
1097 of the sign bit are known to exist for those registers.
1099 Also set any known values so that we can use it while searching
1100 for what bits are known to be set. */
1102 setup_incoming_promotions (first);
1103 /* Allow the entry block and the first block to fall into the same EBB.
1104 Conceptually the incoming promotions are assigned to the entry block. */
1105 last_bb = ENTRY_BLOCK_PTR;
1107 create_log_links ();
1108 FOR_EACH_BB (this_basic_block)
1110 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1111 last_call_luid = 0;
1112 mem_last_set = -1;
1114 label_tick++;
1115 if (!single_pred_p (this_basic_block)
1116 || single_pred (this_basic_block) != last_bb)
1117 label_tick_ebb_start = label_tick;
1118 last_bb = this_basic_block;
1120 FOR_BB_INSNS (this_basic_block, insn)
1121 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1123 subst_low_luid = DF_INSN_LUID (insn);
1124 subst_insn = insn;
1126 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1127 insn);
1128 record_dead_and_set_regs (insn);
1130 #ifdef AUTO_INC_DEC
1131 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1132 if (REG_NOTE_KIND (links) == REG_INC)
1133 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1134 insn);
1135 #endif
1137 /* Record the current insn_rtx_cost of this instruction. */
1138 if (NONJUMP_INSN_P (insn))
1139 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1140 optimize_this_for_speed_p);
1141 if (dump_file)
1142 fprintf(dump_file, "insn_cost %d: %d\n",
1143 INSN_UID (insn), INSN_COST (insn));
1147 nonzero_sign_valid = 1;
1149 /* Now scan all the insns in forward order. */
1150 label_tick = label_tick_ebb_start = 1;
1151 init_reg_last ();
1152 setup_incoming_promotions (first);
1153 last_bb = ENTRY_BLOCK_PTR;
1155 FOR_EACH_BB (this_basic_block)
1157 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1158 last_call_luid = 0;
1159 mem_last_set = -1;
1161 label_tick++;
1162 if (!single_pred_p (this_basic_block)
1163 || single_pred (this_basic_block) != last_bb)
1164 label_tick_ebb_start = label_tick;
1165 last_bb = this_basic_block;
1167 rtl_profile_for_bb (this_basic_block);
1168 for (insn = BB_HEAD (this_basic_block);
1169 insn != NEXT_INSN (BB_END (this_basic_block));
1170 insn = next ? next : NEXT_INSN (insn))
1172 next = 0;
1173 if (NONDEBUG_INSN_P (insn))
1175 /* See if we know about function return values before this
1176 insn based upon SUBREG flags. */
1177 check_promoted_subreg (insn, PATTERN (insn));
1179 /* See if we can find hardregs and subreg of pseudos in
1180 narrower modes. This could help turning TRUNCATEs
1181 into SUBREGs. */
1182 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1184 /* Try this insn with each insn it links back to. */
1186 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1187 if ((next = try_combine (insn, XEXP (links, 0), NULL_RTX,
1188 NULL_RTX, &new_direct_jump_p)) != 0)
1189 goto retry;
1191 /* Try each sequence of three linked insns ending with this one. */
1193 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1195 rtx link = XEXP (links, 0);
1197 /* If the linked insn has been replaced by a note, then there
1198 is no point in pursuing this chain any further. */
1199 if (NOTE_P (link))
1200 continue;
1202 for (nextlinks = LOG_LINKS (link);
1203 nextlinks;
1204 nextlinks = XEXP (nextlinks, 1))
1205 if ((next = try_combine (insn, link, XEXP (nextlinks, 0),
1206 NULL_RTX,
1207 &new_direct_jump_p)) != 0)
1208 goto retry;
1211 #ifdef HAVE_cc0
1212 /* Try to combine a jump insn that uses CC0
1213 with a preceding insn that sets CC0, and maybe with its
1214 logical predecessor as well.
1215 This is how we make decrement-and-branch insns.
1216 We need this special code because data flow connections
1217 via CC0 do not get entered in LOG_LINKS. */
1219 if (JUMP_P (insn)
1220 && (prev = prev_nonnote_insn (insn)) != 0
1221 && NONJUMP_INSN_P (prev)
1222 && sets_cc0_p (PATTERN (prev)))
1224 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1225 &new_direct_jump_p)) != 0)
1226 goto retry;
1228 for (nextlinks = LOG_LINKS (prev); nextlinks;
1229 nextlinks = XEXP (nextlinks, 1))
1230 if ((next = try_combine (insn, prev, XEXP (nextlinks, 0),
1231 NULL_RTX,
1232 &new_direct_jump_p)) != 0)
1233 goto retry;
1236 /* Do the same for an insn that explicitly references CC0. */
1237 if (NONJUMP_INSN_P (insn)
1238 && (prev = prev_nonnote_insn (insn)) != 0
1239 && NONJUMP_INSN_P (prev)
1240 && sets_cc0_p (PATTERN (prev))
1241 && GET_CODE (PATTERN (insn)) == SET
1242 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1244 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1245 &new_direct_jump_p)) != 0)
1246 goto retry;
1248 for (nextlinks = LOG_LINKS (prev); nextlinks;
1249 nextlinks = XEXP (nextlinks, 1))
1250 if ((next = try_combine (insn, prev, XEXP (nextlinks, 0),
1251 NULL_RTX,
1252 &new_direct_jump_p)) != 0)
1253 goto retry;
1256 /* Finally, see if any of the insns that this insn links to
1257 explicitly references CC0. If so, try this insn, that insn,
1258 and its predecessor if it sets CC0. */
1259 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1260 if (NONJUMP_INSN_P (XEXP (links, 0))
1261 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1262 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1263 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1264 && NONJUMP_INSN_P (prev)
1265 && sets_cc0_p (PATTERN (prev))
1266 && (next = try_combine (insn, XEXP (links, 0),
1267 prev, NULL_RTX,
1268 &new_direct_jump_p)) != 0)
1269 goto retry;
1270 #endif
1272 /* Try combining an insn with two different insns whose results it
1273 uses. */
1274 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1275 for (nextlinks = XEXP (links, 1); nextlinks;
1276 nextlinks = XEXP (nextlinks, 1))
1277 if ((next = try_combine (insn, XEXP (links, 0),
1278 XEXP (nextlinks, 0), NULL_RTX,
1279 &new_direct_jump_p)) != 0)
1280 goto retry;
1282 /* Try four-instruction combinations. */
1283 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1285 rtx next1;
1286 rtx link = XEXP (links, 0);
1288 /* If the linked insn has been replaced by a note, then there
1289 is no point in pursuing this chain any further. */
1290 if (NOTE_P (link))
1291 continue;
1293 for (next1 = LOG_LINKS (link); next1; next1 = XEXP (next1, 1))
1295 rtx link1 = XEXP (next1, 0);
1296 if (NOTE_P (link1))
1297 continue;
1298 /* I0 -> I1 -> I2 -> I3. */
1299 for (nextlinks = LOG_LINKS (link1); nextlinks;
1300 nextlinks = XEXP (nextlinks, 1))
1301 if ((next = try_combine (insn, link, link1,
1302 XEXP (nextlinks, 0),
1303 &new_direct_jump_p)) != 0)
1304 goto retry;
1305 /* I0, I1 -> I2, I2 -> I3. */
1306 for (nextlinks = XEXP (next1, 1); nextlinks;
1307 nextlinks = XEXP (nextlinks, 1))
1308 if ((next = try_combine (insn, link, link1,
1309 XEXP (nextlinks, 0),
1310 &new_direct_jump_p)) != 0)
1311 goto retry;
1314 for (next1 = XEXP (links, 1); next1; next1 = XEXP (next1, 1))
1316 rtx link1 = XEXP (next1, 0);
1317 if (NOTE_P (link1))
1318 continue;
1319 /* I0 -> I2; I1, I2 -> I3. */
1320 for (nextlinks = LOG_LINKS (link); nextlinks;
1321 nextlinks = XEXP (nextlinks, 1))
1322 if ((next = try_combine (insn, link, link1,
1323 XEXP (nextlinks, 0),
1324 &new_direct_jump_p)) != 0)
1325 goto retry;
1326 /* I0 -> I1; I1, I2 -> I3. */
1327 for (nextlinks = LOG_LINKS (link1); nextlinks;
1328 nextlinks = XEXP (nextlinks, 1))
1329 if ((next = try_combine (insn, link, link1,
1330 XEXP (nextlinks, 0),
1331 &new_direct_jump_p)) != 0)
1332 goto retry;
1336 /* Try this insn with each REG_EQUAL note it links back to. */
1337 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1339 rtx set, note;
1340 rtx temp = XEXP (links, 0);
1341 if ((set = single_set (temp)) != 0
1342 && (note = find_reg_equal_equiv_note (temp)) != 0
1343 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1344 /* Avoid using a register that may already been marked
1345 dead by an earlier instruction. */
1346 && ! unmentioned_reg_p (note, SET_SRC (set))
1347 && (GET_MODE (note) == VOIDmode
1348 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1349 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1351 /* Temporarily replace the set's source with the
1352 contents of the REG_EQUAL note. The insn will
1353 be deleted or recognized by try_combine. */
1354 rtx orig = SET_SRC (set);
1355 SET_SRC (set) = note;
1356 i2mod = temp;
1357 i2mod_old_rhs = copy_rtx (orig);
1358 i2mod_new_rhs = copy_rtx (note);
1359 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1360 &new_direct_jump_p);
1361 i2mod = NULL_RTX;
1362 if (next)
1363 goto retry;
1364 SET_SRC (set) = orig;
1368 if (!NOTE_P (insn))
1369 record_dead_and_set_regs (insn);
1371 retry:
1377 default_rtl_profile ();
1378 clear_log_links ();
1379 clear_bb_flags ();
1380 new_direct_jump_p |= purge_all_dead_edges ();
1381 delete_noop_moves ();
1383 /* Clean up. */
1384 free (uid_log_links);
1385 free (uid_insn_cost);
1386 VEC_free (reg_stat_type, heap, reg_stat);
1389 struct undo *undo, *next;
1390 for (undo = undobuf.frees; undo; undo = next)
1392 next = undo->next;
1393 free (undo);
1395 undobuf.frees = 0;
1398 total_attempts += combine_attempts;
1399 total_merges += combine_merges;
1400 total_extras += combine_extras;
1401 total_successes += combine_successes;
1403 nonzero_sign_valid = 0;
1404 rtl_hooks = general_rtl_hooks;
1406 /* Make recognizer allow volatile MEMs again. */
1407 init_recog ();
1409 return new_direct_jump_p;
1412 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1414 static void
1415 init_reg_last (void)
1417 unsigned int i;
1418 reg_stat_type *p;
1420 FOR_EACH_VEC_ELT (reg_stat_type, reg_stat, i, p)
1421 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1424 /* Set up any promoted values for incoming argument registers. */
1426 static void
1427 setup_incoming_promotions (rtx first)
1429 tree arg;
1430 bool strictly_local = false;
1432 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1433 arg = DECL_CHAIN (arg))
1435 rtx x, reg = DECL_INCOMING_RTL (arg);
1436 int uns1, uns3;
1437 enum machine_mode mode1, mode2, mode3, mode4;
1439 /* Only continue if the incoming argument is in a register. */
1440 if (!REG_P (reg))
1441 continue;
1443 /* Determine, if possible, whether all call sites of the current
1444 function lie within the current compilation unit. (This does
1445 take into account the exporting of a function via taking its
1446 address, and so forth.) */
1447 strictly_local = cgraph_local_info (current_function_decl)->local;
1449 /* The mode and signedness of the argument before any promotions happen
1450 (equal to the mode of the pseudo holding it at that stage). */
1451 mode1 = TYPE_MODE (TREE_TYPE (arg));
1452 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1454 /* The mode and signedness of the argument after any source language and
1455 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1456 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1457 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1459 /* The mode and signedness of the argument as it is actually passed,
1460 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1461 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1462 TREE_TYPE (cfun->decl), 0);
1464 /* The mode of the register in which the argument is being passed. */
1465 mode4 = GET_MODE (reg);
1467 /* Eliminate sign extensions in the callee when:
1468 (a) A mode promotion has occurred; */
1469 if (mode1 == mode3)
1470 continue;
1471 /* (b) The mode of the register is the same as the mode of
1472 the argument as it is passed; */
1473 if (mode3 != mode4)
1474 continue;
1475 /* (c) There's no language level extension; */
1476 if (mode1 == mode2)
1478 /* (c.1) All callers are from the current compilation unit. If that's
1479 the case we don't have to rely on an ABI, we only have to know
1480 what we're generating right now, and we know that we will do the
1481 mode1 to mode2 promotion with the given sign. */
1482 else if (!strictly_local)
1483 continue;
1484 /* (c.2) The combination of the two promotions is useful. This is
1485 true when the signs match, or if the first promotion is unsigned.
1486 In the later case, (sign_extend (zero_extend x)) is the same as
1487 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1488 else if (uns1)
1489 uns3 = true;
1490 else if (uns3)
1491 continue;
1493 /* Record that the value was promoted from mode1 to mode3,
1494 so that any sign extension at the head of the current
1495 function may be eliminated. */
1496 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1497 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1498 record_value_for_reg (reg, first, x);
1502 /* Called via note_stores. If X is a pseudo that is narrower than
1503 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1505 If we are setting only a portion of X and we can't figure out what
1506 portion, assume all bits will be used since we don't know what will
1507 be happening.
1509 Similarly, set how many bits of X are known to be copies of the sign bit
1510 at all locations in the function. This is the smallest number implied
1511 by any set of X. */
1513 static void
1514 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1516 rtx insn = (rtx) data;
1517 unsigned int num;
1519 if (REG_P (x)
1520 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1521 /* If this register is undefined at the start of the file, we can't
1522 say what its contents were. */
1523 && ! REGNO_REG_SET_P
1524 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1525 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1527 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1529 if (set == 0 || GET_CODE (set) == CLOBBER)
1531 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1532 rsp->sign_bit_copies = 1;
1533 return;
1536 /* If this register is being initialized using itself, and the
1537 register is uninitialized in this basic block, and there are
1538 no LOG_LINKS which set the register, then part of the
1539 register is uninitialized. In that case we can't assume
1540 anything about the number of nonzero bits.
1542 ??? We could do better if we checked this in
1543 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1544 could avoid making assumptions about the insn which initially
1545 sets the register, while still using the information in other
1546 insns. We would have to be careful to check every insn
1547 involved in the combination. */
1549 if (insn
1550 && reg_referenced_p (x, PATTERN (insn))
1551 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1552 REGNO (x)))
1554 rtx link;
1556 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1558 if (dead_or_set_p (XEXP (link, 0), x))
1559 break;
1561 if (!link)
1563 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1564 rsp->sign_bit_copies = 1;
1565 return;
1569 /* If this is a complex assignment, see if we can convert it into a
1570 simple assignment. */
1571 set = expand_field_assignment (set);
1573 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1574 set what we know about X. */
1576 if (SET_DEST (set) == x
1577 || (GET_CODE (SET_DEST (set)) == SUBREG
1578 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1579 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1580 && SUBREG_REG (SET_DEST (set)) == x))
1582 rtx src = SET_SRC (set);
1584 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1585 /* If X is narrower than a word and SRC is a non-negative
1586 constant that would appear negative in the mode of X,
1587 sign-extend it for use in reg_stat[].nonzero_bits because some
1588 machines (maybe most) will actually do the sign-extension
1589 and this is the conservative approach.
1591 ??? For 2.5, try to tighten up the MD files in this regard
1592 instead of this kludge. */
1594 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1595 && CONST_INT_P (src)
1596 && INTVAL (src) > 0
1597 && 0 != (INTVAL (src)
1598 & ((HOST_WIDE_INT) 1
1599 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1600 src = GEN_INT (INTVAL (src)
1601 | ((HOST_WIDE_INT) (-1)
1602 << GET_MODE_BITSIZE (GET_MODE (x))));
1603 #endif
1605 /* Don't call nonzero_bits if it cannot change anything. */
1606 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1607 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1608 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1609 if (rsp->sign_bit_copies == 0
1610 || rsp->sign_bit_copies > num)
1611 rsp->sign_bit_copies = num;
1613 else
1615 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1616 rsp->sign_bit_copies = 1;
1621 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1622 optionally insns that were previously combined into I3 or that will be
1623 combined into the merger of INSN and I3. The order is PRED, PRED2,
1624 INSN, SUCC, SUCC2, I3.
1626 Return 0 if the combination is not allowed for any reason.
1628 If the combination is allowed, *PDEST will be set to the single
1629 destination of INSN and *PSRC to the single source, and this function
1630 will return 1. */
1632 static int
1633 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1634 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1635 rtx *pdest, rtx *psrc)
1637 int i;
1638 const_rtx set = 0;
1639 rtx src, dest;
1640 rtx p;
1641 #ifdef AUTO_INC_DEC
1642 rtx link;
1643 #endif
1644 bool all_adjacent = true;
1646 if (succ)
1648 if (succ2)
1650 if (next_active_insn (succ2) != i3)
1651 all_adjacent = false;
1652 if (next_active_insn (succ) != succ2)
1653 all_adjacent = false;
1655 else if (next_active_insn (succ) != i3)
1656 all_adjacent = false;
1657 if (next_active_insn (insn) != succ)
1658 all_adjacent = false;
1660 else if (next_active_insn (insn) != i3)
1661 all_adjacent = false;
1663 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1664 or a PARALLEL consisting of such a SET and CLOBBERs.
1666 If INSN has CLOBBER parallel parts, ignore them for our processing.
1667 By definition, these happen during the execution of the insn. When it
1668 is merged with another insn, all bets are off. If they are, in fact,
1669 needed and aren't also supplied in I3, they may be added by
1670 recog_for_combine. Otherwise, it won't match.
1672 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1673 note.
1675 Get the source and destination of INSN. If more than one, can't
1676 combine. */
1678 if (GET_CODE (PATTERN (insn)) == SET)
1679 set = PATTERN (insn);
1680 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1681 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1683 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1685 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1687 switch (GET_CODE (elt))
1689 /* This is important to combine floating point insns
1690 for the SH4 port. */
1691 case USE:
1692 /* Combining an isolated USE doesn't make sense.
1693 We depend here on combinable_i3pat to reject them. */
1694 /* The code below this loop only verifies that the inputs of
1695 the SET in INSN do not change. We call reg_set_between_p
1696 to verify that the REG in the USE does not change between
1697 I3 and INSN.
1698 If the USE in INSN was for a pseudo register, the matching
1699 insn pattern will likely match any register; combining this
1700 with any other USE would only be safe if we knew that the
1701 used registers have identical values, or if there was
1702 something to tell them apart, e.g. different modes. For
1703 now, we forgo such complicated tests and simply disallow
1704 combining of USES of pseudo registers with any other USE. */
1705 if (REG_P (XEXP (elt, 0))
1706 && GET_CODE (PATTERN (i3)) == PARALLEL)
1708 rtx i3pat = PATTERN (i3);
1709 int i = XVECLEN (i3pat, 0) - 1;
1710 unsigned int regno = REGNO (XEXP (elt, 0));
1714 rtx i3elt = XVECEXP (i3pat, 0, i);
1716 if (GET_CODE (i3elt) == USE
1717 && REG_P (XEXP (i3elt, 0))
1718 && (REGNO (XEXP (i3elt, 0)) == regno
1719 ? reg_set_between_p (XEXP (elt, 0),
1720 PREV_INSN (insn), i3)
1721 : regno >= FIRST_PSEUDO_REGISTER))
1722 return 0;
1724 while (--i >= 0);
1726 break;
1728 /* We can ignore CLOBBERs. */
1729 case CLOBBER:
1730 break;
1732 case SET:
1733 /* Ignore SETs whose result isn't used but not those that
1734 have side-effects. */
1735 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1736 && insn_nothrow_p (insn)
1737 && !side_effects_p (elt))
1738 break;
1740 /* If we have already found a SET, this is a second one and
1741 so we cannot combine with this insn. */
1742 if (set)
1743 return 0;
1745 set = elt;
1746 break;
1748 default:
1749 /* Anything else means we can't combine. */
1750 return 0;
1754 if (set == 0
1755 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1756 so don't do anything with it. */
1757 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1758 return 0;
1760 else
1761 return 0;
1763 if (set == 0)
1764 return 0;
1766 set = expand_field_assignment (set);
1767 src = SET_SRC (set), dest = SET_DEST (set);
1769 /* Don't eliminate a store in the stack pointer. */
1770 if (dest == stack_pointer_rtx
1771 /* Don't combine with an insn that sets a register to itself if it has
1772 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1773 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1774 /* Can't merge an ASM_OPERANDS. */
1775 || GET_CODE (src) == ASM_OPERANDS
1776 /* Can't merge a function call. */
1777 || GET_CODE (src) == CALL
1778 /* Don't eliminate a function call argument. */
1779 || (CALL_P (i3)
1780 && (find_reg_fusage (i3, USE, dest)
1781 || (REG_P (dest)
1782 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1783 && global_regs[REGNO (dest)])))
1784 /* Don't substitute into an incremented register. */
1785 || FIND_REG_INC_NOTE (i3, dest)
1786 || (succ && FIND_REG_INC_NOTE (succ, dest))
1787 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1788 /* Don't substitute into a non-local goto, this confuses CFG. */
1789 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1790 /* Make sure that DEST is not used after SUCC but before I3. */
1791 || (!all_adjacent
1792 && ((succ2
1793 && (reg_used_between_p (dest, succ2, i3)
1794 || reg_used_between_p (dest, succ, succ2)))
1795 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1796 /* Make sure that the value that is to be substituted for the register
1797 does not use any registers whose values alter in between. However,
1798 If the insns are adjacent, a use can't cross a set even though we
1799 think it might (this can happen for a sequence of insns each setting
1800 the same destination; last_set of that register might point to
1801 a NOTE). If INSN has a REG_EQUIV note, the register is always
1802 equivalent to the memory so the substitution is valid even if there
1803 are intervening stores. Also, don't move a volatile asm or
1804 UNSPEC_VOLATILE across any other insns. */
1805 || (! all_adjacent
1806 && (((!MEM_P (src)
1807 || ! find_reg_note (insn, REG_EQUIV, src))
1808 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1809 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1810 || GET_CODE (src) == UNSPEC_VOLATILE))
1811 /* Don't combine across a CALL_INSN, because that would possibly
1812 change whether the life span of some REGs crosses calls or not,
1813 and it is a pain to update that information.
1814 Exception: if source is a constant, moving it later can't hurt.
1815 Accept that as a special case. */
1816 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1817 return 0;
1819 /* DEST must either be a REG or CC0. */
1820 if (REG_P (dest))
1822 /* If register alignment is being enforced for multi-word items in all
1823 cases except for parameters, it is possible to have a register copy
1824 insn referencing a hard register that is not allowed to contain the
1825 mode being copied and which would not be valid as an operand of most
1826 insns. Eliminate this problem by not combining with such an insn.
1828 Also, on some machines we don't want to extend the life of a hard
1829 register. */
1831 if (REG_P (src)
1832 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1833 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1834 /* Don't extend the life of a hard register unless it is
1835 user variable (if we have few registers) or it can't
1836 fit into the desired register (meaning something special
1837 is going on).
1838 Also avoid substituting a return register into I3, because
1839 reload can't handle a conflict with constraints of other
1840 inputs. */
1841 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1842 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1843 return 0;
1845 else if (GET_CODE (dest) != CC0)
1846 return 0;
1849 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1850 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1851 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1853 /* Don't substitute for a register intended as a clobberable
1854 operand. */
1855 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1856 if (rtx_equal_p (reg, dest))
1857 return 0;
1859 /* If the clobber represents an earlyclobber operand, we must not
1860 substitute an expression containing the clobbered register.
1861 As we do not analyze the constraint strings here, we have to
1862 make the conservative assumption. However, if the register is
1863 a fixed hard reg, the clobber cannot represent any operand;
1864 we leave it up to the machine description to either accept or
1865 reject use-and-clobber patterns. */
1866 if (!REG_P (reg)
1867 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1868 || !fixed_regs[REGNO (reg)])
1869 if (reg_overlap_mentioned_p (reg, src))
1870 return 0;
1873 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1874 or not), reject, unless nothing volatile comes between it and I3 */
1876 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1878 /* Make sure neither succ nor succ2 contains a volatile reference. */
1879 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1880 return 0;
1881 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1882 return 0;
1883 /* We'll check insns between INSN and I3 below. */
1886 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1887 to be an explicit register variable, and was chosen for a reason. */
1889 if (GET_CODE (src) == ASM_OPERANDS
1890 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1891 return 0;
1893 /* If there are any volatile insns between INSN and I3, reject, because
1894 they might affect machine state. */
1896 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1897 if (INSN_P (p) && p != succ && p != succ2 && volatile_insn_p (PATTERN (p)))
1898 return 0;
1900 /* If INSN contains an autoincrement or autodecrement, make sure that
1901 register is not used between there and I3, and not already used in
1902 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1903 Also insist that I3 not be a jump; if it were one
1904 and the incremented register were spilled, we would lose. */
1906 #ifdef AUTO_INC_DEC
1907 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1908 if (REG_NOTE_KIND (link) == REG_INC
1909 && (JUMP_P (i3)
1910 || reg_used_between_p (XEXP (link, 0), insn, i3)
1911 || (pred != NULL_RTX
1912 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1913 || (pred2 != NULL_RTX
1914 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1915 || (succ != NULL_RTX
1916 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1917 || (succ2 != NULL_RTX
1918 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1919 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1920 return 0;
1921 #endif
1923 #ifdef HAVE_cc0
1924 /* Don't combine an insn that follows a CC0-setting insn.
1925 An insn that uses CC0 must not be separated from the one that sets it.
1926 We do, however, allow I2 to follow a CC0-setting insn if that insn
1927 is passed as I1; in that case it will be deleted also.
1928 We also allow combining in this case if all the insns are adjacent
1929 because that would leave the two CC0 insns adjacent as well.
1930 It would be more logical to test whether CC0 occurs inside I1 or I2,
1931 but that would be much slower, and this ought to be equivalent. */
1933 p = prev_nonnote_insn (insn);
1934 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1935 && ! all_adjacent)
1936 return 0;
1937 #endif
1939 /* If we get here, we have passed all the tests and the combination is
1940 to be allowed. */
1942 *pdest = dest;
1943 *psrc = src;
1945 return 1;
1948 /* LOC is the location within I3 that contains its pattern or the component
1949 of a PARALLEL of the pattern. We validate that it is valid for combining.
1951 One problem is if I3 modifies its output, as opposed to replacing it
1952 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
1953 doing so would produce an insn that is not equivalent to the original insns.
1955 Consider:
1957 (set (reg:DI 101) (reg:DI 100))
1958 (set (subreg:SI (reg:DI 101) 0) <foo>)
1960 This is NOT equivalent to:
1962 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1963 (set (reg:DI 101) (reg:DI 100))])
1965 Not only does this modify 100 (in which case it might still be valid
1966 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1968 We can also run into a problem if I2 sets a register that I1
1969 uses and I1 gets directly substituted into I3 (not via I2). In that
1970 case, we would be getting the wrong value of I2DEST into I3, so we
1971 must reject the combination. This case occurs when I2 and I1 both
1972 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1973 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1974 of a SET must prevent combination from occurring. The same situation
1975 can occur for I0, in which case I0_NOT_IN_SRC is set.
1977 Before doing the above check, we first try to expand a field assignment
1978 into a set of logical operations.
1980 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1981 we place a register that is both set and used within I3. If more than one
1982 such register is detected, we fail.
1984 Return 1 if the combination is valid, zero otherwise. */
1986 static int
1987 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
1988 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
1990 rtx x = *loc;
1992 if (GET_CODE (x) == SET)
1994 rtx set = x ;
1995 rtx dest = SET_DEST (set);
1996 rtx src = SET_SRC (set);
1997 rtx inner_dest = dest;
1998 rtx subdest;
2000 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2001 || GET_CODE (inner_dest) == SUBREG
2002 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2003 inner_dest = XEXP (inner_dest, 0);
2005 /* Check for the case where I3 modifies its output, as discussed
2006 above. We don't want to prevent pseudos from being combined
2007 into the address of a MEM, so only prevent the combination if
2008 i1 or i2 set the same MEM. */
2009 if ((inner_dest != dest &&
2010 (!MEM_P (inner_dest)
2011 || rtx_equal_p (i2dest, inner_dest)
2012 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2013 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2014 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2015 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2016 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2018 /* This is the same test done in can_combine_p except we can't test
2019 all_adjacent; we don't have to, since this instruction will stay
2020 in place, thus we are not considering increasing the lifetime of
2021 INNER_DEST.
2023 Also, if this insn sets a function argument, combining it with
2024 something that might need a spill could clobber a previous
2025 function argument; the all_adjacent test in can_combine_p also
2026 checks this; here, we do a more specific test for this case. */
2028 || (REG_P (inner_dest)
2029 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2030 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2031 GET_MODE (inner_dest))))
2032 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2033 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2034 return 0;
2036 /* If DEST is used in I3, it is being killed in this insn, so
2037 record that for later. We have to consider paradoxical
2038 subregs here, since they kill the whole register, but we
2039 ignore partial subregs, STRICT_LOW_PART, etc.
2040 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2041 STACK_POINTER_REGNUM, since these are always considered to be
2042 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2043 subdest = dest;
2044 if (GET_CODE (subdest) == SUBREG
2045 && (GET_MODE_SIZE (GET_MODE (subdest))
2046 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2047 subdest = SUBREG_REG (subdest);
2048 if (pi3dest_killed
2049 && REG_P (subdest)
2050 && reg_referenced_p (subdest, PATTERN (i3))
2051 && REGNO (subdest) != FRAME_POINTER_REGNUM
2052 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2053 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2054 #endif
2055 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2056 && (REGNO (subdest) != ARG_POINTER_REGNUM
2057 || ! fixed_regs [REGNO (subdest)])
2058 #endif
2059 && REGNO (subdest) != STACK_POINTER_REGNUM)
2061 if (*pi3dest_killed)
2062 return 0;
2064 *pi3dest_killed = subdest;
2068 else if (GET_CODE (x) == PARALLEL)
2070 int i;
2072 for (i = 0; i < XVECLEN (x, 0); i++)
2073 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2074 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2075 return 0;
2078 return 1;
2081 /* Return 1 if X is an arithmetic expression that contains a multiplication
2082 and division. We don't count multiplications by powers of two here. */
2084 static int
2085 contains_muldiv (rtx x)
2087 switch (GET_CODE (x))
2089 case MOD: case DIV: case UMOD: case UDIV:
2090 return 1;
2092 case MULT:
2093 return ! (CONST_INT_P (XEXP (x, 1))
2094 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
2095 default:
2096 if (BINARY_P (x))
2097 return contains_muldiv (XEXP (x, 0))
2098 || contains_muldiv (XEXP (x, 1));
2100 if (UNARY_P (x))
2101 return contains_muldiv (XEXP (x, 0));
2103 return 0;
2107 /* Determine whether INSN can be used in a combination. Return nonzero if
2108 not. This is used in try_combine to detect early some cases where we
2109 can't perform combinations. */
2111 static int
2112 cant_combine_insn_p (rtx insn)
2114 rtx set;
2115 rtx src, dest;
2117 /* If this isn't really an insn, we can't do anything.
2118 This can occur when flow deletes an insn that it has merged into an
2119 auto-increment address. */
2120 if (! INSN_P (insn))
2121 return 1;
2123 /* Never combine loads and stores involving hard regs that are likely
2124 to be spilled. The register allocator can usually handle such
2125 reg-reg moves by tying. If we allow the combiner to make
2126 substitutions of likely-spilled regs, reload might die.
2127 As an exception, we allow combinations involving fixed regs; these are
2128 not available to the register allocator so there's no risk involved. */
2130 set = single_set (insn);
2131 if (! set)
2132 return 0;
2133 src = SET_SRC (set);
2134 dest = SET_DEST (set);
2135 if (GET_CODE (src) == SUBREG)
2136 src = SUBREG_REG (src);
2137 if (GET_CODE (dest) == SUBREG)
2138 dest = SUBREG_REG (dest);
2139 if (REG_P (src) && REG_P (dest)
2140 && ((HARD_REGISTER_P (src)
2141 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2142 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2143 || (HARD_REGISTER_P (dest)
2144 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2145 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2146 return 1;
2148 return 0;
2151 struct likely_spilled_retval_info
2153 unsigned regno, nregs;
2154 unsigned mask;
2157 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2158 hard registers that are known to be written to / clobbered in full. */
2159 static void
2160 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2162 struct likely_spilled_retval_info *const info =
2163 (struct likely_spilled_retval_info *) data;
2164 unsigned regno, nregs;
2165 unsigned new_mask;
2167 if (!REG_P (XEXP (set, 0)))
2168 return;
2169 regno = REGNO (x);
2170 if (regno >= info->regno + info->nregs)
2171 return;
2172 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2173 if (regno + nregs <= info->regno)
2174 return;
2175 new_mask = (2U << (nregs - 1)) - 1;
2176 if (regno < info->regno)
2177 new_mask >>= info->regno - regno;
2178 else
2179 new_mask <<= regno - info->regno;
2180 info->mask &= ~new_mask;
2183 /* Return nonzero iff part of the return value is live during INSN, and
2184 it is likely spilled. This can happen when more than one insn is needed
2185 to copy the return value, e.g. when we consider to combine into the
2186 second copy insn for a complex value. */
2188 static int
2189 likely_spilled_retval_p (rtx insn)
2191 rtx use = BB_END (this_basic_block);
2192 rtx reg, p;
2193 unsigned regno, nregs;
2194 /* We assume here that no machine mode needs more than
2195 32 hard registers when the value overlaps with a register
2196 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2197 unsigned mask;
2198 struct likely_spilled_retval_info info;
2200 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2201 return 0;
2202 reg = XEXP (PATTERN (use), 0);
2203 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2204 return 0;
2205 regno = REGNO (reg);
2206 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2207 if (nregs == 1)
2208 return 0;
2209 mask = (2U << (nregs - 1)) - 1;
2211 /* Disregard parts of the return value that are set later. */
2212 info.regno = regno;
2213 info.nregs = nregs;
2214 info.mask = mask;
2215 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2216 if (INSN_P (p))
2217 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2218 mask = info.mask;
2220 /* Check if any of the (probably) live return value registers is
2221 likely spilled. */
2222 nregs --;
2225 if ((mask & 1 << nregs)
2226 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2227 return 1;
2228 } while (nregs--);
2229 return 0;
2232 /* Adjust INSN after we made a change to its destination.
2234 Changing the destination can invalidate notes that say something about
2235 the results of the insn and a LOG_LINK pointing to the insn. */
2237 static void
2238 adjust_for_new_dest (rtx insn)
2240 /* For notes, be conservative and simply remove them. */
2241 remove_reg_equal_equiv_notes (insn);
2243 /* The new insn will have a destination that was previously the destination
2244 of an insn just above it. Call distribute_links to make a LOG_LINK from
2245 the next use of that destination. */
2246 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2248 df_insn_rescan (insn);
2251 /* Return TRUE if combine can reuse reg X in mode MODE.
2252 ADDED_SETS is nonzero if the original set is still required. */
2253 static bool
2254 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2256 unsigned int regno;
2258 if (!REG_P(x))
2259 return false;
2261 regno = REGNO (x);
2262 /* Allow hard registers if the new mode is legal, and occupies no more
2263 registers than the old mode. */
2264 if (regno < FIRST_PSEUDO_REGISTER)
2265 return (HARD_REGNO_MODE_OK (regno, mode)
2266 && (hard_regno_nregs[regno][GET_MODE (x)]
2267 >= hard_regno_nregs[regno][mode]));
2269 /* Or a pseudo that is only used once. */
2270 return (REG_N_SETS (regno) == 1 && !added_sets
2271 && !REG_USERVAR_P (x));
2275 /* Check whether X, the destination of a set, refers to part of
2276 the register specified by REG. */
2278 static bool
2279 reg_subword_p (rtx x, rtx reg)
2281 /* Check that reg is an integer mode register. */
2282 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2283 return false;
2285 if (GET_CODE (x) == STRICT_LOW_PART
2286 || GET_CODE (x) == ZERO_EXTRACT)
2287 x = XEXP (x, 0);
2289 return GET_CODE (x) == SUBREG
2290 && SUBREG_REG (x) == reg
2291 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2294 #ifdef AUTO_INC_DEC
2295 /* Replace auto-increment addressing modes with explicit operations to access
2296 the same addresses without modifying the corresponding registers. */
2298 static rtx
2299 cleanup_auto_inc_dec (rtx src, enum machine_mode mem_mode)
2301 rtx x = src;
2302 const RTX_CODE code = GET_CODE (x);
2303 int i;
2304 const char *fmt;
2306 switch (code)
2308 case REG:
2309 case CONST_INT:
2310 case CONST_DOUBLE:
2311 case CONST_FIXED:
2312 case CONST_VECTOR:
2313 case SYMBOL_REF:
2314 case CODE_LABEL:
2315 case PC:
2316 case CC0:
2317 case SCRATCH:
2318 /* SCRATCH must be shared because they represent distinct values. */
2319 return x;
2320 case CLOBBER:
2321 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2322 return x;
2323 break;
2325 case CONST:
2326 if (shared_const_p (x))
2327 return x;
2328 break;
2330 case MEM:
2331 mem_mode = GET_MODE (x);
2332 break;
2334 case PRE_INC:
2335 case PRE_DEC:
2336 gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2337 return gen_rtx_PLUS (GET_MODE (x),
2338 cleanup_auto_inc_dec (XEXP (x, 0), mem_mode),
2339 GEN_INT (code == PRE_INC
2340 ? GET_MODE_SIZE (mem_mode)
2341 : -GET_MODE_SIZE (mem_mode)));
2343 case POST_INC:
2344 case POST_DEC:
2345 case PRE_MODIFY:
2346 case POST_MODIFY:
2347 return cleanup_auto_inc_dec (code == PRE_MODIFY
2348 ? XEXP (x, 1) : XEXP (x, 0),
2349 mem_mode);
2351 default:
2352 break;
2355 /* Copy the various flags, fields, and other information. We assume
2356 that all fields need copying, and then clear the fields that should
2357 not be copied. That is the sensible default behavior, and forces
2358 us to explicitly document why we are *not* copying a flag. */
2359 x = shallow_copy_rtx (x);
2361 /* We do not copy the USED flag, which is used as a mark bit during
2362 walks over the RTL. */
2363 RTX_FLAG (x, used) = 0;
2365 /* We do not copy FRAME_RELATED for INSNs. */
2366 if (INSN_P (x))
2367 RTX_FLAG (x, frame_related) = 0;
2369 fmt = GET_RTX_FORMAT (code);
2370 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2371 if (fmt[i] == 'e')
2372 XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), mem_mode);
2373 else if (fmt[i] == 'E' || fmt[i] == 'V')
2375 int j;
2376 XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2377 for (j = 0; j < XVECLEN (x, i); j++)
2378 XVECEXP (x, i, j)
2379 = cleanup_auto_inc_dec (XVECEXP (src, i, j), mem_mode);
2382 return x;
2384 #endif
2386 /* Auxiliary data structure for propagate_for_debug_stmt. */
2388 struct rtx_subst_pair
2390 rtx to;
2391 bool adjusted;
2394 /* DATA points to an rtx_subst_pair. Return the value that should be
2395 substituted. */
2397 static rtx
2398 propagate_for_debug_subst (rtx from, const_rtx old_rtx, void *data)
2400 struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2402 if (!rtx_equal_p (from, old_rtx))
2403 return NULL_RTX;
2404 if (!pair->adjusted)
2406 pair->adjusted = true;
2407 #ifdef AUTO_INC_DEC
2408 pair->to = cleanup_auto_inc_dec (pair->to, VOIDmode);
2409 #else
2410 pair->to = copy_rtx (pair->to);
2411 #endif
2412 pair->to = make_compound_operation (pair->to, SET);
2413 return pair->to;
2415 return copy_rtx (pair->to);
2418 /* Replace all the occurrences of DEST with SRC in DEBUG_INSNs between INSN
2419 and LAST. */
2421 static void
2422 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src)
2424 rtx next, loc;
2426 struct rtx_subst_pair p;
2427 p.to = src;
2428 p.adjusted = false;
2430 next = NEXT_INSN (insn);
2431 while (next != last)
2433 insn = next;
2434 next = NEXT_INSN (insn);
2435 if (DEBUG_INSN_P (insn))
2437 loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2438 dest, propagate_for_debug_subst, &p);
2439 if (loc == INSN_VAR_LOCATION_LOC (insn))
2440 continue;
2441 INSN_VAR_LOCATION_LOC (insn) = loc;
2442 df_insn_rescan (insn);
2447 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2448 Note that the INSN should be deleted *after* removing dead edges, so
2449 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2450 but not for a (set (pc) (label_ref FOO)). */
2452 static void
2453 update_cfg_for_uncondjump (rtx insn)
2455 basic_block bb = BLOCK_FOR_INSN (insn);
2456 bool at_end = (BB_END (bb) == insn);
2458 if (at_end)
2459 purge_dead_edges (bb);
2461 delete_insn (insn);
2462 if (at_end && EDGE_COUNT (bb->succs) == 1)
2463 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2466 /* Try to combine the insns I0, I1 and I2 into I3.
2467 Here I0, I1 and I2 appear earlier than I3.
2468 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2471 If we are combining more than two insns and the resulting insn is not
2472 recognized, try splitting it into two insns. If that happens, I2 and I3
2473 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2474 Otherwise, I0, I1 and I2 are pseudo-deleted.
2476 Return 0 if the combination does not work. Then nothing is changed.
2477 If we did the combination, return the insn at which combine should
2478 resume scanning.
2480 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2481 new direct jump instruction. */
2483 static rtx
2484 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p)
2486 /* New patterns for I3 and I2, respectively. */
2487 rtx newpat, newi2pat = 0;
2488 rtvec newpat_vec_with_clobbers = 0;
2489 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2490 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2491 dead. */
2492 int added_sets_0, added_sets_1, added_sets_2;
2493 /* Total number of SETs to put into I3. */
2494 int total_sets;
2495 /* Nonzero if I2's or I1's body now appears in I3. */
2496 int i2_is_used = 0, i1_is_used = 0;
2497 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2498 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2499 /* Contains I3 if the destination of I3 is used in its source, which means
2500 that the old life of I3 is being killed. If that usage is placed into
2501 I2 and not in I3, a REG_DEAD note must be made. */
2502 rtx i3dest_killed = 0;
2503 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2504 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2505 /* Set if I2DEST was reused as a scratch register. */
2506 bool i2scratch = false;
2507 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2508 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2509 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2510 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2511 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2512 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2513 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2514 /* Notes that must be added to REG_NOTES in I3 and I2. */
2515 rtx new_i3_notes, new_i2_notes;
2516 /* Notes that we substituted I3 into I2 instead of the normal case. */
2517 int i3_subst_into_i2 = 0;
2518 /* Notes that I1, I2 or I3 is a MULT operation. */
2519 int have_mult = 0;
2520 int swap_i2i3 = 0;
2521 int changed_i3_dest = 0;
2523 int maxreg;
2524 rtx temp;
2525 rtx link;
2526 rtx other_pat = 0;
2527 rtx new_other_notes;
2528 int i;
2530 /* Only try four-insn combinations when there's high likelihood of
2531 success. Look for simple insns, such as loads of constants or
2532 binary operations involving a constant. */
2533 if (i0)
2535 int i;
2536 int ngood = 0;
2537 int nshift = 0;
2539 if (!flag_expensive_optimizations)
2540 return 0;
2542 for (i = 0; i < 4; i++)
2544 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2545 rtx set = single_set (insn);
2546 rtx src;
2547 if (!set)
2548 continue;
2549 src = SET_SRC (set);
2550 if (CONSTANT_P (src))
2552 ngood += 2;
2553 break;
2555 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2556 ngood++;
2557 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2558 || GET_CODE (src) == LSHIFTRT)
2559 nshift++;
2561 if (ngood < 2 && nshift < 2)
2562 return 0;
2565 /* Exit early if one of the insns involved can't be used for
2566 combinations. */
2567 if (cant_combine_insn_p (i3)
2568 || cant_combine_insn_p (i2)
2569 || (i1 && cant_combine_insn_p (i1))
2570 || (i0 && cant_combine_insn_p (i0))
2571 || likely_spilled_retval_p (i3))
2572 return 0;
2574 combine_attempts++;
2575 undobuf.other_insn = 0;
2577 /* Reset the hard register usage information. */
2578 CLEAR_HARD_REG_SET (newpat_used_regs);
2580 if (dump_file && (dump_flags & TDF_DETAILS))
2582 if (i0)
2583 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2584 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2585 else if (i1)
2586 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2587 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2588 else
2589 fprintf (dump_file, "\nTrying %d -> %d:\n",
2590 INSN_UID (i2), INSN_UID (i3));
2593 /* If multiple insns feed into one of I2 or I3, they can be in any
2594 order. To simplify the code below, reorder them in sequence. */
2595 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2596 temp = i2, i2 = i0, i0 = temp;
2597 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2598 temp = i1, i1 = i0, i0 = temp;
2599 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2600 temp = i1, i1 = i2, i2 = temp;
2602 added_links_insn = 0;
2604 /* First check for one important special case that the code below will
2605 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2606 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2607 we may be able to replace that destination with the destination of I3.
