1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
5 Copyright (C) 2014-2019 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
32 initializer_each_zero_or_onep
34 tree_expr_nonnegative_p
43 (define_operator_list tcc_comparison
44 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
45 (define_operator_list inverted_tcc_comparison
46 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
47 (define_operator_list inverted_tcc_comparison_with_nans
48 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
49 (define_operator_list swapped_tcc_comparison
50 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
51 (define_operator_list simple_comparison lt le eq ne ge gt)
52 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
54 #include "cfn-operators.pd"
56 /* Define operand lists for math rounding functions {,i,l,ll}FN,
57 where the versions prefixed with "i" return an int, those prefixed with
58 "l" return a long and those prefixed with "ll" return a long long.
60 Also define operand lists:
62 X<FN>F for all float functions, in the order i, l, ll
63 X<FN> for all double functions, in the same order
64 X<FN>L for all long double functions, in the same order. */
65 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
66 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
69 (define_operator_list X##FN BUILT_IN_I##FN \
72 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
76 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
77 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
78 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
79 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
81 /* Binary operations and their associated IFN_COND_* function. */
82 (define_operator_list UNCOND_BINARY
84 mult trunc_div trunc_mod rdiv
86 bit_and bit_ior bit_xor
88 (define_operator_list COND_BINARY
89 IFN_COND_ADD IFN_COND_SUB
90 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
91 IFN_COND_MIN IFN_COND_MAX
92 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
93 IFN_COND_SHL IFN_COND_SHR)
95 /* Same for ternary operations. */
96 (define_operator_list UNCOND_TERNARY
97 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
98 (define_operator_list COND_TERNARY
99 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
101 /* As opposed to convert?, this still creates a single pattern, so
102 it is not a suitable replacement for convert? in all cases. */
103 (match (nop_convert @0)
105 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
106 (match (nop_convert @0)
108 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
109 && known_eq (TYPE_VECTOR_SUBPARTS (type),
110 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
111 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
112 /* This one has to be last, or it shadows the others. */
113 (match (nop_convert @0)
116 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
117 ABSU_EXPR returns unsigned absolute value of the operand and the operand
118 of the ABSU_EXPR will have the corresponding signed type. */
119 (simplify (abs (convert @0))
120 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
121 && !TYPE_UNSIGNED (TREE_TYPE (@0))
122 && element_precision (type) > element_precision (TREE_TYPE (@0)))
123 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
124 (convert (absu:utype @0)))))
127 /* Simplifications of operations with one constant operand and
128 simplifications to constants or single values. */
130 (for op (plus pointer_plus minus bit_ior bit_xor)
132 (op @0 integer_zerop)
135 /* 0 +p index -> (type)index */
137 (pointer_plus integer_zerop @1)
138 (non_lvalue (convert @1)))
140 /* ptr - 0 -> (type)ptr */
142 (pointer_diff @0 integer_zerop)
145 /* See if ARG1 is zero and X + ARG1 reduces to X.
146 Likewise if the operands are reversed. */
148 (plus:c @0 real_zerop@1)
149 (if (fold_real_zero_addition_p (type, @1, 0))
152 /* See if ARG1 is zero and X - ARG1 reduces to X. */
154 (minus @0 real_zerop@1)
155 (if (fold_real_zero_addition_p (type, @1, 1))
158 /* Even if the fold_real_zero_addition_p can't simplify X + 0.0
159 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
160 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
161 if not -frounding-math. For sNaNs the first operation would raise
162 exceptions but turn the result into qNan, so the second operation
163 would not raise it. */
164 (for inner_op (plus minus)
165 (for outer_op (plus minus)
167 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
170 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
171 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
172 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
174 = ((outer_op == PLUS_EXPR)
175 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
176 (if (outer_plus && !inner_plus)
181 This is unsafe for certain floats even in non-IEEE formats.
182 In IEEE, it is unsafe because it does wrong for NaNs.
183 Also note that operand_equal_p is always false if an operand
187 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
188 { build_zero_cst (type); }))
190 (pointer_diff @@0 @0)
191 { build_zero_cst (type); })
194 (mult @0 integer_zerop@1)
197 /* Maybe fold x * 0 to 0. The expressions aren't the same
198 when x is NaN, since x * 0 is also NaN. Nor are they the
199 same in modes with signed zeros, since multiplying a
200 negative value by 0 gives -0, not +0. */
202 (mult @0 real_zerop@1)
203 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
206 /* In IEEE floating point, x*1 is not equivalent to x for snans.
207 Likewise for complex arithmetic with signed zeros. */
210 (if (!HONOR_SNANS (type)
211 && (!HONOR_SIGNED_ZEROS (type)
212 || !COMPLEX_FLOAT_TYPE_P (type)))
215 /* Transform x * -1.0 into -x. */
217 (mult @0 real_minus_onep)
218 (if (!HONOR_SNANS (type)
219 && (!HONOR_SIGNED_ZEROS (type)
220 || !COMPLEX_FLOAT_TYPE_P (type)))
223 /* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 } */
225 (mult SSA_NAME@1 SSA_NAME@2)
226 (if (INTEGRAL_TYPE_P (type)
227 && get_nonzero_bits (@1) == 1
228 && get_nonzero_bits (@2) == 1)
231 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
232 unless the target has native support for the former but not the latter. */
234 (mult @0 VECTOR_CST@1)
235 (if (initializer_each_zero_or_onep (@1)
236 && !HONOR_SNANS (type)
237 && !HONOR_SIGNED_ZEROS (type))
238 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
240 && (!VECTOR_MODE_P (TYPE_MODE (type))
241 || (VECTOR_MODE_P (TYPE_MODE (itype))
242 && optab_handler (and_optab,
243 TYPE_MODE (itype)) != CODE_FOR_nothing)))
244 (view_convert (bit_and:itype (view_convert @0)
245 (ne @1 { build_zero_cst (type); })))))))
247 (for cmp (gt ge lt le)
248 outp (convert convert negate negate)
249 outn (negate negate convert convert)
250 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
251 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
252 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
253 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
255 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
256 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
257 && types_match (type, TREE_TYPE (@0)))
259 (if (types_match (type, float_type_node))
260 (BUILT_IN_COPYSIGNF @1 (outp @0)))
261 (if (types_match (type, double_type_node))
262 (BUILT_IN_COPYSIGN @1 (outp @0)))
263 (if (types_match (type, long_double_type_node))
264 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
265 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
266 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
267 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
268 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
270 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
271 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
272 && types_match (type, TREE_TYPE (@0)))
274 (if (types_match (type, float_type_node))
275 (BUILT_IN_COPYSIGNF @1 (outn @0)))
276 (if (types_match (type, double_type_node))
277 (BUILT_IN_COPYSIGN @1 (outn @0)))
278 (if (types_match (type, long_double_type_node))
279 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
281 /* Transform X * copysign (1.0, X) into abs(X). */
283 (mult:c @0 (COPYSIGN_ALL real_onep @0))
284 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
287 /* Transform X * copysign (1.0, -X) into -abs(X). */
289 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
290 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
293 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
295 (COPYSIGN_ALL REAL_CST@0 @1)
296 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
297 (COPYSIGN_ALL (negate @0) @1)))
299 /* X * 1, X / 1 -> X. */
300 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
305 /* (A / (1 << B)) -> (A >> B).
306 Only for unsigned A. For signed A, this would not preserve rounding
308 For example: (-1 / ( 1 << B)) != -1 >> B.
309 Also also widening conversions, like:
310 (A / (unsigned long long) (1U << B)) -> (A >> B)
312 (A / (unsigned long long) (1 << B)) -> (A >> B).
313 If the left shift is signed, it can be done only if the upper bits
314 of A starting from shift's type sign bit are zero, as
315 (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
316 so it is valid only if A >> 31 is zero. */
318 (trunc_div @0 (convert? (lshift integer_onep@1 @2)))
319 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
320 && (!VECTOR_TYPE_P (type)
321 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
322 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
323 && (useless_type_conversion_p (type, TREE_TYPE (@1))
324 || (element_precision (type) >= element_precision (TREE_TYPE (@1))
325 && (TYPE_UNSIGNED (TREE_TYPE (@1))
326 || (element_precision (type)
327 == element_precision (TREE_TYPE (@1)))
328 || (INTEGRAL_TYPE_P (type)
329 && (tree_nonzero_bits (@0)
330 & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
332 element_precision (type))) == 0)))))
335 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
336 undefined behavior in constexpr evaluation, and assuming that the division
337 traps enables better optimizations than these anyway. */
338 (for div (trunc_div ceil_div floor_div round_div exact_div)
339 /* 0 / X is always zero. */
341 (div integer_zerop@0 @1)
342 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
343 (if (!integer_zerop (@1))
347 (div @0 integer_minus_onep@1)
348 (if (!TYPE_UNSIGNED (type))
353 /* But not for 0 / 0 so that we can get the proper warnings and errors.
354 And not for _Fract types where we can't build 1. */
355 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
356 { build_one_cst (type); }))
357 /* X / abs (X) is X < 0 ? -1 : 1. */
360 (if (INTEGRAL_TYPE_P (type)
361 && TYPE_OVERFLOW_UNDEFINED (type))
362 (cond (lt @0 { build_zero_cst (type); })
363 { build_minus_one_cst (type); } { build_one_cst (type); })))
366 (div:C @0 (negate @0))
367 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
368 && TYPE_OVERFLOW_UNDEFINED (type))
369 { build_minus_one_cst (type); })))
371 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
372 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
375 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
376 && TYPE_UNSIGNED (type))
379 /* Combine two successive divisions. Note that combining ceil_div
380 and floor_div is trickier and combining round_div even more so. */
381 (for div (trunc_div exact_div)
383 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
385 wi::overflow_type overflow;
386 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
387 TYPE_SIGN (type), &overflow);
389 (if (div == EXACT_DIV_EXPR
390 || optimize_successive_divisions_p (@2, @3))
392 (div @0 { wide_int_to_tree (type, mul); })
393 (if (TYPE_UNSIGNED (type)
394 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
395 { build_zero_cst (type); }))))))
397 /* Combine successive multiplications. Similar to above, but handling
398 overflow is different. */
400 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
402 wi::overflow_type overflow;
403 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
404 TYPE_SIGN (type), &overflow);
406 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
407 otherwise undefined overflow implies that @0 must be zero. */
408 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
409 (mult @0 { wide_int_to_tree (type, mul); }))))
411 /* Optimize A / A to 1.0 if we don't care about
412 NaNs or Infinities. */
415 (if (FLOAT_TYPE_P (type)
416 && ! HONOR_NANS (type)
417 && ! HONOR_INFINITIES (type))
418 { build_one_cst (type); }))
420 /* Optimize -A / A to -1.0 if we don't care about
421 NaNs or Infinities. */
423 (rdiv:C @0 (negate @0))
424 (if (FLOAT_TYPE_P (type)
425 && ! HONOR_NANS (type)
426 && ! HONOR_INFINITIES (type))
427 { build_minus_one_cst (type); }))
429 /* PR71078: x / abs(x) -> copysign (1.0, x) */
431 (rdiv:C (convert? @0) (convert? (abs @0)))
432 (if (SCALAR_FLOAT_TYPE_P (type)
433 && ! HONOR_NANS (type)
434 && ! HONOR_INFINITIES (type))
436 (if (types_match (type, float_type_node))
437 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
438 (if (types_match (type, double_type_node))
439 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
440 (if (types_match (type, long_double_type_node))
441 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
443 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
446 (if (!HONOR_SNANS (type))
449 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
451 (rdiv @0 real_minus_onep)
452 (if (!HONOR_SNANS (type))
455 (if (flag_reciprocal_math)
456 /* Convert (A/B)/C to A/(B*C). */
458 (rdiv (rdiv:s @0 @1) @2)
459 (rdiv @0 (mult @1 @2)))
461 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
463 (rdiv @0 (mult:s @1 REAL_CST@2))
465 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
467 (rdiv (mult @0 { tem; } ) @1))))
469 /* Convert A/(B/C) to (A/B)*C */
471 (rdiv @0 (rdiv:s @1 @2))
472 (mult (rdiv @0 @1) @2)))
474 /* Simplify x / (- y) to -x / y. */
476 (rdiv @0 (negate @1))
477 (rdiv (negate @0) @1))
479 (if (flag_unsafe_math_optimizations)
480 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
481 Since C / x may underflow to zero, do this only for unsafe math. */
482 (for op (lt le gt ge)
485 (op (rdiv REAL_CST@0 @1) real_zerop@2)
486 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
488 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
490 /* For C < 0, use the inverted operator. */
491 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
494 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
495 (for div (trunc_div ceil_div floor_div round_div exact_div)
497 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
498 (if (integer_pow2p (@2)
499 && tree_int_cst_sgn (@2) > 0
500 && tree_nop_conversion_p (type, TREE_TYPE (@0))
501 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
503 { build_int_cst (integer_type_node,
504 wi::exact_log2 (wi::to_wide (@2))); }))))
506 /* If ARG1 is a constant, we can convert this to a multiply by the
507 reciprocal. This does not have the same rounding properties,
508 so only do this if -freciprocal-math. We can actually
509 always safely do it if ARG1 is a power of two, but it's hard to
510 tell if it is or not in a portable manner. */
511 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
515 (if (flag_reciprocal_math
518 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
520 (mult @0 { tem; } )))
521 (if (cst != COMPLEX_CST)
522 (with { tree inverse = exact_inverse (type, @1); }
524 (mult @0 { inverse; } ))))))))
526 (for mod (ceil_mod floor_mod round_mod trunc_mod)
527 /* 0 % X is always zero. */
529 (mod integer_zerop@0 @1)
530 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
531 (if (!integer_zerop (@1))
533 /* X % 1 is always zero. */
535 (mod @0 integer_onep)
536 { build_zero_cst (type); })
537 /* X % -1 is zero. */
539 (mod @0 integer_minus_onep@1)
540 (if (!TYPE_UNSIGNED (type))
541 { build_zero_cst (type); }))
545 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
546 (if (!integer_zerop (@0))
547 { build_zero_cst (type); }))
548 /* (X % Y) % Y is just X % Y. */
550 (mod (mod@2 @0 @1) @1)
552 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
554 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
555 (if (ANY_INTEGRAL_TYPE_P (type)
556 && TYPE_OVERFLOW_UNDEFINED (type)
557 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
559 { build_zero_cst (type); }))
560 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
561 modulo and comparison, since it is simpler and equivalent. */
564 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
565 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
566 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
567 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
569 /* X % -C is the same as X % C. */
571 (trunc_mod @0 INTEGER_CST@1)
572 (if (TYPE_SIGN (type) == SIGNED
573 && !TREE_OVERFLOW (@1)
574 && wi::neg_p (wi::to_wide (@1))
575 && !TYPE_OVERFLOW_TRAPS (type)
576 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
577 && !sign_bit_p (@1, @1))
578 (trunc_mod @0 (negate @1))))
580 /* X % -Y is the same as X % Y. */
582 (trunc_mod @0 (convert? (negate @1)))
583 (if (INTEGRAL_TYPE_P (type)
584 && !TYPE_UNSIGNED (type)
585 && !TYPE_OVERFLOW_TRAPS (type)
586 && tree_nop_conversion_p (type, TREE_TYPE (@1))
587 /* Avoid this transformation if X might be INT_MIN or
588 Y might be -1, because we would then change valid
589 INT_MIN % -(-1) into invalid INT_MIN % -1. */
590 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
591 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
593 (trunc_mod @0 (convert @1))))
595 /* X - (X / Y) * Y is the same as X % Y. */
597 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
598 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
599 (convert (trunc_mod @0 @1))))
601 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
602 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
603 Also optimize A % (C << N) where C is a power of 2,
604 to A & ((C << N) - 1). */
605 (match (power_of_two_cand @1)
607 (match (power_of_two_cand @1)
608 (lshift INTEGER_CST@1 @2))
609 (for mod (trunc_mod floor_mod)
611 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
612 (if ((TYPE_UNSIGNED (type)
613 || tree_expr_nonnegative_p (@0))
614 && tree_nop_conversion_p (type, TREE_TYPE (@3))
615 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
616 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
618 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
620 (trunc_div (mult @0 integer_pow2p@1) @1)
621 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
622 (bit_and @0 { wide_int_to_tree
623 (type, wi::mask (TYPE_PRECISION (type)
624 - wi::exact_log2 (wi::to_wide (@1)),
625 false, TYPE_PRECISION (type))); })))
627 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
629 (mult (trunc_div @0 integer_pow2p@1) @1)
630 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
631 (bit_and @0 (negate @1))))
633 /* Simplify (t * 2) / 2) -> t. */
634 (for div (trunc_div ceil_div floor_div round_div exact_div)
636 (div (mult:c @0 @1) @1)
637 (if (ANY_INTEGRAL_TYPE_P (type)
638 && TYPE_OVERFLOW_UNDEFINED (type))
642 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
647 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
650 (pows (op @0) REAL_CST@1)
651 (with { HOST_WIDE_INT n; }
652 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
654 /* Likewise for powi. */
657 (pows (op @0) INTEGER_CST@1)
658 (if ((wi::to_wide (@1) & 1) == 0)
660 /* Strip negate and abs from both operands of hypot. */
668 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
669 (for copysigns (COPYSIGN_ALL)
671 (copysigns (op @0) @1)
674 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
679 /* Convert absu(x)*absu(x) -> x*x. */
681 (mult (absu@1 @0) @1)
682 (mult (convert@2 @0) @2))
684 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
688 (coss (copysigns @0 @1))
691 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
695 (pows (copysigns @0 @2) REAL_CST@1)
696 (with { HOST_WIDE_INT n; }
697 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
699 /* Likewise for powi. */
703 (pows (copysigns @0 @2) INTEGER_CST@1)
704 (if ((wi::to_wide (@1) & 1) == 0)
709 /* hypot(copysign(x, y), z) -> hypot(x, z). */
711 (hypots (copysigns @0 @1) @2)
713 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
715 (hypots @0 (copysigns @1 @2))
718 /* copysign(x, CST) -> [-]abs (x). */
719 (for copysigns (COPYSIGN_ALL)
721 (copysigns @0 REAL_CST@1)
722 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
726 /* copysign(copysign(x, y), z) -> copysign(x, z). */
727 (for copysigns (COPYSIGN_ALL)
729 (copysigns (copysigns @0 @1) @2)
732 /* copysign(x,y)*copysign(x,y) -> x*x. */
733 (for copysigns (COPYSIGN_ALL)
735 (mult (copysigns@2 @0 @1) @2)
738 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
739 (for ccoss (CCOS CCOSH)
744 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
745 (for ops (conj negate)
751 /* Fold (a * (1 << b)) into (a << b) */
753 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
754 (if (! FLOAT_TYPE_P (type)
755 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
758 /* Fold (1 << (C - x)) where C = precision(type) - 1
759 into ((1 << C) >> x). */
761 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
762 (if (INTEGRAL_TYPE_P (type)
763 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
765 (if (TYPE_UNSIGNED (type))
766 (rshift (lshift @0 @2) @3)
768 { tree utype = unsigned_type_for (type); }
769 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
771 /* Fold (C1/X)*C2 into (C1*C2)/X. */
773 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
774 (if (flag_associative_math
777 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
779 (rdiv { tem; } @1)))))
781 /* Simplify ~X & X as zero. */
783 (bit_and:c (convert? @0) (convert? (bit_not @0)))
784 { build_zero_cst (type); })
786 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
788 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
789 (if (TYPE_UNSIGNED (type))
790 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
792 (for bitop (bit_and bit_ior)
794 /* PR35691: Transform
795 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
796 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
798 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
799 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
800 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
801 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
802 (cmp (bit_ior @0 (convert @1)) @2)))
804 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
805 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
807 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
808 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
809 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
810 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
811 (cmp (bit_and @0 (convert @1)) @2))))
813 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
815 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
816 (minus (bit_xor @0 @1) @1))
818 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
819 (if (~wi::to_wide (@2) == wi::to_wide (@1))
820 (minus (bit_xor @0 @1) @1)))
822 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
824 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
825 (minus @1 (bit_xor @0 @1)))
827 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
828 (for op (bit_ior bit_xor plus)
830 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
833 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
834 (if (~wi::to_wide (@2) == wi::to_wide (@1))
837 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
839 (bit_ior:c (bit_xor:c @0 @1) @0)
842 /* (a & ~b) | (a ^ b) --> a ^ b */
844 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
847 /* (a & ~b) ^ ~a --> ~(a & b) */
849 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
850 (bit_not (bit_and @0 @1)))
852 /* (~a & b) ^ a --> (a | b) */
854 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
857 /* (a | b) & ~(a ^ b) --> a & b */
859 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
862 /* a | ~(a ^ b) --> a | ~b */
864 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
865 (bit_ior @0 (bit_not @1)))
867 /* (a | b) | (a &^ b) --> a | b */
868 (for op (bit_and bit_xor)
870 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
873 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
875 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
878 /* ~(~a & b) --> a | ~b */
880 (bit_not (bit_and:cs (bit_not @0) @1))
881 (bit_ior @0 (bit_not @1)))
883 /* ~(~a | b) --> a & ~b */
885 (bit_not (bit_ior:cs (bit_not @0) @1))
886 (bit_and @0 (bit_not @1)))
888 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
891 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
892 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
893 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
897 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
898 ((A & N) + B) & M -> (A + B) & M
899 Similarly if (N & M) == 0,
900 ((A | N) + B) & M -> (A + B) & M
901 and for - instead of + (or unary - instead of +)
902 and/or ^ instead of |.
