1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
28 #include "basic-block.h"
29 #include "tree-flow.h"
30 #include "tree-pass.h"
31 #include "tree-dump.h"
33 #include "diagnostic.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-propagate.h"
39 #include "tree-chrec.h"
42 /* Set of SSA names found live during the RPO traversal of the function
43 for still active basic-blocks. */
46 /* Return true if the SSA name NAME is live on the edge E. */
49 live_on_edge (edge e
, tree name
)
51 return (live
[e
->dest
->index
]
52 && TEST_BIT (live
[e
->dest
->index
], SSA_NAME_VERSION (name
)));
55 /* Local functions. */
56 static int compare_values (tree val1
, tree val2
);
57 static int compare_values_warnv (tree val1
, tree val2
, bool *);
58 static void vrp_meet (value_range_t
*, value_range_t
*);
59 static tree
vrp_evaluate_conditional_warnv_with_ops (enum tree_code
,
60 tree
, tree
, bool, bool *,
63 /* Location information for ASSERT_EXPRs. Each instance of this
64 structure describes an ASSERT_EXPR for an SSA name. Since a single
65 SSA name may have more than one assertion associated with it, these
66 locations are kept in a linked list attached to the corresponding
70 /* Basic block where the assertion would be inserted. */
73 /* Some assertions need to be inserted on an edge (e.g., assertions
74 generated by COND_EXPRs). In those cases, BB will be NULL. */
77 /* Pointer to the statement that generated this assertion. */
78 gimple_stmt_iterator si
;
80 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
81 enum tree_code comp_code
;
83 /* Value being compared against. */
86 /* Expression to compare. */
89 /* Next node in the linked list. */
90 struct assert_locus_d
*next
;
93 typedef struct assert_locus_d
*assert_locus_t
;
95 /* If bit I is present, it means that SSA name N_i has a list of
96 assertions that should be inserted in the IL. */
97 static bitmap need_assert_for
;
99 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
100 holds a list of ASSERT_LOCUS_T nodes that describe where
101 ASSERT_EXPRs for SSA name N_I should be inserted. */
102 static assert_locus_t
*asserts_for
;
104 /* Value range array. After propagation, VR_VALUE[I] holds the range
105 of values that SSA name N_I may take. */
106 static value_range_t
**vr_value
;
108 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
109 number of executable edges we saw the last time we visited the
111 static int *vr_phi_edge_counts
;
118 static VEC (edge
, heap
) *to_remove_edges
;
119 DEF_VEC_O(switch_update
);
120 DEF_VEC_ALLOC_O(switch_update
, heap
);
121 static VEC (switch_update
, heap
) *to_update_switch_stmts
;
124 /* Return the maximum value for TYPE. */
127 vrp_val_max (const_tree type
)
129 if (!INTEGRAL_TYPE_P (type
))
132 return TYPE_MAX_VALUE (type
);
135 /* Return the minimum value for TYPE. */
138 vrp_val_min (const_tree type
)
140 if (!INTEGRAL_TYPE_P (type
))
143 return TYPE_MIN_VALUE (type
);
146 /* Return whether VAL is equal to the maximum value of its type. This
147 will be true for a positive overflow infinity. We can't do a
148 simple equality comparison with TYPE_MAX_VALUE because C typedefs
149 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
150 to the integer constant with the same value in the type. */
153 vrp_val_is_max (const_tree val
)
155 tree type_max
= vrp_val_max (TREE_TYPE (val
));
156 return (val
== type_max
157 || (type_max
!= NULL_TREE
158 && operand_equal_p (val
, type_max
, 0)));
161 /* Return whether VAL is equal to the minimum value of its type. This
162 will be true for a negative overflow infinity. */
165 vrp_val_is_min (const_tree val
)
167 tree type_min
= vrp_val_min (TREE_TYPE (val
));
168 return (val
== type_min
169 || (type_min
!= NULL_TREE
170 && operand_equal_p (val
, type_min
, 0)));
174 /* Return whether TYPE should use an overflow infinity distinct from
175 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
176 represent a signed overflow during VRP computations. An infinity
177 is distinct from a half-range, which will go from some number to
178 TYPE_{MIN,MAX}_VALUE. */
181 needs_overflow_infinity (const_tree type
)
183 return INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
);
186 /* Return whether TYPE can support our overflow infinity
187 representation: we use the TREE_OVERFLOW flag, which only exists
188 for constants. If TYPE doesn't support this, we don't optimize
189 cases which would require signed overflow--we drop them to
193 supports_overflow_infinity (const_tree type
)
195 tree min
= vrp_val_min (type
), max
= vrp_val_max (type
);
196 #ifdef ENABLE_CHECKING
197 gcc_assert (needs_overflow_infinity (type
));
199 return (min
!= NULL_TREE
200 && CONSTANT_CLASS_P (min
)
202 && CONSTANT_CLASS_P (max
));
205 /* VAL is the maximum or minimum value of a type. Return a
206 corresponding overflow infinity. */
209 make_overflow_infinity (tree val
)
211 #ifdef ENABLE_CHECKING
212 gcc_assert (val
!= NULL_TREE
&& CONSTANT_CLASS_P (val
));
214 val
= copy_node (val
);
215 TREE_OVERFLOW (val
) = 1;
219 /* Return a negative overflow infinity for TYPE. */
222 negative_overflow_infinity (tree type
)
224 #ifdef ENABLE_CHECKING
225 gcc_assert (supports_overflow_infinity (type
));
227 return make_overflow_infinity (vrp_val_min (type
));
230 /* Return a positive overflow infinity for TYPE. */
233 positive_overflow_infinity (tree type
)
235 #ifdef ENABLE_CHECKING
236 gcc_assert (supports_overflow_infinity (type
));
238 return make_overflow_infinity (vrp_val_max (type
));
241 /* Return whether VAL is a negative overflow infinity. */
244 is_negative_overflow_infinity (const_tree val
)
246 return (needs_overflow_infinity (TREE_TYPE (val
))
247 && CONSTANT_CLASS_P (val
)
248 && TREE_OVERFLOW (val
)
249 && vrp_val_is_min (val
));
252 /* Return whether VAL is a positive overflow infinity. */
255 is_positive_overflow_infinity (const_tree val
)
257 return (needs_overflow_infinity (TREE_TYPE (val
))
258 && CONSTANT_CLASS_P (val
)
259 && TREE_OVERFLOW (val
)
260 && vrp_val_is_max (val
));
263 /* Return whether VAL is a positive or negative overflow infinity. */
266 is_overflow_infinity (const_tree val
)
268 return (needs_overflow_infinity (TREE_TYPE (val
))
269 && CONSTANT_CLASS_P (val
)
270 && TREE_OVERFLOW (val
)
271 && (vrp_val_is_min (val
) || vrp_val_is_max (val
)));
274 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
277 stmt_overflow_infinity (gimple stmt
)
279 if (is_gimple_assign (stmt
)
280 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)) ==
282 return is_overflow_infinity (gimple_assign_rhs1 (stmt
));
286 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
287 the same value with TREE_OVERFLOW clear. This can be used to avoid
288 confusing a regular value with an overflow value. */
291 avoid_overflow_infinity (tree val
)
293 if (!is_overflow_infinity (val
))
296 if (vrp_val_is_max (val
))
297 return vrp_val_max (TREE_TYPE (val
));
300 #ifdef ENABLE_CHECKING
301 gcc_assert (vrp_val_is_min (val
));
303 return vrp_val_min (TREE_TYPE (val
));
308 /* Return true if ARG is marked with the nonnull attribute in the
309 current function signature. */
312 nonnull_arg_p (const_tree arg
)
314 tree t
, attrs
, fntype
;
315 unsigned HOST_WIDE_INT arg_num
;
317 gcc_assert (TREE_CODE (arg
) == PARM_DECL
&& POINTER_TYPE_P (TREE_TYPE (arg
)));
319 /* The static chain decl is always non null. */
320 if (arg
== cfun
->static_chain_decl
)
323 fntype
= TREE_TYPE (current_function_decl
);
324 attrs
= lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype
));
326 /* If "nonnull" wasn't specified, we know nothing about the argument. */
327 if (attrs
== NULL_TREE
)
330 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
331 if (TREE_VALUE (attrs
) == NULL_TREE
)
334 /* Get the position number for ARG in the function signature. */
335 for (arg_num
= 1, t
= DECL_ARGUMENTS (current_function_decl
);
337 t
= TREE_CHAIN (t
), arg_num
++)
343 gcc_assert (t
== arg
);
345 /* Now see if ARG_NUM is mentioned in the nonnull list. */
346 for (t
= TREE_VALUE (attrs
); t
; t
= TREE_CHAIN (t
))
348 if (compare_tree_int (TREE_VALUE (t
), arg_num
) == 0)
356 /* Set value range VR to VR_VARYING. */
359 set_value_range_to_varying (value_range_t
*vr
)
361 vr
->type
= VR_VARYING
;
362 vr
->min
= vr
->max
= NULL_TREE
;
364 bitmap_clear (vr
->equiv
);
368 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
371 set_value_range (value_range_t
*vr
, enum value_range_type t
, tree min
,
372 tree max
, bitmap equiv
)
374 #if defined ENABLE_CHECKING
375 /* Check the validity of the range. */
376 if (t
== VR_RANGE
|| t
== VR_ANTI_RANGE
)
380 gcc_assert (min
&& max
);
382 if (INTEGRAL_TYPE_P (TREE_TYPE (min
)) && t
== VR_ANTI_RANGE
)
383 gcc_assert (!vrp_val_is_min (min
) || !vrp_val_is_max (max
));
385 cmp
= compare_values (min
, max
);
386 gcc_assert (cmp
== 0 || cmp
== -1 || cmp
== -2);
388 if (needs_overflow_infinity (TREE_TYPE (min
)))
389 gcc_assert (!is_overflow_infinity (min
)
390 || !is_overflow_infinity (max
));
393 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
394 gcc_assert (min
== NULL_TREE
&& max
== NULL_TREE
);
396 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
397 gcc_assert (equiv
== NULL
|| bitmap_empty_p (equiv
));
404 /* Since updating the equivalence set involves deep copying the
405 bitmaps, only do it if absolutely necessary. */
406 if (vr
->equiv
== NULL
408 vr
->equiv
= BITMAP_ALLOC (NULL
);
410 if (equiv
!= vr
->equiv
)
412 if (equiv
&& !bitmap_empty_p (equiv
))
413 bitmap_copy (vr
->equiv
, equiv
);
415 bitmap_clear (vr
->equiv
);
420 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
421 This means adjusting T, MIN and MAX representing the case of a
422 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
423 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
424 In corner cases where MAX+1 or MIN-1 wraps this will fall back
426 This routine exists to ease canonicalization in the case where we
427 extract ranges from var + CST op limit. */
430 set_and_canonicalize_value_range (value_range_t
*vr
, enum value_range_type t
,
431 tree min
, tree max
, bitmap equiv
)
433 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
435 && t
!= VR_ANTI_RANGE
)
436 || TREE_CODE (min
) != INTEGER_CST
437 || TREE_CODE (max
) != INTEGER_CST
)
439 set_value_range (vr
, t
, min
, max
, equiv
);
443 /* Wrong order for min and max, to swap them and the VR type we need
445 if (tree_int_cst_lt (max
, min
))
447 tree one
= build_int_cst (TREE_TYPE (min
), 1);
448 tree tmp
= int_const_binop (PLUS_EXPR
, max
, one
, 0);
449 max
= int_const_binop (MINUS_EXPR
, min
, one
, 0);
452 /* There's one corner case, if we had [C+1, C] before we now have
453 that again. But this represents an empty value range, so drop
454 to varying in this case. */
455 if (tree_int_cst_lt (max
, min
))
457 set_value_range_to_varying (vr
);
461 t
= t
== VR_RANGE
? VR_ANTI_RANGE
: VR_RANGE
;
464 /* Anti-ranges that can be represented as ranges should be so. */
465 if (t
== VR_ANTI_RANGE
)
467 bool is_min
= vrp_val_is_min (min
);
468 bool is_max
= vrp_val_is_max (max
);
470 if (is_min
&& is_max
)
472 /* We cannot deal with empty ranges, drop to varying. */
473 set_value_range_to_varying (vr
);
477 /* As a special exception preserve non-null ranges. */
478 && !(TYPE_UNSIGNED (TREE_TYPE (min
))
479 && integer_zerop (max
)))
481 tree one
= build_int_cst (TREE_TYPE (max
), 1);
482 min
= int_const_binop (PLUS_EXPR
, max
, one
, 0);
483 max
= vrp_val_max (TREE_TYPE (max
));
488 tree one
= build_int_cst (TREE_TYPE (min
), 1);
489 max
= int_const_binop (MINUS_EXPR
, min
, one
, 0);
490 min
= vrp_val_min (TREE_TYPE (min
));
495 set_value_range (vr
, t
, min
, max
, equiv
);
498 /* Copy value range FROM into value range TO. */
501 copy_value_range (value_range_t
*to
, value_range_t
*from
)
503 set_value_range (to
, from
->type
, from
->min
, from
->max
, from
->equiv
);
506 /* Set value range VR to a single value. This function is only called
507 with values we get from statements, and exists to clear the
508 TREE_OVERFLOW flag so that we don't think we have an overflow
509 infinity when we shouldn't. */
512 set_value_range_to_value (value_range_t
*vr
, tree val
, bitmap equiv
)
514 gcc_assert (is_gimple_min_invariant (val
));
515 val
= avoid_overflow_infinity (val
);
516 set_value_range (vr
, VR_RANGE
, val
, val
, equiv
);
519 /* Set value range VR to a non-negative range of type TYPE.
520 OVERFLOW_INFINITY indicates whether to use an overflow infinity
521 rather than TYPE_MAX_VALUE; this should be true if we determine
522 that the range is nonnegative based on the assumption that signed
523 overflow does not occur. */
526 set_value_range_to_nonnegative (value_range_t
*vr
, tree type
,
527 bool overflow_infinity
)
531 if (overflow_infinity
&& !supports_overflow_infinity (type
))
533 set_value_range_to_varying (vr
);
537 zero
= build_int_cst (type
, 0);
538 set_value_range (vr
, VR_RANGE
, zero
,
540 ? positive_overflow_infinity (type
)
541 : TYPE_MAX_VALUE (type
)),
545 /* Set value range VR to a non-NULL range of type TYPE. */
548 set_value_range_to_nonnull (value_range_t
*vr
, tree type
)
550 tree zero
= build_int_cst (type
, 0);
551 set_value_range (vr
, VR_ANTI_RANGE
, zero
, zero
, vr
->equiv
);
555 /* Set value range VR to a NULL range of type TYPE. */
558 set_value_range_to_null (value_range_t
*vr
, tree type
)
560 set_value_range_to_value (vr
, build_int_cst (type
, 0), vr
->equiv
);
564 /* Set value range VR to a range of a truthvalue of type TYPE. */
567 set_value_range_to_truthvalue (value_range_t
*vr
, tree type
)
569 if (TYPE_PRECISION (type
) == 1)
570 set_value_range_to_varying (vr
);
572 set_value_range (vr
, VR_RANGE
,
573 build_int_cst (type
, 0), build_int_cst (type
, 1),
578 /* Set value range VR to VR_UNDEFINED. */
581 set_value_range_to_undefined (value_range_t
*vr
)
583 vr
->type
= VR_UNDEFINED
;
584 vr
->min
= vr
->max
= NULL_TREE
;
586 bitmap_clear (vr
->equiv
);
590 /* If abs (min) < abs (max), set VR to [-max, max], if
591 abs (min) >= abs (max), set VR to [-min, min]. */
594 abs_extent_range (value_range_t
*vr
, tree min
, tree max
)
598 gcc_assert (TREE_CODE (min
) == INTEGER_CST
);
599 gcc_assert (TREE_CODE (max
) == INTEGER_CST
);
600 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min
)));
601 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min
)));
602 min
= fold_unary (ABS_EXPR
, TREE_TYPE (min
), min
);
603 max
= fold_unary (ABS_EXPR
, TREE_TYPE (max
), max
);
604 if (TREE_OVERFLOW (min
) || TREE_OVERFLOW (max
))
606 set_value_range_to_varying (vr
);
609 cmp
= compare_values (min
, max
);
611 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), max
);
612 else if (cmp
== 0 || cmp
== 1)
615 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), min
);
619 set_value_range_to_varying (vr
);
622 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
626 /* Return value range information for VAR.
