pr70100.c: Add -mvsx.
[official-gcc.git] / gcc / predict.c
blob915f0806b110f99030e0c817ce55c1c060f7a090
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* References:
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "rtl.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "cfghooks.h"
38 #include "tree-pass.h"
39 #include "ssa.h"
40 #include "memmodel.h"
41 #include "emit-rtl.h"
42 #include "cgraph.h"
43 #include "coverage.h"
44 #include "diagnostic-core.h"
45 #include "gimple-predict.h"
46 #include "fold-const.h"
47 #include "calls.h"
48 #include "cfganal.h"
49 #include "profile.h"
50 #include "sreal.h"
51 #include "params.h"
52 #include "cfgloop.h"
53 #include "gimple-iterator.h"
54 #include "tree-cfg.h"
55 #include "tree-ssa-loop-niter.h"
56 #include "tree-ssa-loop.h"
57 #include "tree-scalar-evolution.h"
58 #include "ipa-utils.h"
59 #include "gimple-pretty-print.h"
60 #include "selftest.h"
61 #include "cfgrtl.h"
62 #include "stringpool.h"
63 #include "attribs.h"
65 /* Enum with reasons why a predictor is ignored. */
67 enum predictor_reason
69 REASON_NONE,
70 REASON_IGNORED,
71 REASON_SINGLE_EDGE_DUPLICATE,
72 REASON_EDGE_PAIR_DUPLICATE
75 /* String messages for the aforementioned enum. */
77 static const char *reason_messages[] = {"", " (ignored)",
78 " (single edge duplicate)", " (edge pair duplicate)"};
80 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
81 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
82 static sreal real_almost_one, real_br_prob_base,
83 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
85 static void combine_predictions_for_insn (rtx_insn *, basic_block);
86 static void dump_prediction (FILE *, enum br_predictor, int, basic_block,
87 enum predictor_reason, edge);
88 static void predict_paths_leading_to (basic_block, enum br_predictor,
89 enum prediction,
90 class loop *in_loop = NULL);
91 static void predict_paths_leading_to_edge (edge, enum br_predictor,
92 enum prediction,
93 class loop *in_loop = NULL);
94 static bool can_predict_insn_p (const rtx_insn *);
95 static HOST_WIDE_INT get_predictor_value (br_predictor, HOST_WIDE_INT);
96 static void determine_unlikely_bbs ();
98 /* Information we hold about each branch predictor.
99 Filled using information from predict.def. */
101 struct predictor_info
103 const char *const name; /* Name used in the debugging dumps. */
104 const int hitrate; /* Expected hitrate used by
105 predict_insn_def call. */
106 const int flags;
109 /* Use given predictor without Dempster-Shaffer theory if it matches
110 using first_match heuristics. */
111 #define PRED_FLAG_FIRST_MATCH 1
113 /* Recompute hitrate in percent to our representation. */
115 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
117 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
118 static const struct predictor_info predictor_info[]= {
119 #include "predict.def"
121 /* Upper bound on predictors. */
122 {NULL, 0, 0}
124 #undef DEF_PREDICTOR
126 static gcov_type min_count = -1;
128 /* Determine the threshold for hot BB counts. */
130 gcov_type
131 get_hot_bb_threshold ()
133 if (min_count == -1)
135 const int hot_frac = PARAM_VALUE (HOT_BB_COUNT_FRACTION);
136 const gcov_type min_hot_count
137 = hot_frac
138 ? profile_info->sum_max / hot_frac
139 : (gcov_type)profile_count::max_count;
140 set_hot_bb_threshold (min_hot_count);
141 if (dump_file)
142 fprintf (dump_file, "Setting hotness threshold to %" PRId64 ".\n",
143 min_hot_count);
145 return min_count;
148 /* Set the threshold for hot BB counts. */
150 void
151 set_hot_bb_threshold (gcov_type min)
153 min_count = min;
156 /* Return TRUE if COUNT is considered to be hot in function FUN. */
158 bool
159 maybe_hot_count_p (struct function *fun, profile_count count)
161 if (!count.initialized_p ())
162 return true;
163 if (count.ipa () == profile_count::zero ())
164 return false;
165 if (!count.ipa_p ())
167 struct cgraph_node *node = cgraph_node::get (fun->decl);
168 if (!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
170 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
171 return false;
172 if (node->frequency == NODE_FREQUENCY_HOT)
173 return true;
175 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
176 return true;
177 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
178 && count < (ENTRY_BLOCK_PTR_FOR_FN (fun)->count.apply_scale (2, 3)))
179 return false;
180 if (count.apply_scale (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION), 1)
181 < ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
182 return false;
183 return true;
185 /* Code executed at most once is not hot. */
186 if (count <= MAX (profile_info ? profile_info->runs : 1, 1))
187 return false;
188 return (count.to_gcov_type () >= get_hot_bb_threshold ());
191 /* Return true if basic block BB of function FUN can be CPU intensive
192 and should thus be optimized for maximum performance. */
194 bool
195 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
197 gcc_checking_assert (fun);
198 return maybe_hot_count_p (fun, bb->count);
201 /* Return true if edge E can be CPU intensive and should thus be optimized
202 for maximum performance. */
204 bool
205 maybe_hot_edge_p (edge e)
207 return maybe_hot_count_p (cfun, e->count ());
210 /* Return true if COUNT is considered to be never executed in function FUN
211 or if function FUN is considered so in the static profile. */
213 static bool
214 probably_never_executed (struct function *fun, profile_count count)
216 gcc_checking_assert (fun);
217 if (count.ipa () == profile_count::zero ())
218 return true;
219 /* Do not trust adjusted counts. This will make us to drop int cold section
220 code with low execution count as a result of inlining. These low counts
221 are not safe even with read profile and may lead us to dropping
222 code which actually gets executed into cold section of binary that is not
223 desirable. */
224 if (count.precise_p () && profile_status_for_fn (fun) == PROFILE_READ)
226 const int unlikely_frac = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
227 if (count.apply_scale (unlikely_frac, 1) >= profile_info->runs)
228 return false;
229 return true;
231 if ((!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
232 && (cgraph_node::get (fun->decl)->frequency
233 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
234 return true;
235 return false;
238 /* Return true if basic block BB of function FUN is probably never executed. */
240 bool
241 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
243 return probably_never_executed (fun, bb->count);
246 /* Return true if edge E is unlikely executed for obvious reasons. */
248 static bool
249 unlikely_executed_edge_p (edge e)
251 return (e->count () == profile_count::zero ()
252 || e->probability == profile_probability::never ())
253 || (e->flags & (EDGE_EH | EDGE_FAKE));
256 /* Return true if edge E of function FUN is probably never executed. */
258 bool
259 probably_never_executed_edge_p (struct function *fun, edge e)
261 if (unlikely_executed_edge_p (e))
262 return true;
263 return probably_never_executed (fun, e->count ());
266 /* Return true if function FUN should always be optimized for size. */
268 bool
269 optimize_function_for_size_p (struct function *fun)
271 if (!fun || !fun->decl)
272 return optimize_size;
273 cgraph_node *n = cgraph_node::get (fun->decl);
274 return n && n->optimize_for_size_p ();
277 /* Return true if function FUN should always be optimized for speed. */
279 bool
280 optimize_function_for_speed_p (struct function *fun)
282 return !optimize_function_for_size_p (fun);
285 /* Return the optimization type that should be used for function FUN. */
287 optimization_type
288 function_optimization_type (struct function *fun)
290 return (optimize_function_for_speed_p (fun)
291 ? OPTIMIZE_FOR_SPEED
292 : OPTIMIZE_FOR_SIZE);
295 /* Return TRUE if basic block BB should be optimized for size. */
297 bool
298 optimize_bb_for_size_p (const_basic_block bb)
300 return (optimize_function_for_size_p (cfun)
301 || (bb && !maybe_hot_bb_p (cfun, bb)));
304 /* Return TRUE if basic block BB should be optimized for speed. */
306 bool
307 optimize_bb_for_speed_p (const_basic_block bb)
309 return !optimize_bb_for_size_p (bb);
312 /* Return the optimization type that should be used for basic block BB. */
314 optimization_type
315 bb_optimization_type (const_basic_block bb)
317 return (optimize_bb_for_speed_p (bb)
318 ? OPTIMIZE_FOR_SPEED
319 : OPTIMIZE_FOR_SIZE);
322 /* Return TRUE if edge E should be optimized for size. */
324 bool
325 optimize_edge_for_size_p (edge e)
327 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
330 /* Return TRUE if edge E should be optimized for speed. */
332 bool
333 optimize_edge_for_speed_p (edge e)
335 return !optimize_edge_for_size_p (e);
338 /* Return TRUE if the current function is optimized for size. */
340 bool
341 optimize_insn_for_size_p (void)
343 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
346 /* Return TRUE if the current function is optimized for speed. */
348 bool
349 optimize_insn_for_speed_p (void)
351 return !optimize_insn_for_size_p ();
354 /* Return TRUE if LOOP should be optimized for size. */
356 bool
357 optimize_loop_for_size_p (class loop *loop)
359 return optimize_bb_for_size_p (loop->header);
362 /* Return TRUE if LOOP should be optimized for speed. */
364 bool
365 optimize_loop_for_speed_p (class loop *loop)
367 return optimize_bb_for_speed_p (loop->header);
370 /* Return TRUE if nest rooted at LOOP should be optimized for speed. */
372 bool
373 optimize_loop_nest_for_speed_p (class loop *loop)
375 class loop *l = loop;
376 if (optimize_loop_for_speed_p (loop))
377 return true;
378 l = loop->inner;
379 while (l && l != loop)
381 if (optimize_loop_for_speed_p (l))
382 return true;
383 if (l->inner)
384 l = l->inner;
385 else if (l->next)
386 l = l->next;
387 else
389 while (l != loop && !l->next)
390 l = loop_outer (l);
391 if (l != loop)
392 l = l->next;
395 return false;
398 /* Return TRUE if nest rooted at LOOP should be optimized for size. */
400 bool
401 optimize_loop_nest_for_size_p (class loop *loop)
403 return !optimize_loop_nest_for_speed_p (loop);
406 /* Return true if edge E is likely to be well predictable by branch
407 predictor. */
409 bool
410 predictable_edge_p (edge e)
412 if (!e->probability.initialized_p ())
413 return false;
414 if ((e->probability.to_reg_br_prob_base ()
415 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
416 || (REG_BR_PROB_BASE - e->probability.to_reg_br_prob_base ()
417 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
418 return true;
419 return false;
423 /* Set RTL expansion for BB profile. */
425 void
426 rtl_profile_for_bb (basic_block bb)
428 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
431 /* Set RTL expansion for edge profile. */
433 void
434 rtl_profile_for_edge (edge e)
436 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
439 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
440 void
441 default_rtl_profile (void)
443 crtl->maybe_hot_insn_p = true;
446 /* Return true if the one of outgoing edges is already predicted by
447 PREDICTOR. */
449 bool
450 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
452 rtx note;
453 if (!INSN_P (BB_END (bb)))
454 return false;
455 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
456 if (REG_NOTE_KIND (note) == REG_BR_PRED
457 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
458 return true;
459 return false;
462 /* Structure representing predictions in tree level. */
464 struct edge_prediction {
465 struct edge_prediction *ep_next;
466 edge ep_edge;
467 enum br_predictor ep_predictor;
468 int ep_probability;
471 /* This map contains for a basic block the list of predictions for the
472 outgoing edges. */
474 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
476 /* Return true if the one of outgoing edges is already predicted by
477 PREDICTOR. */
479 bool
480 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
482 struct edge_prediction *i;
483 edge_prediction **preds = bb_predictions->get (bb);
485 if (!preds)
486 return false;
488 for (i = *preds; i; i = i->ep_next)
489 if (i->ep_predictor == predictor)
490 return true;
491 return false;
494 /* Return true if the one of outgoing edges is already predicted by
495 PREDICTOR for edge E predicted as TAKEN. */
497 bool
498 edge_predicted_by_p (edge e, enum br_predictor predictor, bool taken)
500 struct edge_prediction *i;
501 basic_block bb = e->src;
502 edge_prediction **preds = bb_predictions->get (bb);
503 if (!preds)
504 return false;
506 int probability = predictor_info[(int) predictor].hitrate;
508 if (taken != TAKEN)
509 probability = REG_BR_PROB_BASE - probability;
511 for (i = *preds; i; i = i->ep_next)
512 if (i->ep_predictor == predictor
513 && i->ep_edge == e
514 && i->ep_probability == probability)
515 return true;
516 return false;
519 /* Same predicate as above, working on edges. */
520 bool
521 edge_probability_reliable_p (const_edge e)
523 return e->probability.probably_reliable_p ();
526 /* Same predicate as edge_probability_reliable_p, working on notes. */
527 bool
528 br_prob_note_reliable_p (const_rtx note)
530 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
531 return profile_probability::from_reg_br_prob_note
532 (XINT (note, 0)).probably_reliable_p ();
535 static void
536 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
538 gcc_assert (any_condjump_p (insn));
539 if (!flag_guess_branch_prob)
540 return;
542 add_reg_note (insn, REG_BR_PRED,
543 gen_rtx_CONCAT (VOIDmode,
544 GEN_INT ((int) predictor),
545 GEN_INT ((int) probability)));
548 /* Predict insn by given predictor. */
550 void
551 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
552 enum prediction taken)
554 int probability = predictor_info[(int) predictor].hitrate;
555 gcc_assert (probability != PROB_UNINITIALIZED);
557 if (taken != TAKEN)
558 probability = REG_BR_PROB_BASE - probability;
560 predict_insn (insn, predictor, probability);
563 /* Predict edge E with given probability if possible. */
565 void
566 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
568 rtx_insn *last_insn;
569 last_insn = BB_END (e->src);
571 /* We can store the branch prediction information only about
572 conditional jumps. */
573 if (!any_condjump_p (last_insn))
574 return;
576 /* We always store probability of branching. */
577 if (e->flags & EDGE_FALLTHRU)
578 probability = REG_BR_PROB_BASE - probability;
580 predict_insn (last_insn, predictor, probability);
583 /* Predict edge E with the given PROBABILITY. */
584 void
585 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
587 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
588 && EDGE_COUNT (e->src->succs) > 1
589 && flag_guess_branch_prob
590 && optimize)
592 struct edge_prediction *i = XNEW (struct edge_prediction);
593 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
595 i->ep_next = preds;
596 preds = i;
597 i->ep_probability = probability;
598 i->ep_predictor = predictor;
599 i->ep_edge = e;
603 /* Filter edge predictions PREDS by a function FILTER. DATA are passed
604 to the filter function. */
606 void
607 filter_predictions (edge_prediction **preds,
608 bool (*filter) (edge_prediction *, void *), void *data)
610 if (!bb_predictions)
611 return;
613 if (preds)
615 struct edge_prediction **prediction = preds;
616 struct edge_prediction *next;
618 while (*prediction)
620 if ((*filter) (*prediction, data))
621 prediction = &((*prediction)->ep_next);
622 else
624 next = (*prediction)->ep_next;
625 free (*prediction);
626 *prediction = next;
632 /* Filter function predicate that returns true for a edge predicate P
633 if its edge is equal to DATA. */
635 bool
636 equal_edge_p (edge_prediction *p, void *data)
638 return p->ep_edge == (edge)data;
641 /* Remove all predictions on given basic block that are attached
642 to edge E. */
643 void
644 remove_predictions_associated_with_edge (edge e)
646 if (!bb_predictions)
647 return;
649 edge_prediction **preds = bb_predictions->get (e->src);
650 filter_predictions (preds, equal_edge_p, e);
653 /* Clears the list of predictions stored for BB. */
655 static void
656 clear_bb_predictions (basic_block bb)
658 edge_prediction **preds = bb_predictions->get (bb);
659 struct edge_prediction *pred, *next;
661 if (!preds)
662 return;
664 for (pred = *preds; pred; pred = next)
666 next = pred->ep_next;
667 free (pred);
669 *preds = NULL;
672 /* Return true when we can store prediction on insn INSN.
