2004-08-18 David Daney <ddaney@avtrex.com>
[official-gcc.git] / gcc / reload.c
blob0996511020455cd86cb84fa2e37777bf5a6ad5cd
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 #include "config.h"
91 #include "system.h"
92 #include "coretypes.h"
93 #include "tm.h"
94 #include "rtl.h"
95 #include "tm_p.h"
96 #include "insn-config.h"
97 #include "expr.h"
98 #include "optabs.h"
99 #include "recog.h"
100 #include "reload.h"
101 #include "regs.h"
102 #include "hard-reg-set.h"
103 #include "flags.h"
104 #include "real.h"
105 #include "output.h"
106 #include "function.h"
107 #include "toplev.h"
108 #include "params.h"
109 #include "target.h"
111 #ifndef REGNO_MODE_OK_FOR_BASE_P
112 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
113 #endif
115 #ifndef REG_MODE_OK_FOR_BASE_P
116 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
117 #endif
119 /* True if X is a constant that can be forced into the constant pool. */
120 #define CONST_POOL_OK_P(X) \
121 (CONSTANT_P (X) \
122 && GET_CODE (X) != HIGH \
123 && !targetm.cannot_force_const_mem (X))
125 /* All reloads of the current insn are recorded here. See reload.h for
126 comments. */
127 int n_reloads;
128 struct reload rld[MAX_RELOADS];
130 /* All the "earlyclobber" operands of the current insn
131 are recorded here. */
132 int n_earlyclobbers;
133 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
135 int reload_n_operands;
137 /* Replacing reloads.
139 If `replace_reloads' is nonzero, then as each reload is recorded
140 an entry is made for it in the table `replacements'.
141 Then later `subst_reloads' can look through that table and
142 perform all the replacements needed. */
144 /* Nonzero means record the places to replace. */
145 static int replace_reloads;
147 /* Each replacement is recorded with a structure like this. */
148 struct replacement
150 rtx *where; /* Location to store in */
151 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
152 a SUBREG; 0 otherwise. */
153 int what; /* which reload this is for */
154 enum machine_mode mode; /* mode it must have */
157 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
159 /* Number of replacements currently recorded. */
160 static int n_replacements;
162 /* Used to track what is modified by an operand. */
163 struct decomposition
165 int reg_flag; /* Nonzero if referencing a register. */
166 int safe; /* Nonzero if this can't conflict with anything. */
167 rtx base; /* Base address for MEM. */
168 HOST_WIDE_INT start; /* Starting offset or register number. */
169 HOST_WIDE_INT end; /* Ending offset or register number. */
172 #ifdef SECONDARY_MEMORY_NEEDED
174 /* Save MEMs needed to copy from one class of registers to another. One MEM
175 is used per mode, but normally only one or two modes are ever used.
177 We keep two versions, before and after register elimination. The one
178 after register elimination is record separately for each operand. This
179 is done in case the address is not valid to be sure that we separately
180 reload each. */
182 static rtx secondary_memlocs[NUM_MACHINE_MODES];
183 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
184 static int secondary_memlocs_elim_used = 0;
185 #endif
187 /* The instruction we are doing reloads for;
188 so we can test whether a register dies in it. */
189 static rtx this_insn;
191 /* Nonzero if this instruction is a user-specified asm with operands. */
192 static int this_insn_is_asm;
194 /* If hard_regs_live_known is nonzero,
195 we can tell which hard regs are currently live,
196 at least enough to succeed in choosing dummy reloads. */
197 static int hard_regs_live_known;
199 /* Indexed by hard reg number,
200 element is nonnegative if hard reg has been spilled.
201 This vector is passed to `find_reloads' as an argument
202 and is not changed here. */
203 static short *static_reload_reg_p;
205 /* Set to 1 in subst_reg_equivs if it changes anything. */
206 static int subst_reg_equivs_changed;
208 /* On return from push_reload, holds the reload-number for the OUT
209 operand, which can be different for that from the input operand. */
210 static int output_reloadnum;
212 /* Compare two RTX's. */
213 #define MATCHES(x, y) \
214 (x == y || (x != 0 && (REG_P (x) \
215 ? REG_P (y) && REGNO (x) == REGNO (y) \
216 : rtx_equal_p (x, y) && ! side_effects_p (x))))
218 /* Indicates if two reloads purposes are for similar enough things that we
219 can merge their reloads. */
220 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
221 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
222 || ((when1) == (when2) && (op1) == (op2)) \
223 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
224 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
225 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
226 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
227 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
229 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
230 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
231 ((when1) != (when2) \
232 || ! ((op1) == (op2) \
233 || (when1) == RELOAD_FOR_INPUT \
234 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
235 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
237 /* If we are going to reload an address, compute the reload type to
238 use. */
239 #define ADDR_TYPE(type) \
240 ((type) == RELOAD_FOR_INPUT_ADDRESS \
241 ? RELOAD_FOR_INPADDR_ADDRESS \
242 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
243 ? RELOAD_FOR_OUTADDR_ADDRESS \
244 : (type)))
246 #ifdef HAVE_SECONDARY_RELOADS
247 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
248 enum machine_mode, enum reload_type,
249 enum insn_code *);
250 #endif
251 static enum reg_class find_valid_class (enum machine_mode, int, unsigned int);
252 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
253 static void push_replacement (rtx *, int, enum machine_mode);
254 static void dup_replacements (rtx *, rtx *);
255 static void combine_reloads (void);
256 static int find_reusable_reload (rtx *, rtx, enum reg_class,
257 enum reload_type, int, int);
258 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
259 enum machine_mode, enum reg_class, int, int);
260 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
261 static struct decomposition decompose (rtx);
262 static int immune_p (rtx, rtx, struct decomposition);
263 static int alternative_allows_memconst (const char *, int);
264 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
265 int *);
266 static rtx make_memloc (rtx, int);
267 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
268 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
269 int, enum reload_type, int, rtx);
270 static rtx subst_reg_equivs (rtx, rtx);
271 static rtx subst_indexed_address (rtx);
272 static void update_auto_inc_notes (rtx, int, int);
273 static int find_reloads_address_1 (enum machine_mode, rtx, int, rtx *,
274 int, enum reload_type,int, rtx);
275 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
276 enum machine_mode, int,
277 enum reload_type, int);
278 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
279 int, rtx);
280 static void copy_replacements_1 (rtx *, rtx *, int);
281 static int find_inc_amount (rtx, rtx);
283 #ifdef HAVE_SECONDARY_RELOADS
285 /* Determine if any secondary reloads are needed for loading (if IN_P is
286 nonzero) or storing (if IN_P is zero) X to or from a reload register of
287 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
288 are needed, push them.
290 Return the reload number of the secondary reload we made, or -1 if
291 we didn't need one. *PICODE is set to the insn_code to use if we do
292 need a secondary reload. */
294 static int
295 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
296 enum reg_class reload_class,
297 enum machine_mode reload_mode, enum reload_type type,
298 enum insn_code *picode)
300 enum reg_class class = NO_REGS;
301 enum machine_mode mode = reload_mode;
302 enum insn_code icode = CODE_FOR_nothing;
303 enum reg_class t_class = NO_REGS;
304 enum machine_mode t_mode = VOIDmode;
305 enum insn_code t_icode = CODE_FOR_nothing;
306 enum reload_type secondary_type;
307 int s_reload, t_reload = -1;
309 if (type == RELOAD_FOR_INPUT_ADDRESS
310 || type == RELOAD_FOR_OUTPUT_ADDRESS
311 || type == RELOAD_FOR_INPADDR_ADDRESS
312 || type == RELOAD_FOR_OUTADDR_ADDRESS)
313 secondary_type = type;
314 else
315 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
317 *picode = CODE_FOR_nothing;
319 /* If X is a paradoxical SUBREG, use the inner value to determine both the
320 mode and object being reloaded. */
321 if (GET_CODE (x) == SUBREG
322 && (GET_MODE_SIZE (GET_MODE (x))
323 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
325 x = SUBREG_REG (x);
326 reload_mode = GET_MODE (x);
329 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
330 is still a pseudo-register by now, it *must* have an equivalent MEM
331 but we don't want to assume that), use that equivalent when seeing if
332 a secondary reload is needed since whether or not a reload is needed
333 might be sensitive to the form of the MEM. */
335 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
336 && reg_equiv_mem[REGNO (x)] != 0)
337 x = reg_equiv_mem[REGNO (x)];
339 #ifdef SECONDARY_INPUT_RELOAD_CLASS
340 if (in_p)
341 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
342 #endif
344 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
345 if (! in_p)
346 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
347 #endif
349 /* If we don't need any secondary registers, done. */
350 if (class == NO_REGS)
351 return -1;
353 /* Get a possible insn to use. If the predicate doesn't accept X, don't
354 use the insn. */
356 icode = (in_p ? reload_in_optab[(int) reload_mode]
357 : reload_out_optab[(int) reload_mode]);
359 if (icode != CODE_FOR_nothing
360 && insn_data[(int) icode].operand[in_p].predicate
361 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
362 icode = CODE_FOR_nothing;
364 /* If we will be using an insn, see if it can directly handle the reload
365 register we will be using. If it can, the secondary reload is for a
366 scratch register. If it can't, we will use the secondary reload for
367 an intermediate register and require a tertiary reload for the scratch
368 register. */
370 if (icode != CODE_FOR_nothing)
372 /* If IN_P is nonzero, the reload register will be the output in
373 operand 0. If IN_P is zero, the reload register will be the input
374 in operand 1. Outputs should have an initial "=", which we must
375 skip. */
377 enum reg_class insn_class;
379 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
380 insn_class = ALL_REGS;
381 else
383 const char *insn_constraint
384 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
385 char insn_letter = *insn_constraint;
386 insn_class
387 = (insn_letter == 'r' ? GENERAL_REGS
388 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
389 insn_constraint));
391 if (insn_class == NO_REGS)
392 abort ();
393 if (in_p
394 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
395 abort ();
398 /* The scratch register's constraint must start with "=&". */
399 if (insn_data[(int) icode].operand[2].constraint[0] != '='
400 || insn_data[(int) icode].operand[2].constraint[1] != '&')
401 abort ();
403 if (reg_class_subset_p (reload_class, insn_class))
404 mode = insn_data[(int) icode].operand[2].mode;
405 else
407 const char *t_constraint
408 = &insn_data[(int) icode].operand[2].constraint[2];
409 char t_letter = *t_constraint;
410 class = insn_class;
411 t_mode = insn_data[(int) icode].operand[2].mode;
412 t_class = (t_letter == 'r' ? GENERAL_REGS
413 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
414 t_constraint));
415 t_icode = icode;
416 icode = CODE_FOR_nothing;
420 /* This case isn't valid, so fail. Reload is allowed to use the same
421 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
422 in the case of a secondary register, we actually need two different
423 registers for correct code. We fail here to prevent the possibility of
424 silently generating incorrect code later.
426 The convention is that secondary input reloads are valid only if the
427 secondary_class is different from class. If you have such a case, you
428 can not use secondary reloads, you must work around the problem some
429 other way.
431 Allow this when a reload_in/out pattern is being used. I.e. assume
432 that the generated code handles this case. */
434 if (in_p && class == reload_class && icode == CODE_FOR_nothing
435 && t_icode == CODE_FOR_nothing)
436 abort ();
438 /* If we need a tertiary reload, see if we have one we can reuse or else
439 make a new one. */
441 if (t_class != NO_REGS)
443 for (t_reload = 0; t_reload < n_reloads; t_reload++)
444 if (rld[t_reload].secondary_p
445 && (reg_class_subset_p (t_class, rld[t_reload].class)
446 || reg_class_subset_p (rld[t_reload].class, t_class))
447 && ((in_p && rld[t_reload].inmode == t_mode)
448 || (! in_p && rld[t_reload].outmode == t_mode))
449 && ((in_p && (rld[t_reload].secondary_in_icode
450 == CODE_FOR_nothing))
451 || (! in_p &&(rld[t_reload].secondary_out_icode
452 == CODE_FOR_nothing)))
453 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
454 && MERGABLE_RELOADS (secondary_type,
455 rld[t_reload].when_needed,
456 opnum, rld[t_reload].opnum))
458 if (in_p)
459 rld[t_reload].inmode = t_mode;
460 if (! in_p)
461 rld[t_reload].outmode = t_mode;
463 if (reg_class_subset_p (t_class, rld[t_reload].class))
464 rld[t_reload].class = t_class;
466 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
467 rld[t_reload].optional &= optional;
468 rld[t_reload].secondary_p = 1;
469 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
470 opnum, rld[t_reload].opnum))
471 rld[t_reload].when_needed = RELOAD_OTHER;
474 if (t_reload == n_reloads)
476 /* We need to make a new tertiary reload for this register class. */
477 rld[t_reload].in = rld[t_reload].out = 0;
478 rld[t_reload].class = t_class;
479 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
480 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
481 rld[t_reload].reg_rtx = 0;
482 rld[t_reload].optional = optional;
483 rld[t_reload].inc = 0;
484 /* Maybe we could combine these, but it seems too tricky. */
485 rld[t_reload].nocombine = 1;
486 rld[t_reload].in_reg = 0;
487 rld[t_reload].out_reg = 0;
488 rld[t_reload].opnum = opnum;
489 rld[t_reload].when_needed = secondary_type;
490 rld[t_reload].secondary_in_reload = -1;
491 rld[t_reload].secondary_out_reload = -1;
492 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
493 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
494 rld[t_reload].secondary_p = 1;
496 n_reloads++;
500 /* See if we can reuse an existing secondary reload. */
501 for (s_reload = 0; s_reload < n_reloads; s_reload++)
502 if (rld[s_reload].secondary_p
503 && (reg_class_subset_p (class, rld[s_reload].class)
504 || reg_class_subset_p (rld[s_reload].class, class))
505 && ((in_p && rld[s_reload].inmode == mode)
506 || (! in_p && rld[s_reload].outmode == mode))
507 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
508 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
509 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
510 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
511 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
512 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
513 opnum, rld[s_reload].opnum))
515 if (in_p)
516 rld[s_reload].inmode = mode;
517 if (! in_p)
518 rld[s_reload].outmode = mode;
520 if (reg_class_subset_p (class, rld[s_reload].class))
521 rld[s_reload].class = class;
523 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
524 rld[s_reload].optional &= optional;
525 rld[s_reload].secondary_p = 1;
526 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
527 opnum, rld[s_reload].opnum))
528 rld[s_reload].when_needed = RELOAD_OTHER;
531 if (s_reload == n_reloads)
533 #ifdef SECONDARY_MEMORY_NEEDED
534 /* If we need a memory location to copy between the two reload regs,
535 set it up now. Note that we do the input case before making
536 the reload and the output case after. This is due to the
537 way reloads are output. */
539 if (in_p && icode == CODE_FOR_nothing
540 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
542 get_secondary_mem (x, reload_mode, opnum, type);
544 /* We may have just added new reloads. Make sure we add
545 the new reload at the end. */
546 s_reload = n_reloads;
548 #endif
550 /* We need to make a new secondary reload for this register class. */
551 rld[s_reload].in = rld[s_reload].out = 0;
552 rld[s_reload].class = class;
554 rld[s_reload].inmode = in_p ? mode : VOIDmode;
555 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
556 rld[s_reload].reg_rtx = 0;
557 rld[s_reload].optional = optional;
558 rld[s_reload].inc = 0;
559 /* Maybe we could combine these, but it seems too tricky. */
560 rld[s_reload].nocombine = 1;
561 rld[s_reload].in_reg = 0;
562 rld[s_reload].out_reg = 0;
563 rld[s_reload].opnum = opnum;
564 rld[s_reload].when_needed = secondary_type;
565 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
566 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
567 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
568 rld[s_reload].secondary_out_icode
569 = ! in_p ? t_icode : CODE_FOR_nothing;
570 rld[s_reload].secondary_p = 1;
572 n_reloads++;
574 #ifdef SECONDARY_MEMORY_NEEDED
575 if (! in_p && icode == CODE_FOR_nothing
576 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
577 get_secondary_mem (x, mode, opnum, type);
578 #endif
581 *picode = icode;
582 return s_reload;
584 #endif /* HAVE_SECONDARY_RELOADS */
586 #ifdef SECONDARY_MEMORY_NEEDED
588 /* Return a memory location that will be used to copy X in mode MODE.
589 If we haven't already made a location for this mode in this insn,
590 call find_reloads_address on the location being returned. */
593 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
594 int opnum, enum reload_type type)
596 rtx loc;
597 int mem_valid;
599 /* By default, if MODE is narrower than a word, widen it to a word.
600 This is required because most machines that require these memory
601 locations do not support short load and stores from all registers
602 (e.g., FP registers). */
604 #ifdef SECONDARY_MEMORY_NEEDED_MODE
605 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
606 #else
607 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
608 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
609 #endif
611 /* If we already have made a MEM for this operand in MODE, return it. */
612 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
613 return secondary_memlocs_elim[(int) mode][opnum];
615 /* If this is the first time we've tried to get a MEM for this mode,
616 allocate a new one. `something_changed' in reload will get set
617 by noticing that the frame size has changed. */
619 if (secondary_memlocs[(int) mode] == 0)
621 #ifdef SECONDARY_MEMORY_NEEDED_RTX
622 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
623 #else
624 secondary_memlocs[(int) mode]
625 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
626 #endif
629 /* Get a version of the address doing any eliminations needed. If that
630 didn't give us a new MEM, make a new one if it isn't valid. */
632 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
633 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
635 if (! mem_valid && loc == secondary_memlocs[(int) mode])
636 loc = copy_rtx (loc);
638 /* The only time the call below will do anything is if the stack
639 offset is too large. In that case IND_LEVELS doesn't matter, so we
640 can just pass a zero. Adjust the type to be the address of the
641 corresponding object. If the address was valid, save the eliminated
642 address. If it wasn't valid, we need to make a reload each time, so
643 don't save it. */
645 if (! mem_valid)
647 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
648 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
649 : RELOAD_OTHER);
651 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
652 opnum, type, 0, 0);
655 secondary_memlocs_elim[(int) mode][opnum] = loc;
656 if (secondary_memlocs_elim_used <= (int)mode)
657 secondary_memlocs_elim_used = (int)mode + 1;
658 return loc;
661 /* Clear any secondary memory locations we've made. */
663 void
664 clear_secondary_mem (void)
666 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
668 #endif /* SECONDARY_MEMORY_NEEDED */
670 /* Find the largest class for which every register number plus N is valid in
671 M1 (if in range) and is cheap to move into REGNO.
672 Abort if no such class exists. */
674 static enum reg_class
675 find_valid_class (enum machine_mode m1 ATTRIBUTE_UNUSED, int n,
676 unsigned int dest_regno ATTRIBUTE_UNUSED)
678 int best_cost = -1;
679 int class;
680 int regno;
681 enum reg_class best_class = NO_REGS;
682 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
683 unsigned int best_size = 0;
684 int cost;
686 for (class = 1; class < N_REG_CLASSES; class++)
688 int bad = 0;
689 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
690 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
691 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
692 && ! HARD_REGNO_MODE_OK (regno + n, m1))
693 bad = 1;
695 if (bad)
696 continue;
697 cost = REGISTER_MOVE_COST (m1, class, dest_class);
699 if ((reg_class_size[class] > best_size
700 && (best_cost < 0 || best_cost >= cost))
701 || best_cost > cost)
703 best_class = class;
704 best_size = reg_class_size[class];
705 best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
709 if (best_size == 0)
710 abort ();
712 return best_class;
715 /* Return the number of a previously made reload that can be combined with
716 a new one, or n_reloads if none of the existing reloads can be used.
717 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
718 push_reload, they determine the kind of the new reload that we try to
719 combine. P_IN points to the corresponding value of IN, which can be
720 modified by this function.
721 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
723 static int
724 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
725 enum reload_type type, int opnum, int dont_share)
727 rtx in = *p_in;
728 int i;
729 /* We can't merge two reloads if the output of either one is
730 earlyclobbered. */
732 if (earlyclobber_operand_p (out))
733 return n_reloads;
735 /* We can use an existing reload if the class is right
736 and at least one of IN and OUT is a match
737 and the other is at worst neutral.
738 (A zero compared against anything is neutral.)
740 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
741 for the same thing since that can cause us to need more reload registers
742 than we otherwise would. */
744 for (i = 0; i < n_reloads; i++)
745 if ((reg_class_subset_p (class, rld[i].class)
746 || reg_class_subset_p (rld[i].class, class))
747 /* If the existing reload has a register, it must fit our class. */
748 && (rld[i].reg_rtx == 0
749 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
750 true_regnum (rld[i].reg_rtx)))
751 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
752 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
753 || (out != 0 && MATCHES (rld[i].out, out)
754 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
755 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
756 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
757 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
758 return i;
760 /* Reloading a plain reg for input can match a reload to postincrement
761 that reg, since the postincrement's value is the right value.
762 Likewise, it can match a preincrement reload, since we regard
763 the preincrementation as happening before any ref in this insn
764 to that register. */
765 for (i = 0; i < n_reloads; i++)
766 if ((reg_class_subset_p (class, rld[i].class)
767 || reg_class_subset_p (rld[i].class, class))
768 /* If the existing reload has a register, it must fit our
769 class. */
770 && (rld[i].reg_rtx == 0
771 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
772 true_regnum (rld[i].reg_rtx)))
773 && out == 0 && rld[i].out == 0 && rld[i].in != 0
774 && ((REG_P (in)
775 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
776 && MATCHES (XEXP (rld[i].in, 0), in))
777 || (REG_P (rld[i].in)
778 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
779 && MATCHES (XEXP (in, 0), rld[i].in)))
780 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
781 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
782 && MERGABLE_RELOADS (type, rld[i].when_needed,
783 opnum, rld[i].opnum))
785 /* Make sure reload_in ultimately has the increment,
786 not the plain register. */
787 if (REG_P (in))
788 *p_in = rld[i].in;
789 return i;
791 return n_reloads;
794 /* Return nonzero if X is a SUBREG which will require reloading of its
795 SUBREG_REG expression. */
797 static int
798 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
800 rtx inner;
802 /* Only SUBREGs are problematical. */
803 if (GET_CODE (x) != SUBREG)
804 return 0;
806 inner = SUBREG_REG (x);
808 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
809 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
810 return 1;
812 /* If INNER is not a hard register, then INNER will not need to
813 be reloaded. */
814 if (!REG_P (inner)
815 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
816 return 0;
818 /* If INNER is not ok for MODE, then INNER will need reloading. */
819 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
820 return 1;
822 /* If the outer part is a word or smaller, INNER larger than a
823 word and the number of regs for INNER is not the same as the
824 number of words in INNER, then INNER will need reloading. */
825 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
826 && output
827 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
828 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
829 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
832 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
833 requiring an extra reload register. The caller has already found that
834 IN contains some reference to REGNO, so check that we can produce the
835 new value in a single step. E.g. if we have
836 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
837 instruction that adds one to a register, this should succeed.
838 However, if we have something like
839 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
840 needs to be loaded into a register first, we need a separate reload
841 register.
842 Such PLUS reloads are generated by find_reload_address_part.
843 The out-of-range PLUS expressions are usually introduced in the instruction
844 patterns by register elimination and substituting pseudos without a home
845 by their function-invariant equivalences. */
846 static int
847 can_reload_into (rtx in, int regno, enum machine_mode mode)
849 rtx dst, test_insn;
850 int r = 0;
851 struct recog_data save_recog_data;
853 /* For matching constraints, we often get notional input reloads where
854 we want to use the original register as the reload register. I.e.
855 technically this is a non-optional input-output reload, but IN is
856 already a valid register, and has been chosen as the reload register.
857 Speed this up, since it trivially works. */
858 if (REG_P (in))
859 return 1;
861 /* To test MEMs properly, we'd have to take into account all the reloads
862 that are already scheduled, which can become quite complicated.
863 And since we've already handled address reloads for this MEM, it
864 should always succeed anyway. */
865 if (MEM_P (in))
866 return 1;
868 /* If we can make a simple SET insn that does the job, everything should
869 be fine. */
870 dst = gen_rtx_REG (mode, regno);
871 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
872 save_recog_data = recog_data;
873 if (recog_memoized (test_insn) >= 0)
875 extract_insn (test_insn);
876 r = constrain_operands (1);
878 recog_data = save_recog_data;
879 return r;
882 /* Record one reload that needs to be performed.
883 IN is an rtx saying where the data are to be found before this instruction.
884 OUT says where they must be stored after the instruction.
885 (IN is zero for data not read, and OUT is zero for data not written.)
886 INLOC and OUTLOC point to the places in the instructions where
887 IN and OUT were found.
888 If IN and OUT are both nonzero, it means the same register must be used
889 to reload both IN and OUT.
891 CLASS is a register class required for the reloaded data.
892 INMODE is the machine mode that the instruction requires
893 for the reg that replaces IN and OUTMODE is likewise for OUT.
895 If IN is zero, then OUT's location and mode should be passed as
896 INLOC and INMODE.
898 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
900 OPTIONAL nonzero means this reload does not need to be performed:
901 it can be discarded if that is more convenient.
903 OPNUM and TYPE say what the purpose of this reload is.
905 The return value is the reload-number for this reload.
907 If both IN and OUT are nonzero, in some rare cases we might
908 want to make two separate reloads. (Actually we never do this now.)
909 Therefore, the reload-number for OUT is stored in
910 output_reloadnum when we return; the return value applies to IN.
911 Usually (presently always), when IN and OUT are nonzero,
912 the two reload-numbers are equal, but the caller should be careful to
913 distinguish them. */
916 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
917 enum reg_class class, enum machine_mode inmode,
918 enum machine_mode outmode, int strict_low, int optional,
919 int opnum, enum reload_type type)
921 int i;
922 int dont_share = 0;
923 int dont_remove_subreg = 0;
924 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
925 int secondary_in_reload = -1, secondary_out_reload = -1;
926 enum insn_code secondary_in_icode = CODE_FOR_nothing;
927 enum insn_code secondary_out_icode = CODE_FOR_nothing;
929 /* INMODE and/or OUTMODE could be VOIDmode if no mode
930 has been specified for the operand. In that case,
931 use the operand's mode as the mode to reload. */
932 if (inmode == VOIDmode && in != 0)
933 inmode = GET_MODE (in);
934 if (outmode == VOIDmode && out != 0)
935 outmode = GET_MODE (out);
937 /* If IN is a pseudo register everywhere-equivalent to a constant, and
938 it is not in a hard register, reload straight from the constant,
939 since we want to get rid of such pseudo registers.
