2004-08-18 David Daney <ddaney@avtrex.com>
[official-gcc.git] / gcc / reload1.c
blob4dd1153dfd89e7f336d0706d2ec0cada0123fd19
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "real.h"
43 #include "toplev.h"
44 #include "except.h"
45 #include "tree.h"
47 /* This file contains the reload pass of the compiler, which is
48 run after register allocation has been done. It checks that
49 each insn is valid (operands required to be in registers really
50 are in registers of the proper class) and fixes up invalid ones
51 by copying values temporarily into registers for the insns
52 that need them.
54 The results of register allocation are described by the vector
55 reg_renumber; the insns still contain pseudo regs, but reg_renumber
56 can be used to find which hard reg, if any, a pseudo reg is in.
58 The technique we always use is to free up a few hard regs that are
59 called ``reload regs'', and for each place where a pseudo reg
60 must be in a hard reg, copy it temporarily into one of the reload regs.
62 Reload regs are allocated locally for every instruction that needs
63 reloads. When there are pseudos which are allocated to a register that
64 has been chosen as a reload reg, such pseudos must be ``spilled''.
65 This means that they go to other hard regs, or to stack slots if no other
66 available hard regs can be found. Spilling can invalidate more
67 insns, requiring additional need for reloads, so we must keep checking
68 until the process stabilizes.
70 For machines with different classes of registers, we must keep track
71 of the register class needed for each reload, and make sure that
72 we allocate enough reload registers of each class.
74 The file reload.c contains the code that checks one insn for
75 validity and reports the reloads that it needs. This file
76 is in charge of scanning the entire rtl code, accumulating the
77 reload needs, spilling, assigning reload registers to use for
78 fixing up each insn, and generating the new insns to copy values
79 into the reload registers. */
81 /* During reload_as_needed, element N contains a REG rtx for the hard reg
82 into which reg N has been reloaded (perhaps for a previous insn). */
83 static rtx *reg_last_reload_reg;
85 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
86 for an output reload that stores into reg N. */
87 static char *reg_has_output_reload;
89 /* Indicates which hard regs are reload-registers for an output reload
90 in the current insn. */
91 static HARD_REG_SET reg_is_output_reload;
93 /* Element N is the constant value to which pseudo reg N is equivalent,
94 or zero if pseudo reg N is not equivalent to a constant.
95 find_reloads looks at this in order to replace pseudo reg N
96 with the constant it stands for. */
97 rtx *reg_equiv_constant;
99 /* Element N is a memory location to which pseudo reg N is equivalent,
100 prior to any register elimination (such as frame pointer to stack
101 pointer). Depending on whether or not it is a valid address, this value
102 is transferred to either reg_equiv_address or reg_equiv_mem. */
103 rtx *reg_equiv_memory_loc;
105 /* We allocate reg_equiv_memory_loc inside a varray so that the garbage
106 collector can keep track of what is inside. */
107 varray_type reg_equiv_memory_loc_varray;
109 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
110 This is used when the address is not valid as a memory address
111 (because its displacement is too big for the machine.) */
112 rtx *reg_equiv_address;
114 /* Element N is the memory slot to which pseudo reg N is equivalent,
115 or zero if pseudo reg N is not equivalent to a memory slot. */
116 rtx *reg_equiv_mem;
118 /* Widest width in which each pseudo reg is referred to (via subreg). */
119 static unsigned int *reg_max_ref_width;
121 /* Element N is the list of insns that initialized reg N from its equivalent
122 constant or memory slot. */
123 static rtx *reg_equiv_init;
125 /* Vector to remember old contents of reg_renumber before spilling. */
126 static short *reg_old_renumber;
128 /* During reload_as_needed, element N contains the last pseudo regno reloaded
129 into hard register N. If that pseudo reg occupied more than one register,
130 reg_reloaded_contents points to that pseudo for each spill register in
131 use; all of these must remain set for an inheritance to occur. */
132 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
134 /* During reload_as_needed, element N contains the insn for which
135 hard register N was last used. Its contents are significant only
136 when reg_reloaded_valid is set for this register. */
137 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
139 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
140 static HARD_REG_SET reg_reloaded_valid;
141 /* Indicate if the register was dead at the end of the reload.
142 This is only valid if reg_reloaded_contents is set and valid. */
143 static HARD_REG_SET reg_reloaded_dead;
145 /* Indicate whether the register's current value is one that is not
146 safe to retain across a call, even for registers that are normally
147 call-saved. */
148 static HARD_REG_SET reg_reloaded_call_part_clobbered;
150 /* Number of spill-regs so far; number of valid elements of spill_regs. */
151 static int n_spills;
153 /* In parallel with spill_regs, contains REG rtx's for those regs.
154 Holds the last rtx used for any given reg, or 0 if it has never
155 been used for spilling yet. This rtx is reused, provided it has
156 the proper mode. */
157 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
159 /* In parallel with spill_regs, contains nonzero for a spill reg
160 that was stored after the last time it was used.
161 The precise value is the insn generated to do the store. */
162 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
164 /* This is the register that was stored with spill_reg_store. This is a
165 copy of reload_out / reload_out_reg when the value was stored; if
166 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
167 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
169 /* This table is the inverse mapping of spill_regs:
170 indexed by hard reg number,
171 it contains the position of that reg in spill_regs,
172 or -1 for something that is not in spill_regs.
174 ?!? This is no longer accurate. */
175 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
177 /* This reg set indicates registers that can't be used as spill registers for
178 the currently processed insn. These are the hard registers which are live
179 during the insn, but not allocated to pseudos, as well as fixed
180 registers. */
181 static HARD_REG_SET bad_spill_regs;
183 /* These are the hard registers that can't be used as spill register for any
184 insn. This includes registers used for user variables and registers that
185 we can't eliminate. A register that appears in this set also can't be used
186 to retry register allocation. */
187 static HARD_REG_SET bad_spill_regs_global;
189 /* Describes order of use of registers for reloading
190 of spilled pseudo-registers. `n_spills' is the number of
191 elements that are actually valid; new ones are added at the end.
193 Both spill_regs and spill_reg_order are used on two occasions:
194 once during find_reload_regs, where they keep track of the spill registers
195 for a single insn, but also during reload_as_needed where they show all
196 the registers ever used by reload. For the latter case, the information
197 is calculated during finish_spills. */
198 static short spill_regs[FIRST_PSEUDO_REGISTER];
200 /* This vector of reg sets indicates, for each pseudo, which hard registers
201 may not be used for retrying global allocation because the register was
202 formerly spilled from one of them. If we allowed reallocating a pseudo to
203 a register that it was already allocated to, reload might not
204 terminate. */
205 static HARD_REG_SET *pseudo_previous_regs;
207 /* This vector of reg sets indicates, for each pseudo, which hard
208 registers may not be used for retrying global allocation because they
209 are used as spill registers during one of the insns in which the
210 pseudo is live. */
211 static HARD_REG_SET *pseudo_forbidden_regs;
213 /* All hard regs that have been used as spill registers for any insn are
214 marked in this set. */
215 static HARD_REG_SET used_spill_regs;
217 /* Index of last register assigned as a spill register. We allocate in
218 a round-robin fashion. */
219 static int last_spill_reg;
221 /* Nonzero if indirect addressing is supported on the machine; this means
222 that spilling (REG n) does not require reloading it into a register in
223 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
224 value indicates the level of indirect addressing supported, e.g., two
225 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
226 a hard register. */
227 static char spill_indirect_levels;
229 /* Nonzero if indirect addressing is supported when the innermost MEM is
230 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
231 which these are valid is the same as spill_indirect_levels, above. */
232 char indirect_symref_ok;
234 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
235 char double_reg_address_ok;
237 /* Record the stack slot for each spilled hard register. */
238 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
240 /* Width allocated so far for that stack slot. */
241 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
243 /* Record which pseudos needed to be spilled. */
244 static regset_head spilled_pseudos;
246 /* Used for communication between order_regs_for_reload and count_pseudo.
247 Used to avoid counting one pseudo twice. */
248 static regset_head pseudos_counted;
250 /* First uid used by insns created by reload in this function.
251 Used in find_equiv_reg. */
252 int reload_first_uid;
254 /* Flag set by local-alloc or global-alloc if anything is live in
255 a call-clobbered reg across calls. */
256 int caller_save_needed;
258 /* Set to 1 while reload_as_needed is operating.
259 Required by some machines to handle any generated moves differently. */
260 int reload_in_progress = 0;
262 /* These arrays record the insn_code of insns that may be needed to
263 perform input and output reloads of special objects. They provide a
264 place to pass a scratch register. */
265 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
266 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
268 /* This obstack is used for allocation of rtl during register elimination.
269 The allocated storage can be freed once find_reloads has processed the
270 insn. */
271 struct obstack reload_obstack;
273 /* Points to the beginning of the reload_obstack. All insn_chain structures
274 are allocated first. */
275 char *reload_startobj;
277 /* The point after all insn_chain structures. Used to quickly deallocate
278 memory allocated in copy_reloads during calculate_needs_all_insns. */
279 char *reload_firstobj;
281 /* This points before all local rtl generated by register elimination.
282 Used to quickly free all memory after processing one insn. */
283 static char *reload_insn_firstobj;
285 /* List of insn_chain instructions, one for every insn that reload needs to
286 examine. */
287 struct insn_chain *reload_insn_chain;
289 /* List of all insns needing reloads. */
290 static struct insn_chain *insns_need_reload;
292 /* This structure is used to record information about register eliminations.
293 Each array entry describes one possible way of eliminating a register
294 in favor of another. If there is more than one way of eliminating a
295 particular register, the most preferred should be specified first. */
297 struct elim_table
299 int from; /* Register number to be eliminated. */
300 int to; /* Register number used as replacement. */
301 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
302 int can_eliminate; /* Nonzero if this elimination can be done. */
303 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
304 insns made by reload. */
305 HOST_WIDE_INT offset; /* Current offset between the two regs. */
306 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
307 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
308 rtx from_rtx; /* REG rtx for the register to be eliminated.
309 We cannot simply compare the number since
310 we might then spuriously replace a hard
311 register corresponding to a pseudo
312 assigned to the reg to be eliminated. */
313 rtx to_rtx; /* REG rtx for the replacement. */
316 static struct elim_table *reg_eliminate = 0;
318 /* This is an intermediate structure to initialize the table. It has
319 exactly the members provided by ELIMINABLE_REGS. */
320 static const struct elim_table_1
322 const int from;
323 const int to;
324 } reg_eliminate_1[] =
326 /* If a set of eliminable registers was specified, define the table from it.
327 Otherwise, default to the normal case of the frame pointer being
328 replaced by the stack pointer. */
330 #ifdef ELIMINABLE_REGS
331 ELIMINABLE_REGS;
332 #else
333 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
334 #endif
336 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
338 /* Record the number of pending eliminations that have an offset not equal
339 to their initial offset. If nonzero, we use a new copy of each
340 replacement result in any insns encountered. */
341 int num_not_at_initial_offset;
343 /* Count the number of registers that we may be able to eliminate. */
344 static int num_eliminable;
345 /* And the number of registers that are equivalent to a constant that
346 can be eliminated to frame_pointer / arg_pointer + constant. */
347 static int num_eliminable_invariants;
349 /* For each label, we record the offset of each elimination. If we reach
350 a label by more than one path and an offset differs, we cannot do the
351 elimination. This information is indexed by the difference of the
352 number of the label and the first label number. We can't offset the
353 pointer itself as this can cause problems on machines with segmented
354 memory. The first table is an array of flags that records whether we
355 have yet encountered a label and the second table is an array of arrays,
356 one entry in the latter array for each elimination. */
358 static int first_label_num;
359 static char *offsets_known_at;
360 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
362 /* Number of labels in the current function. */
364 static int num_labels;
366 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
367 static void maybe_fix_stack_asms (void);
368 static void copy_reloads (struct insn_chain *);
369 static void calculate_needs_all_insns (int);
370 static int find_reg (struct insn_chain *, int);
371 static void find_reload_regs (struct insn_chain *);
372 static void select_reload_regs (void);
373 static void delete_caller_save_insns (void);
375 static void spill_failure (rtx, enum reg_class);
376 static void count_spilled_pseudo (int, int, int);
377 static void delete_dead_insn (rtx);
378 static void alter_reg (int, int);
379 static void set_label_offsets (rtx, rtx, int);
380 static void check_eliminable_occurrences (rtx);
381 static void elimination_effects (rtx, enum machine_mode);
382 static int eliminate_regs_in_insn (rtx, int);
383 static void update_eliminable_offsets (void);
384 static void mark_not_eliminable (rtx, rtx, void *);
385 static void set_initial_elim_offsets (void);
386 static void verify_initial_elim_offsets (void);
387 static void set_initial_label_offsets (void);
388 static void set_offsets_for_label (rtx);
389 static void init_elim_table (void);
390 static void update_eliminables (HARD_REG_SET *);
391 static void spill_hard_reg (unsigned int, int);
392 static int finish_spills (int);
393 static void ior_hard_reg_set (HARD_REG_SET *, HARD_REG_SET *);
394 static void scan_paradoxical_subregs (rtx);
395 static void count_pseudo (int);
396 static void order_regs_for_reload (struct insn_chain *);
397 static void reload_as_needed (int);
398 static void forget_old_reloads_1 (rtx, rtx, void *);
399 static int reload_reg_class_lower (const void *, const void *);
400 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
401 enum machine_mode);
402 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
403 enum machine_mode);
404 static int reload_reg_free_p (unsigned int, int, enum reload_type);
405 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
406 rtx, rtx, int, int);
407 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
408 rtx, rtx, int, int);
409 static int function_invariant_p (rtx);
410 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
411 static int allocate_reload_reg (struct insn_chain *, int, int);
412 static int conflicts_with_override (rtx);
413 static void failed_reload (rtx, int);
414 static int set_reload_reg (int, int);
415 static void choose_reload_regs_init (struct insn_chain *, rtx *);
416 static void choose_reload_regs (struct insn_chain *);
417 static void merge_assigned_reloads (rtx);
418 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
419 rtx, int);
420 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
421 int);
422 static void do_input_reload (struct insn_chain *, struct reload *, int);
423 static void do_output_reload (struct insn_chain *, struct reload *, int);
424 static bool inherit_piecemeal_p (int, int);
425 static void emit_reload_insns (struct insn_chain *);
426 static void delete_output_reload (rtx, int, int);
427 static void delete_address_reloads (rtx, rtx);
428 static void delete_address_reloads_1 (rtx, rtx, rtx);
429 static rtx inc_for_reload (rtx, rtx, rtx, int);
430 #ifdef AUTO_INC_DEC
431 static void add_auto_inc_notes (rtx, rtx);
432 #endif
433 static void copy_eh_notes (rtx, rtx);
435 /* Initialize the reload pass once per compilation. */
437 void
438 init_reload (void)
440 int i;
442 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
443 Set spill_indirect_levels to the number of levels such addressing is
444 permitted, zero if it is not permitted at all. */
446 rtx tem
447 = gen_rtx_MEM (Pmode,
448 gen_rtx_PLUS (Pmode,
449 gen_rtx_REG (Pmode,
450 LAST_VIRTUAL_REGISTER + 1),
451 GEN_INT (4)));
452 spill_indirect_levels = 0;
454 while (memory_address_p (QImode, tem))
456 spill_indirect_levels++;
457 tem = gen_rtx_MEM (Pmode, tem);
460 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
462 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
463 indirect_symref_ok = memory_address_p (QImode, tem);
465 /* See if reg+reg is a valid (and offsettable) address. */
467 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
469 tem = gen_rtx_PLUS (Pmode,
470 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
471 gen_rtx_REG (Pmode, i));
473 /* This way, we make sure that reg+reg is an offsettable address. */
474 tem = plus_constant (tem, 4);
476 if (memory_address_p (QImode, tem))
478 double_reg_address_ok = 1;
479 break;
483 /* Initialize obstack for our rtl allocation. */
484 gcc_obstack_init (&reload_obstack);
485 reload_startobj = obstack_alloc (&reload_obstack, 0);
487 INIT_REG_SET (&spilled_pseudos);
488 INIT_REG_SET (&pseudos_counted);
489 VARRAY_RTX_INIT (reg_equiv_memory_loc_varray, 0, "reg_equiv_memory_loc");
492 /* List of insn chains that are currently unused. */
493 static struct insn_chain *unused_insn_chains = 0;
495 /* Allocate an empty insn_chain structure. */
496 struct insn_chain *
497 new_insn_chain (void)
499 struct insn_chain *c;
501 if (unused_insn_chains == 0)
503 c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
504 INIT_REG_SET (&c->live_throughout);
505 INIT_REG_SET (&c->dead_or_set);
507 else
509 c = unused_insn_chains;
510 unused_insn_chains = c->next;
512 c->is_caller_save_insn = 0;
513 c->need_operand_change = 0;
514 c->need_reload = 0;
515 c->need_elim = 0;
516 return c;
519 /* Small utility function to set all regs in hard reg set TO which are
520 allocated to pseudos in regset FROM. */
522 void
523 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
525 unsigned int regno;
527 EXECUTE_IF_SET_IN_REG_SET
528 (from, FIRST_PSEUDO_REGISTER, regno,
530 int r = reg_renumber[regno];
531 int nregs;
533 if (r < 0)
535 /* reload_combine uses the information from
536 BASIC_BLOCK->global_live_at_start, which might still
537 contain registers that have not actually been allocated
538 since they have an equivalence. */
539 if (! reload_completed)
540 abort ();
542 else
544 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
545 while (nregs-- > 0)
546 SET_HARD_REG_BIT (*to, r + nregs);
551 /* Replace all pseudos found in LOC with their corresponding
552 equivalences. */
554 static void
555 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
557 rtx x = *loc;
558 enum rtx_code code;
559 const char *fmt;
560 int i, j;
562 if (! x)
563 return;
565 code = GET_CODE (x);
566 if (code == REG)
568 unsigned int regno = REGNO (x);
570 if (regno < FIRST_PSEUDO_REGISTER)
571 return;
573 x = eliminate_regs (x, mem_mode, usage);
574 if (x != *loc)
576 *loc = x;
577 replace_pseudos_in (loc, mem_mode, usage);
578 return;
581 if (reg_equiv_constant[regno])
582 *loc = reg_equiv_constant[regno];
583 else if (reg_equiv_mem[regno])
584 *loc = reg_equiv_mem[regno];
585 else if (reg_equiv_address[regno])
586 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
587 else if (!REG_P (regno_reg_rtx[regno])
588 || REGNO (regno_reg_rtx[regno]) != regno)
589 *loc = regno_reg_rtx[regno];
590 else
591 abort ();
593 return;
595 else if (code == MEM)
597 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
598 return;
601 /* Process each of our operands recursively. */
602 fmt = GET_RTX_FORMAT (code);
603 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
604 if (*fmt == 'e')
605 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
606 else if (*fmt == 'E')
607 for (j = 0; j < XVECLEN (x, i); j++)
608 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
612 /* Global variables used by reload and its subroutines. */
614 /* Set during calculate_needs if an insn needs register elimination. */
615 static int something_needs_elimination;
616 /* Set during calculate_needs if an insn needs an operand changed. */
617 int something_needs_operands_changed;
619 /* Nonzero means we couldn't get enough spill regs. */
620 static int failure;
622 /* Main entry point for the reload pass.
624 FIRST is the first insn of the function being compiled.
626 GLOBAL nonzero means we were called from global_alloc
627 and should attempt to reallocate any pseudoregs that we
628 displace from hard regs we will use for reloads.
629 If GLOBAL is zero, we do not have enough information to do that,
630 so any pseudo reg that is spilled must go to the stack.
632 Return value is nonzero if reload failed
633 and we must not do any more for this function. */
636 reload (rtx first, int global)
638 int i;
639 rtx insn;
640 struct elim_table *ep;
641 basic_block bb;
643 /* Make sure even insns with volatile mem refs are recognizable. */
644 init_recog ();
646 failure = 0;
648 reload_firstobj = obstack_alloc (&reload_obstack, 0);
650 /* Make sure that the last insn in the chain
651 is not something that needs reloading. */
652 emit_note (NOTE_INSN_DELETED);
654 /* Enable find_equiv_reg to distinguish insns made by reload. */
655 reload_first_uid = get_max_uid ();
657 #ifdef SECONDARY_MEMORY_NEEDED
658 /* Initialize the secondary memory table. */
659 clear_secondary_mem ();
660 #endif
662 /* We don't have a stack slot for any spill reg yet. */
663 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
664 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
666 /* Initialize the save area information for caller-save, in case some
667 are needed. */
668 init_save_areas ();
670 /* Compute which hard registers are now in use
671 as homes for pseudo registers.
672 This is done here rather than (eg) in global_alloc
673 because this point is reached even if not optimizing. */
674 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
675 mark_home_live (i);
677 /* A function that receives a nonlocal goto must save all call-saved
678 registers. */
679 if (current_function_has_nonlocal_label)
680 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
681 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
682 regs_ever_live[i] = 1;
684 #ifdef NON_SAVING_SETJMP
685 /* A function that calls setjmp should save and restore all the
686 call-saved registers on a system where longjmp clobbers them. */
687 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
689 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
690 if (! call_used_regs[i])
691 regs_ever_live[i] = 1;
693 #endif
695 /* Find all the pseudo registers that didn't get hard regs
696 but do have known equivalent constants or memory slots.
697 These include parameters (known equivalent to parameter slots)
698 and cse'd or loop-moved constant memory addresses.
700 Record constant equivalents in reg_equiv_constant
701 so they will be substituted by find_reloads.
702 Record memory equivalents in reg_mem_equiv so they can
703 be substituted eventually by altering the REG-rtx's. */
705 reg_equiv_constant = xcalloc (max_regno, sizeof (rtx));
706 reg_equiv_mem = xcalloc (max_regno, sizeof (rtx));
707 reg_equiv_init = xcalloc (max_regno, sizeof (rtx));
708 reg_equiv_address = xcalloc (max_regno, sizeof (rtx));
709 reg_max_ref_width = xcalloc (max_regno, sizeof (int));
710 reg_old_renumber = xcalloc (max_regno, sizeof (short));
711 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
712 pseudo_forbidden_regs = xmalloc (max_regno * sizeof (HARD_REG_SET));
713 pseudo_previous_regs = xcalloc (max_regno, sizeof (HARD_REG_SET));
715 CLEAR_HARD_REG_SET (bad_spill_regs_global);
717 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
718 to. Also find all paradoxical subregs and find largest such for
719 each pseudo. */
721 num_eliminable_invariants = 0;
722 for (insn = first; insn; insn = NEXT_INSN (insn))
724 rtx set = single_set (insn);
726 /* We may introduce USEs that we want to remove at the end, so
727 we'll mark them with QImode. Make sure there are no
728 previously-marked insns left by say regmove. */
729 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
730 && GET_MODE (insn) != VOIDmode)
731 PUT_MODE (insn, VOIDmode);
733 if (set != 0 && REG_P (SET_DEST (set)))
735 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
736 if (note
737 && (! function_invariant_p (XEXP (note, 0))
738 || ! flag_pic
739 /* A function invariant is often CONSTANT_P but may
740 include a register. We promise to only pass
741 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
742 || (CONSTANT_P (XEXP (note, 0))
743 && LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))))
745 rtx x = XEXP (note, 0);
746 i = REGNO (SET_DEST (set));
747 if (i > LAST_VIRTUAL_REGISTER)
749 /* It can happen that a REG_EQUIV note contains a MEM
750 that is not a legitimate memory operand. As later
751 stages of reload assume that all addresses found
752 in the reg_equiv_* arrays were originally legitimate,
753 we ignore such REG_EQUIV notes. */
754 if (memory_operand (x, VOIDmode))
756 /* Always unshare the equivalence, so we can
757 substitute into this insn without touching the
758 equivalence. */
759 reg_equiv_memory_loc[i] = copy_rtx (x);
761 else if (function_invariant_p (x))
763 if (GET_CODE (x) == PLUS)
765 /* This is PLUS of frame pointer and a constant,
766 and might be shared. Unshare it. */
767 reg_equiv_constant[i] = copy_rtx (x);
768 num_eliminable_invariants++;
770 else if (x == frame_pointer_rtx
771 || x == arg_pointer_rtx)
773 reg_equiv_constant[i] = x;
774 num_eliminable_invariants++;
776 else if (LEGITIMATE_CONSTANT_P (x))
777 reg_equiv_constant[i] = x;
778 else
780 reg_equiv_memory_loc[i]
781 = force_const_mem (GET_MODE (SET_DEST (set)), x);
782 if (!reg_equiv_memory_loc[i])
783 continue;
786 else
787 continue;
789 /* If this register is being made equivalent to a MEM
790 and the MEM is not SET_SRC, the equivalencing insn
791 is one with the MEM as a SET_DEST and it occurs later.
792 So don't mark this insn now. */
793 if (!MEM_P (x)
794 || rtx_equal_p (SET_SRC (set), x))
795 reg_equiv_init[i]
796 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
801 /* If this insn is setting a MEM from a register equivalent to it,
802 this is the equivalencing insn. */
803 else if (set && MEM_P (SET_DEST (set))
804 && REG_P (SET_SRC (set))
805 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
806 && rtx_equal_p (SET_DEST (set),
807 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
808 reg_equiv_init[REGNO (SET_SRC (set))]
809 = gen_rtx_INSN_LIST (VOIDmode, insn,
810 reg_equiv_init[REGNO (SET_SRC (set))]);
812 if (INSN_P (insn))
813 scan_paradoxical_subregs (PATTERN (insn));
816 init_elim_table ();
818 first_label_num = get_first_label_num ();
819 num_labels = max_label_num () - first_label_num;
821 /* Allocate the tables used to store offset information at labels. */
822 /* We used to use alloca here, but the size of what it would try to
823 allocate would occasionally cause it to exceed the stack limit and
824 cause a core dump. */
825 offsets_known_at = xmalloc (num_labels);
826 offsets_at = xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
828 /* Alter each pseudo-reg rtx to contain its hard reg number.
829 Assign stack slots to the pseudos that lack hard regs or equivalents.
830 Do not touch virtual registers. */
832 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
833 alter_reg (i, -1);
835 /* If we have some registers we think can be eliminated, scan all insns to
836 see if there is an insn that sets one of these registers to something
837 other than itself plus a constant. If so, the register cannot be
838 eliminated. Doing this scan here eliminates an extra pass through the
839 main reload loop in the most common case where register elimination
840 cannot be done. */
841 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
842 if (INSN_P (insn))
843 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
845 maybe_fix_stack_asms ();
847 insns_need_reload = 0;
848 something_needs_elimination = 0;
850 /* Initialize to -1, which means take the first spill register. */
851 last_spill_reg = -1;
853 /* Spill any hard regs that we know we can't eliminate. */
854 CLEAR_HARD_REG_SET (used_spill_regs);
855 /* There can be multiple ways to eliminate a register;
856 they should be listed adjacently.
857 Elimination for any register fails only if all possible ways fail. */
858 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
860 int from = ep->from;
861 int can_eliminate = 0;
864 can_eliminate |= ep->can_eliminate;
865 ep++;
867 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
868 if (! can_eliminate)
869 spill_hard_reg (from, 1);
872 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
873 if (frame_pointer_needed)
874 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
875 #endif
876 finish_spills (global);
878 /* From now on, we may need to generate moves differently. We may also
879 allow modifications of insns which cause them to not be recognized.
880 Any such modifications will be cleaned up during reload itself. */
881 reload_in_progress = 1;
883 /* This loop scans the entire function each go-round
884 and repeats until one repetition spills no additional hard regs. */
885 for (;;)
887 int something_changed;
888 int did_spill;
890 HOST_WIDE_INT starting_frame_size;
892 /* Round size of stack frame to stack_alignment_needed. This must be done
893 here because the stack size may be a part of the offset computation
894 for register elimination, and there might have been new stack slots
895 created in the last iteration of this loop. */
896 if (cfun->stack_alignment_needed)
897 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
899 starting_frame_size = get_frame_size ();
901 set_initial_elim_offsets ();
902 set_initial_label_offsets ();
904 /* For each pseudo register that has an equivalent location defined,
905 try to eliminate any eliminable registers (such as the frame pointer)
906 assuming initial offsets for the replacement register, which
907 is the normal case.
909 If the resulting location is directly addressable, substitute
910 the MEM we just got directly for the old REG.
912 If it is not addressable but is a constant or the sum of a hard reg
913 and constant, it is probably not addressable because the constant is
914 out of range, in that case record the address; we will generate
915 hairy code to compute the address in a register each time it is
916 needed. Similarly if it is a hard register, but one that is not
917 valid as an address register.
919 If the location is not addressable, but does not have one of the
920 above forms, assign a stack slot. We have to do this to avoid the
921 potential of producing lots of reloads if, e.g., a location involves
922 a pseudo that didn't get a hard register and has an equivalent memory
923 location that also involves a pseudo that didn't get a hard register.
925 Perhaps at some point we will improve reload_when_needed handling
926 so this problem goes away. But that's very hairy. */
928 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
929 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
931 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
933 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
934 XEXP (x, 0)))
935 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
936 else if (CONSTANT_P (XEXP (x, 0))
937 || (REG_P (XEXP (x, 0))
938 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
939 || (GET_CODE (XEXP (x, 0)) == PLUS
940 && REG_P (XEXP (XEXP (x, 0), 0))
941 && (REGNO (XEXP (XEXP (x, 0), 0))
942 < FIRST_PSEUDO_REGISTER)
943 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
944 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
945 else
947 /* Make a new stack slot. Then indicate that something
948 changed so we go back and recompute offsets for
949 eliminable registers because the allocation of memory
950 below might change some offset. reg_equiv_{mem,address}
951 will be set up for this pseudo on the next pass around
952 the loop. */
953 reg_equiv_memory_loc[i] = 0;
954 reg_equiv_init[i] = 0;
955 alter_reg (i, -1);
959 if (caller_save_needed)
960 setup_save_areas ();
962 /* If we allocated another stack slot, redo elimination bookkeeping. */
963 if (starting_frame_size != get_frame_size ())
964 continue;
966 if (caller_save_needed)
968 save_call_clobbered_regs ();
969 /* That might have allocated new insn_chain structures. */
970 reload_firstobj = obstack_alloc (&reload_obstack, 0);
973 calculate_needs_all_insns (global);
975 CLEAR_REG_SET (&spilled_pseudos);
976 did_spill = 0;
978 something_changed = 0;
980 /* If we allocated any new memory locations, make another pass
981 since it might have changed elimination offsets. */
982 if (starting_frame_size != get_frame_size ())
983 something_changed = 1;
986 HARD_REG_SET to_spill;
987 CLEAR_HARD_REG_SET (to_spill);
988 update_eliminables (&to_spill);
989 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
990 if (TEST_HARD_REG_BIT (to_spill, i))
992 spill_hard_reg (i, 1);
993 did_spill = 1;
995 /* Regardless of the state of spills, if we previously had
996 a register that we thought we could eliminate, but now can
997 not eliminate, we must run another pass.