673 At the moment we represent predictions only on conditional
674 jumps, not at computed jump or other complicated cases. */
675 static bool
676 can_predict_insn_p (const rtx_insn *insn)
678 return (JUMP_P (insn)
679 && any_condjump_p (insn)
680 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
683 /* Predict edge E by given predictor if possible. */
685 void
686 predict_edge_def (edge e, enum br_predictor predictor,
687 enum prediction taken)
689 int probability = predictor_info[(int) predictor].hitrate;
691 if (taken != TAKEN)
692 probability = REG_BR_PROB_BASE - probability;
694 predict_edge (e, predictor, probability);
697 /* Invert all branch predictions or probability notes in the INSN. This needs
698 to be done each time we invert the condition used by the jump. */
700 void
701 invert_br_probabilities (rtx insn)
703 rtx note;
705 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
706 if (REG_NOTE_KIND (note) == REG_BR_PROB)
707 XINT (note, 0) = profile_probability::from_reg_br_prob_note
708 (XINT (note, 0)).invert ().to_reg_br_prob_note ();
709 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
710 XEXP (XEXP (note, 0), 1)
711 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
714 /* Dump information about the branch prediction to the output file. */
716 static void
717 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
718 basic_block bb, enum predictor_reason reason = REASON_NONE,
719 edge ep_edge = NULL)
721 edge e = ep_edge;
722 edge_iterator ei;
724 if (!file)
725 return;
727 if (e == NULL)
728 FOR_EACH_EDGE (e, ei, bb->succs)
729 if (! (e->flags & EDGE_FALLTHRU))
730 break;
732 char edge_info_str[128];
733 if (ep_edge)
734 sprintf (edge_info_str, " of edge %d->%d", ep_edge->src->index,
735 ep_edge->dest->index);
736 else
737 edge_info_str[0] = '\0';
739 fprintf (file, " %s heuristics%s%s: %.2f%%",
740 predictor_info[predictor].name,
741 edge_info_str, reason_messages[reason],
742 probability * 100.0 / REG_BR_PROB_BASE);
744 if (bb->count.initialized_p ())
746 fprintf (file, " exec ");
747 bb->count.dump (file);
748 if (e)
750 fprintf (file, " hit ");
751 e->count ().dump (file);
752 fprintf (file, " (%.1f%%)", e->count ().to_gcov_type() * 100.0
753 / bb->count.to_gcov_type ());
757 fprintf (file, "\n");
759 /* Print output that be easily read by analyze_brprob.py script. We are
760 interested only in counts that are read from GCDA files. */
761 if (dump_file && (dump_flags & TDF_DETAILS)
762 && bb->count.precise_p ()
763 && reason == REASON_NONE)
765 gcc_assert (e->count ().precise_p ());
766 fprintf (file, ";;heuristics;%s;%" PRId64 ";%" PRId64 ";%.1f;\n",
767 predictor_info[predictor].name,
768 bb->count.to_gcov_type (), e->count ().to_gcov_type (),
769 probability * 100.0 / REG_BR_PROB_BASE);
773 /* Return true if STMT is known to be unlikely executed. */
775 static bool
776 unlikely_executed_stmt_p (gimple *stmt)
778 if (!is_gimple_call (stmt))
779 return false;
780 /* NORETURN attribute alone is not strong enough: exit() may be quite
781 likely executed once during program run. */
782 if (gimple_call_fntype (stmt)
783 && lookup_attribute ("cold",
784 TYPE_ATTRIBUTES (gimple_call_fntype (stmt)))
785 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
786 return true;
787 tree decl = gimple_call_fndecl (stmt);
788 if (!decl)
789 return false;
790 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl))
791 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
792 return true;
794 cgraph_node *n = cgraph_node::get (decl);
795 if (!n)
796 return false;
798 availability avail;
799 n = n->ultimate_alias_target (&avail);
800 if (avail < AVAIL_AVAILABLE)
801 return false;
802 if (!n->analyzed
803 || n->decl == current_function_decl)
804 return false;
805 return n->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED;
808 /* Return true if BB is unlikely executed. */
810 static bool
811 unlikely_executed_bb_p (basic_block bb)
813 if (bb->count == profile_count::zero ())
814 return true;
815 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
816 return false;
817 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
818 !gsi_end_p (gsi); gsi_next (&gsi))
820 if (unlikely_executed_stmt_p (gsi_stmt (gsi)))
821 return true;
822 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
823 return false;
825 return false;
828 /* We cannot predict the probabilities of outgoing edges of bb. Set them
829 evenly and hope for the best. If UNLIKELY_EDGES is not null, distribute
830 even probability for all edges not mentioned in the set. These edges
831 are given PROB_VERY_UNLIKELY probability. Similarly for LIKELY_EDGES,
832 if we have exactly one likely edge, make the other edges predicted
833 as not probable. */
835 static void
836 set_even_probabilities (basic_block bb,
837 hash_set<edge> *unlikely_edges = NULL,
838 hash_set<edge_prediction *> *likely_edges = NULL)
840 unsigned nedges = 0, unlikely_count = 0;
841 edge e = NULL;
842 edge_iterator ei;
843 profile_probability all = profile_probability::always ();
845 FOR_EACH_EDGE (e, ei, bb->succs)
846 if (e->probability.initialized_p ())
847 all -= e->probability;
848 else if (!unlikely_executed_edge_p (e))
850 nedges++;
851 if (unlikely_edges != NULL && unlikely_edges->contains (e))
853 all -= profile_probability::very_unlikely ();
854 unlikely_count++;
858 /* Make the distribution even if all edges are unlikely. */
859 unsigned likely_count = likely_edges ? likely_edges->elements () : 0;
860 if (unlikely_count == nedges)
862 unlikely_edges = NULL;
863 unlikely_count = 0;
866 /* If we have one likely edge, then use its probability and distribute
867 remaining probabilities as even. */
868 if (likely_count == 1)
870 FOR_EACH_EDGE (e, ei, bb->succs)
871 if (e->probability.initialized_p ())
873 else if (!unlikely_executed_edge_p (e))
875 edge_prediction *prediction = *likely_edges->begin ();
876 int p = prediction->ep_probability;
877 profile_probability prob
878 = profile_probability::from_reg_br_prob_base (p);
880 if (prediction->ep_edge == e)
881 e->probability = prob;
882 else if (unlikely_edges != NULL && unlikely_edges->contains (e))
883 e->probability = profile_probability::very_unlikely ();
884 else
886 profile_probability remainder = prob.invert ();
887 remainder -= profile_probability::very_unlikely ()
888 .apply_scale (unlikely_count, 1);
889 int count = nedges - unlikely_count - 1;
890 gcc_assert (count >= 0);
892 e->probability = remainder.apply_scale (1, count);
895 else
896 e->probability = profile_probability::never ();
898 else
900 /* Make all unlikely edges unlikely and the rest will have even
901 probability. */
902 unsigned scale = nedges - unlikely_count;
903 FOR_EACH_EDGE (e, ei, bb->succs)
904 if (e->probability.initialized_p ())
906 else if (!unlikely_executed_edge_p (e))
908 if (unlikely_edges != NULL && unlikely_edges->contains (e))
909 e->probability = profile_probability::very_unlikely ();
910 else
911 e->probability = all.apply_scale (1, scale);
913 else
914 e->probability = profile_probability::never ();
918 /* Add REG_BR_PROB note to JUMP with PROB. */
920 void
921 add_reg_br_prob_note (rtx_insn *jump, profile_probability prob)
923 gcc_checking_assert (JUMP_P (jump) && !find_reg_note (jump, REG_BR_PROB, 0));
924 add_int_reg_note (jump, REG_BR_PROB, prob.to_reg_br_prob_note ());
927 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
928 note if not already present. Remove now useless REG_BR_PRED notes. */
930 static void
931 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
933 rtx prob_note;
934 rtx *pnote;
935 rtx note;
936 int best_probability = PROB_EVEN;
937 enum br_predictor best_predictor = END_PREDICTORS;
938 int combined_probability = REG_BR_PROB_BASE / 2;
939 int d;
940 bool first_match = false;
941 bool found = false;
943 if (!can_predict_insn_p (insn))
945 set_even_probabilities (bb);
946 return;
949 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
950 pnote = &REG_NOTES (insn);
951 if (dump_file)
952 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
953 bb->index);
955 /* We implement "first match" heuristics and use probability guessed
956 by predictor with smallest index. */
957 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
958 if (REG_NOTE_KIND (note) == REG_BR_PRED)
960 enum br_predictor predictor = ((enum br_predictor)
961 INTVAL (XEXP (XEXP (note, 0), 0)));
962 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
964 found = true;
965 if (best_predictor > predictor
966 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
967 best_probability = probability, best_predictor = predictor;
969 d = (combined_probability * probability
970 + (REG_BR_PROB_BASE - combined_probability)
971 * (REG_BR_PROB_BASE - probability));
973 /* Use FP math to avoid overflows of 32bit integers. */
974 if (d == 0)
975 /* If one probability is 0% and one 100%, avoid division by zero. */
976 combined_probability = REG_BR_PROB_BASE / 2;
977 else
978 combined_probability = (((double) combined_probability) * probability
979 * REG_BR_PROB_BASE / d + 0.5);
982 /* Decide which heuristic to use. In case we didn't match anything,
983 use no_prediction heuristic, in case we did match, use either
984 first match or Dempster-Shaffer theory depending on the flags. */
986 if (best_predictor != END_PREDICTORS)
987 first_match = true;
989 if (!found)
990 dump_prediction (dump_file, PRED_NO_PREDICTION,
991 combined_probability, bb);
992 else
994 if (!first_match)
995 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
996 bb, !first_match ? REASON_NONE : REASON_IGNORED);
997 else
998 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
999 bb, first_match ? REASON_NONE : REASON_IGNORED);
1002 if (first_match)
1003 combined_probability = best_probability;
1004 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
1006 while (*pnote)
1008 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
1010 enum br_predictor predictor = ((enum br_predictor)
1011 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
1012 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
1014 dump_prediction (dump_file, predictor, probability, bb,
1015 (!first_match || best_predictor == predictor)
1016 ? REASON_NONE : REASON_IGNORED);
1017 *pnote = XEXP (*pnote, 1);
1019 else
1020 pnote = &XEXP (*pnote, 1);
1023 if (!prob_note)
1025 profile_probability p
1026 = profile_probability::from_reg_br_prob_base (combined_probability);
1027 add_reg_br_prob_note (insn, p);
1029 /* Save the prediction into CFG in case we are seeing non-degenerated
1030 conditional jump. */
1031 if (!single_succ_p (bb))
1033 BRANCH_EDGE (bb)->probability = p;
1034 FALLTHRU_EDGE (bb)->probability
1035 = BRANCH_EDGE (bb)->probability.invert ();
1038 else if (!single_succ_p (bb))
1040 profile_probability prob = profile_probability::from_reg_br_prob_note
1041 (XINT (prob_note, 0));
1043 BRANCH_EDGE (bb)->probability = prob;
1044 FALLTHRU_EDGE (bb)->probability = prob.invert ();
1046 else
1047 single_succ_edge (bb)->probability = profile_probability::always ();
1050 /* Edge prediction hash traits. */
1052 struct predictor_hash: pointer_hash <edge_prediction>
1055 static inline hashval_t hash (const edge_prediction *);
1056 static inline bool equal (const edge_prediction *, const edge_prediction *);
1059 /* Calculate hash value of an edge prediction P based on predictor and
1060 normalized probability. */
1062 inline hashval_t
1063 predictor_hash::hash (const edge_prediction *p)
1065 inchash::hash hstate;
1066 hstate.add_int (p->ep_predictor);
1068 int prob = p->ep_probability;
1069 if (prob > REG_BR_PROB_BASE / 2)
1070 prob = REG_BR_PROB_BASE - prob;
1072 hstate.add_int (prob);
1074 return hstate.end ();
1077 /* Return true whether edge predictions P1 and P2 use the same predictor and
1078 have equal (or opposed probability). */
1080 inline bool
1081 predictor_hash::equal (const edge_prediction *p1, const edge_prediction *p2)
1083 return (p1->ep_predictor == p2->ep_predictor
1084 && (p1->ep_probability == p2->ep_probability
1085 || p1->ep_probability == REG_BR_PROB_BASE - p2->ep_probability));
1088 struct predictor_hash_traits: predictor_hash,
1089 typed_noop_remove <edge_prediction *> {};
1091 /* Return true if edge prediction P is not in DATA hash set. */
1093 static bool
1094 not_removed_prediction_p (edge_prediction *p, void *data)
1096 hash_set<edge_prediction *> *remove = (hash_set<edge_prediction *> *) data;
1097 return !remove->contains (p);
1100 /* Prune predictions for a basic block BB. Currently we do following
1101 clean-up steps:
1103 1) remove duplicate prediction that is guessed with the same probability
1104 (different than 1/2) to both edge
1105 2) remove duplicates for a prediction that belongs with the same probability
1106 to a single edge
1110 static void
1111 prune_predictions_for_bb (basic_block bb)
1113 edge_prediction **preds = bb_predictions->get (bb);
1115 if (preds)
1117 hash_table <predictor_hash_traits> s (13);
1118 hash_set <edge_prediction *> remove;
1120 /* Step 1: identify predictors that should be removed. */
1121 for (edge_prediction *pred = *preds; pred; pred = pred->ep_next)
1123 edge_prediction *existing = s.find (pred);
1124 if (existing)
1126 if (pred->ep_edge == existing->ep_edge
1127 && pred->ep_probability == existing->ep_probability)
1129 /* Remove a duplicate predictor. */
1130 dump_prediction (dump_file, pred->ep_predictor,
1131 pred->ep_probability, bb,
1132 REASON_SINGLE_EDGE_DUPLICATE, pred->ep_edge);
1134 remove.add (pred);
1136 else if (pred->ep_edge != existing->ep_edge
1137 && pred->ep_probability == existing->ep_probability
1138 && pred->ep_probability != REG_BR_PROB_BASE / 2)
1140 /* Remove both predictors as they predict the same
1141 for both edges. */
1142 dump_prediction (dump_file, existing->ep_predictor,
1143 pred->ep_probability, bb,
1144 REASON_EDGE_PAIR_DUPLICATE,
1145 existing->ep_edge);
1146 dump_prediction (dump_file, pred->ep_predictor,
1147 pred->ep_probability, bb,
1148 REASON_EDGE_PAIR_DUPLICATE,
1149 pred->ep_edge);
1151 remove.add (existing);
1152 remove.add (pred);
1156 edge_prediction **slot2 = s.find_slot (pred, INSERT);
1157 *slot2 = pred;
1160 /* Step 2: Remove predictors. */
1161 filter_predictions (preds, not_removed_prediction_p, &remove);
1165 /* Combine predictions into single probability and store them into CFG.
1166 Remove now useless prediction entries.
1167 If DRY_RUN is set, only produce dumps and do not modify profile. */
1169 static void
1170 combine_predictions_for_bb (basic_block bb, bool dry_run)
1172 int best_probability = PROB_EVEN;
1173 enum br_predictor best_predictor = END_PREDICTORS;
1174 int combined_probability = REG_BR_PROB_BASE / 2;
1175 int d;
1176 bool first_match = false;
1177 bool found = false;
1178 struct edge_prediction *pred;
1179 int nedges = 0;
1180 edge e, first = NULL, second = NULL;
1181 edge_iterator ei;
1182 int nzero = 0;
1183 int nunknown = 0;
1185 FOR_EACH_EDGE (e, ei, bb->succs)
1187 if (!unlikely_executed_edge_p (e))
1189 nedges ++;
1190 if (first && !second)
1191 second = e;
1192 if (!first)
1193 first = e;
1195 else if (!e->probability.initialized_p ())
1196 e->probability = profile_probability::never ();
1197 if (!e->probability.initialized_p ())
1198 nunknown++;
1199 else if (e->probability == profile_probability::never ())
1200 nzero++;
1203 /* When there is no successor or only one choice, prediction is easy.
1205 When we have a basic block with more than 2 successors, the situation
1206 is more complicated as DS theory cannot be used literally.
1207 More precisely, let's assume we predicted edge e1 with probability p1,
1208 thus: m1({b1}) = p1. As we're going to combine more than 2 edges, we
1209 need to find probability of e.g. m1({b2}), which we don't know.
1210 The only approximation is to equally distribute 1-p1 to all edges
1211 different from b1.
1213 According to numbers we've got from SPEC2006 benchark, there's only
1214 one interesting reliable predictor (noreturn call), which can be
1215 handled with a bit easier approach. */
1216 if (nedges != 2)
1218 hash_set<edge> unlikely_edges (4);
1219 hash_set<edge_prediction *> likely_edges (4);
1221 /* Identify all edges that have a probability close to very unlikely.
