Imported GNU Classpath 0.90
[official-gcc.git] / libjava / classpath / gnu / javax / crypto / key / dh / GnuDHKeyPairGenerator.java
blob5626a2979a87524b226dc6924d3e075dc9ab48e8
1 /* GnuDHKeyPairGenerator.java --
2 Copyright (C) 2003, 2006 Free Software Foundation, Inc.
4 This file is a part of GNU Classpath.
6 GNU Classpath is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or (at
9 your option) any later version.
11 GNU Classpath is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Classpath; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
19 USA
21 Linking this library statically or dynamically with other modules is
22 making a combined work based on this library. Thus, the terms and
23 conditions of the GNU General Public License cover the whole
24 combination.
26 As a special exception, the copyright holders of this library give you
27 permission to link this library with independent modules to produce an
28 executable, regardless of the license terms of these independent
29 modules, and to copy and distribute the resulting executable under
30 terms of your choice, provided that you also meet, for each linked
31 independent module, the terms and conditions of the license of that
32 module. An independent module is a module which is not derived from
33 or based on this library. If you modify this library, you may extend
34 this exception to your version of the library, but you are not
35 obligated to do so. If you do not wish to do so, delete this
36 exception statement from your version. */
39 package gnu.javax.crypto.key.dh;
41 import gnu.java.security.Registry;
42 import gnu.java.security.hash.Sha160;
43 import gnu.java.security.key.IKeyPairGenerator;
44 import gnu.java.security.util.PRNG;
46 import java.io.PrintWriter;
47 import java.math.BigInteger;
48 import java.security.KeyPair;
49 import java.security.PrivateKey;
50 import java.security.PublicKey;
51 import java.security.SecureRandom;
52 import java.util.Map;
54 import javax.crypto.spec.DHGenParameterSpec;
55 import javax.crypto.spec.DHParameterSpec;
57 /**
58 * <p>An implementation of a Diffie-Hellman keypair generator.</p>
60 * <p>Reference:</p>
61 * <ol>
62 * <li><a href="http://www.ietf.org/rfc/rfc2631.txt">Diffie-Hellman Key
63 * Agreement Method</a><br>
64 * Eric Rescorla.</li>
65 * </ol>
67 public class GnuDHKeyPairGenerator implements IKeyPairGenerator
70 // Debugging methods and variables
71 // -------------------------------------------------------------------------
73 private static final String NAME = "dh";
75 private static final boolean DEBUG = false;
77 private static final int debuglevel = 5;
79 private static final PrintWriter err = new PrintWriter(System.out, true);
81 private static void debug(String s)
83 err.println(">>> " + NAME + ": " + s);
86 // Constants and variables
87 // -------------------------------------------------------------------------
89 /**
90 * Property name of an optional {@link SecureRandom} instance to use. The
91 * default is to use a classloader singleton from {@link PRNG}.
93 public static final String SOURCE_OF_RANDOMNESS = "gnu.crypto.dh.prng";
95 /**
96 * Property name of an optional {@link DHGenParameterSpec} or
97 * {@link DHParameterSpec} instance to use for this generator.
99 public static final String DH_PARAMETERS = "gnu.crypto.dh.params";
101 /** Property name of the size in bits (Integer) of the public prime (p). */
102 public static final String PRIME_SIZE = "gnu.crypto.dh.L";
104 /** Property name of the size in bits (Integer) of the private exponent (x). */
105 public static final String EXPONENT_SIZE = "gnu.crypto.dh.m";
108 * Property name of the preferred encoding format to use when externalizing
109 * generated instance of key-pairs from this generator. The property is taken
110 * to be an {@link Integer} that encapsulates an encoding format identifier.
112 public static final String PREFERRED_ENCODING_FORMAT = "gnu.crypto.dh.encoding";
114 /** Default value for the size in bits of the public prime (p). */
115 // private static final int DEFAULT_PRIME_SIZE = 1024;
116 public static final int DEFAULT_PRIME_SIZE = 512;
118 /** Default value for the size in bits of the private exponent (x). */
119 public static final int DEFAULT_EXPONENT_SIZE = 160;
121 /** Default encoding format to use when none was specified. */
122 private static final int DEFAULT_ENCODING_FORMAT = Registry.RAW_ENCODING_ID;
124 /** The SHA instance to use. */
125 private Sha160 sha = new Sha160();
127 /** The optional {@link SecureRandom} instance to use. */
128 private SecureRandom rnd = null;
130 /** The desired size in bits of the public prime (p). */
131 private int l;
133 /** The desired size in bits of the private exponent (x). */
134 private int m;
136 private BigInteger seed;
138 private BigInteger counter;
140 private BigInteger q;
142 private BigInteger p;
144 private BigInteger j;
146 private BigInteger g;
148 /** Our default source of randomness. */
149 private PRNG prng = null;
151 /** Preferred encoding format of generated keys. */
152 private int preferredFormat;
154 // Constructor(s)
155 // -------------------------------------------------------------------------
157 // default 0-arguments constructor
159 // Class methods
160 // -------------------------------------------------------------------------
162 // Instance methods
163 // -------------------------------------------------------------------------
165 // gnu.crypto.keys.IKeyPairGenerator interface implementation ---------------
167 public String name()
169 return Registry.DH_KPG;
172 public void setup(Map attributes)
174 // do we have a SecureRandom, or should we use our own?