999 Consider pseudos which have an entry in reg_equiv_* which
1000 reference an eliminable register. We must make another pass
1001 to update reg_equiv_* so that we do not substitute in the
1002 old value from when we thought the elimination could be
1003 performed. */
1004 something_changed = 1;
1008 select_reload_regs ();
1009 if (failure)
1010 goto failed;
1012 if (insns_need_reload != 0 || did_spill)
1013 something_changed |= finish_spills (global);
1015 if (! something_changed)
1016 break;
1018 if (caller_save_needed)
1019 delete_caller_save_insns ();
1021 obstack_free (&reload_obstack, reload_firstobj);
1024 /* If global-alloc was run, notify it of any register eliminations we have
1025 done. */
1026 if (global)
1027 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1028 if (ep->can_eliminate)
1029 mark_elimination (ep->from, ep->to);
1031 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1032 If that insn didn't set the register (i.e., it copied the register to
1033 memory), just delete that insn instead of the equivalencing insn plus
1034 anything now dead. If we call delete_dead_insn on that insn, we may
1035 delete the insn that actually sets the register if the register dies
1036 there and that is incorrect. */
1038 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1040 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1042 rtx list;
1043 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1045 rtx equiv_insn = XEXP (list, 0);
1047 /* If we already deleted the insn or if it may trap, we can't
1048 delete it. The latter case shouldn't happen, but can
1049 if an insn has a variable address, gets a REG_EH_REGION
1050 note added to it, and then gets converted into an load
1051 from a constant address. */
1052 if (NOTE_P (equiv_insn)
1053 || can_throw_internal (equiv_insn))
1055 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1056 delete_dead_insn (equiv_insn);
1057 else
1058 SET_INSN_DELETED (equiv_insn);
1063 /* Use the reload registers where necessary
1064 by generating move instructions to move the must-be-register
1065 values into or out of the reload registers. */
1067 if (insns_need_reload != 0 || something_needs_elimination
1068 || something_needs_operands_changed)
1070 HOST_WIDE_INT old_frame_size = get_frame_size ();
1072 reload_as_needed (global);
1074 if (old_frame_size != get_frame_size ())
1075 abort ();
1077 if (num_eliminable)
1078 verify_initial_elim_offsets ();
1081 /* If we were able to eliminate the frame pointer, show that it is no
1082 longer live at the start of any basic block. If it ls live by
1083 virtue of being in a pseudo, that pseudo will be marked live
1084 and hence the frame pointer will be known to be live via that
1085 pseudo. */
1087 if (! frame_pointer_needed)
1088 FOR_EACH_BB (bb)
1089 CLEAR_REGNO_REG_SET (bb->global_live_at_start,
1090 HARD_FRAME_POINTER_REGNUM);
1092 /* Come here (with failure set nonzero) if we can't get enough spill regs
1093 and we decide not to abort about it. */
1094 failed:
1096 CLEAR_REG_SET (&spilled_pseudos);
1097 reload_in_progress = 0;
1099 /* Now eliminate all pseudo regs by modifying them into
1100 their equivalent memory references.
1101 The REG-rtx's for the pseudos are modified in place,
1102 so all insns that used to refer to them now refer to memory.
1104 For a reg that has a reg_equiv_address, all those insns
1105 were changed by reloading so that no insns refer to it any longer;
1106 but the DECL_RTL of a variable decl may refer to it,
1107 and if so this causes the debugging info to mention the variable. */
1109 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1111 rtx addr = 0;
1113 if (reg_equiv_mem[i])
1114 addr = XEXP (reg_equiv_mem[i], 0);
1116 if (reg_equiv_address[i])
1117 addr = reg_equiv_address[i];
1119 if (addr)
1121 if (reg_renumber[i] < 0)
1123 rtx reg = regno_reg_rtx[i];
1125 REG_USERVAR_P (reg) = 0;
1126 PUT_CODE (reg, MEM);
1127 XEXP (reg, 0) = addr;
1128 if (reg_equiv_memory_loc[i])
1129 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1130 else
1132 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1133 MEM_ATTRS (reg) = 0;
1136 else if (reg_equiv_mem[i])
1137 XEXP (reg_equiv_mem[i], 0) = addr;
1141 /* We must set reload_completed now since the cleanup_subreg_operands call
1142 below will re-recognize each insn and reload may have generated insns
1143 which are only valid during and after reload. */
1144 reload_completed = 1;
1146 /* Make a pass over all the insns and delete all USEs which we inserted
1147 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1148 notes. Delete all CLOBBER insns, except those that refer to the return
1149 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1150 from misarranging variable-array code, and simplify (subreg (reg))
1151 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1152 are no longer useful or accurate. Strip and regenerate REG_INC notes
1153 that may have been moved around. */
1155 for (insn = first; insn; insn = NEXT_INSN (insn))
1156 if (INSN_P (insn))
1158 rtx *pnote;
1160 if (CALL_P (insn))
1161 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1162 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1164 if ((GET_CODE (PATTERN (insn)) == USE
1165 /* We mark with QImode USEs introduced by reload itself. */
1166 && (GET_MODE (insn) == QImode
1167 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1168 || (GET_CODE (PATTERN (insn)) == CLOBBER
1169 && (!MEM_P (XEXP (PATTERN (insn), 0))
1170 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1171 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1172 && XEXP (XEXP (PATTERN (insn), 0), 0)
1173 != stack_pointer_rtx))
1174 && (!REG_P (XEXP (PATTERN (insn), 0))
1175 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1177 delete_insn (insn);
1178 continue;
1181 /* Some CLOBBERs may survive until here and still reference unassigned
1182 pseudos with const equivalent, which may in turn cause ICE in later
1183 passes if the reference remains in place. */
1184 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1185 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1186 VOIDmode, PATTERN (insn));
1188 pnote = &REG_NOTES (insn);
1189 while (*pnote != 0)
1191 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1192 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1193 || REG_NOTE_KIND (*pnote) == REG_INC
1194 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1195 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1196 *pnote = XEXP (*pnote, 1);
1197 else
1198 pnote = &XEXP (*pnote, 1);
1201 #ifdef AUTO_INC_DEC
1202 add_auto_inc_notes (insn, PATTERN (insn));
1203 #endif
1205 /* And simplify (subreg (reg)) if it appears as an operand. */
1206 cleanup_subreg_operands (insn);
1209 /* If we are doing stack checking, give a warning if this function's
1210 frame size is larger than we expect. */
1211 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1213 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1214 static int verbose_warned = 0;
1216 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1217 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1218 size += UNITS_PER_WORD;
1220 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1222 warning ("frame size too large for reliable stack checking");
1223 if (! verbose_warned)
1225 warning ("try reducing the number of local variables");
1226 verbose_warned = 1;
1231 /* Indicate that we no longer have known memory locations or constants. */
1232 if (reg_equiv_constant)
1233 free (reg_equiv_constant);
1234 reg_equiv_constant = 0;
1235 VARRAY_GROW (reg_equiv_memory_loc_varray, 0);
1236 reg_equiv_memory_loc = 0;
1238 if (offsets_known_at)
1239 free (offsets_known_at);
1240 if (offsets_at)
1241 free (offsets_at);
1243 free (reg_equiv_mem);
1244 free (reg_equiv_init);
1245 free (reg_equiv_address);
1246 free (reg_max_ref_width);
1247 free (reg_old_renumber);
1248 free (pseudo_previous_regs);
1249 free (pseudo_forbidden_regs);
1251 CLEAR_HARD_REG_SET (used_spill_regs);
1252 for (i = 0; i < n_spills; i++)
1253 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1255 /* Free all the insn_chain structures at once. */
1256 obstack_free (&reload_obstack, reload_startobj);
1257 unused_insn_chains = 0;
1258 fixup_abnormal_edges ();
1260 /* Replacing pseudos with their memory equivalents might have
1261 created shared rtx. Subsequent passes would get confused
1262 by this, so unshare everything here. */
1263 unshare_all_rtl_again (first);
1265 #ifdef STACK_BOUNDARY
1266 /* init_emit has set the alignment of the hard frame pointer
1267 to STACK_BOUNDARY. It is very likely no longer valid if
1268 the hard frame pointer was used for register allocation. */
1269 if (!frame_pointer_needed)
1270 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1271 #endif
1273 return failure;
1276 /* Yet another special case. Unfortunately, reg-stack forces people to
1277 write incorrect clobbers in asm statements. These clobbers must not
1278 cause the register to appear in bad_spill_regs, otherwise we'll call
1279 fatal_insn later. We clear the corresponding regnos in the live
1280 register sets to avoid this.
1281 The whole thing is rather sick, I'm afraid. */
1283 static void
1284 maybe_fix_stack_asms (void)
1286 #ifdef STACK_REGS
1287 const char *constraints[MAX_RECOG_OPERANDS];
1288 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1289 struct insn_chain *chain;
1291 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1293 int i, noperands;
1294 HARD_REG_SET clobbered, allowed;
1295 rtx pat;
1297 if (! INSN_P (chain->insn)
1298 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1299 continue;
1300 pat = PATTERN (chain->insn);
1301 if (GET_CODE (pat) != PARALLEL)
1302 continue;
1304 CLEAR_HARD_REG_SET (clobbered);
1305 CLEAR_HARD_REG_SET (allowed);
1307 /* First, make a mask of all stack regs that are clobbered. */
1308 for (i = 0; i < XVECLEN (pat, 0); i++)
1310 rtx t = XVECEXP (pat, 0, i);
1311 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1312 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1315 /* Get the operand values and constraints out of the insn. */
1316 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1317 constraints, operand_mode);
1319 /* For every operand, see what registers are allowed. */
1320 for (i = 0; i < noperands; i++)
1322 const char *p = constraints[i];
1323 /* For every alternative, we compute the class of registers allowed
1324 for reloading in CLS, and merge its contents into the reg set
1325 ALLOWED. */
1326 int cls = (int) NO_REGS;
1328 for (;;)
1330 char c = *p;
1332 if (c == '\0' || c == ',' || c == '#')
1334 /* End of one alternative - mark the regs in the current
1335 class, and reset the class. */
1336 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1337 cls = NO_REGS;
1338 p++;
1339 if (c == '#')
1340 do {
1341 c = *p++;
1342 } while (c != '\0' && c != ',');
1343 if (c == '\0')
1344 break;
1345 continue;
1348 switch (c)
1350 case '=': case '+': case '*': case '%': case '?': case '!':
1351 case '0': case '1': case '2': case '3': case '4': case 'm':
1352 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1353 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1354 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1355 case 'P':
1356 break;
1358 case 'p':
1359 cls = (int) reg_class_subunion[cls]
1360 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1361 break;
1363 case 'g':
1364 case 'r':
1365 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1366 break;
1368 default:
1369 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1370 cls = (int) reg_class_subunion[cls]
1371 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1372 else
1373 cls = (int) reg_class_subunion[cls]
1374 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1376 p += CONSTRAINT_LEN (c, p);
1379 /* Those of the registers which are clobbered, but allowed by the
1380 constraints, must be usable as reload registers. So clear them
1381 out of the life information. */
1382 AND_HARD_REG_SET (allowed, clobbered);
1383 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1384 if (TEST_HARD_REG_BIT (allowed, i))
1386 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1387 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1391 #endif
1394 /* Copy the global variables n_reloads and rld into the corresponding elts
1395 of CHAIN. */
1396 static void
1397 copy_reloads (struct insn_chain *chain)
1399 chain->n_reloads = n_reloads;
1400 chain->rld = obstack_alloc (&reload_obstack,
1401 n_reloads * sizeof (struct reload));
1402 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1403 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1406 /* Walk the chain of insns, and determine for each whether it needs reloads
1407 and/or eliminations. Build the corresponding insns_need_reload list, and
1408 set something_needs_elimination as appropriate. */
1409 static void
1410 calculate_needs_all_insns (int global)
1412 struct insn_chain **pprev_reload = &insns_need_reload;
1413 struct insn_chain *chain, *next = 0;
1415 something_needs_elimination = 0;
1417 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1418 for (chain = reload_insn_chain; chain != 0; chain = next)
1420 rtx insn = chain->insn;
1422 next = chain->next;
1424 /* Clear out the shortcuts. */
1425 chain->n_reloads = 0;
1426 chain->need_elim = 0;
1427 chain->need_reload = 0;
1428 chain->need_operand_change = 0;
1430 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1431 include REG_LABEL), we need to see what effects this has on the
1432 known offsets at labels. */
1434 if (LABEL_P (insn) || JUMP_P (insn)
1435 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1436 set_label_offsets (insn, insn, 0);
1438 if (INSN_P (insn))
1440 rtx old_body = PATTERN (insn);
1441 int old_code = INSN_CODE (insn);
1442 rtx old_notes = REG_NOTES (insn);
1443 int did_elimination = 0;
1444 int operands_changed = 0;
1445 rtx set = single_set (insn);
1447 /* Skip insns that only set an equivalence. */
1448 if (set && REG_P (SET_DEST (set))
1449 && reg_renumber[REGNO (SET_DEST (set))] < 0
1450 && reg_equiv_constant[REGNO (SET_DEST (set))])
1451 continue;
1453 /* If needed, eliminate any eliminable registers. */
1454 if (num_eliminable || num_eliminable_invariants)
1455 did_elimination = eliminate_regs_in_insn (insn, 0);
1457 /* Analyze the instruction. */
1458 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1459 global, spill_reg_order);
1461 /* If a no-op set needs more than one reload, this is likely
1462 to be something that needs input address reloads. We
1463 can't get rid of this cleanly later, and it is of no use
1464 anyway, so discard it now.
1465 We only do this when expensive_optimizations is enabled,
1466 since this complements reload inheritance / output
1467 reload deletion, and it can make debugging harder. */
1468 if (flag_expensive_optimizations && n_reloads > 1)
1470 rtx set = single_set (insn);
1471 if (set
1472 && SET_SRC (set) == SET_DEST (set)
1473 && REG_P (SET_SRC (set))
1474 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1476 delete_insn (insn);
1477 /* Delete it from the reload chain. */
1478 if (chain->prev)
1479 chain->prev->next = next;
1480 else
1481 reload_insn_chain = next;
1482 if (next)
1483 next->prev = chain->prev;
1484 chain->next = unused_insn_chains;
1485 unused_insn_chains = chain;
1486 continue;
1489 if (num_eliminable)
1490 update_eliminable_offsets ();
1492 /* Remember for later shortcuts which insns had any reloads or
1493 register eliminations. */
1494 chain->need_elim = did_elimination;
1495 chain->need_reload = n_reloads > 0;
1496 chain->need_operand_change = operands_changed;
1498 /* Discard any register replacements done. */
1499 if (did_elimination)
1501 obstack_free (&reload_obstack, reload_insn_firstobj);
1502 PATTERN (insn) = old_body;
1503 INSN_CODE (insn) = old_code;
1504 REG_NOTES (insn) = old_notes;
1505 something_needs_elimination = 1;
1508 something_needs_operands_changed |= operands_changed;
1510 if (n_reloads != 0)
1512 copy_reloads (chain);
1513 *pprev_reload = chain;
1514 pprev_reload = &chain->next_need_reload;
1518 *pprev_reload = 0;
1521 /* Comparison function for qsort to decide which of two reloads
1522 should be handled first. *P1 and *P2 are the reload numbers. */
1524 static int
1525 reload_reg_class_lower (const void *r1p, const void *r2p)
1527 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1528 int t;
1530 /* Consider required reloads before optional ones. */
1531 t = rld[r1].optional - rld[r2].optional;
1532 if (t != 0)
1533 return t;
1535 /* Count all solitary classes before non-solitary ones. */
1536 t = ((reg_class_size[(int) rld[r2].class] == 1)
1537 - (reg_class_size[(int) rld[r1].class] == 1));
1538 if (t != 0)
1539 return t;
1541 /* Aside from solitaires, consider all multi-reg groups first. */
1542 t = rld[r2].nregs - rld[r1].nregs;
1543 if (t != 0)
1544 return t;
1546 /* Consider reloads in order of increasing reg-class number. */
1547 t = (int) rld[r1].class - (int) rld[r2].class;
1548 if (t != 0)
1549 return t;
1551 /* If reloads are equally urgent, sort by reload number,
1552 so that the results of qsort leave nothing to chance. */
1553 return r1 - r2;
1556 /* The cost of spilling each hard reg. */
1557 static int spill_cost[FIRST_PSEUDO_REGISTER];
1559 /* When spilling multiple hard registers, we use SPILL_COST for the first
1560 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1561 only the first hard reg for a multi-reg pseudo. */
1562 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1564 /* Update the spill cost arrays, considering that pseudo REG is live. */
1566 static void
1567 count_pseudo (int reg)
1569 int freq = REG_FREQ (reg);
1570 int r = reg_renumber[reg];
1571 int nregs;
1573 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1574 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1575 return;
1577 SET_REGNO_REG_SET (&pseudos_counted, reg);
1579 if (r < 0)
1580 abort ();
1582 spill_add_cost[r] += freq;
1584 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1585 while (nregs-- > 0)
1586 spill_cost[r + nregs] += freq;
1589 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1590 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1592 static void
1593 order_regs_for_reload (struct insn_chain *chain)
1595 int i;
1596 HARD_REG_SET used_by_pseudos;
1597 HARD_REG_SET used_by_pseudos2;
1599 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1601 memset (spill_cost, 0, sizeof spill_cost);
1602 memset (spill_add_cost, 0, sizeof spill_add_cost);
1604 /* Count number of uses of each hard reg by pseudo regs allocated to it
1605 and then order them by decreasing use. First exclude hard registers
1606 that are live in or across this insn. */
1608 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1609 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1610 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1611 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1613 /* Now find out which pseudos are allocated to it, and update
1614 hard_reg_n_uses. */
1615 CLEAR_REG_SET (&pseudos_counted);
1617 EXECUTE_IF_SET_IN_REG_SET
1618 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1620 count_pseudo (i);
1622 EXECUTE_IF_SET_IN_REG_SET
1623 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1625 count_pseudo (i);
1627 CLEAR_REG_SET (&pseudos_counted);
1630 /* Vector of reload-numbers showing the order in which the reloads should
1631 be processed. */
1632 static short reload_order[MAX_RELOADS];
1634 /* This is used to keep track of the spill regs used in one insn. */
1635 static HARD_REG_SET used_spill_regs_local;
1637 /* We decided to spill hard register SPILLED, which has a size of
1638 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1639 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1640 update SPILL_COST/SPILL_ADD_COST. */
1642 static void
1643 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1645 int r = reg_renumber[reg];
1646 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1648 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1649 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1650 return;
1652 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1654 spill_add_cost[r] -= REG_FREQ (reg);
1655 while (nregs-- > 0)
1656 spill_cost[r + nregs] -= REG_FREQ (reg);
1659 /* Find reload register to use for reload number ORDER. */
1661 static int
1662 find_reg (struct insn_chain *chain, int order)
1664 int rnum = reload_order[order];
1665 struct reload *rl = rld + rnum;
1666 int best_cost = INT_MAX;
1667 int best_reg = -1;
1668 unsigned int i, j;
1669 int k;
1670 HARD_REG_SET not_usable;
1671 HARD_REG_SET used_by_other_reload;
1673 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1674 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1675 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1677 CLEAR_HARD_REG_SET (used_by_other_reload);
1678 for (k = 0; k < order; k++)
1680 int other = reload_order[k];
1682 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1683 for (j = 0; j < rld[other].nregs; j++)
1684 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1687 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1689 unsigned int regno = i;
1691 if (! TEST_HARD_REG_BIT (not_usable, regno)
1692 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1693 && HARD_REGNO_MODE_OK (regno, rl->mode))
1695 int this_cost = spill_cost[regno];
1696 int ok = 1;
1697 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1699 for (j = 1; j < this_nregs; j++)
1701 this_cost += spill_add_cost[regno + j];
1702 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1703 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1704 ok = 0;
1706 if (! ok)
1707 continue;
1708 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1709 this_cost--;
1710 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1711 this_cost--;
1712 if (this_cost < best_cost
1713 /* Among registers with equal cost, prefer caller-saved ones, or
1714 use REG_ALLOC_ORDER if it is defined. */
1715 || (this_cost == best_cost
1716 #ifdef REG_ALLOC_ORDER
1717 && (inv_reg_alloc_order[regno]
1718 < inv_reg_alloc_order[best_reg])
1719 #else
1720 && call_used_regs[regno]
1721 && ! call_used_regs[best_reg]
1722 #endif
1725 best_reg = regno;
1726 best_cost = this_cost;
1730 if (best_reg == -1)
1731 return 0;
1733 if (dump_file)
1734 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1736 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1737 rl->regno = best_reg;
1739 EXECUTE_IF_SET_IN_REG_SET
1740 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1742 count_spilled_pseudo (best_reg, rl->nregs, j);
1745 EXECUTE_IF_SET_IN_REG_SET
1746 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1748 count_spilled_pseudo (best_reg, rl->nregs, j);
1751 for (i = 0; i < rl->nregs; i++)
1753 if (spill_cost[best_reg + i] != 0
1754 || spill_add_cost[best_reg + i] != 0)
1755 abort ();
1756 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1758 return 1;
1761 /* Find more reload regs to satisfy the remaining need of an insn, which
1762 is given by CHAIN.
1763 Do it by ascending class number, since otherwise a reg
1764 might be spilled for a big class and might fail to count
1765 for a smaller class even though it belongs to that class. */
1767 static void
1768 find_reload_regs (struct insn_chain *chain)
1770 int i;
1772 /* In order to be certain of getting the registers we need,
1773 we must sort the reloads into order of increasing register class.
1774 Then our grabbing of reload registers will parallel the process
1775 that provided the reload registers. */
1776 for (i = 0; i < chain->n_reloads; i++)
1778 /* Show whether this reload already has a hard reg. */
1779 if (chain->rld[i].reg_rtx)
1781 int regno = REGNO (chain->rld[i].reg_rtx);
1782 chain->rld[i].regno = regno;
1783 chain->rld[i].nregs
1784 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1786 else
1787 chain->rld[i].regno = -1;
1788 reload_order[i] = i;
1791 n_reloads = chain->n_reloads;
1792 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1794 CLEAR_HARD_REG_SET (used_spill_regs_local);
1796 if (dump_file)
1797 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1799 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1801 /* Compute the order of preference for hard registers to spill. */
1803 order_regs_for_reload (chain);
1805 for (i = 0; i < n_reloads; i++)
1807 int r = reload_order[i];
1809 /* Ignore reloads that got marked inoperative. */
1810 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1811 && ! rld[r].optional
1812 && rld[r].regno == -1)
1813 if (! find_reg (chain, i))
1815 spill_failure (chain->insn, rld[r].class);
1816 failure = 1;
1817 return;
1821 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1822 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1824 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1827 static void
1828 select_reload_regs (void)
1830 struct insn_chain *chain;
1832 /* Try to satisfy the needs for each insn. */
1833 for (chain = insns_need_reload; chain != 0;
1834 chain = chain->next_need_reload)
1835 find_reload_regs (chain);
1838 /* Delete all insns that were inserted by emit_caller_save_insns during
1839 this iteration. */
1840 static void
1841 delete_caller_save_insns (void)
1843 struct insn_chain *c = reload_insn_chain;
1845 while (c != 0)
1847 while (c != 0 && c->is_caller_save_insn)
1849 struct insn_chain *next = c->next;
1850 rtx insn = c->insn;
1852 if (c == reload_insn_chain)
1853 reload_insn_chain = next;
1854 delete_insn (insn);
1856 if (next)
1857 next->prev = c->prev;
1858 if (c->prev)
1859 c->prev->next = next;
1860 c->next = unused_insn_chains;
1861 unused_insn_chains = c;
1862 c = next;
1864 if (c != 0)
1865 c = c->next;
1869 /* Handle the failure to find a register to spill.
1870 INSN should be one of the insns which needed this particular spill reg. */
1872 static void
1873 spill_failure (rtx insn, enum reg_class class)
1875 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1876 if (asm_noperands (PATTERN (insn)) >= 0)
1877 error_for_asm (insn, "can't find a register in class `%s' while reloading `asm'",
1878 reg_class_names[class]);
1879 else
1881 error ("unable to find a register to spill in class `%s'",
1882 reg_class_names[class]);
1883 fatal_insn ("this is the insn:", insn);
1887 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1888 data that is dead in INSN. */
1890 static void
1891 delete_dead_insn (rtx insn)
1893 rtx prev = prev_real_insn (insn);
1894 rtx prev_dest;
1896 /* If the previous insn sets a register that dies in our insn, delete it
1897 too. */
1898 if (prev && GET_CODE (PATTERN (prev)) == SET
1899 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
1900 && reg_mentioned_p (prev_dest, PATTERN (insn))
1901 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1902 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1903 delete_dead_insn (prev);
1905 SET_INSN_DELETED (insn);
1908 /* Modify the home of pseudo-reg I.
1909 The new home is present in reg_renumber[I].
1911 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1912 or it may be -1, meaning there is none or it is not relevant.
1913 This is used so that all pseudos spilled from a given hard reg
1914 can share one stack slot. */
1916 static void
1917 alter_reg (int i, int from_reg)
1919 /* When outputting an inline function, this can happen
1920 for a reg that isn't actually used. */
1921 if (regno_reg_rtx[i] == 0)
1922 return;
1924 /* If the reg got changed to a MEM at rtl-generation time,
1925 ignore it. */
1926 if (!REG_P (regno_reg_rtx[i]))
1927 return;
1929 /* Modify the reg-rtx to contain the new hard reg
1930 number or else to contain its pseudo reg number. */
1931 REGNO (regno_reg_rtx[i])
1932 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1934 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1935 allocate a stack slot for it. */
1937 if (reg_renumber[i] < 0
1938 && REG_N_REFS (i) > 0
1939 && reg_equiv_constant[i] == 0
1940 && reg_equiv_memory_loc[i] == 0)
1942 rtx x;
1943 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1944 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1945 int adjust = 0;
1947 /* Each pseudo reg has an inherent size which comes from its own mode,
1948 and a total size which provides room for paradoxical subregs
1949 which refer to the pseudo reg in wider modes.
1951 We can use a slot already allocated if it provides both
1952 enough inherent space and enough total space.
1953 Otherwise, we allocate a new slot, making sure that it has no less
1954 inherent space, and no less total space, then the previous slot. */
1955 if (from_reg == -1)
1957 /* No known place to spill from => no slot to reuse. */
1958 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1959 inherent_size == total_size ? 0 : -1);
1960 if (BYTES_BIG_ENDIAN)
1961 /* Cancel the big-endian correction done in assign_stack_local.
1962 Get the address of the beginning of the slot.
1963 This is so we can do a big-endian correction unconditionally
1964 below. */
1965 adjust = inherent_size - total_size;
1967 /* Nothing can alias this slot except this pseudo. */
1968 set_mem_alias_set (x, new_alias_set ());
1971 /* Reuse a stack slot if possible. */
1972 else if (spill_stack_slot[from_reg] != 0
1973 && spill_stack_slot_width[from_reg] >= total_size
1974 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1975 >= inherent_size))
1976 x = spill_stack_slot[from_reg];
1978 /* Allocate a bigger slot. */
1979 else
1981 /* Compute maximum size needed, both for inherent size
1982 and for total size. */
1983 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
1984 rtx stack_slot;
1986 if (spill_stack_slot[from_reg])
1988 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1989 > inherent_size)
1990 mode = GET_MODE (spill_stack_slot[from_reg]);
1991 if (spill_stack_slot_width[from_reg] > total_size)
1992 total_size = spill_stack_slot_width[from_reg];
1995 /* Make a slot with that size. */
1996 x = assign_stack_local (mode, total_size,
1997 inherent_size == total_size ? 0 : -1);
1998 stack_slot = x;
2000 /* All pseudos mapped to this slot can alias each other. */
2001 if (spill_stack_slot[from_reg])
2002 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2003 else
2004 set_mem_alias_set (x, new_alias_set ());
2006 if (BYTES_BIG_ENDIAN)
2008 /* Cancel the big-endian correction done in assign_stack_local.
2009 Get the address of the beginning of the slot.
2010 This is so we can do a big-endian correction unconditionally
2011 below. */
2012 adjust = GET_MODE_SIZE (mode) - total_size;
2013 if (adjust)
2014 stack_slot
2015 = adjust_address_nv (x, mode_for_size (total_size
2016 * BITS_PER_UNIT,
2017 MODE_INT, 1),
2018 adjust);
2021 spill_stack_slot[from_reg] = stack_slot;
2022 spill_stack_slot_width[from_reg] = total_size;
2025 /* On a big endian machine, the "address" of the slot
2026 is the address of the low part that fits its inherent mode. */
2027 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2028 adjust += (total_size - inherent_size);
2030 /* If we have any adjustment to make, or if the stack slot is the
2031 wrong mode, make a new stack slot. */
2032 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2034 /* If we have a decl for the original register, set it for the
2035 memory. If this is a shared MEM, make a copy. */
2036 if (REG_EXPR (regno_reg_rtx[i])
2037 && TREE_CODE_CLASS (TREE_CODE (REG_EXPR (regno_reg_rtx[i]))) == 'd')
2039 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2041 /* We can do this only for the DECLs home pseudo, not for
2042 any copies of it, since otherwise when the stack slot
2043 is reused, nonoverlapping_memrefs_p might think they
2044 cannot overlap. */
2045 if (decl && REG_P (decl) && REGNO (decl) == (unsigned) i)
2047 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2048 x = copy_rtx (x);
2050 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2054 /* Save the stack slot for later. */
2055 reg_equiv_memory_loc[i] = x;
2059 /* Mark the slots in regs_ever_live for the hard regs
2060 used by pseudo-reg number REGNO. */
2062 void
2063 mark_home_live (int regno)
2065 int i, lim;
2067 i = reg_renumber[regno];
2068 if (i < 0)
2069 return;
2070 lim = i + hard_regno_nregs[i][PSEUDO_REGNO_MODE (regno)];
2071 while (i < lim)
2072 regs_ever_live[i++] = 1;
2075 /* This function handles the tracking of elimination offsets around branches.