1222 Doing the approach for very unlikely doesn't worth for doing as
1223 there's no such probability in SPEC2006 benchmark. */
1224 edge_prediction **preds = bb_predictions->get (bb);
1225 if (preds)
1226 for (pred = *preds; pred; pred = pred->ep_next)
1228 if (pred->ep_probability <= PROB_VERY_UNLIKELY
1229 || pred->ep_predictor == PRED_COLD_LABEL)
1230 unlikely_edges.add (pred->ep_edge);
1231 else if (pred->ep_probability >= PROB_VERY_LIKELY
1232 || pred->ep_predictor == PRED_BUILTIN_EXPECT
1233 || pred->ep_predictor == PRED_HOT_LABEL)
1234 likely_edges.add (pred);
1237 /* It can happen that an edge is both in likely_edges and unlikely_edges.
1238 Clear both sets in that situation. */
1239 for (hash_set<edge_prediction *>::iterator it = likely_edges.begin ();
1240 it != likely_edges.end (); ++it)
1241 if (unlikely_edges.contains ((*it)->ep_edge))
1243 likely_edges.empty ();
1244 unlikely_edges.empty ();
1245 break;
1248 if (!dry_run)
1249 set_even_probabilities (bb, &unlikely_edges, &likely_edges);
1250 clear_bb_predictions (bb);
1251 if (dump_file)
1253 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1254 if (unlikely_edges.is_empty ())
1255 fprintf (dump_file,
1256 "%i edges in bb %i predicted to even probabilities\n",
1257 nedges, bb->index);
1258 else
1260 fprintf (dump_file,
1261 "%i edges in bb %i predicted with some unlikely edges\n",
1262 nedges, bb->index);
1263 FOR_EACH_EDGE (e, ei, bb->succs)
1264 if (!unlikely_executed_edge_p (e))
1265 dump_prediction (dump_file, PRED_COMBINED,
1266 e->probability.to_reg_br_prob_base (), bb, REASON_NONE, e);
1269 return;
1272 if (dump_file)
1273 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1275 prune_predictions_for_bb (bb);
1277 edge_prediction **preds = bb_predictions->get (bb);
1279 if (preds)
1281 /* We implement "first match" heuristics and use probability guessed
1282 by predictor with smallest index. */
1283 for (pred = *preds; pred; pred = pred->ep_next)
1285 enum br_predictor predictor = pred->ep_predictor;
1286 int probability = pred->ep_probability;
1288 if (pred->ep_edge != first)
1289 probability = REG_BR_PROB_BASE - probability;
1291 found = true;
1292 /* First match heuristics would be widly confused if we predicted
1293 both directions. */
1294 if (best_predictor > predictor
1295 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
1297 struct edge_prediction *pred2;
1298 int prob = probability;
1300 for (pred2 = (struct edge_prediction *) *preds;
1301 pred2; pred2 = pred2->ep_next)
1302 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
1304 int probability2 = pred2->ep_probability;
1306 if (pred2->ep_edge != first)
1307 probability2 = REG_BR_PROB_BASE - probability2;
1309 if ((probability < REG_BR_PROB_BASE / 2) !=
1310 (probability2 < REG_BR_PROB_BASE / 2))
1311 break;
1313 /* If the same predictor later gave better result, go for it! */
1314 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
1315 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
1316 prob = probability2;
1318 if (!pred2)
1319 best_probability = prob, best_predictor = predictor;
1322 d = (combined_probability * probability
1323 + (REG_BR_PROB_BASE - combined_probability)
1324 * (REG_BR_PROB_BASE - probability));
1326 /* Use FP math to avoid overflows of 32bit integers. */
1327 if (d == 0)
1328 /* If one probability is 0% and one 100%, avoid division by zero. */
1329 combined_probability = REG_BR_PROB_BASE / 2;
1330 else
1331 combined_probability = (((double) combined_probability)
1332 * probability
1333 * REG_BR_PROB_BASE / d + 0.5);
1337 /* Decide which heuristic to use. In case we didn't match anything,
1338 use no_prediction heuristic, in case we did match, use either
1339 first match or Dempster-Shaffer theory depending on the flags. */
1341 if (best_predictor != END_PREDICTORS)
1342 first_match = true;
1344 if (!found)
1345 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb);
1346 else
1348 if (!first_match)
1349 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1350 !first_match ? REASON_NONE : REASON_IGNORED);
1351 else
1352 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1353 first_match ? REASON_NONE : REASON_IGNORED);
1356 if (first_match)
1357 combined_probability = best_probability;
1358 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
1360 if (preds)
1362 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1364 enum br_predictor predictor = pred->ep_predictor;
1365 int probability = pred->ep_probability;
1367 dump_prediction (dump_file, predictor, probability, bb,
1368 (!first_match || best_predictor == predictor)
1369 ? REASON_NONE : REASON_IGNORED, pred->ep_edge);
1372 clear_bb_predictions (bb);
1375 /* If we have only one successor which is unknown, we can compute missing
1376 probablity. */
1377 if (nunknown == 1)
1379 profile_probability prob = profile_probability::always ();
1380 edge missing = NULL;
1382 FOR_EACH_EDGE (e, ei, bb->succs)
1383 if (e->probability.initialized_p ())
1384 prob -= e->probability;
1385 else if (missing == NULL)
1386 missing = e;
1387 else
1388 gcc_unreachable ();
1389 missing->probability = prob;
1391 /* If nothing is unknown, we have nothing to update. */
1392 else if (!nunknown && nzero != (int)EDGE_COUNT (bb->succs))
1394 else if (!dry_run)
1396 first->probability
1397 = profile_probability::from_reg_br_prob_base (combined_probability);
1398 second->probability = first->probability.invert ();
1402 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1403 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1405 T1 and T2 should be one of the following cases:
1406 1. T1 is SSA_NAME, T2 is NULL
1407 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1408 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1410 static tree
1411 strips_small_constant (tree t1, tree t2)
1413 tree ret = NULL;
1414 int value = 0;
1416 if (!t1)
1417 return NULL;
1418 else if (TREE_CODE (t1) == SSA_NAME)
1419 ret = t1;
1420 else if (tree_fits_shwi_p (t1))
1421 value = tree_to_shwi (t1);
1422 else
1423 return NULL;
1425 if (!t2)
1426 return ret;
1427 else if (tree_fits_shwi_p (t2))
1428 value = tree_to_shwi (t2);
1429 else if (TREE_CODE (t2) == SSA_NAME)
1431 if (ret)
1432 return NULL;
1433 else
1434 ret = t2;
1437 if (value <= 4 && value >= -4)
1438 return ret;
1439 else
1440 return NULL;
1443 /* Return the SSA_NAME in T or T's operands.
1444 Return NULL if SSA_NAME cannot be found. */
1446 static tree
1447 get_base_value (tree t)
1449 if (TREE_CODE (t) == SSA_NAME)
1450 return t;
1452 if (!BINARY_CLASS_P (t))
1453 return NULL;
1455 switch (TREE_OPERAND_LENGTH (t))
1457 case 1:
1458 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1459 case 2:
1460 return strips_small_constant (TREE_OPERAND (t, 0),
1461 TREE_OPERAND (t, 1));
1462 default:
1463 return NULL;
1467 /* Check the compare STMT in LOOP. If it compares an induction
1468 variable to a loop invariant, return true, and save
1469 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1470 Otherwise return false and set LOOP_INVAIANT to NULL. */
1472 static bool
1473 is_comparison_with_loop_invariant_p (gcond *stmt, class loop *loop,
1474 tree *loop_invariant,
1475 enum tree_code *compare_code,
1476 tree *loop_step,
1477 tree *loop_iv_base)
1479 tree op0, op1, bound, base;
1480 affine_iv iv0, iv1;
1481 enum tree_code code;
1482 tree step;
1484 code = gimple_cond_code (stmt);
1485 *loop_invariant = NULL;
1487 switch (code)
1489 case GT_EXPR:
1490 case GE_EXPR:
1491 case NE_EXPR:
1492 case LT_EXPR:
1493 case LE_EXPR:
1494 case EQ_EXPR:
1495 break;
1497 default:
1498 return false;
1501 op0 = gimple_cond_lhs (stmt);
1502 op1 = gimple_cond_rhs (stmt);
1504 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1505 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1506 return false;
1507 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1508 return false;
1509 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1510 return false;
1511 if (TREE_CODE (iv0.step) != INTEGER_CST
1512 || TREE_CODE (iv1.step) != INTEGER_CST)
1513 return false;
1514 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1515 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1516 return false;
1518 if (integer_zerop (iv0.step))
1520 if (code != NE_EXPR && code != EQ_EXPR)
1521 code = invert_tree_comparison (code, false);
1522 bound = iv0.base;
1523 base = iv1.base;
1524 if (tree_fits_shwi_p (iv1.step))
1525 step = iv1.step;
1526 else
1527 return false;
1529 else
1531 bound = iv1.base;
1532 base = iv0.base;
1533 if (tree_fits_shwi_p (iv0.step))
1534 step = iv0.step;
1535 else
1536 return false;
1539 if (TREE_CODE (bound) != INTEGER_CST)
1540 bound = get_base_value (bound);
1541 if (!bound)
1542 return false;
1543 if (TREE_CODE (base) != INTEGER_CST)
1544 base = get_base_value (base);
1545 if (!base)
1546 return false;
1548 *loop_invariant = bound;
1549 *compare_code = code;
1550 *loop_step = step;
1551 *loop_iv_base = base;
1552 return true;
1555 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1557 static bool
1558 expr_coherent_p (tree t1, tree t2)
1560 gimple *stmt;
1561 tree ssa_name_1 = NULL;
1562 tree ssa_name_2 = NULL;
1564 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1565 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1567 if (t1 == t2)
1568 return true;
1570 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1571 return true;
1572 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1573 return false;
1575 /* Check to see if t1 is expressed/defined with t2. */
1576 stmt = SSA_NAME_DEF_STMT (t1);
1577 gcc_assert (stmt != NULL);
1578 if (is_gimple_assign (stmt))
1580 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1581 if (ssa_name_1 && ssa_name_1 == t2)
1582 return true;
1585 /* Check to see if t2 is expressed/defined with t1. */
1586 stmt = SSA_NAME_DEF_STMT (t2);
1587 gcc_assert (stmt != NULL);
1588 if (is_gimple_assign (stmt))
1590 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1591 if (ssa_name_2 && ssa_name_2 == t1)
1592 return true;
1595 /* Compare if t1 and t2's def_stmts are identical. */
1596 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1597 return true;
1598 else
1599 return false;
1602 /* Return true if E is predicted by one of loop heuristics. */
1604 static bool
1605 predicted_by_loop_heuristics_p (basic_block bb)
1607 struct edge_prediction *i;
1608 edge_prediction **preds = bb_predictions->get (bb);
1610 if (!preds)
1611 return false;
1613 for (i = *preds; i; i = i->ep_next)
1614 if (i->ep_predictor == PRED_LOOP_ITERATIONS_GUESSED
1615 || i->ep_predictor == PRED_LOOP_ITERATIONS_MAX
1616 || i->ep_predictor == PRED_LOOP_ITERATIONS
1617 || i->ep_predictor == PRED_LOOP_EXIT
1618 || i->ep_predictor == PRED_LOOP_EXIT_WITH_RECURSION
1619 || i->ep_predictor == PRED_LOOP_EXTRA_EXIT)
1620 return true;
1621 return false;
1624 /* Predict branch probability of BB when BB contains a branch that compares
1625 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1626 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1628 E.g.
1629 for (int i = 0; i < bound; i++) {
1630 if (i < bound - 2)
1631 computation_1();
1632 else
1633 computation_2();
1636 In this loop, we will predict the branch inside the loop to be taken. */
1638 static void
1639 predict_iv_comparison (class loop *loop, basic_block bb,
1640 tree loop_bound_var,
1641 tree loop_iv_base_var,
1642 enum tree_code loop_bound_code,
1643 int loop_bound_step)
1645 gimple *stmt;
1646 tree compare_var, compare_base;
1647 enum tree_code compare_code;
1648 tree compare_step_var;
1649 edge then_edge;
1650 edge_iterator ei;
1652 if (predicted_by_loop_heuristics_p (bb))
1653 return;
1655 stmt = last_stmt (bb);
1656 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1657 return;
1658 if (!is_comparison_with_loop_invariant_p (as_a <gcond *> (stmt),
1659 loop, &compare_var,
1660 &compare_code,
1661 &compare_step_var,
1662 &compare_base))
1663 return;
1665 /* Find the taken edge. */
1666 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1667 if (then_edge->flags & EDGE_TRUE_VALUE)
1668 break;
1670 /* When comparing an IV to a loop invariant, NE is more likely to be
1671 taken while EQ is more likely to be not-taken. */
1672 if (compare_code == NE_EXPR)
1674 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1675 return;
1677 else if (compare_code == EQ_EXPR)
1679 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1680 return;
1683 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1684 return;
1686 /* If loop bound, base and compare bound are all constants, we can
1687 calculate the probability directly. */
1688 if (tree_fits_shwi_p (loop_bound_var)
1689 && tree_fits_shwi_p (compare_var)
1690 && tree_fits_shwi_p (compare_base))
1692 int probability;
1693 wi::overflow_type overflow;
1694 bool overall_overflow = false;
1695 widest_int compare_count, tem;
1697 /* (loop_bound - base) / compare_step */
1698 tem = wi::sub (wi::to_widest (loop_bound_var),
1699 wi::to_widest (compare_base), SIGNED, &overflow);
1700 overall_overflow |= overflow;
1701 widest_int loop_count = wi::div_trunc (tem,
1702 wi::to_widest (compare_step_var),
1703 SIGNED, &overflow);
1704 overall_overflow |= overflow;
1706 if (!wi::neg_p (wi::to_widest (compare_step_var))
1707 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1709 /* (loop_bound - compare_bound) / compare_step */
1710 tem = wi::sub (wi::to_widest (loop_bound_var),
1711 wi::to_widest (compare_var), SIGNED, &overflow);
1712 overall_overflow |= overflow;
1713 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1714 SIGNED, &overflow);
1715 overall_overflow |= overflow;
1717 else
1719 /* (compare_bound - base) / compare_step */
1720 tem = wi::sub (wi::to_widest (compare_var),
1721 wi::to_widest (compare_base), SIGNED, &overflow);
1722 overall_overflow |= overflow;
1723 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1724 SIGNED, &overflow);
1725 overall_overflow |= overflow;
1727 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1728 ++compare_count;
1729 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1730 ++loop_count;
1731 if (wi::neg_p (compare_count))
1732 compare_count = 0;
1733 if (wi::neg_p (loop_count))
1734 loop_count = 0;
1735 if (loop_count == 0)
1736 probability = 0;
1737 else if (wi::cmps (compare_count, loop_count) == 1)
1738 probability = REG_BR_PROB_BASE;
1739 else
1741 tem = compare_count * REG_BR_PROB_BASE;
1742 tem = wi::udiv_trunc (tem, loop_count);
1743 probability = tem.to_uhwi ();
1746 /* FIXME: The branch prediction seems broken. It has only 20% hitrate. */
1747 if (!overall_overflow)
1748 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1750 return;
1753 if (expr_coherent_p (loop_bound_var, compare_var))
1755 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1756 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1757 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1758 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1759 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1760 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1761 else if (loop_bound_code == NE_EXPR)
1763 /* If the loop backedge condition is "(i != bound)", we do
1764 the comparison based on the step of IV:
1765 * step < 0 : backedge condition is like (i > bound)
1766 * step > 0 : backedge condition is like (i < bound) */
1767 gcc_assert (loop_bound_step != 0);
1768 if (loop_bound_step > 0
1769 && (compare_code == LT_EXPR
1770 || compare_code == LE_EXPR))
1771 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1772 else if (loop_bound_step < 0
1773 && (compare_code == GT_EXPR
1774 || compare_code == GE_EXPR))
1775 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1776 else
1777 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1779 else
1780 /* The branch is predicted not-taken if loop_bound_code is
1781 opposite with compare_code. */
1782 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1784 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1786 /* For cases like:
1787 for (i = s; i < h; i++)
1788 if (i > s + 2) ....
1789 The branch should be predicted taken. */
1790 if (loop_bound_step > 0
1791 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1792 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1793 else if (loop_bound_step < 0
1794 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1795 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1796 else
1797 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1801 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1802 exits are resulted from short-circuit conditions that will generate an
1803 if_tmp. E.g.:
1805 if (foo() || global > 10)
1806 break;
1808 This will be translated into:
1810 BB3:
1811 loop header...
1812 BB4:
1813 if foo() goto BB6 else goto BB5
1814 BB5:
1815 if global > 10 goto BB6 else goto BB7
1816 BB6:
1817 goto BB7
1818 BB7:
1819 iftmp = (PHI 0(BB5), 1(BB6))
1820 if iftmp == 1 goto BB8 else goto BB3
1821 BB8:
1822 outside of the loop...