903 If B is constant and (B & M) == 0, fold into A & M. */
905 (for bitop (bit_and bit_ior bit_xor)
907 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
910 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
911 @3, @4, @1, ERROR_MARK, NULL_TREE,
914 (convert (bit_and (op (convert:utype { pmop[0]; })
915 (convert:utype { pmop[1]; }))
916 (convert:utype @2))))))
918 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
921 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
922 NULL_TREE, NULL_TREE, @1, bitop, @3,
925 (convert (bit_and (op (convert:utype { pmop[0]; })
926 (convert:utype { pmop[1]; }))
927 (convert:utype @2)))))))
929 (bit_and (op:s @0 @1) INTEGER_CST@2)
932 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
933 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
934 NULL_TREE, NULL_TREE, pmop); }
936 (convert (bit_and (op (convert:utype { pmop[0]; })
937 (convert:utype { pmop[1]; }))
938 (convert:utype @2)))))))
939 (for bitop (bit_and bit_ior bit_xor)
941 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
944 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
945 bitop, @2, @3, NULL_TREE, ERROR_MARK,
946 NULL_TREE, NULL_TREE, pmop); }
948 (convert (bit_and (negate (convert:utype { pmop[0]; }))
949 (convert:utype @1)))))))
951 /* X % Y is smaller than Y. */
954 (cmp (trunc_mod @0 @1) @1)
955 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
956 { constant_boolean_node (cmp == LT_EXPR, type); })))
959 (cmp @1 (trunc_mod @0 @1))
960 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
961 { constant_boolean_node (cmp == GT_EXPR, type); })))
965 (bit_ior @0 integer_all_onesp@1)
970 (bit_ior @0 integer_zerop)
975 (bit_and @0 integer_zerop@1)
981 (for op (bit_ior bit_xor plus)
983 (op:c (convert? @0) (convert? (bit_not @0)))
984 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
989 { build_zero_cst (type); })
991 /* Canonicalize X ^ ~0 to ~X. */
993 (bit_xor @0 integer_all_onesp@1)
998 (bit_and @0 integer_all_onesp)
1001 /* x & x -> x, x | x -> x */
1002 (for bitop (bit_and bit_ior)
1007 /* x & C -> x if we know that x & ~C == 0. */
1010 (bit_and SSA_NAME@0 INTEGER_CST@1)
1011 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1012 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1016 /* x + (x & 1) -> (x + 1) & ~1 */
1018 (plus:c @0 (bit_and:s @0 integer_onep@1))
1019 (bit_and (plus @0 @1) (bit_not @1)))
1021 /* x & ~(x & y) -> x & ~y */
1022 /* x | ~(x | y) -> x | ~y */
1023 (for bitop (bit_and bit_ior)
1025 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1026 (bitop @0 (bit_not @1))))
1028 /* (~x & y) | ~(x | y) -> ~x */
1030 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1033 /* (x | y) ^ (x | ~y) -> ~x */
1035 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1038 /* (x & y) | ~(x | y) -> ~(x ^ y) */
1040 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1041 (bit_not (bit_xor @0 @1)))
1043 /* (~x | y) ^ (x ^ y) -> x | ~y */
1045 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1046 (bit_ior @0 (bit_not @1)))
1048 /* (x ^ y) | ~(x | y) -> ~(x & y) */
1050 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1051 (bit_not (bit_and @0 @1)))
1053 /* (x | y) & ~x -> y & ~x */
1054 /* (x & y) | ~x -> y | ~x */
1055 (for bitop (bit_and bit_ior)
1056 rbitop (bit_ior bit_and)
1058 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1061 /* (x & y) ^ (x | y) -> x ^ y */
1063 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1066 /* (x ^ y) ^ (x | y) -> x & y */
1068 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1071 /* (x & y) + (x ^ y) -> x | y */
1072 /* (x & y) | (x ^ y) -> x | y */
1073 /* (x & y) ^ (x ^ y) -> x | y */
1074 (for op (plus bit_ior bit_xor)
1076 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1079 /* (x & y) + (x | y) -> x + y */
1081 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1084 /* (x + y) - (x | y) -> x & y */
1086 (minus (plus @0 @1) (bit_ior @0 @1))
1087 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1088 && !TYPE_SATURATING (type))
1091 /* (x + y) - (x & y) -> x | y */
1093 (minus (plus @0 @1) (bit_and @0 @1))
1094 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1095 && !TYPE_SATURATING (type))
1098 /* (x | y) - (x ^ y) -> x & y */
1100 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1103 /* (x | y) - (x & y) -> x ^ y */
1105 (minus (bit_ior @0 @1) (bit_and @0 @1))
1108 /* (x | y) & ~(x & y) -> x ^ y */
1110 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1113 /* (x | y) & (~x ^ y) -> x & y */
1115 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1118 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1120 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1121 (bit_not (bit_xor @0 @1)))
1123 /* (~x | y) ^ (x | ~y) -> x ^ y */
1125 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1128 /* ~x & ~y -> ~(x | y)
1129 ~x | ~y -> ~(x & y) */
1130 (for op (bit_and bit_ior)
1131 rop (bit_ior bit_and)
1133 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1134 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1135 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1136 (bit_not (rop (convert @0) (convert @1))))))
1138 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1139 with a constant, and the two constants have no bits in common,
1140 we should treat this as a BIT_IOR_EXPR since this may produce more
1142 (for op (bit_xor plus)
1144 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1145 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1146 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1147 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1148 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1149 (bit_ior (convert @4) (convert @5)))))
1151 /* (X | Y) ^ X -> Y & ~ X*/
1153 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1154 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1155 (convert (bit_and @1 (bit_not @0)))))
1157 /* Convert ~X ^ ~Y to X ^ Y. */
1159 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1160 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1161 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1162 (bit_xor (convert @0) (convert @1))))
1164 /* Convert ~X ^ C to X ^ ~C. */
1166 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1167 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1168 (bit_xor (convert @0) (bit_not @1))))
1170 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1171 (for opo (bit_and bit_xor)
1172 opi (bit_xor bit_and)
1174 (opo:c (opi:cs @0 @1) @1)
1175 (bit_and (bit_not @0) @1)))
1177 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1178 operands are another bit-wise operation with a common input. If so,
1179 distribute the bit operations to save an operation and possibly two if
1180 constants are involved. For example, convert
1181 (A | B) & (A | C) into A | (B & C)
1182 Further simplification will occur if B and C are constants. */
1183 (for op (bit_and bit_ior bit_xor)
1184 rop (bit_ior bit_and bit_and)
1186 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1187 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1188 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1189 (rop (convert @0) (op (convert @1) (convert @2))))))
1191 /* Some simple reassociation for bit operations, also handled in reassoc. */
1192 /* (X & Y) & Y -> X & Y
1193 (X | Y) | Y -> X | Y */
1194 (for op (bit_and bit_ior)
1196 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1198 /* (X ^ Y) ^ Y -> X */
1200 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1202 /* (X & Y) & (X & Z) -> (X & Y) & Z
1203 (X | Y) | (X | Z) -> (X | Y) | Z */
1204 (for op (bit_and bit_ior)
1206 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1207 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1208 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1209 (if (single_use (@5) && single_use (@6))
1210 (op @3 (convert @2))
1211 (if (single_use (@3) && single_use (@4))
1212 (op (convert @1) @5))))))
1213 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1215 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1216 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1217 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1218 (bit_xor (convert @1) (convert @2))))
1220 /* Convert abs (abs (X)) into abs (X).
1221 also absu (absu (X)) into absu (X). */
1227 (absu (convert@2 (absu@1 @0)))
1228 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1231 /* Convert abs[u] (-X) -> abs[u] (X). */
1240 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1242 (abs tree_expr_nonnegative_p@0)
1246 (absu tree_expr_nonnegative_p@0)
1249 /* A few cases of fold-const.c negate_expr_p predicate. */
1250 (match negate_expr_p
1252 (if ((INTEGRAL_TYPE_P (type)
1253 && TYPE_UNSIGNED (type))
1254 || (!TYPE_OVERFLOW_SANITIZED (type)
1255 && may_negate_without_overflow_p (t)))))
1256 (match negate_expr_p
1258 (match negate_expr_p
1260 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1261 (match negate_expr_p
1263 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1264 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1266 (match negate_expr_p
1268 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1269 (match negate_expr_p
1271 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1272 || (FLOAT_TYPE_P (type)
1273 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1274 && !HONOR_SIGNED_ZEROS (type)))))
1276 /* (-A) * (-B) -> A * B */
1278 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1279 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1280 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1281 (mult (convert @0) (convert (negate @1)))))
1283 /* -(A + B) -> (-B) - A. */
1285 (negate (plus:c @0 negate_expr_p@1))
1286 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1287 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1288 (minus (negate @1) @0)))
1290 /* -(A - B) -> B - A. */
1292 (negate (minus @0 @1))
1293 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1294 || (FLOAT_TYPE_P (type)
1295 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1296 && !HONOR_SIGNED_ZEROS (type)))
1299 (negate (pointer_diff @0 @1))
1300 (if (TYPE_OVERFLOW_UNDEFINED (type))
1301 (pointer_diff @1 @0)))
1303 /* A - B -> A + (-B) if B is easily negatable. */
1305 (minus @0 negate_expr_p@1)
1306 (if (!FIXED_POINT_TYPE_P (type))
1307 (plus @0 (negate @1))))
1309 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1311 For bitwise binary operations apply operand conversions to the
1312 binary operation result instead of to the operands. This allows
1313 to combine successive conversions and bitwise binary operations.
1314 We combine the above two cases by using a conditional convert. */
1315 (for bitop (bit_and bit_ior bit_xor)
1317 (bitop (convert @0) (convert? @1))
1318 (if (((TREE_CODE (@1) == INTEGER_CST
1319 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1320 && int_fits_type_p (@1, TREE_TYPE (@0)))
1321 || types_match (@0, @1))
1322 /* ??? This transform conflicts with fold-const.c doing
1323 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1324 constants (if x has signed type, the sign bit cannot be set
1325 in c). This folds extension into the BIT_AND_EXPR.
1326 Restrict it to GIMPLE to avoid endless recursions. */
1327 && (bitop != BIT_AND_EXPR || GIMPLE)
1328 && (/* That's a good idea if the conversion widens the operand, thus
1329 after hoisting the conversion the operation will be narrower. */
1330 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1331 /* It's also a good idea if the conversion is to a non-integer
1333 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1334 /* Or if the precision of TO is not the same as the precision
1336 || !type_has_mode_precision_p (type)))
1337 (convert (bitop @0 (convert @1))))))
1339 (for bitop (bit_and bit_ior)
1340 rbitop (bit_ior bit_and)
1341 /* (x | y) & x -> x */
1342 /* (x & y) | x -> x */
1344 (bitop:c (rbitop:c @0 @1) @0)
1346 /* (~x | y) & x -> x & y */
1347 /* (~x & y) | x -> x | y */
1349 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1352 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1354 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1355 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1357 /* Combine successive equal operations with constants. */
1358 (for bitop (bit_and bit_ior bit_xor)
1360 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1361 (if (!CONSTANT_CLASS_P (@0))
1362 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1363 folded to a constant. */
1364 (bitop @0 (bitop @1 @2))
1365 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1366 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1367 the values involved are such that the operation can't be decided at
1368 compile time. Try folding one of @0 or @1 with @2 to see whether
1369 that combination can be decided at compile time.
1371 Keep the existing form if both folds fail, to avoid endless
1373 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1375 (bitop @1 { cst1; })
1376 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1378 (bitop @0 { cst2; }))))))))
1380 /* Try simple folding for X op !X, and X op X with the help
1381 of the truth_valued_p and logical_inverted_value predicates. */
1382 (match truth_valued_p
1384 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1385 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1386 (match truth_valued_p
1388 (match truth_valued_p
1391 (match (logical_inverted_value @0)
1393 (match (logical_inverted_value @0)
1394 (bit_not truth_valued_p@0))
1395 (match (logical_inverted_value @0)
1396 (eq @0 integer_zerop))
1397 (match (logical_inverted_value @0)
1398 (ne truth_valued_p@0 integer_truep))
1399 (match (logical_inverted_value @0)
1400 (bit_xor truth_valued_p@0 integer_truep))
1404 (bit_and:c @0 (logical_inverted_value @0))
1405 { build_zero_cst (type); })
1406 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1407 (for op (bit_ior bit_xor)
1409 (op:c truth_valued_p@0 (logical_inverted_value @0))
1410 { constant_boolean_node (true, type); }))
1411 /* X ==/!= !X is false/true. */
1414 (op:c truth_valued_p@0 (logical_inverted_value @0))
1415 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1419 (bit_not (bit_not @0))
1422 /* Convert ~ (-A) to A - 1. */
1424 (bit_not (convert? (negate @0)))
1425 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1426 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1427 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1429 /* Convert - (~A) to A + 1. */
1431 (negate (nop_convert (bit_not @0)))
1432 (plus (view_convert @0) { build_each_one_cst (type); }))
1434 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1436 (bit_not (convert? (minus @0 integer_each_onep)))
1437 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1438 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1439 (convert (negate @0))))
1441 (bit_not (convert? (plus @0 integer_all_onesp)))
1442 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1443 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1444 (convert (negate @0))))
1446 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1448 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1449 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1450 (convert (bit_xor @0 (bit_not @1)))))
1452 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1453 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1454 (convert (bit_xor @0 @1))))
1456 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1458 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1459 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1460 (bit_not (bit_xor (view_convert @0) @1))))
1462 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1464 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1465 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1467 /* Fold A - (A & B) into ~B & A. */
1469 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1470 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1471 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1472 (convert (bit_and (bit_not @1) @0))))
1474 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1475 (for cmp (gt lt ge le)
1477 (mult (convert (cmp @0 @1)) @2)
1478 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1480 /* For integral types with undefined overflow and C != 0 fold
1481 x * C EQ/NE y * C into x EQ/NE y. */
1484 (cmp (mult:c @0 @1) (mult:c @2 @1))
1485 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1486 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1487 && tree_expr_nonzero_p (@1))
1490 /* For integral types with wrapping overflow and C odd fold
1491 x * C EQ/NE y * C into x EQ/NE y. */
1494 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1495 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1496 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1497 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1500 /* For integral types with undefined overflow and C != 0 fold
1501 x * C RELOP y * C into:
1503 x RELOP y for nonnegative C
1504 y RELOP x for negative C */
1505 (for cmp (lt gt le ge)
1507 (cmp (mult:c @0 @1) (mult:c @2 @1))
1508 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1509 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1510 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1512 (if (TREE_CODE (@1) == INTEGER_CST
1513 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1516 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1520 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1521 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1522 && TYPE_UNSIGNED (TREE_TYPE (@0))
1523 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1524 && (wi::to_wide (@2)
1525 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1526 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1527 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1529 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1530 (for cmp (simple_comparison)
1532 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
1533 (if (element_precision (@3) >= element_precision (@0)
1534 && types_match (@0, @1))
1535 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1536 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
1538 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
1541 tree utype = unsigned_type_for (TREE_TYPE (@0));
1543 (cmp (convert:utype @1) (convert:utype @0)))))
1544 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
1545 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
1549 tree utype = unsigned_type_for (TREE_TYPE (@0));
1551 (cmp (convert:utype @0) (convert:utype @1)))))))))
1553 /* X / C1 op C2 into a simple range test. */
1554 (for cmp (simple_comparison)
1556 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1557 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1558 && integer_nonzerop (@1)
1559 && !TREE_OVERFLOW (@1)
1560 && !TREE_OVERFLOW (@2))
1561 (with { tree lo, hi; bool neg_overflow;
1562 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1565 (if (code == LT_EXPR || code == GE_EXPR)
1566 (if (TREE_OVERFLOW (lo))
1567 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1568 (if (code == LT_EXPR)
1571 (if (code == LE_EXPR || code == GT_EXPR)
1572 (if (TREE_OVERFLOW (hi))
1573 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1574 (if (code == LE_EXPR)
1578 { build_int_cst (type, code == NE_EXPR); })
1579 (if (code == EQ_EXPR && !hi)
1581 (if (code == EQ_EXPR && !lo)
1583 (if (code == NE_EXPR && !hi)
1585 (if (code == NE_EXPR && !lo)
1588 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1592 tree etype = range_check_type (TREE_TYPE (@0));
1595 hi = fold_convert (etype, hi);
1596 lo = fold_convert (etype, lo);
1597 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1600 (if (etype && hi && !TREE_OVERFLOW (hi))
1601 (if (code == EQ_EXPR)
1602 (le (minus (convert:etype @0) { lo; }) { hi; })
1603 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1605 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1606 (for op (lt le ge gt)
1608 (op (plus:c @0 @2) (plus:c @1 @2))
1609 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1610 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1612 /* For equality and subtraction, this is also true with wrapping overflow. */
1613 (for op (eq ne minus)
1615 (op (plus:c @0 @2) (plus:c @1 @2))
1616 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1617 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1618 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1621 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1622 (for op (lt le ge gt)
1624 (op (minus @0 @2) (minus @1 @2))
1625 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1626 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1628 /* For equality and subtraction, this is also true with wrapping overflow. */
1629 (for op (eq ne minus)
1631 (op (minus @0 @2) (minus @1 @2))
1632 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1633 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1634 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1636 /* And for pointers... */
1637 (for op (simple_comparison)
1639 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1640 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1643 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1644 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1645 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1646 (pointer_diff @0 @1)))
1648 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1649 (for op (lt le ge gt)
1651 (op (minus @2 @0) (minus @2 @1))
1652 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1653 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1655 /* For equality and subtraction, this is also true with wrapping overflow. */
1656 (for op (eq ne minus)
1658 (op (minus @2 @0) (minus @2 @1))
1659 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1660 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1661 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1663 /* And for pointers... */
1664 (for op (simple_comparison)
1666 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1667 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1670 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1671 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1672 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1673 (pointer_diff @1 @0)))
1675 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1676 (for op (lt le gt ge)
1678 (op:c (plus:c@2 @0 @1) @1)
1679 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1680 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1681 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
1682 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1683 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1684 /* For equality, this is also true with wrapping overflow. */
1687 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1688 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1689 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1690 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1691 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1692 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1693 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1694 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1696 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1697 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1698 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1699 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1700 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1702 /* X - Y < X is the same as Y > 0 when there is no overflow.
