pr70100.c: Add -mvsx.
[official-gcc.git] / gcc / sel-sched-ir.c
blob8a1d41473b9caf287f4a9eda03171e6c7b7bdb1f
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "cfgrtl.h"
31 #include "cfganal.h"
32 #include "cfgbuild.h"
33 #include "insn-config.h"
34 #include "insn-attr.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "sched-int.h"
39 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
41 #ifdef INSN_SCHEDULING
42 #include "regset.h"
43 #include "cfgloop.h"
44 #include "sel-sched-ir.h"
45 /* We don't have to use it except for sel_print_insn. */
46 #include "sel-sched-dump.h"
48 /* A vector holding bb info for whole scheduling pass. */
49 vec<sel_global_bb_info_def> sel_global_bb_info;
51 /* A vector holding bb info. */
52 vec<sel_region_bb_info_def> sel_region_bb_info;
54 /* A pool for allocating all lists. */
55 object_allocator<_list_node> sched_lists_pool ("sel-sched-lists");
57 /* This contains information about successors for compute_av_set. */
58 struct succs_info current_succs;
60 /* Data structure to describe interaction with the generic scheduler utils. */
61 static struct common_sched_info_def sel_common_sched_info;
63 /* The loop nest being pipelined. */
64 class loop *current_loop_nest;
66 /* LOOP_NESTS is a vector containing the corresponding loop nest for
67 each region. */
68 static vec<loop_p> loop_nests;
70 /* Saves blocks already in loop regions, indexed by bb->index. */
71 static sbitmap bbs_in_loop_rgns = NULL;
73 /* CFG hooks that are saved before changing create_basic_block hook. */
74 static struct cfg_hooks orig_cfg_hooks;
77 /* Array containing reverse topological index of function basic blocks,
78 indexed by BB->INDEX. */
79 static int *rev_top_order_index = NULL;
81 /* Length of the above array. */
82 static int rev_top_order_index_len = -1;
84 /* A regset pool structure. */
85 static struct
87 /* The stack to which regsets are returned. */
88 regset *v;
90 /* Its pointer. */
91 int n;
93 /* Its size. */
94 int s;
96 /* In VV we save all generated regsets so that, when destructing the
97 pool, we can compare it with V and check that every regset was returned
98 back to pool. */
99 regset *vv;
101 /* The pointer of VV stack. */
102 int nn;
104 /* Its size. */
105 int ss;
107 /* The difference between allocated and returned regsets. */
108 int diff;
109 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
111 /* This represents the nop pool. */
112 static struct
114 /* The vector which holds previously emitted nops. */
115 insn_t *v;
117 /* Its pointer. */
118 int n;
120 /* Its size. */
121 int s;
122 } nop_pool = { NULL, 0, 0 };
124 /* The pool for basic block notes. */
125 static vec<rtx_note *> bb_note_pool;
127 /* A NOP pattern used to emit placeholder insns. */
128 rtx nop_pattern = NULL_RTX;
129 /* A special instruction that resides in EXIT_BLOCK.
130 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
131 rtx_insn *exit_insn = NULL;
133 /* TRUE if while scheduling current region, which is loop, its preheader
134 was removed. */
135 bool preheader_removed = false;
138 /* Forward static declarations. */
139 static void fence_clear (fence_t);
141 static void deps_init_id (idata_t, insn_t, bool);
142 static void init_id_from_df (idata_t, insn_t, bool);
143 static expr_t set_insn_init (expr_t, vinsn_t, int);
145 static void cfg_preds (basic_block, insn_t **, int *);
146 static void prepare_insn_expr (insn_t, int);
147 static void free_history_vect (vec<expr_history_def> &);
149 static void move_bb_info (basic_block, basic_block);
150 static void remove_empty_bb (basic_block, bool);
151 static void sel_merge_blocks (basic_block, basic_block);
152 static void sel_remove_loop_preheader (void);
153 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
155 static bool insn_is_the_only_one_in_bb_p (insn_t);
156 static void create_initial_data_sets (basic_block);
158 static void free_av_set (basic_block);
159 static void invalidate_av_set (basic_block);
160 static void extend_insn_data (void);
161 static void sel_init_new_insn (insn_t, int, int = -1);
162 static void finish_insns (void);
164 /* Various list functions. */
166 /* Copy an instruction list L. */
167 ilist_t
168 ilist_copy (ilist_t l)
170 ilist_t head = NULL, *tailp = &head;
172 while (l)
174 ilist_add (tailp, ILIST_INSN (l));
175 tailp = &ILIST_NEXT (*tailp);
176 l = ILIST_NEXT (l);
179 return head;
182 /* Invert an instruction list L. */
183 ilist_t
184 ilist_invert (ilist_t l)
186 ilist_t res = NULL;
188 while (l)
190 ilist_add (&res, ILIST_INSN (l));
191 l = ILIST_NEXT (l);
194 return res;
197 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
198 void
199 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
201 bnd_t bnd;
203 _list_add (lp);
204 bnd = BLIST_BND (*lp);
206 BND_TO (bnd) = to;
207 BND_PTR (bnd) = ptr;
208 BND_AV (bnd) = NULL;
209 BND_AV1 (bnd) = NULL;
210 BND_DC (bnd) = dc;
213 /* Remove the list note pointed to by LP. */
214 void
215 blist_remove (blist_t *lp)
217 bnd_t b = BLIST_BND (*lp);
219 av_set_clear (&BND_AV (b));
220 av_set_clear (&BND_AV1 (b));
221 ilist_clear (&BND_PTR (b));
223 _list_remove (lp);
226 /* Init a fence tail L. */
227 void
228 flist_tail_init (flist_tail_t l)
230 FLIST_TAIL_HEAD (l) = NULL;
231 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
234 /* Try to find fence corresponding to INSN in L. */
235 fence_t
236 flist_lookup (flist_t l, insn_t insn)
238 while (l)
240 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
241 return FLIST_FENCE (l);
243 l = FLIST_NEXT (l);
246 return NULL;
249 /* Init the fields of F before running fill_insns. */
250 static void
251 init_fence_for_scheduling (fence_t f)
253 FENCE_BNDS (f) = NULL;
254 FENCE_PROCESSED_P (f) = false;
255 FENCE_SCHEDULED_P (f) = false;
258 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
259 static void
260 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
261 insn_t last_scheduled_insn, vec<rtx_insn *, va_gc> *executing_insns,
262 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
263 int cycle, int cycle_issued_insns, int issue_more,
264 bool starts_cycle_p, bool after_stall_p)
266 fence_t f;
268 _list_add (lp);
269 f = FLIST_FENCE (*lp);
271 FENCE_INSN (f) = insn;
273 gcc_assert (state != NULL);
274 FENCE_STATE (f) = state;
276 FENCE_CYCLE (f) = cycle;
277 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
278 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
279 FENCE_AFTER_STALL_P (f) = after_stall_p;
281 gcc_assert (dc != NULL);
282 FENCE_DC (f) = dc;
284 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
285 FENCE_TC (f) = tc;
287 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
288 FENCE_ISSUE_MORE (f) = issue_more;
289 FENCE_EXECUTING_INSNS (f) = executing_insns;
290 FENCE_READY_TICKS (f) = ready_ticks;
291 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
292 FENCE_SCHED_NEXT (f) = sched_next;
294 init_fence_for_scheduling (f);
297 /* Remove the head node of the list pointed to by LP. */
298 static void
299 flist_remove (flist_t *lp)
301 if (FENCE_INSN (FLIST_FENCE (*lp)))
302 fence_clear (FLIST_FENCE (*lp));
303 _list_remove (lp);
306 /* Clear the fence list pointed to by LP. */
307 void
308 flist_clear (flist_t *lp)
310 while (*lp)
311 flist_remove (lp);
314 /* Add ORIGINAL_INSN the def list DL honoring CROSSED_CALL_ABIS. */
315 void
316 def_list_add (def_list_t *dl, insn_t original_insn,
317 unsigned int crossed_call_abis)
319 def_t d;
321 _list_add (dl);
322 d = DEF_LIST_DEF (*dl);
324 d->orig_insn = original_insn;
325 d->crossed_call_abis = crossed_call_abis;
329 /* Functions to work with target contexts. */
331 /* Bulk target context. It is convenient for debugging purposes to ensure
332 that there are no uninitialized (null) target contexts. */
333 static tc_t bulk_tc = (tc_t) 1;
335 /* Target hooks wrappers. In the future we can provide some default
336 implementations for them. */
338 /* Allocate a store for the target context. */
339 static tc_t
340 alloc_target_context (void)
342 return (targetm.sched.alloc_sched_context
343 ? targetm.sched.alloc_sched_context () : bulk_tc);
346 /* Init target context TC.
347 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
348 Overwise, copy current backend context to TC. */
349 static void
350 init_target_context (tc_t tc, bool clean_p)
352 if (targetm.sched.init_sched_context)
353 targetm.sched.init_sched_context (tc, clean_p);
356 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
357 int init_target_context (). */
358 tc_t
359 create_target_context (bool clean_p)
361 tc_t tc = alloc_target_context ();
363 init_target_context (tc, clean_p);
364 return tc;
367 /* Copy TC to the current backend context. */
368 void
369 set_target_context (tc_t tc)
371 if (targetm.sched.set_sched_context)
372 targetm.sched.set_sched_context (tc);
375 /* TC is about to be destroyed. Free any internal data. */
376 static void
377 clear_target_context (tc_t tc)
379 if (targetm.sched.clear_sched_context)
380 targetm.sched.clear_sched_context (tc);
383 /* Clear and free it. */
384 static void
385 delete_target_context (tc_t tc)
387 clear_target_context (tc);
389 if (targetm.sched.free_sched_context)
390 targetm.sched.free_sched_context (tc);
393 /* Make a copy of FROM in TO.
394 NB: May be this should be a hook. */
395 static void
396 copy_target_context (tc_t to, tc_t from)
398 tc_t tmp = create_target_context (false);
400 set_target_context (from);
401 init_target_context (to, false);
403 set_target_context (tmp);
404 delete_target_context (tmp);
407 /* Create a copy of TC. */
408 static tc_t
409 create_copy_of_target_context (tc_t tc)
411 tc_t copy = alloc_target_context ();
413 copy_target_context (copy, tc);
415 return copy;
418 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
419 is the same as in init_target_context (). */
420 void
421 reset_target_context (tc_t tc, bool clean_p)
423 clear_target_context (tc);
424 init_target_context (tc, clean_p);
427 /* Functions to work with dependence contexts.
428 Dc (aka deps context, aka deps_t, aka class deps_desc *) is short for dependence
429 context. It accumulates information about processed insns to decide if
430 current insn is dependent on the processed ones. */
432 /* Make a copy of FROM in TO. */
433 static void
434 copy_deps_context (deps_t to, deps_t from)
436 init_deps (to, false);
437 deps_join (to, from);
440 /* Allocate store for dep context. */
441 static deps_t
442 alloc_deps_context (void)
444 return XNEW (class deps_desc);
447 /* Allocate and initialize dep context. */
448 static deps_t
449 create_deps_context (void)
451 deps_t dc = alloc_deps_context ();
453 init_deps (dc, false);
454 return dc;
457 /* Create a copy of FROM. */
458 static deps_t
459 create_copy_of_deps_context (deps_t from)
461 deps_t to = alloc_deps_context ();
463 copy_deps_context (to, from);
464 return to;
467 /* Clean up internal data of DC. */
468 static void
469 clear_deps_context (deps_t dc)
471 free_deps (dc);
474 /* Clear and free DC. */
475 static void
476 delete_deps_context (deps_t dc)
478 clear_deps_context (dc);
479 free (dc);
482 /* Clear and init DC. */
483 static void
484 reset_deps_context (deps_t dc)
486 clear_deps_context (dc);
487 init_deps (dc, false);
490 /* This structure describes the dependence analysis hooks for advancing
491 dependence context. */
492 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
494 NULL,
496 NULL, /* start_insn */
497 NULL, /* finish_insn */
498 NULL, /* start_lhs */
499 NULL, /* finish_lhs */
500 NULL, /* start_rhs */
501 NULL, /* finish_rhs */
502 haifa_note_reg_set,
503 haifa_note_reg_clobber,
504 haifa_note_reg_use,
505 NULL, /* note_mem_dep */
506 NULL, /* note_dep */
508 0, 0, 0
511 /* Process INSN and add its impact on DC. */
512 void
513 advance_deps_context (deps_t dc, insn_t insn)
515 sched_deps_info = &advance_deps_context_sched_deps_info;
516 deps_analyze_insn (dc, insn);
520 /* Functions to work with DFA states. */
522 /* Allocate store for a DFA state. */
523 static state_t
524 state_alloc (void)
526 return xmalloc (dfa_state_size);
529 /* Allocate and initialize DFA state. */
530 static state_t
531 state_create (void)
533 state_t state = state_alloc ();
535 state_reset (state);
536 advance_state (state);
537 return state;
540 /* Free DFA state. */
541 static void
542 state_free (state_t state)
544 free (state);
547 /* Make a copy of FROM in TO. */
548 static void
549 state_copy (state_t to, state_t from)
551 memcpy (to, from, dfa_state_size);
554 /* Create a copy of FROM. */
555 static state_t
556 state_create_copy (state_t from)
558 state_t to = state_alloc ();
560 state_copy (to, from);
561 return to;
565 /* Functions to work with fences. */
567 /* Clear the fence. */
568 static void
569 fence_clear (fence_t f)
571 state_t s = FENCE_STATE (f);
572 deps_t dc = FENCE_DC (f);
573 void *tc = FENCE_TC (f);
575 ilist_clear (&FENCE_BNDS (f));
577 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
578 || (s == NULL && dc == NULL && tc == NULL));
580 free (s);
582 if (dc != NULL)
583 delete_deps_context (dc);
585 if (tc != NULL)
586 delete_target_context (tc);
587 vec_free (FENCE_EXECUTING_INSNS (f));
588 free (FENCE_READY_TICKS (f));
589 FENCE_READY_TICKS (f) = NULL;
592 /* Init a list of fences with successors of OLD_FENCE. */
593 void
594 init_fences (insn_t old_fence)
596 insn_t succ;
597 succ_iterator si;
598 bool first = true;
599 int ready_ticks_size = get_max_uid () + 1;
601 FOR_EACH_SUCC_1 (succ, si, old_fence,
602 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
605 if (first)
606 first = false;
607 else
608 gcc_assert (flag_sel_sched_pipelining_outer_loops);
610 flist_add (&fences, succ,
611 state_create (),
612 create_deps_context () /* dc */,
613 create_target_context (true) /* tc */,
614 NULL /* last_scheduled_insn */,
615 NULL, /* executing_insns */
616 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
617 ready_ticks_size,
618 NULL /* sched_next */,
619 1 /* cycle */, 0 /* cycle_issued_insns */,
620 issue_rate, /* issue_more */
621 1 /* starts_cycle_p */, 0 /* after_stall_p */);
625 /* Merges two fences (filling fields of fence F with resulting values) by
626 following rules: 1) state, target context and last scheduled insn are
627 propagated from fallthrough edge if it is available;
628 2) deps context and cycle is propagated from more probable edge;
629 3) all other fields are set to corresponding constant values.
631 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
632 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
633 and AFTER_STALL_P are the corresponding fields of the second fence. */
634 static void
635 merge_fences (fence_t f, insn_t insn,
636 state_t state, deps_t dc, void *tc,
637 rtx_insn *last_scheduled_insn,
638 vec<rtx_insn *, va_gc> *executing_insns,
639 int *ready_ticks, int ready_ticks_size,
640 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
642 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
644 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
645 && !sched_next && !FENCE_SCHED_NEXT (f));
647 /* Check if we can decide which path fences came.
648 If we can't (or don't want to) - reset all. */
649 if (last_scheduled_insn == NULL
650 || last_scheduled_insn_old == NULL
651 /* This is a case when INSN is reachable on several paths from
652 one insn (this can happen when pipelining of outer loops is on and
653 there are two edges: one going around of inner loop and the other -
654 right through it; in such case just reset everything). */
655 || last_scheduled_insn == last_scheduled_insn_old)
657 state_reset (FENCE_STATE (f));
658 state_free (state);
660 reset_deps_context (FENCE_DC (f));
661 delete_deps_context (dc);
663 reset_target_context (FENCE_TC (f), true);
664 delete_target_context (tc);
666 if (cycle > FENCE_CYCLE (f))
667 FENCE_CYCLE (f) = cycle;
669 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
670 FENCE_ISSUE_MORE (f) = issue_rate;
671 vec_free (executing_insns);
672 free (ready_ticks);
673 if (FENCE_EXECUTING_INSNS (f))
674 FENCE_EXECUTING_INSNS (f)->block_remove (0,
675 FENCE_EXECUTING_INSNS (f)->length ());
676 if (FENCE_READY_TICKS (f))
677 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
679 else
681 edge edge_old = NULL, edge_new = NULL;
682 edge candidate;
683 succ_iterator si;
684 insn_t succ;
686 /* Find fallthrough edge. */
687 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
688 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
690 if (!candidate
691 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
692 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
694 /* No fallthrough edge leading to basic block of INSN. */
695 state_reset (FENCE_STATE (f));
696 state_free (state);
698 reset_target_context (FENCE_TC (f), true);
699 delete_target_context (tc);
701 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
702 FENCE_ISSUE_MORE (f) = issue_rate;
704 else
705 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
707 state_free (FENCE_STATE (f));
708 FENCE_STATE (f) = state;
710 delete_target_context (FENCE_TC (f));
711 FENCE_TC (f) = tc;
713 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
714 FENCE_ISSUE_MORE (f) = issue_more;
716 else
718 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
719 state_free (state);
720 delete_target_context (tc);
722 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
723 != BLOCK_FOR_INSN (last_scheduled_insn));
726 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
727 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
728 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
730 if (succ == insn)
732 /* No same successor allowed from several edges. */
733 gcc_assert (!edge_old);
734 edge_old = si.e1;
737 /* Find edge of second predecessor (last_scheduled_insn->insn). */
738 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
739 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
741 if (succ == insn)
743 /* No same successor allowed from several edges. */
744 gcc_assert (!edge_new);
745 edge_new = si.e1;
749 /* Check if we can choose most probable predecessor. */
750 if (edge_old == NULL || edge_new == NULL)
752 reset_deps_context (FENCE_DC (f));
753 delete_deps_context (dc);
754 vec_free (executing_insns);
755 free (ready_ticks);
757 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
758 if (FENCE_EXECUTING_INSNS (f))
759 FENCE_EXECUTING_INSNS (f)->block_remove (0,
760 FENCE_EXECUTING_INSNS (f)->length ());
761 if (FENCE_READY_TICKS (f))
762 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
764 else
765 if (edge_new->probability > edge_old->probability)
767 delete_deps_context (FENCE_DC (f));
768 FENCE_DC (f) = dc;
769 vec_free (FENCE_EXECUTING_INSNS (f));
770 FENCE_EXECUTING_INSNS (f) = executing_insns;
771 free (FENCE_READY_TICKS (f));
772 FENCE_READY_TICKS (f) = ready_ticks;
773 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
774 FENCE_CYCLE (f) = cycle;
776 else
778 /* Leave DC and CYCLE untouched. */
779 delete_deps_context (dc);
780 vec_free (executing_insns);
781 free (ready_ticks);
785 /* Fill remaining invariant fields. */
786 if (after_stall_p)
787 FENCE_AFTER_STALL_P (f) = 1;
789 FENCE_ISSUED_INSNS (f) = 0;
790 FENCE_STARTS_CYCLE_P (f) = 1;
791 FENCE_SCHED_NEXT (f) = NULL;
794 /* Add a new fence to NEW_FENCES list, initializing it from all
795 other parameters. */
796 static void
797 add_to_fences (flist_tail_t new_fences, insn_t insn,
798 state_t state, deps_t dc, void *tc,
799 rtx_insn *last_scheduled_insn,
800 vec<rtx_insn *, va_gc> *executing_insns, int *ready_ticks,
801 int ready_ticks_size, rtx_insn *sched_next, int cycle,
802 int cycle_issued_insns, int issue_rate,
803 bool starts_cycle_p, bool after_stall_p)
805 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
807 if (! f)
809 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
810 last_scheduled_insn, executing_insns, ready_ticks,
811 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
812 issue_rate, starts_cycle_p, after_stall_p);
814 FLIST_TAIL_TAILP (new_fences)
815 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
817 else
819 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
820 executing_insns, ready_ticks, ready_ticks_size,
821 sched_next, cycle, issue_rate, after_stall_p);
825 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
826 void
827 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
829 fence_t f, old;
830 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
832 old = FLIST_FENCE (old_fences);
833 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
834 FENCE_INSN (FLIST_FENCE (old_fences)));
835 if (f)
837 merge_fences (f, old->insn, old->state, old->dc, old->tc,
838 old->last_scheduled_insn, old->executing_insns,
839 old->ready_ticks, old->ready_ticks_size,
840 old->sched_next, old->cycle, old->issue_more,
841 old->after_stall_p);
843 else
845 _list_add (tailp);
846 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
847 *FLIST_FENCE (*tailp) = *old;
848 init_fence_for_scheduling (FLIST_FENCE (*tailp));
850 FENCE_INSN (old) = NULL;
853 /* Add a new fence to NEW_FENCES list and initialize most of its data
854 as a clean one. */
855 void
856 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
858 int ready_ticks_size = get_max_uid () + 1;
860 add_to_fences (new_fences,
861 succ, state_create (), create_deps_context (),
862 create_target_context (true),
863 NULL, NULL,
864 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
865 NULL, FENCE_CYCLE (fence) + 1,
866 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
869 /* Add a new fence to NEW_FENCES list and initialize all of its data
870 from FENCE and SUCC. */
871 void
872 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
874 int * new_ready_ticks
875 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
877 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
878 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
879 add_to_fences (new_fences,
880 succ, state_create_copy (FENCE_STATE (fence)),
881 create_copy_of_deps_context (FENCE_DC (fence)),
882 create_copy_of_target_context (FENCE_TC (fence)),
883 FENCE_LAST_SCHEDULED_INSN (fence),
884 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
885 new_ready_ticks,
886 FENCE_READY_TICKS_SIZE (fence),
887 FENCE_SCHED_NEXT (fence),
888 FENCE_CYCLE (fence),
889 FENCE_ISSUED_INSNS (fence),
890 FENCE_ISSUE_MORE (fence),
891 FENCE_STARTS_CYCLE_P (fence),
892 FENCE_AFTER_STALL_P (fence));
896 /* Functions to work with regset and nop pools. */
898 /* Returns the new regset from pool. It might have some of the bits set
899 from the previous usage. */
900 regset
901 get_regset_from_pool (void)
903 regset rs;
905 if (regset_pool.n != 0)
906 rs = regset_pool.v[--regset_pool.n];
907 else
908 /* We need to create the regset. */
910 rs = ALLOC_REG_SET (&reg_obstack);
912 if (regset_pool.nn == regset_pool.ss)
913 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
914 (regset_pool.ss = 2 * regset_pool.ss + 1));
915 regset_pool.vv[regset_pool.nn++] = rs;
918 regset_pool.diff++;
920 return rs;
923 /* Same as above, but returns the empty regset. */
924 regset
925 get_clear_regset_from_pool (void)
927 regset rs = get_regset_from_pool ();
929 CLEAR_REG_SET (rs);
930 return rs;
933 /* Return regset RS to the pool for future use. */
934 void
935 return_regset_to_pool (regset rs)
937 gcc_assert (rs);
938 regset_pool.diff--;
940 if (regset_pool.n == regset_pool.s)
941 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
942 (regset_pool.s = 2 * regset_pool.s + 1));
943 regset_pool.v[regset_pool.n++] = rs;
946 /* This is used as a qsort callback for sorting regset pool stacks.