1824 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1825 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1826 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1827 exits to predict them using PRED_LOOP_EXTRA_EXIT. */
1829 static void
1830 predict_extra_loop_exits (edge exit_edge)
1832 unsigned i;
1833 bool check_value_one;
1834 gimple *lhs_def_stmt;
1835 gphi *phi_stmt;
1836 tree cmp_rhs, cmp_lhs;
1837 gimple *last;
1838 gcond *cmp_stmt;
1840 last = last_stmt (exit_edge->src);
1841 if (!last)
1842 return;
1843 cmp_stmt = dyn_cast <gcond *> (last);
1844 if (!cmp_stmt)
1845 return;
1847 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1848 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1849 if (!TREE_CONSTANT (cmp_rhs)
1850 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1851 return;
1852 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1853 return;
1855 /* If check_value_one is true, only the phi_args with value '1' will lead
1856 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1857 loop exit. */
1858 check_value_one = (((integer_onep (cmp_rhs))
1859 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1860 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1862 lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1863 if (!lhs_def_stmt)
1864 return;
1866 phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
1867 if (!phi_stmt)
1868 return;
1870 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1872 edge e1;
1873 edge_iterator ei;
1874 tree val = gimple_phi_arg_def (phi_stmt, i);
1875 edge e = gimple_phi_arg_edge (phi_stmt, i);
1877 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1878 continue;
1879 if ((check_value_one ^ integer_onep (val)) == 1)
1880 continue;
1881 if (EDGE_COUNT (e->src->succs) != 1)
1883 predict_paths_leading_to_edge (e, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN);
1884 continue;
1887 FOR_EACH_EDGE (e1, ei, e->src->preds)
1888 predict_paths_leading_to_edge (e1, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN);
1893 /* Predict edge probabilities by exploiting loop structure. */
1895 static void
1896 predict_loops (void)
1898 class loop *loop;
1899 basic_block bb;
1900 hash_set <class loop *> with_recursion(10);
1902 FOR_EACH_BB_FN (bb, cfun)
1904 gimple_stmt_iterator gsi;
1905 tree decl;
1907 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1908 if (is_gimple_call (gsi_stmt (gsi))
1909 && (decl = gimple_call_fndecl (gsi_stmt (gsi))) != NULL
1910 && recursive_call_p (current_function_decl, decl))
1912 loop = bb->loop_father;
1913 while (loop && !with_recursion.add (loop))
1914 loop = loop_outer (loop);
1918 /* Try to predict out blocks in a loop that are not part of a
1919 natural loop. */
1920 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1922 basic_block bb, *bbs;
1923 unsigned j, n_exits = 0;
1924 vec<edge> exits;
1925 class tree_niter_desc niter_desc;
1926 edge ex;
1927 class nb_iter_bound *nb_iter;
1928 enum tree_code loop_bound_code = ERROR_MARK;
1929 tree loop_bound_step = NULL;
1930 tree loop_bound_var = NULL;
1931 tree loop_iv_base = NULL;
1932 gcond *stmt = NULL;
1933 bool recursion = with_recursion.contains (loop);
1935 exits = get_loop_exit_edges (loop);
1936 FOR_EACH_VEC_ELT (exits, j, ex)
1937 if (!unlikely_executed_edge_p (ex) && !(ex->flags & EDGE_ABNORMAL_CALL))
1938 n_exits ++;
1939 if (!n_exits)
1941 exits.release ();
1942 continue;
1945 if (dump_file && (dump_flags & TDF_DETAILS))
1946 fprintf (dump_file, "Predicting loop %i%s with %i exits.\n",
1947 loop->num, recursion ? " (with recursion)":"", n_exits);
1948 if (dump_file && (dump_flags & TDF_DETAILS)
1949 && max_loop_iterations_int (loop) >= 0)
1951 fprintf (dump_file,
1952 "Loop %d iterates at most %i times.\n", loop->num,
1953 (int)max_loop_iterations_int (loop));
1955 if (dump_file && (dump_flags & TDF_DETAILS)
1956 && likely_max_loop_iterations_int (loop) >= 0)
1958 fprintf (dump_file, "Loop %d likely iterates at most %i times.\n",
1959 loop->num, (int)likely_max_loop_iterations_int (loop));
1962 FOR_EACH_VEC_ELT (exits, j, ex)
1964 tree niter = NULL;
1965 HOST_WIDE_INT nitercst;
1966 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1967 int probability;
1968 enum br_predictor predictor;
1969 widest_int nit;
1971 if (unlikely_executed_edge_p (ex)
1972 || (ex->flags & EDGE_ABNORMAL_CALL))
1973 continue;
1974 /* Loop heuristics do not expect exit conditional to be inside
1975 inner loop. We predict from innermost to outermost loop. */
1976 if (predicted_by_loop_heuristics_p (ex->src))
1978 if (dump_file && (dump_flags & TDF_DETAILS))
1979 fprintf (dump_file, "Skipping exit %i->%i because "
1980 "it is already predicted.\n",
1981 ex->src->index, ex->dest->index);
1982 continue;
1984 predict_extra_loop_exits (ex);
1986 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1987 niter = niter_desc.niter;
1988 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1989 niter = loop_niter_by_eval (loop, ex);
1990 if (dump_file && (dump_flags & TDF_DETAILS)
1991 && TREE_CODE (niter) == INTEGER_CST)
1993 fprintf (dump_file, "Exit %i->%i %d iterates ",
1994 ex->src->index, ex->dest->index,
1995 loop->num);
1996 print_generic_expr (dump_file, niter, TDF_SLIM);
1997 fprintf (dump_file, " times.\n");
2000 if (TREE_CODE (niter) == INTEGER_CST)
2002 if (tree_fits_uhwi_p (niter)
2003 && max
2004 && compare_tree_int (niter, max - 1) == -1)
2005 nitercst = tree_to_uhwi (niter) + 1;
2006 else
2007 nitercst = max;
2008 predictor = PRED_LOOP_ITERATIONS;
2010 /* If we have just one exit and we can derive some information about
2011 the number of iterations of the loop from the statements inside
2012 the loop, use it to predict this exit. */
2013 else if (n_exits == 1
2014 && estimated_stmt_executions (loop, &nit))
2016 if (wi::gtu_p (nit, max))
2017 nitercst = max;
2018 else
2019 nitercst = nit.to_shwi ();
2020 predictor = PRED_LOOP_ITERATIONS_GUESSED;
2022 /* If we have likely upper bound, trust it for very small iteration
2023 counts. Such loops would otherwise get mispredicted by standard
2024 LOOP_EXIT heuristics. */
2025 else if (n_exits == 1
2026 && likely_max_stmt_executions (loop, &nit)
2027 && wi::ltu_p (nit,
2028 RDIV (REG_BR_PROB_BASE,
2029 REG_BR_PROB_BASE
2030 - predictor_info
2031 [recursion
2032 ? PRED_LOOP_EXIT_WITH_RECURSION
2033 : PRED_LOOP_EXIT].hitrate)))
2035 nitercst = nit.to_shwi ();
2036 predictor = PRED_LOOP_ITERATIONS_MAX;
2038 else
2040 if (dump_file && (dump_flags & TDF_DETAILS))
2041 fprintf (dump_file, "Nothing known about exit %i->%i.\n",
2042 ex->src->index, ex->dest->index);
2043 continue;
2046 if (dump_file && (dump_flags & TDF_DETAILS))
2047 fprintf (dump_file, "Recording prediction to %i iterations by %s.\n",
2048 (int)nitercst, predictor_info[predictor].name);
2049 /* If the prediction for number of iterations is zero, do not
2050 predict the exit edges. */
2051 if (nitercst == 0)
2052 continue;
2054 probability = RDIV (REG_BR_PROB_BASE, nitercst);
2055 predict_edge (ex, predictor, probability);
2057 exits.release ();
2059 /* Find information about loop bound variables. */
2060 for (nb_iter = loop->bounds; nb_iter;
2061 nb_iter = nb_iter->next)
2062 if (nb_iter->stmt
2063 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
2065 stmt = as_a <gcond *> (nb_iter->stmt);
2066 break;
2068 if (!stmt && last_stmt (loop->header)
2069 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
2070 stmt = as_a <gcond *> (last_stmt (loop->header));
2071 if (stmt)
2072 is_comparison_with_loop_invariant_p (stmt, loop,
2073 &loop_bound_var,
2074 &loop_bound_code,
2075 &loop_bound_step,
2076 &loop_iv_base);
2078 bbs = get_loop_body (loop);
2080 for (j = 0; j < loop->num_nodes; j++)
2082 edge e;
2083 edge_iterator ei;
2085 bb = bbs[j];
2087 /* Bypass loop heuristics on continue statement. These
2088 statements construct loops via "non-loop" constructs
2089 in the source language and are better to be handled
2090 separately. */
2091 if (predicted_by_p (bb, PRED_CONTINUE))
2093 if (dump_file && (dump_flags & TDF_DETAILS))
2094 fprintf (dump_file, "BB %i predicted by continue.\n",
2095 bb->index);
2096 continue;
2099 /* If we already used more reliable loop exit predictors, do not
2100 bother with PRED_LOOP_EXIT. */
2101 if (!predicted_by_loop_heuristics_p (bb))
2103 /* For loop with many exits we don't want to predict all exits
2104 with the pretty large probability, because if all exits are
2105 considered in row, the loop would be predicted to iterate
2106 almost never. The code to divide probability by number of
2107 exits is very rough. It should compute the number of exits
2108 taken in each patch through function (not the overall number
2109 of exits that might be a lot higher for loops with wide switch
2110 statements in them) and compute n-th square root.
2112 We limit the minimal probability by 2% to avoid
2113 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
2114 as this was causing regression in perl benchmark containing such
2115 a wide loop. */
2117 int probability = ((REG_BR_PROB_BASE
2118 - predictor_info
2119 [recursion
2120 ? PRED_LOOP_EXIT_WITH_RECURSION
2121 : PRED_LOOP_EXIT].hitrate)
2122 / n_exits);
2123 if (probability < HITRATE (2))
2124 probability = HITRATE (2);
2125 FOR_EACH_EDGE (e, ei, bb->succs)
2126 if (e->dest->index < NUM_FIXED_BLOCKS
2127 || !flow_bb_inside_loop_p (loop, e->dest))
2129 if (dump_file && (dump_flags & TDF_DETAILS))
2130 fprintf (dump_file,
2131 "Predicting exit %i->%i with prob %i.\n",
2132 e->src->index, e->dest->index, probability);
2133 predict_edge (e,
2134 recursion ? PRED_LOOP_EXIT_WITH_RECURSION
2135 : PRED_LOOP_EXIT, probability);
2138 if (loop_bound_var)
2139 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
2140 loop_bound_code,
2141 tree_to_shwi (loop_bound_step));
2144 /* In the following code
2145 for (loop1)
2146 if (cond)
2147 for (loop2)
2148 body;
2149 guess that cond is unlikely. */
2150 if (loop_outer (loop)->num)
2152 basic_block bb = NULL;
2153 edge preheader_edge = loop_preheader_edge (loop);
2155 if (single_pred_p (preheader_edge->src)
2156 && single_succ_p (preheader_edge->src))
2157 preheader_edge = single_pred_edge (preheader_edge->src);
2159 gimple *stmt = last_stmt (preheader_edge->src);
2160 /* Pattern match fortran loop preheader:
2161 _16 = BUILTIN_EXPECT (_15, 1, PRED_FORTRAN_LOOP_PREHEADER);
2162 _17 = (logical(kind=4)) _16;
2163 if (_17 != 0)
2164 goto <bb 11>;
2165 else
2166 goto <bb 13>;
2168 Loop guard branch prediction says nothing about duplicated loop
2169 headers produced by fortran frontend and in this case we want
2170 to predict paths leading to this preheader. */
2172 if (stmt
2173 && gimple_code (stmt) == GIMPLE_COND
2174 && gimple_cond_code (stmt) == NE_EXPR
2175 && TREE_CODE (gimple_cond_lhs (stmt)) == SSA_NAME
2176 && integer_zerop (gimple_cond_rhs (stmt)))
2178 gimple *call_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
2179 if (gimple_code (call_stmt) == GIMPLE_ASSIGN
2180 && gimple_expr_code (call_stmt) == NOP_EXPR
2181 && TREE_CODE (gimple_assign_rhs1 (call_stmt)) == SSA_NAME)
2182 call_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (call_stmt));
2183 if (gimple_call_internal_p (call_stmt, IFN_BUILTIN_EXPECT)
2184 && TREE_CODE (gimple_call_arg (call_stmt, 2)) == INTEGER_CST
2185 && tree_fits_uhwi_p (gimple_call_arg (call_stmt, 2))
2186 && tree_to_uhwi (gimple_call_arg (call_stmt, 2))
2187 == PRED_FORTRAN_LOOP_PREHEADER)
2188 bb = preheader_edge->src;
2190 if (!bb)
2192 if (!dominated_by_p (CDI_DOMINATORS,
2193 loop_outer (loop)->latch, loop->header))
2194 predict_paths_leading_to_edge (loop_preheader_edge (loop),
2195 recursion
2196 ? PRED_LOOP_GUARD_WITH_RECURSION
2197 : PRED_LOOP_GUARD,
2198 NOT_TAKEN,
2199 loop_outer (loop));
2201 else
2203 if (!dominated_by_p (CDI_DOMINATORS,
2204 loop_outer (loop)->latch, bb))
2205 predict_paths_leading_to (bb,
2206 recursion
2207 ? PRED_LOOP_GUARD_WITH_RECURSION
2208 : PRED_LOOP_GUARD,
2209 NOT_TAKEN,
2210 loop_outer (loop));
2214 /* Free basic blocks from get_loop_body. */
2215 free (bbs);
2219 /* Attempt to predict probabilities of BB outgoing edges using local
2220 properties. */
2221 static void
2222 bb_estimate_probability_locally (basic_block bb)
2224 rtx_insn *last_insn = BB_END (bb);
2225 rtx cond;
2227 if (! can_predict_insn_p (last_insn))
2228 return;
2229 cond = get_condition (last_insn, NULL, false, false);
2230 if (! cond)
2231 return;
2233 /* Try "pointer heuristic."
2234 A comparison ptr == 0 is predicted as false.
2235 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2236 if (COMPARISON_P (cond)
2237 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
2238 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
2240 if (GET_CODE (cond) == EQ)
2241 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
2242 else if (GET_CODE (cond) == NE)
2243 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
2245 else
2247 /* Try "opcode heuristic."