2608 This occurs in the common code where we compute both a quotient and
2609 remainder into a structure, in which case we want to do the computation
2610 directly into the structure to avoid register-register copies.
2612 Note that this case handles both multiple sets in I2 and also cases
2613 where I2 has a number of CLOBBERs inside the PARALLEL.
2615 We make very conservative checks below and only try to handle the
2616 most common cases of this. For example, we only handle the case
2617 where I2 and I3 are adjacent to avoid making difficult register
2618 usage tests. */
2620 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2621 && REG_P (SET_SRC (PATTERN (i3)))
2622 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2623 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2624 && GET_CODE (PATTERN (i2)) == PARALLEL
2625 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2626 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2627 below would need to check what is inside (and reg_overlap_mentioned_p
2628 doesn't support those codes anyway). Don't allow those destinations;
2629 the resulting insn isn't likely to be recognized anyway. */
2630 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2631 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2632 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2633 SET_DEST (PATTERN (i3)))
2634 && next_active_insn (i2) == i3)
2636 rtx p2 = PATTERN (i2);
2638 /* Make sure that the destination of I3,
2639 which we are going to substitute into one output of I2,
2640 is not used within another output of I2. We must avoid making this:
2641 (parallel [(set (mem (reg 69)) ...)
2642 (set (reg 69) ...)])
2643 which is not well-defined as to order of actions.
2644 (Besides, reload can't handle output reloads for this.)
2646 The problem can also happen if the dest of I3 is a memory ref,
2647 if another dest in I2 is an indirect memory ref. */
2648 for (i = 0; i < XVECLEN (p2, 0); i++)
2649 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2650 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2651 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2652 SET_DEST (XVECEXP (p2, 0, i))))
2653 break;
2655 if (i == XVECLEN (p2, 0))
2656 for (i = 0; i < XVECLEN (p2, 0); i++)
2657 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2658 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2660 combine_merges++;
2662 subst_insn = i3;
2663 subst_low_luid = DF_INSN_LUID (i2);
2665 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2666 i2src = SET_SRC (XVECEXP (p2, 0, i));
2667 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2668 i2dest_killed = dead_or_set_p (i2, i2dest);
2670 /* Replace the dest in I2 with our dest and make the resulting
2671 insn the new pattern for I3. Then skip to where we validate
2672 the pattern. Everything was set up above. */
2673 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2674 newpat = p2;
2675 i3_subst_into_i2 = 1;
2676 goto validate_replacement;
2680 /* If I2 is setting a pseudo to a constant and I3 is setting some
2681 sub-part of it to another constant, merge them by making a new
2682 constant. */
2683 if (i1 == 0
2684 && (temp = single_set (i2)) != 0
2685 && (CONST_INT_P (SET_SRC (temp))
2686 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2687 && GET_CODE (PATTERN (i3)) == SET
2688 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2689 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2690 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2692 rtx dest = SET_DEST (PATTERN (i3));
2693 int offset = -1;
2694 int width = 0;
2696 if (GET_CODE (dest) == ZERO_EXTRACT)
2698 if (CONST_INT_P (XEXP (dest, 1))
2699 && CONST_INT_P (XEXP (dest, 2)))
2701 width = INTVAL (XEXP (dest, 1));
2702 offset = INTVAL (XEXP (dest, 2));
2703 dest = XEXP (dest, 0);
2704 if (BITS_BIG_ENDIAN)
2705 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2708 else
2710 if (GET_CODE (dest) == STRICT_LOW_PART)
2711 dest = XEXP (dest, 0);
2712 width = GET_MODE_BITSIZE (GET_MODE (dest));
2713 offset = 0;
2716 if (offset >= 0)
2718 /* If this is the low part, we're done. */
2719 if (subreg_lowpart_p (dest))
2721 /* Handle the case where inner is twice the size of outer. */
2722 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2723 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2724 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2725 /* Otherwise give up for now. */
2726 else
2727 offset = -1;
2730 if (offset >= 0
2731 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2732 <= HOST_BITS_PER_DOUBLE_INT))
2734 double_int m, o, i;
2735 rtx inner = SET_SRC (PATTERN (i3));
2736 rtx outer = SET_SRC (temp);
2738 o = rtx_to_double_int (outer);
2739 i = rtx_to_double_int (inner);
2741 m = double_int_mask (width);
2742 i = double_int_and (i, m);
2743 m = double_int_lshift (m, offset, HOST_BITS_PER_DOUBLE_INT, false);
2744 i = double_int_lshift (i, offset, HOST_BITS_PER_DOUBLE_INT, false);
2745 o = double_int_ior (double_int_and_not (o, m), i);
2747 combine_merges++;
2748 subst_insn = i3;
2749 subst_low_luid = DF_INSN_LUID (i2);
2750 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2751 i2dest = SET_DEST (temp);
2752 i2dest_killed = dead_or_set_p (i2, i2dest);
2754 /* Replace the source in I2 with the new constant and make the
2755 resulting insn the new pattern for I3. Then skip to where we
2756 validate the pattern. Everything was set up above. */
2757 SUBST (SET_SRC (temp),
2758 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2760 newpat = PATTERN (i2);
2762 /* The dest of I3 has been replaced with the dest of I2. */
2763 changed_i3_dest = 1;
2764 goto validate_replacement;
2768 #ifndef HAVE_cc0
2769 /* If we have no I1 and I2 looks like:
2770 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2771 (set Y OP)])
2772 make up a dummy I1 that is
2773 (set Y OP)
2774 and change I2 to be
2775 (set (reg:CC X) (compare:CC Y (const_int 0)))
2777 (We can ignore any trailing CLOBBERs.)
2779 This undoes a previous combination and allows us to match a branch-and-
2780 decrement insn. */
2782 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2783 && XVECLEN (PATTERN (i2), 0) >= 2
2784 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2785 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2786 == MODE_CC)
2787 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2788 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2789 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2790 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2791 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2792 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2794 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2795 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2796 break;
2798 if (i == 1)
2800 /* We make I1 with the same INSN_UID as I2. This gives it
2801 the same DF_INSN_LUID for value tracking. Our fake I1 will
2802 never appear in the insn stream so giving it the same INSN_UID
2803 as I2 will not cause a problem. */
2805 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2806 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2807 INSN_LOCATOR (i2), -1, NULL_RTX);
2809 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2810 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2811 SET_DEST (PATTERN (i1)));
2814 #endif
2816 /* Verify that I2 and I1 are valid for combining. */
2817 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2818 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2819 &i1dest, &i1src))
2820 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2821 &i0dest, &i0src)))
2823 undo_all ();
2824 return 0;
2827 /* Record whether I2DEST is used in I2SRC and similarly for the other
2828 cases. Knowing this will help in register status updating below. */
2829 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2830 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2831 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2832 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2833 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2834 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2835 i2dest_killed = dead_or_set_p (i2, i2dest);
2836 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2837 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2839 /* For the earlier insns, determine which of the subsequent ones they
2840 feed. */
2841 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2842 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2843 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2844 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2845 && reg_overlap_mentioned_p (i0dest, i2src))));
2847 /* Ensure that I3's pattern can be the destination of combines. */
2848 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2849 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2850 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2851 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2852 &i3dest_killed))
2854 undo_all ();
2855 return 0;
2858 /* See if any of the insns is a MULT operation. Unless one is, we will
2859 reject a combination that is, since it must be slower. Be conservative
2860 here. */
2861 if (GET_CODE (i2src) == MULT
2862 || (i1 != 0 && GET_CODE (i1src) == MULT)
2863 || (i0 != 0 && GET_CODE (i0src) == MULT)
2864 || (GET_CODE (PATTERN (i3)) == SET
2865 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2866 have_mult = 1;
2868 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2869 We used to do this EXCEPT in one case: I3 has a post-inc in an
2870 output operand. However, that exception can give rise to insns like
2871 mov r3,(r3)+
2872 which is a famous insn on the PDP-11 where the value of r3 used as the
2873 source was model-dependent. Avoid this sort of thing. */
2875 #if 0
2876 if (!(GET_CODE (PATTERN (i3)) == SET
2877 && REG_P (SET_SRC (PATTERN (i3)))
2878 && MEM_P (SET_DEST (PATTERN (i3)))
2879 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2880 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2881 /* It's not the exception. */
2882 #endif
2883 #ifdef AUTO_INC_DEC
2884 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2885 if (REG_NOTE_KIND (link) == REG_INC
2886 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2887 || (i1 != 0
2888 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2890 undo_all ();
2891 return 0;
2893 #endif
2895 /* See if the SETs in I1 or I2 need to be kept around in the merged
2896 instruction: whenever the value set there is still needed past I3.
2897 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2899 For the SET in I1, we have two cases: If I1 and I2 independently
2900 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2901 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2902 in I1 needs to be kept around unless I1DEST dies or is set in either
2903 I2 or I3. The same consideration applies to I0. */
2905 added_sets_2 = !dead_or_set_p (i3, i2dest);
2907 if (i1)
2908 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2909 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2910 else
2911 added_sets_1 = 0;
2913 if (i0)
2914 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2915 || (i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
2916 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)));
2917 else
2918 added_sets_0 = 0;
2920 /* If the set in I2 needs to be kept around, we must make a copy of
2921 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2922 PATTERN (I2), we are only substituting for the original I1DEST, not into
2923 an already-substituted copy. This also prevents making self-referential
2924 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2925 I2DEST. */
2927 if (added_sets_2)
2929 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2930 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2931 else
2932 i2pat = copy_rtx (PATTERN (i2));
2935 if (added_sets_1)
2937 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2938 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2939 else
2940 i1pat = copy_rtx (PATTERN (i1));
2943 if (added_sets_0)
2945 if (GET_CODE (PATTERN (i0)) == PARALLEL)
2946 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
2947 else
2948 i0pat = copy_rtx (PATTERN (i0));
2951 combine_merges++;
2953 /* Substitute in the latest insn for the regs set by the earlier ones. */
2955 maxreg = max_reg_num ();
2957 subst_insn = i3;
2959 #ifndef HAVE_cc0
2960 /* Many machines that don't use CC0 have insns that can both perform an
2961 arithmetic operation and set the condition code. These operations will
2962 be represented as a PARALLEL with the first element of the vector
2963 being a COMPARE of an arithmetic operation with the constant zero.
2964 The second element of the vector will set some pseudo to the result
2965 of the same arithmetic operation. If we simplify the COMPARE, we won't
2966 match such a pattern and so will generate an extra insn. Here we test
2967 for this case, where both the comparison and the operation result are
2968 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2969 I2SRC. Later we will make the PARALLEL that contains I2. */
2971 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2972 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2973 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2974 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2976 #ifdef SELECT_CC_MODE
2977 rtx *cc_use;
2978 enum machine_mode compare_mode;
2979 #endif
2981 newpat = PATTERN (i3);
2982 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2984 i2_is_used = 1;
2986 #ifdef SELECT_CC_MODE
2987 /* See if a COMPARE with the operand we substituted in should be done
2988 with the mode that is currently being used. If not, do the same
2989 processing we do in `subst' for a SET; namely, if the destination
2990 is used only once, try to replace it with a register of the proper
2991 mode and also replace the COMPARE. */
2992 if (undobuf.other_insn == 0
2993 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2994 &undobuf.other_insn))
2995 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2996 i2src, const0_rtx))
2997 != GET_MODE (SET_DEST (newpat))))
2999 if (can_change_dest_mode (SET_DEST (newpat), added_sets_2,
3000 compare_mode))
3002 unsigned int regno = REGNO (SET_DEST (newpat));
3003 rtx new_dest;
3005 if (regno < FIRST_PSEUDO_REGISTER)
3006 new_dest = gen_rtx_REG (compare_mode, regno);
3007 else
3009 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3010 new_dest = regno_reg_rtx[regno];
3013 SUBST (SET_DEST (newpat), new_dest);
3014 SUBST (XEXP (*cc_use, 0), new_dest);
3015 SUBST (SET_SRC (newpat),
3016 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
3018 else
3019 undobuf.other_insn = 0;
3021 #endif
3023 else
3024 #endif
3026 /* It is possible that the source of I2 or I1 may be performing
3027 an unneeded operation, such as a ZERO_EXTEND of something
3028 that is known to have the high part zero. Handle that case
3029 by letting subst look at the innermost one of them.
3031 Another way to do this would be to have a function that tries
3032 to simplify a single insn instead of merging two or more
3033 insns. We don't do this because of the potential of infinite
3034 loops and because of the potential extra memory required.
3035 However, doing it the way we are is a bit of a kludge and
3036 doesn't catch all cases.
3038 But only do this if -fexpensive-optimizations since it slows
3039 things down and doesn't usually win.
3041 This is not done in the COMPARE case above because the
3042 unmodified I2PAT is used in the PARALLEL and so a pattern
3043 with a modified I2SRC would not match. */
3045 if (flag_expensive_optimizations)
3047 /* Pass pc_rtx so no substitutions are done, just
3048 simplifications. */
3049 if (i1)
3051 subst_low_luid = DF_INSN_LUID (i1);
3052 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
3054 else
3056 subst_low_luid = DF_INSN_LUID (i2);
3057 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
3061 n_occurrences = 0; /* `subst' counts here */
3063 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a
3064 unique copy of I2SRC each time we substitute it to avoid
3065 self-referential rtl. */
3067 subst_low_luid = DF_INSN_LUID (i2);
3068 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
3069 ((i1_feeds_i2_n && i1dest_in_i1src)
3070 || (i0_feeds_i2_n && i0dest_in_i0src)));
3071 substed_i2 = 1;
3073 /* Record whether i2's body now appears within i3's body. */
3074 i2_is_used = n_occurrences;
3077 /* If we already got a failure, don't try to do more. Otherwise,
3078 try to substitute in I1 if we have it. */
3080 if (i1 && GET_CODE (newpat) != CLOBBER)
3082 /* Check that an autoincrement side-effect on I1 has not been lost.
3083 This happens if I1DEST is mentioned in I2 and dies there, and
3084 has disappeared from the new pattern. */
3085 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3086 && i1_feeds_i2_n
3087 && dead_or_set_p (i2, i1dest)
3088 && !reg_overlap_mentioned_p (i1dest, newpat))
3089 /* Before we can do this substitution, we must redo the test done
3090 above (see detailed comments there) that ensures that I1DEST
3091 isn't mentioned in any SETs in NEWPAT that are field assignments. */
3092 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3093 0, 0, 0))
3095 undo_all ();
3096 return 0;
3099 n_occurrences = 0;
3100 subst_low_luid = DF_INSN_LUID (i1);
3101 newpat = subst (newpat, i1dest, i1src, 0,
3102 i0_feeds_i1_n && i0dest_in_i0src);
3103 substed_i1 = 1;
3104 i1_is_used = n_occurrences;
3106 if (i0 && GET_CODE (newpat) != CLOBBER)
3108 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3109 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3110 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3111 && !reg_overlap_mentioned_p (i0dest, newpat))
3112 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3113 0, 0, 0))
3115 undo_all ();
3116 return 0;
3119 n_occurrences = 0;
3120 subst_low_luid = DF_INSN_LUID (i0);
3121 newpat = subst (newpat, i0dest, i0src, 0,
3122 i0_feeds_i1_n && i0dest_in_i0src);
3123 substed_i0 = 1;
3126 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3127 to count all the ways that I2SRC and I1SRC can be used. */
3128 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3129 && i2_is_used + added_sets_2 > 1)
3130 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3131 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3132 > 1))
3133 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3134 && (n_occurrences + added_sets_0
3135 + (added_sets_1 && i0_feeds_i1_n)
3136 + (added_sets_2 && i0_feeds_i2_n)
3137 > 1))
3138 /* Fail if we tried to make a new register. */
3139 || max_reg_num () != maxreg
3140 /* Fail if we couldn't do something and have a CLOBBER. */
3141 || GET_CODE (newpat) == CLOBBER
3142 /* Fail if this new pattern is a MULT and we didn't have one before
3143 at the outer level. */
3144 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3145 && ! have_mult))
3147 undo_all ();
3148 return 0;
3151 /* If the actions of the earlier insns must be kept
3152 in addition to substituting them into the latest one,
3153 we must make a new PARALLEL for the latest insn
3154 to hold additional the SETs. */
3156 if (added_sets_0 || added_sets_1 || added_sets_2)
3158 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3159 combine_extras++;
3161 if (GET_CODE (newpat) == PARALLEL)
3163 rtvec old = XVEC (newpat, 0);
3164 total_sets = XVECLEN (newpat, 0) + extra_sets;
3165 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3166 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3167 sizeof (old->elem[0]) * old->num_elem);
3169 else
3171 rtx old = newpat;
3172 total_sets = 1 + extra_sets;
3173 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3174 XVECEXP (newpat, 0, 0) = old;
3177 if (added_sets_0)
3178 XVECEXP (newpat, 0, --total_sets) = i0pat;
3180 if (added_sets_1)
3182 rtx t = i1pat;
3183 if (i0_feeds_i1_n)
3184 t = subst (t, i0dest, i0src, 0, 0);
3186 XVECEXP (newpat, 0, --total_sets) = t;
3188 if (added_sets_2)
3190 rtx t = i2pat;
3191 if (i0_feeds_i2_n)
3192 t = subst (t, i0dest, i0src, 0, 0);
3193 if (i1_feeds_i2_n)
3194 t = subst (t, i1dest, i1src, 0, 0);
3196 XVECEXP (newpat, 0, --total_sets) = t;
3200 validate_replacement:
3202 /* Note which hard regs this insn has as inputs. */
3203 mark_used_regs_combine (newpat);
3205 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3206 consider splitting this pattern, we might need these clobbers. */
3207 if (i1 && GET_CODE (newpat) == PARALLEL
3208 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3210 int len = XVECLEN (newpat, 0);
3212 newpat_vec_with_clobbers = rtvec_alloc (len);
3213 for (i = 0; i < len; i++)
3214 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3217 /* Is the result of combination a valid instruction? */
3218 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3220 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3221 the second SET's destination is a register that is unused and isn't
3222 marked as an instruction that might trap in an EH region. In that case,
3223 we just need the first SET. This can occur when simplifying a divmod
3224 insn. We *must* test for this case here because the code below that
3225 splits two independent SETs doesn't handle this case correctly when it
3226 updates the register status.
3228 It's pointless doing this if we originally had two sets, one from
3229 i3, and one from i2. Combining then splitting the parallel results
3230 in the original i2 again plus an invalid insn (which we delete).
3231 The net effect is only to move instructions around, which makes
3232 debug info less accurate.
3234 Also check the case where the first SET's destination is unused.
3235 That would not cause incorrect code, but does cause an unneeded
3236 insn to remain. */
3238 if (insn_code_number < 0
3239 && !(added_sets_2 && i1 == 0)
3240 && GET_CODE (newpat) == PARALLEL
3241 && XVECLEN (newpat, 0) == 2
3242 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3243 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3244 && asm_noperands (newpat) < 0)
3246 rtx set0 = XVECEXP (newpat, 0, 0);
3247 rtx set1 = XVECEXP (newpat, 0, 1);
3249 if (((REG_P (SET_DEST (set1))
3250 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3251 || (GET_CODE (SET_DEST (set1)) == SUBREG
3252 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3253 && insn_nothrow_p (i3)
3254 && !side_effects_p (SET_SRC (set1)))
3256 newpat = set0;
3257 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3260 else if (((REG_P (SET_DEST (set0))
3261 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3262 || (GET_CODE (SET_DEST (set0)) == SUBREG
3263 && find_reg_note (i3, REG_UNUSED,
3264 SUBREG_REG (SET_DEST (set0)))))
3265 && insn_nothrow_p (i3)
3266 && !side_effects_p (SET_SRC (set0)))
3268 newpat = set1;
3269 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3271 if (insn_code_number >= 0)
3272 changed_i3_dest = 1;
3276 /* If we were combining three insns and the result is a simple SET
3277 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3278 insns. There are two ways to do this. It can be split using a
3279 machine-specific method (like when you have an addition of a large
3280 constant) or by combine in the function find_split_point. */
3282 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3283 && asm_noperands (newpat) < 0)
3285 rtx parallel, m_split, *split;
3287 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3288 use I2DEST as a scratch register will help. In the latter case,
3289 convert I2DEST to the mode of the source of NEWPAT if we can. */
3291 m_split = combine_split_insns (newpat, i3);
3293 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3294 inputs of NEWPAT. */
3296 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3297 possible to try that as a scratch reg. This would require adding
3298 more code to make it work though. */
3300 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3302 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3304 /* First try to split using the original register as a
3305 scratch register. */
3306 parallel = gen_rtx_PARALLEL (VOIDmode,
3307 gen_rtvec (2, newpat,
3308 gen_rtx_CLOBBER (VOIDmode,
3309 i2dest)));
3310 m_split = combine_split_insns (parallel, i3);
3312 /* If that didn't work, try changing the mode of I2DEST if
3313 we can. */
3314 if (m_split == 0
3315 && new_mode != GET_MODE (i2dest)
3316 && new_mode != VOIDmode
3317 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3319 enum machine_mode old_mode = GET_MODE (i2dest);
3320 rtx ni2dest;
3322 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3323 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3324 else
3326 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3327 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3330 parallel = (gen_rtx_PARALLEL
3331 (VOIDmode,
3332 gen_rtvec (2, newpat,
3333 gen_rtx_CLOBBER (VOIDmode,
3334 ni2dest))));
3335 m_split = combine_split_insns (parallel, i3);
3337 if (m_split == 0
3338 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3340 struct undo *buf;
3342 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3343 buf = undobuf.undos;
3344 undobuf.undos = buf->next;
3345 buf->next = undobuf.frees;
3346 undobuf.frees = buf;
3350 i2scratch = m_split != 0;
3353 /* If recog_for_combine has discarded clobbers, try to use them
3354 again for the split. */
3355 if (m_split == 0 && newpat_vec_with_clobbers)
3357 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3358 m_split = combine_split_insns (parallel, i3);
3361 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3363 m_split = PATTERN (m_split);
3364 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3365 if (insn_code_number >= 0)
3366 newpat = m_split;
3368 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3369 && (next_real_insn (i2) == i3
3370 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3372 rtx i2set, i3set;
3373 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3374 newi2pat = PATTERN (m_split);
3376 i3set = single_set (NEXT_INSN (m_split));
3377 i2set = single_set (m_split);
3379 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3381 /* If I2 or I3 has multiple SETs, we won't know how to track
3382 register status, so don't use these insns. If I2's destination
3383 is used between I2 and I3, we also can't use these insns. */
3385 if (i2_code_number >= 0 && i2set && i3set
3386 && (next_real_insn (i2) == i3
3387 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3388 insn_code_number = recog_for_combine (&newi3pat, i3,
3389 &new_i3_notes);
3390 if (insn_code_number >= 0)
3391 newpat = newi3pat;
3393 /* It is possible that both insns now set the destination of I3.
3394 If so, we must show an extra use of it. */
3396 if (insn_code_number >= 0)
3398 rtx new_i3_dest = SET_DEST (i3set);
3399 rtx new_i2_dest = SET_DEST (i2set);
3401 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3402 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3403 || GET_CODE (new_i3_dest) == SUBREG)
3404 new_i3_dest = XEXP (new_i3_dest, 0);
3406 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3407 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3408 || GET_CODE (new_i2_dest) == SUBREG)
3409 new_i2_dest = XEXP (new_i2_dest, 0);
3411 if (REG_P (new_i3_dest)
3412 && REG_P (new_i2_dest)
3413 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3414 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3418 /* If we can split it and use I2DEST, go ahead and see if that
3419 helps things be recognized. Verify that none of the registers
3420 are set between I2 and I3. */
3421 if (insn_code_number < 0
3422 && (split = find_split_point (&newpat, i3, false)) != 0
3423 #ifdef HAVE_cc0
3424 && REG_P (i2dest)
3425 #endif
3426 /* We need I2DEST in the proper mode. If it is a hard register
3427 or the only use of a pseudo, we can change its mode.
3428 Make sure we don't change a hard register to have a mode that
3429 isn't valid for it, or change the number of registers. */
3430 && (GET_MODE (*split) == GET_MODE (i2dest)
3431 || GET_MODE (*split) == VOIDmode
3432 || can_change_dest_mode (i2dest, added_sets_2,
3433 GET_MODE (*split)))
3434 && (next_real_insn (i2) == i3
3435 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3436 /* We can't overwrite I2DEST if its value is still used by
3437 NEWPAT. */
3438 && ! reg_referenced_p (i2dest, newpat))
3440 rtx newdest = i2dest;
3441 enum rtx_code split_code = GET_CODE (*split);
3442 enum machine_mode split_mode = GET_MODE (*split);
3443 bool subst_done = false;
3444 newi2pat = NULL_RTX;
3446 i2scratch = true;
3448 /* *SPLIT may be part of I2SRC, so make sure we have the
3449 original expression around for later debug processing.
3450 We should not need I2SRC any more in other cases. */
3451 if (MAY_HAVE_DEBUG_INSNS)
3452 i2src = copy_rtx (i2src);
3453 else
3454 i2src = NULL;
3456 /* Get NEWDEST as a register in the proper mode. We have already
3457 validated that we can do this. */
3458 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3460 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3461 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3462 else
3464 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3465 newdest = regno_reg_rtx[REGNO (i2dest)];
3469 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3470 an ASHIFT. This can occur if it was inside a PLUS and hence
3471 appeared to be a memory address. This is a kludge. */
3472 if (split_code == MULT
3473 && CONST_INT_P (XEXP (*split, 1))
3474 && INTVAL (XEXP (*split, 1)) > 0
3475 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3477 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3478 XEXP (*split, 0), GEN_INT (i)));
3479 /* Update split_code because we may not have a multiply
3480 anymore. */
3481 split_code = GET_CODE (*split);
3484 #ifdef INSN_SCHEDULING
3485 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3486 be written as a ZERO_EXTEND. */
3487 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3489 #ifdef LOAD_EXTEND_OP
3490 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3491 what it really is. */
3492 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3493 == SIGN_EXTEND)
3494 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3495 SUBREG_REG (*split)));
3496 else
3497 #endif
3498 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3499 SUBREG_REG (*split)));
3501 #endif
3503 /* Attempt to split binary operators using arithmetic identities. */
3504 if (BINARY_P (SET_SRC (newpat))
3505 && split_mode == GET_MODE (SET_SRC (newpat))
3506 && ! side_effects_p (SET_SRC (newpat)))
3508 rtx setsrc = SET_SRC (newpat);
3509 enum machine_mode mode = GET_MODE (setsrc);
3510 enum rtx_code code = GET_CODE (setsrc);
3511 rtx src_op0 = XEXP (setsrc, 0);
3512 rtx src_op1 = XEXP (setsrc, 1);
3514 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3515 if (rtx_equal_p (src_op0, src_op1))
3517 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3518 SUBST (XEXP (setsrc, 0), newdest);
3519 SUBST (XEXP (setsrc, 1), newdest);
3520 subst_done = true;
3522 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3523 else if ((code == PLUS || code == MULT)
3524 && GET_CODE (src_op0) == code
3525 && GET_CODE (XEXP (src_op0, 0)) == code
3526 && (INTEGRAL_MODE_P (mode)
3527 || (FLOAT_MODE_P (mode)
3528 && flag_unsafe_math_optimizations)))
3530 rtx p = XEXP (XEXP (src_op0, 0), 0);
3531 rtx q = XEXP (XEXP (src_op0, 0), 1);
3532 rtx r = XEXP (src_op0, 1);
3533 rtx s = src_op1;
3535 /* Split both "((X op Y) op X) op Y" and
3536 "((X op Y) op Y) op X" as "T op T" where T is
3537 "X op Y". */
3538 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3539 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3541 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3542 XEXP (src_op0, 0));
3543 SUBST (XEXP (setsrc, 0), newdest);
3544 SUBST (XEXP (setsrc, 1), newdest);
3545 subst_done = true;
3547 /* Split "((X op X) op Y) op Y)" as "T op T" where
3548 T is "X op Y". */
3549 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3551 rtx tmp = simplify_gen_binary (code, mode, p, r);
3552 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3553 SUBST (XEXP (setsrc, 0), newdest);
3554 SUBST (XEXP (setsrc, 1), newdest);
3555 subst_done = true;
3560 if (!subst_done)
3562 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3563 SUBST (*split, newdest);
3566 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3568 /* recog_for_combine might have added CLOBBERs to newi2pat.
3569 Make sure NEWPAT does not depend on the clobbered regs. */
3570 if (GET_CODE (newi2pat) == PARALLEL)
3571 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3572 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3574 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3575 if (reg_overlap_mentioned_p (reg, newpat))
3577 undo_all ();
3578 return 0;
3582 /* If the split point was a MULT and we didn't have one before,
3583 don't use one now. */
3584 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3585 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3589 /* Check for a case where we loaded from memory in a narrow mode and
3590 then sign extended it, but we need both registers. In that case,
3591 we have a PARALLEL with both loads from the same memory location.
3592 We can split this into a load from memory followed by a register-register
3593 copy. This saves at least one insn, more if register allocation can
3594 eliminate the copy.
3596 We cannot do this if the destination of the first assignment is a
3597 condition code register or cc0. We eliminate this case by making sure
3598 the SET_DEST and SET_SRC have the same mode.
3600 We cannot do this if the destination of the second assignment is
3601 a register that we have already assumed is zero-extended. Similarly
3602 for a SUBREG of such a register. */
3604 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3605 && GET_CODE (newpat) == PARALLEL
3606 && XVECLEN (newpat, 0) == 2
3607 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3608 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3609 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3610 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3611 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3612 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3613 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3614 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3615 DF_INSN_LUID (i2))
3616 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3617 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3618 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3619 (REG_P (temp)
3620 && VEC_index (reg_stat_type, reg_stat,
3621 REGNO (temp))->nonzero_bits != 0
3622 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3623 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3624 && (VEC_index (reg_stat_type, reg_stat,
3625 REGNO (temp))->nonzero_bits
3626 != GET_MODE_MASK (word_mode))))
3627 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3628 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3629 (REG_P (temp)
3630 && VEC_index (reg_stat_type, reg_stat,
3631 REGNO (temp))->nonzero_bits != 0
3632 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3633 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3634 && (VEC_index (reg_stat_type, reg_stat,
3635 REGNO (temp))->nonzero_bits
3636 != GET_MODE_MASK (word_mode)))))
3637 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3638 SET_SRC (XVECEXP (newpat, 0, 1)))
3639 && ! find_reg_note (i3, REG_UNUSED,
3640 SET_DEST (XVECEXP (newpat, 0, 0))))
3642 rtx ni2dest;
3644 newi2pat = XVECEXP (newpat, 0, 0);
3645 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3646 newpat = XVECEXP (newpat, 0, 1);
3647 SUBST (SET_SRC (newpat),
3648 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3649 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3651 if (i2_code_number >= 0)
3652 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3654 if (insn_code_number >= 0)
3655 swap_i2i3 = 1;
3658 /* Similarly, check for a case where we have a PARALLEL of two independent
3659 SETs but we started with three insns. In this case, we can do the sets
3660 as two separate insns. This case occurs when some SET allows two
3661 other insns to combine, but the destination of that SET is still live. */
3663 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3664 && GET_CODE (newpat) == PARALLEL
3665 && XVECLEN (newpat, 0) == 2
3666 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3667 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3668 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3669 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3670 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3671 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3672 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3673 XVECEXP (newpat, 0, 0))
3674 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3675 XVECEXP (newpat, 0, 1))
3676 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3677 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3679 /* Normally, it doesn't matter which of the two is done first,
3680 but the one that references cc0 can't be the second, and
3681 one which uses any regs/memory set in between i2 and i3 can't
3682 be first. */
3683 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3684 DF_INSN_LUID (i2))
3685 #ifdef HAVE_cc0
3686 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3687 #endif
3690 newi2pat = XVECEXP (newpat, 0, 1);
3691 newpat = XVECEXP (newpat, 0, 0);
3693 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3694 DF_INSN_LUID (i2))
3695 #ifdef HAVE_cc0
3696 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3697 #endif
3700 newi2pat = XVECEXP (newpat, 0, 0);
3701 newpat = XVECEXP (newpat, 0, 1);
3703 else
3705 undo_all ();
3706 return 0;
3709 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3711 if (i2_code_number >= 0)
3713 /* recog_for_combine might have added CLOBBERs to newi2pat.
3714 Make sure NEWPAT does not depend on the clobbered regs. */
3715 if (GET_CODE (newi2pat) == PARALLEL)
3717 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3718 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3720 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3721 if (reg_overlap_mentioned_p (reg, newpat))
3723 undo_all ();
3724 return 0;
3729 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3733 /* If it still isn't recognized, fail and change things back the way they
3734 were. */
3735 if ((insn_code_number < 0
3736 /* Is the result a reasonable ASM_OPERANDS? */
3737 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3739 undo_all ();
3740 return 0;
3743 /* If we had to change another insn, make sure it is valid also. */
3744 if (undobuf.other_insn)
3746 CLEAR_HARD_REG_SET (newpat_used_regs);
3748 other_pat = PATTERN (undobuf.other_insn);
3749 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3750 &new_other_notes);
3752 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3754 undo_all ();
3755 return 0;
3759 #ifdef HAVE_cc0
3760 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3761 they are adjacent to each other or not. */
3763 rtx p = prev_nonnote_insn (i3);
3764 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3765 && sets_cc0_p (newi2pat))
3767 undo_all ();
3768 return 0;
3771 #endif
3773 /* Only allow this combination if insn_rtx_costs reports that the
3774 replacement instructions are cheaper than the originals. */
3775 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3777 undo_all ();
3778 return 0;
3781 if (MAY_HAVE_DEBUG_INSNS)
3783 struct undo *undo;
3785 for (undo = undobuf.undos; undo; undo = undo->next)
3786 if (undo->kind == UNDO_MODE)
3788 rtx reg = *undo->where.r;
3789 enum machine_mode new_mode = GET_MODE (reg);
3790 enum machine_mode old_mode = undo->old_contents.m;
3792 /* Temporarily revert mode back. */
3793 adjust_reg_mode (reg, old_mode);
3795 if (reg == i2dest && i2scratch)
3797 /* If we used i2dest as a scratch register with a
3798 different mode, substitute it for the original
3799 i2src while its original mode is temporarily
3800 restored, and then clear i2scratch so that we don't
3801 do it again later. */
3802 propagate_for_debug (i2, i3, reg, i2src);
3803 i2scratch = false;
3804 /* Put back the new mode. */
3805 adjust_reg_mode (reg, new_mode);
3807 else
3809 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3810 rtx first, last;
3812 if (reg == i2dest)
3814 first = i2;
3815 last = i3;
3817 else
3819 first = i3;
3820 last = undobuf.other_insn;
3821 gcc_assert (last);
3824 /* We're dealing with a reg that changed mode but not
3825 meaning, so we want to turn it into a subreg for
3826 the new mode. However, because of REG sharing and
3827 because its mode had already changed, we have to do
3828 it in two steps. First, replace any debug uses of
3829 reg, with its original mode temporarily restored,
3830 with this copy we have created; then, replace the
3831 copy with the SUBREG of the original shared reg,
3832 once again changed to the new mode. */
3833 propagate_for_debug (first, last, reg, tempreg);
3834 adjust_reg_mode (reg, new_mode);
3835 propagate_for_debug (first, last, tempreg,
3836 lowpart_subreg (old_mode, reg, new_mode));
3841 /* If we will be able to accept this, we have made a
3842 change to the destination of I3. This requires us to
3843 do a few adjustments. */
3845 if (changed_i3_dest)
3847 PATTERN (i3) = newpat;
3848 adjust_for_new_dest (i3);
3851 /* We now know that we can do this combination. Merge the insns and
3852 update the status of registers and LOG_LINKS. */
3854 if (undobuf.other_insn)
3856 rtx note, next;
3858 PATTERN (undobuf.other_insn) = other_pat;
3860 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3861 are still valid. Then add any non-duplicate notes added by
3862 recog_for_combine. */
3863 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3865 next = XEXP (note, 1);
3867 if (REG_NOTE_KIND (note) == REG_UNUSED
3868 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3869 remove_note (undobuf.other_insn, note);
3872 distribute_notes (new_other_notes, undobuf.other_insn,
3873 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
3874 NULL_RTX);
3877 if (swap_i2i3)
3879 rtx insn;
3880 rtx link;
3881 rtx ni2dest;
3883 /* I3 now uses what used to be its destination and which is now
3884 I2's destination. This requires us to do a few adjustments. */
3885 PATTERN (i3) = newpat;
3886 adjust_for_new_dest (i3);
3888 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3889 so we still will.
3891 However, some later insn might be using I2's dest and have
3892 a LOG_LINK pointing at I3. We must remove this link.
3893 The simplest way to remove the link is to point it at I1,
3894 which we know will be a NOTE. */
3896 /* newi2pat is usually a SET here; however, recog_for_combine might
3897 have added some clobbers. */
3898 if (GET_CODE (newi2pat) == PARALLEL)
3899 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3900 else
3901 ni2dest = SET_DEST (newi2pat);
3903 for (insn = NEXT_INSN (i3);
3904 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3905 || insn != BB_HEAD (this_basic_block->next_bb));
3906 insn = NEXT_INSN (insn))
3908 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3910 for (link = LOG_LINKS (insn); link;
3911 link = XEXP (link, 1))
3912 if (XEXP (link, 0) == i3)
3913 XEXP (link, 0) = i1;
3915 break;
3921 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
3922 rtx i3links, i2links, i1links = 0, i0links = 0;
3923 rtx midnotes = 0;
3924 int from_luid;
3925 unsigned int regno;
3926 /* Compute which registers we expect to eliminate. newi2pat may be setting
3927 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3928 same as i3dest, in which case newi2pat may be setting i1dest. */
3929 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3930 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
3931 || !i2dest_killed
3932 ? 0 : i2dest);
3933 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
3934 || (newi2pat && reg_set_p (i1dest, newi2pat))
3935 || !i1dest_killed
3936 ? 0 : i1dest);
3937 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
3938 || (newi2pat && reg_set_p (i0dest, newi2pat))
3939 || !i0dest_killed
3940 ? 0 : i0dest);
3942 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3943 clear them. */
3944 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3945 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3946 if (i1)
3947 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3948 if (i0)
3949 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
3951 /* Ensure that we do not have something that should not be shared but
3952 occurs multiple times in the new insns. Check this by first
3953 resetting all the `used' flags and then copying anything is shared. */
3955 reset_used_flags (i3notes);
3956 reset_used_flags (i2notes);
3957 reset_used_flags (i1notes);
3958 reset_used_flags (i0notes);
3959 reset_used_flags (newpat);
3960 reset_used_flags (newi2pat);
3961 if (undobuf.other_insn)
3962 reset_used_flags (PATTERN (undobuf.other_insn));
3964 i3notes = copy_rtx_if_shared (i3notes);
3965 i2notes = copy_rtx_if_shared (i2notes);
3966 i1notes = copy_rtx_if_shared (i1notes);
3967 i0notes = copy_rtx_if_shared (i0notes);
3968 newpat = copy_rtx_if_shared (newpat);
3969 newi2pat = copy_rtx_if_shared (newi2pat);
3970 if (undobuf.other_insn)
3971 reset_used_flags (PATTERN (undobuf.other_insn));
3973 INSN_CODE (i3) = insn_code_number;
3974 PATTERN (i3) = newpat;
3976 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3978 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3980 reset_used_flags (call_usage);
3981 call_usage = copy_rtx (call_usage);
3983 if (substed_i2)
3985 /* I2SRC must still be meaningful at this point. Some splitting
3986 operations can invalidate I2SRC, but those operations do not
3987 apply to calls. */
3988 gcc_assert (i2src);
3989 replace_rtx (call_usage, i2dest, i2src);
3992 if (substed_i1)
3993 replace_rtx (call_usage, i1dest, i1src);
3994 if (substed_i0)
3995 replace_rtx (call_usage, i0dest, i0src);
3997 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4000 if (undobuf.other_insn)
4001 INSN_CODE (undobuf.other_insn) = other_code_number;
4003 /* We had one special case above where I2 had more than one set and
4004 we replaced a destination of one of those sets with the destination
4005 of I3. In that case, we have to update LOG_LINKS of insns later
4006 in this basic block. Note that this (expensive) case is rare.
4008 Also, in this case, we must pretend that all REG_NOTEs for I2
4009 actually came from I3, so that REG_UNUSED notes from I2 will be
4010 properly handled. */
4012 if (i3_subst_into_i2)
4014 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4015 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4016 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4017 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4018 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4019 && ! find_reg_note (i2, REG_UNUSED,
4020 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4021 for (temp = NEXT_INSN (i2);
4022 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4023 || BB_HEAD (this_basic_block) != temp);
4024 temp = NEXT_INSN (temp))
4025 if (temp != i3 && INSN_P (temp))
4026 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
4027 if (XEXP (link, 0) == i2)
4028 XEXP (link, 0) = i3;
4030 if (i3notes)
4032 rtx link = i3notes;
4033 while (XEXP (link, 1))
4034 link = XEXP (link, 1);
4035 XEXP (link, 1) = i2notes;
4037 else
4038 i3notes = i2notes;
4039 i2notes = 0;
4042 LOG_LINKS (i3) = 0;
4043 REG_NOTES (i3) = 0;
4044 LOG_LINKS (i2) = 0;
4045 REG_NOTES (i2) = 0;
4047 if (newi2pat)
4049 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4050 propagate_for_debug (i2, i3, i2dest, i2src);
4051 INSN_CODE (i2) = i2_code_number;
4052 PATTERN (i2) = newi2pat;
4054 else
4056 if (MAY_HAVE_DEBUG_INSNS && i2src)
4057 propagate_for_debug (i2, i3, i2dest, i2src);
4058 SET_INSN_DELETED (i2);
4061 if (i1)
4063 LOG_LINKS (i1) = 0;
4064 REG_NOTES (i1) = 0;
4065 if (MAY_HAVE_DEBUG_INSNS)
4066 propagate_for_debug (i1, i3, i1dest, i1src);
4067 SET_INSN_DELETED (i1);
4070 if (i0)
4072 LOG_LINKS (i0) = 0;
4073 REG_NOTES (i0) = 0;
4074 if (MAY_HAVE_DEBUG_INSNS)
4075 propagate_for_debug (i0, i3, i0dest, i0src);
4076 SET_INSN_DELETED (i0);
4079 /* Get death notes for everything that is now used in either I3 or
4080 I2 and used to die in a previous insn. If we built two new
4081 patterns, move from I1 to I2 then I2 to I3 so that we get the
4082 proper movement on registers that I2 modifies. */
4084 if (i0)
4085 from_luid = DF_INSN_LUID (i0);
4086 else if (i1)
4087 from_luid = DF_INSN_LUID (i1);
4088 else
4089 from_luid = DF_INSN_LUID (i2);
4090 if (newi2pat)
4091 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4092 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4094 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4095 if (i3notes)
4096 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4097 elim_i2, elim_i1, elim_i0);
4098 if (i2notes)
4099 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4100 elim_i2, elim_i1, elim_i0);
4101 if (i1notes)
4102 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4103 elim_i2, elim_i1, elim_i0);
4104 if (i0notes)
4105 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4106 elim_i2, elim_i1, elim_i0);
4107 if (midnotes)
4108 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4109 elim_i2, elim_i1, elim_i0);
4111 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4112 know these are REG_UNUSED and want them to go to the desired insn,
4113 so we always pass it as i3. */
4115 if (newi2pat && new_i2_notes)
4116 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4117 NULL_RTX);
4119 if (new_i3_notes)
4120 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4121 NULL_RTX);
4123 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4124 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4125 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4126 in that case, it might delete I2. Similarly for I2 and I1.
