* g++.dg/cpp0x/fntmpdefarg3.C: New.
[official-gcc.git] / gcc / emit-rtl.c
blob0edd871b685e54a3a67f182eda3f756818fc547c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 /* Middle-to-low level generation of rtx code and insns.
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "diagnostic-core.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "expr.h"
48 #include "vecprim.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "df.h"
60 #include "params.h"
61 #include "target.h"
63 struct target_rtl default_target_rtl;
64 #if SWITCHABLE_TARGET
65 struct target_rtl *this_target_rtl = &default_target_rtl;
66 #endif
68 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
70 /* Commonly used modes. */
72 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
73 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
74 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
75 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
77 /* Datastructures maintained for currently processed function in RTL form. */
79 struct rtl_data x_rtl;
81 /* Indexed by pseudo register number, gives the rtx for that pseudo.
82 Allocated in parallel with regno_pointer_align.
83 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
84 with length attribute nested in top level structures. */
86 rtx * regno_reg_rtx;
88 /* This is *not* reset after each function. It gives each CODE_LABEL
89 in the entire compilation a unique label number. */
91 static GTY(()) int label_num = 1;
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
96 is set only for MODE_INT and MODE_VECTOR_INT modes. */
98 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
100 rtx const_true_rtx;
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconsthalf;
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
117 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
119 /* Standard pieces of rtx, to be substituted directly into things. */
120 rtx pc_rtx;
121 rtx ret_rtx;
122 rtx simple_return_rtx;
123 rtx cc0_rtx;
125 /* A hash table storing CONST_INTs whose absolute value is greater
126 than MAX_SAVED_CONST_INT. */
128 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129 htab_t const_int_htab;
131 /* A hash table storing memory attribute structures. */
132 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
133 htab_t mem_attrs_htab;
135 /* A hash table storing register attribute structures. */
136 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
137 htab_t reg_attrs_htab;
139 /* A hash table storing all CONST_DOUBLEs. */
140 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
141 htab_t const_double_htab;
143 /* A hash table storing all CONST_FIXEDs. */
144 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
145 htab_t const_fixed_htab;
147 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
148 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
149 #define first_label_num (crtl->emit.x_first_label_num)
151 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
152 static void set_used_decls (tree);
153 static void mark_label_nuses (rtx);
154 static hashval_t const_int_htab_hash (const void *);
155 static int const_int_htab_eq (const void *, const void *);
156 static hashval_t const_double_htab_hash (const void *);
157 static int const_double_htab_eq (const void *, const void *);
158 static rtx lookup_const_double (rtx);
159 static hashval_t const_fixed_htab_hash (const void *);
160 static int const_fixed_htab_eq (const void *, const void *);
161 static rtx lookup_const_fixed (rtx);
162 static hashval_t mem_attrs_htab_hash (const void *);
163 static int mem_attrs_htab_eq (const void *, const void *);
164 static hashval_t reg_attrs_htab_hash (const void *);
165 static int reg_attrs_htab_eq (const void *, const void *);
166 static reg_attrs *get_reg_attrs (tree, int);
167 static rtx gen_const_vector (enum machine_mode, int);
168 static void copy_rtx_if_shared_1 (rtx *orig);
170 /* Probability of the conditional branch currently proceeded by try_split.
171 Set to -1 otherwise. */
172 int split_branch_probability = -1;
174 /* Returns a hash code for X (which is a really a CONST_INT). */
176 static hashval_t
177 const_int_htab_hash (const void *x)
179 return (hashval_t) INTVAL ((const_rtx) x);
182 /* Returns nonzero if the value represented by X (which is really a
183 CONST_INT) is the same as that given by Y (which is really a
184 HOST_WIDE_INT *). */
186 static int
187 const_int_htab_eq (const void *x, const void *y)
189 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
192 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
193 static hashval_t
194 const_double_htab_hash (const void *x)
196 const_rtx const value = (const_rtx) x;
197 hashval_t h;
199 if (GET_MODE (value) == VOIDmode)
200 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
201 else
203 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
204 /* MODE is used in the comparison, so it should be in the hash. */
205 h ^= GET_MODE (value);
207 return h;
210 /* Returns nonzero if the value represented by X (really a ...)
211 is the same as that represented by Y (really a ...) */
212 static int
213 const_double_htab_eq (const void *x, const void *y)
215 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
217 if (GET_MODE (a) != GET_MODE (b))
218 return 0;
219 if (GET_MODE (a) == VOIDmode)
220 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
221 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
222 else
223 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
224 CONST_DOUBLE_REAL_VALUE (b));
227 /* Returns a hash code for X (which is really a CONST_FIXED). */
229 static hashval_t
230 const_fixed_htab_hash (const void *x)
232 const_rtx const value = (const_rtx) x;
233 hashval_t h;
235 h = fixed_hash (CONST_FIXED_VALUE (value));
236 /* MODE is used in the comparison, so it should be in the hash. */
237 h ^= GET_MODE (value);
238 return h;
241 /* Returns nonzero if the value represented by X (really a ...)
242 is the same as that represented by Y (really a ...). */
244 static int
245 const_fixed_htab_eq (const void *x, const void *y)
247 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
249 if (GET_MODE (a) != GET_MODE (b))
250 return 0;
251 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
254 /* Returns a hash code for X (which is a really a mem_attrs *). */
256 static hashval_t
257 mem_attrs_htab_hash (const void *x)
259 const mem_attrs *const p = (const mem_attrs *) x;
261 return (p->alias ^ (p->align * 1000)
262 ^ (p->addrspace * 4000)
263 ^ ((p->offset_known_p ? p->offset : 0) * 50000)
264 ^ ((p->size_known_p ? p->size : 0) * 2500000)
265 ^ (size_t) iterative_hash_expr (p->expr, 0));
268 /* Return true if the given memory attributes are equal. */
270 static bool
271 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
273 return (p->alias == q->alias
274 && p->offset_known_p == q->offset_known_p
275 && (!p->offset_known_p || p->offset == q->offset)
276 && p->size_known_p == q->size_known_p
277 && (!p->size_known_p || p->size == q->size)
278 && p->align == q->align
279 && p->addrspace == q->addrspace
280 && (p->expr == q->expr
281 || (p->expr != NULL_TREE && q->expr != NULL_TREE
282 && operand_equal_p (p->expr, q->expr, 0))));
285 /* Returns nonzero if the value represented by X (which is really a
286 mem_attrs *) is the same as that given by Y (which is also really a
287 mem_attrs *). */
289 static int
290 mem_attrs_htab_eq (const void *x, const void *y)
292 return mem_attrs_eq_p ((const mem_attrs *) x, (const mem_attrs *) y);
295 /* Set MEM's memory attributes so that they are the same as ATTRS. */
297 static void
298 set_mem_attrs (rtx mem, mem_attrs *attrs)
300 void **slot;
302 /* If everything is the default, we can just clear the attributes. */
303 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
305 MEM_ATTRS (mem) = 0;
306 return;
309 slot = htab_find_slot (mem_attrs_htab, attrs, INSERT);
310 if (*slot == 0)
312 *slot = ggc_alloc_mem_attrs ();
313 memcpy (*slot, attrs, sizeof (mem_attrs));
316 MEM_ATTRS (mem) = (mem_attrs *) *slot;
319 /* Returns a hash code for X (which is a really a reg_attrs *). */
321 static hashval_t
322 reg_attrs_htab_hash (const void *x)
324 const reg_attrs *const p = (const reg_attrs *) x;
326 return ((p->offset * 1000) ^ (intptr_t) p->decl);
329 /* Returns nonzero if the value represented by X (which is really a
330 reg_attrs *) is the same as that given by Y (which is also really a
331 reg_attrs *). */
333 static int
334 reg_attrs_htab_eq (const void *x, const void *y)
336 const reg_attrs *const p = (const reg_attrs *) x;
337 const reg_attrs *const q = (const reg_attrs *) y;
339 return (p->decl == q->decl && p->offset == q->offset);
341 /* Allocate a new reg_attrs structure and insert it into the hash table if
342 one identical to it is not already in the table. We are doing this for
343 MEM of mode MODE. */
345 static reg_attrs *
346 get_reg_attrs (tree decl, int offset)
348 reg_attrs attrs;
349 void **slot;
351 /* If everything is the default, we can just return zero. */
352 if (decl == 0 && offset == 0)
353 return 0;
355 attrs.decl = decl;
356 attrs.offset = offset;
358 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
359 if (*slot == 0)
361 *slot = ggc_alloc_reg_attrs ();
362 memcpy (*slot, &attrs, sizeof (reg_attrs));
365 return (reg_attrs *) *slot;
369 #if !HAVE_blockage
370 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
371 across this insn. */
374 gen_blockage (void)
376 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
377 MEM_VOLATILE_P (x) = true;
378 return x;
380 #endif
383 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
384 don't attempt to share with the various global pieces of rtl (such as
385 frame_pointer_rtx). */
388 gen_raw_REG (enum machine_mode mode, int regno)
390 rtx x = gen_rtx_raw_REG (mode, regno);
391 ORIGINAL_REGNO (x) = regno;
392 return x;
395 /* There are some RTL codes that require special attention; the generation
396 functions do the raw handling. If you add to this list, modify
397 special_rtx in gengenrtl.c as well. */
400 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
402 void **slot;
404 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
405 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
407 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
408 if (const_true_rtx && arg == STORE_FLAG_VALUE)
409 return const_true_rtx;
410 #endif
412 /* Look up the CONST_INT in the hash table. */
413 slot = htab_find_slot_with_hash (const_int_htab, &arg,
414 (hashval_t) arg, INSERT);
415 if (*slot == 0)
416 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
418 return (rtx) *slot;
422 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
424 return GEN_INT (trunc_int_for_mode (c, mode));
427 /* CONST_DOUBLEs might be created from pairs of integers, or from
428 REAL_VALUE_TYPEs. Also, their length is known only at run time,
429 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
431 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
432 hash table. If so, return its counterpart; otherwise add it
433 to the hash table and return it. */
434 static rtx
435 lookup_const_double (rtx real)
437 void **slot = htab_find_slot (const_double_htab, real, INSERT);
438 if (*slot == 0)
439 *slot = real;
441 return (rtx) *slot;
444 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
445 VALUE in mode MODE. */
447 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
449 rtx real = rtx_alloc (CONST_DOUBLE);
450 PUT_MODE (real, mode);
452 real->u.rv = value;
454 return lookup_const_double (real);
457 /* Determine whether FIXED, a CONST_FIXED, already exists in the
458 hash table. If so, return its counterpart; otherwise add it
459 to the hash table and return it. */
461 static rtx
462 lookup_const_fixed (rtx fixed)
464 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
465 if (*slot == 0)
466 *slot = fixed;
468 return (rtx) *slot;
471 /* Return a CONST_FIXED rtx for a fixed-point value specified by
472 VALUE in mode MODE. */
475 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
477 rtx fixed = rtx_alloc (CONST_FIXED);
478 PUT_MODE (fixed, mode);
480 fixed->u.fv = value;
482 return lookup_const_fixed (fixed);
485 /* Constructs double_int from rtx CST. */
487 double_int
488 rtx_to_double_int (const_rtx cst)
490 double_int r;
492 if (CONST_INT_P (cst))
493 r = shwi_to_double_int (INTVAL (cst));
494 else if (CONST_DOUBLE_AS_INT_P (cst))
496 r.low = CONST_DOUBLE_LOW (cst);
497 r.high = CONST_DOUBLE_HIGH (cst);
499 else
500 gcc_unreachable ();
502 return r;
506 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
507 a double_int. */
510 immed_double_int_const (double_int i, enum machine_mode mode)
512 return immed_double_const (i.low, i.high, mode);
515 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
516 of ints: I0 is the low-order word and I1 is the high-order word.
517 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
518 implied upper bits are copies of the high bit of i1. The value
519 itself is neither signed nor unsigned. Do not use this routine for
520 non-integer modes; convert to REAL_VALUE_TYPE and use
521 CONST_DOUBLE_FROM_REAL_VALUE. */
524 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
526 rtx value;
527 unsigned int i;
529 /* There are the following cases (note that there are no modes with
530 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
532 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
533 gen_int_mode.
534 2) If the value of the integer fits into HOST_WIDE_INT anyway
535 (i.e., i1 consists only from copies of the sign bit, and sign
536 of i0 and i1 are the same), then we return a CONST_INT for i0.
537 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
538 if (mode != VOIDmode)
540 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
541 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
542 /* We can get a 0 for an error mark. */
543 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
544 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
546 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
547 return gen_int_mode (i0, mode);
550 /* If this integer fits in one word, return a CONST_INT. */
551 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
552 return GEN_INT (i0);
554 /* We use VOIDmode for integers. */
555 value = rtx_alloc (CONST_DOUBLE);
556 PUT_MODE (value, VOIDmode);
558 CONST_DOUBLE_LOW (value) = i0;
559 CONST_DOUBLE_HIGH (value) = i1;
561 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
562 XWINT (value, i) = 0;
564 return lookup_const_double (value);
568 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
570 /* In case the MD file explicitly references the frame pointer, have
571 all such references point to the same frame pointer. This is
572 used during frame pointer elimination to distinguish the explicit
573 references to these registers from pseudos that happened to be
574 assigned to them.
576 If we have eliminated the frame pointer or arg pointer, we will
577 be using it as a normal register, for example as a spill
578 register. In such cases, we might be accessing it in a mode that
579 is not Pmode and therefore cannot use the pre-allocated rtx.
581 Also don't do this when we are making new REGs in reload, since
582 we don't want to get confused with the real pointers. */
584 if (mode == Pmode && !reload_in_progress)
586 if (regno == FRAME_POINTER_REGNUM
587 && (!reload_completed || frame_pointer_needed))
588 return frame_pointer_rtx;
589 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
590 if (regno == HARD_FRAME_POINTER_REGNUM
591 && (!reload_completed || frame_pointer_needed))
592 return hard_frame_pointer_rtx;
593 #endif
594 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
595 if (regno == ARG_POINTER_REGNUM)
596 return arg_pointer_rtx;
597 #endif
598 #ifdef RETURN_ADDRESS_POINTER_REGNUM
599 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
600 return return_address_pointer_rtx;
601 #endif
602 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
603 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
604 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
605 return pic_offset_table_rtx;
606 if (regno == STACK_POINTER_REGNUM)
607 return stack_pointer_rtx;
610 #if 0
611 /* If the per-function register table has been set up, try to re-use
612 an existing entry in that table to avoid useless generation of RTL.
614 This code is disabled for now until we can fix the various backends
615 which depend on having non-shared hard registers in some cases. Long
616 term we want to re-enable this code as it can significantly cut down
617 on the amount of useless RTL that gets generated.
619 We'll also need to fix some code that runs after reload that wants to
620 set ORIGINAL_REGNO. */
622 if (cfun
623 && cfun->emit
624 && regno_reg_rtx
625 && regno < FIRST_PSEUDO_REGISTER
626 && reg_raw_mode[regno] == mode)
627 return regno_reg_rtx[regno];
628 #endif
630 return gen_raw_REG (mode, regno);
634 gen_rtx_MEM (enum machine_mode mode, rtx addr)
636 rtx rt = gen_rtx_raw_MEM (mode, addr);
638 /* This field is not cleared by the mere allocation of the rtx, so
639 we clear it here. */
640 MEM_ATTRS (rt) = 0;
642 return rt;
645 /* Generate a memory referring to non-trapping constant memory. */
648 gen_const_mem (enum machine_mode mode, rtx addr)
650 rtx mem = gen_rtx_MEM (mode, addr);
651 MEM_READONLY_P (mem) = 1;
652 MEM_NOTRAP_P (mem) = 1;
653 return mem;
656 /* Generate a MEM referring to fixed portions of the frame, e.g., register
657 save areas. */
660 gen_frame_mem (enum machine_mode mode, rtx addr)
662 rtx mem = gen_rtx_MEM (mode, addr);
663 MEM_NOTRAP_P (mem) = 1;
664 set_mem_alias_set (mem, get_frame_alias_set ());
665 return mem;
668 /* Generate a MEM referring to a temporary use of the stack, not part
669 of the fixed stack frame. For example, something which is pushed
670 by a target splitter. */
672 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
674 rtx mem = gen_rtx_MEM (mode, addr);
675 MEM_NOTRAP_P (mem) = 1;
676 if (!cfun->calls_alloca)
677 set_mem_alias_set (mem, get_frame_alias_set ());
678 return mem;
681 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
682 this construct would be valid, and false otherwise. */
684 bool
685 validate_subreg (enum machine_mode omode, enum machine_mode imode,
686 const_rtx reg, unsigned int offset)
688 unsigned int isize = GET_MODE_SIZE (imode);
689 unsigned int osize = GET_MODE_SIZE (omode);
691 /* All subregs must be aligned. */
692 if (offset % osize != 0)
693 return false;
695 /* The subreg offset cannot be outside the inner object. */
696 if (offset >= isize)
697 return false;
699 /* ??? This should not be here. Temporarily continue to allow word_mode
700 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
701 Generally, backends are doing something sketchy but it'll take time to
702 fix them all. */
703 if (omode == word_mode)
705 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
706 is the culprit here, and not the backends. */
707 else if (osize >= UNITS_PER_WORD && isize >= osize)
709 /* Allow component subregs of complex and vector. Though given the below
710 extraction rules, it's not always clear what that means. */
711 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
712 && GET_MODE_INNER (imode) == omode)
714 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
715 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
716 represent this. It's questionable if this ought to be represented at
717 all -- why can't this all be hidden in post-reload splitters that make
718 arbitrarily mode changes to the registers themselves. */
719 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
721 /* Subregs involving floating point modes are not allowed to
722 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
723 (subreg:SI (reg:DF) 0) isn't. */
724 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
726 if (isize != osize)
727 return false;
730 /* Paradoxical subregs must have offset zero. */
731 if (osize > isize)
732 return offset == 0;
734 /* This is a normal subreg. Verify that the offset is representable. */
736 /* For hard registers, we already have most of these rules collected in
737 subreg_offset_representable_p. */
738 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
740 unsigned int regno = REGNO (reg);
742 #ifdef CANNOT_CHANGE_MODE_CLASS
743 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
744 && GET_MODE_INNER (imode) == omode)
746 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
747 return false;
748 #endif
750 return subreg_offset_representable_p (regno, imode, offset, omode);
753 /* For pseudo registers, we want most of the same checks. Namely:
754 If the register no larger than a word, the subreg must be lowpart.
755 If the register is larger than a word, the subreg must be the lowpart
756 of a subword. A subreg does *not* perform arbitrary bit extraction.