2248 EQ tests are usually false and NE tests are usually true. Also,
2249 most quantities are positive, so we can make the appropriate guesses
2250 about signed comparisons against zero. */
2251 switch (GET_CODE (cond))
2253 case CONST_INT:
2254 /* Unconditional branch. */
2255 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
2256 cond == const0_rtx ? NOT_TAKEN : TAKEN);
2257 break;
2259 case EQ:
2260 case UNEQ:
2261 /* Floating point comparisons appears to behave in a very
2262 unpredictable way because of special role of = tests in
2263 FP code. */
2264 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2266 /* Comparisons with 0 are often used for booleans and there is
2267 nothing useful to predict about them. */
2268 else if (XEXP (cond, 1) == const0_rtx
2269 || XEXP (cond, 0) == const0_rtx)
2271 else
2272 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
2273 break;
2275 case NE:
2276 case LTGT:
2277 /* Floating point comparisons appears to behave in a very
2278 unpredictable way because of special role of = tests in
2279 FP code. */
2280 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2282 /* Comparisons with 0 are often used for booleans and there is
2283 nothing useful to predict about them. */
2284 else if (XEXP (cond, 1) == const0_rtx
2285 || XEXP (cond, 0) == const0_rtx)
2287 else
2288 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
2289 break;
2291 case ORDERED:
2292 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
2293 break;
2295 case UNORDERED:
2296 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
2297 break;
2299 case LE:
2300 case LT:
2301 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2302 || XEXP (cond, 1) == constm1_rtx)
2303 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
2304 break;
2306 case GE:
2307 case GT:
2308 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2309 || XEXP (cond, 1) == constm1_rtx)
2310 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
2311 break;
2313 default:
2314 break;
2318 /* Set edge->probability for each successor edge of BB. */
2319 void
2320 guess_outgoing_edge_probabilities (basic_block bb)
2322 bb_estimate_probability_locally (bb);
2323 combine_predictions_for_insn (BB_END (bb), bb);
2326 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor,
2327 HOST_WIDE_INT *probability);
2329 /* Helper function for expr_expected_value. */
2331 static tree
2332 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
2333 tree op1, bitmap visited, enum br_predictor *predictor,
2334 HOST_WIDE_INT *probability)
2336 gimple *def;
2338 /* Reset returned probability value. */
2339 *probability = -1;
2340 *predictor = PRED_UNCONDITIONAL;
2342 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
2344 if (TREE_CONSTANT (op0))
2345 return op0;
2347 if (code == IMAGPART_EXPR)
2349 if (TREE_CODE (TREE_OPERAND (op0, 0)) == SSA_NAME)
2351 def = SSA_NAME_DEF_STMT (TREE_OPERAND (op0, 0));
2352 if (is_gimple_call (def)
2353 && gimple_call_internal_p (def)
2354 && (gimple_call_internal_fn (def)
2355 == IFN_ATOMIC_COMPARE_EXCHANGE))
2357 /* Assume that any given atomic operation has low contention,
2358 and thus the compare-and-swap operation succeeds. */
2359 *predictor = PRED_COMPARE_AND_SWAP;
2360 return build_one_cst (TREE_TYPE (op0));
2365 if (code != SSA_NAME)
2366 return NULL_TREE;
2368 def = SSA_NAME_DEF_STMT (op0);
2370 /* If we were already here, break the infinite cycle. */
2371 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
2372 return NULL;
2374 if (gimple_code (def) == GIMPLE_PHI)
2376 /* All the arguments of the PHI node must have the same constant
2377 length. */
2378 int i, n = gimple_phi_num_args (def);
2379 tree val = NULL, new_val;
2381 for (i = 0; i < n; i++)
2383 tree arg = PHI_ARG_DEF (def, i);
2384 enum br_predictor predictor2;
2386 /* If this PHI has itself as an argument, we cannot
2387 determine the string length of this argument. However,
2388 if we can find an expected constant value for the other
2389 PHI args then we can still be sure that this is
2390 likely a constant. So be optimistic and just
2391 continue with the next argument. */
2392 if (arg == PHI_RESULT (def))
2393 continue;
2395 HOST_WIDE_INT probability2;
2396 new_val = expr_expected_value (arg, visited, &predictor2,
2397 &probability2);
2399 /* It is difficult to combine value predictors. Simply assume
2400 that later predictor is weaker and take its prediction. */
2401 if (*predictor < predictor2)
2403 *predictor = predictor2;
2404 *probability = probability2;
2406 if (!new_val)
2407 return NULL;
2408 if (!val)
2409 val = new_val;
2410 else if (!operand_equal_p (val, new_val, false))
2411 return NULL;
2413 return val;
2415 if (is_gimple_assign (def))
2417 if (gimple_assign_lhs (def) != op0)
2418 return NULL;
2420 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
2421 gimple_assign_rhs1 (def),
2422 gimple_assign_rhs_code (def),
2423 gimple_assign_rhs2 (def),
2424 visited, predictor, probability);
2427 if (is_gimple_call (def))
2429 tree decl = gimple_call_fndecl (def);
2430 if (!decl)
2432 if (gimple_call_internal_p (def)
2433 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
2435 gcc_assert (gimple_call_num_args (def) == 3);
2436 tree val = gimple_call_arg (def, 0);
2437 if (TREE_CONSTANT (val))
2438 return val;
2439 tree val2 = gimple_call_arg (def, 2);
2440 gcc_assert (TREE_CODE (val2) == INTEGER_CST
2441 && tree_fits_uhwi_p (val2)
2442 && tree_to_uhwi (val2) < END_PREDICTORS);
2443 *predictor = (enum br_predictor) tree_to_uhwi (val2);
2444 if (*predictor == PRED_BUILTIN_EXPECT)
2445 *probability
2446 = HITRATE (PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY));
2447 return gimple_call_arg (def, 1);
2449 return NULL;
2452 if (DECL_IS_MALLOC (decl) || DECL_IS_OPERATOR_NEW_P (decl))
2454 if (predictor)
2455 *predictor = PRED_MALLOC_NONNULL;
2456 return boolean_true_node;
2459 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
2460 switch (DECL_FUNCTION_CODE (decl))
2462 case BUILT_IN_EXPECT:
2464 tree val;
2465 if (gimple_call_num_args (def) != 2)
2466 return NULL;
2467 val = gimple_call_arg (def, 0);
2468 if (TREE_CONSTANT (val))
2469 return val;
2470 *predictor = PRED_BUILTIN_EXPECT;
2471 *probability
2472 = HITRATE (PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY));
2473 return gimple_call_arg (def, 1);
2475 case BUILT_IN_EXPECT_WITH_PROBABILITY:
2477 tree val;
2478 if (gimple_call_num_args (def) != 3)
2479 return NULL;
2480 val = gimple_call_arg (def, 0);
2481 if (TREE_CONSTANT (val))
2482 return val;
2483 /* Compute final probability as:
2484 probability * REG_BR_PROB_BASE. */
2485 tree prob = gimple_call_arg (def, 2);
2486 tree t = TREE_TYPE (prob);
2487 tree base = build_int_cst (integer_type_node,
2488 REG_BR_PROB_BASE);
2489 base = build_real_from_int_cst (t, base);
2490 tree r = fold_build2_initializer_loc (UNKNOWN_LOCATION,
2491 MULT_EXPR, t, prob, base);
2492 if (TREE_CODE (r) != REAL_CST)
2494 error_at (gimple_location (def),
2495 "probability %qE must be "
2496 "constant floating-point expression", prob);
2497 return NULL;
2499 HOST_WIDE_INT probi
2500 = real_to_integer (TREE_REAL_CST_PTR (r));
2501 if (probi >= 0 && probi <= REG_BR_PROB_BASE)
2503 *predictor = PRED_BUILTIN_EXPECT_WITH_PROBABILITY;
2504 *probability = probi;
2506 else
2507 error_at (gimple_location (def),
2508 "probability %qE is outside "
2509 "the range [0.0, 1.0]", prob);
2511 return gimple_call_arg (def, 1);
2514 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
2515 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
2516 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
2517 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
2518 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
2519 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
2520 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
2521 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
2522 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
2523 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
2524 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
2525 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
2526 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
2527 /* Assume that any given atomic operation has low contention,
2528 and thus the compare-and-swap operation succeeds. */
2529 *predictor = PRED_COMPARE_AND_SWAP;
2530 return boolean_true_node;
2531 case BUILT_IN_REALLOC:
2532 if (predictor)
2533 *predictor = PRED_MALLOC_NONNULL;
2534 return boolean_true_node;
2535 default:
2536 break;
2540 return NULL;
2543 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
2545 tree res;
2546 enum br_predictor predictor2;
2547 HOST_WIDE_INT probability2;
2548 op0 = expr_expected_value (op0, visited, predictor, probability);
2549 if (!op0)
2550 return NULL;
2551 op1 = expr_expected_value (op1, visited, &predictor2, &probability2);
2552 if (!op1)
2553 return NULL;
2554 res = fold_build2 (code, type, op0, op1);
2555 if (TREE_CODE (res) == INTEGER_CST
2556 && TREE_CODE (op0) == INTEGER_CST
2557 && TREE_CODE (op1) == INTEGER_CST)
2559 /* Combine binary predictions. */
2560 if (*probability != -1 || probability2 != -1)
2562 HOST_WIDE_INT p1 = get_predictor_value (*predictor, *probability);
2563 HOST_WIDE_INT p2 = get_predictor_value (predictor2, probability2);
2564 *probability = RDIV (p1 * p2, REG_BR_PROB_BASE);
2567 if (*predictor < predictor2)
2568 *predictor = predictor2;
2570 return res;
2572 return NULL;
2574 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
2576 tree res;
2577 op0 = expr_expected_value (op0, visited, predictor, probability);
2578 if (!op0)
2579 return NULL;
2580 res = fold_build1 (code, type, op0);
2581 if (TREE_CONSTANT (res))
2582 return res;
2583 return NULL;
2585 return NULL;
2588 /* Return constant EXPR will likely have at execution time, NULL if unknown.
2589 The function is used by builtin_expect branch predictor so the evidence
2590 must come from this construct and additional possible constant folding.
2592 We may want to implement more involved value guess (such as value range
2593 propagation based prediction), but such tricks shall go to new
2594 implementation. */
2596 static tree
2597 expr_expected_value (tree expr, bitmap visited,
2598 enum br_predictor *predictor,
2599 HOST_WIDE_INT *probability)
2601 enum tree_code code;
2602 tree op0, op1;
2604 if (TREE_CONSTANT (expr))
2606 *predictor = PRED_UNCONDITIONAL;
2607 *probability = -1;
2608 return expr;
2611 extract_ops_from_tree (expr, &code, &op0, &op1);
2612 return expr_expected_value_1 (TREE_TYPE (expr),
2613 op0, code, op1, visited, predictor,
2614 probability);
2618 /* Return probability of a PREDICTOR. If the predictor has variable
2619 probability return passed PROBABILITY. */
2621 static HOST_WIDE_INT
2622 get_predictor_value (br_predictor predictor, HOST_WIDE_INT probability)
2624 switch (predictor)
2626 case PRED_BUILTIN_EXPECT:
2627 case PRED_BUILTIN_EXPECT_WITH_PROBABILITY:
2628 gcc_assert (probability != -1);
2629 return probability;
2630 default:
2631 gcc_assert (probability == -1);
2632 return predictor_info[(int) predictor].hitrate;
2636 /* Predict using opcode of the last statement in basic block. */
2637 static void
2638 tree_predict_by_opcode (basic_block bb)
2640 gimple *stmt = last_stmt (bb);
2641 edge then_edge;
2642 tree op0, op1;
2643 tree type;
2644 tree val;
2645 enum tree_code cmp;
2646 edge_iterator ei;
2647 enum br_predictor predictor;
2648 HOST_WIDE_INT probability;
2650 if (!stmt)
2651 return;
2653 if (gswitch *sw = dyn_cast <gswitch *> (stmt))
2655 tree index = gimple_switch_index (sw);
2656 tree val = expr_expected_value (index, auto_bitmap (),
2657 &predictor, &probability);
2658 if (val && TREE_CODE (val) == INTEGER_CST)
2660 edge e = find_taken_edge_switch_expr (sw, val);
2661 if (predictor == PRED_BUILTIN_EXPECT)
2663 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
2664 gcc_assert (percent >= 0 && percent <= 100);
2665 predict_edge (e, PRED_BUILTIN_EXPECT,
2666 HITRATE (percent));
2668 else
2669 predict_edge_def (e, predictor, TAKEN);
2673 if (gimple_code (stmt) != GIMPLE_COND)
2674 return;
2675 FOR_EACH_EDGE (then_edge, ei, bb->succs)
2676 if (then_edge->flags & EDGE_TRUE_VALUE)
2677 break;
2678 op0 = gimple_cond_lhs (stmt);
2679 op1 = gimple_cond_rhs (stmt);
2680 cmp = gimple_cond_code (stmt);
2681 type = TREE_TYPE (op0);
2682 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, auto_bitmap (),
2683 &predictor, &probability);
2684 if (val && TREE_CODE (val) == INTEGER_CST)
2686 HOST_WIDE_INT prob = get_predictor_value (predictor, probability);
2687 if (integer_zerop (val))
2688 prob = REG_BR_PROB_BASE - prob;
2689 predict_edge (then_edge, predictor, prob);
2691 /* Try "pointer heuristic."
2692 A comparison ptr == 0 is predicted as false.
2693 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2694 if (POINTER_TYPE_P (type))
2696 if (cmp == EQ_EXPR)
2697 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2698 else if (cmp == NE_EXPR)
2699 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2701 else
2703 /* Try "opcode heuristic."
2704 EQ tests are usually false and NE tests are usually true. Also,
2705 most quantities are positive, so we can make the appropriate guesses
2706 about signed comparisons against zero. */
2707 switch (cmp)
2709 case EQ_EXPR:
2710 case UNEQ_EXPR:
2711 /* Floating point comparisons appears to behave in a very
2712 unpredictable way because of special role of = tests in
2713 FP code. */
2714 if (FLOAT_TYPE_P (type))
2716 /* Comparisons with 0 are often used for booleans and there is
2717 nothing useful to predict about them. */
2718 else if (integer_zerop (op0) || integer_zerop (op1))
2720 else
2721 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2722 break;
2724 case NE_EXPR:
2725 case LTGT_EXPR:
2726 /* Floating point comparisons appears to behave in a very
2727 unpredictable way because of special role of = tests in
2728 FP code. */
2729 if (FLOAT_TYPE_P (type))
2731 /* Comparisons with 0 are often used for booleans and there is
2732 nothing useful to predict about them. */
2733 else if (integer_zerop (op0)
2734 || integer_zerop (op1))
2736 else
2737 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2738 break;
2740 case ORDERED_EXPR:
2741 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2742 break;
2744 case UNORDERED_EXPR:
2745 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2746 break;
2748 case LE_EXPR:
2749 case LT_EXPR:
2750 if (integer_zerop (op1)
2751 || integer_onep (op1)
2752 || integer_all_onesp (op1)
2753 || real_zerop (op1)
2754 || real_onep (op1)
2755 || real_minus_onep (op1))
2756 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2757 break;
2759 case GE_EXPR:
2760 case GT_EXPR:
2761 if (integer_zerop (op1)
2762 || integer_onep (op1)
2763 || integer_all_onesp (op1)
2764 || real_zerop (op1)
2765 || real_onep (op1)
2766 || real_minus_onep (op1))
2767 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2768 break;
2770 default:
2771 break;
2775 /* Returns TRUE if the STMT is exit(0) like statement. */
2777 static bool
2778 is_exit_with_zero_arg (const gimple *stmt)
2780 /* This is not exit, _exit or _Exit. */
2781 if (!gimple_call_builtin_p (stmt, BUILT_IN_EXIT)
2782 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT)
2783 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT2))
2784 return false;
2786 /* Argument is an interger zero. */
2787 return integer_zerop (gimple_call_arg (stmt, 0));
2790 /* Try to guess whether the value of return means error code. */
2792 static enum br_predictor
2793 return_prediction (tree val, enum prediction *prediction)
2795 /* VOID. */
2796 if (!val)
2797 return PRED_NO_PREDICTION;
2798 /* Different heuristics for pointers and scalars. */
2799 if (POINTER_TYPE_P (TREE_TYPE (val)))
2801 /* NULL is usually not returned. */
2802 if (integer_zerop (val))
2804 *prediction = NOT_TAKEN;
2805 return PRED_NULL_RETURN;
2808 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2810 /* Negative return values are often used to indicate
2811 errors. */
2812 if (TREE_CODE (val) == INTEGER_CST
2813 && tree_int_cst_sgn (val) < 0)
2815 *prediction = NOT_TAKEN;
2816 return PRED_NEGATIVE_RETURN;
2818 /* Constant return values seems to be commonly taken.