175 rnd = (SecureRandom) attributes.get(SOURCE_OF_RANDOMNESS);
177 // are we given a set of Diffie-Hellman generation parameters or we shall
178 // use our own?
179 Object params = attributes.get(DH_PARAMETERS);
181 // find out the desired sizes
182 if (params instanceof DHGenParameterSpec)
184 DHGenParameterSpec jceSpec = (DHGenParameterSpec) params;
185 l = jceSpec.getPrimeSize();
186 m = jceSpec.getExponentSize();
188 else if (params instanceof DHParameterSpec)
190 // FIXME: I'm not sure this is correct. It seems to behave the
191 // same way as Sun's RI, but I don't know if this behavior is
192 // documented anywhere.
193 DHParameterSpec jceSpec = (DHParameterSpec) params;
194 p = jceSpec.getP();
195 g = jceSpec.getG();
196 l = p.bitLength();
197 m = jceSpec.getL();
199 // If no exponent size was given, generate an exponent as
200 // large as the prime.
201 if (m == 0)
202 m = l;
204 else
206 Integer bi = (Integer) attributes.get(PRIME_SIZE);
207 l = (bi == null ? DEFAULT_PRIME_SIZE : bi.intValue());
208 bi = (Integer) attributes.get(EXPONENT_SIZE);
209 m = (bi == null ? DEFAULT_EXPONENT_SIZE : bi.intValue());
212 // if ((L % 256) != 0 || L < 1024) {
213 if ((l % 256) != 0 || l < DEFAULT_PRIME_SIZE)
215 throw new IllegalArgumentException("invalid modulus size");
217 if ((m % 8) != 0 || m < DEFAULT_EXPONENT_SIZE)
219 throw new IllegalArgumentException("invalid exponent size");
221 if (m > l)
223 throw new IllegalArgumentException("exponent size > modulus size");
226 // what is the preferred encoding format
227 Integer formatID = (Integer) attributes.get(PREFERRED_ENCODING_FORMAT);
228 preferredFormat = formatID == null ? DEFAULT_ENCODING_FORMAT
229 : formatID.intValue();
232 public KeyPair generate()
234 if (p == null)
236 BigInteger[] params = new RFC2631(m, l, rnd).generateParameters();
237 seed = params[RFC2631.DH_PARAMS_SEED];
238 counter = params[RFC2631.DH_PARAMS_COUNTER];
239 q = params[RFC2631.DH_PARAMS_Q];
240 p = params[RFC2631.DH_PARAMS_P];
241 j = params[RFC2631.DH_PARAMS_J];
242 g = params[RFC2631.DH_PARAMS_G];
243 if (DEBUG && debuglevel > 0)
245 debug("seed: 0x" + seed.toString(16));
246 debug("counter: " + counter.intValue());
247 debug("q: 0x" + q.toString(16));
248 debug("p: 0x" + p.toString(16));
249 debug("j: 0x" + j.toString(16));
250 debug("g: 0x" + g.toString(16));
254 // generate a private number x of length m such as: 1 < x < q - 1
255 BigInteger q_minus_1 = null;
256 if (q != null)
257 q_minus_1 = q.subtract(BigInteger.ONE);
259 // We already check if m is modulo 8 in `setup.' This could just
260 // be m >>> 3.
261 byte[] mag = new byte[(m + 7) / 8];
262 BigInteger x;
263 while (true)
265 nextRandomBytes(mag);
266 x = new BigInteger(1, mag);
267 if (x.bitLength() == m && x.compareTo(BigInteger.ONE) > 0
268 && (q_minus_1 == null || x.compareTo(q_minus_1) < 0))
270 break;
273 BigInteger y = g.modPow(x, p);
275 PrivateKey secK = new GnuDHPrivateKey(preferredFormat, q, p, g, x);
276 PublicKey pubK = new GnuDHPublicKey(preferredFormat, q, p, g, y);
278 return new KeyPair(pubK, secK);
281 // other methods -----------------------------------------------------------
284 * <p>Fills the designated byte array with random data.</p>
286 * @param buffer the byte array to fill with random data.
288 private void nextRandomBytes(byte[] buffer)
290 if (rnd != null)
292 rnd.nextBytes(buffer);
294 else
295 getDefaultPRNG().nextBytes(buffer);
298 private PRNG getDefaultPRNG()
300 if (prng == null)
301 prng = PRNG.getInstance();
303 return prng;