Daily bump.
[official-gcc.git] / gcc / tree-parloops.c
blobe498e5b62b7b7d2af1ea768e1b428c0e8960d3b2
1 /* Loop autoparallelization.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "gimple-pretty-print.h"
33 #include "fold-const.h"
34 #include "gimplify.h"
35 #include "gimple-iterator.h"
36 #include "gimplify-me.h"
37 #include "gimple-walk.h"
38 #include "stor-layout.h"
39 #include "tree-nested.h"
40 #include "tree-cfg.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
45 #include "tree-into-ssa.h"
46 #include "cfgloop.h"
47 #include "tree-scalar-evolution.h"
48 #include "langhooks.h"
49 #include "tree-vectorizer.h"
50 #include "tree-hasher.h"
51 #include "tree-parloops.h"
52 #include "omp-low.h"
53 #include "tree-ssa.h"
54 #include "params.h"
55 #include "params-enum.h"
56 #include "tree-ssa-alias.h"
57 #include "tree-eh.h"
58 #include "gomp-constants.h"
59 #include "tree-dfa.h"
61 /* This pass tries to distribute iterations of loops into several threads.
62 The implementation is straightforward -- for each loop we test whether its
63 iterations are independent, and if it is the case (and some additional
64 conditions regarding profitability and correctness are satisfied), we
65 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
66 machinery do its job.
68 The most of the complexity is in bringing the code into shape expected
69 by the omp expanders:
70 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
71 variable and that the exit test is at the start of the loop body
72 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
73 variables by accesses through pointers, and breaking up ssa chains
74 by storing the values incoming to the parallelized loop to a structure
75 passed to the new function as an argument (something similar is done
76 in omp gimplification, unfortunately only a small part of the code
77 can be shared).
79 TODO:
80 -- if there are several parallelizable loops in a function, it may be
81 possible to generate the threads just once (using synchronization to
82 ensure that cross-loop dependences are obeyed).
83 -- handling of common reduction patterns for outer loops.
85 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
87 Reduction handling:
88 currently we use vect_force_simple_reduction() to detect reduction patterns.
89 The code transformation will be introduced by an example.
92 parloop
94 int sum=1;
96 for (i = 0; i < N; i++)
98 x[i] = i + 3;
99 sum+=x[i];
103 gimple-like code:
104 header_bb:
106 # sum_29 = PHI <sum_11(5), 1(3)>
107 # i_28 = PHI <i_12(5), 0(3)>
108 D.1795_8 = i_28 + 3;
109 x[i_28] = D.1795_8;
110 sum_11 = D.1795_8 + sum_29;
111 i_12 = i_28 + 1;
112 if (N_6(D) > i_12)
113 goto header_bb;
116 exit_bb:
118 # sum_21 = PHI <sum_11(4)>
119 printf (&"%d"[0], sum_21);
122 after reduction transformation (only relevant parts):
124 parloop
127 ....
130 # Storing the initial value given by the user. #
132 .paral_data_store.32.sum.27 = 1;
134 #pragma omp parallel num_threads(4)
136 #pragma omp for schedule(static)
138 # The neutral element corresponding to the particular
139 reduction's operation, e.g. 0 for PLUS_EXPR,
140 1 for MULT_EXPR, etc. replaces the user's initial value. #
142 # sum.27_29 = PHI <sum.27_11, 0>
144 sum.27_11 = D.1827_8 + sum.27_29;
146 GIMPLE_OMP_CONTINUE
148 # Adding this reduction phi is done at create_phi_for_local_result() #
149 # sum.27_56 = PHI <sum.27_11, 0>
150 GIMPLE_OMP_RETURN
152 # Creating the atomic operation is done at
153 create_call_for_reduction_1() #
155 #pragma omp atomic_load
156 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
157 D.1840_60 = sum.27_56 + D.1839_59;
158 #pragma omp atomic_store (D.1840_60);
160 GIMPLE_OMP_RETURN
162 # collecting the result after the join of the threads is done at
163 create_loads_for_reductions().
164 The value computed by the threads is loaded from the
165 shared struct. #
168 .paral_data_load.33_52 = &.paral_data_store.32;
169 sum_37 = .paral_data_load.33_52->sum.27;
170 sum_43 = D.1795_41 + sum_37;
172 exit bb:
173 # sum_21 = PHI <sum_43, sum_26>
174 printf (&"%d"[0], sum_21);
182 /* Minimal number of iterations of a loop that should be executed in each
183 thread. */
184 #define MIN_PER_THREAD 100
186 /* Element of the hashtable, representing a
187 reduction in the current loop. */
188 struct reduction_info
190 gimple *reduc_stmt; /* reduction statement. */
191 gimple *reduc_phi; /* The phi node defining the reduction. */
192 enum tree_code reduction_code;/* code for the reduction operation. */
193 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
194 result. */
195 gphi *keep_res; /* The PHI_RESULT of this phi is the resulting value
196 of the reduction variable when existing the loop. */
197 tree initial_value; /* The initial value of the reduction var before entering the loop. */
198 tree field; /* the name of the field in the parloop data structure intended for reduction. */
199 tree reduc_addr; /* The address of the reduction variable for
200 openacc reductions. */
201 tree init; /* reduction initialization value. */
202 gphi *new_phi; /* (helper field) Newly created phi node whose result
203 will be passed to the atomic operation. Represents
204 the local result each thread computed for the reduction
205 operation. */
208 /* Reduction info hashtable helpers. */
210 struct reduction_hasher : free_ptr_hash <reduction_info>
212 static inline hashval_t hash (const reduction_info *);
213 static inline bool equal (const reduction_info *, const reduction_info *);
216 /* Equality and hash functions for hashtab code. */
218 inline bool
219 reduction_hasher::equal (const reduction_info *a, const reduction_info *b)
221 return (a->reduc_phi == b->reduc_phi);
224 inline hashval_t
225 reduction_hasher::hash (const reduction_info *a)
227 return a->reduc_version;
230 typedef hash_table<reduction_hasher> reduction_info_table_type;
233 static struct reduction_info *
234 reduction_phi (reduction_info_table_type *reduction_list, gimple *phi)
236 struct reduction_info tmpred, *red;
238 if (reduction_list->elements () == 0 || phi == NULL)
239 return NULL;
241 if (gimple_uid (phi) == (unsigned int)-1
242 || gimple_uid (phi) == 0)
243 return NULL;
245 tmpred.reduc_phi = phi;
246 tmpred.reduc_version = gimple_uid (phi);
247 red = reduction_list->find (&tmpred);
248 gcc_assert (red == NULL || red->reduc_phi == phi);
250 return red;
253 /* Element of hashtable of names to copy. */
255 struct name_to_copy_elt
257 unsigned version; /* The version of the name to copy. */
258 tree new_name; /* The new name used in the copy. */
259 tree field; /* The field of the structure used to pass the
260 value. */
263 /* Name copies hashtable helpers. */
265 struct name_to_copy_hasher : free_ptr_hash <name_to_copy_elt>
267 static inline hashval_t hash (const name_to_copy_elt *);
268 static inline bool equal (const name_to_copy_elt *, const name_to_copy_elt *);
271 /* Equality and hash functions for hashtab code. */
273 inline bool
274 name_to_copy_hasher::equal (const name_to_copy_elt *a, const name_to_copy_elt *b)
276 return a->version == b->version;
279 inline hashval_t
280 name_to_copy_hasher::hash (const name_to_copy_elt *a)
282 return (hashval_t) a->version;
285 typedef hash_table<name_to_copy_hasher> name_to_copy_table_type;
287 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
288 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
289 represents the denominator for every element in the matrix. */
290 typedef struct lambda_trans_matrix_s
292 lambda_matrix matrix;
293 int rowsize;
294 int colsize;
295 int denominator;
296 } *lambda_trans_matrix;
297 #define LTM_MATRIX(T) ((T)->matrix)
298 #define LTM_ROWSIZE(T) ((T)->rowsize)
299 #define LTM_COLSIZE(T) ((T)->colsize)
300 #define LTM_DENOMINATOR(T) ((T)->denominator)
302 /* Allocate a new transformation matrix. */
304 static lambda_trans_matrix
305 lambda_trans_matrix_new (int colsize, int rowsize,
306 struct obstack * lambda_obstack)
308 lambda_trans_matrix ret;
310 ret = (lambda_trans_matrix)
311 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
312 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
313 LTM_ROWSIZE (ret) = rowsize;
314 LTM_COLSIZE (ret) = colsize;
315 LTM_DENOMINATOR (ret) = 1;
316 return ret;
319 /* Multiply a vector VEC by a matrix MAT.
320 MAT is an M*N matrix, and VEC is a vector with length N. The result
321 is stored in DEST which must be a vector of length M. */
323 static void
324 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
325 lambda_vector vec, lambda_vector dest)
327 int i, j;
329 lambda_vector_clear (dest, m);
330 for (i = 0; i < m; i++)
331 for (j = 0; j < n; j++)
332 dest[i] += matrix[i][j] * vec[j];
335 /* Return true if TRANS is a legal transformation matrix that respects
336 the dependence vectors in DISTS and DIRS. The conservative answer
337 is false.
339 "Wolfe proves that a unimodular transformation represented by the
340 matrix T is legal when applied to a loop nest with a set of
341 lexicographically non-negative distance vectors RDG if and only if
342 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
343 i.e.: if and only if it transforms the lexicographically positive
344 distance vectors to lexicographically positive vectors. Note that
345 a unimodular matrix must transform the zero vector (and only it) to
346 the zero vector." S.Muchnick. */
348 static bool
349 lambda_transform_legal_p (lambda_trans_matrix trans,
350 int nb_loops,
351 vec<ddr_p> dependence_relations)
353 unsigned int i, j;
354 lambda_vector distres;
355 struct data_dependence_relation *ddr;
357 gcc_assert (LTM_COLSIZE (trans) == nb_loops
358 && LTM_ROWSIZE (trans) == nb_loops);
360 /* When there are no dependences, the transformation is correct. */
361 if (dependence_relations.length () == 0)
362 return true;
364 ddr = dependence_relations[0];
365 if (ddr == NULL)
366 return true;
368 /* When there is an unknown relation in the dependence_relations, we
369 know that it is no worth looking at this loop nest: give up. */
370 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
371 return false;
373 distres = lambda_vector_new (nb_loops);
375 /* For each distance vector in the dependence graph. */
376 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
378 /* Don't care about relations for which we know that there is no
379 dependence, nor about read-read (aka. output-dependences):
380 these data accesses can happen in any order. */
381 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
382 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
383 continue;
385 /* Conservatively answer: "this transformation is not valid". */
386 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
387 return false;
389 /* If the dependence could not be captured by a distance vector,
390 conservatively answer that the transform is not valid. */
391 if (DDR_NUM_DIST_VECTS (ddr) == 0)
392 return false;
394 /* Compute trans.dist_vect */
395 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
397 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
398 DDR_DIST_VECT (ddr, j), distres);
400 if (!lambda_vector_lexico_pos (distres, nb_loops))
401 return false;
404 return true;
407 /* Data dependency analysis. Returns true if the iterations of LOOP
408 are independent on each other (that is, if we can execute them
409 in parallel). */
411 static bool
412 loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
414 vec<ddr_p> dependence_relations;
415 vec<data_reference_p> datarefs;
416 lambda_trans_matrix trans;
417 bool ret = false;
419 if (dump_file && (dump_flags & TDF_DETAILS))
421 fprintf (dump_file, "Considering loop %d\n", loop->num);
422 if (!loop->inner)
423 fprintf (dump_file, "loop is innermost\n");
424 else
425 fprintf (dump_file, "loop NOT innermost\n");
428 /* Check for problems with dependences. If the loop can be reversed,
429 the iterations are independent. */
430 auto_vec<loop_p, 3> loop_nest;
431 datarefs.create (10);
432 dependence_relations.create (100);
433 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
434 &dependence_relations))
436 if (dump_file && (dump_flags & TDF_DETAILS))
437 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
438 ret = false;
439 goto end;
441 if (dump_file && (dump_flags & TDF_DETAILS))
442 dump_data_dependence_relations (dump_file, dependence_relations);
444 trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
445 LTM_MATRIX (trans)[0][0] = -1;
447 if (lambda_transform_legal_p (trans, 1, dependence_relations))
449 ret = true;
450 if (dump_file && (dump_flags & TDF_DETAILS))
451 fprintf (dump_file, " SUCCESS: may be parallelized\n");
453 else if (dump_file && (dump_flags & TDF_DETAILS))
454 fprintf (dump_file,
455 " FAILED: data dependencies exist across iterations\n");
457 end:
458 free_dependence_relations (dependence_relations);
459 free_data_refs (datarefs);
461 return ret;
464 /* Return true when LOOP contains basic blocks marked with the
465 BB_IRREDUCIBLE_LOOP flag. */
467 static inline bool
468 loop_has_blocks_with_irreducible_flag (struct loop *loop)
470 unsigned i;
471 basic_block *bbs = get_loop_body_in_dom_order (loop);
472 bool res = true;
474 for (i = 0; i < loop->num_nodes; i++)
475 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
476 goto end;
478 res = false;
479 end:
480 free (bbs);
481 return res;
484 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
485 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
486 to their addresses that can be reused. The address of OBJ is known to
487 be invariant in the whole function. Other needed statements are placed
488 right before GSI. */
490 static tree
491 take_address_of (tree obj, tree type, edge entry,
492 int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi)
494 int uid;
495 tree *var_p, name, addr;
496 gassign *stmt;
497 gimple_seq stmts;
499 /* Since the address of OBJ is invariant, the trees may be shared.