940 Often this is done earlier, but not always in find_reloads_address. */
941 if (in != 0 && REG_P (in))
943 int regno = REGNO (in);
945 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
946 && reg_equiv_constant[regno] != 0)
947 in = reg_equiv_constant[regno];
950 /* Likewise for OUT. Of course, OUT will never be equivalent to
951 an actual constant, but it might be equivalent to a memory location
952 (in the case of a parameter). */
953 if (out != 0 && REG_P (out))
955 int regno = REGNO (out);
957 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
958 && reg_equiv_constant[regno] != 0)
959 out = reg_equiv_constant[regno];
962 /* If we have a read-write operand with an address side-effect,
963 change either IN or OUT so the side-effect happens only once. */
964 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
965 switch (GET_CODE (XEXP (in, 0)))
967 case POST_INC: case POST_DEC: case POST_MODIFY:
968 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
969 break;
971 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
972 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
973 break;
975 default:
976 break;
979 /* If we are reloading a (SUBREG constant ...), really reload just the
980 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
981 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
982 a pseudo and hence will become a MEM) with M1 wider than M2 and the
983 register is a pseudo, also reload the inside expression.
984 For machines that extend byte loads, do this for any SUBREG of a pseudo
985 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
986 M2 is an integral mode that gets extended when loaded.
987 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
988 either M1 is not valid for R or M2 is wider than a word but we only
989 need one word to store an M2-sized quantity in R.
990 (However, if OUT is nonzero, we need to reload the reg *and*
991 the subreg, so do nothing here, and let following statement handle it.)
993 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
994 we can't handle it here because CONST_INT does not indicate a mode.
996 Similarly, we must reload the inside expression if we have a
997 STRICT_LOW_PART (presumably, in == out in the cas).
999 Also reload the inner expression if it does not require a secondary
1000 reload but the SUBREG does.
1002 Finally, reload the inner expression if it is a register that is in
1003 the class whose registers cannot be referenced in a different size
1004 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1005 cannot reload just the inside since we might end up with the wrong
1006 register class. But if it is inside a STRICT_LOW_PART, we have
1007 no choice, so we hope we do get the right register class there. */
1009 if (in != 0 && GET_CODE (in) == SUBREG
1010 && (subreg_lowpart_p (in) || strict_low)
1011 #ifdef CANNOT_CHANGE_MODE_CLASS
1012 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
1013 #endif
1014 && (CONSTANT_P (SUBREG_REG (in))
1015 || GET_CODE (SUBREG_REG (in)) == PLUS
1016 || strict_low
1017 || (((REG_P (SUBREG_REG (in))
1018 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1019 || MEM_P (SUBREG_REG (in)))
1020 && ((GET_MODE_SIZE (inmode)
1021 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1022 #ifdef LOAD_EXTEND_OP
1023 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1024 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1025 <= UNITS_PER_WORD)
1026 && (GET_MODE_SIZE (inmode)
1027 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1028 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1029 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
1030 #endif
1031 #ifdef WORD_REGISTER_OPERATIONS
1032 || ((GET_MODE_SIZE (inmode)
1033 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1034 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1035 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1036 / UNITS_PER_WORD)))
1037 #endif
1039 || (REG_P (SUBREG_REG (in))
1040 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1041 /* The case where out is nonzero
1042 is handled differently in the following statement. */
1043 && (out == 0 || subreg_lowpart_p (in))
1044 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1045 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1046 > UNITS_PER_WORD)
1047 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1048 / UNITS_PER_WORD)
1049 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1050 [GET_MODE (SUBREG_REG (in))]))
1051 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1052 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1053 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1054 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1055 GET_MODE (SUBREG_REG (in)),
1056 SUBREG_REG (in))
1057 == NO_REGS))
1058 #endif
1059 #ifdef CANNOT_CHANGE_MODE_CLASS
1060 || (REG_P (SUBREG_REG (in))
1061 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1062 && REG_CANNOT_CHANGE_MODE_P
1063 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1064 #endif
1067 in_subreg_loc = inloc;
1068 inloc = &SUBREG_REG (in);
1069 in = *inloc;
1070 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1071 if (MEM_P (in))
1072 /* This is supposed to happen only for paradoxical subregs made by
1073 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1074 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1075 abort ();
1076 #endif
1077 inmode = GET_MODE (in);
1080 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1081 either M1 is not valid for R or M2 is wider than a word but we only
1082 need one word to store an M2-sized quantity in R.
1084 However, we must reload the inner reg *as well as* the subreg in
1085 that case. */
1087 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1088 code above. This can happen if SUBREG_BYTE != 0. */
1090 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1092 enum reg_class in_class = class;
1094 if (REG_P (SUBREG_REG (in)))
1095 in_class
1096 = find_valid_class (inmode,
1097 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1098 GET_MODE (SUBREG_REG (in)),
1099 SUBREG_BYTE (in),
1100 GET_MODE (in)),
1101 REGNO (SUBREG_REG (in)));
1103 /* This relies on the fact that emit_reload_insns outputs the
1104 instructions for input reloads of type RELOAD_OTHER in the same
1105 order as the reloads. Thus if the outer reload is also of type
1106 RELOAD_OTHER, we are guaranteed that this inner reload will be
1107 output before the outer reload. */
1108 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1109 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1110 dont_remove_subreg = 1;
1113 /* Similarly for paradoxical and problematical SUBREGs on the output.
1114 Note that there is no reason we need worry about the previous value
1115 of SUBREG_REG (out); even if wider than out,
1116 storing in a subreg is entitled to clobber it all
1117 (except in the case of STRICT_LOW_PART,
1118 and in that case the constraint should label it input-output.) */
1119 if (out != 0 && GET_CODE (out) == SUBREG
1120 && (subreg_lowpart_p (out) || strict_low)
1121 #ifdef CANNOT_CHANGE_MODE_CLASS
1122 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1123 #endif
1124 && (CONSTANT_P (SUBREG_REG (out))
1125 || strict_low
1126 || (((REG_P (SUBREG_REG (out))
1127 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1128 || MEM_P (SUBREG_REG (out)))
1129 && ((GET_MODE_SIZE (outmode)
1130 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1131 #ifdef WORD_REGISTER_OPERATIONS
1132 || ((GET_MODE_SIZE (outmode)
1133 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1134 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1135 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1136 / UNITS_PER_WORD)))
1137 #endif
1139 || (REG_P (SUBREG_REG (out))
1140 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1141 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1142 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1143 > UNITS_PER_WORD)
1144 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1145 / UNITS_PER_WORD)
1146 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1147 [GET_MODE (SUBREG_REG (out))]))
1148 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1149 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1150 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1151 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1152 GET_MODE (SUBREG_REG (out)),
1153 SUBREG_REG (out))
1154 == NO_REGS))
1155 #endif
1156 #ifdef CANNOT_CHANGE_MODE_CLASS
1157 || (REG_P (SUBREG_REG (out))
1158 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1159 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1160 GET_MODE (SUBREG_REG (out)),
1161 outmode))
1162 #endif
1165 out_subreg_loc = outloc;
1166 outloc = &SUBREG_REG (out);
1167 out = *outloc;
1168 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1169 if (MEM_P (out)
1170 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1171 abort ();
1172 #endif
1173 outmode = GET_MODE (out);
1176 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1177 either M1 is not valid for R or M2 is wider than a word but we only
1178 need one word to store an M2-sized quantity in R.
1180 However, we must reload the inner reg *as well as* the subreg in
1181 that case. In this case, the inner reg is an in-out reload. */
1183 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1185 /* This relies on the fact that emit_reload_insns outputs the
1186 instructions for output reloads of type RELOAD_OTHER in reverse
1187 order of the reloads. Thus if the outer reload is also of type
1188 RELOAD_OTHER, we are guaranteed that this inner reload will be
1189 output after the outer reload. */
1190 dont_remove_subreg = 1;
1191 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1192 &SUBREG_REG (out),
1193 find_valid_class (outmode,
1194 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1195 GET_MODE (SUBREG_REG (out)),
1196 SUBREG_BYTE (out),
1197 GET_MODE (out)),
1198 REGNO (SUBREG_REG (out))),
1199 VOIDmode, VOIDmode, 0, 0,
1200 opnum, RELOAD_OTHER);
1203 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1204 if (in != 0 && out != 0 && MEM_P (out)
1205 && (REG_P (in) || MEM_P (in))
1206 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1207 dont_share = 1;
1209 /* If IN is a SUBREG of a hard register, make a new REG. This
1210 simplifies some of the cases below. */
1212 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1213 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1214 && ! dont_remove_subreg)
1215 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1217 /* Similarly for OUT. */
1218 if (out != 0 && GET_CODE (out) == SUBREG
1219 && REG_P (SUBREG_REG (out))
1220 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1221 && ! dont_remove_subreg)
1222 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1224 /* Narrow down the class of register wanted if that is
1225 desirable on this machine for efficiency. */
1226 if (in != 0)
1227 class = PREFERRED_RELOAD_CLASS (in, class);
1229 /* Output reloads may need analogous treatment, different in detail. */
1230 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1231 if (out != 0)
1232 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1233 #endif
1235 /* Make sure we use a class that can handle the actual pseudo
1236 inside any subreg. For example, on the 386, QImode regs
1237 can appear within SImode subregs. Although GENERAL_REGS
1238 can handle SImode, QImode needs a smaller class. */
1239 #ifdef LIMIT_RELOAD_CLASS
1240 if (in_subreg_loc)
1241 class = LIMIT_RELOAD_CLASS (inmode, class);
1242 else if (in != 0 && GET_CODE (in) == SUBREG)
1243 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1245 if (out_subreg_loc)
1246 class = LIMIT_RELOAD_CLASS (outmode, class);
1247 if (out != 0 && GET_CODE (out) == SUBREG)
1248 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1249 #endif
1251 /* Verify that this class is at least possible for the mode that
1252 is specified. */
1253 if (this_insn_is_asm)
1255 enum machine_mode mode;
1256 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1257 mode = inmode;
1258 else
1259 mode = outmode;
1260 if (mode == VOIDmode)
1262 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1263 mode = word_mode;
1264 if (in != 0)
1265 inmode = word_mode;
1266 if (out != 0)
1267 outmode = word_mode;
1269 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1270 if (HARD_REGNO_MODE_OK (i, mode)
1271 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1273 int nregs = hard_regno_nregs[i][mode];
1275 int j;
1276 for (j = 1; j < nregs; j++)
1277 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1278 break;
1279 if (j == nregs)
1280 break;
1282 if (i == FIRST_PSEUDO_REGISTER)
1284 error_for_asm (this_insn, "impossible register constraint in `asm'");
1285 class = ALL_REGS;
1289 /* Optional output reloads are always OK even if we have no register class,
1290 since the function of these reloads is only to have spill_reg_store etc.
1291 set, so that the storing insn can be deleted later. */
1292 if (class == NO_REGS
1293 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1294 abort ();
1296 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1298 if (i == n_reloads)
1300 /* See if we need a secondary reload register to move between CLASS
1301 and IN or CLASS and OUT. Get the icode and push any required reloads
1302 needed for each of them if so. */
1304 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1305 if (in != 0)
1306 secondary_in_reload
1307 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1308 &secondary_in_icode);
1309 #endif
1311 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1312 if (out != 0 && GET_CODE (out) != SCRATCH)
1313 secondary_out_reload
1314 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1315 type, &secondary_out_icode);
1316 #endif
1318 /* We found no existing reload suitable for re-use.
1319 So add an additional reload. */
1321 #ifdef SECONDARY_MEMORY_NEEDED
1322 /* If a memory location is needed for the copy, make one. */
1323 if (in != 0 && (REG_P (in) || GET_CODE (in) == SUBREG)
1324 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1325 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1326 class, inmode))
1327 get_secondary_mem (in, inmode, opnum, type);
1328 #endif
1330 i = n_reloads;
1331 rld[i].in = in;
1332 rld[i].out = out;
1333 rld[i].class = class;
1334 rld[i].inmode = inmode;
1335 rld[i].outmode = outmode;
1336 rld[i].reg_rtx = 0;
1337 rld[i].optional = optional;
1338 rld[i].inc = 0;
1339 rld[i].nocombine = 0;
1340 rld[i].in_reg = inloc ? *inloc : 0;
1341 rld[i].out_reg = outloc ? *outloc : 0;
1342 rld[i].opnum = opnum;
1343 rld[i].when_needed = type;
1344 rld[i].secondary_in_reload = secondary_in_reload;
1345 rld[i].secondary_out_reload = secondary_out_reload;
1346 rld[i].secondary_in_icode = secondary_in_icode;
1347 rld[i].secondary_out_icode = secondary_out_icode;
1348 rld[i].secondary_p = 0;
1350 n_reloads++;
1352 #ifdef SECONDARY_MEMORY_NEEDED
1353 if (out != 0 && (REG_P (out) || GET_CODE (out) == SUBREG)
1354 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1355 && SECONDARY_MEMORY_NEEDED (class,
1356 REGNO_REG_CLASS (reg_or_subregno (out)),
1357 outmode))
1358 get_secondary_mem (out, outmode, opnum, type);
1359 #endif
1361 else
1363 /* We are reusing an existing reload,
1364 but we may have additional information for it.
1365 For example, we may now have both IN and OUT
1366 while the old one may have just one of them. */
1368 /* The modes can be different. If they are, we want to reload in
1369 the larger mode, so that the value is valid for both modes. */
1370 if (inmode != VOIDmode
1371 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1372 rld[i].inmode = inmode;
1373 if (outmode != VOIDmode
1374 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1375 rld[i].outmode = outmode;
1376 if (in != 0)
1378 rtx in_reg = inloc ? *inloc : 0;
1379 /* If we merge reloads for two distinct rtl expressions that
1380 are identical in content, there might be duplicate address
1381 reloads. Remove the extra set now, so that if we later find
1382 that we can inherit this reload, we can get rid of the
1383 address reloads altogether.
1385 Do not do this if both reloads are optional since the result
1386 would be an optional reload which could potentially leave
1387 unresolved address replacements.
1389 It is not sufficient to call transfer_replacements since
1390 choose_reload_regs will remove the replacements for address
1391 reloads of inherited reloads which results in the same
1392 problem. */
1393 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1394 && ! (rld[i].optional && optional))
1396 /* We must keep the address reload with the lower operand
1397 number alive. */
1398 if (opnum > rld[i].opnum)
1400 remove_address_replacements (in);
1401 in = rld[i].in;
1402 in_reg = rld[i].in_reg;
1404 else
1405 remove_address_replacements (rld[i].in);
1407 rld[i].in = in;
1408 rld[i].in_reg = in_reg;
1410 if (out != 0)
1412 rld[i].out = out;
1413 rld[i].out_reg = outloc ? *outloc : 0;
1415 if (reg_class_subset_p (class, rld[i].class))
1416 rld[i].class = class;
1417 rld[i].optional &= optional;
1418 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1419 opnum, rld[i].opnum))
1420 rld[i].when_needed = RELOAD_OTHER;
1421 rld[i].opnum = MIN (rld[i].opnum, opnum);
1424 /* If the ostensible rtx being reloaded differs from the rtx found
1425 in the location to substitute, this reload is not safe to combine
1426 because we cannot reliably tell whether it appears in the insn. */
1428 if (in != 0 && in != *inloc)
1429 rld[i].nocombine = 1;
1431 #if 0
1432 /* This was replaced by changes in find_reloads_address_1 and the new
1433 function inc_for_reload, which go with a new meaning of reload_inc. */
1435 /* If this is an IN/OUT reload in an insn that sets the CC,
1436 it must be for an autoincrement. It doesn't work to store
1437 the incremented value after the insn because that would clobber the CC.
1438 So we must do the increment of the value reloaded from,
1439 increment it, store it back, then decrement again. */
1440 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1442 out = 0;
1443 rld[i].out = 0;
1444 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1445 /* If we did not find a nonzero amount-to-increment-by,
1446 that contradicts the belief that IN is being incremented
1447 in an address in this insn. */
1448 if (rld[i].inc == 0)
1449 abort ();
1451 #endif
1453 /* If we will replace IN and OUT with the reload-reg,
1454 record where they are located so that substitution need
1455 not do a tree walk. */
1457 if (replace_reloads)
1459 if (inloc != 0)
1461 struct replacement *r = &replacements[n_replacements++];
1462 r->what = i;
1463 r->subreg_loc = in_subreg_loc;
1464 r->where = inloc;
1465 r->mode = inmode;
1467 if (outloc != 0 && outloc != inloc)
1469 struct replacement *r = &replacements[n_replacements++];
1470 r->what = i;
1471 r->where = outloc;
1472 r->subreg_loc = out_subreg_loc;
1473 r->mode = outmode;
1477 /* If this reload is just being introduced and it has both
1478 an incoming quantity and an outgoing quantity that are
1479 supposed to be made to match, see if either one of the two
1480 can serve as the place to reload into.
1482 If one of them is acceptable, set rld[i].reg_rtx
1483 to that one. */
1485 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1487 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1488 inmode, outmode,
1489 rld[i].class, i,
1490 earlyclobber_operand_p (out));
1492 /* If the outgoing register already contains the same value
1493 as the incoming one, we can dispense with loading it.
1494 The easiest way to tell the caller that is to give a phony
1495 value for the incoming operand (same as outgoing one). */
1496 if (rld[i].reg_rtx == out
1497 && (REG_P (in) || CONSTANT_P (in))
1498 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1499 static_reload_reg_p, i, inmode))
1500 rld[i].in = out;
1503 /* If this is an input reload and the operand contains a register that
1504 dies in this insn and is used nowhere else, see if it is the right class
1505 to be used for this reload. Use it if so. (This occurs most commonly
1506 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1507 this if it is also an output reload that mentions the register unless
1508 the output is a SUBREG that clobbers an entire register.
1510 Note that the operand might be one of the spill regs, if it is a
1511 pseudo reg and we are in a block where spilling has not taken place.
1512 But if there is no spilling in this block, that is OK.
1513 An explicitly used hard reg cannot be a spill reg. */
1515 if (rld[i].reg_rtx == 0 && in != 0)
1517 rtx note;
1518 int regno;
1519 enum machine_mode rel_mode = inmode;
1521 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1522 rel_mode = outmode;
1524 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1525 if (REG_NOTE_KIND (note) == REG_DEAD
1526 && REG_P (XEXP (note, 0))
1527 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1528 && reg_mentioned_p (XEXP (note, 0), in)
1529 && ! refers_to_regno_for_reload_p (regno,
1530 (regno
1531 + hard_regno_nregs[regno]
1532 [rel_mode]),
1533 PATTERN (this_insn), inloc)
1534 /* If this is also an output reload, IN cannot be used as
1535 the reload register if it is set in this insn unless IN
1536 is also OUT. */
1537 && (out == 0 || in == out
1538 || ! hard_reg_set_here_p (regno,
1539 (regno
1540 + hard_regno_nregs[regno]
1541 [rel_mode]),
1542 PATTERN (this_insn)))
1543 /* ??? Why is this code so different from the previous?
1544 Is there any simple coherent way to describe the two together?
1545 What's going on here. */
1546 && (in != out
1547 || (GET_CODE (in) == SUBREG
1548 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1549 / UNITS_PER_WORD)
1550 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1551 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1552 /* Make sure the operand fits in the reg that dies. */
1553 && (GET_MODE_SIZE (rel_mode)
1554 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1555 && HARD_REGNO_MODE_OK (regno, inmode)
1556 && HARD_REGNO_MODE_OK (regno, outmode))
1558 unsigned int offs;
1559 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1560 hard_regno_nregs[regno][outmode]);
1562 for (offs = 0; offs < nregs; offs++)
1563 if (fixed_regs[regno + offs]
1564 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1565 regno + offs))
1566 break;
1568 if (offs == nregs
1569 && (! (refers_to_regno_for_reload_p
1570 (regno, (regno + hard_regno_nregs[regno][inmode]),
1571 in, (rtx *)0))
1572 || can_reload_into (in, regno, inmode)))
1574 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1575 break;
1580 if (out)
1581 output_reloadnum = i;
1583 return i;
1586 /* Record an additional place we must replace a value
1587 for which we have already recorded a reload.
1588 RELOADNUM is the value returned by push_reload
1589 when the reload was recorded.
1590 This is used in insn patterns that use match_dup. */
1592 static void
1593 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1595 if (replace_reloads)
1597 struct replacement *r = &replacements[n_replacements++];
1598 r->what = reloadnum;
1599 r->where = loc;
1600 r->subreg_loc = 0;
1601 r->mode = mode;
1605 /* Duplicate any replacement we have recorded to apply at
1606 location ORIG_LOC to also be performed at DUP_LOC.
1607 This is used in insn patterns that use match_dup. */
1609 static void
1610 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1612 int i, n = n_replacements;
1614 for (i = 0; i < n; i++)
1616 struct replacement *r = &replacements[i];
1617 if (r->where == orig_loc)
1618 push_replacement (dup_loc, r->what, r->mode);
1622 /* Transfer all replacements that used to be in reload FROM to be in
1623 reload TO. */
1625 void
1626 transfer_replacements (int to, int from)
1628 int i;
1630 for (i = 0; i < n_replacements; i++)
1631 if (replacements[i].what == from)
1632 replacements[i].what = to;
1635 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1636 or a subpart of it. If we have any replacements registered for IN_RTX,
1637 cancel the reloads that were supposed to load them.
1638 Return nonzero if we canceled any reloads. */
1640 remove_address_replacements (rtx in_rtx)
1642 int i, j;
1643 char reload_flags[MAX_RELOADS];
1644 int something_changed = 0;
1646 memset (reload_flags, 0, sizeof reload_flags);
1647 for (i = 0, j = 0; i < n_replacements; i++)
1649 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1650 reload_flags[replacements[i].what] |= 1;
1651 else
1653 replacements[j++] = replacements[i];
1654 reload_flags[replacements[i].what] |= 2;
1657 /* Note that the following store must be done before the recursive calls. */
1658 n_replacements = j;
1660 for (i = n_reloads - 1; i >= 0; i--)
1662 if (reload_flags[i] == 1)
1664 deallocate_reload_reg (i);
1665 remove_address_replacements (rld[i].in);
1666 rld[i].in = 0;
1667 something_changed = 1;
1670 return something_changed;
1673 /* If there is only one output reload, and it is not for an earlyclobber
1674 operand, try to combine it with a (logically unrelated) input reload
1675 to reduce the number of reload registers needed.
1677 This is safe if the input reload does not appear in
1678 the value being output-reloaded, because this implies
1679 it is not needed any more once the original insn completes.
1681 If that doesn't work, see we can use any of the registers that
1682 die in this insn as a reload register. We can if it is of the right
1683 class and does not appear in the value being output-reloaded. */
1685 static void
1686 combine_reloads (void)
1688 int i;
1689 int output_reload = -1;
1690 int secondary_out = -1;
1691 rtx note;
1693 /* Find the output reload; return unless there is exactly one
1694 and that one is mandatory. */
1696 for (i = 0; i < n_reloads; i++)
1697 if (rld[i].out != 0)
1699 if (output_reload >= 0)
1700 return;
1701 output_reload = i;
1704 if (output_reload < 0 || rld[output_reload].optional)
1705 return;
1707 /* An input-output reload isn't combinable. */
1709 if (rld[output_reload].in != 0)
1710 return;
1712 /* If this reload is for an earlyclobber operand, we can't do anything. */
1713 if (earlyclobber_operand_p (rld[output_reload].out))
1714 return;
1716 /* If there is a reload for part of the address of this operand, we would
1717 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1718 its life to the point where doing this combine would not lower the
1719 number of spill registers needed. */
1720 for (i = 0; i < n_reloads; i++)
1721 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1722 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1723 && rld[i].opnum == rld[output_reload].opnum)
1724 return;
1726 /* Check each input reload; can we combine it? */
1728 for (i = 0; i < n_reloads; i++)
1729 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1730 /* Life span of this reload must not extend past main insn. */
1731 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1732 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1733 && rld[i].when_needed != RELOAD_OTHER
1734 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1735 == CLASS_MAX_NREGS (rld[output_reload].class,
1736 rld[output_reload].outmode))
1737 && rld[i].inc == 0
1738 && rld[i].reg_rtx == 0
1739 #ifdef SECONDARY_MEMORY_NEEDED
1740 /* Don't combine two reloads with different secondary
1741 memory locations. */
1742 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1743 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1744 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1745 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1746 #endif
1747 && (SMALL_REGISTER_CLASSES
1748 ? (rld[i].class == rld[output_reload].class)
1749 : (reg_class_subset_p (rld[i].class,
1750 rld[output_reload].class)
1751 || reg_class_subset_p (rld[output_reload].class,
1752 rld[i].class)))
1753 && (MATCHES (rld[i].in, rld[output_reload].out)
1754 /* Args reversed because the first arg seems to be
1755 the one that we imagine being modified
1756 while the second is the one that might be affected. */
1757 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1758 rld[i].in)
1759 /* However, if the input is a register that appears inside
1760 the output, then we also can't share.