628 If we have no values ranges recorded (ie, VRP is not running), then
629 return NULL. Otherwise create an empty range if none existed for VAR. */
631 static value_range_t
*
632 get_value_range (const_tree var
)
636 unsigned ver
= SSA_NAME_VERSION (var
);
638 /* If we have no recorded ranges, then return NULL. */
646 /* Create a default value range. */
647 vr_value
[ver
] = vr
= XCNEW (value_range_t
);
649 /* Defer allocating the equivalence set. */
652 /* If VAR is a default definition, the variable can take any value
654 sym
= SSA_NAME_VAR (var
);
655 if (SSA_NAME_IS_DEFAULT_DEF (var
))
657 /* Try to use the "nonnull" attribute to create ~[0, 0]
658 anti-ranges for pointers. Note that this is only valid with
659 default definitions of PARM_DECLs. */
660 if (TREE_CODE (sym
) == PARM_DECL
661 && POINTER_TYPE_P (TREE_TYPE (sym
))
662 && nonnull_arg_p (sym
))
663 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
665 set_value_range_to_varying (vr
);
671 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
674 vrp_operand_equal_p (const_tree val1
, const_tree val2
)
678 if (!val1
|| !val2
|| !operand_equal_p (val1
, val2
, 0))
680 if (is_overflow_infinity (val1
))
681 return is_overflow_infinity (val2
);
685 /* Return true, if the bitmaps B1 and B2 are equal. */
688 vrp_bitmap_equal_p (const_bitmap b1
, const_bitmap b2
)
692 && bitmap_equal_p (b1
, b2
)));
695 /* Update the value range and equivalence set for variable VAR to
696 NEW_VR. Return true if NEW_VR is different from VAR's previous
699 NOTE: This function assumes that NEW_VR is a temporary value range
700 object created for the sole purpose of updating VAR's range. The
701 storage used by the equivalence set from NEW_VR will be freed by
702 this function. Do not call update_value_range when NEW_VR
703 is the range object associated with another SSA name. */
706 update_value_range (const_tree var
, value_range_t
*new_vr
)
708 value_range_t
*old_vr
;
711 /* Update the value range, if necessary. */
712 old_vr
= get_value_range (var
);
713 is_new
= old_vr
->type
!= new_vr
->type
714 || !vrp_operand_equal_p (old_vr
->min
, new_vr
->min
)
715 || !vrp_operand_equal_p (old_vr
->max
, new_vr
->max
)
716 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
->equiv
);
719 set_value_range (old_vr
, new_vr
->type
, new_vr
->min
, new_vr
->max
,
722 BITMAP_FREE (new_vr
->equiv
);
728 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
729 point where equivalence processing can be turned on/off. */
732 add_equivalence (bitmap
*equiv
, const_tree var
)
734 unsigned ver
= SSA_NAME_VERSION (var
);
735 value_range_t
*vr
= vr_value
[ver
];
738 *equiv
= BITMAP_ALLOC (NULL
);
739 bitmap_set_bit (*equiv
, ver
);
741 bitmap_ior_into (*equiv
, vr
->equiv
);
745 /* Return true if VR is ~[0, 0]. */
748 range_is_nonnull (value_range_t
*vr
)
750 return vr
->type
== VR_ANTI_RANGE
751 && integer_zerop (vr
->min
)
752 && integer_zerop (vr
->max
);
756 /* Return true if VR is [0, 0]. */
759 range_is_null (value_range_t
*vr
)
761 return vr
->type
== VR_RANGE
762 && integer_zerop (vr
->min
)
763 && integer_zerop (vr
->max
);
767 /* Return true if value range VR involves at least one symbol. */
770 symbolic_range_p (value_range_t
*vr
)
772 return (!is_gimple_min_invariant (vr
->min
)
773 || !is_gimple_min_invariant (vr
->max
));
776 /* Return true if value range VR uses an overflow infinity. */
779 overflow_infinity_range_p (value_range_t
*vr
)
781 return (vr
->type
== VR_RANGE
782 && (is_overflow_infinity (vr
->min
)
783 || is_overflow_infinity (vr
->max
)));
786 /* Return false if we can not make a valid comparison based on VR;
787 this will be the case if it uses an overflow infinity and overflow
788 is not undefined (i.e., -fno-strict-overflow is in effect).
789 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
790 uses an overflow infinity. */
793 usable_range_p (value_range_t
*vr
, bool *strict_overflow_p
)
795 gcc_assert (vr
->type
== VR_RANGE
);
796 if (is_overflow_infinity (vr
->min
))
798 *strict_overflow_p
= true;
799 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->min
)))
802 if (is_overflow_infinity (vr
->max
))
804 *strict_overflow_p
= true;
805 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->max
)))
812 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
813 ranges obtained so far. */
816 vrp_expr_computes_nonnegative (tree expr
, bool *strict_overflow_p
)
818 return (tree_expr_nonnegative_warnv_p (expr
, strict_overflow_p
)
819 || (TREE_CODE (expr
) == SSA_NAME
820 && ssa_name_nonnegative_p (expr
)));
823 /* Return true if the result of assignment STMT is know to be non-negative.
824 If the return value is based on the assumption that signed overflow is
825 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
826 *STRICT_OVERFLOW_P.*/
829 gimple_assign_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
831 enum tree_code code
= gimple_assign_rhs_code (stmt
);
832 switch (get_gimple_rhs_class (code
))
834 case GIMPLE_UNARY_RHS
:
835 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
836 gimple_expr_type (stmt
),
837 gimple_assign_rhs1 (stmt
),
839 case GIMPLE_BINARY_RHS
:
840 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
841 gimple_expr_type (stmt
),
842 gimple_assign_rhs1 (stmt
),
843 gimple_assign_rhs2 (stmt
),
845 case GIMPLE_SINGLE_RHS
:
846 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt
),
848 case GIMPLE_INVALID_RHS
:
855 /* Return true if return value of call STMT is know to be non-negative.
856 If the return value is based on the assumption that signed overflow is
857 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
858 *STRICT_OVERFLOW_P.*/
861 gimple_call_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
863 tree arg0
= gimple_call_num_args (stmt
) > 0 ?
864 gimple_call_arg (stmt
, 0) : NULL_TREE
;
865 tree arg1
= gimple_call_num_args (stmt
) > 1 ?
866 gimple_call_arg (stmt
, 1) : NULL_TREE
;
868 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt
),
869 gimple_call_fndecl (stmt
),
875 /* Return true if STMT is know to to compute a non-negative value.
876 If the return value is based on the assumption that signed overflow is
877 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
878 *STRICT_OVERFLOW_P.*/
881 gimple_stmt_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
883 switch (gimple_code (stmt
))
886 return gimple_assign_nonnegative_warnv_p (stmt
, strict_overflow_p
);
888 return gimple_call_nonnegative_warnv_p (stmt
, strict_overflow_p
);
894 /* Return true if the result of assignment STMT is know to be non-zero.
895 If the return value is based on the assumption that signed overflow is
896 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
897 *STRICT_OVERFLOW_P.*/
900 gimple_assign_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
902 enum tree_code code
= gimple_assign_rhs_code (stmt
);
903 switch (get_gimple_rhs_class (code
))
905 case GIMPLE_UNARY_RHS
:
906 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
907 gimple_expr_type (stmt
),
908 gimple_assign_rhs1 (stmt
),
910 case GIMPLE_BINARY_RHS
:
911 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
912 gimple_expr_type (stmt
),
913 gimple_assign_rhs1 (stmt
),
914 gimple_assign_rhs2 (stmt
),
916 case GIMPLE_SINGLE_RHS
:
917 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt
),
919 case GIMPLE_INVALID_RHS
:
926 /* Return true if STMT is know to to compute a non-zero value.
927 If the return value is based on the assumption that signed overflow is
928 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
929 *STRICT_OVERFLOW_P.*/
932 gimple_stmt_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
934 switch (gimple_code (stmt
))
937 return gimple_assign_nonzero_warnv_p (stmt
, strict_overflow_p
);
939 return gimple_alloca_call_p (stmt
);
945 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
949 vrp_stmt_computes_nonzero (gimple stmt
, bool *strict_overflow_p
)
951 if (gimple_stmt_nonzero_warnv_p (stmt
, strict_overflow_p
))
954 /* If we have an expression of the form &X->a, then the expression
955 is nonnull if X is nonnull. */
956 if (is_gimple_assign (stmt
)
957 && gimple_assign_rhs_code (stmt
) == ADDR_EXPR
)
959 tree expr
= gimple_assign_rhs1 (stmt
);
960 tree base
= get_base_address (TREE_OPERAND (expr
, 0));
962 if (base
!= NULL_TREE
963 && TREE_CODE (base
) == INDIRECT_REF
964 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
966 value_range_t
*vr
= get_value_range (TREE_OPERAND (base
, 0));
967 if (range_is_nonnull (vr
))
975 /* Returns true if EXPR is a valid value (as expected by compare_values) --
976 a gimple invariant, or SSA_NAME +- CST. */
979 valid_value_p (tree expr
)
981 if (TREE_CODE (expr
) == SSA_NAME
)
984 if (TREE_CODE (expr
) == PLUS_EXPR
985 || TREE_CODE (expr
) == MINUS_EXPR
)
986 return (TREE_CODE (TREE_OPERAND (expr
, 0)) == SSA_NAME
987 && TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
);
989 return is_gimple_min_invariant (expr
);
995 -2 if those are incomparable. */
997 operand_less_p (tree val
, tree val2
)
999 /* LT is folded faster than GE and others. Inline the common case. */
1000 if (TREE_CODE (val
) == INTEGER_CST
&& TREE_CODE (val2
) == INTEGER_CST
)
1002 if (TYPE_UNSIGNED (TREE_TYPE (val
)))
1003 return INT_CST_LT_UNSIGNED (val
, val2
);
1006 if (INT_CST_LT (val
, val2
))
1014 fold_defer_overflow_warnings ();
1016 tcmp
= fold_binary_to_constant (LT_EXPR
, boolean_type_node
, val
, val2
);
1018 fold_undefer_and_ignore_overflow_warnings ();
1021 || TREE_CODE (tcmp
) != INTEGER_CST
)
1024 if (!integer_zerop (tcmp
))
1028 /* val >= val2, not considering overflow infinity. */
1029 if (is_negative_overflow_infinity (val
))
1030 return is_negative_overflow_infinity (val2
) ? 0 : 1;
1031 else if (is_positive_overflow_infinity (val2
))
1032 return is_positive_overflow_infinity (val
) ? 0 : 1;
1037 /* Compare two values VAL1 and VAL2. Return
1039 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1042 +1 if VAL1 > VAL2, and
1045 This is similar to tree_int_cst_compare but supports pointer values
1046 and values that cannot be compared at compile time.
1048 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1049 true if the return value is only valid if we assume that signed
1050 overflow is undefined. */
1053 compare_values_warnv (tree val1
, tree val2
, bool *strict_overflow_p
)
1058 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1060 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
1061 == POINTER_TYPE_P (TREE_TYPE (val2
)));
1062 /* Convert the two values into the same type. This is needed because
1063 sizetype causes sign extension even for unsigned types. */
1064 val2
= fold_convert (TREE_TYPE (val1
), val2
);
1065 STRIP_USELESS_TYPE_CONVERSION (val2
);
1067 if ((TREE_CODE (val1
) == SSA_NAME
1068 || TREE_CODE (val1
) == PLUS_EXPR
1069 || TREE_CODE (val1
) == MINUS_EXPR
)
1070 && (TREE_CODE (val2
) == SSA_NAME
1071 || TREE_CODE (val2
) == PLUS_EXPR
1072 || TREE_CODE (val2
) == MINUS_EXPR
))
1074 tree n1
, c1
, n2
, c2
;
1075 enum tree_code code1
, code2
;
1077 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1078 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1079 same name, return -2. */
1080 if (TREE_CODE (val1
) == SSA_NAME
)
1088 code1
= TREE_CODE (val1
);
1089 n1
= TREE_OPERAND (val1
, 0);
1090 c1
= TREE_OPERAND (val1
, 1);
1091 if (tree_int_cst_sgn (c1
) == -1)
1093 if (is_negative_overflow_infinity (c1
))
1095 c1
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c1
), c1
);
1098 code1
= code1
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1102 if (TREE_CODE (val2
) == SSA_NAME
)
1110 code2
= TREE_CODE (val2
);
1111 n2
= TREE_OPERAND (val2
, 0);
1112 c2
= TREE_OPERAND (val2
, 1);
1113 if (tree_int_cst_sgn (c2
) == -1)
1115 if (is_negative_overflow_infinity (c2
))
1117 c2
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c2
), c2
);
1120 code2
= code2
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1124 /* Both values must use the same name. */
1128 if (code1
== SSA_NAME
1129 && code2
== SSA_NAME
)
1133 /* If overflow is defined we cannot simplify more. */
1134 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1
)))
1137 if (strict_overflow_p
!= NULL
1138 && (code1
== SSA_NAME
|| !TREE_NO_WARNING (val1
))
1139 && (code2
== SSA_NAME
|| !TREE_NO_WARNING (val2
)))
1140 *strict_overflow_p
= true;
1142 if (code1
== SSA_NAME
)
1144 if (code2
== PLUS_EXPR
)
1145 /* NAME < NAME + CST */
1147 else if (code2
== MINUS_EXPR
)
1148 /* NAME > NAME - CST */
1151 else if (code1
== PLUS_EXPR
)
1153 if (code2
== SSA_NAME
)
1154 /* NAME + CST > NAME */
1156 else if (code2
== PLUS_EXPR
)
1157 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1158 return compare_values_warnv (c1
, c2
, strict_overflow_p
);
1159 else if (code2
== MINUS_EXPR
)
1160 /* NAME + CST1 > NAME - CST2 */
1163 else if (code1
== MINUS_EXPR
)
1165 if (code2
== SSA_NAME
)
1166 /* NAME - CST < NAME */
1168 else if (code2
== PLUS_EXPR
)
1169 /* NAME - CST1 < NAME + CST2 */
1171 else if (code2
== MINUS_EXPR
)
1172 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1173 C1 and C2 are swapped in the call to compare_values. */
1174 return compare_values_warnv (c2
, c1
, strict_overflow_p
);
1180 /* We cannot compare non-constants. */
1181 if (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
))
1184 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
1186 /* We cannot compare overflowed values, except for overflow
1188 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
1190 if (strict_overflow_p
!= NULL
)
1191 *strict_overflow_p
= true;
1192 if (is_negative_overflow_infinity (val1
))
1193 return is_negative_overflow_infinity (val2
) ? 0 : -1;
1194 else if (is_negative_overflow_infinity (val2
))
1196 else if (is_positive_overflow_infinity (val1
))
1197 return is_positive_overflow_infinity (val2
) ? 0 : 1;
1198 else if (is_positive_overflow_infinity (val2
))
1203 return tree_int_cst_compare (val1
, val2
);
1209 /* First see if VAL1 and VAL2 are not the same. */
1210 if (val1
== val2
|| operand_equal_p (val1
, val2
, 0))
1213 /* If VAL1 is a lower address than VAL2, return -1. */
1214 if (operand_less_p (val1
, val2
) == 1)
1217 /* If VAL1 is a higher address than VAL2, return +1. */
1218 if (operand_less_p (val2
, val1
) == 1)
1221 /* If VAL1 is different than VAL2, return +2.
1222 For integer constants we either have already returned -1 or 1
1223 or they are equivalent. We still might succeed in proving
1224 something about non-trivial operands. */
1225 if (TREE_CODE (val1
) != INTEGER_CST
1226 || TREE_CODE (val2
) != INTEGER_CST
)
1228 t
= fold_binary_to_constant (NE_EXPR
, boolean_type_node
, val1
, val2
);
1229 if (t
&& integer_onep (t
))
1237 /* Compare values like compare_values_warnv, but treat comparisons of
1238 nonconstants which rely on undefined overflow as incomparable. */
1241 compare_values (tree val1
, tree val2
)
1247 ret
= compare_values_warnv (val1
, val2
, &sop
);
1249 && (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
)))
1255 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1256 0 if VAL is not inside VR,
1257 -2 if we cannot tell either way.
1259 FIXME, the current semantics of this functions are a bit quirky
1260 when taken in the context of VRP. In here we do not care
1261 about VR's type. If VR is the anti-range ~[3, 5] the call
1262 value_inside_range (4, VR) will return 1.
1264 This is counter-intuitive in a strict sense, but the callers
1265 currently expect this. They are calling the function
1266 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1267 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1270 This also applies to value_ranges_intersect_p and
1271 range_includes_zero_p. The semantics of VR_RANGE and
1272 VR_ANTI_RANGE should be encoded here, but that also means
1273 adapting the users of these functions to the new semantics.
1275 Benchmark compile/20001226-1.c compilation time after changing this
1279 value_inside_range (tree val
, value_range_t
* vr
)
1283 cmp1
= operand_less_p (val
, vr
->min
);
1289 cmp2
= operand_less_p (vr
->max
, val
);
1297 /* Return true if value ranges VR0 and VR1 have a non-empty
1300 Benchmark compile/20001226-1.c compilation time after changing this
1305 value_ranges_intersect_p (value_range_t
*vr0
, value_range_t
*vr1
)
1307 /* The value ranges do not intersect if the maximum of the first range is
1308 less than the minimum of the second range or vice versa.
1309 When those relations are unknown, we can't do any better. */
1310 if (operand_less_p (vr0
->max
, vr1
->min
) != 0)
1312 if (operand_less_p (vr1
->max
, vr0
->min
) != 0)
1318 /* Return true if VR includes the value zero, false otherwise. FIXME,
1319 currently this will return false for an anti-range like ~[-4, 3].
1320 This will be wrong when the semantics of value_inside_range are
1321 modified (currently the users of this function expect these
1325 range_includes_zero_p (value_range_t
*vr
)
1329 gcc_assert (vr
->type
!= VR_UNDEFINED
1330 && vr
->type
!= VR_VARYING
1331 && !symbolic_range_p (vr
));
1333 zero
= build_int_cst (TREE_TYPE (vr
->min
), 0);
1334 return (value_inside_range (zero
, vr
) == 1);
1337 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1338 false otherwise or if no value range information is available. */
1341 ssa_name_nonnegative_p (const_tree t
)
1343 value_range_t
*vr
= get_value_range (t
);
1348 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1349 which would return a useful value should be encoded as a VR_RANGE. */
1350 if (vr
->type
== VR_RANGE
)
1352 int result
= compare_values (vr
->min
, integer_zero_node
);
1354 return (result
== 0 || result
== 1);
1359 /* If OP has a value range with a single constant value return that,
1360 otherwise return NULL_TREE. This returns OP itself if OP is a
1364 op_with_constant_singleton_value_range (tree op
)
1368 if (is_gimple_min_invariant (op
))
1371 if (TREE_CODE (op
) != SSA_NAME
)
1374 vr
= get_value_range (op
);
1375 if (vr
->type
== VR_RANGE
1376 && operand_equal_p (vr
->min
, vr
->max
, 0)
1377 && is_gimple_min_invariant (vr
->min
))
1384 /* Extract value range information from an ASSERT_EXPR EXPR and store
1388 extract_range_from_assert (value_range_t
*vr_p
, tree expr
)
1390 tree var
, cond
, limit
, min
, max
, type
;
1391 value_range_t
*var_vr
, *limit_vr
;
1392 enum tree_code cond_code
;
1394 var
= ASSERT_EXPR_VAR (expr
);
1395 cond
= ASSERT_EXPR_COND (expr
);
1397 gcc_assert (COMPARISON_CLASS_P (cond
));
1399 /* Find VAR in the ASSERT_EXPR conditional. */
1400 if (var
== TREE_OPERAND (cond
, 0)
1401 || TREE_CODE (TREE_OPERAND (cond
, 0)) == PLUS_EXPR
1402 || TREE_CODE (TREE_OPERAND (cond
, 0)) == NOP_EXPR
)
1404 /* If the predicate is of the form VAR COMP LIMIT, then we just
1405 take LIMIT from the RHS and use the same comparison code. */
1406 cond_code
= TREE_CODE (cond
);
1407 limit
= TREE_OPERAND (cond
, 1);
1408 cond
= TREE_OPERAND (cond
, 0);
1412 /* If the predicate is of the form LIMIT COMP VAR, then we need
1413 to flip around the comparison code to create the proper range
1415 cond_code
= swap_tree_comparison (TREE_CODE (cond
));
1416 limit
= TREE_OPERAND (cond
, 0);
1417 cond
= TREE_OPERAND (cond
, 1);
1420 limit
= avoid_overflow_infinity (limit
);
1422 type
= TREE_TYPE (limit
);
1423 gcc_assert (limit
!= var
);
1425 /* For pointer arithmetic, we only keep track of pointer equality
1427 if (POINTER_TYPE_P (type
) && cond_code
!= NE_EXPR
&& cond_code
!= EQ_EXPR
)
1429 set_value_range_to_varying (vr_p
);
1433 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1434 try to use LIMIT's range to avoid creating symbolic ranges
1436 limit_vr
= (TREE_CODE (limit
) == SSA_NAME
) ? get_value_range (limit
) : NULL
;
1438 /* LIMIT's range is only interesting if it has any useful information. */
1440 && (limit_vr
->type
== VR_UNDEFINED
1441 || limit_vr
->type
== VR_VARYING
1442 || symbolic_range_p (limit_vr
)))
1445 /* Initially, the new range has the same set of equivalences of
1446 VAR's range. This will be revised before returning the final
1447 value. Since assertions may be chained via mutually exclusive
1448 predicates, we will need to trim the set of equivalences before
1450 gcc_assert (vr_p
->equiv
== NULL
);
1451 add_equivalence (&vr_p
->equiv
, var
);
1453 /* Extract a new range based on the asserted comparison for VAR and
1454 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1455 will only use it for equality comparisons (EQ_EXPR). For any
1456 other kind of assertion, we cannot derive a range from LIMIT's
1457 anti-range that can be used to describe the new range. For
1458 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1459 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1460 no single range for x_2 that could describe LE_EXPR, so we might
1461 as well build the range [b_4, +INF] for it.
