1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
36 #include "coretypes.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
43 #include "insn-config.h"
52 #include "cfglayout.h"
55 /* cleanup_cfg maintains following flags for each basic block. */
59 /* Set if BB is the forwarder block to avoid too many
60 forwarder_block_p calls. */
61 BB_FORWARDER_BLOCK
= 1,
62 BB_NONTHREADABLE_BLOCK
= 2
65 #define BB_FLAGS(BB) (enum bb_flags) (BB)->aux
66 #define BB_SET_FLAG(BB, FLAG) \
67 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux | (FLAG))
68 #define BB_CLEAR_FLAG(BB, FLAG) \
69 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux & ~(FLAG))
71 #define FORWARDER_BLOCK_P(BB) (BB_FLAGS (BB) & BB_FORWARDER_BLOCK)
73 /* Set to true when we are running first pass of try_optimize_cfg loop. */
74 static bool first_pass
;
75 static bool try_crossjump_to_edge (int, edge
, edge
);
76 static bool try_crossjump_bb (int, basic_block
);
77 static bool outgoing_edges_match (int, basic_block
, basic_block
);
78 static int flow_find_cross_jump (int, basic_block
, basic_block
, rtx
*, rtx
*);
79 static bool insns_match_p (int, rtx
, rtx
);
81 static void merge_blocks_move_predecessor_nojumps (basic_block
, basic_block
);
82 static void merge_blocks_move_successor_nojumps (basic_block
, basic_block
);
83 static bool try_optimize_cfg (int);
84 static bool try_simplify_condjump (basic_block
);
85 static bool try_forward_edges (int, basic_block
);
86 static edge
thread_jump (int, edge
, basic_block
);
87 static bool mark_effect (rtx
, bitmap
);
88 static void notice_new_block (basic_block
);
89 static void update_forwarder_flag (basic_block
);
90 static int mentions_nonequal_regs (rtx
*, void *);
91 static void merge_memattrs (rtx
, rtx
);
93 /* Set flags for newly created block. */
96 notice_new_block (basic_block bb
)
101 if (forwarder_block_p (bb
))
102 BB_SET_FLAG (bb
, BB_FORWARDER_BLOCK
);
105 /* Recompute forwarder flag after block has been modified. */
108 update_forwarder_flag (basic_block bb
)
110 if (forwarder_block_p (bb
))
111 BB_SET_FLAG (bb
, BB_FORWARDER_BLOCK
);
113 BB_CLEAR_FLAG (bb
, BB_FORWARDER_BLOCK
);
116 /* Simplify a conditional jump around an unconditional jump.
117 Return true if something changed. */
120 try_simplify_condjump (basic_block cbranch_block
)
122 basic_block jump_block
, jump_dest_block
, cbranch_dest_block
;
123 edge cbranch_jump_edge
, cbranch_fallthru_edge
;
126 /* Verify that there are exactly two successors. */
127 if (!cbranch_block
->succ
128 || !cbranch_block
->succ
->succ_next
129 || cbranch_block
->succ
->succ_next
->succ_next
)
132 /* Verify that we've got a normal conditional branch at the end
134 cbranch_insn
= BB_END (cbranch_block
);
135 if (!any_condjump_p (cbranch_insn
))
138 cbranch_fallthru_edge
= FALLTHRU_EDGE (cbranch_block
);
139 cbranch_jump_edge
= BRANCH_EDGE (cbranch_block
);
141 /* The next block must not have multiple predecessors, must not
142 be the last block in the function, and must contain just the
143 unconditional jump. */
144 jump_block
= cbranch_fallthru_edge
->dest
;
145 if (jump_block
->pred
->pred_next
146 || jump_block
->next_bb
== EXIT_BLOCK_PTR
147 || !FORWARDER_BLOCK_P (jump_block
))
149 jump_dest_block
= jump_block
->succ
->dest
;
151 /* If we are partitioning hot/cold basic blocks, we don't want to
152 mess up unconditional or indirect jumps that cross between hot
153 and cold sections. */
155 if (flag_reorder_blocks_and_partition
156 && (jump_block
->partition
!= jump_dest_block
->partition
157 || cbranch_jump_edge
->crossing_edge
))
160 /* The conditional branch must target the block after the
161 unconditional branch. */
162 cbranch_dest_block
= cbranch_jump_edge
->dest
;
164 if (cbranch_dest_block
== EXIT_BLOCK_PTR
165 || !can_fallthru (jump_block
, cbranch_dest_block
))
168 /* Invert the conditional branch. */
169 if (!invert_jump (cbranch_insn
, block_label (jump_dest_block
), 0))
173 fprintf (dump_file
, "Simplifying condjump %i around jump %i\n",
174 INSN_UID (cbranch_insn
), INSN_UID (BB_END (jump_block
)));
176 /* Success. Update the CFG to match. Note that after this point
177 the edge variable names appear backwards; the redirection is done
178 this way to preserve edge profile data. */
179 cbranch_jump_edge
= redirect_edge_succ_nodup (cbranch_jump_edge
,
181 cbranch_fallthru_edge
= redirect_edge_succ_nodup (cbranch_fallthru_edge
,
183 cbranch_jump_edge
->flags
|= EDGE_FALLTHRU
;
184 cbranch_fallthru_edge
->flags
&= ~EDGE_FALLTHRU
;
185 update_br_prob_note (cbranch_block
);
187 /* Delete the block with the unconditional jump, and clean up the mess. */
188 delete_basic_block (jump_block
);
189 tidy_fallthru_edge (cbranch_jump_edge
);
190 update_forwarder_flag (cbranch_block
);
195 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
196 on register. Used by jump threading. */
199 mark_effect (rtx exp
, regset nonequal
)
203 switch (GET_CODE (exp
))
205 /* In case we do clobber the register, mark it as equal, as we know the
206 value is dead so it don't have to match. */
208 if (REG_P (XEXP (exp
, 0)))
210 dest
= XEXP (exp
, 0);
211 regno
= REGNO (dest
);
212 CLEAR_REGNO_REG_SET (nonequal
, regno
);
213 if (regno
< FIRST_PSEUDO_REGISTER
)
215 int n
= hard_regno_nregs
[regno
][GET_MODE (dest
)];
217 CLEAR_REGNO_REG_SET (nonequal
, regno
+ n
);
223 if (rtx_equal_for_cselib_p (SET_DEST (exp
), SET_SRC (exp
)))
225 dest
= SET_DEST (exp
);
230 regno
= REGNO (dest
);
231 SET_REGNO_REG_SET (nonequal
, regno
);
232 if (regno
< FIRST_PSEUDO_REGISTER
)
234 int n
= hard_regno_nregs
[regno
][GET_MODE (dest
)];
236 SET_REGNO_REG_SET (nonequal
, regno
+ n
);
245 /* Return nonzero if X is a register set in regset DATA.