2819 Zero/one often represent booleans so exclude them from the
2820 heuristics. */
2821 if (TREE_CONSTANT (val)
2822 && (!integer_zerop (val) && !integer_onep (val)))
2824 *prediction = NOT_TAKEN;
2825 return PRED_CONST_RETURN;
2828 return PRED_NO_PREDICTION;
2831 /* Return zero if phi result could have values other than -1, 0 or 1,
2832 otherwise return a bitmask, with bits 0, 1 and 2 set if -1, 0 and 1
2833 values are used or likely. */
2835 static int
2836 zero_one_minusone (gphi *phi, int limit)
2838 int phi_num_args = gimple_phi_num_args (phi);
2839 int ret = 0;
2840 for (int i = 0; i < phi_num_args; i++)
2842 tree t = PHI_ARG_DEF (phi, i);
2843 if (TREE_CODE (t) != INTEGER_CST)
2844 continue;
2845 wide_int w = wi::to_wide (t);
2846 if (w == -1)
2847 ret |= 1;
2848 else if (w == 0)
2849 ret |= 2;
2850 else if (w == 1)
2851 ret |= 4;
2852 else
2853 return 0;
2855 for (int i = 0; i < phi_num_args; i++)
2857 tree t = PHI_ARG_DEF (phi, i);
2858 if (TREE_CODE (t) == INTEGER_CST)
2859 continue;
2860 if (TREE_CODE (t) != SSA_NAME)
2861 return 0;
2862 gimple *g = SSA_NAME_DEF_STMT (t);
2863 if (gimple_code (g) == GIMPLE_PHI && limit > 0)
2864 if (int r = zero_one_minusone (as_a <gphi *> (g), limit - 1))
2866 ret |= r;
2867 continue;
2869 if (!is_gimple_assign (g))
2870 return 0;
2871 if (gimple_assign_cast_p (g))
2873 tree rhs1 = gimple_assign_rhs1 (g);
2874 if (TREE_CODE (rhs1) != SSA_NAME
2875 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2876 || TYPE_PRECISION (TREE_TYPE (rhs1)) != 1
2877 || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
2878 return 0;
2879 ret |= (2 | 4);
2880 continue;
2882 if (TREE_CODE_CLASS (gimple_assign_rhs_code (g)) != tcc_comparison)
2883 return 0;
2884 ret |= (2 | 4);
2886 return ret;
2889 /* Find the basic block with return expression and look up for possible
2890 return value trying to apply RETURN_PREDICTION heuristics. */
2891 static void
2892 apply_return_prediction (void)
2894 greturn *return_stmt = NULL;
2895 tree return_val;
2896 edge e;
2897 gphi *phi;
2898 int phi_num_args, i;
2899 enum br_predictor pred;
2900 enum prediction direction;
2901 edge_iterator ei;
2903 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2905 gimple *last = last_stmt (e->src);
2906 if (last
2907 && gimple_code (last) == GIMPLE_RETURN)
2909 return_stmt = as_a <greturn *> (last);
2910 break;
2913 if (!e)
2914 return;
2915 return_val = gimple_return_retval (return_stmt);
2916 if (!return_val)
2917 return;
2918 if (TREE_CODE (return_val) != SSA_NAME
2919 || !SSA_NAME_DEF_STMT (return_val)
2920 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2921 return;
2922 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
2923 phi_num_args = gimple_phi_num_args (phi);
2924 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2926 /* Avoid the case where the function returns -1, 0 and 1 values and
2927 nothing else. Those could be qsort etc. comparison functions
2928 where the negative return isn't less probable than positive.
2929 For this require that the function returns at least -1 or 1
2930 or -1 and a boolean value or comparison result, so that functions
2931 returning just -1 and 0 are treated as if -1 represents error value. */
2932 if (INTEGRAL_TYPE_P (TREE_TYPE (return_val))
2933 && !TYPE_UNSIGNED (TREE_TYPE (return_val))
2934 && TYPE_PRECISION (TREE_TYPE (return_val)) > 1)
2935 if (int r = zero_one_minusone (phi, 3))
2936 if ((r & (1 | 4)) == (1 | 4))
2937 return;
2939 /* Avoid the degenerate case where all return values form the function
2940 belongs to same category (ie they are all positive constants)
2941 so we can hardly say something about them. */
2942 for (i = 1; i < phi_num_args; i++)
2943 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2944 break;
2945 if (i != phi_num_args)
2946 for (i = 0; i < phi_num_args; i++)
2948 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2949 if (pred != PRED_NO_PREDICTION)
2950 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2951 direction);
2955 /* Look for basic block that contains unlikely to happen events
2956 (such as noreturn calls) and mark all paths leading to execution
2957 of this basic blocks as unlikely. */
2959 static void
2960 tree_bb_level_predictions (void)
2962 basic_block bb;
2963 bool has_return_edges = false;
2964 edge e;
2965 edge_iterator ei;
2967 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2968 if (!unlikely_executed_edge_p (e) && !(e->flags & EDGE_ABNORMAL_CALL))
2970 has_return_edges = true;
2971 break;
2974 apply_return_prediction ();
2976 FOR_EACH_BB_FN (bb, cfun)
2978 gimple_stmt_iterator gsi;
2980 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2982 gimple *stmt = gsi_stmt (gsi);
2983 tree decl;
2985 if (is_gimple_call (stmt))
2987 if (gimple_call_noreturn_p (stmt)
2988 && has_return_edges
2989 && !is_exit_with_zero_arg (stmt))
2990 predict_paths_leading_to (bb, PRED_NORETURN,
2991 NOT_TAKEN);
2992 decl = gimple_call_fndecl (stmt);
2993 if (decl
2994 && lookup_attribute ("cold",
2995 DECL_ATTRIBUTES (decl)))
2996 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2997 NOT_TAKEN);
2998 if (decl && recursive_call_p (current_function_decl, decl))
2999 predict_paths_leading_to (bb, PRED_RECURSIVE_CALL,
3000 NOT_TAKEN);
3002 else if (gimple_code (stmt) == GIMPLE_PREDICT)
3004 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
3005 gimple_predict_outcome (stmt));
3006 /* Keep GIMPLE_PREDICT around so early inlining will propagate
3007 hints to callers. */
3013 /* Callback for hash_map::traverse, asserts that the pointer map is
3014 empty. */
3016 bool
3017 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
3018 void *)
3020 gcc_assert (!value);
3021 return false;
3024 /* Predict branch probabilities and estimate profile for basic block BB.
3025 When LOCAL_ONLY is set do not use any global properties of CFG. */
3027 static void
3028 tree_estimate_probability_bb (basic_block bb, bool local_only)
3030 edge e;
3031 edge_iterator ei;
3033 FOR_EACH_EDGE (e, ei, bb->succs)
3035 /* Look for block we are guarding (ie we dominate it,
3036 but it doesn't postdominate us). */
3037 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
3038 && !local_only
3039 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
3040 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
3042 gimple_stmt_iterator bi;
3044 /* The call heuristic claims that a guarded function call
3045 is improbable. This is because such calls are often used
3046 to signal exceptional situations such as printing error
3047 messages. */
3048 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
3049 gsi_next (&bi))
3051 gimple *stmt = gsi_stmt (bi);
3052 if (is_gimple_call (stmt)
3053 && !gimple_inexpensive_call_p (as_a <gcall *> (stmt))
3054 /* Constant and pure calls are hardly used to signalize
3055 something exceptional. */
3056 && gimple_has_side_effects (stmt))
3058 if (gimple_call_fndecl (stmt))
3059 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
3060 else if (virtual_method_call_p (gimple_call_fn (stmt)))
3061 predict_edge_def (e, PRED_POLYMORPHIC_CALL, NOT_TAKEN);
3062 else
3063 predict_edge_def (e, PRED_INDIR_CALL, TAKEN);
3064 break;
3069 tree_predict_by_opcode (bb);
3072 /* Predict branch probabilities and estimate profile of the tree CFG.
3073 This function can be called from the loop optimizers to recompute
3074 the profile information.
3075 If DRY_RUN is set, do not modify CFG and only produce dump files. */
3077 void
3078 tree_estimate_probability (bool dry_run)
3080 basic_block bb;
3082 add_noreturn_fake_exit_edges ();
3083 connect_infinite_loops_to_exit ();
3084 /* We use loop_niter_by_eval, which requires that the loops have
3085 preheaders. */
3086 create_preheaders (CP_SIMPLE_PREHEADERS);
3087 calculate_dominance_info (CDI_POST_DOMINATORS);
3088 /* Decide which edges are known to be unlikely. This improves later
3089 branch prediction. */
3090 determine_unlikely_bbs ();
3092 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
3093 tree_bb_level_predictions ();
3094 record_loop_exits ();
3096 if (number_of_loops (cfun) > 1)
3097 predict_loops ();
3099 FOR_EACH_BB_FN (bb, cfun)
3100 tree_estimate_probability_bb (bb, false);
3102 FOR_EACH_BB_FN (bb, cfun)
3103 combine_predictions_for_bb (bb, dry_run);
3105 if (flag_checking)
3106 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3108 delete bb_predictions;
3109 bb_predictions = NULL;
3111 if (!dry_run)
3112 estimate_bb_frequencies (false);
3113 free_dominance_info (CDI_POST_DOMINATORS);
3114 remove_fake_exit_edges ();
3117 /* Set edge->probability for each successor edge of BB. */
3118 void
3119 tree_guess_outgoing_edge_probabilities (basic_block bb)
3121 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
3122 tree_estimate_probability_bb (bb, true);
3123 combine_predictions_for_bb (bb, false);
3124 if (flag_checking)
3125 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3126 delete bb_predictions;
3127 bb_predictions = NULL;
3130 /* Predict edges to successors of CUR whose sources are not postdominated by
3131 BB by PRED and recurse to all postdominators. */
3133 static void
3134 predict_paths_for_bb (basic_block cur, basic_block bb,
3135 enum br_predictor pred,
3136 enum prediction taken,
3137 bitmap visited, class loop *in_loop = NULL)
3139 edge e;
3140 edge_iterator ei;
3141 basic_block son;
3143 /* If we exited the loop or CUR is unconditional in the loop, there is
3144 nothing to do. */
3145 if (in_loop
3146 && (!flow_bb_inside_loop_p (in_loop, cur)
3147 || dominated_by_p (CDI_DOMINATORS, in_loop->latch, cur)))
3148 return;
3150 /* We are looking for all edges forming edge cut induced by
3151 set of all blocks postdominated by BB. */
3152 FOR_EACH_EDGE (e, ei, cur->preds)
3153 if (e->src->index >= NUM_FIXED_BLOCKS
3154 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
3156 edge e2;
3157 edge_iterator ei2;
3158 bool found = false;
3160 /* Ignore fake edges and eh, we predict them as not taken anyway. */
3161 if (unlikely_executed_edge_p (e))
3162 continue;
3163 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
3165 /* See if there is an edge from e->src that is not abnormal
3166 and does not lead to BB and does not exit the loop. */
3167 FOR_EACH_EDGE (e2, ei2, e->src->succs)
3168 if (e2 != e
3169 && !unlikely_executed_edge_p (e2)
3170 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb)
3171 && (!in_loop || !loop_exit_edge_p (in_loop, e2)))
3173 found = true;
3174 break;
3177 /* If there is non-abnormal path leaving e->src, predict edge
3178 using predictor. Otherwise we need to look for paths
3179 leading to e->src.
3181 The second may lead to infinite loop in the case we are predicitng
3182 regions that are only reachable by abnormal edges. We simply
3183 prevent visiting given BB twice. */
3184 if (found)
3186 if (!edge_predicted_by_p (e, pred, taken))
3187 predict_edge_def (e, pred, taken);
3189 else if (bitmap_set_bit (visited, e->src->index))
3190 predict_paths_for_bb (e->src, e->src, pred, taken, visited, in_loop);
3192 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
3193 son;
3194 son = next_dom_son (CDI_POST_DOMINATORS, son))
3195 predict_paths_for_bb (son, bb, pred, taken, visited, in_loop);
3198 /* Sets branch probabilities according to PREDiction and
3199 FLAGS. */
3201 static void
3202 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
3203 enum prediction taken, class loop *in_loop)
3205 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
3208 /* Like predict_paths_leading_to but take edge instead of basic block. */
3210 static void
3211 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
3212 enum prediction taken, class loop *in_loop)
3214 bool has_nonloop_edge = false;
3215 edge_iterator ei;
3216 edge e2;
3218 basic_block bb = e->src;
3219 FOR_EACH_EDGE (e2, ei, bb->succs)
3220 if (e2->dest != e->src && e2->dest != e->dest
3221 && !unlikely_executed_edge_p (e)
3222 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
3224 has_nonloop_edge = true;
3225 break;
3227 if (!has_nonloop_edge)
3229 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
3231 else
3232 predict_edge_def (e, pred, taken);
3235 /* This is used to carry information about basic blocks. It is
3236 attached to the AUX field of the standard CFG block. */
3238 class block_info
3240 public:
3241 /* Estimated frequency of execution of basic_block. */
3242 sreal frequency;
3244 /* To keep queue of basic blocks to process. */
3245 basic_block next;
3247 /* Number of predecessors we need to visit first. */
3248 int npredecessors;
3251 /* Similar information for edges. */
3252 class edge_prob_info
3254 public:
3255 /* In case edge is a loopback edge, the probability edge will be reached
3256 in case header is. Estimated number of iterations of the loop can be
3257 then computed as 1 / (1 - back_edge_prob). */
3258 sreal back_edge_prob;
3259 /* True if the edge is a loopback edge in the natural loop. */
3260 unsigned int back_edge:1;
3263 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
3264 #undef EDGE_INFO
3265 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
3267 /* Helper function for estimate_bb_frequencies.
3268 Propagate the frequencies in blocks marked in
3269 TOVISIT, starting in HEAD. */
3271 static void
3272 propagate_freq (basic_block head, bitmap tovisit)
3274 basic_block bb;
3275 basic_block last;
3276 unsigned i;
3277 edge e;
3278 basic_block nextbb;
3279 bitmap_iterator bi;
3281 /* For each basic block we need to visit count number of his predecessors
3282 we need to visit first. */
3283 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
3285 edge_iterator ei;
3286 int count = 0;
3288 bb = BASIC_BLOCK_FOR_FN (cfun, i);
3290 FOR_EACH_EDGE (e, ei, bb->preds)
3292 bool visit = bitmap_bit_p (tovisit, e->src->index);
3294 if (visit && !(e->flags & EDGE_DFS_BACK))
3295 count++;
3296 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
3297 fprintf (dump_file,
3298 "Irreducible region hit, ignoring edge to %i->%i\n",
3299 e->src->index, bb->index);
3301 BLOCK_INFO (bb)->npredecessors = count;
3302 /* When function never returns, we will never process exit block. */
3303 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3304 bb->count = profile_count::zero ();
3307 BLOCK_INFO (head)->frequency = 1;
3308 last = head;
3309 for (bb = head; bb; bb = nextbb)
3311 edge_iterator ei;
3312 sreal cyclic_probability = 0;
3313 sreal frequency = 0;
3315 nextbb = BLOCK_INFO (bb)->next;
3316 BLOCK_INFO (bb)->next = NULL;
3318 /* Compute frequency of basic block. */
3319 if (bb != head)
3321 if (flag_checking)
3322 FOR_EACH_EDGE (e, ei, bb->preds)
3323 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
3324 || (e->flags & EDGE_DFS_BACK));
3326 FOR_EACH_EDGE (e, ei, bb->preds)
3327 if (EDGE_INFO (e)->back_edge)
3329 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
3331 else if (!(e->flags & EDGE_DFS_BACK))
3333 /* frequency += (e->probability
3334 * BLOCK_INFO (e->src)->frequency /
3335 REG_BR_PROB_BASE); */
3337 /* FIXME: Graphite is producing edges with no profile. Once
3338 this is fixed, drop this. */
3339 sreal tmp = e->probability.initialized_p () ?
3340 e->probability.to_reg_br_prob_base () : 0;
3341 tmp *= BLOCK_INFO (e->src)->frequency;
3342 tmp *= real_inv_br_prob_base;
3343 frequency += tmp;
3346 if (cyclic_probability == 0)
3348 BLOCK_INFO (bb)->frequency = frequency;
3350 else
3352 if (cyclic_probability > real_almost_one)
3353 cyclic_probability = real_almost_one;
3355 /* BLOCK_INFO (bb)->frequency = frequency
3356 / (1 - cyclic_probability) */
3358 cyclic_probability = sreal (1) - cyclic_probability;
3359 BLOCK_INFO (bb)->frequency = frequency / cyclic_probability;
3363 bitmap_clear_bit (tovisit, bb->index);
3365 e = find_edge (bb, head);
3366 if (e)
3368 /* EDGE_INFO (e)->back_edge_prob
3369 = ((e->probability * BLOCK_INFO (bb)->frequency)
3370 / REG_BR_PROB_BASE); */
3372 /* FIXME: Graphite is producing edges with no profile. Once
3373 this is fixed, drop this. */
3374 sreal tmp = e->probability.initialized_p () ?