1462 One special case we handle is extracting a range from a
1463 range test encoded as (unsigned)var + CST <= limit. */
1464 if (TREE_CODE (cond
) == NOP_EXPR
1465 || TREE_CODE (cond
) == PLUS_EXPR
)
1467 if (TREE_CODE (cond
) == PLUS_EXPR
)
1469 min
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (TREE_OPERAND (cond
, 1)),
1470 TREE_OPERAND (cond
, 1));
1471 max
= int_const_binop (PLUS_EXPR
, limit
, min
, 0);
1472 cond
= TREE_OPERAND (cond
, 0);
1476 min
= build_int_cst (TREE_TYPE (var
), 0);
1480 /* Make sure to not set TREE_OVERFLOW on the final type
1481 conversion. We are willingly interpreting large positive
1482 unsigned values as negative singed values here. */
1483 min
= force_fit_type_double (TREE_TYPE (var
), TREE_INT_CST_LOW (min
),
1484 TREE_INT_CST_HIGH (min
), 0, false);
1485 max
= force_fit_type_double (TREE_TYPE (var
), TREE_INT_CST_LOW (max
),
1486 TREE_INT_CST_HIGH (max
), 0, false);
1488 /* We can transform a max, min range to an anti-range or
1489 vice-versa. Use set_and_canonicalize_value_range which does
1491 if (cond_code
== LE_EXPR
)
1492 set_and_canonicalize_value_range (vr_p
, VR_RANGE
,
1493 min
, max
, vr_p
->equiv
);
1494 else if (cond_code
== GT_EXPR
)
1495 set_and_canonicalize_value_range (vr_p
, VR_ANTI_RANGE
,
1496 min
, max
, vr_p
->equiv
);
1500 else if (cond_code
== EQ_EXPR
)
1502 enum value_range_type range_type
;
1506 range_type
= limit_vr
->type
;
1507 min
= limit_vr
->min
;
1508 max
= limit_vr
->max
;
1512 range_type
= VR_RANGE
;
1517 set_value_range (vr_p
, range_type
, min
, max
, vr_p
->equiv
);
1519 /* When asserting the equality VAR == LIMIT and LIMIT is another
1520 SSA name, the new range will also inherit the equivalence set
1522 if (TREE_CODE (limit
) == SSA_NAME
)
1523 add_equivalence (&vr_p
->equiv
, limit
);
1525 else if (cond_code
== NE_EXPR
)
1527 /* As described above, when LIMIT's range is an anti-range and
1528 this assertion is an inequality (NE_EXPR), then we cannot
1529 derive anything from the anti-range. For instance, if
1530 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1531 not imply that VAR's range is [0, 0]. So, in the case of
1532 anti-ranges, we just assert the inequality using LIMIT and
1535 If LIMIT_VR is a range, we can only use it to build a new
1536 anti-range if LIMIT_VR is a single-valued range. For
1537 instance, if LIMIT_VR is [0, 1], the predicate
1538 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1539 Rather, it means that for value 0 VAR should be ~[0, 0]
1540 and for value 1, VAR should be ~[1, 1]. We cannot
1541 represent these ranges.
1543 The only situation in which we can build a valid
1544 anti-range is when LIMIT_VR is a single-valued range
1545 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1546 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1548 && limit_vr
->type
== VR_RANGE
1549 && compare_values (limit_vr
->min
, limit_vr
->max
) == 0)
1551 min
= limit_vr
->min
;
1552 max
= limit_vr
->max
;
1556 /* In any other case, we cannot use LIMIT's range to build a
1557 valid anti-range. */
1561 /* If MIN and MAX cover the whole range for their type, then
1562 just use the original LIMIT. */
1563 if (INTEGRAL_TYPE_P (type
)
1564 && vrp_val_is_min (min
)
1565 && vrp_val_is_max (max
))
1568 set_value_range (vr_p
, VR_ANTI_RANGE
, min
, max
, vr_p
->equiv
);
1570 else if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
1572 min
= TYPE_MIN_VALUE (type
);
1574 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1578 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1579 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1581 max
= limit_vr
->max
;
1584 /* If the maximum value forces us to be out of bounds, simply punt.
1585 It would be pointless to try and do anything more since this
1586 all should be optimized away above us. */
1587 if ((cond_code
== LT_EXPR
1588 && compare_values (max
, min
) == 0)
1589 || (CONSTANT_CLASS_P (max
) && TREE_OVERFLOW (max
)))
1590 set_value_range_to_varying (vr_p
);
1593 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1594 if (cond_code
== LT_EXPR
)
1596 tree one
= build_int_cst (type
, 1);
1597 max
= fold_build2 (MINUS_EXPR
, type
, max
, one
);
1599 TREE_NO_WARNING (max
) = 1;
1602 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1605 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
1607 max
= TYPE_MAX_VALUE (type
);
1609 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1613 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1614 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1616 min
= limit_vr
->min
;
1619 /* If the minimum value forces us to be out of bounds, simply punt.
1620 It would be pointless to try and do anything more since this
1621 all should be optimized away above us. */
1622 if ((cond_code
== GT_EXPR
1623 && compare_values (min
, max
) == 0)
1624 || (CONSTANT_CLASS_P (min
) && TREE_OVERFLOW (min
)))
1625 set_value_range_to_varying (vr_p
);
1628 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1629 if (cond_code
== GT_EXPR
)
1631 tree one
= build_int_cst (type
, 1);
1632 min
= fold_build2 (PLUS_EXPR
, type
, min
, one
);
1634 TREE_NO_WARNING (min
) = 1;
1637 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1643 /* If VAR already had a known range, it may happen that the new
1644 range we have computed and VAR's range are not compatible. For
1648 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1650 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1652 While the above comes from a faulty program, it will cause an ICE
1653 later because p_8 and p_6 will have incompatible ranges and at
1654 the same time will be considered equivalent. A similar situation
1658 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1660 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1662 Again i_6 and i_7 will have incompatible ranges. It would be
1663 pointless to try and do anything with i_7's range because
1664 anything dominated by 'if (i_5 < 5)' will be optimized away.
1665 Note, due to the wa in which simulation proceeds, the statement
1666 i_7 = ASSERT_EXPR <...> we would never be visited because the
1667 conditional 'if (i_5 < 5)' always evaluates to false. However,
1668 this extra check does not hurt and may protect against future
1669 changes to VRP that may get into a situation similar to the
1670 NULL pointer dereference example.
1672 Note that these compatibility tests are only needed when dealing
1673 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1674 are both anti-ranges, they will always be compatible, because two
1675 anti-ranges will always have a non-empty intersection. */
1677 var_vr
= get_value_range (var
);
1679 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1680 ranges or anti-ranges. */
1681 if (vr_p
->type
== VR_VARYING
1682 || vr_p
->type
== VR_UNDEFINED
1683 || var_vr
->type
== VR_VARYING
1684 || var_vr
->type
== VR_UNDEFINED
1685 || symbolic_range_p (vr_p
)
1686 || symbolic_range_p (var_vr
))
1689 if (var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_RANGE
)
1691 /* If the two ranges have a non-empty intersection, we can
1692 refine the resulting range. Since the assert expression
1693 creates an equivalency and at the same time it asserts a
1694 predicate, we can take the intersection of the two ranges to
1695 get better precision. */
1696 if (value_ranges_intersect_p (var_vr
, vr_p
))
1698 /* Use the larger of the two minimums. */
1699 if (compare_values (vr_p
->min
, var_vr
->min
) == -1)
1704 /* Use the smaller of the two maximums. */
1705 if (compare_values (vr_p
->max
, var_vr
->max
) == 1)
1710 set_value_range (vr_p
, vr_p
->type
, min
, max
, vr_p
->equiv
);
1714 /* The two ranges do not intersect, set the new range to
1715 VARYING, because we will not be able to do anything
1716 meaningful with it. */
1717 set_value_range_to_varying (vr_p
);
1720 else if ((var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_ANTI_RANGE
)
1721 || (var_vr
->type
== VR_ANTI_RANGE
&& vr_p
->type
== VR_RANGE
))
1723 /* A range and an anti-range will cancel each other only if
1724 their ends are the same. For instance, in the example above,
1725 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1726 so VR_P should be set to VR_VARYING. */
1727 if (compare_values (var_vr
->min
, vr_p
->min
) == 0
1728 && compare_values (var_vr
->max
, vr_p
->max
) == 0)
1729 set_value_range_to_varying (vr_p
);
1732 tree min
, max
, anti_min
, anti_max
, real_min
, real_max
;
1735 /* We want to compute the logical AND of the two ranges;
1736 there are three cases to consider.
1739 1. The VR_ANTI_RANGE range is completely within the
1740 VR_RANGE and the endpoints of the ranges are
1741 different. In that case the resulting range
1742 should be whichever range is more precise.
1743 Typically that will be the VR_RANGE.
1745 2. The VR_ANTI_RANGE is completely disjoint from
1746 the VR_RANGE. In this case the resulting range
1747 should be the VR_RANGE.
1749 3. There is some overlap between the VR_ANTI_RANGE
1752 3a. If the high limit of the VR_ANTI_RANGE resides
1753 within the VR_RANGE, then the result is a new
1754 VR_RANGE starting at the high limit of the
1755 VR_ANTI_RANGE + 1 and extending to the
1756 high limit of the original VR_RANGE.
1758 3b. If the low limit of the VR_ANTI_RANGE resides
1759 within the VR_RANGE, then the result is a new
1760 VR_RANGE starting at the low limit of the original
1761 VR_RANGE and extending to the low limit of the
1762 VR_ANTI_RANGE - 1. */
1763 if (vr_p
->type
== VR_ANTI_RANGE
)
1765 anti_min
= vr_p
->min
;
1766 anti_max
= vr_p
->max
;
1767 real_min
= var_vr
->min
;
1768 real_max
= var_vr
->max
;
1772 anti_min
= var_vr
->min
;
1773 anti_max
= var_vr
->max
;
1774 real_min
= vr_p
->min
;
1775 real_max
= vr_p
->max
;
1779 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1780 not including any endpoints. */
1781 if (compare_values (anti_max
, real_max
) == -1
1782 && compare_values (anti_min
, real_min
) == 1)
1784 /* If the range is covering the whole valid range of
1785 the type keep the anti-range. */
1786 if (!vrp_val_is_min (real_min
)
1787 || !vrp_val_is_max (real_max
))
1788 set_value_range (vr_p
, VR_RANGE
, real_min
,
1789 real_max
, vr_p
->equiv
);
1791 /* Case 2, VR_ANTI_RANGE completely disjoint from
1793 else if (compare_values (anti_min
, real_max
) == 1
1794 || compare_values (anti_max
, real_min
) == -1)
1796 set_value_range (vr_p
, VR_RANGE
, real_min
,
1797 real_max
, vr_p
->equiv
);
1799 /* Case 3a, the anti-range extends into the low
1800 part of the real range. Thus creating a new
1801 low for the real range. */
1802 else if (((cmp
= compare_values (anti_max
, real_min
)) == 1
1804 && compare_values (anti_max
, real_max
) == -1)
1806 gcc_assert (!is_positive_overflow_infinity (anti_max
));
1807 if (needs_overflow_infinity (TREE_TYPE (anti_max
))
1808 && vrp_val_is_max (anti_max
))
1810 if (!supports_overflow_infinity (TREE_TYPE (var_vr
->min
)))
1812 set_value_range_to_varying (vr_p
);
1815 min
= positive_overflow_infinity (TREE_TYPE (var_vr
->min
));
1817 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr
->min
)))
1818 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (var_vr
->min
),
1820 build_int_cst (TREE_TYPE (var_vr
->min
), 1));
1822 min
= fold_build2 (POINTER_PLUS_EXPR
, TREE_TYPE (var_vr
->min
),
1823 anti_max
, size_int (1));
1825 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1827 /* Case 3b, the anti-range extends into the high
1828 part of the real range. Thus creating a new
1829 higher for the real range. */
1830 else if (compare_values (anti_min
, real_min
) == 1
1831 && ((cmp
= compare_values (anti_min
, real_max
)) == -1
1834 gcc_assert (!is_negative_overflow_infinity (anti_min
));
1835 if (needs_overflow_infinity (TREE_TYPE (anti_min
))
1836 && vrp_val_is_min (anti_min
))
1838 if (!supports_overflow_infinity (TREE_TYPE (var_vr
->min
)))
1840 set_value_range_to_varying (vr_p
);
1843 max
= negative_overflow_infinity (TREE_TYPE (var_vr
->min
));
1845 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr
->min
)))
1846 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (var_vr
->min
),
1848 build_int_cst (TREE_TYPE (var_vr
->min
), 1));
1850 max
= fold_build2 (POINTER_PLUS_EXPR
, TREE_TYPE (var_vr
->min
),
1854 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1861 /* Extract range information from SSA name VAR and store it in VR. If
1862 VAR has an interesting range, use it. Otherwise, create the
1863 range [VAR, VAR] and return it. This is useful in situations where
1864 we may have conditionals testing values of VARYING names. For
1871 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1875 extract_range_from_ssa_name (value_range_t
*vr
, tree var
)
1877 value_range_t
*var_vr
= get_value_range (var
);
1879 if (var_vr
->type
!= VR_UNDEFINED
&& var_vr
->type
!= VR_VARYING
)
1880 copy_value_range (vr
, var_vr
);
1882 set_value_range (vr
, VR_RANGE
, var
, var
, NULL
);
1884 add_equivalence (&vr
->equiv
, var
);
1888 /* Wrapper around int_const_binop. If the operation overflows and we
1889 are not using wrapping arithmetic, then adjust the result to be
1890 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1891 NULL_TREE if we need to use an overflow infinity representation but
1892 the type does not support it. */
1895 vrp_int_const_binop (enum tree_code code
, tree val1
, tree val2
)
1899 res
= int_const_binop (code
, val1
, val2
, 0);
1901 /* If we are using unsigned arithmetic, operate symbolically
1902 on -INF and +INF as int_const_binop only handles signed overflow. */
1903 if (TYPE_UNSIGNED (TREE_TYPE (val1
)))
1905 int checkz
= compare_values (res
, val1
);
1906 bool overflow
= false;
1908 /* Ensure that res = val1 [+*] val2 >= val1
1909 or that res = val1 - val2 <= val1. */
1910 if ((code
== PLUS_EXPR
1911 && !(checkz
== 1 || checkz
== 0))
1912 || (code
== MINUS_EXPR
1913 && !(checkz
== 0 || checkz
== -1)))
1917 /* Checking for multiplication overflow is done by dividing the
1918 output of the multiplication by the first input of the
1919 multiplication. If the result of that division operation is
1920 not equal to the second input of the multiplication, then the
1921 multiplication overflowed. */
1922 else if (code
== MULT_EXPR
&& !integer_zerop (val1
))
1924 tree tmp
= int_const_binop (TRUNC_DIV_EXPR
,
1927 int check
= compare_values (tmp
, val2
);
1935 res
= copy_node (res
);
1936 TREE_OVERFLOW (res
) = 1;
1940 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1
)))
1941 /* If the singed operation wraps then int_const_binop has done
1942 everything we want. */
1944 else if ((TREE_OVERFLOW (res
)
1945 && !TREE_OVERFLOW (val1
)
1946 && !TREE_OVERFLOW (val2
))
1947 || is_overflow_infinity (val1
)
1948 || is_overflow_infinity (val2
))
1950 /* If the operation overflowed but neither VAL1 nor VAL2 are
1951 overflown, return -INF or +INF depending on the operation
1952 and the combination of signs of the operands. */
1953 int sgn1
= tree_int_cst_sgn (val1
);
1954 int sgn2
= tree_int_cst_sgn (val2
);
1956 if (needs_overflow_infinity (TREE_TYPE (res
))
1957 && !supports_overflow_infinity (TREE_TYPE (res
)))
1960 /* We have to punt on adding infinities of different signs,
1961 since we can't tell what the sign of the result should be.
1962 Likewise for subtracting infinities of the same sign. */
1963 if (((code
== PLUS_EXPR
&& sgn1
!= sgn2
)
1964 || (code
== MINUS_EXPR
&& sgn1
== sgn2
))
1965 && is_overflow_infinity (val1
)
1966 && is_overflow_infinity (val2
))
1969 /* Don't try to handle division or shifting of infinities. */
1970 if ((code
== TRUNC_DIV_EXPR
1971 || code
== FLOOR_DIV_EXPR
1972 || code
== CEIL_DIV_EXPR
1973 || code
== EXACT_DIV_EXPR
1974 || code
== ROUND_DIV_EXPR
1975 || code
== RSHIFT_EXPR
)
1976 && (is_overflow_infinity (val1
)
1977 || is_overflow_infinity (val2
)))
1980 /* Notice that we only need to handle the restricted set of
1981 operations handled by extract_range_from_binary_expr.