246 Called via for_each_rtx. */
248 mentions_nonequal_regs (rtx
*x
, void *data
)
250 regset nonequal
= (regset
) data
;
256 if (REGNO_REG_SET_P (nonequal
, regno
))
258 if (regno
< FIRST_PSEUDO_REGISTER
)
260 int n
= hard_regno_nregs
[regno
][GET_MODE (*x
)];
262 if (REGNO_REG_SET_P (nonequal
, regno
+ n
))
268 /* Attempt to prove that the basic block B will have no side effects and
269 always continues in the same edge if reached via E. Return the edge
270 if exist, NULL otherwise. */
273 thread_jump (int mode
, edge e
, basic_block b
)
275 rtx set1
, set2
, cond1
, cond2
, insn
;
276 enum rtx_code code1
, code2
, reversed_code2
;
277 bool reverse1
= false;
282 if (BB_FLAGS (b
) & BB_NONTHREADABLE_BLOCK
)
285 /* At the moment, we do handle only conditional jumps, but later we may
286 want to extend this code to tablejumps and others. */
287 if (!e
->src
->succ
->succ_next
|| e
->src
->succ
->succ_next
->succ_next
)
289 if (!b
->succ
|| !b
->succ
->succ_next
|| b
->succ
->succ_next
->succ_next
)
291 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
295 /* Second branch must end with onlyjump, as we will eliminate the jump. */
296 if (!any_condjump_p (BB_END (e
->src
)))
299 if (!any_condjump_p (BB_END (b
)) || !onlyjump_p (BB_END (b
)))
301 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
305 set1
= pc_set (BB_END (e
->src
));
306 set2
= pc_set (BB_END (b
));
307 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
308 != (XEXP (SET_SRC (set1
), 1) == pc_rtx
))
311 cond1
= XEXP (SET_SRC (set1
), 0);
312 cond2
= XEXP (SET_SRC (set2
), 0);
314 code1
= reversed_comparison_code (cond1
, BB_END (e
->src
));
316 code1
= GET_CODE (cond1
);
318 code2
= GET_CODE (cond2
);
319 reversed_code2
= reversed_comparison_code (cond2
, BB_END (b
));
321 if (!comparison_dominates_p (code1
, code2
)
322 && !comparison_dominates_p (code1
, reversed_code2
))
325 /* Ensure that the comparison operators are equivalent.
326 ??? This is far too pessimistic. We should allow swapped operands,
327 different CCmodes, or for example comparisons for interval, that
328 dominate even when operands are not equivalent. */
329 if (!rtx_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
330 || !rtx_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
333 /* Short circuit cases where block B contains some side effects, as we can't
335 for (insn
= NEXT_INSN (BB_HEAD (b
)); insn
!= NEXT_INSN (BB_END (b
));
336 insn
= NEXT_INSN (insn
))
337 if (INSN_P (insn
) && side_effects_p (PATTERN (insn
)))
339 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
345 /* First process all values computed in the source basic block. */
346 for (insn
= NEXT_INSN (BB_HEAD (e
->src
)); insn
!= NEXT_INSN (BB_END (e
->src
));
347 insn
= NEXT_INSN (insn
))
349 cselib_process_insn (insn
);
351 nonequal
= BITMAP_XMALLOC();
352 CLEAR_REG_SET (nonequal
);
354 /* Now assume that we've continued by the edge E to B and continue
355 processing as if it were same basic block.
356 Our goal is to prove that whole block is an NOOP. */
358 for (insn
= NEXT_INSN (BB_HEAD (b
)); insn
!= NEXT_INSN (BB_END (b
)) && !failed
;
359 insn
= NEXT_INSN (insn
))
363 rtx pat
= PATTERN (insn
);
365 if (GET_CODE (pat
) == PARALLEL
)
367 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
368 failed
|= mark_effect (XVECEXP (pat
, 0, i
), nonequal
);
371 failed
|= mark_effect (pat
, nonequal
);
374 cselib_process_insn (insn
);
377 /* Later we should clear nonequal of dead registers. So far we don't
378 have life information in cfg_cleanup. */
381 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
385 /* cond2 must not mention any register that is not equal to the
387 if (for_each_rtx (&cond2
, mentions_nonequal_regs
, nonequal
))
390 /* In case liveness information is available, we need to prove equivalence
391 only of the live values. */
392 if (mode
& CLEANUP_UPDATE_LIFE
)
393 AND_REG_SET (nonequal
, b
->global_live_at_end
);
395 EXECUTE_IF_SET_IN_REG_SET (nonequal
, 0, i
, goto failed_exit
;);
397 BITMAP_XFREE (nonequal
);
399 if ((comparison_dominates_p (code1
, code2
) != 0)
400 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
401 return BRANCH_EDGE (b
);
403 return FALLTHRU_EDGE (b
);
406 BITMAP_XFREE (nonequal
);
411 /* Attempt to forward edges leaving basic block B.
412 Return true if successful. */
415 try_forward_edges (int mode
, basic_block b
)
417 bool changed
= false;
418 edge e
, next
, *threaded_edges
= NULL
;
420 /* If we are partitioning hot/cold basic blocks, we don't want to
421 mess up unconditional or indirect jumps that cross between hot
422 and cold sections. */
424 if (flag_reorder_blocks_and_partition
425 && find_reg_note (BB_END (b
), REG_CROSSING_JUMP
, NULL_RTX
))
428 for (e
= b
->succ
; e
; e
= next
)
430 basic_block target
, first
;
432 bool threaded
= false;
433 int nthreaded_edges
= 0;
434 bool may_thread
= first_pass
| (b
->flags
& BB_DIRTY
);
438 /* Skip complex edges because we don't know how to update them.
440 Still handle fallthru edges, as we can succeed to forward fallthru
441 edge to the same place as the branch edge of conditional branch
442 and turn conditional branch to an unconditional branch. */
443 if (e
->flags
& EDGE_COMPLEX
)
446 target
= first
= e
->dest
;
449 while (counter
< n_basic_blocks
)
451 basic_block new_target
= NULL
;
452 bool new_target_threaded
= false;
453 may_thread
|= target
->flags
& BB_DIRTY
;
455 if (FORWARDER_BLOCK_P (target
)
456 && target
->succ
->dest
!= EXIT_BLOCK_PTR
)
458 /* Bypass trivial infinite loops. */
459 if (target
== target
->succ
->dest
)
460 counter
= n_basic_blocks
;
461 new_target
= target
->succ
->dest
;
464 /* Allow to thread only over one edge at time to simplify updating
466 else if ((mode
& CLEANUP_THREADING
) && may_thread
)
468 edge t
= thread_jump (mode
, e
, target
);
472 threaded_edges
= xmalloc (sizeof (*threaded_edges
)
478 /* Detect an infinite loop across blocks not
479 including the start block. */
480 for (i
= 0; i
< nthreaded_edges
; ++i
)
481 if (threaded_edges
[i
] == t
)
483 if (i
< nthreaded_edges
)
485 counter
= n_basic_blocks
;
490 /* Detect an infinite loop across the start block. */
494 if (nthreaded_edges
>= n_basic_blocks
)
496 threaded_edges
[nthreaded_edges
++] = t
;
498 new_target
= t
->dest
;
499 new_target_threaded
= true;
506 /* Avoid killing of loop pre-headers, as it is the place loop
507 optimizer wants to hoist code to.