757 Given that we've already checked mode/offset alignment, we only have
758 to check subword subregs here. */
759 if (osize < UNITS_PER_WORD)
761 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
762 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
763 if (offset % UNITS_PER_WORD != low_off)
764 return false;
766 return true;
770 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
772 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
773 return gen_rtx_raw_SUBREG (mode, reg, offset);
776 /* Generate a SUBREG representing the least-significant part of REG if MODE
777 is smaller than mode of REG, otherwise paradoxical SUBREG. */
780 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
782 enum machine_mode inmode;
784 inmode = GET_MODE (reg);
785 if (inmode == VOIDmode)
786 inmode = mode;
787 return gen_rtx_SUBREG (mode, reg,
788 subreg_lowpart_offset (mode, inmode));
792 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
794 rtvec
795 gen_rtvec (int n, ...)
797 int i;
798 rtvec rt_val;
799 va_list p;
801 va_start (p, n);
803 /* Don't allocate an empty rtvec... */
804 if (n == 0)
806 va_end (p);
807 return NULL_RTVEC;
810 rt_val = rtvec_alloc (n);
812 for (i = 0; i < n; i++)
813 rt_val->elem[i] = va_arg (p, rtx);
815 va_end (p);
816 return rt_val;
819 rtvec
820 gen_rtvec_v (int n, rtx *argp)
822 int i;
823 rtvec rt_val;
825 /* Don't allocate an empty rtvec... */
826 if (n == 0)
827 return NULL_RTVEC;
829 rt_val = rtvec_alloc (n);
831 for (i = 0; i < n; i++)
832 rt_val->elem[i] = *argp++;
834 return rt_val;
837 /* Return the number of bytes between the start of an OUTER_MODE
838 in-memory value and the start of an INNER_MODE in-memory value,
839 given that the former is a lowpart of the latter. It may be a
840 paradoxical lowpart, in which case the offset will be negative
841 on big-endian targets. */
844 byte_lowpart_offset (enum machine_mode outer_mode,
845 enum machine_mode inner_mode)
847 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
848 return subreg_lowpart_offset (outer_mode, inner_mode);
849 else
850 return -subreg_lowpart_offset (inner_mode, outer_mode);
853 /* Generate a REG rtx for a new pseudo register of mode MODE.
854 This pseudo is assigned the next sequential register number. */
857 gen_reg_rtx (enum machine_mode mode)
859 rtx val;
860 unsigned int align = GET_MODE_ALIGNMENT (mode);
862 gcc_assert (can_create_pseudo_p ());
864 /* If a virtual register with bigger mode alignment is generated,
865 increase stack alignment estimation because it might be spilled
866 to stack later. */
867 if (SUPPORTS_STACK_ALIGNMENT
868 && crtl->stack_alignment_estimated < align
869 && !crtl->stack_realign_processed)
871 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
872 if (crtl->stack_alignment_estimated < min_align)
873 crtl->stack_alignment_estimated = min_align;
876 if (generating_concat_p
877 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
878 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
880 /* For complex modes, don't make a single pseudo.
881 Instead, make a CONCAT of two pseudos.
882 This allows noncontiguous allocation of the real and imaginary parts,
883 which makes much better code. Besides, allocating DCmode
884 pseudos overstrains reload on some machines like the 386. */
885 rtx realpart, imagpart;
886 enum machine_mode partmode = GET_MODE_INNER (mode);
888 realpart = gen_reg_rtx (partmode);
889 imagpart = gen_reg_rtx (partmode);
890 return gen_rtx_CONCAT (mode, realpart, imagpart);
893 /* Make sure regno_pointer_align, and regno_reg_rtx are large
894 enough to have an element for this pseudo reg number. */
896 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
898 int old_size = crtl->emit.regno_pointer_align_length;
899 char *tmp;
900 rtx *new1;
902 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
903 memset (tmp + old_size, 0, old_size);
904 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
906 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
907 memset (new1 + old_size, 0, old_size * sizeof (rtx));
908 regno_reg_rtx = new1;
910 crtl->emit.regno_pointer_align_length = old_size * 2;
913 val = gen_raw_REG (mode, reg_rtx_no);
914 regno_reg_rtx[reg_rtx_no++] = val;
915 return val;
918 /* Update NEW with the same attributes as REG, but with OFFSET added
919 to the REG_OFFSET. */
921 static void
922 update_reg_offset (rtx new_rtx, rtx reg, int offset)
924 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
925 REG_OFFSET (reg) + offset);
928 /* Generate a register with same attributes as REG, but with OFFSET
929 added to the REG_OFFSET. */
932 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
933 int offset)
935 rtx new_rtx = gen_rtx_REG (mode, regno);
937 update_reg_offset (new_rtx, reg, offset);
938 return new_rtx;
941 /* Generate a new pseudo-register with the same attributes as REG, but
942 with OFFSET added to the REG_OFFSET. */
945 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
947 rtx new_rtx = gen_reg_rtx (mode);
949 update_reg_offset (new_rtx, reg, offset);
950 return new_rtx;
953 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
954 new register is a (possibly paradoxical) lowpart of the old one. */
956 void
957 adjust_reg_mode (rtx reg, enum machine_mode mode)
959 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
960 PUT_MODE (reg, mode);
963 /* Copy REG's attributes from X, if X has any attributes. If REG and X
964 have different modes, REG is a (possibly paradoxical) lowpart of X. */
966 void
967 set_reg_attrs_from_value (rtx reg, rtx x)
969 int offset;
970 bool can_be_reg_pointer = true;
972 /* Don't call mark_reg_pointer for incompatible pointer sign
973 extension. */
974 while (GET_CODE (x) == SIGN_EXTEND
975 || GET_CODE (x) == ZERO_EXTEND
976 || GET_CODE (x) == TRUNCATE
977 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
979 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
980 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
981 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
982 can_be_reg_pointer = false;
983 #endif
984 x = XEXP (x, 0);
987 /* Hard registers can be reused for multiple purposes within the same
988 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
989 on them is wrong. */
990 if (HARD_REGISTER_P (reg))
991 return;
993 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
994 if (MEM_P (x))
996 if (MEM_OFFSET_KNOWN_P (x))
997 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
998 MEM_OFFSET (x) + offset);
999 if (can_be_reg_pointer && MEM_POINTER (x))
1000 mark_reg_pointer (reg, 0);
1002 else if (REG_P (x))
1004 if (REG_ATTRS (x))
1005 update_reg_offset (reg, x, offset);
1006 if (can_be_reg_pointer && REG_POINTER (x))
1007 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1011 /* Generate a REG rtx for a new pseudo register, copying the mode
1012 and attributes from X. */
1015 gen_reg_rtx_and_attrs (rtx x)
1017 rtx reg = gen_reg_rtx (GET_MODE (x));
1018 set_reg_attrs_from_value (reg, x);
1019 return reg;
1022 /* Set the register attributes for registers contained in PARM_RTX.
1023 Use needed values from memory attributes of MEM. */
1025 void
1026 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1028 if (REG_P (parm_rtx))
1029 set_reg_attrs_from_value (parm_rtx, mem);
1030 else if (GET_CODE (parm_rtx) == PARALLEL)
1032 /* Check for a NULL entry in the first slot, used to indicate that the
1033 parameter goes both on the stack and in registers. */
1034 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1035 for (; i < XVECLEN (parm_rtx, 0); i++)
1037 rtx x = XVECEXP (parm_rtx, 0, i);
1038 if (REG_P (XEXP (x, 0)))
1039 REG_ATTRS (XEXP (x, 0))
1040 = get_reg_attrs (MEM_EXPR (mem),
1041 INTVAL (XEXP (x, 1)));
1046 /* Set the REG_ATTRS for registers in value X, given that X represents
1047 decl T. */
1049 void
1050 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1052 if (GET_CODE (x) == SUBREG)
1054 gcc_assert (subreg_lowpart_p (x));
1055 x = SUBREG_REG (x);
1057 if (REG_P (x))
1058 REG_ATTRS (x)
1059 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1060 DECL_MODE (t)));
1061 if (GET_CODE (x) == CONCAT)
1063 if (REG_P (XEXP (x, 0)))
1064 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1065 if (REG_P (XEXP (x, 1)))
1066 REG_ATTRS (XEXP (x, 1))
1067 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1069 if (GET_CODE (x) == PARALLEL)
1071 int i, start;
1073 /* Check for a NULL entry, used to indicate that the parameter goes
1074 both on the stack and in registers. */
1075 if (XEXP (XVECEXP (x, 0, 0), 0))
1076 start = 0;
1077 else
1078 start = 1;
1080 for (i = start; i < XVECLEN (x, 0); i++)
1082 rtx y = XVECEXP (x, 0, i);
1083 if (REG_P (XEXP (y, 0)))
1084 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1089 /* Assign the RTX X to declaration T. */
1091 void
1092 set_decl_rtl (tree t, rtx x)
1094 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1095 if (x)
1096 set_reg_attrs_for_decl_rtl (t, x);
1099 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1100 if the ABI requires the parameter to be passed by reference. */
1102 void
1103 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1105 DECL_INCOMING_RTL (t) = x;
1106 if (x && !by_reference_p)
1107 set_reg_attrs_for_decl_rtl (t, x);
1110 /* Identify REG (which may be a CONCAT) as a user register. */
1112 void
1113 mark_user_reg (rtx reg)
1115 if (GET_CODE (reg) == CONCAT)
1117 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1118 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1120 else
1122 gcc_assert (REG_P (reg));
1123 REG_USERVAR_P (reg) = 1;
1127 /* Identify REG as a probable pointer register and show its alignment
1128 as ALIGN, if nonzero. */
1130 void
1131 mark_reg_pointer (rtx reg, int align)
1133 if (! REG_POINTER (reg))
1135 REG_POINTER (reg) = 1;
1137 if (align)
1138 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1140 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1141 /* We can no-longer be sure just how aligned this pointer is. */
1142 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1145 /* Return 1 plus largest pseudo reg number used in the current function. */
1148 max_reg_num (void)
1150 return reg_rtx_no;
1153 /* Return 1 + the largest label number used so far in the current function. */
1156 max_label_num (void)
1158 return label_num;
1161 /* Return first label number used in this function (if any were used). */
1164 get_first_label_num (void)
1166 return first_label_num;
1169 /* If the rtx for label was created during the expansion of a nested
1170 function, then first_label_num won't include this label number.
1171 Fix this now so that array indices work later. */
1173 void
1174 maybe_set_first_label_num (rtx x)
1176 if (CODE_LABEL_NUMBER (x) < first_label_num)
1177 first_label_num = CODE_LABEL_NUMBER (x);
1180 /* Return a value representing some low-order bits of X, where the number
1181 of low-order bits is given by MODE. Note that no conversion is done
1182 between floating-point and fixed-point values, rather, the bit
1183 representation is returned.
1185 This function handles the cases in common between gen_lowpart, below,
1186 and two variants in cse.c and combine.c. These are the cases that can
1187 be safely handled at all points in the compilation.
1189 If this is not a case we can handle, return 0. */
1192 gen_lowpart_common (enum machine_mode mode, rtx x)
1194 int msize = GET_MODE_SIZE (mode);
1195 int xsize;
1196 int offset = 0;
1197 enum machine_mode innermode;
1199 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1200 so we have to make one up. Yuk. */
1201 innermode = GET_MODE (x);
1202 if (CONST_INT_P (x)
1203 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1204 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1205 else if (innermode == VOIDmode)
1206 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1208 xsize = GET_MODE_SIZE (innermode);
1210 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1212 if (innermode == mode)
1213 return x;
1215 /* MODE must occupy no more words than the mode of X. */
1216 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1217 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1218 return 0;
1220 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1221 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1222 return 0;
1224 offset = subreg_lowpart_offset (mode, innermode);
1226 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1227 && (GET_MODE_CLASS (mode) == MODE_INT
1228 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1230 /* If we are getting the low-order part of something that has been
1231 sign- or zero-extended, we can either just use the object being
1232 extended or make a narrower extension. If we want an even smaller
1233 piece than the size of the object being extended, call ourselves
1234 recursively.
1236 This case is used mostly by combine and cse. */
1238 if (GET_MODE (XEXP (x, 0)) == mode)
1239 return XEXP (x, 0);
1240 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1241 return gen_lowpart_common (mode, XEXP (x, 0));
1242 else if (msize < xsize)
1243 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1245 else if (GET_CODE (x) == SUBREG || REG_P (x)
1246 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1247 || CONST_DOUBLE_P (x) || CONST_INT_P (x))
1248 return simplify_gen_subreg (mode, x, innermode, offset);
1250 /* Otherwise, we can't do this. */
1251 return 0;
1255 gen_highpart (enum machine_mode mode, rtx x)
1257 unsigned int msize = GET_MODE_SIZE (mode);
1258 rtx result;
1260 /* This case loses if X is a subreg. To catch bugs early,
1261 complain if an invalid MODE is used even in other cases. */
1262 gcc_assert (msize <= UNITS_PER_WORD
1263 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1265 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1266 subreg_highpart_offset (mode, GET_MODE (x)));
1267 gcc_assert (result);
1269 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1270 the target if we have a MEM. gen_highpart must return a valid operand,
1271 emitting code if necessary to do so. */
1272 if (MEM_P (result))
1274 result = validize_mem (result);
1275 gcc_assert (result);
1278 return result;
1281 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1282 be VOIDmode constant. */
1284 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1286 if (GET_MODE (exp) != VOIDmode)
1288 gcc_assert (GET_MODE (exp) == innermode);
1289 return gen_highpart (outermode, exp);
1291 return simplify_gen_subreg (outermode, exp, innermode,
1292 subreg_highpart_offset (outermode, innermode));
1295 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1297 unsigned int
1298 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1300 unsigned int offset = 0;
1301 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1303 if (difference > 0)
1305 if (WORDS_BIG_ENDIAN)
1306 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1307 if (BYTES_BIG_ENDIAN)
1308 offset += difference % UNITS_PER_WORD;
1311 return offset;
1314 /* Return offset in bytes to get OUTERMODE high part
1315 of the value in mode INNERMODE stored in memory in target format. */
1316 unsigned int
1317 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1319 unsigned int offset = 0;
1320 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1322 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1324 if (difference > 0)
1326 if (! WORDS_BIG_ENDIAN)
1327 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1328 if (! BYTES_BIG_ENDIAN)
1329 offset += difference % UNITS_PER_WORD;
1332 return offset;
1335 /* Return 1 iff X, assumed to be a SUBREG,
1336 refers to the least significant part of its containing reg.
1337 If X is not a SUBREG, always return 1 (it is its own low part!). */
1340 subreg_lowpart_p (const_rtx x)
1342 if (GET_CODE (x) != SUBREG)
1343 return 1;
1344 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1345 return 0;
1347 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1348 == SUBREG_BYTE (x));
1351 /* Return true if X is a paradoxical subreg, false otherwise. */
1352 bool
1353 paradoxical_subreg_p (const_rtx x)
1355 if (GET_CODE (x) != SUBREG)
1356 return false;
1357 return (GET_MODE_PRECISION (GET_MODE (x))
1358 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1361 /* Return subword OFFSET of operand OP.
1362 The word number, OFFSET, is interpreted as the word number starting
1363 at the low-order address. OFFSET 0 is the low-order word if not
1364 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1366 If we cannot extract the required word, we return zero. Otherwise,
1367 an rtx corresponding to the requested word will be returned.
1369 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1370 reload has completed, a valid address will always be returned. After
1371 reload, if a valid address cannot be returned, we return zero.
1373 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1374 it is the responsibility of the caller.
1376 MODE is the mode of OP in case it is a CONST_INT.
1378 ??? This is still rather broken for some cases. The problem for the
1379 moment is that all callers of this thing provide no 'goal mode' to
1380 tell us to work with. This exists because all callers were written
1381 in a word based SUBREG world.
1382 Now use of this function can be deprecated by simplify_subreg in most
1383 cases.
1387 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1389 if (mode == VOIDmode)
1390 mode = GET_MODE (op);
1392 gcc_assert (mode != VOIDmode);
1394 /* If OP is narrower than a word, fail. */
1395 if (mode != BLKmode
1396 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1397 return 0;
1399 /* If we want a word outside OP, return zero. */
1400 if (mode != BLKmode
1401 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1402 return const0_rtx;
1404 /* Form a new MEM at the requested address. */
1405 if (MEM_P (op))
1407 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1409 if (! validate_address)
1410 return new_rtx;
1412 else if (reload_completed)
1414 if (! strict_memory_address_addr_space_p (word_mode,
1415 XEXP (new_rtx, 0),
1416 MEM_ADDR_SPACE (op)))
1417 return 0;
1419 else
1420 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1423 /* Rest can be handled by simplify_subreg. */
1424 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1427 /* Similar to `operand_subword', but never return 0. If we can't
1428 extract the required subword, put OP into a register and try again.
1429 The second attempt must succeed. We always validate the address in
1430 this case.