4127 Show an additional death due to the REG_DEAD note we make here. If
4128 we discard it in distribute_notes, we will decrement it again. */
4130 if (i3dest_killed)
4132 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4133 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4134 NULL_RTX),
4135 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1, elim_i0);
4136 else
4137 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4138 NULL_RTX),
4139 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4140 elim_i2, elim_i1, elim_i0);
4143 if (i2dest_in_i2src)
4145 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4146 if (newi2pat && reg_set_p (i2dest, newi2pat))
4147 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4148 NULL_RTX, NULL_RTX);
4149 else
4150 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4151 NULL_RTX, NULL_RTX, NULL_RTX);
4154 if (i1dest_in_i1src)
4156 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4157 if (newi2pat && reg_set_p (i1dest, newi2pat))
4158 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4159 NULL_RTX, NULL_RTX);
4160 else
4161 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4162 NULL_RTX, NULL_RTX, NULL_RTX);
4165 if (i0dest_in_i0src)
4167 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4168 if (newi2pat && reg_set_p (i0dest, newi2pat))
4169 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4170 NULL_RTX, NULL_RTX);
4171 else
4172 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4173 NULL_RTX, NULL_RTX, NULL_RTX);
4176 distribute_links (i3links);
4177 distribute_links (i2links);
4178 distribute_links (i1links);
4179 distribute_links (i0links);
4181 if (REG_P (i2dest))
4183 rtx link;
4184 rtx i2_insn = 0, i2_val = 0, set;
4186 /* The insn that used to set this register doesn't exist, and
4187 this life of the register may not exist either. See if one of
4188 I3's links points to an insn that sets I2DEST. If it does,
4189 that is now the last known value for I2DEST. If we don't update
4190 this and I2 set the register to a value that depended on its old
4191 contents, we will get confused. If this insn is used, thing
4192 will be set correctly in combine_instructions. */
4194 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4195 if ((set = single_set (XEXP (link, 0))) != 0
4196 && rtx_equal_p (i2dest, SET_DEST (set)))
4197 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
4199 record_value_for_reg (i2dest, i2_insn, i2_val);
4201 /* If the reg formerly set in I2 died only once and that was in I3,
4202 zero its use count so it won't make `reload' do any work. */
4203 if (! added_sets_2
4204 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4205 && ! i2dest_in_i2src)
4207 regno = REGNO (i2dest);
4208 INC_REG_N_SETS (regno, -1);
4212 if (i1 && REG_P (i1dest))
4214 rtx link;
4215 rtx i1_insn = 0, i1_val = 0, set;
4217 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4218 if ((set = single_set (XEXP (link, 0))) != 0
4219 && rtx_equal_p (i1dest, SET_DEST (set)))
4220 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
4222 record_value_for_reg (i1dest, i1_insn, i1_val);
4224 regno = REGNO (i1dest);
4225 if (! added_sets_1 && ! i1dest_in_i1src)
4226 INC_REG_N_SETS (regno, -1);
4229 if (i0 && REG_P (i0dest))
4231 rtx link;
4232 rtx i0_insn = 0, i0_val = 0, set;
4234 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4235 if ((set = single_set (XEXP (link, 0))) != 0
4236 && rtx_equal_p (i0dest, SET_DEST (set)))
4237 i0_insn = XEXP (link, 0), i0_val = SET_SRC (set);
4239 record_value_for_reg (i0dest, i0_insn, i0_val);
4241 regno = REGNO (i0dest);
4242 if (! added_sets_0 && ! i0dest_in_i0src)
4243 INC_REG_N_SETS (regno, -1);
4246 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4247 been made to this insn. The order of
4248 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4249 can affect nonzero_bits of newpat */
4250 if (newi2pat)
4251 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4252 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4255 if (undobuf.other_insn != NULL_RTX)
4257 if (dump_file)
4259 fprintf (dump_file, "modifying other_insn ");
4260 dump_insn_slim (dump_file, undobuf.other_insn);
4262 df_insn_rescan (undobuf.other_insn);
4265 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4267 if (dump_file)
4269 fprintf (dump_file, "modifying insn i1 ");
4270 dump_insn_slim (dump_file, i0);
4272 df_insn_rescan (i0);
4275 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4277 if (dump_file)
4279 fprintf (dump_file, "modifying insn i1 ");
4280 dump_insn_slim (dump_file, i1);
4282 df_insn_rescan (i1);
4285 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4287 if (dump_file)
4289 fprintf (dump_file, "modifying insn i2 ");
4290 dump_insn_slim (dump_file, i2);
4292 df_insn_rescan (i2);
4295 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4297 if (dump_file)
4299 fprintf (dump_file, "modifying insn i3 ");
4300 dump_insn_slim (dump_file, i3);
4302 df_insn_rescan (i3);
4305 /* Set new_direct_jump_p if a new return or simple jump instruction
4306 has been created. Adjust the CFG accordingly. */
4308 if (returnjump_p (i3) || any_uncondjump_p (i3))
4310 *new_direct_jump_p = 1;
4311 mark_jump_label (PATTERN (i3), i3, 0);
4312 update_cfg_for_uncondjump (i3);
4315 if (undobuf.other_insn != NULL_RTX
4316 && (returnjump_p (undobuf.other_insn)
4317 || any_uncondjump_p (undobuf.other_insn)))
4319 *new_direct_jump_p = 1;
4320 update_cfg_for_uncondjump (undobuf.other_insn);
4323 /* A noop might also need cleaning up of CFG, if it comes from the
4324 simplification of a jump. */
4325 if (GET_CODE (newpat) == SET
4326 && SET_SRC (newpat) == pc_rtx
4327 && SET_DEST (newpat) == pc_rtx)
4329 *new_direct_jump_p = 1;
4330 update_cfg_for_uncondjump (i3);
4333 combine_successes++;
4334 undo_commit ();
4336 if (added_links_insn
4337 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4338 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4339 return added_links_insn;
4340 else
4341 return newi2pat ? i2 : i3;
4344 /* Undo all the modifications recorded in undobuf. */
4346 static void
4347 undo_all (void)
4349 struct undo *undo, *next;
4351 for (undo = undobuf.undos; undo; undo = next)
4353 next = undo->next;
4354 switch (undo->kind)
4356 case UNDO_RTX:
4357 *undo->where.r = undo->old_contents.r;
4358 break;
4359 case UNDO_INT:
4360 *undo->where.i = undo->old_contents.i;
4361 break;
4362 case UNDO_MODE:
4363 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4364 break;
4365 default:
4366 gcc_unreachable ();
4369 undo->next = undobuf.frees;
4370 undobuf.frees = undo;
4373 undobuf.undos = 0;
4376 /* We've committed to accepting the changes we made. Move all
4377 of the undos to the free list. */
4379 static void
4380 undo_commit (void)
4382 struct undo *undo, *next;
4384 for (undo = undobuf.undos; undo; undo = next)
4386 next = undo->next;
4387 undo->next = undobuf.frees;
4388 undobuf.frees = undo;
4390 undobuf.undos = 0;
4393 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4394 where we have an arithmetic expression and return that point. LOC will
4395 be inside INSN.
4397 try_combine will call this function to see if an insn can be split into
4398 two insns. */
4400 static rtx *
4401 find_split_point (rtx *loc, rtx insn, bool set_src)
4403 rtx x = *loc;
4404 enum rtx_code code = GET_CODE (x);
4405 rtx *split;
4406 unsigned HOST_WIDE_INT len = 0;
4407 HOST_WIDE_INT pos = 0;
4408 int unsignedp = 0;
4409 rtx inner = NULL_RTX;
4411 /* First special-case some codes. */
4412 switch (code)
4414 case SUBREG:
4415 #ifdef INSN_SCHEDULING
4416 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4417 point. */
4418 if (MEM_P (SUBREG_REG (x)))
4419 return loc;
4420 #endif
4421 return find_split_point (&SUBREG_REG (x), insn, false);
4423 case MEM:
4424 #ifdef HAVE_lo_sum
4425 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4426 using LO_SUM and HIGH. */
4427 if (GET_CODE (XEXP (x, 0)) == CONST
4428 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4430 enum machine_mode address_mode
4431 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
4433 SUBST (XEXP (x, 0),
4434 gen_rtx_LO_SUM (address_mode,
4435 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4436 XEXP (x, 0)));
4437 return &XEXP (XEXP (x, 0), 0);
4439 #endif
4441 /* If we have a PLUS whose second operand is a constant and the
4442 address is not valid, perhaps will can split it up using
4443 the machine-specific way to split large constants. We use
4444 the first pseudo-reg (one of the virtual regs) as a placeholder;
4445 it will not remain in the result. */
4446 if (GET_CODE (XEXP (x, 0)) == PLUS
4447 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4448 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4449 MEM_ADDR_SPACE (x)))
4451 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4452 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4453 XEXP (x, 0)),
4454 subst_insn);
4456 /* This should have produced two insns, each of which sets our
4457 placeholder. If the source of the second is a valid address,
4458 we can make put both sources together and make a split point
4459 in the middle. */
4461 if (seq
4462 && NEXT_INSN (seq) != NULL_RTX
4463 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4464 && NONJUMP_INSN_P (seq)
4465 && GET_CODE (PATTERN (seq)) == SET
4466 && SET_DEST (PATTERN (seq)) == reg
4467 && ! reg_mentioned_p (reg,
4468 SET_SRC (PATTERN (seq)))
4469 && NONJUMP_INSN_P (NEXT_INSN (seq))
4470 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4471 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4472 && memory_address_addr_space_p
4473 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4474 MEM_ADDR_SPACE (x)))
4476 rtx src1 = SET_SRC (PATTERN (seq));
4477 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4479 /* Replace the placeholder in SRC2 with SRC1. If we can
4480 find where in SRC2 it was placed, that can become our
4481 split point and we can replace this address with SRC2.
4482 Just try two obvious places. */
4484 src2 = replace_rtx (src2, reg, src1);
4485 split = 0;
4486 if (XEXP (src2, 0) == src1)
4487 split = &XEXP (src2, 0);
4488 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4489 && XEXP (XEXP (src2, 0), 0) == src1)
4490 split = &XEXP (XEXP (src2, 0), 0);
4492 if (split)
4494 SUBST (XEXP (x, 0), src2);
4495 return split;
4499 /* If that didn't work, perhaps the first operand is complex and
4500 needs to be computed separately, so make a split point there.
4501 This will occur on machines that just support REG + CONST
4502 and have a constant moved through some previous computation. */
4504 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4505 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4506 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4507 return &XEXP (XEXP (x, 0), 0);
4510 /* If we have a PLUS whose first operand is complex, try computing it
4511 separately by making a split there. */
4512 if (GET_CODE (XEXP (x, 0)) == PLUS
4513 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4514 MEM_ADDR_SPACE (x))
4515 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4516 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4517 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4518 return &XEXP (XEXP (x, 0), 0);
4519 break;
4521 case SET:
4522 #ifdef HAVE_cc0
4523 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4524 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4525 we need to put the operand into a register. So split at that
4526 point. */
4528 if (SET_DEST (x) == cc0_rtx
4529 && GET_CODE (SET_SRC (x)) != COMPARE
4530 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4531 && !OBJECT_P (SET_SRC (x))
4532 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4533 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4534 return &SET_SRC (x);
4535 #endif
4537 /* See if we can split SET_SRC as it stands. */
4538 split = find_split_point (&SET_SRC (x), insn, true);
4539 if (split && split != &SET_SRC (x))
4540 return split;
4542 /* See if we can split SET_DEST as it stands. */
4543 split = find_split_point (&SET_DEST (x), insn, false);
4544 if (split && split != &SET_DEST (x))
4545 return split;
4547 /* See if this is a bitfield assignment with everything constant. If
4548 so, this is an IOR of an AND, so split it into that. */
4549 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4550 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4551 <= HOST_BITS_PER_WIDE_INT)
4552 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4553 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4554 && CONST_INT_P (SET_SRC (x))
4555 && ((INTVAL (XEXP (SET_DEST (x), 1))
4556 + INTVAL (XEXP (SET_DEST (x), 2)))
4557 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4558 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4560 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4561 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4562 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4563 rtx dest = XEXP (SET_DEST (x), 0);
4564 enum machine_mode mode = GET_MODE (dest);
4565 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4566 rtx or_mask;
4568 if (BITS_BIG_ENDIAN)
4569 pos = GET_MODE_BITSIZE (mode) - len - pos;
4571 or_mask = gen_int_mode (src << pos, mode);
4572 if (src == mask)
4573 SUBST (SET_SRC (x),
4574 simplify_gen_binary (IOR, mode, dest, or_mask));
4575 else
4577 rtx negmask = gen_int_mode (~(mask << pos), mode);
4578 SUBST (SET_SRC (x),
4579 simplify_gen_binary (IOR, mode,
4580 simplify_gen_binary (AND, mode,
4581 dest, negmask),
4582 or_mask));
4585 SUBST (SET_DEST (x), dest);
4587 split = find_split_point (&SET_SRC (x), insn, true);
4588 if (split && split != &SET_SRC (x))
4589 return split;
4592 /* Otherwise, see if this is an operation that we can split into two.
4593 If so, try to split that. */
4594 code = GET_CODE (SET_SRC (x));
4596 switch (code)
4598 case AND:
4599 /* If we are AND'ing with a large constant that is only a single
4600 bit and the result is only being used in a context where we
4601 need to know if it is zero or nonzero, replace it with a bit
4602 extraction. This will avoid the large constant, which might
4603 have taken more than one insn to make. If the constant were
4604 not a valid argument to the AND but took only one insn to make,
4605 this is no worse, but if it took more than one insn, it will
4606 be better. */
4608 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4609 && REG_P (XEXP (SET_SRC (x), 0))
4610 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4611 && REG_P (SET_DEST (x))
4612 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4613 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4614 && XEXP (*split, 0) == SET_DEST (x)
4615 && XEXP (*split, 1) == const0_rtx)
4617 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4618 XEXP (SET_SRC (x), 0),
4619 pos, NULL_RTX, 1, 1, 0, 0);
4620 if (extraction != 0)
4622 SUBST (SET_SRC (x), extraction);
4623 return find_split_point (loc, insn, false);
4626 break;
4628 case NE:
4629 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4630 is known to be on, this can be converted into a NEG of a shift. */
4631 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4632 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4633 && 1 <= (pos = exact_log2
4634 (nonzero_bits (XEXP (SET_SRC (x), 0),
4635 GET_MODE (XEXP (SET_SRC (x), 0))))))
4637 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4639 SUBST (SET_SRC (x),
4640 gen_rtx_NEG (mode,
4641 gen_rtx_LSHIFTRT (mode,
4642 XEXP (SET_SRC (x), 0),
4643 GEN_INT (pos))));
4645 split = find_split_point (&SET_SRC (x), insn, true);
4646 if (split && split != &SET_SRC (x))
4647 return split;
4649 break;
4651 case SIGN_EXTEND:
4652 inner = XEXP (SET_SRC (x), 0);
4654 /* We can't optimize if either mode is a partial integer
4655 mode as we don't know how many bits are significant
4656 in those modes. */
4657 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4658 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4659 break;
4661 pos = 0;
4662 len = GET_MODE_BITSIZE (GET_MODE (inner));
4663 unsignedp = 0;
4664 break;
4666 case SIGN_EXTRACT:
4667 case ZERO_EXTRACT:
4668 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4669 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4671 inner = XEXP (SET_SRC (x), 0);
4672 len = INTVAL (XEXP (SET_SRC (x), 1));
4673 pos = INTVAL (XEXP (SET_SRC (x), 2));
4675 if (BITS_BIG_ENDIAN)
4676 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4677 unsignedp = (code == ZERO_EXTRACT);
4679 break;
4681 default:
4682 break;
4685 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4687 enum machine_mode mode = GET_MODE (SET_SRC (x));
4689 /* For unsigned, we have a choice of a shift followed by an
4690 AND or two shifts. Use two shifts for field sizes where the
4691 constant might be too large. We assume here that we can
4692 always at least get 8-bit constants in an AND insn, which is
4693 true for every current RISC. */
4695 if (unsignedp && len <= 8)
4697 SUBST (SET_SRC (x),
4698 gen_rtx_AND (mode,
4699 gen_rtx_LSHIFTRT
4700 (mode, gen_lowpart (mode, inner),
4701 GEN_INT (pos)),
4702 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4704 split = find_split_point (&SET_SRC (x), insn, true);
4705 if (split && split != &SET_SRC (x))
4706 return split;
4708 else
4710 SUBST (SET_SRC (x),
4711 gen_rtx_fmt_ee
4712 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4713 gen_rtx_ASHIFT (mode,
4714 gen_lowpart (mode, inner),
4715 GEN_INT (GET_MODE_BITSIZE (mode)
4716 - len - pos)),
4717 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4719 split = find_split_point (&SET_SRC (x), insn, true);
4720 if (split && split != &SET_SRC (x))
4721 return split;
4725 /* See if this is a simple operation with a constant as the second
4726 operand. It might be that this constant is out of range and hence
4727 could be used as a split point. */
4728 if (BINARY_P (SET_SRC (x))
4729 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4730 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4731 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4732 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4733 return &XEXP (SET_SRC (x), 1);
4735 /* Finally, see if this is a simple operation with its first operand
4736 not in a register. The operation might require this operand in a
4737 register, so return it as a split point. We can always do this
4738 because if the first operand were another operation, we would have
4739 already found it as a split point. */
4740 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4741 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4742 return &XEXP (SET_SRC (x), 0);
4744 return 0;
4746 case AND:
4747 case IOR:
4748 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4749 it is better to write this as (not (ior A B)) so we can split it.
4750 Similarly for IOR. */
4751 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4753 SUBST (*loc,
4754 gen_rtx_NOT (GET_MODE (x),
4755 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4756 GET_MODE (x),
4757 XEXP (XEXP (x, 0), 0),
4758 XEXP (XEXP (x, 1), 0))));
4759 return find_split_point (loc, insn, set_src);
4762 /* Many RISC machines have a large set of logical insns. If the
4763 second operand is a NOT, put it first so we will try to split the
4764 other operand first. */
4765 if (GET_CODE (XEXP (x, 1)) == NOT)
4767 rtx tem = XEXP (x, 0);
4768 SUBST (XEXP (x, 0), XEXP (x, 1));
4769 SUBST (XEXP (x, 1), tem);
4771 break;
4773 case PLUS:
4774 case MINUS:
4775 /* Canonicalization can produce (minus A (mult B C)), where C is a
4776 constant. It may be better to try splitting (plus (mult B -C) A)
4777 instead if this isn't a multiply by a power of two. */
4778 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4779 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4780 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4782 enum machine_mode mode = GET_MODE (x);
4783 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4784 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4785 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4786 XEXP (XEXP (x, 1), 0),
4787 GEN_INT (other_int)),
4788 XEXP (x, 0)));
4789 return find_split_point (loc, insn, set_src);
4792 /* Split at a multiply-accumulate instruction. However if this is
4793 the SET_SRC, we likely do not have such an instruction and it's
4794 worthless to try this split. */
4795 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4796 return loc;
4798 default:
4799 break;
4802 /* Otherwise, select our actions depending on our rtx class. */
4803 switch (GET_RTX_CLASS (code))
4805 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4806 case RTX_TERNARY:
4807 split = find_split_point (&XEXP (x, 2), insn, false);
4808 if (split)
4809 return split;
4810 /* ... fall through ... */
4811 case RTX_BIN_ARITH:
4812 case RTX_COMM_ARITH:
4813 case RTX_COMPARE:
4814 case RTX_COMM_COMPARE:
4815 split = find_split_point (&XEXP (x, 1), insn, false);
4816 if (split)
4817 return split;
4818 /* ... fall through ... */
4819 case RTX_UNARY:
4820 /* Some machines have (and (shift ...) ...) insns. If X is not
4821 an AND, but XEXP (X, 0) is, use it as our split point. */
4822 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4823 return &XEXP (x, 0);
4825 split = find_split_point (&XEXP (x, 0), insn, false);
4826 if (split)
4827 return split;
4828 return loc;
4830 default:
4831 /* Otherwise, we don't have a split point. */
4832 return 0;
4836 /* Throughout X, replace FROM with TO, and return the result.
4837 The result is TO if X is FROM;
4838 otherwise the result is X, but its contents may have been modified.
4839 If they were modified, a record was made in undobuf so that
4840 undo_all will (among other things) return X to its original state.
4842 If the number of changes necessary is too much to record to undo,
4843 the excess changes are not made, so the result is invalid.
4844 The changes already made can still be undone.
4845 undobuf.num_undo is incremented for such changes, so by testing that
4846 the caller can tell whether the result is valid.
4848 `n_occurrences' is incremented each time FROM is replaced.
4850 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4852 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4853 by copying if `n_occurrences' is nonzero. */
4855 static rtx
4856 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4858 enum rtx_code code = GET_CODE (x);
4859 enum machine_mode op0_mode = VOIDmode;
4860 const char *fmt;
4861 int len, i;
4862 rtx new_rtx;
4864 /* Two expressions are equal if they are identical copies of a shared
4865 RTX or if they are both registers with the same register number
4866 and mode. */
4868 #define COMBINE_RTX_EQUAL_P(X,Y) \
4869 ((X) == (Y) \
4870 || (REG_P (X) && REG_P (Y) \
4871 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4873 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4875 n_occurrences++;
4876 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4879 /* If X and FROM are the same register but different modes, they
4880 will not have been seen as equal above. However, the log links code
4881 will make a LOG_LINKS entry for that case. If we do nothing, we
4882 will try to rerecognize our original insn and, when it succeeds,
4883 we will delete the feeding insn, which is incorrect.
4885 So force this insn not to match in this (rare) case. */
4886 if (! in_dest && code == REG && REG_P (from)
4887 && reg_overlap_mentioned_p (x, from))
4888 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4890 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4891 of which may contain things that can be combined. */
4892 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4893 return x;
4895 /* It is possible to have a subexpression appear twice in the insn.
4896 Suppose that FROM is a register that appears within TO.
4897 Then, after that subexpression has been scanned once by `subst',
4898 the second time it is scanned, TO may be found. If we were
4899 to scan TO here, we would find FROM within it and create a
4900 self-referent rtl structure which is completely wrong. */
4901 if (COMBINE_RTX_EQUAL_P (x, to))
4902 return to;
4904 /* Parallel asm_operands need special attention because all of the
4905 inputs are shared across the arms. Furthermore, unsharing the
4906 rtl results in recognition failures. Failure to handle this case
4907 specially can result in circular rtl.
4909 Solve this by doing a normal pass across the first entry of the
4910 parallel, and only processing the SET_DESTs of the subsequent
4911 entries. Ug. */
4913 if (code == PARALLEL
4914 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4915 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4917 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4919 /* If this substitution failed, this whole thing fails. */
4920 if (GET_CODE (new_rtx) == CLOBBER
4921 && XEXP (new_rtx, 0) == const0_rtx)
4922 return new_rtx;
4924 SUBST (XVECEXP (x, 0, 0), new_rtx);
4926 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4928 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4930 if (!REG_P (dest)
4931 && GET_CODE (dest) != CC0
4932 && GET_CODE (dest) != PC)
4934 new_rtx = subst (dest, from, to, 0, unique_copy);
4936 /* If this substitution failed, this whole thing fails. */
4937 if (GET_CODE (new_rtx) == CLOBBER
4938 && XEXP (new_rtx, 0) == const0_rtx)
4939 return new_rtx;
4941 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4945 else
4947 len = GET_RTX_LENGTH (code);
4948 fmt = GET_RTX_FORMAT (code);
4950 /* We don't need to process a SET_DEST that is a register, CC0,
4951 or PC, so set up to skip this common case. All other cases
4952 where we want to suppress replacing something inside a
4953 SET_SRC are handled via the IN_DEST operand. */
4954 if (code == SET
4955 && (REG_P (SET_DEST (x))
4956 || GET_CODE (SET_DEST (x)) == CC0
4957 || GET_CODE (SET_DEST (x)) == PC))
4958 fmt = "ie";
4960 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4961 constant. */
4962 if (fmt[0] == 'e')
4963 op0_mode = GET_MODE (XEXP (x, 0));
4965 for (i = 0; i < len; i++)
4967 if (fmt[i] == 'E')
4969 int j;
4970 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4972 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4974 new_rtx = (unique_copy && n_occurrences
4975 ? copy_rtx (to) : to);
4976 n_occurrences++;
4978 else
4980 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
4981 unique_copy);
4983 /* If this substitution failed, this whole thing
4984 fails. */
4985 if (GET_CODE (new_rtx) == CLOBBER
4986 && XEXP (new_rtx, 0) == const0_rtx)
4987 return new_rtx;
4990 SUBST (XVECEXP (x, i, j), new_rtx);
4993 else if (fmt[i] == 'e')
4995 /* If this is a register being set, ignore it. */
4996 new_rtx = XEXP (x, i);
4997 if (in_dest
4998 && i == 0
4999 && (((code == SUBREG || code == ZERO_EXTRACT)
5000 && REG_P (new_rtx))
5001 || code == STRICT_LOW_PART))
5004 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5006 /* In general, don't install a subreg involving two
5007 modes not tieable. It can worsen register
5008 allocation, and can even make invalid reload
5009 insns, since the reg inside may need to be copied
5010 from in the outside mode, and that may be invalid
5011 if it is an fp reg copied in integer mode.
5013 We allow two exceptions to this: It is valid if
5014 it is inside another SUBREG and the mode of that
5015 SUBREG and the mode of the inside of TO is
5016 tieable and it is valid if X is a SET that copies
5017 FROM to CC0. */
5019 if (GET_CODE (to) == SUBREG
5020 && ! MODES_TIEABLE_P (GET_MODE (to),
5021 GET_MODE (SUBREG_REG (to)))
5022 && ! (code == SUBREG
5023 && MODES_TIEABLE_P (GET_MODE (x),
5024 GET_MODE (SUBREG_REG (to))))
5025 #ifdef HAVE_cc0
5026 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5027 #endif
5029 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5031 #ifdef CANNOT_CHANGE_MODE_CLASS
5032 if (code == SUBREG
5033 && REG_P (to)
5034 && REGNO (to) < FIRST_PSEUDO_REGISTER
5035 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5036 GET_MODE (to),
5037 GET_MODE (x)))
5038 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5039 #endif
5041 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5042 n_occurrences++;
5044 else
5045 /* If we are in a SET_DEST, suppress most cases unless we
5046 have gone inside a MEM, in which case we want to
5047 simplify the address. We assume here that things that
5048 are actually part of the destination have their inner
5049 parts in the first expression. This is true for SUBREG,
5050 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5051 things aside from REG and MEM that should appear in a
5052 SET_DEST. */
5053 new_rtx = subst (XEXP (x, i), from, to,
5054 (((in_dest
5055 && (code == SUBREG || code == STRICT_LOW_PART
5056 || code == ZERO_EXTRACT))
5057 || code == SET)
5058 && i == 0), unique_copy);
5060 /* If we found that we will have to reject this combination,
5061 indicate that by returning the CLOBBER ourselves, rather than
5062 an expression containing it. This will speed things up as
5063 well as prevent accidents where two CLOBBERs are considered
5064 to be equal, thus producing an incorrect simplification. */
5066 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5067 return new_rtx;
5069 if (GET_CODE (x) == SUBREG
5070 && (CONST_INT_P (new_rtx)
5071 || GET_CODE (new_rtx) == CONST_DOUBLE))
5073 enum machine_mode mode = GET_MODE (x);
5075 x = simplify_subreg (GET_MODE (x), new_rtx,
5076 GET_MODE (SUBREG_REG (x)),
5077 SUBREG_BYTE (x));
5078 if (! x)
5079 x = gen_rtx_CLOBBER (mode, const0_rtx);
5081 else if (CONST_INT_P (new_rtx)
5082 && GET_CODE (x) == ZERO_EXTEND)
5084 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5085 new_rtx, GET_MODE (XEXP (x, 0)));
5086 gcc_assert (x);
5088 else
5089 SUBST (XEXP (x, i), new_rtx);
5094 /* Check if we are loading something from the constant pool via float
5095 extension; in this case we would undo compress_float_constant
5096 optimization and degenerate constant load to an immediate value. */
5097 if (GET_CODE (x) == FLOAT_EXTEND
5098 && MEM_P (XEXP (x, 0))
5099 && MEM_READONLY_P (XEXP (x, 0)))
5101 rtx tmp = avoid_constant_pool_reference (x);
5102 if (x != tmp)
5103 return x;
5106 /* Try to simplify X. If the simplification changed the code, it is likely
5107 that further simplification will help, so loop, but limit the number
5108 of repetitions that will be performed. */
5110 for (i = 0; i < 4; i++)
5112 /* If X is sufficiently simple, don't bother trying to do anything
5113 with it. */
5114 if (code != CONST_INT && code != REG && code != CLOBBER)
5115 x = combine_simplify_rtx (x, op0_mode, in_dest);
5117 if (GET_CODE (x) == code)
5118 break;
5120 code = GET_CODE (x);
5122 /* We no longer know the original mode of operand 0 since we
5123 have changed the form of X) */
5124 op0_mode = VOIDmode;
5127 return x;
5130 /* Simplify X, a piece of RTL. We just operate on the expression at the
5131 outer level; call `subst' to simplify recursively. Return the new
5132 expression.
5134 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5135 if we are inside a SET_DEST. */
5137 static rtx
5138 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
5140 enum rtx_code code = GET_CODE (x);
5141 enum machine_mode mode = GET_MODE (x);
5142 rtx temp;
5143 int i;
5145 /* If this is a commutative operation, put a constant last and a complex
5146 expression first. We don't need to do this for comparisons here. */
5147 if (COMMUTATIVE_ARITH_P (x)
5148 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5150 temp = XEXP (x, 0);
5151 SUBST (XEXP (x, 0), XEXP (x, 1));
5152 SUBST (XEXP (x, 1), temp);
5155 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5156 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5157 things. Check for cases where both arms are testing the same
5158 condition.
5160 Don't do anything if all operands are very simple. */
5162 if ((BINARY_P (x)
5163 && ((!OBJECT_P (XEXP (x, 0))
5164 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5165 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5166 || (!OBJECT_P (XEXP (x, 1))
5167 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5168 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5169 || (UNARY_P (x)
5170 && (!OBJECT_P (XEXP (x, 0))
5171 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5172 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5174 rtx cond, true_rtx, false_rtx;
5176 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5177 if (cond != 0
5178 /* If everything is a comparison, what we have is highly unlikely
5179 to be simpler, so don't use it. */
5180 && ! (COMPARISON_P (x)
5181 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5183 rtx cop1 = const0_rtx;
5184 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5186 if (cond_code == NE && COMPARISON_P (cond))
5187 return x;
5189 /* Simplify the alternative arms; this may collapse the true and
5190 false arms to store-flag values. Be careful to use copy_rtx
5191 here since true_rtx or false_rtx might share RTL with x as a
5192 result of the if_then_else_cond call above. */
5193 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
5194 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
5196 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5197 is unlikely to be simpler. */
5198 if (general_operand (true_rtx, VOIDmode)
5199 && general_operand (false_rtx, VOIDmode))
5201 enum rtx_code reversed;
5203 /* Restarting if we generate a store-flag expression will cause
5204 us to loop. Just drop through in this case. */
5206 /* If the result values are STORE_FLAG_VALUE and zero, we can
5207 just make the comparison operation. */
5208 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5209 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5210 cond, cop1);
5211 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5212 && ((reversed = reversed_comparison_code_parts
5213 (cond_code, cond, cop1, NULL))
5214 != UNKNOWN))
5215 x = simplify_gen_relational (reversed, mode, VOIDmode,
5216 cond, cop1);
5218 /* Likewise, we can make the negate of a comparison operation
5219 if the result values are - STORE_FLAG_VALUE and zero. */
5220 else if (CONST_INT_P (true_rtx)
5221 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5222 && false_rtx == const0_rtx)
5223 x = simplify_gen_unary (NEG, mode,
5224 simplify_gen_relational (cond_code,
5225 mode, VOIDmode,
5226 cond, cop1),
5227 mode);
5228 else if (CONST_INT_P (false_rtx)
5229 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5230 && true_rtx == const0_rtx
5231 && ((reversed = reversed_comparison_code_parts
5232 (cond_code, cond, cop1, NULL))
5233 != UNKNOWN))
5234 x = simplify_gen_unary (NEG, mode,
5235 simplify_gen_relational (reversed,
5236 mode, VOIDmode,
5237 cond, cop1),
5238 mode);
5239 else
5240 return gen_rtx_IF_THEN_ELSE (mode,
5241 simplify_gen_relational (cond_code,
5242 mode,
5243 VOIDmode,
5244 cond,
5245 cop1),
5246 true_rtx, false_rtx);
5248 code = GET_CODE (x);
5249 op0_mode = VOIDmode;
5254 /* Try to fold this expression in case we have constants that weren't
5255 present before. */
5256 temp = 0;
5257 switch (GET_RTX_CLASS (code))
5259 case RTX_UNARY:
5260 if (op0_mode == VOIDmode)
5261 op0_mode = GET_MODE (XEXP (x, 0));
5262 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5263 break;
5264 case RTX_COMPARE:
5265 case RTX_COMM_COMPARE:
5267 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5268 if (cmp_mode == VOIDmode)
5270 cmp_mode = GET_MODE (XEXP (x, 1));
5271 if (cmp_mode == VOIDmode)
5272 cmp_mode = op0_mode;
5274 temp = simplify_relational_operation (code, mode, cmp_mode,
5275 XEXP (x, 0), XEXP (x, 1));
5277 break;
5278 case RTX_COMM_ARITH:
5279 case RTX_BIN_ARITH:
5280 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5281 break;
5282 case RTX_BITFIELD_OPS:
5283 case RTX_TERNARY:
5284 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5285 XEXP (x, 1), XEXP (x, 2));
5286 break;
5287 default:
5288 break;
5291 if (temp)
5293 x = temp;
5294 code = GET_CODE (temp);
5295 op0_mode = VOIDmode;
5296 mode = GET_MODE (temp);
5299 /* First see if we can apply the inverse distributive law. */
5300 if (code == PLUS || code == MINUS
5301 || code == AND || code == IOR || code == XOR)
5303 x = apply_distributive_law (x);
5304 code = GET_CODE (x);
5305 op0_mode = VOIDmode;
5308 /* If CODE is an associative operation not otherwise handled, see if we
5309 can associate some operands. This can win if they are constants or
5310 if they are logically related (i.e. (a & b) & a). */
5311 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5312 || code == AND || code == IOR || code == XOR
5313 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5314 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5315 || (flag_associative_math && FLOAT_MODE_P (mode))))
5317 if (GET_CODE (XEXP (x, 0)) == code)
5319 rtx other = XEXP (XEXP (x, 0), 0);
5320 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5321 rtx inner_op1 = XEXP (x, 1);
5322 rtx inner;
5324 /* Make sure we pass the constant operand if any as the second
5325 one if this is a commutative operation. */
5326 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5328 rtx tem = inner_op0;
5329 inner_op0 = inner_op1;
5330 inner_op1 = tem;
5332 inner = simplify_binary_operation (code == MINUS ? PLUS
5333 : code == DIV ? MULT
5334 : code,
5335 mode, inner_op0, inner_op1);
5337 /* For commutative operations, try the other pair if that one
5338 didn't simplify. */
5339 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5341 other = XEXP (XEXP (x, 0), 1);
5342 inner = simplify_binary_operation (code, mode,
5343 XEXP (XEXP (x, 0), 0),
5344 XEXP (x, 1));
5347 if (inner)
5348 return simplify_gen_binary (code, mode, other, inner);
5352 /* A little bit of algebraic simplification here. */
5353 switch (code)
5355 case MEM:
5356 /* Ensure that our address has any ASHIFTs converted to MULT in case
5357 address-recognizing predicates are called later. */
5358 temp = make_compound_operation (XEXP (x, 0), MEM);
5359 SUBST (XEXP (x, 0), temp);
5360 break;
5362 case SUBREG:
5363 if (op0_mode == VOIDmode)
5364 op0_mode = GET_MODE (SUBREG_REG (x));
5366 /* See if this can be moved to simplify_subreg. */
5367 if (CONSTANT_P (SUBREG_REG (x))
5368 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5369 /* Don't call gen_lowpart if the inner mode
5370 is VOIDmode and we cannot simplify it, as SUBREG without
5371 inner mode is invalid. */
5372 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5373 || gen_lowpart_common (mode, SUBREG_REG (x))))
5374 return gen_lowpart (mode, SUBREG_REG (x));
5376 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5377 break;
5379 rtx temp;
5380 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5381 SUBREG_BYTE (x));
5382 if (temp)
5383 return temp;
5386 /* Don't change the mode of the MEM if that would change the meaning
5387 of the address. */
5388 if (MEM_P (SUBREG_REG (x))
5389 && (MEM_VOLATILE_P (SUBREG_REG (x))
5390 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5391 return gen_rtx_CLOBBER (mode, const0_rtx);
5393 /* Note that we cannot do any narrowing for non-constants since
5394 we might have been counting on using the fact that some bits were
5395 zero. We now do this in the SET. */
5397 break;
5399 case NEG:
5400 temp = expand_compound_operation (XEXP (x, 0));
5402 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5403 replaced by (lshiftrt X C). This will convert
5404 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5406 if (GET_CODE (temp) == ASHIFTRT
5407 && CONST_INT_P (XEXP (temp, 1))
5408 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
5409 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5410 INTVAL (XEXP (temp, 1)));
5412 /* If X has only a single bit that might be nonzero, say, bit I, convert
5413 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5414 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5415 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5416 or a SUBREG of one since we'd be making the expression more
5417 complex if it was just a register. */
5419 if (!REG_P (temp)
5420 && ! (GET_CODE (temp) == SUBREG
5421 && REG_P (SUBREG_REG (temp)))
5422 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5424 rtx temp1 = simplify_shift_const
5425 (NULL_RTX, ASHIFTRT, mode,
5426 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5427 GET_MODE_BITSIZE (mode) - 1 - i),
5428 GET_MODE_BITSIZE (mode) - 1 - i);
5430 /* If all we did was surround TEMP with the two shifts, we
5431 haven't improved anything, so don't use it. Otherwise,
5432 we are better off with TEMP1. */
5433 if (GET_CODE (temp1) != ASHIFTRT
5434 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5435 || XEXP (XEXP (temp1, 0), 0) != temp)
5436 return temp1;
5438 break;
5440 case TRUNCATE:
5441 /* We can't handle truncation to a partial integer mode here
5442 because we don't know the real bitsize of the partial
5443 integer mode. */
5444 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5445 break;
5447 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5448 SUBST (XEXP (x, 0),
5449 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5450 GET_MODE_MASK (mode), 0));
5452 /* We can truncate a constant value and return it. */
5453 if (CONST_INT_P (XEXP (x, 0)))
5454 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5456 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5457 whose value is a comparison can be replaced with a subreg if
5458 STORE_FLAG_VALUE permits. */
5459 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5460 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5461 && (temp = get_last_value (XEXP (x, 0)))
5462 && COMPARISON_P (temp))
5463 return gen_lowpart (mode, XEXP (x, 0));
5464 break;
5466 case CONST:
5467 /* (const (const X)) can become (const X). Do it this way rather than
5468 returning the inner CONST since CONST can be shared with a
5469 REG_EQUAL note. */
5470 if (GET_CODE (XEXP (x, 0)) == CONST)
5471 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5472 break;
5474 #ifdef HAVE_lo_sum
5475 case LO_SUM:
5476 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5477 can add in an offset. find_split_point will split this address up
5478 again if it doesn't match. */
5479 if (GET_CODE (XEXP (x, 0)) == HIGH
5480 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5481 return XEXP (x, 1);
5482 break;
5483 #endif
5485 case PLUS:
5486 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5487 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5488 bit-field and can be replaced by either a sign_extend or a
5489 sign_extract. The `and' may be a zero_extend and the two
5490 <c>, -<c> constants may be reversed. */
5491 if (GET_CODE (XEXP (x, 0)) == XOR
5492 && CONST_INT_P (XEXP (x, 1))
5493 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5494 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5495 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5496 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
5497 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5498 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5499 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5500 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5501 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
5502 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5503 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5504 == (unsigned int) i + 1))))
5505 return simplify_shift_const
5506 (NULL_RTX, ASHIFTRT, mode,
5507 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5508 XEXP (XEXP (XEXP (x, 0), 0), 0),
5509 GET_MODE_BITSIZE (mode) - (i + 1)),
5510 GET_MODE_BITSIZE (mode) - (i + 1));
5512 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5513 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5514 the bitsize of the mode - 1. This allows simplification of
5515 "a = (b & 8) == 0;" */
5516 if (XEXP (x, 1) == constm1_rtx
5517 && !REG_P (XEXP (x, 0))
5518 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5519 && REG_P (SUBREG_REG (XEXP (x, 0))))
5520 && nonzero_bits (XEXP (x, 0), mode) == 1)
5521 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5522 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5523 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5524 GET_MODE_BITSIZE (mode) - 1),
5525 GET_MODE_BITSIZE (mode) - 1);
5527 /* If we are adding two things that have no bits in common, convert
5528 the addition into an IOR. This will often be further simplified,
5529 for example in cases like ((a & 1) + (a & 2)), which can
5530 become a & 3. */
5532 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5533 && (nonzero_bits (XEXP (x, 0), mode)
5534 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5536 /* Try to simplify the expression further. */
5537 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5538 temp = combine_simplify_rtx (tor, mode, in_dest);
5540 /* If we could, great. If not, do not go ahead with the IOR
5541 replacement, since PLUS appears in many special purpose
5542 address arithmetic instructions. */
5543 if (GET_CODE (temp) != CLOBBER && temp != tor)
5544 return temp;
5546 break;
5548 case MINUS:
5549 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5550 (and <foo> (const_int pow2-1)) */
5551 if (GET_CODE (XEXP (x, 1)) == AND
5552 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5553 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5554 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5555 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5556 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5557 break;
5559 case MULT:
5560 /* If we have (mult (plus A B) C), apply the distributive law and then
5561 the inverse distributive law to see if things simplify. This
5562 occurs mostly in addresses, often when unrolling loops. */
5564 if (GET_CODE (XEXP (x, 0)) == PLUS)
5566 rtx result = distribute_and_simplify_rtx (x, 0);
5567 if (result)
5568 return result;
5571 /* Try simplify a*(b/c) as (a*b)/c. */
5572 if (FLOAT_MODE_P (mode) && flag_associative_math
5573 && GET_CODE (XEXP (x, 0)) == DIV)
5575 rtx tem = simplify_binary_operation (MULT, mode,
5576 XEXP (XEXP (x, 0), 0),
5577 XEXP (x, 1));
5578 if (tem)
5579 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5581 break;
5583 case UDIV:
5584 /* If this is a divide by a power of two, treat it as a shift if
5585 its first operand is a shift. */
5586 if (CONST_INT_P (XEXP (x, 1))
5587 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5588 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5589 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5590 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5591 || GET_CODE (XEXP (x, 0)) == ROTATE
5592 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5593 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5594 break;
5596 case EQ: case NE:
5597 case GT: case GTU: case GE: case GEU:
5598 case LT: case LTU: case LE: case LEU:
5599 case UNEQ: case LTGT:
5600 case UNGT: case UNGE:
5601 case UNLT: case UNLE:
5602 case UNORDERED: case ORDERED:
5603 /* If the first operand is a condition code, we can't do anything
5604 with it. */
5605 if (GET_CODE (XEXP (x, 0)) == COMPARE
5606 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5607 && ! CC0_P (XEXP (x, 0))))
5609 rtx op0 = XEXP (x, 0);
5610 rtx op1 = XEXP (x, 1);
5611 enum rtx_code new_code;
5613 if (GET_CODE (op0) == COMPARE)
5614 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5616 /* Simplify our comparison, if possible. */
5617 new_code = simplify_comparison (code, &op0, &op1);
5619 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5620 if only the low-order bit is possibly nonzero in X (such as when
5621 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5622 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5623 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5624 (plus X 1).