1761 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1762 If the same reload reg is used for both reg 69 and the
1763 result to be stored in memory, then that result
1764 will clobber the address of the memory ref. */
1765 && ! (REG_P (rld[i].in)
1766 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1767 rld[output_reload].out))))
1768 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1769 rld[i].when_needed != RELOAD_FOR_INPUT)
1770 && (reg_class_size[(int) rld[i].class]
1771 || SMALL_REGISTER_CLASSES)
1772 /* We will allow making things slightly worse by combining an
1773 input and an output, but no worse than that. */
1774 && (rld[i].when_needed == RELOAD_FOR_INPUT
1775 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1777 int j;
1779 /* We have found a reload to combine with! */
1780 rld[i].out = rld[output_reload].out;
1781 rld[i].out_reg = rld[output_reload].out_reg;
1782 rld[i].outmode = rld[output_reload].outmode;
1783 /* Mark the old output reload as inoperative. */
1784 rld[output_reload].out = 0;
1785 /* The combined reload is needed for the entire insn. */
1786 rld[i].when_needed = RELOAD_OTHER;
1787 /* If the output reload had a secondary reload, copy it. */
1788 if (rld[output_reload].secondary_out_reload != -1)
1790 rld[i].secondary_out_reload
1791 = rld[output_reload].secondary_out_reload;
1792 rld[i].secondary_out_icode
1793 = rld[output_reload].secondary_out_icode;
1796 #ifdef SECONDARY_MEMORY_NEEDED
1797 /* Copy any secondary MEM. */
1798 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1799 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1800 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1801 #endif
1802 /* If required, minimize the register class. */
1803 if (reg_class_subset_p (rld[output_reload].class,
1804 rld[i].class))
1805 rld[i].class = rld[output_reload].class;
1807 /* Transfer all replacements from the old reload to the combined. */
1808 for (j = 0; j < n_replacements; j++)
1809 if (replacements[j].what == output_reload)
1810 replacements[j].what = i;
1812 return;
1815 /* If this insn has only one operand that is modified or written (assumed
1816 to be the first), it must be the one corresponding to this reload. It
1817 is safe to use anything that dies in this insn for that output provided
1818 that it does not occur in the output (we already know it isn't an
1819 earlyclobber. If this is an asm insn, give up. */
1821 if (INSN_CODE (this_insn) == -1)
1822 return;
1824 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1825 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1826 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1827 return;
1829 /* See if some hard register that dies in this insn and is not used in
1830 the output is the right class. Only works if the register we pick
1831 up can fully hold our output reload. */
1832 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1833 if (REG_NOTE_KIND (note) == REG_DEAD
1834 && REG_P (XEXP (note, 0))
1835 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1836 rld[output_reload].out)
1837 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1838 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1839 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1840 REGNO (XEXP (note, 0)))
1841 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1842 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1843 /* Ensure that a secondary or tertiary reload for this output
1844 won't want this register. */
1845 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1846 || (! (TEST_HARD_REG_BIT
1847 (reg_class_contents[(int) rld[secondary_out].class],
1848 REGNO (XEXP (note, 0))))
1849 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1850 || ! (TEST_HARD_REG_BIT
1851 (reg_class_contents[(int) rld[secondary_out].class],
1852 REGNO (XEXP (note, 0)))))))
1853 && ! fixed_regs[REGNO (XEXP (note, 0))])
1855 rld[output_reload].reg_rtx
1856 = gen_rtx_REG (rld[output_reload].outmode,
1857 REGNO (XEXP (note, 0)));
1858 return;
1862 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1863 See if one of IN and OUT is a register that may be used;
1864 this is desirable since a spill-register won't be needed.
1865 If so, return the register rtx that proves acceptable.
1867 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1868 CLASS is the register class required for the reload.
1870 If FOR_REAL is >= 0, it is the number of the reload,
1871 and in some cases when it can be discovered that OUT doesn't need
1872 to be computed, clear out rld[FOR_REAL].out.
1874 If FOR_REAL is -1, this should not be done, because this call
1875 is just to see if a register can be found, not to find and install it.
1877 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1878 puts an additional constraint on being able to use IN for OUT since
1879 IN must not appear elsewhere in the insn (it is assumed that IN itself
1880 is safe from the earlyclobber). */
1882 static rtx
1883 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1884 enum machine_mode inmode, enum machine_mode outmode,
1885 enum reg_class class, int for_real, int earlyclobber)
1887 rtx in = real_in;
1888 rtx out = real_out;
1889 int in_offset = 0;
1890 int out_offset = 0;
1891 rtx value = 0;
1893 /* If operands exceed a word, we can't use either of them
1894 unless they have the same size. */
1895 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1896 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1897 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1898 return 0;
1900 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1901 respectively refers to a hard register. */
1903 /* Find the inside of any subregs. */
1904 while (GET_CODE (out) == SUBREG)
1906 if (REG_P (SUBREG_REG (out))
1907 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1908 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1909 GET_MODE (SUBREG_REG (out)),
1910 SUBREG_BYTE (out),
1911 GET_MODE (out));
1912 out = SUBREG_REG (out);
1914 while (GET_CODE (in) == SUBREG)
1916 if (REG_P (SUBREG_REG (in))
1917 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1918 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1919 GET_MODE (SUBREG_REG (in)),
1920 SUBREG_BYTE (in),
1921 GET_MODE (in));
1922 in = SUBREG_REG (in);
1925 /* Narrow down the reg class, the same way push_reload will;
1926 otherwise we might find a dummy now, but push_reload won't. */
1927 class = PREFERRED_RELOAD_CLASS (in, class);
1929 /* See if OUT will do. */
1930 if (REG_P (out)
1931 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1933 unsigned int regno = REGNO (out) + out_offset;
1934 unsigned int nwords = hard_regno_nregs[regno][outmode];
1935 rtx saved_rtx;
1937 /* When we consider whether the insn uses OUT,
1938 ignore references within IN. They don't prevent us
1939 from copying IN into OUT, because those refs would
1940 move into the insn that reloads IN.
1942 However, we only ignore IN in its role as this reload.
1943 If the insn uses IN elsewhere and it contains OUT,
1944 that counts. We can't be sure it's the "same" operand
1945 so it might not go through this reload. */
1946 saved_rtx = *inloc;
1947 *inloc = const0_rtx;
1949 if (regno < FIRST_PSEUDO_REGISTER
1950 && HARD_REGNO_MODE_OK (regno, outmode)
1951 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1952 PATTERN (this_insn), outloc))
1954 unsigned int i;
1956 for (i = 0; i < nwords; i++)
1957 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1958 regno + i))
1959 break;
1961 if (i == nwords)
1963 if (REG_P (real_out))
1964 value = real_out;
1965 else
1966 value = gen_rtx_REG (outmode, regno);
1970 *inloc = saved_rtx;
1973 /* Consider using IN if OUT was not acceptable
1974 or if OUT dies in this insn (like the quotient in a divmod insn).
1975 We can't use IN unless it is dies in this insn,
1976 which means we must know accurately which hard regs are live.
1977 Also, the result can't go in IN if IN is used within OUT,
1978 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1979 if (hard_regs_live_known
1980 && REG_P (in)
1981 && REGNO (in) < FIRST_PSEUDO_REGISTER
1982 && (value == 0
1983 || find_reg_note (this_insn, REG_UNUSED, real_out))
1984 && find_reg_note (this_insn, REG_DEAD, real_in)
1985 && !fixed_regs[REGNO (in)]
1986 && HARD_REGNO_MODE_OK (REGNO (in),
1987 /* The only case where out and real_out might
1988 have different modes is where real_out
1989 is a subreg, and in that case, out
1990 has a real mode. */
1991 (GET_MODE (out) != VOIDmode
1992 ? GET_MODE (out) : outmode)))
1994 unsigned int regno = REGNO (in) + in_offset;
1995 unsigned int nwords = hard_regno_nregs[regno][inmode];
1997 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1998 && ! hard_reg_set_here_p (regno, regno + nwords,
1999 PATTERN (this_insn))
2000 && (! earlyclobber
2001 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2002 PATTERN (this_insn), inloc)))
2004 unsigned int i;
2006 for (i = 0; i < nwords; i++)
2007 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2008 regno + i))
2009 break;
2011 if (i == nwords)
2013 /* If we were going to use OUT as the reload reg
2014 and changed our mind, it means OUT is a dummy that
2015 dies here. So don't bother copying value to it. */
2016 if (for_real >= 0 && value == real_out)
2017 rld[for_real].out = 0;
2018 if (REG_P (real_in))
2019 value = real_in;
2020 else
2021 value = gen_rtx_REG (inmode, regno);
2026 return value;
2029 /* This page contains subroutines used mainly for determining
2030 whether the IN or an OUT of a reload can serve as the
2031 reload register. */
2033 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2036 earlyclobber_operand_p (rtx x)
2038 int i;
2040 for (i = 0; i < n_earlyclobbers; i++)
2041 if (reload_earlyclobbers[i] == x)
2042 return 1;
2044 return 0;
2047 /* Return 1 if expression X alters a hard reg in the range
2048 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2049 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2050 X should be the body of an instruction. */
2052 static int
2053 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2055 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2057 rtx op0 = SET_DEST (x);
2059 while (GET_CODE (op0) == SUBREG)
2060 op0 = SUBREG_REG (op0);
2061 if (REG_P (op0))
2063 unsigned int r = REGNO (op0);
2065 /* See if this reg overlaps range under consideration. */
2066 if (r < end_regno
2067 && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2068 return 1;
2071 else if (GET_CODE (x) == PARALLEL)
2073 int i = XVECLEN (x, 0) - 1;
2075 for (; i >= 0; i--)
2076 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2077 return 1;
2080 return 0;
2083 /* Return 1 if ADDR is a valid memory address for mode MODE,
2084 and check that each pseudo reg has the proper kind of
2085 hard reg. */
2088 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2090 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2091 return 0;
2093 win:
2094 return 1;
2097 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2098 if they are the same hard reg, and has special hacks for
2099 autoincrement and autodecrement.
2100 This is specifically intended for find_reloads to use
2101 in determining whether two operands match.
2102 X is the operand whose number is the lower of the two.
2104 The value is 2 if Y contains a pre-increment that matches
2105 a non-incrementing address in X. */
2107 /* ??? To be completely correct, we should arrange to pass
2108 for X the output operand and for Y the input operand.
2109 For now, we assume that the output operand has the lower number
2110 because that is natural in (SET output (... input ...)). */
2113 operands_match_p (rtx x, rtx y)
2115 int i;
2116 RTX_CODE code = GET_CODE (x);
2117 const char *fmt;
2118 int success_2;
2120 if (x == y)
2121 return 1;
2122 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2123 && (REG_P (y) || (GET_CODE (y) == SUBREG
2124 && REG_P (SUBREG_REG (y)))))
2126 int j;
2128 if (code == SUBREG)
2130 i = REGNO (SUBREG_REG (x));
2131 if (i >= FIRST_PSEUDO_REGISTER)
2132 goto slow;
2133 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2134 GET_MODE (SUBREG_REG (x)),
2135 SUBREG_BYTE (x),
2136 GET_MODE (x));
2138 else
2139 i = REGNO (x);
2141 if (GET_CODE (y) == SUBREG)
2143 j = REGNO (SUBREG_REG (y));
2144 if (j >= FIRST_PSEUDO_REGISTER)
2145 goto slow;
2146 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2147 GET_MODE (SUBREG_REG (y)),
2148 SUBREG_BYTE (y),
2149 GET_MODE (y));
2151 else
2152 j = REGNO (y);
2154 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2155 multiple hard register group, so that for example (reg:DI 0) and
2156 (reg:SI 1) will be considered the same register. */
2157 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2158 && i < FIRST_PSEUDO_REGISTER)
2159 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2160 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2161 && j < FIRST_PSEUDO_REGISTER)
2162 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2164 return i == j;
2166 /* If two operands must match, because they are really a single
2167 operand of an assembler insn, then two postincrements are invalid
2168 because the assembler insn would increment only once.
2169 On the other hand, a postincrement matches ordinary indexing
2170 if the postincrement is the output operand. */
2171 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2172 return operands_match_p (XEXP (x, 0), y);
2173 /* Two preincrements are invalid
2174 because the assembler insn would increment only once.
2175 On the other hand, a preincrement matches ordinary indexing
2176 if the preincrement is the input operand.
2177 In this case, return 2, since some callers need to do special
2178 things when this happens. */
2179 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2180 || GET_CODE (y) == PRE_MODIFY)
2181 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2183 slow:
2185 /* Now we have disposed of all the cases
2186 in which different rtx codes can match. */
2187 if (code != GET_CODE (y))
2188 return 0;
2189 if (code == LABEL_REF)
2190 return XEXP (x, 0) == XEXP (y, 0);
2191 if (code == SYMBOL_REF)
2192 return XSTR (x, 0) == XSTR (y, 0);
2194 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2196 if (GET_MODE (x) != GET_MODE (y))
2197 return 0;
2199 /* Compare the elements. If any pair of corresponding elements
2200 fail to match, return 0 for the whole things. */
2202 success_2 = 0;
2203 fmt = GET_RTX_FORMAT (code);
2204 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2206 int val, j;
2207 switch (fmt[i])
2209 case 'w':
2210 if (XWINT (x, i) != XWINT (y, i))
2211 return 0;
2212 break;
2214 case 'i':
2215 if (XINT (x, i) != XINT (y, i))
2216 return 0;
2217 break;
2219 case 'e':
2220 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2221 if (val == 0)
2222 return 0;
2223 /* If any subexpression returns 2,
2224 we should return 2 if we are successful. */
2225 if (val == 2)
2226 success_2 = 1;
2227 break;
2229 case '0':
2230 break;
2232 case 'E':
2233 if (XVECLEN (x, i) != XVECLEN (y, i))
2234 return 0;
2235 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2237 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2238 if (val == 0)
2239 return 0;
2240 if (val == 2)
2241 success_2 = 1;
2243 break;
2245 /* It is believed that rtx's at this level will never
2246 contain anything but integers and other rtx's,
2247 except for within LABEL_REFs and SYMBOL_REFs. */
2248 default:
2249 abort ();
2252 return 1 + success_2;
2255 /* Describe the range of registers or memory referenced by X.
2256 If X is a register, set REG_FLAG and put the first register
2257 number into START and the last plus one into END.
2258 If X is a memory reference, put a base address into BASE
2259 and a range of integer offsets into START and END.
2260 If X is pushing on the stack, we can assume it causes no trouble,
2261 so we set the SAFE field. */
2263 static struct decomposition
2264 decompose (rtx x)
2266 struct decomposition val;
2267 int all_const = 0;
2269 memset (&val, 0, sizeof (val));
2271 if (MEM_P (x))
2273 rtx base = NULL_RTX, offset = 0;
2274 rtx addr = XEXP (x, 0);
2276 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2277 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2279 val.base = XEXP (addr, 0);
2280 val.start = -GET_MODE_SIZE (GET_MODE (x));
2281 val.end = GET_MODE_SIZE (GET_MODE (x));
2282 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2283 return val;
2286 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2288 if (GET_CODE (XEXP (addr, 1)) == PLUS
2289 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2290 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2292 val.base = XEXP (addr, 0);
2293 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2294 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2295 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2296 return val;
2300 if (GET_CODE (addr) == CONST)
2302 addr = XEXP (addr, 0);
2303 all_const = 1;
2305 if (GET_CODE (addr) == PLUS)
2307 if (CONSTANT_P (XEXP (addr, 0)))
2309 base = XEXP (addr, 1);
2310 offset = XEXP (addr, 0);
2312 else if (CONSTANT_P (XEXP (addr, 1)))
2314 base = XEXP (addr, 0);
2315 offset = XEXP (addr, 1);
2319 if (offset == 0)
2321 base = addr;
2322 offset = const0_rtx;
2324 if (GET_CODE (offset) == CONST)
2325 offset = XEXP (offset, 0);
2326 if (GET_CODE (offset) == PLUS)
2328 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2330 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2331 offset = XEXP (offset, 0);
2333 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2335 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2336 offset = XEXP (offset, 1);
2338 else
2340 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2341 offset = const0_rtx;
2344 else if (GET_CODE (offset) != CONST_INT)
2346 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2347 offset = const0_rtx;
2350 if (all_const && GET_CODE (base) == PLUS)
2351 base = gen_rtx_CONST (GET_MODE (base), base);
2353 if (GET_CODE (offset) != CONST_INT)
2354 abort ();
2356 val.start = INTVAL (offset);
2357 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2358 val.base = base;
2359 return val;
2361 else if (REG_P (x))
2363 val.reg_flag = 1;
2364 val.start = true_regnum (x);
2365 if (val.start < 0)
2367 /* A pseudo with no hard reg. */
2368 val.start = REGNO (x);
2369 val.end = val.start + 1;
2371 else
2372 /* A hard reg. */
2373 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2375 else if (GET_CODE (x) == SUBREG)
2377 if (!REG_P (SUBREG_REG (x)))
2378 /* This could be more precise, but it's good enough. */
2379 return decompose (SUBREG_REG (x));
2380 val.reg_flag = 1;
2381 val.start = true_regnum (x);
2382 if (val.start < 0)
2383 return decompose (SUBREG_REG (x));
2384 else
2385 /* A hard reg. */
2386 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2388 else if (CONSTANT_P (x)
2389 /* This hasn't been assigned yet, so it can't conflict yet. */
2390 || GET_CODE (x) == SCRATCH)
2391 val.safe = 1;
2392 else
2393 abort ();
2394 return val;
2397 /* Return 1 if altering Y will not modify the value of X.
2398 Y is also described by YDATA, which should be decompose (Y). */
2400 static int
2401 immune_p (rtx x, rtx y, struct decomposition ydata)
2403 struct decomposition xdata;
2405 if (ydata.reg_flag)
2406 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2407 if (ydata.safe)
2408 return 1;
2410 if (!MEM_P (y))
2411 abort ();
2412 /* If Y is memory and X is not, Y can't affect X. */
2413 if (!MEM_P (x))
2414 return 1;
2416 xdata = decompose (x);
2418 if (! rtx_equal_p (xdata.base, ydata.base))
2420 /* If bases are distinct symbolic constants, there is no overlap. */
2421 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2422 return 1;
2423 /* Constants and stack slots never overlap. */
2424 if (CONSTANT_P (xdata.base)
2425 && (ydata.base == frame_pointer_rtx
2426 || ydata.base == hard_frame_pointer_rtx
2427 || ydata.base == stack_pointer_rtx))
2428 return 1;
2429 if (CONSTANT_P (ydata.base)
2430 && (xdata.base == frame_pointer_rtx
2431 || xdata.base == hard_frame_pointer_rtx
2432 || xdata.base == stack_pointer_rtx))
2433 return 1;
2434 /* If either base is variable, we don't know anything. */
2435 return 0;
2438 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2441 /* Similar, but calls decompose. */
2444 safe_from_earlyclobber (rtx op, rtx clobber)
2446 struct decomposition early_data;
2448 early_data = decompose (clobber);
2449 return immune_p (op, clobber, early_data);
2452 /* Main entry point of this file: search the body of INSN
2453 for values that need reloading and record them with push_reload.
2454 REPLACE nonzero means record also where the values occur
2455 so that subst_reloads can be used.
2457 IND_LEVELS says how many levels of indirection are supported by this
2458 machine; a value of zero means that a memory reference is not a valid
2459 memory address.
2461 LIVE_KNOWN says we have valid information about which hard
2462 regs are live at each point in the program; this is true when
2463 we are called from global_alloc but false when stupid register
2464 allocation has been done.
2466 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2467 which is nonnegative if the reg has been commandeered for reloading into.
2468 It is copied into STATIC_RELOAD_REG_P and referenced from there
2469 by various subroutines.
2471 Return TRUE if some operands need to be changed, because of swapping
2472 commutative operands, reg_equiv_address substitution, or whatever. */
2475 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2476 short *reload_reg_p)
2478 int insn_code_number;
2479 int i, j;
2480 int noperands;
2481 /* These start out as the constraints for the insn
2482 and they are chewed up as we consider alternatives. */
2483 char *constraints[MAX_RECOG_OPERANDS];
2484 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2485 a register. */
2486 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2487 char pref_or_nothing[MAX_RECOG_OPERANDS];
2488 /* Nonzero for a MEM operand whose entire address needs a reload. */
2489 int address_reloaded[MAX_RECOG_OPERANDS];
2490 /* Nonzero for an address operand that needs to be completely reloaded. */
2491 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2492 /* Value of enum reload_type to use for operand. */
2493 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2494 /* Value of enum reload_type to use within address of operand. */
2495 enum reload_type address_type[MAX_RECOG_OPERANDS];
2496 /* Save the usage of each operand. */
2497 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2498 int no_input_reloads = 0, no_output_reloads = 0;
2499 int n_alternatives;
2500 int this_alternative[MAX_RECOG_OPERANDS];
2501 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2502 char this_alternative_win[MAX_RECOG_OPERANDS];
2503 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2504 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2505 int this_alternative_matches[MAX_RECOG_OPERANDS];
2506 int swapped;
2507 int goal_alternative[MAX_RECOG_OPERANDS];
2508 int this_alternative_number;
2509 int goal_alternative_number = 0;
2510 int operand_reloadnum[MAX_RECOG_OPERANDS];
2511 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2512 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2513 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2514 char goal_alternative_win[MAX_RECOG_OPERANDS];
2515 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2516 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2517 int goal_alternative_swapped;
2518 int best;
2519 int commutative;
2520 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2521 rtx substed_operand[MAX_RECOG_OPERANDS];
2522 rtx body = PATTERN (insn);
2523 rtx set = single_set (insn);
2524 int goal_earlyclobber = 0, this_earlyclobber;
2525 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2526 int retval = 0;
2528 this_insn = insn;
2529 n_reloads = 0;
2530 n_replacements = 0;
2531 n_earlyclobbers = 0;
2532 replace_reloads = replace;
2533 hard_regs_live_known = live_known;
2534 static_reload_reg_p = reload_reg_p;
2536 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2537 neither are insns that SET cc0. Insns that use CC0 are not allowed
2538 to have any input reloads. */
2539 if (JUMP_P (insn) || CALL_P (insn))
2540 no_output_reloads = 1;
2542 #ifdef HAVE_cc0
2543 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2544 no_input_reloads = 1;
2545 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2546 no_output_reloads = 1;
2547 #endif
2549 #ifdef SECONDARY_MEMORY_NEEDED
2550 /* The eliminated forms of any secondary memory locations are per-insn, so
2551 clear them out here. */
2553 if (secondary_memlocs_elim_used)
2555 memset (secondary_memlocs_elim, 0,
2556 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2557 secondary_memlocs_elim_used = 0;
2559 #endif
2561 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2562 is cheap to move between them. If it is not, there may not be an insn
2563 to do the copy, so we may need a reload. */
2564 if (GET_CODE (body) == SET
2565 && REG_P (SET_DEST (body))
2566 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2567 && REG_P (SET_SRC (body))
2568 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2569 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2570 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2571 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2572 return 0;
2574 extract_insn (insn);
2576 noperands = reload_n_operands = recog_data.n_operands;
2577 n_alternatives = recog_data.n_alternatives;
2579 /* Just return "no reloads" if insn has no operands with constraints. */
2580 if (noperands == 0 || n_alternatives == 0)
2581 return 0;
2583 insn_code_number = INSN_CODE (insn);
2584 this_insn_is_asm = insn_code_number < 0;
2586 memcpy (operand_mode, recog_data.operand_mode,
2587 noperands * sizeof (enum machine_mode));
2588 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2590 commutative = -1;
2592 /* If we will need to know, later, whether some pair of operands
2593 are the same, we must compare them now and save the result.
2594 Reloading the base and index registers will clobber them
2595 and afterward they will fail to match. */
2597 for (i = 0; i < noperands; i++)
2599 char *p;
2600 int c;
2602 substed_operand[i] = recog_data.operand[i];
2603 p = constraints[i];
2605 modified[i] = RELOAD_READ;
2607 /* Scan this operand's constraint to see if it is an output operand,
2608 an in-out operand, is commutative, or should match another. */
2610 while ((c = *p))
2612 p += CONSTRAINT_LEN (c, p);
2613 switch (c)
2615 case '=':
2616 modified[i] = RELOAD_WRITE;
2617 break;
2618 case '+':
2619 modified[i] = RELOAD_READ_WRITE;
2620 break;
2621 case '%':
2623 /* The last operand should not be marked commutative. */
2624 if (i == noperands - 1)
2625 abort ();
2627 /* We currently only support one commutative pair of
2628 operands. Some existing asm code currently uses more
2629 than one pair. Previously, that would usually work,
2630 but sometimes it would crash the compiler. We
2631 continue supporting that case as well as we can by
2632 silently ignoring all but the first pair. In the
2633 future we may handle it correctly. */
2634 if (commutative < 0)
2635 commutative = i;
2636 else if (!this_insn_is_asm)
2637 abort ();
2639 break;
2640 /* Use of ISDIGIT is tempting here, but it may get expensive because
2641 of locale support we don't want. */
2642 case '0': case '1': case '2': case '3': case '4':
2643 case '5': case '6': case '7': case '8': case '9':
2645 c = strtoul (p - 1, &p, 10);
2647 operands_match[c][i]
2648 = operands_match_p (recog_data.operand[c],
2649 recog_data.operand[i]);
2651 /* An operand may not match itself. */
2652 if (c == i)
2653 abort ();
2655 /* If C can be commuted with C+1, and C might need to match I,
2656 then C+1 might also need to match I. */
2657 if (commutative >= 0)
2659 if (c == commutative || c == commutative + 1)
2661 int other = c + (c == commutative ? 1 : -1);
2662 operands_match[other][i]
2663 = operands_match_p (recog_data.operand[other],
2664 recog_data.operand[i]);
2666 if (i == commutative || i == commutative + 1)
2668 int other = i + (i == commutative ? 1 : -1);
2669 operands_match[c][other]
2670 = operands_match_p (recog_data.operand[c],
2671 recog_data.operand[other]);
2673 /* Note that C is supposed to be less than I.
2674 No need to consider altering both C and I because in
2675 that case we would alter one into the other. */
2682 /* Examine each operand that is a memory reference or memory address
2683 and reload parts of the addresses into index registers.
2684 Also here any references to pseudo regs that didn't get hard regs
2685 but are equivalent to constants get replaced in the insn itself
2686 with those constants. Nobody will ever see them again.