1432 MODE is the mode of OP, in case it is CONST_INT. */
1435 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1437 rtx result = operand_subword (op, offset, 1, mode);
1439 if (result)
1440 return result;
1442 if (mode != BLKmode && mode != VOIDmode)
1444 /* If this is a register which can not be accessed by words, copy it
1445 to a pseudo register. */
1446 if (REG_P (op))
1447 op = copy_to_reg (op);
1448 else
1449 op = force_reg (mode, op);
1452 result = operand_subword (op, offset, 1, mode);
1453 gcc_assert (result);
1455 return result;
1458 /* Returns 1 if both MEM_EXPR can be considered equal
1459 and 0 otherwise. */
1462 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1464 if (expr1 == expr2)
1465 return 1;
1467 if (! expr1 || ! expr2)
1468 return 0;
1470 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1471 return 0;
1473 return operand_equal_p (expr1, expr2, 0);
1476 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1477 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1478 -1 if not known. */
1481 get_mem_align_offset (rtx mem, unsigned int align)
1483 tree expr;
1484 unsigned HOST_WIDE_INT offset;
1486 /* This function can't use
1487 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1488 || (MAX (MEM_ALIGN (mem),
1489 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1490 < align))
1491 return -1;
1492 else
1493 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1494 for two reasons:
1495 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1496 for <variable>. get_inner_reference doesn't handle it and
1497 even if it did, the alignment in that case needs to be determined
1498 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1499 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1500 isn't sufficiently aligned, the object it is in might be. */
1501 gcc_assert (MEM_P (mem));
1502 expr = MEM_EXPR (mem);
1503 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1504 return -1;
1506 offset = MEM_OFFSET (mem);
1507 if (DECL_P (expr))
1509 if (DECL_ALIGN (expr) < align)
1510 return -1;
1512 else if (INDIRECT_REF_P (expr))
1514 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1515 return -1;
1517 else if (TREE_CODE (expr) == COMPONENT_REF)
1519 while (1)
1521 tree inner = TREE_OPERAND (expr, 0);
1522 tree field = TREE_OPERAND (expr, 1);
1523 tree byte_offset = component_ref_field_offset (expr);
1524 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1526 if (!byte_offset
1527 || !host_integerp (byte_offset, 1)
1528 || !host_integerp (bit_offset, 1))
1529 return -1;
1531 offset += tree_low_cst (byte_offset, 1);
1532 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1534 if (inner == NULL_TREE)
1536 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1537 < (unsigned int) align)
1538 return -1;
1539 break;
1541 else if (DECL_P (inner))
1543 if (DECL_ALIGN (inner) < align)
1544 return -1;
1545 break;
1547 else if (TREE_CODE (inner) != COMPONENT_REF)
1548 return -1;
1549 expr = inner;
1552 else
1553 return -1;
1555 return offset & ((align / BITS_PER_UNIT) - 1);
1558 /* Given REF (a MEM) and T, either the type of X or the expression
1559 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1560 if we are making a new object of this type. BITPOS is nonzero if
1561 there is an offset outstanding on T that will be applied later. */
1563 void
1564 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1565 HOST_WIDE_INT bitpos)
1567 HOST_WIDE_INT apply_bitpos = 0;
1568 tree type;
1569 struct mem_attrs attrs, *defattrs, *refattrs;
1570 addr_space_t as;
1572 /* It can happen that type_for_mode was given a mode for which there
1573 is no language-level type. In which case it returns NULL, which
1574 we can see here. */
1575 if (t == NULL_TREE)
1576 return;
1578 type = TYPE_P (t) ? t : TREE_TYPE (t);
1579 if (type == error_mark_node)
1580 return;
1582 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1583 wrong answer, as it assumes that DECL_RTL already has the right alias
1584 info. Callers should not set DECL_RTL until after the call to
1585 set_mem_attributes. */
1586 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1588 memset (&attrs, 0, sizeof (attrs));
1590 /* Get the alias set from the expression or type (perhaps using a
1591 front-end routine) and use it. */
1592 attrs.alias = get_alias_set (t);
1594 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1595 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1597 /* Default values from pre-existing memory attributes if present. */
1598 refattrs = MEM_ATTRS (ref);
1599 if (refattrs)
1601 /* ??? Can this ever happen? Calling this routine on a MEM that
1602 already carries memory attributes should probably be invalid. */
1603 attrs.expr = refattrs->expr;
1604 attrs.offset_known_p = refattrs->offset_known_p;
1605 attrs.offset = refattrs->offset;
1606 attrs.size_known_p = refattrs->size_known_p;
1607 attrs.size = refattrs->size;
1608 attrs.align = refattrs->align;
1611 /* Otherwise, default values from the mode of the MEM reference. */
1612 else
1614 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1615 gcc_assert (!defattrs->expr);
1616 gcc_assert (!defattrs->offset_known_p);
1618 /* Respect mode size. */
1619 attrs.size_known_p = defattrs->size_known_p;
1620 attrs.size = defattrs->size;
1621 /* ??? Is this really necessary? We probably should always get
1622 the size from the type below. */
1624 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1625 if T is an object, always compute the object alignment below. */
1626 if (TYPE_P (t))
1627 attrs.align = defattrs->align;
1628 else
1629 attrs.align = BITS_PER_UNIT;
1630 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1631 e.g. if the type carries an alignment attribute. Should we be
1632 able to simply always use TYPE_ALIGN? */
1635 /* We can set the alignment from the type if we are making an object,
1636 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1637 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1638 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1640 else if (TREE_CODE (t) == MEM_REF)
1642 tree op0 = TREE_OPERAND (t, 0);
1643 if (TREE_CODE (op0) == ADDR_EXPR
1644 && (DECL_P (TREE_OPERAND (op0, 0))
1645 || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))))
1647 if (DECL_P (TREE_OPERAND (op0, 0)))
1648 attrs.align = DECL_ALIGN (TREE_OPERAND (op0, 0));
1649 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
1651 attrs.align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
1652 #ifdef CONSTANT_ALIGNMENT
1653 attrs.align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0),
1654 attrs.align);
1655 #endif
1657 if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0)
1659 unsigned HOST_WIDE_INT ioff
1660 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1661 unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1662 attrs.align = MIN (aoff, attrs.align);
1665 else
1666 /* ??? This isn't fully correct, we can't set the alignment from the
1667 type in all cases. */
1668 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1671 else if (TREE_CODE (t) == TARGET_MEM_REF)
1672 /* ??? This isn't fully correct, we can't set the alignment from the
1673 type in all cases. */
1674 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1676 /* If the size is known, we can set that. */
1677 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1679 attrs.size_known_p = true;
1680 attrs.size = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
1683 /* If T is not a type, we may be able to deduce some more information about
1684 the expression. */
1685 if (! TYPE_P (t))
1687 tree base;
1688 bool align_computed = false;
1690 if (TREE_THIS_VOLATILE (t))
1691 MEM_VOLATILE_P (ref) = 1;
1693 /* Now remove any conversions: they don't change what the underlying
1694 object is. Likewise for SAVE_EXPR. */
1695 while (CONVERT_EXPR_P (t)
1696 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1697 || TREE_CODE (t) == SAVE_EXPR)
1698 t = TREE_OPERAND (t, 0);
1700 /* Note whether this expression can trap. */
1701 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1703 base = get_base_address (t);
1704 if (base)
1706 if (DECL_P (base)
1707 && TREE_READONLY (base)
1708 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1709 && !TREE_THIS_VOLATILE (base))
1710 MEM_READONLY_P (ref) = 1;
1712 /* Mark static const strings readonly as well. */
1713 if (TREE_CODE (base) == STRING_CST
1714 && TREE_READONLY (base)
1715 && TREE_STATIC (base))
1716 MEM_READONLY_P (ref) = 1;
1718 if (TREE_CODE (base) == MEM_REF
1719 || TREE_CODE (base) == TARGET_MEM_REF)
1720 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1721 0))));
1722 else
1723 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1725 else
1726 as = TYPE_ADDR_SPACE (type);
1728 /* If this expression uses it's parent's alias set, mark it such
1729 that we won't change it. */
1730 if (component_uses_parent_alias_set (t))
1731 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1733 /* If this is a decl, set the attributes of the MEM from it. */
1734 if (DECL_P (t))
1736 attrs.expr = t;
1737 attrs.offset_known_p = true;
1738 attrs.offset = 0;
1739 apply_bitpos = bitpos;
1740 if (DECL_SIZE_UNIT (t) && host_integerp (DECL_SIZE_UNIT (t), 1))
1742 attrs.size_known_p = true;
1743 attrs.size = tree_low_cst (DECL_SIZE_UNIT (t), 1);
1745 else
1746 attrs.size_known_p = false;
1747 attrs.align = DECL_ALIGN (t);
1748 align_computed = true;
1751 /* If this is a constant, we know the alignment. */
1752 else if (CONSTANT_CLASS_P (t))
1754 attrs.align = TYPE_ALIGN (type);
1755 #ifdef CONSTANT_ALIGNMENT
1756 attrs.align = CONSTANT_ALIGNMENT (t, attrs.align);
1757 #endif
1758 align_computed = true;
1761 /* If this is a field reference and not a bit-field, record it. */
1762 /* ??? There is some information that can be gleaned from bit-fields,
1763 such as the word offset in the structure that might be modified.
1764 But skip it for now. */
1765 else if (TREE_CODE (t) == COMPONENT_REF
1766 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1768 attrs.expr = t;
1769 attrs.offset_known_p = true;
1770 attrs.offset = 0;
1771 apply_bitpos = bitpos;
1772 /* ??? Any reason the field size would be different than
1773 the size we got from the type? */
1776 /* If this is an array reference, look for an outer field reference. */
1777 else if (TREE_CODE (t) == ARRAY_REF)
1779 tree off_tree = size_zero_node;
1780 /* We can't modify t, because we use it at the end of the
1781 function. */
1782 tree t2 = t;
1786 tree index = TREE_OPERAND (t2, 1);
1787 tree low_bound = array_ref_low_bound (t2);
1788 tree unit_size = array_ref_element_size (t2);
1790 /* We assume all arrays have sizes that are a multiple of a byte.
1791 First subtract the lower bound, if any, in the type of the
1792 index, then convert to sizetype and multiply by the size of
1793 the array element. */
1794 if (! integer_zerop (low_bound))
1795 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1796 index, low_bound);
1798 off_tree = size_binop (PLUS_EXPR,
1799 size_binop (MULT_EXPR,
1800 fold_convert (sizetype,
1801 index),
1802 unit_size),
1803 off_tree);
1804 t2 = TREE_OPERAND (t2, 0);
1806 while (TREE_CODE (t2) == ARRAY_REF);
1808 if (DECL_P (t2))
1810 attrs.expr = t2;
1811 attrs.offset_known_p = false;
1812 if (host_integerp (off_tree, 1))
1814 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1815 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1816 attrs.align = DECL_ALIGN (t2);
1817 if (aoff && (unsigned HOST_WIDE_INT) aoff < attrs.align)
1818 attrs.align = aoff;
1819 align_computed = true;
1820 attrs.offset_known_p = true;
1821 attrs.offset = ioff;
1822 apply_bitpos = bitpos;
1825 else if (TREE_CODE (t2) == COMPONENT_REF)
1827 attrs.expr = t2;
1828 attrs.offset_known_p = false;
1829 if (host_integerp (off_tree, 1))
1831 attrs.offset_known_p = true;
1832 attrs.offset = tree_low_cst (off_tree, 1);
1833 apply_bitpos = bitpos;
1835 /* ??? Any reason the field size would be different than
1836 the size we got from the type? */
1840 /* If this is an indirect reference, record it. */
1841 else if (TREE_CODE (t) == MEM_REF
1842 || TREE_CODE (t) == TARGET_MEM_REF)
1844 attrs.expr = t;
1845 attrs.offset_known_p = true;
1846 attrs.offset = 0;
1847 apply_bitpos = bitpos;
1850 if (!align_computed)
1852 unsigned int obj_align = get_object_alignment (t);
1853 attrs.align = MAX (attrs.align, obj_align);
1856 else
1857 as = TYPE_ADDR_SPACE (type);
1859 /* If we modified OFFSET based on T, then subtract the outstanding
1860 bit position offset. Similarly, increase the size of the accessed
1861 object to contain the negative offset. */
1862 if (apply_bitpos)
1864 gcc_assert (attrs.offset_known_p);
1865 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1866 if (attrs.size_known_p)
1867 attrs.size += apply_bitpos / BITS_PER_UNIT;
1870 /* Now set the attributes we computed above. */
1871 attrs.addrspace = as;
1872 set_mem_attrs (ref, &attrs);
1875 void
1876 set_mem_attributes (rtx ref, tree t, int objectp)
1878 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1881 /* Set the alias set of MEM to SET. */
1883 void
1884 set_mem_alias_set (rtx mem, alias_set_type set)
1886 struct mem_attrs attrs;
1888 /* If the new and old alias sets don't conflict, something is wrong. */
1889 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1890 attrs = *get_mem_attrs (mem);
1891 attrs.alias = set;
1892 set_mem_attrs (mem, &attrs);
1895 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1897 void
1898 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1900 struct mem_attrs attrs;
1902 attrs = *get_mem_attrs (mem);
1903 attrs.addrspace = addrspace;
1904 set_mem_attrs (mem, &attrs);
1907 /* Set the alignment of MEM to ALIGN bits. */
1909 void
1910 set_mem_align (rtx mem, unsigned int align)
1912 struct mem_attrs attrs;
1914 attrs = *get_mem_attrs (mem);
1915 attrs.align = align;
1916 set_mem_attrs (mem, &attrs);
1919 /* Set the expr for MEM to EXPR. */
1921 void
1922 set_mem_expr (rtx mem, tree expr)
1924 struct mem_attrs attrs;
1926 attrs = *get_mem_attrs (mem);
1927 attrs.expr = expr;
1928 set_mem_attrs (mem, &attrs);
1931 /* Set the offset of MEM to OFFSET. */
1933 void
1934 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1936 struct mem_attrs attrs;
1938 attrs = *get_mem_attrs (mem);
1939 attrs.offset_known_p = true;
1940 attrs.offset = offset;
1941 set_mem_attrs (mem, &attrs);
1944 /* Clear the offset of MEM. */
1946 void
1947 clear_mem_offset (rtx mem)
1949 struct mem_attrs attrs;
1951 attrs = *get_mem_attrs (mem);
1952 attrs.offset_known_p = false;
1953 set_mem_attrs (mem, &attrs);
1956 /* Set the size of MEM to SIZE. */
1958 void
1959 set_mem_size (rtx mem, HOST_WIDE_INT size)
1961 struct mem_attrs attrs;
1963 attrs = *get_mem_attrs (mem);
1964 attrs.size_known_p = true;
1965 attrs.size = size;
1966 set_mem_attrs (mem, &attrs);
1969 /* Clear the size of MEM. */
1971 void
1972 clear_mem_size (rtx mem)
1974 struct mem_attrs attrs;
1976 attrs = *get_mem_attrs (mem);
1977 attrs.size_known_p = false;
1978 set_mem_attrs (mem, &attrs);
1981 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1982 and its address changed to ADDR. (VOIDmode means don't change the mode.
1983 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1984 returned memory location is required to be valid. The memory
1985 attributes are not changed. */
1987 static rtx
1988 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1990 addr_space_t as;
1991 rtx new_rtx;
1993 gcc_assert (MEM_P (memref));
1994 as = MEM_ADDR_SPACE (memref);
1995 if (mode == VOIDmode)
1996 mode = GET_MODE (memref);
1997 if (addr == 0)
1998 addr = XEXP (memref, 0);
1999 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2000 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2001 return memref;
2003 if (validate)
2005 if (reload_in_progress || reload_completed)
2006 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2007 else
2008 addr = memory_address_addr_space (mode, addr, as);
2011 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2012 return memref;
2014 new_rtx = gen_rtx_MEM (mode, addr);
2015 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2016 return new_rtx;
2019 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2020 way we are changing MEMREF, so we only preserve the alias set. */
2023 change_address (rtx memref, enum machine_mode mode, rtx addr)
2025 rtx new_rtx = change_address_1 (memref, mode, addr, 1);
2026 enum machine_mode mmode = GET_MODE (new_rtx);
2027 struct mem_attrs attrs, *defattrs;
2029 attrs = *get_mem_attrs (memref);
2030 defattrs = mode_mem_attrs[(int) mmode];
2031 attrs.expr = NULL_TREE;
2032 attrs.offset_known_p = false;
2033 attrs.size_known_p = defattrs->size_known_p;
2034 attrs.size = defattrs->size;
2035 attrs.align = defattrs->align;
2037 /* If there are no changes, just return the original memory reference. */
2038 if (new_rtx == memref)
2040 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2041 return new_rtx;
2043 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2044 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2047 set_mem_attrs (new_rtx, &attrs);
2048 return new_rtx;
2051 /* Return a memory reference like MEMREF, but with its mode changed
2052 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2053 nonzero, the memory address is forced to be valid.
2054 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2055 and caller is responsible for adjusting MEMREF base register. */
2058 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2059 int validate, int adjust)
2061 rtx addr = XEXP (memref, 0);
2062 rtx new_rtx;
2063 enum machine_mode address_mode;
2064 int pbits;
2065 struct mem_attrs attrs, *defattrs;
2066 unsigned HOST_WIDE_INT max_align;
2068 attrs = *get_mem_attrs (memref);
2070 /* If there are no changes, just return the original memory reference. */
2071 if (mode == GET_MODE (memref) && !offset
2072 && (!validate || memory_address_addr_space_p (mode, addr,
2073 attrs.addrspace)))
2074 return memref;
2076 /* ??? Prefer to create garbage instead of creating shared rtl.
2077 This may happen even if offset is nonzero -- consider
2078 (plus (plus reg reg) const_int) -- so do this always. */
2079 addr = copy_rtx (addr);
2081 /* Convert a possibly large offset to a signed value within the
2082 range of the target address space. */
2083 address_mode = get_address_mode (memref);
2084 pbits = GET_MODE_BITSIZE (address_mode);
2085 if (HOST_BITS_PER_WIDE_INT > pbits)
2087 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2088 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2089 >> shift);
2092 if (adjust)
2094 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2095 object, we can merge it into the LO_SUM. */
2096 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2097 && offset >= 0
2098 && (unsigned HOST_WIDE_INT) offset
2099 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2100 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2101 plus_constant (address_mode,
2102 XEXP (addr, 1), offset));
2103 else
2104 addr = plus_constant (address_mode, addr, offset);
2107 new_rtx = change_address_1 (memref, mode, addr, validate);
2109 /* If the address is a REG, change_address_1 rightfully returns memref,
2110 but this would destroy memref's MEM_ATTRS. */
2111 if (new_rtx == memref && offset != 0)
2112 new_rtx = copy_rtx (new_rtx);
2114 /* Compute the new values of the memory attributes due to this adjustment.
2115 We add the offsets and update the alignment. */
2116 if (attrs.offset_known_p)
2117 attrs.offset += offset;
2119 /* Compute the new alignment by taking the MIN of the alignment and the
2120 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2121 if zero. */
2122 if (offset != 0)
2124 max_align = (offset & -offset) * BITS_PER_UNIT;
2125 attrs.align = MIN (attrs.align, max_align);
2128 /* We can compute the size in a number of ways. */
2129 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2130 if (defattrs->size_known_p)
2132 attrs.size_known_p = true;
2133 attrs.size = defattrs->size;
2135 else if (attrs.size_known_p)
2136 attrs.size -= offset;
2138 set_mem_attrs (new_rtx, &attrs);
2140 /* At some point, we should validate that this offset is within the object,
2141 if all the appropriate values are known. */
2142 return new_rtx;
2145 /* Return a memory reference like MEMREF, but with its mode changed
2146 to MODE and its address changed to ADDR, which is assumed to be
2147 MEMREF offset by OFFSET bytes. If VALIDATE is
2148 nonzero, the memory address is forced to be valid. */
2151 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2152 HOST_WIDE_INT offset, int validate)
2154 memref = change_address_1 (memref, VOIDmode, addr, validate);
2155 return adjust_address_1 (memref, mode, offset, validate, 0);
2158 /* Return a memory reference like MEMREF, but whose address is changed by
2159 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2160 known to be in OFFSET (possibly 1). */
2163 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2165 rtx new_rtx, addr = XEXP (memref, 0);
2166 enum machine_mode address_mode;
2167 struct mem_attrs attrs, *defattrs;
2169 attrs = *get_mem_attrs (memref);
2170 address_mode = get_address_mode (memref);
2171 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2173 /* At this point we don't know _why_ the address is invalid. It
2174 could have secondary memory references, multiplies or anything.
2176 However, if we did go and rearrange things, we can wind up not
2177 being able to recognize the magic around pic_offset_table_rtx.