509 For fallthru forwarders, the LOOP_BEG note must appear between
510 the header of block and CODE_LABEL of the loop, for non forwarders
511 it must appear before the JUMP_INSN. */
512 if ((mode
& CLEANUP_PRE_LOOP
) && optimize
)
514 rtx insn
= (target
->succ
->flags
& EDGE_FALLTHRU
515 ? BB_HEAD (target
) : prev_nonnote_insn (BB_END (target
)));
518 insn
= NEXT_INSN (insn
);
520 for (; insn
&& !LABEL_P (insn
) && !INSN_P (insn
);
521 insn
= NEXT_INSN (insn
))
523 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
529 /* Do not clean up branches to just past the end of a loop
530 at this time; it can mess up the loop optimizer's
531 recognition of some patterns. */
533 insn
= PREV_INSN (BB_HEAD (target
));
534 if (insn
&& NOTE_P (insn
)
535 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
)
541 threaded
|= new_target_threaded
;
544 if (counter
>= n_basic_blocks
)
547 fprintf (dump_file
, "Infinite loop in BB %i.\n",
550 else if (target
== first
)
551 ; /* We didn't do anything. */
554 /* Save the values now, as the edge may get removed. */
555 gcov_type edge_count
= e
->count
;
556 int edge_probability
= e
->probability
;
560 /* Don't force if target is exit block. */
561 if (threaded
&& target
!= EXIT_BLOCK_PTR
)
563 notice_new_block (redirect_edge_and_branch_force (e
, target
));
565 fprintf (dump_file
, "Conditionals threaded.\n");
567 else if (!redirect_edge_and_branch (e
, target
))
571 "Forwarding edge %i->%i to %i failed.\n",
572 b
->index
, e
->dest
->index
, target
->index
);
576 /* We successfully forwarded the edge. Now update profile
577 data: for each edge we traversed in the chain, remove
578 the original edge's execution count. */
579 edge_frequency
= ((edge_probability
* b
->frequency
580 + REG_BR_PROB_BASE
/ 2)
583 if (!FORWARDER_BLOCK_P (b
) && forwarder_block_p (b
))
584 BB_SET_FLAG (b
, BB_FORWARDER_BLOCK
);
590 first
->count
-= edge_count
;
591 if (first
->count
< 0)
593 first
->frequency
-= edge_frequency
;
594 if (first
->frequency
< 0)
595 first
->frequency
= 0;
596 if (first
->succ
->succ_next
)
600 if (n
>= nthreaded_edges
)
602 t
= threaded_edges
[n
++];
605 if (first
->frequency
)
606 prob
= edge_frequency
* REG_BR_PROB_BASE
/ first
->frequency
;
609 if (prob
> t
->probability
)
610 prob
= t
->probability
;
611 t
->probability
-= prob
;
612 prob
= REG_BR_PROB_BASE
- prob
;
615 first
->succ
->probability
= REG_BR_PROB_BASE
;
616 first
->succ
->succ_next
->probability
= 0;
619 for (e
= first
->succ
; e
; e
= e
->succ_next
)
620 e
->probability
= ((e
->probability
* REG_BR_PROB_BASE
)
622 update_br_prob_note (first
);
626 /* It is possible that as the result of
627 threading we've removed edge as it is
628 threaded to the fallthru edge. Avoid
629 getting out of sync. */
630 if (n
< nthreaded_edges
631 && first
== threaded_edges
[n
]->src
)
636 t
->count
-= edge_count
;
641 while (first
!= target
);
648 free (threaded_edges
);
653 /* Blocks A and B are to be merged into a single block. A has no incoming
654 fallthru edge, so it can be moved before B without adding or modifying
655 any jumps (aside from the jump from A to B). */
658 merge_blocks_move_predecessor_nojumps (basic_block a
, basic_block b
)
662 /* If we are partitioning hot/cold basic blocks, we don't want to
663 mess up unconditional or indirect jumps that cross between hot
664 and cold sections. */
666 if (flag_reorder_blocks_and_partition
667 && (a
->partition
!= b
->partition
668 || find_reg_note (BB_END (a
), REG_CROSSING_JUMP
, NULL_RTX
)))
671 barrier
= next_nonnote_insn (BB_END (a
));
672 if (!BARRIER_P (barrier
))
674 delete_insn (barrier
);
676 /* Move block and loop notes out of the chain so that we do not
679 ??? A better solution would be to squeeze out all the non-nested notes
680 and adjust the block trees appropriately. Even better would be to have
681 a tighter connection between block trees and rtl so that this is not
683 if (squeeze_notes (&BB_HEAD (a
), &BB_END (a
)))
686 /* Scramble the insn chain. */
687 if (BB_END (a
) != PREV_INSN (BB_HEAD (b
)))
688 reorder_insns_nobb (BB_HEAD (a
), BB_END (a
), PREV_INSN (BB_HEAD (b
)));
689 a
->flags
|= BB_DIRTY
;
692 fprintf (dump_file
, "Moved block %d before %d and merged.\n",
695 /* Swap the records for the two blocks around. */
698 link_block (a
, b
->prev_bb
);
700 /* Now blocks A and B are contiguous. Merge them. */
704 /* Blocks A and B are to be merged into a single block. B has no outgoing
705 fallthru edge, so it can be moved after A without adding or modifying
706 any jumps (aside from the jump from A to B). */
709 merge_blocks_move_successor_nojumps (basic_block a
, basic_block b
)
711 rtx barrier
, real_b_end
;
714 /* If we are partitioning hot/cold basic blocks, we don't want to
715 mess up unconditional or indirect jumps that cross between hot
716 and cold sections. */
718 if (flag_reorder_blocks_and_partition
719 && (find_reg_note (BB_END (a
), REG_CROSSING_JUMP
, NULL_RTX
)
720 || a
->partition
!= b
->partition
))
723 real_b_end
= BB_END (b
);
725 /* If there is a jump table following block B temporarily add the jump table
726 to block B so that it will also be moved to the correct location. */
727 if (tablejump_p (BB_END (b
), &label
, &table
)
728 && prev_active_insn (label
) == BB_END (b
))
733 /* There had better have been a barrier there. Delete it. */
734 barrier
= NEXT_INSN (BB_END (b
));
735 if (barrier
&& BARRIER_P (barrier
))
736 delete_insn (barrier
);
738 /* Move block and loop notes out of the chain so that we do not
741 ??? A better solution would be to squeeze out all the non-nested notes
742 and adjust the block trees appropriately. Even better would be to have
743 a tighter connection between block trees and rtl so that this is not
745 if (squeeze_notes (&BB_HEAD (b
), &BB_END (b
)))
748 /* Scramble the insn chain. */
749 reorder_insns_nobb (BB_HEAD (b
), BB_END (b
), BB_END (a
));
751 /* Restore the real end of b. */
752 BB_END (b
) = real_b_end
;
755 fprintf (dump_file
, "Moved block %d after %d and merged.\n",
758 /* Now blocks A and B are contiguous. Merge them. */
762 /* Attempt to merge basic blocks that are potentially non-adjacent.
763 Return NULL iff the attempt failed, otherwise return basic block
764 where cleanup_cfg should continue. Because the merging commonly
765 moves basic block away or introduces another optimization
766 possibility, return basic block just before B so cleanup_cfg don't
769 It may be good idea to return basic block before C in the case
770 C has been moved after B and originally appeared earlier in the
771 insn sequence, but we have no information available about the
772 relative ordering of these two. Hopefully it is not too common. */
775 merge_blocks_move (edge e
, basic_block b
, basic_block c
, int mode
)
779 /* If we are partitioning hot/cold basic blocks, we don't want to
780 mess up unconditional or indirect jumps that cross between hot
781 and cold sections. */
783 if (flag_reorder_blocks_and_partition
784 && (find_reg_note (BB_END (b
), REG_CROSSING_JUMP
, NULL_RTX
)
785 || find_reg_note (BB_END (c
), REG_CROSSING_JUMP
, NULL_RTX
)
786 || b
->partition
!= c
->partition
))
791 /* If B has a fallthru edge to C, no need to move anything. */
792 if (e
->flags
& EDGE_FALLTHRU
)
794 int b_index
= b
->index
, c_index
= c
->index
;
796 update_forwarder_flag (b
);
799 fprintf (dump_file
, "Merged %d and %d without moving.\n",
802 return b
->prev_bb
== ENTRY_BLOCK_PTR
? b
: b
->prev_bb
;
805 /* Otherwise we will need to move code around. Do that only if expensive
806 transformations are allowed. */
807 else if (mode
& CLEANUP_EXPENSIVE
)
809 edge tmp_edge
, b_fallthru_edge
;
810 bool c_has_outgoing_fallthru
;
811 bool b_has_incoming_fallthru
;
813 /* Avoid overactive code motion, as the forwarder blocks should be
814 eliminated by edge redirection instead. One exception might have
815 been if B is a forwarder block and C has no fallthru edge, but
816 that should be cleaned up by bb-reorder instead. */
817 if (FORWARDER_BLOCK_P (b
) || FORWARDER_BLOCK_P (c
))
820 /* We must make sure to not munge nesting of lexical blocks,
821 and loop notes. This is done by squeezing out all the notes
822 and leaving them there to lie. Not ideal, but functional. */
824 for (tmp_edge
= c
->succ
; tmp_edge
; tmp_edge
= tmp_edge
->succ_next
)
825 if (tmp_edge
->flags
& EDGE_FALLTHRU
)
828 c_has_outgoing_fallthru
= (tmp_edge
!= NULL
);
830 for (tmp_edge
= b
->pred
; tmp_edge
; tmp_edge
= tmp_edge
->pred_next
)
831 if (tmp_edge
->flags
& EDGE_FALLTHRU
)
834 b_has_incoming_fallthru
= (tmp_edge
!= NULL
);
835 b_fallthru_edge
= tmp_edge
;
838 next
= next
->prev_bb
;
840 /* Otherwise, we're going to try to move C after B. If C does
841 not have an outgoing fallthru, then it can be moved
842 immediately after B without introducing or modifying jumps. */
843 if (! c_has_outgoing_fallthru
)
845 merge_blocks_move_successor_nojumps (b
, c
);
846 return next
== ENTRY_BLOCK_PTR
? next
->next_bb
: next
;
849 /* If B does not have an incoming fallthru, then it can be moved
850 immediately before C without introducing or modifying jumps.