5626 Remove any ZERO_EXTRACT we made when thinking this was a
5627 comparison. It may now be simpler to use, e.g., an AND. If a
5628 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5629 the call to make_compound_operation in the SET case. */
5631 if (STORE_FLAG_VALUE == 1
5632 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5633 && op1 == const0_rtx
5634 && mode == GET_MODE (op0)
5635 && nonzero_bits (op0, mode) == 1)
5636 return gen_lowpart (mode,
5637 expand_compound_operation (op0));
5639 else if (STORE_FLAG_VALUE == 1
5640 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5641 && op1 == const0_rtx
5642 && mode == GET_MODE (op0)
5643 && (num_sign_bit_copies (op0, mode)
5644 == GET_MODE_BITSIZE (mode)))
5646 op0 = expand_compound_operation (op0);
5647 return simplify_gen_unary (NEG, mode,
5648 gen_lowpart (mode, op0),
5649 mode);
5652 else if (STORE_FLAG_VALUE == 1
5653 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5654 && op1 == const0_rtx
5655 && mode == GET_MODE (op0)
5656 && nonzero_bits (op0, mode) == 1)
5658 op0 = expand_compound_operation (op0);
5659 return simplify_gen_binary (XOR, mode,
5660 gen_lowpart (mode, op0),
5661 const1_rtx);
5664 else if (STORE_FLAG_VALUE == 1
5665 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5666 && op1 == const0_rtx
5667 && mode == GET_MODE (op0)
5668 && (num_sign_bit_copies (op0, mode)
5669 == GET_MODE_BITSIZE (mode)))
5671 op0 = expand_compound_operation (op0);
5672 return plus_constant (gen_lowpart (mode, op0), 1);
5675 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5676 those above. */
5677 if (STORE_FLAG_VALUE == -1
5678 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5679 && op1 == const0_rtx
5680 && (num_sign_bit_copies (op0, mode)
5681 == GET_MODE_BITSIZE (mode)))
5682 return gen_lowpart (mode,
5683 expand_compound_operation (op0));
5685 else if (STORE_FLAG_VALUE == -1
5686 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5687 && op1 == const0_rtx
5688 && mode == GET_MODE (op0)
5689 && nonzero_bits (op0, mode) == 1)
5691 op0 = expand_compound_operation (op0);
5692 return simplify_gen_unary (NEG, mode,
5693 gen_lowpart (mode, op0),
5694 mode);
5697 else if (STORE_FLAG_VALUE == -1
5698 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5699 && op1 == const0_rtx
5700 && mode == GET_MODE (op0)
5701 && (num_sign_bit_copies (op0, mode)
5702 == GET_MODE_BITSIZE (mode)))
5704 op0 = expand_compound_operation (op0);
5705 return simplify_gen_unary (NOT, mode,
5706 gen_lowpart (mode, op0),
5707 mode);
5710 /* If X is 0/1, (eq X 0) is X-1. */
5711 else if (STORE_FLAG_VALUE == -1
5712 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5713 && op1 == const0_rtx
5714 && mode == GET_MODE (op0)
5715 && nonzero_bits (op0, mode) == 1)
5717 op0 = expand_compound_operation (op0);
5718 return plus_constant (gen_lowpart (mode, op0), -1);
5721 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5722 one bit that might be nonzero, we can convert (ne x 0) to
5723 (ashift x c) where C puts the bit in the sign bit. Remove any
5724 AND with STORE_FLAG_VALUE when we are done, since we are only
5725 going to test the sign bit. */
5726 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5727 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5728 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5729 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5730 && op1 == const0_rtx
5731 && mode == GET_MODE (op0)
5732 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5734 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5735 expand_compound_operation (op0),
5736 GET_MODE_BITSIZE (mode) - 1 - i);
5737 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5738 return XEXP (x, 0);
5739 else
5740 return x;
5743 /* If the code changed, return a whole new comparison. */
5744 if (new_code != code)
5745 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5747 /* Otherwise, keep this operation, but maybe change its operands.
5748 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5749 SUBST (XEXP (x, 0), op0);
5750 SUBST (XEXP (x, 1), op1);
5752 break;
5754 case IF_THEN_ELSE:
5755 return simplify_if_then_else (x);
5757 case ZERO_EXTRACT:
5758 case SIGN_EXTRACT:
5759 case ZERO_EXTEND:
5760 case SIGN_EXTEND:
5761 /* If we are processing SET_DEST, we are done. */
5762 if (in_dest)
5763 return x;
5765 return expand_compound_operation (x);
5767 case SET:
5768 return simplify_set (x);
5770 case AND:
5771 case IOR:
5772 return simplify_logical (x);
5774 case ASHIFT:
5775 case LSHIFTRT:
5776 case ASHIFTRT:
5777 case ROTATE:
5778 case ROTATERT:
5779 /* If this is a shift by a constant amount, simplify it. */
5780 if (CONST_INT_P (XEXP (x, 1)))
5781 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5782 INTVAL (XEXP (x, 1)));
5784 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5785 SUBST (XEXP (x, 1),
5786 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5787 ((HOST_WIDE_INT) 1
5788 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5789 - 1,
5790 0));
5791 break;
5793 default:
5794 break;
5797 return x;
5800 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5802 static rtx
5803 simplify_if_then_else (rtx x)
5805 enum machine_mode mode = GET_MODE (x);
5806 rtx cond = XEXP (x, 0);
5807 rtx true_rtx = XEXP (x, 1);
5808 rtx false_rtx = XEXP (x, 2);
5809 enum rtx_code true_code = GET_CODE (cond);
5810 int comparison_p = COMPARISON_P (cond);
5811 rtx temp;
5812 int i;
5813 enum rtx_code false_code;
5814 rtx reversed;
5816 /* Simplify storing of the truth value. */
5817 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5818 return simplify_gen_relational (true_code, mode, VOIDmode,
5819 XEXP (cond, 0), XEXP (cond, 1));
5821 /* Also when the truth value has to be reversed. */
5822 if (comparison_p
5823 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5824 && (reversed = reversed_comparison (cond, mode)))
5825 return reversed;
5827 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5828 in it is being compared against certain values. Get the true and false
5829 comparisons and see if that says anything about the value of each arm. */
5831 if (comparison_p
5832 && ((false_code = reversed_comparison_code (cond, NULL))
5833 != UNKNOWN)
5834 && REG_P (XEXP (cond, 0)))
5836 HOST_WIDE_INT nzb;
5837 rtx from = XEXP (cond, 0);
5838 rtx true_val = XEXP (cond, 1);
5839 rtx false_val = true_val;
5840 int swapped = 0;
5842 /* If FALSE_CODE is EQ, swap the codes and arms. */
5844 if (false_code == EQ)
5846 swapped = 1, true_code = EQ, false_code = NE;
5847 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5850 /* If we are comparing against zero and the expression being tested has
5851 only a single bit that might be nonzero, that is its value when it is
5852 not equal to zero. Similarly if it is known to be -1 or 0. */
5854 if (true_code == EQ && true_val == const0_rtx
5855 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5857 false_code = EQ;
5858 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5860 else if (true_code == EQ && true_val == const0_rtx
5861 && (num_sign_bit_copies (from, GET_MODE (from))
5862 == GET_MODE_BITSIZE (GET_MODE (from))))
5864 false_code = EQ;
5865 false_val = constm1_rtx;
5868 /* Now simplify an arm if we know the value of the register in the
5869 branch and it is used in the arm. Be careful due to the potential
5870 of locally-shared RTL. */
5872 if (reg_mentioned_p (from, true_rtx))
5873 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5874 from, true_val),
5875 pc_rtx, pc_rtx, 0, 0);
5876 if (reg_mentioned_p (from, false_rtx))
5877 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5878 from, false_val),
5879 pc_rtx, pc_rtx, 0, 0);
5881 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5882 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5884 true_rtx = XEXP (x, 1);
5885 false_rtx = XEXP (x, 2);
5886 true_code = GET_CODE (cond);
5889 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5890 reversed, do so to avoid needing two sets of patterns for
5891 subtract-and-branch insns. Similarly if we have a constant in the true
5892 arm, the false arm is the same as the first operand of the comparison, or
5893 the false arm is more complicated than the true arm. */
5895 if (comparison_p
5896 && reversed_comparison_code (cond, NULL) != UNKNOWN
5897 && (true_rtx == pc_rtx
5898 || (CONSTANT_P (true_rtx)
5899 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5900 || true_rtx == const0_rtx
5901 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5902 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5903 && !OBJECT_P (false_rtx))
5904 || reg_mentioned_p (true_rtx, false_rtx)
5905 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5907 true_code = reversed_comparison_code (cond, NULL);
5908 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5909 SUBST (XEXP (x, 1), false_rtx);
5910 SUBST (XEXP (x, 2), true_rtx);
5912 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5913 cond = XEXP (x, 0);
5915 /* It is possible that the conditional has been simplified out. */
5916 true_code = GET_CODE (cond);
5917 comparison_p = COMPARISON_P (cond);
5920 /* If the two arms are identical, we don't need the comparison. */
5922 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5923 return true_rtx;
5925 /* Convert a == b ? b : a to "a". */
5926 if (true_code == EQ && ! side_effects_p (cond)
5927 && !HONOR_NANS (mode)
5928 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5929 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5930 return false_rtx;
5931 else if (true_code == NE && ! side_effects_p (cond)
5932 && !HONOR_NANS (mode)
5933 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5934 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5935 return true_rtx;
5937 /* Look for cases where we have (abs x) or (neg (abs X)). */
5939 if (GET_MODE_CLASS (mode) == MODE_INT
5940 && comparison_p
5941 && XEXP (cond, 1) == const0_rtx
5942 && GET_CODE (false_rtx) == NEG
5943 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5944 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5945 && ! side_effects_p (true_rtx))
5946 switch (true_code)
5948 case GT:
5949 case GE:
5950 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5951 case LT:
5952 case LE:
5953 return
5954 simplify_gen_unary (NEG, mode,
5955 simplify_gen_unary (ABS, mode, true_rtx, mode),
5956 mode);
5957 default:
5958 break;
5961 /* Look for MIN or MAX. */
5963 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5964 && comparison_p
5965 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5966 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5967 && ! side_effects_p (cond))
5968 switch (true_code)
5970 case GE:
5971 case GT:
5972 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5973 case LE:
5974 case LT:
5975 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5976 case GEU:
5977 case GTU:
5978 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5979 case LEU:
5980 case LTU:
5981 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5982 default:
5983 break;
5986 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5987 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5988 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5989 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5990 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5991 neither 1 or -1, but it isn't worth checking for. */
5993 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5994 && comparison_p
5995 && GET_MODE_CLASS (mode) == MODE_INT
5996 && ! side_effects_p (x))
5998 rtx t = make_compound_operation (true_rtx, SET);
5999 rtx f = make_compound_operation (false_rtx, SET);
6000 rtx cond_op0 = XEXP (cond, 0);
6001 rtx cond_op1 = XEXP (cond, 1);
6002 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6003 enum machine_mode m = mode;
6004 rtx z = 0, c1 = NULL_RTX;
6006 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6007 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6008 || GET_CODE (t) == ASHIFT
6009 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6010 && rtx_equal_p (XEXP (t, 0), f))
6011 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6013 /* If an identity-zero op is commutative, check whether there
6014 would be a match if we swapped the operands. */
6015 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6016 || GET_CODE (t) == XOR)
6017 && rtx_equal_p (XEXP (t, 1), f))
6018 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6019 else if (GET_CODE (t) == SIGN_EXTEND
6020 && (GET_CODE (XEXP (t, 0)) == PLUS
6021 || GET_CODE (XEXP (t, 0)) == MINUS
6022 || GET_CODE (XEXP (t, 0)) == IOR
6023 || GET_CODE (XEXP (t, 0)) == XOR
6024 || GET_CODE (XEXP (t, 0)) == ASHIFT
6025 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6026 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6027 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6028 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6029 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6030 && (num_sign_bit_copies (f, GET_MODE (f))
6031 > (unsigned int)
6032 (GET_MODE_BITSIZE (mode)
6033 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6035 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6036 extend_op = SIGN_EXTEND;
6037 m = GET_MODE (XEXP (t, 0));
6039 else if (GET_CODE (t) == SIGN_EXTEND
6040 && (GET_CODE (XEXP (t, 0)) == PLUS
6041 || GET_CODE (XEXP (t, 0)) == IOR
6042 || GET_CODE (XEXP (t, 0)) == XOR)
6043 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6044 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6045 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6046 && (num_sign_bit_copies (f, GET_MODE (f))
6047 > (unsigned int)
6048 (GET_MODE_BITSIZE (mode)
6049 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6051 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6052 extend_op = SIGN_EXTEND;
6053 m = GET_MODE (XEXP (t, 0));
6055 else if (GET_CODE (t) == ZERO_EXTEND
6056 && (GET_CODE (XEXP (t, 0)) == PLUS
6057 || GET_CODE (XEXP (t, 0)) == MINUS
6058 || GET_CODE (XEXP (t, 0)) == IOR
6059 || GET_CODE (XEXP (t, 0)) == XOR
6060 || GET_CODE (XEXP (t, 0)) == ASHIFT
6061 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6062 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6063 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6064 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6065 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6066 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6067 && ((nonzero_bits (f, GET_MODE (f))
6068 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6069 == 0))
6071 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6072 extend_op = ZERO_EXTEND;
6073 m = GET_MODE (XEXP (t, 0));
6075 else if (GET_CODE (t) == ZERO_EXTEND
6076 && (GET_CODE (XEXP (t, 0)) == PLUS
6077 || GET_CODE (XEXP (t, 0)) == IOR
6078 || GET_CODE (XEXP (t, 0)) == XOR)
6079 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6080 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6081 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6082 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6083 && ((nonzero_bits (f, GET_MODE (f))
6084 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6085 == 0))
6087 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6088 extend_op = ZERO_EXTEND;
6089 m = GET_MODE (XEXP (t, 0));
6092 if (z)
6094 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6095 cond_op0, cond_op1),
6096 pc_rtx, pc_rtx, 0, 0);
6097 temp = simplify_gen_binary (MULT, m, temp,
6098 simplify_gen_binary (MULT, m, c1,
6099 const_true_rtx));
6100 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
6101 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6103 if (extend_op != UNKNOWN)
6104 temp = simplify_gen_unary (extend_op, mode, temp, m);
6106 return temp;
6110 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6111 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6112 negation of a single bit, we can convert this operation to a shift. We
6113 can actually do this more generally, but it doesn't seem worth it. */
6115 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6116 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6117 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6118 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
6119 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6120 == GET_MODE_BITSIZE (mode))
6121 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
6122 return
6123 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6124 gen_lowpart (mode, XEXP (cond, 0)), i);
6126 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6127 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6128 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6129 && GET_MODE (XEXP (cond, 0)) == mode
6130 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
6131 == nonzero_bits (XEXP (cond, 0), mode)
6132 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6133 return XEXP (cond, 0);
6135 return x;
6138 /* Simplify X, a SET expression. Return the new expression. */
6140 static rtx
6141 simplify_set (rtx x)
6143 rtx src = SET_SRC (x);
6144 rtx dest = SET_DEST (x);
6145 enum machine_mode mode
6146 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6147 rtx other_insn;
6148 rtx *cc_use;
6150 /* (set (pc) (return)) gets written as (return). */
6151 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
6152 return src;
6154 /* Now that we know for sure which bits of SRC we are using, see if we can
6155 simplify the expression for the object knowing that we only need the
6156 low-order bits. */
6158 if (GET_MODE_CLASS (mode) == MODE_INT
6159 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
6161 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
6162 SUBST (SET_SRC (x), src);
6165 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6166 the comparison result and try to simplify it unless we already have used
6167 undobuf.other_insn. */
6168 if ((GET_MODE_CLASS (mode) == MODE_CC
6169 || GET_CODE (src) == COMPARE
6170 || CC0_P (dest))
6171 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6172 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6173 && COMPARISON_P (*cc_use)
6174 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6176 enum rtx_code old_code = GET_CODE (*cc_use);
6177 enum rtx_code new_code;
6178 rtx op0, op1, tmp;
6179 int other_changed = 0;
6180 enum machine_mode compare_mode = GET_MODE (dest);
6182 if (GET_CODE (src) == COMPARE)
6183 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6184 else
6185 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6187 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6188 op0, op1);
6189 if (!tmp)
6190 new_code = old_code;
6191 else if (!CONSTANT_P (tmp))
6193 new_code = GET_CODE (tmp);
6194 op0 = XEXP (tmp, 0);
6195 op1 = XEXP (tmp, 1);
6197 else
6199 rtx pat = PATTERN (other_insn);
6200 undobuf.other_insn = other_insn;
6201 SUBST (*cc_use, tmp);
6203 /* Attempt to simplify CC user. */
6204 if (GET_CODE (pat) == SET)
6206 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6207 if (new_rtx != NULL_RTX)
6208 SUBST (SET_SRC (pat), new_rtx);
6211 /* Convert X into a no-op move. */
6212 SUBST (SET_DEST (x), pc_rtx);
6213 SUBST (SET_SRC (x), pc_rtx);
6214 return x;
6217 /* Simplify our comparison, if possible. */
6218 new_code = simplify_comparison (new_code, &op0, &op1);
6220 #ifdef SELECT_CC_MODE
6221 /* If this machine has CC modes other than CCmode, check to see if we
6222 need to use a different CC mode here. */
6223 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6224 compare_mode = GET_MODE (op0);
6225 else
6226 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6228 #ifndef HAVE_cc0
6229 /* If the mode changed, we have to change SET_DEST, the mode in the
6230 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6231 a hard register, just build new versions with the proper mode. If it
6232 is a pseudo, we lose unless it is only time we set the pseudo, in
6233 which case we can safely change its mode. */
6234 if (compare_mode != GET_MODE (dest))
6236 if (can_change_dest_mode (dest, 0, compare_mode))
6238 unsigned int regno = REGNO (dest);
6239 rtx new_dest;
6241 if (regno < FIRST_PSEUDO_REGISTER)
6242 new_dest = gen_rtx_REG (compare_mode, regno);
6243 else
6245 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6246 new_dest = regno_reg_rtx[regno];
6249 SUBST (SET_DEST (x), new_dest);
6250 SUBST (XEXP (*cc_use, 0), new_dest);
6251 other_changed = 1;
6253 dest = new_dest;
6256 #endif /* cc0 */
6257 #endif /* SELECT_CC_MODE */
6259 /* If the code changed, we have to build a new comparison in
6260 undobuf.other_insn. */
6261 if (new_code != old_code)
6263 int other_changed_previously = other_changed;
6264 unsigned HOST_WIDE_INT mask;
6265 rtx old_cc_use = *cc_use;
6267 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6268 dest, const0_rtx));
6269 other_changed = 1;
6271 /* If the only change we made was to change an EQ into an NE or
6272 vice versa, OP0 has only one bit that might be nonzero, and OP1
6273 is zero, check if changing the user of the condition code will
6274 produce a valid insn. If it won't, we can keep the original code
6275 in that insn by surrounding our operation with an XOR. */
6277 if (((old_code == NE && new_code == EQ)
6278 || (old_code == EQ && new_code == NE))
6279 && ! other_changed_previously && op1 == const0_rtx
6280 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
6281 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6283 rtx pat = PATTERN (other_insn), note = 0;
6285 if ((recog_for_combine (&pat, other_insn, &note) < 0
6286 && ! check_asm_operands (pat)))
6288 *cc_use = old_cc_use;
6289 other_changed = 0;
6291 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6292 op0, GEN_INT (mask));
6297 if (other_changed)
6298 undobuf.other_insn = other_insn;
6300 /* Otherwise, if we didn't previously have a COMPARE in the
6301 correct mode, we need one. */
6302 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6304 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6305 src = SET_SRC (x);
6307 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6309 SUBST (SET_SRC (x), op0);
6310 src = SET_SRC (x);
6312 /* Otherwise, update the COMPARE if needed. */
6313 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6315 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6316 src = SET_SRC (x);
6319 else
6321 /* Get SET_SRC in a form where we have placed back any
6322 compound expressions. Then do the checks below. */
6323 src = make_compound_operation (src, SET);
6324 SUBST (SET_SRC (x), src);
6327 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6328 and X being a REG or (subreg (reg)), we may be able to convert this to
6329 (set (subreg:m2 x) (op)).
6331 We can always do this if M1 is narrower than M2 because that means that
6332 we only care about the low bits of the result.
6334 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6335 perform a narrower operation than requested since the high-order bits will
6336 be undefined. On machine where it is defined, this transformation is safe
6337 as long as M1 and M2 have the same number of words. */
6339 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6340 && !OBJECT_P (SUBREG_REG (src))
6341 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6342 / UNITS_PER_WORD)
6343 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6344 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6345 #ifndef WORD_REGISTER_OPERATIONS
6346 && (GET_MODE_SIZE (GET_MODE (src))
6347 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6348 #endif
6349 #ifdef CANNOT_CHANGE_MODE_CLASS
6350 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6351 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6352 GET_MODE (SUBREG_REG (src)),
6353 GET_MODE (src)))
6354 #endif
6355 && (REG_P (dest)
6356 || (GET_CODE (dest) == SUBREG
6357 && REG_P (SUBREG_REG (dest)))))
6359 SUBST (SET_DEST (x),
6360 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6361 dest));
6362 SUBST (SET_SRC (x), SUBREG_REG (src));
6364 src = SET_SRC (x), dest = SET_DEST (x);
6367 #ifdef HAVE_cc0
6368 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6369 in SRC. */
6370 if (dest == cc0_rtx
6371 && GET_CODE (src) == SUBREG
6372 && subreg_lowpart_p (src)
6373 && (GET_MODE_BITSIZE (GET_MODE (src))
6374 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
6376 rtx inner = SUBREG_REG (src);
6377 enum machine_mode inner_mode = GET_MODE (inner);
6379 /* Here we make sure that we don't have a sign bit on. */
6380 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
6381 && (nonzero_bits (inner, inner_mode)
6382 < ((unsigned HOST_WIDE_INT) 1
6383 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
6385 SUBST (SET_SRC (x), inner);
6386 src = SET_SRC (x);
6389 #endif
6391 #ifdef LOAD_EXTEND_OP
6392 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6393 would require a paradoxical subreg. Replace the subreg with a
6394 zero_extend to avoid the reload that would otherwise be required. */
6396 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6397 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6398 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6399 && SUBREG_BYTE (src) == 0
6400 && (GET_MODE_SIZE (GET_MODE (src))
6401 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6402 && MEM_P (SUBREG_REG (src)))
6404 SUBST (SET_SRC (x),
6405 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6406 GET_MODE (src), SUBREG_REG (src)));
6408 src = SET_SRC (x);
6410 #endif
6412 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6413 are comparing an item known to be 0 or -1 against 0, use a logical
6414 operation instead. Check for one of the arms being an IOR of the other
6415 arm with some value. We compute three terms to be IOR'ed together. In
6416 practice, at most two will be nonzero. Then we do the IOR's. */
6418 if (GET_CODE (dest) != PC
6419 && GET_CODE (src) == IF_THEN_ELSE
6420 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6421 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6422 && XEXP (XEXP (src, 0), 1) == const0_rtx
6423 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6424 #ifdef HAVE_conditional_move
6425 && ! can_conditionally_move_p (GET_MODE (src))
6426 #endif
6427 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6428 GET_MODE (XEXP (XEXP (src, 0), 0)))
6429 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
6430 && ! side_effects_p (src))
6432 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6433 ? XEXP (src, 1) : XEXP (src, 2));
6434 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6435 ? XEXP (src, 2) : XEXP (src, 1));
6436 rtx term1 = const0_rtx, term2, term3;
6438 if (GET_CODE (true_rtx) == IOR
6439 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6440 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6441 else if (GET_CODE (true_rtx) == IOR
6442 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6443 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6444 else if (GET_CODE (false_rtx) == IOR
6445 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6446 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6447 else if (GET_CODE (false_rtx) == IOR
6448 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6449 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6451 term2 = simplify_gen_binary (AND, GET_MODE (src),
6452 XEXP (XEXP (src, 0), 0), true_rtx);
6453 term3 = simplify_gen_binary (AND, GET_MODE (src),
6454 simplify_gen_unary (NOT, GET_MODE (src),
6455 XEXP (XEXP (src, 0), 0),
6456 GET_MODE (src)),
6457 false_rtx);
6459 SUBST (SET_SRC (x),
6460 simplify_gen_binary (IOR, GET_MODE (src),
6461 simplify_gen_binary (IOR, GET_MODE (src),
6462 term1, term2),
6463 term3));
6465 src = SET_SRC (x);
6468 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6469 whole thing fail. */
6470 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6471 return src;
6472 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6473 return dest;
6474 else
6475 /* Convert this into a field assignment operation, if possible. */
6476 return make_field_assignment (x);
6479 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6480 result. */
6482 static rtx
6483 simplify_logical (rtx x)
6485 enum machine_mode mode = GET_MODE (x);
6486 rtx op0 = XEXP (x, 0);
6487 rtx op1 = XEXP (x, 1);
6489 switch (GET_CODE (x))
6491 case AND:
6492 /* We can call simplify_and_const_int only if we don't lose
6493 any (sign) bits when converting INTVAL (op1) to
6494 "unsigned HOST_WIDE_INT". */
6495 if (CONST_INT_P (op1)
6496 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6497 || INTVAL (op1) > 0))
6499 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6500 if (GET_CODE (x) != AND)
6501 return x;
6503 op0 = XEXP (x, 0);
6504 op1 = XEXP (x, 1);
6507 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6508 apply the distributive law and then the inverse distributive
6509 law to see if things simplify. */
6510 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6512 rtx result = distribute_and_simplify_rtx (x, 0);
6513 if (result)
6514 return result;
6516 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6518 rtx result = distribute_and_simplify_rtx (x, 1);
6519 if (result)
6520 return result;
6522 break;
6524 case IOR:
6525 /* If we have (ior (and A B) C), apply the distributive law and then
6526 the inverse distributive law to see if things simplify. */
6528 if (GET_CODE (op0) == AND)
6530 rtx result = distribute_and_simplify_rtx (x, 0);
6531 if (result)
6532 return result;
6535 if (GET_CODE (op1) == AND)
6537 rtx result = distribute_and_simplify_rtx (x, 1);
6538 if (result)
6539 return result;
6541 break;
6543 default:
6544 gcc_unreachable ();
6547 return x;
6550 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6551 operations" because they can be replaced with two more basic operations.
6552 ZERO_EXTEND is also considered "compound" because it can be replaced with
6553 an AND operation, which is simpler, though only one operation.
6555 The function expand_compound_operation is called with an rtx expression
6556 and will convert it to the appropriate shifts and AND operations,
6557 simplifying at each stage.
6559 The function make_compound_operation is called to convert an expression
6560 consisting of shifts and ANDs into the equivalent compound expression.
6561 It is the inverse of this function, loosely speaking. */
6563 static rtx
6564 expand_compound_operation (rtx x)
6566 unsigned HOST_WIDE_INT pos = 0, len;
6567 int unsignedp = 0;
6568 unsigned int modewidth;
6569 rtx tem;
6571 switch (GET_CODE (x))
6573 case ZERO_EXTEND:
6574 unsignedp = 1;
6575 case SIGN_EXTEND:
6576 /* We can't necessarily use a const_int for a multiword mode;
6577 it depends on implicitly extending the value.
6578 Since we don't know the right way to extend it,
6579 we can't tell whether the implicit way is right.
6581 Even for a mode that is no wider than a const_int,
6582 we can't win, because we need to sign extend one of its bits through
6583 the rest of it, and we don't know which bit. */
6584 if (CONST_INT_P (XEXP (x, 0)))
6585 return x;
6587 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6588 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6589 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6590 reloaded. If not for that, MEM's would very rarely be safe.
6592 Reject MODEs bigger than a word, because we might not be able
6593 to reference a two-register group starting with an arbitrary register
6594 (and currently gen_lowpart might crash for a SUBREG). */
6596 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6597 return x;
6599 /* Reject MODEs that aren't scalar integers because turning vector
6600 or complex modes into shifts causes problems. */
6602 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6603 return x;
6605 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6606 /* If the inner object has VOIDmode (the only way this can happen
6607 is if it is an ASM_OPERANDS), we can't do anything since we don't
6608 know how much masking to do. */
6609 if (len == 0)
6610 return x;
6612 break;
6614 case ZERO_EXTRACT:
6615 unsignedp = 1;
6617 /* ... fall through ... */
6619 case SIGN_EXTRACT:
6620 /* If the operand is a CLOBBER, just return it. */
6621 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6622 return XEXP (x, 0);
6624 if (!CONST_INT_P (XEXP (x, 1))
6625 || !CONST_INT_P (XEXP (x, 2))
6626 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6627 return x;
6629 /* Reject MODEs that aren't scalar integers because turning vector
6630 or complex modes into shifts causes problems. */
6632 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6633 return x;
6635 len = INTVAL (XEXP (x, 1));
6636 pos = INTVAL (XEXP (x, 2));
6638 /* This should stay within the object being extracted, fail otherwise. */
6639 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6640 return x;
6642 if (BITS_BIG_ENDIAN)
6643 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6645 break;
6647 default:
6648 return x;
6650 /* Convert sign extension to zero extension, if we know that the high
6651 bit is not set, as this is easier to optimize. It will be converted
6652 back to cheaper alternative in make_extraction. */
6653 if (GET_CODE (x) == SIGN_EXTEND
6654 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6655 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6656 & ~(((unsigned HOST_WIDE_INT)
6657 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6658 >> 1))
6659 == 0)))
6661 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6662 rtx temp2 = expand_compound_operation (temp);
6664 /* Make sure this is a profitable operation. */
6665 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6666 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6667 return temp2;
6668 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6669 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6670 return temp;
6671 else
6672 return x;
6675 /* We can optimize some special cases of ZERO_EXTEND. */
6676 if (GET_CODE (x) == ZERO_EXTEND)
6678 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6679 know that the last value didn't have any inappropriate bits
6680 set. */
6681 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6682 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6683 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6684 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6685 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6686 return XEXP (XEXP (x, 0), 0);
6688 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6689 if (GET_CODE (XEXP (x, 0)) == SUBREG
6690 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6691 && subreg_lowpart_p (XEXP (x, 0))
6692 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6693 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6694 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6695 return SUBREG_REG (XEXP (x, 0));
6697 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6698 is a comparison and STORE_FLAG_VALUE permits. This is like
6699 the first case, but it works even when GET_MODE (x) is larger
6700 than HOST_WIDE_INT. */
6701 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6702 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6703 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6704 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6705 <= HOST_BITS_PER_WIDE_INT)
6706 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6707 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6708 return XEXP (XEXP (x, 0), 0);
6710 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6711 if (GET_CODE (XEXP (x, 0)) == SUBREG
6712 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6713 && subreg_lowpart_p (XEXP (x, 0))
6714 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6715 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6716 <= HOST_BITS_PER_WIDE_INT)
6717 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6718 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6719 return SUBREG_REG (XEXP (x, 0));
6723 /* If we reach here, we want to return a pair of shifts. The inner
6724 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6725 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6726 logical depending on the value of UNSIGNEDP.
6728 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6729 converted into an AND of a shift.
6731 We must check for the case where the left shift would have a negative
6732 count. This can happen in a case like (x >> 31) & 255 on machines
6733 that can't shift by a constant. On those machines, we would first
6734 combine the shift with the AND to produce a variable-position
6735 extraction. Then the constant of 31 would be substituted in to produce
6736 a such a position. */
6738 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6739 if (modewidth + len >= pos)
6741 enum machine_mode mode = GET_MODE (x);
6742 tem = gen_lowpart (mode, XEXP (x, 0));
6743 if (!tem || GET_CODE (tem) == CLOBBER)
6744 return x;
6745 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6746 tem, modewidth - pos - len);
6747 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6748 mode, tem, modewidth - len);
6750 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6751 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6752 simplify_shift_const (NULL_RTX, LSHIFTRT,
6753 GET_MODE (x),
6754 XEXP (x, 0), pos),
6755 ((HOST_WIDE_INT) 1 << len) - 1);
6756 else
6757 /* Any other cases we can't handle. */
6758 return x;
6760 /* If we couldn't do this for some reason, return the original
6761 expression. */
6762 if (GET_CODE (tem) == CLOBBER)
6763 return x;
6765 return tem;
6768 /* X is a SET which contains an assignment of one object into
6769 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6770 or certain SUBREGS). If possible, convert it into a series of
6771 logical operations.
6773 We half-heartedly support variable positions, but do not at all
6774 support variable lengths. */
6776 static const_rtx
6777 expand_field_assignment (const_rtx x)
6779 rtx inner;
6780 rtx pos; /* Always counts from low bit. */
6781 int len;
6782 rtx mask, cleared, masked;
6783 enum machine_mode compute_mode;
6785 /* Loop until we find something we can't simplify. */
6786 while (1)
6788 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6789 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6791 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6792 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6793 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6795 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6796 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6798 inner = XEXP (SET_DEST (x), 0);
6799 len = INTVAL (XEXP (SET_DEST (x), 1));
6800 pos = XEXP (SET_DEST (x), 2);
6802 /* A constant position should stay within the width of INNER. */
6803 if (CONST_INT_P (pos)
6804 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6805 break;
6807 if (BITS_BIG_ENDIAN)
6809 if (CONST_INT_P (pos))
6810 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6811 - INTVAL (pos));
6812 else if (GET_CODE (pos) == MINUS
6813 && CONST_INT_P (XEXP (pos, 1))
6814 && (INTVAL (XEXP (pos, 1))
6815 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6816 /* If position is ADJUST - X, new position is X. */
6817 pos = XEXP (pos, 0);
6818 else
6819 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6820 GEN_INT (GET_MODE_BITSIZE (
6821 GET_MODE (inner))
6822 - len),
6823 pos);
6827 /* A SUBREG between two modes that occupy the same numbers of words
6828 can be done by moving the SUBREG to the source. */
6829 else if (GET_CODE (SET_DEST (x)) == SUBREG
6830 /* We need SUBREGs to compute nonzero_bits properly. */
6831 && nonzero_sign_valid
6832 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6833 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6834 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6835 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6837 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6838 gen_lowpart
6839 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6840 SET_SRC (x)));
6841 continue;
6843 else
6844 break;
6846 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6847 inner = SUBREG_REG (inner);
6849 compute_mode = GET_MODE (inner);
6851 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6852 if (! SCALAR_INT_MODE_P (compute_mode))
6854 enum machine_mode imode;
6856 /* Don't do anything for vector or complex integral types. */
6857 if (! FLOAT_MODE_P (compute_mode))
6858 break;
6860 /* Try to find an integral mode to pun with. */
6861 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6862 if (imode == BLKmode)
6863 break;
6865 compute_mode = imode;
6866 inner = gen_lowpart (imode, inner);
6869 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6870 if (len >= HOST_BITS_PER_WIDE_INT)
6871 break;
6873 /* Now compute the equivalent expression. Make a copy of INNER
6874 for the SET_DEST in case it is a MEM into which we will substitute;
6875 we don't want shared RTL in that case. */
6876 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6877 cleared = simplify_gen_binary (AND, compute_mode,
6878 simplify_gen_unary (NOT, compute_mode,
6879 simplify_gen_binary (ASHIFT,
6880 compute_mode,
6881 mask, pos),
6882 compute_mode),
6883 inner);
6884 masked = simplify_gen_binary (ASHIFT, compute_mode,
6885 simplify_gen_binary (
6886 AND, compute_mode,
6887 gen_lowpart (compute_mode, SET_SRC (x)),
6888 mask),
6889 pos);
6891 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6892 simplify_gen_binary (IOR, compute_mode,
6893 cleared, masked));
6896 return x;
6899 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6900 it is an RTX that represents a variable starting position; otherwise,
6901 POS is the (constant) starting bit position (counted from the LSB).
6903 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6904 signed reference.
6906 IN_DEST is nonzero if this is a reference in the destination of a
6907 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6908 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6909 be used.
6911 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6912 ZERO_EXTRACT should be built even for bits starting at bit 0.
6914 MODE is the desired mode of the result (if IN_DEST == 0).
6916 The result is an RTX for the extraction or NULL_RTX if the target
6917 can't handle it. */
6919 static rtx
6920 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6921 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6922 int in_dest, int in_compare)
6924 /* This mode describes the size of the storage area
6925 to fetch the overall value from. Within that, we
6926 ignore the POS lowest bits, etc. */
6927 enum machine_mode is_mode = GET_MODE (inner);
6928 enum machine_mode inner_mode;
6929 enum machine_mode wanted_inner_mode;
6930 enum machine_mode wanted_inner_reg_mode = word_mode;
6931 enum machine_mode pos_mode = word_mode;
6932 enum machine_mode extraction_mode = word_mode;
6933 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6934 rtx new_rtx = 0;
6935 rtx orig_pos_rtx = pos_rtx;
6936 HOST_WIDE_INT orig_pos;
6938 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6940 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6941 consider just the QI as the memory to extract from.
6942 The subreg adds or removes high bits; its mode is
6943 irrelevant to the meaning of this extraction,
6944 since POS and LEN count from the lsb. */
6945 if (MEM_P (SUBREG_REG (inner)))
6946 is_mode = GET_MODE (SUBREG_REG (inner));
6947 inner = SUBREG_REG (inner);
6949 else if (GET_CODE (inner) == ASHIFT
6950 && CONST_INT_P (XEXP (inner, 1))
6951 && pos_rtx == 0 && pos == 0
6952 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6954 /* We're extracting the least significant bits of an rtx
6955 (ashift X (const_int C)), where LEN > C. Extract the
6956 least significant (LEN - C) bits of X, giving an rtx
6957 whose mode is MODE, then shift it left C times. */
6958 new_rtx = make_extraction (mode, XEXP (inner, 0),
6959 0, 0, len - INTVAL (XEXP (inner, 1)),
6960 unsignedp, in_dest, in_compare);
6961 if (new_rtx != 0)
6962 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
6965 inner_mode = GET_MODE (inner);
6967 if (pos_rtx && CONST_INT_P (pos_rtx))
6968 pos = INTVAL (pos_rtx), pos_rtx = 0;
6970 /* See if this can be done without an extraction. We never can if the
6971 width of the field is not the same as that of some integer mode. For
6972 registers, we can only avoid the extraction if the position is at the
6973 low-order bit and this is either not in the destination or we have the
6974 appropriate STRICT_LOW_PART operation available.
6976 For MEM, we can avoid an extract if the field starts on an appropriate
6977 boundary and we can change the mode of the memory reference. */
6979 if (tmode != BLKmode
6980 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6981 && !MEM_P (inner)
6982 && (inner_mode == tmode
6983 || !REG_P (inner)
6984 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6985 GET_MODE_BITSIZE (inner_mode))
6986 || reg_truncated_to_mode (tmode, inner))
6987 && (! in_dest
6988 || (REG_P (inner)
6989 && have_insn_for (STRICT_LOW_PART, tmode))))
6990 || (MEM_P (inner) && pos_rtx == 0
6991 && (pos
6992 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6993 : BITS_PER_UNIT)) == 0
6994 /* We can't do this if we are widening INNER_MODE (it
6995 may not be aligned, for one thing). */
6996 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6997 && (inner_mode == tmode
6998 || (! mode_dependent_address_p (XEXP (inner, 0))
6999 && ! MEM_VOLATILE_P (inner))))))
7001 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7002 field. If the original and current mode are the same, we need not
7003 adjust the offset. Otherwise, we do if bytes big endian.
7005 If INNER is not a MEM, get a piece consisting of just the field
7006 of interest (in this case POS % BITS_PER_WORD must be 0). */
7008 if (MEM_P (inner))
7010 HOST_WIDE_INT offset;
7012 /* POS counts from lsb, but make OFFSET count in memory order. */
7013 if (BYTES_BIG_ENDIAN)
7014 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
7015 else
7016 offset = pos / BITS_PER_UNIT;
7018 new_rtx = adjust_address_nv (inner, tmode, offset);
7020 else if (REG_P (inner))
7022 if (tmode != inner_mode)
7024 /* We can't call gen_lowpart in a DEST since we
7025 always want a SUBREG (see below) and it would sometimes
7026 return a new hard register. */
7027 if (pos || in_dest)
7029 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7031 if (WORDS_BIG_ENDIAN
7032 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7033 final_word = ((GET_MODE_SIZE (inner_mode)
7034 - GET_MODE_SIZE (tmode))
7035 / UNITS_PER_WORD) - final_word;
7037 final_word *= UNITS_PER_WORD;
7038 if (BYTES_BIG_ENDIAN &&
7039 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7040 final_word += (GET_MODE_SIZE (inner_mode)
7041 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7043 /* Avoid creating invalid subregs, for example when
7044 simplifying (x>>32)&255. */
7045 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7046 return NULL_RTX;
7048 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7050 else
7051 new_rtx = gen_lowpart (tmode, inner);
7053 else
7054 new_rtx = inner;
7056 else
7057 new_rtx = force_to_mode (inner, tmode,
7058 len >= HOST_BITS_PER_WIDE_INT
7059 ? ~(unsigned HOST_WIDE_INT) 0
7060 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7063 /* If this extraction is going into the destination of a SET,
7064 make a STRICT_LOW_PART unless we made a MEM. */
7066 if (in_dest)
7067 return (MEM_P (new_rtx) ? new_rtx
7068 : (GET_CODE (new_rtx) != SUBREG
7069 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7070 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7072 if (mode == tmode)
7073 return new_rtx;
7075 if (CONST_INT_P (new_rtx)
7076 || GET_CODE (new_rtx) == CONST_DOUBLE)
7077 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7078 mode, new_rtx, tmode);
7080 /* If we know that no extraneous bits are set, and that the high
7081 bit is not set, convert the extraction to the cheaper of
7082 sign and zero extension, that are equivalent in these cases. */
7083 if (flag_expensive_optimizations
7084 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
7085 && ((nonzero_bits (new_rtx, tmode)
7086 & ~(((unsigned HOST_WIDE_INT)
7087 GET_MODE_MASK (tmode))
7088 >> 1))
7089 == 0)))
7091 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7092 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7094 /* Prefer ZERO_EXTENSION, since it gives more information to
7095 backends. */
7096 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
7097 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
7098 return temp;
7099 return temp1;
7102 /* Otherwise, sign- or zero-extend unless we already are in the
7103 proper mode. */
7105 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7106 mode, new_rtx));
7109 /* Unless this is a COMPARE or we have a funny memory reference,
7110 don't do anything with zero-extending field extracts starting at
7111 the low-order bit since they are simple AND operations. */
7112 if (pos_rtx == 0 && pos == 0 && ! in_dest
7113 && ! in_compare && unsignedp)
7114 return 0;
7116 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7117 if the position is not a constant and the length is not 1. In all
7118 other cases, we would only be going outside our object in cases when
7119 an original shift would have been undefined. */
7120 if (MEM_P (inner)
7121 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
7122 || (pos_rtx != 0 && len != 1)))
7123 return 0;
7125 /* Get the mode to use should INNER not be a MEM, the mode for the position,
7126 and the mode for the result. */
7127 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
7129 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
7130 pos_mode = mode_for_extraction (EP_insv, 2);
7131 extraction_mode = mode_for_extraction (EP_insv, 3);
7134 if (! in_dest && unsignedp
7135 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
7137 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
7138 pos_mode = mode_for_extraction (EP_extzv, 3);
7139 extraction_mode = mode_for_extraction (EP_extzv, 0);
7142 if (! in_dest && ! unsignedp
7143 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
7145 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
7146 pos_mode = mode_for_extraction (EP_extv, 3);
7147 extraction_mode = mode_for_extraction (EP_extv, 0);
7150 /* Never narrow an object, since that might not be safe. */
7152 if (mode != VOIDmode
7153 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7154 extraction_mode = mode;
7156 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
7157 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7158 pos_mode = GET_MODE (pos_rtx);
7160 /* If this is not from memory, the desired mode is the preferred mode
7161 for an extraction pattern's first input operand, or word_mode if there
7162 is none. */
7163 if (!MEM_P (inner))
7164 wanted_inner_mode = wanted_inner_reg_mode;
7165 else
7167 /* Be careful not to go beyond the extracted object and maintain the
7168 natural alignment of the memory. */
7169 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7170 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7171 > GET_MODE_BITSIZE (wanted_inner_mode))
7173 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7174 gcc_assert (wanted_inner_mode != VOIDmode);
7177 /* If we have to change the mode of memory and cannot, the desired mode
7178 is EXTRACTION_MODE. */
7179 if (inner_mode != wanted_inner_mode
7180 && (mode_dependent_address_p (XEXP (inner, 0))
7181 || MEM_VOLATILE_P (inner)
7182 || pos_rtx))
7183 wanted_inner_mode = extraction_mode;
7186 orig_pos = pos;
7188 if (BITS_BIG_ENDIAN)
7190 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7191 BITS_BIG_ENDIAN style. If position is constant, compute new
7192 position. Otherwise, build subtraction.
7193 Note that POS is relative to the mode of the original argument.
7194 If it's a MEM we need to recompute POS relative to that.
7195 However, if we're extracting from (or inserting into) a register,
7196 we want to recompute POS relative to wanted_inner_mode. */
7197 int width = (MEM_P (inner)
7198 ? GET_MODE_BITSIZE (is_mode)
7199 : GET_MODE_BITSIZE (wanted_inner_mode));
7201 if (pos_rtx == 0)
7202 pos = width - len - pos;
7203 else
7204 pos_rtx
7205 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7206 /* POS may be less than 0 now, but we check for that below.
7207 Note that it can only be less than 0 if !MEM_P (inner). */
7210 /* If INNER has a wider mode, and this is a constant extraction, try to
7211 make it smaller and adjust the byte to point to the byte containing
7212 the value. */
7213 if (wanted_inner_mode != VOIDmode
7214 && inner_mode != wanted_inner_mode
7215 && ! pos_rtx
7216 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7217 && MEM_P (inner)
7218 && ! mode_dependent_address_p (XEXP (inner, 0))
7219 && ! MEM_VOLATILE_P (inner))
7221 int offset = 0;
7223 /* The computations below will be correct if the machine is big
7224 endian in both bits and bytes or little endian in bits and bytes.