1703 For equality, this is also true with wrapping overflow. */
1704 (for op (simple_comparison)
1706 (op:c @0 (minus@2 @0 @1))
1707 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1708 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1709 || ((op == EQ_EXPR || op == NE_EXPR)
1710 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1711 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1712 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1715 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1716 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1720 (cmp (trunc_div @0 @1) integer_zerop)
1721 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1722 /* Complex ==/!= is allowed, but not </>=. */
1723 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1724 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1727 /* X == C - X can never be true if C is odd. */
1730 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1731 (if (TREE_INT_CST_LOW (@1) & 1)
1732 { constant_boolean_node (cmp == NE_EXPR, type); })))
1734 /* Arguments on which one can call get_nonzero_bits to get the bits
1736 (match with_possible_nonzero_bits
1738 (match with_possible_nonzero_bits
1740 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1741 /* Slightly extended version, do not make it recursive to keep it cheap. */
1742 (match (with_possible_nonzero_bits2 @0)
1743 with_possible_nonzero_bits@0)
1744 (match (with_possible_nonzero_bits2 @0)
1745 (bit_and:c with_possible_nonzero_bits@0 @2))
1747 /* Same for bits that are known to be set, but we do not have
1748 an equivalent to get_nonzero_bits yet. */
1749 (match (with_certain_nonzero_bits2 @0)
1751 (match (with_certain_nonzero_bits2 @0)
1752 (bit_ior @1 INTEGER_CST@0))
1754 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1757 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1758 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1759 { constant_boolean_node (cmp == NE_EXPR, type); })))
1761 /* ((X inner_op C0) outer_op C1)
1762 With X being a tree where value_range has reasoned certain bits to always be
1763 zero throughout its computed value range,
1764 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1765 where zero_mask has 1's for all bits that are sure to be 0 in
1767 if (inner_op == '^') C0 &= ~C1;
1768 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1769 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1771 (for inner_op (bit_ior bit_xor)
1772 outer_op (bit_xor bit_ior)
1775 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1779 wide_int zero_mask_not;
1783 if (TREE_CODE (@2) == SSA_NAME)
1784 zero_mask_not = get_nonzero_bits (@2);
1788 if (inner_op == BIT_XOR_EXPR)
1790 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1791 cst_emit = C0 | wi::to_wide (@1);
1795 C0 = wi::to_wide (@0);
1796 cst_emit = C0 ^ wi::to_wide (@1);
1799 (if (!fail && (C0 & zero_mask_not) == 0)
1800 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1801 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1802 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1804 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1806 (pointer_plus (pointer_plus:s @0 @1) @3)
1807 (pointer_plus @0 (plus @1 @3)))
1813 tem4 = (unsigned long) tem3;
1818 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1819 /* Conditionally look through a sign-changing conversion. */
1820 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1821 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1822 || (GENERIC && type == TREE_TYPE (@1))))
1825 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1826 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1830 tem = (sizetype) ptr;
1834 and produce the simpler and easier to analyze with respect to alignment
1835 ... = ptr & ~algn; */
1837 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1838 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1839 (bit_and @0 { algn; })))
1841 /* Try folding difference of addresses. */
1843 (minus (convert ADDR_EXPR@0) (convert @1))
1844 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1845 (with { poly_int64 diff; }
1846 (if (ptr_difference_const (@0, @1, &diff))
1847 { build_int_cst_type (type, diff); }))))
1849 (minus (convert @0) (convert ADDR_EXPR@1))
1850 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1851 (with { poly_int64 diff; }
1852 (if (ptr_difference_const (@0, @1, &diff))
1853 { build_int_cst_type (type, diff); }))))
1855 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1856 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1857 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1858 (with { poly_int64 diff; }
1859 (if (ptr_difference_const (@0, @1, &diff))
1860 { build_int_cst_type (type, diff); }))))
1862 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1863 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1864 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1865 (with { poly_int64 diff; }
1866 (if (ptr_difference_const (@0, @1, &diff))
1867 { build_int_cst_type (type, diff); }))))
1869 /* If arg0 is derived from the address of an object or function, we may
1870 be able to fold this expression using the object or function's
1873 (bit_and (convert? @0) INTEGER_CST@1)
1874 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1875 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1879 unsigned HOST_WIDE_INT bitpos;
1880 get_pointer_alignment_1 (@0, &align, &bitpos);
1882 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1883 { wide_int_to_tree (type, (wi::to_wide (@1)
1884 & (bitpos / BITS_PER_UNIT))); }))))
1888 (if (INTEGRAL_TYPE_P (type)
1889 && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
1893 (if (INTEGRAL_TYPE_P (type)
1894 && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
1896 /* x > y && x != XXX_MIN --> x > y
1897 x > y && x == XXX_MIN --> false . */
1900 (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
1902 (if (eqne == EQ_EXPR)
1903 { constant_boolean_node (false, type); })
1904 (if (eqne == NE_EXPR)
1908 /* x < y && x != XXX_MAX --> x < y
1909 x < y && x == XXX_MAX --> false. */
1912 (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
1914 (if (eqne == EQ_EXPR)
1915 { constant_boolean_node (false, type); })
1916 (if (eqne == NE_EXPR)
1920 /* x <= y && x == XXX_MIN --> x == XXX_MIN. */
1922 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
1925 /* x >= y && x == XXX_MAX --> x == XXX_MAX. */
1927 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
1930 /* x > y || x != XXX_MIN --> x != XXX_MIN. */
1932 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
1935 /* x <= y || x != XXX_MIN --> true. */
1937 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
1938 { constant_boolean_node (true, type); })
1940 /* x <= y || x == XXX_MIN --> x <= y. */
1942 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
1945 /* x < y || x != XXX_MAX --> x != XXX_MAX. */
1947 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
1950 /* x >= y || x != XXX_MAX --> true
1951 x >= y || x == XXX_MAX --> x >= y. */
1954 (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
1956 (if (eqne == EQ_EXPR)
1958 (if (eqne == NE_EXPR)
1959 { constant_boolean_node (true, type); }))))
1961 /* Convert (X == CST1) && (X OP2 CST2) to a known value
1962 based on CST1 OP2 CST2. Similarly for (X != CST1). */
1965 (for code2 (eq ne lt gt le ge)
1967 (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
1970 int cmp = tree_int_cst_compare (@1, @2);
1974 case EQ_EXPR: val = (cmp == 0); break;
1975 case NE_EXPR: val = (cmp != 0); break;
1976 case LT_EXPR: val = (cmp < 0); break;
1977 case GT_EXPR: val = (cmp > 0); break;
1978 case LE_EXPR: val = (cmp <= 0); break;
1979 case GE_EXPR: val = (cmp >= 0); break;
1980 default: gcc_unreachable ();
1984 (if (code1 == EQ_EXPR && val) @3)
1985 (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
1986 (if (code1 == NE_EXPR && !val) @4))))))
1988 /* Convert (X OP1 CST1) && (X OP2 CST2). */
1990 (for code1 (lt le gt ge)
1991 (for code2 (lt le gt ge)
1993 (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
1996 int cmp = tree_int_cst_compare (@1, @2);
1999 /* Choose the more restrictive of two < or <= comparisons. */
2000 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2001 && (code2 == LT_EXPR || code2 == LE_EXPR))
2002 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2005 /* Likewise chose the more restrictive of two > or >= comparisons. */
2006 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2007 && (code2 == GT_EXPR || code2 == GE_EXPR))
2008 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2011 /* Check for singleton ranges. */
2013 && ((code1 == LE_EXPR && code2 == GE_EXPR)
2014 || (code1 == GE_EXPR && code2 == LE_EXPR)))
2016 /* Check for disjoint ranges. */
2018 && (code1 == LT_EXPR || code1 == LE_EXPR)
2019 && (code2 == GT_EXPR || code2 == GE_EXPR))
2020 { constant_boolean_node (false, type); })
2022 && (code1 == GT_EXPR || code1 == GE_EXPR)
2023 && (code2 == LT_EXPR || code2 == LE_EXPR))
2024 { constant_boolean_node (false, type); })
2027 /* Convert (X == CST1) || (X OP2 CST2) to a known value
2028 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2031 (for code2 (eq ne lt gt le ge)
2033 (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2036 int cmp = tree_int_cst_compare (@1, @2);
2040 case EQ_EXPR: val = (cmp == 0); break;
2041 case NE_EXPR: val = (cmp != 0); break;
2042 case LT_EXPR: val = (cmp < 0); break;
2043 case GT_EXPR: val = (cmp > 0); break;
2044 case LE_EXPR: val = (cmp <= 0); break;
2045 case GE_EXPR: val = (cmp >= 0); break;
2046 default: gcc_unreachable ();
2050 (if (code1 == EQ_EXPR && val) @4)
2051 (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2052 (if (code1 == NE_EXPR && !val) @3))))))
2054 /* Convert (X OP1 CST1) || (X OP2 CST2). */
2056 (for code1 (lt le gt ge)
2057 (for code2 (lt le gt ge)
2059 (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2062 int cmp = tree_int_cst_compare (@1, @2);
2065 /* Choose the more restrictive of two < or <= comparisons. */
2066 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2067 && (code2 == LT_EXPR || code2 == LE_EXPR))
2068 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2071 /* Likewise chose the more restrictive of two > or >= comparisons. */
2072 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2073 && (code2 == GT_EXPR || code2 == GE_EXPR))
2074 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2077 /* Check for singleton ranges. */
2079 && ((code1 == LT_EXPR && code2 == GT_EXPR)
2080 || (code1 == GT_EXPR && code2 == LT_EXPR)))
2082 /* Check for disjoint ranges. */
2084 && (code1 == LT_EXPR || code1 == LE_EXPR)
2085 && (code2 == GT_EXPR || code2 == GE_EXPR))
2086 { constant_boolean_node (true, type); })
2088 && (code1 == GT_EXPR || code1 == GE_EXPR)
2089 && (code2 == LT_EXPR || code2 == LE_EXPR))
2090 { constant_boolean_node (true, type); })
2093 /* We can't reassociate at all for saturating types. */
2094 (if (!TYPE_SATURATING (type))
2096 /* Contract negates. */
2097 /* A + (-B) -> A - B */
2099 (plus:c @0 (convert? (negate @1)))
2100 /* Apply STRIP_NOPS on the negate. */
2101 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2102 && !TYPE_OVERFLOW_SANITIZED (type))
2106 if (INTEGRAL_TYPE_P (type)
2107 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2108 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2110 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2111 /* A - (-B) -> A + B */
2113 (minus @0 (convert? (negate @1)))
2114 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2115 && !TYPE_OVERFLOW_SANITIZED (type))
2119 if (INTEGRAL_TYPE_P (type)
2120 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2121 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2123 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2125 Sign-extension is ok except for INT_MIN, which thankfully cannot
2126 happen without overflow. */
2128 (negate (convert (negate @1)))
2129 (if (INTEGRAL_TYPE_P (type)
2130 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2131 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2132 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2133 && !TYPE_OVERFLOW_SANITIZED (type)
2134 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2137 (negate (convert negate_expr_p@1))
2138 (if (SCALAR_FLOAT_TYPE_P (type)
2139 && ((DECIMAL_FLOAT_TYPE_P (type)
2140 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2141 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2142 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2143 (convert (negate @1))))
2145 (negate (nop_convert (negate @1)))
2146 (if (!TYPE_OVERFLOW_SANITIZED (type)
2147 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2150 /* We can't reassociate floating-point unless -fassociative-math
2151 or fixed-point plus or minus because of saturation to +-Inf. */
2152 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2153 && !FIXED_POINT_TYPE_P (type))
2155 /* Match patterns that allow contracting a plus-minus pair
2156 irrespective of overflow issues. */
2157 /* (A +- B) - A -> +- B */
2158 /* (A +- B) -+ B -> A */
2159 /* A - (A +- B) -> -+ B */
2160 /* A +- (B -+ A) -> +- B */
2162 (minus (plus:c @0 @1) @0)
2165 (minus (minus @0 @1) @0)
2168 (plus:c (minus @0 @1) @1)
2171 (minus @0 (plus:c @0 @1))
2174 (minus @0 (minus @0 @1))
2176 /* (A +- B) + (C - A) -> C +- B */
2177 /* (A + B) - (A - C) -> B + C */
2178 /* More cases are handled with comparisons. */
2180 (plus:c (plus:c @0 @1) (minus @2 @0))
2183 (plus:c (minus @0 @1) (minus @2 @0))
2186 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2187 (if (TYPE_OVERFLOW_UNDEFINED (type)
2188 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2189 (pointer_diff @2 @1)))
2191 (minus (plus:c @0 @1) (minus @0 @2))
2194 /* (A +- CST1) +- CST2 -> A + CST3
2195 Use view_convert because it is safe for vectors and equivalent for
2197 (for outer_op (plus minus)
2198 (for inner_op (plus minus)
2199 neg_inner_op (minus plus)
2201 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
2203 /* If one of the types wraps, use that one. */
2204 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2205 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2206 forever if something doesn't simplify into a constant. */
2207 (if (!CONSTANT_CLASS_P (@0))
2208 (if (outer_op == PLUS_EXPR)
2209 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
2210 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2211 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2212 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2213 (if (outer_op == PLUS_EXPR)
2214 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
2215 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2216 /* If the constant operation overflows we cannot do the transform
2217 directly as we would introduce undefined overflow, for example
2218 with (a - 1) + INT_MIN. */
2219 (if (types_match (type, @0))
2220 (with { tree cst = const_binop (outer_op == inner_op
2221 ? PLUS_EXPR : MINUS_EXPR,
2223 (if (cst && !TREE_OVERFLOW (cst))
2224 (inner_op @0 { cst; } )
2225 /* X+INT_MAX+1 is X-INT_MIN. */
2226 (if (INTEGRAL_TYPE_P (type) && cst
2227 && wi::to_wide (cst) == wi::min_value (type))
2228 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2229 /* Last resort, use some unsigned type. */
2230 (with { tree utype = unsigned_type_for (type); }
2232 (view_convert (inner_op
2233 (view_convert:utype @0)
2235 { drop_tree_overflow (cst); }))))))))))))))
2237 /* (CST1 - A) +- CST2 -> CST3 - A */
2238 (for outer_op (plus minus)
2240 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
2241 (with { tree cst = const_binop (outer_op, type, @1, @2); }
2242 (if (cst && !TREE_OVERFLOW (cst))
2243 (minus { cst; } @0)))))
2245 /* CST1 - (CST2 - A) -> CST3 + A */
2247 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
2248 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2249 (if (cst && !TREE_OVERFLOW (cst))
2250 (plus { cst; } @0))))
2252 /* ((T)(A)) + CST -> (T)(A + CST) */
2255 (plus (convert SSA_NAME@0) INTEGER_CST@1)
2256 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2257 && TREE_CODE (type) == INTEGER_TYPE
2258 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2259 && int_fits_type_p (@1, TREE_TYPE (@0)))
2260 /* Perform binary operation inside the cast if the constant fits
2261 and (A + CST)'s range does not overflow. */
2264 wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
2265 max_ovf = wi::OVF_OVERFLOW;
2266 tree inner_type = TREE_TYPE (@0);
2269 = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
2270 TYPE_SIGN (inner_type));
2272 wide_int wmin0, wmax0;
2273 if (get_range_info (@0, &wmin0, &wmax0) == VR_RANGE)
2275 wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
2276 wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
2279 (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
2280 (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
2284 /* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */
2286 (for op (plus minus)
2288 (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
2289 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2290 && TREE_CODE (type) == INTEGER_TYPE
2291 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2292 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2293 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2294 && TYPE_OVERFLOW_WRAPS (type))
2295 (plus (convert @0) (op @2 (convert @1))))))
2300 (plus:c (bit_not @0) @0)
2301 (if (!TYPE_OVERFLOW_TRAPS (type))
2302 { build_all_ones_cst (type); }))
2306 (plus (convert? (bit_not @0)) integer_each_onep)
2307 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2308 (negate (convert @0))))
2312 (minus (convert? (negate @0)) integer_each_onep)
2313 (if (!TYPE_OVERFLOW_TRAPS (type)
2314 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2315 (bit_not (convert @0))))
2319 (minus integer_all_onesp @0)
2322 /* (T)(P + A) - (T)P -> (T) A */
2324 (minus (convert (plus:c @@0 @1))
2326 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2327 /* For integer types, if A has a smaller type
2328 than T the result depends on the possible
2330 E.g. T=size_t, A=(unsigned)429497295, P>0.
2331 However, if an overflow in P + A would cause
2332 undefined behavior, we can assume that there
2334 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2335 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2338 (minus (convert (pointer_plus @@0 @1))
2340 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2341 /* For pointer types, if the conversion of A to the
2342 final type requires a sign- or zero-extension,
2343 then we have to punt - it is not defined which
2345 || (POINTER_TYPE_P (TREE_TYPE (@0))
2346 && TREE_CODE (@1) == INTEGER_CST
2347 && tree_int_cst_sign_bit (@1) == 0))
2350 (pointer_diff (pointer_plus @@0 @1) @0)
2351 /* The second argument of pointer_plus must be interpreted as signed, and
2352 thus sign-extended if necessary. */
2353 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2354 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2355 second arg is unsigned even when we need to consider it as signed,
2356 we don't want to diagnose overflow here. */
2357 (convert (view_convert:stype @1))))
2359 /* (T)P - (T)(P + A) -> -(T) A */
2361 (minus (convert? @0)
2362 (convert (plus:c @@0 @1)))
2363 (if (INTEGRAL_TYPE_P (type)
2364 && TYPE_OVERFLOW_UNDEFINED (type)
2365 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2366 (with { tree utype = unsigned_type_for (type); }
2367 (convert (negate (convert:utype @1))))
2368 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2369 /* For integer types, if A has a smaller type
2370 than T the result depends on the possible
2372 E.g. T=size_t, A=(unsigned)429497295, P>0.
2373 However, if an overflow in P + A would cause
2374 undefined behavior, we can assume that there
2376 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2377 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2378 (negate (convert @1)))))
2381 (convert (pointer_plus @@0 @1)))
2382 (if (INTEGRAL_TYPE_P (type)
2383 && TYPE_OVERFLOW_UNDEFINED (type)
2384 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2385 (with { tree utype = unsigned_type_for (type); }
2386 (convert (negate (convert:utype @1))))
2387 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2388 /* For pointer types, if the conversion of A to the
2389 final type requires a sign- or zero-extension,
2390 then we have to punt - it is not defined which
2392 || (POINTER_TYPE_P (TREE_TYPE (@0))
2393 && TREE_CODE (@1) == INTEGER_CST
2394 && tree_int_cst_sign_bit (@1) == 0))
2395 (negate (convert @1)))))
2397 (pointer_diff @0 (pointer_plus @@0 @1))
2398 /* The second argument of pointer_plus must be interpreted as signed, and
2399 thus sign-extended if necessary. */
2400 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2401 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2402 second arg is unsigned even when we need to consider it as signed,
2403 we don't want to diagnose overflow here. */
2404 (negate (convert (view_convert:stype @1)))))
2406 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2408 (minus (convert (plus:c @@0 @1))
2409 (convert (plus:c @0 @2)))
2410 (if (INTEGRAL_TYPE_P (type)
2411 && TYPE_OVERFLOW_UNDEFINED (type)
2412 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2413 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2414 (with { tree utype = unsigned_type_for (type); }
2415 (convert (minus (convert:utype @1) (convert:utype @2))))
2416 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2417 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2418 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2419 /* For integer types, if A has a smaller type