851 C cannot be the first block, so we do not have to worry about
852 accessing a non-existent block. */
854 if (b_has_incoming_fallthru
)
858 if (b_fallthru_edge
->src
== ENTRY_BLOCK_PTR
)
860 bb
= force_nonfallthru (b_fallthru_edge
);
862 notice_new_block (bb
);
865 merge_blocks_move_predecessor_nojumps (b
, c
);
866 return next
== ENTRY_BLOCK_PTR
? next
->next_bb
: next
;
873 /* Removes the memory attributes of MEM expression
874 if they are not equal. */
877 merge_memattrs (rtx x
, rtx y
)
886 if (x
== 0 || y
== 0)
891 if (code
!= GET_CODE (y
))
894 if (GET_MODE (x
) != GET_MODE (y
))
897 if (code
== MEM
&& MEM_ATTRS (x
) != MEM_ATTRS (y
))
901 else if (! MEM_ATTRS (y
))
905 if (MEM_ALIAS_SET (x
) != MEM_ALIAS_SET (y
))
907 set_mem_alias_set (x
, 0);
908 set_mem_alias_set (y
, 0);
911 if (! mem_expr_equal_p (MEM_EXPR (x
), MEM_EXPR (y
)))
915 set_mem_offset (x
, 0);
916 set_mem_offset (y
, 0);
918 else if (MEM_OFFSET (x
) != MEM_OFFSET (y
))
920 set_mem_offset (x
, 0);
921 set_mem_offset (y
, 0);
924 set_mem_size (x
, MAX (MEM_SIZE (x
), MEM_SIZE (y
)));
925 set_mem_size (y
, MEM_SIZE (x
));
927 set_mem_align (x
, MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)));
928 set_mem_align (y
, MEM_ALIGN (x
));
932 fmt
= GET_RTX_FORMAT (code
);
933 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
938 /* Two vectors must have the same length. */
939 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
942 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
943 merge_memattrs (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
));
948 merge_memattrs (XEXP (x
, i
), XEXP (y
, i
));
955 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
958 insns_match_p (int mode ATTRIBUTE_UNUSED
, rtx i1
, rtx i2
)
962 /* Verify that I1 and I2 are equivalent. */
963 if (GET_CODE (i1
) != GET_CODE (i2
))
969 if (GET_CODE (p1
) != GET_CODE (p2
))
972 /* If this is a CALL_INSN, compare register usage information.
973 If we don't check this on stack register machines, the two
974 CALL_INSNs might be merged leaving reg-stack.c with mismatching
975 numbers of stack registers in the same basic block.
976 If we don't check this on machines with delay slots, a delay slot may
977 be filled that clobbers a parameter expected by the subroutine.
979 ??? We take the simple route for now and assume that if they're
980 equal, they were constructed identically. */
983 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1
),
984 CALL_INSN_FUNCTION_USAGE (i2
))
985 || SIBLING_CALL_P (i1
) != SIBLING_CALL_P (i2
)))
989 /* If cross_jump_death_matters is not 0, the insn's mode
990 indicates whether or not the insn contains any stack-like
993 if ((mode
& CLEANUP_POST_REGSTACK
) && stack_regs_mentioned (i1
))
995 /* If register stack conversion has already been done, then
996 death notes must also be compared before it is certain that
997 the two instruction streams match. */
1000 HARD_REG_SET i1_regset
, i2_regset
;
1002 CLEAR_HARD_REG_SET (i1_regset
);
1003 CLEAR_HARD_REG_SET (i2_regset
);
1005 for (note
= REG_NOTES (i1
); note
; note
= XEXP (note
, 1))
1006 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1007 SET_HARD_REG_BIT (i1_regset
, REGNO (XEXP (note
, 0)));
1009 for (note
= REG_NOTES (i2
); note
; note
= XEXP (note
, 1))
1010 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1011 SET_HARD_REG_BIT (i2_regset
, REGNO (XEXP (note
, 0)));
1013 GO_IF_HARD_REG_EQUAL (i1_regset
, i2_regset
, done
);
1022 if (reload_completed
1023 ? rtx_renumbered_equal_p (p1
, p2
) : rtx_equal_p (p1
, p2
))
1026 /* Do not do EQUIV substitution after reload. First, we're undoing the
1027 work of reload_cse. Second, we may be undoing the work of the post-
1028 reload splitting pass. */
1029 /* ??? Possibly add a new phase switch variable that can be used by
1030 targets to disallow the troublesome insns after splitting. */
1031 if (!reload_completed
)
1033 /* The following code helps take care of G++ cleanups. */
1034 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1035 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1037 if (equiv1
&& equiv2
1038 /* If the equivalences are not to a constant, they may
1039 reference pseudos that no longer exist, so we can't
1041 && (! reload_completed
1042 || (CONSTANT_P (XEXP (equiv1
, 0))
1043 && rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))))
1045 rtx s1
= single_set (i1
);
1046 rtx s2
= single_set (i2
);
1047 if (s1
!= 0 && s2
!= 0
1048 && rtx_renumbered_equal_p (SET_DEST (s1
), SET_DEST (s2
)))
1050 validate_change (i1
, &SET_SRC (s1
), XEXP (equiv1
, 0), 1);
1051 validate_change (i2
, &SET_SRC (s2
), XEXP (equiv2
, 0), 1);
1052 if (! rtx_renumbered_equal_p (p1
, p2
))
1054 else if (apply_change_group ())
1063 /* Look through the insns at the end of BB1 and BB2 and find the longest
1064 sequence that are equivalent. Store the first insns for that sequence
1065 in *F1 and *F2 and return the sequence length.