500 Avoid rewriting unrelated parts of the code. */
501 obj = unshare_expr (obj);
502 for (var_p = &obj;
503 handled_component_p (*var_p);
504 var_p = &TREE_OPERAND (*var_p, 0))
505 continue;
507 /* Canonicalize the access to base on a MEM_REF. */
508 if (DECL_P (*var_p))
509 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
511 /* Assign a canonical SSA name to the address of the base decl used
512 in the address and share it for all accesses and addresses based
513 on it. */
514 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
515 int_tree_map elt;
516 elt.uid = uid;
517 int_tree_map *slot = decl_address->find_slot (elt, INSERT);
518 if (!slot->to)
520 if (gsi == NULL)
521 return NULL;
522 addr = TREE_OPERAND (*var_p, 0);
523 const char *obj_name
524 = get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
525 if (obj_name)
526 name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name);
527 else
528 name = make_ssa_name (TREE_TYPE (addr));
529 stmt = gimple_build_assign (name, addr);
530 gsi_insert_on_edge_immediate (entry, stmt);
532 slot->uid = uid;
533 slot->to = name;
535 else
536 name = slot->to;
538 /* Express the address in terms of the canonical SSA name. */
539 TREE_OPERAND (*var_p, 0) = name;
540 if (gsi == NULL)
541 return build_fold_addr_expr_with_type (obj, type);
543 name = force_gimple_operand (build_addr (obj),
544 &stmts, true, NULL_TREE);
545 if (!gimple_seq_empty_p (stmts))
546 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
548 if (!useless_type_conversion_p (type, TREE_TYPE (name)))
550 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
551 NULL_TREE);
552 if (!gimple_seq_empty_p (stmts))
553 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
556 return name;
559 static tree
560 reduc_stmt_res (gimple *stmt)
562 return (gimple_code (stmt) == GIMPLE_PHI
563 ? gimple_phi_result (stmt)
564 : gimple_assign_lhs (stmt));
567 /* Callback for htab_traverse. Create the initialization statement
568 for reduction described in SLOT, and place it at the preheader of
569 the loop described in DATA. */
572 initialize_reductions (reduction_info **slot, struct loop *loop)
574 tree init;
575 tree type, arg;
576 edge e;
578 struct reduction_info *const reduc = *slot;
580 /* Create initialization in preheader:
581 reduction_variable = initialization value of reduction. */
583 /* In the phi node at the header, replace the argument coming
584 from the preheader with the reduction initialization value. */
586 /* Initialize the reduction. */
587 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
588 init = omp_reduction_init_op (gimple_location (reduc->reduc_stmt),
589 reduc->reduction_code, type);
590 reduc->init = init;
592 /* Replace the argument representing the initialization value
593 with the initialization value for the reduction (neutral
594 element for the particular operation, e.g. 0 for PLUS_EXPR,
595 1 for MULT_EXPR, etc).
596 Keep the old value in a new variable "reduction_initial",
597 that will be taken in consideration after the parallel
598 computing is done. */
600 e = loop_preheader_edge (loop);
601 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
602 /* Create new variable to hold the initial value. */
604 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
605 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
606 reduc->initial_value = arg;
607 return 1;
610 struct elv_data
612 struct walk_stmt_info info;
613 edge entry;
614 int_tree_htab_type *decl_address;
615 gimple_stmt_iterator *gsi;
616 bool changed;
617 bool reset;
620 /* Eliminates references to local variables in *TP out of the single
621 entry single exit region starting at DTA->ENTRY.
622 DECL_ADDRESS contains addresses of the references that had their
623 address taken already. If the expression is changed, CHANGED is
624 set to true. Callback for walk_tree. */
626 static tree
627 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
629 struct elv_data *const dta = (struct elv_data *) data;
630 tree t = *tp, var, addr, addr_type, type, obj;
632 if (DECL_P (t))
634 *walk_subtrees = 0;
636 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
637 return NULL_TREE;
639 type = TREE_TYPE (t);
640 addr_type = build_pointer_type (type);
641 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
642 dta->gsi);
643 if (dta->gsi == NULL && addr == NULL_TREE)
645 dta->reset = true;
646 return NULL_TREE;
649 *tp = build_simple_mem_ref (addr);
651 dta->changed = true;
652 return NULL_TREE;
655 if (TREE_CODE (t) == ADDR_EXPR)
657 /* ADDR_EXPR may appear in two contexts:
658 -- as a gimple operand, when the address taken is a function invariant
659 -- as gimple rhs, when the resulting address in not a function
660 invariant
661 We do not need to do anything special in the latter case (the base of
662 the memory reference whose address is taken may be replaced in the
663 DECL_P case). The former case is more complicated, as we need to
664 ensure that the new address is still a gimple operand. Thus, it
665 is not sufficient to replace just the base of the memory reference --
666 we need to move the whole computation of the address out of the
667 loop. */
668 if (!is_gimple_val (t))
669 return NULL_TREE;
671 *walk_subtrees = 0;
672 obj = TREE_OPERAND (t, 0);
673 var = get_base_address (obj);
674 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
675 return NULL_TREE;
677 addr_type = TREE_TYPE (t);
678 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
679 dta->gsi);
680 if (dta->gsi == NULL && addr == NULL_TREE)
682 dta->reset = true;
683 return NULL_TREE;
685 *tp = addr;
687 dta->changed = true;
688 return NULL_TREE;
691 if (!EXPR_P (t))
692 *walk_subtrees = 0;
694 return NULL_TREE;
697 /* Moves the references to local variables in STMT at *GSI out of the single
698 entry single exit region starting at ENTRY. DECL_ADDRESS contains
699 addresses of the references that had their address taken
700 already. */
702 static void
703 eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
704 int_tree_htab_type *decl_address)
706 struct elv_data dta;
707 gimple *stmt = gsi_stmt (*gsi);
709 memset (&dta.info, '\0', sizeof (dta.info));
710 dta.entry = entry;
711 dta.decl_address = decl_address;
712 dta.changed = false;
713 dta.reset = false;
715 if (gimple_debug_bind_p (stmt))
717 dta.gsi = NULL;
718 walk_tree (gimple_debug_bind_get_value_ptr (stmt),
719 eliminate_local_variables_1, &dta.info, NULL);
720 if (dta.reset)
722 gimple_debug_bind_reset_value (stmt);
723 dta.changed = true;
726 else if (gimple_clobber_p (stmt))
728 unlink_stmt_vdef (stmt);
729 stmt = gimple_build_nop ();
730 gsi_replace (gsi, stmt, false);
731 dta.changed = true;
733 else
735 dta.gsi = gsi;
736 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
739 if (dta.changed)
740 update_stmt (stmt);
743 /* Eliminates the references to local variables from the single entry
744 single exit region between the ENTRY and EXIT edges.
746 This includes:
747 1) Taking address of a local variable -- these are moved out of the
748 region (and temporary variable is created to hold the address if
749 necessary).
751 2) Dereferencing a local variable -- these are replaced with indirect
752 references. */
754 static void
755 eliminate_local_variables (edge entry, edge exit)
757 basic_block bb;
758 auto_vec<basic_block, 3> body;
759 unsigned i;
760 gimple_stmt_iterator gsi;
761 bool has_debug_stmt = false;
762 int_tree_htab_type decl_address (10);
763 basic_block entry_bb = entry->src;
764 basic_block exit_bb = exit->dest;
766 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
768 FOR_EACH_VEC_ELT (body, i, bb)
769 if (bb != entry_bb && bb != exit_bb)
770 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
771 if (is_gimple_debug (gsi_stmt (gsi)))
773 if (gimple_debug_bind_p (gsi_stmt (gsi)))
774 has_debug_stmt = true;
776 else
777 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
779 if (has_debug_stmt)
780 FOR_EACH_VEC_ELT (body, i, bb)
781 if (bb != entry_bb && bb != exit_bb)
782 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
783 if (gimple_debug_bind_p (gsi_stmt (gsi)))
784 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
787 /* Returns true if expression EXPR is not defined between ENTRY and
788 EXIT, i.e. if all its operands are defined outside of the region. */
790 static bool
791 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
793 basic_block entry_bb = entry->src;
794 basic_block exit_bb = exit->dest;
795 basic_block def_bb;
797 if (is_gimple_min_invariant (expr))
798 return true;
800 if (TREE_CODE (expr) == SSA_NAME)
802 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
803 if (def_bb
804 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
805 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
806 return false;
808 return true;
811 return false;
814 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
815 The copies are stored to NAME_COPIES, if NAME was already duplicated,
816 its duplicate stored in NAME_COPIES is returned.
818 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
819 duplicated, storing the copies in DECL_COPIES. */
821 static tree
822 separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies,
823 int_tree_htab_type *decl_copies,
824 bool copy_name_p)
826 tree copy, var, var_copy;
827 unsigned idx, uid, nuid;
828 struct int_tree_map ielt;
829 struct name_to_copy_elt elt, *nelt;
830 name_to_copy_elt **slot;
831 int_tree_map *dslot;
833 if (TREE_CODE (name) != SSA_NAME)
834 return name;
836 idx = SSA_NAME_VERSION (name);
837 elt.version = idx;
838 slot = name_copies->find_slot_with_hash (&elt, idx,
839 copy_name_p ? INSERT : NO_INSERT);
840 if (slot && *slot)
841 return (*slot)->new_name;
843 if (copy_name_p)
845 copy = duplicate_ssa_name (name, NULL);
846 nelt = XNEW (struct name_to_copy_elt);
847 nelt->version = idx;
848 nelt->new_name = copy;
849 nelt->field = NULL_TREE;
850 *slot = nelt;
852 else
854 gcc_assert (!slot);
855 copy = name;
858 var = SSA_NAME_VAR (name);
859 if (!var)
860 return copy;
862 uid = DECL_UID (var);
863 ielt.uid = uid;
864 dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT);
865 if (!dslot->to)
867 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
868 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
869 dslot->uid = uid;
870 dslot->to = var_copy;
872 /* Ensure that when we meet this decl next time, we won't duplicate
873 it again. */
874 nuid = DECL_UID (var_copy);
875 ielt.uid = nuid;
876 dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT);
877 gcc_assert (!dslot->to);
878 dslot->uid = nuid;
879 dslot->to = var_copy;
881 else
882 var_copy = dslot->to;
884 replace_ssa_name_symbol (copy, var_copy);
885 return copy;
888 /* Finds the ssa names used in STMT that are defined outside the
889 region between ENTRY and EXIT and replaces such ssa names with
890 their duplicates. The duplicates are stored to NAME_COPIES. Base
891 decls of all ssa names used in STMT (including those defined in
892 LOOP) are replaced with the new temporary variables; the
893 replacement decls are stored in DECL_COPIES. */
895 static void
896 separate_decls_in_region_stmt (edge entry, edge exit, gimple *stmt,
897 name_to_copy_table_type *name_copies,
898 int_tree_htab_type *decl_copies)
900 use_operand_p use;
901 def_operand_p def;
902 ssa_op_iter oi;
903 tree name, copy;
904 bool copy_name_p;
906 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
908 name = DEF_FROM_PTR (def);
909 gcc_assert (TREE_CODE (name) == SSA_NAME);
910 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
911 false);
912 gcc_assert (copy == name);
915 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
917 name = USE_FROM_PTR (use);
918 if (TREE_CODE (name) != SSA_NAME)
919 continue;
921 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
922 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
923 copy_name_p);
924 SET_USE (use, copy);
928 /* Finds the ssa names used in STMT that are defined outside the
929 region between ENTRY and EXIT and replaces such ssa names with
930 their duplicates. The duplicates are stored to NAME_COPIES. Base
931 decls of all ssa names used in STMT (including those defined in
932 LOOP) are replaced with the new temporary variables; the
933 replacement decls are stored in DECL_COPIES. */
935 static bool
936 separate_decls_in_region_debug (gimple *stmt,
937 name_to_copy_table_type *name_copies,
938 int_tree_htab_type *decl_copies)
940 use_operand_p use;
941 ssa_op_iter oi;
942 tree var, name;
943 struct int_tree_map ielt;
944 struct name_to_copy_elt elt;
945 name_to_copy_elt **slot;
946 int_tree_map *dslot;
948 if (gimple_debug_bind_p (stmt))
949 var = gimple_debug_bind_get_var (stmt);
950 else if (gimple_debug_source_bind_p (stmt))
951 var = gimple_debug_source_bind_get_var (stmt);
952 else
953 return true;
954 if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
955 return true;
956 gcc_assert (DECL_P (var) && SSA_VAR_P (var));
957 ielt.uid = DECL_UID (var);
958 dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT);
959 if (!dslot)
960 return true;
961 if (gimple_debug_bind_p (stmt))
962 gimple_debug_bind_set_var (stmt, dslot->to);
963 else if (gimple_debug_source_bind_p (stmt))
964 gimple_debug_source_bind_set_var (stmt, dslot->to);
966 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
968 name = USE_FROM_PTR (use);
969 if (TREE_CODE (name) != SSA_NAME)
970 continue;
972 elt.version = SSA_NAME_VERSION (name);
973 slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT);
974 if (!slot)
976 gimple_debug_bind_reset_value (stmt);
977 update_stmt (stmt);
978 break;
981 SET_USE (use, (*slot)->new_name);
984 return false;
987 /* Callback for htab_traverse. Adds a field corresponding to the reduction
988 specified in SLOT. The type is passed in DATA. */
991 add_field_for_reduction (reduction_info **slot, tree type)
994 struct reduction_info *const red = *slot;
995 tree var = reduc_stmt_res (red->reduc_stmt);
996 tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
997 SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
999 insert_field_into_struct (type, field);
1001 red->field = field;
1003 return 1;
1006 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
1007 described in SLOT. The type is passed in DATA. */
1010 add_field_for_name (name_to_copy_elt **slot, tree type)
1012 struct name_to_copy_elt *const elt = *slot;
1013 tree name = ssa_name (elt->version);
1014 tree field = build_decl (UNKNOWN_LOCATION,
1015 FIELD_DECL, SSA_NAME_IDENTIFIER (name),
1016 TREE_TYPE (name));
1018 insert_field_into_struct (type, field);
1019 elt->field = field;
1021 return 1;
1024 /* Callback for htab_traverse. A local result is the intermediate result
1025 computed by a single
1026 thread, or the initial value in case no iteration was executed.