1982 Among them, only multiplication, addition and subtraction
1983 can yield overflow without overflown operands because we
1984 are working with integral types only... except in the
1985 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1986 for division too. */
1988 /* For multiplication, the sign of the overflow is given
1989 by the comparison of the signs of the operands. */
1990 if ((code
== MULT_EXPR
&& sgn1
== sgn2
)
1991 /* For addition, the operands must be of the same sign
1992 to yield an overflow. Its sign is therefore that
1993 of one of the operands, for example the first. For
1994 infinite operands X + -INF is negative, not positive. */
1995 || (code
== PLUS_EXPR
1997 ? !is_negative_overflow_infinity (val2
)
1998 : is_positive_overflow_infinity (val2
)))
1999 /* For subtraction, non-infinite operands must be of
2000 different signs to yield an overflow. Its sign is
2001 therefore that of the first operand or the opposite of
2002 that of the second operand. A first operand of 0 counts
2003 as positive here, for the corner case 0 - (-INF), which
2004 overflows, but must yield +INF. For infinite operands 0
2005 - INF is negative, not positive. */
2006 || (code
== MINUS_EXPR
2008 ? !is_positive_overflow_infinity (val2
)
2009 : is_negative_overflow_infinity (val2
)))
2010 /* We only get in here with positive shift count, so the
2011 overflow direction is the same as the sign of val1.
2012 Actually rshift does not overflow at all, but we only
2013 handle the case of shifting overflowed -INF and +INF. */
2014 || (code
== RSHIFT_EXPR
2016 /* For division, the only case is -INF / -1 = +INF. */
2017 || code
== TRUNC_DIV_EXPR
2018 || code
== FLOOR_DIV_EXPR
2019 || code
== CEIL_DIV_EXPR
2020 || code
== EXACT_DIV_EXPR
2021 || code
== ROUND_DIV_EXPR
)
2022 return (needs_overflow_infinity (TREE_TYPE (res
))
2023 ? positive_overflow_infinity (TREE_TYPE (res
))
2024 : TYPE_MAX_VALUE (TREE_TYPE (res
)));
2026 return (needs_overflow_infinity (TREE_TYPE (res
))
2027 ? negative_overflow_infinity (TREE_TYPE (res
))
2028 : TYPE_MIN_VALUE (TREE_TYPE (res
)));
2035 /* Extract range information from a binary expression EXPR based on
2036 the ranges of each of its operands and the expression code. */
2039 extract_range_from_binary_expr (value_range_t
*vr
,
2040 enum tree_code code
,
2041 tree expr_type
, tree op0
, tree op1
)
2043 enum value_range_type type
;
2046 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
2047 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
2049 /* Not all binary expressions can be applied to ranges in a
2050 meaningful way. Handle only arithmetic operations. */
2051 if (code
!= PLUS_EXPR
2052 && code
!= MINUS_EXPR
2053 && code
!= POINTER_PLUS_EXPR
2054 && code
!= MULT_EXPR
2055 && code
!= TRUNC_DIV_EXPR
2056 && code
!= FLOOR_DIV_EXPR
2057 && code
!= CEIL_DIV_EXPR
2058 && code
!= EXACT_DIV_EXPR
2059 && code
!= ROUND_DIV_EXPR
2060 && code
!= RSHIFT_EXPR
2063 && code
!= BIT_AND_EXPR
2064 && code
!= BIT_IOR_EXPR
2065 && code
!= TRUTH_AND_EXPR
2066 && code
!= TRUTH_OR_EXPR
)
2068 /* We can still do constant propagation here. */
2069 tree const_op0
= op_with_constant_singleton_value_range (op0
);
2070 tree const_op1
= op_with_constant_singleton_value_range (op1
);
2071 if (const_op0
|| const_op1
)
2073 tree tem
= fold_binary (code
, expr_type
,
2074 const_op0
? const_op0
: op0
,
2075 const_op1
? const_op1
: op1
);
2077 && is_gimple_min_invariant (tem
)
2078 && !is_overflow_infinity (tem
))
2080 set_value_range (vr
, VR_RANGE
, tem
, tem
, NULL
);
2084 set_value_range_to_varying (vr
);
2088 /* Get value ranges for each operand. For constant operands, create
2089 a new value range with the operand to simplify processing. */
2090 if (TREE_CODE (op0
) == SSA_NAME
)
2091 vr0
= *(get_value_range (op0
));
2092 else if (is_gimple_min_invariant (op0
))
2093 set_value_range_to_value (&vr0
, op0
, NULL
);
2095 set_value_range_to_varying (&vr0
);
2097 if (TREE_CODE (op1
) == SSA_NAME
)
2098 vr1
= *(get_value_range (op1
));
2099 else if (is_gimple_min_invariant (op1
))
2100 set_value_range_to_value (&vr1
, op1
, NULL
);
2102 set_value_range_to_varying (&vr1
);
2104 /* If either range is UNDEFINED, so is the result. */
2105 if (vr0
.type
== VR_UNDEFINED
|| vr1
.type
== VR_UNDEFINED
)
2107 set_value_range_to_undefined (vr
);
2111 /* The type of the resulting value range defaults to VR0.TYPE. */
2114 /* Refuse to operate on VARYING ranges, ranges of different kinds
2115 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2116 because we may be able to derive a useful range even if one of
2117 the operands is VR_VARYING or symbolic range. Similarly for
2118 divisions. TODO, we may be able to derive anti-ranges in
2120 if (code
!= BIT_AND_EXPR
2121 && code
!= TRUTH_AND_EXPR
2122 && code
!= TRUTH_OR_EXPR
2123 && code
!= TRUNC_DIV_EXPR
2124 && code
!= FLOOR_DIV_EXPR
2125 && code
!= CEIL_DIV_EXPR
2126 && code
!= EXACT_DIV_EXPR
2127 && code
!= ROUND_DIV_EXPR
2128 && (vr0
.type
== VR_VARYING
2129 || vr1
.type
== VR_VARYING
2130 || vr0
.type
!= vr1
.type
2131 || symbolic_range_p (&vr0
)
2132 || symbolic_range_p (&vr1
)))
2134 set_value_range_to_varying (vr
);
2138 /* Now evaluate the expression to determine the new range. */
2139 if (POINTER_TYPE_P (expr_type
)
2140 || POINTER_TYPE_P (TREE_TYPE (op0
))
2141 || POINTER_TYPE_P (TREE_TYPE (op1
)))
2143 if (code
== MIN_EXPR
|| code
== MAX_EXPR
)
2145 /* For MIN/MAX expressions with pointers, we only care about
2146 nullness, if both are non null, then the result is nonnull.
2147 If both are null, then the result is null. Otherwise they
2149 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2150 set_value_range_to_nonnull (vr
, expr_type
);
2151 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2152 set_value_range_to_null (vr
, expr_type
);
2154 set_value_range_to_varying (vr
);
2158 gcc_assert (code
== POINTER_PLUS_EXPR
);
2159 /* For pointer types, we are really only interested in asserting
2160 whether the expression evaluates to non-NULL. */
2161 if (range_is_nonnull (&vr0
) || range_is_nonnull (&vr1
))
2162 set_value_range_to_nonnull (vr
, expr_type
);
2163 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2164 set_value_range_to_null (vr
, expr_type
);
2166 set_value_range_to_varying (vr
);
2171 /* For integer ranges, apply the operation to each end of the
2172 range and see what we end up with. */
2173 if (code
== TRUTH_AND_EXPR
2174 || code
== TRUTH_OR_EXPR
)
2176 /* If one of the operands is zero, we know that the whole
2177 expression evaluates zero. */
2178 if (code
== TRUTH_AND_EXPR
2179 && ((vr0
.type
== VR_RANGE
2180 && integer_zerop (vr0
.min
)
2181 && integer_zerop (vr0
.max
))
2182 || (vr1
.type
== VR_RANGE
2183 && integer_zerop (vr1
.min
)
2184 && integer_zerop (vr1
.max
))))
2187 min
= max
= build_int_cst (expr_type
, 0);
2189 /* If one of the operands is one, we know that the whole
2190 expression evaluates one. */
2191 else if (code
== TRUTH_OR_EXPR
2192 && ((vr0
.type
== VR_RANGE
2193 && integer_onep (vr0
.min
)
2194 && integer_onep (vr0
.max
))
2195 || (vr1
.type
== VR_RANGE
2196 && integer_onep (vr1
.min
)
2197 && integer_onep (vr1
.max
))))
2200 min
= max
= build_int_cst (expr_type
, 1);
2202 else if (vr0
.type
!= VR_VARYING
2203 && vr1
.type
!= VR_VARYING
2204 && vr0
.type
== vr1
.type
2205 && !symbolic_range_p (&vr0
)
2206 && !overflow_infinity_range_p (&vr0
)
2207 && !symbolic_range_p (&vr1
)
2208 && !overflow_infinity_range_p (&vr1
))
2210 /* Boolean expressions cannot be folded with int_const_binop. */
2211 min
= fold_binary (code
, expr_type
, vr0
.min
, vr1
.min
);
2212 max
= fold_binary (code
, expr_type
, vr0
.max
, vr1
.max
);
2216 /* The result of a TRUTH_*_EXPR is always true or false. */
2217 set_value_range_to_truthvalue (vr
, expr_type
);
2221 else if (code
== PLUS_EXPR
2223 || code
== MAX_EXPR
)
2225 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2226 VR_VARYING. It would take more effort to compute a precise
2227 range for such a case. For example, if we have op0 == 1 and
2228 op1 == -1 with their ranges both being ~[0,0], we would have
2229 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2230 Note that we are guaranteed to have vr0.type == vr1.type at
2232 if (code
== PLUS_EXPR
&& vr0
.type
== VR_ANTI_RANGE
)
2234 set_value_range_to_varying (vr
);
2238 /* For operations that make the resulting range directly
2239 proportional to the original ranges, apply the operation to
2240 the same end of each range. */
2241 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
2242 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
2244 /* If both additions overflowed the range kind is still correct.
2245 This happens regularly with subtracting something in unsigned
2247 ??? See PR30318 for all the cases we do not handle. */
2248 if (code
== PLUS_EXPR
2249 && (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2250 && (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2252 min
= build_int_cst_wide (TREE_TYPE (min
),
2253 TREE_INT_CST_LOW (min
),
2254 TREE_INT_CST_HIGH (min
));
2255 max
= build_int_cst_wide (TREE_TYPE (max
),
2256 TREE_INT_CST_LOW (max
),
2257 TREE_INT_CST_HIGH (max
));
2260 else if (code
== MULT_EXPR
2261 || code
== TRUNC_DIV_EXPR
2262 || code
== FLOOR_DIV_EXPR
2263 || code
== CEIL_DIV_EXPR
2264 || code
== EXACT_DIV_EXPR
2265 || code
== ROUND_DIV_EXPR
2266 || code
== RSHIFT_EXPR
)
2272 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2273 drop to VR_VARYING. It would take more effort to compute a
2274 precise range for such a case. For example, if we have
2275 op0 == 65536 and op1 == 65536 with their ranges both being
2276 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2277 we cannot claim that the product is in ~[0,0]. Note that we
2278 are guaranteed to have vr0.type == vr1.type at this
2280 if (code
== MULT_EXPR
2281 && vr0
.type
== VR_ANTI_RANGE
2282 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
)))
2284 set_value_range_to_varying (vr
);
2288 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2289 then drop to VR_VARYING. Outside of this range we get undefined
2290 behavior from the shift operation. We cannot even trust
2291 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2292 shifts, and the operation at the tree level may be widened. */
2293 if (code
== RSHIFT_EXPR
)
2295 if (vr1
.type
== VR_ANTI_RANGE
2296 || !vrp_expr_computes_nonnegative (op1
, &sop
)
2298 (build_int_cst (TREE_TYPE (vr1
.max
),
2299 TYPE_PRECISION (expr_type
) - 1),
2302 set_value_range_to_varying (vr
);
2307 else if ((code
== TRUNC_DIV_EXPR
2308 || code
== FLOOR_DIV_EXPR
2309 || code
== CEIL_DIV_EXPR
2310 || code
== EXACT_DIV_EXPR
2311 || code
== ROUND_DIV_EXPR
)
2312 && (vr0
.type
!= VR_RANGE
|| symbolic_range_p (&vr0
)))
2314 /* For division, if op1 has VR_RANGE but op0 does not, something
2315 can be deduced just from that range. Say [min, max] / [4, max]
2316 gives [min / 4, max / 4] range. */
2317 if (vr1
.type
== VR_RANGE
2318 && !symbolic_range_p (&vr1
)
2319 && !range_includes_zero_p (&vr1
))
2321 vr0
.type
= type
= VR_RANGE
;
2322 vr0
.min
= vrp_val_min (TREE_TYPE (op0
));
2323 vr0
.max
= vrp_val_max (TREE_TYPE (op1
));
2327 set_value_range_to_varying (vr
);
2332 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2333 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2335 if ((code
== TRUNC_DIV_EXPR
2336 || code
== FLOOR_DIV_EXPR
2337 || code
== CEIL_DIV_EXPR
2338 || code
== EXACT_DIV_EXPR
2339 || code
== ROUND_DIV_EXPR
)
2340 && vr0
.type
== VR_RANGE
2341 && (vr1
.type
!= VR_RANGE
2342 || symbolic_range_p (&vr1
)
2343 || range_includes_zero_p (&vr1
)))
2345 tree zero
= build_int_cst (TREE_TYPE (vr0
.min
), 0);
2351 if (vrp_expr_computes_nonnegative (op1
, &sop
) && !sop
)
2353 /* For unsigned division or when divisor is known
2354 to be non-negative, the range has to cover
2355 all numbers from 0 to max for positive max
2356 and all numbers from min to 0 for negative min. */
2357 cmp
= compare_values (vr0
.max
, zero
);
2360 else if (cmp
== 0 || cmp
== 1)
2364 cmp
= compare_values (vr0
.min
, zero
);
2367 else if (cmp
== 0 || cmp
== -1)
2374 /* Otherwise the range is -max .. max or min .. -min
2375 depending on which bound is bigger in absolute value,
2376 as the division can change the sign. */
2377 abs_extent_range (vr
, vr0
.min
, vr0
.max
);
2380 if (type
== VR_VARYING
)
2382 set_value_range_to_varying (vr
);
2387 /* Multiplications and divisions are a bit tricky to handle,
2388 depending on the mix of signs we have in the two ranges, we
2389 need to operate on different values to get the minimum and
2390 maximum values for the new range. One approach is to figure
2391 out all the variations of range combinations and do the
2394 However, this involves several calls to compare_values and it
2395 is pretty convoluted. It's simpler to do the 4 operations
2396 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2397 MAX1) and then figure the smallest and largest values to form
2401 gcc_assert ((vr0
.type
== VR_RANGE
2402 || (code
== MULT_EXPR
&& vr0
.type
== VR_ANTI_RANGE
))
2403 && vr0
.type
== vr1
.type
);
2405 /* Compute the 4 cross operations. */
2407 val
[0] = vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
2408 if (val
[0] == NULL_TREE
)
2411 if (vr1
.max
== vr1
.min
)
2415 val
[1] = vrp_int_const_binop (code
, vr0
.min
, vr1
.max
);
2416 if (val
[1] == NULL_TREE
)
2420 if (vr0
.max
== vr0
.min
)
2424 val
[2] = vrp_int_const_binop (code
, vr0
.max
, vr1
.min
);
2425 if (val
[2] == NULL_TREE
)
2429 if (vr0
.min
== vr0
.max
|| vr1
.min
== vr1
.max
)
2433 val
[3] = vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
2434 if (val
[3] == NULL_TREE
)
2440 set_value_range_to_varying (vr
);
2444 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2448 for (i
= 1; i
< 4; i
++)
2450 if (!is_gimple_min_invariant (min
)
2451 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2452 || !is_gimple_min_invariant (max
)
2453 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2458 if (!is_gimple_min_invariant (val
[i
])
2459 || (TREE_OVERFLOW (val
[i
])
2460 && !is_overflow_infinity (val
[i
])))
2462 /* If we found an overflowed value, set MIN and MAX
2463 to it so that we set the resulting range to
2469 if (compare_values (val
[i
], min
) == -1)
2472 if (compare_values (val
[i
], max
) == 1)
2478 else if (code
== MINUS_EXPR
)
2480 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2481 VR_VARYING. It would take more effort to compute a precise
2482 range for such a case. For example, if we have op0 == 1 and
2483 op1 == 1 with their ranges both being ~[0,0], we would have
2484 op0 - op1 == 0, so we cannot claim that the difference is in
2485 ~[0,0]. Note that we are guaranteed to have
2486 vr0.type == vr1.type at this point. */
2487 if (vr0
.type
== VR_ANTI_RANGE
)
2489 set_value_range_to_varying (vr
);
2493 /* For MINUS_EXPR, apply the operation to the opposite ends of
2495 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.max
);
2496 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.min
);
2498 else if (code
== BIT_AND_EXPR
)
2500 if (vr0
.type
== VR_RANGE
2501 && vr0
.min
== vr0
.max
2502 && TREE_CODE (vr0
.max
) == INTEGER_CST
2503 && !TREE_OVERFLOW (vr0
.max
)
2504 && tree_int_cst_sgn (vr0
.max
) >= 0)
2506 min
= build_int_cst (expr_type
, 0);
2509 else if (vr1
.type
== VR_RANGE
2510 && vr1
.min
== vr1
.max
2511 && TREE_CODE (vr1
.max
) == INTEGER_CST
2512 && !TREE_OVERFLOW (vr1
.max
)
2513 && tree_int_cst_sgn (vr1
.max
) >= 0)
2516 min
= build_int_cst (expr_type
, 0);
2521 set_value_range_to_varying (vr
);
2525 else if (code
== BIT_IOR_EXPR
)
2527 if (vr0
.type
== VR_RANGE
2528 && vr1
.type
== VR_RANGE
2529 && TREE_CODE (vr0
.min
) == INTEGER_CST
2530 && TREE_CODE (vr1
.min
) == INTEGER_CST
2531 && TREE_CODE (vr0
.max
) == INTEGER_CST
2532 && TREE_CODE (vr1
.max
) == INTEGER_CST
2533 && tree_int_cst_sgn (vr0
.min
) >= 0
2534 && tree_int_cst_sgn (vr1
.min
) >= 0)
2536 double_int vr0_max
= tree_to_double_int (vr0
.max
);
2537 double_int vr1_max
= tree_to_double_int (vr1
.max
);
2540 /* Set all bits to the right of the most significant one to 1.