1067 To simplify callers of this function, if the blocks match exactly,
1068 store the head of the blocks in *F1 and *F2. */
1071 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED
, basic_block bb1
,
1072 basic_block bb2
, rtx
*f1
, rtx
*f2
)
1074 rtx i1
, i2
, last1
, last2
, afterlast1
, afterlast2
;
1077 /* Skip simple jumps at the end of the blocks. Complex jumps still
1078 need to be compared for equivalence, which we'll do below. */
1081 last1
= afterlast1
= last2
= afterlast2
= NULL_RTX
;
1083 || (returnjump_p (i1
) && !side_effects_p (PATTERN (i1
))))
1086 i1
= PREV_INSN (i1
);
1091 || (returnjump_p (i2
) && !side_effects_p (PATTERN (i2
))))
1094 /* Count everything except for unconditional jump as insn. */
1095 if (!simplejump_p (i2
) && !returnjump_p (i2
) && last1
)
1097 i2
= PREV_INSN (i2
);
1103 while (!INSN_P (i1
) && i1
!= BB_HEAD (bb1
))
1104 i1
= PREV_INSN (i1
);
1106 while (!INSN_P (i2
) && i2
!= BB_HEAD (bb2
))
1107 i2
= PREV_INSN (i2
);
1109 if (i1
== BB_HEAD (bb1
) || i2
== BB_HEAD (bb2
))
1112 if (!insns_match_p (mode
, i1
, i2
))
1115 merge_memattrs (i1
, i2
);
1117 /* Don't begin a cross-jump with a NOTE insn. */
1120 /* If the merged insns have different REG_EQUAL notes, then
1122 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1123 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1125 if (equiv1
&& !equiv2
)
1126 remove_note (i1
, equiv1
);
1127 else if (!equiv1
&& equiv2
)
1128 remove_note (i2
, equiv2
);
1129 else if (equiv1
&& equiv2
1130 && !rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))
1132 remove_note (i1
, equiv1
);
1133 remove_note (i2
, equiv2
);
1136 afterlast1
= last1
, afterlast2
= last2
;
1137 last1
= i1
, last2
= i2
;
1141 i1
= PREV_INSN (i1
);
1142 i2
= PREV_INSN (i2
);
1146 /* Don't allow the insn after a compare to be shared by
1147 cross-jumping unless the compare is also shared. */
1148 if (ninsns
&& reg_mentioned_p (cc0_rtx
, last1
) && ! sets_cc0_p (last1
))
1149 last1
= afterlast1
, last2
= afterlast2
, ninsns
--;
1152 /* Include preceding notes and labels in the cross-jump. One,
1153 this may bring us to the head of the blocks as requested above.
1154 Two, it keeps line number notes as matched as may be. */
1157 while (last1
!= BB_HEAD (bb1
) && !INSN_P (PREV_INSN (last1
)))
1158 last1
= PREV_INSN (last1
);
1160 if (last1
!= BB_HEAD (bb1
) && LABEL_P (PREV_INSN (last1
)))
1161 last1
= PREV_INSN (last1
);
1163 while (last2
!= BB_HEAD (bb2
) && !INSN_P (PREV_INSN (last2
)))
1164 last2
= PREV_INSN (last2
);
1166 if (last2
!= BB_HEAD (bb2
) && LABEL_P (PREV_INSN (last2
)))
1167 last2
= PREV_INSN (last2
);
1176 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1177 the branch instruction. This means that if we commonize the control
1178 flow before end of the basic block, the semantic remains unchanged.
1180 We may assume that there exists one edge with a common destination. */
1183 outgoing_edges_match (int mode
, basic_block bb1
, basic_block bb2
)
1185 int nehedges1
= 0, nehedges2
= 0;
1186 edge fallthru1
= 0, fallthru2
= 0;
1189 /* If BB1 has only one successor, we may be looking at either an
1190 unconditional jump, or a fake edge to exit. */
1191 if (bb1
->succ
&& !bb1
->succ
->succ_next
1192 && (bb1
->succ
->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1193 && (!JUMP_P (BB_END (bb1
)) || simplejump_p (BB_END (bb1
))))
1194 return (bb2
->succ
&& !bb2
->succ
->succ_next
1195 && (bb2
->succ
->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1196 && (!JUMP_P (BB_END (bb2
)) || simplejump_p (BB_END (bb2
))));
1198 /* Match conditional jumps - this may get tricky when fallthru and branch
1199 edges are crossed. */
1201 && bb1
->succ
->succ_next
1202 && !bb1
->succ
->succ_next
->succ_next
1203 && any_condjump_p (BB_END (bb1
))
1204 && onlyjump_p (BB_END (bb1
)))
1206 edge b1
, f1
, b2
, f2
;
1207 bool reverse
, match
;
1208 rtx set1
, set2
, cond1
, cond2
;
1209 enum rtx_code code1
, code2
;
1212 || !bb2
->succ
->succ_next
1213 || bb2
->succ
->succ_next
->succ_next
1214 || !any_condjump_p (BB_END (bb2
))
1215 || !onlyjump_p (BB_END (bb2
)))
1218 b1
= BRANCH_EDGE (bb1
);
1219 b2
= BRANCH_EDGE (bb2
);
1220 f1
= FALLTHRU_EDGE (bb1
);
1221 f2
= FALLTHRU_EDGE (bb2
);
1223 /* Get around possible forwarders on fallthru edges. Other cases
1224 should be optimized out already. */
1225 if (FORWARDER_BLOCK_P (f1
->dest
))
1226 f1
= f1
->dest
->succ
;
1228 if (FORWARDER_BLOCK_P (f2
->dest
))
1229 f2
= f2
->dest
->succ
;
1231 /* To simplify use of this function, return false if there are
1232 unneeded forwarder blocks. These will get eliminated later
1233 during cleanup_cfg. */
1234 if (FORWARDER_BLOCK_P (f1
->dest
)
1235 || FORWARDER_BLOCK_P (f2
->dest
)
1236 || FORWARDER_BLOCK_P (b1
->dest
)
1237 || FORWARDER_BLOCK_P (b2
->dest
))
1240 if (f1
->dest
== f2
->dest
&& b1
->dest
== b2
->dest
)
1242 else if (f1
->dest
== b2
->dest
&& b1
->dest
== f2
->dest
)
1247 set1
= pc_set (BB_END (bb1
));
1248 set2
= pc_set (BB_END (bb2
));
1249 if ((XEXP (SET_SRC (set1
), 1) == pc_rtx
)
1250 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
1253 cond1
= XEXP (SET_SRC (set1
), 0);
1254 cond2
= XEXP (SET_SRC (set2
), 0);
1255 code1
= GET_CODE (cond1
);
1257 code2
= reversed_comparison_code (cond2
, BB_END (bb2
));
1259 code2
= GET_CODE (cond2
);
1261 if (code2
== UNKNOWN
)
1264 /* Verify codes and operands match. */
1265 match
= ((code1
== code2
1266 && rtx_renumbered_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
1267 && rtx_renumbered_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
1268 || (code1
== swap_condition (code2
)
1269 && rtx_renumbered_equal_p (XEXP (cond1
, 1),
1271 && rtx_renumbered_equal_p (XEXP (cond1
, 0),
1274 /* If we return true, we will join the blocks. Which means that
1275 we will only have one branch prediction bit to work with. Thus
1276 we require the existing branches to have probabilities that are
1280 && maybe_hot_bb_p (bb1
)
1281 && maybe_hot_bb_p (bb2
))
1285 if (b1
->dest
== b2
->dest
)
1286 prob2
= b2
->probability
;
1288 /* Do not use f2 probability as f2 may be forwarded. */
1289 prob2
= REG_BR_PROB_BASE
- b2
->probability
;
1291 /* Fail if the difference in probabilities is greater than 50%.
1292 This rules out two well-predicted branches with opposite
1294 if (abs (b1
->probability
- prob2
) > REG_BR_PROB_BASE
/ 2)
1298 "Outcomes of branch in bb %i and %i differs to much (%i %i)\n",
1299 bb1
->index
, bb2
->index
, b1
->probability
, prob2
);
1305 if (dump_file
&& match
)
1306 fprintf (dump_file
, "Conditionals in bb %i and %i match.\n",
1307 bb1
->index
, bb2
->index
);
1312 /* Generic case - we are seeing a computed jump, table jump or trapping
1315 #ifndef CASE_DROPS_THROUGH
1316 /* Check whether there are tablejumps in the end of BB1 and BB2.