7225 If it is mixed, we must adjust. */
7227 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7228 adjust OFFSET to compensate. */
7229 if (BYTES_BIG_ENDIAN
7230 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7231 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7233 /* We can now move to the desired byte. */
7234 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7235 * GET_MODE_SIZE (wanted_inner_mode);
7236 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7238 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7239 && is_mode != wanted_inner_mode)
7240 offset = (GET_MODE_SIZE (is_mode)
7241 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7243 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7246 /* If INNER is not memory, get it into the proper mode. If we are changing
7247 its mode, POS must be a constant and smaller than the size of the new
7248 mode. */
7249 else if (!MEM_P (inner))
7251 /* On the LHS, don't create paradoxical subregs implicitely truncating
7252 the register unless TRULY_NOOP_TRUNCATION. */
7253 if (in_dest
7254 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (inner)),
7255 GET_MODE_BITSIZE (wanted_inner_mode)))
7256 return NULL_RTX;
7258 if (GET_MODE (inner) != wanted_inner_mode
7259 && (pos_rtx != 0
7260 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7261 return NULL_RTX;
7263 if (orig_pos < 0)
7264 return NULL_RTX;
7266 inner = force_to_mode (inner, wanted_inner_mode,
7267 pos_rtx
7268 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7269 ? ~(unsigned HOST_WIDE_INT) 0
7270 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7271 << orig_pos),
7275 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7276 have to zero extend. Otherwise, we can just use a SUBREG. */
7277 if (pos_rtx != 0
7278 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7280 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7282 /* If we know that no extraneous bits are set, and that the high
7283 bit is not set, convert extraction to cheaper one - either
7284 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7285 cases. */
7286 if (flag_expensive_optimizations
7287 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
7288 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7289 & ~(((unsigned HOST_WIDE_INT)
7290 GET_MODE_MASK (GET_MODE (pos_rtx)))
7291 >> 1))
7292 == 0)))
7294 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7296 /* Prefer ZERO_EXTENSION, since it gives more information to
7297 backends. */
7298 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
7299 < rtx_cost (temp, SET, optimize_this_for_speed_p))
7300 temp = temp1;
7302 pos_rtx = temp;
7304 else if (pos_rtx != 0
7305 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7306 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
7308 /* Make POS_RTX unless we already have it and it is correct. If we don't
7309 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7310 be a CONST_INT. */
7311 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7312 pos_rtx = orig_pos_rtx;
7314 else if (pos_rtx == 0)
7315 pos_rtx = GEN_INT (pos);
7317 /* Make the required operation. See if we can use existing rtx. */
7318 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7319 extraction_mode, inner, GEN_INT (len), pos_rtx);
7320 if (! in_dest)
7321 new_rtx = gen_lowpart (mode, new_rtx);
7323 return new_rtx;
7326 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7327 with any other operations in X. Return X without that shift if so. */
7329 static rtx
7330 extract_left_shift (rtx x, int count)
7332 enum rtx_code code = GET_CODE (x);
7333 enum machine_mode mode = GET_MODE (x);
7334 rtx tem;
7336 switch (code)
7338 case ASHIFT:
7339 /* This is the shift itself. If it is wide enough, we will return
7340 either the value being shifted if the shift count is equal to
7341 COUNT or a shift for the difference. */
7342 if (CONST_INT_P (XEXP (x, 1))
7343 && INTVAL (XEXP (x, 1)) >= count)
7344 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7345 INTVAL (XEXP (x, 1)) - count);
7346 break;
7348 case NEG: case NOT:
7349 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7350 return simplify_gen_unary (code, mode, tem, mode);
7352 break;
7354 case PLUS: case IOR: case XOR: case AND:
7355 /* If we can safely shift this constant and we find the inner shift,
7356 make a new operation. */
7357 if (CONST_INT_P (XEXP (x, 1))
7358 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
7359 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7360 return simplify_gen_binary (code, mode, tem,
7361 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7363 break;
7365 default:
7366 break;
7369 return 0;
7372 /* Look at the expression rooted at X. Look for expressions
7373 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7374 Form these expressions.
7376 Return the new rtx, usually just X.
7378 Also, for machines like the VAX that don't have logical shift insns,
7379 try to convert logical to arithmetic shift operations in cases where
7380 they are equivalent. This undoes the canonicalizations to logical
7381 shifts done elsewhere.
7383 We try, as much as possible, to re-use rtl expressions to save memory.
7385 IN_CODE says what kind of expression we are processing. Normally, it is
7386 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7387 being kludges), it is MEM. When processing the arguments of a comparison
7388 or a COMPARE against zero, it is COMPARE. */
7390 static rtx
7391 make_compound_operation (rtx x, enum rtx_code in_code)
7393 enum rtx_code code = GET_CODE (x);
7394 enum machine_mode mode = GET_MODE (x);
7395 int mode_width = GET_MODE_BITSIZE (mode);
7396 rtx rhs, lhs;
7397 enum rtx_code next_code;
7398 int i, j;
7399 rtx new_rtx = 0;
7400 rtx tem;
7401 const char *fmt;
7403 /* Select the code to be used in recursive calls. Once we are inside an
7404 address, we stay there. If we have a comparison, set to COMPARE,
7405 but once inside, go back to our default of SET. */
7407 next_code = (code == MEM ? MEM
7408 : ((code == PLUS || code == MINUS)
7409 && SCALAR_INT_MODE_P (mode)) ? MEM
7410 : ((code == COMPARE || COMPARISON_P (x))
7411 && XEXP (x, 1) == const0_rtx) ? COMPARE
7412 : in_code == COMPARE ? SET : in_code);
7414 /* Process depending on the code of this operation. If NEW is set
7415 nonzero, it will be returned. */
7417 switch (code)
7419 case ASHIFT:
7420 /* Convert shifts by constants into multiplications if inside
7421 an address. */
7422 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7423 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7424 && INTVAL (XEXP (x, 1)) >= 0)
7426 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7427 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7429 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7430 if (GET_CODE (new_rtx) == NEG)
7432 new_rtx = XEXP (new_rtx, 0);
7433 multval = -multval;
7435 multval = trunc_int_for_mode (multval, mode);
7436 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7438 break;
7440 case PLUS:
7441 lhs = XEXP (x, 0);
7442 rhs = XEXP (x, 1);
7443 lhs = make_compound_operation (lhs, next_code);
7444 rhs = make_compound_operation (rhs, next_code);
7445 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7446 && SCALAR_INT_MODE_P (mode))
7448 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7449 XEXP (lhs, 1));
7450 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7452 else if (GET_CODE (lhs) == MULT
7453 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7455 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7456 simplify_gen_unary (NEG, mode,
7457 XEXP (lhs, 1),
7458 mode));
7459 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7461 else
7463 SUBST (XEXP (x, 0), lhs);
7464 SUBST (XEXP (x, 1), rhs);
7465 goto maybe_swap;
7467 x = gen_lowpart (mode, new_rtx);
7468 goto maybe_swap;
7470 case MINUS:
7471 lhs = XEXP (x, 0);
7472 rhs = XEXP (x, 1);
7473 lhs = make_compound_operation (lhs, next_code);
7474 rhs = make_compound_operation (rhs, next_code);
7475 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7476 && SCALAR_INT_MODE_P (mode))
7478 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7479 XEXP (rhs, 1));
7480 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7482 else if (GET_CODE (rhs) == MULT
7483 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7485 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7486 simplify_gen_unary (NEG, mode,
7487 XEXP (rhs, 1),
7488 mode));
7489 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7491 else
7493 SUBST (XEXP (x, 0), lhs);
7494 SUBST (XEXP (x, 1), rhs);
7495 return x;
7497 return gen_lowpart (mode, new_rtx);
7499 case AND:
7500 /* If the second operand is not a constant, we can't do anything
7501 with it. */
7502 if (!CONST_INT_P (XEXP (x, 1)))
7503 break;
7505 /* If the constant is a power of two minus one and the first operand
7506 is a logical right shift, make an extraction. */
7507 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7508 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7510 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7511 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7512 0, in_code == COMPARE);
7515 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7516 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7517 && subreg_lowpart_p (XEXP (x, 0))
7518 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7519 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7521 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7522 next_code);
7523 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7524 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7525 0, in_code == COMPARE);
7527 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7528 else if ((GET_CODE (XEXP (x, 0)) == XOR
7529 || GET_CODE (XEXP (x, 0)) == IOR)
7530 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7531 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7532 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7534 /* Apply the distributive law, and then try to make extractions. */
7535 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7536 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7537 XEXP (x, 1)),
7538 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7539 XEXP (x, 1)));
7540 new_rtx = make_compound_operation (new_rtx, in_code);
7543 /* If we are have (and (rotate X C) M) and C is larger than the number
7544 of bits in M, this is an extraction. */
7546 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7547 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7548 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
7549 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7551 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7552 new_rtx = make_extraction (mode, new_rtx,
7553 (GET_MODE_BITSIZE (mode)
7554 - INTVAL (XEXP (XEXP (x, 0), 1))),
7555 NULL_RTX, i, 1, 0, in_code == COMPARE);
7558 /* On machines without logical shifts, if the operand of the AND is
7559 a logical shift and our mask turns off all the propagated sign
7560 bits, we can replace the logical shift with an arithmetic shift. */
7561 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7562 && !have_insn_for (LSHIFTRT, mode)
7563 && have_insn_for (ASHIFTRT, mode)
7564 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7565 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7566 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7567 && mode_width <= HOST_BITS_PER_WIDE_INT)
7569 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7571 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7572 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7573 SUBST (XEXP (x, 0),
7574 gen_rtx_ASHIFTRT (mode,
7575 make_compound_operation
7576 (XEXP (XEXP (x, 0), 0), next_code),
7577 XEXP (XEXP (x, 0), 1)));
7580 /* If the constant is one less than a power of two, this might be
7581 representable by an extraction even if no shift is present.
7582 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7583 we are in a COMPARE. */
7584 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7585 new_rtx = make_extraction (mode,
7586 make_compound_operation (XEXP (x, 0),
7587 next_code),
7588 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7590 /* If we are in a comparison and this is an AND with a power of two,
7591 convert this into the appropriate bit extract. */
7592 else if (in_code == COMPARE
7593 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
7594 new_rtx = make_extraction (mode,
7595 make_compound_operation (XEXP (x, 0),
7596 next_code),
7597 i, NULL_RTX, 1, 1, 0, 1);
7599 break;
7601 case LSHIFTRT:
7602 /* If the sign bit is known to be zero, replace this with an
7603 arithmetic shift. */
7604 if (have_insn_for (ASHIFTRT, mode)
7605 && ! have_insn_for (LSHIFTRT, mode)
7606 && mode_width <= HOST_BITS_PER_WIDE_INT
7607 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7609 new_rtx = gen_rtx_ASHIFTRT (mode,
7610 make_compound_operation (XEXP (x, 0),
7611 next_code),
7612 XEXP (x, 1));
7613 break;
7616 /* ... fall through ... */
7618 case ASHIFTRT:
7619 lhs = XEXP (x, 0);
7620 rhs = XEXP (x, 1);
7622 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7623 this is a SIGN_EXTRACT. */
7624 if (CONST_INT_P (rhs)
7625 && GET_CODE (lhs) == ASHIFT
7626 && CONST_INT_P (XEXP (lhs, 1))
7627 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7628 && INTVAL (rhs) < mode_width)
7630 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7631 new_rtx = make_extraction (mode, new_rtx,
7632 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7633 NULL_RTX, mode_width - INTVAL (rhs),
7634 code == LSHIFTRT, 0, in_code == COMPARE);
7635 break;
7638 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7639 If so, try to merge the shifts into a SIGN_EXTEND. We could
7640 also do this for some cases of SIGN_EXTRACT, but it doesn't
7641 seem worth the effort; the case checked for occurs on Alpha. */
7643 if (!OBJECT_P (lhs)
7644 && ! (GET_CODE (lhs) == SUBREG
7645 && (OBJECT_P (SUBREG_REG (lhs))))
7646 && CONST_INT_P (rhs)
7647 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7648 && INTVAL (rhs) < mode_width
7649 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7650 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7651 0, NULL_RTX, mode_width - INTVAL (rhs),
7652 code == LSHIFTRT, 0, in_code == COMPARE);
7654 break;
7656 case SUBREG:
7657 /* Call ourselves recursively on the inner expression. If we are
7658 narrowing the object and it has a different RTL code from
7659 what it originally did, do this SUBREG as a force_to_mode. */
7661 rtx inner = SUBREG_REG (x), simplified;
7663 tem = make_compound_operation (inner, in_code);
7665 simplified
7666 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7667 if (simplified)
7668 tem = simplified;
7670 if (GET_CODE (tem) != GET_CODE (inner)
7671 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7672 && subreg_lowpart_p (x))
7674 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0, 0);
7676 /* If we have something other than a SUBREG, we might have
7677 done an expansion, so rerun ourselves. */
7678 if (GET_CODE (newer) != SUBREG)
7679 newer = make_compound_operation (newer, in_code);
7681 /* force_to_mode can expand compounds. If it just re-expanded the
7682 compound, use gen_lowpart to convert to the desired mode. */
7683 if (rtx_equal_p (newer, x)
7684 /* Likewise if it re-expanded the compound only partially.
7685 This happens for SUBREG of ZERO_EXTRACT if they extract
7686 the same number of bits. */
7687 || (GET_CODE (newer) == SUBREG
7688 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7689 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7690 && GET_CODE (inner) == AND
7691 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7692 return gen_lowpart (GET_MODE (x), tem);
7694 return newer;
7697 if (simplified)
7698 return tem;
7700 break;
7702 default:
7703 break;
7706 if (new_rtx)
7708 x = gen_lowpart (mode, new_rtx);
7709 code = GET_CODE (x);
7712 /* Now recursively process each operand of this operation. */
7713 fmt = GET_RTX_FORMAT (code);
7714 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7715 if (fmt[i] == 'e')
7717 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7718 SUBST (XEXP (x, i), new_rtx);
7720 else if (fmt[i] == 'E')
7721 for (j = 0; j < XVECLEN (x, i); j++)
7723 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7724 SUBST (XVECEXP (x, i, j), new_rtx);
7727 maybe_swap:
7728 /* If this is a commutative operation, the changes to the operands
7729 may have made it noncanonical. */
7730 if (COMMUTATIVE_ARITH_P (x)
7731 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7733 tem = XEXP (x, 0);
7734 SUBST (XEXP (x, 0), XEXP (x, 1));
7735 SUBST (XEXP (x, 1), tem);
7738 return x;
7741 /* Given M see if it is a value that would select a field of bits
7742 within an item, but not the entire word. Return -1 if not.
7743 Otherwise, return the starting position of the field, where 0 is the
7744 low-order bit.
7746 *PLEN is set to the length of the field. */
7748 static int
7749 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7751 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7752 int pos = m ? ctz_hwi (m) : -1;
7753 int len = 0;
7755 if (pos >= 0)
7756 /* Now shift off the low-order zero bits and see if we have a
7757 power of two minus 1. */
7758 len = exact_log2 ((m >> pos) + 1);
7760 if (len <= 0)
7761 pos = -1;
7763 *plen = len;
7764 return pos;
7767 /* If X refers to a register that equals REG in value, replace these
7768 references with REG. */
7769 static rtx
7770 canon_reg_for_combine (rtx x, rtx reg)
7772 rtx op0, op1, op2;
7773 const char *fmt;
7774 int i;
7775 bool copied;
7777 enum rtx_code code = GET_CODE (x);
7778 switch (GET_RTX_CLASS (code))
7780 case RTX_UNARY:
7781 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7782 if (op0 != XEXP (x, 0))
7783 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7784 GET_MODE (reg));
7785 break;
7787 case RTX_BIN_ARITH:
7788 case RTX_COMM_ARITH:
7789 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7790 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7791 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7792 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7793 break;
7795 case RTX_COMPARE:
7796 case RTX_COMM_COMPARE:
7797 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7798 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7799 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7800 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7801 GET_MODE (op0), op0, op1);
7802 break;
7804 case RTX_TERNARY:
7805 case RTX_BITFIELD_OPS:
7806 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7807 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7808 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7809 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7810 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7811 GET_MODE (op0), op0, op1, op2);
7813 case RTX_OBJ:
7814 if (REG_P (x))
7816 if (rtx_equal_p (get_last_value (reg), x)
7817 || rtx_equal_p (reg, get_last_value (x)))
7818 return reg;
7819 else
7820 break;
7823 /* fall through */
7825 default:
7826 fmt = GET_RTX_FORMAT (code);
7827 copied = false;
7828 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7829 if (fmt[i] == 'e')
7831 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7832 if (op != XEXP (x, i))
7834 if (!copied)
7836 copied = true;
7837 x = copy_rtx (x);
7839 XEXP (x, i) = op;
7842 else if (fmt[i] == 'E')
7844 int j;
7845 for (j = 0; j < XVECLEN (x, i); j++)
7847 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7848 if (op != XVECEXP (x, i, j))
7850 if (!copied)
7852 copied = true;
7853 x = copy_rtx (x);
7855 XVECEXP (x, i, j) = op;
7860 break;
7863 return x;
7866 /* Return X converted to MODE. If the value is already truncated to
7867 MODE we can just return a subreg even though in the general case we
7868 would need an explicit truncation. */
7870 static rtx
7871 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7873 if (!CONST_INT_P (x)
7874 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7875 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7876 GET_MODE_BITSIZE (GET_MODE (x)))
7877 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7879 /* Bit-cast X into an integer mode. */
7880 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7881 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7882 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7883 x, GET_MODE (x));
7886 return gen_lowpart (mode, x);
7889 /* See if X can be simplified knowing that we will only refer to it in
7890 MODE and will only refer to those bits that are nonzero in MASK.
7891 If other bits are being computed or if masking operations are done
7892 that select a superset of the bits in MASK, they can sometimes be
7893 ignored.
7895 Return a possibly simplified expression, but always convert X to
7896 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7898 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7899 are all off in X. This is used when X will be complemented, by either
7900 NOT, NEG, or XOR. */
7902 static rtx
7903 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7904 int just_select)
7906 enum rtx_code code = GET_CODE (x);
7907 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7908 enum machine_mode op_mode;
7909 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7910 rtx op0, op1, temp;
7912 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7913 code below will do the wrong thing since the mode of such an
7914 expression is VOIDmode.
7916 Also do nothing if X is a CLOBBER; this can happen if X was
7917 the return value from a call to gen_lowpart. */
7918 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7919 return x;
7921 /* We want to perform the operation is its present mode unless we know
7922 that the operation is valid in MODE, in which case we do the operation
7923 in MODE. */
7924 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7925 && have_insn_for (code, mode))
7926 ? mode : GET_MODE (x));
7928 /* It is not valid to do a right-shift in a narrower mode
7929 than the one it came in with. */
7930 if ((code == LSHIFTRT || code == ASHIFTRT)
7931 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7932 op_mode = GET_MODE (x);
7934 /* Truncate MASK to fit OP_MODE. */
7935 if (op_mode)
7936 mask &= GET_MODE_MASK (op_mode);
7938 /* When we have an arithmetic operation, or a shift whose count we
7939 do not know, we need to assume that all bits up to the highest-order
7940 bit in MASK will be needed. This is how we form such a mask. */
7941 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7942 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7943 else
7944 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7945 - 1);
7947 /* Determine what bits of X are guaranteed to be (non)zero. */
7948 nonzero = nonzero_bits (x, mode);
7950 /* If none of the bits in X are needed, return a zero. */
7951 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7952 x = const0_rtx;
7954 /* If X is a CONST_INT, return a new one. Do this here since the
7955 test below will fail. */
7956 if (CONST_INT_P (x))
7958 if (SCALAR_INT_MODE_P (mode))
7959 return gen_int_mode (INTVAL (x) & mask, mode);
7960 else
7962 x = GEN_INT (INTVAL (x) & mask);
7963 return gen_lowpart_common (mode, x);
7967 /* If X is narrower than MODE and we want all the bits in X's mode, just
7968 get X in the proper mode. */
7969 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7970 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7971 return gen_lowpart (mode, x);
7973 /* We can ignore the effect of a SUBREG if it narrows the mode or
7974 if the constant masks to zero all the bits the mode doesn't have. */
7975 if (GET_CODE (x) == SUBREG
7976 && subreg_lowpart_p (x)
7977 && ((GET_MODE_SIZE (GET_MODE (x))
7978 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7979 || (0 == (mask
7980 & GET_MODE_MASK (GET_MODE (x))
7981 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7982 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7984 /* The arithmetic simplifications here only work for scalar integer modes. */
7985 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
7986 return gen_lowpart_or_truncate (mode, x);
7988 switch (code)
7990 case CLOBBER:
7991 /* If X is a (clobber (const_int)), return it since we know we are
7992 generating something that won't match. */
7993 return x;
7995 case SIGN_EXTEND:
7996 case ZERO_EXTEND:
7997 case ZERO_EXTRACT:
7998 case SIGN_EXTRACT:
7999 x = expand_compound_operation (x);
8000 if (GET_CODE (x) != code)
8001 return force_to_mode (x, mode, mask, next_select);
8002 break;
8004 case TRUNCATE:
8005 /* Similarly for a truncate. */
8006 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8008 case AND:
8009 /* If this is an AND with a constant, convert it into an AND
8010 whose constant is the AND of that constant with MASK. If it
8011 remains an AND of MASK, delete it since it is redundant. */
8013 if (CONST_INT_P (XEXP (x, 1)))
8015 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8016 mask & INTVAL (XEXP (x, 1)));
8018 /* If X is still an AND, see if it is an AND with a mask that
8019 is just some low-order bits. If so, and it is MASK, we don't
8020 need it. */
8022 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8023 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8024 == mask))
8025 x = XEXP (x, 0);
8027 /* If it remains an AND, try making another AND with the bits
8028 in the mode mask that aren't in MASK turned on. If the
8029 constant in the AND is wide enough, this might make a
8030 cheaper constant. */
8032 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8033 && GET_MODE_MASK (GET_MODE (x)) != mask
8034 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
8036 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
8037 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
8038 int width = GET_MODE_BITSIZE (GET_MODE (x));
8039 rtx y;
8041 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8042 number, sign extend it. */
8043 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8044 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
8045 cval |= (HOST_WIDE_INT) -1 << width;
8047 y = simplify_gen_binary (AND, GET_MODE (x),
8048 XEXP (x, 0), GEN_INT (cval));
8049 if (rtx_cost (y, SET, optimize_this_for_speed_p)
8050 < rtx_cost (x, SET, optimize_this_for_speed_p))
8051 x = y;
8054 break;
8057 goto binop;
8059 case PLUS:
8060 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8061 low-order bits (as in an alignment operation) and FOO is already
8062 aligned to that boundary, mask C1 to that boundary as well.
8063 This may eliminate that PLUS and, later, the AND. */
8066 unsigned int width = GET_MODE_BITSIZE (mode);
8067 unsigned HOST_WIDE_INT smask = mask;
8069 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8070 number, sign extend it. */
8072 if (width < HOST_BITS_PER_WIDE_INT
8073 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
8074 smask |= (HOST_WIDE_INT) -1 << width;
8076 if (CONST_INT_P (XEXP (x, 1))
8077 && exact_log2 (- smask) >= 0
8078 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8079 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8080 return force_to_mode (plus_constant (XEXP (x, 0),
8081 (INTVAL (XEXP (x, 1)) & smask)),
8082 mode, smask, next_select);
8085 /* ... fall through ... */
8087 case MULT:
8088 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8089 most significant bit in MASK since carries from those bits will
8090 affect the bits we are interested in. */
8091 mask = fuller_mask;
8092 goto binop;
8094 case MINUS:
8095 /* If X is (minus C Y) where C's least set bit is larger than any bit
8096 in the mask, then we may replace with (neg Y). */
8097 if (CONST_INT_P (XEXP (x, 0))
8098 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8099 & -INTVAL (XEXP (x, 0))))
8100 > mask))
8102 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8103 GET_MODE (x));
8104 return force_to_mode (x, mode, mask, next_select);
8107 /* Similarly, if C contains every bit in the fuller_mask, then we may
8108 replace with (not Y). */
8109 if (CONST_INT_P (XEXP (x, 0))
8110 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
8111 == INTVAL (XEXP (x, 0))))
8113 x = simplify_gen_unary (NOT, GET_MODE (x),
8114 XEXP (x, 1), GET_MODE (x));
8115 return force_to_mode (x, mode, mask, next_select);
8118 mask = fuller_mask;
8119 goto binop;
8121 case IOR:
8122 case XOR:
8123 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8124 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8125 operation which may be a bitfield extraction. Ensure that the
8126 constant we form is not wider than the mode of X. */
8128 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8129 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8130 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8131 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8132 && CONST_INT_P (XEXP (x, 1))
8133 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8134 + floor_log2 (INTVAL (XEXP (x, 1))))
8135 < GET_MODE_BITSIZE (GET_MODE (x)))
8136 && (INTVAL (XEXP (x, 1))
8137 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8139 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8140 << INTVAL (XEXP (XEXP (x, 0), 1)));
8141 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8142 XEXP (XEXP (x, 0), 0), temp);
8143 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8144 XEXP (XEXP (x, 0), 1));
8145 return force_to_mode (x, mode, mask, next_select);
8148 binop:
8149 /* For most binary operations, just propagate into the operation and
8150 change the mode if we have an operation of that mode. */
8152 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8153 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8155 /* If we ended up truncating both operands, truncate the result of the
8156 operation instead. */
8157 if (GET_CODE (op0) == TRUNCATE
8158 && GET_CODE (op1) == TRUNCATE)
8160 op0 = XEXP (op0, 0);
8161 op1 = XEXP (op1, 0);
8164 op0 = gen_lowpart_or_truncate (op_mode, op0);
8165 op1 = gen_lowpart_or_truncate (op_mode, op1);
8167 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8168 x = simplify_gen_binary (code, op_mode, op0, op1);
8169 break;
8171 case ASHIFT:
8172 /* For left shifts, do the same, but just for the first operand.
8173 However, we cannot do anything with shifts where we cannot
8174 guarantee that the counts are smaller than the size of the mode
8175 because such a count will have a different meaning in a
8176 wider mode. */
8178 if (! (CONST_INT_P (XEXP (x, 1))
8179 && INTVAL (XEXP (x, 1)) >= 0
8180 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
8181 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8182 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8183 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
8184 break;
8186 /* If the shift count is a constant and we can do arithmetic in
8187 the mode of the shift, refine which bits we need. Otherwise, use the
8188 conservative form of the mask. */
8189 if (CONST_INT_P (XEXP (x, 1))
8190 && INTVAL (XEXP (x, 1)) >= 0
8191 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
8192 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
8193 mask >>= INTVAL (XEXP (x, 1));
8194 else
8195 mask = fuller_mask;
8197 op0 = gen_lowpart_or_truncate (op_mode,
8198 force_to_mode (XEXP (x, 0), op_mode,
8199 mask, next_select));
8201 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8202 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8203 break;
8205 case LSHIFTRT:
8206 /* Here we can only do something if the shift count is a constant,
8207 this shift constant is valid for the host, and we can do arithmetic
8208 in OP_MODE. */
8210 if (CONST_INT_P (XEXP (x, 1))
8211 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8212 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
8214 rtx inner = XEXP (x, 0);
8215 unsigned HOST_WIDE_INT inner_mask;
8217 /* Select the mask of the bits we need for the shift operand. */
8218 inner_mask = mask << INTVAL (XEXP (x, 1));
8220 /* We can only change the mode of the shift if we can do arithmetic
8221 in the mode of the shift and INNER_MASK is no wider than the
8222 width of X's mode. */
8223 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8224 op_mode = GET_MODE (x);
8226 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8228 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8229 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8232 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8233 shift and AND produces only copies of the sign bit (C2 is one less
8234 than a power of two), we can do this with just a shift. */
8236 if (GET_CODE (x) == LSHIFTRT
8237 && CONST_INT_P (XEXP (x, 1))
8238 /* The shift puts one of the sign bit copies in the least significant
8239 bit. */
8240 && ((INTVAL (XEXP (x, 1))
8241 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8242 >= GET_MODE_BITSIZE (GET_MODE (x)))
8243 && exact_log2 (mask + 1) >= 0
8244 /* Number of bits left after the shift must be more than the mask
8245 needs. */
8246 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8247 <= GET_MODE_BITSIZE (GET_MODE (x)))
8248 /* Must be more sign bit copies than the mask needs. */
8249 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8250 >= exact_log2 (mask + 1)))
8251 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8252 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
8253 - exact_log2 (mask + 1)));
8255 goto shiftrt;
8257 case ASHIFTRT:
8258 /* If we are just looking for the sign bit, we don't need this shift at
8259 all, even if it has a variable count. */
8260 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8261 && (mask == ((unsigned HOST_WIDE_INT) 1
8262 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8263 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8265 /* If this is a shift by a constant, get a mask that contains those bits
8266 that are not copies of the sign bit. We then have two cases: If
8267 MASK only includes those bits, this can be a logical shift, which may
8268 allow simplifications. If MASK is a single-bit field not within
8269 those bits, we are requesting a copy of the sign bit and hence can
8270 shift the sign bit to the appropriate location. */
8272 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8273 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8275 int i;
8277 /* If the considered data is wider than HOST_WIDE_INT, we can't
8278 represent a mask for all its bits in a single scalar.
8279 But we only care about the lower bits, so calculate these. */
8281 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8283 nonzero = ~(HOST_WIDE_INT) 0;
8285 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8286 is the number of bits a full-width mask would have set.
8287 We need only shift if these are fewer than nonzero can
8288 hold. If not, we must keep all bits set in nonzero. */
8290 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8291 < HOST_BITS_PER_WIDE_INT)
8292 nonzero >>= INTVAL (XEXP (x, 1))
8293 + HOST_BITS_PER_WIDE_INT
8294 - GET_MODE_BITSIZE (GET_MODE (x)) ;
8296 else
8298 nonzero = GET_MODE_MASK (GET_MODE (x));
8299 nonzero >>= INTVAL (XEXP (x, 1));
8302 if ((mask & ~nonzero) == 0)
8304 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8305 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8306 if (GET_CODE (x) != ASHIFTRT)
8307 return force_to_mode (x, mode, mask, next_select);
8310 else if ((i = exact_log2 (mask)) >= 0)
8312 x = simplify_shift_const
8313 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8314 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
8316 if (GET_CODE (x) != ASHIFTRT)
8317 return force_to_mode (x, mode, mask, next_select);
8321 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8322 even if the shift count isn't a constant. */
8323 if (mask == 1)
8324 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8325 XEXP (x, 0), XEXP (x, 1));
8327 shiftrt:
8329 /* If this is a zero- or sign-extension operation that just affects bits
8330 we don't care about, remove it. Be sure the call above returned
8331 something that is still a shift. */
8333 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8334 && CONST_INT_P (XEXP (x, 1))
8335 && INTVAL (XEXP (x, 1)) >= 0
8336 && (INTVAL (XEXP (x, 1))
8337 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
8338 && GET_CODE (XEXP (x, 0)) == ASHIFT
8339 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8340 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8341 next_select);
8343 break;
8345 case ROTATE:
8346 case ROTATERT:
8347 /* If the shift count is constant and we can do computations
8348 in the mode of X, compute where the bits we care about are.
8349 Otherwise, we can't do anything. Don't change the mode of
8350 the shift or propagate MODE into the shift, though. */
8351 if (CONST_INT_P (XEXP (x, 1))
8352 && INTVAL (XEXP (x, 1)) >= 0)
8354 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8355 GET_MODE (x), GEN_INT (mask),
8356 XEXP (x, 1));
8357 if (temp && CONST_INT_P (temp))
8358 SUBST (XEXP (x, 0),
8359 force_to_mode (XEXP (x, 0), GET_MODE (x),
8360 INTVAL (temp), next_select));
8362 break;
8364 case NEG:
8365 /* If we just want the low-order bit, the NEG isn't needed since it
8366 won't change the low-order bit. */
8367 if (mask == 1)
8368 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8370 /* We need any bits less significant than the most significant bit in
8371 MASK since carries from those bits will affect the bits we are
8372 interested in. */
8373 mask = fuller_mask;
8374 goto unop;
8376 case NOT:
8377 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8378 same as the XOR case above. Ensure that the constant we form is not
8379 wider than the mode of X. */
8381 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8382 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8383 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8384 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8385 < GET_MODE_BITSIZE (GET_MODE (x)))
8386 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8388 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8389 GET_MODE (x));
8390 temp = simplify_gen_binary (XOR, GET_MODE (x),
8391 XEXP (XEXP (x, 0), 0), temp);
8392 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8393 temp, XEXP (XEXP (x, 0), 1));
8395 return force_to_mode (x, mode, mask, next_select);
8398 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8399 use the full mask inside the NOT. */
8400 mask = fuller_mask;
8402 unop:
8403 op0 = gen_lowpart_or_truncate (op_mode,
8404 force_to_mode (XEXP (x, 0), mode, mask,
8405 next_select));
8406 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8407 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8408 break;
8410 case NE:
8411 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8412 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8413 which is equal to STORE_FLAG_VALUE. */
8414 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
8415 && GET_MODE (XEXP (x, 0)) == mode
8416 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8417 && (nonzero_bits (XEXP (x, 0), mode)
8418 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8419 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8421 break;
8423 case IF_THEN_ELSE:
8424 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8425 written in a narrower mode. We play it safe and do not do so. */
8427 SUBST (XEXP (x, 1),
8428 gen_lowpart_or_truncate (GET_MODE (x),
8429 force_to_mode (XEXP (x, 1), mode,
8430 mask, next_select)));
8431 SUBST (XEXP (x, 2),
8432 gen_lowpart_or_truncate (GET_MODE (x),
8433 force_to_mode (XEXP (x, 2), mode,
8434 mask, next_select)));
8435 break;
8437 default:
8438 break;
8441 /* Ensure we return a value of the proper mode. */
8442 return gen_lowpart_or_truncate (mode, x);
8445 /* Return nonzero if X is an expression that has one of two values depending on
8446 whether some other value is zero or nonzero. In that case, we return the
8447 value that is being tested, *PTRUE is set to the value if the rtx being
8448 returned has a nonzero value, and *PFALSE is set to the other alternative.
8450 If we return zero, we set *PTRUE and *PFALSE to X. */
8452 static rtx
8453 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8455 enum machine_mode mode = GET_MODE (x);
8456 enum rtx_code code = GET_CODE (x);
8457 rtx cond0, cond1, true0, true1, false0, false1;
8458 unsigned HOST_WIDE_INT nz;
8460 /* If we are comparing a value against zero, we are done. */
8461 if ((code == NE || code == EQ)
8462 && XEXP (x, 1) == const0_rtx)
8464 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8465 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8466 return XEXP (x, 0);
8469 /* If this is a unary operation whose operand has one of two values, apply
8470 our opcode to compute those values. */
8471 else if (UNARY_P (x)
8472 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8474 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8475 *pfalse = simplify_gen_unary (code, mode, false0,
8476 GET_MODE (XEXP (x, 0)));
8477 return cond0;
8480 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8481 make can't possibly match and would suppress other optimizations. */
8482 else if (code == COMPARE)
8485 /* If this is a binary operation, see if either side has only one of two
8486 values. If either one does or if both do and they are conditional on
8487 the same value, compute the new true and false values. */
8488 else if (BINARY_P (x))
8490 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8491 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8493 if ((cond0 != 0 || cond1 != 0)
8494 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8496 /* If if_then_else_cond returned zero, then true/false are the
8497 same rtl. We must copy one of them to prevent invalid rtl
8498 sharing. */
8499 if (cond0 == 0)
8500 true0 = copy_rtx (true0);
8501 else if (cond1 == 0)
8502 true1 = copy_rtx (true1);
8504 if (COMPARISON_P (x))
8506 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8507 true0, true1);
8508 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8509 false0, false1);
8511 else
8513 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8514 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8517 return cond0 ? cond0 : cond1;
8520 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8521 operands is zero when the other is nonzero, and vice-versa,
8522 and STORE_FLAG_VALUE is 1 or -1. */
8524 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8525 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8526 || code == UMAX)
8527 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8529 rtx op0 = XEXP (XEXP (x, 0), 1);
8530 rtx op1 = XEXP (XEXP (x, 1), 1);
8532 cond0 = XEXP (XEXP (x, 0), 0);
8533 cond1 = XEXP (XEXP (x, 1), 0);
8535 if (COMPARISON_P (cond0)
8536 && COMPARISON_P (cond1)
8537 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8538 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8539 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8540 || ((swap_condition (GET_CODE (cond0))
8541 == reversed_comparison_code (cond1, NULL))
8542 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8543 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8544 && ! side_effects_p (x))
8546 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8547 *pfalse = simplify_gen_binary (MULT, mode,
8548 (code == MINUS
8549 ? simplify_gen_unary (NEG, mode,
8550 op1, mode)
8551 : op1),
8552 const_true_rtx);
8553 return cond0;
8557 /* Similarly for MULT, AND and UMIN, except that for these the result
8558 is always zero. */
8559 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8560 && (code == MULT || code == AND || code == UMIN)
8561 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8563 cond0 = XEXP (XEXP (x, 0), 0);
8564 cond1 = XEXP (XEXP (x, 1), 0);
8566 if (COMPARISON_P (cond0)
8567 && COMPARISON_P (cond1)
8568 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8569 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8570 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8571 || ((swap_condition (GET_CODE (cond0))
8572 == reversed_comparison_code (cond1, NULL))
8573 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8574 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8575 && ! side_effects_p (x))
8577 *ptrue = *pfalse = const0_rtx;
8578 return cond0;
8583 else if (code == IF_THEN_ELSE)
8585 /* If we have IF_THEN_ELSE already, extract the condition and
8586 canonicalize it if it is NE or EQ. */
8587 cond0 = XEXP (x, 0);
8588 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8589 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8590 return XEXP (cond0, 0);
8591 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8593 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8594 return XEXP (cond0, 0);
8596 else
8597 return cond0;
8600 /* If X is a SUBREG, we can narrow both the true and false values
8601 if the inner expression, if there is a condition. */
8602 else if (code == SUBREG
8603 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8604 &true0, &false0)))
8606 true0 = simplify_gen_subreg (mode, true0,
8607 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8608 false0 = simplify_gen_subreg (mode, false0,
8609 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8610 if (true0 && false0)
8612 *ptrue = true0;
8613 *pfalse = false0;
8614 return cond0;
8618 /* If X is a constant, this isn't special and will cause confusions
8619 if we treat it as such. Likewise if it is equivalent to a constant. */
8620 else if (CONSTANT_P (x)
8621 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8624 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8625 will be least confusing to the rest of the compiler. */
8626 else if (mode == BImode)
8628 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8629 return x;
8632 /* If X is known to be either 0 or -1, those are the true and
8633 false values when testing X. */
8634 else if (x == constm1_rtx || x == const0_rtx
8635 || (mode != VOIDmode
8636 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
8638 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8639 return x;
8642 /* Likewise for 0 or a single bit. */
8643 else if (SCALAR_INT_MODE_P (mode)
8644 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8645 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8647 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8648 return x;
8651 /* Otherwise fail; show no condition with true and false values the same. */
8652 *ptrue = *pfalse = x;
8653 return 0;
8656 /* Return the value of expression X given the fact that condition COND
8657 is known to be true when applied to REG as its first operand and VAL
8658 as its second. X is known to not be shared and so can be modified in
8659 place.
8661 We only handle the simplest cases, and specifically those cases that
8662 arise with IF_THEN_ELSE expressions. */
8664 static rtx
8665 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8667 enum rtx_code code = GET_CODE (x);
8668 rtx temp;
8669 const char *fmt;
8670 int i, j;
8672 if (side_effects_p (x))
8673 return x;
8675 /* If either operand of the condition is a floating point value,
8676 then we have to avoid collapsing an EQ comparison. */
8677 if (cond == EQ
8678 && rtx_equal_p (x, reg)
8679 && ! FLOAT_MODE_P (GET_MODE (x))
8680 && ! FLOAT_MODE_P (GET_MODE (val)))
8681 return val;
8683 if (cond == UNEQ && rtx_equal_p (x, reg))
8684 return val;
8686 /* If X is (abs REG) and we know something about REG's relationship
8687 with zero, we may be able to simplify this. */
8689 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8690 switch (cond)
8692 case GE: case GT: case EQ:
8693 return XEXP (x, 0);
8694 case LT: case LE:
8695 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8696 XEXP (x, 0),
8697 GET_MODE (XEXP (x, 0)));
8698 default:
8699 break;
8702 /* The only other cases we handle are MIN, MAX, and comparisons if the
8703 operands are the same as REG and VAL. */
8705 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8707 if (rtx_equal_p (XEXP (x, 0), val))
8708 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8710 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8712 if (COMPARISON_P (x))
8714 if (comparison_dominates_p (cond, code))
8715 return const_true_rtx;
8717 code = reversed_comparison_code (x, NULL);
8718 if (code != UNKNOWN
8719 && comparison_dominates_p (cond, code))
8720 return const0_rtx;
8721 else
8722 return x;
8724 else if (code == SMAX || code == SMIN
8725 || code == UMIN || code == UMAX)
8727 int unsignedp = (code == UMIN || code == UMAX);
8729 /* Do not reverse the condition when it is NE or EQ.
8730 This is because we cannot conclude anything about
8731 the value of 'SMAX (x, y)' when x is not equal to y,
8732 but we can when x equals y. */
8733 if ((code == SMAX || code == UMAX)
8734 && ! (cond == EQ || cond == NE))
8735 cond = reverse_condition (cond);
8737 switch (cond)
8739 case GE: case GT:
8740 return unsignedp ? x : XEXP (x, 1);
8741 case LE: case LT:
8742 return unsignedp ? x : XEXP (x, 0);
8743 case GEU: case GTU:
8744 return unsignedp ? XEXP (x, 1) : x;
8745 case LEU: case LTU:
8746 return unsignedp ? XEXP (x, 0) : x;
8747 default:
8748 break;
8753 else if (code == SUBREG)
8755 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8756 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8758 if (SUBREG_REG (x) != r)
8760 /* We must simplify subreg here, before we lose track of the
8761 original inner_mode. */
8762 new_rtx = simplify_subreg (GET_MODE (x), r,
8763 inner_mode, SUBREG_BYTE (x));
8764 if (new_rtx)
8765 return new_rtx;
8766 else
8767 SUBST (SUBREG_REG (x), r);
8770 return x;
8772 /* We don't have to handle SIGN_EXTEND here, because even in the
8773 case of replacing something with a modeless CONST_INT, a
8774 CONST_INT is already (supposed to be) a valid sign extension for
8775 its narrower mode, which implies it's already properly
8776 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8777 story is different. */
8778 else if (code == ZERO_EXTEND)
8780 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8781 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8783 if (XEXP (x, 0) != r)
8785 /* We must simplify the zero_extend here, before we lose
8786 track of the original inner_mode. */
8787 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8788 r, inner_mode);
8789 if (new_rtx)
8790 return new_rtx;
8791 else
8792 SUBST (XEXP (x, 0), r);
8795 return x;
8798 fmt = GET_RTX_FORMAT (code);
8799 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8801 if (fmt[i] == 'e')
8802 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8803 else if (fmt[i] == 'E')
8804 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8805 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8806 cond, reg, val));
8809 return x;
8812 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8813 assignment as a field assignment. */
8815 static int
8816 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8818 if (x == y || rtx_equal_p (x, y))
8819 return 1;
8821 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8822 return 0;
8824 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8825 Note that all SUBREGs of MEM are paradoxical; otherwise they
8826 would have been rewritten. */
8827 if (MEM_P (x) && GET_CODE (y) == SUBREG
8828 && MEM_P (SUBREG_REG (y))
8829 && rtx_equal_p (SUBREG_REG (y),
8830 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8831 return 1;
8833 if (MEM_P (y) && GET_CODE (x) == SUBREG
8834 && MEM_P (SUBREG_REG (x))
8835 && rtx_equal_p (SUBREG_REG (x),
8836 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8837 return 1;
8839 /* We used to see if get_last_value of X and Y were the same but that's
8840 not correct. In one direction, we'll cause the assignment to have
8841 the wrong destination and in the case, we'll import a register into this
8842 insn that might have already have been dead. So fail if none of the
8843 above cases are true. */
8844 return 0;
8847 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8848 Return that assignment if so.