2541 For example, [0, 4] | [4, 4] = [4, 7]. */
2542 ior_max
.low
= vr0_max
.low
| vr1_max
.low
;
2543 ior_max
.high
= vr0_max
.high
| vr1_max
.high
;
2544 if (ior_max
.high
!= 0)
2546 ior_max
.low
= ~(unsigned HOST_WIDE_INT
)0u;
2547 ior_max
.high
|= ((HOST_WIDE_INT
) 1
2548 << floor_log2 (ior_max
.high
)) - 1;
2550 else if (ior_max
.low
!= 0)
2551 ior_max
.low
|= ((unsigned HOST_WIDE_INT
) 1u
2552 << floor_log2 (ior_max
.low
)) - 1;
2554 /* Both of these endpoints are conservative. */
2555 min
= vrp_int_const_binop (MAX_EXPR
, vr0
.min
, vr1
.min
);
2556 max
= double_int_to_tree (expr_type
, ior_max
);
2560 set_value_range_to_varying (vr
);
2567 /* If either MIN or MAX overflowed, then set the resulting range to
2568 VARYING. But we do accept an overflow infinity
2570 if (min
== NULL_TREE
2571 || !is_gimple_min_invariant (min
)
2572 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2574 || !is_gimple_min_invariant (max
)
2575 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2577 set_value_range_to_varying (vr
);
2583 2) [-INF, +-INF(OVF)]
2584 3) [+-INF(OVF), +INF]
2585 4) [+-INF(OVF), +-INF(OVF)]
2586 We learn nothing when we have INF and INF(OVF) on both sides.
2587 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2589 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
2590 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
2592 set_value_range_to_varying (vr
);
2596 cmp
= compare_values (min
, max
);
2597 if (cmp
== -2 || cmp
== 1)
2599 /* If the new range has its limits swapped around (MIN > MAX),
2600 then the operation caused one of them to wrap around, mark
2601 the new range VARYING. */
2602 set_value_range_to_varying (vr
);
2605 set_value_range (vr
, type
, min
, max
, NULL
);
2609 /* Extract range information from a unary expression EXPR based on
2610 the range of its operand and the expression code. */
2613 extract_range_from_unary_expr (value_range_t
*vr
, enum tree_code code
,
2614 tree type
, tree op0
)
2618 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
2620 /* Refuse to operate on certain unary expressions for which we
2621 cannot easily determine a resulting range. */
2622 if (code
== FIX_TRUNC_EXPR
2623 || code
== FLOAT_EXPR
2624 || code
== BIT_NOT_EXPR
2625 || code
== CONJ_EXPR
)
2627 /* We can still do constant propagation here. */
2628 if ((op0
= op_with_constant_singleton_value_range (op0
)) != NULL_TREE
)
2630 tree tem
= fold_unary (code
, type
, op0
);
2632 && is_gimple_min_invariant (tem
)
2633 && !is_overflow_infinity (tem
))
2635 set_value_range (vr
, VR_RANGE
, tem
, tem
, NULL
);
2639 set_value_range_to_varying (vr
);
2643 /* Get value ranges for the operand. For constant operands, create
2644 a new value range with the operand to simplify processing. */
2645 if (TREE_CODE (op0
) == SSA_NAME
)
2646 vr0
= *(get_value_range (op0
));
2647 else if (is_gimple_min_invariant (op0
))
2648 set_value_range_to_value (&vr0
, op0
, NULL
);
2650 set_value_range_to_varying (&vr0
);
2652 /* If VR0 is UNDEFINED, so is the result. */
2653 if (vr0
.type
== VR_UNDEFINED
)
2655 set_value_range_to_undefined (vr
);
2659 /* Refuse to operate on symbolic ranges, or if neither operand is
2660 a pointer or integral type. */
2661 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
2662 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
2663 || (vr0
.type
!= VR_VARYING
2664 && symbolic_range_p (&vr0
)))
2666 set_value_range_to_varying (vr
);
2670 /* If the expression involves pointers, we are only interested in
2671 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2672 if (POINTER_TYPE_P (type
) || POINTER_TYPE_P (TREE_TYPE (op0
)))
2677 if (range_is_nonnull (&vr0
)
2678 || (tree_unary_nonzero_warnv_p (code
, type
, op0
, &sop
)
2680 set_value_range_to_nonnull (vr
, type
);
2681 else if (range_is_null (&vr0
))
2682 set_value_range_to_null (vr
, type
);
2684 set_value_range_to_varying (vr
);
2689 /* Handle unary expressions on integer ranges. */
2690 if (CONVERT_EXPR_CODE_P (code
)
2691 && INTEGRAL_TYPE_P (type
)
2692 && INTEGRAL_TYPE_P (TREE_TYPE (op0
)))
2694 tree inner_type
= TREE_TYPE (op0
);
2695 tree outer_type
= type
;
2697 /* If VR0 is varying and we increase the type precision, assume
2698 a full range for the following transformation. */
2699 if (vr0
.type
== VR_VARYING
2700 && TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
))
2702 vr0
.type
= VR_RANGE
;
2703 vr0
.min
= TYPE_MIN_VALUE (inner_type
);
2704 vr0
.max
= TYPE_MAX_VALUE (inner_type
);
2707 /* If VR0 is a constant range or anti-range and the conversion is
2708 not truncating we can convert the min and max values and
2709 canonicalize the resulting range. Otherwise we can do the
2710 conversion if the size of the range is less than what the
2711 precision of the target type can represent and the range is
2712 not an anti-range. */
2713 if ((vr0
.type
== VR_RANGE
2714 || vr0
.type
== VR_ANTI_RANGE
)
2715 && TREE_CODE (vr0
.min
) == INTEGER_CST
2716 && TREE_CODE (vr0
.max
) == INTEGER_CST
2717 && !is_overflow_infinity (vr0
.min
)
2718 && !is_overflow_infinity (vr0
.max
)
2719 && (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
2720 || (vr0
.type
== VR_RANGE
2721 && integer_zerop (int_const_binop (RSHIFT_EXPR
,
2722 int_const_binop (MINUS_EXPR
, vr0
.max
, vr0
.min
, 0),
2723 size_int (TYPE_PRECISION (outer_type
)), 0)))))
2725 tree new_min
, new_max
;
2726 new_min
= force_fit_type_double (outer_type
,
2727 TREE_INT_CST_LOW (vr0
.min
),
2728 TREE_INT_CST_HIGH (vr0
.min
), 0, 0);
2729 new_max
= force_fit_type_double (outer_type
,
2730 TREE_INT_CST_LOW (vr0
.max
),
2731 TREE_INT_CST_HIGH (vr0
.max
), 0, 0);
2732 set_and_canonicalize_value_range (vr
, vr0
.type
,
2733 new_min
, new_max
, NULL
);
2737 set_value_range_to_varying (vr
);
2741 /* Conversion of a VR_VARYING value to a wider type can result
2742 in a usable range. So wait until after we've handled conversions
2743 before dropping the result to VR_VARYING if we had a source
2744 operand that is VR_VARYING. */
2745 if (vr0
.type
== VR_VARYING
)
2747 set_value_range_to_varying (vr
);
2751 /* Apply the operation to each end of the range and see what we end
2753 if (code
== NEGATE_EXPR
2754 && !TYPE_UNSIGNED (type
))
2756 /* NEGATE_EXPR flips the range around. We need to treat
2757 TYPE_MIN_VALUE specially. */
2758 if (is_positive_overflow_infinity (vr0
.max
))
2759 min
= negative_overflow_infinity (type
);
2760 else if (is_negative_overflow_infinity (vr0
.max
))
2761 min
= positive_overflow_infinity (type
);
2762 else if (!vrp_val_is_min (vr0
.max
))
2763 min
= fold_unary_to_constant (code
, type
, vr0
.max
);
2764 else if (needs_overflow_infinity (type
))
2766 if (supports_overflow_infinity (type
)
2767 && !is_overflow_infinity (vr0
.min
)
2768 && !vrp_val_is_min (vr0
.min
))
2769 min
= positive_overflow_infinity (type
);
2772 set_value_range_to_varying (vr
);
2777 min
= TYPE_MIN_VALUE (type
);
2779 if (is_positive_overflow_infinity (vr0
.min
))
2780 max
= negative_overflow_infinity (type
);
2781 else if (is_negative_overflow_infinity (vr0
.min
))
2782 max
= positive_overflow_infinity (type
);
2783 else if (!vrp_val_is_min (vr0
.min
))
2784 max
= fold_unary_to_constant (code
, type
, vr0
.min
);
2785 else if (needs_overflow_infinity (type
))
2787 if (supports_overflow_infinity (type
))
2788 max
= positive_overflow_infinity (type
);
2791 set_value_range_to_varying (vr
);
2796 max
= TYPE_MIN_VALUE (type
);
2798 else if (code
== NEGATE_EXPR
2799 && TYPE_UNSIGNED (type
))
2801 if (!range_includes_zero_p (&vr0
))
2803 max
= fold_unary_to_constant (code
, type
, vr0
.min
);
2804 min
= fold_unary_to_constant (code
, type
, vr0
.max
);
2808 if (range_is_null (&vr0
))
2809 set_value_range_to_null (vr
, type
);
2811 set_value_range_to_varying (vr
);
2815 else if (code
== ABS_EXPR
2816 && !TYPE_UNSIGNED (type
))
2818 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2820 if (!TYPE_OVERFLOW_UNDEFINED (type
)
2821 && ((vr0
.type
== VR_RANGE
2822 && vrp_val_is_min (vr0
.min
))
2823 || (vr0
.type
== VR_ANTI_RANGE
2824 && !vrp_val_is_min (vr0
.min
)
2825 && !range_includes_zero_p (&vr0
))))
2827 set_value_range_to_varying (vr
);
2831 /* ABS_EXPR may flip the range around, if the original range
2832 included negative values. */
2833 if (is_overflow_infinity (vr0
.min
))
2834 min
= positive_overflow_infinity (type
);
2835 else if (!vrp_val_is_min (vr0
.min
))
2836 min
= fold_unary_to_constant (code
, type
, vr0
.min
);
2837 else if (!needs_overflow_infinity (type
))
2838 min
= TYPE_MAX_VALUE (type
);
2839 else if (supports_overflow_infinity (type
))
2840 min
= positive_overflow_infinity (type
);
2843 set_value_range_to_varying (vr
);
2847 if (is_overflow_infinity (vr0
.max
))
2848 max
= positive_overflow_infinity (type
);
2849 else if (!vrp_val_is_min (vr0
.max
))
2850 max
= fold_unary_to_constant (code
, type
, vr0
.max
);
2851 else if (!needs_overflow_infinity (type
))
2852 max
= TYPE_MAX_VALUE (type
);
2853 else if (supports_overflow_infinity (type
)
2854 /* We shouldn't generate [+INF, +INF] as set_value_range
2855 doesn't like this and ICEs. */
2856 && !is_positive_overflow_infinity (min
))
2857 max
= positive_overflow_infinity (type
);
2860 set_value_range_to_varying (vr
);
2864 cmp
= compare_values (min
, max
);
2866 /* If a VR_ANTI_RANGEs contains zero, then we have
2867 ~[-INF, min(MIN, MAX)]. */
2868 if (vr0
.type
== VR_ANTI_RANGE
)
2870 if (range_includes_zero_p (&vr0
))
2872 /* Take the lower of the two values. */
2876 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2877 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2878 flag_wrapv is set and the original anti-range doesn't include
2879 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2880 if (TYPE_OVERFLOW_WRAPS (type
))
2882 tree type_min_value
= TYPE_MIN_VALUE (type
);
2884 min
= (vr0
.min
!= type_min_value
2885 ? int_const_binop (PLUS_EXPR
, type_min_value
,
2886 integer_one_node
, 0)
2891 if (overflow_infinity_range_p (&vr0
))
2892 min
= negative_overflow_infinity (type
);
2894 min
= TYPE_MIN_VALUE (type
);
2899 /* All else has failed, so create the range [0, INF], even for
2900 flag_wrapv since TYPE_MIN_VALUE is in the original
2902 vr0
.type
= VR_RANGE
;
2903 min
= build_int_cst (type
, 0);
2904 if (needs_overflow_infinity (type
))
2906 if (supports_overflow_infinity (type
))
2907 max
= positive_overflow_infinity (type
);
2910 set_value_range_to_varying (vr
);
2915 max
= TYPE_MAX_VALUE (type
);
2919 /* If the range contains zero then we know that the minimum value in the
2920 range will be zero. */
2921 else if (range_includes_zero_p (&vr0
))
2925 min
= build_int_cst (type
, 0);
2929 /* If the range was reversed, swap MIN and MAX. */
2940 /* Otherwise, operate on each end of the range. */
2941 min
= fold_unary_to_constant (code
, type
, vr0
.min
);
2942 max
= fold_unary_to_constant (code
, type
, vr0
.max
);
2944 if (needs_overflow_infinity (type
))
2946 gcc_assert (code
!= NEGATE_EXPR
&& code
!= ABS_EXPR
);
2948 /* If both sides have overflowed, we don't know
2950 if ((is_overflow_infinity (vr0
.min
)
2951 || TREE_OVERFLOW (min
))
2952 && (is_overflow_infinity (vr0
.max
)
2953 || TREE_OVERFLOW (max
)))
2955 set_value_range_to_varying (vr
);
2959 if (is_overflow_infinity (vr0
.min
))
2961 else if (TREE_OVERFLOW (min
))
2963 if (supports_overflow_infinity (type
))
2964 min
= (tree_int_cst_sgn (min
) >= 0
2965 ? positive_overflow_infinity (TREE_TYPE (min
))
2966 : negative_overflow_infinity (TREE_TYPE (min
)));
2969 set_value_range_to_varying (vr
);
2974 if (is_overflow_infinity (vr0
.max
))
2976 else if (TREE_OVERFLOW (max
))
2978 if (supports_overflow_infinity (type
))
2979 max
= (tree_int_cst_sgn (max
) >= 0
2980 ? positive_overflow_infinity (TREE_TYPE (max
))
2981 : negative_overflow_infinity (TREE_TYPE (max
)));
2984 set_value_range_to_varying (vr
);
2991 cmp
= compare_values (min
, max
);
2992 if (cmp
== -2 || cmp
== 1)
2994 /* If the new range has its limits swapped around (MIN > MAX),
2995 then the operation caused one of them to wrap around, mark
2996 the new range VARYING. */
2997 set_value_range_to_varying (vr
);
3000 set_value_range (vr
, vr0
.type
, min
, max
, NULL
);
3004 /* Extract range information from a conditional expression EXPR based on
3005 the ranges of each of its operands and the expression code. */
3008 extract_range_from_cond_expr (value_range_t
*vr
, tree expr
)
3011 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3012 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3014 /* Get value ranges for each operand. For constant operands, create
3015 a new value range with the operand to simplify processing. */
3016 op0
= COND_EXPR_THEN (expr
);
3017 if (TREE_CODE (op0
) == SSA_NAME
)
3018 vr0
= *(get_value_range (op0
));
3019 else if (is_gimple_min_invariant (op0
))
3020 set_value_range_to_value (&vr0
, op0
, NULL
);
3022 set_value_range_to_varying (&vr0
);
3024 op1
= COND_EXPR_ELSE (expr
);
3025 if (TREE_CODE (op1
) == SSA_NAME
)
3026 vr1
= *(get_value_range (op1
));
3027 else if (is_gimple_min_invariant (op1
))
3028 set_value_range_to_value (&vr1
, op1
, NULL
);
3030 set_value_range_to_varying (&vr1
);
3032 /* The resulting value range is the union of the operand ranges */
3033 vrp_meet (&vr0
, &vr1
);
3034 copy_value_range (vr
, &vr0
);
3038 /* Extract range information from a comparison expression EXPR based
3039 on the range of its operand and the expression code. */
3042 extract_range_from_comparison (value_range_t
*vr
, enum tree_code code
,
3043 tree type
, tree op0
, tree op1
)
3048 val
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, false, &sop
,
3051 /* A disadvantage of using a special infinity as an overflow
3052 representation is that we lose the ability to record overflow
3053 when we don't have an infinity. So we have to ignore a result
3054 which relies on overflow. */
3056 if (val
&& !is_overflow_infinity (val
) && !sop
)
3058 /* Since this expression was found on the RHS of an assignment,
3059 its type may be different from _Bool. Convert VAL to EXPR's
3061 val
= fold_convert (type
, val
);
3062 if (is_gimple_min_invariant (val
))
3063 set_value_range_to_value (vr
, val
, vr
->equiv
);
3065 set_value_range (vr
, VR_RANGE
, val
, val
, vr
->equiv
);
3068 /* The result of a comparison is always true or false. */
3069 set_value_range_to_truthvalue (vr
, type
);
3072 /* Try to derive a nonnegative or nonzero range out of STMT relying
3073 primarily on generic routines in fold in conjunction with range data.