2688 Finally, set up the preferred classes of each operand. */
2690 for (i = 0; i < noperands; i++)
2692 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2694 address_reloaded[i] = 0;
2695 address_operand_reloaded[i] = 0;
2696 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2697 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2698 : RELOAD_OTHER);
2699 address_type[i]
2700 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2701 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2702 : RELOAD_OTHER);
2704 if (*constraints[i] == 0)
2705 /* Ignore things like match_operator operands. */
2707 else if (constraints[i][0] == 'p'
2708 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2710 address_operand_reloaded[i]
2711 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2712 recog_data.operand[i],
2713 recog_data.operand_loc[i],
2714 i, operand_type[i], ind_levels, insn);
2716 /* If we now have a simple operand where we used to have a
2717 PLUS or MULT, re-recognize and try again. */
2718 if ((OBJECT_P (*recog_data.operand_loc[i])
2719 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2720 && (GET_CODE (recog_data.operand[i]) == MULT
2721 || GET_CODE (recog_data.operand[i]) == PLUS))
2723 INSN_CODE (insn) = -1;
2724 retval = find_reloads (insn, replace, ind_levels, live_known,
2725 reload_reg_p);
2726 return retval;
2729 recog_data.operand[i] = *recog_data.operand_loc[i];
2730 substed_operand[i] = recog_data.operand[i];
2732 /* Address operands are reloaded in their existing mode,
2733 no matter what is specified in the machine description. */
2734 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2736 else if (code == MEM)
2738 address_reloaded[i]
2739 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2740 recog_data.operand_loc[i],
2741 XEXP (recog_data.operand[i], 0),
2742 &XEXP (recog_data.operand[i], 0),
2743 i, address_type[i], ind_levels, insn);
2744 recog_data.operand[i] = *recog_data.operand_loc[i];
2745 substed_operand[i] = recog_data.operand[i];
2747 else if (code == SUBREG)
2749 rtx reg = SUBREG_REG (recog_data.operand[i]);
2750 rtx op
2751 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2752 ind_levels,
2753 set != 0
2754 && &SET_DEST (set) == recog_data.operand_loc[i],
2755 insn,
2756 &address_reloaded[i]);
2758 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2759 that didn't get a hard register, emit a USE with a REG_EQUAL
2760 note in front so that we might inherit a previous, possibly
2761 wider reload. */
2763 if (replace
2764 && MEM_P (op)
2765 && REG_P (reg)
2766 && (GET_MODE_SIZE (GET_MODE (reg))
2767 >= GET_MODE_SIZE (GET_MODE (op))))
2768 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2769 insn),
2770 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2772 substed_operand[i] = recog_data.operand[i] = op;
2774 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2775 /* We can get a PLUS as an "operand" as a result of register
2776 elimination. See eliminate_regs and gen_reload. We handle
2777 a unary operator by reloading the operand. */
2778 substed_operand[i] = recog_data.operand[i]
2779 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2780 ind_levels, 0, insn,
2781 &address_reloaded[i]);
2782 else if (code == REG)
2784 /* This is equivalent to calling find_reloads_toplev.
2785 The code is duplicated for speed.
2786 When we find a pseudo always equivalent to a constant,
2787 we replace it by the constant. We must be sure, however,
2788 that we don't try to replace it in the insn in which it
2789 is being set. */
2790 int regno = REGNO (recog_data.operand[i]);
2791 if (reg_equiv_constant[regno] != 0
2792 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2794 /* Record the existing mode so that the check if constants are
2795 allowed will work when operand_mode isn't specified. */
2797 if (operand_mode[i] == VOIDmode)
2798 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2800 substed_operand[i] = recog_data.operand[i]
2801 = reg_equiv_constant[regno];
2803 if (reg_equiv_memory_loc[regno] != 0
2804 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2805 /* We need not give a valid is_set_dest argument since the case
2806 of a constant equivalence was checked above. */
2807 substed_operand[i] = recog_data.operand[i]
2808 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2809 ind_levels, 0, insn,
2810 &address_reloaded[i]);
2812 /* If the operand is still a register (we didn't replace it with an
2813 equivalent), get the preferred class to reload it into. */
2814 code = GET_CODE (recog_data.operand[i]);
2815 preferred_class[i]
2816 = ((code == REG && REGNO (recog_data.operand[i])
2817 >= FIRST_PSEUDO_REGISTER)
2818 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2819 : NO_REGS);
2820 pref_or_nothing[i]
2821 = (code == REG
2822 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2823 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2826 /* If this is simply a copy from operand 1 to operand 0, merge the
2827 preferred classes for the operands. */
2828 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2829 && recog_data.operand[1] == SET_SRC (set))
2831 preferred_class[0] = preferred_class[1]
2832 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2833 pref_or_nothing[0] |= pref_or_nothing[1];
2834 pref_or_nothing[1] |= pref_or_nothing[0];
2837 /* Now see what we need for pseudo-regs that didn't get hard regs
2838 or got the wrong kind of hard reg. For this, we must consider
2839 all the operands together against the register constraints. */
2841 best = MAX_RECOG_OPERANDS * 2 + 600;
2843 swapped = 0;
2844 goal_alternative_swapped = 0;
2845 try_swapped:
2847 /* The constraints are made of several alternatives.
2848 Each operand's constraint looks like foo,bar,... with commas
2849 separating the alternatives. The first alternatives for all
2850 operands go together, the second alternatives go together, etc.
2852 First loop over alternatives. */
2854 for (this_alternative_number = 0;
2855 this_alternative_number < n_alternatives;
2856 this_alternative_number++)
2858 /* Loop over operands for one constraint alternative. */
2859 /* LOSERS counts those that don't fit this alternative
2860 and would require loading. */
2861 int losers = 0;
2862 /* BAD is set to 1 if it some operand can't fit this alternative
2863 even after reloading. */
2864 int bad = 0;
2865 /* REJECT is a count of how undesirable this alternative says it is
2866 if any reloading is required. If the alternative matches exactly
2867 then REJECT is ignored, but otherwise it gets this much
2868 counted against it in addition to the reloading needed. Each
2869 ? counts three times here since we want the disparaging caused by
2870 a bad register class to only count 1/3 as much. */
2871 int reject = 0;
2873 this_earlyclobber = 0;
2875 for (i = 0; i < noperands; i++)
2877 char *p = constraints[i];
2878 char *end;
2879 int len;
2880 int win = 0;
2881 int did_match = 0;
2882 /* 0 => this operand can be reloaded somehow for this alternative. */
2883 int badop = 1;
2884 /* 0 => this operand can be reloaded if the alternative allows regs. */
2885 int winreg = 0;
2886 int c;
2887 int m;
2888 rtx operand = recog_data.operand[i];
2889 int offset = 0;
2890 /* Nonzero means this is a MEM that must be reloaded into a reg
2891 regardless of what the constraint says. */
2892 int force_reload = 0;
2893 int offmemok = 0;
2894 /* Nonzero if a constant forced into memory would be OK for this
2895 operand. */
2896 int constmemok = 0;
2897 int earlyclobber = 0;
2899 /* If the predicate accepts a unary operator, it means that
2900 we need to reload the operand, but do not do this for
2901 match_operator and friends. */
2902 if (UNARY_P (operand) && *p != 0)
2903 operand = XEXP (operand, 0);
2905 /* If the operand is a SUBREG, extract
2906 the REG or MEM (or maybe even a constant) within.
2907 (Constants can occur as a result of reg_equiv_constant.) */
2909 while (GET_CODE (operand) == SUBREG)
2911 /* Offset only matters when operand is a REG and
2912 it is a hard reg. This is because it is passed
2913 to reg_fits_class_p if it is a REG and all pseudos
2914 return 0 from that function. */
2915 if (REG_P (SUBREG_REG (operand))
2916 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2918 if (!subreg_offset_representable_p
2919 (REGNO (SUBREG_REG (operand)),
2920 GET_MODE (SUBREG_REG (operand)),
2921 SUBREG_BYTE (operand),
2922 GET_MODE (operand)))
2923 force_reload = 1;
2924 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2925 GET_MODE (SUBREG_REG (operand)),
2926 SUBREG_BYTE (operand),
2927 GET_MODE (operand));
2929 operand = SUBREG_REG (operand);
2930 /* Force reload if this is a constant or PLUS or if there may
2931 be a problem accessing OPERAND in the outer mode. */
2932 if (CONSTANT_P (operand)
2933 || GET_CODE (operand) == PLUS
2934 /* We must force a reload of paradoxical SUBREGs
2935 of a MEM because the alignment of the inner value
2936 may not be enough to do the outer reference. On
2937 big-endian machines, it may also reference outside
2938 the object.
2940 On machines that extend byte operations and we have a
2941 SUBREG where both the inner and outer modes are no wider
2942 than a word and the inner mode is narrower, is integral,
2943 and gets extended when loaded from memory, combine.c has
2944 made assumptions about the behavior of the machine in such
2945 register access. If the data is, in fact, in memory we
2946 must always load using the size assumed to be in the
2947 register and let the insn do the different-sized
2948 accesses.
2950 This is doubly true if WORD_REGISTER_OPERATIONS. In
2951 this case eliminate_regs has left non-paradoxical
2952 subregs for push_reload to see. Make sure it does
2953 by forcing the reload.
2955 ??? When is it right at this stage to have a subreg
2956 of a mem that is _not_ to be handled specially? IMO
2957 those should have been reduced to just a mem. */
2958 || ((MEM_P (operand)
2959 || (REG_P (operand)
2960 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2961 #ifndef WORD_REGISTER_OPERATIONS
2962 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2963 < BIGGEST_ALIGNMENT)
2964 && (GET_MODE_SIZE (operand_mode[i])
2965 > GET_MODE_SIZE (GET_MODE (operand))))
2966 || BYTES_BIG_ENDIAN
2967 #ifdef LOAD_EXTEND_OP
2968 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2969 && (GET_MODE_SIZE (GET_MODE (operand))
2970 <= UNITS_PER_WORD)
2971 && (GET_MODE_SIZE (operand_mode[i])
2972 > GET_MODE_SIZE (GET_MODE (operand)))
2973 && INTEGRAL_MODE_P (GET_MODE (operand))
2974 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2975 #endif
2977 #endif
2980 force_reload = 1;
2983 this_alternative[i] = (int) NO_REGS;
2984 this_alternative_win[i] = 0;
2985 this_alternative_match_win[i] = 0;
2986 this_alternative_offmemok[i] = 0;
2987 this_alternative_earlyclobber[i] = 0;
2988 this_alternative_matches[i] = -1;
2990 /* An empty constraint or empty alternative
2991 allows anything which matched the pattern. */
2992 if (*p == 0 || *p == ',')
2993 win = 1, badop = 0;
2995 /* Scan this alternative's specs for this operand;
2996 set WIN if the operand fits any letter in this alternative.
2997 Otherwise, clear BADOP if this operand could
2998 fit some letter after reloads,
2999 or set WINREG if this operand could fit after reloads
3000 provided the constraint allows some registers. */
3003 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3005 case '\0':
3006 len = 0;
3007 break;
3008 case ',':
3009 c = '\0';
3010 break;
3012 case '=': case '+': case '*':
3013 break;
3015 case '%':
3016 /* We only support one commutative marker, the first
3017 one. We already set commutative above. */
3018 break;
3020 case '?':
3021 reject += 6;
3022 break;
3024 case '!':
3025 reject = 600;
3026 break;
3028 case '#':
3029 /* Ignore rest of this alternative as far as
3030 reloading is concerned. */
3032 p++;
3033 while (*p && *p != ',');
3034 len = 0;
3035 break;
3037 case '0': case '1': case '2': case '3': case '4':
3038 case '5': case '6': case '7': case '8': case '9':
3039 m = strtoul (p, &end, 10);
3040 p = end;
3041 len = 0;
3043 this_alternative_matches[i] = m;
3044 /* We are supposed to match a previous operand.
3045 If we do, we win if that one did.
3046 If we do not, count both of the operands as losers.
3047 (This is too conservative, since most of the time
3048 only a single reload insn will be needed to make
3049 the two operands win. As a result, this alternative
3050 may be rejected when it is actually desirable.) */
3051 if ((swapped && (m != commutative || i != commutative + 1))
3052 /* If we are matching as if two operands were swapped,
3053 also pretend that operands_match had been computed
3054 with swapped.
3055 But if I is the second of those and C is the first,
3056 don't exchange them, because operands_match is valid
3057 only on one side of its diagonal. */
3058 ? (operands_match
3059 [(m == commutative || m == commutative + 1)
3060 ? 2 * commutative + 1 - m : m]
3061 [(i == commutative || i == commutative + 1)
3062 ? 2 * commutative + 1 - i : i])
3063 : operands_match[m][i])
3065 /* If we are matching a non-offsettable address where an
3066 offsettable address was expected, then we must reject
3067 this combination, because we can't reload it. */
3068 if (this_alternative_offmemok[m]
3069 && MEM_P (recog_data.operand[m])
3070 && this_alternative[m] == (int) NO_REGS
3071 && ! this_alternative_win[m])
3072 bad = 1;
3074 did_match = this_alternative_win[m];
3076 else
3078 /* Operands don't match. */
3079 rtx value;
3080 /* Retroactively mark the operand we had to match
3081 as a loser, if it wasn't already. */
3082 if (this_alternative_win[m])
3083 losers++;
3084 this_alternative_win[m] = 0;
3085 if (this_alternative[m] == (int) NO_REGS)
3086 bad = 1;
3087 /* But count the pair only once in the total badness of
3088 this alternative, if the pair can be a dummy reload. */
3089 value
3090 = find_dummy_reload (recog_data.operand[i],
3091 recog_data.operand[m],
3092 recog_data.operand_loc[i],
3093 recog_data.operand_loc[m],
3094 operand_mode[i], operand_mode[m],
3095 this_alternative[m], -1,
3096 this_alternative_earlyclobber[m]);
3098 if (value != 0)
3099 losers--;
3101 /* This can be fixed with reloads if the operand
3102 we are supposed to match can be fixed with reloads. */
3103 badop = 0;
3104 this_alternative[i] = this_alternative[m];
3106 /* If we have to reload this operand and some previous
3107 operand also had to match the same thing as this
3108 operand, we don't know how to do that. So reject this
3109 alternative. */
3110 if (! did_match || force_reload)
3111 for (j = 0; j < i; j++)
3112 if (this_alternative_matches[j]
3113 == this_alternative_matches[i])
3114 badop = 1;
3115 break;
3117 case 'p':
3118 /* All necessary reloads for an address_operand
3119 were handled in find_reloads_address. */
3120 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3121 win = 1;
3122 badop = 0;
3123 break;
3125 case 'm':
3126 if (force_reload)
3127 break;
3128 if (MEM_P (operand)
3129 || (REG_P (operand)
3130 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3131 && reg_renumber[REGNO (operand)] < 0))
3132 win = 1;
3133 if (CONST_POOL_OK_P (operand))
3134 badop = 0;
3135 constmemok = 1;
3136 break;
3138 case '<':
3139 if (MEM_P (operand)
3140 && ! address_reloaded[i]
3141 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3142 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3143 win = 1;
3144 break;
3146 case '>':
3147 if (MEM_P (operand)
3148 && ! address_reloaded[i]
3149 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3150 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3151 win = 1;
3152 break;
3154 /* Memory operand whose address is not offsettable. */
3155 case 'V':
3156 if (force_reload)
3157 break;
3158 if (MEM_P (operand)
3159 && ! (ind_levels ? offsettable_memref_p (operand)
3160 : offsettable_nonstrict_memref_p (operand))
3161 /* Certain mem addresses will become offsettable
3162 after they themselves are reloaded. This is important;
3163 we don't want our own handling of unoffsettables
3164 to override the handling of reg_equiv_address. */
3165 && !(REG_P (XEXP (operand, 0))
3166 && (ind_levels == 0
3167 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3168 win = 1;
3169 break;
3171 /* Memory operand whose address is offsettable. */
3172 case 'o':
3173 if (force_reload)
3174 break;
3175 if ((MEM_P (operand)
3176 /* If IND_LEVELS, find_reloads_address won't reload a
3177 pseudo that didn't get a hard reg, so we have to
3178 reject that case. */
3179 && ((ind_levels ? offsettable_memref_p (operand)
3180 : offsettable_nonstrict_memref_p (operand))
3181 /* A reloaded address is offsettable because it is now
3182 just a simple register indirect. */
3183 || address_reloaded[i]))
3184 || (REG_P (operand)
3185 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3186 && reg_renumber[REGNO (operand)] < 0
3187 /* If reg_equiv_address is nonzero, we will be
3188 loading it into a register; hence it will be
3189 offsettable, but we cannot say that reg_equiv_mem
3190 is offsettable without checking. */
3191 && ((reg_equiv_mem[REGNO (operand)] != 0
3192 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3193 || (reg_equiv_address[REGNO (operand)] != 0))))
3194 win = 1;
3195 if (CONST_POOL_OK_P (operand)
3196 || MEM_P (operand))
3197 badop = 0;
3198 constmemok = 1;
3199 offmemok = 1;
3200 break;
3202 case '&':
3203 /* Output operand that is stored before the need for the
3204 input operands (and their index registers) is over. */
3205 earlyclobber = 1, this_earlyclobber = 1;
3206 break;
3208 case 'E':
3209 case 'F':
3210 if (GET_CODE (operand) == CONST_DOUBLE
3211 || (GET_CODE (operand) == CONST_VECTOR
3212 && (GET_MODE_CLASS (GET_MODE (operand))
3213 == MODE_VECTOR_FLOAT)))
3214 win = 1;
3215 break;
3217 case 'G':
3218 case 'H':
3219 if (GET_CODE (operand) == CONST_DOUBLE
3220 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3221 win = 1;
3222 break;
3224 case 's':
3225 if (GET_CODE (operand) == CONST_INT
3226 || (GET_CODE (operand) == CONST_DOUBLE
3227 && GET_MODE (operand) == VOIDmode))
3228 break;
3229 case 'i':
3230 if (CONSTANT_P (operand)
3231 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3232 win = 1;
3233 break;
3235 case 'n':
3236 if (GET_CODE (operand) == CONST_INT
3237 || (GET_CODE (operand) == CONST_DOUBLE
3238 && GET_MODE (operand) == VOIDmode))
3239 win = 1;
3240 break;
3242 case 'I':
3243 case 'J':
3244 case 'K':
3245 case 'L':
3246 case 'M':
3247 case 'N':
3248 case 'O':
3249 case 'P':
3250 if (GET_CODE (operand) == CONST_INT
3251 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3252 win = 1;
3253 break;
3255 case 'X':
3256 win = 1;
3257 break;
3259 case 'g':
3260 if (! force_reload
3261 /* A PLUS is never a valid operand, but reload can make
3262 it from a register when eliminating registers. */
3263 && GET_CODE (operand) != PLUS
3264 /* A SCRATCH is not a valid operand. */
3265 && GET_CODE (operand) != SCRATCH
3266 && (! CONSTANT_P (operand)
3267 || ! flag_pic
3268 || LEGITIMATE_PIC_OPERAND_P (operand))
3269 && (GENERAL_REGS == ALL_REGS
3270 || !REG_P (operand)
3271 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3272 && reg_renumber[REGNO (operand)] < 0)))
3273 win = 1;
3274 /* Drop through into 'r' case. */
3276 case 'r':
3277 this_alternative[i]
3278 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3279 goto reg;
3281 default:
3282 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3284 #ifdef EXTRA_CONSTRAINT_STR
3285 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3287 if (force_reload)
3288 break;
3289 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3290 win = 1;
3291 /* If the address was already reloaded,
3292 we win as well. */
3293 else if (MEM_P (operand)
3294 && address_reloaded[i])
3295 win = 1;
3296 /* Likewise if the address will be reloaded because
3297 reg_equiv_address is nonzero. For reg_equiv_mem
3298 we have to check. */
3299 else if (REG_P (operand)
3300 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3301 && reg_renumber[REGNO (operand)] < 0
3302 && ((reg_equiv_mem[REGNO (operand)] != 0
3303 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3304 || (reg_equiv_address[REGNO (operand)] != 0)))
3305 win = 1;
3307 /* If we didn't already win, we can reload
3308 constants via force_const_mem, and other
3309 MEMs by reloading the address like for 'o'. */
3310 if (CONST_POOL_OK_P (operand)
3311 || MEM_P (operand))
3312 badop = 0;
3313 constmemok = 1;
3314 offmemok = 1;
3315 break;
3317 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3319 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3320 win = 1;
3322 /* If we didn't already win, we can reload
3323 the address into a base register. */
3324 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3325 badop = 0;
3326 break;
3329 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3330 win = 1;
3331 #endif
3332 break;
3335 this_alternative[i]
3336 = (int) (reg_class_subunion
3337 [this_alternative[i]]
3338 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3339 reg:
3340 if (GET_MODE (operand) == BLKmode)
3341 break;
3342 winreg = 1;
3343 if (REG_P (operand)
3344 && reg_fits_class_p (operand, this_alternative[i],
3345 offset, GET_MODE (recog_data.operand[i])))
3346 win = 1;
3347 break;
3349 while ((p += len), c);
3351 constraints[i] = p;
3353 /* If this operand could be handled with a reg,
3354 and some reg is allowed, then this operand can be handled. */
3355 if (winreg && this_alternative[i] != (int) NO_REGS)
3356 badop = 0;
3358 /* Record which operands fit this alternative. */
3359 this_alternative_earlyclobber[i] = earlyclobber;
3360 if (win && ! force_reload)
3361 this_alternative_win[i] = 1;
3362 else if (did_match && ! force_reload)
3363 this_alternative_match_win[i] = 1;
3364 else
3366 int const_to_mem = 0;
3368 this_alternative_offmemok[i] = offmemok;
3369 losers++;
3370 if (badop)
3371 bad = 1;
3372 /* Alternative loses if it has no regs for a reg operand. */
3373 if (REG_P (operand)
3374 && this_alternative[i] == (int) NO_REGS
3375 && this_alternative_matches[i] < 0)
3376 bad = 1;
3378 /* If this is a constant that is reloaded into the desired
3379 class by copying it to memory first, count that as another
3380 reload. This is consistent with other code and is
3381 required to avoid choosing another alternative when
3382 the constant is moved into memory by this function on
3383 an early reload pass. Note that the test here is
3384 precisely the same as in the code below that calls
3385 force_const_mem. */
3386 if (CONST_POOL_OK_P (operand)
3387 && ((PREFERRED_RELOAD_CLASS (operand,
3388 (enum reg_class) this_alternative[i])
3389 == NO_REGS)
3390 || no_input_reloads)
3391 && operand_mode[i] != VOIDmode)
3393 const_to_mem = 1;
3394 if (this_alternative[i] != (int) NO_REGS)
3395 losers++;
3398 /* If we can't reload this value at all, reject this
3399 alternative. Note that we could also lose due to
3400 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3401 here. */
3403 if (! CONSTANT_P (operand)
3404 && (enum reg_class) this_alternative[i] != NO_REGS
3405 && (PREFERRED_RELOAD_CLASS (operand,
3406 (enum reg_class) this_alternative[i])
3407 == NO_REGS))
3408 bad = 1;
3410 /* Alternative loses if it requires a type of reload not
3411 permitted for this insn. We can always reload SCRATCH
3412 and objects with a REG_UNUSED note. */
3413 else if (GET_CODE (operand) != SCRATCH
3414 && modified[i] != RELOAD_READ && no_output_reloads
3415 && ! find_reg_note (insn, REG_UNUSED, operand))
3416 bad = 1;
3417 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3418 && ! const_to_mem)
3419 bad = 1;
3421 /* We prefer to reload pseudos over reloading other things,
3422 since such reloads may be able to be eliminated later.
3423 If we are reloading a SCRATCH, we won't be generating any
3424 insns, just using a register, so it is also preferred.
3425 So bump REJECT in other cases. Don't do this in the
3426 case where we are forcing a constant into memory and
3427 it will then win since we don't want to have a different
3428 alternative match then. */
3429 if (! (REG_P (operand)
3430 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3431 && GET_CODE (operand) != SCRATCH
3432 && ! (const_to_mem && constmemok))
3433 reject += 2;
3435 /* Input reloads can be inherited more often than output
3436 reloads can be removed, so penalize output reloads. */
3437 if (operand_type[i] != RELOAD_FOR_INPUT
3438 && GET_CODE (operand) != SCRATCH)
3439 reject++;
3442 /* If this operand is a pseudo register that didn't get a hard
3443 reg and this alternative accepts some register, see if the
3444 class that we want is a subset of the preferred class for this
3445 register. If not, but it intersects that class, use the
3446 preferred class instead. If it does not intersect the preferred
3447 class, show that usage of this alternative should be discouraged;
3448 it will be discouraged more still if the register is `preferred
3449 or nothing'. We do this because it increases the chance of
3450 reusing our spill register in a later insn and avoiding a pair
3451 of memory stores and loads.
3453 Don't bother with this if this alternative will accept this
3454 operand.
3456 Don't do this for a multiword operand, since it is only a
3457 small win and has the risk of requiring more spill registers,
3458 which could cause a large loss.