1027 This function creates a phi node reflecting these values.
1028 The phi's result will be stored in NEW_PHI field of the
1029 reduction's data structure. */
1032 create_phi_for_local_result (reduction_info **slot, struct loop *loop)
1034 struct reduction_info *const reduc = *slot;
1035 edge e;
1036 gphi *new_phi;
1037 basic_block store_bb, continue_bb;
1038 tree local_res;
1039 source_location locus;
1041 /* STORE_BB is the block where the phi
1042 should be stored. It is the destination of the loop exit.
1043 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
1044 continue_bb = single_pred (loop->latch);
1045 store_bb = FALLTHRU_EDGE (continue_bb)->dest;
1047 /* STORE_BB has two predecessors. One coming from the loop
1048 (the reduction's result is computed at the loop),
1049 and another coming from a block preceding the loop,
1050 when no iterations
1051 are executed (the initial value should be taken). */
1052 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (continue_bb))
1053 e = EDGE_PRED (store_bb, 1);
1054 else
1055 e = EDGE_PRED (store_bb, 0);
1056 tree lhs = reduc_stmt_res (reduc->reduc_stmt);
1057 local_res = copy_ssa_name (lhs);
1058 locus = gimple_location (reduc->reduc_stmt);
1059 new_phi = create_phi_node (local_res, store_bb);
1060 add_phi_arg (new_phi, reduc->init, e, locus);
1061 add_phi_arg (new_phi, lhs, FALLTHRU_EDGE (continue_bb), locus);
1062 reduc->new_phi = new_phi;
1064 return 1;
1067 struct clsn_data
1069 tree store;
1070 tree load;
1072 basic_block store_bb;
1073 basic_block load_bb;
1076 /* Callback for htab_traverse. Create an atomic instruction for the
1077 reduction described in SLOT.
1078 DATA annotates the place in memory the atomic operation relates to,
1079 and the basic block it needs to be generated in. */
1082 create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data)
1084 struct reduction_info *const reduc = *slot;
1085 gimple_stmt_iterator gsi;
1086 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1087 tree load_struct;
1088 basic_block bb;
1089 basic_block new_bb;
1090 edge e;
1091 tree t, addr, ref, x;
1092 tree tmp_load, name;
1093 gimple *load;
1095 if (reduc->reduc_addr == NULL_TREE)
1097 load_struct = build_simple_mem_ref (clsn_data->load);
1098 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
1100 addr = build_addr (t);
1102 else
1104 /* Set the address for the atomic store. */
1105 addr = reduc->reduc_addr;
1107 /* Remove the non-atomic store '*addr = sum'. */
1108 tree res = PHI_RESULT (reduc->keep_res);
1109 use_operand_p use_p;
1110 gimple *stmt;
1111 bool single_use_p = single_imm_use (res, &use_p, &stmt);
1112 gcc_assert (single_use_p);
1113 replace_uses_by (gimple_vdef (stmt),
1114 gimple_vuse (stmt));
1115 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1116 gsi_remove (&gsi, true);
1119 /* Create phi node. */
1120 bb = clsn_data->load_bb;
1122 gsi = gsi_last_bb (bb);
1123 e = split_block (bb, gsi_stmt (gsi));
1124 new_bb = e->dest;
1126 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)));
1127 tmp_load = make_ssa_name (tmp_load);
1128 load = gimple_build_omp_atomic_load (tmp_load, addr);
1129 SSA_NAME_DEF_STMT (tmp_load) = load;
1130 gsi = gsi_start_bb (new_bb);
1131 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
1133 e = split_block (new_bb, load);
1134 new_bb = e->dest;
1135 gsi = gsi_start_bb (new_bb);
1136 ref = tmp_load;
1137 x = fold_build2 (reduc->reduction_code,
1138 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1139 PHI_RESULT (reduc->new_phi));
1141 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1142 GSI_CONTINUE_LINKING);
1144 gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
1145 return 1;
1148 /* Create the atomic operation at the join point of the threads.
1149 REDUCTION_LIST describes the reductions in the LOOP.
1150 LD_ST_DATA describes the shared data structure where
1151 shared data is stored in and loaded from. */
1152 static void
1153 create_call_for_reduction (struct loop *loop,
1154 reduction_info_table_type *reduction_list,
1155 struct clsn_data *ld_st_data)
1157 reduction_list->traverse <struct loop *, create_phi_for_local_result> (loop);
1158 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1159 basic_block continue_bb = single_pred (loop->latch);
1160 ld_st_data->load_bb = FALLTHRU_EDGE (continue_bb)->dest;
1161 reduction_list
1162 ->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data);
1165 /* Callback for htab_traverse. Loads the final reduction value at the
1166 join point of all threads, and inserts it in the right place. */
1169 create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data)
1171 struct reduction_info *const red = *slot;
1172 gimple *stmt;
1173 gimple_stmt_iterator gsi;
1174 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1175 tree load_struct;
1176 tree name;
1177 tree x;
1179 /* If there's no exit phi, the result of the reduction is unused. */
1180 if (red->keep_res == NULL)
1181 return 1;
1183 gsi = gsi_after_labels (clsn_data->load_bb);
1184 load_struct = build_simple_mem_ref (clsn_data->load);
1185 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1186 NULL_TREE);
1188 x = load_struct;
1189 name = PHI_RESULT (red->keep_res);
1190 stmt = gimple_build_assign (name, x);
1192 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1194 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1195 !gsi_end_p (gsi); gsi_next (&gsi))
1196 if (gsi_stmt (gsi) == red->keep_res)
1198 remove_phi_node (&gsi, false);
1199 return 1;
1201 gcc_unreachable ();
1204 /* Load the reduction result that was stored in LD_ST_DATA.
1205 REDUCTION_LIST describes the list of reductions that the
1206 loads should be generated for. */
1207 static void
1208 create_final_loads_for_reduction (reduction_info_table_type *reduction_list,
1209 struct clsn_data *ld_st_data)
1211 gimple_stmt_iterator gsi;
1212 tree t;
1213 gimple *stmt;
1215 gsi = gsi_after_labels (ld_st_data->load_bb);
1216 t = build_fold_addr_expr (ld_st_data->store);
1217 stmt = gimple_build_assign (ld_st_data->load, t);
1219 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1221 reduction_list
1222 ->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data);
1226 /* Callback for htab_traverse. Store the neutral value for the
1227 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1228 1 for MULT_EXPR, etc. into the reduction field.
1229 The reduction is specified in SLOT. The store information is
1230 passed in DATA. */
1233 create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data)
1235 struct reduction_info *const red = *slot;
1236 tree t;
1237 gimple *stmt;
1238 gimple_stmt_iterator gsi;
1239 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1241 gsi = gsi_last_bb (clsn_data->store_bb);
1242 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1243 stmt = gimple_build_assign (t, red->initial_value);
1244 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1246 return 1;
1249 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1250 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1251 specified in SLOT. */
1254 create_loads_and_stores_for_name (name_to_copy_elt **slot,
1255 struct clsn_data *clsn_data)
1257 struct name_to_copy_elt *const elt = *slot;
1258 tree t;
1259 gimple *stmt;
1260 gimple_stmt_iterator gsi;
1261 tree type = TREE_TYPE (elt->new_name);
1262 tree load_struct;
1264 gsi = gsi_last_bb (clsn_data->store_bb);
1265 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1266 stmt = gimple_build_assign (t, ssa_name (elt->version));
1267 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1269 gsi = gsi_last_bb (clsn_data->load_bb);
1270 load_struct = build_simple_mem_ref (clsn_data->load);
1271 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1272 stmt = gimple_build_assign (elt->new_name, t);
1273 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1275 return 1;
1278 /* Moves all the variables used in LOOP and defined outside of it (including
1279 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1280 name) to a structure created for this purpose. The code
1282 while (1)
1284 use (a);
1285 use (b);
1288 is transformed this way:
1290 bb0:
1291 old.a = a;
1292 old.b = b;
1294 bb1:
1295 a' = new->a;
1296 b' = new->b;
1297 while (1)
1299 use (a');
1300 use (b');
1303 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1304 pointer `new' is intentionally not initialized (the loop will be split to a
1305 separate function later, and `new' will be initialized from its arguments).
1306 LD_ST_DATA holds information about the shared data structure used to pass
1307 information among the threads. It is initialized here, and
1308 gen_parallel_loop will pass it to create_call_for_reduction that
1309 needs this information. REDUCTION_LIST describes the reductions
1310 in LOOP. */
1312 static void
1313 separate_decls_in_region (edge entry, edge exit,
1314 reduction_info_table_type *reduction_list,
1315 tree *arg_struct, tree *new_arg_struct,
1316 struct clsn_data *ld_st_data)
1319 basic_block bb1 = split_edge (entry);
1320 basic_block bb0 = single_pred (bb1);
1321 name_to_copy_table_type name_copies (10);
1322 int_tree_htab_type decl_copies (10);
1323 unsigned i;
1324 tree type, type_name, nvar;
1325 gimple_stmt_iterator gsi;
1326 struct clsn_data clsn_data;
1327 auto_vec<basic_block, 3> body;
1328 basic_block bb;
1329 basic_block entry_bb = bb1;
1330 basic_block exit_bb = exit->dest;
1331 bool has_debug_stmt = false;
1333 entry = single_succ_edge (entry_bb);
1334 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1336 FOR_EACH_VEC_ELT (body, i, bb)
1338 if (bb != entry_bb && bb != exit_bb)
1340 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1341 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1342 &name_copies, &decl_copies);
1344 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1346 gimple *stmt = gsi_stmt (gsi);
1348 if (is_gimple_debug (stmt))
1349 has_debug_stmt = true;
1350 else
1351 separate_decls_in_region_stmt (entry, exit, stmt,
1352 &name_copies, &decl_copies);
1357 /* Now process debug bind stmts. We must not create decls while
1358 processing debug stmts, so we defer their processing so as to
1359 make sure we will have debug info for as many variables as
1360 possible (all of those that were dealt with in the loop above),
1361 and discard those for which we know there's nothing we can
1362 do. */
1363 if (has_debug_stmt)
1364 FOR_EACH_VEC_ELT (body, i, bb)
1365 if (bb != entry_bb && bb != exit_bb)
1367 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1369 gimple *stmt = gsi_stmt (gsi);
1371 if (is_gimple_debug (stmt))
1373 if (separate_decls_in_region_debug (stmt, &name_copies,
1374 &decl_copies))
1376 gsi_remove (&gsi, true);
1377 continue;
1381 gsi_next (&gsi);
1385 if (name_copies.elements () == 0 && reduction_list->elements () == 0)
1387 /* It may happen that there is nothing to copy (if there are only
1388 loop carried and external variables in the loop). */
1389 *arg_struct = NULL;
1390 *new_arg_struct = NULL;
1392 else
1394 /* Create the type for the structure to store the ssa names to. */
1395 type = lang_hooks.types.make_type (RECORD_TYPE);
1396 type_name = build_decl (UNKNOWN_LOCATION,
1397 TYPE_DECL, create_tmp_var_name (".paral_data"),
1398 type);
1399 TYPE_NAME (type) = type_name;
1401 name_copies.traverse <tree, add_field_for_name> (type);
1402 if (reduction_list && reduction_list->elements () > 0)
1404 /* Create the fields for reductions. */
1405 reduction_list->traverse <tree, add_field_for_reduction> (type);
1407 layout_type (type);
1409 /* Create the loads and stores. */
1410 *arg_struct = create_tmp_var (type, ".paral_data_store");
1411 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1412 *new_arg_struct = make_ssa_name (nvar);
1414 ld_st_data->store = *arg_struct;
1415 ld_st_data->load = *new_arg_struct;
1416 ld_st_data->store_bb = bb0;
1417 ld_st_data->load_bb = bb1;
1419 name_copies
1420 .traverse <struct clsn_data *, create_loads_and_stores_for_name>
1421 (ld_st_data);
1423 /* Load the calculation from memory (after the join of the threads). */
1425 if (reduction_list && reduction_list->elements () > 0)
1427 reduction_list
1428 ->traverse <struct clsn_data *, create_stores_for_reduction>
1429 (ld_st_data);
1430 clsn_data.load = make_ssa_name (nvar);
1431 clsn_data.load_bb = exit->dest;
1432 clsn_data.store = ld_st_data->store;
1433 create_final_loads_for_reduction (reduction_list, &clsn_data);
1438 /* Returns true if FN was created to run in parallel. */
1440 bool
1441 parallelized_function_p (tree fndecl)
1443 cgraph_node *node = cgraph_node::get (fndecl);
1444 gcc_assert (node != NULL);
1445 return node->parallelized_function;
1448 /* Creates and returns an empty function that will receive the body of
1449 a parallelized loop. */
1451 static tree
1452 create_loop_fn (location_t loc)
1454 char buf[100];
1455 char *tname;
1456 tree decl, type, name, t;
1457 struct function *act_cfun = cfun;
1458 static unsigned loopfn_num;
1460 loc = LOCATION_LOCUS (loc);
1461 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1462 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1463 clean_symbol_name (tname);
1464 name = get_identifier (tname);
1465 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1467 decl = build_decl (loc, FUNCTION_DECL, name, type);
1468 TREE_STATIC (decl) = 1;
1469 TREE_USED (decl) = 1;
1470 DECL_ARTIFICIAL (decl) = 1;
1471 DECL_IGNORED_P (decl) = 0;
1472 TREE_PUBLIC (decl) = 0;
1473 DECL_UNINLINABLE (decl) = 1;
1474 DECL_EXTERNAL (decl) = 0;
1475 DECL_CONTEXT (decl) = NULL_TREE;
1476 DECL_INITIAL (decl) = make_node (BLOCK);
1478 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
1479 DECL_ARTIFICIAL (t) = 1;
1480 DECL_IGNORED_P (t) = 1;
1481 DECL_RESULT (decl) = t;
1483 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
1484 ptr_type_node);
1485 DECL_ARTIFICIAL (t) = 1;
1486 DECL_ARG_TYPE (t) = ptr_type_node;
1487 DECL_CONTEXT (t) = decl;
1488 TREE_USED (t) = 1;
1489 DECL_ARGUMENTS (decl) = t;
1491 allocate_struct_function (decl, false);
1493 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1494 it. */
1495 set_cfun (act_cfun);
1497 return decl;
1500 /* Replace uses of NAME by VAL in block BB. */
1502 static void
1503 replace_uses_in_bb_by (tree name, tree val, basic_block bb)
1505 gimple *use_stmt;
1506 imm_use_iterator imm_iter;
1508 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, name)
1510 if (gimple_bb (use_stmt) != bb)
1511 continue;
1513 use_operand_p use_p;
1514 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1515 SET_USE (use_p, val);
1519 /* Do transformation from:
1521 <bb preheader>:
1523 goto <bb header>
1525 <bb header>:
1526 ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1527 sum_a = PHI <sum_init (preheader), sum_b (latch)>
1529 use (ivtmp_a)
1531 sum_b = sum_a + sum_update
1533 if (ivtmp_a < n)
1534 goto <bb latch>;
1535 else
1536 goto <bb exit>;
1538 <bb latch>:
1539 ivtmp_b = ivtmp_a + 1;
1540 goto <bb header>
1542 <bb exit>:
1543 sum_z = PHI <sum_b (cond[1]), ...>
1545 [1] Where <bb cond> is single_pred (bb latch); In the simplest case,
1546 that's <bb header>.