2178 This stuff is fragile, and is yet another example of why it is
2179 bad to expose PIC machinery too early. */
2180 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2181 attrs.addrspace)
2182 && GET_CODE (addr) == PLUS
2183 && XEXP (addr, 0) == pic_offset_table_rtx)
2185 addr = force_reg (GET_MODE (addr), addr);
2186 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2189 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2190 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2192 /* If there are no changes, just return the original memory reference. */
2193 if (new_rtx == memref)
2194 return new_rtx;
2196 /* Update the alignment to reflect the offset. Reset the offset, which
2197 we don't know. */
2198 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2199 attrs.offset_known_p = false;
2200 attrs.size_known_p = defattrs->size_known_p;
2201 attrs.size = defattrs->size;
2202 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2203 set_mem_attrs (new_rtx, &attrs);
2204 return new_rtx;
2207 /* Return a memory reference like MEMREF, but with its address changed to
2208 ADDR. The caller is asserting that the actual piece of memory pointed
2209 to is the same, just the form of the address is being changed, such as
2210 by putting something into a register. */
2213 replace_equiv_address (rtx memref, rtx addr)
2215 /* change_address_1 copies the memory attribute structure without change
2216 and that's exactly what we want here. */
2217 update_temp_slot_address (XEXP (memref, 0), addr);
2218 return change_address_1 (memref, VOIDmode, addr, 1);
2221 /* Likewise, but the reference is not required to be valid. */
2224 replace_equiv_address_nv (rtx memref, rtx addr)
2226 return change_address_1 (memref, VOIDmode, addr, 0);
2229 /* Return a memory reference like MEMREF, but with its mode widened to
2230 MODE and offset by OFFSET. This would be used by targets that e.g.
2231 cannot issue QImode memory operations and have to use SImode memory
2232 operations plus masking logic. */
2235 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2237 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2238 struct mem_attrs attrs;
2239 unsigned int size = GET_MODE_SIZE (mode);
2241 /* If there are no changes, just return the original memory reference. */
2242 if (new_rtx == memref)
2243 return new_rtx;
2245 attrs = *get_mem_attrs (new_rtx);
2247 /* If we don't know what offset we were at within the expression, then
2248 we can't know if we've overstepped the bounds. */
2249 if (! attrs.offset_known_p)
2250 attrs.expr = NULL_TREE;
2252 while (attrs.expr)
2254 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2256 tree field = TREE_OPERAND (attrs.expr, 1);
2257 tree offset = component_ref_field_offset (attrs.expr);
2259 if (! DECL_SIZE_UNIT (field))
2261 attrs.expr = NULL_TREE;
2262 break;
2265 /* Is the field at least as large as the access? If so, ok,
2266 otherwise strip back to the containing structure. */
2267 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2268 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2269 && attrs.offset >= 0)
2270 break;
2272 if (! host_integerp (offset, 1))
2274 attrs.expr = NULL_TREE;
2275 break;
2278 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2279 attrs.offset += tree_low_cst (offset, 1);
2280 attrs.offset += (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2281 / BITS_PER_UNIT);
2283 /* Similarly for the decl. */
2284 else if (DECL_P (attrs.expr)
2285 && DECL_SIZE_UNIT (attrs.expr)
2286 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2287 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2288 && (! attrs.offset_known_p || attrs.offset >= 0))
2289 break;
2290 else
2292 /* The widened memory access overflows the expression, which means
2293 that it could alias another expression. Zap it. */
2294 attrs.expr = NULL_TREE;
2295 break;
2299 if (! attrs.expr)
2300 attrs.offset_known_p = false;
2302 /* The widened memory may alias other stuff, so zap the alias set. */
2303 /* ??? Maybe use get_alias_set on any remaining expression. */
2304 attrs.alias = 0;
2305 attrs.size_known_p = true;
2306 attrs.size = size;
2307 set_mem_attrs (new_rtx, &attrs);
2308 return new_rtx;
2311 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2312 static GTY(()) tree spill_slot_decl;
2314 tree
2315 get_spill_slot_decl (bool force_build_p)
2317 tree d = spill_slot_decl;
2318 rtx rd;
2319 struct mem_attrs attrs;
2321 if (d || !force_build_p)
2322 return d;
2324 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2325 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2326 DECL_ARTIFICIAL (d) = 1;
2327 DECL_IGNORED_P (d) = 1;
2328 TREE_USED (d) = 1;
2329 spill_slot_decl = d;
2331 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2332 MEM_NOTRAP_P (rd) = 1;
2333 attrs = *mode_mem_attrs[(int) BLKmode];
2334 attrs.alias = new_alias_set ();
2335 attrs.expr = d;
2336 set_mem_attrs (rd, &attrs);
2337 SET_DECL_RTL (d, rd);
2339 return d;
2342 /* Given MEM, a result from assign_stack_local, fill in the memory
2343 attributes as appropriate for a register allocator spill slot.
2344 These slots are not aliasable by other memory. We arrange for
2345 them all to use a single MEM_EXPR, so that the aliasing code can
2346 work properly in the case of shared spill slots. */
2348 void
2349 set_mem_attrs_for_spill (rtx mem)
2351 struct mem_attrs attrs;
2352 rtx addr;
2354 attrs = *get_mem_attrs (mem);
2355 attrs.expr = get_spill_slot_decl (true);
2356 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2357 attrs.addrspace = ADDR_SPACE_GENERIC;
2359 /* We expect the incoming memory to be of the form:
2360 (mem:MODE (plus (reg sfp) (const_int offset)))
2361 with perhaps the plus missing for offset = 0. */
2362 addr = XEXP (mem, 0);
2363 attrs.offset_known_p = true;
2364 attrs.offset = 0;
2365 if (GET_CODE (addr) == PLUS
2366 && CONST_INT_P (XEXP (addr, 1)))
2367 attrs.offset = INTVAL (XEXP (addr, 1));
2369 set_mem_attrs (mem, &attrs);
2370 MEM_NOTRAP_P (mem) = 1;
2373 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2376 gen_label_rtx (void)
2378 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2379 NULL, label_num++, NULL);
2382 /* For procedure integration. */
2384 /* Install new pointers to the first and last insns in the chain.
2385 Also, set cur_insn_uid to one higher than the last in use.
2386 Used for an inline-procedure after copying the insn chain. */
2388 void
2389 set_new_first_and_last_insn (rtx first, rtx last)
2391 rtx insn;
2393 set_first_insn (first);
2394 set_last_insn (last);
2395 cur_insn_uid = 0;
2397 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2399 int debug_count = 0;
2401 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2402 cur_debug_insn_uid = 0;
2404 for (insn = first; insn; insn = NEXT_INSN (insn))
2405 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2406 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2407 else
2409 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2410 if (DEBUG_INSN_P (insn))
2411 debug_count++;
2414 if (debug_count)
2415 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2416 else
2417 cur_debug_insn_uid++;
2419 else
2420 for (insn = first; insn; insn = NEXT_INSN (insn))
2421 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2423 cur_insn_uid++;
2426 /* Go through all the RTL insn bodies and copy any invalid shared
2427 structure. This routine should only be called once. */
2429 static void
2430 unshare_all_rtl_1 (rtx insn)
2432 /* Unshare just about everything else. */
2433 unshare_all_rtl_in_chain (insn);
2435 /* Make sure the addresses of stack slots found outside the insn chain
2436 (such as, in DECL_RTL of a variable) are not shared
2437 with the insn chain.
2439 This special care is necessary when the stack slot MEM does not
2440 actually appear in the insn chain. If it does appear, its address
2441 is unshared from all else at that point. */
2442 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2445 /* Go through all the RTL insn bodies and copy any invalid shared
2446 structure, again. This is a fairly expensive thing to do so it
2447 should be done sparingly. */
2449 void
2450 unshare_all_rtl_again (rtx insn)
2452 rtx p;
2453 tree decl;
2455 for (p = insn; p; p = NEXT_INSN (p))
2456 if (INSN_P (p))
2458 reset_used_flags (PATTERN (p));
2459 reset_used_flags (REG_NOTES (p));
2460 if (CALL_P (p))
2461 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2464 /* Make sure that virtual stack slots are not shared. */
2465 set_used_decls (DECL_INITIAL (cfun->decl));
2467 /* Make sure that virtual parameters are not shared. */
2468 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2469 set_used_flags (DECL_RTL (decl));
2471 reset_used_flags (stack_slot_list);
2473 unshare_all_rtl_1 (insn);
2476 unsigned int
2477 unshare_all_rtl (void)
2479 unshare_all_rtl_1 (get_insns ());
2480 return 0;
2484 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2485 Recursively does the same for subexpressions. */
2487 static void
2488 verify_rtx_sharing (rtx orig, rtx insn)
2490 rtx x = orig;
2491 int i;
2492 enum rtx_code code;
2493 const char *format_ptr;
2495 if (x == 0)
2496 return;
2498 code = GET_CODE (x);
2500 /* These types may be freely shared. */
2502 switch (code)
2504 case REG:
2505 case DEBUG_EXPR:
2506 case VALUE:
2507 CASE_CONST_ANY:
2508 case SYMBOL_REF:
2509 case LABEL_REF:
2510 case CODE_LABEL:
2511 case PC:
2512 case CC0:
2513 case RETURN:
2514 case SIMPLE_RETURN:
2515 case SCRATCH:
2516 return;
2517 /* SCRATCH must be shared because they represent distinct values. */
2518 case CLOBBER:
2519 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2520 return;
2521 break;
2523 case CONST:
2524 if (shared_const_p (orig))
2525 return;
2526 break;
2528 case MEM:
2529 /* A MEM is allowed to be shared if its address is constant. */
2530 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2531 || reload_completed || reload_in_progress)
2532 return;
2534 break;
2536 default:
2537 break;
2540 /* This rtx may not be shared. If it has already been seen,
2541 replace it with a copy of itself. */
2542 #ifdef ENABLE_CHECKING
2543 if (RTX_FLAG (x, used))
2545 error ("invalid rtl sharing found in the insn");
2546 debug_rtx (insn);
2547 error ("shared rtx");
2548 debug_rtx (x);
2549 internal_error ("internal consistency failure");
2551 #endif
2552 gcc_assert (!RTX_FLAG (x, used));
2554 RTX_FLAG (x, used) = 1;
2556 /* Now scan the subexpressions recursively. */
2558 format_ptr = GET_RTX_FORMAT (code);
2560 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2562 switch (*format_ptr++)
2564 case 'e':
2565 verify_rtx_sharing (XEXP (x, i), insn);
2566 break;
2568 case 'E':
2569 if (XVEC (x, i) != NULL)
2571 int j;
2572 int len = XVECLEN (x, i);
2574 for (j = 0; j < len; j++)
2576 /* We allow sharing of ASM_OPERANDS inside single
2577 instruction. */
2578 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2579 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2580 == ASM_OPERANDS))
2581 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2582 else
2583 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2586 break;
2589 return;
2592 /* Go through all the RTL insn bodies and check that there is no unexpected
2593 sharing in between the subexpressions. */
2595 DEBUG_FUNCTION void
2596 verify_rtl_sharing (void)
2598 rtx p;
2600 timevar_push (TV_VERIFY_RTL_SHARING);
2602 for (p = get_insns (); p; p = NEXT_INSN (p))
2603 if (INSN_P (p))
2605 reset_used_flags (PATTERN (p));
2606 reset_used_flags (REG_NOTES (p));
2607 if (CALL_P (p))
2608 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2609 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2611 int i;
2612 rtx q, sequence = PATTERN (p);
2614 for (i = 0; i < XVECLEN (sequence, 0); i++)
2616 q = XVECEXP (sequence, 0, i);
2617 gcc_assert (INSN_P (q));
2618 reset_used_flags (PATTERN (q));
2619 reset_used_flags (REG_NOTES (q));
2620 if (CALL_P (q))
2621 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q));
2626 for (p = get_insns (); p; p = NEXT_INSN (p))
2627 if (INSN_P (p))
2629 verify_rtx_sharing (PATTERN (p), p);
2630 verify_rtx_sharing (REG_NOTES (p), p);
2631 if (CALL_P (p))
2632 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p), p);
2635 timevar_pop (TV_VERIFY_RTL_SHARING);
2638 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2639 Assumes the mark bits are cleared at entry. */
2641 void
2642 unshare_all_rtl_in_chain (rtx insn)
2644 for (; insn; insn = NEXT_INSN (insn))
2645 if (INSN_P (insn))
2647 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2648 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2649 if (CALL_P (insn))
2650 CALL_INSN_FUNCTION_USAGE (insn)
2651 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2655 /* Go through all virtual stack slots of a function and mark them as
2656 shared. We never replace the DECL_RTLs themselves with a copy,
2657 but expressions mentioned into a DECL_RTL cannot be shared with
2658 expressions in the instruction stream.
2660 Note that reload may convert pseudo registers into memories in-place.
2661 Pseudo registers are always shared, but MEMs never are. Thus if we
2662 reset the used flags on MEMs in the instruction stream, we must set
2663 them again on MEMs that appear in DECL_RTLs. */
2665 static void
2666 set_used_decls (tree blk)
2668 tree t;
2670 /* Mark decls. */
2671 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2672 if (DECL_RTL_SET_P (t))
2673 set_used_flags (DECL_RTL (t));
2675 /* Now process sub-blocks. */
2676 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2677 set_used_decls (t);
2680 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2681 Recursively does the same for subexpressions. Uses
2682 copy_rtx_if_shared_1 to reduce stack space. */
2685 copy_rtx_if_shared (rtx orig)
2687 copy_rtx_if_shared_1 (&orig);
2688 return orig;
2691 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2692 use. Recursively does the same for subexpressions. */
2694 static void
2695 copy_rtx_if_shared_1 (rtx *orig1)
2697 rtx x;
2698 int i;
2699 enum rtx_code code;
2700 rtx *last_ptr;
2701 const char *format_ptr;
2702 int copied = 0;
2703 int length;
2705 /* Repeat is used to turn tail-recursion into iteration. */
2706 repeat:
2707 x = *orig1;
2709 if (x == 0)
2710 return;
2712 code = GET_CODE (x);
2714 /* These types may be freely shared. */
2716 switch (code)
2718 case REG:
2719 case DEBUG_EXPR:
2720 case VALUE:
2721 CASE_CONST_ANY:
2722 case SYMBOL_REF:
2723 case LABEL_REF:
2724 case CODE_LABEL:
2725 case PC:
2726 case CC0:
2727 case RETURN:
2728 case SIMPLE_RETURN:
2729 case SCRATCH:
2730 /* SCRATCH must be shared because they represent distinct values. */
2731 return;
2732 case CLOBBER:
2733 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2734 return;
2735 break;
2737 case CONST:
2738 if (shared_const_p (x))
2739 return;
2740 break;
2742 case DEBUG_INSN:
2743 case INSN:
2744 case JUMP_INSN:
2745 case CALL_INSN:
2746 case NOTE:
2747 case BARRIER:
2748 /* The chain of insns is not being copied. */
2749 return;
2751 default:
2752 break;
2755 /* This rtx may not be shared. If it has already been seen,
2756 replace it with a copy of itself. */
2758 if (RTX_FLAG (x, used))
2760 x = shallow_copy_rtx (x);
2761 copied = 1;
2763 RTX_FLAG (x, used) = 1;
2765 /* Now scan the subexpressions recursively.
2766 We can store any replaced subexpressions directly into X
2767 since we know X is not shared! Any vectors in X
2768 must be copied if X was copied. */
2770 format_ptr = GET_RTX_FORMAT (code);
2771 length = GET_RTX_LENGTH (code);
2772 last_ptr = NULL;
2774 for (i = 0; i < length; i++)
2776 switch (*format_ptr++)
2778 case 'e':
2779 if (last_ptr)
2780 copy_rtx_if_shared_1 (last_ptr);
2781 last_ptr = &XEXP (x, i);
2782 break;
2784 case 'E':
2785 if (XVEC (x, i) != NULL)
2787 int j;
2788 int len = XVECLEN (x, i);
2790 /* Copy the vector iff I copied the rtx and the length
2791 is nonzero. */
2792 if (copied && len > 0)
2793 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2795 /* Call recursively on all inside the vector. */
2796 for (j = 0; j < len; j++)
2798 if (last_ptr)
2799 copy_rtx_if_shared_1 (last_ptr);
2800 last_ptr = &XVECEXP (x, i, j);
2803 break;
2806 *orig1 = x;
2807 if (last_ptr)
2809 orig1 = last_ptr;
2810 goto repeat;
2812 return;
2815 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2817 static void
2818 mark_used_flags (rtx x, int flag)
2820 int i, j;
2821 enum rtx_code code;
2822 const char *format_ptr;
2823 int length;
2825 /* Repeat is used to turn tail-recursion into iteration. */
2826 repeat:
2827 if (x == 0)
2828 return;
2830 code = GET_CODE (x);
2832 /* These types may be freely shared so we needn't do any resetting
2833 for them. */
2835 switch (code)
2837 case REG:
2838 case DEBUG_EXPR:
2839 case VALUE:
2840 CASE_CONST_ANY:
2841 case SYMBOL_REF:
2842 case CODE_LABEL:
2843 case PC:
2844 case CC0:
2845 case RETURN:
2846 case SIMPLE_RETURN:
2847 return;
2849 case DEBUG_INSN:
2850 case INSN:
2851 case JUMP_INSN:
2852 case CALL_INSN:
2853 case NOTE:
2854 case LABEL_REF:
2855 case BARRIER:
2856 /* The chain of insns is not being copied. */
2857 return;
2859 default:
2860 break;
2863 RTX_FLAG (x, used) = flag;
2865 format_ptr = GET_RTX_FORMAT (code);
2866 length = GET_RTX_LENGTH (code);
2868 for (i = 0; i < length; i++)
2870 switch (*format_ptr++)
2872 case 'e':
2873 if (i == length-1)
2875 x = XEXP (x, i);
2876 goto repeat;
2878 mark_used_flags (XEXP (x, i), flag);
2879 break;
2881 case 'E':
2882 for (j = 0; j < XVECLEN (x, i); j++)
2883 mark_used_flags (XVECEXP (x, i, j), flag);
2884 break;
2889 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2890 to look for shared sub-parts. */
2892 void
2893 reset_used_flags (rtx x)
2895 mark_used_flags (x, 0);
2898 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2899 to look for shared sub-parts. */
2901 void
2902 set_used_flags (rtx x)
2904 mark_used_flags (x, 1);
2907 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2908 Return X or the rtx for the pseudo reg the value of X was copied into.