3460 Don't do this if the preferred class has only one register
3461 because we might otherwise exhaust the class. */
3463 if (! win && ! did_match
3464 && this_alternative[i] != (int) NO_REGS
3465 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3466 && reg_class_size[(int) preferred_class[i]] > 1)
3468 if (! reg_class_subset_p (this_alternative[i],
3469 preferred_class[i]))
3471 /* Since we don't have a way of forming the intersection,
3472 we just do something special if the preferred class
3473 is a subset of the class we have; that's the most
3474 common case anyway. */
3475 if (reg_class_subset_p (preferred_class[i],
3476 this_alternative[i]))
3477 this_alternative[i] = (int) preferred_class[i];
3478 else
3479 reject += (2 + 2 * pref_or_nothing[i]);
3484 /* Now see if any output operands that are marked "earlyclobber"
3485 in this alternative conflict with any input operands
3486 or any memory addresses. */
3488 for (i = 0; i < noperands; i++)
3489 if (this_alternative_earlyclobber[i]
3490 && (this_alternative_win[i] || this_alternative_match_win[i]))
3492 struct decomposition early_data;
3494 early_data = decompose (recog_data.operand[i]);
3496 if (modified[i] == RELOAD_READ)
3497 abort ();
3499 if (this_alternative[i] == NO_REGS)
3501 this_alternative_earlyclobber[i] = 0;
3502 if (this_insn_is_asm)
3503 error_for_asm (this_insn,
3504 "`&' constraint used with no register class");
3505 else
3506 abort ();
3509 for (j = 0; j < noperands; j++)
3510 /* Is this an input operand or a memory ref? */
3511 if ((MEM_P (recog_data.operand[j])
3512 || modified[j] != RELOAD_WRITE)
3513 && j != i
3514 /* Ignore things like match_operator operands. */
3515 && *recog_data.constraints[j] != 0
3516 /* Don't count an input operand that is constrained to match
3517 the early clobber operand. */
3518 && ! (this_alternative_matches[j] == i
3519 && rtx_equal_p (recog_data.operand[i],
3520 recog_data.operand[j]))
3521 /* Is it altered by storing the earlyclobber operand? */
3522 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3523 early_data))
3525 /* If the output is in a single-reg class,
3526 it's costly to reload it, so reload the input instead. */
3527 if (reg_class_size[this_alternative[i]] == 1
3528 && (REG_P (recog_data.operand[j])
3529 || GET_CODE (recog_data.operand[j]) == SUBREG))
3531 losers++;
3532 this_alternative_win[j] = 0;
3533 this_alternative_match_win[j] = 0;
3535 else
3536 break;
3538 /* If an earlyclobber operand conflicts with something,
3539 it must be reloaded, so request this and count the cost. */
3540 if (j != noperands)
3542 losers++;
3543 this_alternative_win[i] = 0;
3544 this_alternative_match_win[j] = 0;
3545 for (j = 0; j < noperands; j++)
3546 if (this_alternative_matches[j] == i
3547 && this_alternative_match_win[j])
3549 this_alternative_win[j] = 0;
3550 this_alternative_match_win[j] = 0;
3551 losers++;
3556 /* If one alternative accepts all the operands, no reload required,
3557 choose that alternative; don't consider the remaining ones. */
3558 if (losers == 0)
3560 /* Unswap these so that they are never swapped at `finish'. */
3561 if (commutative >= 0)
3563 recog_data.operand[commutative] = substed_operand[commutative];
3564 recog_data.operand[commutative + 1]
3565 = substed_operand[commutative + 1];
3567 for (i = 0; i < noperands; i++)
3569 goal_alternative_win[i] = this_alternative_win[i];
3570 goal_alternative_match_win[i] = this_alternative_match_win[i];
3571 goal_alternative[i] = this_alternative[i];
3572 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3573 goal_alternative_matches[i] = this_alternative_matches[i];
3574 goal_alternative_earlyclobber[i]
3575 = this_alternative_earlyclobber[i];
3577 goal_alternative_number = this_alternative_number;
3578 goal_alternative_swapped = swapped;
3579 goal_earlyclobber = this_earlyclobber;
3580 goto finish;
3583 /* REJECT, set by the ! and ? constraint characters and when a register
3584 would be reloaded into a non-preferred class, discourages the use of
3585 this alternative for a reload goal. REJECT is incremented by six
3586 for each ? and two for each non-preferred class. */
3587 losers = losers * 6 + reject;
3589 /* If this alternative can be made to work by reloading,
3590 and it needs less reloading than the others checked so far,
3591 record it as the chosen goal for reloading. */
3592 if (! bad && best > losers)
3594 for (i = 0; i < noperands; i++)
3596 goal_alternative[i] = this_alternative[i];
3597 goal_alternative_win[i] = this_alternative_win[i];
3598 goal_alternative_match_win[i] = this_alternative_match_win[i];
3599 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3600 goal_alternative_matches[i] = this_alternative_matches[i];
3601 goal_alternative_earlyclobber[i]
3602 = this_alternative_earlyclobber[i];
3604 goal_alternative_swapped = swapped;
3605 best = losers;
3606 goal_alternative_number = this_alternative_number;
3607 goal_earlyclobber = this_earlyclobber;
3611 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3612 then we need to try each alternative twice,
3613 the second time matching those two operands
3614 as if we had exchanged them.
3615 To do this, really exchange them in operands.
3617 If we have just tried the alternatives the second time,
3618 return operands to normal and drop through. */
3620 if (commutative >= 0)
3622 swapped = !swapped;
3623 if (swapped)
3625 enum reg_class tclass;
3626 int t;
3628 recog_data.operand[commutative] = substed_operand[commutative + 1];
3629 recog_data.operand[commutative + 1] = substed_operand[commutative];
3630 /* Swap the duplicates too. */
3631 for (i = 0; i < recog_data.n_dups; i++)
3632 if (recog_data.dup_num[i] == commutative
3633 || recog_data.dup_num[i] == commutative + 1)
3634 *recog_data.dup_loc[i]
3635 = recog_data.operand[(int) recog_data.dup_num[i]];
3637 tclass = preferred_class[commutative];
3638 preferred_class[commutative] = preferred_class[commutative + 1];
3639 preferred_class[commutative + 1] = tclass;
3641 t = pref_or_nothing[commutative];
3642 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3643 pref_or_nothing[commutative + 1] = t;
3645 memcpy (constraints, recog_data.constraints,
3646 noperands * sizeof (char *));
3647 goto try_swapped;
3649 else
3651 recog_data.operand[commutative] = substed_operand[commutative];
3652 recog_data.operand[commutative + 1]
3653 = substed_operand[commutative + 1];
3654 /* Unswap the duplicates too. */
3655 for (i = 0; i < recog_data.n_dups; i++)
3656 if (recog_data.dup_num[i] == commutative
3657 || recog_data.dup_num[i] == commutative + 1)
3658 *recog_data.dup_loc[i]
3659 = recog_data.operand[(int) recog_data.dup_num[i]];
3663 /* The operands don't meet the constraints.
3664 goal_alternative describes the alternative
3665 that we could reach by reloading the fewest operands.
3666 Reload so as to fit it. */
3668 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3670 /* No alternative works with reloads?? */
3671 if (insn_code_number >= 0)
3672 fatal_insn ("unable to generate reloads for:", insn);
3673 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3674 /* Avoid further trouble with this insn. */
3675 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3676 n_reloads = 0;
3677 return 0;
3680 /* Jump to `finish' from above if all operands are valid already.
3681 In that case, goal_alternative_win is all 1. */
3682 finish:
3684 /* Right now, for any pair of operands I and J that are required to match,
3685 with I < J,
3686 goal_alternative_matches[J] is I.
3687 Set up goal_alternative_matched as the inverse function:
3688 goal_alternative_matched[I] = J. */
3690 for (i = 0; i < noperands; i++)
3691 goal_alternative_matched[i] = -1;
3693 for (i = 0; i < noperands; i++)
3694 if (! goal_alternative_win[i]
3695 && goal_alternative_matches[i] >= 0)
3696 goal_alternative_matched[goal_alternative_matches[i]] = i;
3698 for (i = 0; i < noperands; i++)
3699 goal_alternative_win[i] |= goal_alternative_match_win[i];
3701 /* If the best alternative is with operands 1 and 2 swapped,
3702 consider them swapped before reporting the reloads. Update the
3703 operand numbers of any reloads already pushed. */
3705 if (goal_alternative_swapped)
3707 rtx tem;
3709 tem = substed_operand[commutative];
3710 substed_operand[commutative] = substed_operand[commutative + 1];
3711 substed_operand[commutative + 1] = tem;
3712 tem = recog_data.operand[commutative];
3713 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3714 recog_data.operand[commutative + 1] = tem;
3715 tem = *recog_data.operand_loc[commutative];
3716 *recog_data.operand_loc[commutative]
3717 = *recog_data.operand_loc[commutative + 1];
3718 *recog_data.operand_loc[commutative + 1] = tem;
3720 for (i = 0; i < n_reloads; i++)
3722 if (rld[i].opnum == commutative)
3723 rld[i].opnum = commutative + 1;
3724 else if (rld[i].opnum == commutative + 1)
3725 rld[i].opnum = commutative;
3729 for (i = 0; i < noperands; i++)
3731 operand_reloadnum[i] = -1;
3733 /* If this is an earlyclobber operand, we need to widen the scope.
3734 The reload must remain valid from the start of the insn being
3735 reloaded until after the operand is stored into its destination.
3736 We approximate this with RELOAD_OTHER even though we know that we
3737 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3739 One special case that is worth checking is when we have an
3740 output that is earlyclobber but isn't used past the insn (typically
3741 a SCRATCH). In this case, we only need have the reload live
3742 through the insn itself, but not for any of our input or output
3743 reloads.
3744 But we must not accidentally narrow the scope of an existing
3745 RELOAD_OTHER reload - leave these alone.
3747 In any case, anything needed to address this operand can remain
3748 however they were previously categorized. */
3750 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3751 operand_type[i]
3752 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3753 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3756 /* Any constants that aren't allowed and can't be reloaded
3757 into registers are here changed into memory references. */
3758 for (i = 0; i < noperands; i++)
3759 if (! goal_alternative_win[i]
3760 && CONST_POOL_OK_P (recog_data.operand[i])
3761 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3762 (enum reg_class) goal_alternative[i])
3763 == NO_REGS)
3764 || no_input_reloads)
3765 && operand_mode[i] != VOIDmode)
3767 substed_operand[i] = recog_data.operand[i]
3768 = find_reloads_toplev (force_const_mem (operand_mode[i],
3769 recog_data.operand[i]),
3770 i, address_type[i], ind_levels, 0, insn,
3771 NULL);
3772 if (alternative_allows_memconst (recog_data.constraints[i],
3773 goal_alternative_number))
3774 goal_alternative_win[i] = 1;
3777 /* Record the values of the earlyclobber operands for the caller. */
3778 if (goal_earlyclobber)
3779 for (i = 0; i < noperands; i++)
3780 if (goal_alternative_earlyclobber[i])
3781 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3783 /* Now record reloads for all the operands that need them. */
3784 for (i = 0; i < noperands; i++)
3785 if (! goal_alternative_win[i])
3787 /* Operands that match previous ones have already been handled. */
3788 if (goal_alternative_matches[i] >= 0)
3790 /* Handle an operand with a nonoffsettable address
3791 appearing where an offsettable address will do
3792 by reloading the address into a base register.
3794 ??? We can also do this when the operand is a register and
3795 reg_equiv_mem is not offsettable, but this is a bit tricky,
3796 so we don't bother with it. It may not be worth doing. */
3797 else if (goal_alternative_matched[i] == -1
3798 && goal_alternative_offmemok[i]
3799 && MEM_P (recog_data.operand[i]))
3801 operand_reloadnum[i]
3802 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3803 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3804 MODE_BASE_REG_CLASS (VOIDmode),
3805 GET_MODE (XEXP (recog_data.operand[i], 0)),
3806 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3807 rld[operand_reloadnum[i]].inc
3808 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3810 /* If this operand is an output, we will have made any
3811 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3812 now we are treating part of the operand as an input, so
3813 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3815 if (modified[i] == RELOAD_WRITE)
3817 for (j = 0; j < n_reloads; j++)
3819 if (rld[j].opnum == i)
3821 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3822 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3823 else if (rld[j].when_needed
3824 == RELOAD_FOR_OUTADDR_ADDRESS)
3825 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3830 else if (goal_alternative_matched[i] == -1)
3832 operand_reloadnum[i]
3833 = push_reload ((modified[i] != RELOAD_WRITE
3834 ? recog_data.operand[i] : 0),
3835 (modified[i] != RELOAD_READ
3836 ? recog_data.operand[i] : 0),
3837 (modified[i] != RELOAD_WRITE
3838 ? recog_data.operand_loc[i] : 0),
3839 (modified[i] != RELOAD_READ
3840 ? recog_data.operand_loc[i] : 0),
3841 (enum reg_class) goal_alternative[i],
3842 (modified[i] == RELOAD_WRITE
3843 ? VOIDmode : operand_mode[i]),
3844 (modified[i] == RELOAD_READ
3845 ? VOIDmode : operand_mode[i]),
3846 (insn_code_number < 0 ? 0
3847 : insn_data[insn_code_number].operand[i].strict_low),
3848 0, i, operand_type[i]);
3850 /* In a matching pair of operands, one must be input only
3851 and the other must be output only.
3852 Pass the input operand as IN and the other as OUT. */
3853 else if (modified[i] == RELOAD_READ
3854 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3856 operand_reloadnum[i]
3857 = push_reload (recog_data.operand[i],
3858 recog_data.operand[goal_alternative_matched[i]],
3859 recog_data.operand_loc[i],
3860 recog_data.operand_loc[goal_alternative_matched[i]],
3861 (enum reg_class) goal_alternative[i],
3862 operand_mode[i],
3863 operand_mode[goal_alternative_matched[i]],
3864 0, 0, i, RELOAD_OTHER);
3865 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3867 else if (modified[i] == RELOAD_WRITE
3868 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3870 operand_reloadnum[goal_alternative_matched[i]]
3871 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3872 recog_data.operand[i],
3873 recog_data.operand_loc[goal_alternative_matched[i]],
3874 recog_data.operand_loc[i],
3875 (enum reg_class) goal_alternative[i],
3876 operand_mode[goal_alternative_matched[i]],
3877 operand_mode[i],
3878 0, 0, i, RELOAD_OTHER);
3879 operand_reloadnum[i] = output_reloadnum;
3881 else if (insn_code_number >= 0)
3882 abort ();
3883 else
3885 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3886 /* Avoid further trouble with this insn. */
3887 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3888 n_reloads = 0;
3889 return 0;
3892 else if (goal_alternative_matched[i] < 0
3893 && goal_alternative_matches[i] < 0
3894 && !address_operand_reloaded[i]
3895 && optimize)
3897 /* For each non-matching operand that's a MEM or a pseudo-register
3898 that didn't get a hard register, make an optional reload.
3899 This may get done even if the insn needs no reloads otherwise. */
3901 rtx operand = recog_data.operand[i];
3903 while (GET_CODE (operand) == SUBREG)
3904 operand = SUBREG_REG (operand);
3905 if ((MEM_P (operand)
3906 || (REG_P (operand)
3907 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3908 /* If this is only for an output, the optional reload would not
3909 actually cause us to use a register now, just note that
3910 something is stored here. */
3911 && ((enum reg_class) goal_alternative[i] != NO_REGS
3912 || modified[i] == RELOAD_WRITE)
3913 && ! no_input_reloads
3914 /* An optional output reload might allow to delete INSN later.
3915 We mustn't make in-out reloads on insns that are not permitted
3916 output reloads.
3917 If this is an asm, we can't delete it; we must not even call
3918 push_reload for an optional output reload in this case,
3919 because we can't be sure that the constraint allows a register,
3920 and push_reload verifies the constraints for asms. */
3921 && (modified[i] == RELOAD_READ
3922 || (! no_output_reloads && ! this_insn_is_asm)))
3923 operand_reloadnum[i]
3924 = push_reload ((modified[i] != RELOAD_WRITE
3925 ? recog_data.operand[i] : 0),
3926 (modified[i] != RELOAD_READ
3927 ? recog_data.operand[i] : 0),
3928 (modified[i] != RELOAD_WRITE
3929 ? recog_data.operand_loc[i] : 0),
3930 (modified[i] != RELOAD_READ
3931 ? recog_data.operand_loc[i] : 0),
3932 (enum reg_class) goal_alternative[i],
3933 (modified[i] == RELOAD_WRITE
3934 ? VOIDmode : operand_mode[i]),
3935 (modified[i] == RELOAD_READ
3936 ? VOIDmode : operand_mode[i]),
3937 (insn_code_number < 0 ? 0
3938 : insn_data[insn_code_number].operand[i].strict_low),
3939 1, i, operand_type[i]);
3940 /* If a memory reference remains (either as a MEM or a pseudo that
3941 did not get a hard register), yet we can't make an optional
3942 reload, check if this is actually a pseudo register reference;
3943 we then need to emit a USE and/or a CLOBBER so that reload
3944 inheritance will do the right thing. */
3945 else if (replace
3946 && (MEM_P (operand)
3947 || (REG_P (operand)
3948 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3949 && reg_renumber [REGNO (operand)] < 0)))
3951 operand = *recog_data.operand_loc[i];
3953 while (GET_CODE (operand) == SUBREG)
3954 operand = SUBREG_REG (operand);
3955 if (REG_P (operand))
3957 if (modified[i] != RELOAD_WRITE)
3958 /* We mark the USE with QImode so that we recognize
3959 it as one that can be safely deleted at the end
3960 of reload. */
3961 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3962 insn), QImode);
3963 if (modified[i] != RELOAD_READ)
3964 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3968 else if (goal_alternative_matches[i] >= 0
3969 && goal_alternative_win[goal_alternative_matches[i]]
3970 && modified[i] == RELOAD_READ
3971 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3972 && ! no_input_reloads && ! no_output_reloads
3973 && optimize)
3975 /* Similarly, make an optional reload for a pair of matching
3976 objects that are in MEM or a pseudo that didn't get a hard reg. */
3978 rtx operand = recog_data.operand[i];
3980 while (GET_CODE (operand) == SUBREG)
3981 operand = SUBREG_REG (operand);
3982 if ((MEM_P (operand)
3983 || (REG_P (operand)
3984 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3985 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3986 != NO_REGS))
3987 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3988 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3989 recog_data.operand[i],
3990 recog_data.operand_loc[goal_alternative_matches[i]],
3991 recog_data.operand_loc[i],
3992 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3993 operand_mode[goal_alternative_matches[i]],
3994 operand_mode[i],
3995 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3998 /* Perform whatever substitutions on the operands we are supposed
3999 to make due to commutativity or replacement of registers
4000 with equivalent constants or memory slots. */
4002 for (i = 0; i < noperands; i++)
4004 /* We only do this on the last pass through reload, because it is
4005 possible for some data (like reg_equiv_address) to be changed during
4006 later passes. Moreover, we loose the opportunity to get a useful
4007 reload_{in,out}_reg when we do these replacements. */
4009 if (replace)
4011 rtx substitution = substed_operand[i];
4013 *recog_data.operand_loc[i] = substitution;
4015 /* If we're replacing an operand with a LABEL_REF, we need
4016 to make sure that there's a REG_LABEL note attached to
4017 this instruction. */
4018 if (!JUMP_P (insn)
4019 && GET_CODE (substitution) == LABEL_REF
4020 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4021 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4022 XEXP (substitution, 0),
4023 REG_NOTES (insn));
4025 else
4026 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4029 /* If this insn pattern contains any MATCH_DUP's, make sure that
4030 they will be substituted if the operands they match are substituted.
4031 Also do now any substitutions we already did on the operands.
4033 Don't do this if we aren't making replacements because we might be
4034 propagating things allocated by frame pointer elimination into places
4035 it doesn't expect. */
4037 if (insn_code_number >= 0 && replace)
4038 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4040 int opno = recog_data.dup_num[i];
4041 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4042 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4045 #if 0
4046 /* This loses because reloading of prior insns can invalidate the equivalence
4047 (or at least find_equiv_reg isn't smart enough to find it any more),
4048 causing this insn to need more reload regs than it needed before.
4049 It may be too late to make the reload regs available.
4050 Now this optimization is done safely in choose_reload_regs. */
4052 /* For each reload of a reg into some other class of reg,
4053 search for an existing equivalent reg (same value now) in the right class.
4054 We can use it as long as we don't need to change its contents. */
4055 for (i = 0; i < n_reloads; i++)
4056 if (rld[i].reg_rtx == 0
4057 && rld[i].in != 0
4058 && REG_P (rld[i].in)
4059 && rld[i].out == 0)
4061 rld[i].reg_rtx
4062 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4063 static_reload_reg_p, 0, rld[i].inmode);
4064 /* Prevent generation of insn to load the value
4065 because the one we found already has the value. */
4066 if (rld[i].reg_rtx)
4067 rld[i].in = rld[i].reg_rtx;
4069 #endif
4071 /* Perhaps an output reload can be combined with another
4072 to reduce needs by one. */
4073 if (!goal_earlyclobber)
4074 combine_reloads ();
4076 /* If we have a pair of reloads for parts of an address, they are reloading
4077 the same object, the operands themselves were not reloaded, and they
4078 are for two operands that are supposed to match, merge the reloads and
4079 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4081 for (i = 0; i < n_reloads; i++)
4083 int k;
4085 for (j = i + 1; j < n_reloads; j++)
4086 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4087 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4088 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4089 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4090 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4091 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4092 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4093 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4094 && rtx_equal_p (rld[i].in, rld[j].in)
4095 && (operand_reloadnum[rld[i].opnum] < 0
4096 || rld[operand_reloadnum[rld[i].opnum]].optional)
4097 && (operand_reloadnum[rld[j].opnum] < 0
4098 || rld[operand_reloadnum[rld[j].opnum]].optional)
4099 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4100 || (goal_alternative_matches[rld[j].opnum]
4101 == rld[i].opnum)))
4103 for (k = 0; k < n_replacements; k++)
4104 if (replacements[k].what == j)
4105 replacements[k].what = i;
4107 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4108 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4109 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4110 else
4111 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4112 rld[j].in = 0;
4116 /* Scan all the reloads and update their type.
4117 If a reload is for the address of an operand and we didn't reload
4118 that operand, change the type. Similarly, change the operand number
4119 of a reload when two operands match. If a reload is optional, treat it
4120 as though the operand isn't reloaded.
4122 ??? This latter case is somewhat odd because if we do the optional
4123 reload, it means the object is hanging around. Thus we need only
4124 do the address reload if the optional reload was NOT done.
4126 Change secondary reloads to be the address type of their operand, not
4127 the normal type.
4129 If an operand's reload is now RELOAD_OTHER, change any
4130 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4131 RELOAD_FOR_OTHER_ADDRESS. */
4133 for (i = 0; i < n_reloads; i++)
4135 if (rld[i].secondary_p
4136 && rld[i].when_needed == operand_type[rld[i].opnum])
4137 rld[i].when_needed = address_type[rld[i].opnum];
4139 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4140 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4141 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4142 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4143 && (operand_reloadnum[rld[i].opnum] < 0
4144 || rld[operand_reloadnum[rld[i].opnum]].optional))
4146 /* If we have a secondary reload to go along with this reload,
4147 change its type to RELOAD_FOR_OPADDR_ADDR. */
4149 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4150 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4151 && rld[i].secondary_in_reload != -1)
4153 int secondary_in_reload = rld[i].secondary_in_reload;
4155 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4157 /* If there's a tertiary reload we have to change it also. */
4158 if (secondary_in_reload > 0
4159 && rld[secondary_in_reload].secondary_in_reload != -1)
4160 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4161 = RELOAD_FOR_OPADDR_ADDR;
4164 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4165 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4166 && rld[i].secondary_out_reload != -1)
4168 int secondary_out_reload = rld[i].secondary_out_reload;
4170 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4172 /* If there's a tertiary reload we have to change it also. */
4173 if (secondary_out_reload
4174 && rld[secondary_out_reload].secondary_out_reload != -1)
4175 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4176 = RELOAD_FOR_OPADDR_ADDR;
4179 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4180 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4181 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4182 else
4183 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4186 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4187 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4188 && operand_reloadnum[rld[i].opnum] >= 0
4189 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4190 == RELOAD_OTHER))
4191 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4193 if (goal_alternative_matches[rld[i].opnum] >= 0)
4194 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4197 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4198 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4199 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4201 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4202 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4203 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4204 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4205 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4206 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4207 This is complicated by the fact that a single operand can have more
4208 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4209 choose_reload_regs without affecting code quality, and cases that
4210 actually fail are extremely rare, so it turns out to be better to fix
4211 the problem here by not generating cases that choose_reload_regs will
4212 fail for. */
4213 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4214 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4215 a single operand.
4216 We can reduce the register pressure by exploiting that a
4217 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4218 does not conflict with any of them, if it is only used for the first of
4219 the RELOAD_FOR_X_ADDRESS reloads. */
4221 int first_op_addr_num = -2;
4222 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4223 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4224 int need_change = 0;
4225 /* We use last_op_addr_reload and the contents of the above arrays
4226 first as flags - -2 means no instance encountered, -1 means exactly
4227 one instance encountered.