1550 <bb preheader>:
1552 goto <bb newheader>
1554 <bb header>:
1555 ivtmp_a = PHI <ivtmp_c (latch)>
1556 sum_a = PHI <sum_c (latch)>
1558 use (ivtmp_a)
1560 sum_b = sum_a + sum_update
1562 goto <bb latch>;
1564 <bb newheader>:
1565 ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1566 sum_c = PHI <sum_init (preheader), sum_b (latch)>
1567 if (ivtmp_c < n + 1)
1568 goto <bb header>;
1569 else
1570 goto <bb newexit>;
1572 <bb latch>:
1573 ivtmp_b = ivtmp_a + 1;
1574 goto <bb newheader>
1576 <bb newexit>:
1577 sum_y = PHI <sum_c (newheader)>
1579 <bb exit>:
1580 sum_z = PHI <sum_y (newexit), ...>
1583 In unified diff format:
1585 <bb preheader>:
1587 - goto <bb header>
1588 + goto <bb newheader>
1590 <bb header>:
1591 - ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1592 - sum_a = PHI <sum_init (preheader), sum_b (latch)>
1593 + ivtmp_a = PHI <ivtmp_c (latch)>
1594 + sum_a = PHI <sum_c (latch)>
1596 use (ivtmp_a)
1598 sum_b = sum_a + sum_update
1600 - if (ivtmp_a < n)
1601 - goto <bb latch>;
1602 + goto <bb latch>;
1604 + <bb newheader>:
1605 + ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1606 + sum_c = PHI <sum_init (preheader), sum_b (latch)>
1607 + if (ivtmp_c < n + 1)
1608 + goto <bb header>;
1609 else
1610 goto <bb exit>;
1612 <bb latch>:
1613 ivtmp_b = ivtmp_a + 1;
1614 - goto <bb header>
1615 + goto <bb newheader>
1617 + <bb newexit>:
1618 + sum_y = PHI <sum_c (newheader)>
1620 <bb exit>:
1621 - sum_z = PHI <sum_b (cond[1]), ...>
1622 + sum_z = PHI <sum_y (newexit), ...>
1624 Note: the example does not show any virtual phis, but these are handled more
1625 or less as reductions.
1628 Moves the exit condition of LOOP to the beginning of its header.
1629 REDUCTION_LIST describes the reductions in LOOP. BOUND is the new loop
1630 bound. */
1632 static void
1633 transform_to_exit_first_loop_alt (struct loop *loop,
1634 reduction_info_table_type *reduction_list,
1635 tree bound)
1637 basic_block header = loop->header;
1638 basic_block latch = loop->latch;
1639 edge exit = single_dom_exit (loop);
1640 basic_block exit_block = exit->dest;
1641 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1642 tree control = gimple_cond_lhs (cond_stmt);
1643 edge e;
1645 /* Rewriting virtuals into loop-closed ssa normal form makes this
1646 transformation simpler. It also ensures that the virtuals are in
1647 loop-closed ssa normal from after the transformation, which is required by
1648 create_parallel_loop. */
1649 rewrite_virtuals_into_loop_closed_ssa (loop);
1651 /* Create the new_header block. */
1652 basic_block new_header = split_block_before_cond_jump (exit->src);
1653 edge edge_at_split = single_pred_edge (new_header);
1655 /* Redirect entry edge to new_header. */
1656 edge entry = loop_preheader_edge (loop);
1657 e = redirect_edge_and_branch (entry, new_header);
1658 gcc_assert (e == entry);
1660 /* Redirect post_inc_edge to new_header. */
1661 edge post_inc_edge = single_succ_edge (latch);
1662 e = redirect_edge_and_branch (post_inc_edge, new_header);
1663 gcc_assert (e == post_inc_edge);
1665 /* Redirect post_cond_edge to header. */
1666 edge post_cond_edge = single_pred_edge (latch);
1667 e = redirect_edge_and_branch (post_cond_edge, header);
1668 gcc_assert (e == post_cond_edge);
1670 /* Redirect edge_at_split to latch. */
1671 e = redirect_edge_and_branch (edge_at_split, latch);
1672 gcc_assert (e == edge_at_split);
1674 /* Set the new loop bound. */
1675 gimple_cond_set_rhs (cond_stmt, bound);
1676 update_stmt (cond_stmt);
1678 /* Repair the ssa. */
1679 vec<edge_var_map> *v = redirect_edge_var_map_vector (post_inc_edge);
1680 edge_var_map *vm;
1681 gphi_iterator gsi;
1682 int i;
1683 for (gsi = gsi_start_phis (header), i = 0;
1684 !gsi_end_p (gsi) && v->iterate (i, &vm);
1685 gsi_next (&gsi), i++)
1687 gphi *phi = gsi.phi ();
1688 tree res_a = PHI_RESULT (phi);
1690 /* Create new phi. */
1691 tree res_c = copy_ssa_name (res_a, phi);
1692 gphi *nphi = create_phi_node (res_c, new_header);
1694 /* Replace ivtmp_a with ivtmp_c in condition 'if (ivtmp_a < n)'. */
1695 replace_uses_in_bb_by (res_a, res_c, new_header);
1697 /* Replace ivtmp/sum_b with ivtmp/sum_c in header phi. */
1698 add_phi_arg (phi, res_c, post_cond_edge, UNKNOWN_LOCATION);
1700 /* Replace sum_b with sum_c in exit phi. */
1701 tree res_b = redirect_edge_var_map_def (vm);
1702 replace_uses_in_bb_by (res_b, res_c, exit_block);
1704 struct reduction_info *red = reduction_phi (reduction_list, phi);
1705 gcc_assert (virtual_operand_p (res_a)
1706 || res_a == control
1707 || red != NULL);
1709 if (red)
1711 /* Register the new reduction phi. */
1712 red->reduc_phi = nphi;
1713 gimple_set_uid (red->reduc_phi, red->reduc_version);
1716 gcc_assert (gsi_end_p (gsi) && !v->iterate (i, &vm));
1718 /* Set the preheader argument of the new phis to ivtmp/sum_init. */
1719 flush_pending_stmts (entry);
1721 /* Set the latch arguments of the new phis to ivtmp/sum_b. */
1722 flush_pending_stmts (post_inc_edge);
1725 basic_block new_exit_block = NULL;
1726 if (!single_pred_p (exit->dest))
1728 /* Create a new empty exit block, inbetween the new loop header and the
1729 old exit block. The function separate_decls_in_region needs this block
1730 to insert code that is active on loop exit, but not any other path. */
1731 new_exit_block = split_edge (exit);
1734 /* Insert and register the reduction exit phis. */
1735 for (gphi_iterator gsi = gsi_start_phis (exit_block);
1736 !gsi_end_p (gsi);
1737 gsi_next (&gsi))
1739 gphi *phi = gsi.phi ();
1740 gphi *nphi = NULL;
1741 tree res_z = PHI_RESULT (phi);
1742 tree res_c;
1744 if (new_exit_block != NULL)
1746 /* Now that we have a new exit block, duplicate the phi of the old
1747 exit block in the new exit block to preserve loop-closed ssa. */
1748 edge succ_new_exit_block = single_succ_edge (new_exit_block);
1749 edge pred_new_exit_block = single_pred_edge (new_exit_block);
1750 tree res_y = copy_ssa_name (res_z, phi);
1751 nphi = create_phi_node (res_y, new_exit_block);
1752 res_c = PHI_ARG_DEF_FROM_EDGE (phi, succ_new_exit_block);
1753 add_phi_arg (nphi, res_c, pred_new_exit_block, UNKNOWN_LOCATION);
1754 add_phi_arg (phi, res_y, succ_new_exit_block, UNKNOWN_LOCATION);
1756 else
1757 res_c = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1759 if (virtual_operand_p (res_z))
1760 continue;
1762 gimple *reduc_phi = SSA_NAME_DEF_STMT (res_c);
1763 struct reduction_info *red = reduction_phi (reduction_list, reduc_phi);
1764 if (red != NULL)
1765 red->keep_res = (nphi != NULL
1766 ? nphi
1767 : phi);
1770 /* We're going to cancel the loop at the end of gen_parallel_loop, but until
1771 then we're still using some fields, so only bother about fields that are
1772 still used: header and latch.