2077 X is a piece of RTL being scanned.
2079 INSN is the insn that it came from, if any.
2081 INITIAL_P is nonzero if we are to set the offset to be the initial
2082 offset and zero if we are setting the offset of the label to be the
2083 current offset. */
2085 static void
2086 set_label_offsets (rtx x, rtx insn, int initial_p)
2088 enum rtx_code code = GET_CODE (x);
2089 rtx tem;
2090 unsigned int i;
2091 struct elim_table *p;
2093 switch (code)
2095 case LABEL_REF:
2096 if (LABEL_REF_NONLOCAL_P (x))
2097 return;
2099 x = XEXP (x, 0);
2101 /* ... fall through ... */
2103 case CODE_LABEL:
2104 /* If we know nothing about this label, set the desired offsets. Note
2105 that this sets the offset at a label to be the offset before a label
2106 if we don't know anything about the label. This is not correct for
2107 the label after a BARRIER, but is the best guess we can make. If
2108 we guessed wrong, we will suppress an elimination that might have
2109 been possible had we been able to guess correctly. */
2111 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2113 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2114 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2115 = (initial_p ? reg_eliminate[i].initial_offset
2116 : reg_eliminate[i].offset);
2117 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2120 /* Otherwise, if this is the definition of a label and it is
2121 preceded by a BARRIER, set our offsets to the known offset of
2122 that label. */
2124 else if (x == insn
2125 && (tem = prev_nonnote_insn (insn)) != 0
2126 && BARRIER_P (tem))
2127 set_offsets_for_label (insn);
2128 else
2129 /* If neither of the above cases is true, compare each offset
2130 with those previously recorded and suppress any eliminations
2131 where the offsets disagree. */
2133 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2134 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2135 != (initial_p ? reg_eliminate[i].initial_offset
2136 : reg_eliminate[i].offset))
2137 reg_eliminate[i].can_eliminate = 0;
2139 return;
2141 case JUMP_INSN:
2142 set_label_offsets (PATTERN (insn), insn, initial_p);
2144 /* ... fall through ... */
2146 case INSN:
2147 case CALL_INSN:
2148 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2149 and hence must have all eliminations at their initial offsets. */
2150 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2151 if (REG_NOTE_KIND (tem) == REG_LABEL)
2152 set_label_offsets (XEXP (tem, 0), insn, 1);
2153 return;
2155 case PARALLEL:
2156 case ADDR_VEC:
2157 case ADDR_DIFF_VEC:
2158 /* Each of the labels in the parallel or address vector must be
2159 at their initial offsets. We want the first field for PARALLEL
2160 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2162 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2163 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2164 insn, initial_p);
2165 return;
2167 case SET:
2168 /* We only care about setting PC. If the source is not RETURN,
2169 IF_THEN_ELSE, or a label, disable any eliminations not at
2170 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2171 isn't one of those possibilities. For branches to a label,
2172 call ourselves recursively.
2174 Note that this can disable elimination unnecessarily when we have
2175 a non-local goto since it will look like a non-constant jump to
2176 someplace in the current function. This isn't a significant
2177 problem since such jumps will normally be when all elimination
2178 pairs are back to their initial offsets. */
2180 if (SET_DEST (x) != pc_rtx)
2181 return;
2183 switch (GET_CODE (SET_SRC (x)))
2185 case PC:
2186 case RETURN:
2187 return;
2189 case LABEL_REF:
2190 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2191 return;
2193 case IF_THEN_ELSE:
2194 tem = XEXP (SET_SRC (x), 1);
2195 if (GET_CODE (tem) == LABEL_REF)
2196 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2197 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2198 break;
2200 tem = XEXP (SET_SRC (x), 2);
2201 if (GET_CODE (tem) == LABEL_REF)
2202 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2203 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2204 break;
2205 return;
2207 default:
2208 break;
2211 /* If we reach here, all eliminations must be at their initial
2212 offset because we are doing a jump to a variable address. */
2213 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2214 if (p->offset != p->initial_offset)
2215 p->can_eliminate = 0;
2216 break;
2218 default:
2219 break;
2223 /* Scan X and replace any eliminable registers (such as fp) with a
2224 replacement (such as sp), plus an offset.
2226 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2227 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2228 MEM, we are allowed to replace a sum of a register and the constant zero
2229 with the register, which we cannot do outside a MEM. In addition, we need
2230 to record the fact that a register is referenced outside a MEM.
2232 If INSN is an insn, it is the insn containing X. If we replace a REG
2233 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2234 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2235 the REG is being modified.
2237 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2238 That's used when we eliminate in expressions stored in notes.
2239 This means, do not set ref_outside_mem even if the reference
2240 is outside of MEMs.
2242 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2243 replacements done assuming all offsets are at their initial values. If
2244 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2245 encounter, return the actual location so that find_reloads will do
2246 the proper thing. */
2249 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2251 enum rtx_code code = GET_CODE (x);
2252 struct elim_table *ep;
2253 int regno;
2254 rtx new;
2255 int i, j;
2256 const char *fmt;
2257 int copied = 0;
2259 if (! current_function_decl)
2260 return x;
2262 switch (code)
2264 case CONST_INT:
2265 case CONST_DOUBLE:
2266 case CONST_VECTOR:
2267 case CONST:
2268 case SYMBOL_REF:
2269 case CODE_LABEL:
2270 case PC:
2271 case CC0:
2272 case ASM_INPUT:
2273 case ADDR_VEC:
2274 case ADDR_DIFF_VEC:
2275 case RETURN:
2276 return x;
2278 case REG:
2279 regno = REGNO (x);
2281 /* First handle the case where we encounter a bare register that
2282 is eliminable. Replace it with a PLUS. */
2283 if (regno < FIRST_PSEUDO_REGISTER)
2285 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2286 ep++)
2287 if (ep->from_rtx == x && ep->can_eliminate)
2288 return plus_constant (ep->to_rtx, ep->previous_offset);
2291 else if (reg_renumber && reg_renumber[regno] < 0
2292 && reg_equiv_constant && reg_equiv_constant[regno]
2293 && ! CONSTANT_P (reg_equiv_constant[regno]))
2294 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2295 mem_mode, insn);
2296 return x;
2298 /* You might think handling MINUS in a manner similar to PLUS is a
2299 good idea. It is not. It has been tried multiple times and every
2300 time the change has had to have been reverted.
2302 Other parts of reload know a PLUS is special (gen_reload for example)
2303 and require special code to handle code a reloaded PLUS operand.
2305 Also consider backends where the flags register is clobbered by a
2306 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2307 lea instruction comes to mind). If we try to reload a MINUS, we
2308 may kill the flags register that was holding a useful value.
2310 So, please before trying to handle MINUS, consider reload as a
2311 whole instead of this little section as well as the backend issues. */
2312 case PLUS:
2313 /* If this is the sum of an eliminable register and a constant, rework
2314 the sum. */
2315 if (REG_P (XEXP (x, 0))
2316 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2317 && CONSTANT_P (XEXP (x, 1)))
2319 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2320 ep++)
2321 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2323 /* The only time we want to replace a PLUS with a REG (this
2324 occurs when the constant operand of the PLUS is the negative
2325 of the offset) is when we are inside a MEM. We won't want
2326 to do so at other times because that would change the
2327 structure of the insn in a way that reload can't handle.
2328 We special-case the commonest situation in
2329 eliminate_regs_in_insn, so just replace a PLUS with a
2330 PLUS here, unless inside a MEM. */
2331 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2332 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2333 return ep->to_rtx;
2334 else
2335 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2336 plus_constant (XEXP (x, 1),
2337 ep->previous_offset));
2340 /* If the register is not eliminable, we are done since the other
2341 operand is a constant. */
2342 return x;
2345 /* If this is part of an address, we want to bring any constant to the
2346 outermost PLUS. We will do this by doing register replacement in
2347 our operands and seeing if a constant shows up in one of them.
2349 Note that there is no risk of modifying the structure of the insn,
2350 since we only get called for its operands, thus we are either
2351 modifying the address inside a MEM, or something like an address
2352 operand of a load-address insn. */
2355 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2356 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2358 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2360 /* If one side is a PLUS and the other side is a pseudo that
2361 didn't get a hard register but has a reg_equiv_constant,
2362 we must replace the constant here since it may no longer
2363 be in the position of any operand. */
2364 if (GET_CODE (new0) == PLUS && REG_P (new1)
2365 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2366 && reg_renumber[REGNO (new1)] < 0
2367 && reg_equiv_constant != 0
2368 && reg_equiv_constant[REGNO (new1)] != 0)
2369 new1 = reg_equiv_constant[REGNO (new1)];
2370 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2371 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2372 && reg_renumber[REGNO (new0)] < 0
2373 && reg_equiv_constant[REGNO (new0)] != 0)
2374 new0 = reg_equiv_constant[REGNO (new0)];
2376 new = form_sum (new0, new1);
2378 /* As above, if we are not inside a MEM we do not want to
2379 turn a PLUS into something else. We might try to do so here
2380 for an addition of 0 if we aren't optimizing. */
2381 if (! mem_mode && GET_CODE (new) != PLUS)
2382 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2383 else
2384 return new;
2387 return x;
2389 case MULT:
2390 /* If this is the product of an eliminable register and a
2391 constant, apply the distribute law and move the constant out
2392 so that we have (plus (mult ..) ..). This is needed in order
2393 to keep load-address insns valid. This case is pathological.
2394 We ignore the possibility of overflow here. */
2395 if (REG_P (XEXP (x, 0))
2396 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2397 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2398 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2399 ep++)
2400 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2402 if (! mem_mode
2403 /* Refs inside notes don't count for this purpose. */
2404 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2405 || GET_CODE (insn) == INSN_LIST)))
2406 ep->ref_outside_mem = 1;
2408 return
2409 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2410 ep->previous_offset * INTVAL (XEXP (x, 1)));
2413 /* ... fall through ... */
2415 case CALL:
2416 case COMPARE:
2417 /* See comments before PLUS about handling MINUS. */
2418 case MINUS:
2419 case DIV: case UDIV:
2420 case MOD: case UMOD:
2421 case AND: case IOR: case XOR:
2422 case ROTATERT: case ROTATE:
2423 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2424 case NE: case EQ:
2425 case GE: case GT: case GEU: case GTU:
2426 case LE: case LT: case LEU: case LTU:
2428 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2429 rtx new1
2430 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2432 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2433 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2435 return x;
2437 case EXPR_LIST:
2438 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2439 if (XEXP (x, 0))
2441 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2442 if (new != XEXP (x, 0))
2444 /* If this is a REG_DEAD note, it is not valid anymore.
2445 Using the eliminated version could result in creating a
2446 REG_DEAD note for the stack or frame pointer. */
2447 if (GET_MODE (x) == REG_DEAD)
2448 return (XEXP (x, 1)
2449 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2450 : NULL_RTX);
2452 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2456 /* ... fall through ... */
2458 case INSN_LIST:
2459 /* Now do eliminations in the rest of the chain. If this was
2460 an EXPR_LIST, this might result in allocating more memory than is
2461 strictly needed, but it simplifies the code. */
2462 if (XEXP (x, 1))
2464 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2465 if (new != XEXP (x, 1))
2466 return
2467 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2469 return x;
2471 case PRE_INC:
2472 case POST_INC:
2473 case PRE_DEC:
2474 case POST_DEC:
2475 case STRICT_LOW_PART:
2476 case NEG: case NOT:
2477 case SIGN_EXTEND: case ZERO_EXTEND:
2478 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2479 case FLOAT: case FIX:
2480 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2481 case ABS:
2482 case SQRT:
2483 case FFS:
2484 case CLZ:
2485 case CTZ:
2486 case POPCOUNT:
2487 case PARITY:
2488 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2489 if (new != XEXP (x, 0))
2490 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2491 return x;
2493 case SUBREG:
2494 /* Similar to above processing, but preserve SUBREG_BYTE.
2495 Convert (subreg (mem)) to (mem) if not paradoxical.
2496 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2497 pseudo didn't get a hard reg, we must replace this with the
2498 eliminated version of the memory location because push_reload
2499 may do the replacement in certain circumstances. */
2500 if (REG_P (SUBREG_REG (x))
2501 && (GET_MODE_SIZE (GET_MODE (x))
2502 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2503 && reg_equiv_memory_loc != 0
2504 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2506 new = SUBREG_REG (x);
2508 else
2509 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2511 if (new != SUBREG_REG (x))
2513 int x_size = GET_MODE_SIZE (GET_MODE (x));
2514 int new_size = GET_MODE_SIZE (GET_MODE (new));
2516 if (MEM_P (new)
2517 && ((x_size < new_size
2518 #ifdef WORD_REGISTER_OPERATIONS
2519 /* On these machines, combine can create rtl of the form
2520 (set (subreg:m1 (reg:m2 R) 0) ...)
2521 where m1 < m2, and expects something interesting to
2522 happen to the entire word. Moreover, it will use the
2523 (reg:m2 R) later, expecting all bits to be preserved.
2524 So if the number of words is the same, preserve the
2525 subreg so that push_reload can see it. */
2526 && ! ((x_size - 1) / UNITS_PER_WORD
2527 == (new_size -1 ) / UNITS_PER_WORD)
2528 #endif
2530 || x_size == new_size)
2532 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2533 else
2534 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2537 return x;
2539 case MEM:
2540 /* Our only special processing is to pass the mode of the MEM to our
2541 recursive call and copy the flags. While we are here, handle this
2542 case more efficiently. */
2543 return
2544 replace_equiv_address_nv (x,
2545 eliminate_regs (XEXP (x, 0),
2546 GET_MODE (x), insn));
2548 case USE:
2549 /* Handle insn_list USE that a call to a pure function may generate. */
2550 new = eliminate_regs (XEXP (x, 0), 0, insn);
2551 if (new != XEXP (x, 0))
2552 return gen_rtx_USE (GET_MODE (x), new);
2553 return x;
2555 case CLOBBER:
2556 case ASM_OPERANDS:
2557 case SET:
2558 abort ();
2560 default:
2561 break;
2564 /* Process each of our operands recursively. If any have changed, make a
2565 copy of the rtx. */
2566 fmt = GET_RTX_FORMAT (code);
2567 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2569 if (*fmt == 'e')
2571 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2572 if (new != XEXP (x, i) && ! copied)
2574 rtx new_x = rtx_alloc (code);
2575 memcpy (new_x, x, RTX_SIZE (code));
2576 x = new_x;
2577 copied = 1;
2579 XEXP (x, i) = new;
2581 else if (*fmt == 'E')
2583 int copied_vec = 0;
2584 for (j = 0; j < XVECLEN (x, i); j++)
2586 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2587 if (new != XVECEXP (x, i, j) && ! copied_vec)
2589 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2590 XVEC (x, i)->elem);
2591 if (! copied)
2593 rtx new_x = rtx_alloc (code);
2594 memcpy (new_x, x, RTX_SIZE (code));
2595 x = new_x;
2596 copied = 1;
2598 XVEC (x, i) = new_v;
2599 copied_vec = 1;
2601 XVECEXP (x, i, j) = new;
2606 return x;
2609 /* Scan rtx X for modifications of elimination target registers. Update
2610 the table of eliminables to reflect the changed state. MEM_MODE is
2611 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2613 static void
2614 elimination_effects (rtx x, enum machine_mode mem_mode)
2616 enum rtx_code code = GET_CODE (x);
2617 struct elim_table *ep;
2618 int regno;
2619 int i, j;
2620 const char *fmt;
2622 switch (code)
2624 case CONST_INT:
2625 case CONST_DOUBLE:
2626 case CONST_VECTOR:
2627 case CONST:
2628 case SYMBOL_REF:
2629 case CODE_LABEL:
2630 case PC:
2631 case CC0:
2632 case ASM_INPUT:
2633 case ADDR_VEC:
2634 case ADDR_DIFF_VEC:
2635 case RETURN:
2636 return;
2638 case REG:
2639 regno = REGNO (x);
2641 /* First handle the case where we encounter a bare register that
2642 is eliminable. Replace it with a PLUS. */
2643 if (regno < FIRST_PSEUDO_REGISTER)
2645 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2646 ep++)
2647 if (ep->from_rtx == x && ep->can_eliminate)
2649 if (! mem_mode)
2650 ep->ref_outside_mem = 1;
2651 return;
2655 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2656 && reg_equiv_constant[regno]
2657 && ! function_invariant_p (reg_equiv_constant[regno]))
2658 elimination_effects (reg_equiv_constant[regno], mem_mode);
2659 return;
2661 case PRE_INC:
2662 case POST_INC:
2663 case PRE_DEC:
2664 case POST_DEC:
2665 case POST_MODIFY:
2666 case PRE_MODIFY:
2667 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2668 if (ep->to_rtx == XEXP (x, 0))
2670 int size = GET_MODE_SIZE (mem_mode);
2672 /* If more bytes than MEM_MODE are pushed, account for them. */
2673 #ifdef PUSH_ROUNDING
2674 if (ep->to_rtx == stack_pointer_rtx)
2675 size = PUSH_ROUNDING (size);
2676 #endif
2677 if (code == PRE_DEC || code == POST_DEC)
2678 ep->offset += size;
2679 else if (code == PRE_INC || code == POST_INC)
2680 ep->offset -= size;
2681 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2682 && GET_CODE (XEXP (x, 1)) == PLUS
2683 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2684 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2685 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2688 /* These two aren't unary operators. */
2689 if (code == POST_MODIFY || code == PRE_MODIFY)
2690 break;
2692 /* Fall through to generic unary operation case. */
2693 case STRICT_LOW_PART:
2694 case NEG: case NOT:
2695 case SIGN_EXTEND: case ZERO_EXTEND:
2696 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2697 case FLOAT: case FIX:
2698 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2699 case ABS:
2700 case SQRT:
2701 case FFS:
2702 case CLZ:
2703 case CTZ:
2704 case POPCOUNT:
2705 case PARITY:
2706 elimination_effects (XEXP (x, 0), mem_mode);
2707 return;
2709 case SUBREG:
2710 if (REG_P (SUBREG_REG (x))
2711 && (GET_MODE_SIZE (GET_MODE (x))
2712 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2713 && reg_equiv_memory_loc != 0
2714 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2715 return;
2717 elimination_effects (SUBREG_REG (x), mem_mode);
2718 return;
2720 case USE:
2721 /* If using a register that is the source of an eliminate we still
2722 think can be performed, note it cannot be performed since we don't
2723 know how this register is used. */
2724 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2725 if (ep->from_rtx == XEXP (x, 0))
2726 ep->can_eliminate = 0;
2728 elimination_effects (XEXP (x, 0), mem_mode);
2729 return;
2731 case CLOBBER:
2732 /* If clobbering a register that is the replacement register for an
2733 elimination we still think can be performed, note that it cannot
2734 be performed. Otherwise, we need not be concerned about it. */
2735 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2736 if (ep->to_rtx == XEXP (x, 0))
2737 ep->can_eliminate = 0;
2739 elimination_effects (XEXP (x, 0), mem_mode);
2740 return;
2742 case SET:
2743 /* Check for setting a register that we know about. */
2744 if (REG_P (SET_DEST (x)))
2746 /* See if this is setting the replacement register for an
2747 elimination.
2749 If DEST is the hard frame pointer, we do nothing because we
2750 assume that all assignments to the frame pointer are for
2751 non-local gotos and are being done at a time when they are valid
2752 and do not disturb anything else. Some machines want to
2753 eliminate a fake argument pointer (or even a fake frame pointer)
2754 with either the real frame or the stack pointer. Assignments to
2755 the hard frame pointer must not prevent this elimination. */
2757 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2758 ep++)
2759 if (ep->to_rtx == SET_DEST (x)
2760 && SET_DEST (x) != hard_frame_pointer_rtx)
2762 /* If it is being incremented, adjust the offset. Otherwise,
2763 this elimination can't be done. */
2764 rtx src = SET_SRC (x);
2766 if (GET_CODE (src) == PLUS
2767 && XEXP (src, 0) == SET_DEST (x)
2768 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2769 ep->offset -= INTVAL (XEXP (src, 1));
2770 else
2771 ep->can_eliminate = 0;
2775 elimination_effects (SET_DEST (x), 0);
2776 elimination_effects (SET_SRC (x), 0);
2777 return;
2779 case MEM:
2780 /* Our only special processing is to pass the mode of the MEM to our
2781 recursive call. */
2782 elimination_effects (XEXP (x, 0), GET_MODE (x));
2783 return;
2785 default:
2786 break;
2789 fmt = GET_RTX_FORMAT (code);
2790 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2792 if (*fmt == 'e')
2793 elimination_effects (XEXP (x, i), mem_mode);
2794 else if (*fmt == 'E')
2795 for (j = 0; j < XVECLEN (x, i); j++)
2796 elimination_effects (XVECEXP (x, i, j), mem_mode);
2800 /* Descend through rtx X and verify that no references to eliminable registers
2801 remain. If any do remain, mark the involved register as not
2802 eliminable. */
2804 static void
2805 check_eliminable_occurrences (rtx x)
2807 const char *fmt;
2808 int i;
2809 enum rtx_code code;
2811 if (x == 0)
2812 return;
2814 code = GET_CODE (x);
2816 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2818 struct elim_table *ep;
2820 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2821 if (ep->from_rtx == x)
2822 ep->can_eliminate = 0;
2823 return;
2826 fmt = GET_RTX_FORMAT (code);
2827 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2829 if (*fmt == 'e')
2830 check_eliminable_occurrences (XEXP (x, i));
2831 else if (*fmt == 'E')
2833 int j;
2834 for (j = 0; j < XVECLEN (x, i); j++)
2835 check_eliminable_occurrences (XVECEXP (x, i, j));
2840 /* Scan INSN and eliminate all eliminable registers in it.
2842 If REPLACE is nonzero, do the replacement destructively. Also
2843 delete the insn as dead it if it is setting an eliminable register.
2845 If REPLACE is zero, do all our allocations in reload_obstack.
2847 If no eliminations were done and this insn doesn't require any elimination
2848 processing (these are not identical conditions: it might be updating sp,
2849 but not referencing fp; this needs to be seen during reload_as_needed so
2850 that the offset between fp and sp can be taken into consideration), zero
2851 is returned. Otherwise, 1 is returned. */
2853 static int
2854 eliminate_regs_in_insn (rtx insn, int replace)
2856 int icode = recog_memoized (insn);
2857 rtx old_body = PATTERN (insn);
2858 int insn_is_asm = asm_noperands (old_body) >= 0;
2859 rtx old_set = single_set (insn);
2860 rtx new_body;
2861 int val = 0;
2862 int i;
2863 rtx substed_operand[MAX_RECOG_OPERANDS];
2864 rtx orig_operand[MAX_RECOG_OPERANDS];
2865 struct elim_table *ep;
2866 rtx plus_src;
2868 if (! insn_is_asm && icode < 0)
2870 if (GET_CODE (PATTERN (insn)) == USE
2871 || GET_CODE (PATTERN (insn)) == CLOBBER
2872 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2873 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2874 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2875 return 0;
2876 abort ();
2879 if (old_set != 0 && REG_P (SET_DEST (old_set))
2880 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2882 /* Check for setting an eliminable register. */
2883 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2884 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2886 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2887 /* If this is setting the frame pointer register to the
2888 hardware frame pointer register and this is an elimination
2889 that will be done (tested above), this insn is really
2890 adjusting the frame pointer downward to compensate for
2891 the adjustment done before a nonlocal goto. */
2892 if (ep->from == FRAME_POINTER_REGNUM
2893 && ep->to == HARD_FRAME_POINTER_REGNUM)
2895 rtx base = SET_SRC (old_set);
2896 rtx base_insn = insn;
2897 HOST_WIDE_INT offset = 0;
2899 while (base != ep->to_rtx)
2901 rtx prev_insn, prev_set;
2903 if (GET_CODE (base) == PLUS
2904 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2906 offset += INTVAL (XEXP (base, 1));
2907 base = XEXP (base, 0);
2909 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2910 && (prev_set = single_set (prev_insn)) != 0
2911 && rtx_equal_p (SET_DEST (prev_set), base))
2913 base = SET_SRC (prev_set);
2914 base_insn = prev_insn;
2916 else
2917 break;
2920 if (base == ep->to_rtx)
2922 rtx src
2923 = plus_constant (ep->to_rtx, offset - ep->offset);
2925 new_body = old_body;
2926 if (! replace)
2928 new_body = copy_insn (old_body);
2929 if (REG_NOTES (insn))
2930 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2932 PATTERN (insn) = new_body;
2933 old_set = single_set (insn);
2935 /* First see if this insn remains valid when we
2936 make the change. If not, keep the INSN_CODE
2937 the same and let reload fit it up. */
2938 validate_change (insn, &SET_SRC (old_set), src, 1);
2939 validate_change (insn, &SET_DEST (old_set),
2940 ep->to_rtx, 1);
2941 if (! apply_change_group ())
2943 SET_SRC (old_set) = src;
2944 SET_DEST (old_set) = ep->to_rtx;
2947 val = 1;
2948 goto done;
2951 #endif
2953 /* In this case this insn isn't serving a useful purpose. We
2954 will delete it in reload_as_needed once we know that this
2955 elimination is, in fact, being done.
2957 If REPLACE isn't set, we can't delete this insn, but needn't
2958 process it since it won't be used unless something changes. */
2959 if (replace)
2961 delete_dead_insn (insn);
2962 return 1;
2964 val = 1;
2965 goto done;
2969 /* We allow one special case which happens to work on all machines we
2970 currently support: a single set with the source or a REG_EQUAL
2971 note being a PLUS of an eliminable register and a constant. */
2972 plus_src = 0;
2973 if (old_set && REG_P (SET_DEST (old_set)))
2975 /* First see if the source is of the form (plus (reg) CST). */
2976 if (GET_CODE (SET_SRC (old_set)) == PLUS
2977 && REG_P (XEXP (SET_SRC (old_set), 0))
2978 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
2979 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
2980 plus_src = SET_SRC (old_set);
2981 else if (REG_P (SET_SRC (old_set)))
2983 /* Otherwise, see if we have a REG_EQUAL note of the form
2984 (plus (reg) CST). */
2985 rtx links;
2986 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
2988 if (REG_NOTE_KIND (links) == REG_EQUAL
2989 && GET_CODE (XEXP (links, 0)) == PLUS
2990 && REG_P (XEXP (XEXP (links, 0), 0))
2991 && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT
2992 && REGNO (XEXP (XEXP (links, 0), 0)) < FIRST_PSEUDO_REGISTER)
2994 plus_src = XEXP (links, 0);
2995 break;
3000 if (plus_src)
3002 rtx reg = XEXP (plus_src, 0);
3003 HOST_WIDE_INT offset = INTVAL (XEXP (plus_src, 1));
3005 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3006 if (ep->from_rtx == reg && ep->can_eliminate)
3008 offset += ep->offset;
3010 if (offset == 0)
3012 int num_clobbers;
3013 /* We assume here that if we need a PARALLEL with
3014 CLOBBERs for this assignment, we can do with the
3015 MATCH_SCRATCHes that add_clobbers allocates.
3016 There's not much we can do if that doesn't work. */
3017 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3018 SET_DEST (old_set),
3019 ep->to_rtx);
3020 num_clobbers = 0;
3021 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3022 if (num_clobbers)
3024 rtvec vec = rtvec_alloc (num_clobbers + 1);
3026 vec->elem[0] = PATTERN (insn);
3027 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3028 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3030 if (INSN_CODE (insn) < 0)
3031 abort ();
3033 /* If we have a nonzero offset, and the source is already
3034 a simple REG, the following transformation would
3035 increase the cost of the insn by replacing a simple REG
3036 with (plus (reg sp) CST). So try only when plus_src
3037 comes from old_set proper, not REG_NOTES. */
3038 else if (SET_SRC (old_set) == plus_src)
3040 new_body = old_body;
3041 if (! replace)
3043 new_body = copy_insn (old_body);
3044 if (REG_NOTES (insn))
3045 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3047 PATTERN (insn) = new_body;
3048 old_set = single_set (insn);
3050 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3051 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3053 else
3054 break;
3056 val = 1;
3057 /* This can't have an effect on elimination offsets, so skip right
3058 to the end. */
3059 goto done;
3063 /* Determine the effects of this insn on elimination offsets. */
3064 elimination_effects (old_body, 0);
3066 /* Eliminate all eliminable registers occurring in operands that
3067 can be handled by reload. */
3068 extract_insn (insn);
3069 for (i = 0; i < recog_data.n_operands; i++)
3071 orig_operand[i] = recog_data.operand[i];
3072 substed_operand[i] = recog_data.operand[i];
3074 /* For an asm statement, every operand is eliminable. */
3075 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3077 /* Check for setting a register that we know about. */
3078 if (recog_data.operand_type[i] != OP_IN
3079 && REG_P (orig_operand[i]))
3081 /* If we are assigning to a register that can be eliminated, it
3082 must be as part of a PARALLEL, since the code above handles
3083 single SETs. We must indicate that we can no longer
3084 eliminate this reg. */
3085 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3086 ep++)
3087 if (ep->from_rtx == orig_operand[i])
3088 ep->can_eliminate = 0;
3091 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3092 replace ? insn : NULL_RTX);
3093 if (substed_operand[i] != orig_operand[i])
3094 val = 1;
3095 /* Terminate the search in check_eliminable_occurrences at
3096 this point. */
3097 *recog_data.operand_loc[i] = 0;
3099 /* If an output operand changed from a REG to a MEM and INSN is an
3100 insn, write a CLOBBER insn. */
3101 if (recog_data.operand_type[i] != OP_IN
3102 && REG_P (orig_operand[i])
3103 && MEM_P (substed_operand[i])
3104 && replace)
3105 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3106 insn);
3110 for (i = 0; i < recog_data.n_dups; i++)
3111 *recog_data.dup_loc[i]
3112 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3114 /* If any eliminable remain, they aren't eliminable anymore. */
3115 check_eliminable_occurrences (old_body);
3117 /* Substitute the operands; the new values are in the substed_operand
3118 array. */
3119 for (i = 0; i < recog_data.n_operands; i++)
3120 *recog_data.operand_loc[i] = substed_operand[i];
3121 for (i = 0; i < recog_data.n_dups; i++)
3122 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3124 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3125 re-recognize the insn. We do this in case we had a simple addition
3126 but now can do this as a load-address. This saves an insn in this
3127 common case.