3375 e->probability.to_reg_br_prob_base () : 0;
3376 tmp *= BLOCK_INFO (bb)->frequency;
3377 EDGE_INFO (e)->back_edge_prob = tmp * real_inv_br_prob_base;
3380 /* Propagate to successor blocks. */
3381 FOR_EACH_EDGE (e, ei, bb->succs)
3382 if (!(e->flags & EDGE_DFS_BACK)
3383 && BLOCK_INFO (e->dest)->npredecessors)
3385 BLOCK_INFO (e->dest)->npredecessors--;
3386 if (!BLOCK_INFO (e->dest)->npredecessors)
3388 if (!nextbb)
3389 nextbb = e->dest;
3390 else
3391 BLOCK_INFO (last)->next = e->dest;
3393 last = e->dest;
3399 /* Estimate frequencies in loops at same nest level. */
3401 static void
3402 estimate_loops_at_level (class loop *first_loop)
3404 class loop *loop;
3406 for (loop = first_loop; loop; loop = loop->next)
3408 edge e;
3409 basic_block *bbs;
3410 unsigned i;
3411 auto_bitmap tovisit;
3413 estimate_loops_at_level (loop->inner);
3415 /* Find current loop back edge and mark it. */
3416 e = loop_latch_edge (loop);
3417 EDGE_INFO (e)->back_edge = 1;
3419 bbs = get_loop_body (loop);
3420 for (i = 0; i < loop->num_nodes; i++)
3421 bitmap_set_bit (tovisit, bbs[i]->index);
3422 free (bbs);
3423 propagate_freq (loop->header, tovisit);
3427 /* Propagates frequencies through structure of loops. */
3429 static void
3430 estimate_loops (void)
3432 auto_bitmap tovisit;
3433 basic_block bb;
3435 /* Start by estimating the frequencies in the loops. */
3436 if (number_of_loops (cfun) > 1)
3437 estimate_loops_at_level (current_loops->tree_root->inner);
3439 /* Now propagate the frequencies through all the blocks. */
3440 FOR_ALL_BB_FN (bb, cfun)
3442 bitmap_set_bit (tovisit, bb->index);
3444 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
3447 /* Drop the profile for NODE to guessed, and update its frequency based on
3448 whether it is expected to be hot given the CALL_COUNT. */
3450 static void
3451 drop_profile (struct cgraph_node *node, profile_count call_count)
3453 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3454 /* In the case where this was called by another function with a
3455 dropped profile, call_count will be 0. Since there are no
3456 non-zero call counts to this function, we don't know for sure
3457 whether it is hot, and therefore it will be marked normal below. */
3458 bool hot = maybe_hot_count_p (NULL, call_count);
3460 if (dump_file)
3461 fprintf (dump_file,
3462 "Dropping 0 profile for %s. %s based on calls.\n",
3463 node->dump_name (),
3464 hot ? "Function is hot" : "Function is normal");
3465 /* We only expect to miss profiles for functions that are reached
3466 via non-zero call edges in cases where the function may have
3467 been linked from another module or library (COMDATs and extern
3468 templates). See the comments below for handle_missing_profiles.
3469 Also, only warn in cases where the missing counts exceed the
3470 number of training runs. In certain cases with an execv followed
3471 by a no-return call the profile for the no-return call is not
3472 dumped and there can be a mismatch. */
3473 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
3474 && call_count > profile_info->runs)
3476 if (flag_profile_correction)
3478 if (dump_file)
3479 fprintf (dump_file,
3480 "Missing counts for called function %s\n",
3481 node->dump_name ());
3483 else
3484 warning (0, "Missing counts for called function %s",
3485 node->dump_name ());
3488 basic_block bb;
3489 if (opt_for_fn (node->decl, flag_guess_branch_prob))
3491 bool clear_zeros
3492 = !ENTRY_BLOCK_PTR_FOR_FN (fn)->count.nonzero_p ();
3493 FOR_ALL_BB_FN (bb, fn)
3494 if (clear_zeros || !(bb->count == profile_count::zero ()))
3495 bb->count = bb->count.guessed_local ();
3496 fn->cfg->count_max = fn->cfg->count_max.guessed_local ();
3498 else
3500 FOR_ALL_BB_FN (bb, fn)
3501 bb->count = profile_count::uninitialized ();
3502 fn->cfg->count_max = profile_count::uninitialized ();
3505 struct cgraph_edge *e;
3506 for (e = node->callees; e; e = e->next_callee)
3507 e->count = gimple_bb (e->call_stmt)->count;
3508 for (e = node->indirect_calls; e; e = e->next_callee)
3509 e->count = gimple_bb (e->call_stmt)->count;
3510 node->count = ENTRY_BLOCK_PTR_FOR_FN (fn)->count;
3512 profile_status_for_fn (fn)
3513 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
3514 node->frequency
3515 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
3518 /* In the case of COMDAT routines, multiple object files will contain the same
3519 function and the linker will select one for the binary. In that case
3520 all the other copies from the profile instrument binary will be missing
3521 profile counts. Look for cases where this happened, due to non-zero
3522 call counts going to 0-count functions, and drop the profile to guessed
3523 so that we can use the estimated probabilities and avoid optimizing only
3524 for size.
3526 The other case where the profile may be missing is when the routine
3527 is not going to be emitted to the object file, e.g. for "extern template"
3528 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
3529 all other cases of non-zero calls to 0-count functions. */
3531 void
3532 handle_missing_profiles (void)
3534 const int unlikely_frac = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
3535 struct cgraph_node *node;
3536 auto_vec<struct cgraph_node *, 64> worklist;
3538 /* See if 0 count function has non-0 count callers. In this case we
3539 lost some profile. Drop its function profile to PROFILE_GUESSED. */
3540 FOR_EACH_DEFINED_FUNCTION (node)
3542 struct cgraph_edge *e;
3543 profile_count call_count = profile_count::zero ();
3544 gcov_type max_tp_first_run = 0;
3545 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3547 if (node->count.ipa ().nonzero_p ())
3548 continue;
3549 for (e = node->callers; e; e = e->next_caller)
3550 if (e->count.ipa ().initialized_p () && e->count.ipa () > 0)
3552 call_count = call_count + e->count.ipa ();
3554 if (e->caller->tp_first_run > max_tp_first_run)
3555 max_tp_first_run = e->caller->tp_first_run;
3558 /* If time profile is missing, let assign the maximum that comes from
3559 caller functions. */
3560 if (!node->tp_first_run && max_tp_first_run)
3561 node->tp_first_run = max_tp_first_run + 1;
3563 if (call_count > 0
3564 && fn && fn->cfg
3565 && call_count.apply_scale (unlikely_frac, 1) >= profile_info->runs)
3567 drop_profile (node, call_count);
3568 worklist.safe_push (node);
3572 /* Propagate the profile dropping to other 0-count COMDATs that are
3573 potentially called by COMDATs we already dropped the profile on. */
3574 while (worklist.length () > 0)
3576 struct cgraph_edge *e;
3578 node = worklist.pop ();
3579 for (e = node->callees; e; e = e->next_caller)
3581 struct cgraph_node *callee = e->callee;
3582 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
3584 if (!(e->count.ipa () == profile_count::zero ())
3585 && callee->count.ipa ().nonzero_p ())
3586 continue;
3587 if ((DECL_COMDAT (callee->decl) || DECL_EXTERNAL (callee->decl))
3588 && fn && fn->cfg
3589 && profile_status_for_fn (fn) == PROFILE_READ)
3591 drop_profile (node, profile_count::zero ());
3592 worklist.safe_push (callee);
3598 /* Convert counts measured by profile driven feedback to frequencies.
3599 Return nonzero iff there was any nonzero execution count. */
3601 bool
3602 update_max_bb_count (void)
3604 profile_count true_count_max = profile_count::uninitialized ();
3605 basic_block bb;
3607 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3608 true_count_max = true_count_max.max (bb->count);
3610 cfun->cfg->count_max = true_count_max;
3612 return true_count_max.ipa ().nonzero_p ();
3615 /* Return true if function is likely to be expensive, so there is no point to
3616 optimize performance of prologue, epilogue or do inlining at the expense
3617 of code size growth. THRESHOLD is the limit of number of instructions
3618 function can execute at average to be still considered not expensive. */
3620 bool
3621 expensive_function_p (int threshold)
3623 basic_block bb;
3625 /* If profile was scaled in a way entry block has count 0, then the function
3626 is deifnitly taking a lot of time. */
3627 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.nonzero_p ())
3628 return true;
3630 profile_count limit = ENTRY_BLOCK_PTR_FOR_FN
3631 (cfun)->count.apply_scale (threshold, 1);
3632 profile_count sum = profile_count::zero ();
3633 FOR_EACH_BB_FN (bb, cfun)
3635 rtx_insn *insn;
3637 if (!bb->count.initialized_p ())
3639 if (dump_file)
3640 fprintf (dump_file, "Function is considered expensive because"
3641 " count of bb %i is not initialized\n", bb->index);
3642 return true;
3645 FOR_BB_INSNS (bb, insn)
3646 if (active_insn_p (insn))
3648 sum += bb->count;
3649 if (sum > limit)
3650 return true;
3654 return false;
3657 /* All basic blocks that are reachable only from unlikely basic blocks are
3658 unlikely. */
3660 void
3661 propagate_unlikely_bbs_forward (void)
3663 auto_vec<basic_block, 64> worklist;
3664 basic_block bb;
3665 edge_iterator ei;
3666 edge e;
3668 if (!(ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ()))
3670 ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux = (void *)(size_t) 1;
3671 worklist.safe_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
3673 while (worklist.length () > 0)
3675 bb = worklist.pop ();
3676 FOR_EACH_EDGE (e, ei, bb->succs)
3677 if (!(e->count () == profile_count::zero ())
3678 && !(e->dest->count == profile_count::zero ())
3679 && !e->dest->aux)
3681 e->dest->aux = (void *)(size_t) 1;
3682 worklist.safe_push (e->dest);
3687 FOR_ALL_BB_FN (bb, cfun)
3689 if (!bb->aux)
3691 if (!(bb->count == profile_count::zero ())
3692 && (dump_file && (dump_flags & TDF_DETAILS)))
3693 fprintf (dump_file,
3694 "Basic block %i is marked unlikely by forward prop\n",
3695 bb->index);
3696 bb->count = profile_count::zero ();
3698 else
3699 bb->aux = NULL;
3703 /* Determine basic blocks/edges that are known to be unlikely executed and set
3704 their counters to zero.
3705 This is done with first identifying obviously unlikely BBs/edges and then
3706 propagating in both directions. */
3708 static void
3709 determine_unlikely_bbs ()
3711 basic_block bb;
3712 auto_vec<basic_block, 64> worklist;
3713 edge_iterator ei;
3714 edge e;
3716 FOR_EACH_BB_FN (bb, cfun)
3718 if (!(bb->count == profile_count::zero ())
3719 && unlikely_executed_bb_p (bb))
3721 if (dump_file && (dump_flags & TDF_DETAILS))
3722 fprintf (dump_file, "Basic block %i is locally unlikely\n",
3723 bb->index);
3724 bb->count = profile_count::zero ();
3727 FOR_EACH_EDGE (e, ei, bb->succs)
3728 if (!(e->probability == profile_probability::never ())
3729 && unlikely_executed_edge_p (e))
3731 if (dump_file && (dump_flags & TDF_DETAILS))
3732 fprintf (dump_file, "Edge %i->%i is locally unlikely\n",
3733 bb->index, e->dest->index);
3734 e->probability = profile_probability::never ();
3737 gcc_checking_assert (!bb->aux);
3739 propagate_unlikely_bbs_forward ();
3741 auto_vec<int, 64> nsuccs;
3742 nsuccs.safe_grow_cleared (last_basic_block_for_fn (cfun));
3743 FOR_ALL_BB_FN (bb, cfun)
3744 if (!(bb->count == profile_count::zero ())
3745 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3747 nsuccs[bb->index] = 0;
3748 FOR_EACH_EDGE (e, ei, bb->succs)
3749 if (!(e->probability == profile_probability::never ())
3750 && !(e->dest->count == profile_count::zero ()))
3751 nsuccs[bb->index]++;
3752 if (!nsuccs[bb->index])
3753 worklist.safe_push (bb);
3755 while (worklist.length () > 0)
3757 bb = worklist.pop ();
3758 if (bb->count == profile_count::zero ())
3759 continue;
3760 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3762 bool found = false;
3763 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
3764 !gsi_end_p (gsi); gsi_next (&gsi))
3765 if (stmt_can_terminate_bb_p (gsi_stmt (gsi))
3766 /* stmt_can_terminate_bb_p special cases noreturns because it
3767 assumes that fake edges are created. We want to know that
3768 noreturn alone does not imply BB to be unlikely. */
3769 || (is_gimple_call (gsi_stmt (gsi))
3770 && (gimple_call_flags (gsi_stmt (gsi)) & ECF_NORETURN)))
3772 found = true;
3773 break;
3775 if (found)
3776 continue;
3778 if (dump_file && (dump_flags & TDF_DETAILS))
3779 fprintf (dump_file,
3780 "Basic block %i is marked unlikely by backward prop\n",
3781 bb->index);
3782 bb->count = profile_count::zero ();
3783 FOR_EACH_EDGE (e, ei, bb->preds)
3784 if (!(e->probability == profile_probability::never ()))
3786 if (!(e->src->count == profile_count::zero ()))
3788 gcc_checking_assert (nsuccs[e->src->index] > 0);
3789 nsuccs[e->src->index]--;
3790 if (!nsuccs[e->src->index])
3791 worklist.safe_push (e->src);
3795 /* Finally all edges from non-0 regions to 0 are unlikely. */
3796 FOR_ALL_BB_FN (bb, cfun)
3798 if (!(bb->count == profile_count::zero ()))
3799 FOR_EACH_EDGE (e, ei, bb->succs)
3800 if (!(e->probability == profile_probability::never ())
3801 && e->dest->count == profile_count::zero ())
3803 if (dump_file && (dump_flags & TDF_DETAILS))
3804 fprintf (dump_file, "Edge %i->%i is unlikely because "
3805 "it enters unlikely block\n",
3806 bb->index, e->dest->index);
3807 e->probability = profile_probability::never ();
3810 edge other = NULL;
3812 FOR_EACH_EDGE (e, ei, bb->succs)
3813 if (e->probability == profile_probability::never ())
3815 else if (other)
3817 other = NULL;
3818 break;
3820 else
3821 other = e;
3822 if (other
3823 && !(other->probability == profile_probability::always ()))
3825 if (dump_file && (dump_flags & TDF_DETAILS))
3826 fprintf (dump_file, "Edge %i->%i is locally likely\n",
3827 bb->index, other->dest->index);
3828 other->probability = profile_probability::always ();
3831 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ())
3832 cgraph_node::get (current_function_decl)->count = profile_count::zero ();
3835 /* Estimate and propagate basic block frequencies using the given branch
3836 probabilities. If FORCE is true, the frequencies are used to estimate
3837 the counts even when there are already non-zero profile counts. */
3839 void
3840 estimate_bb_frequencies (bool force)
3842 basic_block bb;
3843 sreal freq_max;
3845 determine_unlikely_bbs ();
3847 if (force || profile_status_for_fn (cfun) != PROFILE_READ
3848 || !update_max_bb_count ())
3850 static int real_values_initialized = 0;
3852 if (!real_values_initialized)
3854 real_values_initialized = 1;
3855 real_br_prob_base = REG_BR_PROB_BASE;
3856 /* Scaling frequencies up to maximal profile count may result in
3857 frequent overflows especially when inlining loops.