1773 The loop has a new header bb, so we update it. The latch bb stays the
1774 same. */
1775 loop->header = new_header;
1777 /* Recalculate dominance info. */
1778 free_dominance_info (CDI_DOMINATORS);
1779 calculate_dominance_info (CDI_DOMINATORS);
1781 checking_verify_ssa (true, true);
1784 /* Tries to moves the exit condition of LOOP to the beginning of its header
1785 without duplication of the loop body. NIT is the number of iterations of the
1786 loop. REDUCTION_LIST describes the reductions in LOOP. Return true if
1787 transformation is successful. */
1789 static bool
1790 try_transform_to_exit_first_loop_alt (struct loop *loop,
1791 reduction_info_table_type *reduction_list,
1792 tree nit)
1794 /* Check whether the latch contains a single statement. */
1795 if (!gimple_seq_nondebug_singleton_p (bb_seq (loop->latch)))
1796 return false;
1798 /* Check whether the latch contains no phis. */
1799 if (phi_nodes (loop->latch) != NULL)
1800 return false;
1802 /* Check whether the latch contains the loop iv increment. */
1803 edge back = single_succ_edge (loop->latch);
1804 edge exit = single_dom_exit (loop);
1805 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1806 tree control = gimple_cond_lhs (cond_stmt);
1807 gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (control));
1808 tree inc_res = gimple_phi_arg_def (phi, back->dest_idx);
1809 if (gimple_bb (SSA_NAME_DEF_STMT (inc_res)) != loop->latch)
1810 return false;
1812 /* Check whether there's no code between the loop condition and the latch. */
1813 if (!single_pred_p (loop->latch)
1814 || single_pred (loop->latch) != exit->src)
1815 return false;
1817 tree alt_bound = NULL_TREE;
1818 tree nit_type = TREE_TYPE (nit);
1820 /* Figure out whether nit + 1 overflows. */
1821 if (TREE_CODE (nit) == INTEGER_CST)
1823 if (!tree_int_cst_equal (nit, TYPE_MAXVAL (nit_type)))
1825 alt_bound = fold_build2_loc (UNKNOWN_LOCATION, PLUS_EXPR, nit_type,
1826 nit, build_one_cst (nit_type));
1828 gcc_assert (TREE_CODE (alt_bound) == INTEGER_CST);
1829 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1830 return true;
1832 else
1834 /* Todo: Figure out if we can trigger this, if it's worth to handle
1835 optimally, and if we can handle it optimally. */
1836 return false;
1840 gcc_assert (TREE_CODE (nit) == SSA_NAME);
1842 /* Variable nit is the loop bound as returned by canonicalize_loop_ivs, for an
1843 iv with base 0 and step 1 that is incremented in the latch, like this:
1845 <bb header>:
1846 # iv_1 = PHI <0 (preheader), iv_2 (latch)>
1848 if (iv_1 < nit)
1849 goto <bb latch>;
1850 else
1851 goto <bb exit>;
1853 <bb latch>:
1854 iv_2 = iv_1 + 1;
1855 goto <bb header>;
1857 The range of iv_1 is [0, nit]. The latch edge is taken for
1858 iv_1 == [0, nit - 1] and the exit edge is taken for iv_1 == nit. So the
1859 number of latch executions is equal to nit.
1861 The function max_loop_iterations gives us the maximum number of latch
1862 executions, so it gives us the maximum value of nit. */
1863 widest_int nit_max;
1864 if (!max_loop_iterations (loop, &nit_max))
1865 return false;
1867 /* Check if nit + 1 overflows. */
1868 widest_int type_max = wi::to_widest (TYPE_MAXVAL (nit_type));
1869 if (!wi::lts_p (nit_max, type_max))
1870 return false;
1872 gimple *def = SSA_NAME_DEF_STMT (nit);
1874 /* Try to find nit + 1, in the form of n in an assignment nit = n - 1. */
1875 if (def
1876 && is_gimple_assign (def)
1877 && gimple_assign_rhs_code (def) == PLUS_EXPR)
1879 tree op1 = gimple_assign_rhs1 (def);
1880 tree op2 = gimple_assign_rhs2 (def);
1881 if (integer_minus_onep (op1))
1882 alt_bound = op2;
1883 else if (integer_minus_onep (op2))
1884 alt_bound = op1;
1887 /* If not found, insert nit + 1. */
1888 if (alt_bound == NULL_TREE)
1890 alt_bound = fold_build2 (PLUS_EXPR, nit_type, nit,
1891 build_int_cst_type (nit_type, 1));
1893 gimple_stmt_iterator gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1895 alt_bound
1896 = force_gimple_operand_gsi (&gsi, alt_bound, true, NULL_TREE, false,
1897 GSI_CONTINUE_LINKING);
1900 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1901 return true;
1904 /* Moves the exit condition of LOOP to the beginning of its header. NIT is the
1905 number of iterations of the loop. REDUCTION_LIST describes the reductions in
1906 LOOP. */
1908 static void
1909 transform_to_exit_first_loop (struct loop *loop,
1910 reduction_info_table_type *reduction_list,
1911 tree nit)
1913 basic_block *bbs, *nbbs, ex_bb, orig_header;
1914 unsigned n;
1915 bool ok;
1916 edge exit = single_dom_exit (loop), hpred;
1917 tree control, control_name, res, t;
1918 gphi *phi, *nphi;
1919 gassign *stmt;
1920 gcond *cond_stmt, *cond_nit;
1921 tree nit_1;
1923 split_block_after_labels (loop->header);
1924 orig_header = single_succ (loop->header);
1925 hpred = single_succ_edge (loop->header);
1927 cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1928 control = gimple_cond_lhs (cond_stmt);
1929 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1931 /* Make sure that we have phi nodes on exit for all loop header phis
1932 (create_parallel_loop requires that). */
1933 for (gphi_iterator gsi = gsi_start_phis (loop->header);
1934 !gsi_end_p (gsi);
1935 gsi_next (&gsi))
1937 phi = gsi.phi ();
1938 res = PHI_RESULT (phi);
1939 t = copy_ssa_name (res, phi);
1940 SET_PHI_RESULT (phi, t);
1941 nphi = create_phi_node (res, orig_header);
1942 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
1944 if (res == control)
1946 gimple_cond_set_lhs (cond_stmt, t);
1947 update_stmt (cond_stmt);
1948 control = t;
1952 bbs = get_loop_body_in_dom_order (loop);
1954 for (n = 0; bbs[n] != exit->src; n++)
1955 continue;
1956 nbbs = XNEWVEC (basic_block, n);
1957 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1958 bbs + 1, n, nbbs);
1959 gcc_assert (ok);
1960 free (bbs);
1961 ex_bb = nbbs[0];
1962 free (nbbs);
1964 /* Other than reductions, the only gimple reg that should be copied
1965 out of the loop is the control variable. */
1966 exit = single_dom_exit (loop);
1967 control_name = NULL_TREE;
1968 for (gphi_iterator gsi = gsi_start_phis (ex_bb);
1969 !gsi_end_p (gsi); )
1971 phi = gsi.phi ();
1972 res = PHI_RESULT (phi);
1973 if (virtual_operand_p (res))
1975 gsi_next (&gsi);
1976 continue;
1979 /* Check if it is a part of reduction. If it is,
1980 keep the phi at the reduction's keep_res field. The
1981 PHI_RESULT of this phi is the resulting value of the reduction
1982 variable when exiting the loop. */
1984 if (reduction_list->elements () > 0)
1986 struct reduction_info *red;
1988 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1989 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1990 if (red)
1992 red->keep_res = phi;
1993 gsi_next (&gsi);
1994 continue;
1997 gcc_assert (control_name == NULL_TREE
1998 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
1999 control_name = res;
2000 remove_phi_node (&gsi, false);
2002 gcc_assert (control_name != NULL_TREE);
2004 /* Initialize the control variable to number of iterations
2005 according to the rhs of the exit condition. */
2006 gimple_stmt_iterator gsi = gsi_after_labels (ex_bb);
2007 cond_nit = as_a <gcond *> (last_stmt (exit->src));
2008 nit_1 = gimple_cond_rhs (cond_nit);
2009 nit_1 = force_gimple_operand_gsi (&gsi,
2010 fold_convert (TREE_TYPE (control_name), nit_1),
2011 false, NULL_TREE, false, GSI_SAME_STMT);
2012 stmt = gimple_build_assign (control_name, nit_1);
2013 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
2016 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
2017 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
2018 NEW_DATA is the variable that should be initialized from the argument
2019 of LOOP_FN. N_THREADS is the requested number of threads, which can be 0 if
2020 that number is to be determined later. */
2022 static void
2023 create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
2024 tree new_data, unsigned n_threads, location_t loc,
2025 bool oacc_kernels_p)
2027 gimple_stmt_iterator gsi;
2028 basic_block for_bb, ex_bb, continue_bb;
2029 tree t, param;
2030 gomp_parallel *omp_par_stmt;
2031 gimple *omp_return_stmt1, *omp_return_stmt2;
2032 gimple *phi;
2033 gcond *cond_stmt;
2034 gomp_for *for_stmt;
2035 gomp_continue *omp_cont_stmt;
2036 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
2037 edge exit, nexit, guard, end, e;
2039 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
2040 if (oacc_kernels_p)
2042 tree clause = build_omp_clause (loc, OMP_CLAUSE_NUM_GANGS);
2043 OMP_CLAUSE_NUM_GANGS_EXPR (clause)
2044 = build_int_cst (integer_type_node, n_threads);
2045 set_oacc_fn_attrib (cfun->decl, clause, true, NULL);
2047 else
2049 basic_block bb = loop_preheader_edge (loop)->src;
2050 basic_block paral_bb = single_pred (bb);
2051 gsi = gsi_last_bb (paral_bb);
2053 gcc_checking_assert (n_threads != 0);
2054 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
2055 OMP_CLAUSE_NUM_THREADS_EXPR (t)
2056 = build_int_cst (integer_type_node, n_threads);
2057 omp_par_stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
2058 gimple_set_location (omp_par_stmt, loc);
2060 gsi_insert_after (&gsi, omp_par_stmt, GSI_NEW_STMT);
2062 /* Initialize NEW_DATA. */
2063 if (data)
2065 gassign *assign_stmt;
2067 gsi = gsi_after_labels (bb);
2069 param = make_ssa_name (DECL_ARGUMENTS (loop_fn));
2070 assign_stmt = gimple_build_assign (param, build_fold_addr_expr (data));
2071 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2073 assign_stmt = gimple_build_assign (new_data,
2074 fold_convert (TREE_TYPE (new_data), param));
2075 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2078 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
2079 bb = split_loop_exit_edge (single_dom_exit (loop));
2080 gsi = gsi_last_bb (bb);
2081 omp_return_stmt1 = gimple_build_omp_return (false);
2082 gimple_set_location (omp_return_stmt1, loc);
2083 gsi_insert_after (&gsi, omp_return_stmt1, GSI_NEW_STMT);
2086 /* Extract data for GIMPLE_OMP_FOR. */
2087 gcc_assert (loop->header == single_dom_exit (loop)->src);
2088 cond_stmt = as_a <gcond *> (last_stmt (loop->header));
2090 cvar = gimple_cond_lhs (cond_stmt);
2091 cvar_base = SSA_NAME_VAR (cvar);
2092 phi = SSA_NAME_DEF_STMT (cvar);
2093 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2094 initvar = copy_ssa_name (cvar);
2095 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
2096 initvar);
2097 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2099 gsi = gsi_last_nondebug_bb (loop->latch);
2100 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
2101 gsi_remove (&gsi, true);
2103 /* Prepare cfg. */
2104 for_bb = split_edge (loop_preheader_edge (loop));
2105 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
2106 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
2107 gcc_assert (exit == single_dom_exit (loop));
2109 guard = make_edge (for_bb, ex_bb, 0);
2110 /* Split the latch edge, so LOOPS_HAVE_SIMPLE_LATCHES is still valid. */
2111 loop->latch = split_edge (single_succ_edge (loop->latch));
2112 single_pred_edge (loop->latch)->flags = 0;
2113 end = make_edge (single_pred (loop->latch), ex_bb, EDGE_FALLTHRU);
2114 rescan_loop_exit (end, true, false);
2116 for (gphi_iterator gpi = gsi_start_phis (ex_bb);
2117 !gsi_end_p (gpi); gsi_next (&gpi))
2119 source_location locus;
2120 gphi *phi = gpi.phi ();
2121 tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2122 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
2124 /* If the exit phi is not connected to a header phi in the same loop, this
2125 value is not modified in the loop, and we're done with this phi. */
2126 if (!(gimple_code (def_stmt) == GIMPLE_PHI
2127 && gimple_bb (def_stmt) == loop->header))
2129 locus = gimple_phi_arg_location_from_edge (phi, exit);
2130 add_phi_arg (phi, def, guard, locus);
2131 add_phi_arg (phi, def, end, locus);
2132 continue;
2135 gphi *stmt = as_a <gphi *> (def_stmt);
2136 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
2137 locus = gimple_phi_arg_location_from_edge (stmt,
2138 loop_preheader_edge (loop));
2139 add_phi_arg (phi, def, guard, locus);
2141 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
2142 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
2143 add_phi_arg (phi, def, end, locus);
2145 e = redirect_edge_and_branch (exit, nexit->dest);
2146 PENDING_STMT (e) = NULL;
2148 /* Emit GIMPLE_OMP_FOR. */
2149 if (oacc_kernels_p)
2150 /* In combination with the NUM_GANGS on the parallel. */
2151 t = build_omp_clause (loc, OMP_CLAUSE_GANG);
2152 else
2154 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
2155 int chunk_size = PARAM_VALUE (PARAM_PARLOOPS_CHUNK_SIZE);
2156 enum PARAM_PARLOOPS_SCHEDULE_KIND schedule_type \
2157 = (enum PARAM_PARLOOPS_SCHEDULE_KIND) PARAM_VALUE (PARAM_PARLOOPS_SCHEDULE);
2158 switch (schedule_type)
2160 case PARAM_PARLOOPS_SCHEDULE_KIND_static:
2161 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
2162 break;
2163 case PARAM_PARLOOPS_SCHEDULE_KIND_dynamic:
2164 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_DYNAMIC;
2165 break;
2166 case PARAM_PARLOOPS_SCHEDULE_KIND_guided:
2167 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_GUIDED;
2168 break;
2169 case PARAM_PARLOOPS_SCHEDULE_KIND_auto:
2170 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_AUTO;
2171 chunk_size = 0;
2172 break;
2173 case PARAM_PARLOOPS_SCHEDULE_KIND_runtime:
2174 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_RUNTIME;
2175 chunk_size = 0;
2176 break;
2177 default:
2178 gcc_unreachable ();
2180 if (chunk_size != 0)
2181 OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t)
2182 = build_int_cst (integer_type_node, chunk_size);
2185 for_stmt = gimple_build_omp_for (NULL,
2186 (oacc_kernels_p
2187 ? GF_OMP_FOR_KIND_OACC_LOOP
2188 : GF_OMP_FOR_KIND_FOR),
2189 t, 1, NULL);
2191 gimple_cond_set_lhs (cond_stmt, cvar_base);
2192 type = TREE_TYPE (cvar);
2193 gimple_set_location (for_stmt, loc);
2194 gimple_omp_for_set_index (for_stmt, 0, initvar);
2195 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
2196 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
2197 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
2198 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
2199 cvar_base,
2200 build_int_cst (type, 1)));
2202 gsi = gsi_last_bb (for_bb);
2203 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
2204 SSA_NAME_DEF_STMT (initvar) = for_stmt;
2206 /* Emit GIMPLE_OMP_CONTINUE. */
2207 continue_bb = single_pred (loop->latch);
2208 gsi = gsi_last_bb (continue_bb);
2209 omp_cont_stmt = gimple_build_omp_continue (cvar_next, cvar);
2210 gimple_set_location (omp_cont_stmt, loc);
2211 gsi_insert_after (&gsi, omp_cont_stmt, GSI_NEW_STMT);
2212 SSA_NAME_DEF_STMT (cvar_next) = omp_cont_stmt;
2214 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
2215 gsi = gsi_last_bb (ex_bb);
2216 omp_return_stmt2 = gimple_build_omp_return (true);
2217 gimple_set_location (omp_return_stmt2, loc);
2218 gsi_insert_after (&gsi, omp_return_stmt2, GSI_NEW_STMT);
2220 /* After the above dom info is hosed. Re-compute it. */
2221 free_dominance_info (CDI_DOMINATORS);
2222 calculate_dominance_info (CDI_DOMINATORS);
2225 /* Generates code to execute the iterations of LOOP in N_THREADS
2226 threads in parallel, which can be 0 if that number is to be determined
2227 later.