8850 We only handle the most common cases. */
8852 static rtx
8853 make_field_assignment (rtx x)
8855 rtx dest = SET_DEST (x);
8856 rtx src = SET_SRC (x);
8857 rtx assign;
8858 rtx rhs, lhs;
8859 HOST_WIDE_INT c1;
8860 HOST_WIDE_INT pos;
8861 unsigned HOST_WIDE_INT len;
8862 rtx other;
8863 enum machine_mode mode;
8865 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8866 a clear of a one-bit field. We will have changed it to
8867 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8868 for a SUBREG. */
8870 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8871 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8872 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8873 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8875 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8876 1, 1, 1, 0);
8877 if (assign != 0)
8878 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8879 return x;
8882 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8883 && subreg_lowpart_p (XEXP (src, 0))
8884 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8885 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8886 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8887 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8888 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8889 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8891 assign = make_extraction (VOIDmode, dest, 0,
8892 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8893 1, 1, 1, 0);
8894 if (assign != 0)
8895 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8896 return x;
8899 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8900 one-bit field. */
8901 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8902 && XEXP (XEXP (src, 0), 0) == const1_rtx
8903 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8905 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8906 1, 1, 1, 0);
8907 if (assign != 0)
8908 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8909 return x;
8912 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8913 SRC is an AND with all bits of that field set, then we can discard
8914 the AND. */
8915 if (GET_CODE (dest) == ZERO_EXTRACT
8916 && CONST_INT_P (XEXP (dest, 1))
8917 && GET_CODE (src) == AND
8918 && CONST_INT_P (XEXP (src, 1)))
8920 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8921 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8922 unsigned HOST_WIDE_INT ze_mask;
8924 if (width >= HOST_BITS_PER_WIDE_INT)
8925 ze_mask = -1;
8926 else
8927 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8929 /* Complete overlap. We can remove the source AND. */
8930 if ((and_mask & ze_mask) == ze_mask)
8931 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8933 /* Partial overlap. We can reduce the source AND. */
8934 if ((and_mask & ze_mask) != and_mask)
8936 mode = GET_MODE (src);
8937 src = gen_rtx_AND (mode, XEXP (src, 0),
8938 gen_int_mode (and_mask & ze_mask, mode));
8939 return gen_rtx_SET (VOIDmode, dest, src);
8943 /* The other case we handle is assignments into a constant-position
8944 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8945 a mask that has all one bits except for a group of zero bits and
8946 OTHER is known to have zeros where C1 has ones, this is such an
8947 assignment. Compute the position and length from C1. Shift OTHER
8948 to the appropriate position, force it to the required mode, and
8949 make the extraction. Check for the AND in both operands. */
8951 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8952 return x;
8954 rhs = expand_compound_operation (XEXP (src, 0));
8955 lhs = expand_compound_operation (XEXP (src, 1));
8957 if (GET_CODE (rhs) == AND
8958 && CONST_INT_P (XEXP (rhs, 1))
8959 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8960 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8961 else if (GET_CODE (lhs) == AND
8962 && CONST_INT_P (XEXP (lhs, 1))
8963 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8964 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8965 else
8966 return x;
8968 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8969 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8970 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8971 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8972 return x;
8974 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8975 if (assign == 0)
8976 return x;
8978 /* The mode to use for the source is the mode of the assignment, or of
8979 what is inside a possible STRICT_LOW_PART. */
8980 mode = (GET_CODE (assign) == STRICT_LOW_PART
8981 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8983 /* Shift OTHER right POS places and make it the source, restricting it
8984 to the proper length and mode. */
8986 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8987 GET_MODE (src),
8988 other, pos),
8989 dest);
8990 src = force_to_mode (src, mode,
8991 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8992 ? ~(unsigned HOST_WIDE_INT) 0
8993 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8996 /* If SRC is masked by an AND that does not make a difference in
8997 the value being stored, strip it. */
8998 if (GET_CODE (assign) == ZERO_EXTRACT
8999 && CONST_INT_P (XEXP (assign, 1))
9000 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9001 && GET_CODE (src) == AND
9002 && CONST_INT_P (XEXP (src, 1))
9003 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
9004 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
9005 src = XEXP (src, 0);
9007 return gen_rtx_SET (VOIDmode, assign, src);
9010 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9011 if so. */
9013 static rtx
9014 apply_distributive_law (rtx x)
9016 enum rtx_code code = GET_CODE (x);
9017 enum rtx_code inner_code;
9018 rtx lhs, rhs, other;
9019 rtx tem;
9021 /* Distributivity is not true for floating point as it can change the
9022 value. So we don't do it unless -funsafe-math-optimizations. */
9023 if (FLOAT_MODE_P (GET_MODE (x))
9024 && ! flag_unsafe_math_optimizations)
9025 return x;
9027 /* The outer operation can only be one of the following: */
9028 if (code != IOR && code != AND && code != XOR
9029 && code != PLUS && code != MINUS)
9030 return x;
9032 lhs = XEXP (x, 0);
9033 rhs = XEXP (x, 1);
9035 /* If either operand is a primitive we can't do anything, so get out
9036 fast. */
9037 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9038 return x;
9040 lhs = expand_compound_operation (lhs);
9041 rhs = expand_compound_operation (rhs);
9042 inner_code = GET_CODE (lhs);
9043 if (inner_code != GET_CODE (rhs))
9044 return x;
9046 /* See if the inner and outer operations distribute. */
9047 switch (inner_code)
9049 case LSHIFTRT:
9050 case ASHIFTRT:
9051 case AND:
9052 case IOR:
9053 /* These all distribute except over PLUS. */
9054 if (code == PLUS || code == MINUS)
9055 return x;
9056 break;
9058 case MULT:
9059 if (code != PLUS && code != MINUS)
9060 return x;
9061 break;
9063 case ASHIFT:
9064 /* This is also a multiply, so it distributes over everything. */
9065 break;
9067 case SUBREG:
9068 /* Non-paradoxical SUBREGs distributes over all operations,
9069 provided the inner modes and byte offsets are the same, this
9070 is an extraction of a low-order part, we don't convert an fp
9071 operation to int or vice versa, this is not a vector mode,
9072 and we would not be converting a single-word operation into a
9073 multi-word operation. The latter test is not required, but
9074 it prevents generating unneeded multi-word operations. Some
9075 of the previous tests are redundant given the latter test,
9076 but are retained because they are required for correctness.
9078 We produce the result slightly differently in this case. */
9080 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
9081 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
9082 || ! subreg_lowpart_p (lhs)
9083 || (GET_MODE_CLASS (GET_MODE (lhs))
9084 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
9085 || (GET_MODE_SIZE (GET_MODE (lhs))
9086 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
9087 || VECTOR_MODE_P (GET_MODE (lhs))
9088 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
9089 /* Result might need to be truncated. Don't change mode if
9090 explicit truncation is needed. */
9091 || !TRULY_NOOP_TRUNCATION
9092 (GET_MODE_BITSIZE (GET_MODE (x)),
9093 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
9094 return x;
9096 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
9097 SUBREG_REG (lhs), SUBREG_REG (rhs));
9098 return gen_lowpart (GET_MODE (x), tem);
9100 default:
9101 return x;
9104 /* Set LHS and RHS to the inner operands (A and B in the example
9105 above) and set OTHER to the common operand (C in the example).
9106 There is only one way to do this unless the inner operation is
9107 commutative. */
9108 if (COMMUTATIVE_ARITH_P (lhs)
9109 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9110 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9111 else if (COMMUTATIVE_ARITH_P (lhs)
9112 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9113 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9114 else if (COMMUTATIVE_ARITH_P (lhs)
9115 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9116 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9117 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9118 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9119 else
9120 return x;
9122 /* Form the new inner operation, seeing if it simplifies first. */
9123 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9125 /* There is one exception to the general way of distributing:
9126 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9127 if (code == XOR && inner_code == IOR)
9129 inner_code = AND;
9130 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9133 /* We may be able to continuing distributing the result, so call
9134 ourselves recursively on the inner operation before forming the
9135 outer operation, which we return. */
9136 return simplify_gen_binary (inner_code, GET_MODE (x),
9137 apply_distributive_law (tem), other);
9140 /* See if X is of the form (* (+ A B) C), and if so convert to
9141 (+ (* A C) (* B C)) and try to simplify.
9143 Most of the time, this results in no change. However, if some of
9144 the operands are the same or inverses of each other, simplifications
9145 will result.
9147 For example, (and (ior A B) (not B)) can occur as the result of
9148 expanding a bit field assignment. When we apply the distributive
9149 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9150 which then simplifies to (and (A (not B))).
9152 Note that no checks happen on the validity of applying the inverse
9153 distributive law. This is pointless since we can do it in the
9154 few places where this routine is called.
9156 N is the index of the term that is decomposed (the arithmetic operation,
9157 i.e. (+ A B) in the first example above). !N is the index of the term that
9158 is distributed, i.e. of C in the first example above. */
9159 static rtx
9160 distribute_and_simplify_rtx (rtx x, int n)
9162 enum machine_mode mode;
9163 enum rtx_code outer_code, inner_code;
9164 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9166 /* Distributivity is not true for floating point as it can change the
9167 value. So we don't do it unless -funsafe-math-optimizations. */
9168 if (FLOAT_MODE_P (GET_MODE (x))
9169 && ! flag_unsafe_math_optimizations)
9170 return NULL_RTX;
9172 decomposed = XEXP (x, n);
9173 if (!ARITHMETIC_P (decomposed))
9174 return NULL_RTX;
9176 mode = GET_MODE (x);
9177 outer_code = GET_CODE (x);
9178 distributed = XEXP (x, !n);
9180 inner_code = GET_CODE (decomposed);
9181 inner_op0 = XEXP (decomposed, 0);
9182 inner_op1 = XEXP (decomposed, 1);
9184 /* Special case (and (xor B C) (not A)), which is equivalent to
9185 (xor (ior A B) (ior A C)) */
9186 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9188 distributed = XEXP (distributed, 0);
9189 outer_code = IOR;
9192 if (n == 0)
9194 /* Distribute the second term. */
9195 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9196 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9198 else
9200 /* Distribute the first term. */
9201 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9202 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9205 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9206 new_op0, new_op1));
9207 if (GET_CODE (tmp) != outer_code
9208 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
9209 < rtx_cost (x, SET, optimize_this_for_speed_p))
9210 return tmp;
9212 return NULL_RTX;
9215 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9216 in MODE. Return an equivalent form, if different from (and VAROP
9217 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9219 static rtx
9220 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9221 unsigned HOST_WIDE_INT constop)
9223 unsigned HOST_WIDE_INT nonzero;
9224 unsigned HOST_WIDE_INT orig_constop;
9225 rtx orig_varop;
9226 int i;
9228 orig_varop = varop;
9229 orig_constop = constop;
9230 if (GET_CODE (varop) == CLOBBER)
9231 return NULL_RTX;
9233 /* Simplify VAROP knowing that we will be only looking at some of the
9234 bits in it.
9236 Note by passing in CONSTOP, we guarantee that the bits not set in
9237 CONSTOP are not significant and will never be examined. We must
9238 ensure that is the case by explicitly masking out those bits
9239 before returning. */
9240 varop = force_to_mode (varop, mode, constop, 0);
9242 /* If VAROP is a CLOBBER, we will fail so return it. */
9243 if (GET_CODE (varop) == CLOBBER)
9244 return varop;
9246 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9247 to VAROP and return the new constant. */
9248 if (CONST_INT_P (varop))
9249 return gen_int_mode (INTVAL (varop) & constop, mode);
9251 /* See what bits may be nonzero in VAROP. Unlike the general case of
9252 a call to nonzero_bits, here we don't care about bits outside
9253 MODE. */
9255 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9257 /* Turn off all bits in the constant that are known to already be zero.
9258 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9259 which is tested below. */
9261 constop &= nonzero;
9263 /* If we don't have any bits left, return zero. */
9264 if (constop == 0)
9265 return const0_rtx;
9267 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9268 a power of two, we can replace this with an ASHIFT. */
9269 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9270 && (i = exact_log2 (constop)) >= 0)
9271 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9273 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9274 or XOR, then try to apply the distributive law. This may eliminate
9275 operations if either branch can be simplified because of the AND.
9276 It may also make some cases more complex, but those cases probably
9277 won't match a pattern either with or without this. */
9279 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9280 return
9281 gen_lowpart
9282 (mode,
9283 apply_distributive_law
9284 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9285 simplify_and_const_int (NULL_RTX,
9286 GET_MODE (varop),
9287 XEXP (varop, 0),
9288 constop),
9289 simplify_and_const_int (NULL_RTX,
9290 GET_MODE (varop),
9291 XEXP (varop, 1),
9292 constop))));
9294 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9295 the AND and see if one of the operands simplifies to zero. If so, we
9296 may eliminate it. */
9298 if (GET_CODE (varop) == PLUS
9299 && exact_log2 (constop + 1) >= 0)
9301 rtx o0, o1;
9303 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9304 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9305 if (o0 == const0_rtx)
9306 return o1;
9307 if (o1 == const0_rtx)
9308 return o0;
9311 /* Make a SUBREG if necessary. If we can't make it, fail. */
9312 varop = gen_lowpart (mode, varop);
9313 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9314 return NULL_RTX;
9316 /* If we are only masking insignificant bits, return VAROP. */
9317 if (constop == nonzero)
9318 return varop;
9320 if (varop == orig_varop && constop == orig_constop)
9321 return NULL_RTX;
9323 /* Otherwise, return an AND. */
9324 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9328 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9329 in MODE.
9331 Return an equivalent form, if different from X. Otherwise, return X. If
9332 X is zero, we are to always construct the equivalent form. */
9334 static rtx
9335 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9336 unsigned HOST_WIDE_INT constop)
9338 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9339 if (tem)
9340 return tem;
9342 if (!x)
9343 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9344 gen_int_mode (constop, mode));
9345 if (GET_MODE (x) != mode)
9346 x = gen_lowpart (mode, x);
9347 return x;
9350 /* Given a REG, X, compute which bits in X can be nonzero.
9351 We don't care about bits outside of those defined in MODE.
9353 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9354 a shift, AND, or zero_extract, we can do better. */
9356 static rtx
9357 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9358 const_rtx known_x ATTRIBUTE_UNUSED,
9359 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9360 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9361 unsigned HOST_WIDE_INT *nonzero)
9363 rtx tem;
9364 reg_stat_type *rsp;
9366 /* If X is a register whose nonzero bits value is current, use it.
9367 Otherwise, if X is a register whose value we can find, use that
9368 value. Otherwise, use the previously-computed global nonzero bits
9369 for this register. */
9371 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9372 if (rsp->last_set_value != 0
9373 && (rsp->last_set_mode == mode
9374 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9375 && GET_MODE_CLASS (mode) == MODE_INT))
9376 && ((rsp->last_set_label >= label_tick_ebb_start
9377 && rsp->last_set_label < label_tick)
9378 || (rsp->last_set_label == label_tick
9379 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9380 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9381 && REG_N_SETS (REGNO (x)) == 1
9382 && !REGNO_REG_SET_P
9383 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9385 *nonzero &= rsp->last_set_nonzero_bits;
9386 return NULL;
9389 tem = get_last_value (x);
9391 if (tem)
9393 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9394 /* If X is narrower than MODE and TEM is a non-negative
9395 constant that would appear negative in the mode of X,
9396 sign-extend it for use in reg_nonzero_bits because some
9397 machines (maybe most) will actually do the sign-extension
9398 and this is the conservative approach.
9400 ??? For 2.5, try to tighten up the MD files in this regard
9401 instead of this kludge. */
9403 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
9404 && CONST_INT_P (tem)
9405 && INTVAL (tem) > 0
9406 && 0 != (INTVAL (tem)
9407 & ((HOST_WIDE_INT) 1
9408 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
9409 tem = GEN_INT (INTVAL (tem)
9410 | ((HOST_WIDE_INT) (-1)
9411 << GET_MODE_BITSIZE (GET_MODE (x))));
9412 #endif
9413 return tem;
9415 else if (nonzero_sign_valid && rsp->nonzero_bits)
9417 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9419 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
9420 /* We don't know anything about the upper bits. */
9421 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9422 *nonzero &= mask;
9425 return NULL;
9428 /* Return the number of bits at the high-order end of X that are known to
9429 be equal to the sign bit. X will be used in mode MODE; if MODE is
9430 VOIDmode, X will be used in its own mode. The returned value will always
9431 be between 1 and the number of bits in MODE. */
9433 static rtx
9434 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9435 const_rtx known_x ATTRIBUTE_UNUSED,
9436 enum machine_mode known_mode
9437 ATTRIBUTE_UNUSED,
9438 unsigned int known_ret ATTRIBUTE_UNUSED,
9439 unsigned int *result)
9441 rtx tem;
9442 reg_stat_type *rsp;
9444 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9445 if (rsp->last_set_value != 0
9446 && rsp->last_set_mode == mode
9447 && ((rsp->last_set_label >= label_tick_ebb_start
9448 && rsp->last_set_label < label_tick)
9449 || (rsp->last_set_label == label_tick
9450 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9451 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9452 && REG_N_SETS (REGNO (x)) == 1
9453 && !REGNO_REG_SET_P
9454 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9456 *result = rsp->last_set_sign_bit_copies;
9457 return NULL;
9460 tem = get_last_value (x);
9461 if (tem != 0)
9462 return tem;
9464 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9465 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
9466 *result = rsp->sign_bit_copies;
9468 return NULL;
9471 /* Return the number of "extended" bits there are in X, when interpreted
9472 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9473 unsigned quantities, this is the number of high-order zero bits.
9474 For signed quantities, this is the number of copies of the sign bit
9475 minus 1. In both case, this function returns the number of "spare"
9476 bits. For example, if two quantities for which this function returns
9477 at least 1 are added, the addition is known not to overflow.
9479 This function will always return 0 unless called during combine, which
9480 implies that it must be called from a define_split. */
9482 unsigned int
9483 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9485 if (nonzero_sign_valid == 0)
9486 return 0;
9488 return (unsignedp
9489 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9490 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
9491 - floor_log2 (nonzero_bits (x, mode)))
9492 : 0)
9493 : num_sign_bit_copies (x, mode) - 1);
9496 /* This function is called from `simplify_shift_const' to merge two
9497 outer operations. Specifically, we have already found that we need
9498 to perform operation *POP0 with constant *PCONST0 at the outermost
9499 position. We would now like to also perform OP1 with constant CONST1
9500 (with *POP0 being done last).
9502 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9503 the resulting operation. *PCOMP_P is set to 1 if we would need to
9504 complement the innermost operand, otherwise it is unchanged.
9506 MODE is the mode in which the operation will be done. No bits outside
9507 the width of this mode matter. It is assumed that the width of this mode
9508 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9510 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9511 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9512 result is simply *PCONST0.
9514 If the resulting operation cannot be expressed as one operation, we
9515 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9517 static int
9518 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9520 enum rtx_code op0 = *pop0;
9521 HOST_WIDE_INT const0 = *pconst0;
9523 const0 &= GET_MODE_MASK (mode);
9524 const1 &= GET_MODE_MASK (mode);
9526 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9527 if (op0 == AND)
9528 const1 &= const0;
9530 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9531 if OP0 is SET. */
9533 if (op1 == UNKNOWN || op0 == SET)
9534 return 1;
9536 else if (op0 == UNKNOWN)
9537 op0 = op1, const0 = const1;
9539 else if (op0 == op1)
9541 switch (op0)
9543 case AND:
9544 const0 &= const1;
9545 break;
9546 case IOR:
9547 const0 |= const1;
9548 break;
9549 case XOR:
9550 const0 ^= const1;
9551 break;
9552 case PLUS:
9553 const0 += const1;
9554 break;
9555 case NEG:
9556 op0 = UNKNOWN;
9557 break;
9558 default:
9559 break;
9563 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9564 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9565 return 0;
9567 /* If the two constants aren't the same, we can't do anything. The
9568 remaining six cases can all be done. */
9569 else if (const0 != const1)
9570 return 0;
9572 else
9573 switch (op0)
9575 case IOR:
9576 if (op1 == AND)
9577 /* (a & b) | b == b */
9578 op0 = SET;
9579 else /* op1 == XOR */
9580 /* (a ^ b) | b == a | b */
9582 break;
9584 case XOR:
9585 if (op1 == AND)
9586 /* (a & b) ^ b == (~a) & b */
9587 op0 = AND, *pcomp_p = 1;
9588 else /* op1 == IOR */
9589 /* (a | b) ^ b == a & ~b */
9590 op0 = AND, const0 = ~const0;
9591 break;
9593 case AND:
9594 if (op1 == IOR)
9595 /* (a | b) & b == b */
9596 op0 = SET;
9597 else /* op1 == XOR */
9598 /* (a ^ b) & b) == (~a) & b */
9599 *pcomp_p = 1;
9600 break;
9601 default:
9602 break;
9605 /* Check for NO-OP cases. */
9606 const0 &= GET_MODE_MASK (mode);
9607 if (const0 == 0
9608 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9609 op0 = UNKNOWN;
9610 else if (const0 == 0 && op0 == AND)
9611 op0 = SET;
9612 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9613 && op0 == AND)
9614 op0 = UNKNOWN;
9616 *pop0 = op0;
9618 /* ??? Slightly redundant with the above mask, but not entirely.
9619 Moving this above means we'd have to sign-extend the mode mask
9620 for the final test. */
9621 if (op0 != UNKNOWN && op0 != NEG)
9622 *pconst0 = trunc_int_for_mode (const0, mode);
9624 return 1;
9627 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9628 the shift in. The original shift operation CODE is performed on OP in
9629 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9630 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9631 result of the shift is subject to operation OUTER_CODE with operand
9632 OUTER_CONST. */
9634 static enum machine_mode
9635 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9636 enum machine_mode orig_mode, enum machine_mode mode,
9637 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9639 if (orig_mode == mode)
9640 return mode;
9641 gcc_assert (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (orig_mode));
9643 /* In general we can't perform in wider mode for right shift and rotate. */
9644 switch (code)
9646 case ASHIFTRT:
9647 /* We can still widen if the bits brought in from the left are identical
9648 to the sign bit of ORIG_MODE. */
9649 if (num_sign_bit_copies (op, mode)
9650 > (unsigned) (GET_MODE_BITSIZE (mode)
9651 - GET_MODE_BITSIZE (orig_mode)))
9652 return mode;
9653 return orig_mode;
9655 case LSHIFTRT:
9656 /* Similarly here but with zero bits. */
9657 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9658 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9659 return mode;
9661 /* We can also widen if the bits brought in will be masked off. This
9662 operation is performed in ORIG_MODE. */
9663 if (outer_code == AND)
9665 int care_bits = low_bitmask_len (orig_mode, outer_const);
9667 if (care_bits >= 0
9668 && GET_MODE_BITSIZE (orig_mode) - care_bits >= count)
9669 return mode;
9671 /* fall through */
9673 case ROTATE:
9674 return orig_mode;
9676 case ROTATERT:
9677 gcc_unreachable ();
9679 default:
9680 return mode;
9684 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9685 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
9686 simplify it. Otherwise, return a simplified value.
9688 The shift is normally computed in the widest mode we find in VAROP, as
9689 long as it isn't a different number of words than RESULT_MODE. Exceptions
9690 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9692 static rtx
9693 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9694 rtx varop, int orig_count)
9696 enum rtx_code orig_code = code;
9697 rtx orig_varop = varop;
9698 int count;
9699 enum machine_mode mode = result_mode;
9700 enum machine_mode shift_mode, tmode;
9701 unsigned int mode_words
9702 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9703 /* We form (outer_op (code varop count) (outer_const)). */
9704 enum rtx_code outer_op = UNKNOWN;
9705 HOST_WIDE_INT outer_const = 0;
9706 int complement_p = 0;
9707 rtx new_rtx, x;
9709 /* Make sure and truncate the "natural" shift on the way in. We don't
9710 want to do this inside the loop as it makes it more difficult to
9711 combine shifts. */
9712 if (SHIFT_COUNT_TRUNCATED)
9713 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9715 /* If we were given an invalid count, don't do anything except exactly
9716 what was requested. */
9718 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9719 return NULL_RTX;
9721 count = orig_count;
9723 /* Unless one of the branches of the `if' in this loop does a `continue',
9724 we will `break' the loop after the `if'. */
9726 while (count != 0)
9728 /* If we have an operand of (clobber (const_int 0)), fail. */
9729 if (GET_CODE (varop) == CLOBBER)
9730 return NULL_RTX;
9732 /* Convert ROTATERT to ROTATE. */
9733 if (code == ROTATERT)
9735 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9736 code = ROTATE;
9737 if (VECTOR_MODE_P (result_mode))
9738 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9739 else
9740 count = bitsize - count;
9743 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9744 mode, outer_op, outer_const);
9746 /* Handle cases where the count is greater than the size of the mode
9747 minus 1. For ASHIFT, use the size minus one as the count (this can
9748 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9749 take the count modulo the size. For other shifts, the result is
9750 zero.
9752 Since these shifts are being produced by the compiler by combining
9753 multiple operations, each of which are defined, we know what the
9754 result is supposed to be. */
9756 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9758 if (code == ASHIFTRT)
9759 count = GET_MODE_BITSIZE (shift_mode) - 1;
9760 else if (code == ROTATE || code == ROTATERT)
9761 count %= GET_MODE_BITSIZE (shift_mode);
9762 else
9764 /* We can't simply return zero because there may be an
9765 outer op. */
9766 varop = const0_rtx;
9767 count = 0;
9768 break;
9772 /* If we discovered we had to complement VAROP, leave. Making a NOT
9773 here would cause an infinite loop. */
9774 if (complement_p)
9775 break;
9777 /* An arithmetic right shift of a quantity known to be -1 or 0
9778 is a no-op. */
9779 if (code == ASHIFTRT
9780 && (num_sign_bit_copies (varop, shift_mode)
9781 == GET_MODE_BITSIZE (shift_mode)))
9783 count = 0;
9784 break;
9787 /* If we are doing an arithmetic right shift and discarding all but
9788 the sign bit copies, this is equivalent to doing a shift by the
9789 bitsize minus one. Convert it into that shift because it will often
9790 allow other simplifications. */
9792 if (code == ASHIFTRT
9793 && (count + num_sign_bit_copies (varop, shift_mode)
9794 >= GET_MODE_BITSIZE (shift_mode)))
9795 count = GET_MODE_BITSIZE (shift_mode) - 1;
9797 /* We simplify the tests below and elsewhere by converting
9798 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9799 `make_compound_operation' will convert it to an ASHIFTRT for
9800 those machines (such as VAX) that don't have an LSHIFTRT. */
9801 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9802 && code == ASHIFTRT
9803 && ((nonzero_bits (varop, shift_mode)
9804 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9805 == 0))
9806 code = LSHIFTRT;
9808 if (((code == LSHIFTRT
9809 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9810 && !(nonzero_bits (varop, shift_mode) >> count))
9811 || (code == ASHIFT
9812 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9813 && !((nonzero_bits (varop, shift_mode) << count)
9814 & GET_MODE_MASK (shift_mode))))
9815 && !side_effects_p (varop))
9816 varop = const0_rtx;
9818 switch (GET_CODE (varop))
9820 case SIGN_EXTEND:
9821 case ZERO_EXTEND:
9822 case SIGN_EXTRACT:
9823 case ZERO_EXTRACT:
9824 new_rtx = expand_compound_operation (varop);
9825 if (new_rtx != varop)
9827 varop = new_rtx;
9828 continue;
9830 break;
9832 case MEM:
9833 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9834 minus the width of a smaller mode, we can do this with a
9835 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9836 if ((code == ASHIFTRT || code == LSHIFTRT)
9837 && ! mode_dependent_address_p (XEXP (varop, 0))
9838 && ! MEM_VOLATILE_P (varop)
9839 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9840 MODE_INT, 1)) != BLKmode)
9842 new_rtx = adjust_address_nv (varop, tmode,
9843 BYTES_BIG_ENDIAN ? 0
9844 : count / BITS_PER_UNIT);
9846 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9847 : ZERO_EXTEND, mode, new_rtx);
9848 count = 0;
9849 continue;
9851 break;
9853 case SUBREG:
9854 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9855 the same number of words as what we've seen so far. Then store
9856 the widest mode in MODE. */
9857 if (subreg_lowpart_p (varop)
9858 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9859 > GET_MODE_SIZE (GET_MODE (varop)))
9860 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9861 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9862 == mode_words
9863 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
9864 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
9866 varop = SUBREG_REG (varop);
9867 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9868 mode = GET_MODE (varop);
9869 continue;
9871 break;
9873 case MULT:
9874 /* Some machines use MULT instead of ASHIFT because MULT
9875 is cheaper. But it is still better on those machines to
9876 merge two shifts into one. */
9877 if (CONST_INT_P (XEXP (varop, 1))
9878 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9880 varop
9881 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9882 XEXP (varop, 0),
9883 GEN_INT (exact_log2 (
9884 INTVAL (XEXP (varop, 1)))));
9885 continue;
9887 break;
9889 case UDIV:
9890 /* Similar, for when divides are cheaper. */
9891 if (CONST_INT_P (XEXP (varop, 1))
9892 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9894 varop
9895 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9896 XEXP (varop, 0),
9897 GEN_INT (exact_log2 (
9898 INTVAL (XEXP (varop, 1)))));
9899 continue;
9901 break;
9903 case ASHIFTRT:
9904 /* If we are extracting just the sign bit of an arithmetic
9905 right shift, that shift is not needed. However, the sign
9906 bit of a wider mode may be different from what would be
9907 interpreted as the sign bit in a narrower mode, so, if
9908 the result is narrower, don't discard the shift. */
9909 if (code == LSHIFTRT
9910 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9911 && (GET_MODE_BITSIZE (result_mode)
9912 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9914 varop = XEXP (varop, 0);
9915 continue;
9918 /* ... fall through ... */
9920 case LSHIFTRT:
9921 case ASHIFT:
9922 case ROTATE:
9923 /* Here we have two nested shifts. The result is usually the
9924 AND of a new shift with a mask. We compute the result below. */
9925 if (CONST_INT_P (XEXP (varop, 1))
9926 && INTVAL (XEXP (varop, 1)) >= 0
9927 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9928 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9929 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9930 && !VECTOR_MODE_P (result_mode))
9932 enum rtx_code first_code = GET_CODE (varop);
9933 unsigned int first_count = INTVAL (XEXP (varop, 1));
9934 unsigned HOST_WIDE_INT mask;
9935 rtx mask_rtx;
9937 /* We have one common special case. We can't do any merging if
9938 the inner code is an ASHIFTRT of a smaller mode. However, if
9939 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9940 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9941 we can convert it to
9942 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9943 This simplifies certain SIGN_EXTEND operations. */
9944 if (code == ASHIFT && first_code == ASHIFTRT
9945 && count == (GET_MODE_BITSIZE (result_mode)
9946 - GET_MODE_BITSIZE (GET_MODE (varop))))
9948 /* C3 has the low-order C1 bits zero. */
9950 mask = (GET_MODE_MASK (mode)
9951 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9953 varop = simplify_and_const_int (NULL_RTX, result_mode,
9954 XEXP (varop, 0), mask);
9955 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9956 varop, count);
9957 count = first_count;
9958 code = ASHIFTRT;
9959 continue;
9962 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9963 than C1 high-order bits equal to the sign bit, we can convert
9964 this to either an ASHIFT or an ASHIFTRT depending on the
9965 two counts.
9967 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9969 if (code == ASHIFTRT && first_code == ASHIFT
9970 && GET_MODE (varop) == shift_mode
9971 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9972 > first_count))
9974 varop = XEXP (varop, 0);
9975 count -= first_count;
9976 if (count < 0)
9978 count = -count;
9979 code = ASHIFT;
9982 continue;
9985 /* There are some cases we can't do. If CODE is ASHIFTRT,
9986 we can only do this if FIRST_CODE is also ASHIFTRT.
9988 We can't do the case when CODE is ROTATE and FIRST_CODE is
9989 ASHIFTRT.
9991 If the mode of this shift is not the mode of the outer shift,
9992 we can't do this if either shift is a right shift or ROTATE.
9994 Finally, we can't do any of these if the mode is too wide
9995 unless the codes are the same.
9997 Handle the case where the shift codes are the same
9998 first. */
10000 if (code == first_code)
10002 if (GET_MODE (varop) != result_mode
10003 && (code == ASHIFTRT || code == LSHIFTRT
10004 || code == ROTATE))
10005 break;
10007 count += first_count;
10008 varop = XEXP (varop, 0);
10009 continue;
10012 if (code == ASHIFTRT
10013 || (code == ROTATE && first_code == ASHIFTRT)
10014 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
10015 || (GET_MODE (varop) != result_mode
10016 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10017 || first_code == ROTATE
10018 || code == ROTATE)))
10019 break;
10021 /* To compute the mask to apply after the shift, shift the
10022 nonzero bits of the inner shift the same way the
10023 outer shift will. */
10025 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10027 mask_rtx
10028 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10029 GEN_INT (count));
10031 /* Give up if we can't compute an outer operation to use. */
10032 if (mask_rtx == 0
10033 || !CONST_INT_P (mask_rtx)
10034 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10035 INTVAL (mask_rtx),
10036 result_mode, &complement_p))
10037 break;
10039 /* If the shifts are in the same direction, we add the
10040 counts. Otherwise, we subtract them. */
10041 if ((code == ASHIFTRT || code == LSHIFTRT)
10042 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10043 count += first_count;
10044 else
10045 count -= first_count;
10047 /* If COUNT is positive, the new shift is usually CODE,
10048 except for the two exceptions below, in which case it is
10049 FIRST_CODE. If the count is negative, FIRST_CODE should
10050 always be used */
10051 if (count > 0
10052 && ((first_code == ROTATE && code == ASHIFT)
10053 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10054 code = first_code;
10055 else if (count < 0)
10056 code = first_code, count = -count;
10058 varop = XEXP (varop, 0);
10059 continue;
10062 /* If we have (A << B << C) for any shift, we can convert this to
10063 (A << C << B). This wins if A is a constant. Only try this if
10064 B is not a constant. */
10066 else if (GET_CODE (varop) == code
10067 && CONST_INT_P (XEXP (varop, 0))
10068 && !CONST_INT_P (XEXP (varop, 1)))
10070 rtx new_rtx = simplify_const_binary_operation (code, mode,
10071 XEXP (varop, 0),
10072 GEN_INT (count));
10073 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10074 count = 0;
10075 continue;
10077 break;
10079 case NOT:
10080 if (VECTOR_MODE_P (mode))
10081 break;
10083 /* Make this fit the case below. */
10084 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
10085 GEN_INT (GET_MODE_MASK (mode)));
10086 continue;
10088 case IOR:
10089 case AND:
10090 case XOR:
10091 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10092 with C the size of VAROP - 1 and the shift is logical if
10093 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10094 we have an (le X 0) operation. If we have an arithmetic shift
10095 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10096 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10098 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10099 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10100 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10101 && (code == LSHIFTRT || code == ASHIFTRT)
10102 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
10103 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10105 count = 0;
10106 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10107 const0_rtx);
10109 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10110 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10112 continue;
10115 /* If we have (shift (logical)), move the logical to the outside
10116 to allow it to possibly combine with another logical and the
10117 shift to combine with another shift. This also canonicalizes to
10118 what a ZERO_EXTRACT looks like. Also, some machines have
10119 (and (shift)) insns. */
10121 if (CONST_INT_P (XEXP (varop, 1))
10122 /* We can't do this if we have (ashiftrt (xor)) and the
10123 constant has its sign bit set in shift_mode. */
10124 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10125 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10126 shift_mode))
10127 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10128 XEXP (varop, 1),
10129 GEN_INT (count))) != 0
10130 && CONST_INT_P (new_rtx)
10131 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10132 INTVAL (new_rtx), result_mode, &complement_p))
10134 varop = XEXP (varop, 0);
10135 continue;
10138 /* If we can't do that, try to simplify the shift in each arm of the
10139 logical expression, make a new logical expression, and apply
10140 the inverse distributive law. This also can't be done
10141 for some (ashiftrt (xor)). */
10142 if (CONST_INT_P (XEXP (varop, 1))
10143 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10144 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10145 shift_mode)))
10147 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10148 XEXP (varop, 0), count);
10149 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10150 XEXP (varop, 1), count);
10152 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10153 lhs, rhs);
10154 varop = apply_distributive_law (varop);
10156 count = 0;
10157 continue;
10159 break;
10161 case EQ:
10162 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10163 says that the sign bit can be tested, FOO has mode MODE, C is
10164 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
10165 that may be nonzero. */
10166 if (code == LSHIFTRT
10167 && XEXP (varop, 1) == const0_rtx
10168 && GET_MODE (XEXP (varop, 0)) == result_mode
10169 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10170 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
10171 && STORE_FLAG_VALUE == -1
10172 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10173 && merge_outer_ops (&outer_op, &outer_const, XOR,
10174 (HOST_WIDE_INT) 1, result_mode,
10175 &complement_p))
10177 varop = XEXP (varop, 0);
10178 count = 0;
10179 continue;
10181 break;
10183 case NEG:
10184 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10185 than the number of bits in the mode is equivalent to A. */
10186 if (code == LSHIFTRT
10187 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10188 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10190 varop = XEXP (varop, 0);
10191 count = 0;
10192 continue;
10195 /* NEG commutes with ASHIFT since it is multiplication. Move the
10196 NEG outside to allow shifts to combine. */
10197 if (code == ASHIFT
10198 && merge_outer_ops (&outer_op, &outer_const, NEG,
10199 (HOST_WIDE_INT) 0, result_mode,
10200 &complement_p))
10202 varop = XEXP (varop, 0);
10203 continue;
10205 break;
10207 case PLUS:
10208 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10209 is one less than the number of bits in the mode is
10210 equivalent to (xor A 1). */
10211 if (code == LSHIFTRT
10212 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10213 && XEXP (varop, 1) == constm1_rtx
10214 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10215 && merge_outer_ops (&outer_op, &outer_const, XOR,
10216 (HOST_WIDE_INT) 1, result_mode,
10217 &complement_p))
10219 count = 0;
10220 varop = XEXP (varop, 0);
10221 continue;
10224 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10225 that might be nonzero in BAR are those being shifted out and those
10226 bits are known zero in FOO, we can replace the PLUS with FOO.
10227 Similarly in the other operand order. This code occurs when
10228 we are computing the size of a variable-size array. */
10230 if ((code == ASHIFTRT || code == LSHIFTRT)
10231 && count < HOST_BITS_PER_WIDE_INT
10232 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10233 && (nonzero_bits (XEXP (varop, 1), result_mode)
10234 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10236 varop = XEXP (varop, 0);
10237 continue;
10239 else if ((code == ASHIFTRT || code == LSHIFTRT)
10240 && count < HOST_BITS_PER_WIDE_INT
10241 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
10242 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10243 >> count)
10244 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10245 & nonzero_bits (XEXP (varop, 1),
10246 result_mode)))
10248 varop = XEXP (varop, 1);
10249 continue;
10252 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10253 if (code == ASHIFT
10254 && CONST_INT_P (XEXP (varop, 1))
10255 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10256 XEXP (varop, 1),
10257 GEN_INT (count))) != 0
10258 && CONST_INT_P (new_rtx)
10259 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10260 INTVAL (new_rtx), result_mode, &complement_p))
10262 varop = XEXP (varop, 0);
10263 continue;
10266 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10267 signbit', and attempt to change the PLUS to an XOR and move it to
10268 the outer operation as is done above in the AND/IOR/XOR case
10269 leg for shift(logical). See details in logical handling above
10270 for reasoning in doing so. */
10271 if (code == LSHIFTRT
10272 && CONST_INT_P (XEXP (varop, 1))
10273 && mode_signbit_p (result_mode, XEXP (varop, 1))
10274 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10275 XEXP (varop, 1),
10276 GEN_INT (count))) != 0
10277 && CONST_INT_P (new_rtx)
10278 && merge_outer_ops (&outer_op, &outer_const, XOR,
10279 INTVAL (new_rtx), result_mode, &complement_p))
10281 varop = XEXP (varop, 0);
10282 continue;
10285 break;
10287 case MINUS:
10288 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10289 with C the size of VAROP - 1 and the shift is logical if
10290 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10291 we have a (gt X 0) operation. If the shift is arithmetic with
10292 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10293 we have a (neg (gt X 0)) operation. */
10295 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10296 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10297 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
10298 && (code == LSHIFTRT || code == ASHIFTRT)
10299 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10300 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10301 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10303 count = 0;
10304 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10305 const0_rtx);
10307 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10308 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10310 continue;
10312 break;
10314 case TRUNCATE:
10315 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10316 if the truncate does not affect the value. */
10317 if (code == LSHIFTRT
10318 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10319 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10320 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10321 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
10322 - GET_MODE_BITSIZE (GET_MODE (varop)))))
10324 rtx varop_inner = XEXP (varop, 0);
10326 varop_inner
10327 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10328 XEXP (varop_inner, 0),
10329 GEN_INT
10330 (count + INTVAL (XEXP (varop_inner, 1))));
10331 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10332 count = 0;
10333 continue;
10335 break;
10337 default:
10338 break;
10341 break;
10344 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10345 outer_op, outer_const);
10347 /* We have now finished analyzing the shift. The result should be
10348 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10349 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10350 to the result of the shift. OUTER_CONST is the relevant constant,
10351 but we must turn off all bits turned off in the shift. */
10353 if (outer_op == UNKNOWN
10354 && orig_code == code && orig_count == count
10355 && varop == orig_varop
10356 && shift_mode == GET_MODE (varop))
10357 return NULL_RTX;
10359 /* Make a SUBREG if necessary. If we can't make it, fail. */
10360 varop = gen_lowpart (shift_mode, varop);
10361 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10362 return NULL_RTX;
10364 /* If we have an outer operation and we just made a shift, it is
10365 possible that we could have simplified the shift were it not
10366 for the outer operation. So try to do the simplification
10367 recursively. */
10369 if (outer_op != UNKNOWN)
10370 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10371 else
10372 x = NULL_RTX;
10374 if (x == NULL_RTX)
10375 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10377 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10378 turn off all the bits that the shift would have turned off. */
10379 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10380 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10381 GET_MODE_MASK (result_mode) >> orig_count);
10383 /* Do the remainder of the processing in RESULT_MODE. */
10384 x = gen_lowpart_or_truncate (result_mode, x);
10386 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10387 operation. */
10388 if (complement_p)
10389 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10391 if (outer_op != UNKNOWN)
10393 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10394 && GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
10395 outer_const = trunc_int_for_mode (outer_const, result_mode);
10397 if (outer_op == AND)
10398 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10399 else if (outer_op == SET)
10401 /* This means that we have determined that the result is
10402 equivalent to a constant. This should be rare. */
10403 if (!side_effects_p (x))
10404 x = GEN_INT (outer_const);
10406 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10407 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10408 else
10409 x = simplify_gen_binary (outer_op, result_mode, x,
10410 GEN_INT (outer_const));
10413 return x;
10416 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10417 The result of the shift is RESULT_MODE. If we cannot simplify it,
10418 return X or, if it is NULL, synthesize the expression with
10419 simplify_gen_binary. Otherwise, return a simplified value.
10421 The shift is normally computed in the widest mode we find in VAROP, as
10422 long as it isn't a different number of words than RESULT_MODE. Exceptions
10423 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10425 static rtx
10426 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10427 rtx varop, int count)
10429 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10430 if (tem)
10431 return tem;
10433 if (!x)
10434 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10435 if (GET_MODE (x) != result_mode)
10436 x = gen_lowpart (result_mode, x);
10437 return x;
10441 /* Like recog, but we receive the address of a pointer to a new pattern.
10442 We try to match the rtx that the pointer points to.
10443 If that fails, we may try to modify or replace the pattern,
10444 storing the replacement into the same pointer object.
10446 Modifications include deletion or addition of CLOBBERs.
10448 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10449 the CLOBBERs are placed.
10451 The value is the final insn code from the pattern ultimately matched,
10452 or -1. */
10454 static int
10455 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10457 rtx pat = *pnewpat;
10458 int insn_code_number;
10459 int num_clobbers_to_add = 0;
10460 int i;
10461 rtx notes = 0;
10462 rtx old_notes, old_pat;
10464 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10465 we use to indicate that something didn't match. If we find such a
10466 thing, force rejection. */
10467 if (GET_CODE (pat) == PARALLEL)
10468 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10469 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10470 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10471 return -1;
10473 old_pat = PATTERN (insn);
10474 old_notes = REG_NOTES (insn);
10475 PATTERN (insn) = pat;
10476 REG_NOTES (insn) = 0;
10478 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10479 if (dump_file && (dump_flags & TDF_DETAILS))
10481 if (insn_code_number < 0)
10482 fputs ("Failed to match this instruction:\n", dump_file);
10483 else
10484 fputs ("Successfully matched this instruction:\n", dump_file);
10485 print_rtl_single (dump_file, pat);
10488 /* If it isn't, there is the possibility that we previously had an insn
10489 that clobbered some register as a side effect, but the combined
10490 insn doesn't need to do that. So try once more without the clobbers
10491 unless this represents an ASM insn. */
10493 if (insn_code_number < 0 && ! check_asm_operands (pat)
10494 && GET_CODE (pat) == PARALLEL)
10496 int pos;
10498 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10499 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10501 if (i != pos)
10502 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10503 pos++;
10506 SUBST_INT (XVECLEN (pat, 0), pos);
10508 if (pos == 1)
10509 pat = XVECEXP (pat, 0, 0);
10511 PATTERN (insn) = pat;
10512 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10513 if (dump_file && (dump_flags & TDF_DETAILS))
10515 if (insn_code_number < 0)
10516 fputs ("Failed to match this instruction:\n", dump_file);
10517 else
10518 fputs ("Successfully matched this instruction:\n", dump_file);
10519 print_rtl_single (dump_file, pat);
10522 PATTERN (insn) = old_pat;
10523 REG_NOTES (insn) = old_notes;
10525 /* Recognize all noop sets, these will be killed by followup pass. */
10526 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10527 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10529 /* If we had any clobbers to add, make a new pattern than contains
10530 them. Then check to make sure that all of them are dead. */
10531 if (num_clobbers_to_add)
10533 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10534 rtvec_alloc (GET_CODE (pat) == PARALLEL
10535 ? (XVECLEN (pat, 0)
10536 + num_clobbers_to_add)
10537 : num_clobbers_to_add + 1));
10539 if (GET_CODE (pat) == PARALLEL)
10540 for (i = 0; i < XVECLEN (pat, 0); i++)
10541 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10542 else
10543 XVECEXP (newpat, 0, 0) = pat;
10545 add_clobbers (newpat, insn_code_number);
10547 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10548 i < XVECLEN (newpat, 0); i++)
10550 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10551 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10552 return -1;
10553 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10555 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10556 notes = alloc_reg_note (REG_UNUSED,
10557 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10560 pat = newpat;
10563 *pnewpat = pat;
10564 *pnotes = notes;
10566 return insn_code_number;
10569 /* Like gen_lowpart_general but for use by combine. In combine it
10570 is not possible to create any new pseudoregs. However, it is
10571 safe to create invalid memory addresses, because combine will
10572 try to recognize them and all they will do is make the combine
10573 attempt fail.