947 X and XX are addresses of two regsets. They are never equal. */
948 static int
949 cmp_v_in_regset_pool (const void *x, const void *xx)
951 uintptr_t r1 = (uintptr_t) *((const regset *) x);
952 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
953 if (r1 > r2)
954 return 1;
955 else if (r1 < r2)
956 return -1;
957 gcc_unreachable ();
960 /* Free the regset pool possibly checking for memory leaks. */
961 void
962 free_regset_pool (void)
964 if (flag_checking)
966 regset *v = regset_pool.v;
967 int i = 0;
968 int n = regset_pool.n;
970 regset *vv = regset_pool.vv;
971 int ii = 0;
972 int nn = regset_pool.nn;
974 int diff = 0;
976 gcc_assert (n <= nn);
978 /* Sort both vectors so it will be possible to compare them. */
979 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
980 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
982 while (ii < nn)
984 if (v[i] == vv[ii])
985 i++;
986 else
987 /* VV[II] was lost. */
988 diff++;
990 ii++;
993 gcc_assert (diff == regset_pool.diff);
996 /* If not true - we have a memory leak. */
997 gcc_assert (regset_pool.diff == 0);
999 while (regset_pool.n)
1001 --regset_pool.n;
1002 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1005 free (regset_pool.v);
1006 regset_pool.v = NULL;
1007 regset_pool.s = 0;
1009 free (regset_pool.vv);
1010 regset_pool.vv = NULL;
1011 regset_pool.nn = 0;
1012 regset_pool.ss = 0;
1014 regset_pool.diff = 0;
1018 /* Functions to work with nop pools. NOP insns are used as temporary
1019 placeholders of the insns being scheduled to allow correct update of
1020 the data sets. When update is finished, NOPs are deleted. */
1022 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1023 nops sel-sched generates. */
1024 static vinsn_t nop_vinsn = NULL;
1026 /* Emit a nop before INSN, taking it from pool. */
1027 insn_t
1028 get_nop_from_pool (insn_t insn)
1030 rtx nop_pat;
1031 insn_t nop;
1032 bool old_p = nop_pool.n != 0;
1033 int flags;
1035 if (old_p)
1036 nop_pat = nop_pool.v[--nop_pool.n];
1037 else
1038 nop_pat = nop_pattern;
1040 nop = emit_insn_before (nop_pat, insn);
1042 if (old_p)
1043 flags = INSN_INIT_TODO_SSID;
1044 else
1045 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1047 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1048 sel_init_new_insn (nop, flags);
1050 return nop;
1053 /* Remove NOP from the instruction stream and return it to the pool. */
1054 void
1055 return_nop_to_pool (insn_t nop, bool full_tidying)
1057 gcc_assert (INSN_IN_STREAM_P (nop));
1058 sel_remove_insn (nop, false, full_tidying);
1060 /* We'll recycle this nop. */
1061 nop->set_undeleted ();
1063 if (nop_pool.n == nop_pool.s)
1064 nop_pool.v = XRESIZEVEC (rtx_insn *, nop_pool.v,
1065 (nop_pool.s = 2 * nop_pool.s + 1));
1066 nop_pool.v[nop_pool.n++] = nop;
1069 /* Free the nop pool. */
1070 void
1071 free_nop_pool (void)
1073 nop_pool.n = 0;
1074 nop_pool.s = 0;
1075 free (nop_pool.v);
1076 nop_pool.v = NULL;
1080 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1081 The callback is given two rtxes XX and YY and writes the new rtxes
1082 to NX and NY in case some needs to be skipped. */
1083 static int
1084 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1086 const_rtx x = *xx;
1087 const_rtx y = *yy;
1089 if (GET_CODE (x) == UNSPEC
1090 && (targetm.sched.skip_rtx_p == NULL
1091 || targetm.sched.skip_rtx_p (x)))
1093 *nx = XVECEXP (x, 0, 0);
1094 *ny = CONST_CAST_RTX (y);
1095 return 1;
1098 if (GET_CODE (y) == UNSPEC
1099 && (targetm.sched.skip_rtx_p == NULL
1100 || targetm.sched.skip_rtx_p (y)))
1102 *nx = CONST_CAST_RTX (x);
1103 *ny = XVECEXP (y, 0, 0);
1104 return 1;
1107 return 0;
1110 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1111 to support ia64 speculation. When changes are needed, new rtx X and new mode
1112 NMODE are written, and the callback returns true. */
1113 static int
1114 hash_with_unspec_callback (const_rtx x, machine_mode mode ATTRIBUTE_UNUSED,
1115 rtx *nx, machine_mode* nmode)
1117 if (GET_CODE (x) == UNSPEC
1118 && targetm.sched.skip_rtx_p
1119 && targetm.sched.skip_rtx_p (x))
1121 *nx = XVECEXP (x, 0 ,0);
1122 *nmode = VOIDmode;
1123 return 1;
1126 return 0;
1129 /* Returns LHS and RHS are ok to be scheduled separately. */
1130 static bool
1131 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1133 if (lhs == NULL || rhs == NULL)
1134 return false;
1136 /* Do not schedule constants as rhs: no point to use reg, if const
1137 can be used. Moreover, scheduling const as rhs may lead to mode
1138 mismatch cause consts don't have modes but they could be merged
1139 from branches where the same const used in different modes. */
1140 if (CONSTANT_P (rhs))
1141 return false;
1143 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1144 if (COMPARISON_P (rhs))
1145 return false;
1147 /* Do not allow single REG to be an rhs. */
1148 if (REG_P (rhs))
1149 return false;
1151 /* See comment at find_used_regs_1 (*1) for explanation of this
1152 restriction. */
1153 /* FIXME: remove this later. */
1154 if (MEM_P (lhs))
1155 return false;
1157 /* This will filter all tricky things like ZERO_EXTRACT etc.
1158 For now we don't handle it. */
1159 if (!REG_P (lhs) && !MEM_P (lhs))
1160 return false;
1162 return true;
1165 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1166 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1167 used e.g. for insns from recovery blocks. */
1168 static void
1169 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1171 hash_rtx_callback_function hrcf;
1172 int insn_class;
1174 VINSN_INSN_RTX (vi) = insn;
1175 VINSN_COUNT (vi) = 0;
1176 vi->cost = -1;
1178 if (INSN_NOP_P (insn))
1179 return;
1181 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1182 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1183 else
1184 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1186 /* Hash vinsn depending on whether it is separable or not. */
1187 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1188 if (VINSN_SEPARABLE_P (vi))
1190 rtx rhs = VINSN_RHS (vi);
1192 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1193 NULL, NULL, false, hrcf);
1194 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1195 VOIDmode, NULL, NULL,
1196 false, hrcf);
1198 else
1200 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1201 NULL, NULL, false, hrcf);
1202 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1205 insn_class = haifa_classify_insn (insn);
1206 if (insn_class >= 2
1207 && (!targetm.sched.get_insn_spec_ds
1208 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1209 == 0)))
1210 VINSN_MAY_TRAP_P (vi) = true;
1211 else
1212 VINSN_MAY_TRAP_P (vi) = false;
1215 /* Indicate that VI has become the part of an rtx object. */
1216 void
1217 vinsn_attach (vinsn_t vi)
1219 /* Assert that VI is not pending for deletion. */
1220 gcc_assert (VINSN_INSN_RTX (vi));
1222 VINSN_COUNT (vi)++;
1225 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1226 VINSN_TYPE (VI). */
1227 static vinsn_t
1228 vinsn_create (insn_t insn, bool force_unique_p)
1230 vinsn_t vi = XCNEW (struct vinsn_def);
1232 vinsn_init (vi, insn, force_unique_p);
1233 return vi;
1236 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1237 the copy. */
1238 vinsn_t
1239 vinsn_copy (vinsn_t vi, bool reattach_p)
1241 rtx_insn *copy;
1242 bool unique = VINSN_UNIQUE_P (vi);
1243 vinsn_t new_vi;
1245 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1246 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1247 if (reattach_p)
1249 vinsn_detach (vi);
1250 vinsn_attach (new_vi);
1253 return new_vi;
1256 /* Delete the VI vinsn and free its data. */
1257 static void
1258 vinsn_delete (vinsn_t vi)
1260 gcc_assert (VINSN_COUNT (vi) == 0);
1262 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1264 return_regset_to_pool (VINSN_REG_SETS (vi));
1265 return_regset_to_pool (VINSN_REG_USES (vi));
1266 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1269 free (vi);
1272 /* Indicate that VI is no longer a part of some rtx object.
1273 Remove VI if it is no longer needed. */
1274 void
1275 vinsn_detach (vinsn_t vi)
1277 gcc_assert (VINSN_COUNT (vi) > 0);
1279 if (--VINSN_COUNT (vi) == 0)
1280 vinsn_delete (vi);
1283 /* Returns TRUE if VI is a branch. */
1284 bool
1285 vinsn_cond_branch_p (vinsn_t vi)
1287 insn_t insn;
1289 if (!VINSN_UNIQUE_P (vi))
1290 return false;
1292 insn = VINSN_INSN_RTX (vi);
1293 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1294 return false;
1296 return control_flow_insn_p (insn);
1299 /* Return latency of INSN. */
1300 static int
1301 sel_insn_rtx_cost (rtx_insn *insn)
1303 int cost;
1305 /* A USE insn, or something else we don't need to
1306 understand. We can't pass these directly to
1307 result_ready_cost or insn_default_latency because it will
1308 trigger a fatal error for unrecognizable insns. */
1309 if (recog_memoized (insn) < 0)
1310 cost = 0;
1311 else
1313 cost = insn_default_latency (insn);
1315 if (cost < 0)
1316 cost = 0;
1319 return cost;
1322 /* Return the cost of the VI.
1323 !!! FIXME: Unify with haifa-sched.c: insn_sched_cost (). */
1325 sel_vinsn_cost (vinsn_t vi)
1327 int cost = vi->cost;
1329 if (cost < 0)
1331 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1332 vi->cost = cost;
1335 return cost;
1339 /* Functions for insn emitting. */
1341 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1342 EXPR and SEQNO. */
1343 insn_t
1344 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1346 insn_t new_insn;
1348 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1350 new_insn = emit_insn_after (pattern, after);
1351 set_insn_init (expr, NULL, seqno);
1352 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1354 return new_insn;
1357 /* Force newly generated vinsns to be unique. */
1358 static bool init_insn_force_unique_p = false;
1360 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1361 initialize its data from EXPR and SEQNO. */
1362 insn_t
1363 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1364 insn_t after)
1366 insn_t insn;
1368 gcc_assert (!init_insn_force_unique_p);
1370 init_insn_force_unique_p = true;
1371 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1372 CANT_MOVE (insn) = 1;
1373 init_insn_force_unique_p = false;
1375 return insn;
1378 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1379 take it as a new vinsn instead of EXPR's vinsn.
1380 We simplify insns later, after scheduling region in
1381 simplify_changed_insns. */
1382 insn_t
1383 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1384 insn_t after)
1386 expr_t emit_expr;
1387 insn_t insn;
1388 int flags;
1390 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1391 seqno);
1392 insn = EXPR_INSN_RTX (emit_expr);
1394 /* The insn may come from the transformation cache, which may hold already
1395 deleted insns, so mark it as not deleted. */
1396 insn->set_undeleted ();
1398 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1400 flags = INSN_INIT_TODO_SSID;
1401 if (INSN_LUID (insn) == 0)
1402 flags |= INSN_INIT_TODO_LUID;
1403 sel_init_new_insn (insn, flags);
1405 return insn;
1408 /* Move insn from EXPR after AFTER. */
1409 insn_t
1410 sel_move_insn (expr_t expr, int seqno, insn_t after)
1412 insn_t insn = EXPR_INSN_RTX (expr);
1413 basic_block bb = BLOCK_FOR_INSN (after);
1414 insn_t next = NEXT_INSN (after);
1416 /* Assert that in move_op we disconnected this insn properly. */
1417 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1418 SET_PREV_INSN (insn) = after;
1419 SET_NEXT_INSN (insn) = next;
1421 SET_NEXT_INSN (after) = insn;
1422 SET_PREV_INSN (next) = insn;
1424 /* Update links from insn to bb and vice versa. */
1425 df_insn_change_bb (insn, bb);
1426 if (BB_END (bb) == after)
1427 BB_END (bb) = insn;
1429 prepare_insn_expr (insn, seqno);
1430 return insn;
1434 /* Functions to work with right-hand sides. */
1436 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1437 VECT and return true when found. Use NEW_VINSN for comparison only when
1438 COMPARE_VINSNS is true. Write to INDP the index on which
1439 the search has stopped, such that inserting the new element at INDP will
1440 retain VECT's sort order. */
1441 static bool
1442 find_in_history_vect_1 (vec<expr_history_def> vect,
1443 unsigned uid, vinsn_t new_vinsn,
1444 bool compare_vinsns, int *indp)
1446 expr_history_def *arr;
1447 int i, j, len = vect.length ();
1449 if (len == 0)
1451 *indp = 0;
1452 return false;
1455 arr = vect.address ();
1456 i = 0, j = len - 1;
1458 while (i <= j)
1460 unsigned auid = arr[i].uid;
1461 vinsn_t avinsn = arr[i].new_expr_vinsn;
1463 if (auid == uid
1464 /* When undoing transformation on a bookkeeping copy, the new vinsn
1465 may not be exactly equal to the one that is saved in the vector.
1466 This is because the insn whose copy we're checking was possibly
1467 substituted itself. */
1468 && (! compare_vinsns
1469 || vinsn_equal_p (avinsn, new_vinsn)))
1471 *indp = i;
1472 return true;
1474 else if (auid > uid)
1475 break;
1476 i++;
1479 *indp = i;
1480 return false;
1483 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1484 the position found or -1, if no such value is in vector.