4228 If more than one instance has been encountered, we store the reload
4229 number of the first reload of the kind in question; reload numbers
4230 are known to be non-negative. */
4231 for (i = 0; i < noperands; i++)
4232 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4233 for (i = n_reloads - 1; i >= 0; i--)
4235 switch (rld[i].when_needed)
4237 case RELOAD_FOR_OPERAND_ADDRESS:
4238 if (++first_op_addr_num >= 0)
4240 first_op_addr_num = i;
4241 need_change = 1;
4243 break;
4244 case RELOAD_FOR_INPUT_ADDRESS:
4245 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4247 first_inpaddr_num[rld[i].opnum] = i;
4248 need_change = 1;
4250 break;
4251 case RELOAD_FOR_OUTPUT_ADDRESS:
4252 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4254 first_outpaddr_num[rld[i].opnum] = i;
4255 need_change = 1;
4257 break;
4258 default:
4259 break;
4263 if (need_change)
4265 for (i = 0; i < n_reloads; i++)
4267 int first_num;
4268 enum reload_type type;
4270 switch (rld[i].when_needed)
4272 case RELOAD_FOR_OPADDR_ADDR:
4273 first_num = first_op_addr_num;
4274 type = RELOAD_FOR_OPERAND_ADDRESS;
4275 break;
4276 case RELOAD_FOR_INPADDR_ADDRESS:
4277 first_num = first_inpaddr_num[rld[i].opnum];
4278 type = RELOAD_FOR_INPUT_ADDRESS;
4279 break;
4280 case RELOAD_FOR_OUTADDR_ADDRESS:
4281 first_num = first_outpaddr_num[rld[i].opnum];
4282 type = RELOAD_FOR_OUTPUT_ADDRESS;
4283 break;
4284 default:
4285 continue;
4287 if (first_num < 0)
4288 continue;
4289 else if (i > first_num)
4290 rld[i].when_needed = type;
4291 else
4293 /* Check if the only TYPE reload that uses reload I is
4294 reload FIRST_NUM. */
4295 for (j = n_reloads - 1; j > first_num; j--)
4297 if (rld[j].when_needed == type
4298 && (rld[i].secondary_p
4299 ? rld[j].secondary_in_reload == i
4300 : reg_mentioned_p (rld[i].in, rld[j].in)))
4302 rld[i].when_needed = type;
4303 break;
4311 /* See if we have any reloads that are now allowed to be merged
4312 because we've changed when the reload is needed to
4313 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4314 check for the most common cases. */
4316 for (i = 0; i < n_reloads; i++)
4317 if (rld[i].in != 0 && rld[i].out == 0
4318 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4319 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4320 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4321 for (j = 0; j < n_reloads; j++)
4322 if (i != j && rld[j].in != 0 && rld[j].out == 0
4323 && rld[j].when_needed == rld[i].when_needed
4324 && MATCHES (rld[i].in, rld[j].in)
4325 && rld[i].class == rld[j].class
4326 && !rld[i].nocombine && !rld[j].nocombine
4327 && rld[i].reg_rtx == rld[j].reg_rtx)
4329 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4330 transfer_replacements (i, j);
4331 rld[j].in = 0;
4334 #ifdef HAVE_cc0
4335 /* If we made any reloads for addresses, see if they violate a
4336 "no input reloads" requirement for this insn. But loads that we
4337 do after the insn (such as for output addresses) are fine. */
4338 if (no_input_reloads)
4339 for (i = 0; i < n_reloads; i++)
4340 if (rld[i].in != 0
4341 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4342 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4343 abort ();
4344 #endif
4346 /* Compute reload_mode and reload_nregs. */
4347 for (i = 0; i < n_reloads; i++)
4349 rld[i].mode
4350 = (rld[i].inmode == VOIDmode
4351 || (GET_MODE_SIZE (rld[i].outmode)
4352 > GET_MODE_SIZE (rld[i].inmode)))
4353 ? rld[i].outmode : rld[i].inmode;
4355 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4358 /* Special case a simple move with an input reload and a
4359 destination of a hard reg, if the hard reg is ok, use it. */
4360 for (i = 0; i < n_reloads; i++)
4361 if (rld[i].when_needed == RELOAD_FOR_INPUT
4362 && GET_CODE (PATTERN (insn)) == SET
4363 && REG_P (SET_DEST (PATTERN (insn)))
4364 && SET_SRC (PATTERN (insn)) == rld[i].in)
4366 rtx dest = SET_DEST (PATTERN (insn));
4367 unsigned int regno = REGNO (dest);
4369 if (regno < FIRST_PSEUDO_REGISTER
4370 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4371 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4373 int nr = hard_regno_nregs[regno][rld[i].mode];
4374 int ok = 1, nri;
4376 for (nri = 1; nri < nr; nri ++)
4377 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4378 ok = 0;
4380 if (ok)
4381 rld[i].reg_rtx = dest;
4385 return retval;
4388 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4389 accepts a memory operand with constant address. */
4391 static int
4392 alternative_allows_memconst (const char *constraint, int altnum)
4394 int c;
4395 /* Skip alternatives before the one requested. */
4396 while (altnum > 0)
4398 while (*constraint++ != ',');
4399 altnum--;
4401 /* Scan the requested alternative for 'm' or 'o'.
4402 If one of them is present, this alternative accepts memory constants. */
4403 for (; (c = *constraint) && c != ',' && c != '#';
4404 constraint += CONSTRAINT_LEN (c, constraint))
4405 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4406 return 1;
4407 return 0;
4410 /* Scan X for memory references and scan the addresses for reloading.
4411 Also checks for references to "constant" regs that we want to eliminate
4412 and replaces them with the values they stand for.
4413 We may alter X destructively if it contains a reference to such.
4414 If X is just a constant reg, we return the equivalent value
4415 instead of X.
4417 IND_LEVELS says how many levels of indirect addressing this machine
4418 supports.
4420 OPNUM and TYPE identify the purpose of the reload.
4422 IS_SET_DEST is true if X is the destination of a SET, which is not
4423 appropriate to be replaced by a constant.
4425 INSN, if nonzero, is the insn in which we do the reload. It is used
4426 to determine if we may generate output reloads, and where to put USEs
4427 for pseudos that we have to replace with stack slots.
4429 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4430 result of find_reloads_address. */
4432 static rtx
4433 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4434 int ind_levels, int is_set_dest, rtx insn,
4435 int *address_reloaded)
4437 RTX_CODE code = GET_CODE (x);
4439 const char *fmt = GET_RTX_FORMAT (code);
4440 int i;
4441 int copied;
4443 if (code == REG)
4445 /* This code is duplicated for speed in find_reloads. */
4446 int regno = REGNO (x);
4447 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4448 x = reg_equiv_constant[regno];
4449 #if 0
4450 /* This creates (subreg (mem...)) which would cause an unnecessary
4451 reload of the mem. */
4452 else if (reg_equiv_mem[regno] != 0)
4453 x = reg_equiv_mem[regno];
4454 #endif
4455 else if (reg_equiv_memory_loc[regno]
4456 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4458 rtx mem = make_memloc (x, regno);
4459 if (reg_equiv_address[regno]
4460 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4462 /* If this is not a toplevel operand, find_reloads doesn't see
4463 this substitution. We have to emit a USE of the pseudo so
4464 that delete_output_reload can see it. */
4465 if (replace_reloads && recog_data.operand[opnum] != x)
4466 /* We mark the USE with QImode so that we recognize it
4467 as one that can be safely deleted at the end of
4468 reload. */
4469 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4470 QImode);
4471 x = mem;
4472 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4473 opnum, type, ind_levels, insn);
4474 if (address_reloaded)
4475 *address_reloaded = i;
4478 return x;
4480 if (code == MEM)
4482 rtx tem = x;
4484 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4485 opnum, type, ind_levels, insn);
4486 if (address_reloaded)
4487 *address_reloaded = i;
4489 return tem;
4492 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4494 /* Check for SUBREG containing a REG that's equivalent to a constant.
4495 If the constant has a known value, truncate it right now.
4496 Similarly if we are extracting a single-word of a multi-word
4497 constant. If the constant is symbolic, allow it to be substituted
4498 normally. push_reload will strip the subreg later. If the
4499 constant is VOIDmode, abort because we will lose the mode of
4500 the register (this should never happen because one of the cases
4501 above should handle it). */
4503 int regno = REGNO (SUBREG_REG (x));
4504 rtx tem;
4506 if (subreg_lowpart_p (x)
4507 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4508 && reg_equiv_constant[regno] != 0
4509 && (tem = gen_lowpart_common (GET_MODE (x),
4510 reg_equiv_constant[regno])) != 0)
4511 return tem;
4513 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4514 && reg_equiv_constant[regno] != 0)
4516 tem =
4517 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4518 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4519 if (!tem)
4520 abort ();
4521 return tem;
4524 /* If the subreg contains a reg that will be converted to a mem,
4525 convert the subreg to a narrower memref now.
4526 Otherwise, we would get (subreg (mem ...) ...),
4527 which would force reload of the mem.
4529 We also need to do this if there is an equivalent MEM that is
4530 not offsettable. In that case, alter_subreg would produce an
4531 invalid address on big-endian machines.
4533 For machines that extend byte loads, we must not reload using
4534 a wider mode if we have a paradoxical SUBREG. find_reloads will
4535 force a reload in that case. So we should not do anything here. */
4537 else if (regno >= FIRST_PSEUDO_REGISTER
4538 #ifdef LOAD_EXTEND_OP
4539 && (GET_MODE_SIZE (GET_MODE (x))
4540 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4541 #endif
4542 && (reg_equiv_address[regno] != 0
4543 || (reg_equiv_mem[regno] != 0
4544 && (! strict_memory_address_p (GET_MODE (x),
4545 XEXP (reg_equiv_mem[regno], 0))
4546 || ! offsettable_memref_p (reg_equiv_mem[regno])
4547 || num_not_at_initial_offset))))
4548 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4549 insn);
4552 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4554 if (fmt[i] == 'e')
4556 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4557 ind_levels, is_set_dest, insn,
4558 address_reloaded);
4559 /* If we have replaced a reg with it's equivalent memory loc -
4560 that can still be handled here e.g. if it's in a paradoxical
4561 subreg - we must make the change in a copy, rather than using
4562 a destructive change. This way, find_reloads can still elect
4563 not to do the change. */
4564 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4566 x = shallow_copy_rtx (x);
4567 copied = 1;
4569 XEXP (x, i) = new_part;
4572 return x;
4575 /* Return a mem ref for the memory equivalent of reg REGNO.
4576 This mem ref is not shared with anything. */
4578 static rtx
4579 make_memloc (rtx ad, int regno)
4581 /* We must rerun eliminate_regs, in case the elimination
4582 offsets have changed. */
4583 rtx tem
4584 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4586 /* If TEM might contain a pseudo, we must copy it to avoid
4587 modifying it when we do the substitution for the reload. */
4588 if (rtx_varies_p (tem, 0))
4589 tem = copy_rtx (tem);
4591 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4592 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4594 /* Copy the result if it's still the same as the equivalence, to avoid
4595 modifying it when we do the substitution for the reload. */
4596 if (tem == reg_equiv_memory_loc[regno])
4597 tem = copy_rtx (tem);
4598 return tem;
4601 /* Returns true if AD could be turned into a valid memory reference
4602 to mode MODE by reloading the part pointed to by PART into a
4603 register. */
4605 static int
4606 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4608 int retv;
4609 rtx tem = *part;
4610 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4612 *part = reg;
4613 retv = memory_address_p (mode, ad);
4614 *part = tem;
4616 return retv;
4619 /* Record all reloads needed for handling memory address AD
4620 which appears in *LOC in a memory reference to mode MODE
4621 which itself is found in location *MEMREFLOC.
4622 Note that we take shortcuts assuming that no multi-reg machine mode
4623 occurs as part of an address.
4625 OPNUM and TYPE specify the purpose of this reload.
4627 IND_LEVELS says how many levels of indirect addressing this machine
4628 supports.
4630 INSN, if nonzero, is the insn in which we do the reload. It is used
4631 to determine if we may generate output reloads, and where to put USEs
4632 for pseudos that we have to replace with stack slots.
4634 Value is nonzero if this address is reloaded or replaced as a whole.
4635 This is interesting to the caller if the address is an autoincrement.
4637 Note that there is no verification that the address will be valid after
4638 this routine does its work. Instead, we rely on the fact that the address
4639 was valid when reload started. So we need only undo things that reload
4640 could have broken. These are wrong register types, pseudos not allocated
4641 to a hard register, and frame pointer elimination. */
4643 static int
4644 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4645 rtx *loc, int opnum, enum reload_type type,
4646 int ind_levels, rtx insn)
4648 int regno;
4649 int removed_and = 0;
4650 rtx tem;
4652 /* If the address is a register, see if it is a legitimate address and
4653 reload if not. We first handle the cases where we need not reload
4654 or where we must reload in a non-standard way. */
4656 if (REG_P (ad))
4658 regno = REGNO (ad);
4660 /* If the register is equivalent to an invariant expression, substitute
4661 the invariant, and eliminate any eliminable register references. */
4662 tem = reg_equiv_constant[regno];
4663 if (tem != 0
4664 && (tem = eliminate_regs (tem, mode, insn))
4665 && strict_memory_address_p (mode, tem))
4667 *loc = ad = tem;
4668 return 0;
4671 tem = reg_equiv_memory_loc[regno];
4672 if (tem != 0)
4674 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4676 tem = make_memloc (ad, regno);
4677 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4679 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4680 &XEXP (tem, 0), opnum,
4681 ADDR_TYPE (type), ind_levels, insn);
4683 /* We can avoid a reload if the register's equivalent memory
4684 expression is valid as an indirect memory address.
4685 But not all addresses are valid in a mem used as an indirect
4686 address: only reg or reg+constant. */
4688 if (ind_levels > 0
4689 && strict_memory_address_p (mode, tem)
4690 && (REG_P (XEXP (tem, 0))
4691 || (GET_CODE (XEXP (tem, 0)) == PLUS
4692 && REG_P (XEXP (XEXP (tem, 0), 0))
4693 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4695 /* TEM is not the same as what we'll be replacing the
4696 pseudo with after reload, put a USE in front of INSN
4697 in the final reload pass. */
4698 if (replace_reloads
4699 && num_not_at_initial_offset
4700 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4702 *loc = tem;
4703 /* We mark the USE with QImode so that we
4704 recognize it as one that can be safely
4705 deleted at the end of reload. */
4706 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4707 insn), QImode);
4709 /* This doesn't really count as replacing the address
4710 as a whole, since it is still a memory access. */
4712 return 0;
4714 ad = tem;
4718 /* The only remaining case where we can avoid a reload is if this is a
4719 hard register that is valid as a base register and which is not the
4720 subject of a CLOBBER in this insn. */
4722 else if (regno < FIRST_PSEUDO_REGISTER
4723 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4724 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4725 return 0;
4727 /* If we do not have one of the cases above, we must do the reload. */
4728 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4729 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4730 return 1;
4733 if (strict_memory_address_p (mode, ad))
4735 /* The address appears valid, so reloads are not needed.
4736 But the address may contain an eliminable register.
4737 This can happen because a machine with indirect addressing
4738 may consider a pseudo register by itself a valid address even when
4739 it has failed to get a hard reg.
4740 So do a tree-walk to find and eliminate all such regs. */
4742 /* But first quickly dispose of a common case. */
4743 if (GET_CODE (ad) == PLUS
4744 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4745 && REG_P (XEXP (ad, 0))
4746 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4747 return 0;
4749 subst_reg_equivs_changed = 0;
4750 *loc = subst_reg_equivs (ad, insn);
4752 if (! subst_reg_equivs_changed)
4753 return 0;
4755 /* Check result for validity after substitution. */
4756 if (strict_memory_address_p (mode, ad))
4757 return 0;
4760 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4763 if (memrefloc)
4765 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4766 ind_levels, win);
4768 break;
4769 win:
4770 *memrefloc = copy_rtx (*memrefloc);
4771 XEXP (*memrefloc, 0) = ad;
4772 move_replacements (&ad, &XEXP (*memrefloc, 0));
4773 return 1;
4775 while (0);
4776 #endif
4778 /* The address is not valid. We have to figure out why. First see if
4779 we have an outer AND and remove it if so. Then analyze what's inside. */
4781 if (GET_CODE (ad) == AND)
4783 removed_and = 1;
4784 loc = &XEXP (ad, 0);
4785 ad = *loc;
4788 /* One possibility for why the address is invalid is that it is itself
4789 a MEM. This can happen when the frame pointer is being eliminated, a
4790 pseudo is not allocated to a hard register, and the offset between the
4791 frame and stack pointers is not its initial value. In that case the
4792 pseudo will have been replaced by a MEM referring to the
4793 stack pointer. */
4794 if (MEM_P (ad))
4796 /* First ensure that the address in this MEM is valid. Then, unless
4797 indirect addresses are valid, reload the MEM into a register. */
4798 tem = ad;
4799 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4800 opnum, ADDR_TYPE (type),
4801 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4803 /* If tem was changed, then we must create a new memory reference to
4804 hold it and store it back into memrefloc. */
4805 if (tem != ad && memrefloc)
4807 *memrefloc = copy_rtx (*memrefloc);
4808 copy_replacements (tem, XEXP (*memrefloc, 0));
4809 loc = &XEXP (*memrefloc, 0);
4810 if (removed_and)
4811 loc = &XEXP (*loc, 0);
4814 /* Check similar cases as for indirect addresses as above except
4815 that we can allow pseudos and a MEM since they should have been
4816 taken care of above. */
4818 if (ind_levels == 0
4819 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4820 || MEM_P (XEXP (tem, 0))
4821 || ! (REG_P (XEXP (tem, 0))
4822 || (GET_CODE (XEXP (tem, 0)) == PLUS
4823 && REG_P (XEXP (XEXP (tem, 0), 0))
4824 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4826 /* Must use TEM here, not AD, since it is the one that will
4827 have any subexpressions reloaded, if needed. */
4828 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4829 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4830 VOIDmode, 0,
4831 0, opnum, type);
4832 return ! removed_and;
4834 else
4835 return 0;
4838 /* If we have address of a stack slot but it's not valid because the
4839 displacement is too large, compute the sum in a register.
4840 Handle all base registers here, not just fp/ap/sp, because on some
4841 targets (namely SH) we can also get too large displacements from
4842 big-endian corrections. */
4843 else if (GET_CODE (ad) == PLUS
4844 && REG_P (XEXP (ad, 0))
4845 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4846 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4847 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4849 /* Unshare the MEM rtx so we can safely alter it. */
4850 if (memrefloc)
4852 *memrefloc = copy_rtx (*memrefloc);
4853 loc = &XEXP (*memrefloc, 0);
4854 if (removed_and)
4855 loc = &XEXP (*loc, 0);
4858 if (double_reg_address_ok)
4860 /* Unshare the sum as well. */
4861 *loc = ad = copy_rtx (ad);
4863 /* Reload the displacement into an index reg.
4864 We assume the frame pointer or arg pointer is a base reg. */
4865 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4866 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4867 type, ind_levels);
4868 return 0;
4870 else
4872 /* If the sum of two regs is not necessarily valid,
4873 reload the sum into a base reg.
4874 That will at least work. */
4875 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4876 Pmode, opnum, type, ind_levels);
4878 return ! removed_and;
4881 /* If we have an indexed stack slot, there are three possible reasons why
4882 it might be invalid: The index might need to be reloaded, the address
4883 might have been made by frame pointer elimination and hence have a
4884 constant out of range, or both reasons might apply.
4886 We can easily check for an index needing reload, but even if that is the
4887 case, we might also have an invalid constant. To avoid making the
4888 conservative assumption and requiring two reloads, we see if this address
4889 is valid when not interpreted strictly. If it is, the only problem is
4890 that the index needs a reload and find_reloads_address_1 will take care
4891 of it.
4893 Handle all base registers here, not just fp/ap/sp, because on some
4894 targets (namely SPARC) we can also get invalid addresses from preventive
4895 subreg big-endian corrections made by find_reloads_toplev.
4897 If we decide to do something, it must be that `double_reg_address_ok'
4898 is true. We generate a reload of the base register + constant and
4899 rework the sum so that the reload register will be added to the index.
4900 This is safe because we know the address isn't shared.
4902 We check for the base register as both the first and second operand of
4903 the innermost PLUS. */
4905 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4906 && GET_CODE (XEXP (ad, 0)) == PLUS
4907 && REG_P (XEXP (XEXP (ad, 0), 0))
4908 && REGNO (XEXP (XEXP (ad, 0), 0)) < FIRST_PSEUDO_REGISTER
4909 && (REG_MODE_OK_FOR_BASE_P (XEXP (XEXP (ad, 0), 0), mode)
4910 || XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4911 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4912 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4913 #endif
4914 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4915 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4916 #endif
4917 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4918 && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 1)))
4920 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4921 plus_constant (XEXP (XEXP (ad, 0), 0),
4922 INTVAL (XEXP (ad, 1))),
4923 XEXP (XEXP (ad, 0), 1));
4924 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4925 MODE_BASE_REG_CLASS (mode),
4926 GET_MODE (ad), opnum, type, ind_levels);
4927 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4928 type, 0, insn);
4930 return 0;
4933 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4934 && GET_CODE (XEXP (ad, 0)) == PLUS
4935 && REG_P (XEXP (XEXP (ad, 0), 1))
4936 && REGNO (XEXP (XEXP (ad, 0), 1)) < FIRST_PSEUDO_REGISTER
4937 && (REG_MODE_OK_FOR_BASE_P (XEXP (XEXP (ad, 0), 1), mode)
4938 || XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4939 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4940 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4941 #endif
4942 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4943 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4944 #endif
4945 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4946 && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 0)))
4948 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4949 XEXP (XEXP (ad, 0), 0),
4950 plus_constant (XEXP (XEXP (ad, 0), 1),
4951 INTVAL (XEXP (ad, 1))));
4952 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4953 MODE_BASE_REG_CLASS (mode),
4954 GET_MODE (ad), opnum, type, ind_levels);
4955 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4956 type, 0, insn);
4958 return 0;
4961 /* See if address becomes valid when an eliminable register
4962 in a sum is replaced. */
4964 tem = ad;
4965 if (GET_CODE (ad) == PLUS)
4966 tem = subst_indexed_address (ad);
4967 if (tem != ad && strict_memory_address_p (mode, tem))
4969 /* Ok, we win that way. Replace any additional eliminable
4970 registers. */
4972 subst_reg_equivs_changed = 0;
4973 tem = subst_reg_equivs (tem, insn);
4975 /* Make sure that didn't make the address invalid again. */
4977 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4979 *loc = tem;
4980 return 0;
4984 /* If constants aren't valid addresses, reload the constant address
4985 into a register. */
4986 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4988 /* If AD is an address in the constant pool, the MEM rtx may be shared.
4989 Unshare it so we can safely alter it. */
4990 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4991 && CONSTANT_POOL_ADDRESS_P (ad))
4993 *memrefloc = copy_rtx (*memrefloc);
4994 loc = &XEXP (*memrefloc, 0);
4995 if (removed_and)
4996 loc = &XEXP (*loc, 0);
4999 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
5000 Pmode, opnum, type, ind_levels);
5001 return ! removed_and;
5004 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
5005 insn);
5008 /* Find all pseudo regs appearing in AD
5009 that are eliminable in favor of equivalent values
5010 and do not have hard regs; replace them by their equivalents.
5011 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5012 front of it for pseudos that we have to replace with stack slots. */
5014 static rtx
5015 subst_reg_equivs (rtx ad, rtx insn)
5017 RTX_CODE code = GET_CODE (ad);
5018 int i;
5019 const char *fmt;
5021 switch (code)
5023 case HIGH:
5024 case CONST_INT:
5025 case CONST:
5026 case CONST_DOUBLE:
5027 case CONST_VECTOR:
5028 case SYMBOL_REF:
5029 case LABEL_REF:
5030 case PC:
5031 case CC0:
5032 return ad;
5034 case REG:
5036 int regno = REGNO (ad);
5038 if (reg_equiv_constant[regno] != 0)
5040 subst_reg_equivs_changed = 1;
5041 return reg_equiv_constant[regno];
5043 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5045 rtx mem = make_memloc (ad, regno);
5046 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5048 subst_reg_equivs_changed = 1;
5049 /* We mark the USE with QImode so that we recognize it
5050 as one that can be safely deleted at the end of
5051 reload. */
5052 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5053 QImode);
5054 return mem;
5058 return ad;
5060 case PLUS:
5061 /* Quickly dispose of a common case. */
5062 if (XEXP (ad, 0) == frame_pointer_rtx
5063 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5064 return ad;
5065 break;
5067 default:
5068 break;
5071 fmt = GET_RTX_FORMAT (code);
5072 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5073 if (fmt[i] == 'e')
5074 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5075 return ad;
5078 /* Compute the sum of X and Y, making canonicalizations assumed in an
5079 address, namely: sum constant integers, surround the sum of two
5080 constants with a CONST, put the constant as the second operand, and
5081 group the constant on the outermost sum.
5083 This routine assumes both inputs are already in canonical form. */
5086 form_sum (rtx x, rtx y)
5088 rtx tem;
5089 enum machine_mode mode = GET_MODE (x);
5091 if (mode == VOIDmode)
5092 mode = GET_MODE (y);
5094 if (mode == VOIDmode)
5095 mode = Pmode;
5097 if (GET_CODE (x) == CONST_INT)
5098 return plus_constant (y, INTVAL (x));
5099 else if (GET_CODE (y) == CONST_INT)
5100 return plus_constant (x, INTVAL (y));
5101 else if (CONSTANT_P (x))
5102 tem = x, x = y, y = tem;
5104 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5105 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5107 /* Note that if the operands of Y are specified in the opposite
5108 order in the recursive calls below, infinite recursion will occur. */
5109 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5110 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5112 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5113 constant will have been placed second. */
5114 if (CONSTANT_P (x) && CONSTANT_P (y))
5116 if (GET_CODE (x) == CONST)
5117 x = XEXP (x, 0);
5118 if (GET_CODE (y) == CONST)
5119 y = XEXP (y, 0);
5121 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5124 return gen_rtx_PLUS (mode, x, y);
5127 /* If ADDR is a sum containing a pseudo register that should be
5128 replaced with a constant (from reg_equiv_constant),
5129 return the result of doing so, and also apply the associative
5130 law so that the result is more likely to be a valid address.
5131 (But it is not guaranteed to be one.)
5133 Note that at most one register is replaced, even if more are
5134 replaceable. Also, we try to put the result into a canonical form
5135 so it is more likely to be a valid address.
5137 In all other cases, return ADDR. */
5139 static rtx
5140 subst_indexed_address (rtx addr)
5142 rtx op0 = 0, op1 = 0, op2 = 0;
5143 rtx tem;
5144 int regno;
5146 if (GET_CODE (addr) == PLUS)
5148 /* Try to find a register to replace. */
5149 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5150 if (REG_P (op0)
5151 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5152 && reg_renumber[regno] < 0
5153 && reg_equiv_constant[regno] != 0)
5154 op0 = reg_equiv_constant[regno];
5155 else if (REG_P (op1)
5156 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5157 && reg_renumber[regno] < 0
5158 && reg_equiv_constant[regno] != 0)
5159 op1 = reg_equiv_constant[regno];
5160 else if (GET_CODE (op0) == PLUS
5161 && (tem = subst_indexed_address (op0)) != op0)
5162 op0 = tem;
5163 else if (GET_CODE (op1) == PLUS
5164 && (tem = subst_indexed_address (op1)) != op1)
5165 op1 = tem;
5166 else
5167 return addr;
5169 /* Pick out up to three things to add. */
5170 if (GET_CODE (op1) == PLUS)
5171 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5172 else if (GET_CODE (op0) == PLUS)
5173 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5175 /* Compute the sum. */
5176 if (op2 != 0)
5177 op1 = form_sum (op1, op2);
5178 if (op1 != 0)
5179 op0 = form_sum (op0, op1);
5181 return op0;
5183 return addr;
5186 /* Update the REG_INC notes for an insn. It updates all REG_INC
5187 notes for the instruction which refer to REGNO the to refer
5188 to the reload number.