2229 NITER describes number of iterations of LOOP.
2230 REDUCTION_LIST describes the reductions existent in the LOOP. */
2232 static void
2233 gen_parallel_loop (struct loop *loop,
2234 reduction_info_table_type *reduction_list,
2235 unsigned n_threads, struct tree_niter_desc *niter,
2236 bool oacc_kernels_p)
2238 tree many_iterations_cond, type, nit;
2239 tree arg_struct, new_arg_struct;
2240 gimple_seq stmts;
2241 edge entry, exit;
2242 struct clsn_data clsn_data;
2243 unsigned prob;
2244 location_t loc;
2245 gimple *cond_stmt;
2246 unsigned int m_p_thread=2;
2248 /* From
2250 ---------------------------------------------------------------------
2251 loop
2253 IV = phi (INIT, IV + STEP)
2254 BODY1;
2255 if (COND)
2256 break;
2257 BODY2;
2259 ---------------------------------------------------------------------
2261 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
2262 we generate the following code:
2264 ---------------------------------------------------------------------
2266 if (MAY_BE_ZERO
2267 || NITER < MIN_PER_THREAD * N_THREADS)
2268 goto original;
2270 BODY1;
2271 store all local loop-invariant variables used in body of the loop to DATA.
2272 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
2273 load the variables from DATA.
2274 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
2275 BODY2;
2276 BODY1;
2277 GIMPLE_OMP_CONTINUE;
2278 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
2279 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
2280 goto end;
2282 original:
2283 loop
2285 IV = phi (INIT, IV + STEP)
2286 BODY1;
2287 if (COND)
2288 break;
2289 BODY2;
2292 end:
2296 /* Create two versions of the loop -- in the old one, we know that the
2297 number of iterations is large enough, and we will transform it into the
2298 loop that will be split to loop_fn, the new one will be used for the
2299 remaining iterations. */
2301 /* We should compute a better number-of-iterations value for outer loops.
2302 That is, if we have
2304 for (i = 0; i < n; ++i)
2305 for (j = 0; j < m; ++j)
2308 we should compute nit = n * m, not nit = n.
2309 Also may_be_zero handling would need to be adjusted. */
2311 type = TREE_TYPE (niter->niter);
2312 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
2313 NULL_TREE);
2314 if (stmts)
2315 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2317 if (!oacc_kernels_p)
2319 if (loop->inner)
2320 m_p_thread=2;
2321 else
2322 m_p_thread=MIN_PER_THREAD;
2324 gcc_checking_assert (n_threads != 0);
2325 many_iterations_cond =
2326 fold_build2 (GE_EXPR, boolean_type_node,
2327 nit, build_int_cst (type, m_p_thread * n_threads));
2329 many_iterations_cond
2330 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2331 invert_truthvalue (unshare_expr (niter->may_be_zero)),
2332 many_iterations_cond);
2333 many_iterations_cond
2334 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
2335 if (stmts)
2336 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2337 if (!is_gimple_condexpr (many_iterations_cond))
2339 many_iterations_cond
2340 = force_gimple_operand (many_iterations_cond, &stmts,
2341 true, NULL_TREE);
2342 if (stmts)
2343 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop),
2344 stmts);
2347 initialize_original_copy_tables ();
2349 /* We assume that the loop usually iterates a lot. */
2350 prob = 4 * REG_BR_PROB_BASE / 5;
2351 loop_version (loop, many_iterations_cond, NULL,
2352 prob, prob, REG_BR_PROB_BASE - prob, true);
2353 update_ssa (TODO_update_ssa);
2354 free_original_copy_tables ();
2357 /* Base all the induction variables in LOOP on a single control one. */
2358 canonicalize_loop_ivs (loop, &nit, true);
2360 /* Ensure that the exit condition is the first statement in the loop.
2361 The common case is that latch of the loop is empty (apart from the
2362 increment) and immediately follows the loop exit test. Attempt to move the
2363 entry of the loop directly before the exit check and increase the number of
2364 iterations of the loop by one. */
2365 if (try_transform_to_exit_first_loop_alt (loop, reduction_list, nit))
2367 if (dump_file
2368 && (dump_flags & TDF_DETAILS))
2369 fprintf (dump_file,
2370 "alternative exit-first loop transform succeeded"
2371 " for loop %d\n", loop->num);
2373 else
2375 if (oacc_kernels_p)
2376 n_threads = 1;
2378 /* Fall back on the method that handles more cases, but duplicates the
2379 loop body: move the exit condition of LOOP to the beginning of its
2380 header, and duplicate the part of the last iteration that gets disabled
2381 to the exit of the loop. */
2382 transform_to_exit_first_loop (loop, reduction_list, nit);
2385 /* Generate initializations for reductions. */
2386 if (reduction_list->elements () > 0)
2387 reduction_list->traverse <struct loop *, initialize_reductions> (loop);
2389 /* Eliminate the references to local variables from the loop. */
2390 gcc_assert (single_exit (loop));
2391 entry = loop_preheader_edge (loop);
2392 exit = single_dom_exit (loop);
2394 /* This rewrites the body in terms of new variables. This has already
2395 been done for oacc_kernels_p in pass_lower_omp/lower_omp (). */
2396 if (!oacc_kernels_p)
2398 eliminate_local_variables (entry, exit);
2399 /* In the old loop, move all variables non-local to the loop to a
2400 structure and back, and create separate decls for the variables used in
2401 loop. */
2402 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
2403 &new_arg_struct, &clsn_data);
2405 else
2407 arg_struct = NULL_TREE;
2408 new_arg_struct = NULL_TREE;
2409 clsn_data.load = NULL_TREE;
2410 clsn_data.load_bb = exit->dest;
2411 clsn_data.store = NULL_TREE;
2412 clsn_data.store_bb = NULL;
2415 /* Create the parallel constructs. */
2416 loc = UNKNOWN_LOCATION;
2417 cond_stmt = last_stmt (loop->header);
2418 if (cond_stmt)
2419 loc = gimple_location (cond_stmt);
2420 create_parallel_loop (loop, create_loop_fn (loc), arg_struct, new_arg_struct,
2421 n_threads, loc, oacc_kernels_p);
2422 if (reduction_list->elements () > 0)
2423 create_call_for_reduction (loop, reduction_list, &clsn_data);
2425 scev_reset ();
2427 /* Free loop bound estimations that could contain references to
2428 removed statements. */
2429 FOR_EACH_LOOP (loop, 0)
2430 free_numbers_of_iterations_estimates_loop (loop);
2433 /* Returns true when LOOP contains vector phi nodes. */
2435 static bool
2436 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
2438 unsigned i;
2439 basic_block *bbs = get_loop_body_in_dom_order (loop);
2440 gphi_iterator gsi;
2441 bool res = true;
2443 for (i = 0; i < loop->num_nodes; i++)
2444 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
2445 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi.phi ()))) == VECTOR_TYPE)
2446 goto end;
2448 res = false;
2449 end:
2450 free (bbs);
2451 return res;
2454 /* Create a reduction_info struct, initialize it with REDUC_STMT
2455 and PHI, insert it to the REDUCTION_LIST. */
2457 static void
2458 build_new_reduction (reduction_info_table_type *reduction_list,
2459 gimple *reduc_stmt, gphi *phi)
2461 reduction_info **slot;
2462 struct reduction_info *new_reduction;
2463 enum tree_code reduction_code;
2465 gcc_assert (reduc_stmt);
2467 if (dump_file && (dump_flags & TDF_DETAILS))
2469 fprintf (dump_file,
2470 "Detected reduction. reduction stmt is:\n");
2471 print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
2472 fprintf (dump_file, "\n");
2475 if (gimple_code (reduc_stmt) == GIMPLE_PHI)
2477 tree op1 = PHI_ARG_DEF (reduc_stmt, 0);
2478 gimple *def1 = SSA_NAME_DEF_STMT (op1);
2479 reduction_code = gimple_assign_rhs_code (def1);
2482 else
2483 reduction_code = gimple_assign_rhs_code (reduc_stmt);
2485 new_reduction = XCNEW (struct reduction_info);
2487 new_reduction->reduc_stmt = reduc_stmt;
2488 new_reduction->reduc_phi = phi;
2489 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
2490 new_reduction->reduction_code = reduction_code;
2491 slot = reduction_list->find_slot (new_reduction, INSERT);
2492 *slot = new_reduction;
2495 /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
2498 set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED)
2500 struct reduction_info *const red = *slot;
2501 gimple_set_uid (red->reduc_phi, red->reduc_version);
2502 return 1;
2505 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
2507 static void
2508 gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list)
2510 gphi_iterator gsi;
2511 loop_vec_info simple_loop_info;
2512 loop_vec_info simple_inner_loop_info = NULL;
2513 bool allow_double_reduc = true;
2515 if (!stmt_vec_info_vec.exists ())
2516 init_stmt_vec_info_vec ();
2518 simple_loop_info = vect_analyze_loop_form (loop);
2519 if (simple_loop_info == NULL)
2520 goto gather_done;
2522 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2524 gphi *phi = gsi.phi ();
2525 affine_iv iv;
2526 tree res = PHI_RESULT (phi);
2527 bool double_reduc;
2529 if (virtual_operand_p (res))
2530 continue;
2532 if (simple_iv (loop, loop, res, &iv, true))
2533 continue;
2535 gimple *reduc_stmt
2536 = vect_force_simple_reduction (simple_loop_info, phi, true,
2537 &double_reduc, true);
2538 if (!reduc_stmt)
2539 continue;
2541 if (double_reduc)
2543 if (!allow_double_reduc
2544 || loop->inner->inner != NULL)
2545 continue;
2547 if (!simple_inner_loop_info)
2549 simple_inner_loop_info = vect_analyze_loop_form (loop->inner);
2550 if (!simple_inner_loop_info)
2552 allow_double_reduc = false;
2553 continue;
2557 use_operand_p use_p;
2558 gimple *inner_stmt;
2559 bool single_use_p = single_imm_use (res, &use_p, &inner_stmt);
2560 gcc_assert (single_use_p);
2561 if (gimple_code (inner_stmt) != GIMPLE_PHI)
2562 continue;
2563 gphi *inner_phi = as_a <gphi *> (inner_stmt);
2564 if (simple_iv (loop->inner, loop->inner, PHI_RESULT (inner_phi),
2565 &iv, true))
2566 continue;
2568 gimple *inner_reduc_stmt
2569 = vect_force_simple_reduction (simple_inner_loop_info, inner_phi,
2570 true, &double_reduc, true);
2571 gcc_assert (!double_reduc);
2572 if (inner_reduc_stmt == NULL)
2573 continue;
2576 build_new_reduction (reduction_list, reduc_stmt, phi);
2578 destroy_loop_vec_info (simple_loop_info, true);
2579 destroy_loop_vec_info (simple_inner_loop_info, true);
2581 gather_done:
2582 /* Release the claim on gimple_uid. */
2583 free_stmt_vec_info_vec ();
2585 if (reduction_list->elements () == 0)
2586 return;
2588 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
2589 and free_stmt_vec_info_vec, we can set gimple_uid of reduc_phi stmts only
2590 now. */
2591 basic_block bb;
2592 FOR_EACH_BB_FN (bb, cfun)
2593 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2594 gimple_set_uid (gsi_stmt (gsi), (unsigned int)-1);
2595 reduction_list->traverse <void *, set_reduc_phi_uids> (NULL);
2598 /* Try to initialize NITER for code generation part. */
2600 static bool
2601 try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
2603 edge exit = single_dom_exit (loop);
2605 gcc_assert (exit);
2607 /* We need to know # of iterations, and there should be no uses of values
2608 defined inside loop outside of it, unless the values are invariants of
2609 the loop. */
2610 if (!number_of_iterations_exit (loop, exit, niter, false))
2612 if (dump_file && (dump_flags & TDF_DETAILS))
2613 fprintf (dump_file, " FAILED: number of iterations not known\n");
2614 return false;
2617 return true;
2620 /* Return the default def of the first function argument. */
2622 static tree
2623 get_omp_data_i_param (void)
2625 tree decl = DECL_ARGUMENTS (cfun->decl);
2626 gcc_assert (DECL_CHAIN (decl) == NULL_TREE);
2627 return ssa_default_def (cfun, decl);
2630 /* For PHI in loop header of LOOP, look for pattern:
2632 <bb preheader>
2633 .omp_data_i = &.omp_data_arr;
2634 addr = .omp_data_i->sum;
2635 sum_a = *addr;
2637 <bb header>:
2638 sum_b = PHI <sum_a (preheader), sum_c (latch)>
2640 and return addr. Otherwise, return NULL_TREE. */
2642 static tree
2643 find_reduc_addr (struct loop *loop, gphi *phi)
2645 edge e = loop_preheader_edge (loop);
2646 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
2647 gimple *stmt = SSA_NAME_DEF_STMT (arg);
2648 if (!gimple_assign_single_p (stmt))
2649 return NULL_TREE;
2650 tree memref = gimple_assign_rhs1 (stmt);
2651 if (TREE_CODE (memref) != MEM_REF)
2652 return NULL_TREE;
2653 tree addr = TREE_OPERAND (memref, 0);
2655 gimple *stmt2 = SSA_NAME_DEF_STMT (addr);
2656 if (!gimple_assign_single_p (stmt2))
2657 return NULL_TREE;
2658 tree compref = gimple_assign_rhs1 (stmt2);
2659 if (TREE_CODE (compref) != COMPONENT_REF)
2660 return NULL_TREE;
2661 tree addr2 = TREE_OPERAND (compref, 0);
2662 if (TREE_CODE (addr2) != MEM_REF)
2663 return NULL_TREE;
2664 addr2 = TREE_OPERAND (addr2, 0);
2665 if (TREE_CODE (addr2) != SSA_NAME
2666 || addr2 != get_omp_data_i_param ())
2667 return NULL_TREE;
2669 return addr;
2672 /* Try to initialize REDUCTION_LIST for code generation part.