1485 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1487 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1488 vinsn_t new_vinsn, bool originators_p)
1490 int ind;
1492 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1493 false, &ind))
1494 return ind;
1496 if (INSN_ORIGINATORS (insn) && originators_p)
1498 unsigned uid;
1499 bitmap_iterator bi;
1501 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1502 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1503 return ind;
1506 return -1;
1509 /* Insert new element in a sorted history vector pointed to by PVECT,
1510 if it is not there already. The element is searched using
1511 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1512 the history of a transformation. */
1513 void
1514 insert_in_history_vect (vec<expr_history_def> *pvect,
1515 unsigned uid, enum local_trans_type type,
1516 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1517 ds_t spec_ds)
1519 vec<expr_history_def> vect = *pvect;
1520 expr_history_def temp;
1521 bool res;
1522 int ind;
1524 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1526 if (res)
1528 expr_history_def *phist = &vect[ind];
1530 /* It is possible that speculation types of expressions that were
1531 propagated through different paths will be different here. In this
1532 case, merge the status to get the correct check later. */
1533 if (phist->spec_ds != spec_ds)
1534 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1535 return;
1538 temp.uid = uid;
1539 temp.old_expr_vinsn = old_expr_vinsn;
1540 temp.new_expr_vinsn = new_expr_vinsn;
1541 temp.spec_ds = spec_ds;
1542 temp.type = type;
1544 vinsn_attach (old_expr_vinsn);
1545 vinsn_attach (new_expr_vinsn);
1546 vect.safe_insert (ind, temp);
1547 *pvect = vect;
1550 /* Free history vector PVECT. */
1551 static void
1552 free_history_vect (vec<expr_history_def> &pvect)
1554 unsigned i;
1555 expr_history_def *phist;
1557 if (! pvect.exists ())
1558 return;
1560 for (i = 0; pvect.iterate (i, &phist); i++)
1562 vinsn_detach (phist->old_expr_vinsn);
1563 vinsn_detach (phist->new_expr_vinsn);
1566 pvect.release ();
1569 /* Merge vector FROM to PVECT. */
1570 static void
1571 merge_history_vect (vec<expr_history_def> *pvect,
1572 vec<expr_history_def> from)
1574 expr_history_def *phist;
1575 int i;
1577 /* We keep this vector sorted. */
1578 for (i = 0; from.iterate (i, &phist); i++)
1579 insert_in_history_vect (pvect, phist->uid, phist->type,
1580 phist->old_expr_vinsn, phist->new_expr_vinsn,
1581 phist->spec_ds);
1584 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1585 bool
1586 vinsn_equal_p (vinsn_t x, vinsn_t y)
1588 rtx_equal_p_callback_function repcf;
1590 if (x == y)
1591 return true;
1593 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1594 return false;
1596 if (VINSN_HASH (x) != VINSN_HASH (y))
1597 return false;
1599 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1600 if (VINSN_SEPARABLE_P (x))
1602 /* Compare RHSes of VINSNs. */
1603 gcc_assert (VINSN_RHS (x));
1604 gcc_assert (VINSN_RHS (y));
1606 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1609 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1613 /* Functions for working with expressions. */
1615 /* Initialize EXPR. */
1616 static void
1617 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1618 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1619 ds_t spec_to_check_ds, int orig_sched_cycle,
1620 vec<expr_history_def> history,
1621 signed char target_available,
1622 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1623 bool cant_move)
1625 vinsn_attach (vi);
1627 EXPR_VINSN (expr) = vi;
1628 EXPR_SPEC (expr) = spec;
1629 EXPR_USEFULNESS (expr) = use;
1630 EXPR_PRIORITY (expr) = priority;
1631 EXPR_PRIORITY_ADJ (expr) = 0;
1632 EXPR_SCHED_TIMES (expr) = sched_times;
1633 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1634 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1635 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1636 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1638 if (history.exists ())
1639 EXPR_HISTORY_OF_CHANGES (expr) = history;
1640 else
1641 EXPR_HISTORY_OF_CHANGES (expr).create (0);
1643 EXPR_TARGET_AVAILABLE (expr) = target_available;
1644 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1645 EXPR_WAS_RENAMED (expr) = was_renamed;
1646 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1647 EXPR_CANT_MOVE (expr) = cant_move;
1650 /* Make a copy of the expr FROM into the expr TO. */
1651 void
1652 copy_expr (expr_t to, expr_t from)
1654 vec<expr_history_def> temp = vNULL;
1656 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1658 unsigned i;
1659 expr_history_def *phist;
1661 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1662 for (i = 0;
1663 temp.iterate (i, &phist);
1664 i++)
1666 vinsn_attach (phist->old_expr_vinsn);
1667 vinsn_attach (phist->new_expr_vinsn);
1671 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1672 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1673 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1674 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1675 EXPR_ORIG_SCHED_CYCLE (from), temp,
1676 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1677 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1678 EXPR_CANT_MOVE (from));
1681 /* Same, but the final expr will not ever be in av sets, so don't copy
1682 "uninteresting" data such as bitmap cache. */
1683 void
1684 copy_expr_onside (expr_t to, expr_t from)
1686 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1687 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1688 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1689 vNULL,
1690 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1691 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1692 EXPR_CANT_MOVE (from));
1695 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1696 initializing new insns. */
1697 static void
1698 prepare_insn_expr (insn_t insn, int seqno)
1700 expr_t expr = INSN_EXPR (insn);
1701 ds_t ds;
1703 INSN_SEQNO (insn) = seqno;
1704 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1705 EXPR_SPEC (expr) = 0;
1706 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1707 EXPR_WAS_SUBSTITUTED (expr) = 0;
1708 EXPR_WAS_RENAMED (expr) = 0;
1709 EXPR_TARGET_AVAILABLE (expr) = 1;
1710 INSN_LIVE_VALID_P (insn) = false;
1712 /* ??? If this expression is speculative, make its dependence
1713 as weak as possible. We can filter this expression later
1714 in process_spec_exprs, because we do not distinguish
1715 between the status we got during compute_av_set and the
1716 existing status. To be fixed. */
1717 ds = EXPR_SPEC_DONE_DS (expr);
1718 if (ds)
1719 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1721 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1724 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1725 is non-null when expressions are merged from different successors at
1726 a split point. */
1727 static void
1728 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1730 if (EXPR_TARGET_AVAILABLE (to) < 0
1731 || EXPR_TARGET_AVAILABLE (from) < 0)
1732 EXPR_TARGET_AVAILABLE (to) = -1;
1733 else
1735 /* We try to detect the case when one of the expressions
1736 can only be reached through another one. In this case,
1737 we can do better. */
1738 if (split_point == NULL)
1740 int toind, fromind;
1742 toind = EXPR_ORIG_BB_INDEX (to);
1743 fromind = EXPR_ORIG_BB_INDEX (from);
1745 if (toind && toind == fromind)
1746 /* Do nothing -- everything is done in
1747 merge_with_other_exprs. */
1749 else
1750 EXPR_TARGET_AVAILABLE (to) = -1;
1752 else if (EXPR_TARGET_AVAILABLE (from) == 0
1753 && EXPR_LHS (from)
1754 && REG_P (EXPR_LHS (from))
1755 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1756 EXPR_TARGET_AVAILABLE (to) = -1;
1757 else
1758 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1762 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1763 is non-null when expressions are merged from different successors at
1764 a split point. */
1765 static void
1766 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1768 ds_t old_to_ds, old_from_ds;
1770 old_to_ds = EXPR_SPEC_DONE_DS (to);
1771 old_from_ds = EXPR_SPEC_DONE_DS (from);
1773 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1774 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1775 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1777 /* When merging e.g. control & data speculative exprs, or a control
1778 speculative with a control&data speculative one, we really have
1779 to change vinsn too. Also, when speculative status is changed,
1780 we also need to record this as a transformation in expr's history. */
1781 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1783 old_to_ds = ds_get_speculation_types (old_to_ds);
1784 old_from_ds = ds_get_speculation_types (old_from_ds);
1786 if (old_to_ds != old_from_ds)
1788 ds_t record_ds;
1790 /* When both expressions are speculative, we need to change
1791 the vinsn first. */
1792 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1794 int res;
1796 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1797 gcc_assert (res >= 0);
1800 if (split_point != NULL)
1802 /* Record the change with proper status. */
1803 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1804 record_ds &= ~(old_to_ds & SPECULATIVE);
1805 record_ds &= ~(old_from_ds & SPECULATIVE);
1807 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1808 INSN_UID (split_point), TRANS_SPECULATION,
1809 EXPR_VINSN (from), EXPR_VINSN (to),
1810 record_ds);
1817 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1818 this is done along different paths. */
1819 void
1820 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1822 /* Choose the maximum of the specs of merged exprs. This is required
1823 for correctness of bookkeeping. */
1824 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1825 EXPR_SPEC (to) = EXPR_SPEC (from);
1827 if (split_point)
1828 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1829 else
1830 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1831 EXPR_USEFULNESS (from));
1833 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1834 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1836 /* We merge sched-times half-way to the larger value to avoid the endless
1837 pipelining of unneeded insns. The average seems to be good compromise
1838 between pipelining opportunities and avoiding extra work. */
1839 if (EXPR_SCHED_TIMES (to) != EXPR_SCHED_TIMES (from))
1840 EXPR_SCHED_TIMES (to) = ((EXPR_SCHED_TIMES (from) + EXPR_SCHED_TIMES (to)
1841 + 1) / 2);
1843 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1844 EXPR_ORIG_BB_INDEX (to) = 0;
1846 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1847 EXPR_ORIG_SCHED_CYCLE (from));
1849 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1850 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1851 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1853 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1854 EXPR_HISTORY_OF_CHANGES (from));
1855 update_target_availability (to, from, split_point);
1856 update_speculative_bits (to, from, split_point);
1859 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1860 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1861 are merged from different successors at a split point. */
1862 void
1863 merge_expr (expr_t to, expr_t from, insn_t split_point)
1865 vinsn_t to_vi = EXPR_VINSN (to);
1866 vinsn_t from_vi = EXPR_VINSN (from);
1868 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1870 /* Make sure that speculative pattern is propagated into exprs that
1871 have non-speculative one. This will provide us with consistent
1872 speculative bits and speculative patterns inside expr. */
1873 if (EXPR_SPEC_DONE_DS (to) == 0
1874 && (EXPR_SPEC_DONE_DS (from) != 0
1875 /* Do likewise for volatile insns, so that we always retain
1876 the may_trap_p bit on the resulting expression. However,
1877 avoid propagating the trapping bit into the instructions
1878 already speculated. This would result in replacing the
1879 speculative pattern with the non-speculative one and breaking
1880 the speculation support. */
1881 || (!VINSN_MAY_TRAP_P (EXPR_VINSN (to))
1882 && VINSN_MAY_TRAP_P (EXPR_VINSN (from)))))
1883 change_vinsn_in_expr (to, EXPR_VINSN (from));
1885 merge_expr_data (to, from, split_point);
1886 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1889 /* Clear the information of this EXPR. */
1890 void
1891 clear_expr (expr_t expr)
1894 vinsn_detach (EXPR_VINSN (expr));
1895 EXPR_VINSN (expr) = NULL;
1897 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1900 /* For a given LV_SET, mark EXPR having unavailable target register. */
1901 static void
1902 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1904 if (EXPR_SEPARABLE_P (expr))
1906 if (REG_P (EXPR_LHS (expr))
1907 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1909 /* If it's an insn like r1 = use (r1, ...), and it exists in
1910 different forms in each of the av_sets being merged, we can't say
1911 whether original destination register is available or not.
1912 However, this still works if destination register is not used
1913 in the original expression: if the branch at which LV_SET we're
1914 looking here is not actually 'other branch' in sense that same
1915 expression is available through it (but it can't be determined
1916 at computation stage because of transformations on one of the
1917 branches), it still won't affect the availability.
1918 Liveness of a register somewhere on a code motion path means
1919 it's either read somewhere on a codemotion path, live on
1920 'other' branch, live at the point immediately following
1921 the original operation, or is read by the original operation.
1922 The latter case is filtered out in the condition below.
1923 It still doesn't cover the case when register is defined and used
1924 somewhere within the code motion path, and in this case we could
1925 miss a unifying code motion along both branches using a renamed
1926 register, but it won't affect a code correctness since upon
1927 an actual code motion a bookkeeping code would be generated. */
1928 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1929 EXPR_LHS (expr)))
1930 EXPR_TARGET_AVAILABLE (expr) = -1;
1931 else
1932 EXPR_TARGET_AVAILABLE (expr) = false;
1935 else
1937 unsigned regno;
1938 reg_set_iterator rsi;
1940 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1941 0, regno, rsi)
1942 if (bitmap_bit_p (lv_set, regno))
1944 EXPR_TARGET_AVAILABLE (expr) = false;
1945 break;
1948 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1949 0, regno, rsi)
1950 if (bitmap_bit_p (lv_set, regno))
1952 EXPR_TARGET_AVAILABLE (expr) = false;
1953 break;
1958 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1959 or dependence status have changed, 2 when also the target register
1960 became unavailable, 0 if nothing had to be changed. */
1962 speculate_expr (expr_t expr, ds_t ds)
1964 int res;
1965 rtx_insn *orig_insn_rtx;
1966 rtx spec_pat;
1967 ds_t target_ds, current_ds;
1969 /* Obtain the status we need to put on EXPR. */
1970 target_ds = (ds & SPECULATIVE);
1971 current_ds = EXPR_SPEC_DONE_DS (expr);
1972 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1974 orig_insn_rtx = EXPR_INSN_RTX (expr);
1976 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1978 switch (res)
1980 case 0:
1981 EXPR_SPEC_DONE_DS (expr) = ds;
1982 return current_ds != ds ? 1 : 0;
1984 case 1:
1986 rtx_insn *spec_insn_rtx =
1987 create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1988 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1990 change_vinsn_in_expr (expr, spec_vinsn);
1991 EXPR_SPEC_DONE_DS (expr) = ds;
1992 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1994 /* Do not allow clobbering the address register of speculative
1995 insns. */
1996 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1997 expr_dest_reg (expr)))
1999 EXPR_TARGET_AVAILABLE (expr) = false;
2000 return 2;
2003 return 1;
2006 case -1:
2007 return -1;
2009 default:
2010 gcc_unreachable ();
2011 return -1;
2015 /* Return a destination register, if any, of EXPR. */
2017 expr_dest_reg (expr_t expr)
2019 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2021 if (dest != NULL_RTX && REG_P (dest))
2022 return dest;
2024 return NULL_RTX;
2027 /* Returns the REGNO of the R's destination. */
2028 unsigned
2029 expr_dest_regno (expr_t expr)
2031 rtx dest = expr_dest_reg (expr);
2033 gcc_assert (dest != NULL_RTX);
2034 return REGNO (dest);
2037 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2038 AV_SET having unavailable target register. */
2039 void
2040 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2042 expr_t expr;
2043 av_set_iterator avi;
2045 FOR_EACH_EXPR (expr, avi, join_set)
2046 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2047 set_unavailable_target_for_expr (expr, lv_set);
2051 /* Returns true if REG (at least partially) is present in REGS. */
2052 bool
2053 register_unavailable_p (regset regs, rtx reg)
2055 unsigned regno, end_regno;
2057 regno = REGNO (reg);
2058 if (bitmap_bit_p (regs, regno))
2059 return true;
2061 end_regno = END_REGNO (reg);
2063 while (++regno < end_regno)
2064 if (bitmap_bit_p (regs, regno))
2065 return true;
2067 return false;
2070 /* Av set functions. */
2072 /* Add a new element to av set SETP.
2073 Return the element added. */
2074 static av_set_t
2075 av_set_add_element (av_set_t *setp)
2077 /* Insert at the beginning of the list. */
2078 _list_add (setp);
2079 return *setp;
2082 /* Add EXPR to SETP. */
2083 void
2084 av_set_add (av_set_t *setp, expr_t expr)
2086 av_set_t elem;
2088 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2089 elem = av_set_add_element (setp);
2090 copy_expr (_AV_SET_EXPR (elem), expr);
2093 /* Same, but do not copy EXPR. */
2094 static void
2095 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2097 av_set_t elem;
2099 elem = av_set_add_element (setp);
2100 *_AV_SET_EXPR (elem) = *expr;
2103 /* Remove expr pointed to by IP from the av_set. */
2104 void
2105 av_set_iter_remove (av_set_iterator *ip)
2107 clear_expr (_AV_SET_EXPR (*ip->lp));
2108 _list_iter_remove (ip);
2111 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2112 sense of vinsn_equal_p function. Return NULL if no such expr is
2113 in SET was found. */
2114 expr_t
2115 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2117 expr_t expr;
2118 av_set_iterator i;
2120 FOR_EACH_EXPR (expr, i, set)
2121 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2122 return expr;
2123 return NULL;
2126 /* Same, but also remove the EXPR found. */
2127 static expr_t
2128 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2130 expr_t expr;
2131 av_set_iterator i;
2133 FOR_EACH_EXPR_1 (expr, i, setp)
2134 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2136 _list_iter_remove_nofree (&i);
2137 return expr;
2139 return NULL;
2142 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2143 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2144 Returns NULL if no such expr is in SET was found. */
2145 static expr_t
2146 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2148 expr_t cur_expr;
2149 av_set_iterator i;
2151 FOR_EACH_EXPR (cur_expr, i, set)
2153 if (cur_expr == expr)
2154 continue;
2155 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2156 return cur_expr;
2159 return NULL;
2162 /* If other expression is already in AVP, remove one of them. */
2163 expr_t
2164 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2166 expr_t expr2;
2168 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2169 if (expr2 != NULL)
2171 /* Reset target availability on merge, since taking it only from one
2172 of the exprs would be controversial for different code. */
2173 EXPR_TARGET_AVAILABLE (expr2) = -1;
2174 EXPR_USEFULNESS (expr2) = 0;
2176 merge_expr (expr2, expr, NULL);
2178 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2179 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2181 av_set_iter_remove (ip);
2182 return expr2;
2185 return expr;
2188 /* Return true if there is an expr that correlates to VI in SET. */
2189 bool
2190 av_set_is_in_p (av_set_t set, vinsn_t vi)
2192 return av_set_lookup (set, vi) != NULL;
2195 /* Return a copy of SET. */
2196 av_set_t
2197 av_set_copy (av_set_t set)
2199 expr_t expr;
2200 av_set_iterator i;
2201 av_set_t res = NULL;
2203 FOR_EACH_EXPR (expr, i, set)
2204 av_set_add (&res, expr);
2206 return res;
2209 /* Join two av sets that do not have common elements by attaching second set
2210 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2211 _AV_SET_NEXT of first set's last element). */
2212 static void
2213 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2215 gcc_assert (*to_tailp == NULL);
2216 *to_tailp = *fromp;
2217 *fromp = NULL;
2220 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2221 pointed to by FROMP afterwards. */
2222 void
2223 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2225 expr_t expr1;
2226 av_set_iterator i;
2228 /* Delete from TOP all exprs, that present in FROMP. */
2229 FOR_EACH_EXPR_1 (expr1, i, top)
2231 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2233 if (expr2)
2235 merge_expr (expr2, expr1, insn);
2236 av_set_iter_remove (&i);
2240 join_distinct_sets (i.lp, fromp);
2243 /* Same as above, but also update availability of target register in
2244 TOP judging by TO_LV_SET and FROM_LV_SET. */
2245 void
2246 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2247 regset from_lv_set, insn_t insn)
2249 expr_t expr1;
2250 av_set_iterator i;
2251 av_set_t *to_tailp, in_both_set = NULL;
2253 /* Delete from TOP all expres, that present in FROMP. */
2254 FOR_EACH_EXPR_1 (expr1, i, top)
2256 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2258 if (expr2)
2260 /* It may be that the expressions have different destination
2261 registers, in which case we need to check liveness here. */
2262 if (EXPR_SEPARABLE_P (expr1))
2264 int regno1 = (REG_P (EXPR_LHS (expr1))
2265 ? (int) expr_dest_regno (expr1) : -1);
2266 int regno2 = (REG_P (EXPR_LHS (expr2))
2267 ? (int) expr_dest_regno (expr2) : -1);
2269 /* ??? We don't have a way to check restrictions for
2270 *other* register on the current path, we did it only
2271 for the current target register. Give up. */
2272 if (regno1 != regno2)
2273 EXPR_TARGET_AVAILABLE (expr2) = -1;
2275 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2276 EXPR_TARGET_AVAILABLE (expr2) = -1;
2278 merge_expr (expr2, expr1, insn);
2279 av_set_add_nocopy (&in_both_set, expr2);
2280 av_set_iter_remove (&i);
2282 else
2283 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2284 FROM_LV_SET. */
2285 set_unavailable_target_for_expr (expr1, from_lv_set);
2287 to_tailp = i.lp;
2289 /* These expressions are not present in TOP. Check liveness
2290 restrictions on TO_LV_SET. */
2291 FOR_EACH_EXPR (expr1, i, *fromp)
2292 set_unavailable_target_for_expr (expr1, to_lv_set);
2294 join_distinct_sets (i.lp, &in_both_set);
2295 join_distinct_sets (to_tailp, fromp);
2298 /* Clear av_set pointed to by SETP. */
2299 void
2300 av_set_clear (av_set_t *setp)
2302 expr_t expr;
2303 av_set_iterator i;
2305 FOR_EACH_EXPR_1 (expr, i, setp)
2306 av_set_iter_remove (&i);
2308 gcc_assert (*setp == NULL);
2311 /* Leave only one non-speculative element in the SETP. */
2312 void
2313 av_set_leave_one_nonspec (av_set_t *setp)
2315 expr_t expr;
2316 av_set_iterator i;
2317 bool has_one_nonspec = false;
2319 /* Keep all speculative exprs, and leave one non-speculative
2320 (the first one). */
2321 FOR_EACH_EXPR_1 (expr, i, setp)
2323 if (!EXPR_SPEC_DONE_DS (expr))
2325 if (has_one_nonspec)
2326 av_set_iter_remove (&i);
2327 else
2328 has_one_nonspec = true;
2333 /* Return the N'th element of the SET. */
2334 expr_t
2335 av_set_element (av_set_t set, int n)
2337 expr_t expr;
2338 av_set_iterator i;
2340 FOR_EACH_EXPR (expr, i, set)
2341 if (n-- == 0)
2342 return expr;
2344 gcc_unreachable ();
2345 return NULL;
2348 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2349 void
2350 av_set_substract_cond_branches (av_set_t *avp)
2352 av_set_iterator i;
2353 expr_t expr;
2355 FOR_EACH_EXPR_1 (expr, i, avp)
2356 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2357 av_set_iter_remove (&i);
2360 /* Multiplies usefulness attribute of each member of av-set *AVP by
2361 value PROB / ALL_PROB. */
2362 void
2363 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2365 av_set_iterator i;
2366 expr_t expr;
2368 FOR_EACH_EXPR (expr, i, av)
2369 EXPR_USEFULNESS (expr) = (all_prob
2370 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2371 : 0);
2374 /* Leave in AVP only those expressions, which are present in AV,
2375 and return it, merging history expressions. */
2376 void
2377 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2379 av_set_iterator i;
2380 expr_t expr, expr2;
2382 FOR_EACH_EXPR_1 (expr, i, avp)
2383 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2384 av_set_iter_remove (&i);
2385 else
2386 /* When updating av sets in bookkeeping blocks, we can add more insns
2387 there which will be transformed but the upper av sets will not
2388 reflect those transformations. We then fail to undo those
2389 when searching for such insns. So merge the history saved
2390 in the av set of the block we are processing. */
2391 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2392 EXPR_HISTORY_OF_CHANGES (expr2));
2397 /* Dependence hooks to initialize insn data. */
2399 /* This is used in hooks callable from dependence analysis when initializing
2400 instruction's data. */
2401 static struct
2403 /* Where the dependence was found (lhs/rhs). */
2404 deps_where_t where;
2406 /* The actual data object to initialize. */
2407 idata_t id;
2409 /* True when the insn should not be made clonable. */
2410 bool force_unique_p;
2412 /* True when insn should be treated as of type USE, i.e. never renamed. */
2413 bool force_use_p;
2414 } deps_init_id_data;
2417 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2418 clonable. */
2419 static void
2420 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2422 int type;
2424 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2425 That clonable insns which can be separated into lhs and rhs have type SET.