3128 If re-recognition fails, the old insn code number will still be used,
3129 and some register operands may have changed into PLUS expressions.
3130 These will be handled by find_reloads by loading them into a register
3131 again. */
3133 if (val)
3135 /* If we aren't replacing things permanently and we changed something,
3136 make another copy to ensure that all the RTL is new. Otherwise
3137 things can go wrong if find_reload swaps commutative operands
3138 and one is inside RTL that has been copied while the other is not. */
3139 new_body = old_body;
3140 if (! replace)
3142 new_body = copy_insn (old_body);
3143 if (REG_NOTES (insn))
3144 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3146 PATTERN (insn) = new_body;
3148 /* If we had a move insn but now we don't, rerecognize it. This will
3149 cause spurious re-recognition if the old move had a PARALLEL since
3150 the new one still will, but we can't call single_set without
3151 having put NEW_BODY into the insn and the re-recognition won't
3152 hurt in this rare case. */
3153 /* ??? Why this huge if statement - why don't we just rerecognize the
3154 thing always? */
3155 if (! insn_is_asm
3156 && old_set != 0
3157 && ((REG_P (SET_SRC (old_set))
3158 && (GET_CODE (new_body) != SET
3159 || !REG_P (SET_SRC (new_body))))
3160 /* If this was a load from or store to memory, compare
3161 the MEM in recog_data.operand to the one in the insn.
3162 If they are not equal, then rerecognize the insn. */
3163 || (old_set != 0
3164 && ((MEM_P (SET_SRC (old_set))
3165 && SET_SRC (old_set) != recog_data.operand[1])
3166 || (MEM_P (SET_DEST (old_set))
3167 && SET_DEST (old_set) != recog_data.operand[0])))
3168 /* If this was an add insn before, rerecognize. */
3169 || GET_CODE (SET_SRC (old_set)) == PLUS))
3171 int new_icode = recog (PATTERN (insn), insn, 0);
3172 if (new_icode < 0)
3173 INSN_CODE (insn) = icode;
3177 /* Restore the old body. If there were any changes to it, we made a copy
3178 of it while the changes were still in place, so we'll correctly return
3179 a modified insn below. */
3180 if (! replace)
3182 /* Restore the old body. */
3183 for (i = 0; i < recog_data.n_operands; i++)
3184 *recog_data.operand_loc[i] = orig_operand[i];
3185 for (i = 0; i < recog_data.n_dups; i++)
3186 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3189 /* Update all elimination pairs to reflect the status after the current
3190 insn. The changes we make were determined by the earlier call to
3191 elimination_effects.
3193 We also detect cases where register elimination cannot be done,
3194 namely, if a register would be both changed and referenced outside a MEM
3195 in the resulting insn since such an insn is often undefined and, even if
3196 not, we cannot know what meaning will be given to it. Note that it is
3197 valid to have a register used in an address in an insn that changes it
3198 (presumably with a pre- or post-increment or decrement).
3200 If anything changes, return nonzero. */
3202 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3204 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3205 ep->can_eliminate = 0;
3207 ep->ref_outside_mem = 0;
3209 if (ep->previous_offset != ep->offset)
3210 val = 1;
3213 done:
3214 /* If we changed something, perform elimination in REG_NOTES. This is
3215 needed even when REPLACE is zero because a REG_DEAD note might refer
3216 to a register that we eliminate and could cause a different number
3217 of spill registers to be needed in the final reload pass than in
3218 the pre-passes. */
3219 if (val && REG_NOTES (insn) != 0)
3220 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3222 return val;
3225 /* Loop through all elimination pairs.
3226 Recalculate the number not at initial offset.
3228 Compute the maximum offset (minimum offset if the stack does not
3229 grow downward) for each elimination pair. */
3231 static void
3232 update_eliminable_offsets (void)
3234 struct elim_table *ep;
3236 num_not_at_initial_offset = 0;
3237 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3239 ep->previous_offset = ep->offset;
3240 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3241 num_not_at_initial_offset++;
3245 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3246 replacement we currently believe is valid, mark it as not eliminable if X
3247 modifies DEST in any way other than by adding a constant integer to it.
3249 If DEST is the frame pointer, we do nothing because we assume that
3250 all assignments to the hard frame pointer are nonlocal gotos and are being
3251 done at a time when they are valid and do not disturb anything else.
3252 Some machines want to eliminate a fake argument pointer with either the
3253 frame or stack pointer. Assignments to the hard frame pointer must not
3254 prevent this elimination.
3256 Called via note_stores from reload before starting its passes to scan
3257 the insns of the function. */
3259 static void
3260 mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
3262 unsigned int i;
3264 /* A SUBREG of a hard register here is just changing its mode. We should
3265 not see a SUBREG of an eliminable hard register, but check just in
3266 case. */
3267 if (GET_CODE (dest) == SUBREG)
3268 dest = SUBREG_REG (dest);
3270 if (dest == hard_frame_pointer_rtx)
3271 return;
3273 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3274 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3275 && (GET_CODE (x) != SET
3276 || GET_CODE (SET_SRC (x)) != PLUS
3277 || XEXP (SET_SRC (x), 0) != dest
3278 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3280 reg_eliminate[i].can_eliminate_previous
3281 = reg_eliminate[i].can_eliminate = 0;
3282 num_eliminable--;
3286 /* Verify that the initial elimination offsets did not change since the
3287 last call to set_initial_elim_offsets. This is used to catch cases
3288 where something illegal happened during reload_as_needed that could
3289 cause incorrect code to be generated if we did not check for it. */
3291 static void
3292 verify_initial_elim_offsets (void)
3294 HOST_WIDE_INT t;
3296 #ifdef ELIMINABLE_REGS
3297 struct elim_table *ep;
3299 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3301 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3302 if (t != ep->initial_offset)
3303 abort ();
3305 #else
3306 INITIAL_FRAME_POINTER_OFFSET (t);
3307 if (t != reg_eliminate[0].initial_offset)
3308 abort ();
3309 #endif
3312 /* Reset all offsets on eliminable registers to their initial values. */
3314 static void
3315 set_initial_elim_offsets (void)
3317 struct elim_table *ep = reg_eliminate;
3319 #ifdef ELIMINABLE_REGS
3320 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3322 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3323 ep->previous_offset = ep->offset = ep->initial_offset;
3325 #else
3326 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3327 ep->previous_offset = ep->offset = ep->initial_offset;
3328 #endif
3330 num_not_at_initial_offset = 0;
3333 /* Initialize the known label offsets.
3334 Set a known offset for each forced label to be at the initial offset
3335 of each elimination. We do this because we assume that all
3336 computed jumps occur from a location where each elimination is
3337 at its initial offset.
3338 For all other labels, show that we don't know the offsets. */
3340 static void
3341 set_initial_label_offsets (void)
3343 rtx x;
3344 memset (offsets_known_at, 0, num_labels);
3346 for (x = forced_labels; x; x = XEXP (x, 1))
3347 if (XEXP (x, 0))
3348 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3351 /* Set all elimination offsets to the known values for the code label given
3352 by INSN. */
3354 static void
3355 set_offsets_for_label (rtx insn)
3357 unsigned int i;
3358 int label_nr = CODE_LABEL_NUMBER (insn);
3359 struct elim_table *ep;
3361 num_not_at_initial_offset = 0;
3362 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3364 ep->offset = ep->previous_offset
3365 = offsets_at[label_nr - first_label_num][i];
3366 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3367 num_not_at_initial_offset++;
3371 /* See if anything that happened changes which eliminations are valid.
3372 For example, on the SPARC, whether or not the frame pointer can
3373 be eliminated can depend on what registers have been used. We need
3374 not check some conditions again (such as flag_omit_frame_pointer)
3375 since they can't have changed. */
3377 static void
3378 update_eliminables (HARD_REG_SET *pset)
3380 int previous_frame_pointer_needed = frame_pointer_needed;
3381 struct elim_table *ep;
3383 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3384 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3385 #ifdef ELIMINABLE_REGS
3386 || ! CAN_ELIMINATE (ep->from, ep->to)
3387 #endif
3389 ep->can_eliminate = 0;
3391 /* Look for the case where we have discovered that we can't replace
3392 register A with register B and that means that we will now be
3393 trying to replace register A with register C. This means we can
3394 no longer replace register C with register B and we need to disable
3395 such an elimination, if it exists. This occurs often with A == ap,
3396 B == sp, and C == fp. */
3398 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3400 struct elim_table *op;
3401 int new_to = -1;
3403 if (! ep->can_eliminate && ep->can_eliminate_previous)
3405 /* Find the current elimination for ep->from, if there is a
3406 new one. */
3407 for (op = reg_eliminate;
3408 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3409 if (op->from == ep->from && op->can_eliminate)
3411 new_to = op->to;
3412 break;
3415 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3416 disable it. */
3417 for (op = reg_eliminate;
3418 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3419 if (op->from == new_to && op->to == ep->to)
3420 op->can_eliminate = 0;
3424 /* See if any registers that we thought we could eliminate the previous
3425 time are no longer eliminable. If so, something has changed and we
3426 must spill the register. Also, recompute the number of eliminable
3427 registers and see if the frame pointer is needed; it is if there is
3428 no elimination of the frame pointer that we can perform. */
3430 frame_pointer_needed = 1;
3431 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3433 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3434 && ep->to != HARD_FRAME_POINTER_REGNUM)
3435 frame_pointer_needed = 0;
3437 if (! ep->can_eliminate && ep->can_eliminate_previous)
3439 ep->can_eliminate_previous = 0;
3440 SET_HARD_REG_BIT (*pset, ep->from);
3441 num_eliminable--;
3445 /* If we didn't need a frame pointer last time, but we do now, spill
3446 the hard frame pointer. */
3447 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3448 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3451 /* Initialize the table of registers to eliminate. */
3453 static void
3454 init_elim_table (void)
3456 struct elim_table *ep;
3457 #ifdef ELIMINABLE_REGS
3458 const struct elim_table_1 *ep1;
3459 #endif
3461 if (!reg_eliminate)
3462 reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3464 /* Does this function require a frame pointer? */
3466 frame_pointer_needed = (! flag_omit_frame_pointer
3467 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3468 and restore sp for alloca. So we can't eliminate
3469 the frame pointer in that case. At some point,
3470 we should improve this by emitting the
3471 sp-adjusting insns for this case. */
3472 || (current_function_calls_alloca
3473 && EXIT_IGNORE_STACK)
3474 || FRAME_POINTER_REQUIRED);
3476 num_eliminable = 0;
3478 #ifdef ELIMINABLE_REGS
3479 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3480 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3482 ep->from = ep1->from;
3483 ep->to = ep1->to;
3484 ep->can_eliminate = ep->can_eliminate_previous
3485 = (CAN_ELIMINATE (ep->from, ep->to)
3486 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3488 #else
3489 reg_eliminate[0].from = reg_eliminate_1[0].from;
3490 reg_eliminate[0].to = reg_eliminate_1[0].to;
3491 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3492 = ! frame_pointer_needed;
3493 #endif
3495 /* Count the number of eliminable registers and build the FROM and TO
3496 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3497 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3498 We depend on this. */
3499 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3501 num_eliminable += ep->can_eliminate;
3502 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3503 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3507 /* Kick all pseudos out of hard register REGNO.
3509 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3510 because we found we can't eliminate some register. In the case, no pseudos
3511 are allowed to be in the register, even if they are only in a block that
3512 doesn't require spill registers, unlike the case when we are spilling this
3513 hard reg to produce another spill register.
3515 Return nonzero if any pseudos needed to be kicked out. */
3517 static void
3518 spill_hard_reg (unsigned int regno, int cant_eliminate)
3520 int i;
3522 if (cant_eliminate)
3524 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3525 regs_ever_live[regno] = 1;
3528 /* Spill every pseudo reg that was allocated to this reg
3529 or to something that overlaps this reg. */
3531 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3532 if (reg_renumber[i] >= 0
3533 && (unsigned int) reg_renumber[i] <= regno
3534 && ((unsigned int) reg_renumber[i]
3535 + hard_regno_nregs[(unsigned int) reg_renumber[i]]
3536 [PSEUDO_REGNO_MODE (i)]
3537 > regno))
3538 SET_REGNO_REG_SET (&spilled_pseudos, i);
3541 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3542 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3544 static void
3545 ior_hard_reg_set (HARD_REG_SET *set1, HARD_REG_SET *set2)
3547 IOR_HARD_REG_SET (*set1, *set2);
3550 /* After find_reload_regs has been run for all insn that need reloads,
3551 and/or spill_hard_regs was called, this function is used to actually
3552 spill pseudo registers and try to reallocate them. It also sets up the
3553 spill_regs array for use by choose_reload_regs. */
3555 static int
3556 finish_spills (int global)
3558 struct insn_chain *chain;
3559 int something_changed = 0;
3560 int i;
3562 /* Build the spill_regs array for the function. */
3563 /* If there are some registers still to eliminate and one of the spill regs
3564 wasn't ever used before, additional stack space may have to be
3565 allocated to store this register. Thus, we may have changed the offset
3566 between the stack and frame pointers, so mark that something has changed.
3568 One might think that we need only set VAL to 1 if this is a call-used
3569 register. However, the set of registers that must be saved by the
3570 prologue is not identical to the call-used set. For example, the
3571 register used by the call insn for the return PC is a call-used register,
3572 but must be saved by the prologue. */
3574 n_spills = 0;
3575 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3576 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3578 spill_reg_order[i] = n_spills;
3579 spill_regs[n_spills++] = i;
3580 if (num_eliminable && ! regs_ever_live[i])
3581 something_changed = 1;
3582 regs_ever_live[i] = 1;
3584 else
3585 spill_reg_order[i] = -1;
3587 EXECUTE_IF_SET_IN_REG_SET
3588 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3590 /* Record the current hard register the pseudo is allocated to in
3591 pseudo_previous_regs so we avoid reallocating it to the same
3592 hard reg in a later pass. */
3593 if (reg_renumber[i] < 0)
3594 abort ();
3596 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3597 /* Mark it as no longer having a hard register home. */
3598 reg_renumber[i] = -1;
3599 /* We will need to scan everything again. */
3600 something_changed = 1;
3603 /* Retry global register allocation if possible. */
3604 if (global)
3606 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3607 /* For every insn that needs reloads, set the registers used as spill
3608 regs in pseudo_forbidden_regs for every pseudo live across the
3609 insn. */
3610 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3612 EXECUTE_IF_SET_IN_REG_SET
3613 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3615 ior_hard_reg_set (pseudo_forbidden_regs + i,
3616 &chain->used_spill_regs);
3618 EXECUTE_IF_SET_IN_REG_SET
3619 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3621 ior_hard_reg_set (pseudo_forbidden_regs + i,
3622 &chain->used_spill_regs);
3626 /* Retry allocating the spilled pseudos. For each reg, merge the
3627 various reg sets that indicate which hard regs can't be used,
3628 and call retry_global_alloc.
3629 We change spill_pseudos here to only contain pseudos that did not
3630 get a new hard register. */
3631 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3632 if (reg_old_renumber[i] != reg_renumber[i])
3634 HARD_REG_SET forbidden;
3635 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3636 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3637 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3638 retry_global_alloc (i, forbidden);
3639 if (reg_renumber[i] >= 0)
3640 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3644 /* Fix up the register information in the insn chain.
3645 This involves deleting those of the spilled pseudos which did not get
3646 a new hard register home from the live_{before,after} sets. */
3647 for (chain = reload_insn_chain; chain; chain = chain->next)
3649 HARD_REG_SET used_by_pseudos;
3650 HARD_REG_SET used_by_pseudos2;
3652 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3653 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3655 /* Mark any unallocated hard regs as available for spills. That
3656 makes inheritance work somewhat better. */
3657 if (chain->need_reload)
3659 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3660 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3661 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3663 /* Save the old value for the sanity test below. */
3664 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3666 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3667 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3668 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3669 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3671 /* Make sure we only enlarge the set. */
3672 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3673 abort ();
3674 ok:;
3678 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3679 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3681 int regno = reg_renumber[i];
3682 if (reg_old_renumber[i] == regno)
3683 continue;
3685 alter_reg (i, reg_old_renumber[i]);
3686 reg_old_renumber[i] = regno;
3687 if (dump_file)
3689 if (regno == -1)
3690 fprintf (dump_file, " Register %d now on stack.\n\n", i);
3691 else
3692 fprintf (dump_file, " Register %d now in %d.\n\n",
3693 i, reg_renumber[i]);
3697 return something_changed;
3700 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
3702 static void
3703 scan_paradoxical_subregs (rtx x)
3705 int i;
3706 const char *fmt;
3707 enum rtx_code code = GET_CODE (x);
3709 switch (code)
3711 case REG:
3712 case CONST_INT:
3713 case CONST:
3714 case SYMBOL_REF:
3715 case LABEL_REF:
3716 case CONST_DOUBLE:
3717 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3718 case CC0:
3719 case PC:
3720 case USE:
3721 case CLOBBER:
3722 return;
3724 case SUBREG:
3725 if (REG_P (SUBREG_REG (x))
3726 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3727 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3728 = GET_MODE_SIZE (GET_MODE (x));
3729 return;
3731 default:
3732 break;
3735 fmt = GET_RTX_FORMAT (code);
3736 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3738 if (fmt[i] == 'e')
3739 scan_paradoxical_subregs (XEXP (x, i));
3740 else if (fmt[i] == 'E')
3742 int j;
3743 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3744 scan_paradoxical_subregs (XVECEXP (x, i, j));
3749 /* Reload pseudo-registers into hard regs around each insn as needed.
3750 Additional register load insns are output before the insn that needs it
3751 and perhaps store insns after insns that modify the reloaded pseudo reg.
3753 reg_last_reload_reg and reg_reloaded_contents keep track of
3754 which registers are already available in reload registers.
3755 We update these for the reloads that we perform,
3756 as the insns are scanned. */
3758 static void
3759 reload_as_needed (int live_known)
3761 struct insn_chain *chain;
3762 #if defined (AUTO_INC_DEC)
3763 int i;
3764 #endif
3765 rtx x;
3767 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
3768 memset (spill_reg_store, 0, sizeof spill_reg_store);
3769 reg_last_reload_reg = xcalloc (max_regno, sizeof (rtx));
3770 reg_has_output_reload = xmalloc (max_regno);
3771 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3772 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
3774 set_initial_elim_offsets ();
3776 for (chain = reload_insn_chain; chain; chain = chain->next)
3778 rtx prev = 0;
3779 rtx insn = chain->insn;
3780 rtx old_next = NEXT_INSN (insn);
3782 /* If we pass a label, copy the offsets from the label information
3783 into the current offsets of each elimination. */
3784 if (LABEL_P (insn))
3785 set_offsets_for_label (insn);
3787 else if (INSN_P (insn))
3789 rtx oldpat = copy_rtx (PATTERN (insn));
3791 /* If this is a USE and CLOBBER of a MEM, ensure that any
3792 references to eliminable registers have been removed. */
3794 if ((GET_CODE (PATTERN (insn)) == USE
3795 || GET_CODE (PATTERN (insn)) == CLOBBER)
3796 && MEM_P (XEXP (PATTERN (insn), 0)))
3797 XEXP (XEXP (PATTERN (insn), 0), 0)
3798 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3799 GET_MODE (XEXP (PATTERN (insn), 0)),
3800 NULL_RTX);
3802 /* If we need to do register elimination processing, do so.
3803 This might delete the insn, in which case we are done. */
3804 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3806 eliminate_regs_in_insn (insn, 1);
3807 if (NOTE_P (insn))
3809 update_eliminable_offsets ();
3810 continue;
3814 /* If need_elim is nonzero but need_reload is zero, one might think
3815 that we could simply set n_reloads to 0. However, find_reloads
3816 could have done some manipulation of the insn (such as swapping
3817 commutative operands), and these manipulations are lost during
3818 the first pass for every insn that needs register elimination.
3819 So the actions of find_reloads must be redone here. */
3821 if (! chain->need_elim && ! chain->need_reload
3822 && ! chain->need_operand_change)
3823 n_reloads = 0;
3824 /* First find the pseudo regs that must be reloaded for this insn.
3825 This info is returned in the tables reload_... (see reload.h).
3826 Also modify the body of INSN by substituting RELOAD
3827 rtx's for those pseudo regs. */
3828 else
3830 memset (reg_has_output_reload, 0, max_regno);
3831 CLEAR_HARD_REG_SET (reg_is_output_reload);
3833 find_reloads (insn, 1, spill_indirect_levels, live_known,
3834 spill_reg_order);
3837 if (n_reloads > 0)
3839 rtx next = NEXT_INSN (insn);
3840 rtx p;
3842 prev = PREV_INSN (insn);
3844 /* Now compute which reload regs to reload them into. Perhaps
3845 reusing reload regs from previous insns, or else output
3846 load insns to reload them. Maybe output store insns too.
3847 Record the choices of reload reg in reload_reg_rtx. */
3848 choose_reload_regs (chain);
3850 /* Merge any reloads that we didn't combine for fear of
3851 increasing the number of spill registers needed but now
3852 discover can be safely merged. */
3853 if (SMALL_REGISTER_CLASSES)
3854 merge_assigned_reloads (insn);
3856 /* Generate the insns to reload operands into or out of
3857 their reload regs. */
3858 emit_reload_insns (chain);
3860 /* Substitute the chosen reload regs from reload_reg_rtx
3861 into the insn's body (or perhaps into the bodies of other
3862 load and store insn that we just made for reloading
3863 and that we moved the structure into). */
3864 subst_reloads (insn);
3866 /* If this was an ASM, make sure that all the reload insns
3867 we have generated are valid. If not, give an error
3868 and delete them. */
3870 if (asm_noperands (PATTERN (insn)) >= 0)
3871 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3872 if (p != insn && INSN_P (p)
3873 && GET_CODE (PATTERN (p)) != USE
3874 && (recog_memoized (p) < 0
3875 || (extract_insn (p), ! constrain_operands (1))))
3877 error_for_asm (insn,
3878 "`asm' operand requires impossible reload");
3879 delete_insn (p);
3883 if (num_eliminable && chain->need_elim)
3884 update_eliminable_offsets ();
3886 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3887 is no longer validly lying around to save a future reload.
3888 Note that this does not detect pseudos that were reloaded
3889 for this insn in order to be stored in
3890 (obeying register constraints). That is correct; such reload
3891 registers ARE still valid. */
3892 note_stores (oldpat, forget_old_reloads_1, NULL);
3894 /* There may have been CLOBBER insns placed after INSN. So scan
3895 between INSN and NEXT and use them to forget old reloads. */
3896 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3897 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
3898 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3900 #ifdef AUTO_INC_DEC
3901 /* Likewise for regs altered by auto-increment in this insn.
3902 REG_INC notes have been changed by reloading:
3903 find_reloads_address_1 records substitutions for them,
3904 which have been performed by subst_reloads above. */
3905 for (i = n_reloads - 1; i >= 0; i--)
3907 rtx in_reg = rld[i].in_reg;
3908 if (in_reg)
3910 enum rtx_code code = GET_CODE (in_reg);
3911 /* PRE_INC / PRE_DEC will have the reload register ending up
3912 with the same value as the stack slot, but that doesn't
3913 hold true for POST_INC / POST_DEC. Either we have to
3914 convert the memory access to a true POST_INC / POST_DEC,
3915 or we can't use the reload register for inheritance. */
3916 if ((code == POST_INC || code == POST_DEC)
3917 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3918 REGNO (rld[i].reg_rtx))
3919 /* Make sure it is the inc/dec pseudo, and not
3920 some other (e.g. output operand) pseudo. */
3921 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3922 == REGNO (XEXP (in_reg, 0))))
3925 rtx reload_reg = rld[i].reg_rtx;
3926 enum machine_mode mode = GET_MODE (reload_reg);
3927 int n = 0;
3928 rtx p;
3930 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3932 /* We really want to ignore REG_INC notes here, so
3933 use PATTERN (p) as argument to reg_set_p . */
3934 if (reg_set_p (reload_reg, PATTERN (p)))
3935 break;
3936 n = count_occurrences (PATTERN (p), reload_reg, 0);
3937 if (! n)
3938 continue;
3939 if (n == 1)
3941 n = validate_replace_rtx (reload_reg,
3942 gen_rtx_fmt_e (code,
3943 mode,
3944 reload_reg),
3947 /* We must also verify that the constraints
3948 are met after the replacement. */
3949 extract_insn (p);
3950 if (n)
3951 n = constrain_operands (1);
3952 else
3953 break;
3955 /* If the constraints were not met, then
3956 undo the replacement. */
3957 if (!n)
3959 validate_replace_rtx (gen_rtx_fmt_e (code,
3960 mode,
3961 reload_reg),
3962 reload_reg, p);
3963 break;
3967 break;
3969 if (n == 1)
3971 REG_NOTES (p)
3972 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
3973 REG_NOTES (p));
3974 /* Mark this as having an output reload so that the
3975 REG_INC processing code below won't invalidate
3976 the reload for inheritance. */
3977 SET_HARD_REG_BIT (reg_is_output_reload,
3978 REGNO (reload_reg));
3979 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3981 else
3982 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
3983 NULL);
3985 else if ((code == PRE_INC || code == PRE_DEC)
3986 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3987 REGNO (rld[i].reg_rtx))
3988 /* Make sure it is the inc/dec pseudo, and not
3989 some other (e.g. output operand) pseudo. */
3990 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3991 == REGNO (XEXP (in_reg, 0))))
3993 SET_HARD_REG_BIT (reg_is_output_reload,
3994 REGNO (rld[i].reg_rtx));
3995 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3999 /* If a pseudo that got a hard register is auto-incremented,
4000 we must purge records of copying it into pseudos without
4001 hard registers. */
4002 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4003 if (REG_NOTE_KIND (x) == REG_INC)
4005 /* See if this pseudo reg was reloaded in this insn.
4006 If so, its last-reload info is still valid
4007 because it is based on this insn's reload. */
4008 for (i = 0; i < n_reloads; i++)
4009 if (rld[i].out == XEXP (x, 0))
4010 break;
4012 if (i == n_reloads)
4013 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4015 #endif
4017 /* A reload reg's contents are unknown after a label. */
4018 if (LABEL_P (insn))
4019 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4021 /* Don't assume a reload reg is still good after a call insn
4022 if it is a call-used reg, or if it contains a value that will
4023 be partially clobbered by the call. */
4024 else if (CALL_P (insn))
4026 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4027 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4031 /* Clean up. */
4032 free (reg_last_reload_reg);
4033 free (reg_has_output_reload);
4036 /* Discard all record of any value reloaded from X,
4037 or reloaded in X from someplace else;
4038 unless X is an output reload reg of the current insn.
4040 X may be a hard reg (the reload reg)
4041 or it may be a pseudo reg that was reloaded from. */
4043 static void
4044 forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
4045 void *data ATTRIBUTE_UNUSED)
4047 unsigned int regno;
4048 unsigned int nr;
4050 /* note_stores does give us subregs of hard regs,
4051 subreg_regno_offset will abort if it is not a hard reg. */
4052 while (GET_CODE (x) == SUBREG)
4054 /* We ignore the subreg offset when calculating the regno,
4055 because we are using the entire underlying hard register
4056 below. */
4057 x = SUBREG_REG (x);
4060 if (!REG_P (x))
4061 return;
4063 regno = REGNO (x);
4065 if (regno >= FIRST_PSEUDO_REGISTER)
4066 nr = 1;
4067 else
4069 unsigned int i;
4071 nr = hard_regno_nregs[regno][GET_MODE (x)];
4072 /* Storing into a spilled-reg invalidates its contents.
4073 This can happen if a block-local pseudo is allocated to that reg
4074 and it wasn't spilled because this block's total need is 0.