3858 Small scalling results in unnecesary precision loss. Stay in
3859 the half of the (exponential) range. */
3860 real_bb_freq_max = (uint64_t)1 << (profile_count::n_bits / 2);
3861 real_one_half = sreal (1, -1);
3862 real_inv_br_prob_base = sreal (1) / real_br_prob_base;
3863 real_almost_one = sreal (1) - real_inv_br_prob_base;
3866 mark_dfs_back_edges ();
3868 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
3869 profile_probability::always ();
3871 /* Set up block info for each basic block. */
3872 alloc_aux_for_blocks (sizeof (block_info));
3873 alloc_aux_for_edges (sizeof (edge_prob_info));
3874 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3876 edge e;
3877 edge_iterator ei;
3879 FOR_EACH_EDGE (e, ei, bb->succs)
3881 /* FIXME: Graphite is producing edges with no profile. Once
3882 this is fixed, drop this. */
3883 if (e->probability.initialized_p ())
3884 EDGE_INFO (e)->back_edge_prob
3885 = e->probability.to_reg_br_prob_base ();
3886 else
3887 EDGE_INFO (e)->back_edge_prob = REG_BR_PROB_BASE / 2;
3888 EDGE_INFO (e)->back_edge_prob *= real_inv_br_prob_base;
3892 /* First compute frequencies locally for each loop from innermost
3893 to outermost to examine frequencies for back edges. */
3894 estimate_loops ();
3896 freq_max = 0;
3897 FOR_EACH_BB_FN (bb, cfun)
3898 if (freq_max < BLOCK_INFO (bb)->frequency)
3899 freq_max = BLOCK_INFO (bb)->frequency;
3901 freq_max = real_bb_freq_max / freq_max;
3902 if (freq_max < 16)
3903 freq_max = 16;
3904 profile_count ipa_count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ();
3905 cfun->cfg->count_max = profile_count::uninitialized ();
3906 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3908 sreal tmp = BLOCK_INFO (bb)->frequency * freq_max + real_one_half;
3909 profile_count count = profile_count::from_gcov_type (tmp.to_int ());
3911 /* If we have profile feedback in which this function was never
3912 executed, then preserve this info. */
3913 if (!(bb->count == profile_count::zero ()))
3914 bb->count = count.guessed_local ().combine_with_ipa_count (ipa_count);
3915 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
3918 free_aux_for_blocks ();
3919 free_aux_for_edges ();
3921 compute_function_frequency ();
3924 /* Decide whether function is hot, cold or unlikely executed. */
3925 void
3926 compute_function_frequency (void)
3928 basic_block bb;
3929 struct cgraph_node *node = cgraph_node::get (current_function_decl);
3931 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3932 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
3933 node->only_called_at_startup = true;
3934 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
3935 node->only_called_at_exit = true;
3937 if (profile_status_for_fn (cfun) != PROFILE_READ)
3939 int flags = flags_from_decl_or_type (current_function_decl);
3940 if ((ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa_p ()
3941 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa() == profile_count::zero ())
3942 || lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
3943 != NULL)
3945 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3946 warn_function_cold (current_function_decl);
3948 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
3949 != NULL)
3950 node->frequency = NODE_FREQUENCY_HOT;
3951 else if (flags & ECF_NORETURN)
3952 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3953 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
3954 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3955 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3956 || DECL_STATIC_DESTRUCTOR (current_function_decl))
3957 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3958 return;
3961 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3962 warn_function_cold (current_function_decl);
3963 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa() == profile_count::zero ())
3964 return;
3965 FOR_EACH_BB_FN (bb, cfun)
3967 if (maybe_hot_bb_p (cfun, bb))
3969 node->frequency = NODE_FREQUENCY_HOT;
3970 return;
3972 if (!probably_never_executed_bb_p (cfun, bb))
3973 node->frequency = NODE_FREQUENCY_NORMAL;
3977 /* Build PREDICT_EXPR. */
3978 tree
3979 build_predict_expr (enum br_predictor predictor, enum prediction taken)
3981 tree t = build1 (PREDICT_EXPR, void_type_node,
3982 build_int_cst (integer_type_node, predictor));
3983 SET_PREDICT_EXPR_OUTCOME (t, taken);
3984 return t;
3987 const char *
3988 predictor_name (enum br_predictor predictor)
3990 return predictor_info[predictor].name;
3993 /* Predict branch probabilities and estimate profile of the tree CFG. */
3995 namespace {
3997 const pass_data pass_data_profile =
3999 GIMPLE_PASS, /* type */
4000 "profile_estimate", /* name */
4001 OPTGROUP_NONE, /* optinfo_flags */
4002 TV_BRANCH_PROB, /* tv_id */
4003 PROP_cfg, /* properties_required */
4004 0, /* properties_provided */
4005 0, /* properties_destroyed */
4006 0, /* todo_flags_start */
4007 0, /* todo_flags_finish */
4010 class pass_profile : public gimple_opt_pass
4012 public:
4013 pass_profile (gcc::context *ctxt)
4014 : gimple_opt_pass (pass_data_profile, ctxt)
4017 /* opt_pass methods: */
4018 virtual bool gate (function *) { return flag_guess_branch_prob; }
4019 virtual unsigned int execute (function *);
4021 }; // class pass_profile
4023 unsigned int
4024 pass_profile::execute (function *fun)
4026 unsigned nb_loops;
4028 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
4029 return 0;
4031 loop_optimizer_init (LOOPS_NORMAL);
4032 if (dump_file && (dump_flags & TDF_DETAILS))
4033 flow_loops_dump (dump_file, NULL, 0);
4035 mark_irreducible_loops ();
4037 nb_loops = number_of_loops (fun);
4038 if (nb_loops > 1)
4039 scev_initialize ();
4041 tree_estimate_probability (false);
4043 if (nb_loops > 1)
4044 scev_finalize ();
4046 loop_optimizer_finalize ();
4047 if (dump_file && (dump_flags & TDF_DETAILS))
4048 gimple_dump_cfg (dump_file, dump_flags);
4049 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
4050 profile_status_for_fn (fun) = PROFILE_GUESSED;
4051 if (dump_file && (dump_flags & TDF_DETAILS))
4053 class loop *loop;
4054 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
4055 if (loop->header->count.initialized_p ())
4056 fprintf (dump_file, "Loop got predicted %d to iterate %i times.\n",
4057 loop->num,
4058 (int)expected_loop_iterations_unbounded (loop));
4060 return 0;
4063 } // anon namespace
4065 gimple_opt_pass *
4066 make_pass_profile (gcc::context *ctxt)
4068 return new pass_profile (ctxt);
4071 /* Return true when PRED predictor should be removed after early
4072 tree passes. Most of the predictors are beneficial to survive
4073 as early inlining can also distribute then into caller's bodies. */
4075 static bool
4076 strip_predictor_early (enum br_predictor pred)
4078 switch (pred)
4080 case PRED_TREE_EARLY_RETURN:
4081 return true;
4082 default:
4083 return false;
4087 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
4088 we no longer need. EARLY is set to true when called from early
4089 optimizations. */
4091 unsigned int
4092 strip_predict_hints (function *fun, bool early)
4094 basic_block bb;
4095 gimple *ass_stmt;
4096 tree var;
4097 bool changed = false;
4099 FOR_EACH_BB_FN (bb, fun)
4101 gimple_stmt_iterator bi;
4102 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
4104 gimple *stmt = gsi_stmt (bi);
4106 if (gimple_code (stmt) == GIMPLE_PREDICT)
4108 if (!early
4109 || strip_predictor_early (gimple_predict_predictor (stmt)))
4111 gsi_remove (&bi, true);
4112 changed = true;
4113 continue;
4116 else if (is_gimple_call (stmt))
4118 tree fndecl = gimple_call_fndecl (stmt);
4120 if (!early
4121 && ((fndecl != NULL_TREE
4122 && fndecl_built_in_p (fndecl, BUILT_IN_EXPECT)
4123 && gimple_call_num_args (stmt) == 2)
4124 || (fndecl != NULL_TREE
4125 && fndecl_built_in_p (fndecl,
4126 BUILT_IN_EXPECT_WITH_PROBABILITY)
4127 && gimple_call_num_args (stmt) == 3)
4128 || (gimple_call_internal_p (stmt)
4129 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT)))
4131 var = gimple_call_lhs (stmt);
4132 changed = true;
4133 if (var)
4135 ass_stmt
4136 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
4137 gsi_replace (&bi, ass_stmt, true);
4139 else
4141 gsi_remove (&bi, true);
4142 continue;
4146 gsi_next (&bi);
4149 return changed ? TODO_cleanup_cfg : 0;
4152 namespace {
4154 const pass_data pass_data_strip_predict_hints =
4156 GIMPLE_PASS, /* type */
4157 "*strip_predict_hints", /* name */
4158 OPTGROUP_NONE, /* optinfo_flags */
4159 TV_BRANCH_PROB, /* tv_id */
4160 PROP_cfg, /* properties_required */
4161 0, /* properties_provided */
4162 0, /* properties_destroyed */
4163 0, /* todo_flags_start */
4164 0, /* todo_flags_finish */
4167 class pass_strip_predict_hints : public gimple_opt_pass
4169 public:
4170 pass_strip_predict_hints (gcc::context *ctxt)
4171 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
4174 /* opt_pass methods: */
4175 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
4176 void set_pass_param (unsigned int n, bool param)
4178 gcc_assert (n == 0);
4179 early_p = param;
4182 virtual unsigned int execute (function *);
4184 private:
4185 bool early_p;
4187 }; // class pass_strip_predict_hints
4189 unsigned int
4190 pass_strip_predict_hints::execute (function *fun)
4192 return strip_predict_hints (fun, early_p);
4195 } // anon namespace
4197 gimple_opt_pass *
4198 make_pass_strip_predict_hints (gcc::context *ctxt)
4200 return new pass_strip_predict_hints (ctxt);
4203 /* Rebuild function frequencies. Passes are in general expected to
4204 maintain profile by hand, however in some cases this is not possible:
4205 for example when inlining several functions with loops freuqencies might run
4206 out of scale and thus needs to be recomputed. */
4208 void
4209 rebuild_frequencies (void)
4211 timevar_push (TV_REBUILD_FREQUENCIES);
4213 /* When the max bb count in the function is small, there is a higher
4214 chance that there were truncation errors in the integer scaling
4215 of counts by inlining and other optimizations. This could lead
4216 to incorrect classification of code as being cold when it isn't.
4217 In that case, force the estimation of bb counts/frequencies from the
4218 branch probabilities, rather than computing frequencies from counts,
4219 which may also lead to frequencies incorrectly reduced to 0. There
4220 is less precision in the probabilities, so we only do this for small
4221 max counts. */
4222 cfun->cfg->count_max = profile_count::uninitialized ();
4223 basic_block bb;
4224 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
4225 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
4227 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
4229 loop_optimizer_init (0);
4230 add_noreturn_fake_exit_edges ();
4231 mark_irreducible_loops ();
4232 connect_infinite_loops_to_exit ();
4233 estimate_bb_frequencies (true);
4234 remove_fake_exit_edges ();
4235 loop_optimizer_finalize ();
4237 else if (profile_status_for_fn (cfun) == PROFILE_READ)
4238 update_max_bb_count ();
4239 else if (profile_status_for_fn (cfun) == PROFILE_ABSENT
4240 && !flag_guess_branch_prob)
4242 else
4243 gcc_unreachable ();
4244 timevar_pop (TV_REBUILD_FREQUENCIES);
4247 /* Perform a dry run of the branch prediction pass and report comparsion of
4248 the predicted and real profile into the dump file. */
4250 void
4251 report_predictor_hitrates (void)
4253 unsigned nb_loops;
4255 loop_optimizer_init (LOOPS_NORMAL);
4256 if (dump_file && (dump_flags & TDF_DETAILS))
4257 flow_loops_dump (dump_file, NULL, 0);
4259 mark_irreducible_loops ();
4261 nb_loops = number_of_loops (cfun);
4262 if (nb_loops > 1)
4263 scev_initialize ();
4265 tree_estimate_probability (true);
4267 if (nb_loops > 1)
4268 scev_finalize ();
4270 loop_optimizer_finalize ();
4273 /* Force edge E to be cold.
4274 If IMPOSSIBLE is true, for edge to have count and probability 0 otherwise
4275 keep low probability to represent possible error in a guess. This is used
4276 i.e. in case we predict loop to likely iterate given number of times but
4277 we are not 100% sure.
4279 This function locally updates profile without attempt to keep global
4280 consistency which cannot be reached in full generality without full profile
4281 rebuild from probabilities alone. Doing so is not necessarily a good idea
4282 because frequencies and counts may be more realistic then probabilities.
4284 In some cases (such as for elimination of early exits during full loop
4285 unrolling) the caller can ensure that profile will get consistent
4286 afterwards. */
4288 void
4289 force_edge_cold (edge e, bool impossible)
4291 profile_count count_sum = profile_count::zero ();
4292 profile_probability prob_sum = profile_probability::never ();
4293 edge_iterator ei;
4294 edge e2;
4295 bool uninitialized_exit = false;
4297 /* When branch probability guesses are not known, then do nothing. */
4298 if (!impossible && !e->count ().initialized_p ())
4299 return;
4301 profile_probability goal = (impossible ? profile_probability::never ()
4302 : profile_probability::very_unlikely ());
4304 /* If edge is already improbably or cold, just return. */
4305 if (e->probability <= goal
4306 && (!impossible || e->count () == profile_count::zero ()))
4307 return;
4308 FOR_EACH_EDGE (e2, ei, e->src->succs)
4309 if (e2 != e)
4311 if (e->flags & EDGE_FAKE)
4312 continue;
4313 if (e2->count ().initialized_p ())
4314 count_sum += e2->count ();
4315 if (e2->probability.initialized_p ())
4316 prob_sum += e2->probability;
4317 else
4318 uninitialized_exit = true;
4321 /* If we are not guessing profiles but have some other edges out,
4322 just assume the control flow goes elsewhere. */
4323 if (uninitialized_exit)
4324 e->probability = goal;
4325 /* If there are other edges out of e->src, redistribute probabilitity
4326 there. */
4327 else if (prob_sum > profile_probability::never ())
4329 if (!(e->probability < goal))
4330 e->probability = goal;
4332 profile_probability prob_comp = prob_sum / e->probability.invert ();
4334 if (dump_file && (dump_flags & TDF_DETAILS))
4335 fprintf (dump_file, "Making edge %i->%i %s by redistributing "
4336 "probability to other edges.\n",
4337 e->src->index, e->dest->index,
4338 impossible ? "impossible" : "cold");
4339 FOR_EACH_EDGE (e2, ei, e->src->succs)
4340 if (e2 != e)
4342 e2->probability /= prob_comp;
4344 if (current_ir_type () != IR_GIMPLE
4345 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4346 update_br_prob_note (e->src);
4348 /* If all edges out of e->src are unlikely, the basic block itself
4349 is unlikely. */
4350 else
4352 if (prob_sum == profile_probability::never ())
4353 e->probability = profile_probability::always ();
4354 else
4356 if (impossible)
4357 e->probability = profile_probability::never ();
4358 /* If BB has some edges out that are not impossible, we cannot
4359 assume that BB itself is. */
4360 impossible = false;
4362 if (current_ir_type () != IR_GIMPLE
4363 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4364 update_br_prob_note (e->src);
4365 if (e->src->count == profile_count::zero ())
4366 return;
4367 if (count_sum == profile_count::zero () && impossible)
4369 bool found = false;
4370 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
4372 else if (current_ir_type () == IR_GIMPLE)
4373 for (gimple_stmt_iterator gsi = gsi_start_bb (e->src);
4374 !gsi_end_p (gsi); gsi_next (&gsi))
4376 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
4378 found = true;
4379 break;
4382 /* FIXME: Implement RTL path. */
4383 else
4384 found = true;
4385 if (!found)
4387 if (dump_file && (dump_flags & TDF_DETAILS))
4388 fprintf (dump_file,
4389 "Making bb %i impossible and dropping count to 0.\n",
4390 e->src->index);
4391 e->src->count = profile_count::zero ();
4392 FOR_EACH_EDGE (e2, ei, e->src->preds)
4393 force_edge_cold (e2, impossible);
4394 return;
4398 /* If we did not adjusting, the source basic block has no likely edeges
4399 leaving other direction. In that case force that bb cold, too.
4400 This in general is difficult task to do, but handle special case when
4401 BB has only one predecestor. This is common case when we are updating
4402 after loop transforms. */
4403 if (!(prob_sum > profile_probability::never ())
4404 && count_sum == profile_count::zero ()
4405 && single_pred_p (e->src) && e->src->count.to_frequency (cfun)
4406 > (impossible ? 0 : 1))
4408 int old_frequency = e->src->count.to_frequency (cfun);
4409 if (dump_file && (dump_flags & TDF_DETAILS))
4410 fprintf (dump_file, "Making bb %i %s.\n", e->src->index,
4411 impossible ? "impossible" : "cold");
4412 int new_frequency = MIN (e->src->count.to_frequency (cfun),
4413 impossible ? 0 : 1);
4414 if (impossible)
4415 e->src->count = profile_count::zero ();
4416 else
4417 e->src->count = e->count ().apply_scale (new_frequency,
4418 old_frequency);
4419 force_edge_cold (single_pred_edge (e->src), impossible);
4421 else if (dump_file && (dump_flags & TDF_DETAILS)
4422 && maybe_hot_bb_p (cfun, e->src))
4423 fprintf (dump_file, "Giving up on making bb %i %s.\n", e->src->index,
4424 impossible ? "impossible" : "cold");
4428 #if CHECKING_P
4430 namespace selftest {
4432 /* Test that value range of predictor values defined in predict.def is
4433 within range (50, 100]. */
4435 struct branch_predictor
4437 const char *name;
4438 int probability;
4441 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) { NAME, HITRATE },
4443 static void
4444 test_prediction_value_range ()
4446 branch_predictor predictors[] = {
4447 #include "predict.def"
4448 { NULL, PROB_UNINITIALIZED }
4451 for (unsigned i = 0; predictors[i].name != NULL; i++)
4453 if (predictors[i].probability == PROB_UNINITIALIZED)
4454 continue;
4456 unsigned p = 100 * predictors[i].probability / REG_BR_PROB_BASE;
4457 ASSERT_TRUE (p >= 50 && p <= 100);
4461 #undef DEF_PREDICTOR
4463 /* Run all of the selfests within this file. */
4465 void
4466 predict_c_tests ()
4468 test_prediction_value_range ();
4471 } // namespace selftest
4472 #endif /* CHECKING_P. */