2426 Other clonable insns have type USE. */
2427 type = GET_CODE (insn);
2429 /* Only regular insns could be cloned. */
2430 if (type == INSN && !force_unique_p)
2431 type = SET;
2432 else if (type == JUMP_INSN && simplejump_p (insn))
2433 type = PC;
2434 else if (type == DEBUG_INSN)
2435 type = !force_unique_p ? USE : INSN;
2437 IDATA_TYPE (id) = type;
2438 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2439 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2440 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2443 /* Start initializing insn data. */
2444 static void
2445 deps_init_id_start_insn (insn_t insn)
2447 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2449 setup_id_for_insn (deps_init_id_data.id, insn,
2450 deps_init_id_data.force_unique_p);
2451 deps_init_id_data.where = DEPS_IN_INSN;
2454 /* Start initializing lhs data. */
2455 static void
2456 deps_init_id_start_lhs (rtx lhs)
2458 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2459 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2461 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2463 IDATA_LHS (deps_init_id_data.id) = lhs;
2464 deps_init_id_data.where = DEPS_IN_LHS;
2468 /* Finish initializing lhs data. */
2469 static void
2470 deps_init_id_finish_lhs (void)
2472 deps_init_id_data.where = DEPS_IN_INSN;
2475 /* Note a set of REGNO. */
2476 static void
2477 deps_init_id_note_reg_set (int regno)
2479 haifa_note_reg_set (regno);
2481 if (deps_init_id_data.where == DEPS_IN_RHS)
2482 deps_init_id_data.force_use_p = true;
2484 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2485 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2487 #ifdef STACK_REGS
2488 /* Make instructions that set stack registers to be ineligible for
2489 renaming to avoid issues with find_used_regs. */
2490 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2491 deps_init_id_data.force_use_p = true;
2492 #endif
2495 /* Note a clobber of REGNO. */
2496 static void
2497 deps_init_id_note_reg_clobber (int regno)
2499 haifa_note_reg_clobber (regno);
2501 if (deps_init_id_data.where == DEPS_IN_RHS)
2502 deps_init_id_data.force_use_p = true;
2504 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2505 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2508 /* Note a use of REGNO. */
2509 static void
2510 deps_init_id_note_reg_use (int regno)
2512 haifa_note_reg_use (regno);
2514 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2515 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2518 /* Start initializing rhs data. */
2519 static void
2520 deps_init_id_start_rhs (rtx rhs)
2522 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2524 /* And there was no sel_deps_reset_to_insn (). */
2525 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2527 IDATA_RHS (deps_init_id_data.id) = rhs;
2528 deps_init_id_data.where = DEPS_IN_RHS;
2532 /* Finish initializing rhs data. */
2533 static void
2534 deps_init_id_finish_rhs (void)
2536 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2537 || deps_init_id_data.where == DEPS_IN_INSN);
2538 deps_init_id_data.where = DEPS_IN_INSN;
2541 /* Finish initializing insn data. */
2542 static void
2543 deps_init_id_finish_insn (void)
2545 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2547 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2549 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2550 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2552 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2553 || deps_init_id_data.force_use_p)
2555 /* This should be a USE, as we don't want to schedule its RHS
2556 separately. However, we still want to have them recorded
2557 for the purposes of substitution. That's why we don't
2558 simply call downgrade_to_use () here. */
2559 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2560 gcc_assert (!lhs == !rhs);
2562 IDATA_TYPE (deps_init_id_data.id) = USE;
2566 deps_init_id_data.where = DEPS_IN_NOWHERE;
2569 /* This is dependence info used for initializing insn's data. */
2570 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2572 /* This initializes most of the static part of the above structure. */
2573 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2575 NULL,
2577 deps_init_id_start_insn,
2578 deps_init_id_finish_insn,
2579 deps_init_id_start_lhs,
2580 deps_init_id_finish_lhs,
2581 deps_init_id_start_rhs,
2582 deps_init_id_finish_rhs,
2583 deps_init_id_note_reg_set,
2584 deps_init_id_note_reg_clobber,
2585 deps_init_id_note_reg_use,
2586 NULL, /* note_mem_dep */
2587 NULL, /* note_dep */
2589 0, /* use_cselib */
2590 0, /* use_deps_list */
2591 0 /* generate_spec_deps */
2594 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2595 we don't actually need information about lhs and rhs. */
2596 static void
2597 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2599 rtx pat = PATTERN (insn);
2601 if (NONJUMP_INSN_P (insn)
2602 && GET_CODE (pat) == SET
2603 && !force_unique_p)
2605 IDATA_RHS (id) = SET_SRC (pat);
2606 IDATA_LHS (id) = SET_DEST (pat);
2608 else
2609 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2612 /* Possibly downgrade INSN to USE. */
2613 static void
2614 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2616 bool must_be_use = false;
2617 df_ref def;
2618 rtx lhs = IDATA_LHS (id);
2619 rtx rhs = IDATA_RHS (id);
2621 /* We downgrade only SETs. */
2622 if (IDATA_TYPE (id) != SET)
2623 return;
2625 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2627 IDATA_TYPE (id) = USE;
2628 return;
2631 FOR_EACH_INSN_DEF (def, insn)
2633 if (DF_REF_INSN (def)
2634 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2635 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2637 must_be_use = true;
2638 break;
2641 #ifdef STACK_REGS
2642 /* Make instructions that set stack registers to be ineligible for
2643 renaming to avoid issues with find_used_regs. */
2644 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2646 must_be_use = true;
2647 break;
2649 #endif
2652 if (must_be_use)
2653 IDATA_TYPE (id) = USE;
2656 /* Setup implicit register clobbers calculated by sched-deps for INSN
2657 before reload and save them in ID. */
2658 static void
2659 setup_id_implicit_regs (idata_t id, insn_t insn)
2661 if (reload_completed)
2662 return;
2664 HARD_REG_SET temp;
2666 get_implicit_reg_pending_clobbers (&temp, insn);
2667 IOR_REG_SET_HRS (IDATA_REG_SETS (id), temp);
2670 /* Setup register sets describing INSN in ID. */
2671 static void
2672 setup_id_reg_sets (idata_t id, insn_t insn)
2674 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2675 df_ref def, use;
2676 regset tmp = get_clear_regset_from_pool ();
2678 FOR_EACH_INSN_INFO_DEF (def, insn_info)
2680 unsigned int regno = DF_REF_REGNO (def);
2682 /* Post modifies are treated like clobbers by sched-deps.c. */
2683 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2684 | DF_REF_PRE_POST_MODIFY)))
2685 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2686 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2688 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2690 #ifdef STACK_REGS
2691 /* For stack registers, treat writes to them as writes
2692 to the first one to be consistent with sched-deps.c. */
2693 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2694 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2695 #endif
2697 /* Mark special refs that generate read/write def pair. */
2698 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2699 || regno == STACK_POINTER_REGNUM)
2700 bitmap_set_bit (tmp, regno);
2703 FOR_EACH_INSN_INFO_USE (use, insn_info)
2705 unsigned int regno = DF_REF_REGNO (use);
2707 /* When these refs are met for the first time, skip them, as
2708 these uses are just counterparts of some defs. */
2709 if (bitmap_bit_p (tmp, regno))
2710 bitmap_clear_bit (tmp, regno);
2711 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2713 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2715 #ifdef STACK_REGS
2716 /* For stack registers, treat reads from them as reads from
2717 the first one to be consistent with sched-deps.c. */
2718 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2719 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2720 #endif
2724 /* Also get implicit reg clobbers from sched-deps. */
2725 setup_id_implicit_regs (id, insn);
2727 return_regset_to_pool (tmp);
2730 /* Initialize instruction data for INSN in ID using DF's data. */
2731 static void
2732 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2734 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2736 setup_id_for_insn (id, insn, force_unique_p);
2737 setup_id_lhs_rhs (id, insn, force_unique_p);
2739 if (INSN_NOP_P (insn))
2740 return;
2742 maybe_downgrade_id_to_use (id, insn);
2743 setup_id_reg_sets (id, insn);
2746 /* Initialize instruction data for INSN in ID. */
2747 static void
2748 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2750 class deps_desc _dc, *dc = &_dc;
2752 deps_init_id_data.where = DEPS_IN_NOWHERE;
2753 deps_init_id_data.id = id;
2754 deps_init_id_data.force_unique_p = force_unique_p;
2755 deps_init_id_data.force_use_p = false;
2757 init_deps (dc, false);
2758 memcpy (&deps_init_id_sched_deps_info,
2759 &const_deps_init_id_sched_deps_info,
2760 sizeof (deps_init_id_sched_deps_info));
2761 if (spec_info != NULL)
2762 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2763 sched_deps_info = &deps_init_id_sched_deps_info;
2765 deps_analyze_insn (dc, insn);
2766 /* Implicit reg clobbers received from sched-deps separately. */
2767 setup_id_implicit_regs (id, insn);
2769 free_deps (dc);
2770 deps_init_id_data.id = NULL;
2774 struct sched_scan_info_def
2776 /* This hook notifies scheduler frontend to extend its internal per basic
2777 block data structures. This hook should be called once before a series of
2778 calls to bb_init (). */
2779 void (*extend_bb) (void);
2781 /* This hook makes scheduler frontend to initialize its internal data
2782 structures for the passed basic block. */
2783 void (*init_bb) (basic_block);
2785 /* This hook notifies scheduler frontend to extend its internal per insn data
2786 structures. This hook should be called once before a series of calls to
2787 insn_init (). */
2788 void (*extend_insn) (void);
2790 /* This hook makes scheduler frontend to initialize its internal data
2791 structures for the passed insn. */
2792 void (*init_insn) (insn_t);
2795 /* A driver function to add a set of basic blocks (BBS) to the
2796 scheduling region. */
2797 static void
2798 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2800 unsigned i;
2801 basic_block bb;
2803 if (ssi->extend_bb)
2804 ssi->extend_bb ();
2806 if (ssi->init_bb)
2807 FOR_EACH_VEC_ELT (bbs, i, bb)
2808 ssi->init_bb (bb);
2810 if (ssi->extend_insn)
2811 ssi->extend_insn ();
2813 if (ssi->init_insn)
2814 FOR_EACH_VEC_ELT (bbs, i, bb)
2816 rtx_insn *insn;
2818 FOR_BB_INSNS (bb, insn)
2819 ssi->init_insn (insn);
2823 /* Implement hooks for collecting fundamental insn properties like if insn is
2824 an ASM or is within a SCHED_GROUP. */
2826 /* True when a "one-time init" data for INSN was already inited. */
2827 static bool
2828 first_time_insn_init (insn_t insn)
2830 return INSN_LIVE (insn) == NULL;
2833 /* Hash an entry in a transformed_insns hashtable. */
2834 static hashval_t
2835 hash_transformed_insns (const void *p)
2837 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2840 /* Compare the entries in a transformed_insns hashtable. */
2841 static int
2842 eq_transformed_insns (const void *p, const void *q)
2844 rtx_insn *i1 =
2845 VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2846 rtx_insn *i2 =
2847 VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2849 if (INSN_UID (i1) == INSN_UID (i2))
2850 return 1;
2851 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2854 /* Free an entry in a transformed_insns hashtable. */
2855 static void
2856 free_transformed_insns (void *p)
2858 struct transformed_insns *pti = (struct transformed_insns *) p;
2860 vinsn_detach (pti->vinsn_old);
2861 vinsn_detach (pti->vinsn_new);
2862 free (pti);
2865 /* Init the s_i_d data for INSN which should be inited just once, when
2866 we first see the insn. */
2867 static void
2868 init_first_time_insn_data (insn_t insn)
2870 /* This should not be set if this is the first time we init data for
2871 insn. */
2872 gcc_assert (first_time_insn_init (insn));
2874 /* These are needed for nops too. */
2875 INSN_LIVE (insn) = get_regset_from_pool ();
2876 INSN_LIVE_VALID_P (insn) = false;
2878 if (!INSN_NOP_P (insn))
2880 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2881 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2882 INSN_TRANSFORMED_INSNS (insn)
2883 = htab_create (16, hash_transformed_insns,
2884 eq_transformed_insns, free_transformed_insns);
2885 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2889 /* Free almost all above data for INSN that is scheduled already.
2890 Used for extra-large basic blocks. */
2891 void
2892 free_data_for_scheduled_insn (insn_t insn)
2894 gcc_assert (! first_time_insn_init (insn));
2896 if (! INSN_ANALYZED_DEPS (insn))
2897 return;
2899 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2900 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2901 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2903 /* This is allocated only for bookkeeping insns. */
2904 if (INSN_ORIGINATORS (insn))
2905 BITMAP_FREE (INSN_ORIGINATORS (insn));
2906 free_deps (&INSN_DEPS_CONTEXT (insn));
2908 INSN_ANALYZED_DEPS (insn) = NULL;
2910 /* Clear the readonly flag so we would ICE when trying to recalculate
2911 the deps context (as we believe that it should not happen). */
2912 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2915 /* Free the same data as above for INSN. */
2916 static void
2917 free_first_time_insn_data (insn_t insn)
2919 gcc_assert (! first_time_insn_init (insn));
2921 free_data_for_scheduled_insn (insn);
2922 return_regset_to_pool (INSN_LIVE (insn));
2923 INSN_LIVE (insn) = NULL;
2924 INSN_LIVE_VALID_P (insn) = false;
2927 /* Initialize region-scope data structures for basic blocks. */
2928 static void
2929 init_global_and_expr_for_bb (basic_block bb)
2931 if (sel_bb_empty_p (bb))
2932 return;
2934 invalidate_av_set (bb);
2937 /* Data for global dependency analysis (to initialize CANT_MOVE and
2938 SCHED_GROUP_P). */
2939 static struct
2941 /* Previous insn. */
2942 insn_t prev_insn;
2943 } init_global_data;
2945 /* Determine if INSN is in the sched_group, is an asm or should not be
2946 cloned. After that initialize its expr. */
2947 static void
2948 init_global_and_expr_for_insn (insn_t insn)
2950 if (LABEL_P (insn))
2951 return;
2953 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2955 init_global_data.prev_insn = NULL;
2956 return;
2959 gcc_assert (INSN_P (insn));
2961 if (SCHED_GROUP_P (insn))
2962 /* Setup a sched_group. */
2964 insn_t prev_insn = init_global_data.prev_insn;
2966 if (prev_insn)
2967 INSN_SCHED_NEXT (prev_insn) = insn;
2969 init_global_data.prev_insn = insn;
2971 else
2972 init_global_data.prev_insn = NULL;
2974 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2975 || asm_noperands (PATTERN (insn)) >= 0)
2976 /* Mark INSN as an asm. */
2977 INSN_ASM_P (insn) = true;
2980 bool force_unique_p;
2981 ds_t spec_done_ds;
2983 /* Certain instructions cannot be cloned, and frame related insns and
2984 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2985 their block. */
2986 if (prologue_epilogue_contains (insn))
2988 if (RTX_FRAME_RELATED_P (insn))
2989 CANT_MOVE (insn) = 1;
2990 else
2992 rtx note;
2993 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2994 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2995 && ((enum insn_note) INTVAL (XEXP (note, 0))
2996 == NOTE_INSN_EPILOGUE_BEG))
2998 CANT_MOVE (insn) = 1;
2999 break;
3002 force_unique_p = true;
3004 else
3005 if (CANT_MOVE (insn)
3006 || INSN_ASM_P (insn)
3007 || SCHED_GROUP_P (insn)
3008 || CALL_P (insn)
3009 /* Exception handling insns are always unique. */
3010 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
3011 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
3012 || control_flow_insn_p (insn)
3013 || volatile_insn_p (PATTERN (insn))
3014 || (targetm.cannot_copy_insn_p
3015 && targetm.cannot_copy_insn_p (insn)))
3016 force_unique_p = true;
3017 else
3018 force_unique_p = false;
3020 if (targetm.sched.get_insn_spec_ds)
3022 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3023 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3025 else
3026 spec_done_ds = 0;
3028 /* Initialize INSN's expr. */
3029 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3030 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3031 spec_done_ds, 0, 0, vNULL, true,
3032 false, false, false, CANT_MOVE (insn));
3035 init_first_time_insn_data (insn);
3038 /* Scan the region and initialize instruction data for basic blocks BBS. */
3039 void
3040 sel_init_global_and_expr (bb_vec_t bbs)
3042 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3043 const struct sched_scan_info_def ssi =
3045 NULL, /* extend_bb */
3046 init_global_and_expr_for_bb, /* init_bb */
3047 extend_insn_data, /* extend_insn */
3048 init_global_and_expr_for_insn /* init_insn */
3051 sched_scan (&ssi, bbs);
3054 /* Finalize region-scope data structures for basic blocks. */
3055 static void
3056 finish_global_and_expr_for_bb (basic_block bb)
3058 av_set_clear (&BB_AV_SET (bb));
3059 BB_AV_LEVEL (bb) = 0;
3062 /* Finalize INSN's data. */
3063 static void
3064 finish_global_and_expr_insn (insn_t insn)
3066 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3067 return;
3069 gcc_assert (INSN_P (insn));
3071 if (INSN_LUID (insn) > 0)
3073 free_first_time_insn_data (insn);
3074 INSN_WS_LEVEL (insn) = 0;
3075 CANT_MOVE (insn) = 0;
3077 /* We can no longer assert this, as vinsns of this insn could be
3078 easily live in other insn's caches. This should be changed to
3079 a counter-like approach among all vinsns. */
3080 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3081 clear_expr (INSN_EXPR (insn));
3085 /* Finalize per instruction data for the whole region. */
3086 void
3087 sel_finish_global_and_expr (void)
3090 bb_vec_t bbs;
3091 int i;
3093 bbs.create (current_nr_blocks);
3095 for (i = 0; i < current_nr_blocks; i++)
3096 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
3098 /* Clear AV_SETs and INSN_EXPRs. */
3100 const struct sched_scan_info_def ssi =
3102 NULL, /* extend_bb */
3103 finish_global_and_expr_for_bb, /* init_bb */
3104 NULL, /* extend_insn */
3105 finish_global_and_expr_insn /* init_insn */
3108 sched_scan (&ssi, bbs);
3111 bbs.release ();
3114 finish_insns ();
3118 /* In the below hooks, we merely calculate whether or not a dependence
3119 exists, and in what part of insn. However, we will need more data
3120 when we'll start caching dependence requests. */
3122 /* Container to hold information for dependency analysis. */
3123 static struct
3125 deps_t dc;
3127 /* A variable to track which part of rtx we are scanning in
3128 sched-deps.c: sched_analyze_insn (). */
3129 deps_where_t where;
3131 /* Current producer. */
3132 insn_t pro;
3134 /* Current consumer. */
3135 vinsn_t con;
3137 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3138 X is from { INSN, LHS, RHS }. */
3139 ds_t has_dep_p[DEPS_IN_NOWHERE];
3140 } has_dependence_data;
3142 /* Start analyzing dependencies of INSN. */
3143 static void
3144 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3146 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3148 has_dependence_data.where = DEPS_IN_INSN;
3151 /* Finish analyzing dependencies of an insn. */
3152 static void
3153 has_dependence_finish_insn (void)
3155 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3157 has_dependence_data.where = DEPS_IN_NOWHERE;
3160 /* Start analyzing dependencies of LHS. */
3161 static void
3162 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3164 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3166 if (VINSN_LHS (has_dependence_data.con) != NULL)
3167 has_dependence_data.where = DEPS_IN_LHS;
3170 /* Finish analyzing dependencies of an lhs. */
3171 static void
3172 has_dependence_finish_lhs (void)
3174 has_dependence_data.where = DEPS_IN_INSN;
3177 /* Start analyzing dependencies of RHS. */
3178 static void
3179 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3181 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3183 if (VINSN_RHS (has_dependence_data.con) != NULL)
3184 has_dependence_data.where = DEPS_IN_RHS;
3187 /* Start analyzing dependencies of an rhs. */
3188 static void
3189 has_dependence_finish_rhs (void)
3191 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3192 || has_dependence_data.where == DEPS_IN_INSN);
3194 has_dependence_data.where = DEPS_IN_INSN;
3197 /* Note a set of REGNO. */
3198 static void
3199 has_dependence_note_reg_set (int regno)
3201 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3203 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3204 VINSN_INSN_RTX
3205 (has_dependence_data.con)))
3207 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3209 if (reg_last->sets != NULL
3210 || reg_last->clobbers != NULL)
3211 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3213 if (reg_last->uses || reg_last->implicit_sets)
3214 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3218 /* Note a clobber of REGNO. */
3219 static void
3220 has_dependence_note_reg_clobber (int regno)
3222 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3224 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3225 VINSN_INSN_RTX
3226 (has_dependence_data.con)))
3228 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3230 if (reg_last->sets)
3231 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3233 if (reg_last->uses || reg_last->implicit_sets)
3234 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3238 /* Note a use of REGNO. */
3239 static void
3240 has_dependence_note_reg_use (int regno)
3242 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3244 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3245 VINSN_INSN_RTX
3246 (has_dependence_data.con)))
3248 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3250 if (reg_last->sets)
3251 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3253 if (reg_last->clobbers || reg_last->implicit_sets)
3254 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3256 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3257 is actually a check insn. We need to do this for any register
3258 read-read dependency with the check unless we track properly
3259 all registers written by BE_IN_SPEC-speculated insns, as
3260 we don't have explicit dependence lists. See PR 53975. */
3261 if (reg_last->uses)
3263 ds_t pro_spec_checked_ds;
3265 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3266 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3268 if (pro_spec_checked_ds != 0)
3269 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3270 NULL_RTX, NULL_RTX);
3275 /* Note a memory dependence. */
3276 static void
3277 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3278 rtx pending_mem ATTRIBUTE_UNUSED,
3279 insn_t pending_insn ATTRIBUTE_UNUSED,
3280 ds_t ds ATTRIBUTE_UNUSED)
3282 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3283 VINSN_INSN_RTX (has_dependence_data.con)))
3285 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3287 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3291 /* Note a dependence. */
3292 static void
3293 has_dependence_note_dep (insn_t pro, ds_t ds ATTRIBUTE_UNUSED)
3295 insn_t real_pro = has_dependence_data.pro;
3296 insn_t real_con = VINSN_INSN_RTX (has_dependence_data.con);
3298 /* We do not allow for debug insns to move through others unless they
3299 are at the start of bb. This movement may create bookkeeping copies
3300 that later would not be able to move up, violating the invariant
3301 that a bookkeeping copy should be movable as the original insn.