2673 REDUCTION_LIST describes the reductions. */
2675 static bool
2676 try_create_reduction_list (loop_p loop,
2677 reduction_info_table_type *reduction_list,
2678 bool oacc_kernels_p)
2680 edge exit = single_dom_exit (loop);
2681 gphi_iterator gsi;
2683 gcc_assert (exit);
2685 /* Try to get rid of exit phis. */
2686 final_value_replacement_loop (loop);
2688 gather_scalar_reductions (loop, reduction_list);
2691 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2693 gphi *phi = gsi.phi ();
2694 struct reduction_info *red;
2695 imm_use_iterator imm_iter;
2696 use_operand_p use_p;
2697 gimple *reduc_phi;
2698 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2700 if (!virtual_operand_p (val))
2702 if (dump_file && (dump_flags & TDF_DETAILS))
2704 fprintf (dump_file, "phi is ");
2705 print_gimple_stmt (dump_file, phi, 0, 0);
2706 fprintf (dump_file, "arg of phi to exit: value ");
2707 print_generic_expr (dump_file, val, 0);
2708 fprintf (dump_file, " used outside loop\n");
2709 fprintf (dump_file,
2710 " checking if it is part of reduction pattern:\n");
2712 if (reduction_list->elements () == 0)
2714 if (dump_file && (dump_flags & TDF_DETAILS))
2715 fprintf (dump_file,
2716 " FAILED: it is not a part of reduction.\n");
2717 return false;
2719 reduc_phi = NULL;
2720 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2722 if (!gimple_debug_bind_p (USE_STMT (use_p))
2723 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
2725 reduc_phi = USE_STMT (use_p);
2726 break;
2729 red = reduction_phi (reduction_list, reduc_phi);
2730 if (red == NULL)
2732 if (dump_file && (dump_flags & TDF_DETAILS))
2733 fprintf (dump_file,
2734 " FAILED: it is not a part of reduction.\n");
2735 return false;
2737 if (red->keep_res != NULL)
2739 if (dump_file && (dump_flags & TDF_DETAILS))
2740 fprintf (dump_file,
2741 " FAILED: reduction has multiple exit phis.\n");
2742 return false;
2744 red->keep_res = phi;
2745 if (dump_file && (dump_flags & TDF_DETAILS))
2747 fprintf (dump_file, "reduction phi is ");
2748 print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
2749 fprintf (dump_file, "reduction stmt is ");
2750 print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
2755 /* The iterations of the loop may communicate only through bivs whose
2756 iteration space can be distributed efficiently. */
2757 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2759 gphi *phi = gsi.phi ();
2760 tree def = PHI_RESULT (phi);
2761 affine_iv iv;
2763 if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
2765 struct reduction_info *red;
2767 red = reduction_phi (reduction_list, phi);
2768 if (red == NULL)
2770 if (dump_file && (dump_flags & TDF_DETAILS))
2771 fprintf (dump_file,
2772 " FAILED: scalar dependency between iterations\n");
2773 return false;
2778 if (oacc_kernels_p)
2780 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi);
2781 gsi_next (&gsi))
2783 gphi *phi = gsi.phi ();
2784 tree def = PHI_RESULT (phi);
2785 affine_iv iv;
2787 if (!virtual_operand_p (def)
2788 && !simple_iv (loop, loop, def, &iv, true))
2790 tree addr = find_reduc_addr (loop, phi);
2791 if (addr == NULL_TREE)
2792 return false;
2793 struct reduction_info *red = reduction_phi (reduction_list, phi);
2794 red->reduc_addr = addr;
2799 return true;
2802 /* Return true if LOOP contains phis with ADDR_EXPR in args. */
2804 static bool
2805 loop_has_phi_with_address_arg (struct loop *loop)
2807 basic_block *bbs = get_loop_body (loop);
2808 bool res = false;
2810 unsigned i, j;
2811 gphi_iterator gsi;
2812 for (i = 0; i < loop->num_nodes; i++)
2813 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
2815 gphi *phi = gsi.phi ();
2816 for (j = 0; j < gimple_phi_num_args (phi); j++)
2818 tree arg = gimple_phi_arg_def (phi, j);
2819 if (TREE_CODE (arg) == ADDR_EXPR)
2821 /* This should be handled by eliminate_local_variables, but that
2822 function currently ignores phis. */
2823 res = true;
2824 goto end;
2828 end:
2829 free (bbs);
2831 return res;
2834 /* Return true if memory ref REF (corresponding to the stmt at GSI in
2835 REGIONS_BB[I]) conflicts with the statements in REGIONS_BB[I] after gsi,
2836 or the statements in REGIONS_BB[I + n]. REF_IS_STORE indicates if REF is a
2837 store. Ignore conflicts with SKIP_STMT. */
2839 static bool
2840 ref_conflicts_with_region (gimple_stmt_iterator gsi, ao_ref *ref,
2841 bool ref_is_store, vec<basic_block> region_bbs,
2842 unsigned int i, gimple *skip_stmt)
2844 basic_block bb = region_bbs[i];
2845 gsi_next (&gsi);
2847 while (true)
2849 for (; !gsi_end_p (gsi);
2850 gsi_next (&gsi))
2852 gimple *stmt = gsi_stmt (gsi);
2853 if (stmt == skip_stmt)
2855 if (dump_file)
2857 fprintf (dump_file, "skipping reduction store: ");
2858 print_gimple_stmt (dump_file, stmt, 0, 0);
2860 continue;
2863 if (!gimple_vdef (stmt)
2864 && !gimple_vuse (stmt))
2865 continue;
2867 if (gimple_code (stmt) == GIMPLE_RETURN)
2868 continue;
2870 if (ref_is_store)
2872 if (ref_maybe_used_by_stmt_p (stmt, ref))
2874 if (dump_file)
2876 fprintf (dump_file, "Stmt ");
2877 print_gimple_stmt (dump_file, stmt, 0, 0);
2879 return true;
2882 else
2884 if (stmt_may_clobber_ref_p_1 (stmt, ref))
2886 if (dump_file)
2888 fprintf (dump_file, "Stmt ");
2889 print_gimple_stmt (dump_file, stmt, 0, 0);
2891 return true;
2895 i++;
2896 if (i == region_bbs.length ())
2897 break;
2898 bb = region_bbs[i];
2899 gsi = gsi_start_bb (bb);
2902 return false;
2905 /* Return true if the bbs in REGION_BBS but not in in_loop_bbs can be executed
2906 in parallel with REGION_BBS containing the loop. Return the stores of
2907 reduction results in REDUCTION_STORES. */
2909 static bool
2910 oacc_entry_exit_ok_1 (bitmap in_loop_bbs, vec<basic_block> region_bbs,
2911 reduction_info_table_type *reduction_list,
2912 bitmap reduction_stores)
2914 tree omp_data_i = get_omp_data_i_param ();
2916 unsigned i;
2917 basic_block bb;
2918 FOR_EACH_VEC_ELT (region_bbs, i, bb)
2920 if (bitmap_bit_p (in_loop_bbs, bb->index))
2921 continue;
2923 gimple_stmt_iterator gsi;
2924 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
2925 gsi_next (&gsi))
2927 gimple *stmt = gsi_stmt (gsi);
2928 gimple *skip_stmt = NULL;
2930 if (is_gimple_debug (stmt)
2931 || gimple_code (stmt) == GIMPLE_COND)
2932 continue;
2934 ao_ref ref;
2935 bool ref_is_store = false;
2936 if (gimple_assign_load_p (stmt))
2938 tree rhs = gimple_assign_rhs1 (stmt);
2939 tree base = get_base_address (rhs);
2940 if (TREE_CODE (base) == MEM_REF
2941 && operand_equal_p (TREE_OPERAND (base, 0), omp_data_i, 0))
2942 continue;
2944 tree lhs = gimple_assign_lhs (stmt);
2945 if (TREE_CODE (lhs) == SSA_NAME
2946 && has_single_use (lhs))
2948 use_operand_p use_p;
2949 gimple *use_stmt;
2950 single_imm_use (lhs, &use_p, &use_stmt);
2951 if (gimple_code (use_stmt) == GIMPLE_PHI)
2953 struct reduction_info *red;
2954 red = reduction_phi (reduction_list, use_stmt);
2955 tree val = PHI_RESULT (red->keep_res);
2956 if (has_single_use (val))
2958 single_imm_use (val, &use_p, &use_stmt);
2959 if (gimple_store_p (use_stmt))
2961 unsigned int id
2962 = SSA_NAME_VERSION (gimple_vdef (use_stmt));
2963 bitmap_set_bit (reduction_stores, id);
2964 skip_stmt = use_stmt;
2965 if (dump_file)
2967 fprintf (dump_file, "found reduction load: ");
2968 print_gimple_stmt (dump_file, stmt, 0, 0);
2975 ao_ref_init (&ref, rhs);
2977 else if (gimple_store_p (stmt))
2979 ao_ref_init (&ref, gimple_assign_lhs (stmt));
2980 ref_is_store = true;
2982 else if (gimple_code (stmt) == GIMPLE_OMP_RETURN)
2983 continue;
2984 else if (!gimple_has_side_effects (stmt)
2985 && !gimple_could_trap_p (stmt)
2986 && !stmt_could_throw_p (stmt)
2987 && !gimple_vdef (stmt)
2988 && !gimple_vuse (stmt))
2989 continue;
2990 else if (is_gimple_call (stmt)
2991 && gimple_call_internal_p (stmt)
2992 && gimple_call_internal_fn (stmt) == IFN_GOACC_DIM_POS)
2993 continue;
2994 else if (gimple_code (stmt) == GIMPLE_RETURN)
2995 continue;
2996 else
2998 if (dump_file)
3000 fprintf (dump_file, "Unhandled stmt in entry/exit: ");
3001 print_gimple_stmt (dump_file, stmt, 0, 0);
3003 return false;
3006 if (ref_conflicts_with_region (gsi, &ref, ref_is_store, region_bbs,
3007 i, skip_stmt))
3009 if (dump_file)
3011 fprintf (dump_file, "conflicts with entry/exit stmt: ");
3012 print_gimple_stmt (dump_file, stmt, 0, 0);
3014 return false;
3019 return true;
3022 /* Find stores inside REGION_BBS and outside IN_LOOP_BBS, and guard them with
3023 gang_pos == 0, except when the stores are REDUCTION_STORES. Return true
3024 if any changes were made. */
3026 static bool
3027 oacc_entry_exit_single_gang (bitmap in_loop_bbs, vec<basic_block> region_bbs,
3028 bitmap reduction_stores)
3030 tree gang_pos = NULL_TREE;
3031 bool changed = false;
3033 unsigned i;
3034 basic_block bb;
3035 FOR_EACH_VEC_ELT (region_bbs, i, bb)
3037 if (bitmap_bit_p (in_loop_bbs, bb->index))
3038 continue;
3040 gimple_stmt_iterator gsi;
3041 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
3043 gimple *stmt = gsi_stmt (gsi);
3045 if (!gimple_store_p (stmt))
3047 /* Update gsi to point to next stmt. */
3048 gsi_next (&gsi);
3049 continue;
3052 if (bitmap_bit_p (reduction_stores,
3053 SSA_NAME_VERSION (gimple_vdef (stmt))))
3055 if (dump_file)
3057 fprintf (dump_file,
3058 "skipped reduction store for single-gang"
3059 " neutering: ");
3060 print_gimple_stmt (dump_file, stmt, 0, 0);
3063 /* Update gsi to point to next stmt. */
3064 gsi_next (&gsi);
3065 continue;
3068 changed = true;
3070 if (gang_pos == NULL_TREE)
3072 tree arg = build_int_cst (integer_type_node, GOMP_DIM_GANG);
3073 gcall *gang_single
3074 = gimple_build_call_internal (IFN_GOACC_DIM_POS, 1, arg);
3075 gang_pos = make_ssa_name (integer_type_node);
3076 gimple_call_set_lhs (gang_single, gang_pos);