1317 Return true if they are identical. */
1322 if (tablejump_p (BB_END (bb1
), &label1
, &table1
)
1323 && tablejump_p (BB_END (bb2
), &label2
, &table2
)
1324 && GET_CODE (PATTERN (table1
)) == GET_CODE (PATTERN (table2
)))
1326 /* The labels should never be the same rtx. If they really are same
1327 the jump tables are same too. So disable crossjumping of blocks BB1
1328 and BB2 because when deleting the common insns in the end of BB1
1329 by delete_basic_block () the jump table would be deleted too. */
1330 /* If LABEL2 is referenced in BB1->END do not do anything
1331 because we would loose information when replacing
1332 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1333 if (label1
!= label2
&& !rtx_referenced_p (label2
, BB_END (bb1
)))
1335 /* Set IDENTICAL to true when the tables are identical. */
1336 bool identical
= false;
1339 p1
= PATTERN (table1
);
1340 p2
= PATTERN (table2
);
1341 if (GET_CODE (p1
) == ADDR_VEC
&& rtx_equal_p (p1
, p2
))
1345 else if (GET_CODE (p1
) == ADDR_DIFF_VEC
1346 && (XVECLEN (p1
, 1) == XVECLEN (p2
, 1))
1347 && rtx_equal_p (XEXP (p1
, 2), XEXP (p2
, 2))
1348 && rtx_equal_p (XEXP (p1
, 3), XEXP (p2
, 3)))
1353 for (i
= XVECLEN (p1
, 1) - 1; i
>= 0 && identical
; i
--)
1354 if (!rtx_equal_p (XVECEXP (p1
, 1, i
), XVECEXP (p2
, 1, i
)))
1360 replace_label_data rr
;
1363 /* Temporarily replace references to LABEL1 with LABEL2
1364 in BB1->END so that we could compare the instructions. */
1367 rr
.update_label_nuses
= false;
1368 for_each_rtx (&BB_END (bb1
), replace_label
, &rr
);
1370 match
= insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
));
1371 if (dump_file
&& match
)
1373 "Tablejumps in bb %i and %i match.\n",
1374 bb1
->index
, bb2
->index
);
1376 /* Set the original label in BB1->END because when deleting
1377 a block whose end is a tablejump, the tablejump referenced
1378 from the instruction is deleted too. */
1381 for_each_rtx (&BB_END (bb1
), replace_label
, &rr
);
1391 /* First ensure that the instructions match. There may be many outgoing
1392 edges so this test is generally cheaper. */
1393 if (!insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
)))
1396 /* Search the outgoing edges, ensure that the counts do match, find possible
1397 fallthru and exception handling edges since these needs more
1399 for (e1
= bb1
->succ
, e2
= bb2
->succ
; e1
&& e2
;
1400 e1
= e1
->succ_next
, e2
= e2
->succ_next
)
1402 if (e1
->flags
& EDGE_EH
)
1405 if (e2
->flags
& EDGE_EH
)
1408 if (e1
->flags
& EDGE_FALLTHRU
)
1410 if (e2
->flags
& EDGE_FALLTHRU
)
1414 /* If number of edges of various types does not match, fail. */
1416 || nehedges1
!= nehedges2
1417 || (fallthru1
!= 0) != (fallthru2
!= 0))
1420 /* fallthru edges must be forwarded to the same destination. */
1423 basic_block d1
= (forwarder_block_p (fallthru1
->dest
)
1424 ? fallthru1
->dest
->succ
->dest
: fallthru1
->dest
);
1425 basic_block d2
= (forwarder_block_p (fallthru2
->dest
)
1426 ? fallthru2
->dest
->succ
->dest
: fallthru2
->dest
);
1432 /* Ensure the same EH region. */
1434 rtx n1
= find_reg_note (BB_END (bb1
), REG_EH_REGION
, 0);
1435 rtx n2
= find_reg_note (BB_END (bb2
), REG_EH_REGION
, 0);
1440 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1444 /* We don't need to match the rest of edges as above checks should be enough
1445 to ensure that they are equivalent. */
1449 /* E1 and E2 are edges with the same destination block. Search their
1450 predecessors for common code. If found, redirect control flow from
1451 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1454 try_crossjump_to_edge (int mode
, edge e1
, edge e2
)
1457 basic_block src1
= e1
->src
, src2
= e2
->src
;
1458 basic_block redirect_to
, redirect_from
, to_remove
;
1459 rtx newpos1
, newpos2
;
1462 newpos1
= newpos2
= NULL_RTX
;
1464 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1465 to try this optimization. */
1467 if (flag_reorder_blocks_and_partition
&& no_new_pseudos
)
1470 /* Search backward through forwarder blocks. We don't need to worry
1471 about multiple entry or chained forwarders, as they will be optimized
1472 away. We do this to look past the unconditional jump following a
1473 conditional jump that is required due to the current CFG shape. */
1475 && !src1
->pred
->pred_next
1476 && FORWARDER_BLOCK_P (src1
))
1477 e1
= src1
->pred
, src1
= e1
->src
;
1480 && !src2
->pred
->pred_next
1481 && FORWARDER_BLOCK_P (src2
))
1482 e2
= src2
->pred
, src2
= e2
->src
;
1484 /* Nothing to do if we reach ENTRY, or a common source block. */
1485 if (src1
== ENTRY_BLOCK_PTR
|| src2
== ENTRY_BLOCK_PTR
)
1490 /* Seeing more than 1 forwarder blocks would confuse us later... */
1491 if (FORWARDER_BLOCK_P (e1
->dest
)
1492 && FORWARDER_BLOCK_P (e1
->dest
->succ
->dest
))
1495 if (FORWARDER_BLOCK_P (e2
->dest
)
1496 && FORWARDER_BLOCK_P (e2
->dest
->succ
->dest
))
1499 /* Likewise with dead code (possibly newly created by the other optimizations
1501 if (!src1
->pred
|| !src2
->pred
)
1504 /* Look for the common insn sequence, part the first ... */
1505 if (!outgoing_edges_match (mode
, src1
, src2
))
1508 /* ... and part the second. */
1509 nmatch
= flow_find_cross_jump (mode
, src1
, src2
, &newpos1
, &newpos2
);
1511 /* Don't proceed with the crossjump unless we found a sufficient number
1512 of matching instructions or the 'from' block was totally matched
1513 (such that its predecessors will hopefully be redirected and the
1515 if ((nmatch
< PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS
))
1516 && (newpos1
!= BB_HEAD (src1
)))
1519 #ifndef CASE_DROPS_THROUGH
1520 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1522 If we have tablejumps in the end of SRC1 and SRC2
1523 they have been already compared for equivalence in outgoing_edges_match ()
1524 so replace the references to TABLE1 by references to TABLE2. */
1529 if (tablejump_p (BB_END (src1
), &label1
, &table1
)
1530 && tablejump_p (BB_END (src2
), &label2
, &table2
)
1531 && label1
!= label2
)
1533 replace_label_data rr
;
1536 /* Replace references to LABEL1 with LABEL2. */
1539 rr
.update_label_nuses
= true;
1540 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1542 /* Do not replace the label in SRC1->END because when deleting