3302 Detect that here and allow that movement if we allowed it before
3303 in the first place. */
3304 if (DEBUG_INSN_P (real_con) && !DEBUG_INSN_P (real_pro)
3305 && INSN_UID (NEXT_INSN (pro)) == INSN_UID (real_con))
3306 return;
3308 if (!sched_insns_conditions_mutex_p (real_pro, real_con))
3310 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3312 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3316 /* Mark the insn as having a hard dependence that prevents speculation. */
3317 void
3318 sel_mark_hard_insn (rtx insn)
3320 int i;
3322 /* Only work when we're in has_dependence_p mode.
3323 ??? This is a hack, this should actually be a hook. */
3324 if (!has_dependence_data.dc || !has_dependence_data.pro)
3325 return;
3327 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3328 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3330 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3331 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3334 /* This structure holds the hooks for the dependency analysis used when
3335 actually processing dependencies in the scheduler. */
3336 static struct sched_deps_info_def has_dependence_sched_deps_info;
3338 /* This initializes most of the fields of the above structure. */
3339 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3341 NULL,
3343 has_dependence_start_insn,
3344 has_dependence_finish_insn,
3345 has_dependence_start_lhs,
3346 has_dependence_finish_lhs,
3347 has_dependence_start_rhs,
3348 has_dependence_finish_rhs,
3349 has_dependence_note_reg_set,
3350 has_dependence_note_reg_clobber,
3351 has_dependence_note_reg_use,
3352 has_dependence_note_mem_dep,
3353 has_dependence_note_dep,
3355 0, /* use_cselib */
3356 0, /* use_deps_list */
3357 0 /* generate_spec_deps */
3360 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3361 static void
3362 setup_has_dependence_sched_deps_info (void)
3364 memcpy (&has_dependence_sched_deps_info,
3365 &const_has_dependence_sched_deps_info,
3366 sizeof (has_dependence_sched_deps_info));
3368 if (spec_info != NULL)
3369 has_dependence_sched_deps_info.generate_spec_deps = 1;
3371 sched_deps_info = &has_dependence_sched_deps_info;
3374 /* Remove all dependences found and recorded in has_dependence_data array. */
3375 void
3376 sel_clear_has_dependence (void)
3378 int i;
3380 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3381 has_dependence_data.has_dep_p[i] = 0;
3384 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3385 to the dependence information array in HAS_DEP_PP. */
3386 ds_t
3387 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3389 int i;
3390 ds_t ds;
3391 class deps_desc *dc;
3393 if (INSN_SIMPLEJUMP_P (pred))
3394 /* Unconditional jump is just a transfer of control flow.
3395 Ignore it. */
3396 return false;
3398 dc = &INSN_DEPS_CONTEXT (pred);
3400 /* We init this field lazily. */
3401 if (dc->reg_last == NULL)
3402 init_deps_reg_last (dc);
3404 if (!dc->readonly)
3406 has_dependence_data.pro = NULL;
3407 /* Initialize empty dep context with information about PRED. */
3408 advance_deps_context (dc, pred);
3409 dc->readonly = 1;
3412 has_dependence_data.where = DEPS_IN_NOWHERE;
3413 has_dependence_data.pro = pred;
3414 has_dependence_data.con = EXPR_VINSN (expr);
3415 has_dependence_data.dc = dc;
3417 sel_clear_has_dependence ();
3419 /* Now catch all dependencies that would be generated between PRED and
3420 INSN. */
3421 setup_has_dependence_sched_deps_info ();
3422 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3423 has_dependence_data.dc = NULL;
3425 /* When a barrier was found, set DEPS_IN_INSN bits. */
3426 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3427 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3428 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3429 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3431 /* Do not allow stores to memory to move through checks. Currently
3432 we don't move this to sched-deps.c as the check doesn't have
3433 obvious places to which this dependence can be attached.
3434 FIMXE: this should go to a hook. */
3435 if (EXPR_LHS (expr)
3436 && MEM_P (EXPR_LHS (expr))
3437 && sel_insn_is_speculation_check (pred))
3438 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3440 *has_dep_pp = has_dependence_data.has_dep_p;
3441 ds = 0;
3442 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3443 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3444 NULL_RTX, NULL_RTX);
3446 return ds;
3450 /* Dependence hooks implementation that checks dependence latency constraints
3451 on the insns being scheduled. The entry point for these routines is
3452 tick_check_p predicate. */
3454 static struct
3456 /* An expr we are currently checking. */
3457 expr_t expr;
3459 /* A minimal cycle for its scheduling. */
3460 int cycle;
3462 /* Whether we have seen a true dependence while checking. */
3463 bool seen_true_dep_p;
3464 } tick_check_data;
3466 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3467 on PRO with status DS and weight DW. */
3468 static void
3469 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3471 expr_t con_expr = tick_check_data.expr;
3472 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3474 if (con_insn != pro_insn)
3476 enum reg_note dt;
3477 int tick;
3479 if (/* PROducer was removed from above due to pipelining. */
3480 !INSN_IN_STREAM_P (pro_insn)
3481 /* Or PROducer was originally on the next iteration regarding the
3482 CONsumer. */
3483 || (INSN_SCHED_TIMES (pro_insn)
3484 - EXPR_SCHED_TIMES (con_expr)) > 1)
3485 /* Don't count this dependence. */
3486 return;
3488 dt = ds_to_dt (ds);
3489 if (dt == REG_DEP_TRUE)
3490 tick_check_data.seen_true_dep_p = true;
3492 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3495 dep_def _dep, *dep = &_dep;
3497 init_dep (dep, pro_insn, con_insn, dt);
3499 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3502 /* When there are several kinds of dependencies between pro and con,
3503 only REG_DEP_TRUE should be taken into account. */
3504 if (tick > tick_check_data.cycle
3505 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3506 tick_check_data.cycle = tick;
3510 /* An implementation of note_dep hook. */
3511 static void
3512 tick_check_note_dep (insn_t pro, ds_t ds)
3514 tick_check_dep_with_dw (pro, ds, 0);
3517 /* An implementation of note_mem_dep hook. */
3518 static void
3519 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3521 dw_t dw;
3523 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3524 ? estimate_dep_weak (mem1, mem2)
3525 : 0);
3527 tick_check_dep_with_dw (pro, ds, dw);
3530 /* This structure contains hooks for dependence analysis used when determining
3531 whether an insn is ready for scheduling. */
3532 static struct sched_deps_info_def tick_check_sched_deps_info =
3534 NULL,
3536 NULL,
3537 NULL,
3538 NULL,
3539 NULL,
3540 NULL,
3541 NULL,
3542 haifa_note_reg_set,
3543 haifa_note_reg_clobber,
3544 haifa_note_reg_use,
3545 tick_check_note_mem_dep,
3546 tick_check_note_dep,
3548 0, 0, 0
3551 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3552 scheduled. Return 0 if all data from producers in DC is ready. */
3554 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3556 int cycles_left;
3557 /* Initialize variables. */
3558 tick_check_data.expr = expr;
3559 tick_check_data.cycle = 0;
3560 tick_check_data.seen_true_dep_p = false;
3561 sched_deps_info = &tick_check_sched_deps_info;
3563 gcc_assert (!dc->readonly);
3564 dc->readonly = 1;
3565 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3566 dc->readonly = 0;
3568 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3570 return cycles_left >= 0 ? cycles_left : 0;
3574 /* Functions to work with insns. */
3576 /* Returns true if LHS of INSN is the same as DEST of an insn
3577 being moved. */
3578 bool
3579 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3581 rtx lhs = INSN_LHS (insn);
3583 if (lhs == NULL || dest == NULL)
3584 return false;
3586 return rtx_equal_p (lhs, dest);
3589 /* Return s_i_d entry of INSN. Callable from debugger. */
3590 sel_insn_data_def
3591 insn_sid (insn_t insn)
3593 return *SID (insn);
3596 /* True when INSN is a speculative check. We can tell this by looking
3597 at the data structures of the selective scheduler, not by examining
3598 the pattern. */
3599 bool
3600 sel_insn_is_speculation_check (rtx insn)
3602 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3605 /* Extracts machine mode MODE and destination location DST_LOC
3606 for given INSN. */
3607 void
3608 get_dest_and_mode (rtx insn, rtx *dst_loc, machine_mode *mode)
3610 rtx pat = PATTERN (insn);
3612 gcc_assert (dst_loc);
3613 gcc_assert (GET_CODE (pat) == SET);
3615 *dst_loc = SET_DEST (pat);
3617 gcc_assert (*dst_loc);
3618 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3620 if (mode)
3621 *mode = GET_MODE (*dst_loc);
3624 /* Returns true when moving through JUMP will result in bookkeeping
3625 creation. */
3626 bool
3627 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3629 insn_t succ;
3630 succ_iterator si;
3632 FOR_EACH_SUCC (succ, si, jump)
3633 if (sel_num_cfg_preds_gt_1 (succ))
3634 return true;
3636 return false;
3639 /* Return 'true' if INSN is the only one in its basic block. */
3640 static bool
3641 insn_is_the_only_one_in_bb_p (insn_t insn)
3643 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3646 /* Check that the region we're scheduling still has at most one
3647 backedge. */
3648 static void
3649 verify_backedges (void)
3651 if (pipelining_p)
3653 int i, n = 0;
3654 edge e;
3655 edge_iterator ei;
3657 for (i = 0; i < current_nr_blocks; i++)
3658 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
3659 if (in_current_region_p (e->dest)
3660 && BLOCK_TO_BB (e->dest->index) < i)
3661 n++;
3663 gcc_assert (n <= 1);
3668 /* Functions to work with control flow. */
3670 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3671 are sorted in topological order (it might have been invalidated by
3672 redirecting an edge). */
3673 static void
3674 sel_recompute_toporder (void)
3676 int i, n, rgn;
3677 int *postorder, n_blocks;
3679 postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
3680 n_blocks = post_order_compute (postorder, false, false);
3682 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3683 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3684 if (CONTAINING_RGN (postorder[i]) == rgn)
3686 BLOCK_TO_BB (postorder[i]) = n;
3687 BB_TO_BLOCK (n) = postorder[i];
3688 n++;
3691 /* Assert that we updated info for all blocks. We may miss some blocks if
3692 this function is called when redirecting an edge made a block
3693 unreachable, but that block is not deleted yet. */
3694 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3697 /* Tidy the possibly empty block BB. */
3698 static bool
3699 maybe_tidy_empty_bb (basic_block bb)
3701 basic_block succ_bb, pred_bb, note_bb;
3702 vec<basic_block> dom_bbs;
3703 edge e;
3704 edge_iterator ei;
3705 bool rescan_p;
3707 /* Keep empty bb only if this block immediately precedes EXIT and
3708 has incoming non-fallthrough edge, or it has no predecessors or
3709 successors. Otherwise remove it. */
3710 if (!sel_bb_empty_p (bb)
3711 || (single_succ_p (bb)
3712 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
3713 && (!single_pred_p (bb)
3714 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3715 || EDGE_COUNT (bb->preds) == 0
3716 || EDGE_COUNT (bb->succs) == 0)
3717 return false;
3719 /* Do not attempt to redirect complex edges. */
3720 FOR_EACH_EDGE (e, ei, bb->preds)
3721 if (e->flags & EDGE_COMPLEX)
3722 return false;
3723 else if (e->flags & EDGE_FALLTHRU)
3725 rtx note;
3726 /* If prev bb ends with asm goto, see if any of the
3727 ASM_OPERANDS_LABELs don't point to the fallthru
3728 label. Do not attempt to redirect it in that case. */
3729 if (JUMP_P (BB_END (e->src))
3730 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3732 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3734 for (i = 0; i < n; ++i)
3735 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3736 return false;
3740 free_data_sets (bb);
3742 /* Do not delete BB if it has more than one successor.
3743 That can occur when we moving a jump. */
3744 if (!single_succ_p (bb))
3746 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3747 sel_merge_blocks (bb->prev_bb, bb);
3748 return true;
3751 succ_bb = single_succ (bb);
3752 rescan_p = true;
3753 pred_bb = NULL;
3754 dom_bbs.create (0);
3756 /* Save a pred/succ from the current region to attach the notes to. */
3757 note_bb = NULL;
3758 FOR_EACH_EDGE (e, ei, bb->preds)
3759 if (in_current_region_p (e->src))
3761 note_bb = e->src;
3762 break;
3764 if (note_bb == NULL)
3765 note_bb = succ_bb;
3767 /* Redirect all non-fallthru edges to the next bb. */
3768 while (rescan_p)
3770 rescan_p = false;
3772 FOR_EACH_EDGE (e, ei, bb->preds)
3774 pred_bb = e->src;
3776 if (!(e->flags & EDGE_FALLTHRU))
3778 /* We cannot invalidate computed topological order by moving
3779 the edge destination block (E->SUCC) along a fallthru edge.
3781 We will update dominators here only when we'll get
3782 an unreachable block when redirecting, otherwise
3783 sel_redirect_edge_and_branch will take care of it. */
3784 if (e->dest != bb
3785 && single_pred_p (e->dest))
3786 dom_bbs.safe_push (e->dest);
3787 sel_redirect_edge_and_branch (e, succ_bb);
3788 rescan_p = true;
3789 break;
3791 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3792 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3793 still have to adjust it. */
3794 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3796 /* If possible, try to remove the unneeded conditional jump. */
3797 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3798 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3800 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3801 tidy_fallthru_edge (e);
3803 else
3804 sel_redirect_edge_and_branch (e, succ_bb);
3805 rescan_p = true;
3806 break;
3811 if (can_merge_blocks_p (bb->prev_bb, bb))
3812 sel_merge_blocks (bb->prev_bb, bb);
3813 else
3815 /* This is a block without fallthru predecessor. Just delete it. */
3816 gcc_assert (note_bb);
3817 move_bb_info (note_bb, bb);
3818 remove_empty_bb (bb, true);
3821 if (!dom_bbs.is_empty ())
3823 dom_bbs.safe_push (succ_bb);
3824 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3825 dom_bbs.release ();
3828 return true;
3831 /* Tidy the control flow after we have removed original insn from
3832 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3833 is true, also try to optimize control flow on non-empty blocks. */
3834 bool
3835 tidy_control_flow (basic_block xbb, bool full_tidying)
3837 bool changed = true;
3838 insn_t first, last;
3840 /* First check whether XBB is empty. */
3841 changed = maybe_tidy_empty_bb (xbb);
3842 if (changed || !full_tidying)
3843 return changed;
3845 /* Check if there is a unnecessary jump after insn left. */
3846 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3847 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3848 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3850 /* We used to call sel_remove_insn here that can trigger tidy_control_flow
3851 before we fix up the fallthru edge. Correct that ordering by
3852 explicitly doing the latter before the former. */
3853 clear_expr (INSN_EXPR (BB_END (xbb)));
3854 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3855 if (tidy_control_flow (xbb, false))
3856 return true;
3859 first = sel_bb_head (xbb);
3860 last = sel_bb_end (xbb);
3861 if (MAY_HAVE_DEBUG_INSNS)
3863 if (first != last && DEBUG_INSN_P (first))
3865 first = NEXT_INSN (first);
3866 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3868 if (first != last && DEBUG_INSN_P (last))
3870 last = PREV_INSN (last);
3871 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3873 /* Check if there is an unnecessary jump in previous basic block leading
3874 to next basic block left after removing INSN from stream.
3875 If it is so, remove that jump and redirect edge to current
3876 basic block (where there was INSN before deletion). This way
3877 when NOP will be deleted several instructions later with its
3878 basic block we will not get a jump to next instruction, which
3879 can be harmful. */
3880 if (first == last
3881 && !sel_bb_empty_p (xbb)
3882 && INSN_NOP_P (last)
3883 /* Flow goes fallthru from current block to the next. */
3884 && EDGE_COUNT (xbb->succs) == 1
3885 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3886 /* When successor is an EXIT block, it may not be the next block. */
3887 && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
3888 /* And unconditional jump in previous basic block leads to
3889 next basic block of XBB and this jump can be safely removed. */
3890 && in_current_region_p (xbb->prev_bb)
3891 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3892 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3893 /* Also this jump is not at the scheduling boundary. */
3894 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3896 bool recompute_toporder_p;
3897 /* Clear data structures of jump - jump itself will be removed
3898 by sel_redirect_edge_and_branch. */
3899 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3900 recompute_toporder_p
3901 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3903 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3905 /* We could have skipped some debug insns which did not get removed with the block,
3906 and the seqnos could become incorrect. Fix them up here. */
3907 if (MAY_HAVE_DEBUG_INSNS && (sel_bb_head (xbb) != first || sel_bb_end (xbb) != last))
3909 if (!sel_bb_empty_p (xbb->prev_bb))
3911 int prev_seqno = INSN_SEQNO (sel_bb_end (xbb->prev_bb));
3912 if (prev_seqno > INSN_SEQNO (sel_bb_head (xbb)))
3913 for (insn_t insn = sel_bb_head (xbb); insn != first; insn = NEXT_INSN (insn))
3914 INSN_SEQNO (insn) = prev_seqno + 1;
3918 /* It can turn out that after removing unused jump, basic block
3919 that contained that jump, becomes empty too. In such case
3920 remove it too. */
3921 if (sel_bb_empty_p (xbb->prev_bb))
3922 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3923 if (recompute_toporder_p)
3924 sel_recompute_toporder ();
3927 /* TODO: use separate flag for CFG checking. */
3928 if (flag_checking)
3930 verify_backedges ();
3931 verify_dominators (CDI_DOMINATORS);
3934 return changed;
3937 /* Purge meaningless empty blocks in the middle of a region. */
3938 void
3939 purge_empty_blocks (void)
3941 int i;
3943 /* Do not attempt to delete the first basic block in the region. */
3944 for (i = 1; i < current_nr_blocks; )
3946 basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
3948 if (maybe_tidy_empty_bb (b))
3949 continue;
3951 i++;
3955 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3956 do not delete insn's data, because it will be later re-emitted.
3957 Return true if we have removed some blocks afterwards. */
3958 bool
3959 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3961 basic_block bb = BLOCK_FOR_INSN (insn);
3963 gcc_assert (INSN_IN_STREAM_P (insn));
3965 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3967 expr_t expr;
3968 av_set_iterator i;
3970 /* When we remove a debug insn that is head of a BB, it remains
3971 in the AV_SET of the block, but it shouldn't. */
3972 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3973 if (EXPR_INSN_RTX (expr) == insn)
3975 av_set_iter_remove (&i);
3976 break;
3980 if (only_disconnect)
3981 remove_insn (insn);
3982 else
3984 delete_insn (insn);
3985 clear_expr (INSN_EXPR (insn));
3988 /* It is necessary to NULL these fields in case we are going to re-insert
3989 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3990 case, but also for NOPs that we will return to the nop pool. */
3991 SET_PREV_INSN (insn) = NULL_RTX;
3992 SET_NEXT_INSN (insn) = NULL_RTX;
3993 set_block_for_insn (insn, NULL);
3995 return tidy_control_flow (bb, full_tidying);
3998 /* Estimate number of the insns in BB. */
3999 static int
4000 sel_estimate_number_of_insns (basic_block bb)
4002 int res = 0;
4003 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
4005 for (; insn != next_tail; insn = NEXT_INSN (insn))
4006 if (NONDEBUG_INSN_P (insn))
4007 res++;
4009 return res;
4012 /* We don't need separate luids for notes or labels. */
4013 static int
4014 sel_luid_for_non_insn (rtx x)
4016 gcc_assert (NOTE_P (x) || LABEL_P (x));
4018 return -1;
4021 /* Find the proper seqno for inserting at INSN by successors.
4022 Return -1 if no successors with positive seqno exist. */
4023 static int
4024 get_seqno_by_succs (rtx_insn *insn)
4026 basic_block bb = BLOCK_FOR_INSN (insn);
4027 rtx_insn *tmp = insn, *end = BB_END (bb);
4028 int seqno;
4029 insn_t succ = NULL;
4030 succ_iterator si;
4032 while (tmp != end)
4034 tmp = NEXT_INSN (tmp);
4035 if (INSN_P (tmp))
4036 return INSN_SEQNO (tmp);
4039 seqno = INT_MAX;
4041 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4042 if (INSN_SEQNO (succ) > 0)
4043 seqno = MIN (seqno, INSN_SEQNO (succ));
4045 if (seqno == INT_MAX)
4046 return -1;
4048 return seqno;
4051 /* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
4052 seqno in corner cases. */
4053 static int
4054 get_seqno_for_a_jump (insn_t insn, int old_seqno)
4056 int seqno;
4058 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4060 if (!sel_bb_head_p (insn))
4061 seqno = INSN_SEQNO (PREV_INSN (insn));
4062 else
4064 basic_block bb = BLOCK_FOR_INSN (insn);
4066 if (single_pred_p (bb)
4067 && !in_current_region_p (single_pred (bb)))
4069 /* We can have preds outside a region when splitting edges
4070 for pipelining of an outer loop. Use succ instead.