3074 Store the result in *VR */
3077 extract_range_basic (value_range_t
*vr
, gimple stmt
)
3080 tree type
= gimple_expr_type (stmt
);
3082 if (INTEGRAL_TYPE_P (type
)
3083 && gimple_stmt_nonnegative_warnv_p (stmt
, &sop
))
3084 set_value_range_to_nonnegative (vr
, type
,
3085 sop
|| stmt_overflow_infinity (stmt
));
3086 else if (vrp_stmt_computes_nonzero (stmt
, &sop
)
3088 set_value_range_to_nonnull (vr
, type
);
3090 set_value_range_to_varying (vr
);
3094 /* Try to compute a useful range out of assignment STMT and store it
3098 extract_range_from_assignment (value_range_t
*vr
, gimple stmt
)
3100 enum tree_code code
= gimple_assign_rhs_code (stmt
);
3102 if (code
== ASSERT_EXPR
)
3103 extract_range_from_assert (vr
, gimple_assign_rhs1 (stmt
));
3104 else if (code
== SSA_NAME
)
3105 extract_range_from_ssa_name (vr
, gimple_assign_rhs1 (stmt
));
3106 else if (TREE_CODE_CLASS (code
) == tcc_binary
3107 || code
== TRUTH_AND_EXPR
3108 || code
== TRUTH_OR_EXPR
3109 || code
== TRUTH_XOR_EXPR
)
3110 extract_range_from_binary_expr (vr
, gimple_assign_rhs_code (stmt
),
3111 gimple_expr_type (stmt
),
3112 gimple_assign_rhs1 (stmt
),
3113 gimple_assign_rhs2 (stmt
));
3114 else if (TREE_CODE_CLASS (code
) == tcc_unary
)
3115 extract_range_from_unary_expr (vr
, gimple_assign_rhs_code (stmt
),
3116 gimple_expr_type (stmt
),
3117 gimple_assign_rhs1 (stmt
));
3118 else if (code
== COND_EXPR
)
3119 extract_range_from_cond_expr (vr
, gimple_assign_rhs1 (stmt
));
3120 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3121 extract_range_from_comparison (vr
, gimple_assign_rhs_code (stmt
),
3122 gimple_expr_type (stmt
),
3123 gimple_assign_rhs1 (stmt
),
3124 gimple_assign_rhs2 (stmt
));
3125 else if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
3126 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
3127 set_value_range_to_value (vr
, gimple_assign_rhs1 (stmt
), NULL
);
3129 set_value_range_to_varying (vr
);
3131 if (vr
->type
== VR_VARYING
)
3132 extract_range_basic (vr
, stmt
);
3135 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3136 would be profitable to adjust VR using scalar evolution information
3137 for VAR. If so, update VR with the new limits. */
3140 adjust_range_with_scev (value_range_t
*vr
, struct loop
*loop
,
3141 gimple stmt
, tree var
)
3143 tree init
, step
, chrec
, tmin
, tmax
, min
, max
, type
;
3144 enum ev_direction dir
;
3146 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3147 better opportunities than a regular range, but I'm not sure. */
3148 if (vr
->type
== VR_ANTI_RANGE
)
3151 chrec
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, var
));
3153 /* Like in PR19590, scev can return a constant function. */
3154 if (is_gimple_min_invariant (chrec
))
3156 set_value_range_to_value (vr
, chrec
, vr
->equiv
);
3160 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
3163 init
= initial_condition_in_loop_num (chrec
, loop
->num
);
3164 step
= evolution_part_in_loop_num (chrec
, loop
->num
);
3166 /* If STEP is symbolic, we can't know whether INIT will be the
3167 minimum or maximum value in the range. Also, unless INIT is
3168 a simple expression, compare_values and possibly other functions
3169 in tree-vrp won't be able to handle it. */
3170 if (step
== NULL_TREE
3171 || !is_gimple_min_invariant (step
)
3172 || !valid_value_p (init
))
3175 dir
= scev_direction (chrec
);
3176 if (/* Do not adjust ranges if we do not know whether the iv increases
3177 or decreases, ... */
3178 dir
== EV_DIR_UNKNOWN
3179 /* ... or if it may wrap. */
3180 || scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
3184 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3185 negative_overflow_infinity and positive_overflow_infinity,
3186 because we have concluded that the loop probably does not
3189 type
= TREE_TYPE (var
);
3190 if (POINTER_TYPE_P (type
) || !TYPE_MIN_VALUE (type
))
3191 tmin
= lower_bound_in_type (type
, type
);
3193 tmin
= TYPE_MIN_VALUE (type
);
3194 if (POINTER_TYPE_P (type
) || !TYPE_MAX_VALUE (type
))
3195 tmax
= upper_bound_in_type (type
, type
);
3197 tmax
= TYPE_MAX_VALUE (type
);
3199 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
3204 /* For VARYING or UNDEFINED ranges, just about anything we get
3205 from scalar evolutions should be better. */
3207 if (dir
== EV_DIR_DECREASES
)
3212 /* If we would create an invalid range, then just assume we
3213 know absolutely nothing. This may be over-conservative,
3214 but it's clearly safe, and should happen only in unreachable
3215 parts of code, or for invalid programs. */
3216 if (compare_values (min
, max
) == 1)
3219 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
3221 else if (vr
->type
== VR_RANGE
)
3226 if (dir
== EV_DIR_DECREASES
)
3228 /* INIT is the maximum value. If INIT is lower than VR->MAX
3229 but no smaller than VR->MIN, set VR->MAX to INIT. */
3230 if (compare_values (init
, max
) == -1)
3234 /* If we just created an invalid range with the minimum
3235 greater than the maximum, we fail conservatively.
3236 This should happen only in unreachable
3237 parts of code, or for invalid programs. */
3238 if (compare_values (min
, max
) == 1)
3242 /* According to the loop information, the variable does not
3243 overflow. If we think it does, probably because of an
3244 overflow due to arithmetic on a different INF value,
3246 if (is_negative_overflow_infinity (min
))
3251 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3252 if (compare_values (init
, min
) == 1)
3256 /* Again, avoid creating invalid range by failing. */
3257 if (compare_values (min
, max
) == 1)
3261 if (is_positive_overflow_infinity (max
))
3265 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
3269 /* Return true if VAR may overflow at STMT. This checks any available
3270 loop information to see if we can determine that VAR does not
3274 vrp_var_may_overflow (tree var
, gimple stmt
)
3277 tree chrec
, init
, step
;
3279 if (current_loops
== NULL
)
3282 l
= loop_containing_stmt (stmt
);
3287 chrec
= instantiate_parameters (l
, analyze_scalar_evolution (l
, var
));
3288 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
3291 init
= initial_condition_in_loop_num (chrec
, l
->num
);
3292 step
= evolution_part_in_loop_num (chrec
, l
->num
);
3294 if (step
== NULL_TREE
3295 || !is_gimple_min_invariant (step
)
3296 || !valid_value_p (init
))
3299 /* If we get here, we know something useful about VAR based on the
3300 loop information. If it wraps, it may overflow. */
3302 if (scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
3306 if (dump_file
&& (dump_flags
& TDF_DETAILS
) != 0)
3308 print_generic_expr (dump_file
, var
, 0);
3309 fprintf (dump_file
, ": loop information indicates does not overflow\n");
3316 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3318 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3319 all the values in the ranges.
3321 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3323 - Return NULL_TREE if it is not always possible to determine the
3324 value of the comparison.
3326 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3327 overflow infinity was used in the test. */
3331 compare_ranges (enum tree_code comp
, value_range_t
*vr0
, value_range_t
*vr1
,
3332 bool *strict_overflow_p
)
3334 /* VARYING or UNDEFINED ranges cannot be compared. */
3335 if (vr0
->type
== VR_VARYING
3336 || vr0
->type
== VR_UNDEFINED
3337 || vr1
->type
== VR_VARYING
3338 || vr1
->type
== VR_UNDEFINED
)
3341 /* Anti-ranges need to be handled separately. */
3342 if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
3344 /* If both are anti-ranges, then we cannot compute any
3346 if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
3349 /* These comparisons are never statically computable. */
3356 /* Equality can be computed only between a range and an
3357 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3358 if (vr0
->type
== VR_RANGE
)
3360 /* To simplify processing, make VR0 the anti-range. */
3361 value_range_t
*tmp
= vr0
;
3366 gcc_assert (comp
== NE_EXPR
|| comp
== EQ_EXPR
);
3368 if (compare_values_warnv (vr0
->min
, vr1
->min
, strict_overflow_p
) == 0
3369 && compare_values_warnv (vr0
->max
, vr1
->max
, strict_overflow_p
) == 0)
3370 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
3375 if (!usable_range_p (vr0
, strict_overflow_p
)
3376 || !usable_range_p (vr1
, strict_overflow_p
))
3379 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3380 operands around and change the comparison code. */
3381 if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
3384 comp
= (comp
== GT_EXPR
) ? LT_EXPR
: LE_EXPR
;
3390 if (comp
== EQ_EXPR
)
3392 /* Equality may only be computed if both ranges represent
3393 exactly one value. */
3394 if (compare_values_warnv (vr0
->min
, vr0
->max
, strict_overflow_p
) == 0
3395 && compare_values_warnv (vr1
->min
, vr1
->max
, strict_overflow_p
) == 0)
3397 int cmp_min
= compare_values_warnv (vr0
->min
, vr1
->min
,
3399 int cmp_max
= compare_values_warnv (vr0
->max
, vr1
->max
,
3401 if (cmp_min
== 0 && cmp_max
== 0)
3402 return boolean_true_node
;
3403 else if (cmp_min
!= -2 && cmp_max
!= -2)
3404 return boolean_false_node
;
3406 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3407 else if (compare_values_warnv (vr0
->min
, vr1
->max
,
3408 strict_overflow_p
) == 1
3409 || compare_values_warnv (vr1
->min
, vr0
->max
,
3410 strict_overflow_p
) == 1)
3411 return boolean_false_node
;
3415 else if (comp
== NE_EXPR
)
3419 /* If VR0 is completely to the left or completely to the right
3420 of VR1, they are always different. Notice that we need to
3421 make sure that both comparisons yield similar results to
3422 avoid comparing values that cannot be compared at
3424 cmp1
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
3425 cmp2
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
3426 if ((cmp1
== -1 && cmp2
== -1) || (cmp1
== 1 && cmp2
== 1))
3427 return boolean_true_node
;
3429 /* If VR0 and VR1 represent a single value and are identical,
3431 else if (compare_values_warnv (vr0
->min
, vr0
->max
,
3432 strict_overflow_p
) == 0
3433 && compare_values_warnv (vr1
->min
, vr1
->max
,
3434 strict_overflow_p
) == 0
3435 && compare_values_warnv (vr0
->min
, vr1
->min
,
3436 strict_overflow_p
) == 0
3437 && compare_values_warnv (vr0
->max
, vr1
->max
,
3438 strict_overflow_p
) == 0)
3439 return boolean_false_node
;
3441 /* Otherwise, they may or may not be different. */
3445 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
3449 /* If VR0 is to the left of VR1, return true. */
3450 tst
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
3451 if ((comp
== LT_EXPR
&& tst
== -1)
3452 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
3454 if (overflow_infinity_range_p (vr0
)
3455 || overflow_infinity_range_p (vr1
))
3456 *strict_overflow_p
= true;
3457 return boolean_true_node
;
3460 /* If VR0 is to the right of VR1, return false. */
3461 tst
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
3462 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
3463 || (comp
== LE_EXPR
&& tst
== 1))
3465 if (overflow_infinity_range_p (vr0
)
3466 || overflow_infinity_range_p (vr1
))
3467 *strict_overflow_p
= true;
3468 return boolean_false_node
;
3471 /* Otherwise, we don't know. */
3479 /* Given a value range VR, a value VAL and a comparison code COMP, return
3480 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3481 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3482 always returns false. Return NULL_TREE if it is not always
3483 possible to determine the value of the comparison. Also set
3484 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3485 infinity was used in the test. */
3488 compare_range_with_value (enum tree_code comp
, value_range_t
*vr
, tree val
,
3489 bool *strict_overflow_p
)
3491 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
3494 /* Anti-ranges need to be handled separately. */
3495 if (vr
->type
== VR_ANTI_RANGE
)
3497 /* For anti-ranges, the only predicates that we can compute at
3498 compile time are equality and inequality. */
3505 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3506 if (value_inside_range (val
, vr
) == 1)
3507 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
3512 if (!usable_range_p (vr
, strict_overflow_p
))
3515 if (comp
== EQ_EXPR
)
3517 /* EQ_EXPR may only be computed if VR represents exactly
3519 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0)
3521 int cmp
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3523 return boolean_true_node
;
3524 else if (cmp
== -1 || cmp
== 1 || cmp
== 2)
3525 return boolean_false_node
;
3527 else if (compare_values_warnv (val
, vr
->min
, strict_overflow_p
) == -1
3528 || compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1)
3529 return boolean_false_node
;
3533 else if (comp
== NE_EXPR
)
3535 /* If VAL is not inside VR, then they are always different. */
3536 if (compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1
3537 || compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 1)
3538 return boolean_true_node
;
3540 /* If VR represents exactly one value equal to VAL, then return
3542 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0
3543 && compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 0)
3544 return boolean_false_node
;
3546 /* Otherwise, they may or may not be different. */
3549 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
3553 /* If VR is to the left of VAL, return true. */
3554 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
3555 if ((comp
== LT_EXPR
&& tst
== -1)
3556 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
3558 if (overflow_infinity_range_p (vr
))
3559 *strict_overflow_p
= true;
3560 return boolean_true_node
;
3563 /* If VR is to the right of VAL, return false. */
3564 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3565 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
3566 || (comp
== LE_EXPR
&& tst
== 1))
3568 if (overflow_infinity_range_p (vr
))
3569 *strict_overflow_p
= true;
3570 return boolean_false_node
;
3573 /* Otherwise, we don't know. */
3576 else if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
3580 /* If VR is to the right of VAL, return true. */
3581 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3582 if ((comp
== GT_EXPR
&& tst
== 1)
3583 || (comp
== GE_EXPR
&& (tst
== 0 || tst
== 1)))
3585 if (overflow_infinity_range_p (vr
))
3586 *strict_overflow_p
= true;
3587 return boolean_true_node
;
3590 /* If VR is to the left of VAL, return false. */
3591 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
3592 if ((comp
== GT_EXPR
&& (tst
== -1 || tst
== 0))
3593 || (comp
== GE_EXPR
&& tst
== -1))
3595 if (overflow_infinity_range_p (vr
))
3596 *strict_overflow_p
= true;
3597 return boolean_false_node
;
3600 /* Otherwise, we don't know. */
3608 /* Debugging dumps. */
3610 void dump_value_range (FILE *, value_range_t
*);
3611 void debug_value_range (value_range_t
*);
3612 void dump_all_value_ranges (FILE *);
3613 void debug_all_value_ranges (void);
3614 void dump_vr_equiv (FILE *, bitmap
);
3615 void debug_vr_equiv (bitmap
);
3618 /* Dump value range VR to FILE. */
3621 dump_value_range (FILE *file
, value_range_t
*vr
)
3624 fprintf (file
, "[]");
3625 else if (vr
->type
== VR_UNDEFINED
)
3626 fprintf (file
, "UNDEFINED");
3627 else if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
3629 tree type
= TREE_TYPE (vr
->min
);
3631 fprintf (file
, "%s[", (vr
->type
== VR_ANTI_RANGE
) ? "~" : "");
3633 if (is_negative_overflow_infinity (vr
->min
))
3634 fprintf (file
, "-INF(OVF)");
3635 else if (INTEGRAL_TYPE_P (type
)
3636 && !TYPE_UNSIGNED (type
)
3637 && vrp_val_is_min (vr
->min
))
3638 fprintf (file
, "-INF");
3640 print_generic_expr (file
, vr
->min
, 0);
3642 fprintf (file
, ", ");
3644 if (is_positive_overflow_infinity (vr
->max
))
3645 fprintf (file
, "+INF(OVF)");
3646 else if (INTEGRAL_TYPE_P (type
)
3647 && vrp_val_is_max (vr
->max
))
3648 fprintf (file
, "+INF");
3650 print_generic_expr (file
, vr
->max
, 0);
3652 fprintf (file
, "]");
3659 fprintf (file
, " EQUIVALENCES: { ");
3661 EXECUTE_IF_SET_IN_BITMAP (vr
->equiv
, 0, i
, bi
)
3663 print_generic_expr (file
, ssa_name (i
), 0);
3664 fprintf (file
, " ");
3668 fprintf (file
, "} (%u elements)", c
);
3671 else if (vr
->type
== VR_VARYING
)
3672 fprintf (file
, "VARYING");
3674 fprintf (file
, "INVALID RANGE");
3678 /* Dump value range VR to stderr. */
3681 debug_value_range (value_range_t
*vr
)
3683 dump_value_range (stderr
, vr
);
3684 fprintf (stderr
, "\n");
3688 /* Dump value ranges of all SSA_NAMEs to FILE. */
3691 dump_all_value_ranges (FILE *file
)
3695 for (i
= 0; i
< num_ssa_names
; i
++)
3699 print_generic_expr (file
, ssa_name (i
), 0);
3700 fprintf (file
, ": ");
3701 dump_value_range (file
, vr_value
[i
]);
3702 fprintf (file
, "\n");
3706 fprintf (file
, "\n");
3710 /* Dump all value ranges to stderr. */
3713 debug_all_value_ranges (void)
3715 dump_all_value_ranges (stderr
);
3719 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3720 create a new SSA name N and return the assertion assignment
3721 'V = ASSERT_EXPR <V, V OP W>'. */
3724 build_assert_expr_for (tree cond
, tree v
)
3729 gcc_assert (TREE_CODE (v
) == SSA_NAME
);
3730 n
= duplicate_ssa_name (v
, NULL
);
3732 if (COMPARISON_CLASS_P (cond
))
3734 tree a
= build2 (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
3735 assertion
= gimple_build_assign (n
, a
);
3737 else if (TREE_CODE (cond
) == TRUTH_NOT_EXPR
)
3739 /* Given !V, build the assignment N = false. */
3740 tree op0
= TREE_OPERAND (cond
, 0);
3741 gcc_assert (op0
== v
);
3742 assertion
= gimple_build_assign (n
, boolean_false_node
);
3744 else if (TREE_CODE (cond
) == SSA_NAME
)
3746 /* Given V, build the assignment N = true. */
3747 gcc_assert (v
== cond
);
3748 assertion
= gimple_build_assign (n
, boolean_true_node
);
3753 SSA_NAME_DEF_STMT (n
) = assertion
;
3755 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3756 operand of the ASSERT_EXPR. Register the new name and the old one
3757 in the replacement table so that we can fix the SSA web after
3758 adding all the ASSERT_EXPRs. */
3759 register_new_name_mapping (n
, v
);
3765 /* Return false if EXPR is a predicate expression involving floating
3769 fp_predicate (gimple stmt
)
3771 GIMPLE_CHECK (stmt
, GIMPLE_COND
);
3773 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt
)));
3777 /* If the range of values taken by OP can be inferred after STMT executes,
3778 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3779 describes the inferred range. Return true if a range could be
3783 infer_value_range (gimple stmt
, tree op
, enum tree_code
*comp_code_p
, tree
*val_p
)
3786 *comp_code_p
= ERROR_MARK
;
3788 /* Do not attempt to infer anything in names that flow through
3790 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
3793 /* Similarly, don't infer anything from statements that may throw
3795 if (stmt_could_throw_p (stmt
))
3798 /* If STMT is the last statement of a basic block with no
3799 successors, there is no point inferring anything about any of its
3800 operands. We would not be able to find a proper insertion point
3801 for the assertion, anyway. */
3802 if (stmt_ends_bb_p (stmt
) && EDGE_COUNT (gimple_bb (stmt
)->succs
) == 0)
3805 /* We can only assume that a pointer dereference will yield
3806 non-NULL if -fdelete-null-pointer-checks is enabled. */
3807 if (flag_delete_null_pointer_checks
3808 && POINTER_TYPE_P (TREE_TYPE (op
))
3809 && gimple_code (stmt
) != GIMPLE_ASM
)
3811 unsigned num_uses
, num_loads
, num_stores
;
3813 count_uses_and_derefs (op
, stmt
, &num_uses
, &num_loads
, &num_stores
);
3814 if (num_loads
+ num_stores
> 0)
3816 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
3817 *comp_code_p
= NE_EXPR
;
3826 void dump_asserts_for (FILE *, tree
);
3827 void debug_asserts_for (tree
);
3828 void dump_all_asserts (FILE *);
3829 void debug_all_asserts (void);
3831 /* Dump all the registered assertions for NAME to FILE. */
3834 dump_asserts_for (FILE *file
, tree name
)
3838 fprintf (file
, "Assertions to be inserted for ");
3839 print_generic_expr (file
, name
, 0);
3840 fprintf (file
, "\n");
3842 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
3845 fprintf (file
, "\t");
3846 print_gimple_stmt (file
, gsi_stmt (loc
->si
), 0, 0);
3847 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
3850 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
3851 loc
->e
->dest
->index
);
3852 dump_edge_info (file
, loc
->e
, 0);
3854 fprintf (file
, "\n\tPREDICATE: ");
3855 print_generic_expr (file
, name
, 0);
3856 fprintf (file
, " %s ", tree_code_name
[(int)loc
->comp_code
]);
3857 print_generic_expr (file
, loc
->val
, 0);
3858 fprintf (file
, "\n\n");
3862 fprintf (file
, "\n");
3866 /* Dump all the registered assertions for NAME to stderr. */
3869 debug_asserts_for (tree name
)
3871 dump_asserts_for (stderr
, name
);
3875 /* Dump all the registered assertions for all the names to FILE. */
3878 dump_all_asserts (FILE *file
)
3883 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
3884 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
3885 dump_asserts_for (file
, ssa_name (i
));
3886 fprintf (file
, "\n");
3890 /* Dump all the registered assertions for all the names to stderr. */
3893 debug_all_asserts (void)
3895 dump_all_asserts (stderr
);
3899 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3900 'EXPR COMP_CODE VAL' at a location that dominates block BB or
3901 E->DEST, then register this location as a possible insertion point
3902 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
3904 BB, E and SI provide the exact insertion point for the new
3905 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3906 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3907 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3908 must not be NULL. */
3911 register_new_assert_for (tree name
, tree expr
,
3912 enum tree_code comp_code
,
3916 gimple_stmt_iterator si
)
3918 assert_locus_t n
, loc
, last_loc
;
3919 basic_block dest_bb
;
3921 #if defined ENABLE_CHECKING
3922 gcc_assert (bb
== NULL
|| e
== NULL
);
3925 gcc_assert (gimple_code (gsi_stmt (si
)) != GIMPLE_COND
3926 && gimple_code (gsi_stmt (si
)) != GIMPLE_SWITCH
);
3929 /* Never build an assert comparing against an integer constant with
3930 TREE_OVERFLOW set. This confuses our undefined overflow warning
3932 if (TREE_CODE (val
) == INTEGER_CST
3933 && TREE_OVERFLOW (val
))
3934 val
= build_int_cst_wide (TREE_TYPE (val
),
3935 TREE_INT_CST_LOW (val
), TREE_INT_CST_HIGH (val
));
3937 /* The new assertion A will be inserted at BB or E. We need to
3938 determine if the new location is dominated by a previously
3939 registered location for A. If we are doing an edge insertion,
3940 assume that A will be inserted at E->DEST. Note that this is not
3943 If E is a critical edge, it will be split. But even if E is
3944 split, the new block will dominate the same set of blocks that
3947 The reverse, however, is not true, blocks dominated by E->DEST
3948 will not be dominated by the new block created to split E. So,
3949 if the insertion location is on a critical edge, we will not use
3950 the new location to move another assertion previously registered
3951 at a block dominated by E->DEST. */
3952 dest_bb
= (bb
) ? bb
: e
->dest
;
3954 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3955 VAL at a block dominating DEST_BB, then we don't need to insert a new
3956 one. Similarly, if the same assertion already exists at a block
3957 dominated by DEST_BB and the new location is not on a critical
3958 edge, then update the existing location for the assertion (i.e.,
3959 move the assertion up in the dominance tree).