2909 OTHER must be valid as a SET_DEST. */
2912 make_safe_from (rtx x, rtx other)
2914 while (1)
2915 switch (GET_CODE (other))
2917 case SUBREG:
2918 other = SUBREG_REG (other);
2919 break;
2920 case STRICT_LOW_PART:
2921 case SIGN_EXTEND:
2922 case ZERO_EXTEND:
2923 other = XEXP (other, 0);
2924 break;
2925 default:
2926 goto done;
2928 done:
2929 if ((MEM_P (other)
2930 && ! CONSTANT_P (x)
2931 && !REG_P (x)
2932 && GET_CODE (x) != SUBREG)
2933 || (REG_P (other)
2934 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2935 || reg_mentioned_p (other, x))))
2937 rtx temp = gen_reg_rtx (GET_MODE (x));
2938 emit_move_insn (temp, x);
2939 return temp;
2941 return x;
2944 /* Emission of insns (adding them to the doubly-linked list). */
2946 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2949 get_last_insn_anywhere (void)
2951 struct sequence_stack *stack;
2952 if (get_last_insn ())
2953 return get_last_insn ();
2954 for (stack = seq_stack; stack; stack = stack->next)
2955 if (stack->last != 0)
2956 return stack->last;
2957 return 0;
2960 /* Return the first nonnote insn emitted in current sequence or current
2961 function. This routine looks inside SEQUENCEs. */
2964 get_first_nonnote_insn (void)
2966 rtx insn = get_insns ();
2968 if (insn)
2970 if (NOTE_P (insn))
2971 for (insn = next_insn (insn);
2972 insn && NOTE_P (insn);
2973 insn = next_insn (insn))
2974 continue;
2975 else
2977 if (NONJUMP_INSN_P (insn)
2978 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2979 insn = XVECEXP (PATTERN (insn), 0, 0);
2983 return insn;
2986 /* Return the last nonnote insn emitted in current sequence or current
2987 function. This routine looks inside SEQUENCEs. */
2990 get_last_nonnote_insn (void)
2992 rtx insn = get_last_insn ();
2994 if (insn)
2996 if (NOTE_P (insn))
2997 for (insn = previous_insn (insn);
2998 insn && NOTE_P (insn);
2999 insn = previous_insn (insn))
3000 continue;
3001 else
3003 if (NONJUMP_INSN_P (insn)
3004 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3005 insn = XVECEXP (PATTERN (insn), 0,
3006 XVECLEN (PATTERN (insn), 0) - 1);
3010 return insn;
3013 /* Return the number of actual (non-debug) insns emitted in this
3014 function. */
3017 get_max_insn_count (void)
3019 int n = cur_insn_uid;
3021 /* The table size must be stable across -g, to avoid codegen
3022 differences due to debug insns, and not be affected by
3023 -fmin-insn-uid, to avoid excessive table size and to simplify
3024 debugging of -fcompare-debug failures. */
3025 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3026 n -= cur_debug_insn_uid;
3027 else
3028 n -= MIN_NONDEBUG_INSN_UID;
3030 return n;
3034 /* Return the next insn. If it is a SEQUENCE, return the first insn
3035 of the sequence. */
3038 next_insn (rtx insn)
3040 if (insn)
3042 insn = NEXT_INSN (insn);
3043 if (insn && NONJUMP_INSN_P (insn)
3044 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3045 insn = XVECEXP (PATTERN (insn), 0, 0);
3048 return insn;
3051 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3052 of the sequence. */
3055 previous_insn (rtx insn)
3057 if (insn)
3059 insn = PREV_INSN (insn);
3060 if (insn && NONJUMP_INSN_P (insn)
3061 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3062 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3065 return insn;
3068 /* Return the next insn after INSN that is not a NOTE. This routine does not
3069 look inside SEQUENCEs. */
3072 next_nonnote_insn (rtx insn)
3074 while (insn)
3076 insn = NEXT_INSN (insn);
3077 if (insn == 0 || !NOTE_P (insn))
3078 break;
3081 return insn;
3084 /* Return the next insn after INSN that is not a NOTE, but stop the
3085 search before we enter another basic block. This routine does not
3086 look inside SEQUENCEs. */
3089 next_nonnote_insn_bb (rtx insn)
3091 while (insn)
3093 insn = NEXT_INSN (insn);
3094 if (insn == 0 || !NOTE_P (insn))
3095 break;
3096 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3097 return NULL_RTX;
3100 return insn;
3103 /* Return the previous insn before INSN that is not a NOTE. This routine does
3104 not look inside SEQUENCEs. */
3107 prev_nonnote_insn (rtx insn)
3109 while (insn)
3111 insn = PREV_INSN (insn);
3112 if (insn == 0 || !NOTE_P (insn))
3113 break;
3116 return insn;
3119 /* Return the previous insn before INSN that is not a NOTE, but stop
3120 the search before we enter another basic block. This routine does
3121 not look inside SEQUENCEs. */
3124 prev_nonnote_insn_bb (rtx insn)
3126 while (insn)
3128 insn = PREV_INSN (insn);
3129 if (insn == 0 || !NOTE_P (insn))
3130 break;
3131 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3132 return NULL_RTX;
3135 return insn;
3138 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3139 routine does not look inside SEQUENCEs. */
3142 next_nondebug_insn (rtx insn)
3144 while (insn)
3146 insn = NEXT_INSN (insn);
3147 if (insn == 0 || !DEBUG_INSN_P (insn))
3148 break;
3151 return insn;
3154 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3155 This routine does not look inside SEQUENCEs. */
3158 prev_nondebug_insn (rtx insn)
3160 while (insn)
3162 insn = PREV_INSN (insn);
3163 if (insn == 0 || !DEBUG_INSN_P (insn))
3164 break;
3167 return insn;
3170 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3171 This routine does not look inside SEQUENCEs. */
3174 next_nonnote_nondebug_insn (rtx insn)
3176 while (insn)
3178 insn = NEXT_INSN (insn);
3179 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3180 break;
3183 return insn;
3186 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3187 This routine does not look inside SEQUENCEs. */
3190 prev_nonnote_nondebug_insn (rtx insn)
3192 while (insn)
3194 insn = PREV_INSN (insn);
3195 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3196 break;
3199 return insn;
3202 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3203 or 0, if there is none. This routine does not look inside
3204 SEQUENCEs. */
3207 next_real_insn (rtx insn)
3209 while (insn)
3211 insn = NEXT_INSN (insn);
3212 if (insn == 0 || INSN_P (insn))
3213 break;
3216 return insn;
3219 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3220 or 0, if there is none. This routine does not look inside
3221 SEQUENCEs. */
3224 prev_real_insn (rtx insn)
3226 while (insn)
3228 insn = PREV_INSN (insn);
3229 if (insn == 0 || INSN_P (insn))
3230 break;
3233 return insn;
3236 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3237 This routine does not look inside SEQUENCEs. */
3240 last_call_insn (void)
3242 rtx insn;
3244 for (insn = get_last_insn ();
3245 insn && !CALL_P (insn);
3246 insn = PREV_INSN (insn))
3249 return insn;
3252 /* Find the next insn after INSN that really does something. This routine
3253 does not look inside SEQUENCEs. After reload this also skips over
3254 standalone USE and CLOBBER insn. */
3257 active_insn_p (const_rtx insn)
3259 return (CALL_P (insn) || JUMP_P (insn)
3260 || (NONJUMP_INSN_P (insn)
3261 && (! reload_completed
3262 || (GET_CODE (PATTERN (insn)) != USE
3263 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3267 next_active_insn (rtx insn)
3269 while (insn)
3271 insn = NEXT_INSN (insn);
3272 if (insn == 0 || active_insn_p (insn))
3273 break;
3276 return insn;
3279 /* Find the last insn before INSN that really does something. This routine
3280 does not look inside SEQUENCEs. After reload this also skips over
3281 standalone USE and CLOBBER insn. */
3284 prev_active_insn (rtx insn)
3286 while (insn)
3288 insn = PREV_INSN (insn);
3289 if (insn == 0 || active_insn_p (insn))
3290 break;
3293 return insn;
3296 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3299 next_label (rtx insn)
3301 while (insn)
3303 insn = NEXT_INSN (insn);
3304 if (insn == 0 || LABEL_P (insn))
3305 break;
3308 return insn;
3311 /* Return the last label to mark the same position as LABEL. Return LABEL
3312 itself if it is null or any return rtx. */
3315 skip_consecutive_labels (rtx label)
3317 rtx insn;
3319 if (label && ANY_RETURN_P (label))
3320 return label;
3322 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3323 if (LABEL_P (insn))
3324 label = insn;
3326 return label;
3329 #ifdef HAVE_cc0
3330 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3331 and REG_CC_USER notes so we can find it. */
3333 void
3334 link_cc0_insns (rtx insn)
3336 rtx user = next_nonnote_insn (insn);
3338 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3339 user = XVECEXP (PATTERN (user), 0, 0);
3341 add_reg_note (user, REG_CC_SETTER, insn);
3342 add_reg_note (insn, REG_CC_USER, user);
3345 /* Return the next insn that uses CC0 after INSN, which is assumed to
3346 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3347 applied to the result of this function should yield INSN).
3349 Normally, this is simply the next insn. However, if a REG_CC_USER note
3350 is present, it contains the insn that uses CC0.
3352 Return 0 if we can't find the insn. */
3355 next_cc0_user (rtx insn)
3357 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3359 if (note)
3360 return XEXP (note, 0);
3362 insn = next_nonnote_insn (insn);
3363 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3364 insn = XVECEXP (PATTERN (insn), 0, 0);
3366 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3367 return insn;
3369 return 0;
3372 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3373 note, it is the previous insn. */
3376 prev_cc0_setter (rtx insn)
3378 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3380 if (note)
3381 return XEXP (note, 0);
3383 insn = prev_nonnote_insn (insn);
3384 gcc_assert (sets_cc0_p (PATTERN (insn)));
3386 return insn;
3388 #endif
3390 #ifdef AUTO_INC_DEC
3391 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3393 static int
3394 find_auto_inc (rtx *xp, void *data)
3396 rtx x = *xp;
3397 rtx reg = (rtx) data;
3399 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3400 return 0;
3402 switch (GET_CODE (x))
3404 case PRE_DEC:
3405 case PRE_INC:
3406 case POST_DEC:
3407 case POST_INC:
3408 case PRE_MODIFY:
3409 case POST_MODIFY:
3410 if (rtx_equal_p (reg, XEXP (x, 0)))
3411 return 1;
3412 break;
3414 default:
3415 gcc_unreachable ();
3417 return -1;
3419 #endif
3421 /* Increment the label uses for all labels present in rtx. */
3423 static void
3424 mark_label_nuses (rtx x)
3426 enum rtx_code code;
3427 int i, j;
3428 const char *fmt;
3430 code = GET_CODE (x);
3431 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3432 LABEL_NUSES (XEXP (x, 0))++;
3434 fmt = GET_RTX_FORMAT (code);
3435 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3437 if (fmt[i] == 'e')
3438 mark_label_nuses (XEXP (x, i));
3439 else if (fmt[i] == 'E')
3440 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3441 mark_label_nuses (XVECEXP (x, i, j));
3446 /* Try splitting insns that can be split for better scheduling.
3447 PAT is the pattern which might split.
3448 TRIAL is the insn providing PAT.
3449 LAST is nonzero if we should return the last insn of the sequence produced.
3451 If this routine succeeds in splitting, it returns the first or last
3452 replacement insn depending on the value of LAST. Otherwise, it
3453 returns TRIAL. If the insn to be returned can be split, it will be. */
3456 try_split (rtx pat, rtx trial, int last)
3458 rtx before = PREV_INSN (trial);
3459 rtx after = NEXT_INSN (trial);
3460 int has_barrier = 0;
3461 rtx note, seq, tem;
3462 int probability;
3463 rtx insn_last, insn;
3464 int njumps = 0;
3466 /* We're not good at redistributing frame information. */
3467 if (RTX_FRAME_RELATED_P (trial))
3468 return trial;
3470 if (any_condjump_p (trial)
3471 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3472 split_branch_probability = INTVAL (XEXP (note, 0));
3473 probability = split_branch_probability;
3475 seq = split_insns (pat, trial);
3477 split_branch_probability = -1;
3479 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3480 We may need to handle this specially. */
3481 if (after && BARRIER_P (after))
3483 has_barrier = 1;
3484 after = NEXT_INSN (after);
3487 if (!seq)
3488 return trial;
3490 /* Avoid infinite loop if any insn of the result matches
3491 the original pattern. */
3492 insn_last = seq;
3493 while (1)
3495 if (INSN_P (insn_last)
3496 && rtx_equal_p (PATTERN (insn_last), pat))
3497 return trial;
3498 if (!NEXT_INSN (insn_last))
3499 break;
3500 insn_last = NEXT_INSN (insn_last);
3503 /* We will be adding the new sequence to the function. The splitters
3504 may have introduced invalid RTL sharing, so unshare the sequence now. */
3505 unshare_all_rtl_in_chain (seq);
3507 /* Mark labels. */
3508 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3510 if (JUMP_P (insn))
3512 mark_jump_label (PATTERN (insn), insn, 0);
3513 njumps++;
3514 if (probability != -1
3515 && any_condjump_p (insn)
3516 && !find_reg_note (insn, REG_BR_PROB, 0))
3518 /* We can preserve the REG_BR_PROB notes only if exactly
3519 one jump is created, otherwise the machine description
3520 is responsible for this step using
3521 split_branch_probability variable. */
3522 gcc_assert (njumps == 1);
3523 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3528 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3529 in SEQ and copy any additional information across. */
3530 if (CALL_P (trial))
3532 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3533 if (CALL_P (insn))
3535 rtx next, *p;
3537 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3538 target may have explicitly specified. */
3539 p = &CALL_INSN_FUNCTION_USAGE (insn);
3540 while (*p)
3541 p = &XEXP (*p, 1);
3542 *p = CALL_INSN_FUNCTION_USAGE (trial);
3544 /* If the old call was a sibling call, the new one must
3545 be too. */
3546 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3548 /* If the new call is the last instruction in the sequence,
3549 it will effectively replace the old call in-situ. Otherwise
3550 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3551 so that it comes immediately after the new call. */
3552 if (NEXT_INSN (insn))
3553 for (next = NEXT_INSN (trial);
3554 next && NOTE_P (next);
3555 next = NEXT_INSN (next))
3556 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3558 remove_insn (next);
3559 add_insn_after (next, insn, NULL);
3560 break;
3565 /* Copy notes, particularly those related to the CFG. */
3566 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3568 switch (REG_NOTE_KIND (note))
3570 case REG_EH_REGION:
3571 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3572 break;
3574 case REG_NORETURN:
3575 case REG_SETJMP:
3576 case REG_TM:
3577 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3579 if (CALL_P (insn))
3580 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3582 break;
3584 case REG_NON_LOCAL_GOTO:
3585 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3587 if (JUMP_P (insn))
3588 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3590 break;
3592 #ifdef AUTO_INC_DEC
3593 case REG_INC:
3594 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3596 rtx reg = XEXP (note, 0);
3597 if (!FIND_REG_INC_NOTE (insn, reg)
3598 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3599 add_reg_note (insn, REG_INC, reg);
3601 break;
3602 #endif
3604 case REG_ARGS_SIZE:
3605 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3606 break;
3608 default:
3609 break;
3613 /* If there are LABELS inside the split insns increment the
3614 usage count so we don't delete the label. */
3615 if (INSN_P (trial))
3617 insn = insn_last;
3618 while (insn != NULL_RTX)
3620 /* JUMP_P insns have already been "marked" above. */
3621 if (NONJUMP_INSN_P (insn))
3622 mark_label_nuses (PATTERN (insn));
3624 insn = PREV_INSN (insn);
3628 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3630 delete_insn (trial);
3631 if (has_barrier)
3632 emit_barrier_after (tem);
3634 /* Recursively call try_split for each new insn created; by the
3635 time control returns here that insn will be fully split, so
3636 set LAST and continue from the insn after the one returned.
3637 We can't use next_active_insn here since AFTER may be a note.
3638 Ignore deleted insns, which can be occur if not optimizing. */
3639 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3640 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3641 tem = try_split (PATTERN (tem), tem, 1);
3643 /* Return either the first or the last insn, depending on which was
3644 requested. */
3645 return last
3646 ? (after ? PREV_INSN (after) : get_last_insn ())
3647 : NEXT_INSN (before);
3650 /* Make and return an INSN rtx, initializing all its slots.
3651 Store PATTERN in the pattern slots. */
3654 make_insn_raw (rtx pattern)
3656 rtx insn;
3658 insn = rtx_alloc (INSN);
3660 INSN_UID (insn) = cur_insn_uid++;
3661 PATTERN (insn) = pattern;
3662 INSN_CODE (insn) = -1;
3663 REG_NOTES (insn) = NULL;
3664 INSN_LOCATOR (insn) = curr_insn_locator ();
3665 BLOCK_FOR_INSN (insn) = NULL;
3667 #ifdef ENABLE_RTL_CHECKING
3668 if (insn
3669 && INSN_P (insn)
3670 && (returnjump_p (insn)
3671 || (GET_CODE (insn) == SET
3672 && SET_DEST (insn) == pc_rtx)))
3674 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3675 debug_rtx (insn);
3677 #endif
3679 return insn;
3682 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3684 static rtx
3685 make_debug_insn_raw (rtx pattern)
3687 rtx insn;
3689 insn = rtx_alloc (DEBUG_INSN);
3690 INSN_UID (insn) = cur_debug_insn_uid++;
3691 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3692 INSN_UID (insn) = cur_insn_uid++;
3694 PATTERN (insn) = pattern;
3695 INSN_CODE (insn) = -1;
3696 REG_NOTES (insn) = NULL;
3697 INSN_LOCATOR (insn) = curr_insn_locator ();
3698 BLOCK_FOR_INSN (insn) = NULL;
3700 return insn;
3703 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3705 static rtx
3706 make_jump_insn_raw (rtx pattern)
3708 rtx insn;
3710 insn = rtx_alloc (JUMP_INSN);
3711 INSN_UID (insn) = cur_insn_uid++;
3713 PATTERN (insn) = pattern;
3714 INSN_CODE (insn) = -1;
3715 REG_NOTES (insn) = NULL;
3716 JUMP_LABEL (insn) = NULL;
3717 INSN_LOCATOR (insn) = curr_insn_locator ();
3718 BLOCK_FOR_INSN (insn) = NULL;
3720 return insn;
3723 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3725 static rtx
3726 make_call_insn_raw (rtx pattern)
3728 rtx insn;
3730 insn = rtx_alloc (CALL_INSN);
3731 INSN_UID (insn) = cur_insn_uid++;
3733 PATTERN (insn) = pattern;
3734 INSN_CODE (insn) = -1;
3735 REG_NOTES (insn) = NULL;
3736 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3737 INSN_LOCATOR (insn) = curr_insn_locator ();
3738 BLOCK_FOR_INSN (insn) = NULL;
3740 return insn;
3743 /* Add INSN to the end of the doubly-linked list.