1543 a block whose end is a tablejump, the tablejump referenced
1544 from the instruction is deleted too. */
1545 if (insn
!= BB_END (src1
))
1546 for_each_rtx (&insn
, replace_label
, &rr
);
1552 /* Avoid splitting if possible. */
1553 if (newpos2
== BB_HEAD (src2
))
1558 fprintf (dump_file
, "Splitting bb %i before %i insns\n",
1559 src2
->index
, nmatch
);
1560 redirect_to
= split_block (src2
, PREV_INSN (newpos2
))->dest
;
1565 "Cross jumping from bb %i to bb %i; %i common insns\n",
1566 src1
->index
, src2
->index
, nmatch
);
1568 redirect_to
->count
+= src1
->count
;
1569 redirect_to
->frequency
+= src1
->frequency
;
1570 /* We may have some registers visible trought the block. */
1571 redirect_to
->flags
|= BB_DIRTY
;
1573 /* Recompute the frequencies and counts of outgoing edges. */
1574 for (s
= redirect_to
->succ
; s
; s
= s
->succ_next
)
1577 basic_block d
= s
->dest
;
1579 if (FORWARDER_BLOCK_P (d
))
1582 for (s2
= src1
->succ
; ; s2
= s2
->succ_next
)
1584 basic_block d2
= s2
->dest
;
1585 if (FORWARDER_BLOCK_P (d2
))
1586 d2
= d2
->succ
->dest
;
1591 s
->count
+= s2
->count
;
1593 /* Take care to update possible forwarder blocks. We verified
1594 that there is no more than one in the chain, so we can't run
1595 into infinite loop. */
1596 if (FORWARDER_BLOCK_P (s
->dest
))
1598 s
->dest
->succ
->count
+= s2
->count
;
1599 s
->dest
->count
+= s2
->count
;
1600 s
->dest
->frequency
+= EDGE_FREQUENCY (s
);
1603 if (FORWARDER_BLOCK_P (s2
->dest
))
1605 s2
->dest
->succ
->count
-= s2
->count
;
1606 if (s2
->dest
->succ
->count
< 0)
1607 s2
->dest
->succ
->count
= 0;
1608 s2
->dest
->count
-= s2
->count
;
1609 s2
->dest
->frequency
-= EDGE_FREQUENCY (s
);
1610 if (s2
->dest
->frequency
< 0)
1611 s2
->dest
->frequency
= 0;
1612 if (s2
->dest
->count
< 0)
1613 s2
->dest
->count
= 0;
1616 if (!redirect_to
->frequency
&& !src1
->frequency
)
1617 s
->probability
= (s
->probability
+ s2
->probability
) / 2;
1620 = ((s
->probability
* redirect_to
->frequency
+
1621 s2
->probability
* src1
->frequency
)
1622 / (redirect_to
->frequency
+ src1
->frequency
));
1625 update_br_prob_note (redirect_to
);
1627 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1629 /* Skip possible basic block header. */
1630 if (LABEL_P (newpos1
))
1631 newpos1
= NEXT_INSN (newpos1
);
1633 if (NOTE_P (newpos1
))
1634 newpos1
= NEXT_INSN (newpos1
);
1636 redirect_from
= split_block (src1
, PREV_INSN (newpos1
))->src
;
1637 to_remove
= redirect_from
->succ
->dest
;
1639 redirect_edge_and_branch_force (redirect_from
->succ
, redirect_to
);
1640 delete_basic_block (to_remove
);
1642 update_forwarder_flag (redirect_from
);
1647 /* Search the predecessors of BB for common insn sequences. When found,
1648 share code between them by redirecting control flow. Return true if
1649 any changes made. */
1652 try_crossjump_bb (int mode
, basic_block bb
)
1654 edge e
, e2
, nexte2
, nexte
, fallthru
;
1658 /* Nothing to do if there is not at least two incoming edges. */
1659 if (!bb
->pred
|| !bb
->pred
->pred_next
)
1662 /* If we are partitioning hot/cold basic blocks, we don't want to
1663 mess up unconditional or indirect jumps that cross between hot
1664 and cold sections. */
1666 if (flag_reorder_blocks_and_partition
1667 && (bb
->pred
->src
->partition
!= bb
->pred
->pred_next
->src
->partition
1668 || bb
->pred
->crossing_edge
))
1671 /* It is always cheapest to redirect a block that ends in a branch to
1672 a block that falls through into BB, as that adds no branches to the
1673 program. We'll try that combination first. */
1675 max
= PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES
);
1676 for (e
= bb
->pred
; e
; e
= e
->pred_next
, n
++)
1678 if (e
->flags
& EDGE_FALLTHRU
)
1685 for (e
= bb
->pred
; e
; e
= nexte
)
1687 nexte
= e
->pred_next
;
1689 /* As noted above, first try with the fallthru predecessor. */
1692 /* Don't combine the fallthru edge into anything else.
1693 If there is a match, we'll do it the other way around. */
1696 /* If nothing changed since the last attempt, there is nothing
1699 && (!(e
->src
->flags
& BB_DIRTY
)
1700 && !(fallthru
->src
->flags
& BB_DIRTY
)))
1703 if (try_crossjump_to_edge (mode
, e
, fallthru
))
1711 /* Non-obvious work limiting check: Recognize that we're going
1712 to call try_crossjump_bb on every basic block. So if we have
1713 two blocks with lots of outgoing edges (a switch) and they
1714 share lots of common destinations, then we would do the
1715 cross-jump check once for each common destination.
1717 Now, if the blocks actually are cross-jump candidates, then
1718 all of their destinations will be shared. Which means that
1719 we only need check them for cross-jump candidacy once. We
1720 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1721 choosing to do the check from the block for which the edge
1722 in question is the first successor of A. */
1723 if (e
->src
->succ
!= e
)
1726 for (e2
= bb
->pred
; e2
; e2
= nexte2
)
1728 nexte2
= e2
->pred_next
;
1733 /* We've already checked the fallthru edge above. */
1737 /* The "first successor" check above only prevents multiple
1738 checks of crossjump(A,B). In order to prevent redundant
1739 checks of crossjump(B,A), require that A be the block
1740 with the lowest index. */
1741 if (e
->src
->index
> e2
->src
->index
)
1744 /* If nothing changed since the last attempt, there is nothing
1747 && (!(e
->src
->flags
& BB_DIRTY
)
1748 && !(e2
->src
->flags
& BB_DIRTY
)))
1751 if (try_crossjump_to_edge (mode
, e
, e2
))
1763 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1764 instructions etc. Return nonzero if changes were made. */
1767 try_optimize_cfg (int mode
)
1769 bool changed_overall
= false;
1772 basic_block bb
, b
, next
;
1774 if (mode
& CLEANUP_CROSSJUMP
)
1775 add_noreturn_fake_exit_edges ();
1778 update_forwarder_flag (bb
);
1780 if (mode
& (CLEANUP_UPDATE_LIFE
| CLEANUP_CROSSJUMP
| CLEANUP_THREADING
))
1783 if (! targetm
.cannot_modify_jumps_p ())
1786 /* Attempt to merge blocks as made possible by edge removal. If
1787 a block has only one successor, and the successor has only
1788 one predecessor, they may be combined. */
1796 "\n\ntry_optimize_cfg iteration %i\n\n",
1799 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
;)
1803 bool changed_here
= false;