5190 INSN is the insn for which any REG_INC notes need updating.
5192 REGNO is the register number which has been reloaded.
5194 RELOADNUM is the reload number. */
5196 static void
5197 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5198 int reloadnum ATTRIBUTE_UNUSED)
5200 #ifdef AUTO_INC_DEC
5201 rtx link;
5203 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5204 if (REG_NOTE_KIND (link) == REG_INC
5205 && (int) REGNO (XEXP (link, 0)) == regno)
5206 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5207 #endif
5210 /* Record the pseudo registers we must reload into hard registers in a
5211 subexpression of a would-be memory address, X referring to a value
5212 in mode MODE. (This function is not called if the address we find
5213 is strictly valid.)
5215 CONTEXT = 1 means we are considering regs as index regs,
5216 = 0 means we are considering them as base regs.
5218 OPNUM and TYPE specify the purpose of any reloads made.
5220 IND_LEVELS says how many levels of indirect addressing are
5221 supported at this point in the address.
5223 INSN, if nonzero, is the insn in which we do the reload. It is used
5224 to determine if we may generate output reloads.
5226 We return nonzero if X, as a whole, is reloaded or replaced. */
5228 /* Note that we take shortcuts assuming that no multi-reg machine mode
5229 occurs as part of an address.
5230 Also, this is not fully machine-customizable; it works for machines
5231 such as VAXen and 68000's and 32000's, but other possible machines
5232 could have addressing modes that this does not handle right. */
5234 static int
5235 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5236 rtx *loc, int opnum, enum reload_type type,
5237 int ind_levels, rtx insn)
5239 RTX_CODE code = GET_CODE (x);
5241 switch (code)
5243 case PLUS:
5245 rtx orig_op0 = XEXP (x, 0);
5246 rtx orig_op1 = XEXP (x, 1);
5247 RTX_CODE code0 = GET_CODE (orig_op0);
5248 RTX_CODE code1 = GET_CODE (orig_op1);
5249 rtx op0 = orig_op0;
5250 rtx op1 = orig_op1;
5252 if (GET_CODE (op0) == SUBREG)
5254 op0 = SUBREG_REG (op0);
5255 code0 = GET_CODE (op0);
5256 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5257 op0 = gen_rtx_REG (word_mode,
5258 (REGNO (op0) +
5259 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5260 GET_MODE (SUBREG_REG (orig_op0)),
5261 SUBREG_BYTE (orig_op0),
5262 GET_MODE (orig_op0))));
5265 if (GET_CODE (op1) == SUBREG)
5267 op1 = SUBREG_REG (op1);
5268 code1 = GET_CODE (op1);
5269 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5270 /* ??? Why is this given op1's mode and above for
5271 ??? op0 SUBREGs we use word_mode? */
5272 op1 = gen_rtx_REG (GET_MODE (op1),
5273 (REGNO (op1) +
5274 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5275 GET_MODE (SUBREG_REG (orig_op1)),
5276 SUBREG_BYTE (orig_op1),
5277 GET_MODE (orig_op1))));
5279 /* Plus in the index register may be created only as a result of
5280 register remateralization for expression like &localvar*4. Reload it.
5281 It may be possible to combine the displacement on the outer level,
5282 but it is probably not worthwhile to do so. */
5283 if (context)
5285 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5286 opnum, ADDR_TYPE (type), ind_levels, insn);
5287 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5288 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5289 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5290 return 1;
5293 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5294 || code0 == ZERO_EXTEND || code1 == MEM)
5296 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5297 type, ind_levels, insn);
5298 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5299 type, ind_levels, insn);
5302 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5303 || code1 == ZERO_EXTEND || code0 == MEM)
5305 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5306 type, ind_levels, insn);
5307 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5308 type, ind_levels, insn);
5311 else if (code0 == CONST_INT || code0 == CONST
5312 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5313 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5314 type, ind_levels, insn);
5316 else if (code1 == CONST_INT || code1 == CONST
5317 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5318 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5319 type, ind_levels, insn);
5321 else if (code0 == REG && code1 == REG)
5323 if (REG_OK_FOR_INDEX_P (op0)
5324 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5325 return 0;
5326 else if (REG_OK_FOR_INDEX_P (op1)
5327 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5328 return 0;
5329 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5330 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5331 type, ind_levels, insn);
5332 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5333 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5334 type, ind_levels, insn);
5335 else if (REG_OK_FOR_INDEX_P (op1))
5336 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5337 type, ind_levels, insn);
5338 else if (REG_OK_FOR_INDEX_P (op0))
5339 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5340 type, ind_levels, insn);
5341 else
5343 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5344 type, ind_levels, insn);
5345 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5346 type, ind_levels, insn);
5350 else if (code0 == REG)
5352 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5353 type, ind_levels, insn);
5354 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5355 type, ind_levels, insn);
5358 else if (code1 == REG)
5360 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5361 type, ind_levels, insn);
5362 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5363 type, ind_levels, insn);
5367 return 0;
5369 case POST_MODIFY:
5370 case PRE_MODIFY:
5372 rtx op0 = XEXP (x, 0);
5373 rtx op1 = XEXP (x, 1);
5375 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5376 return 0;
5378 /* Currently, we only support {PRE,POST}_MODIFY constructs
5379 where a base register is {inc,dec}remented by the contents
5380 of another register or by a constant value. Thus, these
5381 operands must match. */
5382 if (op0 != XEXP (op1, 0))
5383 abort ();
5385 /* Require index register (or constant). Let's just handle the
5386 register case in the meantime... If the target allows
5387 auto-modify by a constant then we could try replacing a pseudo
5388 register with its equivalent constant where applicable. */
5389 if (REG_P (XEXP (op1, 1)))
5390 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5391 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5392 opnum, type, ind_levels, insn);
5394 if (REG_P (XEXP (op1, 0)))
5396 int regno = REGNO (XEXP (op1, 0));
5397 int reloadnum;
5399 /* A register that is incremented cannot be constant! */
5400 if (regno >= FIRST_PSEUDO_REGISTER
5401 && reg_equiv_constant[regno] != 0)
5402 abort ();
5404 /* Handle a register that is equivalent to a memory location
5405 which cannot be addressed directly. */
5406 if (reg_equiv_memory_loc[regno] != 0
5407 && (reg_equiv_address[regno] != 0
5408 || num_not_at_initial_offset))
5410 rtx tem = make_memloc (XEXP (x, 0), regno);
5412 if (reg_equiv_address[regno]
5413 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5415 /* First reload the memory location's address.
5416 We can't use ADDR_TYPE (type) here, because we need to
5417 write back the value after reading it, hence we actually
5418 need two registers. */
5419 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5420 &XEXP (tem, 0), opnum,
5421 RELOAD_OTHER,
5422 ind_levels, insn);
5424 /* Then reload the memory location into a base
5425 register. */
5426 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5427 &XEXP (op1, 0),
5428 MODE_BASE_REG_CLASS (mode),
5429 GET_MODE (x), GET_MODE (x), 0,
5430 0, opnum, RELOAD_OTHER);
5432 update_auto_inc_notes (this_insn, regno, reloadnum);
5433 return 0;
5437 if (reg_renumber[regno] >= 0)
5438 regno = reg_renumber[regno];
5440 /* We require a base register here... */
5441 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5443 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5444 &XEXP (op1, 0), &XEXP (x, 0),
5445 MODE_BASE_REG_CLASS (mode),
5446 GET_MODE (x), GET_MODE (x), 0, 0,
5447 opnum, RELOAD_OTHER);
5449 update_auto_inc_notes (this_insn, regno, reloadnum);
5450 return 0;
5453 else
5454 abort ();
5456 return 0;
5458 case POST_INC:
5459 case POST_DEC:
5460 case PRE_INC:
5461 case PRE_DEC:
5462 if (REG_P (XEXP (x, 0)))
5464 int regno = REGNO (XEXP (x, 0));
5465 int value = 0;
5466 rtx x_orig = x;
5468 /* A register that is incremented cannot be constant! */
5469 if (regno >= FIRST_PSEUDO_REGISTER
5470 && reg_equiv_constant[regno] != 0)
5471 abort ();
5473 /* Handle a register that is equivalent to a memory location
5474 which cannot be addressed directly. */
5475 if (reg_equiv_memory_loc[regno] != 0
5476 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5478 rtx tem = make_memloc (XEXP (x, 0), regno);
5479 if (reg_equiv_address[regno]
5480 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5482 /* First reload the memory location's address.
5483 We can't use ADDR_TYPE (type) here, because we need to
5484 write back the value after reading it, hence we actually
5485 need two registers. */
5486 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5487 &XEXP (tem, 0), opnum, type,
5488 ind_levels, insn);
5489 /* Put this inside a new increment-expression. */
5490 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5491 /* Proceed to reload that, as if it contained a register. */
5495 /* If we have a hard register that is ok as an index,
5496 don't make a reload. If an autoincrement of a nice register
5497 isn't "valid", it must be that no autoincrement is "valid".
5498 If that is true and something made an autoincrement anyway,
5499 this must be a special context where one is allowed.
5500 (For example, a "push" instruction.)
5501 We can't improve this address, so leave it alone. */
5503 /* Otherwise, reload the autoincrement into a suitable hard reg
5504 and record how much to increment by. */
5506 if (reg_renumber[regno] >= 0)
5507 regno = reg_renumber[regno];
5508 if ((regno >= FIRST_PSEUDO_REGISTER
5509 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5510 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5512 int reloadnum;
5514 /* If we can output the register afterwards, do so, this
5515 saves the extra update.
5516 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5517 CALL_INSN - and it does not set CC0.
5518 But don't do this if we cannot directly address the
5519 memory location, since this will make it harder to
5520 reuse address reloads, and increases register pressure.
5521 Also don't do this if we can probably update x directly. */
5522 rtx equiv = (MEM_P (XEXP (x, 0))
5523 ? XEXP (x, 0)
5524 : reg_equiv_mem[regno]);
5525 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5526 if (insn && NONJUMP_INSN_P (insn) && equiv
5527 && memory_operand (equiv, GET_MODE (equiv))
5528 #ifdef HAVE_cc0
5529 && ! sets_cc0_p (PATTERN (insn))
5530 #endif
5531 && ! (icode != CODE_FOR_nothing
5532 && ((*insn_data[icode].operand[0].predicate)
5533 (equiv, Pmode))
5534 && ((*insn_data[icode].operand[1].predicate)
5535 (equiv, Pmode))))
5537 /* We use the original pseudo for loc, so that
5538 emit_reload_insns() knows which pseudo this
5539 reload refers to and updates the pseudo rtx, not
5540 its equivalent memory location, as well as the
5541 corresponding entry in reg_last_reload_reg. */
5542 loc = &XEXP (x_orig, 0);
5543 x = XEXP (x, 0);
5544 reloadnum
5545 = push_reload (x, x, loc, loc,
5546 (context ? INDEX_REG_CLASS :
5547 MODE_BASE_REG_CLASS (mode)),
5548 GET_MODE (x), GET_MODE (x), 0, 0,
5549 opnum, RELOAD_OTHER);
5551 else
5553 reloadnum
5554 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5555 (context ? INDEX_REG_CLASS :
5556 MODE_BASE_REG_CLASS (mode)),
5557 GET_MODE (x), GET_MODE (x), 0, 0,
5558 opnum, type);
5559 rld[reloadnum].inc
5560 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5562 value = 1;
5565 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5566 reloadnum);
5568 return value;
5571 else if (MEM_P (XEXP (x, 0)))
5573 /* This is probably the result of a substitution, by eliminate_regs,
5574 of an equivalent address for a pseudo that was not allocated to a
5575 hard register. Verify that the specified address is valid and
5576 reload it into a register. */
5577 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5578 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5579 rtx link;
5580 int reloadnum;
5582 /* Since we know we are going to reload this item, don't decrement
5583 for the indirection level.
5585 Note that this is actually conservative: it would be slightly
5586 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5587 reload1.c here. */
5588 /* We can't use ADDR_TYPE (type) here, because we need to
5589 write back the value after reading it, hence we actually
5590 need two registers. */
5591 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5592 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5593 opnum, type, ind_levels, insn);
5595 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5596 (context ? INDEX_REG_CLASS :
5597 MODE_BASE_REG_CLASS (mode)),
5598 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5599 rld[reloadnum].inc
5600 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5602 link = FIND_REG_INC_NOTE (this_insn, tem);
5603 if (link != 0)
5604 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5606 return 1;
5608 return 0;
5610 case MEM:
5611 /* This is probably the result of a substitution, by eliminate_regs, of
5612 an equivalent address for a pseudo that was not allocated to a hard
5613 register. Verify that the specified address is valid and reload it
5614 into a register.
5616 Since we know we are going to reload this item, don't decrement for
5617 the indirection level.
5619 Note that this is actually conservative: it would be slightly more
5620 efficient to use the value of SPILL_INDIRECT_LEVELS from
5621 reload1.c here. */
5623 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5624 opnum, ADDR_TYPE (type), ind_levels, insn);
5625 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5626 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5627 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5628 return 1;
5630 case REG:
5632 int regno = REGNO (x);
5634 if (reg_equiv_constant[regno] != 0)
5636 find_reloads_address_part (reg_equiv_constant[regno], loc,
5637 (context ? INDEX_REG_CLASS :
5638 MODE_BASE_REG_CLASS (mode)),
5639 GET_MODE (x), opnum, type, ind_levels);
5640 return 1;
5643 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5644 that feeds this insn. */
5645 if (reg_equiv_mem[regno] != 0)
5647 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5648 (context ? INDEX_REG_CLASS :
5649 MODE_BASE_REG_CLASS (mode)),
5650 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5651 return 1;
5653 #endif
5655 if (reg_equiv_memory_loc[regno]
5656 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5658 rtx tem = make_memloc (x, regno);
5659 if (reg_equiv_address[regno] != 0
5660 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5662 x = tem;
5663 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5664 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5665 ind_levels, insn);
5669 if (reg_renumber[regno] >= 0)
5670 regno = reg_renumber[regno];
5672 if ((regno >= FIRST_PSEUDO_REGISTER
5673 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5674 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5676 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5677 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5678 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5679 return 1;
5682 /* If a register appearing in an address is the subject of a CLOBBER
5683 in this insn, reload it into some other register to be safe.
5684 The CLOBBER is supposed to make the register unavailable
5685 from before this insn to after it. */
5686 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5688 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5689 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5690 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5691 return 1;
5694 return 0;
5696 case SUBREG:
5697 if (REG_P (SUBREG_REG (x)))
5699 /* If this is a SUBREG of a hard register and the resulting register
5700 is of the wrong class, reload the whole SUBREG. This avoids
5701 needless copies if SUBREG_REG is multi-word. */
5702 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5704 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5706 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5707 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5709 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5710 (context ? INDEX_REG_CLASS :
5711 MODE_BASE_REG_CLASS (mode)),
5712 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5713 return 1;
5716 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5717 is larger than the class size, then reload the whole SUBREG. */
5718 else
5720 enum reg_class class = (context ? INDEX_REG_CLASS
5721 : MODE_BASE_REG_CLASS (mode));
5722 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5723 > reg_class_size[class])
5725 x = find_reloads_subreg_address (x, 0, opnum, type,
5726 ind_levels, insn);
5727 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5728 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5729 return 1;
5733 break;
5735 default:
5736 break;
5740 const char *fmt = GET_RTX_FORMAT (code);
5741 int i;
5743 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5745 if (fmt[i] == 'e')
5746 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5747 opnum, type, ind_levels, insn);
5751 return 0;
5754 /* X, which is found at *LOC, is a part of an address that needs to be
5755 reloaded into a register of class CLASS. If X is a constant, or if
5756 X is a PLUS that contains a constant, check that the constant is a
5757 legitimate operand and that we are supposed to be able to load
5758 it into the register.
5760 If not, force the constant into memory and reload the MEM instead.
5762 MODE is the mode to use, in case X is an integer constant.
5764 OPNUM and TYPE describe the purpose of any reloads made.
5766 IND_LEVELS says how many levels of indirect addressing this machine
5767 supports. */
5769 static void
5770 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5771 enum machine_mode mode, int opnum,
5772 enum reload_type type, int ind_levels)
5774 if (CONSTANT_P (x)
5775 && (! LEGITIMATE_CONSTANT_P (x)
5776 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5778 rtx tem;
5780 tem = x = force_const_mem (mode, x);
5781 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5782 opnum, type, ind_levels, 0);
5785 else if (GET_CODE (x) == PLUS
5786 && CONSTANT_P (XEXP (x, 1))
5787 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5788 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5790 rtx tem;
5792 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5793 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5794 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5795 opnum, type, ind_levels, 0);
5798 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5799 mode, VOIDmode, 0, 0, opnum, type);
5802 /* X, a subreg of a pseudo, is a part of an address that needs to be
5803 reloaded.
5805 If the pseudo is equivalent to a memory location that cannot be directly
5806 addressed, make the necessary address reloads.
5808 If address reloads have been necessary, or if the address is changed
5809 by register elimination, return the rtx of the memory location;
5810 otherwise, return X.
5812 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5813 memory location.
5815 OPNUM and TYPE identify the purpose of the reload.
5817 IND_LEVELS says how many levels of indirect addressing are
5818 supported at this point in the address.
5820 INSN, if nonzero, is the insn in which we do the reload. It is used
5821 to determine where to put USEs for pseudos that we have to replace with
5822 stack slots. */
5824 static rtx
5825 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5826 enum reload_type type, int ind_levels, rtx insn)
5828 int regno = REGNO (SUBREG_REG (x));
5830 if (reg_equiv_memory_loc[regno])
5832 /* If the address is not directly addressable, or if the address is not
5833 offsettable, then it must be replaced. */
5834 if (! force_replace
5835 && (reg_equiv_address[regno]
5836 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5837 force_replace = 1;
5839 if (force_replace || num_not_at_initial_offset)
5841 rtx tem = make_memloc (SUBREG_REG (x), regno);
5843 /* If the address changes because of register elimination, then
5844 it must be replaced. */
5845 if (force_replace
5846 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5848 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5849 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5850 int offset;
5852 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
5853 hold the correct (negative) byte offset. */
5854 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
5855 offset = inner_size - outer_size;
5856 else
5857 offset = SUBREG_BYTE (x);
5859 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5860 PUT_MODE (tem, GET_MODE (x));
5862 /* If this was a paradoxical subreg that we replaced, the
5863 resulting memory must be sufficiently aligned to allow
5864 us to widen the mode of the memory. */
5865 if (outer_size > inner_size && STRICT_ALIGNMENT)
5867 rtx base;
5869 base = XEXP (tem, 0);
5870 if (GET_CODE (base) == PLUS)
5872 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5873 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5874 return x;
5875 base = XEXP (base, 0);
5877 if (!REG_P (base)
5878 || (REGNO_POINTER_ALIGN (REGNO (base))
5879 < outer_size * BITS_PER_UNIT))
5880 return x;
5883 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5884 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5885 ind_levels, insn);
5887 /* If this is not a toplevel operand, find_reloads doesn't see
5888 this substitution. We have to emit a USE of the pseudo so
5889 that delete_output_reload can see it. */
5890 if (replace_reloads && recog_data.operand[opnum] != x)
5891 /* We mark the USE with QImode so that we recognize it
5892 as one that can be safely deleted at the end of
5893 reload. */
5894 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5895 SUBREG_REG (x)),
5896 insn), QImode);
5897 x = tem;
5901 return x;
5904 /* Substitute into the current INSN the registers into which we have reloaded
5905 the things that need reloading. The array `replacements'
5906 contains the locations of all pointers that must be changed
5907 and says what to replace them with.
5909 Return the rtx that X translates into; usually X, but modified. */
5911 void
5912 subst_reloads (rtx insn)
5914 int i;
5916 for (i = 0; i < n_replacements; i++)
5918 struct replacement *r = &replacements[i];
5919 rtx reloadreg = rld[r->what].reg_rtx;
5920 if (reloadreg)
5922 #ifdef ENABLE_CHECKING
5923 /* Internal consistency test. Check that we don't modify
5924 anything in the equivalence arrays. Whenever something from
5925 those arrays needs to be reloaded, it must be unshared before
5926 being substituted into; the equivalence must not be modified.
5927 Otherwise, if the equivalence is used after that, it will
5928 have been modified, and the thing substituted (probably a
5929 register) is likely overwritten and not a usable equivalence. */
5930 int check_regno;
5932 for (check_regno = 0; check_regno < max_regno; check_regno++)
5934 #define CHECK_MODF(ARRAY) \
5935 if (ARRAY[check_regno] \
5936 && loc_mentioned_in_p (r->where, \
5937 ARRAY[check_regno])) \
5938 abort ()
5940 CHECK_MODF (reg_equiv_constant);
5941 CHECK_MODF (reg_equiv_memory_loc);
5942 CHECK_MODF (reg_equiv_address);
5943 CHECK_MODF (reg_equiv_mem);
5944 #undef CHECK_MODF
5946 #endif /* ENABLE_CHECKING */
5948 /* If we're replacing a LABEL_REF with a register, add a
5949 REG_LABEL note to indicate to flow which label this
5950 register refers to. */
5951 if (GET_CODE (*r->where) == LABEL_REF
5952 && JUMP_P (insn))
5953 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5954 XEXP (*r->where, 0),
5955 REG_NOTES (insn));
5957 /* Encapsulate RELOADREG so its machine mode matches what
5958 used to be there. Note that gen_lowpart_common will
5959 do the wrong thing if RELOADREG is multi-word. RELOADREG
5960 will always be a REG here. */
5961 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5962 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
5964 /* If we are putting this into a SUBREG and RELOADREG is a
5965 SUBREG, we would be making nested SUBREGs, so we have to fix
5966 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5968 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5970 if (GET_MODE (*r->subreg_loc)
5971 == GET_MODE (SUBREG_REG (reloadreg)))
5972 *r->subreg_loc = SUBREG_REG (reloadreg);
5973 else
5975 int final_offset =
5976 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5978 /* When working with SUBREGs the rule is that the byte
5979 offset must be a multiple of the SUBREG's mode. */
5980 final_offset = (final_offset /
5981 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5982 final_offset = (final_offset *
5983 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5985 *r->where = SUBREG_REG (reloadreg);
5986 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5989 else
5990 *r->where = reloadreg;
5992 /* If reload got no reg and isn't optional, something's wrong. */
5993 else if (! rld[r->what].optional)
5994 abort ();
5998 /* Make a copy of any replacements being done into X and move those
5999 copies to locations in Y, a copy of X. */
6001 void
6002 copy_replacements (rtx x, rtx y)
6004 /* We can't support X being a SUBREG because we might then need to know its
6005 location if something inside it was replaced. */
6006 if (GET_CODE (x) == SUBREG)
6007 abort ();
6009 copy_replacements_1 (&x, &y, n_replacements);
6012 static void
6013 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6015 int i, j;
6016 rtx x, y;
6017 struct replacement *r;
6018 enum rtx_code code;
6019 const char *fmt;
6021 for (j = 0; j < orig_replacements; j++)
6023 if (replacements[j].subreg_loc == px)
6025 r = &replacements[n_replacements++];
6026 r->where = replacements[j].where;
6027 r->subreg_loc = py;
6028 r->what = replacements[j].what;
6029 r->mode = replacements[j].mode;
6031 else if (replacements[j].where == px)
6033 r = &replacements[n_replacements++];
6034 r->where = py;
6035 r->subreg_loc = 0;
6036 r->what = replacements[j].what;
6037 r->mode = replacements[j].mode;
6041 x = *px;
6042 y = *py;
6043 code = GET_CODE (x);
6044 fmt = GET_RTX_FORMAT (code);
6046 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6048 if (fmt[i] == 'e')
6049 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6050 else if (fmt[i] == 'E')
6051 for (j = XVECLEN (x, i); --j >= 0; )
6052 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6053 orig_replacements);
6057 /* Change any replacements being done to *X to be done to *Y. */
6059 void
6060 move_replacements (rtx *x, rtx *y)
6062 int i;
6064 for (i = 0; i < n_replacements; i++)
6065 if (replacements[i].subreg_loc == x)
6066 replacements[i].subreg_loc = y;
6067 else if (replacements[i].where == x)
6069 replacements[i].where = y;
6070 replacements[i].subreg_loc = 0;
6074 /* If LOC was scheduled to be replaced by something, return the replacement.
6075 Otherwise, return *LOC. */
6078 find_replacement (rtx *loc)
6080 struct replacement *r;
6082 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6084 rtx reloadreg = rld[r->what].reg_rtx;
6086 if (reloadreg && r->where == loc)
6088 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6089 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6091 return reloadreg;
6093 else if (reloadreg && r->subreg_loc == loc)
6095 /* RELOADREG must be either a REG or a SUBREG.
6097 ??? Is it actually still ever a SUBREG? If so, why? */
6099 if (REG_P (reloadreg))
6100 return gen_rtx_REG (GET_MODE (*loc),
6101 (REGNO (reloadreg) +
6102 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6103 GET_MODE (SUBREG_REG (*loc)),
6104 SUBREG_BYTE (*loc),
6105 GET_MODE (*loc))));
6106 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6107 return reloadreg;
6108 else
6110 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6112 /* When working with SUBREGs the rule is that the byte
6113 offset must be a multiple of the SUBREG's mode. */
6114 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6115 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6116 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6117 final_offset);
6122 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6123 what's inside and make a new rtl if so. */
6124 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6125 || GET_CODE (*loc) == MULT)
6127 rtx x = find_replacement (&XEXP (*loc, 0));
6128 rtx y = find_replacement (&XEXP (*loc, 1));
6130 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6131 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6134 return *loc;
6137 /* Return nonzero if register in range [REGNO, ENDREGNO)
6138 appears either explicitly or implicitly in X
6139 other than being stored into (except for earlyclobber operands).