3961 Note, this is implemented as a simple linked list because there
3962 should not be more than a handful of assertions registered per
3963 name. If this becomes a performance problem, a table hashed by
3964 COMP_CODE and VAL could be implemented. */
3965 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
3969 if (loc
->comp_code
== comp_code
3971 || operand_equal_p (loc
->val
, val
, 0))
3972 && (loc
->expr
== expr
3973 || operand_equal_p (loc
->expr
, expr
, 0)))
3975 /* If the assertion NAME COMP_CODE VAL has already been
3976 registered at a basic block that dominates DEST_BB, then
3977 we don't need to insert the same assertion again. Note
3978 that we don't check strict dominance here to avoid
3979 replicating the same assertion inside the same basic
3980 block more than once (e.g., when a pointer is
3981 dereferenced several times inside a block).
3983 An exception to this rule are edge insertions. If the
3984 new assertion is to be inserted on edge E, then it will
3985 dominate all the other insertions that we may want to
3986 insert in DEST_BB. So, if we are doing an edge
3987 insertion, don't do this dominance check. */
3989 && dominated_by_p (CDI_DOMINATORS
, dest_bb
, loc
->bb
))
3992 /* Otherwise, if E is not a critical edge and DEST_BB
3993 dominates the existing location for the assertion, move
3994 the assertion up in the dominance tree by updating its
3995 location information. */
3996 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
3997 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
4006 /* Update the last node of the list and move to the next one. */
4011 /* If we didn't find an assertion already registered for
4012 NAME COMP_CODE VAL, add a new one at the end of the list of
4013 assertions associated with NAME. */
4014 n
= XNEW (struct assert_locus_d
);
4018 n
->comp_code
= comp_code
;
4026 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
4028 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
4031 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4032 Extract a suitable test code and value and store them into *CODE_P and
4033 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4035 If no extraction was possible, return FALSE, otherwise return TRUE.
4037 If INVERT is true, then we invert the result stored into *CODE_P. */
4040 extract_code_and_val_from_cond_with_ops (tree name
, enum tree_code cond_code
,
4041 tree cond_op0
, tree cond_op1
,
4042 bool invert
, enum tree_code
*code_p
,
4045 enum tree_code comp_code
;
4048 /* Otherwise, we have a comparison of the form NAME COMP VAL
4049 or VAL COMP NAME. */
4050 if (name
== cond_op1
)
4052 /* If the predicate is of the form VAL COMP NAME, flip
4053 COMP around because we need to register NAME as the
4054 first operand in the predicate. */
4055 comp_code
= swap_tree_comparison (cond_code
);
4060 /* The comparison is of the form NAME COMP VAL, so the
4061 comparison code remains unchanged. */
4062 comp_code
= cond_code
;
4066 /* Invert the comparison code as necessary. */
4068 comp_code
= invert_tree_comparison (comp_code
, 0);
4070 /* VRP does not handle float types. */
4071 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val
)))
4074 /* Do not register always-false predicates.
4075 FIXME: this works around a limitation in fold() when dealing with
4076 enumerations. Given 'enum { N1, N2 } x;', fold will not
4077 fold 'if (x > N2)' to 'if (0)'. */
4078 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
4079 && INTEGRAL_TYPE_P (TREE_TYPE (val
)))
4081 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
4082 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
4084 if (comp_code
== GT_EXPR
4086 || compare_values (val
, max
) == 0))
4089 if (comp_code
== LT_EXPR
4091 || compare_values (val
, min
) == 0))
4094 *code_p
= comp_code
;
4099 /* Try to register an edge assertion for SSA name NAME on edge E for
4100 the condition COND contributing to the conditional jump pointed to by BSI.
4101 Invert the condition COND if INVERT is true.
4102 Return true if an assertion for NAME could be registered. */
4105 register_edge_assert_for_2 (tree name
, edge e
, gimple_stmt_iterator bsi
,
4106 enum tree_code cond_code
,
4107 tree cond_op0
, tree cond_op1
, bool invert
)
4110 enum tree_code comp_code
;
4111 bool retval
= false;
4113 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
4116 invert
, &comp_code
, &val
))
4119 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4120 reachable from E. */
4121 if (live_on_edge (e
, name
)
4122 && !has_single_use (name
))
4124 register_new_assert_for (name
, name
, comp_code
, val
, NULL
, e
, bsi
);
4128 /* In the case of NAME <= CST and NAME being defined as
4129 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4130 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4131 This catches range and anti-range tests. */
4132 if ((comp_code
== LE_EXPR
4133 || comp_code
== GT_EXPR
)
4134 && TREE_CODE (val
) == INTEGER_CST
4135 && TYPE_UNSIGNED (TREE_TYPE (val
)))
4137 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4138 tree cst2
= NULL_TREE
, name2
= NULL_TREE
, name3
= NULL_TREE
;
4140 /* Extract CST2 from the (optional) addition. */
4141 if (is_gimple_assign (def_stmt
)
4142 && gimple_assign_rhs_code (def_stmt
) == PLUS_EXPR
)
4144 name2
= gimple_assign_rhs1 (def_stmt
);
4145 cst2
= gimple_assign_rhs2 (def_stmt
);
4146 if (TREE_CODE (name2
) == SSA_NAME
4147 && TREE_CODE (cst2
) == INTEGER_CST
)
4148 def_stmt
= SSA_NAME_DEF_STMT (name2
);
4151 /* Extract NAME2 from the (optional) sign-changing cast. */
4152 if (gimple_assign_cast_p (def_stmt
))
4154 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
))
4155 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
4156 && (TYPE_PRECISION (gimple_expr_type (def_stmt
))
4157 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))))
4158 name3
= gimple_assign_rhs1 (def_stmt
);
4161 /* If name3 is used later, create an ASSERT_EXPR for it. */
4162 if (name3
!= NULL_TREE
4163 && TREE_CODE (name3
) == SSA_NAME
4164 && (cst2
== NULL_TREE
4165 || TREE_CODE (cst2
) == INTEGER_CST
)
4166 && INTEGRAL_TYPE_P (TREE_TYPE (name3
))
4167 && live_on_edge (e
, name3
)
4168 && !has_single_use (name3
))
4172 /* Build an expression for the range test. */
4173 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), name3
);
4174 if (cst2
!= NULL_TREE
)
4175 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
4179 fprintf (dump_file
, "Adding assert for ");
4180 print_generic_expr (dump_file
, name3
, 0);
4181 fprintf (dump_file
, " from ");
4182 print_generic_expr (dump_file
, tmp
, 0);
4183 fprintf (dump_file
, "\n");
4186 register_new_assert_for (name3
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
4191 /* If name2 is used later, create an ASSERT_EXPR for it. */
4192 if (name2
!= NULL_TREE
4193 && TREE_CODE (name2
) == SSA_NAME
4194 && TREE_CODE (cst2
) == INTEGER_CST
4195 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
4196 && live_on_edge (e
, name2
)
4197 && !has_single_use (name2
))
4201 /* Build an expression for the range test. */
4203 if (TREE_TYPE (name
) != TREE_TYPE (name2
))
4204 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), tmp
);
4205 if (cst2
!= NULL_TREE
)
4206 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
4210 fprintf (dump_file
, "Adding assert for ");
4211 print_generic_expr (dump_file
, name2
, 0);
4212 fprintf (dump_file
, " from ");
4213 print_generic_expr (dump_file
, tmp
, 0);
4214 fprintf (dump_file
, "\n");
4217 register_new_assert_for (name2
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
4226 /* OP is an operand of a truth value expression which is known to have
4227 a particular value. Register any asserts for OP and for any
4228 operands in OP's defining statement.
4230 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4231 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4234 register_edge_assert_for_1 (tree op
, enum tree_code code
,
4235 edge e
, gimple_stmt_iterator bsi
)
4237 bool retval
= false;
4240 enum tree_code rhs_code
;
4242 /* We only care about SSA_NAMEs. */
4243 if (TREE_CODE (op
) != SSA_NAME
)
4246 /* We know that OP will have a zero or nonzero value. If OP is used
4247 more than once go ahead and register an assert for OP.
4249 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4250 it will always be set for OP (because OP is used in a COND_EXPR in
4252 if (!has_single_use (op
))
4254 val
= build_int_cst (TREE_TYPE (op
), 0);
4255 register_new_assert_for (op
, op
, code
, val
, NULL
, e
, bsi
);
4259 /* Now look at how OP is set. If it's set from a comparison,
4260 a truth operation or some bit operations, then we may be able
4261 to register information about the operands of that assignment. */
4262 op_def
= SSA_NAME_DEF_STMT (op
);
4263 if (gimple_code (op_def
) != GIMPLE_ASSIGN
)
4266 rhs_code
= gimple_assign_rhs_code (op_def
);
4268 if (TREE_CODE_CLASS (rhs_code
) == tcc_comparison
)
4270 bool invert
= (code
== EQ_EXPR
? true : false);
4271 tree op0
= gimple_assign_rhs1 (op_def
);
4272 tree op1
= gimple_assign_rhs2 (op_def
);
4274 if (TREE_CODE (op0
) == SSA_NAME
)
4275 retval
|= register_edge_assert_for_2 (op0
, e
, bsi
, rhs_code
, op0
, op1
,
4277 if (TREE_CODE (op1
) == SSA_NAME
)
4278 retval
|= register_edge_assert_for_2 (op1
, e
, bsi
, rhs_code
, op0
, op1
,
4281 else if ((code
== NE_EXPR
4282 && (gimple_assign_rhs_code (op_def
) == TRUTH_AND_EXPR
4283 || gimple_assign_rhs_code (op_def
) == BIT_AND_EXPR
))
4285 && (gimple_assign_rhs_code (op_def
) == TRUTH_OR_EXPR
4286 || gimple_assign_rhs_code (op_def
) == BIT_IOR_EXPR
)))
4288 /* Recurse on each operand. */
4289 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4291 retval
|= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def
),
4294 else if (gimple_assign_rhs_code (op_def
) == TRUTH_NOT_EXPR
)
4296 /* Recurse, flipping CODE. */
4297 code
= invert_tree_comparison (code
, false);
4298 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4301 else if (gimple_assign_rhs_code (op_def
) == SSA_NAME
)
4303 /* Recurse through the copy. */
4304 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4307 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def
)))
4309 /* Recurse through the type conversion. */
4310 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4317 /* Try to register an edge assertion for SSA name NAME on edge E for
4318 the condition COND contributing to the conditional jump pointed to by SI.
4319 Return true if an assertion for NAME could be registered. */
4322 register_edge_assert_for (tree name
, edge e
, gimple_stmt_iterator si
,
4323 enum tree_code cond_code
, tree cond_op0
,
4327 enum tree_code comp_code
;
4328 bool retval
= false;
4329 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
4331 /* Do not attempt to infer anything in names that flow through
4333 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
4336 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
4342 /* Register ASSERT_EXPRs for name. */
4343 retval
|= register_edge_assert_for_2 (name
, e
, si
, cond_code
, cond_op0
,
4344 cond_op1
, is_else_edge
);
4347 /* If COND is effectively an equality test of an SSA_NAME against
4348 the value zero or one, then we may be able to assert values
4349 for SSA_NAMEs which flow into COND. */
4351 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
4352 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
4353 have nonzero value. */
4354 if (((comp_code
== EQ_EXPR
&& integer_onep (val
))
4355 || (comp_code
== NE_EXPR
&& integer_zerop (val
))))
4357 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4359 if (is_gimple_assign (def_stmt
)
4360 && (gimple_assign_rhs_code (def_stmt
) == TRUTH_AND_EXPR
4361 || gimple_assign_rhs_code (def_stmt
) == BIT_AND_EXPR
))
4363 tree op0
= gimple_assign_rhs1 (def_stmt
);
4364 tree op1
= gimple_assign_rhs2 (def_stmt
);
4365 retval
|= register_edge_assert_for_1 (op0
, NE_EXPR
, e
, si
);
4366 retval
|= register_edge_assert_for_1 (op1
, NE_EXPR
, e
, si
);
4370 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
4371 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
4373 if (((comp_code
== EQ_EXPR
&& integer_zerop (val
))
4374 || (comp_code
== NE_EXPR
&& integer_onep (val
))))
4376 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4378 if (is_gimple_assign (def_stmt
)
4379 && (gimple_assign_rhs_code (def_stmt
) == TRUTH_OR_EXPR
4380 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4381 necessarily zero value. */
4382 || (comp_code
== EQ_EXPR
4383 && (gimple_assign_rhs_code (def_stmt
) == BIT_IOR_EXPR
))))
4385 tree op0
= gimple_assign_rhs1 (def_stmt
);
4386 tree op1
= gimple_assign_rhs2 (def_stmt
);
4387 retval
|= register_edge_assert_for_1 (op0
, EQ_EXPR
, e
, si
);
4388 retval
|= register_edge_assert_for_1 (op1
, EQ_EXPR
, e
, si
);