2420 than T the result depends on the possible
2422 E.g. T=size_t, A=(unsigned)429497295, P>0.
2423 However, if an overflow in P + A would cause
2424 undefined behavior, we can assume that there
2426 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2427 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2428 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2429 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2430 (minus (convert @1) (convert @2)))))
2432 (minus (convert (pointer_plus @@0 @1))
2433 (convert (pointer_plus @0 @2)))
2434 (if (INTEGRAL_TYPE_P (type)
2435 && TYPE_OVERFLOW_UNDEFINED (type)
2436 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2437 (with { tree utype = unsigned_type_for (type); }
2438 (convert (minus (convert:utype @1) (convert:utype @2))))
2439 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2440 /* For pointer types, if the conversion of A to the
2441 final type requires a sign- or zero-extension,
2442 then we have to punt - it is not defined which
2444 || (POINTER_TYPE_P (TREE_TYPE (@0))
2445 && TREE_CODE (@1) == INTEGER_CST
2446 && tree_int_cst_sign_bit (@1) == 0
2447 && TREE_CODE (@2) == INTEGER_CST
2448 && tree_int_cst_sign_bit (@2) == 0))
2449 (minus (convert @1) (convert @2)))))
2451 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2452 /* The second argument of pointer_plus must be interpreted as signed, and
2453 thus sign-extended if necessary. */
2454 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2455 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2456 second arg is unsigned even when we need to consider it as signed,
2457 we don't want to diagnose overflow here. */
2458 (minus (convert (view_convert:stype @1))
2459 (convert (view_convert:stype @2)))))))
2461 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2462 Modeled after fold_plusminus_mult_expr. */
2463 (if (!TYPE_SATURATING (type)
2464 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2465 (for plusminus (plus minus)
2467 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2468 (if ((!ANY_INTEGRAL_TYPE_P (type)
2469 || TYPE_OVERFLOW_WRAPS (type)
2470 || (INTEGRAL_TYPE_P (type)
2471 && tree_expr_nonzero_p (@0)
2472 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2473 /* If @1 +- @2 is constant require a hard single-use on either
2474 original operand (but not on both). */
2475 && (single_use (@3) || single_use (@4)))
2476 (mult (plusminus @1 @2) @0)))
2477 /* We cannot generate constant 1 for fract. */
2478 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2480 (plusminus @0 (mult:c@3 @0 @2))
2481 (if ((!ANY_INTEGRAL_TYPE_P (type)
2482 || TYPE_OVERFLOW_WRAPS (type)
2483 || (INTEGRAL_TYPE_P (type)
2484 && tree_expr_nonzero_p (@0)
2485 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2487 (mult (plusminus { build_one_cst (type); } @2) @0)))
2489 (plusminus (mult:c@3 @0 @2) @0)
2490 (if ((!ANY_INTEGRAL_TYPE_P (type)
2491 || TYPE_OVERFLOW_WRAPS (type)
2492 || (INTEGRAL_TYPE_P (type)
2493 && tree_expr_nonzero_p (@0)
2494 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2496 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2498 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2500 (for minmax (min max FMIN_ALL FMAX_ALL)
2504 /* min(max(x,y),y) -> y. */
2506 (min:c (max:c @0 @1) @1)
2508 /* max(min(x,y),y) -> y. */
2510 (max:c (min:c @0 @1) @1)
2512 /* max(a,-a) -> abs(a). */
2514 (max:c @0 (negate @0))
2515 (if (TREE_CODE (type) != COMPLEX_TYPE
2516 && (! ANY_INTEGRAL_TYPE_P (type)
2517 || TYPE_OVERFLOW_UNDEFINED (type)))
2519 /* min(a,-a) -> -abs(a). */
2521 (min:c @0 (negate @0))
2522 (if (TREE_CODE (type) != COMPLEX_TYPE
2523 && (! ANY_INTEGRAL_TYPE_P (type)
2524 || TYPE_OVERFLOW_UNDEFINED (type)))
2529 (if (INTEGRAL_TYPE_P (type)
2530 && TYPE_MIN_VALUE (type)
2531 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2533 (if (INTEGRAL_TYPE_P (type)
2534 && TYPE_MAX_VALUE (type)
2535 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2540 (if (INTEGRAL_TYPE_P (type)
2541 && TYPE_MAX_VALUE (type)
2542 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2544 (if (INTEGRAL_TYPE_P (type)
2545 && TYPE_MIN_VALUE (type)
2546 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2549 /* max (a, a + CST) -> a + CST where CST is positive. */
2550 /* max (a, a + CST) -> a where CST is negative. */
2552 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2553 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2554 (if (tree_int_cst_sgn (@1) > 0)
2558 /* min (a, a + CST) -> a where CST is positive. */
2559 /* min (a, a + CST) -> a + CST where CST is negative. */
2561 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2562 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2563 (if (tree_int_cst_sgn (@1) > 0)
2567 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2568 and the outer convert demotes the expression back to x's type. */
2569 (for minmax (min max)
2571 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2572 (if (INTEGRAL_TYPE_P (type)
2573 && types_match (@1, type) && int_fits_type_p (@2, type)
2574 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2575 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2576 (minmax @1 (convert @2)))))
2578 (for minmax (FMIN_ALL FMAX_ALL)
2579 /* If either argument is NaN, return the other one. Avoid the
2580 transformation if we get (and honor) a signalling NaN. */
2582 (minmax:c @0 REAL_CST@1)
2583 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2584 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2586 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2587 functions to return the numeric arg if the other one is NaN.
2588 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2589 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2590 worry about it either. */
2591 (if (flag_finite_math_only)
2598 /* min (-A, -B) -> -max (A, B) */
2599 (for minmax (min max FMIN_ALL FMAX_ALL)
2600 maxmin (max min FMAX_ALL FMIN_ALL)
2602 (minmax (negate:s@2 @0) (negate:s@3 @1))
2603 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2604 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2605 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2606 (negate (maxmin @0 @1)))))
2607 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2608 MAX (~X, ~Y) -> ~MIN (X, Y) */
2609 (for minmax (min max)
2612 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2613 (bit_not (maxmin @0 @1))))
2615 /* MIN (X, Y) == X -> X <= Y */
2616 (for minmax (min min max max)
2620 (cmp:c (minmax:c @0 @1) @0)
2621 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2623 /* MIN (X, 5) == 0 -> X == 0
2624 MIN (X, 5) == 7 -> false */
2627 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2628 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2629 TYPE_SIGN (TREE_TYPE (@0))))
2630 { constant_boolean_node (cmp == NE_EXPR, type); }
2631 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2632 TYPE_SIGN (TREE_TYPE (@0))))
2636 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2637 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2638 TYPE_SIGN (TREE_TYPE (@0))))
2639 { constant_boolean_node (cmp == NE_EXPR, type); }
2640 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2641 TYPE_SIGN (TREE_TYPE (@0))))
2643 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2644 (for minmax (min min max max min min max max )
2645 cmp (lt le gt ge gt ge lt le )
2646 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2648 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2649 (comb (cmp @0 @2) (cmp @1 @2))))
2651 /* Simplifications of shift and rotates. */
2653 (for rotate (lrotate rrotate)
2655 (rotate integer_all_onesp@0 @1)
2658 /* Optimize -1 >> x for arithmetic right shifts. */
2660 (rshift integer_all_onesp@0 @1)
2661 (if (!TYPE_UNSIGNED (type)
2662 && tree_expr_nonnegative_p (@1))
2665 /* Optimize (x >> c) << c into x & (-1<<c). */
2667 (lshift (rshift @0 INTEGER_CST@1) @1)
2668 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2669 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2671 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2674 (rshift (lshift @0 INTEGER_CST@1) @1)
2675 (if (TYPE_UNSIGNED (type)
2676 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2677 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2679 (for shiftrotate (lrotate rrotate lshift rshift)
2681 (shiftrotate @0 integer_zerop)
2684 (shiftrotate integer_zerop@0 @1)
2686 /* Prefer vector1 << scalar to vector1 << vector2
2687 if vector2 is uniform. */
2688 (for vec (VECTOR_CST CONSTRUCTOR)
2690 (shiftrotate @0 vec@1)
2691 (with { tree tem = uniform_vector_p (@1); }
2693 (shiftrotate @0 { tem; }))))))
2695 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2696 Y is 0. Similarly for X >> Y. */
2698 (for shift (lshift rshift)
2700 (shift @0 SSA_NAME@1)
2701 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2703 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2704 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2706 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2710 /* Rewrite an LROTATE_EXPR by a constant into an
2711 RROTATE_EXPR by a new constant. */
2713 (lrotate @0 INTEGER_CST@1)
2714 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2715 build_int_cst (TREE_TYPE (@1),
2716 element_precision (type)), @1); }))
2718 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2719 (for op (lrotate rrotate rshift lshift)
2721 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2722 (with { unsigned int prec = element_precision (type); }
2723 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2724 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2725 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2726 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2727 (with { unsigned int low = (tree_to_uhwi (@1)
2728 + tree_to_uhwi (@2)); }
2729 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2730 being well defined. */
2732 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2733 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2734 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2735 { build_zero_cst (type); }
2736 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2737 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2740 /* ((1 << A) & 1) != 0 -> A == 0
2741 ((1 << A) & 1) == 0 -> A != 0 */
2745 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2746 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2748 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2749 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2753 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2754 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2756 || (!integer_zerop (@2)
2757 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2758 { constant_boolean_node (cmp == NE_EXPR, type); }
2759 (if (!integer_zerop (@2)
2760 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2761 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2763 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2764 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2765 if the new mask might be further optimized. */
2766 (for shift (lshift rshift)
2768 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2770 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2771 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2772 && tree_fits_uhwi_p (@1)
2773 && tree_to_uhwi (@1) > 0
2774 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2777 unsigned int shiftc = tree_to_uhwi (@1);
2778 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2779 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2780 tree shift_type = TREE_TYPE (@3);
2783 if (shift == LSHIFT_EXPR)
2784 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2785 else if (shift == RSHIFT_EXPR
2786 && type_has_mode_precision_p (shift_type))
2788 prec = TYPE_PRECISION (TREE_TYPE (@3));
2790 /* See if more bits can be proven as zero because of
2793 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2795 tree inner_type = TREE_TYPE (@0);
2796 if (type_has_mode_precision_p (inner_type)
2797 && TYPE_PRECISION (inner_type) < prec)
2799 prec = TYPE_PRECISION (inner_type);
2800 /* See if we can shorten the right shift. */
2802 shift_type = inner_type;
2803 /* Otherwise X >> C1 is all zeros, so we'll optimize
2804 it into (X, 0) later on by making sure zerobits
2808 zerobits = HOST_WIDE_INT_M1U;
2811 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2812 zerobits <<= prec - shiftc;
2814 /* For arithmetic shift if sign bit could be set, zerobits
2815 can contain actually sign bits, so no transformation is
2816 possible, unless MASK masks them all away. In that
2817 case the shift needs to be converted into logical shift. */
2818 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2819 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2821 if ((mask & zerobits) == 0)
2822 shift_type = unsigned_type_for (TREE_TYPE (@3));
2828 /* ((X << 16) & 0xff00) is (X, 0). */
2829 (if ((mask & zerobits) == mask)
2830 { build_int_cst (type, 0); }
2831 (with { newmask = mask | zerobits; }
2832 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2835 /* Only do the transformation if NEWMASK is some integer
2837 for (prec = BITS_PER_UNIT;
2838 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2839 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2842 (if (prec < HOST_BITS_PER_WIDE_INT
2843 || newmask == HOST_WIDE_INT_M1U)
2845 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2846 (if (!tree_int_cst_equal (newmaskt, @2))
2847 (if (shift_type != TREE_TYPE (@3))
2848 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2849 (bit_and @4 { newmaskt; })))))))))))))
2851 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2852 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2853 (for shift (lshift rshift)
2854 (for bit_op (bit_and bit_xor bit_ior)
2856 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2857 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2858 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2859 (bit_op (shift (convert @0) @1) { mask; }))))))
2861 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2863 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2864 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2865 && (element_precision (TREE_TYPE (@0))
2866 <= element_precision (TREE_TYPE (@1))
2867 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2869 { tree shift_type = TREE_TYPE (@0); }
2870 (convert (rshift (convert:shift_type @1) @2)))))
2872 /* ~(~X >>r Y) -> X >>r Y
2873 ~(~X <<r Y) -> X <<r Y */
2874 (for rotate (lrotate rrotate)
2876 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2877 (if ((element_precision (TREE_TYPE (@0))
2878 <= element_precision (TREE_TYPE (@1))
2879 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2880 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2881 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2883 { tree rotate_type = TREE_TYPE (@0); }
2884 (convert (rotate (convert:rotate_type @1) @2))))))
2886 /* Simplifications of conversions. */
2888 /* Basic strip-useless-type-conversions / strip_nops. */
2889 (for cvt (convert view_convert float fix_trunc)
2892 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2893 || (GENERIC && type == TREE_TYPE (@0)))
2896 /* Contract view-conversions. */
2898 (view_convert (view_convert @0))
2901 /* For integral conversions with the same precision or pointer
2902 conversions use a NOP_EXPR instead. */
2905 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2906 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2907 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2910 /* Strip inner integral conversions that do not change precision or size, or
2911 zero-extend while keeping the same size (for bool-to-char). */
2913 (view_convert (convert@0 @1))
2914 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2915 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2916 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2917 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2918 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2919 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2922 /* Simplify a view-converted empty constructor. */
2924 (view_convert CONSTRUCTOR@0)
2925 (if (TREE_CODE (@0) != SSA_NAME
2926 && CONSTRUCTOR_NELTS (@0) == 0)
2927 { build_zero_cst (type); }))
2929 /* Re-association barriers around constants and other re-association
2930 barriers can be removed. */
2932 (paren CONSTANT_CLASS_P@0)
2935 (paren (paren@1 @0))
2938 /* Handle cases of two conversions in a row. */
2939 (for ocvt (convert float fix_trunc)
2940 (for icvt (convert float)
2945 tree inside_type = TREE_TYPE (@0);
2946 tree inter_type = TREE_TYPE (@1);
2947 int inside_int = INTEGRAL_TYPE_P (inside_type);
2948 int inside_ptr = POINTER_TYPE_P (inside_type);
2949 int inside_float = FLOAT_TYPE_P (inside_type);
2950 int inside_vec = VECTOR_TYPE_P (inside_type);
2951 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2952 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2953 int inter_int = INTEGRAL_TYPE_P (inter_type);
2954 int inter_ptr = POINTER_TYPE_P (inter_type);
2955 int inter_float = FLOAT_TYPE_P (inter_type);
2956 int inter_vec = VECTOR_TYPE_P (inter_type);
2957 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2958 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2959 int final_int = INTEGRAL_TYPE_P (type);
2960 int final_ptr = POINTER_TYPE_P (type);
2961 int final_float = FLOAT_TYPE_P (type);
2962 int final_vec = VECTOR_TYPE_P (type);
2963 unsigned int final_prec = TYPE_PRECISION (type);
2964 int final_unsignedp = TYPE_UNSIGNED (type);
2967 /* In addition to the cases of two conversions in a row
2968 handled below, if we are converting something to its own
2969 type via an object of identical or wider precision, neither
2970 conversion is needed. */
2971 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2973 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2974 && (((inter_int || inter_ptr) && final_int)
2975 || (inter_float && final_float))
2976 && inter_prec >= final_prec)
2979 /* Likewise, if the intermediate and initial types are either both
2980 float or both integer, we don't need the middle conversion if the
2981 former is wider than the latter and doesn't change the signedness
2982 (for integers). Avoid this if the final type is a pointer since
2983 then we sometimes need the middle conversion. */
2984 (if (((inter_int && inside_int) || (inter_float && inside_float))
2985 && (final_int || final_float)
2986 && inter_prec >= inside_prec
2987 && (inter_float || inter_unsignedp == inside_unsignedp))
2990 /* If we have a sign-extension of a zero-extended value, we can
2991 replace that by a single zero-extension. Likewise if the
2992 final conversion does not change precision we can drop the
2993 intermediate conversion. */
2994 (if (inside_int && inter_int && final_int
2995 && ((inside_prec < inter_prec && inter_prec < final_prec
2996 && inside_unsignedp && !inter_unsignedp)
2997 || final_prec == inter_prec))
3000 /* Two conversions in a row are not needed unless:
3001 - some conversion is floating-point (overstrict for now), or
3002 - some conversion is a vector (overstrict for now), or
3003 - the intermediate type is narrower than both initial and
3005 - the intermediate type and innermost type differ in signedness,
3006 and the outermost type is wider than the intermediate, or
3007 - the initial type is a pointer type and the precisions of the
3008 intermediate and final types differ, or
3009 - the final type is a pointer type and the precisions of the
3010 initial and intermediate types differ. */
3011 (if (! inside_float && ! inter_float && ! final_float
3012 && ! inside_vec && ! inter_vec && ! final_vec
3013 && (inter_prec >= inside_prec || inter_prec >= final_prec)
3014 && ! (inside_int && inter_int
3015 && inter_unsignedp != inside_unsignedp
3016 && inter_prec < final_prec)
3017 && ((inter_unsignedp && inter_prec > inside_prec)
3018 == (final_unsignedp && final_prec > inter_prec))
3019 && ! (inside_ptr && inter_prec != final_prec)
3020 && ! (final_ptr && inside_prec != inter_prec))
3023 /* A truncation to an unsigned type (a zero-extension) should be
3024 canonicalized as bitwise and of a mask. */
3025 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
3026 && final_int && inter_int && inside_int
3027 && final_prec == inside_prec
3028 && final_prec > inter_prec
3030 (convert (bit_and @0 { wide_int_to_tree
3032 wi::mask (inter_prec, false,
3033 TYPE_PRECISION (inside_type))); })))
3035 /* If we are converting an integer to a floating-point that can
3036 represent it exactly and back to an integer, we can skip the
3037 floating-point conversion. */
3038 (if (GIMPLE /* PR66211 */
3039 && inside_int && inter_float && final_int &&
3040 (unsigned) significand_size (TYPE_MODE (inter_type))
3041 >= inside_prec - !inside_unsignedp)
3044 /* If we have a narrowing conversion to an integral type that is fed by a
3045 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
3046 masks off bits outside the final type (and nothing else). */
3048 (convert (bit_and @0 INTEGER_CST@1))
3049 (if (INTEGRAL_TYPE_P (type)
3050 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3051 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3052 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
3053 TYPE_PRECISION (type)), 0))
3057 /* (X /[ex] A) * A -> X. */
3059 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
3062 /* Simplify (A / B) * B + (A % B) -> A. */
3063 (for div (trunc_div ceil_div floor_div round_div)
3064 mod (trunc_mod ceil_mod floor_mod round_mod)
3066 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
3069 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
3070 (for op (plus minus)
3072 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
3073 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
3074 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
3077 wi::overflow_type overflow;
3078 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
3079 TYPE_SIGN (type), &overflow);
3081 (if (types_match (type, TREE_TYPE (@2))
3082 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
3083 (op @0 { wide_int_to_tree (type, mul); })
3084 (with { tree utype = unsigned_type_for (type); }
3085 (convert (op (convert:utype @0)
3086 (mult (convert:utype @1) (convert:utype @2))))))))))
3088 /* Canonicalization of binary operations. */
3090 /* Convert X + -C into X - C. */
3092 (plus @0 REAL_CST@1)
3093 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3094 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
3095 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
3096 (minus @0 { tem; })))))
3098 /* Convert x+x into x*2. */
3101 (if (SCALAR_FLOAT_TYPE_P (type))
3102 (mult @0 { build_real (type, dconst2); })
3103 (if (INTEGRAL_TYPE_P (type))
3104 (mult @0 { build_int_cst (type, 2); }))))
3108 (minus integer_zerop @1)
3111 (pointer_diff integer_zerop @1)
3112 (negate (convert @1)))
3114 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
3115 ARG0 is zero and X + ARG0 reduces to X, since that would mean
3116 (-ARG1 + ARG0) reduces to -ARG1. */
3118 (minus real_zerop@0 @1)
3119 (if (fold_real_zero_addition_p (type, @0, 0))
3122 /* Transform x * -1 into -x. */
3124 (mult @0 integer_minus_onep)
3127 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
3128 signed overflow for CST != 0 && CST != -1. */
3130 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
3131 (if (TREE_CODE (@2) != INTEGER_CST
3133 && !integer_zerop (@1) && !integer_minus_onep (@1))
3134 (mult (mult @0 @2) @1)))
3136 /* True if we can easily extract the real and imaginary parts of a complex
3138 (match compositional_complex
3139 (convert? (complex @0 @1)))
3141 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
3143 (complex (realpart @0) (imagpart @0))
3146 (realpart (complex @0 @1))
3149 (imagpart (complex @0 @1))
3152 /* Sometimes we only care about half of a complex expression. */
3154 (realpart (convert?:s (conj:s @0)))
3155 (convert (realpart @0)))
3157 (imagpart (convert?:s (conj:s @0)))
3158 (convert (negate (imagpart @0))))
3159 (for part (realpart imagpart)
3160 (for op (plus minus)
3162 (part (convert?:s@2 (op:s @0 @1)))
3163 (convert (op (part @0) (part @1))))))
3165 (realpart (convert?:s (CEXPI:s @0)))
3168 (imagpart (convert?:s (CEXPI:s @0)))
3171 /* conj(conj(x)) -> x */
3173 (conj (convert? (conj @0)))
3174 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
3177 /* conj({x,y}) -> {x,-y} */
3179 (conj (convert?:s (complex:s @0 @1)))
3180 (with { tree itype = TREE_TYPE (type); }
3181 (complex (convert:itype @0) (negate (convert:itype @1)))))
3183 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
3184 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
3189 (bswap (bit_not (bswap @0)))
3191 (for bitop (bit_xor bit_ior bit_and)
3193 (bswap (bitop:c (bswap @0) @1))
3194 (bitop @0 (bswap @1)))))
3197 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
3199 /* Simplify constant conditions.