3077 gimple_stmt_iterator start
3078 = gsi_start_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
3079 tree vuse = ssa_default_def (cfun, gimple_vop (cfun));
3080 gimple_set_vuse (gang_single, vuse);
3081 gsi_insert_before (&start, gang_single, GSI_SAME_STMT);
3084 if (dump_file)
3086 fprintf (dump_file,
3087 "found store that needs single-gang neutering: ");
3088 print_gimple_stmt (dump_file, stmt, 0, 0);
3092 /* Split block before store. */
3093 gimple_stmt_iterator gsi2 = gsi;
3094 gsi_prev (&gsi2);
3095 edge e;
3096 if (gsi_end_p (gsi2))
3098 e = split_block_after_labels (bb);
3099 gsi2 = gsi_last_bb (bb);
3101 else
3102 e = split_block (bb, gsi_stmt (gsi2));
3103 basic_block bb2 = e->dest;
3105 /* Split block after store. */
3106 gimple_stmt_iterator gsi3 = gsi_start_bb (bb2);
3107 edge e2 = split_block (bb2, gsi_stmt (gsi3));
3108 basic_block bb3 = e2->dest;
3110 gimple *cond
3111 = gimple_build_cond (EQ_EXPR, gang_pos, integer_zero_node,
3112 NULL_TREE, NULL_TREE);
3113 gsi_insert_after (&gsi2, cond, GSI_NEW_STMT);
3115 edge e3 = make_edge (bb, bb3, EDGE_FALSE_VALUE);
3116 e->flags = EDGE_TRUE_VALUE;
3118 tree vdef = gimple_vdef (stmt);
3119 tree vuse = gimple_vuse (stmt);
3121 tree phi_res = copy_ssa_name (vdef);
3122 gphi *new_phi = create_phi_node (phi_res, bb3);
3123 replace_uses_by (vdef, phi_res);
3124 add_phi_arg (new_phi, vuse, e3, UNKNOWN_LOCATION);
3125 add_phi_arg (new_phi, vdef, e2, UNKNOWN_LOCATION);
3127 /* Update gsi to point to next stmt. */
3128 bb = bb3;
3129 gsi = gsi_start_bb (bb);
3134 return changed;
3137 /* Return true if the statements before and after the LOOP can be executed in
3138 parallel with the function containing the loop. Resolve conflicting stores
3139 outside LOOP by guarding them such that only a single gang executes them. */
3141 static bool
3142 oacc_entry_exit_ok (struct loop *loop,
3143 reduction_info_table_type *reduction_list)
3145 basic_block *loop_bbs = get_loop_body_in_dom_order (loop);
3146 vec<basic_block> region_bbs
3147 = get_all_dominated_blocks (CDI_DOMINATORS, ENTRY_BLOCK_PTR_FOR_FN (cfun));
3149 bitmap in_loop_bbs = BITMAP_ALLOC (NULL);
3150 bitmap_clear (in_loop_bbs);
3151 for (unsigned int i = 0; i < loop->num_nodes; i++)
3152 bitmap_set_bit (in_loop_bbs, loop_bbs[i]->index);
3154 bitmap reduction_stores = BITMAP_ALLOC (NULL);
3155 bool res = oacc_entry_exit_ok_1 (in_loop_bbs, region_bbs, reduction_list,
3156 reduction_stores);
3158 if (res)
3160 bool changed = oacc_entry_exit_single_gang (in_loop_bbs, region_bbs,
3161 reduction_stores);
3162 if (changed)
3164 free_dominance_info (CDI_DOMINATORS);
3165 calculate_dominance_info (CDI_DOMINATORS);
3169 free (loop_bbs);
3171 BITMAP_FREE (in_loop_bbs);
3172 BITMAP_FREE (reduction_stores);
3174 return res;
3177 /* Detect parallel loops and generate parallel code using libgomp
3178 primitives. Returns true if some loop was parallelized, false
3179 otherwise. */
3181 static bool
3182 parallelize_loops (bool oacc_kernels_p)
3184 unsigned n_threads;
3185 bool changed = false;
3186 struct loop *loop;
3187 struct loop *skip_loop = NULL;
3188 struct tree_niter_desc niter_desc;
3189 struct obstack parloop_obstack;
3190 HOST_WIDE_INT estimated;
3191 source_location loop_loc;
3193 /* Do not parallelize loops in the functions created by parallelization. */
3194 if (!oacc_kernels_p
3195 && parallelized_function_p (cfun->decl))
3196 return false;
3198 /* Do not parallelize loops in offloaded functions. */
3199 if (!oacc_kernels_p
3200 && get_oacc_fn_attrib (cfun->decl) != NULL)
3201 return false;
3203 if (cfun->has_nonlocal_label)
3204 return false;
3206 /* For OpenACC kernels, n_threads will be determined later; otherwise, it's
3207 the argument to -ftree-parallelize-loops. */
3208 if (oacc_kernels_p)
3209 n_threads = 0;
3210 else
3211 n_threads = flag_tree_parallelize_loops;
3213 gcc_obstack_init (&parloop_obstack);
3214 reduction_info_table_type reduction_list (10);
3216 calculate_dominance_info (CDI_DOMINATORS);
3218 FOR_EACH_LOOP (loop, 0)
3220 if (loop == skip_loop)
3222 if (!loop->in_oacc_kernels_region
3223 && dump_file && (dump_flags & TDF_DETAILS))
3224 fprintf (dump_file,
3225 "Skipping loop %d as inner loop of parallelized loop\n",
3226 loop->num);
3228 skip_loop = loop->inner;
3229 continue;
3231 else
3232 skip_loop = NULL;
3234 reduction_list.empty ();
3236 if (oacc_kernels_p)
3238 if (!loop->in_oacc_kernels_region)
3239 continue;
3241 /* Don't try to parallelize inner loops in an oacc kernels region. */
3242 if (loop->inner)
3243 skip_loop = loop->inner;
3245 if (dump_file && (dump_flags & TDF_DETAILS))
3246 fprintf (dump_file,
3247 "Trying loop %d with header bb %d in oacc kernels"
3248 " region\n", loop->num, loop->header->index);
3251 if (dump_file && (dump_flags & TDF_DETAILS))
3253 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
3254 if (loop->inner)
3255 fprintf (dump_file, "loop %d is not innermost\n",loop->num);
3256 else
3257 fprintf (dump_file, "loop %d is innermost\n",loop->num);
3260 /* If we use autopar in graphite pass, we use its marked dependency
3261 checking results. */
3262 if (flag_loop_parallelize_all && !loop->can_be_parallel)
3264 if (dump_file && (dump_flags & TDF_DETAILS))
3265 fprintf (dump_file, "loop is not parallel according to graphite\n");
3266 continue;
3269 if (!single_dom_exit (loop))
3272 if (dump_file && (dump_flags & TDF_DETAILS))
3273 fprintf (dump_file, "loop is !single_dom_exit\n");
3275 continue;
3278 if (/* And of course, the loop must be parallelizable. */
3279 !can_duplicate_loop_p (loop)
3280 || loop_has_blocks_with_irreducible_flag (loop)
3281 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
3282 /* FIXME: the check for vector phi nodes could be removed. */
3283 || loop_has_vector_phi_nodes (loop))
3284 continue;
3286 estimated = estimated_stmt_executions_int (loop);
3287 if (estimated == -1)
3288 estimated = max_stmt_executions_int (loop);
3289 /* FIXME: Bypass this check as graphite doesn't update the
3290 count and frequency correctly now. */
3291 if (!flag_loop_parallelize_all
3292 && !oacc_kernels_p
3293 && ((estimated != -1
3294 && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
3295 /* Do not bother with loops in cold areas. */
3296 || optimize_loop_nest_for_size_p (loop)))
3297 continue;
3299 if (!try_get_loop_niter (loop, &niter_desc))
3300 continue;
3302 if (!try_create_reduction_list (loop, &reduction_list, oacc_kernels_p))
3303 continue;
3305 if (loop_has_phi_with_address_arg (loop))
3306 continue;
3308 if (!flag_loop_parallelize_all
3309 && !loop_parallel_p (loop, &parloop_obstack))
3310 continue;
3312 if (oacc_kernels_p
3313 && !oacc_entry_exit_ok (loop, &reduction_list))
3315 if (dump_file)
3316 fprintf (dump_file, "entry/exit not ok: FAILED\n");
3317 continue;
3320 changed = true;
3321 skip_loop = loop->inner;
3322 if (dump_file && (dump_flags & TDF_DETAILS))
3324 if (loop->inner)
3325 fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
3326 else
3327 fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
3328 loop_loc = find_loop_location (loop);
3329 if (loop_loc != UNKNOWN_LOCATION)
3330 fprintf (dump_file, "\nloop at %s:%d: ",
3331 LOCATION_FILE (loop_loc), LOCATION_LINE (loop_loc));
3334 gen_parallel_loop (loop, &reduction_list,
3335 n_threads, &niter_desc, oacc_kernels_p);
3338 obstack_free (&parloop_obstack, NULL);
3340 /* Parallelization will cause new function calls to be inserted through
3341 which local variables will escape. Reset the points-to solution
3342 for ESCAPED. */
3343 if (changed)
3344 pt_solution_reset (&cfun->gimple_df->escaped);
3346 return changed;
3349 /* Parallelization. */
3351 namespace {
3353 const pass_data pass_data_parallelize_loops =
3355 GIMPLE_PASS, /* type */
3356 "parloops", /* name */
3357 OPTGROUP_LOOP, /* optinfo_flags */
3358 TV_TREE_PARALLELIZE_LOOPS, /* tv_id */
3359 ( PROP_cfg | PROP_ssa ), /* properties_required */
3360 0, /* properties_provided */
3361 0, /* properties_destroyed */
3362 0, /* todo_flags_start */
3363 0, /* todo_flags_finish */
3366 class pass_parallelize_loops : public gimple_opt_pass
3368 public:
3369 pass_parallelize_loops (gcc::context *ctxt)
3370 : gimple_opt_pass (pass_data_parallelize_loops, ctxt),
3371 oacc_kernels_p (false)
3374 /* opt_pass methods: */
3375 virtual bool gate (function *)
3377 if (oacc_kernels_p)
3378 return flag_openacc;
3379 else
3380 return flag_tree_parallelize_loops > 1;
3382 virtual unsigned int execute (function *);
3383 opt_pass * clone () { return new pass_parallelize_loops (m_ctxt); }
3384 void set_pass_param (unsigned int n, bool param)
3386 gcc_assert (n == 0);
3387 oacc_kernels_p = param;
3390 private:
3391 bool oacc_kernels_p;
3392 }; // class pass_parallelize_loops
3394 unsigned
3395 pass_parallelize_loops::execute (function *fun)
3397 tree nthreads = builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_THREADS);
3398 if (nthreads == NULL_TREE)
3399 return 0;
3401 bool in_loop_pipeline = scev_initialized_p ();
3402 if (!in_loop_pipeline)
3403 loop_optimizer_init (LOOPS_NORMAL
3404 | LOOPS_HAVE_RECORDED_EXITS);
3406 if (number_of_loops (fun) <= 1)
3407 return 0;
3409 if (!in_loop_pipeline)
3411 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3412 scev_initialize ();
3415 unsigned int todo = 0;
3416 if (parallelize_loops (oacc_kernels_p))
3418 fun->curr_properties &= ~(PROP_gimple_eomp);
3420 checking_verify_loop_structure ();
3422 todo |= TODO_update_ssa;
3425 if (!in_loop_pipeline)
3427 scev_finalize ();
3428 loop_optimizer_finalize ();
3431 return todo;
3434 } // anon namespace
3436 gimple_opt_pass *
3437 make_pass_parallelize_loops (gcc::context *ctxt)
3439 return new pass_parallelize_loops (ctxt);