4075 Then some insn might have an optional reload and use this reg. */
4076 for (i = 0; i < nr; i++)
4077 /* But don't do this if the reg actually serves as an output
4078 reload reg in the current instruction. */
4079 if (n_reloads == 0
4080 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4082 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4083 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
4084 spill_reg_store[regno + i] = 0;
4088 /* Since value of X has changed,
4089 forget any value previously copied from it. */
4091 while (nr-- > 0)
4092 /* But don't forget a copy if this is the output reload
4093 that establishes the copy's validity. */
4094 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4095 reg_last_reload_reg[regno + nr] = 0;
4098 /* The following HARD_REG_SETs indicate when each hard register is
4099 used for a reload of various parts of the current insn. */
4101 /* If reg is unavailable for all reloads. */
4102 static HARD_REG_SET reload_reg_unavailable;
4103 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4104 static HARD_REG_SET reload_reg_used;
4105 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4106 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4107 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4108 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4109 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4110 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4111 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4112 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4113 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4114 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4115 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4116 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4117 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4118 static HARD_REG_SET reload_reg_used_in_op_addr;
4119 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4120 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4121 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4122 static HARD_REG_SET reload_reg_used_in_insn;
4123 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4124 static HARD_REG_SET reload_reg_used_in_other_addr;
4126 /* If reg is in use as a reload reg for any sort of reload. */
4127 static HARD_REG_SET reload_reg_used_at_all;
4129 /* If reg is use as an inherited reload. We just mark the first register
4130 in the group. */
4131 static HARD_REG_SET reload_reg_used_for_inherit;
4133 /* Records which hard regs are used in any way, either as explicit use or
4134 by being allocated to a pseudo during any point of the current insn. */
4135 static HARD_REG_SET reg_used_in_insn;
4137 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4138 TYPE. MODE is used to indicate how many consecutive regs are
4139 actually used. */
4141 static void
4142 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4143 enum machine_mode mode)
4145 unsigned int nregs = hard_regno_nregs[regno][mode];
4146 unsigned int i;
4148 for (i = regno; i < nregs + regno; i++)
4150 switch (type)
4152 case RELOAD_OTHER:
4153 SET_HARD_REG_BIT (reload_reg_used, i);
4154 break;
4156 case RELOAD_FOR_INPUT_ADDRESS:
4157 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4158 break;
4160 case RELOAD_FOR_INPADDR_ADDRESS:
4161 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4162 break;
4164 case RELOAD_FOR_OUTPUT_ADDRESS:
4165 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4166 break;
4168 case RELOAD_FOR_OUTADDR_ADDRESS:
4169 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4170 break;
4172 case RELOAD_FOR_OPERAND_ADDRESS:
4173 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4174 break;
4176 case RELOAD_FOR_OPADDR_ADDR:
4177 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4178 break;
4180 case RELOAD_FOR_OTHER_ADDRESS:
4181 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4182 break;
4184 case RELOAD_FOR_INPUT:
4185 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4186 break;
4188 case RELOAD_FOR_OUTPUT:
4189 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4190 break;
4192 case RELOAD_FOR_INSN:
4193 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4194 break;
4197 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4201 /* Similarly, but show REGNO is no longer in use for a reload. */
4203 static void
4204 clear_reload_reg_in_use (unsigned int regno, int opnum,
4205 enum reload_type type, enum machine_mode mode)
4207 unsigned int nregs = hard_regno_nregs[regno][mode];
4208 unsigned int start_regno, end_regno, r;
4209 int i;
4210 /* A complication is that for some reload types, inheritance might
4211 allow multiple reloads of the same types to share a reload register.
4212 We set check_opnum if we have to check only reloads with the same
4213 operand number, and check_any if we have to check all reloads. */
4214 int check_opnum = 0;
4215 int check_any = 0;
4216 HARD_REG_SET *used_in_set;
4218 switch (type)
4220 case RELOAD_OTHER:
4221 used_in_set = &reload_reg_used;
4222 break;
4224 case RELOAD_FOR_INPUT_ADDRESS:
4225 used_in_set = &reload_reg_used_in_input_addr[opnum];
4226 break;
4228 case RELOAD_FOR_INPADDR_ADDRESS:
4229 check_opnum = 1;
4230 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4231 break;
4233 case RELOAD_FOR_OUTPUT_ADDRESS:
4234 used_in_set = &reload_reg_used_in_output_addr[opnum];
4235 break;
4237 case RELOAD_FOR_OUTADDR_ADDRESS:
4238 check_opnum = 1;
4239 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4240 break;
4242 case RELOAD_FOR_OPERAND_ADDRESS:
4243 used_in_set = &reload_reg_used_in_op_addr;
4244 break;
4246 case RELOAD_FOR_OPADDR_ADDR:
4247 check_any = 1;
4248 used_in_set = &reload_reg_used_in_op_addr_reload;
4249 break;
4251 case RELOAD_FOR_OTHER_ADDRESS:
4252 used_in_set = &reload_reg_used_in_other_addr;
4253 check_any = 1;
4254 break;
4256 case RELOAD_FOR_INPUT:
4257 used_in_set = &reload_reg_used_in_input[opnum];
4258 break;
4260 case RELOAD_FOR_OUTPUT:
4261 used_in_set = &reload_reg_used_in_output[opnum];
4262 break;
4264 case RELOAD_FOR_INSN:
4265 used_in_set = &reload_reg_used_in_insn;
4266 break;
4267 default:
4268 abort ();
4270 /* We resolve conflicts with remaining reloads of the same type by
4271 excluding the intervals of reload registers by them from the
4272 interval of freed reload registers. Since we only keep track of
4273 one set of interval bounds, we might have to exclude somewhat
4274 more than what would be necessary if we used a HARD_REG_SET here.
4275 But this should only happen very infrequently, so there should
4276 be no reason to worry about it. */
4278 start_regno = regno;
4279 end_regno = regno + nregs;
4280 if (check_opnum || check_any)
4282 for (i = n_reloads - 1; i >= 0; i--)
4284 if (rld[i].when_needed == type
4285 && (check_any || rld[i].opnum == opnum)
4286 && rld[i].reg_rtx)
4288 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4289 unsigned int conflict_end
4290 = (conflict_start
4291 + hard_regno_nregs[conflict_start][rld[i].mode]);
4293 /* If there is an overlap with the first to-be-freed register,
4294 adjust the interval start. */
4295 if (conflict_start <= start_regno && conflict_end > start_regno)
4296 start_regno = conflict_end;
4297 /* Otherwise, if there is a conflict with one of the other
4298 to-be-freed registers, adjust the interval end. */
4299 if (conflict_start > start_regno && conflict_start < end_regno)
4300 end_regno = conflict_start;
4305 for (r = start_regno; r < end_regno; r++)
4306 CLEAR_HARD_REG_BIT (*used_in_set, r);
4309 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4310 specified by OPNUM and TYPE. */
4312 static int
4313 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4315 int i;
4317 /* In use for a RELOAD_OTHER means it's not available for anything. */
4318 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4319 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4320 return 0;
4322 switch (type)
4324 case RELOAD_OTHER:
4325 /* In use for anything means we can't use it for RELOAD_OTHER. */
4326 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4327 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4328 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4329 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4330 return 0;
4332 for (i = 0; i < reload_n_operands; i++)
4333 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4334 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4335 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4336 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4337 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4338 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4339 return 0;
4341 return 1;
4343 case RELOAD_FOR_INPUT:
4344 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4345 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4346 return 0;
4348 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4349 return 0;
4351 /* If it is used for some other input, can't use it. */
4352 for (i = 0; i < reload_n_operands; i++)
4353 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4354 return 0;
4356 /* If it is used in a later operand's address, can't use it. */
4357 for (i = opnum + 1; i < reload_n_operands; i++)
4358 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4359 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4360 return 0;
4362 return 1;
4364 case RELOAD_FOR_INPUT_ADDRESS:
4365 /* Can't use a register if it is used for an input address for this
4366 operand or used as an input in an earlier one. */
4367 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4368 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4369 return 0;
4371 for (i = 0; i < opnum; i++)
4372 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4373 return 0;
4375 return 1;
4377 case RELOAD_FOR_INPADDR_ADDRESS:
4378 /* Can't use a register if it is used for an input address
4379 for this operand or used as an input in an earlier
4380 one. */
4381 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4382 return 0;
4384 for (i = 0; i < opnum; i++)
4385 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4386 return 0;
4388 return 1;
4390 case RELOAD_FOR_OUTPUT_ADDRESS:
4391 /* Can't use a register if it is used for an output address for this
4392 operand or used as an output in this or a later operand. Note
4393 that multiple output operands are emitted in reverse order, so
4394 the conflicting ones are those with lower indices. */
4395 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4396 return 0;
4398 for (i = 0; i <= opnum; i++)
4399 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4400 return 0;
4402 return 1;
4404 case RELOAD_FOR_OUTADDR_ADDRESS:
4405 /* Can't use a register if it is used for an output address
4406 for this operand or used as an output in this or a
4407 later operand. Note that multiple output operands are
4408 emitted in reverse order, so the conflicting ones are
4409 those with lower indices. */
4410 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4411 return 0;
4413 for (i = 0; i <= opnum; i++)
4414 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4415 return 0;
4417 return 1;
4419 case RELOAD_FOR_OPERAND_ADDRESS:
4420 for (i = 0; i < reload_n_operands; i++)
4421 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4422 return 0;
4424 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4425 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4427 case RELOAD_FOR_OPADDR_ADDR:
4428 for (i = 0; i < reload_n_operands; i++)
4429 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4430 return 0;
4432 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4434 case RELOAD_FOR_OUTPUT:
4435 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4436 outputs, or an operand address for this or an earlier output.
4437 Note that multiple output operands are emitted in reverse order,
4438 so the conflicting ones are those with higher indices. */
4439 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4440 return 0;
4442 for (i = 0; i < reload_n_operands; i++)
4443 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4444 return 0;
4446 for (i = opnum; i < reload_n_operands; i++)
4447 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4448 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4449 return 0;
4451 return 1;
4453 case RELOAD_FOR_INSN:
4454 for (i = 0; i < reload_n_operands; i++)
4455 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4456 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4457 return 0;
4459 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4460 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4462 case RELOAD_FOR_OTHER_ADDRESS:
4463 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4465 abort ();
4468 /* Return 1 if the value in reload reg REGNO, as used by a reload
4469 needed for the part of the insn specified by OPNUM and TYPE,
4470 is still available in REGNO at the end of the insn.
4472 We can assume that the reload reg was already tested for availability
4473 at the time it is needed, and we should not check this again,
4474 in case the reg has already been marked in use. */
4476 static int
4477 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4479 int i;
4481 switch (type)
4483 case RELOAD_OTHER:
4484 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4485 its value must reach the end. */
4486 return 1;
4488 /* If this use is for part of the insn,
4489 its value reaches if no subsequent part uses the same register.
4490 Just like the above function, don't try to do this with lots
4491 of fallthroughs. */
4493 case RELOAD_FOR_OTHER_ADDRESS:
4494 /* Here we check for everything else, since these don't conflict
4495 with anything else and everything comes later. */
4497 for (i = 0; i < reload_n_operands; i++)
4498 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4499 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4500 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4501 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4502 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4503 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4504 return 0;
4506 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4507 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4508 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4509 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4511 case RELOAD_FOR_INPUT_ADDRESS:
4512 case RELOAD_FOR_INPADDR_ADDRESS:
4513 /* Similar, except that we check only for this and subsequent inputs
4514 and the address of only subsequent inputs and we do not need
4515 to check for RELOAD_OTHER objects since they are known not to
4516 conflict. */
4518 for (i = opnum; i < reload_n_operands; i++)
4519 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4520 return 0;
4522 for (i = opnum + 1; i < reload_n_operands; i++)
4523 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4524 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4525 return 0;
4527 for (i = 0; i < reload_n_operands; i++)
4528 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4529 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4530 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4531 return 0;
4533 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4534 return 0;
4536 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4537 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4538 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4540 case RELOAD_FOR_INPUT:
4541 /* Similar to input address, except we start at the next operand for
4542 both input and input address and we do not check for
4543 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4544 would conflict. */
4546 for (i = opnum + 1; i < reload_n_operands; i++)
4547 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4548 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4549 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4550 return 0;
4552 /* ... fall through ... */
4554 case RELOAD_FOR_OPERAND_ADDRESS:
4555 /* Check outputs and their addresses. */
4557 for (i = 0; i < reload_n_operands; i++)
4558 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4559 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4560 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4561 return 0;
4563 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4565 case RELOAD_FOR_OPADDR_ADDR:
4566 for (i = 0; i < reload_n_operands; i++)
4567 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4568 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4569 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4570 return 0;
4572 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4573 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4574 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4576 case RELOAD_FOR_INSN:
4577 /* These conflict with other outputs with RELOAD_OTHER. So
4578 we need only check for output addresses. */
4580 opnum = reload_n_operands;
4582 /* ... fall through ... */
4584 case RELOAD_FOR_OUTPUT:
4585 case RELOAD_FOR_OUTPUT_ADDRESS:
4586 case RELOAD_FOR_OUTADDR_ADDRESS:
4587 /* We already know these can't conflict with a later output. So the
4588 only thing to check are later output addresses.
4589 Note that multiple output operands are emitted in reverse order,
4590 so the conflicting ones are those with lower indices. */
4591 for (i = 0; i < opnum; i++)
4592 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4593 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4594 return 0;
4596 return 1;
4599 abort ();
4602 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4603 Return 0 otherwise.
4605 This function uses the same algorithm as reload_reg_free_p above. */
4608 reloads_conflict (int r1, int r2)
4610 enum reload_type r1_type = rld[r1].when_needed;
4611 enum reload_type r2_type = rld[r2].when_needed;
4612 int r1_opnum = rld[r1].opnum;
4613 int r2_opnum = rld[r2].opnum;
4615 /* RELOAD_OTHER conflicts with everything. */
4616 if (r2_type == RELOAD_OTHER)
4617 return 1;
4619 /* Otherwise, check conflicts differently for each type. */
4621 switch (r1_type)
4623 case RELOAD_FOR_INPUT:
4624 return (r2_type == RELOAD_FOR_INSN
4625 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4626 || r2_type == RELOAD_FOR_OPADDR_ADDR
4627 || r2_type == RELOAD_FOR_INPUT
4628 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4629 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4630 && r2_opnum > r1_opnum));
4632 case RELOAD_FOR_INPUT_ADDRESS:
4633 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4634 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4636 case RELOAD_FOR_INPADDR_ADDRESS:
4637 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4638 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4640 case RELOAD_FOR_OUTPUT_ADDRESS:
4641 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4642 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4644 case RELOAD_FOR_OUTADDR_ADDRESS:
4645 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4646 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4648 case RELOAD_FOR_OPERAND_ADDRESS:
4649 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4650 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4652 case RELOAD_FOR_OPADDR_ADDR:
4653 return (r2_type == RELOAD_FOR_INPUT
4654 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4656 case RELOAD_FOR_OUTPUT:
4657 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4658 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4659 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4660 && r2_opnum >= r1_opnum));
4662 case RELOAD_FOR_INSN:
4663 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4664 || r2_type == RELOAD_FOR_INSN
4665 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4667 case RELOAD_FOR_OTHER_ADDRESS:
4668 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4670 case RELOAD_OTHER:
4671 return 1;
4673 default:
4674 abort ();
4678 /* Indexed by reload number, 1 if incoming value
4679 inherited from previous insns. */
4680 char reload_inherited[MAX_RELOADS];
4682 /* For an inherited reload, this is the insn the reload was inherited from,
4683 if we know it. Otherwise, this is 0. */
4684 rtx reload_inheritance_insn[MAX_RELOADS];
4686 /* If nonzero, this is a place to get the value of the reload,
4687 rather than using reload_in. */
4688 rtx reload_override_in[MAX_RELOADS];
4690 /* For each reload, the hard register number of the register used,
4691 or -1 if we did not need a register for this reload. */
4692 int reload_spill_index[MAX_RELOADS];
4694 /* Subroutine of free_for_value_p, used to check a single register.
4695 START_REGNO is the starting regno of the full reload register
4696 (possibly comprising multiple hard registers) that we are considering. */
4698 static int
4699 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
4700 enum reload_type type, rtx value, rtx out,
4701 int reloadnum, int ignore_address_reloads)
4703 int time1;
4704 /* Set if we see an input reload that must not share its reload register
4705 with any new earlyclobber, but might otherwise share the reload
4706 register with an output or input-output reload. */
4707 int check_earlyclobber = 0;
4708 int i;
4709 int copy = 0;
4711 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4712 return 0;
4714 if (out == const0_rtx)
4716 copy = 1;
4717 out = NULL_RTX;
4720 /* We use some pseudo 'time' value to check if the lifetimes of the
4721 new register use would overlap with the one of a previous reload
4722 that is not read-only or uses a different value.
4723 The 'time' used doesn't have to be linear in any shape or form, just
4724 monotonic.
4725 Some reload types use different 'buckets' for each operand.
4726 So there are MAX_RECOG_OPERANDS different time values for each
4727 such reload type.
4728 We compute TIME1 as the time when the register for the prospective
4729 new reload ceases to be live, and TIME2 for each existing
4730 reload as the time when that the reload register of that reload
4731 becomes live.
4732 Where there is little to be gained by exact lifetime calculations,
4733 we just make conservative assumptions, i.e. a longer lifetime;
4734 this is done in the 'default:' cases. */
4735 switch (type)
4737 case RELOAD_FOR_OTHER_ADDRESS:
4738 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4739 time1 = copy ? 0 : 1;
4740 break;
4741 case RELOAD_OTHER:
4742 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4743 break;
4744 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4745 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4746 respectively, to the time values for these, we get distinct time
4747 values. To get distinct time values for each operand, we have to
4748 multiply opnum by at least three. We round that up to four because
4749 multiply by four is often cheaper. */
4750 case RELOAD_FOR_INPADDR_ADDRESS:
4751 time1 = opnum * 4 + 2;
4752 break;
4753 case RELOAD_FOR_INPUT_ADDRESS:
4754 time1 = opnum * 4 + 3;
4755 break;
4756 case RELOAD_FOR_INPUT:
4757 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4758 executes (inclusive). */
4759 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4760 break;
4761 case RELOAD_FOR_OPADDR_ADDR:
4762 /* opnum * 4 + 4
4763 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4764 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4765 break;
4766 case RELOAD_FOR_OPERAND_ADDRESS:
4767 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4768 is executed. */
4769 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4770 break;
4771 case RELOAD_FOR_OUTADDR_ADDRESS:
4772 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4773 break;
4774 case RELOAD_FOR_OUTPUT_ADDRESS:
4775 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4776 break;
4777 default:
4778 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4781 for (i = 0; i < n_reloads; i++)
4783 rtx reg = rld[i].reg_rtx;
4784 if (reg && REG_P (reg)
4785 && ((unsigned) regno - true_regnum (reg)
4786 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
4787 && i != reloadnum)
4789 rtx other_input = rld[i].in;
4791 /* If the other reload loads the same input value, that
4792 will not cause a conflict only if it's loading it into
4793 the same register. */
4794 if (true_regnum (reg) != start_regno)
4795 other_input = NULL_RTX;
4796 if (! other_input || ! rtx_equal_p (other_input, value)
4797 || rld[i].out || out)
4799 int time2;
4800 switch (rld[i].when_needed)
4802 case RELOAD_FOR_OTHER_ADDRESS:
4803 time2 = 0;
4804 break;
4805 case RELOAD_FOR_INPADDR_ADDRESS:
4806 /* find_reloads makes sure that a
4807 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4808 by at most one - the first -
4809 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4810 address reload is inherited, the address address reload
4811 goes away, so we can ignore this conflict. */
4812 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4813 && ignore_address_reloads
4814 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4815 Then the address address is still needed to store
4816 back the new address. */
4817 && ! rld[reloadnum].out)
4818 continue;
4819 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4820 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4821 reloads go away. */
4822 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4823 && ignore_address_reloads
4824 /* Unless we are reloading an auto_inc expression. */
4825 && ! rld[reloadnum].out)
4826 continue;
4827 time2 = rld[i].opnum * 4 + 2;
4828 break;
4829 case RELOAD_FOR_INPUT_ADDRESS:
4830 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4831 && ignore_address_reloads
4832 && ! rld[reloadnum].out)
4833 continue;
4834 time2 = rld[i].opnum * 4 + 3;
4835 break;
4836 case RELOAD_FOR_INPUT:
4837 time2 = rld[i].opnum * 4 + 4;
4838 check_earlyclobber = 1;
4839 break;
4840 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4841 == MAX_RECOG_OPERAND * 4 */
4842 case RELOAD_FOR_OPADDR_ADDR:
4843 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4844 && ignore_address_reloads
4845 && ! rld[reloadnum].out)
4846 continue;
4847 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4848 break;
4849 case RELOAD_FOR_OPERAND_ADDRESS:
4850 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4851 check_earlyclobber = 1;
4852 break;
4853 case RELOAD_FOR_INSN:
4854 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4855 break;
4856 case RELOAD_FOR_OUTPUT:
4857 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4858 instruction is executed. */
4859 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4860 break;
4861 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4862 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4863 value. */
4864 case RELOAD_FOR_OUTADDR_ADDRESS:
4865 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4866 && ignore_address_reloads
4867 && ! rld[reloadnum].out)
4868 continue;
4869 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4870 break;
4871 case RELOAD_FOR_OUTPUT_ADDRESS:
4872 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4873 break;
4874 case RELOAD_OTHER:
4875 /* If there is no conflict in the input part, handle this
4876 like an output reload. */
4877 if (! rld[i].in || rtx_equal_p (other_input, value))
4879 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4880 /* Earlyclobbered outputs must conflict with inputs. */
4881 if (earlyclobber_operand_p (rld[i].out))
4882 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4884 break;
4886 time2 = 1;
4887 /* RELOAD_OTHER might be live beyond instruction execution,
4888 but this is not obvious when we set time2 = 1. So check
4889 here if there might be a problem with the new reload
4890 clobbering the register used by the RELOAD_OTHER. */
4891 if (out)
4892 return 0;
4893 break;
4894 default:
4895 return 0;
4897 if ((time1 >= time2
4898 && (! rld[i].in || rld[i].out
4899 || ! rtx_equal_p (other_input, value)))
4900 || (out && rld[reloadnum].out_reg
4901 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4902 return 0;
4907 /* Earlyclobbered outputs must conflict with inputs. */
4908 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4909 return 0;
4911 return 1;
4914 /* Return 1 if the value in reload reg REGNO, as used by a reload
4915 needed for the part of the insn specified by OPNUM and TYPE,
4916 may be used to load VALUE into it.
4918 MODE is the mode in which the register is used, this is needed to
4919 determine how many hard regs to test.
4921 Other read-only reloads with the same value do not conflict
4922 unless OUT is nonzero and these other reloads have to live while
4923 output reloads live.
4924 If OUT is CONST0_RTX, this is a special case: it means that the
4925 test should not be for using register REGNO as reload register, but
4926 for copying from register REGNO into the reload register.
4928 RELOADNUM is the number of the reload we want to load this value for;
4929 a reload does not conflict with itself.
4931 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4932 reloads that load an address for the very reload we are considering.
4934 The caller has to make sure that there is no conflict with the return
4935 register. */
4937 static int
4938 free_for_value_p (int regno, enum machine_mode mode, int opnum,
4939 enum reload_type type, rtx value, rtx out, int reloadnum,
4940 int ignore_address_reloads)
4942 int nregs = hard_regno_nregs[regno][mode];
4943 while (nregs-- > 0)
4944 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
4945 value, out, reloadnum,
4946 ignore_address_reloads))
4947 return 0;
4948 return 1;
4951 /* Return nonzero if the rtx X is invariant over the current function. */
4952 /* ??? Actually, the places where we use this expect exactly what
4953 * is tested here, and not everything that is function invariant. In
4954 * particular, the frame pointer and arg pointer are special cased;
4955 * pic_offset_table_rtx is not, and this will cause aborts when we
4956 * go to spill these things to memory. */
4958 static int
4959 function_invariant_p (rtx x)
4961 if (CONSTANT_P (x))
4962 return 1;
4963 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4964 return 1;
4965 if (GET_CODE (x) == PLUS
4966 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
4967 && CONSTANT_P (XEXP (x, 1)))
4968 return 1;
4969 return 0;
4972 /* Determine whether the reload reg X overlaps any rtx'es used for
4973 overriding inheritance. Return nonzero if so. */
4975 static int
4976 conflicts_with_override (rtx x)
4978 int i;
4979 for (i = 0; i < n_reloads; i++)
4980 if (reload_override_in[i]
4981 && reg_overlap_mentioned_p (x, reload_override_in[i]))
4982 return 1;
4983 return 0;
4986 /* Give an error message saying we failed to find a reload for INSN,
4987 and clear out reload R. */
4988 static void
4989 failed_reload (rtx insn, int r)
4991 if (asm_noperands (PATTERN (insn)) < 0)
4992 /* It's the compiler's fault. */
4993 fatal_insn ("could not find a spill register", insn);
4995 /* It's the user's fault; the operand's mode and constraint
4996 don't match. Disable this reload so we don't crash in final. */
4997 error_for_asm (insn,
4998 "`asm' operand constraint incompatible with operand size");
4999 rld[r].in = 0;
5000 rld[r].out = 0;
5001 rld[r].reg_rtx = 0;
5002 rld[r].optional = 1;
5003 rld[r].secondary_p = 1;
5006 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5007 for reload R. If it's valid, get an rtx for it. Return nonzero if
5008 successful. */
5009 static int
5010 set_reload_reg (int i, int r)
5012 int regno;
5013 rtx reg = spill_reg_rtx[i];
5015 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5016 spill_reg_rtx[i] = reg
5017 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5019 regno = true_regnum (reg);
5021 /* Detect when the reload reg can't hold the reload mode.
5022 This used to be one `if', but Sequent compiler can't handle that. */
5023 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5025 enum machine_mode test_mode = VOIDmode;
5026 if (rld[r].in)
5027 test_mode = GET_MODE (rld[r].in);
5028 /* If rld[r].in has VOIDmode, it means we will load it
5029 in whatever mode the reload reg has: to wit, rld[r].mode.
5030 We have already tested that for validity. */
5031 /* Aside from that, we need to test that the expressions
5032 to reload from or into have modes which are valid for this
5033 reload register. Otherwise the reload insns would be invalid. */
5034 if (! (rld[r].in != 0 && test_mode != VOIDmode
5035 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5036 if (! (rld[r].out != 0
5037 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5039 /* The reg is OK. */
5040 last_spill_reg = i;
5042 /* Mark as in use for this insn the reload regs we use
5043 for this. */
5044 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5045 rld[r].when_needed, rld[r].mode);
5047 rld[r].reg_rtx = reg;
5048 reload_spill_index[r] = spill_regs[i];
5049 return 1;
5052 return 0;
5055 /* Find a spill register to use as a reload register for reload R.
5056 LAST_RELOAD is nonzero if this is the last reload for the insn being
5057 processed.
5059 Set rld[R].reg_rtx to the register allocated.
5061 We return 1 if successful, or 0 if we couldn't find a spill reg and
5062 we didn't change anything. */
5064 static int
5065 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5066 int last_reload)
5068 int i, pass, count;
5070 /* If we put this reload ahead, thinking it is a group,
5071 then insist on finding a group. Otherwise we can grab a
5072 reg that some other reload needs.
5073 (That can happen when we have a 68000 DATA_OR_FP_REG
5074 which is a group of data regs or one fp reg.)
5075 We need not be so restrictive if there are no more reloads
5076 for this insn.
5078 ??? Really it would be nicer to have smarter handling
5079 for that kind of reg class, where a problem like this is normal.
5080 Perhaps those classes should be avoided for reloading
5081 by use of more alternatives. */
5083 int force_group = rld[r].nregs > 1 && ! last_reload;
5085 /* If we want a single register and haven't yet found one,
5086 take any reg in the right class and not in use.
5087 If we want a consecutive group, here is where we look for it.
5089 We use two passes so we can first look for reload regs to
5090 reuse, which are already in use for other reloads in this insn,
5091 and only then use additional registers.
5092 I think that maximizing reuse is needed to make sure we don't
5093 run out of reload regs. Suppose we have three reloads, and
5094 reloads A and B can share regs. These need two regs.
5095 Suppose A and B are given different regs.
5096 That leaves none for C. */
5097 for (pass = 0; pass < 2; pass++)
5099 /* I is the index in spill_regs.
5100 We advance it round-robin between insns to use all spill regs
5101 equally, so that inherited reloads have a chance
5102 of leapfrogging each other. */
5104 i = last_spill_reg;
5106 for (count = 0; count < n_spills; count++)
5108 int class = (int) rld[r].class;
5109 int regnum;
5111 i++;
5112 if (i >= n_spills)
5113 i -= n_spills;
5114 regnum = spill_regs[i];
5116 if ((reload_reg_free_p (regnum, rld[r].opnum,
5117 rld[r].when_needed)
5118 || (rld[r].in
5119 /* We check reload_reg_used to make sure we
5120 don't clobber the return register. */
5121 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5122 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5123 rld[r].when_needed, rld[r].in,
5124 rld[r].out, r, 1)))
5125 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5126 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5127 /* Look first for regs to share, then for unshared. But
5128 don't share regs used for inherited reloads; they are
5129 the ones we want to preserve. */
5130 && (pass
5131 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5132 regnum)
5133 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5134 regnum))))
5136 int nr = hard_regno_nregs[regnum][rld[r].mode];
5137 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5138 (on 68000) got us two FP regs. If NR is 1,
5139 we would reject both of them. */
5140 if (force_group)
5141 nr = rld[r].nregs;
5142 /* If we need only one reg, we have already won. */
5143 if (nr == 1)
5145 /* But reject a single reg if we demand a group. */
5146 if (force_group)
5147 continue;
5148 break;
5150 /* Otherwise check that as many consecutive regs as we need
5151 are available here. */
5152 while (nr > 1)
5154 int regno = regnum + nr - 1;
5155 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5156 && spill_reg_order[regno] >= 0
5157 && reload_reg_free_p (regno, rld[r].opnum,
5158 rld[r].when_needed)))
5159 break;
5160 nr--;
5162 if (nr == 1)
5163 break;
5167 /* If we found something on pass 1, omit pass 2. */
5168 if (count < n_spills)
5169 break;
5172 /* We should have found a spill register by now. */
5173 if (count >= n_spills)
5174 return 0;
5176 /* I is the index in SPILL_REG_RTX of the reload register we are to
5177 allocate. Get an rtx for it and find its register number. */
5179 return set_reload_reg (i, r);
5182 /* Initialize all the tables needed to allocate reload registers.