6141 References contained within the substructure at LOC do not count.
6142 LOC may be zero, meaning don't ignore anything.
6144 This is similar to refers_to_regno_p in rtlanal.c except that we
6145 look at equivalences for pseudos that didn't get hard registers. */
6148 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6149 rtx x, rtx *loc)
6151 int i;
6152 unsigned int r;
6153 RTX_CODE code;
6154 const char *fmt;
6156 if (x == 0)
6157 return 0;
6159 repeat:
6160 code = GET_CODE (x);
6162 switch (code)
6164 case REG:
6165 r = REGNO (x);
6167 /* If this is a pseudo, a hard register must not have been allocated.
6168 X must therefore either be a constant or be in memory. */
6169 if (r >= FIRST_PSEUDO_REGISTER)
6171 if (reg_equiv_memory_loc[r])
6172 return refers_to_regno_for_reload_p (regno, endregno,
6173 reg_equiv_memory_loc[r],
6174 (rtx*) 0);
6176 if (reg_equiv_constant[r])
6177 return 0;
6179 abort ();
6182 return (endregno > r
6183 && regno < r + (r < FIRST_PSEUDO_REGISTER
6184 ? hard_regno_nregs[r][GET_MODE (x)]
6185 : 1));
6187 case SUBREG:
6188 /* If this is a SUBREG of a hard reg, we can see exactly which
6189 registers are being modified. Otherwise, handle normally. */
6190 if (REG_P (SUBREG_REG (x))
6191 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6193 unsigned int inner_regno = subreg_regno (x);
6194 unsigned int inner_endregno
6195 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6196 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6198 return endregno > inner_regno && regno < inner_endregno;
6200 break;
6202 case CLOBBER:
6203 case SET:
6204 if (&SET_DEST (x) != loc
6205 /* Note setting a SUBREG counts as referring to the REG it is in for
6206 a pseudo but not for hard registers since we can
6207 treat each word individually. */
6208 && ((GET_CODE (SET_DEST (x)) == SUBREG
6209 && loc != &SUBREG_REG (SET_DEST (x))
6210 && REG_P (SUBREG_REG (SET_DEST (x)))
6211 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6212 && refers_to_regno_for_reload_p (regno, endregno,
6213 SUBREG_REG (SET_DEST (x)),
6214 loc))
6215 /* If the output is an earlyclobber operand, this is
6216 a conflict. */
6217 || ((!REG_P (SET_DEST (x))
6218 || earlyclobber_operand_p (SET_DEST (x)))
6219 && refers_to_regno_for_reload_p (regno, endregno,
6220 SET_DEST (x), loc))))
6221 return 1;
6223 if (code == CLOBBER || loc == &SET_SRC (x))
6224 return 0;
6225 x = SET_SRC (x);
6226 goto repeat;
6228 default:
6229 break;
6232 /* X does not match, so try its subexpressions. */
6234 fmt = GET_RTX_FORMAT (code);
6235 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6237 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6239 if (i == 0)
6241 x = XEXP (x, 0);
6242 goto repeat;
6244 else
6245 if (refers_to_regno_for_reload_p (regno, endregno,
6246 XEXP (x, i), loc))
6247 return 1;
6249 else if (fmt[i] == 'E')
6251 int j;
6252 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6253 if (loc != &XVECEXP (x, i, j)
6254 && refers_to_regno_for_reload_p (regno, endregno,
6255 XVECEXP (x, i, j), loc))
6256 return 1;
6259 return 0;
6262 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6263 we check if any register number in X conflicts with the relevant register
6264 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6265 contains a MEM (we don't bother checking for memory addresses that can't
6266 conflict because we expect this to be a rare case.
6268 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6269 that we look at equivalences for pseudos that didn't get hard registers. */
6272 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6274 int regno, endregno;
6276 /* Overly conservative. */
6277 if (GET_CODE (x) == STRICT_LOW_PART
6278 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6279 x = XEXP (x, 0);
6281 /* If either argument is a constant, then modifying X can not affect IN. */
6282 if (CONSTANT_P (x) || CONSTANT_P (in))
6283 return 0;
6284 else if (GET_CODE (x) == SUBREG)
6286 regno = REGNO (SUBREG_REG (x));
6287 if (regno < FIRST_PSEUDO_REGISTER)
6288 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6289 GET_MODE (SUBREG_REG (x)),
6290 SUBREG_BYTE (x),
6291 GET_MODE (x));
6293 else if (REG_P (x))
6295 regno = REGNO (x);
6297 /* If this is a pseudo, it must not have been assigned a hard register.
6298 Therefore, it must either be in memory or be a constant. */
6300 if (regno >= FIRST_PSEUDO_REGISTER)
6302 if (reg_equiv_memory_loc[regno])
6303 return refers_to_mem_for_reload_p (in);
6304 else if (reg_equiv_constant[regno])
6305 return 0;
6306 abort ();
6309 else if (MEM_P (x))
6310 return refers_to_mem_for_reload_p (in);
6311 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6312 || GET_CODE (x) == CC0)
6313 return reg_mentioned_p (x, in);
6314 else if (GET_CODE (x) == PLUS)
6316 /* We actually want to know if X is mentioned somewhere inside IN.
6317 We must not say that (plus (sp) (const_int 124)) is in
6318 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6319 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6320 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6321 while (MEM_P (in))
6322 in = XEXP (in, 0);
6323 if (REG_P (in))
6324 return 0;
6325 else if (GET_CODE (in) == PLUS)
6326 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6327 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6328 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6329 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6331 else
6332 abort ();
6334 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6335 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6337 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6340 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6341 registers. */
6344 refers_to_mem_for_reload_p (rtx x)
6346 const char *fmt;
6347 int i;
6349 if (MEM_P (x))
6350 return 1;
6352 if (REG_P (x))
6353 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6354 && reg_equiv_memory_loc[REGNO (x)]);
6356 fmt = GET_RTX_FORMAT (GET_CODE (x));
6357 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6358 if (fmt[i] == 'e'
6359 && (MEM_P (XEXP (x, i))
6360 || refers_to_mem_for_reload_p (XEXP (x, i))))
6361 return 1;
6363 return 0;
6366 /* Check the insns before INSN to see if there is a suitable register
6367 containing the same value as GOAL.
6368 If OTHER is -1, look for a register in class CLASS.
6369 Otherwise, just see if register number OTHER shares GOAL's value.
6371 Return an rtx for the register found, or zero if none is found.
6373 If RELOAD_REG_P is (short *)1,
6374 we reject any hard reg that appears in reload_reg_rtx
6375 because such a hard reg is also needed coming into this insn.
6377 If RELOAD_REG_P is any other nonzero value,
6378 it is a vector indexed by hard reg number
6379 and we reject any hard reg whose element in the vector is nonnegative
6380 as well as any that appears in reload_reg_rtx.
6382 If GOAL is zero, then GOALREG is a register number; we look
6383 for an equivalent for that register.
6385 MODE is the machine mode of the value we want an equivalence for.
6386 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6388 This function is used by jump.c as well as in the reload pass.
6390 If GOAL is the sum of the stack pointer and a constant, we treat it
6391 as if it were a constant except that sp is required to be unchanging. */
6394 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6395 short *reload_reg_p, int goalreg, enum machine_mode mode)
6397 rtx p = insn;
6398 rtx goaltry, valtry, value, where;
6399 rtx pat;
6400 int regno = -1;
6401 int valueno;
6402 int goal_mem = 0;
6403 int goal_const = 0;
6404 int goal_mem_addr_varies = 0;
6405 int need_stable_sp = 0;
6406 int nregs;
6407 int valuenregs;
6408 int num = 0;
6410 if (goal == 0)
6411 regno = goalreg;
6412 else if (REG_P (goal))
6413 regno = REGNO (goal);
6414 else if (MEM_P (goal))
6416 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6417 if (MEM_VOLATILE_P (goal))
6418 return 0;
6419 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6420 return 0;
6421 /* An address with side effects must be reexecuted. */
6422 switch (code)
6424 case POST_INC:
6425 case PRE_INC:
6426 case POST_DEC:
6427 case PRE_DEC:
6428 case POST_MODIFY:
6429 case PRE_MODIFY:
6430 return 0;
6431 default:
6432 break;
6434 goal_mem = 1;
6436 else if (CONSTANT_P (goal))
6437 goal_const = 1;
6438 else if (GET_CODE (goal) == PLUS
6439 && XEXP (goal, 0) == stack_pointer_rtx
6440 && CONSTANT_P (XEXP (goal, 1)))
6441 goal_const = need_stable_sp = 1;
6442 else if (GET_CODE (goal) == PLUS
6443 && XEXP (goal, 0) == frame_pointer_rtx
6444 && CONSTANT_P (XEXP (goal, 1)))
6445 goal_const = 1;
6446 else
6447 return 0;
6449 num = 0;
6450 /* Scan insns back from INSN, looking for one that copies
6451 a value into or out of GOAL.
6452 Stop and give up if we reach a label. */
6454 while (1)
6456 p = PREV_INSN (p);
6457 num++;
6458 if (p == 0 || LABEL_P (p)
6459 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6460 return 0;
6462 if (NONJUMP_INSN_P (p)
6463 /* If we don't want spill regs ... */
6464 && (! (reload_reg_p != 0
6465 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6466 /* ... then ignore insns introduced by reload; they aren't
6467 useful and can cause results in reload_as_needed to be
6468 different from what they were when calculating the need for
6469 spills. If we notice an input-reload insn here, we will
6470 reject it below, but it might hide a usable equivalent.
6471 That makes bad code. It may even abort: perhaps no reg was
6472 spilled for this insn because it was assumed we would find
6473 that equivalent. */
6474 || INSN_UID (p) < reload_first_uid))
6476 rtx tem;
6477 pat = single_set (p);
6479 /* First check for something that sets some reg equal to GOAL. */
6480 if (pat != 0
6481 && ((regno >= 0
6482 && true_regnum (SET_SRC (pat)) == regno
6483 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6485 (regno >= 0
6486 && true_regnum (SET_DEST (pat)) == regno
6487 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6489 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6490 /* When looking for stack pointer + const,
6491 make sure we don't use a stack adjust. */
6492 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6493 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6494 || (goal_mem
6495 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6496 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6497 || (goal_mem
6498 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6499 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6500 /* If we are looking for a constant,
6501 and something equivalent to that constant was copied
6502 into a reg, we can use that reg. */
6503 || (goal_const && REG_NOTES (p) != 0
6504 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6505 && ((rtx_equal_p (XEXP (tem, 0), goal)
6506 && (valueno
6507 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6508 || (REG_P (SET_DEST (pat))
6509 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6510 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6511 == MODE_FLOAT)
6512 && GET_CODE (goal) == CONST_INT
6513 && 0 != (goaltry
6514 = operand_subword (XEXP (tem, 0), 0, 0,
6515 VOIDmode))
6516 && rtx_equal_p (goal, goaltry)
6517 && (valtry
6518 = operand_subword (SET_DEST (pat), 0, 0,
6519 VOIDmode))
6520 && (valueno = true_regnum (valtry)) >= 0)))
6521 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6522 NULL_RTX))
6523 && REG_P (SET_DEST (pat))
6524 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6525 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6526 == MODE_FLOAT)
6527 && GET_CODE (goal) == CONST_INT
6528 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6529 VOIDmode))
6530 && rtx_equal_p (goal, goaltry)
6531 && (valtry
6532 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6533 && (valueno = true_regnum (valtry)) >= 0)))
6535 if (other >= 0)
6537 if (valueno != other)
6538 continue;
6540 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6541 continue;
6542 else
6544 int i;
6546 for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6547 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6548 valueno + i))
6549 break;
6550 if (i >= 0)
6551 continue;
6553 value = valtry;
6554 where = p;
6555 break;
6560 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6561 (or copying VALUE into GOAL, if GOAL is also a register).
6562 Now verify that VALUE is really valid. */
6564 /* VALUENO is the register number of VALUE; a hard register. */
6566 /* Don't try to re-use something that is killed in this insn. We want
6567 to be able to trust REG_UNUSED notes. */
6568 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6569 return 0;
6571 /* If we propose to get the value from the stack pointer or if GOAL is
6572 a MEM based on the stack pointer, we need a stable SP. */
6573 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6574 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6575 goal)))
6576 need_stable_sp = 1;
6578 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6579 if (GET_MODE (value) != mode)
6580 return 0;
6582 /* Reject VALUE if it was loaded from GOAL
6583 and is also a register that appears in the address of GOAL. */
6585 if (goal_mem && value == SET_DEST (single_set (where))
6586 && refers_to_regno_for_reload_p (valueno,
6587 (valueno
6588 + hard_regno_nregs[valueno][mode]),
6589 goal, (rtx*) 0))
6590 return 0;
6592 /* Reject registers that overlap GOAL. */
6594 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6595 nregs = hard_regno_nregs[regno][mode];
6596 else
6597 nregs = 1;
6598 valuenregs = hard_regno_nregs[valueno][mode];
6600 if (!goal_mem && !goal_const
6601 && regno + nregs > valueno && regno < valueno + valuenregs)
6602 return 0;
6604 /* Reject VALUE if it is one of the regs reserved for reloads.
6605 Reload1 knows how to reuse them anyway, and it would get
6606 confused if we allocated one without its knowledge.
6607 (Now that insns introduced by reload are ignored above,
6608 this case shouldn't happen, but I'm not positive.) */
6610 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6612 int i;
6613 for (i = 0; i < valuenregs; ++i)
6614 if (reload_reg_p[valueno + i] >= 0)
6615 return 0;
6618 /* Reject VALUE if it is a register being used for an input reload
6619 even if it is not one of those reserved. */
6621 if (reload_reg_p != 0)
6623 int i;
6624 for (i = 0; i < n_reloads; i++)
6625 if (rld[i].reg_rtx != 0 && rld[i].in)
6627 int regno1 = REGNO (rld[i].reg_rtx);
6628 int nregs1 = hard_regno_nregs[regno1]
6629 [GET_MODE (rld[i].reg_rtx)];
6630 if (regno1 < valueno + valuenregs
6631 && regno1 + nregs1 > valueno)
6632 return 0;
6636 if (goal_mem)
6637 /* We must treat frame pointer as varying here,
6638 since it can vary--in a nonlocal goto as generated by expand_goto. */
6639 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6641 /* Now verify that the values of GOAL and VALUE remain unaltered
6642 until INSN is reached. */
6644 p = insn;
6645 while (1)
6647 p = PREV_INSN (p);
6648 if (p == where)
6649 return value;
6651 /* Don't trust the conversion past a function call
6652 if either of the two is in a call-clobbered register, or memory. */
6653 if (CALL_P (p))
6655 int i;
6657 if (goal_mem || need_stable_sp)
6658 return 0;
6660 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6661 for (i = 0; i < nregs; ++i)
6662 if (call_used_regs[regno + i])
6663 return 0;
6665 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6666 for (i = 0; i < valuenregs; ++i)
6667 if (call_used_regs[valueno + i])
6668 return 0;
6669 #ifdef NON_SAVING_SETJMP
6670 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6671 return 0;
6672 #endif
6675 if (INSN_P (p))
6677 pat = PATTERN (p);
6679 /* Watch out for unspec_volatile, and volatile asms. */
6680 if (volatile_insn_p (pat))
6681 return 0;
6683 /* If this insn P stores in either GOAL or VALUE, return 0.
6684 If GOAL is a memory ref and this insn writes memory, return 0.
6685 If GOAL is a memory ref and its address is not constant,
6686 and this insn P changes a register used in GOAL, return 0. */
6688 if (GET_CODE (pat) == COND_EXEC)
6689 pat = COND_EXEC_CODE (pat);
6690 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6692 rtx dest = SET_DEST (pat);
6693 while (GET_CODE (dest) == SUBREG
6694 || GET_CODE (dest) == ZERO_EXTRACT
6695 || GET_CODE (dest) == SIGN_EXTRACT
6696 || GET_CODE (dest) == STRICT_LOW_PART)
6697 dest = XEXP (dest, 0);
6698 if (REG_P (dest))
6700 int xregno = REGNO (dest);
6701 int xnregs;
6702 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6703 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6704 else
6705 xnregs = 1;
6706 if (xregno < regno + nregs && xregno + xnregs > regno)
6707 return 0;
6708 if (xregno < valueno + valuenregs
6709 && xregno + xnregs > valueno)
6710 return 0;
6711 if (goal_mem_addr_varies
6712 && reg_overlap_mentioned_for_reload_p (dest, goal))
6713 return 0;
6714 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6715 return 0;
6717 else if (goal_mem && MEM_P (dest)
6718 && ! push_operand (dest, GET_MODE (dest)))
6719 return 0;
6720 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6721 && reg_equiv_memory_loc[regno] != 0)
6722 return 0;
6723 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6724 return 0;
6726 else if (GET_CODE (pat) == PARALLEL)
6728 int i;
6729 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6731 rtx v1 = XVECEXP (pat, 0, i);
6732 if (GET_CODE (v1) == COND_EXEC)
6733 v1 = COND_EXEC_CODE (v1);
6734 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6736 rtx dest = SET_DEST (v1);
6737 while (GET_CODE (dest) == SUBREG
6738 || GET_CODE (dest) == ZERO_EXTRACT
6739 || GET_CODE (dest) == SIGN_EXTRACT
6740 || GET_CODE (dest) == STRICT_LOW_PART)
6741 dest = XEXP (dest, 0);
6742 if (REG_P (dest))
6744 int xregno = REGNO (dest);
6745 int xnregs;
6746 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6747 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6748 else
6749 xnregs = 1;
6750 if (xregno < regno + nregs
6751 && xregno + xnregs > regno)
6752 return 0;
6753 if (xregno < valueno + valuenregs
6754 && xregno + xnregs > valueno)
6755 return 0;
6756 if (goal_mem_addr_varies
6757 && reg_overlap_mentioned_for_reload_p (dest,
6758 goal))
6759 return 0;
6760 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6761 return 0;
6763 else if (goal_mem && MEM_P (dest)
6764 && ! push_operand (dest, GET_MODE (dest)))
6765 return 0;
6766 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6767 && reg_equiv_memory_loc[regno] != 0)
6768 return 0;
6769 else if (need_stable_sp
6770 && push_operand (dest, GET_MODE (dest)))
6771 return 0;
6776 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6778 rtx link;
6780 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6781 link = XEXP (link, 1))
6783 pat = XEXP (link, 0);
6784 if (GET_CODE (pat) == CLOBBER)
6786 rtx dest = SET_DEST (pat);
6788 if (REG_P (dest))
6790 int xregno = REGNO (dest);
6791 int xnregs
6792 = hard_regno_nregs[xregno][GET_MODE (dest)];
6794 if (xregno < regno + nregs
6795 && xregno + xnregs > regno)
6796 return 0;
6797 else if (xregno < valueno + valuenregs
6798 && xregno + xnregs > valueno)
6799 return 0;
6800 else if (goal_mem_addr_varies
6801 && reg_overlap_mentioned_for_reload_p (dest,
6802 goal))
6803 return 0;
6806 else if (goal_mem && MEM_P (dest)
6807 && ! push_operand (dest, GET_MODE (dest)))
6808 return 0;
6809 else if (need_stable_sp
6810 && push_operand (dest, GET_MODE (dest)))
6811 return 0;
6816 #ifdef AUTO_INC_DEC
6817 /* If this insn auto-increments or auto-decrements
6818 either regno or valueno, return 0 now.
6819 If GOAL is a memory ref and its address is not constant,
6820 and this insn P increments a register used in GOAL, return 0. */
6822 rtx link;
6824 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6825 if (REG_NOTE_KIND (link) == REG_INC
6826 && REG_P (XEXP (link, 0)))
6828 int incno = REGNO (XEXP (link, 0));
6829 if (incno < regno + nregs && incno >= regno)
6830 return 0;
6831 if (incno < valueno + valuenregs && incno >= valueno)
6832 return 0;
6833 if (goal_mem_addr_varies
6834 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6835 goal))
6836 return 0;
6839 #endif
6844 /* Find a place where INCED appears in an increment or decrement operator
6845 within X, and return the amount INCED is incremented or decremented by.
6846 The value is always positive. */
6848 static int
6849 find_inc_amount (rtx x, rtx inced)
6851 enum rtx_code code = GET_CODE (x);
6852 const char *fmt;
6853 int i;
6855 if (code == MEM)
6857 rtx addr = XEXP (x, 0);
6858 if ((GET_CODE (addr) == PRE_DEC
6859 || GET_CODE (addr) == POST_DEC
6860 || GET_CODE (addr) == PRE_INC
6861 || GET_CODE (addr) == POST_INC)
6862 && XEXP (addr, 0) == inced)
6863 return GET_MODE_SIZE (GET_MODE (x));
6864 else if ((GET_CODE (addr) == PRE_MODIFY
6865 || GET_CODE (addr) == POST_MODIFY)
6866 && GET_CODE (XEXP (addr, 1)) == PLUS
6867 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6868 && XEXP (addr, 0) == inced
6869 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6871 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6872 return i < 0 ? -i : i;
6876 fmt = GET_RTX_FORMAT (code);
6877 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6879 if (fmt[i] == 'e')
6881 int tem = find_inc_amount (XEXP (x, i), inced);
6882 if (tem != 0)
6883 return tem;
6885 if (fmt[i] == 'E')
6887 int j;
6888 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6890 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6891 if (tem != 0)
6892 return tem;
6897 return 0;
6900 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6901 If SETS is nonzero, also consider SETs. */
6904 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
6905 int sets)
6907 unsigned int nregs = hard_regno_nregs[regno][mode];
6908 unsigned int endregno = regno + nregs;
6910 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6911 || (sets && GET_CODE (PATTERN (insn)) == SET))
6912 && REG_P (XEXP (PATTERN (insn), 0)))
6914 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6916 return test >= regno && test < endregno;
6919 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6921 int i = XVECLEN (PATTERN (insn), 0) - 1;
6923 for (; i >= 0; i--)
6925 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6926 if ((GET_CODE (elt) == CLOBBER
6927 || (sets && GET_CODE (PATTERN (insn)) == SET))
6928 && REG_P (XEXP (elt, 0)))
6930 unsigned int test = REGNO (XEXP (elt, 0));
6932 if (test >= regno && test < endregno)
6933 return 1;
6938 return 0;
6941 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
6943 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
6945 int regno;
6947 if (GET_MODE (reloadreg) == mode)
6948 return reloadreg;
6950 regno = REGNO (reloadreg);
6952 if (WORDS_BIG_ENDIAN)
6953 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
6954 - (int) hard_regno_nregs[regno][mode];
6956 return gen_rtx_REG (mode, regno);
6959 static const char *const reload_when_needed_name[] =
6961 "RELOAD_FOR_INPUT",
6962 "RELOAD_FOR_OUTPUT",
6963 "RELOAD_FOR_INSN",
6964 "RELOAD_FOR_INPUT_ADDRESS",
6965 "RELOAD_FOR_INPADDR_ADDRESS",
6966 "RELOAD_FOR_OUTPUT_ADDRESS",
6967 "RELOAD_FOR_OUTADDR_ADDRESS",
6968 "RELOAD_FOR_OPERAND_ADDRESS",
6969 "RELOAD_FOR_OPADDR_ADDR",
6970 "RELOAD_OTHER",
6971 "RELOAD_FOR_OTHER_ADDRESS"
6974 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6976 /* These functions are used to print the variables set by 'find_reloads' */
6978 void
6979 debug_reload_to_stream (FILE *f)
6981 int r;
6982 const char *prefix;
6984 if (! f)
6985 f = stderr;
6986 for (r = 0; r < n_reloads; r++)
6988 fprintf (f, "Reload %d: ", r);
6990 if (rld[r].in != 0)
6992 fprintf (f, "reload_in (%s) = ",
6993 GET_MODE_NAME (rld[r].inmode));
6994 print_inline_rtx (f, rld[r].in, 24);
6995 fprintf (f, "\n\t");
6998 if (rld[r].out != 0)
7000 fprintf (f, "reload_out (%s) = ",
7001 GET_MODE_NAME (rld[r].outmode));
7002 print_inline_rtx (f, rld[r].out, 24);
7003 fprintf (f, "\n\t");
7006 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7008 fprintf (f, "%s (opnum = %d)",
7009 reload_when_needed_name[(int) rld[r].when_needed],
7010 rld[r].opnum);
7012 if (rld[r].optional)
7013 fprintf (f, ", optional");
7015 if (rld[r].nongroup)
7016 fprintf (f, ", nongroup");
7018 if (rld[r].inc != 0)
7019 fprintf (f, ", inc by %d", rld[r].inc);
7021 if (rld[r].nocombine)
7022 fprintf (f, ", can't combine");
7024 if (rld[r].secondary_p)
7025 fprintf (f, ", secondary_reload_p");
7027 if (rld[r].in_reg != 0)
7029 fprintf (f, "\n\treload_in_reg: ");
7030 print_inline_rtx (f, rld[r].in_reg, 24);
7033 if (rld[r].out_reg != 0)
7035 fprintf (f, "\n\treload_out_reg: ");
7036 print_inline_rtx (f, rld[r].out_reg, 24);
7039 if (rld[r].reg_rtx != 0)
7041 fprintf (f, "\n\treload_reg_rtx: ");
7042 print_inline_rtx (f, rld[r].reg_rtx, 24);
7045 prefix = "\n\t";
7046 if (rld[r].secondary_in_reload != -1)
7048 fprintf (f, "%ssecondary_in_reload = %d",
7049 prefix, rld[r].secondary_in_reload);
7050 prefix = ", ";
7053 if (rld[r].secondary_out_reload != -1)
7054 fprintf (f, "%ssecondary_out_reload = %d\n",
7055 prefix, rld[r].secondary_out_reload);
7057 prefix = "\n\t";
7058 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7060 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7061 insn_data[rld[r].secondary_in_icode].name);
7062 prefix = ", ";
7065 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7066 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7067 insn_data[rld[r].secondary_out_icode].name);
7069 fprintf (f, "\n");
7073 void
7074 debug_reload (void)
7076 debug_reload_to_stream (stderr);