4071 There should be only one of them. */
4072 insn_t succ = NULL;
4073 succ_iterator si;
4074 bool first = true;
4076 gcc_assert (flag_sel_sched_pipelining_outer_loops
4077 && current_loop_nest);
4078 FOR_EACH_SUCC_1 (succ, si, insn,
4079 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4081 gcc_assert (first);
4082 first = false;
4085 gcc_assert (succ != NULL);
4086 seqno = INSN_SEQNO (succ);
4088 else
4090 insn_t *preds;
4091 int n;
4093 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4095 gcc_assert (n > 0);
4096 /* For one predecessor, use simple method. */
4097 if (n == 1)
4098 seqno = INSN_SEQNO (preds[0]);
4099 else
4100 seqno = get_seqno_by_preds (insn);
4102 free (preds);
4106 /* We were unable to find a good seqno among preds. */
4107 if (seqno < 0)
4108 seqno = get_seqno_by_succs (insn);
4110 if (seqno < 0)
4112 /* The only case where this could be here legally is that the only
4113 unscheduled insn was a conditional jump that got removed and turned
4114 into this unconditional one. Initialize from the old seqno
4115 of that jump passed down to here. */
4116 seqno = old_seqno;
4119 gcc_assert (seqno >= 0);
4120 return seqno;
4123 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4124 with positive seqno exist. */
4126 get_seqno_by_preds (rtx_insn *insn)
4128 basic_block bb = BLOCK_FOR_INSN (insn);
4129 rtx_insn *tmp = insn, *head = BB_HEAD (bb);
4130 insn_t *preds;
4131 int n, i, seqno;
4133 /* Loop backwards from INSN to HEAD including both. */
4134 while (1)
4136 if (INSN_P (tmp))
4137 return INSN_SEQNO (tmp);
4138 if (tmp == head)
4139 break;
4140 tmp = PREV_INSN (tmp);
4143 cfg_preds (bb, &preds, &n);
4144 for (i = 0, seqno = -1; i < n; i++)
4145 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4147 return seqno;
4152 /* Extend pass-scope data structures for basic blocks. */
4153 void
4154 sel_extend_global_bb_info (void)
4156 sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4159 /* Extend region-scope data structures for basic blocks. */
4160 static void
4161 extend_region_bb_info (void)
4163 sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4166 /* Extend all data structures to fit for all basic blocks. */
4167 static void
4168 extend_bb_info (void)
4170 sel_extend_global_bb_info ();
4171 extend_region_bb_info ();
4174 /* Finalize pass-scope data structures for basic blocks. */
4175 void
4176 sel_finish_global_bb_info (void)
4178 sel_global_bb_info.release ();
4181 /* Finalize region-scope data structures for basic blocks. */
4182 static void
4183 finish_region_bb_info (void)
4185 sel_region_bb_info.release ();
4189 /* Data for each insn in current region. */
4190 vec<sel_insn_data_def> s_i_d;
4192 /* Extend data structures for insns from current region. */
4193 static void
4194 extend_insn_data (void)
4196 int reserve;
4198 sched_extend_target ();
4199 sched_deps_init (false);
4201 /* Extend data structures for insns from current region. */
4202 reserve = (sched_max_luid + 1 - s_i_d.length ());
4203 if (reserve > 0 && ! s_i_d.space (reserve))
4205 int size;
4207 if (sched_max_luid / 2 > 1024)
4208 size = sched_max_luid + 1024;
4209 else
4210 size = 3 * sched_max_luid / 2;
4213 s_i_d.safe_grow_cleared (size);
4217 /* Finalize data structures for insns from current region. */
4218 static void
4219 finish_insns (void)
4221 unsigned i;
4223 /* Clear here all dependence contexts that may have left from insns that were
4224 removed during the scheduling. */
4225 for (i = 0; i < s_i_d.length (); i++)
4227 sel_insn_data_def *sid_entry = &s_i_d[i];
4229 if (sid_entry->live)
4230 return_regset_to_pool (sid_entry->live);
4231 if (sid_entry->analyzed_deps)
4233 BITMAP_FREE (sid_entry->analyzed_deps);
4234 BITMAP_FREE (sid_entry->found_deps);
4235 htab_delete (sid_entry->transformed_insns);
4236 free_deps (&sid_entry->deps_context);
4238 if (EXPR_VINSN (&sid_entry->expr))
4240 clear_expr (&sid_entry->expr);
4242 /* Also, clear CANT_MOVE bit here, because we really don't want it
4243 to be passed to the next region. */
4244 CANT_MOVE_BY_LUID (i) = 0;
4248 s_i_d.release ();
4251 /* A proxy to pass initialization data to init_insn (). */
4252 static sel_insn_data_def _insn_init_ssid;
4253 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4255 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4256 static bool insn_init_create_new_vinsn_p;
4258 /* Set all necessary data for initialization of the new insn[s]. */
4259 static expr_t
4260 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4262 expr_t x = &insn_init_ssid->expr;
4264 copy_expr_onside (x, expr);
4265 if (vi != NULL)
4267 insn_init_create_new_vinsn_p = false;
4268 change_vinsn_in_expr (x, vi);
4270 else
4271 insn_init_create_new_vinsn_p = true;
4273 insn_init_ssid->seqno = seqno;
4274 return x;
4277 /* Init data for INSN. */
4278 static void
4279 init_insn_data (insn_t insn)
4281 expr_t expr;
4282 sel_insn_data_t ssid = insn_init_ssid;
4284 /* The fields mentioned below are special and hence are not being
4285 propagated to the new insns. */
4286 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4287 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4288 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4290 expr = INSN_EXPR (insn);
4291 copy_expr (expr, &ssid->expr);
4292 prepare_insn_expr (insn, ssid->seqno);
4294 if (insn_init_create_new_vinsn_p)
4295 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4297 if (first_time_insn_init (insn))
4298 init_first_time_insn_data (insn);
4301 /* This is used to initialize spurious jumps generated by
4302 sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
4303 in corner cases within get_seqno_for_a_jump. */
4304 static void
4305 init_simplejump_data (insn_t insn, int old_seqno)
4307 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4308 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4309 vNULL, true, false, false,
4310 false, true);
4311 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
4312 init_first_time_insn_data (insn);
4315 /* Perform deferred initialization of insns. This is used to process
4316 a new jump that may be created by redirect_edge. OLD_SEQNO is used
4317 for initializing simplejumps in init_simplejump_data. */
4318 static void
4319 sel_init_new_insn (insn_t insn, int flags, int old_seqno)
4321 /* We create data structures for bb when the first insn is emitted in it. */
4322 if (INSN_P (insn)
4323 && INSN_IN_STREAM_P (insn)
4324 && insn_is_the_only_one_in_bb_p (insn))
4326 extend_bb_info ();
4327 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4330 if (flags & INSN_INIT_TODO_LUID)
4332 sched_extend_luids ();
4333 sched_init_insn_luid (insn);
4336 if (flags & INSN_INIT_TODO_SSID)
4338 extend_insn_data ();
4339 init_insn_data (insn);
4340 clear_expr (&insn_init_ssid->expr);
4343 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4345 extend_insn_data ();
4346 init_simplejump_data (insn, old_seqno);
4349 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4350 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4354 /* Functions to init/finish work with lv sets. */
4356 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4357 static void
4358 init_lv_set (basic_block bb)
4360 gcc_assert (!BB_LV_SET_VALID_P (bb));
4362 BB_LV_SET (bb) = get_regset_from_pool ();
4363 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4364 BB_LV_SET_VALID_P (bb) = true;
4367 /* Copy liveness information to BB from FROM_BB. */
4368 static void
4369 copy_lv_set_from (basic_block bb, basic_block from_bb)
4371 gcc_assert (!BB_LV_SET_VALID_P (bb));
4373 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4374 BB_LV_SET_VALID_P (bb) = true;
4377 /* Initialize lv set of all bb headers. */
4378 void
4379 init_lv_sets (void)
4381 basic_block bb;
4383 /* Initialize of LV sets. */
4384 FOR_EACH_BB_FN (bb, cfun)
4385 init_lv_set (bb);
4387 /* Don't forget EXIT_BLOCK. */
4388 init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4391 /* Release lv set of HEAD. */
4392 static void
4393 free_lv_set (basic_block bb)
4395 gcc_assert (BB_LV_SET (bb) != NULL);
4397 return_regset_to_pool (BB_LV_SET (bb));
4398 BB_LV_SET (bb) = NULL;
4399 BB_LV_SET_VALID_P (bb) = false;
4402 /* Finalize lv sets of all bb headers. */
4403 void
4404 free_lv_sets (void)
4406 basic_block bb;
4408 /* Don't forget EXIT_BLOCK. */
4409 free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4411 /* Free LV sets. */
4412 FOR_EACH_BB_FN (bb, cfun)
4413 if (BB_LV_SET (bb))
4414 free_lv_set (bb);
4417 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4418 compute_av() processes BB. This function is called when creating new basic
4419 blocks, as well as for blocks (either new or existing) where new jumps are
4420 created when the control flow is being updated. */
4421 static void
4422 invalidate_av_set (basic_block bb)
4424 BB_AV_LEVEL (bb) = -1;
4427 /* Create initial data sets for BB (they will be invalid). */
4428 static void
4429 create_initial_data_sets (basic_block bb)
4431 if (BB_LV_SET (bb))
4432 BB_LV_SET_VALID_P (bb) = false;
4433 else
4434 BB_LV_SET (bb) = get_regset_from_pool ();
4435 invalidate_av_set (bb);
4438 /* Free av set of BB. */
4439 static void
4440 free_av_set (basic_block bb)
4442 av_set_clear (&BB_AV_SET (bb));
4443 BB_AV_LEVEL (bb) = 0;
4446 /* Free data sets of BB. */
4447 void
4448 free_data_sets (basic_block bb)
4450 free_lv_set (bb);
4451 free_av_set (bb);
4454 /* Exchange data sets of TO and FROM. */
4455 void
4456 exchange_data_sets (basic_block to, basic_block from)
4458 /* Exchange lv sets of TO and FROM. */
4459 std::swap (BB_LV_SET (from), BB_LV_SET (to));
4460 std::swap (BB_LV_SET_VALID_P (from), BB_LV_SET_VALID_P (to));
4462 /* Exchange av sets of TO and FROM. */
4463 std::swap (BB_AV_SET (from), BB_AV_SET (to));
4464 std::swap (BB_AV_LEVEL (from), BB_AV_LEVEL (to));
4467 /* Copy data sets of FROM to TO. */
4468 void
4469 copy_data_sets (basic_block to, basic_block from)
4471 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4472 gcc_assert (BB_AV_SET (to) == NULL);
4474 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4475 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4477 if (BB_AV_SET_VALID_P (from))
4479 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4481 if (BB_LV_SET_VALID_P (from))
4483 gcc_assert (BB_LV_SET (to) != NULL);
4484 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4488 /* Return an av set for INSN, if any. */
4489 av_set_t
4490 get_av_set (insn_t insn)
4492 av_set_t av_set;
4494 gcc_assert (AV_SET_VALID_P (insn));
4496 if (sel_bb_head_p (insn))
4497 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4498 else
4499 av_set = NULL;
4501 return av_set;
4504 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4506 get_av_level (insn_t insn)
4508 int av_level;
4510 gcc_assert (INSN_P (insn));
4512 if (sel_bb_head_p (insn))
4513 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4514 else
4515 av_level = INSN_WS_LEVEL (insn);
4517 return av_level;
4522 /* Variables to work with control-flow graph. */
4524 /* The basic block that already has been processed by the sched_data_update (),
4525 but hasn't been in sel_add_bb () yet. */
4526 static vec<basic_block> last_added_blocks;
4528 /* A pool for allocating successor infos. */
4529 static struct
4531 /* A stack for saving succs_info structures. */
4532 struct succs_info *stack;
4534 /* Its size. */
4535 int size;
4537 /* Top of the stack. */
4538 int top;
4540 /* Maximal value of the top. */
4541 int max_top;
4542 } succs_info_pool;
4544 /* Functions to work with control-flow graph. */
4546 /* Return basic block note of BB. */
4547 rtx_insn *
4548 sel_bb_head (basic_block bb)
4550 rtx_insn *head;
4552 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4554 gcc_assert (exit_insn != NULL_RTX);
4555 head = exit_insn;
4557 else
4559 rtx_note *note = bb_note (bb);
4560 head = next_nonnote_insn (note);
4562 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4563 head = NULL;
4566 return head;
4569 /* Return true if INSN is a basic block header. */
4570 bool
4571 sel_bb_head_p (insn_t insn)
4573 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4576 /* Return last insn of BB. */
4577 rtx_insn *
4578 sel_bb_end (basic_block bb)
4580 if (sel_bb_empty_p (bb))
4581 return NULL;
4583 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
4585 return BB_END (bb);
4588 /* Return true if INSN is the last insn in its basic block. */
4589 bool
4590 sel_bb_end_p (insn_t insn)
4592 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4595 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4596 bool
4597 sel_bb_empty_p (basic_block bb)
4599 return sel_bb_head (bb) == NULL;
4602 /* True when BB belongs to the current scheduling region. */
4603 bool
4604 in_current_region_p (basic_block bb)
4606 if (bb->index < NUM_FIXED_BLOCKS)
4607 return false;
4609 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4612 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4613 basic_block
4614 fallthru_bb_of_jump (const rtx_insn *jump)
4616 if (!JUMP_P (jump))
4617 return NULL;
4619 if (!any_condjump_p (jump))
4620 return NULL;
4622 /* A basic block that ends with a conditional jump may still have one successor
4623 (and be followed by a barrier), we are not interested. */
4624 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4625 return NULL;
4627 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4630 /* Remove all notes from BB. */
4631 static void
4632 init_bb (basic_block bb)
4634 remove_notes (bb_note (bb), BB_END (bb));
4635 BB_NOTE_LIST (bb) = note_list;
4638 void
4639 sel_init_bbs (bb_vec_t bbs)
4641 const struct sched_scan_info_def ssi =
4643 extend_bb_info, /* extend_bb */
4644 init_bb, /* init_bb */
4645 NULL, /* extend_insn */
4646 NULL /* init_insn */
4649 sched_scan (&ssi, bbs);
4652 /* Restore notes for the whole region. */
4653 static void
4654 sel_restore_notes (void)
4656 int bb;
4657 insn_t insn;
4659 for (bb = 0; bb < current_nr_blocks; bb++)
4661 basic_block first, last;
4663 first = EBB_FIRST_BB (bb);
4664 last = EBB_LAST_BB (bb)->next_bb;
4668 note_list = BB_NOTE_LIST (first);
4669 restore_other_notes (NULL, first);
4670 BB_NOTE_LIST (first) = NULL;
4672 FOR_BB_INSNS (first, insn)
4673 if (NONDEBUG_INSN_P (insn))
4674 reemit_notes (insn);
4676 first = first->next_bb;
4678 while (first != last);
4682 /* Free per-bb data structures. */
4683 void
4684 sel_finish_bbs (void)
4686 sel_restore_notes ();
4688 /* Remove current loop preheader from this loop. */
4689 if (current_loop_nest)
4690 sel_remove_loop_preheader ();
4692 finish_region_bb_info ();
4695 /* Return true if INSN has a single successor of type FLAGS. */
4696 bool
4697 sel_insn_has_single_succ_p (insn_t insn, int flags)
4699 insn_t succ;
4700 succ_iterator si;
4701 bool first_p = true;
4703 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4705 if (first_p)
4706 first_p = false;
4707 else
4708 return false;
4711 return true;
4714 /* Allocate successor's info. */
4715 static struct succs_info *
4716 alloc_succs_info (void)
4718 if (succs_info_pool.top == succs_info_pool.max_top)
4720 int i;
4722 if (++succs_info_pool.max_top >= succs_info_pool.size)
4723 gcc_unreachable ();
4725 i = ++succs_info_pool.top;
4726 succs_info_pool.stack[i].succs_ok.create (10);
4727 succs_info_pool.stack[i].succs_other.create (10);
4728 succs_info_pool.stack[i].probs_ok.create (10);
4730 else
4731 succs_info_pool.top++;
4733 return &succs_info_pool.stack[succs_info_pool.top];
4736 /* Free successor's info. */
4737 void
4738 free_succs_info (struct succs_info * sinfo)
4740 gcc_assert (succs_info_pool.top >= 0
4741 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4742 succs_info_pool.top--;
4744 /* Clear stale info. */
4745 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4746 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4747 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4748 sinfo->all_prob = 0;
4749 sinfo->succs_ok_n = 0;
4750 sinfo->all_succs_n = 0;
4753 /* Compute successor info for INSN. FLAGS are the flags passed
4754 to the FOR_EACH_SUCC_1 iterator. */
4755 struct succs_info *
4756 compute_succs_info (insn_t insn, short flags)
4758 succ_iterator si;
4759 insn_t succ;
4760 struct succs_info *sinfo = alloc_succs_info ();
4762 /* Traverse *all* successors and decide what to do with each. */
4763 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4765 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4766 perform code motion through inner loops. */
4767 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4769 if (current_flags & flags)
4771 sinfo->succs_ok.safe_push (succ);
4772 sinfo->probs_ok.safe_push (
4773 /* FIXME: Improve calculation when skipping
4774 inner loop to exits. */
4775 si.bb_end
4776 ? (si.e1->probability.initialized_p ()
4777 ? si.e1->probability.to_reg_br_prob_base ()
4778 : 0)
4779 : REG_BR_PROB_BASE);
4780 sinfo->succs_ok_n++;
4782 else
4783 sinfo->succs_other.safe_push (succ);
4785 /* Compute all_prob. */
4786 if (!si.bb_end)
4787 sinfo->all_prob = REG_BR_PROB_BASE;
4788 else if (si.e1->probability.initialized_p ())
4789 sinfo->all_prob += si.e1->probability.to_reg_br_prob_base ();
4791 sinfo->all_succs_n++;
4794 return sinfo;
4797 /* Return the predecessors of BB in PREDS and their number in N.