3744 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3746 void
3747 add_insn (rtx insn)
3749 PREV_INSN (insn) = get_last_insn();
3750 NEXT_INSN (insn) = 0;
3752 if (NULL != get_last_insn())
3753 NEXT_INSN (get_last_insn ()) = insn;
3755 if (NULL == get_insns ())
3756 set_first_insn (insn);
3758 set_last_insn (insn);
3761 /* Add INSN into the doubly-linked list after insn AFTER. This and
3762 the next should be the only functions called to insert an insn once
3763 delay slots have been filled since only they know how to update a
3764 SEQUENCE. */
3766 void
3767 add_insn_after (rtx insn, rtx after, basic_block bb)
3769 rtx next = NEXT_INSN (after);
3771 gcc_assert (!optimize || !INSN_DELETED_P (after));
3773 NEXT_INSN (insn) = next;
3774 PREV_INSN (insn) = after;
3776 if (next)
3778 PREV_INSN (next) = insn;
3779 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3780 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3782 else if (get_last_insn () == after)
3783 set_last_insn (insn);
3784 else
3786 struct sequence_stack *stack = seq_stack;
3787 /* Scan all pending sequences too. */
3788 for (; stack; stack = stack->next)
3789 if (after == stack->last)
3791 stack->last = insn;
3792 break;
3795 gcc_assert (stack);
3798 if (!BARRIER_P (after)
3799 && !BARRIER_P (insn)
3800 && (bb = BLOCK_FOR_INSN (after)))
3802 set_block_for_insn (insn, bb);
3803 if (INSN_P (insn))
3804 df_insn_rescan (insn);
3805 /* Should not happen as first in the BB is always
3806 either NOTE or LABEL. */
3807 if (BB_END (bb) == after
3808 /* Avoid clobbering of structure when creating new BB. */
3809 && !BARRIER_P (insn)
3810 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3811 BB_END (bb) = insn;
3814 NEXT_INSN (after) = insn;
3815 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3817 rtx sequence = PATTERN (after);
3818 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3822 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3823 the previous should be the only functions called to insert an insn
3824 once delay slots have been filled since only they know how to
3825 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3826 bb from before. */
3828 void
3829 add_insn_before (rtx insn, rtx before, basic_block bb)
3831 rtx prev = PREV_INSN (before);
3833 gcc_assert (!optimize || !INSN_DELETED_P (before));
3835 PREV_INSN (insn) = prev;
3836 NEXT_INSN (insn) = before;
3838 if (prev)
3840 NEXT_INSN (prev) = insn;
3841 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3843 rtx sequence = PATTERN (prev);
3844 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3847 else if (get_insns () == before)
3848 set_first_insn (insn);
3849 else
3851 struct sequence_stack *stack = seq_stack;
3852 /* Scan all pending sequences too. */
3853 for (; stack; stack = stack->next)
3854 if (before == stack->first)
3856 stack->first = insn;
3857 break;
3860 gcc_assert (stack);
3863 if (!bb
3864 && !BARRIER_P (before)
3865 && !BARRIER_P (insn))
3866 bb = BLOCK_FOR_INSN (before);
3868 if (bb)
3870 set_block_for_insn (insn, bb);
3871 if (INSN_P (insn))
3872 df_insn_rescan (insn);
3873 /* Should not happen as first in the BB is always either NOTE or
3874 LABEL. */
3875 gcc_assert (BB_HEAD (bb) != insn
3876 /* Avoid clobbering of structure when creating new BB. */
3877 || BARRIER_P (insn)
3878 || NOTE_INSN_BASIC_BLOCK_P (insn));
3881 PREV_INSN (before) = insn;
3882 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3883 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3887 /* Replace insn with an deleted instruction note. */
3889 void
3890 set_insn_deleted (rtx insn)
3892 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3893 PUT_CODE (insn, NOTE);
3894 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3898 /* Remove an insn from its doubly-linked list. This function knows how
3899 to handle sequences. */
3900 void
3901 remove_insn (rtx insn)
3903 rtx next = NEXT_INSN (insn);
3904 rtx prev = PREV_INSN (insn);
3905 basic_block bb;
3907 /* Later in the code, the block will be marked dirty. */
3908 df_insn_delete (NULL, INSN_UID (insn));
3910 if (prev)
3912 NEXT_INSN (prev) = next;
3913 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3915 rtx sequence = PATTERN (prev);
3916 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3919 else if (get_insns () == insn)
3921 if (next)
3922 PREV_INSN (next) = NULL;
3923 set_first_insn (next);
3925 else
3927 struct sequence_stack *stack = seq_stack;
3928 /* Scan all pending sequences too. */
3929 for (; stack; stack = stack->next)
3930 if (insn == stack->first)
3932 stack->first = next;
3933 break;
3936 gcc_assert (stack);
3939 if (next)
3941 PREV_INSN (next) = prev;
3942 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3943 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3945 else if (get_last_insn () == insn)
3946 set_last_insn (prev);
3947 else
3949 struct sequence_stack *stack = seq_stack;
3950 /* Scan all pending sequences too. */
3951 for (; stack; stack = stack->next)
3952 if (insn == stack->last)
3954 stack->last = prev;
3955 break;
3958 gcc_assert (stack);
3960 if (!BARRIER_P (insn)
3961 && (bb = BLOCK_FOR_INSN (insn)))
3963 if (NONDEBUG_INSN_P (insn))
3964 df_set_bb_dirty (bb);
3965 if (BB_HEAD (bb) == insn)
3967 /* Never ever delete the basic block note without deleting whole
3968 basic block. */
3969 gcc_assert (!NOTE_P (insn));
3970 BB_HEAD (bb) = next;
3972 if (BB_END (bb) == insn)
3973 BB_END (bb) = prev;
3977 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3979 void
3980 add_function_usage_to (rtx call_insn, rtx call_fusage)
3982 gcc_assert (call_insn && CALL_P (call_insn));
3984 /* Put the register usage information on the CALL. If there is already
3985 some usage information, put ours at the end. */
3986 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3988 rtx link;
3990 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3991 link = XEXP (link, 1))
3994 XEXP (link, 1) = call_fusage;
3996 else
3997 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4000 /* Delete all insns made since FROM.
4001 FROM becomes the new last instruction. */
4003 void
4004 delete_insns_since (rtx from)
4006 if (from == 0)
4007 set_first_insn (0);
4008 else
4009 NEXT_INSN (from) = 0;
4010 set_last_insn (from);
4013 /* This function is deprecated, please use sequences instead.
4015 Move a consecutive bunch of insns to a different place in the chain.
4016 The insns to be moved are those between FROM and TO.
4017 They are moved to a new position after the insn AFTER.
4018 AFTER must not be FROM or TO or any insn in between.
4020 This function does not know about SEQUENCEs and hence should not be
4021 called after delay-slot filling has been done. */
4023 void
4024 reorder_insns_nobb (rtx from, rtx to, rtx after)
4026 #ifdef ENABLE_CHECKING
4027 rtx x;
4028 for (x = from; x != to; x = NEXT_INSN (x))
4029 gcc_assert (after != x);
4030 gcc_assert (after != to);
4031 #endif
4033 /* Splice this bunch out of where it is now. */
4034 if (PREV_INSN (from))
4035 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4036 if (NEXT_INSN (to))
4037 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4038 if (get_last_insn () == to)
4039 set_last_insn (PREV_INSN (from));
4040 if (get_insns () == from)
4041 set_first_insn (NEXT_INSN (to));
4043 /* Make the new neighbors point to it and it to them. */
4044 if (NEXT_INSN (after))
4045 PREV_INSN (NEXT_INSN (after)) = to;
4047 NEXT_INSN (to) = NEXT_INSN (after);
4048 PREV_INSN (from) = after;
4049 NEXT_INSN (after) = from;
4050 if (after == get_last_insn())
4051 set_last_insn (to);
4054 /* Same as function above, but take care to update BB boundaries. */
4055 void
4056 reorder_insns (rtx from, rtx to, rtx after)
4058 rtx prev = PREV_INSN (from);
4059 basic_block bb, bb2;
4061 reorder_insns_nobb (from, to, after);
4063 if (!BARRIER_P (after)
4064 && (bb = BLOCK_FOR_INSN (after)))
4066 rtx x;
4067 df_set_bb_dirty (bb);
4069 if (!BARRIER_P (from)
4070 && (bb2 = BLOCK_FOR_INSN (from)))
4072 if (BB_END (bb2) == to)
4073 BB_END (bb2) = prev;
4074 df_set_bb_dirty (bb2);
4077 if (BB_END (bb) == after)
4078 BB_END (bb) = to;
4080 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4081 if (!BARRIER_P (x))
4082 df_insn_change_bb (x, bb);
4087 /* Emit insn(s) of given code and pattern
4088 at a specified place within the doubly-linked list.
4090 All of the emit_foo global entry points accept an object
4091 X which is either an insn list or a PATTERN of a single
4092 instruction.
4094 There are thus a few canonical ways to generate code and
4095 emit it at a specific place in the instruction stream. For
4096 example, consider the instruction named SPOT and the fact that
4097 we would like to emit some instructions before SPOT. We might
4098 do it like this:
4100 start_sequence ();
4101 ... emit the new instructions ...
4102 insns_head = get_insns ();
4103 end_sequence ();
4105 emit_insn_before (insns_head, SPOT);
4107 It used to be common to generate SEQUENCE rtl instead, but that
4108 is a relic of the past which no longer occurs. The reason is that
4109 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4110 generated would almost certainly die right after it was created. */
4112 static rtx
4113 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4114 rtx (*make_raw) (rtx))
4116 rtx insn;
4118 gcc_assert (before);
4120 if (x == NULL_RTX)
4121 return last;
4123 switch (GET_CODE (x))
4125 case DEBUG_INSN:
4126 case INSN:
4127 case JUMP_INSN:
4128 case CALL_INSN:
4129 case CODE_LABEL:
4130 case BARRIER:
4131 case NOTE:
4132 insn = x;
4133 while (insn)
4135 rtx next = NEXT_INSN (insn);
4136 add_insn_before (insn, before, bb);
4137 last = insn;
4138 insn = next;
4140 break;
4142 #ifdef ENABLE_RTL_CHECKING
4143 case SEQUENCE:
4144 gcc_unreachable ();
4145 break;
4146 #endif
4148 default:
4149 last = (*make_raw) (x);
4150 add_insn_before (last, before, bb);
4151 break;
4154 return last;
4157 /* Make X be output before the instruction BEFORE. */
4160 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4162 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4165 /* Make an instruction with body X and code JUMP_INSN
4166 and output it before the instruction BEFORE. */
4169 emit_jump_insn_before_noloc (rtx x, rtx before)
4171 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4172 make_jump_insn_raw);
4175 /* Make an instruction with body X and code CALL_INSN
4176 and output it before the instruction BEFORE. */
4179 emit_call_insn_before_noloc (rtx x, rtx before)
4181 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4182 make_call_insn_raw);
4185 /* Make an instruction with body X and code DEBUG_INSN
4186 and output it before the instruction BEFORE. */
4189 emit_debug_insn_before_noloc (rtx x, rtx before)
4191 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4192 make_debug_insn_raw);
4195 /* Make an insn of code BARRIER
4196 and output it before the insn BEFORE. */
4199 emit_barrier_before (rtx before)
4201 rtx insn = rtx_alloc (BARRIER);
4203 INSN_UID (insn) = cur_insn_uid++;
4205 add_insn_before (insn, before, NULL);
4206 return insn;
4209 /* Emit the label LABEL before the insn BEFORE. */
4212 emit_label_before (rtx label, rtx before)
4214 gcc_checking_assert (INSN_UID (label) == 0);
4215 INSN_UID (label) = cur_insn_uid++;
4216 add_insn_before (label, before, NULL);
4217 return label;
4220 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4223 emit_note_before (enum insn_note subtype, rtx before)
4225 rtx note = rtx_alloc (NOTE);
4226 INSN_UID (note) = cur_insn_uid++;
4227 NOTE_KIND (note) = subtype;
4228 BLOCK_FOR_INSN (note) = NULL;
4229 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4231 add_insn_before (note, before, NULL);
4232 return note;
4235 /* Helper for emit_insn_after, handles lists of instructions
4236 efficiently. */
4238 static rtx
4239 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4241 rtx last;
4242 rtx after_after;
4243 if (!bb && !BARRIER_P (after))
4244 bb = BLOCK_FOR_INSN (after);
4246 if (bb)
4248 df_set_bb_dirty (bb);
4249 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4250 if (!BARRIER_P (last))
4252 set_block_for_insn (last, bb);
4253 df_insn_rescan (last);
4255 if (!BARRIER_P (last))
4257 set_block_for_insn (last, bb);
4258 df_insn_rescan (last);
4260 if (BB_END (bb) == after)
4261 BB_END (bb) = last;
4263 else
4264 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4265 continue;
4267 after_after = NEXT_INSN (after);
4269 NEXT_INSN (after) = first;
4270 PREV_INSN (first) = after;
4271 NEXT_INSN (last) = after_after;
4272 if (after_after)
4273 PREV_INSN (after_after) = last;
4275 if (after == get_last_insn())
4276 set_last_insn (last);
4278 return last;
4281 static rtx
4282 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4283 rtx (*make_raw)(rtx))
4285 rtx last = after;
4287 gcc_assert (after);
4289 if (x == NULL_RTX)
4290 return last;
4292 switch (GET_CODE (x))
4294 case DEBUG_INSN:
4295 case INSN:
4296 case JUMP_INSN:
4297 case CALL_INSN:
4298 case CODE_LABEL:
4299 case BARRIER:
4300 case NOTE:
4301 last = emit_insn_after_1 (x, after, bb);
4302 break;
4304 #ifdef ENABLE_RTL_CHECKING
4305 case SEQUENCE:
4306 gcc_unreachable ();
4307 break;
4308 #endif
4310 default:
4311 last = (*make_raw) (x);
4312 add_insn_after (last, after, bb);
4313 break;
4316 return last;
4319 /* Make X be output after the insn AFTER and set the BB of insn. If
4320 BB is NULL, an attempt is made to infer the BB from AFTER. */
4323 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4325 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4329 /* Make an insn of code JUMP_INSN with body X
4330 and output it after the insn AFTER. */
4333 emit_jump_insn_after_noloc (rtx x, rtx after)
4335 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4338 /* Make an instruction with body X and code CALL_INSN
4339 and output it after the instruction AFTER. */
4342 emit_call_insn_after_noloc (rtx x, rtx after)
4344 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4347 /* Make an instruction with body X and code CALL_INSN
4348 and output it after the instruction AFTER. */
4351 emit_debug_insn_after_noloc (rtx x, rtx after)
4353 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4356 /* Make an insn of code BARRIER
4357 and output it after the insn AFTER. */
4360 emit_barrier_after (rtx after)
4362 rtx insn = rtx_alloc (BARRIER);
4364 INSN_UID (insn) = cur_insn_uid++;
4366 add_insn_after (insn, after, NULL);
4367 return insn;
4370 /* Emit the label LABEL after the insn AFTER. */
4373 emit_label_after (rtx label, rtx after)
4375 gcc_checking_assert (INSN_UID (label) == 0);
4376 INSN_UID (label) = cur_insn_uid++;
4377 add_insn_after (label, after, NULL);
4378 return label;
4381 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4384 emit_note_after (enum insn_note subtype, rtx after)
4386 rtx note = rtx_alloc (NOTE);
4387 INSN_UID (note) = cur_insn_uid++;
4388 NOTE_KIND (note) = subtype;
4389 BLOCK_FOR_INSN (note) = NULL;
4390 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4391 add_insn_after (note, after, NULL);
4392 return note;
4395 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4396 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4398 static rtx
4399 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4400 rtx (*make_raw) (rtx))
4402 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4404 if (pattern == NULL_RTX || !loc)
4405 return last;
4407 after = NEXT_INSN (after);
4408 while (1)
4410 if (active_insn_p (after) && !INSN_LOCATOR (after))
4411 INSN_LOCATOR (after) = loc;
4412 if (after == last)
4413 break;
4414 after = NEXT_INSN (after);
4416 return last;
4419 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4420 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4421 any DEBUG_INSNs. */
4423 static rtx
4424 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4425 rtx (*make_raw) (rtx))
4427 rtx prev = after;
4429 if (skip_debug_insns)
4430 while (DEBUG_INSN_P (prev))
4431 prev = PREV_INSN (prev);
4433 if (INSN_P (prev))
4434 return emit_pattern_after_setloc (pattern, after, INSN_LOCATOR (prev),
4435 make_raw);
4436 else
4437 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4440 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4442 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4444 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4447 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4449 emit_insn_after (rtx pattern, rtx after)
4451 return emit_pattern_after (pattern, after, true, make_insn_raw);
4454 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4456 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4458 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4461 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4463 emit_jump_insn_after (rtx pattern, rtx after)
4465 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4468 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4470 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4472 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4475 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4477 emit_call_insn_after (rtx pattern, rtx after)
4479 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4482 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4484 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4486 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4489 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4491 emit_debug_insn_after (rtx pattern, rtx after)
4493 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4496 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4497 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4498 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4499 CALL_INSN, etc. */
4501 static rtx
4502 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4503 rtx (*make_raw) (rtx))
4505 rtx first = PREV_INSN (before);
4506 rtx last = emit_pattern_before_noloc (pattern, before,
4507 insnp ? before : NULL_RTX,
4508 NULL, make_raw);
4510 if (pattern == NULL_RTX || !loc)
4511 return last;
4513 if (!first)
4514 first = get_insns ();
4515 else
4516 first = NEXT_INSN (first);
4517 while (1)
4519 if (active_insn_p (first) && !INSN_LOCATOR (first))
4520 INSN_LOCATOR (first) = loc;
4521 if (first == last)
4522 break;
4523 first = NEXT_INSN (first);
4525 return last;
4528 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4529 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4530 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4531 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4533 static rtx
4534 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4535 bool insnp, rtx (*make_raw) (rtx))
4537 rtx next = before;
4539 if (skip_debug_insns)
4540 while (DEBUG_INSN_P (next))
4541 next = PREV_INSN (next);
4543 if (INSN_P (next))
4544 return emit_pattern_before_setloc (pattern, before, INSN_LOCATOR (next),
4545 insnp, make_raw);
4546 else
4547 return emit_pattern_before_noloc (pattern, before,
4548 insnp ? before : NULL_RTX,
4549 NULL, make_raw);
4552 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4554 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4556 return emit_pattern_before_setloc (pattern, before, loc, true,
4557 make_insn_raw);
4560 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4562 emit_insn_before (rtx pattern, rtx before)
4564 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4567 /* like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4569 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4571 return emit_pattern_before_setloc (pattern, before, loc, false,
4572 make_jump_insn_raw);
4575 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4577 emit_jump_insn_before (rtx pattern, rtx before)
4579 return emit_pattern_before (pattern, before, true, false,
4580 make_jump_insn_raw);
4583 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4585 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4587 return emit_pattern_before_setloc (pattern, before, loc, false,
4588 make_call_insn_raw);
4591 /* Like emit_call_insn_before_noloc,
4592 but set insn_locator according to BEFORE. */
4594 emit_call_insn_before (rtx pattern, rtx before)
4596 return emit_pattern_before (pattern, before, true, false,
4597 make_call_insn_raw);
4600 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4602 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4604 return emit_pattern_before_setloc (pattern, before, loc, false,
4605 make_debug_insn_raw);
4608 /* Like emit_debug_insn_before_noloc,
4609 but set insn_locator according to BEFORE. */
4611 emit_debug_insn_before (rtx pattern, rtx before)
4613 return emit_pattern_before (pattern, before, false, false,
4614 make_debug_insn_raw);