5183 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5184 is the array we use to restore the reg_rtx field for every reload. */
5186 static void
5187 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5189 int i;
5191 for (i = 0; i < n_reloads; i++)
5192 rld[i].reg_rtx = save_reload_reg_rtx[i];
5194 memset (reload_inherited, 0, MAX_RELOADS);
5195 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5196 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5198 CLEAR_HARD_REG_SET (reload_reg_used);
5199 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5200 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5201 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5202 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5203 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5205 CLEAR_HARD_REG_SET (reg_used_in_insn);
5207 HARD_REG_SET tmp;
5208 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5209 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5210 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5211 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5212 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5213 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5216 for (i = 0; i < reload_n_operands; i++)
5218 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5219 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5220 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5221 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5222 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5223 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5226 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5228 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5230 for (i = 0; i < n_reloads; i++)
5231 /* If we have already decided to use a certain register,
5232 don't use it in another way. */
5233 if (rld[i].reg_rtx)
5234 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5235 rld[i].when_needed, rld[i].mode);
5238 /* Assign hard reg targets for the pseudo-registers we must reload
5239 into hard regs for this insn.
5240 Also output the instructions to copy them in and out of the hard regs.
5242 For machines with register classes, we are responsible for
5243 finding a reload reg in the proper class. */
5245 static void
5246 choose_reload_regs (struct insn_chain *chain)
5248 rtx insn = chain->insn;
5249 int i, j;
5250 unsigned int max_group_size = 1;
5251 enum reg_class group_class = NO_REGS;
5252 int pass, win, inheritance;
5254 rtx save_reload_reg_rtx[MAX_RELOADS];
5256 /* In order to be certain of getting the registers we need,
5257 we must sort the reloads into order of increasing register class.
5258 Then our grabbing of reload registers will parallel the process
5259 that provided the reload registers.
5261 Also note whether any of the reloads wants a consecutive group of regs.
5262 If so, record the maximum size of the group desired and what
5263 register class contains all the groups needed by this insn. */
5265 for (j = 0; j < n_reloads; j++)
5267 reload_order[j] = j;
5268 reload_spill_index[j] = -1;
5270 if (rld[j].nregs > 1)
5272 max_group_size = MAX (rld[j].nregs, max_group_size);
5273 group_class
5274 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5277 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5280 if (n_reloads > 1)
5281 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5283 /* If -O, try first with inheritance, then turning it off.
5284 If not -O, don't do inheritance.
5285 Using inheritance when not optimizing leads to paradoxes
5286 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5287 because one side of the comparison might be inherited. */
5288 win = 0;
5289 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5291 choose_reload_regs_init (chain, save_reload_reg_rtx);
5293 /* Process the reloads in order of preference just found.
5294 Beyond this point, subregs can be found in reload_reg_rtx.
5296 This used to look for an existing reloaded home for all of the
5297 reloads, and only then perform any new reloads. But that could lose
5298 if the reloads were done out of reg-class order because a later
5299 reload with a looser constraint might have an old home in a register
5300 needed by an earlier reload with a tighter constraint.
5302 To solve this, we make two passes over the reloads, in the order
5303 described above. In the first pass we try to inherit a reload
5304 from a previous insn. If there is a later reload that needs a
5305 class that is a proper subset of the class being processed, we must
5306 also allocate a spill register during the first pass.
5308 Then make a second pass over the reloads to allocate any reloads
5309 that haven't been given registers yet. */
5311 for (j = 0; j < n_reloads; j++)
5313 int r = reload_order[j];
5314 rtx search_equiv = NULL_RTX;
5316 /* Ignore reloads that got marked inoperative. */
5317 if (rld[r].out == 0 && rld[r].in == 0
5318 && ! rld[r].secondary_p)
5319 continue;
5321 /* If find_reloads chose to use reload_in or reload_out as a reload
5322 register, we don't need to chose one. Otherwise, try even if it
5323 found one since we might save an insn if we find the value lying
5324 around.
5325 Try also when reload_in is a pseudo without a hard reg. */
5326 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5327 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5328 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5329 && !MEM_P (rld[r].in)
5330 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5331 continue;
5333 #if 0 /* No longer needed for correct operation.
5334 It might give better code, or might not; worth an experiment? */
5335 /* If this is an optional reload, we can't inherit from earlier insns
5336 until we are sure that any non-optional reloads have been allocated.
5337 The following code takes advantage of the fact that optional reloads
5338 are at the end of reload_order. */
5339 if (rld[r].optional != 0)
5340 for (i = 0; i < j; i++)
5341 if ((rld[reload_order[i]].out != 0
5342 || rld[reload_order[i]].in != 0
5343 || rld[reload_order[i]].secondary_p)
5344 && ! rld[reload_order[i]].optional
5345 && rld[reload_order[i]].reg_rtx == 0)
5346 allocate_reload_reg (chain, reload_order[i], 0);
5347 #endif
5349 /* First see if this pseudo is already available as reloaded
5350 for a previous insn. We cannot try to inherit for reloads
5351 that are smaller than the maximum number of registers needed
5352 for groups unless the register we would allocate cannot be used
5353 for the groups.
5355 We could check here to see if this is a secondary reload for
5356 an object that is already in a register of the desired class.
5357 This would avoid the need for the secondary reload register.
5358 But this is complex because we can't easily determine what
5359 objects might want to be loaded via this reload. So let a
5360 register be allocated here. In `emit_reload_insns' we suppress
5361 one of the loads in the case described above. */
5363 if (inheritance)
5365 int byte = 0;
5366 int regno = -1;
5367 enum machine_mode mode = VOIDmode;
5369 if (rld[r].in == 0)
5371 else if (REG_P (rld[r].in))
5373 regno = REGNO (rld[r].in);
5374 mode = GET_MODE (rld[r].in);
5376 else if (REG_P (rld[r].in_reg))
5378 regno = REGNO (rld[r].in_reg);
5379 mode = GET_MODE (rld[r].in_reg);
5381 else if (GET_CODE (rld[r].in_reg) == SUBREG
5382 && REG_P (SUBREG_REG (rld[r].in_reg)))
5384 byte = SUBREG_BYTE (rld[r].in_reg);
5385 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5386 if (regno < FIRST_PSEUDO_REGISTER)
5387 regno = subreg_regno (rld[r].in_reg);
5388 mode = GET_MODE (rld[r].in_reg);
5390 #ifdef AUTO_INC_DEC
5391 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5392 || GET_CODE (rld[r].in_reg) == PRE_DEC
5393 || GET_CODE (rld[r].in_reg) == POST_INC
5394 || GET_CODE (rld[r].in_reg) == POST_DEC)
5395 && REG_P (XEXP (rld[r].in_reg, 0)))
5397 regno = REGNO (XEXP (rld[r].in_reg, 0));
5398 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5399 rld[r].out = rld[r].in;
5401 #endif
5402 #if 0
5403 /* This won't work, since REGNO can be a pseudo reg number.
5404 Also, it takes much more hair to keep track of all the things
5405 that can invalidate an inherited reload of part of a pseudoreg. */
5406 else if (GET_CODE (rld[r].in) == SUBREG
5407 && REG_P (SUBREG_REG (rld[r].in)))
5408 regno = subreg_regno (rld[r].in);
5409 #endif
5411 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5413 enum reg_class class = rld[r].class, last_class;
5414 rtx last_reg = reg_last_reload_reg[regno];
5415 enum machine_mode need_mode;
5417 i = REGNO (last_reg);
5418 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5419 last_class = REGNO_REG_CLASS (i);
5421 if (byte == 0)
5422 need_mode = mode;
5423 else
5424 need_mode
5425 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
5426 GET_MODE_CLASS (mode));
5428 if (
5429 #ifdef CANNOT_CHANGE_MODE_CLASS
5430 (!REG_CANNOT_CHANGE_MODE_P (i, GET_MODE (last_reg),
5431 need_mode)
5433 #endif
5434 (GET_MODE_SIZE (GET_MODE (last_reg))
5435 >= GET_MODE_SIZE (need_mode))
5436 #ifdef CANNOT_CHANGE_MODE_CLASS
5438 #endif
5439 && reg_reloaded_contents[i] == regno
5440 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5441 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5442 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5443 /* Even if we can't use this register as a reload
5444 register, we might use it for reload_override_in,
5445 if copying it to the desired class is cheap
5446 enough. */
5447 || ((REGISTER_MOVE_COST (mode, last_class, class)
5448 < MEMORY_MOVE_COST (mode, class, 1))
5449 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5450 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5451 last_reg)
5452 == NO_REGS)
5453 #endif
5454 #ifdef SECONDARY_MEMORY_NEEDED
5455 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5456 mode)
5457 #endif
5460 && (rld[r].nregs == max_group_size
5461 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5463 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5464 rld[r].when_needed, rld[r].in,
5465 const0_rtx, r, 1))
5467 /* If a group is needed, verify that all the subsequent
5468 registers still have their values intact. */
5469 int nr = hard_regno_nregs[i][rld[r].mode];
5470 int k;
5472 for (k = 1; k < nr; k++)
5473 if (reg_reloaded_contents[i + k] != regno
5474 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5475 break;
5477 if (k == nr)
5479 int i1;
5480 int bad_for_class;
5482 last_reg = (GET_MODE (last_reg) == mode
5483 ? last_reg : gen_rtx_REG (mode, i));
5485 bad_for_class = 0;
5486 for (k = 0; k < nr; k++)
5487 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5488 i+k);
5490 /* We found a register that contains the
5491 value we need. If this register is the
5492 same as an `earlyclobber' operand of the
5493 current insn, just mark it as a place to
5494 reload from since we can't use it as the
5495 reload register itself. */
5497 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5498 if (reg_overlap_mentioned_for_reload_p
5499 (reg_last_reload_reg[regno],
5500 reload_earlyclobbers[i1]))
5501 break;
5503 if (i1 != n_earlyclobbers
5504 || ! (free_for_value_p (i, rld[r].mode,
5505 rld[r].opnum,
5506 rld[r].when_needed, rld[r].in,
5507 rld[r].out, r, 1))
5508 /* Don't use it if we'd clobber a pseudo reg. */
5509 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5510 && rld[r].out
5511 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5512 /* Don't clobber the frame pointer. */
5513 || (i == HARD_FRAME_POINTER_REGNUM
5514 && frame_pointer_needed
5515 && rld[r].out)
5516 /* Don't really use the inherited spill reg
5517 if we need it wider than we've got it. */
5518 || (GET_MODE_SIZE (rld[r].mode)
5519 > GET_MODE_SIZE (mode))
5520 || bad_for_class
5522 /* If find_reloads chose reload_out as reload
5523 register, stay with it - that leaves the
5524 inherited register for subsequent reloads. */
5525 || (rld[r].out && rld[r].reg_rtx
5526 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5528 if (! rld[r].optional)
5530 reload_override_in[r] = last_reg;
5531 reload_inheritance_insn[r]
5532 = reg_reloaded_insn[i];
5535 else
5537 int k;
5538 /* We can use this as a reload reg. */
5539 /* Mark the register as in use for this part of
5540 the insn. */
5541 mark_reload_reg_in_use (i,
5542 rld[r].opnum,
5543 rld[r].when_needed,
5544 rld[r].mode);
5545 rld[r].reg_rtx = last_reg;
5546 reload_inherited[r] = 1;
5547 reload_inheritance_insn[r]
5548 = reg_reloaded_insn[i];
5549 reload_spill_index[r] = i;
5550 for (k = 0; k < nr; k++)
5551 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5552 i + k);
5559 /* Here's another way to see if the value is already lying around. */
5560 if (inheritance
5561 && rld[r].in != 0
5562 && ! reload_inherited[r]
5563 && rld[r].out == 0
5564 && (CONSTANT_P (rld[r].in)
5565 || GET_CODE (rld[r].in) == PLUS
5566 || REG_P (rld[r].in)
5567 || MEM_P (rld[r].in))
5568 && (rld[r].nregs == max_group_size
5569 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5570 search_equiv = rld[r].in;
5571 /* If this is an output reload from a simple move insn, look
5572 if an equivalence for the input is available. */
5573 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5575 rtx set = single_set (insn);
5577 if (set
5578 && rtx_equal_p (rld[r].out, SET_DEST (set))
5579 && CONSTANT_P (SET_SRC (set)))
5580 search_equiv = SET_SRC (set);
5583 if (search_equiv)
5585 rtx equiv
5586 = find_equiv_reg (search_equiv, insn, rld[r].class,
5587 -1, NULL, 0, rld[r].mode);
5588 int regno = 0;
5590 if (equiv != 0)
5592 if (REG_P (equiv))
5593 regno = REGNO (equiv);
5594 else if (GET_CODE (equiv) == SUBREG)
5596 /* This must be a SUBREG of a hard register.
5597 Make a new REG since this might be used in an
5598 address and not all machines support SUBREGs
5599 there. */
5600 regno = subreg_regno (equiv);
5601 equiv = gen_rtx_REG (rld[r].mode, regno);
5603 else
5604 abort ();
5607 /* If we found a spill reg, reject it unless it is free
5608 and of the desired class. */
5609 if (equiv != 0)
5611 int regs_used = 0;
5612 int bad_for_class = 0;
5613 int max_regno = regno + rld[r].nregs;
5615 for (i = regno; i < max_regno; i++)
5617 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
5619 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5623 if ((regs_used
5624 && ! free_for_value_p (regno, rld[r].mode,
5625 rld[r].opnum, rld[r].when_needed,
5626 rld[r].in, rld[r].out, r, 1))
5627 || bad_for_class)
5628 equiv = 0;
5631 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5632 equiv = 0;
5634 /* We found a register that contains the value we need.
5635 If this register is the same as an `earlyclobber' operand
5636 of the current insn, just mark it as a place to reload from
5637 since we can't use it as the reload register itself. */
5639 if (equiv != 0)
5640 for (i = 0; i < n_earlyclobbers; i++)
5641 if (reg_overlap_mentioned_for_reload_p (equiv,
5642 reload_earlyclobbers[i]))
5644 if (! rld[r].optional)
5645 reload_override_in[r] = equiv;
5646 equiv = 0;
5647 break;
5650 /* If the equiv register we have found is explicitly clobbered
5651 in the current insn, it depends on the reload type if we
5652 can use it, use it for reload_override_in, or not at all.
5653 In particular, we then can't use EQUIV for a
5654 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5656 if (equiv != 0)
5658 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5659 switch (rld[r].when_needed)
5661 case RELOAD_FOR_OTHER_ADDRESS:
5662 case RELOAD_FOR_INPADDR_ADDRESS:
5663 case RELOAD_FOR_INPUT_ADDRESS:
5664 case RELOAD_FOR_OPADDR_ADDR:
5665 break;
5666 case RELOAD_OTHER:
5667 case RELOAD_FOR_INPUT:
5668 case RELOAD_FOR_OPERAND_ADDRESS:
5669 if (! rld[r].optional)
5670 reload_override_in[r] = equiv;
5671 /* Fall through. */
5672 default:
5673 equiv = 0;
5674 break;
5676 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5677 switch (rld[r].when_needed)
5679 case RELOAD_FOR_OTHER_ADDRESS:
5680 case RELOAD_FOR_INPADDR_ADDRESS:
5681 case RELOAD_FOR_INPUT_ADDRESS:
5682 case RELOAD_FOR_OPADDR_ADDR:
5683 case RELOAD_FOR_OPERAND_ADDRESS:
5684 case RELOAD_FOR_INPUT:
5685 break;
5686 case RELOAD_OTHER:
5687 if (! rld[r].optional)
5688 reload_override_in[r] = equiv;
5689 /* Fall through. */
5690 default:
5691 equiv = 0;
5692 break;
5696 /* If we found an equivalent reg, say no code need be generated
5697 to load it, and use it as our reload reg. */
5698 if (equiv != 0
5699 && (regno != HARD_FRAME_POINTER_REGNUM
5700 || !frame_pointer_needed))
5702 int nr = hard_regno_nregs[regno][rld[r].mode];
5703 int k;
5704 rld[r].reg_rtx = equiv;
5705 reload_inherited[r] = 1;
5707 /* If reg_reloaded_valid is not set for this register,
5708 there might be a stale spill_reg_store lying around.
5709 We must clear it, since otherwise emit_reload_insns
5710 might delete the store. */
5711 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5712 spill_reg_store[regno] = NULL_RTX;
5713 /* If any of the hard registers in EQUIV are spill
5714 registers, mark them as in use for this insn. */
5715 for (k = 0; k < nr; k++)
5717 i = spill_reg_order[regno + k];
5718 if (i >= 0)
5720 mark_reload_reg_in_use (regno, rld[r].opnum,
5721 rld[r].when_needed,
5722 rld[r].mode);
5723 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5724 regno + k);
5730 /* If we found a register to use already, or if this is an optional
5731 reload, we are done. */
5732 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5733 continue;
5735 #if 0
5736 /* No longer needed for correct operation. Might or might
5737 not give better code on the average. Want to experiment? */
5739 /* See if there is a later reload that has a class different from our
5740 class that intersects our class or that requires less register
5741 than our reload. If so, we must allocate a register to this
5742 reload now, since that reload might inherit a previous reload
5743 and take the only available register in our class. Don't do this
5744 for optional reloads since they will force all previous reloads
5745 to be allocated. Also don't do this for reloads that have been
5746 turned off. */
5748 for (i = j + 1; i < n_reloads; i++)
5750 int s = reload_order[i];
5752 if ((rld[s].in == 0 && rld[s].out == 0
5753 && ! rld[s].secondary_p)
5754 || rld[s].optional)
5755 continue;
5757 if ((rld[s].class != rld[r].class
5758 && reg_classes_intersect_p (rld[r].class,
5759 rld[s].class))
5760 || rld[s].nregs < rld[r].nregs)
5761 break;
5764 if (i == n_reloads)
5765 continue;
5767 allocate_reload_reg (chain, r, j == n_reloads - 1);
5768 #endif
5771 /* Now allocate reload registers for anything non-optional that
5772 didn't get one yet. */
5773 for (j = 0; j < n_reloads; j++)
5775 int r = reload_order[j];
5777 /* Ignore reloads that got marked inoperative. */
5778 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5779 continue;
5781 /* Skip reloads that already have a register allocated or are
5782 optional. */
5783 if (rld[r].reg_rtx != 0 || rld[r].optional)
5784 continue;
5786 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5787 break;
5790 /* If that loop got all the way, we have won. */
5791 if (j == n_reloads)
5793 win = 1;
5794 break;
5797 /* Loop around and try without any inheritance. */
5800 if (! win)
5802 /* First undo everything done by the failed attempt
5803 to allocate with inheritance. */
5804 choose_reload_regs_init (chain, save_reload_reg_rtx);
5806 /* Some sanity tests to verify that the reloads found in the first
5807 pass are identical to the ones we have now. */
5808 if (chain->n_reloads != n_reloads)
5809 abort ();
5811 for (i = 0; i < n_reloads; i++)
5813 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5814 continue;
5815 if (chain->rld[i].when_needed != rld[i].when_needed)
5816 abort ();
5817 for (j = 0; j < n_spills; j++)
5818 if (spill_regs[j] == chain->rld[i].regno)
5819 if (! set_reload_reg (j, i))
5820 failed_reload (chain->insn, i);
5824 /* If we thought we could inherit a reload, because it seemed that
5825 nothing else wanted the same reload register earlier in the insn,
5826 verify that assumption, now that all reloads have been assigned.
5827 Likewise for reloads where reload_override_in has been set. */
5829 /* If doing expensive optimizations, do one preliminary pass that doesn't
5830 cancel any inheritance, but removes reloads that have been needed only
5831 for reloads that we know can be inherited. */
5832 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5834 for (j = 0; j < n_reloads; j++)
5836 int r = reload_order[j];
5837 rtx check_reg;
5838 if (reload_inherited[r] && rld[r].reg_rtx)
5839 check_reg = rld[r].reg_rtx;
5840 else if (reload_override_in[r]
5841 && (REG_P (reload_override_in[r])
5842 || GET_CODE (reload_override_in[r]) == SUBREG))
5843 check_reg = reload_override_in[r];
5844 else
5845 continue;
5846 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5847 rld[r].opnum, rld[r].when_needed, rld[r].in,
5848 (reload_inherited[r]
5849 ? rld[r].out : const0_rtx),
5850 r, 1))
5852 if (pass)
5853 continue;
5854 reload_inherited[r] = 0;
5855 reload_override_in[r] = 0;
5857 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5858 reload_override_in, then we do not need its related
5859 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5860 likewise for other reload types.
5861 We handle this by removing a reload when its only replacement
5862 is mentioned in reload_in of the reload we are going to inherit.
5863 A special case are auto_inc expressions; even if the input is
5864 inherited, we still need the address for the output. We can
5865 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5866 If we succeeded removing some reload and we are doing a preliminary
5867 pass just to remove such reloads, make another pass, since the
5868 removal of one reload might allow us to inherit another one. */
5869 else if (rld[r].in
5870 && rld[r].out != rld[r].in
5871 && remove_address_replacements (rld[r].in) && pass)
5872 pass = 2;
5876 /* Now that reload_override_in is known valid,
5877 actually override reload_in. */
5878 for (j = 0; j < n_reloads; j++)
5879 if (reload_override_in[j])
5880 rld[j].in = reload_override_in[j];
5882 /* If this reload won't be done because it has been canceled or is
5883 optional and not inherited, clear reload_reg_rtx so other
5884 routines (such as subst_reloads) don't get confused. */
5885 for (j = 0; j < n_reloads; j++)
5886 if (rld[j].reg_rtx != 0
5887 && ((rld[j].optional && ! reload_inherited[j])
5888 || (rld[j].in == 0 && rld[j].out == 0
5889 && ! rld[j].secondary_p)))
5891 int regno = true_regnum (rld[j].reg_rtx);
5893 if (spill_reg_order[regno] >= 0)
5894 clear_reload_reg_in_use (regno, rld[j].opnum,
5895 rld[j].when_needed, rld[j].mode);
5896 rld[j].reg_rtx = 0;
5897 reload_spill_index[j] = -1;
5900 /* Record which pseudos and which spill regs have output reloads. */
5901 for (j = 0; j < n_reloads; j++)
5903 int r = reload_order[j];
5905 i = reload_spill_index[r];
5907 /* I is nonneg if this reload uses a register.
5908 If rld[r].reg_rtx is 0, this is an optional reload
5909 that we opted to ignore. */
5910 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
5911 && rld[r].reg_rtx != 0)
5913 int nregno = REGNO (rld[r].out_reg);
5914 int nr = 1;
5916 if (nregno < FIRST_PSEUDO_REGISTER)
5917 nr = hard_regno_nregs[nregno][rld[r].mode];
5919 while (--nr >= 0)
5920 reg_has_output_reload[nregno + nr] = 1;
5922 if (i >= 0)
5924 nr = hard_regno_nregs[i][rld[r].mode];
5925 while (--nr >= 0)
5926 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5929 if (rld[r].when_needed != RELOAD_OTHER
5930 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5931 && rld[r].when_needed != RELOAD_FOR_INSN)
5932 abort ();
5937 /* Deallocate the reload register for reload R. This is called from
5938 remove_address_replacements. */
5940 void
5941 deallocate_reload_reg (int r)
5943 int regno;
5945 if (! rld[r].reg_rtx)
5946 return;
5947 regno = true_regnum (rld[r].reg_rtx);
5948 rld[r].reg_rtx = 0;
5949 if (spill_reg_order[regno] >= 0)
5950 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
5951 rld[r].mode);
5952 reload_spill_index[r] = -1;
5955 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
5956 reloads of the same item for fear that we might not have enough reload
5957 registers. However, normally they will get the same reload register
5958 and hence actually need not be loaded twice.
5960 Here we check for the most common case of this phenomenon: when we have
5961 a number of reloads for the same object, each of which were allocated
5962 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5963 reload, and is not modified in the insn itself. If we find such,
5964 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5965 This will not increase the number of spill registers needed and will
5966 prevent redundant code. */
5968 static void
5969 merge_assigned_reloads (rtx insn)
5971 int i, j;
5973 /* Scan all the reloads looking for ones that only load values and
5974 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
5975 assigned and not modified by INSN. */
5977 for (i = 0; i < n_reloads; i++)
5979 int conflicting_input = 0;
5980 int max_input_address_opnum = -1;
5981 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
5983 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
5984 || rld[i].out != 0 || rld[i].reg_rtx == 0
5985 || reg_set_p (rld[i].reg_rtx, insn))
5986 continue;
5988 /* Look at all other reloads. Ensure that the only use of this
5989 reload_reg_rtx is in a reload that just loads the same value
5990 as we do. Note that any secondary reloads must be of the identical
5991 class since the values, modes, and result registers are the
5992 same, so we need not do anything with any secondary reloads. */
5994 for (j = 0; j < n_reloads; j++)
5996 if (i == j || rld[j].reg_rtx == 0
5997 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
5998 rld[i].reg_rtx))
5999 continue;
6001 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6002 && rld[j].opnum > max_input_address_opnum)
6003 max_input_address_opnum = rld[j].opnum;
6005 /* If the reload regs aren't exactly the same (e.g, different modes)
6006 or if the values are different, we can't merge this reload.
6007 But if it is an input reload, we might still merge
6008 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6010 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6011 || rld[j].out != 0 || rld[j].in == 0
6012 || ! rtx_equal_p (rld[i].in, rld[j].in))
6014 if (rld[j].when_needed != RELOAD_FOR_INPUT
6015 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6016 || rld[i].opnum > rld[j].opnum)
6017 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6018 break;
6019 conflicting_input = 1;
6020 if (min_conflicting_input_opnum > rld[j].opnum)
6021 min_conflicting_input_opnum = rld[j].opnum;
6025 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6026 we, in fact, found any matching reloads. */
6028 if (j == n_reloads
6029 && max_input_address_opnum <= min_conflicting_input_opnum)
6031 for (j = 0; j < n_reloads; j++)
6032 if (i != j && rld[j].reg_rtx != 0
6033 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6034 && (! conflicting_input
6035 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6036 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6038 rld[i].when_needed = RELOAD_OTHER;
6039 rld[j].in = 0;
6040 reload_spill_index[j] = -1;
6041 transfer_replacements (i, j);
6044 /* If this is now RELOAD_OTHER, look for any reloads that load
6045 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6046 if they were for inputs, RELOAD_OTHER for outputs. Note that
6047 this test is equivalent to looking for reloads for this operand
6048 number. */
6049 /* We must take special care when there are two or more reloads to
6050 be merged and a RELOAD_FOR_OUTPUT_ADDRESS reload that loads the
6051 same value or a part of it; we must not change its type if there
6052 is a conflicting input. */
6054 if (rld[i].when_needed == RELOAD_OTHER)
6055 for (j = 0; j < n_reloads; j++)
6056 if (rld[j].in != 0
6057 && rld[j].when_needed != RELOAD_OTHER
6058 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6059 && (! conflicting_input
6060 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6061 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6062 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6063 rld[i].in))
6065 int k;
6067 rld[j].when_needed
6068 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6069 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6070 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6072 /* Check to see if we accidentally converted two reloads
6073 that use the same reload register with different inputs
6074 to the same type. If so, the resulting code won't work,
6075 so abort. */
6076 if (rld[j].reg_rtx)
6077 for (k = 0; k < j; k++)
6078 if (rld[k].in != 0 && rld[k].reg_rtx != 0
6079 && rld[k].when_needed == rld[j].when_needed
6080 && rtx_equal_p (rld[k].reg_rtx, rld[j].reg_rtx)
6081 && ! rtx_equal_p (rld[k].in, rld[j].in))
6082 abort ();
6088 /* These arrays are filled by emit_reload_insns and its subroutines. */
6089 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6090 static rtx other_input_address_reload_insns = 0;
6091 static rtx other_input_reload_insns = 0;
6092 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6093 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6094 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6095 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6096 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6097 static rtx operand_reload_insns = 0;
6098 static rtx other_operand_reload_insns = 0;
6099 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6101 /* Values to be put in spill_reg_store are put here first. */
6102 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6103 static HARD_REG_SET reg_reloaded_died;
6105 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6106 has the number J. OLD contains the value to be used as input. */
6108 static void
6109 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6110 rtx old, int j)
6112 rtx insn = chain->insn;
6113 rtx reloadreg = rl->reg_rtx;
6114 rtx oldequiv_reg = 0;
6115 rtx oldequiv = 0;
6116 int special = 0;
6117 enum machine_mode mode;
6118 rtx *where;
6120 /* Determine the mode to reload in.
6121 This is very tricky because we have three to choose from.
6122 There is the mode the insn operand wants (rl->inmode).
6123 There is the mode of the reload register RELOADREG.
6124 There is the intrinsic mode of the operand, which we could find
6125 by stripping some SUBREGs.
6126 It turns out that RELOADREG's mode is irrelevant:
6127 we can change that arbitrarily.
6129 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6130 then the reload reg may not support QImode moves, so use SImode.
6131 If foo is in memory due to spilling a pseudo reg, this is safe,
6132 because the QImode value is in the least significant part of a
6133 slot big enough for a SImode. If foo is some other sort of
6134 memory reference, then it is impossible to reload this case,
6135 so previous passes had better make sure this never happens.
6137 Then consider a one-word union which has SImode and one of its
6138 members is a float, being fetched as (SUBREG:SF union:SI).
6139 We must fetch that as SFmode because we could be loading into
6140 a float-only register. In this case OLD's mode is correct.
6142 Consider an immediate integer: it has VOIDmode. Here we need
6143 to get a mode from something else.
6145 In some cases, there is a fourth mode, the operand's
6146 containing mode. If the insn specifies a containing mode for
6147 this operand, it overrides all others.
6149 I am not sure whether the algorithm here is always right,
6150 but it does the right things in those cases. */
6152 mode = GET_MODE (old);
6153 if (mode == VOIDmode)
6154 mode = rl->inmode;
6156 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6157 /* If we need a secondary register for this operation, see if
6158 the value is already in a register in that class. Don't
6159 do this if the secondary register will be used as a scratch
6160 register. */
6162 if (rl->secondary_in_reload >= 0
6163 && rl->secondary_in_icode == CODE_FOR_nothing
6164 && optimize)
6165 oldequiv
6166 = find_equiv_reg (old, insn,
6167 rld[rl->secondary_in_reload].class,
6168 -1, NULL, 0, mode);
6169 #endif
6171 /* If reloading from memory, see if there is a register
6172 that already holds the same value. If so, reload from there.