4798 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4799 static void
4800 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4802 edge e;
4803 edge_iterator ei;
4805 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4807 FOR_EACH_EDGE (e, ei, bb->preds)
4809 basic_block pred_bb = e->src;
4810 insn_t bb_end = BB_END (pred_bb);
4812 if (!in_current_region_p (pred_bb))
4814 gcc_assert (flag_sel_sched_pipelining_outer_loops
4815 && current_loop_nest);
4816 continue;
4819 if (sel_bb_empty_p (pred_bb))
4820 cfg_preds_1 (pred_bb, preds, n, size);
4821 else
4823 if (*n == *size)
4824 *preds = XRESIZEVEC (insn_t, *preds,
4825 (*size = 2 * *size + 1));
4826 (*preds)[(*n)++] = bb_end;
4830 gcc_assert (*n != 0
4831 || (flag_sel_sched_pipelining_outer_loops
4832 && current_loop_nest));
4835 /* Find all predecessors of BB and record them in PREDS and their number
4836 in N. Empty blocks are skipped, and only normal (forward in-region)
4837 edges are processed. */
4838 static void
4839 cfg_preds (basic_block bb, insn_t **preds, int *n)
4841 int size = 0;
4843 *preds = NULL;
4844 *n = 0;
4845 cfg_preds_1 (bb, preds, n, &size);
4848 /* Returns true if we are moving INSN through join point. */
4849 bool
4850 sel_num_cfg_preds_gt_1 (insn_t insn)
4852 basic_block bb;
4854 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4855 return false;
4857 bb = BLOCK_FOR_INSN (insn);
4859 while (1)
4861 if (EDGE_COUNT (bb->preds) > 1)
4862 return true;
4864 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4865 bb = EDGE_PRED (bb, 0)->src;
4867 if (!sel_bb_empty_p (bb))
4868 break;
4871 return false;
4874 /* Returns true when BB should be the end of an ebb. Adapted from the
4875 code in sched-ebb.c. */
4876 bool
4877 bb_ends_ebb_p (basic_block bb)
4879 basic_block next_bb = bb_next_bb (bb);
4880 edge e;
4882 if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4883 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4884 || (LABEL_P (BB_HEAD (next_bb))
4885 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4886 Work around that. */
4887 && !single_pred_p (next_bb)))
4888 return true;
4890 if (!in_current_region_p (next_bb))
4891 return true;
4893 e = find_fallthru_edge (bb->succs);
4894 if (e)
4896 gcc_assert (e->dest == next_bb);
4898 return false;
4901 return true;
4904 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4905 successor of INSN. */
4906 bool
4907 in_same_ebb_p (insn_t insn, insn_t succ)
4909 basic_block ptr = BLOCK_FOR_INSN (insn);
4911 for (;;)
4913 if (ptr == BLOCK_FOR_INSN (succ))
4914 return true;
4916 if (bb_ends_ebb_p (ptr))
4917 return false;
4919 ptr = bb_next_bb (ptr);
4922 gcc_unreachable ();
4923 return false;
4926 /* Recomputes the reverse topological order for the function and
4927 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4928 modified appropriately. */
4929 static void
4930 recompute_rev_top_order (void)
4932 int *postorder;
4933 int n_blocks, i;
4935 if (!rev_top_order_index
4936 || rev_top_order_index_len < last_basic_block_for_fn (cfun))
4938 rev_top_order_index_len = last_basic_block_for_fn (cfun);
4939 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4940 rev_top_order_index_len);
4943 postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
4945 n_blocks = post_order_compute (postorder, true, false);
4946 gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
4948 /* Build reverse function: for each basic block with BB->INDEX == K
4949 rev_top_order_index[K] is it's reverse topological sort number. */
4950 for (i = 0; i < n_blocks; i++)
4952 gcc_assert (postorder[i] < rev_top_order_index_len);
4953 rev_top_order_index[postorder[i]] = i;
4956 free (postorder);
4959 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4960 void
4961 clear_outdated_rtx_info (basic_block bb)
4963 rtx_insn *insn;
4965 FOR_BB_INSNS (bb, insn)
4966 if (INSN_P (insn))
4968 SCHED_GROUP_P (insn) = 0;
4969 INSN_AFTER_STALL_P (insn) = 0;
4970 INSN_SCHED_TIMES (insn) = 0;
4971 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4973 /* We cannot use the changed caches, as previously we could ignore
4974 the LHS dependence due to enabled renaming and transform
4975 the expression, and currently we'll be unable to do this. */
4976 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4980 /* Add BB_NOTE to the pool of available basic block notes. */
4981 static void
4982 return_bb_to_pool (basic_block bb)
4984 rtx_note *note = bb_note (bb);
4986 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4987 && bb->aux == NULL);
4989 /* It turns out that current cfg infrastructure does not support
4990 reuse of basic blocks. Don't bother for now. */
4991 /*bb_note_pool.safe_push (note);*/
4994 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4995 static rtx_note *
4996 get_bb_note_from_pool (void)
4998 if (bb_note_pool.is_empty ())
4999 return NULL;
5000 else
5002 rtx_note *note = bb_note_pool.pop ();
5004 SET_PREV_INSN (note) = NULL_RTX;
5005 SET_NEXT_INSN (note) = NULL_RTX;
5007 return note;
5011 /* Free bb_note_pool. */
5012 void
5013 free_bb_note_pool (void)
5015 bb_note_pool.release ();
5018 /* Setup scheduler pool and successor structure. */
5019 void
5020 alloc_sched_pools (void)
5022 int succs_size;
5024 succs_size = MAX_WS + 1;
5025 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
5026 succs_info_pool.size = succs_size;
5027 succs_info_pool.top = -1;
5028 succs_info_pool.max_top = -1;
5031 /* Free the pools. */
5032 void
5033 free_sched_pools (void)
5035 int i;
5037 sched_lists_pool.release ();
5038 gcc_assert (succs_info_pool.top == -1);
5039 for (i = 0; i <= succs_info_pool.max_top; i++)
5041 succs_info_pool.stack[i].succs_ok.release ();
5042 succs_info_pool.stack[i].succs_other.release ();
5043 succs_info_pool.stack[i].probs_ok.release ();
5045 free (succs_info_pool.stack);
5049 /* Returns a position in RGN where BB can be inserted retaining
5050 topological order. */
5051 static int
5052 find_place_to_insert_bb (basic_block bb, int rgn)
5054 bool has_preds_outside_rgn = false;
5055 edge e;
5056 edge_iterator ei;
5058 /* Find whether we have preds outside the region. */
5059 FOR_EACH_EDGE (e, ei, bb->preds)
5060 if (!in_current_region_p (e->src))
5062 has_preds_outside_rgn = true;
5063 break;
5066 /* Recompute the top order -- needed when we have > 1 pred
5067 and in case we don't have preds outside. */
5068 if (flag_sel_sched_pipelining_outer_loops
5069 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5071 int i, bbi = bb->index, cur_bbi;
5073 recompute_rev_top_order ();
5074 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5076 cur_bbi = BB_TO_BLOCK (i);
5077 if (rev_top_order_index[bbi]
5078 < rev_top_order_index[cur_bbi])
5079 break;
5082 /* We skipped the right block, so we increase i. We accommodate
5083 it for increasing by step later, so we decrease i. */
5084 return (i + 1) - 1;
5086 else if (has_preds_outside_rgn)
5088 /* This is the case when we generate an extra empty block
5089 to serve as region head during pipelining. */
5090 e = EDGE_SUCC (bb, 0);
5091 gcc_assert (EDGE_COUNT (bb->succs) == 1
5092 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5093 && (BLOCK_TO_BB (e->dest->index) == 0));
5094 return -1;
5097 /* We don't have preds outside the region. We should have
5098 the only pred, because the multiple preds case comes from
5099 the pipelining of outer loops, and that is handled above.
5100 Just take the bbi of this single pred. */
5101 if (EDGE_COUNT (bb->succs) > 0)
5103 int pred_bbi;
5105 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5107 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5108 return BLOCK_TO_BB (pred_bbi);
5110 else
5111 /* BB has no successors. It is safe to put it in the end. */
5112 return current_nr_blocks - 1;
5115 /* Deletes an empty basic block freeing its data. */
5116 static void
5117 delete_and_free_basic_block (basic_block bb)
5119 gcc_assert (sel_bb_empty_p (bb));
5121 if (BB_LV_SET (bb))
5122 free_lv_set (bb);
5124 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5126 /* Can't assert av_set properties because we use sel_aremove_bb
5127 when removing loop preheader from the region. At the point of
5128 removing the preheader we already have deallocated sel_region_bb_info. */
5129 gcc_assert (BB_LV_SET (bb) == NULL
5130 && !BB_LV_SET_VALID_P (bb)
5131 && BB_AV_LEVEL (bb) == 0
5132 && BB_AV_SET (bb) == NULL);
5134 delete_basic_block (bb);
5137 /* Add BB to the current region and update the region data. */
5138 static void
5139 add_block_to_current_region (basic_block bb)
5141 int i, pos, bbi = -2, rgn;
5143 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5144 bbi = find_place_to_insert_bb (bb, rgn);
5145 bbi += 1;
5146 pos = RGN_BLOCKS (rgn) + bbi;
5148 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5149 && ebb_head[bbi] == pos);
5151 /* Make a place for the new block. */
5152 extend_regions ();
5154 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5155 BLOCK_TO_BB (rgn_bb_table[i])++;
5157 memmove (rgn_bb_table + pos + 1,
5158 rgn_bb_table + pos,
5159 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5161 /* Initialize data for BB. */
5162 rgn_bb_table[pos] = bb->index;
5163 BLOCK_TO_BB (bb->index) = bbi;
5164 CONTAINING_RGN (bb->index) = rgn;
5166 RGN_NR_BLOCKS (rgn)++;
5168 for (i = rgn + 1; i <= nr_regions; i++)
5169 RGN_BLOCKS (i)++;
5172 /* Remove BB from the current region and update the region data. */
5173 static void
5174 remove_bb_from_region (basic_block bb)
5176 int i, pos, bbi = -2, rgn;
5178 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5179 bbi = BLOCK_TO_BB (bb->index);
5180 pos = RGN_BLOCKS (rgn) + bbi;
5182 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5183 && ebb_head[bbi] == pos);
5185 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5186 BLOCK_TO_BB (rgn_bb_table[i])--;
5188 memmove (rgn_bb_table + pos,
5189 rgn_bb_table + pos + 1,
5190 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5192 RGN_NR_BLOCKS (rgn)--;
5193 for (i = rgn + 1; i <= nr_regions; i++)
5194 RGN_BLOCKS (i)--;
5197 /* Add BB to the current region and update all data. If BB is NULL, add all
5198 blocks from last_added_blocks vector. */
5199 static void
5200 sel_add_bb (basic_block bb)
5202 /* Extend luids so that new notes will receive zero luids. */
5203 sched_extend_luids ();
5204 sched_init_bbs ();
5205 sel_init_bbs (last_added_blocks);
5207 /* When bb is passed explicitly, the vector should contain
5208 the only element that equals to bb; otherwise, the vector
5209 should not be NULL. */
5210 gcc_assert (last_added_blocks.exists ());
5212 if (bb != NULL)
5214 gcc_assert (last_added_blocks.length () == 1
5215 && last_added_blocks[0] == bb);
5216 add_block_to_current_region (bb);
5218 /* We associate creating/deleting data sets with the first insn
5219 appearing / disappearing in the bb. */
5220 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5221 create_initial_data_sets (bb);
5223 last_added_blocks.release ();
5225 else
5226 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5228 int i;
5229 basic_block temp_bb = NULL;
5231 for (i = 0;
5232 last_added_blocks.iterate (i, &bb); i++)
5234 add_block_to_current_region (bb);
5235 temp_bb = bb;
5238 /* We need to fetch at least one bb so we know the region
5239 to update. */
5240 gcc_assert (temp_bb != NULL);
5241 bb = temp_bb;
5243 last_added_blocks.release ();
5246 rgn_setup_region (CONTAINING_RGN (bb->index));
5249 /* Remove BB from the current region and update all data.
5250 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5251 static void
5252 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5254 unsigned idx = bb->index;
5256 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5258 remove_bb_from_region (bb);
5259 return_bb_to_pool (bb);
5260 bitmap_clear_bit (blocks_to_reschedule, idx);
5262 if (remove_from_cfg_p)
5264 basic_block succ = single_succ (bb);
5265 delete_and_free_basic_block (bb);
5266 set_immediate_dominator (CDI_DOMINATORS, succ,
5267 recompute_dominator (CDI_DOMINATORS, succ));
5270 rgn_setup_region (CONTAINING_RGN (idx));
5273 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5274 static void
5275 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5277 if (in_current_region_p (merge_bb))
5278 concat_note_lists (BB_NOTE_LIST (empty_bb),
5279 &BB_NOTE_LIST (merge_bb));
5280 BB_NOTE_LIST (empty_bb) = NULL;
5284 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5285 region, but keep it in CFG. */
5286 static void
5287 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5289 /* The block should contain just a note or a label.
5290 We try to check whether it is unused below. */
5291 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5292 || LABEL_P (BB_HEAD (empty_bb)));
5294 /* If basic block has predecessors or successors, redirect them. */
5295 if (remove_from_cfg_p
5296 && (EDGE_COUNT (empty_bb->preds) > 0
5297 || EDGE_COUNT (empty_bb->succs) > 0))
5299 basic_block pred;
5300 basic_block succ;
5302 /* We need to init PRED and SUCC before redirecting edges. */
5303 if (EDGE_COUNT (empty_bb->preds) > 0)
5305 edge e;
5307 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5309 e = EDGE_PRED (empty_bb, 0);
5310 gcc_assert (e->src == empty_bb->prev_bb
5311 && (e->flags & EDGE_FALLTHRU));
5313 pred = empty_bb->prev_bb;
5315 else
5316 pred = NULL;
5318 if (EDGE_COUNT (empty_bb->succs) > 0)
5320 /* We do not check fallthruness here as above, because
5321 after removing a jump the edge may actually be not fallthru. */
5322 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5323 succ = EDGE_SUCC (empty_bb, 0)->dest;
5325 else
5326 succ = NULL;
5328 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5330 edge e = EDGE_PRED (empty_bb, 0);
5332 if (e->flags & EDGE_FALLTHRU)
5333 redirect_edge_succ_nodup (e, succ);
5334 else
5335 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5338 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5340 edge e = EDGE_SUCC (empty_bb, 0);
5342 if (find_edge (pred, e->dest) == NULL)
5343 redirect_edge_pred (e, pred);
5347 /* Finish removing. */
5348 sel_remove_bb (empty_bb, remove_from_cfg_p);
5351 /* An implementation of create_basic_block hook, which additionally updates
5352 per-bb data structures. */
5353 static basic_block
5354 sel_create_basic_block (void *headp, void *endp, basic_block after)
5356 basic_block new_bb;
5357 rtx_note *new_bb_note;
5359 gcc_assert (flag_sel_sched_pipelining_outer_loops
5360 || !last_added_blocks.exists ());
5362 new_bb_note = get_bb_note_from_pool ();
5364 if (new_bb_note == NULL_RTX)
5365 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5366 else
5368 new_bb = create_basic_block_structure ((rtx_insn *) headp,
5369 (rtx_insn *) endp,
5370 new_bb_note, after);
5371 new_bb->aux = NULL;
5374 last_added_blocks.safe_push (new_bb);
5376 return new_bb;
5379 /* Implement sched_init_only_bb (). */
5380 static void
5381 sel_init_only_bb (basic_block bb, basic_block after)
5383 gcc_assert (after == NULL);
5385 extend_regions ();
5386 rgn_make_new_region_out_of_new_block (bb);
5389 /* Update the latch when we've splitted or merged it from FROM block to TO.
5390 This should be checked for all outer loops, too. */
5391 static void
5392 change_loops_latches (basic_block from, basic_block to)
5394 gcc_assert (from != to);
5396 if (current_loop_nest)
5398 class loop *loop;
5400 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5401 if (considered_for_pipelining_p (loop) && loop->latch == from)
5403 gcc_assert (loop == current_loop_nest);
5404 loop->latch = to;
5405 gcc_assert (loop_latch_edge (loop));
5410 /* Splits BB on two basic blocks, adding it to the region and extending
5411 per-bb data structures. Returns the newly created bb. */
5412 static basic_block
5413 sel_split_block (basic_block bb, rtx after)
5415 basic_block new_bb;
5416 insn_t insn;
5418 new_bb = sched_split_block_1 (bb, after);
5419 sel_add_bb (new_bb);
5421 /* This should be called after sel_add_bb, because this uses
5422 CONTAINING_RGN for the new block, which is not yet initialized.
5423 FIXME: this function may be a no-op now. */
5424 change_loops_latches (bb, new_bb);
5426 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5427 FOR_BB_INSNS (new_bb, insn)
5428 if (INSN_P (insn))
5429 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5431 if (sel_bb_empty_p (bb))
5433 gcc_assert (!sel_bb_empty_p (new_bb));
5435 /* NEW_BB has data sets that need to be updated and BB holds
5436 data sets that should be removed. Exchange these data sets
5437 so that we won't lose BB's valid data sets. */
5438 exchange_data_sets (new_bb, bb);
5439 free_data_sets (bb);
5442 if (!sel_bb_empty_p (new_bb)
5443 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5444 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5446 return new_bb;
5449 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5450 Otherwise returns NULL. */
5451 static rtx_insn *
5452 check_for_new_jump (basic_block bb, int prev_max_uid)
5454 rtx_insn *end;
5456 end = sel_bb_end (bb);
5457 if (end && INSN_UID (end) >= prev_max_uid)
5458 return end;
5459 return NULL;
5462 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5463 New means having UID at least equal to PREV_MAX_UID. */
5464 static rtx_insn *
5465 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5467 rtx_insn *jump;
5469 /* Return immediately if no new insns were emitted. */
5470 if (get_max_uid () == prev_max_uid)
5471 return NULL;
5473 /* Now check both blocks for new jumps. It will ever be only one. */
5474 if ((jump = check_for_new_jump (from, prev_max_uid)))
5475 return jump;
5477 if (jump_bb != NULL
5478 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5479 return jump;
5480 return NULL;
5483 /* Splits E and adds the newly created basic block to the current region.
5484 Returns this basic block. */
5485 basic_block
5486 sel_split_edge (edge e)
5488 basic_block new_bb, src, other_bb = NULL;
5489 int prev_max_uid;
5490 rtx_insn *jump;
5492 src = e->src;
5493 prev_max_uid = get_max_uid ();
5494 new_bb = split_edge (e);
5496 if (flag_sel_sched_pipelining_outer_loops
5497 && current_loop_nest)
5499 int i;
5500 basic_block bb;
5502 /* Some of the basic blocks might not have been added to the loop.
5503 Add them here, until this is fixed in force_fallthru. */
5504 for (i = 0;
5505 last_added_blocks.iterate (i, &bb); i++)
5506 if (!bb->loop_father)
5508 add_bb_to_loop (bb, e->dest->loop_father);
5510 gcc_assert (!other_bb && (new_bb->index != bb->index));
5511 other_bb = bb;
5515 /* Add all last_added_blocks to the region. */
5516 sel_add_bb (NULL);
5518 jump = find_new_jump (src, new_bb, prev_max_uid);
5519 if (jump)
5520 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5522 /* Put the correct lv set on this block. */
5523 if (other_bb && !sel_bb_empty_p (other_bb))
5524 compute_live (sel_bb_head (other_bb));
5526 return new_bb;
5529 /* Implement sched_create_empty_bb (). */
5530 static basic_block
5531 sel_create_empty_bb (basic_block after)
5533 basic_block new_bb;
5535 new_bb = sched_create_empty_bb_1 (after);
5537 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5538 later. */
5539 gcc_assert (last_added_blocks.length () == 1
5540 && last_added_blocks[0] == new_bb);
5542 last_added_blocks.release ();
5543 return new_bb;
5546 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5547 will be splitted to insert a check. */
5548 basic_block
5549 sel_create_recovery_block (insn_t orig_insn)
5551 basic_block first_bb, second_bb, recovery_block;
5552 basic_block before_recovery = NULL;
5553 rtx_insn *jump;
5555 first_bb = BLOCK_FOR_INSN (orig_insn);
5556 if (sel_bb_end_p (orig_insn))
5558 /* Avoid introducing an empty block while splitting. */
5559 gcc_assert (single_succ_p (first_bb));
5560 second_bb = single_succ (first_bb);
5562 else
5563 second_bb = sched_split_block (first_bb, orig_insn);
5565 recovery_block = sched_create_recovery_block (&before_recovery);
5566 if (before_recovery)
5567 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
5569 gcc_assert (sel_bb_empty_p (recovery_block));
5570 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5571 if (current_loops != NULL)
5572 add_bb_to_loop (recovery_block, first_bb->loop_father);
5574 sel_add_bb (recovery_block);
5576 jump = BB_END (recovery_block);
5577 gcc_assert (sel_bb_head (recovery_block) == jump);
5578 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5580 return recovery_block;
5583 /* Merge basic block B into basic block A. */
5584 static void
5585 sel_merge_blocks (basic_block a, basic_block b)
5587 gcc_assert (sel_bb_empty_p (b)
5588 && EDGE_COUNT (b->preds) == 1
5589 && EDGE_PRED (b, 0)->src == b->prev_bb);
5591 move_bb_info (b->prev_bb, b);
5592 remove_empty_bb (b, false);
5593 merge_blocks (a, b);
5594 change_loops_latches (b, a);
5597 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5598 data structures for possibly created bb and insns. */
5599 void
5600 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5602 basic_block jump_bb, src, orig_dest = e->dest;
5603 int prev_max_uid;
5604 rtx_insn *jump;
5605 int old_seqno = -1;
5607 /* This function is now used only for bookkeeping code creation, where
5608 we'll never get the single pred of orig_dest block and thus will not
5609 hit unreachable blocks when updating dominator info. */
5610 gcc_assert (!sel_bb_empty_p (e->src)
5611 && !single_pred_p (orig_dest));
5612 src = e->src;
5613 prev_max_uid = get_max_uid ();
5614 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5615 when the conditional jump being redirected may become unconditional. */
5616 if (any_condjump_p (BB_END (src))
5617 && INSN_SEQNO (BB_END (src)) >= 0)
5618 old_seqno = INSN_SEQNO (BB_END (src));
5620 jump_bb = redirect_edge_and_branch_force (e, to);
5621 if (jump_bb != NULL)
5622 sel_add_bb (jump_bb);
5624 /* This function could not be used to spoil the loop structure by now,
5625 thus we don't care to update anything. But check it to be sure. */
5626 if (current_loop_nest
5627 && pipelining_p)
5628 gcc_assert (loop_latch_edge (current_loop_nest));
5630 jump = find_new_jump (src, jump_bb, prev_max_uid);
5631 if (jump)
5632 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5633 old_seqno);
5634 set_immediate_dominator (CDI_DOMINATORS, to,
5635 recompute_dominator (CDI_DOMINATORS, to));
5636 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5637 recompute_dominator (CDI_DOMINATORS, orig_dest));
5638 if (jump && sel_bb_head_p (jump))
5639 compute_live (jump);
5642 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5643 redirected edge are in reverse topological order. */
5644 bool
5645 sel_redirect_edge_and_branch (edge e, basic_block to)
5647 bool latch_edge_p;
5648 basic_block src, orig_dest = e->dest;
5649 int prev_max_uid;
5650 rtx_insn *jump;
5651 edge redirected;
5652 bool recompute_toporder_p = false;
5653 bool maybe_unreachable = single_pred_p (orig_dest);
5654 int old_seqno = -1;
5656 latch_edge_p = (pipelining_p
5657 && current_loop_nest
5658 && e == loop_latch_edge (current_loop_nest));
5660 src = e->src;
5661 prev_max_uid = get_max_uid ();
5663 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5664 when the conditional jump being redirected may become unconditional. */
5665 if (any_condjump_p (BB_END (src))
5666 && INSN_SEQNO (BB_END (src)) >= 0)
5667 old_seqno = INSN_SEQNO (BB_END (src));
5669 redirected = redirect_edge_and_branch (e, to);
5671 gcc_assert (redirected && !last_added_blocks.exists ());
5673 /* When we've redirected a latch edge, update the header. */
5674 if (latch_edge_p)
5676 current_loop_nest->header = to;
5677 gcc_assert (loop_latch_edge (current_loop_nest));
5680 /* In rare situations, the topological relation between the blocks connected
5681 by the redirected edge can change (see PR42245 for an example). Update
5682 block_to_bb/bb_to_block. */
5683 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5684 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5685 recompute_toporder_p = true;
5687 jump = find_new_jump (src, NULL, prev_max_uid);
5688 if (jump)
5689 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
5691 /* Only update dominator info when we don't have unreachable blocks.