4617 /* Take X and emit it at the end of the doubly-linked
4618 INSN list.
4620 Returns the last insn emitted. */
4623 emit_insn (rtx x)
4625 rtx last = get_last_insn();
4626 rtx insn;
4628 if (x == NULL_RTX)
4629 return last;
4631 switch (GET_CODE (x))
4633 case DEBUG_INSN:
4634 case INSN:
4635 case JUMP_INSN:
4636 case CALL_INSN:
4637 case CODE_LABEL:
4638 case BARRIER:
4639 case NOTE:
4640 insn = x;
4641 while (insn)
4643 rtx next = NEXT_INSN (insn);
4644 add_insn (insn);
4645 last = insn;
4646 insn = next;
4648 break;
4650 #ifdef ENABLE_RTL_CHECKING
4651 case SEQUENCE:
4652 gcc_unreachable ();
4653 break;
4654 #endif
4656 default:
4657 last = make_insn_raw (x);
4658 add_insn (last);
4659 break;
4662 return last;
4665 /* Make an insn of code DEBUG_INSN with pattern X
4666 and add it to the end of the doubly-linked list. */
4669 emit_debug_insn (rtx x)
4671 rtx last = get_last_insn();
4672 rtx insn;
4674 if (x == NULL_RTX)
4675 return last;
4677 switch (GET_CODE (x))
4679 case DEBUG_INSN:
4680 case INSN:
4681 case JUMP_INSN:
4682 case CALL_INSN:
4683 case CODE_LABEL:
4684 case BARRIER:
4685 case NOTE:
4686 insn = x;
4687 while (insn)
4689 rtx next = NEXT_INSN (insn);
4690 add_insn (insn);
4691 last = insn;
4692 insn = next;
4694 break;
4696 #ifdef ENABLE_RTL_CHECKING
4697 case SEQUENCE:
4698 gcc_unreachable ();
4699 break;
4700 #endif
4702 default:
4703 last = make_debug_insn_raw (x);
4704 add_insn (last);
4705 break;
4708 return last;
4711 /* Make an insn of code JUMP_INSN with pattern X
4712 and add it to the end of the doubly-linked list. */
4715 emit_jump_insn (rtx x)
4717 rtx last = NULL_RTX, insn;
4719 switch (GET_CODE (x))
4721 case DEBUG_INSN:
4722 case INSN:
4723 case JUMP_INSN:
4724 case CALL_INSN:
4725 case CODE_LABEL:
4726 case BARRIER:
4727 case NOTE:
4728 insn = x;
4729 while (insn)
4731 rtx next = NEXT_INSN (insn);
4732 add_insn (insn);
4733 last = insn;
4734 insn = next;
4736 break;
4738 #ifdef ENABLE_RTL_CHECKING
4739 case SEQUENCE:
4740 gcc_unreachable ();
4741 break;
4742 #endif
4744 default:
4745 last = make_jump_insn_raw (x);
4746 add_insn (last);
4747 break;
4750 return last;
4753 /* Make an insn of code CALL_INSN with pattern X
4754 and add it to the end of the doubly-linked list. */
4757 emit_call_insn (rtx x)
4759 rtx insn;
4761 switch (GET_CODE (x))
4763 case DEBUG_INSN:
4764 case INSN:
4765 case JUMP_INSN:
4766 case CALL_INSN:
4767 case CODE_LABEL:
4768 case BARRIER:
4769 case NOTE:
4770 insn = emit_insn (x);
4771 break;
4773 #ifdef ENABLE_RTL_CHECKING
4774 case SEQUENCE:
4775 gcc_unreachable ();
4776 break;
4777 #endif
4779 default:
4780 insn = make_call_insn_raw (x);
4781 add_insn (insn);
4782 break;
4785 return insn;
4788 /* Add the label LABEL to the end of the doubly-linked list. */
4791 emit_label (rtx label)
4793 gcc_checking_assert (INSN_UID (label) == 0);
4794 INSN_UID (label) = cur_insn_uid++;
4795 add_insn (label);
4796 return label;
4799 /* Make an insn of code BARRIER
4800 and add it to the end of the doubly-linked list. */
4803 emit_barrier (void)
4805 rtx barrier = rtx_alloc (BARRIER);
4806 INSN_UID (barrier) = cur_insn_uid++;
4807 add_insn (barrier);
4808 return barrier;
4811 /* Emit a copy of note ORIG. */
4814 emit_note_copy (rtx orig)
4816 rtx note;
4818 note = rtx_alloc (NOTE);
4820 INSN_UID (note) = cur_insn_uid++;
4821 NOTE_DATA (note) = NOTE_DATA (orig);
4822 NOTE_KIND (note) = NOTE_KIND (orig);
4823 BLOCK_FOR_INSN (note) = NULL;
4824 add_insn (note);
4826 return note;
4829 /* Make an insn of code NOTE or type NOTE_NO
4830 and add it to the end of the doubly-linked list. */
4833 emit_note (enum insn_note kind)
4835 rtx note;
4837 note = rtx_alloc (NOTE);
4838 INSN_UID (note) = cur_insn_uid++;
4839 NOTE_KIND (note) = kind;
4840 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4841 BLOCK_FOR_INSN (note) = NULL;
4842 add_insn (note);
4843 return note;
4846 /* Emit a clobber of lvalue X. */
4849 emit_clobber (rtx x)
4851 /* CONCATs should not appear in the insn stream. */
4852 if (GET_CODE (x) == CONCAT)
4854 emit_clobber (XEXP (x, 0));
4855 return emit_clobber (XEXP (x, 1));
4857 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4860 /* Return a sequence of insns to clobber lvalue X. */
4863 gen_clobber (rtx x)
4865 rtx seq;
4867 start_sequence ();
4868 emit_clobber (x);
4869 seq = get_insns ();
4870 end_sequence ();
4871 return seq;
4874 /* Emit a use of rvalue X. */
4877 emit_use (rtx x)
4879 /* CONCATs should not appear in the insn stream. */
4880 if (GET_CODE (x) == CONCAT)
4882 emit_use (XEXP (x, 0));
4883 return emit_use (XEXP (x, 1));
4885 return emit_insn (gen_rtx_USE (VOIDmode, x));
4888 /* Return a sequence of insns to use rvalue X. */
4891 gen_use (rtx x)
4893 rtx seq;
4895 start_sequence ();
4896 emit_use (x);
4897 seq = get_insns ();
4898 end_sequence ();
4899 return seq;
4902 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4903 note of this type already exists, remove it first. */
4906 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4908 rtx note = find_reg_note (insn, kind, NULL_RTX);
4910 switch (kind)
4912 case REG_EQUAL:
4913 case REG_EQUIV:
4914 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4915 has multiple sets (some callers assume single_set
4916 means the insn only has one set, when in fact it
4917 means the insn only has one * useful * set). */
4918 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4920 gcc_assert (!note);
4921 return NULL_RTX;
4924 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4925 It serves no useful purpose and breaks eliminate_regs. */
4926 if (GET_CODE (datum) == ASM_OPERANDS)
4927 return NULL_RTX;
4929 if (note)
4931 XEXP (note, 0) = datum;
4932 df_notes_rescan (insn);
4933 return note;
4935 break;
4937 default:
4938 if (note)
4940 XEXP (note, 0) = datum;
4941 return note;
4943 break;
4946 add_reg_note (insn, kind, datum);
4948 switch (kind)
4950 case REG_EQUAL:
4951 case REG_EQUIV:
4952 df_notes_rescan (insn);
4953 break;
4954 default:
4955 break;
4958 return REG_NOTES (insn);
4961 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
4963 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
4965 rtx set = single_set (insn);
4967 if (set && SET_DEST (set) == dst)
4968 return set_unique_reg_note (insn, kind, datum);
4969 return NULL_RTX;
4972 /* Return an indication of which type of insn should have X as a body.
4973 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4975 static enum rtx_code
4976 classify_insn (rtx x)
4978 if (LABEL_P (x))
4979 return CODE_LABEL;
4980 if (GET_CODE (x) == CALL)
4981 return CALL_INSN;
4982 if (ANY_RETURN_P (x))
4983 return JUMP_INSN;
4984 if (GET_CODE (x) == SET)
4986 if (SET_DEST (x) == pc_rtx)
4987 return JUMP_INSN;
4988 else if (GET_CODE (SET_SRC (x)) == CALL)
4989 return CALL_INSN;
4990 else
4991 return INSN;
4993 if (GET_CODE (x) == PARALLEL)
4995 int j;
4996 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4997 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4998 return CALL_INSN;
4999 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5000 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5001 return JUMP_INSN;
5002 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5003 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5004 return CALL_INSN;
5006 return INSN;
5009 /* Emit the rtl pattern X as an appropriate kind of insn.
5010 If X is a label, it is simply added into the insn chain. */
5013 emit (rtx x)
5015 enum rtx_code code = classify_insn (x);
5017 switch (code)
5019 case CODE_LABEL:
5020 return emit_label (x);
5021 case INSN:
5022 return emit_insn (x);
5023 case JUMP_INSN:
5025 rtx insn = emit_jump_insn (x);
5026 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5027 return emit_barrier ();
5028 return insn;
5030 case CALL_INSN:
5031 return emit_call_insn (x);
5032 case DEBUG_INSN:
5033 return emit_debug_insn (x);
5034 default:
5035 gcc_unreachable ();
5039 /* Space for free sequence stack entries. */
5040 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5042 /* Begin emitting insns to a sequence. If this sequence will contain
5043 something that might cause the compiler to pop arguments to function
5044 calls (because those pops have previously been deferred; see
5045 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5046 before calling this function. That will ensure that the deferred
5047 pops are not accidentally emitted in the middle of this sequence. */
5049 void
5050 start_sequence (void)
5052 struct sequence_stack *tem;
5054 if (free_sequence_stack != NULL)
5056 tem = free_sequence_stack;
5057 free_sequence_stack = tem->next;
5059 else
5060 tem = ggc_alloc_sequence_stack ();
5062 tem->next = seq_stack;
5063 tem->first = get_insns ();
5064 tem->last = get_last_insn ();
5066 seq_stack = tem;
5068 set_first_insn (0);
5069 set_last_insn (0);
5072 /* Set up the insn chain starting with FIRST as the current sequence,
5073 saving the previously current one. See the documentation for
5074 start_sequence for more information about how to use this function. */
5076 void
5077 push_to_sequence (rtx first)
5079 rtx last;
5081 start_sequence ();
5083 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5086 set_first_insn (first);
5087 set_last_insn (last);
5090 /* Like push_to_sequence, but take the last insn as an argument to avoid
5091 looping through the list. */
5093 void
5094 push_to_sequence2 (rtx first, rtx last)
5096 start_sequence ();
5098 set_first_insn (first);
5099 set_last_insn (last);
5102 /* Set up the outer-level insn chain
5103 as the current sequence, saving the previously current one. */
5105 void
5106 push_topmost_sequence (void)
5108 struct sequence_stack *stack, *top = NULL;
5110 start_sequence ();
5112 for (stack = seq_stack; stack; stack = stack->next)
5113 top = stack;
5115 set_first_insn (top->first);
5116 set_last_insn (top->last);
5119 /* After emitting to the outer-level insn chain, update the outer-level
5120 insn chain, and restore the previous saved state. */
5122 void
5123 pop_topmost_sequence (void)
5125 struct sequence_stack *stack, *top = NULL;
5127 for (stack = seq_stack; stack; stack = stack->next)
5128 top = stack;
5130 top->first = get_insns ();
5131 top->last = get_last_insn ();
5133 end_sequence ();
5136 /* After emitting to a sequence, restore previous saved state.
5138 To get the contents of the sequence just made, you must call
5139 `get_insns' *before* calling here.
5141 If the compiler might have deferred popping arguments while
5142 generating this sequence, and this sequence will not be immediately
5143 inserted into the instruction stream, use do_pending_stack_adjust
5144 before calling get_insns. That will ensure that the deferred
5145 pops are inserted into this sequence, and not into some random
5146 location in the instruction stream. See INHIBIT_DEFER_POP for more
5147 information about deferred popping of arguments. */
5149 void
5150 end_sequence (void)
5152 struct sequence_stack *tem = seq_stack;
5154 set_first_insn (tem->first);
5155 set_last_insn (tem->last);
5156 seq_stack = tem->next;
5158 memset (tem, 0, sizeof (*tem));
5159 tem->next = free_sequence_stack;
5160 free_sequence_stack = tem;
5163 /* Return 1 if currently emitting into a sequence. */
5166 in_sequence_p (void)
5168 return seq_stack != 0;
5171 /* Put the various virtual registers into REGNO_REG_RTX. */
5173 static void
5174 init_virtual_regs (void)
5176 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5177 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5178 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5179 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5180 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5181 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5182 = virtual_preferred_stack_boundary_rtx;
5186 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5187 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5188 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5189 static int copy_insn_n_scratches;
5191 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5192 copied an ASM_OPERANDS.
5193 In that case, it is the original input-operand vector. */
5194 static rtvec orig_asm_operands_vector;
5196 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5197 copied an ASM_OPERANDS.
5198 In that case, it is the copied input-operand vector. */
5199 static rtvec copy_asm_operands_vector;
5201 /* Likewise for the constraints vector. */
5202 static rtvec orig_asm_constraints_vector;
5203 static rtvec copy_asm_constraints_vector;
5205 /* Recursively create a new copy of an rtx for copy_insn.
5206 This function differs from copy_rtx in that it handles SCRATCHes and
5207 ASM_OPERANDs properly.
5208 Normally, this function is not used directly; use copy_insn as front end.
5209 However, you could first copy an insn pattern with copy_insn and then use
5210 this function afterwards to properly copy any REG_NOTEs containing
5211 SCRATCHes. */
5214 copy_insn_1 (rtx orig)
5216 rtx copy;
5217 int i, j;
5218 RTX_CODE code;
5219 const char *format_ptr;
5221 if (orig == NULL)
5222 return NULL;
5224 code = GET_CODE (orig);
5226 switch (code)
5228 case REG:
5229 case DEBUG_EXPR:
5230 CASE_CONST_ANY:
5231 case SYMBOL_REF:
5232 case CODE_LABEL:
5233 case PC:
5234 case CC0:
5235 case RETURN:
5236 case SIMPLE_RETURN:
5237 return orig;
5238 case CLOBBER:
5239 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5240 return orig;
5241 break;
5243 case SCRATCH:
5244 for (i = 0; i < copy_insn_n_scratches; i++)
5245 if (copy_insn_scratch_in[i] == orig)
5246 return copy_insn_scratch_out[i];
5247 break;
5249 case CONST:
5250 if (shared_const_p (orig))
5251 return orig;
5252 break;
5254 /* A MEM with a constant address is not sharable. The problem is that
5255 the constant address may need to be reloaded. If the mem is shared,
5256 then reloading one copy of this mem will cause all copies to appear
5257 to have been reloaded. */
5259 default:
5260 break;
5263 /* Copy the various flags, fields, and other information. We assume
5264 that all fields need copying, and then clear the fields that should
5265 not be copied. That is the sensible default behavior, and forces
5266 us to explicitly document why we are *not* copying a flag. */
5267 copy = shallow_copy_rtx (orig);
5269 /* We do not copy the USED flag, which is used as a mark bit during
5270 walks over the RTL. */
5271 RTX_FLAG (copy, used) = 0;
5273 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5274 if (INSN_P (orig))
5276 RTX_FLAG (copy, jump) = 0;
5277 RTX_FLAG (copy, call) = 0;
5278 RTX_FLAG (copy, frame_related) = 0;
5281 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5283 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5284 switch (*format_ptr++)
5286 case 'e':
5287 if (XEXP (orig, i) != NULL)
5288 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5289 break;
5291 case 'E':
5292 case 'V':
5293 if (XVEC (orig, i) == orig_asm_constraints_vector)
5294 XVEC (copy, i) = copy_asm_constraints_vector;
5295 else if (XVEC (orig, i) == orig_asm_operands_vector)
5296 XVEC (copy, i) = copy_asm_operands_vector;
5297 else if (XVEC (orig, i) != NULL)
5299 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5300 for (j = 0; j < XVECLEN (copy, i); j++)
5301 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5303 break;
5305 case 't':
5306 case 'w':
5307 case 'i':
5308 case 's':
5309 case 'S':
5310 case 'u':
5311 case '0':
5312 /* These are left unchanged. */
5313 break;
5315 default:
5316 gcc_unreachable ();
5319 if (code == SCRATCH)
5321 i = copy_insn_n_scratches++;
5322 gcc_assert (i < MAX_RECOG_OPERANDS);
5323 copy_insn_scratch_in[i] = orig;
5324 copy_insn_scratch_out[i] = copy;
5326 else if (code == ASM_OPERANDS)
5328 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5329 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5330 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5331 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5334 return copy;
5337 /* Create a new copy of an rtx.