6173 We can pass 0 as the reload_reg_p argument because
6174 any other reload has either already been emitted,
6175 in which case find_equiv_reg will see the reload-insn,
6176 or has yet to be emitted, in which case it doesn't matter
6177 because we will use this equiv reg right away. */
6179 if (oldequiv == 0 && optimize
6180 && (MEM_P (old)
6181 || (REG_P (old)
6182 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6183 && reg_renumber[REGNO (old)] < 0)))
6184 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6186 if (oldequiv)
6188 unsigned int regno = true_regnum (oldequiv);
6190 /* Don't use OLDEQUIV if any other reload changes it at an
6191 earlier stage of this insn or at this stage. */
6192 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6193 rl->in, const0_rtx, j, 0))
6194 oldequiv = 0;
6196 /* If it is no cheaper to copy from OLDEQUIV into the
6197 reload register than it would be to move from memory,
6198 don't use it. Likewise, if we need a secondary register
6199 or memory. */
6201 if (oldequiv != 0
6202 && (((enum reg_class) REGNO_REG_CLASS (regno) != rl->class
6203 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6204 rl->class)
6205 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6206 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6207 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6208 mode, oldequiv)
6209 != NO_REGS)
6210 #endif
6211 #ifdef SECONDARY_MEMORY_NEEDED
6212 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6213 rl->class,
6214 mode)
6215 #endif
6217 oldequiv = 0;
6220 /* delete_output_reload is only invoked properly if old contains
6221 the original pseudo register. Since this is replaced with a
6222 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6223 find the pseudo in RELOAD_IN_REG. */
6224 if (oldequiv == 0
6225 && reload_override_in[j]
6226 && REG_P (rl->in_reg))
6228 oldequiv = old;
6229 old = rl->in_reg;
6231 if (oldequiv == 0)
6232 oldequiv = old;
6233 else if (REG_P (oldequiv))
6234 oldequiv_reg = oldequiv;
6235 else if (GET_CODE (oldequiv) == SUBREG)
6236 oldequiv_reg = SUBREG_REG (oldequiv);
6238 /* If we are reloading from a register that was recently stored in
6239 with an output-reload, see if we can prove there was
6240 actually no need to store the old value in it. */
6242 if (optimize && REG_P (oldequiv)
6243 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6244 && spill_reg_store[REGNO (oldequiv)]
6245 && REG_P (old)
6246 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6247 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6248 rl->out_reg)))
6249 delete_output_reload (insn, j, REGNO (oldequiv));
6251 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6252 then load RELOADREG from OLDEQUIV. Note that we cannot use
6253 gen_lowpart_common since it can do the wrong thing when
6254 RELOADREG has a multi-word mode. Note that RELOADREG
6255 must always be a REG here. */
6257 if (GET_MODE (reloadreg) != mode)
6258 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6259 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6260 oldequiv = SUBREG_REG (oldequiv);
6261 if (GET_MODE (oldequiv) != VOIDmode
6262 && mode != GET_MODE (oldequiv))
6263 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6265 /* Switch to the right place to emit the reload insns. */
6266 switch (rl->when_needed)
6268 case RELOAD_OTHER:
6269 where = &other_input_reload_insns;
6270 break;
6271 case RELOAD_FOR_INPUT:
6272 where = &input_reload_insns[rl->opnum];
6273 break;
6274 case RELOAD_FOR_INPUT_ADDRESS:
6275 where = &input_address_reload_insns[rl->opnum];
6276 break;
6277 case RELOAD_FOR_INPADDR_ADDRESS:
6278 where = &inpaddr_address_reload_insns[rl->opnum];
6279 break;
6280 case RELOAD_FOR_OUTPUT_ADDRESS:
6281 where = &output_address_reload_insns[rl->opnum];
6282 break;
6283 case RELOAD_FOR_OUTADDR_ADDRESS:
6284 where = &outaddr_address_reload_insns[rl->opnum];
6285 break;
6286 case RELOAD_FOR_OPERAND_ADDRESS:
6287 where = &operand_reload_insns;
6288 break;
6289 case RELOAD_FOR_OPADDR_ADDR:
6290 where = &other_operand_reload_insns;
6291 break;
6292 case RELOAD_FOR_OTHER_ADDRESS:
6293 where = &other_input_address_reload_insns;
6294 break;
6295 default:
6296 abort ();
6299 push_to_sequence (*where);
6301 /* Auto-increment addresses must be reloaded in a special way. */
6302 if (rl->out && ! rl->out_reg)
6304 /* We are not going to bother supporting the case where a
6305 incremented register can't be copied directly from
6306 OLDEQUIV since this seems highly unlikely. */
6307 if (rl->secondary_in_reload >= 0)
6308 abort ();
6310 if (reload_inherited[j])
6311 oldequiv = reloadreg;
6313 old = XEXP (rl->in_reg, 0);
6315 if (optimize && REG_P (oldequiv)
6316 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6317 && spill_reg_store[REGNO (oldequiv)]
6318 && REG_P (old)
6319 && (dead_or_set_p (insn,
6320 spill_reg_stored_to[REGNO (oldequiv)])
6321 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6322 old)))
6323 delete_output_reload (insn, j, REGNO (oldequiv));
6325 /* Prevent normal processing of this reload. */
6326 special = 1;
6327 /* Output a special code sequence for this case. */
6328 new_spill_reg_store[REGNO (reloadreg)]
6329 = inc_for_reload (reloadreg, oldequiv, rl->out,
6330 rl->inc);
6333 /* If we are reloading a pseudo-register that was set by the previous
6334 insn, see if we can get rid of that pseudo-register entirely
6335 by redirecting the previous insn into our reload register. */
6337 else if (optimize && REG_P (old)
6338 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6339 && dead_or_set_p (insn, old)
6340 /* This is unsafe if some other reload
6341 uses the same reg first. */
6342 && ! conflicts_with_override (reloadreg)
6343 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6344 rl->when_needed, old, rl->out, j, 0))
6346 rtx temp = PREV_INSN (insn);
6347 while (temp && NOTE_P (temp))
6348 temp = PREV_INSN (temp);
6349 if (temp
6350 && NONJUMP_INSN_P (temp)
6351 && GET_CODE (PATTERN (temp)) == SET
6352 && SET_DEST (PATTERN (temp)) == old
6353 /* Make sure we can access insn_operand_constraint. */
6354 && asm_noperands (PATTERN (temp)) < 0
6355 /* This is unsafe if operand occurs more than once in current
6356 insn. Perhaps some occurrences aren't reloaded. */
6357 && count_occurrences (PATTERN (insn), old, 0) == 1)
6359 rtx old = SET_DEST (PATTERN (temp));
6360 /* Store into the reload register instead of the pseudo. */
6361 SET_DEST (PATTERN (temp)) = reloadreg;
6363 /* Verify that resulting insn is valid. */
6364 extract_insn (temp);
6365 if (constrain_operands (1))
6367 /* If the previous insn is an output reload, the source is
6368 a reload register, and its spill_reg_store entry will
6369 contain the previous destination. This is now
6370 invalid. */
6371 if (REG_P (SET_SRC (PATTERN (temp)))
6372 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6374 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6375 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6378 /* If these are the only uses of the pseudo reg,
6379 pretend for GDB it lives in the reload reg we used. */
6380 if (REG_N_DEATHS (REGNO (old)) == 1
6381 && REG_N_SETS (REGNO (old)) == 1)
6383 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6384 alter_reg (REGNO (old), -1);
6386 special = 1;
6388 else
6390 SET_DEST (PATTERN (temp)) = old;
6395 /* We can't do that, so output an insn to load RELOADREG. */
6397 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6398 /* If we have a secondary reload, pick up the secondary register
6399 and icode, if any. If OLDEQUIV and OLD are different or
6400 if this is an in-out reload, recompute whether or not we
6401 still need a secondary register and what the icode should
6402 be. If we still need a secondary register and the class or
6403 icode is different, go back to reloading from OLD if using
6404 OLDEQUIV means that we got the wrong type of register. We
6405 cannot have different class or icode due to an in-out reload
6406 because we don't make such reloads when both the input and
6407 output need secondary reload registers. */
6409 if (! special && rl->secondary_in_reload >= 0)
6411 rtx second_reload_reg = 0;
6412 int secondary_reload = rl->secondary_in_reload;
6413 rtx real_oldequiv = oldequiv;
6414 rtx real_old = old;
6415 rtx tmp;
6416 enum insn_code icode;
6418 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6419 and similarly for OLD.
6420 See comments in get_secondary_reload in reload.c. */
6421 /* If it is a pseudo that cannot be replaced with its
6422 equivalent MEM, we must fall back to reload_in, which
6423 will have all the necessary substitutions registered.
6424 Likewise for a pseudo that can't be replaced with its
6425 equivalent constant.
6427 Take extra care for subregs of such pseudos. Note that
6428 we cannot use reg_equiv_mem in this case because it is
6429 not in the right mode. */
6431 tmp = oldequiv;
6432 if (GET_CODE (tmp) == SUBREG)
6433 tmp = SUBREG_REG (tmp);
6434 if (REG_P (tmp)
6435 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6436 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6437 || reg_equiv_constant[REGNO (tmp)] != 0))
6439 if (! reg_equiv_mem[REGNO (tmp)]
6440 || num_not_at_initial_offset
6441 || GET_CODE (oldequiv) == SUBREG)
6442 real_oldequiv = rl->in;
6443 else
6444 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6447 tmp = old;
6448 if (GET_CODE (tmp) == SUBREG)
6449 tmp = SUBREG_REG (tmp);
6450 if (REG_P (tmp)
6451 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6452 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6453 || reg_equiv_constant[REGNO (tmp)] != 0))
6455 if (! reg_equiv_mem[REGNO (tmp)]
6456 || num_not_at_initial_offset
6457 || GET_CODE (old) == SUBREG)
6458 real_old = rl->in;
6459 else
6460 real_old = reg_equiv_mem[REGNO (tmp)];
6463 second_reload_reg = rld[secondary_reload].reg_rtx;
6464 icode = rl->secondary_in_icode;
6466 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6467 || (rl->in != 0 && rl->out != 0))
6469 enum reg_class new_class
6470 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6471 mode, real_oldequiv);
6473 if (new_class == NO_REGS)
6474 second_reload_reg = 0;
6475 else
6477 enum insn_code new_icode;
6478 enum machine_mode new_mode;
6480 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6481 REGNO (second_reload_reg)))
6482 oldequiv = old, real_oldequiv = real_old;
6483 else
6485 new_icode = reload_in_optab[(int) mode];
6486 if (new_icode != CODE_FOR_nothing
6487 && ((insn_data[(int) new_icode].operand[0].predicate
6488 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6489 (reloadreg, mode)))
6490 || (insn_data[(int) new_icode].operand[1].predicate
6491 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6492 (real_oldequiv, mode)))))
6493 new_icode = CODE_FOR_nothing;
6495 if (new_icode == CODE_FOR_nothing)
6496 new_mode = mode;
6497 else
6498 new_mode = insn_data[(int) new_icode].operand[2].mode;
6500 if (GET_MODE (second_reload_reg) != new_mode)
6502 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6503 new_mode))
6504 oldequiv = old, real_oldequiv = real_old;
6505 else
6506 second_reload_reg
6507 = reload_adjust_reg_for_mode (second_reload_reg,
6508 new_mode);
6514 /* If we still need a secondary reload register, check
6515 to see if it is being used as a scratch or intermediate
6516 register and generate code appropriately. If we need
6517 a scratch register, use REAL_OLDEQUIV since the form of
6518 the insn may depend on the actual address if it is
6519 a MEM. */
6521 if (second_reload_reg)
6523 if (icode != CODE_FOR_nothing)
6525 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6526 second_reload_reg));
6527 special = 1;
6529 else
6531 /* See if we need a scratch register to load the
6532 intermediate register (a tertiary reload). */
6533 enum insn_code tertiary_icode
6534 = rld[secondary_reload].secondary_in_icode;
6536 if (tertiary_icode != CODE_FOR_nothing)
6538 rtx third_reload_reg
6539 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6541 emit_insn ((GEN_FCN (tertiary_icode)
6542 (second_reload_reg, real_oldequiv,
6543 third_reload_reg)));
6545 else
6546 gen_reload (second_reload_reg, real_oldequiv,
6547 rl->opnum,
6548 rl->when_needed);
6550 oldequiv = second_reload_reg;
6554 #endif
6556 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6558 rtx real_oldequiv = oldequiv;
6560 if ((REG_P (oldequiv)
6561 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6562 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6563 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6564 || (GET_CODE (oldequiv) == SUBREG
6565 && REG_P (SUBREG_REG (oldequiv))
6566 && (REGNO (SUBREG_REG (oldequiv))
6567 >= FIRST_PSEUDO_REGISTER)
6568 && ((reg_equiv_memory_loc
6569 [REGNO (SUBREG_REG (oldequiv))] != 0)
6570 || (reg_equiv_constant
6571 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6572 || (CONSTANT_P (oldequiv)
6573 && (PREFERRED_RELOAD_CLASS (oldequiv,
6574 REGNO_REG_CLASS (REGNO (reloadreg)))
6575 == NO_REGS)))
6576 real_oldequiv = rl->in;
6577 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6578 rl->when_needed);
6581 if (flag_non_call_exceptions)
6582 copy_eh_notes (insn, get_insns ());
6584 /* End this sequence. */
6585 *where = get_insns ();
6586 end_sequence ();
6588 /* Update reload_override_in so that delete_address_reloads_1
6589 can see the actual register usage. */
6590 if (oldequiv_reg)
6591 reload_override_in[j] = oldequiv;
6594 /* Generate insns to for the output reload RL, which is for the insn described
6595 by CHAIN and has the number J. */
6596 static void
6597 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
6598 int j)
6600 rtx reloadreg = rl->reg_rtx;
6601 rtx insn = chain->insn;
6602 int special = 0;
6603 rtx old = rl->out;
6604 enum machine_mode mode = GET_MODE (old);
6605 rtx p;
6607 if (rl->when_needed == RELOAD_OTHER)
6608 start_sequence ();
6609 else
6610 push_to_sequence (output_reload_insns[rl->opnum]);
6612 /* Determine the mode to reload in.
6613 See comments above (for input reloading). */
6615 if (mode == VOIDmode)
6617 /* VOIDmode should never happen for an output. */
6618 if (asm_noperands (PATTERN (insn)) < 0)
6619 /* It's the compiler's fault. */
6620 fatal_insn ("VOIDmode on an output", insn);
6621 error_for_asm (insn, "output operand is constant in `asm'");
6622 /* Prevent crash--use something we know is valid. */
6623 mode = word_mode;
6624 old = gen_rtx_REG (mode, REGNO (reloadreg));
6627 if (GET_MODE (reloadreg) != mode)
6628 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6630 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6632 /* If we need two reload regs, set RELOADREG to the intermediate
6633 one, since it will be stored into OLD. We might need a secondary
6634 register only for an input reload, so check again here. */
6636 if (rl->secondary_out_reload >= 0)
6638 rtx real_old = old;
6640 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
6641 && reg_equiv_mem[REGNO (old)] != 0)
6642 real_old = reg_equiv_mem[REGNO (old)];
6644 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6645 mode, real_old)
6646 != NO_REGS))
6648 rtx second_reloadreg = reloadreg;
6649 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6651 /* See if RELOADREG is to be used as a scratch register
6652 or as an intermediate register. */
6653 if (rl->secondary_out_icode != CODE_FOR_nothing)
6655 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6656 (real_old, second_reloadreg, reloadreg)));
6657 special = 1;
6659 else
6661 /* See if we need both a scratch and intermediate reload
6662 register. */
6664 int secondary_reload = rl->secondary_out_reload;
6665 enum insn_code tertiary_icode
6666 = rld[secondary_reload].secondary_out_icode;
6668 if (GET_MODE (reloadreg) != mode)
6669 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6671 if (tertiary_icode != CODE_FOR_nothing)
6673 rtx third_reloadreg
6674 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6675 rtx tem;
6677 /* Copy primary reload reg to secondary reload reg.
6678 (Note that these have been swapped above, then
6679 secondary reload reg to OLD using our insn.) */
6681 /* If REAL_OLD is a paradoxical SUBREG, remove it
6682 and try to put the opposite SUBREG on
6683 RELOADREG. */
6684 if (GET_CODE (real_old) == SUBREG
6685 && (GET_MODE_SIZE (GET_MODE (real_old))
6686 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6687 && 0 != (tem = gen_lowpart_common
6688 (GET_MODE (SUBREG_REG (real_old)),
6689 reloadreg)))
6690 real_old = SUBREG_REG (real_old), reloadreg = tem;
6692 gen_reload (reloadreg, second_reloadreg,
6693 rl->opnum, rl->when_needed);
6694 emit_insn ((GEN_FCN (tertiary_icode)
6695 (real_old, reloadreg, third_reloadreg)));
6696 special = 1;
6699 else
6700 /* Copy between the reload regs here and then to
6701 OUT later. */
6703 gen_reload (reloadreg, second_reloadreg,
6704 rl->opnum, rl->when_needed);
6708 #endif
6710 /* Output the last reload insn. */
6711 if (! special)
6713 rtx set;
6715 /* Don't output the last reload if OLD is not the dest of
6716 INSN and is in the src and is clobbered by INSN. */
6717 if (! flag_expensive_optimizations
6718 || !REG_P (old)
6719 || !(set = single_set (insn))
6720 || rtx_equal_p (old, SET_DEST (set))
6721 || !reg_mentioned_p (old, SET_SRC (set))
6722 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
6723 gen_reload (old, reloadreg, rl->opnum,
6724 rl->when_needed);
6727 /* Look at all insns we emitted, just to be safe. */
6728 for (p = get_insns (); p; p = NEXT_INSN (p))
6729 if (INSN_P (p))
6731 rtx pat = PATTERN (p);
6733 /* If this output reload doesn't come from a spill reg,
6734 clear any memory of reloaded copies of the pseudo reg.
6735 If this output reload comes from a spill reg,
6736 reg_has_output_reload will make this do nothing. */
6737 note_stores (pat, forget_old_reloads_1, NULL);
6739 if (reg_mentioned_p (rl->reg_rtx, pat))
6741 rtx set = single_set (insn);
6742 if (reload_spill_index[j] < 0
6743 && set
6744 && SET_SRC (set) == rl->reg_rtx)
6746 int src = REGNO (SET_SRC (set));
6748 reload_spill_index[j] = src;
6749 SET_HARD_REG_BIT (reg_is_output_reload, src);
6750 if (find_regno_note (insn, REG_DEAD, src))
6751 SET_HARD_REG_BIT (reg_reloaded_died, src);
6753 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6755 int s = rl->secondary_out_reload;
6756 set = single_set (p);
6757 /* If this reload copies only to the secondary reload
6758 register, the secondary reload does the actual
6759 store. */
6760 if (s >= 0 && set == NULL_RTX)
6761 /* We can't tell what function the secondary reload
6762 has and where the actual store to the pseudo is
6763 made; leave new_spill_reg_store alone. */
6765 else if (s >= 0
6766 && SET_SRC (set) == rl->reg_rtx
6767 && SET_DEST (set) == rld[s].reg_rtx)
6769 /* Usually the next instruction will be the
6770 secondary reload insn; if we can confirm
6771 that it is, setting new_spill_reg_store to
6772 that insn will allow an extra optimization. */
6773 rtx s_reg = rld[s].reg_rtx;
6774 rtx next = NEXT_INSN (p);
6775 rld[s].out = rl->out;
6776 rld[s].out_reg = rl->out_reg;
6777 set = single_set (next);
6778 if (set && SET_SRC (set) == s_reg
6779 && ! new_spill_reg_store[REGNO (s_reg)])
6781 SET_HARD_REG_BIT (reg_is_output_reload,
6782 REGNO (s_reg));
6783 new_spill_reg_store[REGNO (s_reg)] = next;
6786 else
6787 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6792 if (rl->when_needed == RELOAD_OTHER)
6794 emit_insn (other_output_reload_insns[rl->opnum]);
6795 other_output_reload_insns[rl->opnum] = get_insns ();
6797 else
6798 output_reload_insns[rl->opnum] = get_insns ();
6800 if (flag_non_call_exceptions)
6801 copy_eh_notes (insn, get_insns ());
6803 end_sequence ();
6806 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6807 and has the number J. */
6808 static void
6809 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
6811 rtx insn = chain->insn;
6812 rtx old = (rl->in && MEM_P (rl->in)
6813 ? rl->in_reg : rl->in);
6815 if (old != 0
6816 /* AUTO_INC reloads need to be handled even if inherited. We got an
6817 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6818 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6819 && ! rtx_equal_p (rl->reg_rtx, old)
6820 && rl->reg_rtx != 0)
6821 emit_input_reload_insns (chain, rld + j, old, j);
6823 /* When inheriting a wider reload, we have a MEM in rl->in,
6824 e.g. inheriting a SImode output reload for
6825 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6826 if (optimize && reload_inherited[j] && rl->in
6827 && MEM_P (rl->in)
6828 && MEM_P (rl->in_reg)
6829 && reload_spill_index[j] >= 0
6830 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6831 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6833 /* If we are reloading a register that was recently stored in with an
6834 output-reload, see if we can prove there was
6835 actually no need to store the old value in it. */
6837 if (optimize
6838 && (reload_inherited[j] || reload_override_in[j])
6839 && rl->reg_rtx
6840 && REG_P (rl->reg_rtx)
6841 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6842 #if 0
6843 /* There doesn't seem to be any reason to restrict this to pseudos
6844 and doing so loses in the case where we are copying from a
6845 register of the wrong class. */
6846 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6847 >= FIRST_PSEUDO_REGISTER)
6848 #endif
6849 /* The insn might have already some references to stackslots
6850 replaced by MEMs, while reload_out_reg still names the
6851 original pseudo. */
6852 && (dead_or_set_p (insn,
6853 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6854 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6855 rl->out_reg)))
6856 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6859 /* Do output reloading for reload RL, which is for the insn described by
6860 CHAIN and has the number J.
6861 ??? At some point we need to support handling output reloads of
6862 JUMP_INSNs or insns that set cc0. */
6863 static void
6864 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
6866 rtx note, old;
6867 rtx insn = chain->insn;
6868 /* If this is an output reload that stores something that is
6869 not loaded in this same reload, see if we can eliminate a previous
6870 store. */
6871 rtx pseudo = rl->out_reg;
6873 if (pseudo
6874 && optimize
6875 && REG_P (pseudo)
6876 && ! rtx_equal_p (rl->in_reg, pseudo)
6877 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6878 && reg_last_reload_reg[REGNO (pseudo)])
6880 int pseudo_no = REGNO (pseudo);
6881 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6883 /* We don't need to test full validity of last_regno for
6884 inherit here; we only want to know if the store actually
6885 matches the pseudo. */
6886 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6887 && reg_reloaded_contents[last_regno] == pseudo_no
6888 && spill_reg_store[last_regno]
6889 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6890 delete_output_reload (insn, j, last_regno);
6893 old = rl->out_reg;
6894 if (old == 0
6895 || rl->reg_rtx == old
6896 || rl->reg_rtx == 0)
6897 return;
6899 /* An output operand that dies right away does need a reload,
6900 but need not be copied from it. Show the new location in the
6901 REG_UNUSED note. */
6902 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
6903 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6905 XEXP (note, 0) = rl->reg_rtx;
6906 return;
6908 /* Likewise for a SUBREG of an operand that dies. */
6909 else if (GET_CODE (old) == SUBREG
6910 && REG_P (SUBREG_REG (old))
6911 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6912 SUBREG_REG (old))))
6914 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6915 rl->reg_rtx);
6916 return;
6918 else if (GET_CODE (old) == SCRATCH)
6919 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6920 but we don't want to make an output reload. */
6921 return;
6923 /* If is a JUMP_INSN, we can't support output reloads yet. */
6924 if (JUMP_P (insn))
6925 abort ();
6927 emit_output_reload_insns (chain, rld + j, j);
6930 /* Reload number R reloads from or to a group of hard registers starting at
6931 register REGNO. Return true if it can be treated for inheritance purposes
6932 like a group of reloads, each one reloading a single hard register.
6933 The caller has already checked that the spill register and REGNO use
6934 the same number of registers to store the reload value. */
6936 static bool
6937 inherit_piecemeal_p (int r ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED)
6939 #ifdef CANNOT_CHANGE_MODE_CLASS
6940 return (!REG_CANNOT_CHANGE_MODE_P (reload_spill_index[r],
6941 GET_MODE (rld[r].reg_rtx),
6942 reg_raw_mode[reload_spill_index[r]])
6943 && !REG_CANNOT_CHANGE_MODE_P (regno,
6944 GET_MODE (rld[r].reg_rtx),
6945 reg_raw_mode[regno]));
6946 #else
6947 return true;
6948 #endif
6951 /* Output insns to reload values in and out of the chosen reload regs. */
6953 static void
6954 emit_reload_insns (struct insn_chain *chain)
6956 rtx insn = chain->insn;
6958 int j;
6960 CLEAR_HARD_REG_SET (reg_reloaded_died);
6962 for (j = 0; j < reload_n_operands; j++)
6963 input_reload_insns[j] = input_address_reload_insns[j]
6964 = inpaddr_address_reload_insns[j]
6965 = output_reload_insns[j] = output_address_reload_insns[j]
6966 = outaddr_address_reload_insns[j]
6967 = other_output_reload_insns[j] = 0;
6968 other_input_address_reload_insns = 0;
6969 other_input_reload_insns = 0;
6970 operand_reload_insns = 0;
6971 other_operand_reload_insns = 0;
6973 /* Dump reloads into the dump file. */
6974 if (dump_file)
6976 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
6977 debug_reload_to_stream (dump_file);
6980 /* Now output the instructions to copy the data into and out of the
6981 reload registers. Do these in the order that the reloads were reported,
6982 since reloads of base and index registers precede reloads of operands
6983 and the operands may need the base and index registers reloaded. */
6985 for (j = 0; j < n_reloads; j++)
6987 if (rld[j].reg_rtx
6988 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6989 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
6991 do_input_reload (chain, rld + j, j);
6992 do_output_reload (chain, rld + j, j);
6995 /* Now write all the insns we made for reloads in the order expected by
6996 the allocation functions. Prior to the insn being reloaded, we write
6997 the following reloads:
6999 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7001 RELOAD_OTHER reloads.
7003 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7004 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7005 RELOAD_FOR_INPUT reload for the operand.
7007 RELOAD_FOR_OPADDR_ADDRS reloads.
7009 RELOAD_FOR_OPERAND_ADDRESS reloads.
7011 After the insn being reloaded, we write the following:
7013 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7014 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7015 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7016 reloads for the operand. The RELOAD_OTHER output reloads are
7017 output in descending order by reload number. */
7019 emit_insn_before_sameloc (other_input_address_reload_insns, insn);
7020 emit_insn_before_sameloc (other_input_reload_insns, insn);
7022 for (j = 0; j < reload_n_operands; j++)
7024 emit_insn_before_sameloc (inpaddr_address_reload_insns[j], insn);
7025 emit_insn_before_sameloc (input_address_reload_insns[j], insn);
7026 emit_insn_before_sameloc (input_reload_insns[j], insn);
7029 emit_insn_before_sameloc (other_operand_reload_insns, insn);
7030 emit_insn_before_sameloc (operand_reload_insns, insn);
7032 for (j = 0; j < reload_n_operands; j++)
7034 rtx x = emit_insn_after_sameloc (outaddr_address_reload_insns[j], insn);
7035 x = emit_insn_after_sameloc (output_address_reload_insns[j], x);
7036 x = emit_insn_after_sameloc (output_reload_insns[j], x);
7037 emit_insn_after_sameloc (other_output_reload_insns[j], x);
7040 /* For all the spill regs newly reloaded in this instruction,
7041 record what they were reloaded from, so subsequent instructions
7042 can inherit the reloads.
7044 Update spill_reg_store for the reloads of this insn.
7045 Copy the elements that were updated in the loop above. */
7047 for (j = 0; j < n_reloads; j++)
7049 int r = reload_order[j];
7050 int i = reload_spill_index[r];
7052 /* If this is a non-inherited input reload from a pseudo, we must
7053 clear any memory of a previous store to the same pseudo. Only do
7054 something if there will not be an output reload for the pseudo
7055 being reloaded. */
7056 if (rld[r].in_reg != 0
7057 && ! (reload_inherited[r] || reload_override_in[r]))
7059 rtx reg = rld[r].in_reg;
7061 if (GET_CODE (reg) == SUBREG)
7062 reg = SUBREG_REG (reg);
7064 if (REG_P (reg)
7065 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7066 && ! reg_has_output_reload[REGNO (reg)])
7068 int nregno = REGNO (reg);
7070 if (reg_last_reload_reg[nregno])
7072 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7074 if (reg_reloaded_contents[last_regno] == nregno)
7075 spill_reg_store[last_regno] = 0;
7080 /* I is nonneg if this reload used a register.
7081 If rld[r].reg_rtx is 0, this is an optional reload
7082 that we opted to ignore. */
7084 if (i >= 0 && rld[r].reg_rtx != 0)
7086 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7087 int k;
7088 int part_reaches_end = 0;
7089 int all_reaches_end = 1;
7091 /* For a multi register reload, we need to check if all or part
7092 of the value lives to the end. */
7093 for (k = 0; k < nr; k++)
7095 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7096 rld[r].when_needed))
7097 part_reaches_end = 1;
7098 else
7099 all_reaches_end = 0;
7102 /* Ignore reloads that don't reach the end of the insn in
7103 entirety. */
7104 if (all_reaches_end)
7106 /* First, clear out memory of what used to be in this spill reg.