10575 If for some reason this cannot do its job, an rtx
10576 (clobber (const_int 0)) is returned.
10577 An insn containing that will not be recognized. */
10579 static rtx
10580 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10582 enum machine_mode imode = GET_MODE (x);
10583 unsigned int osize = GET_MODE_SIZE (omode);
10584 unsigned int isize = GET_MODE_SIZE (imode);
10585 rtx result;
10587 if (omode == imode)
10588 return x;
10590 /* Return identity if this is a CONST or symbolic reference. */
10591 if (omode == Pmode
10592 && (GET_CODE (x) == CONST
10593 || GET_CODE (x) == SYMBOL_REF
10594 || GET_CODE (x) == LABEL_REF))
10595 return x;
10597 /* We can only support MODE being wider than a word if X is a
10598 constant integer or has a mode the same size. */
10599 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10600 && ! ((imode == VOIDmode
10601 && (CONST_INT_P (x)
10602 || GET_CODE (x) == CONST_DOUBLE))
10603 || isize == osize))
10604 goto fail;
10606 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10607 won't know what to do. So we will strip off the SUBREG here and
10608 process normally. */
10609 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10611 x = SUBREG_REG (x);
10613 /* For use in case we fall down into the address adjustments
10614 further below, we need to adjust the known mode and size of
10615 x; imode and isize, since we just adjusted x. */
10616 imode = GET_MODE (x);
10618 if (imode == omode)
10619 return x;
10621 isize = GET_MODE_SIZE (imode);
10624 result = gen_lowpart_common (omode, x);
10626 if (result)
10627 return result;
10629 if (MEM_P (x))
10631 int offset = 0;
10633 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10634 address. */
10635 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10636 goto fail;
10638 /* If we want to refer to something bigger than the original memref,
10639 generate a paradoxical subreg instead. That will force a reload
10640 of the original memref X. */
10641 if (isize < osize)
10642 return gen_rtx_SUBREG (omode, x, 0);
10644 if (WORDS_BIG_ENDIAN)
10645 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10647 /* Adjust the address so that the address-after-the-data is
10648 unchanged. */
10649 if (BYTES_BIG_ENDIAN)
10650 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10652 return adjust_address_nv (x, omode, offset);
10655 /* If X is a comparison operator, rewrite it in a new mode. This
10656 probably won't match, but may allow further simplifications. */
10657 else if (COMPARISON_P (x))
10658 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10660 /* If we couldn't simplify X any other way, just enclose it in a
10661 SUBREG. Normally, this SUBREG won't match, but some patterns may
10662 include an explicit SUBREG or we may simplify it further in combine. */
10663 else
10665 int offset = 0;
10666 rtx res;
10668 offset = subreg_lowpart_offset (omode, imode);
10669 if (imode == VOIDmode)
10671 imode = int_mode_for_mode (omode);
10672 x = gen_lowpart_common (imode, x);
10673 if (x == NULL)
10674 goto fail;
10676 res = simplify_gen_subreg (omode, x, imode, offset);
10677 if (res)
10678 return res;
10681 fail:
10682 return gen_rtx_CLOBBER (omode, const0_rtx);
10685 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10686 comparison code that will be tested.
10688 The result is a possibly different comparison code to use. *POP0 and
10689 *POP1 may be updated.
10691 It is possible that we might detect that a comparison is either always
10692 true or always false. However, we do not perform general constant
10693 folding in combine, so this knowledge isn't useful. Such tautologies
10694 should have been detected earlier. Hence we ignore all such cases. */
10696 static enum rtx_code
10697 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10699 rtx op0 = *pop0;
10700 rtx op1 = *pop1;
10701 rtx tem, tem1;
10702 int i;
10703 enum machine_mode mode, tmode;
10705 /* Try a few ways of applying the same transformation to both operands. */
10706 while (1)
10708 #ifndef WORD_REGISTER_OPERATIONS
10709 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10710 so check specially. */
10711 if (code != GTU && code != GEU && code != LTU && code != LEU
10712 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10713 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10714 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10715 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10716 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10717 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10718 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10719 && CONST_INT_P (XEXP (op0, 1))
10720 && XEXP (op0, 1) == XEXP (op1, 1)
10721 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10722 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10723 && (INTVAL (XEXP (op0, 1))
10724 == (GET_MODE_BITSIZE (GET_MODE (op0))
10725 - (GET_MODE_BITSIZE
10726 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10728 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10729 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10731 #endif
10733 /* If both operands are the same constant shift, see if we can ignore the
10734 shift. We can if the shift is a rotate or if the bits shifted out of
10735 this shift are known to be zero for both inputs and if the type of
10736 comparison is compatible with the shift. */
10737 if (GET_CODE (op0) == GET_CODE (op1)
10738 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10739 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10740 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10741 && (code != GT && code != LT && code != GE && code != LE))
10742 || (GET_CODE (op0) == ASHIFTRT
10743 && (code != GTU && code != LTU
10744 && code != GEU && code != LEU)))
10745 && CONST_INT_P (XEXP (op0, 1))
10746 && INTVAL (XEXP (op0, 1)) >= 0
10747 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10748 && XEXP (op0, 1) == XEXP (op1, 1))
10750 enum machine_mode mode = GET_MODE (op0);
10751 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10752 int shift_count = INTVAL (XEXP (op0, 1));
10754 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10755 mask &= (mask >> shift_count) << shift_count;
10756 else if (GET_CODE (op0) == ASHIFT)
10757 mask = (mask & (mask << shift_count)) >> shift_count;
10759 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10760 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10761 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10762 else
10763 break;
10766 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10767 SUBREGs are of the same mode, and, in both cases, the AND would
10768 be redundant if the comparison was done in the narrower mode,
10769 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10770 and the operand's possibly nonzero bits are 0xffffff01; in that case
10771 if we only care about QImode, we don't need the AND). This case
10772 occurs if the output mode of an scc insn is not SImode and
10773 STORE_FLAG_VALUE == 1 (e.g., the 386).
10775 Similarly, check for a case where the AND's are ZERO_EXTEND
10776 operations from some narrower mode even though a SUBREG is not
10777 present. */
10779 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10780 && CONST_INT_P (XEXP (op0, 1))
10781 && CONST_INT_P (XEXP (op1, 1)))
10783 rtx inner_op0 = XEXP (op0, 0);
10784 rtx inner_op1 = XEXP (op1, 0);
10785 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10786 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10787 int changed = 0;
10789 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10790 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10791 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10792 && (GET_MODE (SUBREG_REG (inner_op0))
10793 == GET_MODE (SUBREG_REG (inner_op1)))
10794 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10795 <= HOST_BITS_PER_WIDE_INT)
10796 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10797 GET_MODE (SUBREG_REG (inner_op0)))))
10798 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10799 GET_MODE (SUBREG_REG (inner_op1))))))
10801 op0 = SUBREG_REG (inner_op0);
10802 op1 = SUBREG_REG (inner_op1);
10804 /* The resulting comparison is always unsigned since we masked
10805 off the original sign bit. */
10806 code = unsigned_condition (code);
10808 changed = 1;
10811 else if (c0 == c1)
10812 for (tmode = GET_CLASS_NARROWEST_MODE
10813 (GET_MODE_CLASS (GET_MODE (op0)));
10814 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10815 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10817 op0 = gen_lowpart (tmode, inner_op0);
10818 op1 = gen_lowpart (tmode, inner_op1);
10819 code = unsigned_condition (code);
10820 changed = 1;
10821 break;
10824 if (! changed)
10825 break;
10828 /* If both operands are NOT, we can strip off the outer operation
10829 and adjust the comparison code for swapped operands; similarly for
10830 NEG, except that this must be an equality comparison. */
10831 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10832 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10833 && (code == EQ || code == NE)))
10834 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10836 else
10837 break;
10840 /* If the first operand is a constant, swap the operands and adjust the
10841 comparison code appropriately, but don't do this if the second operand
10842 is already a constant integer. */
10843 if (swap_commutative_operands_p (op0, op1))
10845 tem = op0, op0 = op1, op1 = tem;
10846 code = swap_condition (code);
10849 /* We now enter a loop during which we will try to simplify the comparison.
10850 For the most part, we only are concerned with comparisons with zero,
10851 but some things may really be comparisons with zero but not start
10852 out looking that way. */
10854 while (CONST_INT_P (op1))
10856 enum machine_mode mode = GET_MODE (op0);
10857 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10858 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10859 int equality_comparison_p;
10860 int sign_bit_comparison_p;
10861 int unsigned_comparison_p;
10862 HOST_WIDE_INT const_op;
10864 /* We only want to handle integral modes. This catches VOIDmode,
10865 CCmode, and the floating-point modes. An exception is that we
10866 can handle VOIDmode if OP0 is a COMPARE or a comparison
10867 operation. */
10869 if (GET_MODE_CLASS (mode) != MODE_INT
10870 && ! (mode == VOIDmode
10871 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10872 break;
10874 /* Get the constant we are comparing against and turn off all bits
10875 not on in our mode. */
10876 const_op = INTVAL (op1);
10877 if (mode != VOIDmode)
10878 const_op = trunc_int_for_mode (const_op, mode);
10879 op1 = GEN_INT (const_op);
10881 /* If we are comparing against a constant power of two and the value
10882 being compared can only have that single bit nonzero (e.g., it was
10883 `and'ed with that bit), we can replace this with a comparison
10884 with zero. */
10885 if (const_op
10886 && (code == EQ || code == NE || code == GE || code == GEU
10887 || code == LT || code == LTU)
10888 && mode_width <= HOST_BITS_PER_WIDE_INT
10889 && exact_log2 (const_op) >= 0
10890 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10892 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10893 op1 = const0_rtx, const_op = 0;
10896 /* Similarly, if we are comparing a value known to be either -1 or
10897 0 with -1, change it to the opposite comparison against zero. */
10899 if (const_op == -1
10900 && (code == EQ || code == NE || code == GT || code == LE
10901 || code == GEU || code == LTU)
10902 && num_sign_bit_copies (op0, mode) == mode_width)
10904 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10905 op1 = const0_rtx, const_op = 0;
10908 /* Do some canonicalizations based on the comparison code. We prefer
10909 comparisons against zero and then prefer equality comparisons.
10910 If we can reduce the size of a constant, we will do that too. */
10912 switch (code)
10914 case LT:
10915 /* < C is equivalent to <= (C - 1) */
10916 if (const_op > 0)
10918 const_op -= 1;
10919 op1 = GEN_INT (const_op);
10920 code = LE;
10921 /* ... fall through to LE case below. */
10923 else
10924 break;
10926 case LE:
10927 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10928 if (const_op < 0)
10930 const_op += 1;
10931 op1 = GEN_INT (const_op);
10932 code = LT;
10935 /* If we are doing a <= 0 comparison on a value known to have
10936 a zero sign bit, we can replace this with == 0. */
10937 else if (const_op == 0
10938 && mode_width <= HOST_BITS_PER_WIDE_INT
10939 && (nonzero_bits (op0, mode)
10940 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10941 code = EQ;
10942 break;
10944 case GE:
10945 /* >= C is equivalent to > (C - 1). */
10946 if (const_op > 0)
10948 const_op -= 1;
10949 op1 = GEN_INT (const_op);
10950 code = GT;
10951 /* ... fall through to GT below. */
10953 else
10954 break;
10956 case GT:
10957 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10958 if (const_op < 0)
10960 const_op += 1;
10961 op1 = GEN_INT (const_op);
10962 code = GE;
10965 /* If we are doing a > 0 comparison on a value known to have
10966 a zero sign bit, we can replace this with != 0. */
10967 else if (const_op == 0
10968 && mode_width <= HOST_BITS_PER_WIDE_INT
10969 && (nonzero_bits (op0, mode)
10970 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10971 code = NE;
10972 break;
10974 case LTU:
10975 /* < C is equivalent to <= (C - 1). */
10976 if (const_op > 0)
10978 const_op -= 1;
10979 op1 = GEN_INT (const_op);
10980 code = LEU;
10981 /* ... fall through ... */
10984 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10985 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10986 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10988 const_op = 0, op1 = const0_rtx;
10989 code = GE;
10990 break;
10992 else
10993 break;
10995 case LEU:
10996 /* unsigned <= 0 is equivalent to == 0 */
10997 if (const_op == 0)
10998 code = EQ;
11000 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11001 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
11002 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
11004 const_op = 0, op1 = const0_rtx;
11005 code = GE;
11007 break;
11009 case GEU:
11010 /* >= C is equivalent to > (C - 1). */
11011 if (const_op > 1)
11013 const_op -= 1;
11014 op1 = GEN_INT (const_op);
11015 code = GTU;
11016 /* ... fall through ... */
11019 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11020 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
11021 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
11023 const_op = 0, op1 = const0_rtx;
11024 code = LT;
11025 break;
11027 else
11028 break;
11030 case GTU:
11031 /* unsigned > 0 is equivalent to != 0 */
11032 if (const_op == 0)
11033 code = NE;
11035 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11036 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
11037 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
11039 const_op = 0, op1 = const0_rtx;
11040 code = LT;
11042 break;
11044 default:
11045 break;
11048 /* Compute some predicates to simplify code below. */
11050 equality_comparison_p = (code == EQ || code == NE);
11051 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11052 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11053 || code == GEU);
11055 /* If this is a sign bit comparison and we can do arithmetic in
11056 MODE, say that we will only be needing the sign bit of OP0. */
11057 if (sign_bit_comparison_p
11058 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11059 op0 = force_to_mode (op0, mode,
11060 ((HOST_WIDE_INT) 1
11061 << (GET_MODE_BITSIZE (mode) - 1)),
11064 /* Now try cases based on the opcode of OP0. If none of the cases
11065 does a "continue", we exit this loop immediately after the
11066 switch. */
11068 switch (GET_CODE (op0))
11070 case ZERO_EXTRACT:
11071 /* If we are extracting a single bit from a variable position in
11072 a constant that has only a single bit set and are comparing it
11073 with zero, we can convert this into an equality comparison
11074 between the position and the location of the single bit. */
11075 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11076 have already reduced the shift count modulo the word size. */
11077 if (!SHIFT_COUNT_TRUNCATED
11078 && CONST_INT_P (XEXP (op0, 0))
11079 && XEXP (op0, 1) == const1_rtx
11080 && equality_comparison_p && const_op == 0
11081 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
11083 if (BITS_BIG_ENDIAN)
11085 enum machine_mode new_mode
11086 = mode_for_extraction (EP_extzv, 1);
11087 if (new_mode == MAX_MACHINE_MODE)
11088 i = BITS_PER_WORD - 1 - i;
11089 else
11091 mode = new_mode;
11092 i = (GET_MODE_BITSIZE (mode) - 1 - i);
11096 op0 = XEXP (op0, 2);
11097 op1 = GEN_INT (i);
11098 const_op = i;
11100 /* Result is nonzero iff shift count is equal to I. */
11101 code = reverse_condition (code);
11102 continue;
11105 /* ... fall through ... */
11107 case SIGN_EXTRACT:
11108 tem = expand_compound_operation (op0);
11109 if (tem != op0)
11111 op0 = tem;
11112 continue;
11114 break;
11116 case NOT:
11117 /* If testing for equality, we can take the NOT of the constant. */
11118 if (equality_comparison_p
11119 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11121 op0 = XEXP (op0, 0);
11122 op1 = tem;
11123 continue;
11126 /* If just looking at the sign bit, reverse the sense of the
11127 comparison. */
11128 if (sign_bit_comparison_p)
11130 op0 = XEXP (op0, 0);
11131 code = (code == GE ? LT : GE);
11132 continue;
11134 break;
11136 case NEG:
11137 /* If testing for equality, we can take the NEG of the constant. */
11138 if (equality_comparison_p
11139 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11141 op0 = XEXP (op0, 0);
11142 op1 = tem;
11143 continue;
11146 /* The remaining cases only apply to comparisons with zero. */
11147 if (const_op != 0)
11148 break;
11150 /* When X is ABS or is known positive,
11151 (neg X) is < 0 if and only if X != 0. */
11153 if (sign_bit_comparison_p
11154 && (GET_CODE (XEXP (op0, 0)) == ABS
11155 || (mode_width <= HOST_BITS_PER_WIDE_INT
11156 && (nonzero_bits (XEXP (op0, 0), mode)
11157 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
11159 op0 = XEXP (op0, 0);
11160 code = (code == LT ? NE : EQ);
11161 continue;
11164 /* If we have NEG of something whose two high-order bits are the
11165 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11166 if (num_sign_bit_copies (op0, mode) >= 2)
11168 op0 = XEXP (op0, 0);
11169 code = swap_condition (code);
11170 continue;
11172 break;
11174 case ROTATE:
11175 /* If we are testing equality and our count is a constant, we
11176 can perform the inverse operation on our RHS. */
11177 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11178 && (tem = simplify_binary_operation (ROTATERT, mode,
11179 op1, XEXP (op0, 1))) != 0)
11181 op0 = XEXP (op0, 0);
11182 op1 = tem;
11183 continue;
11186 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11187 a particular bit. Convert it to an AND of a constant of that
11188 bit. This will be converted into a ZERO_EXTRACT. */
11189 if (const_op == 0 && sign_bit_comparison_p
11190 && CONST_INT_P (XEXP (op0, 1))
11191 && mode_width <= HOST_BITS_PER_WIDE_INT)
11193 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11194 ((HOST_WIDE_INT) 1
11195 << (mode_width - 1
11196 - INTVAL (XEXP (op0, 1)))));
11197 code = (code == LT ? NE : EQ);
11198 continue;
11201 /* Fall through. */
11203 case ABS:
11204 /* ABS is ignorable inside an equality comparison with zero. */
11205 if (const_op == 0 && equality_comparison_p)
11207 op0 = XEXP (op0, 0);
11208 continue;
11210 break;
11212 case SIGN_EXTEND:
11213 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11214 (compare FOO CONST) if CONST fits in FOO's mode and we
11215 are either testing inequality or have an unsigned
11216 comparison with ZERO_EXTEND or a signed comparison with
11217 SIGN_EXTEND. But don't do it if we don't have a compare
11218 insn of the given mode, since we'd have to revert it
11219 later on, and then we wouldn't know whether to sign- or
11220 zero-extend. */
11221 mode = GET_MODE (XEXP (op0, 0));
11222 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11223 && ! unsigned_comparison_p
11224 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11225 && ((unsigned HOST_WIDE_INT) const_op
11226 < (((unsigned HOST_WIDE_INT) 1
11227 << (GET_MODE_BITSIZE (mode) - 1))))
11228 && have_insn_for (COMPARE, mode))
11230 op0 = XEXP (op0, 0);
11231 continue;
11233 break;
11235 case SUBREG:
11236 /* Check for the case where we are comparing A - C1 with C2, that is
11238 (subreg:MODE (plus (A) (-C1))) op (C2)
11240 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11241 comparison in the wider mode. One of the following two conditions
11242 must be true in order for this to be valid:
11244 1. The mode extension results in the same bit pattern being added
11245 on both sides and the comparison is equality or unsigned. As
11246 C2 has been truncated to fit in MODE, the pattern can only be
11247 all 0s or all 1s.
11249 2. The mode extension results in the sign bit being copied on
11250 each side.
11252 The difficulty here is that we have predicates for A but not for
11253 (A - C1) so we need to check that C1 is within proper bounds so
11254 as to perturbate A as little as possible. */
11256 if (mode_width <= HOST_BITS_PER_WIDE_INT
11257 && subreg_lowpart_p (op0)
11258 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
11259 && GET_CODE (SUBREG_REG (op0)) == PLUS
11260 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11262 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11263 rtx a = XEXP (SUBREG_REG (op0), 0);
11264 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11266 if ((c1 > 0
11267 && (unsigned HOST_WIDE_INT) c1
11268 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11269 && (equality_comparison_p || unsigned_comparison_p)
11270 /* (A - C1) zero-extends if it is positive and sign-extends
11271 if it is negative, C2 both zero- and sign-extends. */
11272 && ((0 == (nonzero_bits (a, inner_mode)
11273 & ~GET_MODE_MASK (mode))
11274 && const_op >= 0)
11275 /* (A - C1) sign-extends if it is positive and 1-extends
11276 if it is negative, C2 both sign- and 1-extends. */
11277 || (num_sign_bit_copies (a, inner_mode)
11278 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
11279 - mode_width)
11280 && const_op < 0)))
11281 || ((unsigned HOST_WIDE_INT) c1
11282 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11283 /* (A - C1) always sign-extends, like C2. */
11284 && num_sign_bit_copies (a, inner_mode)
11285 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
11286 - (mode_width - 1))))
11288 op0 = SUBREG_REG (op0);
11289 continue;
11293 /* If the inner mode is narrower and we are extracting the low part,
11294 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11295 if (subreg_lowpart_p (op0)
11296 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
11297 /* Fall through */ ;
11298 else
11299 break;
11301 /* ... fall through ... */
11303 case ZERO_EXTEND:
11304 mode = GET_MODE (XEXP (op0, 0));
11305 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11306 && (unsigned_comparison_p || equality_comparison_p)
11307 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11308 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
11309 && have_insn_for (COMPARE, mode))
11311 op0 = XEXP (op0, 0);
11312 continue;
11314 break;
11316 case PLUS:
11317 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11318 this for equality comparisons due to pathological cases involving
11319 overflows. */
11320 if (equality_comparison_p
11321 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11322 op1, XEXP (op0, 1))))
11324 op0 = XEXP (op0, 0);
11325 op1 = tem;
11326 continue;
11329 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11330 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11331 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11333 op0 = XEXP (XEXP (op0, 0), 0);
11334 code = (code == LT ? EQ : NE);
11335 continue;
11337 break;
11339 case MINUS:
11340 /* We used to optimize signed comparisons against zero, but that
11341 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11342 arrive here as equality comparisons, or (GEU, LTU) are
11343 optimized away. No need to special-case them. */
11345 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11346 (eq B (minus A C)), whichever simplifies. We can only do
11347 this for equality comparisons due to pathological cases involving
11348 overflows. */
11349 if (equality_comparison_p
11350 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11351 XEXP (op0, 1), op1)))
11353 op0 = XEXP (op0, 0);
11354 op1 = tem;
11355 continue;
11358 if (equality_comparison_p
11359 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11360 XEXP (op0, 0), op1)))
11362 op0 = XEXP (op0, 1);
11363 op1 = tem;
11364 continue;
11367 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11368 of bits in X minus 1, is one iff X > 0. */
11369 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11370 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11371 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
11372 == mode_width - 1
11373 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11375 op0 = XEXP (op0, 1);
11376 code = (code == GE ? LE : GT);
11377 continue;
11379 break;
11381 case XOR:
11382 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11383 if C is zero or B is a constant. */
11384 if (equality_comparison_p
11385 && 0 != (tem = simplify_binary_operation (XOR, mode,
11386 XEXP (op0, 1), op1)))
11388 op0 = XEXP (op0, 0);
11389 op1 = tem;
11390 continue;
11392 break;
11394 case EQ: case NE:
11395 case UNEQ: case LTGT:
11396 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11397 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11398 case UNORDERED: case ORDERED:
11399 /* We can't do anything if OP0 is a condition code value, rather
11400 than an actual data value. */
11401 if (const_op != 0
11402 || CC0_P (XEXP (op0, 0))
11403 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11404 break;
11406 /* Get the two operands being compared. */
11407 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11408 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11409 else
11410 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11412 /* Check for the cases where we simply want the result of the
11413 earlier test or the opposite of that result. */
11414 if (code == NE || code == EQ
11415 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
11416 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11417 && (STORE_FLAG_VALUE
11418 & (((HOST_WIDE_INT) 1
11419 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
11420 && (code == LT || code == GE)))
11422 enum rtx_code new_code;
11423 if (code == LT || code == NE)
11424 new_code = GET_CODE (op0);
11425 else
11426 new_code = reversed_comparison_code (op0, NULL);
11428 if (new_code != UNKNOWN)
11430 code = new_code;
11431 op0 = tem;
11432 op1 = tem1;
11433 continue;
11436 break;
11438 case IOR:
11439 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11440 iff X <= 0. */
11441 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11442 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11443 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11445 op0 = XEXP (op0, 1);
11446 code = (code == GE ? GT : LE);
11447 continue;
11449 break;
11451 case AND:
11452 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11453 will be converted to a ZERO_EXTRACT later. */
11454 if (const_op == 0 && equality_comparison_p
11455 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11456 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11458 op0 = simplify_and_const_int
11459 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
11460 XEXP (op0, 1),
11461 XEXP (XEXP (op0, 0), 1)),
11462 (HOST_WIDE_INT) 1);
11463 continue;
11466 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11467 zero and X is a comparison and C1 and C2 describe only bits set
11468 in STORE_FLAG_VALUE, we can compare with X. */
11469 if (const_op == 0 && equality_comparison_p
11470 && mode_width <= HOST_BITS_PER_WIDE_INT
11471 && CONST_INT_P (XEXP (op0, 1))
11472 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11473 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11474 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11475 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11477 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11478 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11479 if ((~STORE_FLAG_VALUE & mask) == 0
11480 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11481 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11482 && COMPARISON_P (tem))))
11484 op0 = XEXP (XEXP (op0, 0), 0);
11485 continue;
11489 /* If we are doing an equality comparison of an AND of a bit equal
11490 to the sign bit, replace this with a LT or GE comparison of
11491 the underlying value. */
11492 if (equality_comparison_p
11493 && const_op == 0
11494 && CONST_INT_P (XEXP (op0, 1))
11495 && mode_width <= HOST_BITS_PER_WIDE_INT
11496 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11497 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11499 op0 = XEXP (op0, 0);
11500 code = (code == EQ ? GE : LT);
11501 continue;
11504 /* If this AND operation is really a ZERO_EXTEND from a narrower
11505 mode, the constant fits within that mode, and this is either an
11506 equality or unsigned comparison, try to do this comparison in
11507 the narrower mode.
11509 Note that in:
11511 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11512 -> (ne:DI (reg:SI 4) (const_int 0))
11514 unless TRULY_NOOP_TRUNCATION allows it or the register is
11515 known to hold a value of the required mode the
11516 transformation is invalid. */
11517 if ((equality_comparison_p || unsigned_comparison_p)
11518 && CONST_INT_P (XEXP (op0, 1))
11519 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
11520 & GET_MODE_MASK (mode))
11521 + 1)) >= 0
11522 && const_op >> i == 0
11523 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11524 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
11525 GET_MODE_BITSIZE (GET_MODE (op0)))
11526 || (REG_P (XEXP (op0, 0))
11527 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11529 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11530 continue;
11533 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11534 fits in both M1 and M2 and the SUBREG is either paradoxical
11535 or represents the low part, permute the SUBREG and the AND
11536 and try again. */
11537 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11539 unsigned HOST_WIDE_INT c1;
11540 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11541 /* Require an integral mode, to avoid creating something like
11542 (AND:SF ...). */
11543 if (SCALAR_INT_MODE_P (tmode)
11544 /* It is unsafe to commute the AND into the SUBREG if the
11545 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11546 not defined. As originally written the upper bits
11547 have a defined value due to the AND operation.
11548 However, if we commute the AND inside the SUBREG then
11549 they no longer have defined values and the meaning of
11550 the code has been changed. */
11551 && (0
11552 #ifdef WORD_REGISTER_OPERATIONS
11553 || (mode_width > GET_MODE_BITSIZE (tmode)
11554 && mode_width <= BITS_PER_WORD)
11555 #endif
11556 || (mode_width <= GET_MODE_BITSIZE (tmode)
11557 && subreg_lowpart_p (XEXP (op0, 0))))
11558 && CONST_INT_P (XEXP (op0, 1))
11559 && mode_width <= HOST_BITS_PER_WIDE_INT
11560 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
11561 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11562 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11563 && c1 != mask
11564 && c1 != GET_MODE_MASK (tmode))
11566 op0 = simplify_gen_binary (AND, tmode,
11567 SUBREG_REG (XEXP (op0, 0)),
11568 gen_int_mode (c1, tmode));
11569 op0 = gen_lowpart (mode, op0);
11570 continue;
11574 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11575 if (const_op == 0 && equality_comparison_p
11576 && XEXP (op0, 1) == const1_rtx
11577 && GET_CODE (XEXP (op0, 0)) == NOT)
11579 op0 = simplify_and_const_int
11580 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
11581 code = (code == NE ? EQ : NE);
11582 continue;
11585 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11586 (eq (and (lshiftrt X) 1) 0).
11587 Also handle the case where (not X) is expressed using xor. */
11588 if (const_op == 0 && equality_comparison_p
11589 && XEXP (op0, 1) == const1_rtx
11590 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11592 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11593 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11595 if (GET_CODE (shift_op) == NOT
11596 || (GET_CODE (shift_op) == XOR
11597 && CONST_INT_P (XEXP (shift_op, 1))
11598 && CONST_INT_P (shift_count)
11599 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
11600 && (INTVAL (XEXP (shift_op, 1))
11601 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
11603 op0 = simplify_and_const_int
11604 (NULL_RTX, mode,
11605 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
11606 (HOST_WIDE_INT) 1);
11607 code = (code == NE ? EQ : NE);
11608 continue;
11611 break;
11613 case ASHIFT:
11614 /* If we have (compare (ashift FOO N) (const_int C)) and
11615 the high order N bits of FOO (N+1 if an inequality comparison)
11616 are known to be zero, we can do this by comparing FOO with C
11617 shifted right N bits so long as the low-order N bits of C are
11618 zero. */
11619 if (CONST_INT_P (XEXP (op0, 1))
11620 && INTVAL (XEXP (op0, 1)) >= 0
11621 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11622 < HOST_BITS_PER_WIDE_INT)
11623 && ((const_op
11624 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11625 && mode_width <= HOST_BITS_PER_WIDE_INT
11626 && (nonzero_bits (XEXP (op0, 0), mode)
11627 & ~(mask >> (INTVAL (XEXP (op0, 1))
11628 + ! equality_comparison_p))) == 0)
11630 /* We must perform a logical shift, not an arithmetic one,
11631 as we want the top N bits of C to be zero. */
11632 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11634 temp >>= INTVAL (XEXP (op0, 1));
11635 op1 = gen_int_mode (temp, mode);
11636 op0 = XEXP (op0, 0);
11637 continue;
11640 /* If we are doing a sign bit comparison, it means we are testing
11641 a particular bit. Convert it to the appropriate AND. */
11642 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11643 && mode_width <= HOST_BITS_PER_WIDE_INT)
11645 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11646 ((HOST_WIDE_INT) 1
11647 << (mode_width - 1
11648 - INTVAL (XEXP (op0, 1)))));
11649 code = (code == LT ? NE : EQ);
11650 continue;
11653 /* If this an equality comparison with zero and we are shifting
11654 the low bit to the sign bit, we can convert this to an AND of the
11655 low-order bit. */
11656 if (const_op == 0 && equality_comparison_p
11657 && CONST_INT_P (XEXP (op0, 1))
11658 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11659 == mode_width - 1)
11661 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11662 (HOST_WIDE_INT) 1);
11663 continue;
11665 break;
11667 case ASHIFTRT:
11668 /* If this is an equality comparison with zero, we can do this
11669 as a logical shift, which might be much simpler. */
11670 if (equality_comparison_p && const_op == 0
11671 && CONST_INT_P (XEXP (op0, 1)))
11673 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11674 XEXP (op0, 0),
11675 INTVAL (XEXP (op0, 1)));
11676 continue;
11679 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11680 do the comparison in a narrower mode. */
11681 if (! unsigned_comparison_p
11682 && CONST_INT_P (XEXP (op0, 1))
11683 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11684 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11685 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11686 MODE_INT, 1)) != BLKmode
11687 && (((unsigned HOST_WIDE_INT) const_op
11688 + (GET_MODE_MASK (tmode) >> 1) + 1)
11689 <= GET_MODE_MASK (tmode)))
11691 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11692 continue;
11695 /* Likewise if OP0 is a PLUS of a sign extension with a
11696 constant, which is usually represented with the PLUS
11697 between the shifts. */
11698 if (! unsigned_comparison_p
11699 && CONST_INT_P (XEXP (op0, 1))
11700 && GET_CODE (XEXP (op0, 0)) == PLUS
11701 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11702 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11703 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11704 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11705 MODE_INT, 1)) != BLKmode
11706 && (((unsigned HOST_WIDE_INT) const_op
11707 + (GET_MODE_MASK (tmode) >> 1) + 1)
11708 <= GET_MODE_MASK (tmode)))
11710 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11711 rtx add_const = XEXP (XEXP (op0, 0), 1);
11712 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11713 add_const, XEXP (op0, 1));
11715 op0 = simplify_gen_binary (PLUS, tmode,
11716 gen_lowpart (tmode, inner),
11717 new_const);
11718 continue;
11721 /* ... fall through ... */
11722 case LSHIFTRT:
11723 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11724 the low order N bits of FOO are known to be zero, we can do this
11725 by comparing FOO with C shifted left N bits so long as no
11726 overflow occurs. Even if the low order N bits of FOO aren't known
11727 to be zero, if the comparison is >= or < we can use the same
11728 optimization and for > or <= by setting all the low
11729 order N bits in the comparison constant. */
11730 if (CONST_INT_P (XEXP (op0, 1))
11731 && INTVAL (XEXP (op0, 1)) > 0
11732 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11733 && mode_width <= HOST_BITS_PER_WIDE_INT
11734 && (((unsigned HOST_WIDE_INT) const_op
11735 + (GET_CODE (op0) != LSHIFTRT
11736 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11737 + 1)
11738 : 0))
11739 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11741 unsigned HOST_WIDE_INT low_bits
11742 = (nonzero_bits (XEXP (op0, 0), mode)
11743 & (((unsigned HOST_WIDE_INT) 1
11744 << INTVAL (XEXP (op0, 1))) - 1));
11745 if (low_bits == 0 || !equality_comparison_p)
11747 /* If the shift was logical, then we must make the condition
11748 unsigned. */
11749 if (GET_CODE (op0) == LSHIFTRT)
11750 code = unsigned_condition (code);
11752 const_op <<= INTVAL (XEXP (op0, 1));
11753 if (low_bits != 0
11754 && (code == GT || code == GTU
11755 || code == LE || code == LEU))
11756 const_op
11757 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11758 op1 = GEN_INT (const_op);
11759 op0 = XEXP (op0, 0);
11760 continue;
11764 /* If we are using this shift to extract just the sign bit, we
11765 can replace this with an LT or GE comparison. */
11766 if (const_op == 0
11767 && (equality_comparison_p || sign_bit_comparison_p)
11768 && CONST_INT_P (XEXP (op0, 1))
11769 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11770 == mode_width - 1)
11772 op0 = XEXP (op0, 0);
11773 code = (code == NE || code == GT ? LT : GE);
11774 continue;
11776 break;
11778 default:
11779 break;
11782 break;
11785 /* Now make any compound operations involved in this comparison. Then,
11786 check for an outmost SUBREG on OP0 that is not doing anything or is
11787 paradoxical. The latter transformation must only be performed when
11788 it is known that the "extra" bits will be the same in op0 and op1 or
11789 that they don't matter. There are three cases to consider:
11791 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11792 care bits and we can assume they have any convenient value. So
11793 making the transformation is safe.
11795 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11796 In this case the upper bits of op0 are undefined. We should not make
11797 the simplification in that case as we do not know the contents of
11798 those bits.
11800 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11801 UNKNOWN. In that case we know those bits are zeros or ones. We must
11802 also be sure that they are the same as the upper bits of op1.
11804 We can never remove a SUBREG for a non-equality comparison because
11805 the sign bit is in a different place in the underlying object. */
11807 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11808 op1 = make_compound_operation (op1, SET);
11810 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11811 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11812 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11813 && (code == NE || code == EQ))
11815 if (GET_MODE_SIZE (GET_MODE (op0))
11816 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11818 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11819 implemented. */
11820 if (REG_P (SUBREG_REG (op0)))
11822 op0 = SUBREG_REG (op0);
11823 op1 = gen_lowpart (GET_MODE (op0), op1);
11826 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11827 <= HOST_BITS_PER_WIDE_INT)
11828 && (nonzero_bits (SUBREG_REG (op0),
11829 GET_MODE (SUBREG_REG (op0)))
11830 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11832 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11834 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11835 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11836 op0 = SUBREG_REG (op0), op1 = tem;
11840 /* We now do the opposite procedure: Some machines don't have compare
11841 insns in all modes. If OP0's mode is an integer mode smaller than a
11842 word and we can't do a compare in that mode, see if there is a larger
11843 mode for which we can do the compare. There are a number of cases in
11844 which we can use the wider mode. */
11846 mode = GET_MODE (op0);
11847 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11848 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11849 && ! have_insn_for (COMPARE, mode))
11850 for (tmode = GET_MODE_WIDER_MODE (mode);
11851 (tmode != VOIDmode
11852 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11853 tmode = GET_MODE_WIDER_MODE (tmode))
11854 if (have_insn_for (COMPARE, tmode))
11856 int zero_extended;
11858 /* If this is a test for negative, we can make an explicit
11859 test of the sign bit. Test this first so we can use
11860 a paradoxical subreg to extend OP0. */
11862 if (op1 == const0_rtx && (code == LT || code == GE)
11863 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11865 op0 = simplify_gen_binary (AND, tmode,
11866 gen_lowpart (tmode, op0),
11867 GEN_INT ((HOST_WIDE_INT) 1
11868 << (GET_MODE_BITSIZE (mode)
11869 - 1)));
11870 code = (code == LT) ? NE : EQ;
11871 break;
11874 /* If the only nonzero bits in OP0 and OP1 are those in the
11875 narrower mode and this is an equality or unsigned comparison,
11876 we can use the wider mode. Similarly for sign-extended
11877 values, in which case it is true for all comparisons. */
11878 zero_extended = ((code == EQ || code == NE
11879 || code == GEU || code == GTU
11880 || code == LEU || code == LTU)
11881 && (nonzero_bits (op0, tmode)
11882 & ~GET_MODE_MASK (mode)) == 0
11883 && ((CONST_INT_P (op1)
11884 || (nonzero_bits (op1, tmode)
11885 & ~GET_MODE_MASK (mode)) == 0)));
11887 if (zero_extended
11888 || ((num_sign_bit_copies (op0, tmode)
11889 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11890 - GET_MODE_BITSIZE (mode)))
11891 && (num_sign_bit_copies (op1, tmode)
11892 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11893 - GET_MODE_BITSIZE (mode)))))
11895 /* If OP0 is an AND and we don't have an AND in MODE either,
11896 make a new AND in the proper mode. */
11897 if (GET_CODE (op0) == AND
11898 && !have_insn_for (AND, mode))
11899 op0 = simplify_gen_binary (AND, tmode,
11900 gen_lowpart (tmode,
11901 XEXP (op0, 0)),
11902 gen_lowpart (tmode,
11903 XEXP (op0, 1)));
11904 else
11906 if (zero_extended)
11908 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
11909 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
11911 else
11913 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
11914 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
11916 break;
11921 #ifdef CANONICALIZE_COMPARISON
11922 /* If this machine only supports a subset of valid comparisons, see if we
11923 can convert an unsupported one into a supported one. */
11924 CANONICALIZE_COMPARISON (code, op0, op1);
11925 #endif
11927 *pop0 = op0;
11928 *pop1 = op1;
11930 return code;
11933 /* Utility function for record_value_for_reg. Count number of
11934 rtxs in X. */
11935 static int
11936 count_rtxs (rtx x)
11938 enum rtx_code code = GET_CODE (x);
11939 const char *fmt;
11940 int i, j, ret = 1;
11942 if (GET_RTX_CLASS (code) == '2'
11943 || GET_RTX_CLASS (code) == 'c')
11945 rtx x0 = XEXP (x, 0);
11946 rtx x1 = XEXP (x, 1);
11948 if (x0 == x1)
11949 return 1 + 2 * count_rtxs (x0);
11951 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11952 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11953 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11954 return 2 + 2 * count_rtxs (x0)
11955 + count_rtxs (x == XEXP (x1, 0)
11956 ? XEXP (x1, 1) : XEXP (x1, 0));
11958 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11959 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11960 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11961 return 2 + 2 * count_rtxs (x1)
11962 + count_rtxs (x == XEXP (x0, 0)
11963 ? XEXP (x0, 1) : XEXP (x0, 0));
11966 fmt = GET_RTX_FORMAT (code);
11967 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11968 if (fmt[i] == 'e')
11969 ret += count_rtxs (XEXP (x, i));
11970 else if (fmt[i] == 'E')
11971 for (j = 0; j < XVECLEN (x, i); j++)
11972 ret += count_rtxs (XVECEXP (x, i, j));
11974 return ret;
11977 /* Utility function for following routine. Called when X is part of a value
11978 being stored into last_set_value. Sets last_set_table_tick
11979 for each register mentioned. Similar to mention_regs in cse.c */
11981 static void
11982 update_table_tick (rtx x)
11984 enum rtx_code code = GET_CODE (x);
11985 const char *fmt = GET_RTX_FORMAT (code);
11986 int i, j;
11988 if (code == REG)
11990 unsigned int regno = REGNO (x);
11991 unsigned int endregno = END_REGNO (x);
11992 unsigned int r;
11994 for (r = regno; r < endregno; r++)
11996 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
11997 rsp->last_set_table_tick = label_tick;
12000 return;
12003 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12004 if (fmt[i] == 'e')
12006 /* Check for identical subexpressions. If x contains
12007 identical subexpression we only have to traverse one of
12008 them. */
12009 if (i == 0 && ARITHMETIC_P (x))
12011 /* Note that at this point x1 has already been
12012 processed. */
12013 rtx x0 = XEXP (x, 0);
12014 rtx x1 = XEXP (x, 1);
12016 /* If x0 and x1 are identical then there is no need to
12017 process x0. */
12018 if (x0 == x1)
12019 break;
12021 /* If x0 is identical to a subexpression of x1 then while
12022 processing x1, x0 has already been processed. Thus we
12023 are done with x. */
12024 if (ARITHMETIC_P (x1)
12025 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12026 break;
12028 /* If x1 is identical to a subexpression of x0 then we
12029 still have to process the rest of x0. */
12030 if (ARITHMETIC_P (x0)
12031 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12033 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12034 break;
12038 update_table_tick (XEXP (x, i));
12040 else if (fmt[i] == 'E')
12041 for (j = 0; j < XVECLEN (x, i); j++)
12042 update_table_tick (XVECEXP (x, i, j));
12045 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12046 are saying that the register is clobbered and we no longer know its
12047 value. If INSN is zero, don't update reg_stat[].last_set; this is
12048 only permitted with VALUE also zero and is used to invalidate the
12049 register. */
12051 static void
12052 record_value_for_reg (rtx reg, rtx insn, rtx value)
12054 unsigned int regno = REGNO (reg);
12055 unsigned int endregno = END_REGNO (reg);
12056 unsigned int i;
12057 reg_stat_type *rsp;
12059 /* If VALUE contains REG and we have a previous value for REG, substitute
12060 the previous value. */
12061 if (value && insn && reg_overlap_mentioned_p (reg, value))
12063 rtx tem;
12065 /* Set things up so get_last_value is allowed to see anything set up to
12066 our insn. */
12067 subst_low_luid = DF_INSN_LUID (insn);
12068 tem = get_last_value (reg);
12070 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12071 it isn't going to be useful and will take a lot of time to process,
12072 so just use the CLOBBER. */
12074 if (tem)
12076 if (ARITHMETIC_P (tem)
12077 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12078 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12079 tem = XEXP (tem, 0);
12080 else if (count_occurrences (value, reg, 1) >= 2)
12082 /* If there are two or more occurrences of REG in VALUE,
12083 prevent the value from growing too much. */
12084 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12085 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12088 value = replace_rtx (copy_rtx (value), reg, tem);
12092 /* For each register modified, show we don't know its value, that
12093 we don't know about its bitwise content, that its value has been
12094 updated, and that we don't know the location of the death of the
12095 register. */
12096 for (i = regno; i < endregno; i++)
12098 rsp = VEC_index (reg_stat_type, reg_stat, i);
12100 if (insn)
12101 rsp->last_set = insn;
12103 rsp->last_set_value = 0;
12104 rsp->last_set_mode = VOIDmode;
12105 rsp->last_set_nonzero_bits = 0;
12106 rsp->last_set_sign_bit_copies = 0;
12107 rsp->last_death = 0;
12108 rsp->truncated_to_mode = VOIDmode;
12111 /* Mark registers that are being referenced in this value. */
12112 if (value)
12113 update_table_tick (value);
12115 /* Now update the status of each register being set.