5692 Otherwise we'll update in maybe_tidy_empty_bb. */
5693 if (!maybe_unreachable)
5695 set_immediate_dominator (CDI_DOMINATORS, to,
5696 recompute_dominator (CDI_DOMINATORS, to));
5697 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5698 recompute_dominator (CDI_DOMINATORS, orig_dest));
5700 if (jump && sel_bb_head_p (jump))
5701 compute_live (jump);
5702 return recompute_toporder_p;
5705 /* This variable holds the cfg hooks used by the selective scheduler. */
5706 static struct cfg_hooks sel_cfg_hooks;
5708 /* Register sel-sched cfg hooks. */
5709 void
5710 sel_register_cfg_hooks (void)
5712 sched_split_block = sel_split_block;
5714 orig_cfg_hooks = get_cfg_hooks ();
5715 sel_cfg_hooks = orig_cfg_hooks;
5717 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5719 set_cfg_hooks (sel_cfg_hooks);
5721 sched_init_only_bb = sel_init_only_bb;
5722 sched_split_block = sel_split_block;
5723 sched_create_empty_bb = sel_create_empty_bb;
5726 /* Unregister sel-sched cfg hooks. */
5727 void
5728 sel_unregister_cfg_hooks (void)
5730 sched_create_empty_bb = NULL;
5731 sched_split_block = NULL;
5732 sched_init_only_bb = NULL;
5734 set_cfg_hooks (orig_cfg_hooks);
5738 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5739 LABEL is where this jump should be directed. */
5740 rtx_insn *
5741 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5743 rtx_insn *insn_rtx;
5745 gcc_assert (!INSN_P (pattern));
5747 start_sequence ();
5749 if (label == NULL_RTX)
5750 insn_rtx = emit_insn (pattern);
5751 else if (DEBUG_INSN_P (label))
5752 insn_rtx = emit_debug_insn (pattern);
5753 else
5755 insn_rtx = emit_jump_insn (pattern);
5756 JUMP_LABEL (insn_rtx) = label;
5757 ++LABEL_NUSES (label);
5760 end_sequence ();
5762 sched_extend_luids ();
5763 sched_extend_target ();
5764 sched_deps_init (false);
5766 /* Initialize INSN_CODE now. */
5767 recog_memoized (insn_rtx);
5768 return insn_rtx;
5771 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5772 must not be clonable. */
5773 vinsn_t
5774 create_vinsn_from_insn_rtx (rtx_insn *insn_rtx, bool force_unique_p)
5776 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5778 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5779 return vinsn_create (insn_rtx, force_unique_p);
5782 /* Create a copy of INSN_RTX. */
5783 rtx_insn *
5784 create_copy_of_insn_rtx (rtx insn_rtx)
5786 rtx_insn *res;
5787 rtx link;
5789 if (DEBUG_INSN_P (insn_rtx))
5790 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5791 insn_rtx);
5793 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5795 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5796 NULL_RTX);
5798 /* Locate the end of existing REG_NOTES in NEW_RTX. */
5799 rtx *ptail = &REG_NOTES (res);
5800 while (*ptail != NULL_RTX)
5801 ptail = &XEXP (*ptail, 1);
5803 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5804 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5805 there too, but are supposed to be sticky, so we copy them. */
5806 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5807 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5808 && REG_NOTE_KIND (link) != REG_EQUAL
5809 && REG_NOTE_KIND (link) != REG_EQUIV)
5811 *ptail = duplicate_reg_note (link);
5812 ptail = &XEXP (*ptail, 1);
5815 return res;
5818 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5819 void
5820 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5822 vinsn_detach (EXPR_VINSN (expr));
5824 EXPR_VINSN (expr) = new_vinsn;
5825 vinsn_attach (new_vinsn);
5828 /* Helpers for global init. */
5829 /* This structure is used to be able to call existing bundling mechanism
5830 and calculate insn priorities. */
5831 static struct haifa_sched_info sched_sel_haifa_sched_info =
5833 NULL, /* init_ready_list */
5834 NULL, /* can_schedule_ready_p */
5835 NULL, /* schedule_more_p */
5836 NULL, /* new_ready */
5837 NULL, /* rgn_rank */
5838 sel_print_insn, /* rgn_print_insn */
5839 contributes_to_priority,
5840 NULL, /* insn_finishes_block_p */
5842 NULL, NULL,
5843 NULL, NULL,
5844 0, 0,
5846 NULL, /* add_remove_insn */
5847 NULL, /* begin_schedule_ready */
5848 NULL, /* begin_move_insn */
5849 NULL, /* advance_target_bb */
5851 NULL,
5852 NULL,
5854 SEL_SCHED | NEW_BBS
5857 /* Setup special insns used in the scheduler. */
5858 void
5859 setup_nop_and_exit_insns (void)
5861 gcc_assert (nop_pattern == NULL_RTX
5862 && exit_insn == NULL_RTX);
5864 nop_pattern = constm1_rtx;
5866 start_sequence ();
5867 emit_insn (nop_pattern);
5868 exit_insn = get_insns ();
5869 end_sequence ();
5870 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
5873 /* Free special insns used in the scheduler. */
5874 void
5875 free_nop_and_exit_insns (void)
5877 exit_insn = NULL;
5878 nop_pattern = NULL_RTX;
5881 /* Setup a special vinsn used in new insns initialization. */
5882 void
5883 setup_nop_vinsn (void)
5885 nop_vinsn = vinsn_create (exit_insn, false);
5886 vinsn_attach (nop_vinsn);
5889 /* Free a special vinsn used in new insns initialization. */
5890 void
5891 free_nop_vinsn (void)
5893 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5894 vinsn_detach (nop_vinsn);
5895 nop_vinsn = NULL;
5898 /* Call a set_sched_flags hook. */
5899 void
5900 sel_set_sched_flags (void)
5902 /* ??? This means that set_sched_flags were called, and we decided to
5903 support speculation. However, set_sched_flags also modifies flags
5904 on current_sched_info, doing this only at global init. And we
5905 sometimes change c_s_i later. So put the correct flags again. */
5906 if (spec_info && targetm.sched.set_sched_flags)
5907 targetm.sched.set_sched_flags (spec_info);
5910 /* Setup pointers to global sched info structures. */
5911 void
5912 sel_setup_sched_infos (void)
5914 rgn_setup_common_sched_info ();
5916 memcpy (&sel_common_sched_info, common_sched_info,
5917 sizeof (sel_common_sched_info));
5919 sel_common_sched_info.fix_recovery_cfg = NULL;
5920 sel_common_sched_info.add_block = NULL;
5921 sel_common_sched_info.estimate_number_of_insns
5922 = sel_estimate_number_of_insns;
5923 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5924 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5926 common_sched_info = &sel_common_sched_info;
5928 current_sched_info = &sched_sel_haifa_sched_info;
5929 current_sched_info->sched_max_insns_priority =
5930 get_rgn_sched_max_insns_priority ();
5932 sel_set_sched_flags ();
5936 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5937 *BB_ORD_INDEX after that is increased. */
5938 static void
5939 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5941 RGN_NR_BLOCKS (rgn) += 1;
5942 RGN_DONT_CALC_DEPS (rgn) = 0;
5943 RGN_HAS_REAL_EBB (rgn) = 0;
5944 CONTAINING_RGN (bb->index) = rgn;
5945 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5946 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5947 (*bb_ord_index)++;
5949 /* FIXME: it is true only when not scheduling ebbs. */
5950 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5953 /* Functions to support pipelining of outer loops. */
5955 /* Creates a new empty region and returns it's number. */
5956 static int
5957 sel_create_new_region (void)
5959 int new_rgn_number = nr_regions;
5961 RGN_NR_BLOCKS (new_rgn_number) = 0;
5963 /* FIXME: This will work only when EBBs are not created. */
5964 if (new_rgn_number != 0)
5965 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5966 RGN_NR_BLOCKS (new_rgn_number - 1);
5967 else
5968 RGN_BLOCKS (new_rgn_number) = 0;
5970 /* Set the blocks of the next region so the other functions may
5971 calculate the number of blocks in the region. */
5972 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5973 RGN_NR_BLOCKS (new_rgn_number);
5975 nr_regions++;
5977 return new_rgn_number;
5980 /* If X has a smaller topological sort number than Y, returns -1;
5981 if greater, returns 1. */
5982 static int
5983 bb_top_order_comparator (const void *x, const void *y)
5985 basic_block bb1 = *(const basic_block *) x;
5986 basic_block bb2 = *(const basic_block *) y;
5988 gcc_assert (bb1 == bb2
5989 || rev_top_order_index[bb1->index]
5990 != rev_top_order_index[bb2->index]);
5992 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5993 bbs with greater number should go earlier. */
5994 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5995 return -1;
5996 else
5997 return 1;
6000 /* Create a region for LOOP and return its number. If we don't want
6001 to pipeline LOOP, return -1. */
6002 static int
6003 make_region_from_loop (class loop *loop)
6005 unsigned int i;
6006 int new_rgn_number = -1;
6007 class loop *inner;
6009 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6010 int bb_ord_index = 0;
6011 basic_block *loop_blocks;
6012 basic_block preheader_block;
6014 if (loop->num_nodes
6015 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
6016 return -1;
6018 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
6019 for (inner = loop->inner; inner; inner = inner->inner)
6020 if (flow_bb_inside_loop_p (inner, loop->latch))
6021 return -1;
6023 loop->ninsns = num_loop_insns (loop);
6024 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
6025 return -1;
6027 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
6029 for (i = 0; i < loop->num_nodes; i++)
6030 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
6032 free (loop_blocks);
6033 return -1;
6036 preheader_block = loop_preheader_edge (loop)->src;
6037 gcc_assert (preheader_block);
6038 gcc_assert (loop_blocks[0] == loop->header);
6040 new_rgn_number = sel_create_new_region ();
6042 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6043 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
6045 for (i = 0; i < loop->num_nodes; i++)
6047 /* Add only those blocks that haven't been scheduled in the inner loop.
6048 The exception is the basic blocks with bookkeeping code - they should
6049 be added to the region (and they actually don't belong to the loop
6050 body, but to the region containing that loop body). */
6052 gcc_assert (new_rgn_number >= 0);
6054 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6056 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6057 new_rgn_number);
6058 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6062 free (loop_blocks);
6063 MARK_LOOP_FOR_PIPELINING (loop);
6065 return new_rgn_number;
6068 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6069 void
6070 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6072 unsigned int i;
6073 int new_rgn_number = -1;
6074 basic_block bb;
6076 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6077 int bb_ord_index = 0;
6079 new_rgn_number = sel_create_new_region ();
6081 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6083 gcc_assert (new_rgn_number >= 0);
6085 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6088 vec_free (loop_blocks);
6092 /* Create region(s) from loop nest LOOP, such that inner loops will be
6093 pipelined before outer loops. Returns true when a region for LOOP
6094 is created. */
6095 static bool
6096 make_regions_from_loop_nest (class loop *loop)
6098 class loop *cur_loop;
6099 int rgn_number;
6101 /* Traverse all inner nodes of the loop. */
6102 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6103 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6104 return false;
6106 /* At this moment all regular inner loops should have been pipelined.
6107 Try to create a region from this loop. */
6108 rgn_number = make_region_from_loop (loop);
6110 if (rgn_number < 0)
6111 return false;
6113 loop_nests.safe_push (loop);
6114 return true;
6117 /* Initalize data structures needed. */
6118 void
6119 sel_init_pipelining (void)
6121 /* Collect loop information to be used in outer loops pipelining. */
6122 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6123 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6124 | LOOPS_HAVE_RECORDED_EXITS
6125 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6126 current_loop_nest = NULL;
6128 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
6129 bitmap_clear (bbs_in_loop_rgns);
6131 recompute_rev_top_order ();
6134 /* Returns a class loop for region RGN. */
6135 loop_p
6136 get_loop_nest_for_rgn (unsigned int rgn)
6138 /* Regions created with extend_rgns don't have corresponding loop nests,
6139 because they don't represent loops. */
6140 if (rgn < loop_nests.length ())
6141 return loop_nests[rgn];
6142 else
6143 return NULL;
6146 /* True when LOOP was included into pipelining regions. */
6147 bool
6148 considered_for_pipelining_p (class loop *loop)
6150 if (loop_depth (loop) == 0)
6151 return false;
6153 /* Now, the loop could be too large or irreducible. Check whether its
6154 region is in LOOP_NESTS.
6155 We determine the region number of LOOP as the region number of its
6156 latch. We can't use header here, because this header could be
6157 just removed preheader and it will give us the wrong region number.
6158 Latch can't be used because it could be in the inner loop too. */
6159 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6161 int rgn = CONTAINING_RGN (loop->latch->index);
6163 gcc_assert ((unsigned) rgn < loop_nests.length ());
6164 return true;
6167 return false;
6170 /* Makes regions from the rest of the blocks, after loops are chosen
6171 for pipelining. */
6172 static void
6173 make_regions_from_the_rest (void)
6175 int cur_rgn_blocks;
6176 int *loop_hdr;
6177 int i;
6179 basic_block bb;
6180 edge e;
6181 edge_iterator ei;
6182 int *degree;
6184 /* Index in rgn_bb_table where to start allocating new regions. */
6185 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6187 /* Make regions from all the rest basic blocks - those that don't belong to
6188 any loop or belong to irreducible loops. Prepare the data structures
6189 for extend_rgns. */
6191 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6192 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6193 loop. */
6194 loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6195 degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6198 /* For each basic block that belongs to some loop assign the number
6199 of innermost loop it belongs to. */
6200 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
6201 loop_hdr[i] = -1;
6203 FOR_EACH_BB_FN (bb, cfun)
6205 if (bb->loop_father && bb->loop_father->num != 0
6206 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6207 loop_hdr[bb->index] = bb->loop_father->num;
6210 /* For each basic block degree is calculated as the number of incoming
6211 edges, that are going out of bbs that are not yet scheduled.
6212 The basic blocks that are scheduled have degree value of zero. */
6213 FOR_EACH_BB_FN (bb, cfun)
6215 degree[bb->index] = 0;
6217 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6219 FOR_EACH_EDGE (e, ei, bb->preds)
6220 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6221 degree[bb->index]++;
6223 else
6224 degree[bb->index] = -1;
6227 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6229 /* Any block that did not end up in a region is placed into a region
6230 by itself. */
6231 FOR_EACH_BB_FN (bb, cfun)
6232 if (degree[bb->index] >= 0)
6234 rgn_bb_table[cur_rgn_blocks] = bb->index;
6235 RGN_NR_BLOCKS (nr_regions) = 1;
6236 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6237 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6238 RGN_HAS_REAL_EBB (nr_regions) = 0;
6239 CONTAINING_RGN (bb->index) = nr_regions++;
6240 BLOCK_TO_BB (bb->index) = 0;
6243 free (degree);
6244 free (loop_hdr);
6247 /* Free data structures used in pipelining of loops. */
6248 void sel_finish_pipelining (void)
6250 class loop *loop;
6252 /* Release aux fields so we don't free them later by mistake. */
6253 FOR_EACH_LOOP (loop, 0)
6254 loop->aux = NULL;
6256 loop_optimizer_finalize ();
6258 loop_nests.release ();
6260 free (rev_top_order_index);
6261 rev_top_order_index = NULL;
6264 /* This function replaces the find_rgns when
6265 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6266 void
6267 sel_find_rgns (void)
6269 sel_init_pipelining ();
6270 extend_regions ();
6272 if (current_loops)
6274 loop_p loop;
6276 FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6277 ? LI_FROM_INNERMOST
6278 : LI_ONLY_INNERMOST))
6279 make_regions_from_loop_nest (loop);
6282 /* Make regions from all the rest basic blocks and schedule them.
6283 These blocks include blocks that don't belong to any loop or belong
6284 to irreducible loops. */
6285 make_regions_from_the_rest ();
6287 /* We don't need bbs_in_loop_rgns anymore. */
6288 sbitmap_free (bbs_in_loop_rgns);
6289 bbs_in_loop_rgns = NULL;
6292 /* Add the preheader blocks from previous loop to current region taking
6293 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6294 This function is only used with -fsel-sched-pipelining-outer-loops. */
6295 void
6296 sel_add_loop_preheaders (bb_vec_t *bbs)
6298 int i;
6299 basic_block bb;
6300 vec<basic_block> *preheader_blocks
6301 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6303 if (!preheader_blocks)
6304 return;
6306 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6308 bbs->safe_push (bb);
6309 last_added_blocks.safe_push (bb);
6310 sel_add_bb (bb);
6313 vec_free (preheader_blocks);
6316 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6317 Please note that the function should also work when pipelining_p is
6318 false, because it is used when deciding whether we should or should
6319 not reschedule pipelined code. */
6320 bool
6321 sel_is_loop_preheader_p (basic_block bb)
6323 if (current_loop_nest)
6325 class loop *outer;
6327 if (preheader_removed)
6328 return false;
6330 /* Preheader is the first block in the region. */
6331 if (BLOCK_TO_BB (bb->index) == 0)
6332 return true;
6334 /* We used to find a preheader with the topological information.
6335 Check that the above code is equivalent to what we did before. */
6337 if (in_current_region_p (current_loop_nest->header))
6338 gcc_assert (!(BLOCK_TO_BB (bb->index)
6339 < BLOCK_TO_BB (current_loop_nest->header->index)));
6341 /* Support the situation when the latch block of outer loop
6342 could be from here. */
6343 for (outer = loop_outer (current_loop_nest);
6344 outer;
6345 outer = loop_outer (outer))
6346 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6347 gcc_unreachable ();
6350 return false;
6353 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6354 can be removed, making the corresponding edge fallthrough (assuming that
6355 all basic blocks between JUMP_BB and DEST_BB are empty). */
6356 static bool
6357 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6359 if (!onlyjump_p (BB_END (jump_bb))
6360 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6361 return false;
6363 /* Several outgoing edges, abnormal edge or destination of jump is
6364 not DEST_BB. */
6365 if (EDGE_COUNT (jump_bb->succs) != 1
6366 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6367 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6368 return false;
6370 /* If not anything of the upper. */
6371 return true;
6374 /* Removes the loop preheader from the current region and saves it in
6375 PREHEADER_BLOCKS of the father loop, so they will be added later to
6376 region that represents an outer loop. */
6377 static void
6378 sel_remove_loop_preheader (void)
6380 int i, old_len;
6381 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6382 basic_block bb;
6383 bool all_empty_p = true;
6384 vec<basic_block> *preheader_blocks
6385 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6387 vec_check_alloc (preheader_blocks, 0);
6389 gcc_assert (current_loop_nest);
6390 old_len = preheader_blocks->length ();
6392 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6393 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6395 bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6397 /* If the basic block belongs to region, but doesn't belong to
6398 corresponding loop, then it should be a preheader. */
6399 if (sel_is_loop_preheader_p (bb))
6401 preheader_blocks->safe_push (bb);
6402 if (BB_END (bb) != bb_note (bb))
6403 all_empty_p = false;
6407 /* Remove these blocks only after iterating over the whole region. */
6408 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6410 bb = (*preheader_blocks)[i];
6411 sel_remove_bb (bb, false);
6414 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6416 if (!all_empty_p)
6417 /* Immediately create new region from preheader. */
6418 make_region_from_loop_preheader (preheader_blocks);
6419 else
6421 /* If all preheader blocks are empty - dont create new empty region.
6422 Instead, remove them completely. */
6423 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6425 edge e;
6426 edge_iterator ei;
6427 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6429 /* Redirect all incoming edges to next basic block. */
6430 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6432 if (! (e->flags & EDGE_FALLTHRU))
6433 redirect_edge_and_branch (e, bb->next_bb);
6434 else
6435 redirect_edge_succ (e, bb->next_bb);
6437 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6438 delete_and_free_basic_block (bb);
6440 /* Check if after deleting preheader there is a nonconditional
6441 jump in PREV_BB that leads to the next basic block NEXT_BB.
6442 If it is so - delete this jump and clear data sets of its
6443 basic block if it becomes empty. */
6444 if (next_bb->prev_bb == prev_bb
6445 && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
6446 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6448 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6449 if (BB_END (prev_bb) == bb_note (prev_bb))
6450 free_data_sets (prev_bb);
6453 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6454 recompute_dominator (CDI_DOMINATORS,
6455 next_bb));
6458 vec_free (preheader_blocks);
6460 else
6461 /* Store preheader within the father's loop structure. */
6462 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6463 preheader_blocks);
6466 #endif