3200 Only optimize constant conditions when the selected branch
3201 has the same type as the COND_EXPR. This avoids optimizing
3202 away "c ? x : throw", where the throw has a void type.
3203 Note that we cannot throw away the fold-const.c variant nor
3204 this one as we depend on doing this transform before possibly
3205 A ? B : B -> B triggers and the fold-const.c one can optimize
3206 0 ? A : B to B even if A has side-effects. Something
3207 genmatch cannot handle. */
3209 (cond INTEGER_CST@0 @1 @2)
3210 (if (integer_zerop (@0))
3211 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
3213 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
3216 (vec_cond VECTOR_CST@0 @1 @2)
3217 (if (integer_all_onesp (@0))
3219 (if (integer_zerop (@0))
3222 /* Sink unary operations to constant branches, but only if we do fold it to
3224 (for op (negate bit_not abs absu)
3226 (op (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2))
3230 cst1 = const_unop (op, type, @1);
3232 cst2 = const_unop (op, type, @2);
3235 (vec_cond @0 { cst1; } { cst2; })))))
3237 /* Simplification moved from fold_cond_expr_with_comparison. It may also
3239 /* This pattern implements two kinds simplification:
3242 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
3243 1) Conversions are type widening from smaller type.
3244 2) Const c1 equals to c2 after canonicalizing comparison.
3245 3) Comparison has tree code LT, LE, GT or GE.
3246 This specific pattern is needed when (cmp (convert x) c) may not
3247 be simplified by comparison patterns because of multiple uses of
3248 x. It also makes sense here because simplifying across multiple
3249 referred var is always benefitial for complicated cases.
3252 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
3253 (for cmp (lt le gt ge eq)
3255 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
3258 tree from_type = TREE_TYPE (@1);
3259 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
3260 enum tree_code code = ERROR_MARK;
3262 if (INTEGRAL_TYPE_P (from_type)
3263 && int_fits_type_p (@2, from_type)
3264 && (types_match (c1_type, from_type)
3265 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
3266 && (TYPE_UNSIGNED (from_type)
3267 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
3268 && (types_match (c2_type, from_type)
3269 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
3270 && (TYPE_UNSIGNED (from_type)
3271 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
3275 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
3277 /* X <= Y - 1 equals to X < Y. */
3280 /* X > Y - 1 equals to X >= Y. */
3284 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
3286 /* X < Y + 1 equals to X <= Y. */
3289 /* X >= Y + 1 equals to X > Y. */
3293 if (code != ERROR_MARK
3294 || wi::to_widest (@2) == wi::to_widest (@3))
3296 if (cmp == LT_EXPR || cmp == LE_EXPR)
3298 if (cmp == GT_EXPR || cmp == GE_EXPR)
3302 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
3303 else if (int_fits_type_p (@3, from_type))
3307 (if (code == MAX_EXPR)
3308 (convert (max @1 (convert @2)))
3309 (if (code == MIN_EXPR)
3310 (convert (min @1 (convert @2)))
3311 (if (code == EQ_EXPR)
3312 (convert (cond (eq @1 (convert @3))
3313 (convert:from_type @3) (convert:from_type @2)))))))))
3315 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
3317 1) OP is PLUS or MINUS.
3318 2) CMP is LT, LE, GT or GE.
3319 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
3321 This pattern also handles special cases like:
3323 A) Operand x is a unsigned to signed type conversion and c1 is
3324 integer zero. In this case,
3325 (signed type)x < 0 <=> x > MAX_VAL(signed type)
3326 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
3327 B) Const c1 may not equal to (C3 op' C2). In this case we also
3328 check equality for (c1+1) and (c1-1) by adjusting comparison
3331 TODO: Though signed type is handled by this pattern, it cannot be
3332 simplified at the moment because C standard requires additional
3333 type promotion. In order to match&simplify it here, the IR needs
3334 to be cleaned up by other optimizers, i.e, VRP. */
3335 (for op (plus minus)
3336 (for cmp (lt le gt ge)
3338 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
3339 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
3340 (if (types_match (from_type, to_type)
3341 /* Check if it is special case A). */
3342 || (TYPE_UNSIGNED (from_type)
3343 && !TYPE_UNSIGNED (to_type)
3344 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
3345 && integer_zerop (@1)
3346 && (cmp == LT_EXPR || cmp == GE_EXPR)))
3349 wi::overflow_type overflow = wi::OVF_NONE;
3350 enum tree_code code, cmp_code = cmp;
3352 wide_int c1 = wi::to_wide (@1);
3353 wide_int c2 = wi::to_wide (@2);
3354 wide_int c3 = wi::to_wide (@3);
3355 signop sgn = TYPE_SIGN (from_type);
3357 /* Handle special case A), given x of unsigned type:
3358 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
3359 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
3360 if (!types_match (from_type, to_type))
3362 if (cmp_code == LT_EXPR)
3364 if (cmp_code == GE_EXPR)
3366 c1 = wi::max_value (to_type);
3368 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
3369 compute (c3 op' c2) and check if it equals to c1 with op' being
3370 the inverted operator of op. Make sure overflow doesn't happen
3371 if it is undefined. */
3372 if (op == PLUS_EXPR)
3373 real_c1 = wi::sub (c3, c2, sgn, &overflow);
3375 real_c1 = wi::add (c3, c2, sgn, &overflow);
3378 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3380 /* Check if c1 equals to real_c1. Boundary condition is handled
3381 by adjusting comparison operation if necessary. */
3382 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3385 /* X <= Y - 1 equals to X < Y. */
3386 if (cmp_code == LE_EXPR)
3388 /* X > Y - 1 equals to X >= Y. */
3389 if (cmp_code == GT_EXPR)
3392 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3395 /* X < Y + 1 equals to X <= Y. */
3396 if (cmp_code == LT_EXPR)
3398 /* X >= Y + 1 equals to X > Y. */
3399 if (cmp_code == GE_EXPR)
3402 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3404 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3406 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3411 (if (code == MAX_EXPR)
3412 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3413 { wide_int_to_tree (from_type, c2); })
3414 (if (code == MIN_EXPR)
3415 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3416 { wide_int_to_tree (from_type, c2); })))))))))
3418 (for cnd (cond vec_cond)
3419 /* A ? B : (A ? X : C) -> A ? B : C. */
3421 (cnd @0 (cnd @0 @1 @2) @3)
3424 (cnd @0 @1 (cnd @0 @2 @3))
3426 /* A ? B : (!A ? C : X) -> A ? B : C. */
3427 /* ??? This matches embedded conditions open-coded because genmatch
3428 would generate matching code for conditions in separate stmts only.
3429 The following is still important to merge then and else arm cases
3430 from if-conversion. */
3432 (cnd @0 @1 (cnd @2 @3 @4))
3433 (if (inverse_conditions_p (@0, @2))
3436 (cnd @0 (cnd @1 @2 @3) @4)
3437 (if (inverse_conditions_p (@0, @1))
3440 /* A ? B : B -> B. */
3445 /* !A ? B : C -> A ? C : B. */
3447 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3450 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3451 return all -1 or all 0 results. */
3452 /* ??? We could instead convert all instances of the vec_cond to negate,
3453 but that isn't necessarily a win on its own. */
3455 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3456 (if (VECTOR_TYPE_P (type)
3457 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3458 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3459 && (TYPE_MODE (TREE_TYPE (type))
3460 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3461 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3463 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
3465 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3466 (if (VECTOR_TYPE_P (type)
3467 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3468 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3469 && (TYPE_MODE (TREE_TYPE (type))
3470 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3471 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3474 /* Simplifications of comparisons. */
3476 /* See if we can reduce the magnitude of a constant involved in a
3477 comparison by changing the comparison code. This is a canonicalization
3478 formerly done by maybe_canonicalize_comparison_1. */
3482 (cmp @0 uniform_integer_cst_p@1)
3483 (with { tree cst = uniform_integer_cst_p (@1); }
3484 (if (tree_int_cst_sgn (cst) == -1)
3485 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3486 wide_int_to_tree (TREE_TYPE (cst),
3492 (cmp @0 uniform_integer_cst_p@1)
3493 (with { tree cst = uniform_integer_cst_p (@1); }
3494 (if (tree_int_cst_sgn (cst) == 1)
3495 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3496 wide_int_to_tree (TREE_TYPE (cst),
3497 wi::to_wide (cst) - 1)); })))))
3499 /* We can simplify a logical negation of a comparison to the
3500 inverted comparison. As we cannot compute an expression
3501 operator using invert_tree_comparison we have to simulate
3502 that with expression code iteration. */
3503 (for cmp (tcc_comparison)
3504 icmp (inverted_tcc_comparison)
3505 ncmp (inverted_tcc_comparison_with_nans)
3506 /* Ideally we'd like to combine the following two patterns
3507 and handle some more cases by using
3508 (logical_inverted_value (cmp @0 @1))
3509 here but for that genmatch would need to "inline" that.
3510 For now implement what forward_propagate_comparison did. */
3512 (bit_not (cmp @0 @1))
3513 (if (VECTOR_TYPE_P (type)
3514 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3515 /* Comparison inversion may be impossible for trapping math,
3516 invert_tree_comparison will tell us. But we can't use
3517 a computed operator in the replacement tree thus we have
3518 to play the trick below. */
3519 (with { enum tree_code ic = invert_tree_comparison
3520 (cmp, HONOR_NANS (@0)); }
3526 (bit_xor (cmp @0 @1) integer_truep)
3527 (with { enum tree_code ic = invert_tree_comparison
3528 (cmp, HONOR_NANS (@0)); }
3534 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3535 ??? The transformation is valid for the other operators if overflow
3536 is undefined for the type, but performing it here badly interacts
3537 with the transformation in fold_cond_expr_with_comparison which
3538 attempts to synthetize ABS_EXPR. */
3540 (for sub (minus pointer_diff)
3542 (cmp (sub@2 @0 @1) integer_zerop)
3543 (if (single_use (@2))
3546 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3547 signed arithmetic case. That form is created by the compiler
3548 often enough for folding it to be of value. One example is in
3549 computing loop trip counts after Operator Strength Reduction. */
3550 (for cmp (simple_comparison)
3551 scmp (swapped_simple_comparison)
3553 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3554 /* Handle unfolded multiplication by zero. */
3555 (if (integer_zerop (@1))
3557 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3558 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3560 /* If @1 is negative we swap the sense of the comparison. */
3561 (if (tree_int_cst_sgn (@1) < 0)
3565 /* Simplify comparison of something with itself. For IEEE
3566 floating-point, we can only do some of these simplifications. */
3570 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3571 || ! HONOR_NANS (@0))
3572 { constant_boolean_node (true, type); }
3573 (if (cmp != EQ_EXPR)
3579 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3580 || ! HONOR_NANS (@0))
3581 { constant_boolean_node (false, type); })))
3582 (for cmp (unle unge uneq)
3585 { constant_boolean_node (true, type); }))
3586 (for cmp (unlt ungt)
3592 (if (!flag_trapping_math)
3593 { constant_boolean_node (false, type); }))
3595 /* Fold ~X op ~Y as Y op X. */
3596 (for cmp (simple_comparison)
3598 (cmp (bit_not@2 @0) (bit_not@3 @1))
3599 (if (single_use (@2) && single_use (@3))
3602 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3603 (for cmp (simple_comparison)
3604 scmp (swapped_simple_comparison)
3606 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3607 (if (single_use (@2)
3608 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3609 (scmp @0 (bit_not @1)))))
3611 (for cmp (simple_comparison)
3612 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3614 (cmp (convert@2 @0) (convert? @1))
3615 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3616 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3617 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3618 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3619 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3622 tree type1 = TREE_TYPE (@1);
3623 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3625 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3626 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3627 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3628 type1 = float_type_node;
3629 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3630 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3631 type1 = double_type_node;
3634 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3635 ? TREE_TYPE (@0) : type1);
3637 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3638 (cmp (convert:newtype @0) (convert:newtype @1))))))
3642 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3644 /* a CMP (-0) -> a CMP 0 */
3645 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3646 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3647 /* x != NaN is always true, other ops are always false. */
3648 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3649 && ! HONOR_SNANS (@1))
3650 { constant_boolean_node (cmp == NE_EXPR, type); })
3651 /* Fold comparisons against infinity. */
3652 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3653 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3656 REAL_VALUE_TYPE max;
3657 enum tree_code code = cmp;
3658 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3660 code = swap_tree_comparison (code);
3663 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3664 (if (code == GT_EXPR
3665 && !(HONOR_NANS (@0) && flag_trapping_math))
3666 { constant_boolean_node (false, type); })
3667 (if (code == LE_EXPR)
3668 /* x <= +Inf is always true, if we don't care about NaNs. */
3669 (if (! HONOR_NANS (@0))
3670 { constant_boolean_node (true, type); }
3671 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3672 an "invalid" exception. */
3673 (if (!flag_trapping_math)
3675 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3676 for == this introduces an exception for x a NaN. */
3677 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3679 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3681 (lt @0 { build_real (TREE_TYPE (@0), max); })
3682 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3683 /* x < +Inf is always equal to x <= DBL_MAX. */
3684 (if (code == LT_EXPR)
3685 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3687 (ge @0 { build_real (TREE_TYPE (@0), max); })
3688 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3689 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3690 an exception for x a NaN so use an unordered comparison. */
3691 (if (code == NE_EXPR)
3692 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3693 (if (! HONOR_NANS (@0))
3695 (ge @0 { build_real (TREE_TYPE (@0), max); })
3696 (le @0 { build_real (TREE_TYPE (@0), max); }))
3698 (unge @0 { build_real (TREE_TYPE (@0), max); })
3699 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3701 /* If this is a comparison of a real constant with a PLUS_EXPR
3702 or a MINUS_EXPR of a real constant, we can convert it into a
3703 comparison with a revised real constant as long as no overflow
3704 occurs when unsafe_math_optimizations are enabled. */
3705 (if (flag_unsafe_math_optimizations)
3706 (for op (plus minus)
3708 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3711 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3712 TREE_TYPE (@1), @2, @1);
3714 (if (tem && !TREE_OVERFLOW (tem))
3715 (cmp @0 { tem; }))))))
3717 /* Likewise, we can simplify a comparison of a real constant with
3718 a MINUS_EXPR whose first operand is also a real constant, i.e.
3719 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3720 floating-point types only if -fassociative-math is set. */
3721 (if (flag_associative_math)
3723 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3724 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3725 (if (tem && !TREE_OVERFLOW (tem))
3726 (cmp { tem; } @1)))))
3728 /* Fold comparisons against built-in math functions. */
3729 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
3732 (cmp (sq @0) REAL_CST@1)
3734 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3736 /* sqrt(x) < y is always false, if y is negative. */
3737 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3738 { constant_boolean_node (false, type); })
3739 /* sqrt(x) > y is always true, if y is negative and we
3740 don't care about NaNs, i.e. negative values of x. */
3741 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3742 { constant_boolean_node (true, type); })
3743 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3744 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3745 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3747 /* sqrt(x) < 0 is always false. */
3748 (if (cmp == LT_EXPR)
3749 { constant_boolean_node (false, type); })
3750 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3751 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3752 { constant_boolean_node (true, type); })
3753 /* sqrt(x) <= 0 -> x == 0. */
3754 (if (cmp == LE_EXPR)
3756 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3757 == or !=. In the last case:
3759 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3761 if x is negative or NaN. Due to -funsafe-math-optimizations,
3762 the results for other x follow from natural arithmetic. */
3764 (if ((cmp == LT_EXPR
3768 && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3769 /* Give up for -frounding-math. */
3770 && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
3774 enum tree_code ncmp = cmp;
3775 const real_format *fmt
3776 = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
3777 real_arithmetic (&c2, MULT_EXPR,
3778 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3779 real_convert (&c2, fmt, &c2);
3780 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
3781 then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */
3782 if (!REAL_VALUE_ISINF (c2))
3784 tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
3785 build_real (TREE_TYPE (@0), c2));
3786 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
3788 else if ((cmp == LT_EXPR || cmp == GE_EXPR)
3789 && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
3790 ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
3791 else if ((cmp == LE_EXPR || cmp == GT_EXPR)
3792 && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
3793 ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
3796 /* With rounding to even, sqrt of up to 3 different values
3797 gives the same normal result, so in some cases c2 needs
3799 REAL_VALUE_TYPE c2alt, tow;
3800 if (cmp == LT_EXPR || cmp == GE_EXPR)
3804 real_nextafter (&c2alt, fmt, &c2, &tow);
3805 real_convert (&c2alt, fmt, &c2alt);
3806 if (REAL_VALUE_ISINF (c2alt))
3810 c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
3811 build_real (TREE_TYPE (@0), c2alt));
3812 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
3814 else if (real_equal (&TREE_REAL_CST (c3),
3815 &TREE_REAL_CST (@1)))
3821 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3822 (if (REAL_VALUE_ISINF (c2))
3823 /* sqrt(x) > y is x == +Inf, when y is very large. */
3824 (if (HONOR_INFINITIES (@0))
3825 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3826 { constant_boolean_node (false, type); })
3827 /* sqrt(x) > c is the same as x > c*c. */
3828 (if (ncmp != ERROR_MARK)
3829 (if (ncmp == GE_EXPR)
3830 (ge @0 { build_real (TREE_TYPE (@0), c2); })
3831 (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
3832 /* else if (cmp == LT_EXPR || cmp == LE_EXPR) */
3833 (if (REAL_VALUE_ISINF (c2))
3835 /* sqrt(x) < y is always true, when y is a very large
3836 value and we don't care about NaNs or Infinities. */
3837 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3838 { constant_boolean_node (true, type); })
3839 /* sqrt(x) < y is x != +Inf when y is very large and we
3840 don't care about NaNs. */
3841 (if (! HONOR_NANS (@0))
3842 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3843 /* sqrt(x) < y is x >= 0 when y is very large and we
3844 don't care about Infinities. */
3845 (if (! HONOR_INFINITIES (@0))
3846 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3847 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3850 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3851 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3852 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3853 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
3854 (if (ncmp == LT_EXPR)
3855 (lt @0 { build_real (TREE_TYPE (@0), c2); })
3856 (le @0 { build_real (TREE_TYPE (@0), c2); }))
3857 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3858 (if (ncmp != ERROR_MARK && GENERIC)
3859 (if (ncmp == LT_EXPR)
3861 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3862 (lt @0 { build_real (TREE_TYPE (@0), c2); }))
3864 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3865 (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
3866 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3868 (cmp (sq @0) (sq @1))
3869 (if (! HONOR_NANS (@0))
3872 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
3873 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
3874 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
3876 (cmp (float@0 @1) (float @2))
3877 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
3878 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3881 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
3882 tree type1 = TREE_TYPE (@1);
3883 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
3884 tree type2 = TREE_TYPE (@2);
3885 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
3887 (if (fmt.can_represent_integral_type_p (type1)
3888 && fmt.can_represent_integral_type_p (type2))
3889 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
3890 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
3891 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
3892 && type1_signed_p >= type2_signed_p)
3893 (icmp @1 (convert @2))
3894 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
3895 && type1_signed_p <= type2_signed_p)
3896 (icmp (convert:type2 @1) @2)
3897 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
3898 && type1_signed_p == type2_signed_p)
3899 (icmp @1 @2))))))))))
3901 /* Optimize various special cases of (FTYPE) N CMP CST. */
3902 (for cmp (lt le eq ne ge gt)
3903 icmp (le le eq ne ge ge)
3905 (cmp (float @0) REAL_CST@1)
3906 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3907 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3910 tree itype = TREE_TYPE (@0);
3911 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3912 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3913 /* Be careful to preserve any potential exceptions due to