12116 If someone is using this register in this block, set this register
12117 to invalid since we will get confused between the two lives in this
12118 basic block. This makes using this register always invalid. In cse, we
12119 scan the table to invalidate all entries using this register, but this
12120 is too much work for us. */
12122 for (i = regno; i < endregno; i++)
12124 rsp = VEC_index (reg_stat_type, reg_stat, i);
12125 rsp->last_set_label = label_tick;
12126 if (!insn
12127 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12128 rsp->last_set_invalid = 1;
12129 else
12130 rsp->last_set_invalid = 0;
12133 /* The value being assigned might refer to X (like in "x++;"). In that
12134 case, we must replace it with (clobber (const_int 0)) to prevent
12135 infinite loops. */
12136 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12137 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12139 value = copy_rtx (value);
12140 if (!get_last_value_validate (&value, insn, label_tick, 1))
12141 value = 0;
12144 /* For the main register being modified, update the value, the mode, the
12145 nonzero bits, and the number of sign bit copies. */
12147 rsp->last_set_value = value;
12149 if (value)
12151 enum machine_mode mode = GET_MODE (reg);
12152 subst_low_luid = DF_INSN_LUID (insn);
12153 rsp->last_set_mode = mode;
12154 if (GET_MODE_CLASS (mode) == MODE_INT
12155 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
12156 mode = nonzero_bits_mode;
12157 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12158 rsp->last_set_sign_bit_copies
12159 = num_sign_bit_copies (value, GET_MODE (reg));
12163 /* Called via note_stores from record_dead_and_set_regs to handle one
12164 SET or CLOBBER in an insn. DATA is the instruction in which the
12165 set is occurring. */
12167 static void
12168 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12170 rtx record_dead_insn = (rtx) data;
12172 if (GET_CODE (dest) == SUBREG)
12173 dest = SUBREG_REG (dest);
12175 if (!record_dead_insn)
12177 if (REG_P (dest))
12178 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12179 return;
12182 if (REG_P (dest))
12184 /* If we are setting the whole register, we know its value. Otherwise
12185 show that we don't know the value. We can handle SUBREG in
12186 some cases. */
12187 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12188 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12189 else if (GET_CODE (setter) == SET
12190 && GET_CODE (SET_DEST (setter)) == SUBREG
12191 && SUBREG_REG (SET_DEST (setter)) == dest
12192 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
12193 && subreg_lowpart_p (SET_DEST (setter)))
12194 record_value_for_reg (dest, record_dead_insn,
12195 gen_lowpart (GET_MODE (dest),
12196 SET_SRC (setter)));
12197 else
12198 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12200 else if (MEM_P (dest)
12201 /* Ignore pushes, they clobber nothing. */
12202 && ! push_operand (dest, GET_MODE (dest)))
12203 mem_last_set = DF_INSN_LUID (record_dead_insn);
12206 /* Update the records of when each REG was most recently set or killed
12207 for the things done by INSN. This is the last thing done in processing
12208 INSN in the combiner loop.
12210 We update reg_stat[], in particular fields last_set, last_set_value,
12211 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12212 last_death, and also the similar information mem_last_set (which insn
12213 most recently modified memory) and last_call_luid (which insn was the
12214 most recent subroutine call). */
12216 static void
12217 record_dead_and_set_regs (rtx insn)
12219 rtx link;
12220 unsigned int i;
12222 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12224 if (REG_NOTE_KIND (link) == REG_DEAD
12225 && REG_P (XEXP (link, 0)))
12227 unsigned int regno = REGNO (XEXP (link, 0));
12228 unsigned int endregno = END_REGNO (XEXP (link, 0));
12230 for (i = regno; i < endregno; i++)
12232 reg_stat_type *rsp;
12234 rsp = VEC_index (reg_stat_type, reg_stat, i);
12235 rsp->last_death = insn;
12238 else if (REG_NOTE_KIND (link) == REG_INC)
12239 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12242 if (CALL_P (insn))
12244 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
12245 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
12247 reg_stat_type *rsp;
12249 rsp = VEC_index (reg_stat_type, reg_stat, i);
12250 rsp->last_set_invalid = 1;
12251 rsp->last_set = insn;
12252 rsp->last_set_value = 0;
12253 rsp->last_set_mode = VOIDmode;
12254 rsp->last_set_nonzero_bits = 0;
12255 rsp->last_set_sign_bit_copies = 0;
12256 rsp->last_death = 0;
12257 rsp->truncated_to_mode = VOIDmode;
12260 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12262 /* We can't combine into a call pattern. Remember, though, that
12263 the return value register is set at this LUID. We could
12264 still replace a register with the return value from the
12265 wrong subroutine call! */
12266 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12268 else
12269 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12272 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12273 register present in the SUBREG, so for each such SUBREG go back and
12274 adjust nonzero and sign bit information of the registers that are
12275 known to have some zero/sign bits set.
12277 This is needed because when combine blows the SUBREGs away, the
12278 information on zero/sign bits is lost and further combines can be
12279 missed because of that. */
12281 static void
12282 record_promoted_value (rtx insn, rtx subreg)
12284 rtx links, set;
12285 unsigned int regno = REGNO (SUBREG_REG (subreg));
12286 enum machine_mode mode = GET_MODE (subreg);
12288 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
12289 return;
12291 for (links = LOG_LINKS (insn); links;)
12293 reg_stat_type *rsp;
12295 insn = XEXP (links, 0);
12296 set = single_set (insn);
12298 if (! set || !REG_P (SET_DEST (set))
12299 || REGNO (SET_DEST (set)) != regno
12300 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12302 links = XEXP (links, 1);
12303 continue;
12306 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12307 if (rsp->last_set == insn)
12309 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12310 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12313 if (REG_P (SET_SRC (set)))
12315 regno = REGNO (SET_SRC (set));
12316 links = LOG_LINKS (insn);
12318 else
12319 break;
12323 /* Check if X, a register, is known to contain a value already
12324 truncated to MODE. In this case we can use a subreg to refer to
12325 the truncated value even though in the generic case we would need
12326 an explicit truncation. */
12328 static bool
12329 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12331 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12332 enum machine_mode truncated = rsp->truncated_to_mode;
12334 if (truncated == 0
12335 || rsp->truncation_label < label_tick_ebb_start)
12336 return false;
12337 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12338 return true;
12339 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
12340 GET_MODE_BITSIZE (truncated)))
12341 return true;
12342 return false;
12345 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12346 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12347 might be able to turn a truncate into a subreg using this information.
12348 Return -1 if traversing *P is complete or 0 otherwise. */
12350 static int
12351 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12353 rtx x = *p;
12354 enum machine_mode truncated_mode;
12355 reg_stat_type *rsp;
12357 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12359 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12360 truncated_mode = GET_MODE (x);
12362 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12363 return -1;
12365 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
12366 GET_MODE_BITSIZE (original_mode)))
12367 return -1;
12369 x = SUBREG_REG (x);
12371 /* ??? For hard-regs we now record everything. We might be able to
12372 optimize this using last_set_mode. */
12373 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12374 truncated_mode = GET_MODE (x);
12375 else
12376 return 0;
12378 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12379 if (rsp->truncated_to_mode == 0
12380 || rsp->truncation_label < label_tick_ebb_start
12381 || (GET_MODE_SIZE (truncated_mode)
12382 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12384 rsp->truncated_to_mode = truncated_mode;
12385 rsp->truncation_label = label_tick;
12388 return -1;
12391 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12392 the modes they are used in. This can help truning TRUNCATEs into
12393 SUBREGs. */
12395 static void
12396 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12398 for_each_rtx (x, record_truncated_value, NULL);
12401 /* Scan X for promoted SUBREGs. For each one found,
12402 note what it implies to the registers used in it. */
12404 static void
12405 check_promoted_subreg (rtx insn, rtx x)
12407 if (GET_CODE (x) == SUBREG
12408 && SUBREG_PROMOTED_VAR_P (x)
12409 && REG_P (SUBREG_REG (x)))
12410 record_promoted_value (insn, x);
12411 else
12413 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12414 int i, j;
12416 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12417 switch (format[i])
12419 case 'e':
12420 check_promoted_subreg (insn, XEXP (x, i));
12421 break;
12422 case 'V':
12423 case 'E':
12424 if (XVEC (x, i) != 0)
12425 for (j = 0; j < XVECLEN (x, i); j++)
12426 check_promoted_subreg (insn, XVECEXP (x, i, j));
12427 break;
12432 /* Verify that all the registers and memory references mentioned in *LOC are
12433 still valid. *LOC was part of a value set in INSN when label_tick was
12434 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12435 the invalid references with (clobber (const_int 0)) and return 1. This
12436 replacement is useful because we often can get useful information about
12437 the form of a value (e.g., if it was produced by a shift that always
12438 produces -1 or 0) even though we don't know exactly what registers it
12439 was produced from. */
12441 static int
12442 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12444 rtx x = *loc;
12445 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12446 int len = GET_RTX_LENGTH (GET_CODE (x));
12447 int i, j;
12449 if (REG_P (x))
12451 unsigned int regno = REGNO (x);
12452 unsigned int endregno = END_REGNO (x);
12453 unsigned int j;
12455 for (j = regno; j < endregno; j++)
12457 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12458 if (rsp->last_set_invalid
12459 /* If this is a pseudo-register that was only set once and not
12460 live at the beginning of the function, it is always valid. */
12461 || (! (regno >= FIRST_PSEUDO_REGISTER
12462 && REG_N_SETS (regno) == 1
12463 && (!REGNO_REG_SET_P
12464 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12465 && rsp->last_set_label > tick))
12467 if (replace)
12468 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12469 return replace;
12473 return 1;
12475 /* If this is a memory reference, make sure that there were no stores after
12476 it that might have clobbered the value. We don't have alias info, so we
12477 assume any store invalidates it. Moreover, we only have local UIDs, so
12478 we also assume that there were stores in the intervening basic blocks. */
12479 else if (MEM_P (x) && !MEM_READONLY_P (x)
12480 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12482 if (replace)
12483 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12484 return replace;
12487 for (i = 0; i < len; i++)
12489 if (fmt[i] == 'e')
12491 /* Check for identical subexpressions. If x contains
12492 identical subexpression we only have to traverse one of
12493 them. */
12494 if (i == 1 && ARITHMETIC_P (x))
12496 /* Note that at this point x0 has already been checked
12497 and found valid. */
12498 rtx x0 = XEXP (x, 0);
12499 rtx x1 = XEXP (x, 1);
12501 /* If x0 and x1 are identical then x is also valid. */
12502 if (x0 == x1)
12503 return 1;
12505 /* If x1 is identical to a subexpression of x0 then
12506 while checking x0, x1 has already been checked. Thus
12507 it is valid and so as x. */
12508 if (ARITHMETIC_P (x0)
12509 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12510 return 1;
12512 /* If x0 is identical to a subexpression of x1 then x is
12513 valid iff the rest of x1 is valid. */
12514 if (ARITHMETIC_P (x1)
12515 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12516 return
12517 get_last_value_validate (&XEXP (x1,
12518 x0 == XEXP (x1, 0) ? 1 : 0),
12519 insn, tick, replace);
12522 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12523 replace) == 0)
12524 return 0;
12526 else if (fmt[i] == 'E')
12527 for (j = 0; j < XVECLEN (x, i); j++)
12528 if (get_last_value_validate (&XVECEXP (x, i, j),
12529 insn, tick, replace) == 0)
12530 return 0;
12533 /* If we haven't found a reason for it to be invalid, it is valid. */
12534 return 1;
12537 /* Get the last value assigned to X, if known. Some registers
12538 in the value may be replaced with (clobber (const_int 0)) if their value
12539 is known longer known reliably. */
12541 static rtx
12542 get_last_value (const_rtx x)
12544 unsigned int regno;
12545 rtx value;
12546 reg_stat_type *rsp;
12548 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12549 then convert it to the desired mode. If this is a paradoxical SUBREG,
12550 we cannot predict what values the "extra" bits might have. */
12551 if (GET_CODE (x) == SUBREG
12552 && subreg_lowpart_p (x)
12553 && (GET_MODE_SIZE (GET_MODE (x))
12554 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
12555 && (value = get_last_value (SUBREG_REG (x))) != 0)
12556 return gen_lowpart (GET_MODE (x), value);
12558 if (!REG_P (x))
12559 return 0;
12561 regno = REGNO (x);
12562 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12563 value = rsp->last_set_value;
12565 /* If we don't have a value, or if it isn't for this basic block and
12566 it's either a hard register, set more than once, or it's a live
12567 at the beginning of the function, return 0.
12569 Because if it's not live at the beginning of the function then the reg
12570 is always set before being used (is never used without being set).
12571 And, if it's set only once, and it's always set before use, then all
12572 uses must have the same last value, even if it's not from this basic
12573 block. */
12575 if (value == 0
12576 || (rsp->last_set_label < label_tick_ebb_start
12577 && (regno < FIRST_PSEUDO_REGISTER
12578 || REG_N_SETS (regno) != 1
12579 || REGNO_REG_SET_P
12580 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12581 return 0;
12583 /* If the value was set in a later insn than the ones we are processing,
12584 we can't use it even if the register was only set once. */
12585 if (rsp->last_set_label == label_tick
12586 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12587 return 0;
12589 /* If the value has all its registers valid, return it. */
12590 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12591 return value;
12593 /* Otherwise, make a copy and replace any invalid register with
12594 (clobber (const_int 0)). If that fails for some reason, return 0. */
12596 value = copy_rtx (value);
12597 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12598 return value;
12600 return 0;
12603 /* Return nonzero if expression X refers to a REG or to memory
12604 that is set in an instruction more recent than FROM_LUID. */
12606 static int
12607 use_crosses_set_p (const_rtx x, int from_luid)
12609 const char *fmt;
12610 int i;
12611 enum rtx_code code = GET_CODE (x);
12613 if (code == REG)
12615 unsigned int regno = REGNO (x);
12616 unsigned endreg = END_REGNO (x);
12618 #ifdef PUSH_ROUNDING
12619 /* Don't allow uses of the stack pointer to be moved,
12620 because we don't know whether the move crosses a push insn. */
12621 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12622 return 1;
12623 #endif
12624 for (; regno < endreg; regno++)
12626 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12627 if (rsp->last_set
12628 && rsp->last_set_label == label_tick
12629 && DF_INSN_LUID (rsp->last_set) > from_luid)
12630 return 1;
12632 return 0;
12635 if (code == MEM && mem_last_set > from_luid)
12636 return 1;
12638 fmt = GET_RTX_FORMAT (code);
12640 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12642 if (fmt[i] == 'E')
12644 int j;
12645 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12646 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12647 return 1;
12649 else if (fmt[i] == 'e'
12650 && use_crosses_set_p (XEXP (x, i), from_luid))
12651 return 1;
12653 return 0;
12656 /* Define three variables used for communication between the following
12657 routines. */
12659 static unsigned int reg_dead_regno, reg_dead_endregno;
12660 static int reg_dead_flag;
12662 /* Function called via note_stores from reg_dead_at_p.
12664 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12665 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12667 static void
12668 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12670 unsigned int regno, endregno;
12672 if (!REG_P (dest))
12673 return;
12675 regno = REGNO (dest);
12676 endregno = END_REGNO (dest);
12677 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12678 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12681 /* Return nonzero if REG is known to be dead at INSN.
12683 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12684 referencing REG, it is dead. If we hit a SET referencing REG, it is
12685 live. Otherwise, see if it is live or dead at the start of the basic
12686 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12687 must be assumed to be always live. */
12689 static int
12690 reg_dead_at_p (rtx reg, rtx insn)
12692 basic_block block;
12693 unsigned int i;
12695 /* Set variables for reg_dead_at_p_1. */
12696 reg_dead_regno = REGNO (reg);
12697 reg_dead_endregno = END_REGNO (reg);
12699 reg_dead_flag = 0;
12701 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12702 we allow the machine description to decide whether use-and-clobber
12703 patterns are OK. */
12704 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12706 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12707 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12708 return 0;
12711 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12712 beginning of basic block. */
12713 block = BLOCK_FOR_INSN (insn);
12714 for (;;)
12716 if (INSN_P (insn))
12718 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12719 if (reg_dead_flag)
12720 return reg_dead_flag == 1 ? 1 : 0;
12722 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12723 return 1;
12726 if (insn == BB_HEAD (block))
12727 break;
12729 insn = PREV_INSN (insn);
12732 /* Look at live-in sets for the basic block that we were in. */
12733 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12734 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12735 return 0;
12737 return 1;
12740 /* Note hard registers in X that are used. */
12742 static void
12743 mark_used_regs_combine (rtx x)
12745 RTX_CODE code = GET_CODE (x);
12746 unsigned int regno;
12747 int i;
12749 switch (code)
12751 case LABEL_REF:
12752 case SYMBOL_REF:
12753 case CONST_INT:
12754 case CONST:
12755 case CONST_DOUBLE:
12756 case CONST_VECTOR:
12757 case PC:
12758 case ADDR_VEC:
12759 case ADDR_DIFF_VEC:
12760 case ASM_INPUT:
12761 #ifdef HAVE_cc0
12762 /* CC0 must die in the insn after it is set, so we don't need to take
12763 special note of it here. */
12764 case CC0:
12765 #endif
12766 return;
12768 case CLOBBER:
12769 /* If we are clobbering a MEM, mark any hard registers inside the
12770 address as used. */
12771 if (MEM_P (XEXP (x, 0)))
12772 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12773 return;
12775 case REG:
12776 regno = REGNO (x);
12777 /* A hard reg in a wide mode may really be multiple registers.
12778 If so, mark all of them just like the first. */
12779 if (regno < FIRST_PSEUDO_REGISTER)
12781 /* None of this applies to the stack, frame or arg pointers. */
12782 if (regno == STACK_POINTER_REGNUM
12783 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12784 || regno == HARD_FRAME_POINTER_REGNUM
12785 #endif
12786 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12787 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12788 #endif
12789 || regno == FRAME_POINTER_REGNUM)
12790 return;
12792 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12794 return;
12796 case SET:
12798 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12799 the address. */
12800 rtx testreg = SET_DEST (x);
12802 while (GET_CODE (testreg) == SUBREG
12803 || GET_CODE (testreg) == ZERO_EXTRACT
12804 || GET_CODE (testreg) == STRICT_LOW_PART)
12805 testreg = XEXP (testreg, 0);
12807 if (MEM_P (testreg))
12808 mark_used_regs_combine (XEXP (testreg, 0));
12810 mark_used_regs_combine (SET_SRC (x));
12812 return;
12814 default:
12815 break;
12818 /* Recursively scan the operands of this expression. */
12821 const char *fmt = GET_RTX_FORMAT (code);
12823 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12825 if (fmt[i] == 'e')
12826 mark_used_regs_combine (XEXP (x, i));
12827 else if (fmt[i] == 'E')
12829 int j;
12831 for (j = 0; j < XVECLEN (x, i); j++)
12832 mark_used_regs_combine (XVECEXP (x, i, j));
12838 /* Remove register number REGNO from the dead registers list of INSN.
12840 Return the note used to record the death, if there was one. */
12843 remove_death (unsigned int regno, rtx insn)
12845 rtx note = find_regno_note (insn, REG_DEAD, regno);
12847 if (note)
12848 remove_note (insn, note);
12850 return note;
12853 /* For each register (hardware or pseudo) used within expression X, if its
12854 death is in an instruction with luid between FROM_LUID (inclusive) and
12855 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12856 list headed by PNOTES.
12858 That said, don't move registers killed by maybe_kill_insn.
12860 This is done when X is being merged by combination into TO_INSN. These
12861 notes will then be distributed as needed. */
12863 static void
12864 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12865 rtx *pnotes)
12867 const char *fmt;
12868 int len, i;
12869 enum rtx_code code = GET_CODE (x);
12871 if (code == REG)
12873 unsigned int regno = REGNO (x);
12874 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12876 /* Don't move the register if it gets killed in between from and to. */
12877 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12878 && ! reg_referenced_p (x, maybe_kill_insn))
12879 return;
12881 if (where_dead
12882 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12883 && DF_INSN_LUID (where_dead) >= from_luid
12884 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12886 rtx note = remove_death (regno, where_dead);
12888 /* It is possible for the call above to return 0. This can occur
12889 when last_death points to I2 or I1 that we combined with.
12890 In that case make a new note.
12892 We must also check for the case where X is a hard register
12893 and NOTE is a death note for a range of hard registers
12894 including X. In that case, we must put REG_DEAD notes for
12895 the remaining registers in place of NOTE. */
12897 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12898 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12899 > GET_MODE_SIZE (GET_MODE (x))))
12901 unsigned int deadregno = REGNO (XEXP (note, 0));
12902 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12903 unsigned int ourend = END_HARD_REGNO (x);
12904 unsigned int i;
12906 for (i = deadregno; i < deadend; i++)
12907 if (i < regno || i >= ourend)
12908 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12911 /* If we didn't find any note, or if we found a REG_DEAD note that
12912 covers only part of the given reg, and we have a multi-reg hard
12913 register, then to be safe we must check for REG_DEAD notes
12914 for each register other than the first. They could have
12915 their own REG_DEAD notes lying around. */
12916 else if ((note == 0
12917 || (note != 0
12918 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12919 < GET_MODE_SIZE (GET_MODE (x)))))
12920 && regno < FIRST_PSEUDO_REGISTER
12921 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12923 unsigned int ourend = END_HARD_REGNO (x);
12924 unsigned int i, offset;
12925 rtx oldnotes = 0;
12927 if (note)
12928 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12929 else
12930 offset = 1;
12932 for (i = regno + offset; i < ourend; i++)
12933 move_deaths (regno_reg_rtx[i],
12934 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12937 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12939 XEXP (note, 1) = *pnotes;
12940 *pnotes = note;
12942 else
12943 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
12946 return;
12949 else if (GET_CODE (x) == SET)
12951 rtx dest = SET_DEST (x);
12953 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12955 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12956 that accesses one word of a multi-word item, some
12957 piece of everything register in the expression is used by
12958 this insn, so remove any old death. */
12959 /* ??? So why do we test for equality of the sizes? */
12961 if (GET_CODE (dest) == ZERO_EXTRACT
12962 || GET_CODE (dest) == STRICT_LOW_PART
12963 || (GET_CODE (dest) == SUBREG
12964 && (((GET_MODE_SIZE (GET_MODE (dest))
12965 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12966 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12967 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12969 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12970 return;
12973 /* If this is some other SUBREG, we know it replaces the entire
12974 value, so use that as the destination. */
12975 if (GET_CODE (dest) == SUBREG)
12976 dest = SUBREG_REG (dest);
12978 /* If this is a MEM, adjust deaths of anything used in the address.
12979 For a REG (the only other possibility), the entire value is
12980 being replaced so the old value is not used in this insn. */
12982 if (MEM_P (dest))
12983 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
12984 to_insn, pnotes);
12985 return;
12988 else if (GET_CODE (x) == CLOBBER)
12989 return;
12991 len = GET_RTX_LENGTH (code);
12992 fmt = GET_RTX_FORMAT (code);
12994 for (i = 0; i < len; i++)
12996 if (fmt[i] == 'E')
12998 int j;
12999 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13000 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13001 to_insn, pnotes);
13003 else if (fmt[i] == 'e')
13004 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13008 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13009 pattern of an insn. X must be a REG. */
13011 static int
13012 reg_bitfield_target_p (rtx x, rtx body)
13014 int i;
13016 if (GET_CODE (body) == SET)
13018 rtx dest = SET_DEST (body);
13019 rtx target;
13020 unsigned int regno, tregno, endregno, endtregno;
13022 if (GET_CODE (dest) == ZERO_EXTRACT)
13023 target = XEXP (dest, 0);
13024 else if (GET_CODE (dest) == STRICT_LOW_PART)
13025 target = SUBREG_REG (XEXP (dest, 0));
13026 else
13027 return 0;
13029 if (GET_CODE (target) == SUBREG)
13030 target = SUBREG_REG (target);
13032 if (!REG_P (target))
13033 return 0;
13035 tregno = REGNO (target), regno = REGNO (x);
13036 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13037 return target == x;
13039 endtregno = end_hard_regno (GET_MODE (target), tregno);
13040 endregno = end_hard_regno (GET_MODE (x), regno);
13042 return endregno > tregno && regno < endtregno;
13045 else if (GET_CODE (body) == PARALLEL)
13046 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13047 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13048 return 1;
13050 return 0;
13053 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13054 as appropriate. I3 and I2 are the insns resulting from the combination
13055 insns including FROM (I2 may be zero).
13057 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13058 not need REG_DEAD notes because they are being substituted for. This
13059 saves searching in the most common cases.
13061 Each note in the list is either ignored or placed on some insns, depending
13062 on the type of note. */
13064 static void
13065 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13066 rtx elim_i1, rtx elim_i0)
13068 rtx note, next_note;
13069 rtx tem;
13071 for (note = notes; note; note = next_note)
13073 rtx place = 0, place2 = 0;
13075 next_note = XEXP (note, 1);
13076 switch (REG_NOTE_KIND (note))
13078 case REG_BR_PROB:
13079 case REG_BR_PRED:
13080 /* Doesn't matter much where we put this, as long as it's somewhere.
13081 It is preferable to keep these notes on branches, which is most
13082 likely to be i3. */
13083 place = i3;
13084 break;
13086 case REG_VALUE_PROFILE:
13087 /* Just get rid of this note, as it is unused later anyway. */
13088 break;
13090 case REG_NON_LOCAL_GOTO:
13091 if (JUMP_P (i3))
13092 place = i3;
13093 else
13095 gcc_assert (i2 && JUMP_P (i2));
13096 place = i2;
13098 break;
13100 case REG_EH_REGION:
13101 /* These notes must remain with the call or trapping instruction. */
13102 if (CALL_P (i3))
13103 place = i3;
13104 else if (i2 && CALL_P (i2))
13105 place = i2;
13106 else
13108 gcc_assert (cfun->can_throw_non_call_exceptions);
13109 if (may_trap_p (i3))
13110 place = i3;
13111 else if (i2 && may_trap_p (i2))
13112 place = i2;
13113 /* ??? Otherwise assume we've combined things such that we
13114 can now prove that the instructions can't trap. Drop the
13115 note in this case. */
13117 break;
13119 case REG_NORETURN:
13120 case REG_SETJMP:
13121 /* These notes must remain with the call. It should not be
13122 possible for both I2 and I3 to be a call. */
13123 if (CALL_P (i3))
13124 place = i3;
13125 else
13127 gcc_assert (i2 && CALL_P (i2));
13128 place = i2;
13130 break;
13132 case REG_UNUSED:
13133 /* Any clobbers for i3 may still exist, and so we must process
13134 REG_UNUSED notes from that insn.
13136 Any clobbers from i2 or i1 can only exist if they were added by
13137 recog_for_combine. In that case, recog_for_combine created the
13138 necessary REG_UNUSED notes. Trying to keep any original
13139 REG_UNUSED notes from these insns can cause incorrect output
13140 if it is for the same register as the original i3 dest.
13141 In that case, we will notice that the register is set in i3,
13142 and then add a REG_UNUSED note for the destination of i3, which
13143 is wrong. However, it is possible to have REG_UNUSED notes from
13144 i2 or i1 for register which were both used and clobbered, so
13145 we keep notes from i2 or i1 if they will turn into REG_DEAD
13146 notes. */
13148 /* If this register is set or clobbered in I3, put the note there
13149 unless there is one already. */
13150 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13152 if (from_insn != i3)
13153 break;
13155 if (! (REG_P (XEXP (note, 0))
13156 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13157 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13158 place = i3;
13160 /* Otherwise, if this register is used by I3, then this register
13161 now dies here, so we must put a REG_DEAD note here unless there
13162 is one already. */
13163 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13164 && ! (REG_P (XEXP (note, 0))
13165 ? find_regno_note (i3, REG_DEAD,
13166 REGNO (XEXP (note, 0)))
13167 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13169 PUT_REG_NOTE_KIND (note, REG_DEAD);
13170 place = i3;
13172 break;
13174 case REG_EQUAL:
13175 case REG_EQUIV:
13176 case REG_NOALIAS:
13177 /* These notes say something about results of an insn. We can
13178 only support them if they used to be on I3 in which case they
13179 remain on I3. Otherwise they are ignored.
13181 If the note refers to an expression that is not a constant, we
13182 must also ignore the note since we cannot tell whether the
13183 equivalence is still true. It might be possible to do
13184 slightly better than this (we only have a problem if I2DEST
13185 or I1DEST is present in the expression), but it doesn't
13186 seem worth the trouble. */
13188 if (from_insn == i3
13189 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13190 place = i3;
13191 break;
13193 case REG_INC:
13194 /* These notes say something about how a register is used. They must
13195 be present on any use of the register in I2 or I3. */
13196 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13197 place = i3;
13199 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13201 if (place)
13202 place2 = i2;
13203 else
13204 place = i2;
13206 break;
13208 case REG_LABEL_TARGET:
13209 case REG_LABEL_OPERAND:
13210 /* This can show up in several ways -- either directly in the
13211 pattern, or hidden off in the constant pool with (or without?)
13212 a REG_EQUAL note. */
13213 /* ??? Ignore the without-reg_equal-note problem for now. */
13214 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13215 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13216 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13217 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13218 place = i3;
13220 if (i2
13221 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13222 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13223 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13224 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13226 if (place)
13227 place2 = i2;
13228 else
13229 place = i2;
13232 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13233 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13234 there. */
13235 if (place && JUMP_P (place)
13236 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13237 && (JUMP_LABEL (place) == NULL
13238 || JUMP_LABEL (place) == XEXP (note, 0)))
13240 rtx label = JUMP_LABEL (place);
13242 if (!label)
13243 JUMP_LABEL (place) = XEXP (note, 0);
13244 else if (LABEL_P (label))
13245 LABEL_NUSES (label)--;
13248 if (place2 && JUMP_P (place2)
13249 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13250 && (JUMP_LABEL (place2) == NULL
13251 || JUMP_LABEL (place2) == XEXP (note, 0)))
13253 rtx label = JUMP_LABEL (place2);
13255 if (!label)
13256 JUMP_LABEL (place2) = XEXP (note, 0);
13257 else if (LABEL_P (label))
13258 LABEL_NUSES (label)--;
13259 place2 = 0;
13261 break;
13263 case REG_NONNEG:
13264 /* This note says something about the value of a register prior
13265 to the execution of an insn. It is too much trouble to see
13266 if the note is still correct in all situations. It is better
13267 to simply delete it. */
13268 break;
13270 case REG_DEAD:
13271 /* If we replaced the right hand side of FROM_INSN with a
13272 REG_EQUAL note, the original use of the dying register
13273 will not have been combined into I3 and I2. In such cases,
13274 FROM_INSN is guaranteed to be the first of the combined
13275 instructions, so we simply need to search back before
13276 FROM_INSN for the previous use or set of this register,
13277 then alter the notes there appropriately.
13279 If the register is used as an input in I3, it dies there.
13280 Similarly for I2, if it is nonzero and adjacent to I3.
13282 If the register is not used as an input in either I3 or I2
13283 and it is not one of the registers we were supposed to eliminate,
13284 there are two possibilities. We might have a non-adjacent I2
13285 or we might have somehow eliminated an additional register
13286 from a computation. For example, we might have had A & B where
13287 we discover that B will always be zero. In this case we will
13288 eliminate the reference to A.
13290 In both cases, we must search to see if we can find a previous
13291 use of A and put the death note there. */
13293 if (from_insn
13294 && from_insn == i2mod
13295 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13296 tem = from_insn;
13297 else
13299 if (from_insn
13300 && CALL_P (from_insn)
13301 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13302 place = from_insn;
13303 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13304 place = i3;
13305 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13306 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13307 place = i2;
13308 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13309 && !(i2mod
13310 && reg_overlap_mentioned_p (XEXP (note, 0),
13311 i2mod_old_rhs)))
13312 || rtx_equal_p (XEXP (note, 0), elim_i1)
13313 || rtx_equal_p (XEXP (note, 0), elim_i0))
13314 break;
13315 tem = i3;
13318 if (place == 0)
13320 basic_block bb = this_basic_block;
13322 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13324 if (!NONDEBUG_INSN_P (tem))
13326 if (tem == BB_HEAD (bb))
13327 break;
13328 continue;
13331 /* If the register is being set at TEM, see if that is all
13332 TEM is doing. If so, delete TEM. Otherwise, make this
13333 into a REG_UNUSED note instead. Don't delete sets to
13334 global register vars. */
13335 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13336 || !global_regs[REGNO (XEXP (note, 0))])
13337 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13339 rtx set = single_set (tem);
13340 rtx inner_dest = 0;
13341 #ifdef HAVE_cc0
13342 rtx cc0_setter = NULL_RTX;
13343 #endif
13345 if (set != 0)
13346 for (inner_dest = SET_DEST (set);
13347 (GET_CODE (inner_dest) == STRICT_LOW_PART
13348 || GET_CODE (inner_dest) == SUBREG
13349 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13350 inner_dest = XEXP (inner_dest, 0))
13353 /* Verify that it was the set, and not a clobber that
13354 modified the register.
13356 CC0 targets must be careful to maintain setter/user
13357 pairs. If we cannot delete the setter due to side
13358 effects, mark the user with an UNUSED note instead
13359 of deleting it. */
13361 if (set != 0 && ! side_effects_p (SET_SRC (set))
13362 && rtx_equal_p (XEXP (note, 0), inner_dest)
13363 #ifdef HAVE_cc0
13364 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13365 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13366 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13367 #endif
13370 /* Move the notes and links of TEM elsewhere.
13371 This might delete other dead insns recursively.
13372 First set the pattern to something that won't use
13373 any register. */
13374 rtx old_notes = REG_NOTES (tem);
13376 PATTERN (tem) = pc_rtx;
13377 REG_NOTES (tem) = NULL;
13379 distribute_notes (old_notes, tem, tem, NULL_RTX,
13380 NULL_RTX, NULL_RTX, NULL_RTX);
13381 distribute_links (LOG_LINKS (tem));
13383 SET_INSN_DELETED (tem);
13384 if (tem == i2)
13385 i2 = NULL_RTX;
13387 #ifdef HAVE_cc0
13388 /* Delete the setter too. */
13389 if (cc0_setter)
13391 PATTERN (cc0_setter) = pc_rtx;
13392 old_notes = REG_NOTES (cc0_setter);
13393 REG_NOTES (cc0_setter) = NULL;
13395 distribute_notes (old_notes, cc0_setter,
13396 cc0_setter, NULL_RTX,
13397 NULL_RTX, NULL_RTX, NULL_RTX);
13398 distribute_links (LOG_LINKS (cc0_setter));
13400 SET_INSN_DELETED (cc0_setter);
13401 if (cc0_setter == i2)
13402 i2 = NULL_RTX;
13404 #endif
13406 else
13408 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13410 /* If there isn't already a REG_UNUSED note, put one
13411 here. Do not place a REG_DEAD note, even if
13412 the register is also used here; that would not
13413 match the algorithm used in lifetime analysis
13414 and can cause the consistency check in the
13415 scheduler to fail. */
13416 if (! find_regno_note (tem, REG_UNUSED,
13417 REGNO (XEXP (note, 0))))
13418 place = tem;
13419 break;
13422 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13423 || (CALL_P (tem)
13424 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13426 place = tem;
13428 /* If we are doing a 3->2 combination, and we have a
13429 register which formerly died in i3 and was not used
13430 by i2, which now no longer dies in i3 and is used in
13431 i2 but does not die in i2, and place is between i2
13432 and i3, then we may need to move a link from place to
13433 i2. */
13434 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13435 && from_insn
13436 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13437 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13439 rtx links = LOG_LINKS (place);
13440 LOG_LINKS (place) = 0;
13441 distribute_links (links);
13443 break;
13446 if (tem == BB_HEAD (bb))
13447 break;
13452 /* If the register is set or already dead at PLACE, we needn't do
13453 anything with this note if it is still a REG_DEAD note.
13454 We check here if it is set at all, not if is it totally replaced,
13455 which is what `dead_or_set_p' checks, so also check for it being
13456 set partially. */
13458 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13460 unsigned int regno = REGNO (XEXP (note, 0));
13461 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13463 if (dead_or_set_p (place, XEXP (note, 0))
13464 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13466 /* Unless the register previously died in PLACE, clear
13467 last_death. [I no longer understand why this is
13468 being done.] */
13469 if (rsp->last_death != place)
13470 rsp->last_death = 0;
13471 place = 0;
13473 else
13474 rsp->last_death = place;
13476 /* If this is a death note for a hard reg that is occupying
13477 multiple registers, ensure that we are still using all
13478 parts of the object. If we find a piece of the object
13479 that is unused, we must arrange for an appropriate REG_DEAD
13480 note to be added for it. However, we can't just emit a USE
13481 and tag the note to it, since the register might actually
13482 be dead; so we recourse, and the recursive call then finds
13483 the previous insn that used this register. */
13485 if (place && regno < FIRST_PSEUDO_REGISTER
13486 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13488 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13489 int all_used = 1;
13490 unsigned int i;
13492 for (i = regno; i < endregno; i++)
13493 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13494 && ! find_regno_fusage (place, USE, i))
13495 || dead_or_set_regno_p (place, i))
13496 all_used = 0;
13498 if (! all_used)
13500 /* Put only REG_DEAD notes for pieces that are
13501 not already dead or set. */
13503 for (i = regno; i < endregno;
13504 i += hard_regno_nregs[i][reg_raw_mode[i]])
13506 rtx piece = regno_reg_rtx[i];
13507 basic_block bb = this_basic_block;
13509 if (! dead_or_set_p (place, piece)
13510 && ! reg_bitfield_target_p (piece,
13511 PATTERN (place)))
13513 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13514 NULL_RTX);
13516 distribute_notes (new_note, place, place,
13517 NULL_RTX, NULL_RTX, NULL_RTX,
13518 NULL_RTX);
13520 else if (! refers_to_regno_p (i, i + 1,
13521 PATTERN (place), 0)
13522 && ! find_regno_fusage (place, USE, i))
13523 for (tem = PREV_INSN (place); ;
13524 tem = PREV_INSN (tem))
13526 if (!NONDEBUG_INSN_P (tem))
13528 if (tem == BB_HEAD (bb))
13529 break;
13530 continue;
13532 if (dead_or_set_p (tem, piece)
13533 || reg_bitfield_target_p (piece,
13534 PATTERN (tem)))
13536 add_reg_note (tem, REG_UNUSED, piece);
13537 break;
13543 place = 0;
13547 break;
13549 default:
13550 /* Any other notes should not be present at this point in the
13551 compilation. */
13552 gcc_unreachable ();
13555 if (place)
13557 XEXP (note, 1) = REG_NOTES (place);
13558 REG_NOTES (place) = note;
13561 if (place2)
13562 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13566 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13567 I3, I2, and I1 to new locations. This is also called to add a link
13568 pointing at I3 when I3's destination is changed. */
13570 static void
13571 distribute_links (rtx links)
13573 rtx link, next_link;
13575 for (link = links; link; link = next_link)
13577 rtx place = 0;
13578 rtx insn;
13579 rtx set, reg;
13581 next_link = XEXP (link, 1);
13583 /* If the insn that this link points to is a NOTE or isn't a single
13584 set, ignore it. In the latter case, it isn't clear what we
13585 can do other than ignore the link, since we can't tell which
13586 register it was for. Such links wouldn't be used by combine
13587 anyway.
13589 It is not possible for the destination of the target of the link to
13590 have been changed by combine. The only potential of this is if we
13591 replace I3, I2, and I1 by I3 and I2. But in that case the
13592 destination of I2 also remains unchanged. */
13594 if (NOTE_P (XEXP (link, 0))
13595 || (set = single_set (XEXP (link, 0))) == 0)
13596 continue;
13598 reg = SET_DEST (set);
13599 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13600 || GET_CODE (reg) == STRICT_LOW_PART)
13601 reg = XEXP (reg, 0);
13603 /* A LOG_LINK is defined as being placed on the first insn that uses
13604 a register and points to the insn that sets the register. Start
13605 searching at the next insn after the target of the link and stop
13606 when we reach a set of the register or the end of the basic block.
13608 Note that this correctly handles the link that used to point from
13609 I3 to I2. Also note that not much searching is typically done here
13610 since most links don't point very far away. */
13612 for (insn = NEXT_INSN (XEXP (link, 0));
13613 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13614 || BB_HEAD (this_basic_block->next_bb) != insn));
13615 insn = NEXT_INSN (insn))
13616 if (DEBUG_INSN_P (insn))
13617 continue;
13618 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13620 if (reg_referenced_p (reg, PATTERN (insn)))
13621 place = insn;
13622 break;
13624 else if (CALL_P (insn)
13625 && find_reg_fusage (insn, USE, reg))
13627 place = insn;
13628 break;
13630 else if (INSN_P (insn) && reg_set_p (reg, insn))
13631 break;
13633 /* If we found a place to put the link, place it there unless there
13634 is already a link to the same insn as LINK at that point. */
13636 if (place)
13638 rtx link2;
13640 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
13641 if (XEXP (link2, 0) == XEXP (link, 0))
13642 break;
13644 if (link2 == 0)
13646 XEXP (link, 1) = LOG_LINKS (place);
13647 LOG_LINKS (place) = link;
13649 /* Set added_links_insn to the earliest insn we added a
13650 link to. */
13651 if (added_links_insn == 0
13652 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13653 added_links_insn = place;
13659 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13660 Check whether the expression pointer to by LOC is a register or
13661 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13662 Otherwise return zero. */
13664 static int
13665 unmentioned_reg_p_1 (rtx *loc, void *expr)
13667 rtx x = *loc;
13669 if (x != NULL_RTX
13670 && (REG_P (x) || MEM_P (x))
13671 && ! reg_mentioned_p (x, (rtx) expr))
13672 return 1;
13673 return 0;
13676 /* Check for any register or memory mentioned in EQUIV that is not
13677 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13678 of EXPR where some registers may have been replaced by constants. */
13680 static bool
13681 unmentioned_reg_p (rtx equiv, rtx expr)
13683 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13686 void
13687 dump_combine_stats (FILE *file)
13689 fprintf
13690 (file,
13691 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13692 combine_attempts, combine_merges, combine_extras, combine_successes);
13695 void
13696 dump_combine_total_stats (FILE *file)
13698 fprintf
13699 (file,
13700 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13701 total_attempts, total_merges, total_extras, total_successes);
13704 static bool
13705 gate_handle_combine (void)
13707 return (optimize > 0);
13710 /* Try combining insns through substitution. */
13711 static unsigned int
13712 rest_of_handle_combine (void)
13714 int rebuild_jump_labels_after_combine;
13716 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13717 df_note_add_problem ();
13718 df_analyze ();
13720 regstat_init_n_sets_and_refs ();
13722 rebuild_jump_labels_after_combine
13723 = combine_instructions (get_insns (), max_reg_num ());
13725 /* Combining insns may have turned an indirect jump into a
13726 direct jump. Rebuild the JUMP_LABEL fields of jumping
13727 instructions. */
13728 if (rebuild_jump_labels_after_combine)
13730 timevar_push (TV_JUMP);
13731 rebuild_jump_labels (get_insns ());
13732 cleanup_cfg (0);
13733 timevar_pop (TV_JUMP);
13736 regstat_free_n_sets_and_refs ();
13737 return 0;
13740 struct rtl_opt_pass pass_combine =
13743 RTL_PASS,
13744 "combine", /* name */
13745 gate_handle_combine, /* gate */
13746 rest_of_handle_combine, /* execute */
13747 NULL, /* sub */
13748 NULL, /* next */
13749 0, /* static_pass_number */
13750 TV_COMBINE, /* tv_id */
13751 PROP_cfglayout, /* properties_required */
13752 0, /* properties_provided */
13753 0, /* properties_destroyed */
13754 0, /* todo_flags_start */
13755 TODO_dump_func |
13756 TODO_df_finish | TODO_verify_rtl_sharing |
13757 TODO_ggc_collect, /* todo_flags_finish */