5338 This function differs from copy_rtx in that it handles SCRATCHes and
5339 ASM_OPERANDs properly.
5340 INSN doesn't really have to be a full INSN; it could be just the
5341 pattern. */
5343 copy_insn (rtx insn)
5345 copy_insn_n_scratches = 0;
5346 orig_asm_operands_vector = 0;
5347 orig_asm_constraints_vector = 0;
5348 copy_asm_operands_vector = 0;
5349 copy_asm_constraints_vector = 0;
5350 return copy_insn_1 (insn);
5353 /* Initialize data structures and variables in this file
5354 before generating rtl for each function. */
5356 void
5357 init_emit (void)
5359 set_first_insn (NULL);
5360 set_last_insn (NULL);
5361 if (MIN_NONDEBUG_INSN_UID)
5362 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5363 else
5364 cur_insn_uid = 1;
5365 cur_debug_insn_uid = 1;
5366 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5367 first_label_num = label_num;
5368 seq_stack = NULL;
5370 /* Init the tables that describe all the pseudo regs. */
5372 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5374 crtl->emit.regno_pointer_align
5375 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5377 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5379 /* Put copies of all the hard registers into regno_reg_rtx. */
5380 memcpy (regno_reg_rtx,
5381 initial_regno_reg_rtx,
5382 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5384 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5385 init_virtual_regs ();
5387 /* Indicate that the virtual registers and stack locations are
5388 all pointers. */
5389 REG_POINTER (stack_pointer_rtx) = 1;
5390 REG_POINTER (frame_pointer_rtx) = 1;
5391 REG_POINTER (hard_frame_pointer_rtx) = 1;
5392 REG_POINTER (arg_pointer_rtx) = 1;
5394 REG_POINTER (virtual_incoming_args_rtx) = 1;
5395 REG_POINTER (virtual_stack_vars_rtx) = 1;
5396 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5397 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5398 REG_POINTER (virtual_cfa_rtx) = 1;
5400 #ifdef STACK_BOUNDARY
5401 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5402 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5403 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5404 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5406 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5407 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5408 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5409 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5410 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5411 #endif
5413 #ifdef INIT_EXPANDERS
5414 INIT_EXPANDERS;
5415 #endif
5418 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5420 static rtx
5421 gen_const_vector (enum machine_mode mode, int constant)
5423 rtx tem;
5424 rtvec v;
5425 int units, i;
5426 enum machine_mode inner;
5428 units = GET_MODE_NUNITS (mode);
5429 inner = GET_MODE_INNER (mode);
5431 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5433 v = rtvec_alloc (units);
5435 /* We need to call this function after we set the scalar const_tiny_rtx
5436 entries. */
5437 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5439 for (i = 0; i < units; ++i)
5440 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5442 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5443 return tem;
5446 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5447 all elements are zero, and the one vector when all elements are one. */
5449 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5451 enum machine_mode inner = GET_MODE_INNER (mode);
5452 int nunits = GET_MODE_NUNITS (mode);
5453 rtx x;
5454 int i;
5456 /* Check to see if all of the elements have the same value. */
5457 x = RTVEC_ELT (v, nunits - 1);
5458 for (i = nunits - 2; i >= 0; i--)
5459 if (RTVEC_ELT (v, i) != x)
5460 break;
5462 /* If the values are all the same, check to see if we can use one of the
5463 standard constant vectors. */
5464 if (i == -1)
5466 if (x == CONST0_RTX (inner))
5467 return CONST0_RTX (mode);
5468 else if (x == CONST1_RTX (inner))
5469 return CONST1_RTX (mode);
5470 else if (x == CONSTM1_RTX (inner))
5471 return CONSTM1_RTX (mode);
5474 return gen_rtx_raw_CONST_VECTOR (mode, v);
5477 /* Initialise global register information required by all functions. */
5479 void
5480 init_emit_regs (void)
5482 int i;
5483 enum machine_mode mode;
5484 mem_attrs *attrs;
5486 /* Reset register attributes */
5487 htab_empty (reg_attrs_htab);
5489 /* We need reg_raw_mode, so initialize the modes now. */
5490 init_reg_modes_target ();
5492 /* Assign register numbers to the globally defined register rtx. */
5493 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5494 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5495 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5496 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5497 virtual_incoming_args_rtx =
5498 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5499 virtual_stack_vars_rtx =
5500 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5501 virtual_stack_dynamic_rtx =
5502 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5503 virtual_outgoing_args_rtx =
5504 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5505 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5506 virtual_preferred_stack_boundary_rtx =
5507 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5509 /* Initialize RTL for commonly used hard registers. These are
5510 copied into regno_reg_rtx as we begin to compile each function. */
5511 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5512 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5514 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5515 return_address_pointer_rtx
5516 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5517 #endif
5519 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5520 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5521 else
5522 pic_offset_table_rtx = NULL_RTX;
5524 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5526 mode = (enum machine_mode) i;
5527 attrs = ggc_alloc_cleared_mem_attrs ();
5528 attrs->align = BITS_PER_UNIT;
5529 attrs->addrspace = ADDR_SPACE_GENERIC;
5530 if (mode != BLKmode)
5532 attrs->size_known_p = true;
5533 attrs->size = GET_MODE_SIZE (mode);
5534 if (STRICT_ALIGNMENT)
5535 attrs->align = GET_MODE_ALIGNMENT (mode);
5537 mode_mem_attrs[i] = attrs;
5541 /* Create some permanent unique rtl objects shared between all functions. */
5543 void
5544 init_emit_once (void)
5546 int i;
5547 enum machine_mode mode;
5548 enum machine_mode double_mode;
5550 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5551 hash tables. */
5552 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5553 const_int_htab_eq, NULL);
5555 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5556 const_double_htab_eq, NULL);
5558 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5559 const_fixed_htab_eq, NULL);
5561 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5562 mem_attrs_htab_eq, NULL);
5563 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5564 reg_attrs_htab_eq, NULL);
5566 /* Compute the word and byte modes. */
5568 byte_mode = VOIDmode;
5569 word_mode = VOIDmode;
5570 double_mode = VOIDmode;
5572 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5573 mode != VOIDmode;
5574 mode = GET_MODE_WIDER_MODE (mode))
5576 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5577 && byte_mode == VOIDmode)
5578 byte_mode = mode;
5580 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5581 && word_mode == VOIDmode)
5582 word_mode = mode;
5585 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5586 mode != VOIDmode;
5587 mode = GET_MODE_WIDER_MODE (mode))
5589 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5590 && double_mode == VOIDmode)
5591 double_mode = mode;
5594 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5596 #ifdef INIT_EXPANDERS
5597 /* This is to initialize {init|mark|free}_machine_status before the first
5598 call to push_function_context_to. This is needed by the Chill front
5599 end which calls push_function_context_to before the first call to
5600 init_function_start. */
5601 INIT_EXPANDERS;
5602 #endif
5604 /* Create the unique rtx's for certain rtx codes and operand values. */
5606 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5607 tries to use these variables. */
5608 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5609 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5610 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5612 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5613 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5614 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5615 else
5616 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5618 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5619 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5620 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5622 dconstm1 = dconst1;
5623 dconstm1.sign = 1;
5625 dconsthalf = dconst1;
5626 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5628 for (i = 0; i < 3; i++)
5630 const REAL_VALUE_TYPE *const r =
5631 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5633 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5634 mode != VOIDmode;
5635 mode = GET_MODE_WIDER_MODE (mode))
5636 const_tiny_rtx[i][(int) mode] =
5637 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5639 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5640 mode != VOIDmode;
5641 mode = GET_MODE_WIDER_MODE (mode))
5642 const_tiny_rtx[i][(int) mode] =
5643 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5645 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5647 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5648 mode != VOIDmode;
5649 mode = GET_MODE_WIDER_MODE (mode))
5650 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5652 for (mode = MIN_MODE_PARTIAL_INT;
5653 mode <= MAX_MODE_PARTIAL_INT;
5654 mode = (enum machine_mode)((int)(mode) + 1))
5655 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5658 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5660 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5661 mode != VOIDmode;
5662 mode = GET_MODE_WIDER_MODE (mode))
5663 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5665 for (mode = MIN_MODE_PARTIAL_INT;
5666 mode <= MAX_MODE_PARTIAL_INT;
5667 mode = (enum machine_mode)((int)(mode) + 1))
5668 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5670 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5671 mode != VOIDmode;
5672 mode = GET_MODE_WIDER_MODE (mode))
5674 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5675 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5678 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5679 mode != VOIDmode;
5680 mode = GET_MODE_WIDER_MODE (mode))
5682 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5683 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5686 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5687 mode != VOIDmode;
5688 mode = GET_MODE_WIDER_MODE (mode))
5690 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5691 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5692 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5695 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5696 mode != VOIDmode;
5697 mode = GET_MODE_WIDER_MODE (mode))
5699 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5700 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5703 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5704 mode != VOIDmode;
5705 mode = GET_MODE_WIDER_MODE (mode))
5707 FCONST0(mode).data.high = 0;
5708 FCONST0(mode).data.low = 0;
5709 FCONST0(mode).mode = mode;
5710 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5711 FCONST0 (mode), mode);
5714 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5715 mode != VOIDmode;
5716 mode = GET_MODE_WIDER_MODE (mode))
5718 FCONST0(mode).data.high = 0;
5719 FCONST0(mode).data.low = 0;
5720 FCONST0(mode).mode = mode;
5721 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5722 FCONST0 (mode), mode);
5725 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5726 mode != VOIDmode;
5727 mode = GET_MODE_WIDER_MODE (mode))
5729 FCONST0(mode).data.high = 0;
5730 FCONST0(mode).data.low = 0;
5731 FCONST0(mode).mode = mode;
5732 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5733 FCONST0 (mode), mode);
5735 /* We store the value 1. */
5736 FCONST1(mode).data.high = 0;
5737 FCONST1(mode).data.low = 0;
5738 FCONST1(mode).mode = mode;
5739 lshift_double (1, 0, GET_MODE_FBIT (mode),
5740 HOST_BITS_PER_DOUBLE_INT,
5741 &FCONST1(mode).data.low,
5742 &FCONST1(mode).data.high,
5743 SIGNED_FIXED_POINT_MODE_P (mode));
5744 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5745 FCONST1 (mode), mode);
5748 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5749 mode != VOIDmode;
5750 mode = GET_MODE_WIDER_MODE (mode))
5752 FCONST0(mode).data.high = 0;
5753 FCONST0(mode).data.low = 0;
5754 FCONST0(mode).mode = mode;
5755 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5756 FCONST0 (mode), mode);
5758 /* We store the value 1. */
5759 FCONST1(mode).data.high = 0;
5760 FCONST1(mode).data.low = 0;
5761 FCONST1(mode).mode = mode;
5762 lshift_double (1, 0, GET_MODE_FBIT (mode),
5763 HOST_BITS_PER_DOUBLE_INT,
5764 &FCONST1(mode).data.low,
5765 &FCONST1(mode).data.high,
5766 SIGNED_FIXED_POINT_MODE_P (mode));
5767 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5768 FCONST1 (mode), mode);
5771 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5772 mode != VOIDmode;
5773 mode = GET_MODE_WIDER_MODE (mode))
5775 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5778 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5779 mode != VOIDmode;
5780 mode = GET_MODE_WIDER_MODE (mode))
5782 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5785 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5786 mode != VOIDmode;
5787 mode = GET_MODE_WIDER_MODE (mode))
5789 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5790 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5793 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5794 mode != VOIDmode;
5795 mode = GET_MODE_WIDER_MODE (mode))
5797 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5798 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5801 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5802 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5803 const_tiny_rtx[0][i] = const0_rtx;
5805 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5806 if (STORE_FLAG_VALUE == 1)
5807 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5809 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
5810 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
5811 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
5812 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
5815 /* Produce exact duplicate of insn INSN after AFTER.
5816 Care updating of libcall regions if present. */
5819 emit_copy_of_insn_after (rtx insn, rtx after)
5821 rtx new_rtx, link;
5823 switch (GET_CODE (insn))
5825 case INSN:
5826 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5827 break;
5829 case JUMP_INSN:
5830 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5831 break;
5833 case DEBUG_INSN:
5834 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5835 break;
5837 case CALL_INSN:
5838 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5839 if (CALL_INSN_FUNCTION_USAGE (insn))
5840 CALL_INSN_FUNCTION_USAGE (new_rtx)
5841 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5842 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5843 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5844 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5845 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5846 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5847 break;
5849 default:
5850 gcc_unreachable ();
5853 /* Update LABEL_NUSES. */
5854 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5856 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5858 /* If the old insn is frame related, then so is the new one. This is
5859 primarily needed for IA-64 unwind info which marks epilogue insns,
5860 which may be duplicated by the basic block reordering code. */
5861 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5863 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5864 will make them. REG_LABEL_TARGETs are created there too, but are
5865 supposed to be sticky, so we copy them. */
5866 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5867 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5869 if (GET_CODE (link) == EXPR_LIST)
5870 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5871 copy_insn_1 (XEXP (link, 0)));
5872 else
5873 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5876 INSN_CODE (new_rtx) = INSN_CODE (insn);
5877 return new_rtx;
5880 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5882 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5884 if (hard_reg_clobbers[mode][regno])
5885 return hard_reg_clobbers[mode][regno];
5886 else
5887 return (hard_reg_clobbers[mode][regno] =
5888 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5891 /* Data structures representing mapping of INSN_LOCATOR into scope blocks, line
5892 numbers and files. In order to be GGC friendly we need to use separate
5893 varrays. This also slightly improve the memory locality in binary search.
5894 The _locs array contains locators where the given property change. The
5895 block_locators_blocks contains the scope block that is used for all insn
5896 locator greater than corresponding block_locators_locs value and smaller
5897 than the following one. Similarly for the other properties. */
5898 static VEC(int,heap) *block_locators_locs;
5899 static GTY(()) VEC(tree,gc) *block_locators_blocks;
5900 static VEC(int,heap) *locations_locators_locs;
5901 DEF_VEC_A(location_t);
5902 DEF_VEC_ALLOC_A(location_t,heap);
5903 static VEC(location_t,heap) *locations_locators_vals;
5904 int prologue_locator;
5905 int epilogue_locator;
5907 /* Hold current location information and last location information, so the
5908 datastructures are built lazily only when some instructions in given
5909 place are needed. */
5910 static location_t curr_location, last_location;
5911 static tree curr_block, last_block;
5912 static int curr_rtl_loc = -1;
5914 /* Allocate insn locator datastructure. */
5915 void
5916 insn_locators_alloc (void)
5918 prologue_locator = epilogue_locator = 0;
5920 block_locators_locs = VEC_alloc (int, heap, 32);
5921 block_locators_blocks = VEC_alloc (tree, gc, 32);
5922 locations_locators_locs = VEC_alloc (int, heap, 32);
5923 locations_locators_vals = VEC_alloc (location_t, heap, 32);
5925 curr_location = UNKNOWN_LOCATION;
5926 last_location = UNKNOWN_LOCATION;
5927 curr_block = NULL;
5928 last_block = NULL;
5929 curr_rtl_loc = 0;
5932 /* At the end of emit stage, clear current location. */
5933 void
5934 insn_locators_finalize (void)
5936 if (curr_rtl_loc >= 0)
5937 epilogue_locator = curr_insn_locator ();
5938 curr_rtl_loc = -1;
5941 /* Allocate insn locator datastructure. */
5942 void
5943 insn_locators_free (void)
5945 prologue_locator = epilogue_locator = 0;
5947 VEC_free (int, heap, block_locators_locs);
5948 VEC_free (tree,gc, block_locators_blocks);
5949 VEC_free (int, heap, locations_locators_locs);
5950 VEC_free (location_t, heap, locations_locators_vals);
5953 /* Set current location. */
5954 void
5955 set_curr_insn_source_location (location_t location)
5957 /* IV opts calls into RTL expansion to compute costs of operations. At this
5958 time locators are not initialized. */
5959 if (curr_rtl_loc == -1)
5960 return;
5961 curr_location = location;
5964 /* Get current location. */
5965 location_t
5966 get_curr_insn_source_location (void)
5968 return curr_location;
5971 /* Set current scope block. */
5972 void
5973 set_curr_insn_block (tree b)
5975 /* IV opts calls into RTL expansion to compute costs of operations. At this
5976 time locators are not initialized. */
5977 if (curr_rtl_loc == -1)
5978 return;
5979 if (b)
5980 curr_block = b;
5983 /* Get current scope block. */
5984 tree
5985 get_curr_insn_block (void)
5987 return curr_block;
5990 /* Return current insn locator. */
5992 curr_insn_locator (void)
5994 if (curr_rtl_loc == -1 || curr_location == UNKNOWN_LOCATION)
5995 return 0;
5996 if (last_block != curr_block)
5998 curr_rtl_loc++;
5999 VEC_safe_push (int, heap, block_locators_locs, curr_rtl_loc);
6000 VEC_safe_push (tree, gc, block_locators_blocks, curr_block);
6001 last_block = curr_block;
6003 if (last_location != curr_location)
6005 curr_rtl_loc++;
6006 VEC_safe_push (int, heap, locations_locators_locs, curr_rtl_loc);
6007 VEC_safe_push (location_t, heap, locations_locators_vals, &curr_location);
6008 last_location = curr_location;
6010 return curr_rtl_loc;
6014 /* Return lexical scope block locator belongs to. */
6015 static tree
6016 locator_scope (int loc)
6018 int max = VEC_length (int, block_locators_locs);
6019 int min = 0;
6021 /* When block_locators_locs was initialized, the pro- and epilogue
6022 insns didn't exist yet and can therefore not be found this way.
6023 But we know that they belong to the outer most block of the
6024 current function.
6025 Without this test, the prologue would be put inside the block of
6026 the first valid instruction in the function and when that first
6027 insn is part of an inlined function then the low_pc of that
6028 inlined function is messed up. Likewise for the epilogue and
6029 the last valid instruction. */
6030 if (loc == prologue_locator || loc == epilogue_locator)
6031 return DECL_INITIAL (cfun->decl);
6033 if (!max || !loc)
6034 return NULL;
6035 while (1)
6037 int pos = (min + max) / 2;
6038 int tmp = VEC_index (int, block_locators_locs, pos);
6040 if (tmp <= loc && min != pos)
6041 min = pos;
6042 else if (tmp > loc && max != pos)
6043 max = pos;
6044 else
6046 min = pos;
6047 break;
6050 return VEC_index (tree, block_locators_blocks, min);
6053 /* Return lexical scope block insn belongs to. */
6054 tree
6055 insn_scope (const_rtx insn)
6057 return locator_scope (INSN_LOCATOR (insn));
6060 /* Return line number of the statement specified by the locator. */
6061 location_t
6062 locator_location (int loc)
6064 int max = VEC_length (int, locations_locators_locs);
6065 int min = 0;
6067 while (1)
6069 int pos = (min + max) / 2;
6070 int tmp = VEC_index (int, locations_locators_locs, pos);
6072 if (tmp <= loc && min != pos)
6073 min = pos;
6074 else if (tmp > loc && max != pos)
6075 max = pos;
6076 else
6078 min = pos;
6079 break;
6082 return VEC_index (location_t, locations_locators_vals, min);
6085 /* Return source line of the statement that produced this insn. */
6087 locator_line (int loc)
6089 expanded_location xloc;
6090 if (!loc)
6091 return 0;
6092 else
6093 xloc = expand_location (locator_location (loc));
6094 return xloc.line;
6097 /* Return line number of the statement that produced this insn. */
6099 insn_line (const_rtx insn)
6101 return locator_line (INSN_LOCATOR (insn));
6104 /* Return source file of the statement specified by LOC. */
6105 const char *
6106 locator_file (int loc)
6108 expanded_location xloc;
6109 if (!loc)
6110 return 0;
6111 else
6112 xloc = expand_location (locator_location (loc));
6113 return xloc.file;
6116 /* Return source file of the statement that produced this insn. */
6117 const char *
6118 insn_file (const_rtx insn)
6120 return locator_file (INSN_LOCATOR (insn));
6123 /* Return true if LOC1 and LOC2 locators have the same location and scope. */
6124 bool
6125 locator_eq (int loc1, int loc2)
6127 if (loc1 == loc2)
6128 return true;
6129 if (locator_location (loc1) != locator_location (loc2))
6130 return false;
6131 return locator_scope (loc1) == locator_scope (loc2);
6135 /* Return true if memory model MODEL requires a pre-operation (release-style)
6136 barrier or a post-operation (acquire-style) barrier. While not universal,
6137 this function matches behavior of several targets. */
6139 bool
6140 need_atomic_barrier_p (enum memmodel model, bool pre)
6142 switch (model)
6144 case MEMMODEL_RELAXED:
6145 case MEMMODEL_CONSUME:
6146 return false;
6147 case MEMMODEL_RELEASE:
6148 return pre;
6149 case MEMMODEL_ACQUIRE:
6150 return !pre;
6151 case MEMMODEL_ACQ_REL:
6152 case MEMMODEL_SEQ_CST:
6153 return true;
6154 default:
6155 gcc_unreachable ();
6159 #include "gt-emit-rtl.h"