3914 NaNs. qNaNs are ok in == or != context.
3915 TODO: relax under -fno-trapping-math or
3916 -fno-signaling-nans. */
3918 = real_isnan (cst) && (cst->signalling
3919 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3921 /* TODO: allow non-fitting itype and SNaNs when
3922 -fno-trapping-math. */
3923 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
3926 signop isign = TYPE_SIGN (itype);
3927 REAL_VALUE_TYPE imin, imax;
3928 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3929 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3931 REAL_VALUE_TYPE icst;
3932 if (cmp == GT_EXPR || cmp == GE_EXPR)
3933 real_ceil (&icst, fmt, cst);
3934 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3935 real_floor (&icst, fmt, cst);
3937 real_trunc (&icst, fmt, cst);
3939 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3941 bool overflow_p = false;
3943 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3946 /* Optimize cases when CST is outside of ITYPE's range. */
3947 (if (real_compare (LT_EXPR, cst, &imin))
3948 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3950 (if (real_compare (GT_EXPR, cst, &imax))
3951 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3953 /* Remove cast if CST is an integer representable by ITYPE. */
3955 (cmp @0 { gcc_assert (!overflow_p);
3956 wide_int_to_tree (itype, icst_val); })
3958 /* When CST is fractional, optimize
3959 (FTYPE) N == CST -> 0
3960 (FTYPE) N != CST -> 1. */
3961 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3962 { constant_boolean_node (cmp == NE_EXPR, type); })
3963 /* Otherwise replace with sensible integer constant. */
3966 gcc_checking_assert (!overflow_p);
3968 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3970 /* Fold A /[ex] B CMP C to A CMP B * C. */
3973 (cmp (exact_div @0 @1) INTEGER_CST@2)
3974 (if (!integer_zerop (@1))
3975 (if (wi::to_wide (@2) == 0)
3977 (if (TREE_CODE (@1) == INTEGER_CST)
3980 wi::overflow_type ovf;
3981 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3982 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3985 { constant_boolean_node (cmp == NE_EXPR, type); }
3986 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3987 (for cmp (lt le gt ge)
3989 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3990 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3993 wi::overflow_type ovf;
3994 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3995 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3998 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3999 TYPE_SIGN (TREE_TYPE (@2)))
4000 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
4001 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
4003 /* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
4005 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
4006 For large C (more than min/B+2^size), this is also true, with the
4007 multiplication computed modulo 2^size.
4008 For intermediate C, this just tests the sign of A. */
4009 (for cmp (lt le gt ge)
4012 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
4013 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
4014 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
4015 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4018 tree utype = TREE_TYPE (@2);
4019 wide_int denom = wi::to_wide (@1);
4020 wide_int right = wi::to_wide (@2);
4021 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
4022 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
4023 bool small = wi::leu_p (right, smax);
4024 bool large = wi::geu_p (right, smin);
4026 (if (small || large)
4027 (cmp (convert:utype @0) (mult @2 (convert @1)))
4028 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
4030 /* Unordered tests if either argument is a NaN. */
4032 (bit_ior (unordered @0 @0) (unordered @1 @1))
4033 (if (types_match (@0, @1))
4036 (bit_and (ordered @0 @0) (ordered @1 @1))
4037 (if (types_match (@0, @1))
4040 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
4043 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
4046 /* Simple range test simplifications. */
4047 /* A < B || A >= B -> true. */
4048 (for test1 (lt le le le ne ge)
4049 test2 (ge gt ge ne eq ne)
4051 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
4052 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4053 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4054 { constant_boolean_node (true, type); })))
4055 /* A < B && A >= B -> false. */
4056 (for test1 (lt lt lt le ne eq)
4057 test2 (ge gt eq gt eq gt)
4059 (bit_and:c (test1 @0 @1) (test2 @0 @1))
4060 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4061 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4062 { constant_boolean_node (false, type); })))
4064 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
4065 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
4067 Note that comparisons
4068 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
4069 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
4070 will be canonicalized to above so there's no need to
4077 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
4078 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
4081 tree ty = TREE_TYPE (@0);
4082 unsigned prec = TYPE_PRECISION (ty);
4083 wide_int mask = wi::to_wide (@2, prec);
4084 wide_int rhs = wi::to_wide (@3, prec);
4085 signop sgn = TYPE_SIGN (ty);
4087 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
4088 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
4089 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
4090 { build_zero_cst (ty); }))))))
4092 /* -A CMP -B -> B CMP A. */
4093 (for cmp (tcc_comparison)
4094 scmp (swapped_tcc_comparison)
4096 (cmp (negate @0) (negate @1))
4097 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4098 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4099 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4102 (cmp (negate @0) CONSTANT_CLASS_P@1)
4103 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4104 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4105 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4106 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
4107 (if (tem && !TREE_OVERFLOW (tem))
4108 (scmp @0 { tem; }))))))
4110 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
4113 (op (abs @0) zerop@1)
4116 /* From fold_sign_changed_comparison and fold_widened_comparison.
4117 FIXME: the lack of symmetry is disturbing. */
4118 (for cmp (simple_comparison)
4120 (cmp (convert@0 @00) (convert?@1 @10))
4121 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4122 /* Disable this optimization if we're casting a function pointer
4123 type on targets that require function pointer canonicalization. */
4124 && !(targetm.have_canonicalize_funcptr_for_compare ()
4125 && ((POINTER_TYPE_P (TREE_TYPE (@00))
4126 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
4127 || (POINTER_TYPE_P (TREE_TYPE (@10))
4128 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
4130 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
4131 && (TREE_CODE (@10) == INTEGER_CST
4133 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
4136 && !POINTER_TYPE_P (TREE_TYPE (@00)))
4137 /* ??? The special-casing of INTEGER_CST conversion was in the original
4138 code and here to avoid a spurious overflow flag on the resulting
4139 constant which fold_convert produces. */
4140 (if (TREE_CODE (@1) == INTEGER_CST)
4141 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
4142 TREE_OVERFLOW (@1)); })
4143 (cmp @00 (convert @1)))
4145 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
4146 /* If possible, express the comparison in the shorter mode. */
4147 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
4148 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
4149 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
4150 && TYPE_UNSIGNED (TREE_TYPE (@00))))
4151 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
4152 || ((TYPE_PRECISION (TREE_TYPE (@00))
4153 >= TYPE_PRECISION (TREE_TYPE (@10)))
4154 && (TYPE_UNSIGNED (TREE_TYPE (@00))
4155 == TYPE_UNSIGNED (TREE_TYPE (@10))))
4156 || (TREE_CODE (@10) == INTEGER_CST
4157 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4158 && int_fits_type_p (@10, TREE_TYPE (@00)))))
4159 (cmp @00 (convert @10))
4160 (if (TREE_CODE (@10) == INTEGER_CST
4161 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4162 && !int_fits_type_p (@10, TREE_TYPE (@00)))
4165 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4166 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4167 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
4168 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
4170 (if (above || below)
4171 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4172 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
4173 (if (cmp == LT_EXPR || cmp == LE_EXPR)
4174 { constant_boolean_node (above ? true : false, type); }
4175 (if (cmp == GT_EXPR || cmp == GE_EXPR)
4176 { constant_boolean_node (above ? false : true, type); }))))))))))))
4179 /* A local variable can never be pointed to by
4180 the default SSA name of an incoming parameter.
4181 SSA names are canonicalized to 2nd place. */
4183 (cmp addr@0 SSA_NAME@1)
4184 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
4185 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
4186 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
4187 (if (TREE_CODE (base) == VAR_DECL
4188 && auto_var_in_fn_p (base, current_function_decl))
4189 (if (cmp == NE_EXPR)
4190 { constant_boolean_node (true, type); }
4191 { constant_boolean_node (false, type); }))))))
4193 /* Equality compare simplifications from fold_binary */
4196 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
4197 Similarly for NE_EXPR. */
4199 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
4200 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
4201 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
4202 { constant_boolean_node (cmp == NE_EXPR, type); }))
4204 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
4206 (cmp (bit_xor @0 @1) integer_zerop)
4209 /* (X ^ Y) == Y becomes X == 0.
4210 Likewise (X ^ Y) == X becomes Y == 0. */
4212 (cmp:c (bit_xor:c @0 @1) @0)
4213 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
4215 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
4217 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
4218 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
4219 (cmp @0 (bit_xor @1 (convert @2)))))
4222 (cmp (convert? addr@0) integer_zerop)
4223 (if (tree_single_nonzero_warnv_p (@0, NULL))
4224 { constant_boolean_node (cmp == NE_EXPR, type); })))
4226 /* If we have (A & C) == C where C is a power of 2, convert this into
4227 (A & C) != 0. Similarly for NE_EXPR. */
4231 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
4232 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
4234 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
4235 convert this into a shift followed by ANDing with D. */
4238 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
4239 INTEGER_CST@2 integer_zerop)
4240 (if (integer_pow2p (@2))
4242 int shift = (wi::exact_log2 (wi::to_wide (@2))
4243 - wi::exact_log2 (wi::to_wide (@1)));
4247 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
4249 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
4252 /* If we have (A & C) != 0 where C is the sign bit of A, convert
4253 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
4257 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
4258 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4259 && type_has_mode_precision_p (TREE_TYPE (@0))
4260 && element_precision (@2) >= element_precision (@0)
4261 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
4262 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
4263 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
4265 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
4266 this into a right shift or sign extension followed by ANDing with C. */
4269 (lt @0 integer_zerop)
4270 INTEGER_CST@1 integer_zerop)
4271 (if (integer_pow2p (@1)
4272 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
4274 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
4278 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
4280 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
4281 sign extension followed by AND with C will achieve the effect. */
4282 (bit_and (convert @0) @1)))))
4284 /* When the addresses are not directly of decls compare base and offset.
4285 This implements some remaining parts of fold_comparison address
4286 comparisons but still no complete part of it. Still it is good
4287 enough to make fold_stmt not regress when not dispatching to fold_binary. */
4288 (for cmp (simple_comparison)
4290 (cmp (convert1?@2 addr@0) (convert2? addr@1))
4293 poly_int64 off0, off1;
4294 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
4295 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
4296 if (base0 && TREE_CODE (base0) == MEM_REF)
4298 off0 += mem_ref_offset (base0).force_shwi ();
4299 base0 = TREE_OPERAND (base0, 0);
4301 if (base1 && TREE_CODE (base1) == MEM_REF)
4303 off1 += mem_ref_offset (base1).force_shwi ();
4304 base1 = TREE_OPERAND (base1, 0);
4307 (if (base0 && base1)
4311 /* Punt in GENERIC on variables with value expressions;
4312 the value expressions might point to fields/elements
4313 of other vars etc. */
4315 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
4316 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
4318 else if (decl_in_symtab_p (base0)
4319 && decl_in_symtab_p (base1))
4320 equal = symtab_node::get_create (base0)
4321 ->equal_address_to (symtab_node::get_create (base1));
4322 else if ((DECL_P (base0)
4323 || TREE_CODE (base0) == SSA_NAME
4324 || TREE_CODE (base0) == STRING_CST)
4326 || TREE_CODE (base1) == SSA_NAME
4327 || TREE_CODE (base1) == STRING_CST))
4328 equal = (base0 == base1);
4331 HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
4332 off0.is_constant (&ioff0);
4333 off1.is_constant (&ioff1);
4334 if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST)
4335 || (TREE_CODE (base0) == STRING_CST && DECL_P (base1))
4336 || (TREE_CODE (base0) == STRING_CST
4337 && TREE_CODE (base1) == STRING_CST
4338 && ioff0 >= 0 && ioff1 >= 0
4339 && ioff0 < TREE_STRING_LENGTH (base0)
4340 && ioff1 < TREE_STRING_LENGTH (base1)
4341 /* This is a too conservative test that the STRING_CSTs
4342 will not end up being string-merged. */
4343 && strncmp (TREE_STRING_POINTER (base0) + ioff0,
4344 TREE_STRING_POINTER (base1) + ioff1,
4345 MIN (TREE_STRING_LENGTH (base0) - ioff0,
4346 TREE_STRING_LENGTH (base1) - ioff1)) != 0))
4348 else if (!DECL_P (base0) || !DECL_P (base1))
4350 else if (cmp != EQ_EXPR && cmp != NE_EXPR)
4352 /* If this is a pointer comparison, ignore for now even
4353 valid equalities where one pointer is the offset zero
4354 of one object and the other to one past end of another one. */
4355 else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
4357 /* Assume that automatic variables can't be adjacent to global
4359 else if (is_global_var (base0) != is_global_var (base1))
4363 tree sz0 = DECL_SIZE_UNIT (base0);
4364 tree sz1 = DECL_SIZE_UNIT (base1);
4365 /* If sizes are unknown, e.g. VLA or not representable,
4367 if (!tree_fits_poly_int64_p (sz0)
4368 || !tree_fits_poly_int64_p (sz1))
4372 poly_int64 size0 = tree_to_poly_int64 (sz0);
4373 poly_int64 size1 = tree_to_poly_int64 (sz1);
4374 /* If one offset is pointing (or could be) to the beginning
4375 of one object and the other is pointing to one past the
4376 last byte of the other object, punt. */
4377 if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
4379 else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
4381 /* If both offsets are the same, there are some cases
4382 we know that are ok. Either if we know they aren't
4383 zero, or if we know both sizes are no zero. */
4385 && known_eq (off0, off1)
4386 && (known_ne (off0, 0)
4387 || (known_ne (size0, 0) && known_ne (size1, 0))))
4394 && (cmp == EQ_EXPR || cmp == NE_EXPR
4395 /* If the offsets are equal we can ignore overflow. */
4396 || known_eq (off0, off1)
4397 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4398 /* Or if we compare using pointers to decls or strings. */
4399 || (POINTER_TYPE_P (TREE_TYPE (@2))
4400 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
4402 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4403 { constant_boolean_node (known_eq (off0, off1), type); })
4404 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4405 { constant_boolean_node (known_ne (off0, off1), type); })
4406 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
4407 { constant_boolean_node (known_lt (off0, off1), type); })
4408 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
4409 { constant_boolean_node (known_le (off0, off1), type); })
4410 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
4411 { constant_boolean_node (known_ge (off0, off1), type); })
4412 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
4413 { constant_boolean_node (known_gt (off0, off1), type); }))
4416 (if (cmp == EQ_EXPR)
4417 { constant_boolean_node (false, type); })
4418 (if (cmp == NE_EXPR)
4419 { constant_boolean_node (true, type); })))))))))
4421 /* Simplify pointer equality compares using PTA. */
4425 (if (POINTER_TYPE_P (TREE_TYPE (@0))
4426 && ptrs_compare_unequal (@0, @1))
4427 { constant_boolean_node (neeq != EQ_EXPR, type); })))
4429 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
4430 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
4431 Disable the transform if either operand is pointer to function.
4432 This broke pr22051-2.c for arm where function pointer
4433 canonicalizaion is not wanted. */
4437 (cmp (convert @0) INTEGER_CST@1)
4438 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
4439 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
4440 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4441 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4442 && POINTER_TYPE_P (TREE_TYPE (@1))
4443 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
4444 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
4445 (cmp @0 (convert @1)))))
4447 /* Non-equality compare simplifications from fold_binary */
4448 (for cmp (lt gt le ge)
4449 /* Comparisons with the highest or lowest possible integer of
4450 the specified precision will have known values. */
4452 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
4453 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
4454 || POINTER_TYPE_P (TREE_TYPE (@1))
4455 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
4456 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
4459 tree cst = uniform_integer_cst_p (@1);
4460 tree arg1_type = TREE_TYPE (cst);
4461 unsigned int prec = TYPE_PRECISION (arg1_type);
4462 wide_int max = wi::max_value (arg1_type);
4463 wide_int signed_max = wi::max_value (prec, SIGNED);
4464 wide_int min = wi::min_value (arg1_type);
4467 (if (wi::to_wide (cst) == max)
4469 (if (cmp == GT_EXPR)
4470 { constant_boolean_node (false, type); })
4471 (if (cmp == GE_EXPR)
4473 (if (cmp == LE_EXPR)
4474 { constant_boolean_node (true, type); })
4475 (if (cmp == LT_EXPR)
4477 (if (wi::to_wide (cst) == min)
4479 (if (cmp == LT_EXPR)
4480 { constant_boolean_node (false, type); })
4481 (if (cmp == LE_EXPR)
4483 (if (cmp == GE_EXPR)
4484 { constant_boolean_node (true, type); })
4485 (if (cmp == GT_EXPR)
4487 (if (wi::to_wide (cst) == max - 1)
4489 (if (cmp == GT_EXPR)
4490 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4491 wide_int_to_tree (TREE_TYPE (cst),
4494 (if (cmp == LE_EXPR)
4495 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4496 wide_int_to_tree (TREE_TYPE (cst),
4499 (if (wi::to_wide (cst) == min + 1)
4501 (if (cmp == GE_EXPR)
4502 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4503 wide_int_to_tree (TREE_TYPE (cst),
4506 (if (cmp == LT_EXPR)
4507 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4508 wide_int_to_tree (TREE_TYPE (cst),
4511 (if (wi::to_wide (cst) == signed_max
4512 && TYPE_UNSIGNED (arg1_type)
4513 /* We will flip the signedness of the comparison operator
4514 associated with the mode of @1, so the sign bit is
4515 specified by this mode. Check that @1 is the signed
4516 max associated with this sign bit. */
4517 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
4518 /* signed_type does not work on pointer types. */
4519 && INTEGRAL_TYPE_P (arg1_type))
4520 /* The following case also applies to X < signed_max+1
4521 and X >= signed_max+1 because previous transformations. */
4522 (if (cmp == LE_EXPR || cmp == GT_EXPR)
4523 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
4525 (if (cst == @1 && cmp == LE_EXPR)
4526 (ge (convert:st @0) { build_zero_cst (st); }))
4527 (if (cst == @1 && cmp == GT_EXPR)
4528 (lt (convert:st @0) { build_zero_cst (st); }))
4529 (if (cmp == LE_EXPR)
4530 (ge (view_convert:st @0) { build_zero_cst (st); }))
4531 (if (cmp == GT_EXPR)
4532 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
4534 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
4535 /* If the second operand is NaN, the result is constant. */
4538 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4539 && (cmp != LTGT_EXPR || ! flag_trapping_math))
4540 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
4541 ? false : true, type); })))
4543 /* bool_var != 0 becomes bool_var. */
4545 (ne @0 integer_zerop)
4546 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4547 && types_match (type, TREE_TYPE (@0)))
4549 /* bool_var == 1 becomes bool_var. */
4551 (eq @0 integer_onep)
4552 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4553 && types_match (type, TREE_TYPE (@0)))
4556 bool_var == 0 becomes !bool_var or
4557 bool_var != 1 becomes !bool_var
4558 here because that only is good in assignment context as long
4559 as we require a tcc_comparison in GIMPLE_CONDs where we'd
4560 replace if (x == 0) with tem = ~x; if (tem != 0) which is
4561 clearly less optimal and which we'll transform again in forwprop. */
4563 /* When one argument is a constant, overflow detection can be simplified.