7107 If consecutive registers are used, clear them all. */
7109 for (k = 0; k < nr; k++)
7111 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7112 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7115 /* Maybe the spill reg contains a copy of reload_out. */
7116 if (rld[r].out != 0
7117 && (REG_P (rld[r].out)
7118 #ifdef AUTO_INC_DEC
7119 || ! rld[r].out_reg
7120 #endif
7121 || REG_P (rld[r].out_reg)))
7123 rtx out = (REG_P (rld[r].out)
7124 ? rld[r].out
7125 : rld[r].out_reg
7126 ? rld[r].out_reg
7127 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7128 int nregno = REGNO (out);
7129 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7130 : hard_regno_nregs[nregno]
7131 [GET_MODE (rld[r].reg_rtx)]);
7132 bool piecemeal;
7134 spill_reg_store[i] = new_spill_reg_store[i];
7135 spill_reg_stored_to[i] = out;
7136 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7138 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7139 && nr == nnr
7140 && inherit_piecemeal_p (r, nregno));
7142 /* If NREGNO is a hard register, it may occupy more than
7143 one register. If it does, say what is in the
7144 rest of the registers assuming that both registers
7145 agree on how many words the object takes. If not,
7146 invalidate the subsequent registers. */
7148 if (nregno < FIRST_PSEUDO_REGISTER)
7149 for (k = 1; k < nnr; k++)
7150 reg_last_reload_reg[nregno + k]
7151 = (piecemeal
7152 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7153 : 0);
7155 /* Now do the inverse operation. */
7156 for (k = 0; k < nr; k++)
7158 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7159 reg_reloaded_contents[i + k]
7160 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7161 ? nregno
7162 : nregno + k);
7163 reg_reloaded_insn[i + k] = insn;
7164 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7165 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
7166 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7170 /* Maybe the spill reg contains a copy of reload_in. Only do
7171 something if there will not be an output reload for
7172 the register being reloaded. */
7173 else if (rld[r].out_reg == 0
7174 && rld[r].in != 0
7175 && ((REG_P (rld[r].in)
7176 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7177 && ! reg_has_output_reload[REGNO (rld[r].in)])
7178 || (REG_P (rld[r].in_reg)
7179 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7180 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7182 int nregno;
7183 int nnr;
7184 rtx in;
7185 bool piecemeal;
7187 if (REG_P (rld[r].in)
7188 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7189 in = rld[r].in;
7190 else if (REG_P (rld[r].in_reg))
7191 in = rld[r].in_reg;
7192 else
7193 in = XEXP (rld[r].in_reg, 0);
7194 nregno = REGNO (in);
7196 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7197 : hard_regno_nregs[nregno]
7198 [GET_MODE (rld[r].reg_rtx)]);
7200 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7202 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7203 && nr == nnr
7204 && inherit_piecemeal_p (r, nregno));
7206 if (nregno < FIRST_PSEUDO_REGISTER)
7207 for (k = 1; k < nnr; k++)
7208 reg_last_reload_reg[nregno + k]
7209 = (piecemeal
7210 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7211 : 0);
7213 /* Unless we inherited this reload, show we haven't
7214 recently done a store.
7215 Previous stores of inherited auto_inc expressions
7216 also have to be discarded. */
7217 if (! reload_inherited[r]
7218 || (rld[r].out && ! rld[r].out_reg))
7219 spill_reg_store[i] = 0;
7221 for (k = 0; k < nr; k++)
7223 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7224 reg_reloaded_contents[i + k]
7225 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7226 ? nregno
7227 : nregno + k);
7228 reg_reloaded_insn[i + k] = insn;
7229 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7230 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
7231 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7236 /* However, if part of the reload reaches the end, then we must
7237 invalidate the old info for the part that survives to the end. */
7238 else if (part_reaches_end)
7240 for (k = 0; k < nr; k++)
7241 if (reload_reg_reaches_end_p (i + k,
7242 rld[r].opnum,
7243 rld[r].when_needed))
7244 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7248 /* The following if-statement was #if 0'd in 1.34 (or before...).
7249 It's reenabled in 1.35 because supposedly nothing else
7250 deals with this problem. */
7252 /* If a register gets output-reloaded from a non-spill register,
7253 that invalidates any previous reloaded copy of it.
7254 But forget_old_reloads_1 won't get to see it, because
7255 it thinks only about the original insn. So invalidate it here. */
7256 if (i < 0 && rld[r].out != 0
7257 && (REG_P (rld[r].out)
7258 || (MEM_P (rld[r].out)
7259 && REG_P (rld[r].out_reg))))
7261 rtx out = (REG_P (rld[r].out)
7262 ? rld[r].out : rld[r].out_reg);
7263 int nregno = REGNO (out);
7264 if (nregno >= FIRST_PSEUDO_REGISTER)
7266 rtx src_reg, store_insn = NULL_RTX;
7268 reg_last_reload_reg[nregno] = 0;
7270 /* If we can find a hard register that is stored, record
7271 the storing insn so that we may delete this insn with
7272 delete_output_reload. */
7273 src_reg = rld[r].reg_rtx;
7275 /* If this is an optional reload, try to find the source reg
7276 from an input reload. */
7277 if (! src_reg)
7279 rtx set = single_set (insn);
7280 if (set && SET_DEST (set) == rld[r].out)
7282 int k;
7284 src_reg = SET_SRC (set);
7285 store_insn = insn;
7286 for (k = 0; k < n_reloads; k++)
7288 if (rld[k].in == src_reg)
7290 src_reg = rld[k].reg_rtx;
7291 break;
7296 else
7297 store_insn = new_spill_reg_store[REGNO (src_reg)];
7298 if (src_reg && REG_P (src_reg)
7299 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7301 int src_regno = REGNO (src_reg);
7302 int nr = hard_regno_nregs[src_regno][rld[r].mode];
7303 /* The place where to find a death note varies with
7304 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7305 necessarily checked exactly in the code that moves
7306 notes, so just check both locations. */
7307 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7308 if (! note && store_insn)
7309 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7310 while (nr-- > 0)
7312 spill_reg_store[src_regno + nr] = store_insn;
7313 spill_reg_stored_to[src_regno + nr] = out;
7314 reg_reloaded_contents[src_regno + nr] = nregno;
7315 reg_reloaded_insn[src_regno + nr] = store_insn;
7316 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7317 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7318 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
7319 GET_MODE (src_reg)))
7320 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7321 src_regno + nr);
7322 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7323 if (note)
7324 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7325 else
7326 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7328 reg_last_reload_reg[nregno] = src_reg;
7329 /* We have to set reg_has_output_reload here, or else
7330 forget_old_reloads_1 will clear reg_last_reload_reg
7331 right away. */
7332 reg_has_output_reload[nregno] = 1;
7335 else
7337 int num_regs = hard_regno_nregs[nregno][GET_MODE (rld[r].out)];
7339 while (num_regs-- > 0)
7340 reg_last_reload_reg[nregno + num_regs] = 0;
7344 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7347 /* Emit code to perform a reload from IN (which may be a reload register) to
7348 OUT (which may also be a reload register). IN or OUT is from operand
7349 OPNUM with reload type TYPE.
7351 Returns first insn emitted. */
7354 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
7356 rtx last = get_last_insn ();
7357 rtx tem;
7359 /* If IN is a paradoxical SUBREG, remove it and try to put the
7360 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7361 if (GET_CODE (in) == SUBREG
7362 && (GET_MODE_SIZE (GET_MODE (in))
7363 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7364 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7365 in = SUBREG_REG (in), out = tem;
7366 else if (GET_CODE (out) == SUBREG
7367 && (GET_MODE_SIZE (GET_MODE (out))
7368 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7369 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7370 out = SUBREG_REG (out), in = tem;
7372 /* How to do this reload can get quite tricky. Normally, we are being
7373 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7374 register that didn't get a hard register. In that case we can just
7375 call emit_move_insn.
7377 We can also be asked to reload a PLUS that adds a register or a MEM to
7378 another register, constant or MEM. This can occur during frame pointer
7379 elimination and while reloading addresses. This case is handled by
7380 trying to emit a single insn to perform the add. If it is not valid,
7381 we use a two insn sequence.
7383 Finally, we could be called to handle an 'o' constraint by putting
7384 an address into a register. In that case, we first try to do this
7385 with a named pattern of "reload_load_address". If no such pattern
7386 exists, we just emit a SET insn and hope for the best (it will normally
7387 be valid on machines that use 'o').
7389 This entire process is made complex because reload will never
7390 process the insns we generate here and so we must ensure that
7391 they will fit their constraints and also by the fact that parts of
7392 IN might be being reloaded separately and replaced with spill registers.
7393 Because of this, we are, in some sense, just guessing the right approach
7394 here. The one listed above seems to work.
7396 ??? At some point, this whole thing needs to be rethought. */
7398 if (GET_CODE (in) == PLUS
7399 && (REG_P (XEXP (in, 0))
7400 || GET_CODE (XEXP (in, 0)) == SUBREG
7401 || MEM_P (XEXP (in, 0)))
7402 && (REG_P (XEXP (in, 1))
7403 || GET_CODE (XEXP (in, 1)) == SUBREG
7404 || CONSTANT_P (XEXP (in, 1))
7405 || MEM_P (XEXP (in, 1))))
7407 /* We need to compute the sum of a register or a MEM and another
7408 register, constant, or MEM, and put it into the reload
7409 register. The best possible way of doing this is if the machine
7410 has a three-operand ADD insn that accepts the required operands.
7412 The simplest approach is to try to generate such an insn and see if it
7413 is recognized and matches its constraints. If so, it can be used.
7415 It might be better not to actually emit the insn unless it is valid,
7416 but we need to pass the insn as an operand to `recog' and
7417 `extract_insn' and it is simpler to emit and then delete the insn if
7418 not valid than to dummy things up. */
7420 rtx op0, op1, tem, insn;
7421 int code;
7423 op0 = find_replacement (&XEXP (in, 0));
7424 op1 = find_replacement (&XEXP (in, 1));
7426 /* Since constraint checking is strict, commutativity won't be
7427 checked, so we need to do that here to avoid spurious failure
7428 if the add instruction is two-address and the second operand
7429 of the add is the same as the reload reg, which is frequently
7430 the case. If the insn would be A = B + A, rearrange it so
7431 it will be A = A + B as constrain_operands expects. */
7433 if (REG_P (XEXP (in, 1))
7434 && REGNO (out) == REGNO (XEXP (in, 1)))
7435 tem = op0, op0 = op1, op1 = tem;
7437 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7438 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7440 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7441 code = recog_memoized (insn);
7443 if (code >= 0)
7445 extract_insn (insn);
7446 /* We want constrain operands to treat this insn strictly in
7447 its validity determination, i.e., the way it would after reload
7448 has completed. */
7449 if (constrain_operands (1))
7450 return insn;
7453 delete_insns_since (last);
7455 /* If that failed, we must use a conservative two-insn sequence.
7457 Use a move to copy one operand into the reload register. Prefer
7458 to reload a constant, MEM or pseudo since the move patterns can
7459 handle an arbitrary operand. If OP1 is not a constant, MEM or
7460 pseudo and OP1 is not a valid operand for an add instruction, then
7461 reload OP1.
7463 After reloading one of the operands into the reload register, add
7464 the reload register to the output register.
7466 If there is another way to do this for a specific machine, a
7467 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7468 we emit below. */
7470 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7472 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
7473 || (REG_P (op1)
7474 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7475 || (code != CODE_FOR_nothing
7476 && ! ((*insn_data[code].operand[2].predicate)
7477 (op1, insn_data[code].operand[2].mode))))
7478 tem = op0, op0 = op1, op1 = tem;
7480 gen_reload (out, op0, opnum, type);
7482 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7483 This fixes a problem on the 32K where the stack pointer cannot
7484 be used as an operand of an add insn. */
7486 if (rtx_equal_p (op0, op1))
7487 op1 = out;
7489 insn = emit_insn (gen_add2_insn (out, op1));
7491 /* If that failed, copy the address register to the reload register.
7492 Then add the constant to the reload register. */
7494 code = recog_memoized (insn);
7496 if (code >= 0)
7498 extract_insn (insn);
7499 /* We want constrain operands to treat this insn strictly in
7500 its validity determination, i.e., the way it would after reload
7501 has completed. */
7502 if (constrain_operands (1))
7504 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7505 REG_NOTES (insn)
7506 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7507 return insn;
7511 delete_insns_since (last);
7513 gen_reload (out, op1, opnum, type);
7514 insn = emit_insn (gen_add2_insn (out, op0));
7515 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7518 #ifdef SECONDARY_MEMORY_NEEDED
7519 /* If we need a memory location to do the move, do it that way. */
7520 else if ((REG_P (in) || GET_CODE (in) == SUBREG)
7521 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7522 && (REG_P (out) || GET_CODE (out) == SUBREG)
7523 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7524 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7525 REGNO_REG_CLASS (reg_or_subregno (out)),
7526 GET_MODE (out)))
7528 /* Get the memory to use and rewrite both registers to its mode. */
7529 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7531 if (GET_MODE (loc) != GET_MODE (out))
7532 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7534 if (GET_MODE (loc) != GET_MODE (in))
7535 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7537 gen_reload (loc, in, opnum, type);
7538 gen_reload (out, loc, opnum, type);
7540 #endif
7542 /* If IN is a simple operand, use gen_move_insn. */
7543 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
7544 emit_insn (gen_move_insn (out, in));
7546 #ifdef HAVE_reload_load_address
7547 else if (HAVE_reload_load_address)
7548 emit_insn (gen_reload_load_address (out, in));
7549 #endif
7551 /* Otherwise, just write (set OUT IN) and hope for the best. */
7552 else
7553 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7555 /* Return the first insn emitted.
7556 We can not just return get_last_insn, because there may have
7557 been multiple instructions emitted. Also note that gen_move_insn may
7558 emit more than one insn itself, so we can not assume that there is one
7559 insn emitted per emit_insn_before call. */
7561 return last ? NEXT_INSN (last) : get_insns ();
7564 /* Delete a previously made output-reload whose result we now believe
7565 is not needed. First we double-check.
7567 INSN is the insn now being processed.
7568 LAST_RELOAD_REG is the hard register number for which we want to delete
7569 the last output reload.
7570 J is the reload-number that originally used REG. The caller has made
7571 certain that reload J doesn't use REG any longer for input. */
7573 static void
7574 delete_output_reload (rtx insn, int j, int last_reload_reg)
7576 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7577 rtx reg = spill_reg_stored_to[last_reload_reg];
7578 int k;
7579 int n_occurrences;
7580 int n_inherited = 0;
7581 rtx i1;
7582 rtx substed;
7584 /* It is possible that this reload has been only used to set another reload
7585 we eliminated earlier and thus deleted this instruction too. */
7586 if (INSN_DELETED_P (output_reload_insn))
7587 return;
7589 /* Get the raw pseudo-register referred to. */
7591 while (GET_CODE (reg) == SUBREG)
7592 reg = SUBREG_REG (reg);
7593 substed = reg_equiv_memory_loc[REGNO (reg)];
7595 /* This is unsafe if the operand occurs more often in the current
7596 insn than it is inherited. */
7597 for (k = n_reloads - 1; k >= 0; k--)
7599 rtx reg2 = rld[k].in;
7600 if (! reg2)
7601 continue;
7602 if (MEM_P (reg2) || reload_override_in[k])
7603 reg2 = rld[k].in_reg;
7604 #ifdef AUTO_INC_DEC
7605 if (rld[k].out && ! rld[k].out_reg)
7606 reg2 = XEXP (rld[k].in_reg, 0);
7607 #endif
7608 while (GET_CODE (reg2) == SUBREG)
7609 reg2 = SUBREG_REG (reg2);
7610 if (rtx_equal_p (reg2, reg))
7612 if (reload_inherited[k] || reload_override_in[k] || k == j)
7614 n_inherited++;
7615 reg2 = rld[k].out_reg;
7616 if (! reg2)
7617 continue;
7618 while (GET_CODE (reg2) == SUBREG)
7619 reg2 = XEXP (reg2, 0);
7620 if (rtx_equal_p (reg2, reg))
7621 n_inherited++;
7623 else
7624 return;
7627 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7628 if (substed)
7629 n_occurrences += count_occurrences (PATTERN (insn),
7630 eliminate_regs (substed, 0,
7631 NULL_RTX), 0);
7632 if (n_occurrences > n_inherited)
7633 return;
7635 /* If the pseudo-reg we are reloading is no longer referenced
7636 anywhere between the store into it and here,
7637 and no jumps or labels intervene, then the value can get
7638 here through the reload reg alone.
7639 Otherwise, give up--return. */
7640 for (i1 = NEXT_INSN (output_reload_insn);
7641 i1 != insn; i1 = NEXT_INSN (i1))
7643 if (LABEL_P (i1) || JUMP_P (i1))
7644 return;
7645 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
7646 && reg_mentioned_p (reg, PATTERN (i1)))
7648 /* If this is USE in front of INSN, we only have to check that
7649 there are no more references than accounted for by inheritance. */
7650 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
7652 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7653 i1 = NEXT_INSN (i1);
7655 if (n_occurrences <= n_inherited && i1 == insn)
7656 break;
7657 return;
7661 /* We will be deleting the insn. Remove the spill reg information. */
7662 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
7664 spill_reg_store[last_reload_reg + k] = 0;
7665 spill_reg_stored_to[last_reload_reg + k] = 0;
7668 /* The caller has already checked that REG dies or is set in INSN.
7669 It has also checked that we are optimizing, and thus some
7670 inaccuracies in the debugging information are acceptable.
7671 So we could just delete output_reload_insn. But in some cases
7672 we can improve the debugging information without sacrificing
7673 optimization - maybe even improving the code: See if the pseudo
7674 reg has been completely replaced with reload regs. If so, delete
7675 the store insn and forget we had a stack slot for the pseudo. */
7676 if (rld[j].out != rld[j].in
7677 && REG_N_DEATHS (REGNO (reg)) == 1
7678 && REG_N_SETS (REGNO (reg)) == 1
7679 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7680 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7682 rtx i2;
7684 /* We know that it was used only between here and the beginning of
7685 the current basic block. (We also know that the last use before
7686 INSN was the output reload we are thinking of deleting, but never
7687 mind that.) Search that range; see if any ref remains. */
7688 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7690 rtx set = single_set (i2);
7692 /* Uses which just store in the pseudo don't count,
7693 since if they are the only uses, they are dead. */
7694 if (set != 0 && SET_DEST (set) == reg)
7695 continue;
7696 if (LABEL_P (i2)
7697 || JUMP_P (i2))
7698 break;
7699 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
7700 && reg_mentioned_p (reg, PATTERN (i2)))
7702 /* Some other ref remains; just delete the output reload we
7703 know to be dead. */
7704 delete_address_reloads (output_reload_insn, insn);
7705 delete_insn (output_reload_insn);
7706 return;
7710 /* Delete the now-dead stores into this pseudo. Note that this
7711 loop also takes care of deleting output_reload_insn. */
7712 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7714 rtx set = single_set (i2);
7716 if (set != 0 && SET_DEST (set) == reg)
7718 delete_address_reloads (i2, insn);
7719 delete_insn (i2);
7721 if (LABEL_P (i2)
7722 || JUMP_P (i2))
7723 break;
7726 /* For the debugging info, say the pseudo lives in this reload reg. */
7727 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7728 alter_reg (REGNO (reg), -1);
7730 else
7732 delete_address_reloads (output_reload_insn, insn);
7733 delete_insn (output_reload_insn);
7737 /* We are going to delete DEAD_INSN. Recursively delete loads of
7738 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7739 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7740 static void
7741 delete_address_reloads (rtx dead_insn, rtx current_insn)
7743 rtx set = single_set (dead_insn);
7744 rtx set2, dst, prev, next;
7745 if (set)
7747 rtx dst = SET_DEST (set);
7748 if (MEM_P (dst))
7749 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7751 /* If we deleted the store from a reloaded post_{in,de}c expression,
7752 we can delete the matching adds. */
7753 prev = PREV_INSN (dead_insn);
7754 next = NEXT_INSN (dead_insn);
7755 if (! prev || ! next)
7756 return;
7757 set = single_set (next);
7758 set2 = single_set (prev);
7759 if (! set || ! set2
7760 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7761 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7762 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7763 return;
7764 dst = SET_DEST (set);
7765 if (! rtx_equal_p (dst, SET_DEST (set2))
7766 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7767 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7768 || (INTVAL (XEXP (SET_SRC (set), 1))
7769 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7770 return;
7771 delete_related_insns (prev);
7772 delete_related_insns (next);
7775 /* Subfunction of delete_address_reloads: process registers found in X. */
7776 static void
7777 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
7779 rtx prev, set, dst, i2;
7780 int i, j;
7781 enum rtx_code code = GET_CODE (x);
7783 if (code != REG)
7785 const char *fmt = GET_RTX_FORMAT (code);
7786 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7788 if (fmt[i] == 'e')
7789 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7790 else if (fmt[i] == 'E')
7792 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7793 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7794 current_insn);
7797 return;
7800 if (spill_reg_order[REGNO (x)] < 0)
7801 return;
7803 /* Scan backwards for the insn that sets x. This might be a way back due
7804 to inheritance. */
7805 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7807 code = GET_CODE (prev);
7808 if (code == CODE_LABEL || code == JUMP_INSN)
7809 return;
7810 if (!INSN_P (prev))
7811 continue;
7812 if (reg_set_p (x, PATTERN (prev)))
7813 break;
7814 if (reg_referenced_p (x, PATTERN (prev)))
7815 return;
7817 if (! prev || INSN_UID (prev) < reload_first_uid)
7818 return;
7819 /* Check that PREV only sets the reload register. */
7820 set = single_set (prev);
7821 if (! set)
7822 return;
7823 dst = SET_DEST (set);
7824 if (!REG_P (dst)
7825 || ! rtx_equal_p (dst, x))
7826 return;
7827 if (! reg_set_p (dst, PATTERN (dead_insn)))
7829 /* Check if DST was used in a later insn -
7830 it might have been inherited. */
7831 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7833 if (LABEL_P (i2))
7834 break;
7835 if (! INSN_P (i2))
7836 continue;
7837 if (reg_referenced_p (dst, PATTERN (i2)))
7839 /* If there is a reference to the register in the current insn,
7840 it might be loaded in a non-inherited reload. If no other
7841 reload uses it, that means the register is set before
7842 referenced. */
7843 if (i2 == current_insn)
7845 for (j = n_reloads - 1; j >= 0; j--)
7846 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7847 || reload_override_in[j] == dst)
7848 return;
7849 for (j = n_reloads - 1; j >= 0; j--)
7850 if (rld[j].in && rld[j].reg_rtx == dst)
7851 break;
7852 if (j >= 0)
7853 break;
7855 return;
7857 if (JUMP_P (i2))
7858 break;
7859 /* If DST is still live at CURRENT_INSN, check if it is used for
7860 any reload. Note that even if CURRENT_INSN sets DST, we still
7861 have to check the reloads. */
7862 if (i2 == current_insn)
7864 for (j = n_reloads - 1; j >= 0; j--)
7865 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7866 || reload_override_in[j] == dst)
7867 return;
7868 /* ??? We can't finish the loop here, because dst might be
7869 allocated to a pseudo in this block if no reload in this
7870 block needs any of the classes containing DST - see
7871 spill_hard_reg. There is no easy way to tell this, so we
7872 have to scan till the end of the basic block. */
7874 if (reg_set_p (dst, PATTERN (i2)))
7875 break;
7878 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7879 reg_reloaded_contents[REGNO (dst)] = -1;
7880 delete_insn (prev);
7883 /* Output reload-insns to reload VALUE into RELOADREG.
7884 VALUE is an autoincrement or autodecrement RTX whose operand
7885 is a register or memory location;
7886 so reloading involves incrementing that location.
7887 IN is either identical to VALUE, or some cheaper place to reload from.
7889 INC_AMOUNT is the number to increment or decrement by (always positive).
7890 This cannot be deduced from VALUE.
7892 Return the instruction that stores into RELOADREG. */
7894 static rtx
7895 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
7897 /* REG or MEM to be copied and incremented. */
7898 rtx incloc = XEXP (value, 0);
7899 /* Nonzero if increment after copying. */
7900 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7901 rtx last;
7902 rtx inc;
7903 rtx add_insn;
7904 int code;
7905 rtx store;
7906 rtx real_in = in == value ? XEXP (in, 0) : in;
7908 /* No hard register is equivalent to this register after
7909 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
7910 we could inc/dec that register as well (maybe even using it for
7911 the source), but I'm not sure it's worth worrying about. */
7912 if (REG_P (incloc))
7913 reg_last_reload_reg[REGNO (incloc)] = 0;
7915 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7916 inc_amount = -inc_amount;
7918 inc = GEN_INT (inc_amount);
7920 /* If this is post-increment, first copy the location to the reload reg. */
7921 if (post && real_in != reloadreg)
7922 emit_insn (gen_move_insn (reloadreg, real_in));
7924 if (in == value)
7926 /* See if we can directly increment INCLOC. Use a method similar to
7927 that in gen_reload. */
7929 last = get_last_insn ();
7930 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7931 gen_rtx_PLUS (GET_MODE (incloc),
7932 incloc, inc)));
7934 code = recog_memoized (add_insn);
7935 if (code >= 0)
7937 extract_insn (add_insn);
7938 if (constrain_operands (1))
7940 /* If this is a pre-increment and we have incremented the value
7941 where it lives, copy the incremented value to RELOADREG to
7942 be used as an address. */
7944 if (! post)
7945 emit_insn (gen_move_insn (reloadreg, incloc));
7947 return add_insn;
7950 delete_insns_since (last);
7953 /* If couldn't do the increment directly, must increment in RELOADREG.
7954 The way we do this depends on whether this is pre- or post-increment.
7955 For pre-increment, copy INCLOC to the reload register, increment it
7956 there, then save back. */
7958 if (! post)
7960 if (in != reloadreg)
7961 emit_insn (gen_move_insn (reloadreg, real_in));
7962 emit_insn (gen_add2_insn (reloadreg, inc));
7963 store = emit_insn (gen_move_insn (incloc, reloadreg));
7965 else
7967 /* Postincrement.
7968 Because this might be a jump insn or a compare, and because RELOADREG
7969 may not be available after the insn in an input reload, we must do
7970 the incrementation before the insn being reloaded for.
7972 We have already copied IN to RELOADREG. Increment the copy in
7973 RELOADREG, save that back, then decrement RELOADREG so it has
7974 the original value. */
7976 emit_insn (gen_add2_insn (reloadreg, inc));
7977 store = emit_insn (gen_move_insn (incloc, reloadreg));
7978 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
7981 return store;
7984 #ifdef AUTO_INC_DEC
7985 static void
7986 add_auto_inc_notes (rtx insn, rtx x)
7988 enum rtx_code code = GET_CODE (x);
7989 const char *fmt;
7990 int i, j;
7992 if (code == MEM && auto_inc_p (XEXP (x, 0)))
7994 REG_NOTES (insn)
7995 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
7996 return;
7999 /* Scan all the operand sub-expressions. */
8000 fmt = GET_RTX_FORMAT (code);
8001 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8003 if (fmt[i] == 'e')
8004 add_auto_inc_notes (insn, XEXP (x, i));
8005 else if (fmt[i] == 'E')
8006 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8007 add_auto_inc_notes (insn, XVECEXP (x, i, j));
8010 #endif
8012 /* Copy EH notes from an insn to its reloads. */
8013 static void
8014 copy_eh_notes (rtx insn, rtx x)
8016 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8017 if (eh_note)
8019 for (; x != 0; x = NEXT_INSN (x))
8021 if (may_trap_p (PATTERN (x)))
8022 REG_NOTES (x)
8023 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
8024 REG_NOTES (x));
8029 /* This is used by reload pass, that does emit some instructions after
8030 abnormal calls moving basic block end, but in fact it wants to emit
8031 them on the edge. Looks for abnormal call edges, find backward the
8032 proper call and fix the damage.
8034 Similar handle instructions throwing exceptions internally. */
8035 void
8036 fixup_abnormal_edges (void)
8038 bool inserted = false;
8039 basic_block bb;
8041 FOR_EACH_BB (bb)
8043 edge e;
8045 /* Look for cases we are interested in - calls or instructions causing
8046 exceptions. */
8047 for (e = bb->succ; e; e = e->succ_next)
8049 if (e->flags & EDGE_ABNORMAL_CALL)
8050 break;
8051 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8052 == (EDGE_ABNORMAL | EDGE_EH))
8053 break;
8055 if (e && !CALL_P (BB_END (bb))
8056 && !can_throw_internal (BB_END (bb)))
8058 rtx insn = BB_END (bb), stop = NEXT_INSN (BB_END (bb));
8059 rtx next;
8060 for (e = bb->succ; e; e = e->succ_next)
8061 if (e->flags & EDGE_FALLTHRU)
8062 break;
8063 /* Get past the new insns generated. Allow notes, as the insns may
8064 be already deleted. */
8065 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
8066 && !can_throw_internal (insn)
8067 && insn != BB_HEAD (bb))
8068 insn = PREV_INSN (insn);
8069 if (!CALL_P (insn) && !can_throw_internal (insn))
8070 abort ();
8071 BB_END (bb) = insn;
8072 inserted = true;
8073 insn = NEXT_INSN (insn);
8074 while (insn && insn != stop)
8076 next = NEXT_INSN (insn);
8077 if (INSN_P (insn))
8079 delete_insn (insn);
8081 /* Sometimes there's still the return value USE.
8082 If it's placed after a trapping call (i.e. that
8083 call is the last insn anyway), we have no fallthru
8084 edge. Simply delete this use and don't try to insert
8085 on the non-existent edge. */
8086 if (GET_CODE (PATTERN (insn)) != USE)
8088 /* We're not deleting it, we're moving it. */
8089 INSN_DELETED_P (insn) = 0;
8090 PREV_INSN (insn) = NULL_RTX;
8091 NEXT_INSN (insn) = NULL_RTX;
8093 insert_insn_on_edge (insn, e);
8096 insn = next;
8100 /* We've possibly turned single trapping insn into multiple ones. */
8101 if (flag_non_call_exceptions)
8103 sbitmap blocks;
8104 blocks = sbitmap_alloc (last_basic_block);
8105 sbitmap_ones (blocks);
8106 find_many_sub_basic_blocks (blocks);
8108 if (inserted)
8109 commit_edge_insertions ();