1805 /* Delete trivially dead basic blocks. */
1806 while (b
->pred
== NULL
)
1810 fprintf (dump_file
, "Deleting block %i.\n",
1813 delete_basic_block (b
);
1814 if (!(mode
& CLEANUP_CFGLAYOUT
))
1819 /* Remove code labels no longer used. */
1820 if (b
->pred
->pred_next
== NULL
1821 && (b
->pred
->flags
& EDGE_FALLTHRU
)
1822 && !(b
->pred
->flags
& EDGE_COMPLEX
)
1823 && LABEL_P (BB_HEAD (b
))
1824 /* If the previous block ends with a branch to this
1825 block, we can't delete the label. Normally this
1826 is a condjump that is yet to be simplified, but
1827 if CASE_DROPS_THRU, this can be a tablejump with
1828 some element going to the same place as the
1829 default (fallthru). */
1830 && (b
->pred
->src
== ENTRY_BLOCK_PTR
1831 || !JUMP_P (BB_END (b
->pred
->src
))
1832 || ! label_is_jump_target_p (BB_HEAD (b
),
1833 BB_END (b
->pred
->src
))))
1835 rtx label
= BB_HEAD (b
);
1837 delete_insn_chain (label
, label
);
1838 /* In the case label is undeletable, move it after the
1839 BASIC_BLOCK note. */
1840 if (NOTE_LINE_NUMBER (BB_HEAD (b
)) == NOTE_INSN_DELETED_LABEL
)
1842 rtx bb_note
= NEXT_INSN (BB_HEAD (b
));
1844 reorder_insns_nobb (label
, label
, bb_note
);
1845 BB_HEAD (b
) = bb_note
;
1848 fprintf (dump_file
, "Deleted label in block %i.\n",
1852 /* If we fall through an empty block, we can remove it. */
1853 if (!(mode
& CLEANUP_CFGLAYOUT
)
1854 && b
->pred
->pred_next
== NULL
1855 && (b
->pred
->flags
& EDGE_FALLTHRU
)
1856 && !LABEL_P (BB_HEAD (b
))
1857 && FORWARDER_BLOCK_P (b
)
1858 /* Note that forwarder_block_p true ensures that
1859 there is a successor for this block. */
1860 && (b
->succ
->flags
& EDGE_FALLTHRU
)
1861 && n_basic_blocks
> 1)
1865 "Deleting fallthru block %i.\n",
1868 c
= b
->prev_bb
== ENTRY_BLOCK_PTR
? b
->next_bb
: b
->prev_bb
;
1869 redirect_edge_succ_nodup (b
->pred
, b
->succ
->dest
);
1870 delete_basic_block (b
);
1875 if ((s
= b
->succ
) != NULL
1876 && s
->succ_next
== NULL
1877 && !(s
->flags
& EDGE_COMPLEX
)
1878 && (c
= s
->dest
) != EXIT_BLOCK_PTR
1879 && c
->pred
->pred_next
== NULL
1882 /* When not in cfg_layout mode use code aware of reordering
1883 INSN. This code possibly creates new basic blocks so it
1884 does not fit merge_blocks interface and is kept here in
1885 hope that it will become useless once more of compiler
1886 is transformed to use cfg_layout mode. */
1888 if ((mode
& CLEANUP_CFGLAYOUT
)
1889 && can_merge_blocks_p (b
, c
))
1891 merge_blocks (b
, c
);
1892 update_forwarder_flag (b
);
1893 changed_here
= true;
1895 else if (!(mode
& CLEANUP_CFGLAYOUT
)
1896 /* If the jump insn has side effects,
1897 we can't kill the edge. */
1898 && (!JUMP_P (BB_END (b
))
1899 || (reload_completed
1900 ? simplejump_p (BB_END (b
))
1901 : (onlyjump_p (BB_END (b
))
1902 && !tablejump_p (BB_END (b
),
1904 && (next
= merge_blocks_move (s
, b
, c
, mode
)))
1907 changed_here
= true;
1911 /* Simplify branch over branch. */
1912 if ((mode
& CLEANUP_EXPENSIVE
)
1913 && !(mode
& CLEANUP_CFGLAYOUT
)
1914 && try_simplify_condjump (b
))
1915 changed_here
= true;
1917 /* If B has a single outgoing edge, but uses a
1918 non-trivial jump instruction without side-effects, we
1919 can either delete the jump entirely, or replace it
1920 with a simple unconditional jump. */
1922 && ! b
->succ
->succ_next
1923 && b
->succ
->dest
!= EXIT_BLOCK_PTR
1924 && onlyjump_p (BB_END (b
))
1925 && !find_reg_note (BB_END (b
), REG_CROSSING_JUMP
, NULL_RTX
)
1926 && try_redirect_by_replacing_jump (b
->succ
, b
->succ
->dest
,
1927 (mode
& CLEANUP_CFGLAYOUT
) != 0))
1929 update_forwarder_flag (b
);
1930 changed_here
= true;
1933 /* Simplify branch to branch. */
1934 if (try_forward_edges (mode
, b
))
1935 changed_here
= true;
1937 /* Look for shared code between blocks. */
1938 if ((mode
& CLEANUP_CROSSJUMP
)
1939 && try_crossjump_bb (mode
, b
))
1940 changed_here
= true;
1942 /* Don't get confused by the index shift caused by
1950 if ((mode
& CLEANUP_CROSSJUMP
)
1951 && try_crossjump_bb (mode
, EXIT_BLOCK_PTR
))
1954 #ifdef ENABLE_CHECKING
1956 verify_flow_info ();
1959 changed_overall
|= changed
;
1965 if (mode
& CLEANUP_CROSSJUMP
)
1966 remove_fake_exit_edges ();
1968 clear_aux_for_blocks ();
1970 return changed_overall
;
1973 /* Delete all unreachable basic blocks. */
1976 delete_unreachable_blocks (void)
1978 bool changed
= false;
1979 basic_block b
, next_bb
;
1981 find_unreachable_blocks ();
1983 /* Delete all unreachable basic blocks. */
1985 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
; b
= next_bb
)
1987 next_bb
= b
->next_bb
;
1989 if (!(b
->flags
& BB_REACHABLE
))
1991 delete_basic_block (b
);
1997 tidy_fallthru_edges ();
2001 /* Merges sequential blocks if possible. */
2004 merge_seq_blocks (void)
2007 bool changed
= false;
2009 for (bb
= ENTRY_BLOCK_PTR
->next_bb
; bb
!= EXIT_BLOCK_PTR
; )
2012 && !bb
->succ
->succ_next
2013 && can_merge_blocks_p (bb
, bb
->succ
->dest
))
2015 /* Merge the blocks and retry. */
2016 merge_blocks (bb
, bb
->succ
->dest
);
2027 /* Tidy the CFG by deleting unreachable code and whatnot. */
2030 cleanup_cfg (int mode
)
2032 bool changed
= false;
2034 timevar_push (TV_CLEANUP_CFG
);
2035 if (delete_unreachable_blocks ())
2038 /* We've possibly created trivially dead code. Cleanup it right
2039 now to introduce more opportunities for try_optimize_cfg. */
2040 if (!(mode
& (CLEANUP_NO_INSN_DEL
| CLEANUP_UPDATE_LIFE
))
2041 && !reload_completed
)
2042 delete_trivially_dead_insns (get_insns(), max_reg_num ());
2047 while (try_optimize_cfg (mode
))
2049 delete_unreachable_blocks (), changed
= true;
2050 if (mode
& CLEANUP_UPDATE_LIFE
)
2052 /* Cleaning up CFG introduces more opportunities for dead code
2053 removal that in turn may introduce more opportunities for
2054 cleaning up the CFG. */
2055 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES
,
2057 | PROP_SCAN_DEAD_CODE
2058 | PROP_KILL_DEAD_CODE
2059 | ((mode
& CLEANUP_LOG_LINKS
)
2060 ? PROP_LOG_LINKS
: 0)))
2063 else if (!(mode
& CLEANUP_NO_INSN_DEL
)
2064 && (mode
& CLEANUP_EXPENSIVE
)
2065 && !reload_completed
)
2067 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
2072 delete_dead_jumptables ();
2075 /* Kill the data we won't maintain. */
2076 free_EXPR_LIST_list (&label_value_list
);
2077 timevar_pop (TV_CLEANUP_CFG
);