4564 Currently restricted to single use so as not to interfere too much with
4565 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4566 A + CST CMP A -> A CMP' CST' */
4567 (for cmp (lt le ge gt)
4570 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
4571 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4572 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4573 && wi::to_wide (@1) != 0
4575 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4576 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4577 wi::max_value (prec, UNSIGNED)
4578 - wi::to_wide (@1)); })))))
4580 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4581 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4582 expects the long form, so we restrict the transformation for now. */
4585 (cmp:c (minus@2 @0 @1) @0)
4586 (if (single_use (@2)
4587 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4588 && TYPE_UNSIGNED (TREE_TYPE (@0))
4589 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4592 /* Testing for overflow is unnecessary if we already know the result. */
4597 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
4598 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4599 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4600 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4605 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
4606 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4607 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4608 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4610 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
4611 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
4615 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
4616 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4617 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4618 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4620 /* Simplification of math builtins. These rules must all be optimizations
4621 as well as IL simplifications. If there is a possibility that the new
4622 form could be a pessimization, the rule should go in the canonicalization
4623 section that follows this one.
4625 Rules can generally go in this section if they satisfy one of
4628 - the rule describes an identity
4630 - the rule replaces calls with something as simple as addition or
4633 - the rule contains unary calls only and simplifies the surrounding
4634 arithmetic. (The idea here is to exclude non-unary calls in which
4635 one operand is constant and in which the call is known to be cheap
4636 when the operand has that value.) */
4638 (if (flag_unsafe_math_optimizations)
4639 /* Simplify sqrt(x) * sqrt(x) -> x. */
4641 (mult (SQRT_ALL@1 @0) @1)
4642 (if (!HONOR_SNANS (type))
4645 (for op (plus minus)
4646 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
4650 (rdiv (op @0 @2) @1)))
4652 (for cmp (lt le gt ge)
4653 neg_cmp (gt ge lt le)
4654 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
4656 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
4658 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
4660 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
4661 || (real_zerop (tem) && !real_zerop (@1))))
4663 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
4665 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
4666 (neg_cmp @0 { tem; })))))))
4668 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
4669 (for root (SQRT CBRT)
4671 (mult (root:s @0) (root:s @1))
4672 (root (mult @0 @1))))
4674 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4675 (for exps (EXP EXP2 EXP10 POW10)
4677 (mult (exps:s @0) (exps:s @1))
4678 (exps (plus @0 @1))))
4680 /* Simplify a/root(b/c) into a*root(c/b). */
4681 (for root (SQRT CBRT)
4683 (rdiv @0 (root:s (rdiv:s @1 @2)))
4684 (mult @0 (root (rdiv @2 @1)))))
4686 /* Simplify x/expN(y) into x*expN(-y). */
4687 (for exps (EXP EXP2 EXP10 POW10)
4689 (rdiv @0 (exps:s @1))
4690 (mult @0 (exps (negate @1)))))
4692 (for logs (LOG LOG2 LOG10 LOG10)
4693 exps (EXP EXP2 EXP10 POW10)
4694 /* logN(expN(x)) -> x. */
4698 /* expN(logN(x)) -> x. */
4703 /* Optimize logN(func()) for various exponential functions. We
4704 want to determine the value "x" and the power "exponent" in
4705 order to transform logN(x**exponent) into exponent*logN(x). */
4706 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4707 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4710 (if (SCALAR_FLOAT_TYPE_P (type))
4716 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4717 x = build_real_truncate (type, dconst_e ());
4720 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4721 x = build_real (type, dconst2);
4725 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4727 REAL_VALUE_TYPE dconst10;
4728 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4729 x = build_real (type, dconst10);
4736 (mult (logs { x; }) @0)))))
4744 (if (SCALAR_FLOAT_TYPE_P (type))
4750 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4751 x = build_real (type, dconsthalf);
4754 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4755 x = build_real_truncate (type, dconst_third ());
4761 (mult { x; } (logs @0))))))
4763 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4764 (for logs (LOG LOG2 LOG10)
4768 (mult @1 (logs @0))))
4770 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4771 or if C is a positive power of 2,
4772 pow(C,x) -> exp2(log2(C)*x). */
4780 (pows REAL_CST@0 @1)
4781 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4782 && real_isfinite (TREE_REAL_CST_PTR (@0))
4783 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4784 the use_exp2 case until after vectorization. It seems actually
4785 beneficial for all constants to postpone this until later,
4786 because exp(log(C)*x), while faster, will have worse precision
4787 and if x folds into a constant too, that is unnecessary
4789 && canonicalize_math_after_vectorization_p ())
4791 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4792 bool use_exp2 = false;
4793 if (targetm.libc_has_function (function_c99_misc)
4794 && value->cl == rvc_normal)
4796 REAL_VALUE_TYPE frac_rvt = *value;
4797 SET_REAL_EXP (&frac_rvt, 1);
4798 if (real_equal (&frac_rvt, &dconst1))
4803 (if (optimize_pow_to_exp (@0, @1))
4804 (exps (mult (logs @0) @1)))
4805 (exp2s (mult (log2s @0) @1)))))))
4808 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4810 exps (EXP EXP2 EXP10 POW10)
4811 logs (LOG LOG2 LOG10 LOG10)
4813 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4814 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4815 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4816 (exps (plus (mult (logs @0) @1) @2)))))
4821 exps (EXP EXP2 EXP10 POW10)
4822 /* sqrt(expN(x)) -> expN(x*0.5). */
4825 (exps (mult @0 { build_real (type, dconsthalf); })))
4826 /* cbrt(expN(x)) -> expN(x/3). */
4829 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4830 /* pow(expN(x), y) -> expN(x*y). */
4833 (exps (mult @0 @1))))
4835 /* tan(atan(x)) -> x. */
4842 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
4846 copysigns (COPYSIGN)
4851 REAL_VALUE_TYPE r_cst;
4852 build_sinatan_real (&r_cst, type);
4853 tree t_cst = build_real (type, r_cst);
4854 tree t_one = build_one_cst (type);
4856 (if (SCALAR_FLOAT_TYPE_P (type))
4857 (cond (lt (abs @0) { t_cst; })
4858 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
4859 (copysigns { t_one; } @0))))))
4861 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
4865 copysigns (COPYSIGN)
4870 REAL_VALUE_TYPE r_cst;
4871 build_sinatan_real (&r_cst, type);
4872 tree t_cst = build_real (type, r_cst);
4873 tree t_one = build_one_cst (type);
4874 tree t_zero = build_zero_cst (type);
4876 (if (SCALAR_FLOAT_TYPE_P (type))
4877 (cond (lt (abs @0) { t_cst; })
4878 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
4879 (copysigns { t_zero; } @0))))))
4881 (if (!flag_errno_math)
4882 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
4887 (sinhs (atanhs:s @0))
4888 (with { tree t_one = build_one_cst (type); }
4889 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
4891 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
4896 (coshs (atanhs:s @0))
4897 (with { tree t_one = build_one_cst (type); }
4898 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
4900 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4902 (CABS (complex:C @0 real_zerop@1))
4905 /* trunc(trunc(x)) -> trunc(x), etc. */
4906 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4910 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4911 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4913 (fns integer_valued_real_p@0)
4916 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4918 (HYPOT:c @0 real_zerop@1)
4921 /* pow(1,x) -> 1. */
4923 (POW real_onep@0 @1)
4927 /* copysign(x,x) -> x. */
4928 (COPYSIGN_ALL @0 @0)
4932 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4933 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4936 (for scale (LDEXP SCALBN SCALBLN)
4937 /* ldexp(0, x) -> 0. */
4939 (scale real_zerop@0 @1)
4941 /* ldexp(x, 0) -> x. */
4943 (scale @0 integer_zerop@1)
4945 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4947 (scale REAL_CST@0 @1)
4948 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4951 /* Canonicalization of sequences of math builtins. These rules represent
4952 IL simplifications but are not necessarily optimizations.
4954 The sincos pass is responsible for picking "optimal" implementations
4955 of math builtins, which may be more complicated and can sometimes go
4956 the other way, e.g. converting pow into a sequence of sqrts.
4957 We only want to do these canonicalizations before the pass has run. */
4959 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4960 /* Simplify tan(x) * cos(x) -> sin(x). */
4962 (mult:c (TAN:s @0) (COS:s @0))
4965 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4967 (mult:c @0 (POW:s @0 REAL_CST@1))
4968 (if (!TREE_OVERFLOW (@1))
4969 (POW @0 (plus @1 { build_one_cst (type); }))))
4971 /* Simplify sin(x) / cos(x) -> tan(x). */
4973 (rdiv (SIN:s @0) (COS:s @0))
4976 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
4978 (rdiv (SINH:s @0) (COSH:s @0))
4981 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4983 (rdiv (COS:s @0) (SIN:s @0))
4984 (rdiv { build_one_cst (type); } (TAN @0)))
4986 /* Simplify sin(x) / tan(x) -> cos(x). */
4988 (rdiv (SIN:s @0) (TAN:s @0))
4989 (if (! HONOR_NANS (@0)
4990 && ! HONOR_INFINITIES (@0))
4993 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4995 (rdiv (TAN:s @0) (SIN:s @0))
4996 (if (! HONOR_NANS (@0)
4997 && ! HONOR_INFINITIES (@0))
4998 (rdiv { build_one_cst (type); } (COS @0))))
5000 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
5002 (mult (POW:s @0 @1) (POW:s @0 @2))
5003 (POW @0 (plus @1 @2)))
5005 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
5007 (mult (POW:s @0 @1) (POW:s @2 @1))
5008 (POW (mult @0 @2) @1))
5010 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
5012 (mult (POWI:s @0 @1) (POWI:s @2 @1))
5013 (POWI (mult @0 @2) @1))
5015 /* Simplify pow(x,c) / x -> pow(x,c-1). */
5017 (rdiv (POW:s @0 REAL_CST@1) @0)
5018 (if (!TREE_OVERFLOW (@1))
5019 (POW @0 (minus @1 { build_one_cst (type); }))))
5021 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
5023 (rdiv @0 (POW:s @1 @2))
5024 (mult @0 (POW @1 (negate @2))))
5029 /* sqrt(sqrt(x)) -> pow(x,1/4). */
5032 (pows @0 { build_real (type, dconst_quarter ()); }))
5033 /* sqrt(cbrt(x)) -> pow(x,1/6). */
5036 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5037 /* cbrt(sqrt(x)) -> pow(x,1/6). */
5040 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5041 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
5043 (cbrts (cbrts tree_expr_nonnegative_p@0))
5044 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
5045 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
5047 (sqrts (pows @0 @1))
5048 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
5049 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
5051 (cbrts (pows tree_expr_nonnegative_p@0 @1))
5052 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5053 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
5055 (pows (sqrts @0) @1)
5056 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
5057 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
5059 (pows (cbrts tree_expr_nonnegative_p@0) @1)
5060 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5061 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
5063 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
5064 (pows @0 (mult @1 @2))))
5066 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
5068 (CABS (complex @0 @0))
5069 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5071 /* hypot(x,x) -> fabs(x)*sqrt(2). */
5074 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5076 /* cexp(x+yi) -> exp(x)*cexpi(y). */
5081 (cexps compositional_complex@0)
5082 (if (targetm.libc_has_function (function_c99_math_complex))
5084 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
5085 (mult @1 (imagpart @2)))))))
5087 (if (canonicalize_math_p ())
5088 /* floor(x) -> trunc(x) if x is nonnegative. */
5089 (for floors (FLOOR_ALL)
5092 (floors tree_expr_nonnegative_p@0)
5095 (match double_value_p
5097 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
5098 (for froms (BUILT_IN_TRUNCL
5110 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
5111 (if (optimize && canonicalize_math_p ())
5113 (froms (convert double_value_p@0))
5114 (convert (tos @0)))))
5116 (match float_value_p
5118 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
5119 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
5120 BUILT_IN_FLOORL BUILT_IN_FLOOR
5121 BUILT_IN_CEILL BUILT_IN_CEIL
5122 BUILT_IN_ROUNDL BUILT_IN_ROUND
5123 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
5124 BUILT_IN_RINTL BUILT_IN_RINT)
5125 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
5126 BUILT_IN_FLOORF BUILT_IN_FLOORF
5127 BUILT_IN_CEILF BUILT_IN_CEILF
5128 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
5129 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
5130 BUILT_IN_RINTF BUILT_IN_RINTF)
5131 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
5133 (if (optimize && canonicalize_math_p ()
5134 && targetm.libc_has_function (function_c99_misc))
5136 (froms (convert float_value_p@0))
5137 (convert (tos @0)))))
5139 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
5140 tos (XFLOOR XCEIL XROUND XRINT)
5141 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
5142 (if (optimize && canonicalize_math_p ())
5144 (froms (convert double_value_p@0))
5147 (for froms (XFLOORL XCEILL XROUNDL XRINTL
5148 XFLOOR XCEIL XROUND XRINT)
5149 tos (XFLOORF XCEILF XROUNDF XRINTF)
5150 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
5152 (if (optimize && canonicalize_math_p ())
5154 (froms (convert float_value_p@0))
5157 (if (canonicalize_math_p ())
5158 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
5159 (for floors (IFLOOR LFLOOR LLFLOOR)
5161 (floors tree_expr_nonnegative_p@0)
5164 (if (canonicalize_math_p ())
5165 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
5166 (for fns (IFLOOR LFLOOR LLFLOOR
5168 IROUND LROUND LLROUND)
5170 (fns integer_valued_real_p@0)
5172 (if (!flag_errno_math)
5173 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
5174 (for rints (IRINT LRINT LLRINT)
5176 (rints integer_valued_real_p@0)
5179 (if (canonicalize_math_p ())
5180 (for ifn (IFLOOR ICEIL IROUND IRINT)
5181 lfn (LFLOOR LCEIL LROUND LRINT)
5182 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
5183 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
5184 sizeof (int) == sizeof (long). */
5185 (if (TYPE_PRECISION (integer_type_node)
5186 == TYPE_PRECISION (long_integer_type_node))
5189 (lfn:long_integer_type_node @0)))
5190 /* Canonicalize llround (x) to lround (x) on LP64 targets where
5191 sizeof (long long) == sizeof (long). */
5192 (if (TYPE_PRECISION (long_long_integer_type_node)
5193 == TYPE_PRECISION (long_integer_type_node))
5196 (lfn:long_integer_type_node @0)))))
5198 /* cproj(x) -> x if we're ignoring infinities. */
5201 (if (!HONOR_INFINITIES (type))
5204 /* If the real part is inf and the imag part is known to be
5205 nonnegative, return (inf + 0i). */
5207 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
5208 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
5209 { build_complex_inf (type, false); }))
5211 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
5213 (CPROJ (complex @0 REAL_CST@1))
5214 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
5215 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
5221 (pows @0 REAL_CST@1)
5223 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
5224 REAL_VALUE_TYPE tmp;
5227 /* pow(x,0) -> 1. */
5228 (if (real_equal (value, &dconst0))
5229 { build_real (type, dconst1); })
5230 /* pow(x,1) -> x. */
5231 (if (real_equal (value, &dconst1))
5233 /* pow(x,-1) -> 1/x. */
5234 (if (real_equal (value, &dconstm1))
5235 (rdiv { build_real (type, dconst1); } @0))
5236 /* pow(x,0.5) -> sqrt(x). */
5237 (if (flag_unsafe_math_optimizations
5238 && canonicalize_math_p ()
5239 && real_equal (value, &dconsthalf))
5241 /* pow(x,1/3) -> cbrt(x). */
5242 (if (flag_unsafe_math_optimizations
5243 && canonicalize_math_p ()
5244 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
5245 real_equal (value, &tmp)))
5248 /* powi(1,x) -> 1. */
5250 (POWI real_onep@0 @1)
5254 (POWI @0 INTEGER_CST@1)
5256 /* powi(x,0) -> 1. */
5257 (if (wi::to_wide (@1) == 0)
5258 { build_real (type, dconst1); })
5259 /* powi(x,1) -> x. */
5260 (if (wi::to_wide (@1) == 1)
5262 /* powi(x,-1) -> 1/x. */
5263 (if (wi::to_wide (@1) == -1)
5264 (rdiv { build_real (type, dconst1); } @0))))
5266 /* Narrowing of arithmetic and logical operations.
5268 These are conceptually similar to the transformations performed for
5269 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
5270 term we want to move all that code out of the front-ends into here. */
5272 /* Convert (outertype)((innertype0)a+(innertype1)b)
5273 into ((newtype)a+(newtype)b) where newtype
5274 is the widest mode from all of these. */
5275 (for op (plus minus mult rdiv)
5277 (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
5278 /* If we have a narrowing conversion of an arithmetic operation where
5279 both operands are widening conversions from the same type as the outer
5280 narrowing conversion. Then convert the innermost operands to a
5281 suitable unsigned type (to avoid introducing undefined behavior),
5282 perform the operation and convert the result to the desired type. */
5283 (if (INTEGRAL_TYPE_P (type)
5286 /* We check for type compatibility between @0 and @1 below,
5287 so there's no need to check that @2/@4 are integral types. */
5288 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
5289 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5290 /* The precision of the type of each operand must match the
5291 precision of the mode of each operand, similarly for the
5293 && type_has_mode_precision_p (TREE_TYPE (@1))
5294 && type_has_mode_precision_p (TREE_TYPE (@2))
5295 && type_has_mode_precision_p (type)
5296 /* The inner conversion must be a widening conversion. */
5297 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
5298 && types_match (@1, type)
5299 && (types_match (@1, @2)
5300 /* Or the second operand is const integer or converted const
5301 integer from valueize. */
5302 || TREE_CODE (@2) == INTEGER_CST))
5303 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
5304 (op @1 (convert @2))
5305 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
5306 (convert (op (convert:utype @1)
5307 (convert:utype @2)))))
5308 (if (FLOAT_TYPE_P (type)
5309 && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
5310 == DECIMAL_FLOAT_TYPE_P (type))
5311 (with { tree arg0 = strip_float_extensions (@1);
5312 tree arg1 = strip_float_extensions (@2);
5313 tree itype = TREE_TYPE (@0);
5314 tree ty1 = TREE_TYPE (arg0);
5315 tree ty2 = TREE_TYPE (arg1);
5316 enum tree_code code = TREE_CODE (itype); }
5317 (if (FLOAT_TYPE_P (ty1)
5318 && FLOAT_TYPE_P (ty2))
5319 (with { tree newtype = type;
5320 if (TYPE_MODE (ty1) == SDmode
5321 || TYPE_MODE (ty2) == SDmode
5322 || TYPE_MODE (type) == SDmode)
5323 newtype = dfloat32_type_node;
5324 if (TYPE_MODE (ty1) == DDmode
5325 || TYPE_MODE (ty2) == DDmode
5326 || TYPE_MODE (type) == DDmode)
5327 newtype = dfloat64_type_node;
5328 if (TYPE_MODE (ty1) == TDmode
5329 || TYPE_MODE (ty2) == TDmode
5330 || TYPE_MODE (type) == TDmode)
5331 newtype = dfloat128_type_node; }
5332 (if ((newtype == dfloat32_type_node
5333 || newtype == dfloat64_type_node
5334 || newtype == dfloat128_type_node)
5336 && types_match (newtype, type))
5337 (op (convert:newtype @1) (convert:newtype @2))
5338 (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
5340 if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
5342 /* Sometimes this transformation is safe (cannot
5343 change results through affecting double rounding
5344 cases) and sometimes it is not. If NEWTYPE is
5345 wider than TYPE, e.g. (float)((long double)double
5346 + (long double)double) converted to
5347 (float)(double + double), the transformation is
5348 unsafe regardless of the details of the types
5349 involved; double rounding can arise if the result
5350 of NEWTYPE arithmetic is a NEWTYPE value half way
5351 between two representable TYPE values but the
5352 exact value is sufficiently different (in the
5353 right direction) for this difference to be
5354 visible in ITYPE arithmetic. If NEWTYPE is the
5355 same as TYPE, however, the transformation may be
5356 safe depending on the types involved: it is safe
5357 if the ITYPE has strictly more than twice as many
5358 mantissa bits as TYPE, can represent infinities
5359 and NaNs if the TYPE can, and has sufficient
5360 exponent range for the product or ratio of two
5361 values representable in the TYPE to be within the
5362 range of normal values of ITYPE. */
5363 (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
5364 && (flag_unsafe_math_optimizations
5365 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
5366 && real_can_shorten_arithmetic (TYPE_MODE (itype),
5368 && !excess_precision_type (newtype)))
5369 && !types_match (itype, newtype))
5370 (convert:type (op (convert:newtype @1)
5371 (convert:newtype @2)))
5376 /* This is another case of narrowing, specifically when there's an outer
5377 BIT_AND_EXPR which masks off bits outside the type of the innermost
5378 operands. Like the previous case we have to convert the operands
5379 to unsigned types to avoid introducing undefined behavior for the
5380 arithmetic operation. */
5381 (for op (minus plus)
5383 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
5384 (if (INTEGRAL_TYPE_P (type)
5385 /* We check for type compatibility between @0 and @1 below,
5386 so there's no need to check that @1/@3 are integral types. */
5387 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5388 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5389 /* The precision of the type of each operand must match the
5390 precision of the mode of each operand, similarly for the
5392 && type_has_mode_precision_p (TREE_TYPE (@0))
5393 && type_has_mode_precision_p (TREE_TYPE (@1))
5394 && type_has_mode_precision_p (type)
5395 /* The inner conversion must be a widening conversion. */
5396 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5397 && types_match (@0, @1)
5398 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
5399 <= TYPE_PRECISION (TREE_TYPE (@0)))
5400 && (wi::to_wide (@4)
5401 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
5402 true, TYPE_PRECISION (type))) == 0)
5403 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
5404 (with { tree ntype = TREE_TYPE (@0); }
5405 (convert (bit_and (op @0 @1) (convert:ntype @4))))
5406 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
5407 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
5408 (convert:utype @4))))))))
5410 /* Transform (@0 < @1 and @0 < @2) to use min,
5411 (@0 > @1 and @0 > @2) to use max */
5412 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
5413 op (lt le gt ge lt le gt ge )
5414 ext (min min max max max max min min )
5416 (logic (op:cs @0 @1) (op:cs @0 @2))
5417 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5418 && TREE_CODE (@0) != INTEGER_CST)
5419 (op @0 (ext @1 @2)))))
5422 /* signbit(x) -> 0 if x is nonnegative. */
5423 (SIGNBIT tree_expr_nonnegative_p@0)
5424 { integer_zero_node; })
5427 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
5429 (if (!HONOR_SIGNED_ZEROS (@0))
5430 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
5432 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
5434 (for op (plus minus)
5437 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5438 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5439 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
5440 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
5441 && !TYPE_SATURATING (TREE_TYPE (@0)))
5442 (with { tree res = int_const_binop (rop, @2, @1); }
5443 (if (TREE_OVERFLOW (res)
5444 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5445 { constant_boolean_node (cmp == NE_EXPR, type); }
5446 (if (single_use (@3))
5447 (cmp @0 { TREE_OVERFLOW (res)
5448 ? drop_tree_overflow (res) : res; }))))))))
5449 (for cmp (lt le gt ge)
5450 (for op (plus minus)
5453 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5454 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5455 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5456 (with { tree res = int_const_binop (rop, @2, @1); }
5457 (if (TREE_OVERFLOW (res))
5459 fold_overflow_warning (("assuming signed overflow does not occur "
5460 "when simplifying conditional to constant"),
5461 WARN_STRICT_OVERFLOW_CONDITIONAL);
5462 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
5463 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
5464 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
5465 TYPE_SIGN (TREE_TYPE (@1)))
5466 != (op == MINUS_EXPR);
5467 constant_boolean_node (less == ovf_high, type);
5469 (if (single_use (@3))
5472 fold_overflow_warning (("assuming signed overflow does not occur "
5473 "when changing X +- C1 cmp C2 to "
5475 WARN_STRICT_OVERFLOW_COMPARISON);
5477 (cmp @0 { res; })))))))))
5479 /* Canonicalizations of BIT_FIELD_REFs. */
5482 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
5483 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
5486 (BIT_FIELD_REF (view_convert @0) @1 @2)
5487 (BIT_FIELD_REF @0 @1 @2))
5490 (BIT_FIELD_REF @0 @1 integer_zerop)
5491 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
5495 (BIT_FIELD_REF @0 @1 @2)
5497 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
5498 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5500 (if (integer_zerop (@2))
5501 (view_convert (realpart @0)))
5502 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5503 (view_convert (imagpart @0)))))
5504 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5505 && INTEGRAL_TYPE_P (type)
5506 /* On GIMPLE this should only apply to register arguments. */
5507 && (! GIMPLE || is_gimple_reg (@0))
5508 /* A bit-field-ref that referenced the full argument can be stripped. */
5509 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
5510 && integer_zerop (@2))
5511 /* Low-parts can be reduced to integral conversions.
5512 ??? The following doesn't work for PDP endian. */
5513 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
5514 /* Don't even think about BITS_BIG_ENDIAN. */
5515 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
5516 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
5517 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
5518 ? (TYPE_PRECISION (TREE_TYPE (@0))
5519 - TYPE_PRECISION (type))
5523 /* Simplify vector extracts. */
5526 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
5527 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
5528 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
5529 || (VECTOR_TYPE_P (type)
5530 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
5533 tree ctor = (TREE_CODE (@0) == SSA_NAME
5534 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5535 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
5536 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
5537 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
5538 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
5541 && (idx % width) == 0
5543 && known_le ((idx + n) / width,
5544 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
5549 /* Constructor elements can be subvectors. */
5551 if (CONSTRUCTOR_NELTS (ctor) != 0)
5553 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
5554 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
5555 k = TYPE_VECTOR_SUBPARTS (cons_elem);
5557 unsigned HOST_WIDE_INT elt, count, const_k;
5560 /* We keep an exact subset of the constructor elements. */
5561 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
5562 (if (CONSTRUCTOR_NELTS (ctor) == 0)
5563 { build_constructor (type, NULL); }
5565 (if (elt < CONSTRUCTOR_NELTS (ctor))
5566 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
5567 { build_zero_cst (type); })
5569 vec<constructor_elt, va_gc> *vals;
5570 vec_alloc (vals, count);
5571 for (unsigned i = 0;
5572 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
5573 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
5574 CONSTRUCTOR_ELT (ctor, elt + i)->value);
5575 build_constructor (type, vals);
5577 /* The bitfield references a single constructor element. */
5578 (if (k.is_constant (&const_k)
5579 && idx + n <= (idx / const_k + 1) * const_k)
5581 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
5582 { build_zero_cst (type); })
5584 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
5585 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
5586 @1 { bitsize_int ((idx % const_k) * width); })))))))))
5588 /* Simplify a bit extraction from a bit insertion for the cases with
5589 the inserted element fully covering the extraction or the insertion
5590 not touching the extraction. */
5592 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
5595 unsigned HOST_WIDE_INT isize;
5596 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
5597 isize = TYPE_PRECISION (TREE_TYPE (@1));
5599 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
5602 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
5603 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
5604 wi::to_wide (@ipos) + isize))
5605 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
5607 - wi::to_wide (@ipos)); }))
5608 (if (wi::geu_p (wi::to_wide (@ipos),
5609 wi::to_wide (@rpos) + wi::to_wide (@rsize))
5610 || wi::geu_p (wi::to_wide (@rpos),
5611 wi::to_wide (@ipos) + isize))
5612 (BIT_FIELD_REF @0 @rsize @rpos)))))
5614 (if (canonicalize_math_after_vectorization_p ())
5617 (fmas:c (negate @0) @1 @2)
5618 (IFN_FNMA @0 @1 @2))
5620 (fmas @0 @1 (negate @2))
5623 (fmas:c (negate @0) @1 (negate @2))
5624 (IFN_FNMS @0 @1 @2))
5626 (negate (fmas@3 @0 @1 @2))
5627 (if (single_use (@3))
5628 (IFN_FNMS @0 @1 @2))))
5631 (IFN_FMS:c (negate @0) @1 @2)
5632 (IFN_FNMS @0 @1 @2))
5634 (IFN_FMS @0 @1 (negate @2))
5637 (IFN_FMS:c (negate @0) @1 (negate @2))
5638 (IFN_FNMA @0 @1 @2))
5640 (negate (IFN_FMS@3 @0 @1 @2))
5641 (if (single_use (@3))
5642 (IFN_FNMA @0 @1 @2)))
5645 (IFN_FNMA:c (negate @0) @1 @2)
5648 (IFN_FNMA @0 @1 (negate @2))
5649 (IFN_FNMS @0 @1 @2))
5651 (IFN_FNMA:c (negate @0) @1 (negate @2))
5654 (negate (IFN_FNMA@3 @0 @1 @2))
5655 (if (single_use (@3))
5656 (IFN_FMS @0 @1 @2)))
5659 (IFN_FNMS:c (negate @0) @1 @2)
5662 (IFN_FNMS @0 @1 (negate @2))
5663 (IFN_FNMA @0 @1 @2))
5665 (IFN_FNMS:c (negate @0) @1 (negate @2))
5668 (negate (IFN_FNMS@3 @0 @1 @2))
5669 (if (single_use (@3))
5670 (IFN_FMA @0 @1 @2))))
5672 /* POPCOUNT simplifications. */
5673 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
5674 BUILT_IN_POPCOUNTIMAX)
5675 /* popcount(X&1) is nop_expr(X&1). */
5678 (if (tree_nonzero_bits (@0) == 1)
5680 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
5682 (plus (popcount:s @0) (popcount:s @1))
5683 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
5684 (popcount (bit_ior @0 @1))))
5685 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
5686 (for cmp (le eq ne gt)
5689 (cmp (popcount @0) integer_zerop)
5690 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
5693 /* 64- and 32-bits branchless implementations of popcount are detected:
5695 int popcount64c (uint64_t x)
5697 x -= (x >> 1) & 0x5555555555555555ULL;
5698 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
5699 x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
5700 return (x * 0x0101010101010101ULL) >> 56;
5703 int popcount32c (uint32_t x)
5705 x -= (x >> 1) & 0x55555555;
5706 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
5707 x = (x + (x >> 4)) & 0x0f0f0f0f;
5708 return (x * 0x01010101) >> 24;
5715 (rshift @8 INTEGER_CST@5)
5717 (bit_and @6 INTEGER_CST@7)
5723 (rshift @0 INTEGER_CST@4)
5730 /* Check constants and optab. */
5733 unsigned prec = TYPE_PRECISION (type);
5734 int shift = 64 - prec;
5735 const unsigned HOST_WIDE_INT c1 = 0x0101010101010101ULL >> shift,
5736 c2 = 0x0F0F0F0F0F0F0F0FULL >> shift,
5737 c3 = 0x3333333333333333ULL >> shift,
5738 c4 = 0x5555555555555555ULL >> shift;
5740 (if (prec <= 64 && TYPE_UNSIGNED (type) && tree_to_uhwi (@4) == 1
5741 && tree_to_uhwi (@10) == 2 && tree_to_uhwi (@5) == 4
5742 && tree_to_uhwi (@1) == prec - 8 && tree_to_uhwi (@2) == c1
5743 && tree_to_uhwi (@3) == c2 && tree_to_uhwi (@9) == c3
5744 && tree_to_uhwi (@7) == c3 && tree_to_uhwi (@11) == c4
5745 && direct_internal_fn_supported_p (IFN_POPCOUNT, type,
5747 (convert (IFN_POPCOUNT:type @0)))))
5757 r = c ? a1 op a2 : b;
5759 if the target can do it in one go. This makes the operation conditional
5760 on c, so could drop potentially-trapping arithmetic, but that's a valid
5761 simplification if the result of the operation isn't needed.
5763 Avoid speculatively generating a stand-alone vector comparison
5764 on targets that might not support them. Any target implementing
5765 conditional internal functions must support the same comparisons
5766 inside and outside a VEC_COND_EXPR. */
5769 (for uncond_op (UNCOND_BINARY)
5770 cond_op (COND_BINARY)
5772 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
5773 (with { tree op_type = TREE_TYPE (@4); }
5774 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5775 && element_precision (type) == element_precision (op_type))
5776 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
5778 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
5779 (with { tree op_type = TREE_TYPE (@4); }
5780 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5781 && element_precision (type) == element_precision (op_type))
5782 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
5784 /* Same for ternary operations. */
5785 (for uncond_op (UNCOND_TERNARY)
5786 cond_op (COND_TERNARY)
5788 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
5789 (with { tree op_type = TREE_TYPE (@5); }
5790 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5791 && element_precision (type) == element_precision (op_type))
5792 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
5794 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
5795 (with { tree op_type = TREE_TYPE (@5); }
5796 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5797 && element_precision (type) == element_precision (op_type))
5798 (view_convert (cond_op (bit_not @0) @2 @3 @4
5799 (view_convert:op_type @1)))))))
5802 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
5803 "else" value of an IFN_COND_*. */
5804 (for cond_op (COND_BINARY)
5806 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
5807 (with { tree op_type = TREE_TYPE (@3); }
5808 (if (element_precision (type) == element_precision (op_type))
5809 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
5811 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
5812 (with { tree op_type = TREE_TYPE (@5); }
5813 (if (inverse_conditions_p (@0, @2)
5814 && element_precision (type) == element_precision (op_type))
5815 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
5817 /* Same for ternary operations. */
5818 (for cond_op (COND_TERNARY)
5820 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
5821 (with { tree op_type = TREE_TYPE (@4); }
5822 (if (element_precision (type) == element_precision (op_type))
5823 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
5825 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
5826 (with { tree op_type = TREE_TYPE (@6); }
5827 (if (inverse_conditions_p (@0, @2)
5828 && element_precision (type) == element_precision (op_type))
5829 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
5831 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
5834 A: (@0 + @1 < @2) | (@2 + @1 < @0)
5835 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
5837 If pointers are known not to wrap, B checks whether @1 bytes starting
5838 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
5839 bytes. A is more efficiently tested as:
5841 A: (sizetype) (@0 + @1 - @2) > @1 * 2
5843 The equivalent expression for B is given by replacing @1 with @1 - 1:
5845 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
5847 @0 and @2 can be swapped in both expressions without changing the result.
5849 The folds rely on sizetype's being unsigned (which is always true)
5850 and on its being the same width as the pointer (which we have to check).
5852 The fold replaces two pointer_plus expressions, two comparisons and
5853 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
5854 the best case it's a saving of two operations. The A fold retains one
5855 of the original pointer_pluses, so is a win even if both pointer_pluses
5856 are used elsewhere. The B fold is a wash if both pointer_pluses are
5857 used elsewhere, since all we end up doing is replacing a comparison with
5858 a pointer_plus. We do still apply the fold under those circumstances
5859 though, in case applying it to other conditions eventually makes one of the
5860 pointer_pluses dead. */
5861 (for ior (truth_orif truth_or bit_ior)
5864 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
5865 (cmp:cs (pointer_plus@4 @2 @1) @0))
5866 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5867 && TYPE_OVERFLOW_WRAPS (sizetype)
5868 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
5869 /* Calculate the rhs constant. */
5870 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
5871 offset_int rhs = off * 2; }
5872 /* Always fails for negative values. */
5873 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
5874 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
5875 pick a canonical order. This increases the chances of using the
5876 same pointer_plus in multiple checks. */
5877 (with { bool swap_p = tree_swap_operands_p (@0, @2);
5878 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
5879 (if (cmp == LT_EXPR)
5880 (gt (convert:sizetype
5881 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
5882 { swap_p ? @0 : @2; }))
5884 (gt (convert:sizetype
5885 (pointer_diff:ssizetype
5886 (pointer_plus { swap_p ? @2 : @0; }
5887 { wide_int_to_tree (sizetype, off); })
5888 { swap_p ? @0 : @2; }))
5889 { rhs_tree; })))))))))
5891 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
5893 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
5894 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
5895 (with { int i = single_nonzero_element (@1); }
5897 (with { tree elt = vector_cst_elt (@1, i);
5898 tree elt_type = TREE_TYPE (elt);
5899 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
5900 tree size = bitsize_int (elt_bits);
5901 tree pos = bitsize_int (elt_bits * i); }
5904 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
5908 (vec_perm @0 @1 VECTOR_CST@2)
5911 tree op0 = @0, op1 = @1, op2 = @2;
5913 /* Build a vector of integers from the tree mask. */
5914 vec_perm_builder builder;
5915 if (!tree_to_vec_perm_builder (&builder, op2))
5918 /* Create a vec_perm_indices for the integer vector. */
5919 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
5920 bool single_arg = (op0 == op1);
5921 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
5923 (if (sel.series_p (0, 1, 0, 1))
5925 (if (sel.series_p (0, 1, nelts, 1))
5931 if (sel.all_from_input_p (0))
5933 else if (sel.all_from_input_p (1))
5936 sel.rotate_inputs (1);
5938 else if (known_ge (poly_uint64 (sel[0]), nelts))
5940 std::swap (op0, op1);
5941 sel.rotate_inputs (1);
5945 tree cop0 = op0, cop1 = op1;
5946 if (TREE_CODE (op0) == SSA_NAME
5947 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
5948 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
5949 cop0 = gimple_assign_rhs1 (def);
5950 if (TREE_CODE (op1) == SSA_NAME
5951 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
5952 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
5953 cop1 = gimple_assign_rhs1 (def);
5957 (if ((TREE_CODE (cop0) == VECTOR_CST
5958 || TREE_CODE (cop0) == CONSTRUCTOR)
5959 && (TREE_CODE (cop1) == VECTOR_CST
5960 || TREE_CODE (cop1) == CONSTRUCTOR)
5961 && (t = fold_vec_perm (type, cop0, cop1, sel)))
5965 bool changed = (op0 == op1 && !single_arg);
5966 tree ins = NULL_TREE;
5969 /* See if the permutation is performing a single element
5970 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
5971 in that case. But only if the vector mode is supported,
5972 otherwise this is invalid GIMPLE. */
5973 if (TYPE_MODE (type) != BLKmode
5974 && (TREE_CODE (cop0) == VECTOR_CST
5975 || TREE_CODE (cop0) == CONSTRUCTOR
5976 || TREE_CODE (cop1) == VECTOR_CST
5977 || TREE_CODE (cop1) == CONSTRUCTOR))
5979 if (sel.series_p (1, 1, nelts + 1, 1))
5981 /* After canonicalizing the first elt to come from the
5982 first vector we only can insert the first elt from
5983 the first vector. */
5985 if ((ins = fold_read_from_vector (cop0, sel[0])))
5990 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
5991 for (at = 0; at < encoded_nelts; ++at)
5992 if (maybe_ne (sel[at], at))
5994 if (at < encoded_nelts && sel.series_p (at + 1, 1, at + 1, 1))
5996 if (known_lt (at, nelts))
5997 ins = fold_read_from_vector (cop0, sel[at]);
5999 ins = fold_read_from_vector (cop1, sel[at] - nelts);
6004 /* Generate a canonical form of the selector. */
6005 if (!ins && sel.encoding () != builder)
6007 /* Some targets are deficient and fail to expand a single
6008 argument permutation while still allowing an equivalent
6009 2-argument version. */
6011 if (sel.ninputs () == 2
6012 || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
6013 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6016 vec_perm_indices sel2 (builder, 2, nelts);
6017 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
6018 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
6020 /* Not directly supported with either encoding,
6021 so use the preferred form. */
6022 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6024 if (!operand_equal_p (op2, oldop2, 0))
6029 (bit_insert { op0; } { ins; }
6030 { bitsize_int (at * tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))); })
6032 (vec_perm { op0; } { op1; } { op2; }))))))))))
6034 /* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
6036 (match vec_same_elem_p
6038 (if (uniform_vector_p (@0))))
6040 (match vec_same_elem_p
6044 (vec_perm vec_same_elem_p@0 @0 @1)