4396 /* Determine whether the outgoing edges of BB should receive an
4397 ASSERT_EXPR for each of the operands of BB's LAST statement.
4398 The last statement of BB must be a COND_EXPR.
4400 If any of the sub-graphs rooted at BB have an interesting use of
4401 the predicate operands, an assert location node is added to the
4402 list of assertions for the corresponding operands. */
4405 find_conditional_asserts (basic_block bb
, gimple last
)
4408 gimple_stmt_iterator bsi
;
4414 need_assert
= false;
4415 bsi
= gsi_for_stmt (last
);
4417 /* Look for uses of the operands in each of the sub-graphs
4418 rooted at BB. We need to check each of the outgoing edges
4419 separately, so that we know what kind of ASSERT_EXPR to
4421 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4426 /* Register the necessary assertions for each operand in the
4427 conditional predicate. */
4428 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
4430 need_assert
|= register_edge_assert_for (op
, e
, bsi
,
4431 gimple_cond_code (last
),
4432 gimple_cond_lhs (last
),
4433 gimple_cond_rhs (last
));
4440 /* Compare two case labels sorting first by the destination label uid
4441 and then by the case value. */
4444 compare_case_labels (const void *p1
, const void *p2
)
4446 const_tree
const case1
= *(const_tree
const*)p1
;
4447 const_tree
const case2
= *(const_tree
const*)p2
;
4448 unsigned int uid1
= DECL_UID (CASE_LABEL (case1
));
4449 unsigned int uid2
= DECL_UID (CASE_LABEL (case2
));
4453 else if (uid1
== uid2
)
4455 /* Make sure the default label is first in a group. */
4456 if (!CASE_LOW (case1
))
4458 else if (!CASE_LOW (case2
))
4461 return tree_int_cst_compare (CASE_LOW (case1
), CASE_LOW (case2
));
4467 /* Determine whether the outgoing edges of BB should receive an
4468 ASSERT_EXPR for each of the operands of BB's LAST statement.
4469 The last statement of BB must be a SWITCH_EXPR.
4471 If any of the sub-graphs rooted at BB have an interesting use of
4472 the predicate operands, an assert location node is added to the
4473 list of assertions for the corresponding operands. */
4476 find_switch_asserts (basic_block bb
, gimple last
)
4479 gimple_stmt_iterator bsi
;
4483 size_t n
= gimple_switch_num_labels(last
);
4484 #if GCC_VERSION >= 4000
4487 /* Work around GCC 3.4 bug (PR 37086). */
4488 volatile unsigned int idx
;
4491 need_assert
= false;
4492 bsi
= gsi_for_stmt (last
);
4493 op
= gimple_switch_index (last
);
4494 if (TREE_CODE (op
) != SSA_NAME
)
4497 /* Build a vector of case labels sorted by destination label. */
4498 vec2
= make_tree_vec (n
);
4499 for (idx
= 0; idx
< n
; ++idx
)
4500 TREE_VEC_ELT (vec2
, idx
) = gimple_switch_label (last
, idx
);
4501 qsort (&TREE_VEC_ELT (vec2
, 0), n
, sizeof (tree
), compare_case_labels
);
4503 for (idx
= 0; idx
< n
; ++idx
)
4506 tree cl
= TREE_VEC_ELT (vec2
, idx
);
4508 min
= CASE_LOW (cl
);
4509 max
= CASE_HIGH (cl
);
4511 /* If there are multiple case labels with the same destination
4512 we need to combine them to a single value range for the edge. */
4514 && CASE_LABEL (cl
) == CASE_LABEL (TREE_VEC_ELT (vec2
, idx
+ 1)))
4516 /* Skip labels until the last of the group. */
4520 && CASE_LABEL (cl
) == CASE_LABEL (TREE_VEC_ELT (vec2
, idx
)));
4523 /* Pick up the maximum of the case label range. */
4524 if (CASE_HIGH (TREE_VEC_ELT (vec2
, idx
)))
4525 max
= CASE_HIGH (TREE_VEC_ELT (vec2
, idx
));
4527 max
= CASE_LOW (TREE_VEC_ELT (vec2
, idx
));
4530 /* Nothing to do if the range includes the default label until we
4531 can register anti-ranges. */
4532 if (min
== NULL_TREE
)
4535 /* Find the edge to register the assert expr on. */
4536 e
= find_edge (bb
, label_to_block (CASE_LABEL (cl
)));
4538 /* Register the necessary assertions for the operand in the
4540 need_assert
|= register_edge_assert_for (op
, e
, bsi
,
4541 max
? GE_EXPR
: EQ_EXPR
,
4543 fold_convert (TREE_TYPE (op
),
4547 need_assert
|= register_edge_assert_for (op
, e
, bsi
, LE_EXPR
,
4549 fold_convert (TREE_TYPE (op
),
4558 /* Traverse all the statements in block BB looking for statements that
4559 may generate useful assertions for the SSA names in their operand.
4560 If a statement produces a useful assertion A for name N_i, then the
4561 list of assertions already generated for N_i is scanned to
4562 determine if A is actually needed.
4564 If N_i already had the assertion A at a location dominating the
4565 current location, then nothing needs to be done. Otherwise, the
4566 new location for A is recorded instead.
4568 1- For every statement S in BB, all the variables used by S are
4569 added to bitmap FOUND_IN_SUBGRAPH.
4571 2- If statement S uses an operand N in a way that exposes a known
4572 value range for N, then if N was not already generated by an
4573 ASSERT_EXPR, create a new assert location for N. For instance,
4574 if N is a pointer and the statement dereferences it, we can
4575 assume that N is not NULL.
4577 3- COND_EXPRs are a special case of #2. We can derive range
4578 information from the predicate but need to insert different
4579 ASSERT_EXPRs for each of the sub-graphs rooted at the
4580 conditional block. If the last statement of BB is a conditional
4581 expression of the form 'X op Y', then
4583 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4585 b) If the conditional is the only entry point to the sub-graph
4586 corresponding to the THEN_CLAUSE, recurse into it. On
4587 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4588 an ASSERT_EXPR is added for the corresponding variable.
4590 c) Repeat step (b) on the ELSE_CLAUSE.
4592 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4601 In this case, an assertion on the THEN clause is useful to
4602 determine that 'a' is always 9 on that edge. However, an assertion
4603 on the ELSE clause would be unnecessary.
4605 4- If BB does not end in a conditional expression, then we recurse
4606 into BB's dominator children.
4608 At the end of the recursive traversal, every SSA name will have a
4609 list of locations where ASSERT_EXPRs should be added. When a new
4610 location for name N is found, it is registered by calling
4611 register_new_assert_for. That function keeps track of all the
4612 registered assertions to prevent adding unnecessary assertions.
4613 For instance, if a pointer P_4 is dereferenced more than once in a
4614 dominator tree, only the location dominating all the dereference of
4615 P_4 will receive an ASSERT_EXPR.
4617 If this function returns true, then it means that there are names
4618 for which we need to generate ASSERT_EXPRs. Those assertions are
4619 inserted by process_assert_insertions. */
4622 find_assert_locations_1 (basic_block bb
, sbitmap live
)
4624 gimple_stmt_iterator si
;
4629 need_assert
= false;
4630 last
= last_stmt (bb
);
4632 /* If BB's last statement is a conditional statement involving integer
4633 operands, determine if we need to add ASSERT_EXPRs. */
4635 && gimple_code (last
) == GIMPLE_COND
4636 && !fp_predicate (last
)
4637 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
4638 need_assert
|= find_conditional_asserts (bb
, last
);
4640 /* If BB's last statement is a switch statement involving integer
4641 operands, determine if we need to add ASSERT_EXPRs. */
4643 && gimple_code (last
) == GIMPLE_SWITCH
4644 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
4645 need_assert
|= find_switch_asserts (bb
, last
);
4647 /* Traverse all the statements in BB marking used names and looking
4648 for statements that may infer assertions for their used operands. */
4649 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
4655 stmt
= gsi_stmt (si
);
4657 if (is_gimple_debug (stmt
))
4660 /* See if we can derive an assertion for any of STMT's operands. */
4661 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
4664 enum tree_code comp_code
;
4666 /* Mark OP in our live bitmap. */
4667 SET_BIT (live
, SSA_NAME_VERSION (op
));
4669 /* If OP is used in such a way that we can infer a value
4670 range for it, and we don't find a previous assertion for
4671 it, create a new assertion location node for OP. */
4672 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
4674 /* If we are able to infer a nonzero value range for OP,
4675 then walk backwards through the use-def chain to see if OP
4676 was set via a typecast.
4678 If so, then we can also infer a nonzero value range
4679 for the operand of the NOP_EXPR. */
4680 if (comp_code
== NE_EXPR
&& integer_zerop (value
))
4683 gimple def_stmt
= SSA_NAME_DEF_STMT (t
);
4685 while (is_gimple_assign (def_stmt
)
4686 && gimple_assign_rhs_code (def_stmt
) == NOP_EXPR
4688 (gimple_assign_rhs1 (def_stmt
)) == SSA_NAME
4690 (TREE_TYPE (gimple_assign_rhs1 (def_stmt
))))
4692 t
= gimple_assign_rhs1 (def_stmt
);
4693 def_stmt
= SSA_NAME_DEF_STMT (t
);
4695 /* Note we want to register the assert for the
4696 operand of the NOP_EXPR after SI, not after the
4698 if (! has_single_use (t
))
4700 register_new_assert_for (t
, t
, comp_code
, value
,
4707 /* If OP is used only once, namely in this STMT, don't
4708 bother creating an ASSERT_EXPR for it. Such an
4709 ASSERT_EXPR would do nothing but increase compile time. */
4710 if (!has_single_use (op
))
4712 register_new_assert_for (op
, op
, comp_code
, value
,
4720 /* Traverse all PHI nodes in BB marking used operands. */
4721 for (si
= gsi_start_phis (bb
); !gsi_end_p(si
); gsi_next (&si
))
4723 use_operand_p arg_p
;
4725 phi
= gsi_stmt (si
);
4727 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
4729 tree arg
= USE_FROM_PTR (arg_p
);
4730 if (TREE_CODE (arg
) == SSA_NAME
)
4731 SET_BIT (live
, SSA_NAME_VERSION (arg
));
4738 /* Do an RPO walk over the function computing SSA name liveness
4739 on-the-fly and deciding on assert expressions to insert.
4740 Returns true if there are assert expressions to be inserted. */
4743 find_assert_locations (void)
4745 int *rpo
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
4746 int *bb_rpo
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
4747 int *last_rpo
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
4751 live
= XCNEWVEC (sbitmap
, last_basic_block
+ NUM_FIXED_BLOCKS
);
4752 rpo_cnt
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
4753 for (i
= 0; i
< rpo_cnt
; ++i
)
4756 need_asserts
= false;
4757 for (i
= rpo_cnt
-1; i
>= 0; --i
)
4759 basic_block bb
= BASIC_BLOCK (rpo
[i
]);
4765 live
[rpo
[i
]] = sbitmap_alloc (num_ssa_names
);
4766 sbitmap_zero (live
[rpo
[i
]]);
4769 /* Process BB and update the live information with uses in
4771 need_asserts
|= find_assert_locations_1 (bb
, live
[rpo
[i
]]);
4773 /* Merge liveness into the predecessor blocks and free it. */
4774 if (!sbitmap_empty_p (live
[rpo
[i
]]))
4777 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
4779 int pred
= e
->src
->index
;
4780 if (e
->flags
& EDGE_DFS_BACK
)
4785 live
[pred
] = sbitmap_alloc (num_ssa_names
);
4786 sbitmap_zero (live
[pred
]);
4788 sbitmap_a_or_b (live
[pred
], live
[pred
], live
[rpo
[i
]]);
4790 if (bb_rpo
[pred
] < pred_rpo
)
4791 pred_rpo
= bb_rpo
[pred
];
4794 /* Record the RPO number of the last visited block that needs
4795 live information from this block. */
4796 last_rpo
[rpo
[i
]] = pred_rpo
;
4800 sbitmap_free (live
[rpo
[i
]]);
4801 live
[rpo
[i
]] = NULL
;
4804 /* We can free all successors live bitmaps if all their
4805 predecessors have been visited already. */
4806 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4807 if (last_rpo
[e
->dest
->index
] == i
4808 && live
[e
->dest
->index
])
4810 sbitmap_free (live
[e
->dest
->index
]);
4811 live
[e
->dest
->index
] = NULL
;
4816 XDELETEVEC (bb_rpo
);
4817 XDELETEVEC (last_rpo
);
4818 for (i
= 0; i
< last_basic_block
+ NUM_FIXED_BLOCKS
; ++i
)
4820 sbitmap_free (live
[i
]);
4823 return need_asserts
;
4826 /* Create an ASSERT_EXPR for NAME and insert it in the location
4827 indicated by LOC. Return true if we made any edge insertions. */
4830 process_assert_insertions_for (tree name
, assert_locus_t loc
)
4832 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4839 /* If we have X <=> X do not insert an assert expr for that. */
4840 if (loc
->expr
== loc
->val
)
4843 cond
= build2 (loc
->comp_code
, boolean_type_node
, loc
->expr
, loc
->val
);
4844 assert_stmt
= build_assert_expr_for (cond
, name
);
4847 /* We have been asked to insert the assertion on an edge. This
4848 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4849 #if defined ENABLE_CHECKING
4850 gcc_assert (gimple_code (gsi_stmt (loc
->si
)) == GIMPLE_COND
4851 || gimple_code (gsi_stmt (loc
->si
)) == GIMPLE_SWITCH
);
4854 gsi_insert_on_edge (loc
->e
, assert_stmt
);
4858 /* Otherwise, we can insert right after LOC->SI iff the
4859 statement must not be the last statement in the block. */
4860 stmt
= gsi_stmt (loc
->si
);
4861 if (!stmt_ends_bb_p (stmt
))
4863 gsi_insert_after (&loc
->si
, assert_stmt
, GSI_SAME_STMT
);
4867 /* If STMT must be the last statement in BB, we can only insert new
4868 assertions on the non-abnormal edge out of BB. Note that since
4869 STMT is not control flow, there may only be one non-abnormal edge
4871 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
4872 if (!(e
->flags
& EDGE_ABNORMAL
))
4874 gsi_insert_on_edge (e
, assert_stmt
);
4882 /* Process all the insertions registered for every name N_i registered
4883 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4884 found in ASSERTS_FOR[i]. */
4887 process_assert_insertions (void)
4891 bool update_edges_p
= false;
4892 int num_asserts
= 0;
4894 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4895 dump_all_asserts (dump_file
);
4897 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
4899 assert_locus_t loc
= asserts_for
[i
];
4904 assert_locus_t next
= loc
->next
;
4905 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
4913 gsi_commit_edge_inserts ();
4915 statistics_counter_event (cfun
, "Number of ASSERT_EXPR expressions inserted",
4920 /* Traverse the flowgraph looking for conditional jumps to insert range
4921 expressions. These range expressions are meant to provide information
4922 to optimizations that need to reason in terms of value ranges. They
4923 will not be expanded into RTL. For instance, given:
4932 this pass will transform the code into:
4938 x = ASSERT_EXPR <x, x < y>
4943 y = ASSERT_EXPR <y, x <= y>
4947 The idea is that once copy and constant propagation have run, other
4948 optimizations will be able to determine what ranges of values can 'x'
4949 take in different paths of the code, simply by checking the reaching
4950 definition of 'x'. */
4953 insert_range_assertions (void)
4955 need_assert_for
= BITMAP_ALLOC (NULL
);
4956 asserts_for
= XCNEWVEC (assert_locus_t
, num_ssa_names
);
4958 calculate_dominance_info (CDI_DOMINATORS
);
4960 if (find_assert_locations ())
4962 process_assert_insertions ();
4963 update_ssa (TODO_update_ssa_no_phi
);
4966 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4968 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
4969 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
4973 BITMAP_FREE (need_assert_for
);
4976 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4977 and "struct" hacks. If VRP can determine that the
4978 array subscript is a constant, check if it is outside valid
4979 range. If the array subscript is a RANGE, warn if it is
4980 non-overlapping with valid range.
4981 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4984 check_array_ref (location_t location
, tree ref
, bool ignore_off_by_one
)
4986 value_range_t
* vr
= NULL
;
4987 tree low_sub
, up_sub
;
4988 tree low_bound
, up_bound
= array_ref_up_bound (ref
);
4990 low_sub
= up_sub
= TREE_OPERAND (ref
, 1);
4992 if (!up_bound
|| TREE_NO_WARNING (ref
)
4993 || TREE_CODE (up_bound
) != INTEGER_CST
4994 /* Can not check flexible arrays. */
4995 || (TYPE_SIZE (TREE_TYPE (ref
)) == NULL_TREE
4996 && TYPE_DOMAIN (TREE_TYPE (ref
)) != NULL_TREE
4997 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref
))) == NULL_TREE
)
4998 /* Accesses after the end of arrays of size 0 (gcc
4999 extension) and 1 are likely intentional ("struct
5001 || compare_tree_int (up_bound
, 1) <= 0)
5004 low_bound
= array_ref_low_bound (ref
);
5006 if (TREE_CODE (low_sub
) == SSA_NAME
)
5008 vr
= get_value_range (low_sub
);
5009 if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
5011 low_sub
= vr
->type
== VR_RANGE
? vr
->max
: vr
->min
;
5012 up_sub
= vr
->type
== VR_RANGE
? vr
->min
: vr
->max
;
5016 if (vr
&& vr
->type
== VR_ANTI_RANGE
)
5018 if (TREE_CODE (up_sub
) == INTEGER_CST
5019 && tree_int_cst_lt (up_bound
, up_sub
)
5020 && TREE_CODE (low_sub
) == INTEGER_CST
5021 && tree_int_cst_lt (low_sub
, low_bound
))
5023 warning_at (location
, OPT_Warray_bounds
,
5024 "array subscript is outside array bounds");
5025 TREE_NO_WARNING (ref
) = 1;
5028 else if (TREE_CODE (up_sub
) == INTEGER_CST
5029 && tree_int_cst_lt (up_bound
, up_sub
)
5030 && !tree_int_cst_equal (up_bound
, up_sub
)
5031 && (!ignore_off_by_one
5032 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR
,
5038 warning_at (location
, OPT_Warray_bounds
,
5039 "array subscript is above array bounds");
5040 TREE_NO_WARNING (ref
) = 1;
5042 else if (TREE_CODE (low_sub
) == INTEGER_CST
5043 && tree_int_cst_lt (low_sub
, low_bound
))
5045 warning_at (location
, OPT_Warray_bounds
,
5046 "array subscript is below array bounds");
5047 TREE_NO_WARNING (ref
) = 1;
5051 /* Searches if the expr T, located at LOCATION computes
5052 address of an ARRAY_REF, and call check_array_ref on it. */
5055 search_for_addr_array (tree t
, location_t location
)
5057 while (TREE_CODE (t
) == SSA_NAME
)
5059 gimple g
= SSA_NAME_DEF_STMT (t
);
5061 if (gimple_code (g
) != GIMPLE_ASSIGN
)
5064 if (get_gimple_rhs_class (gimple_assign_rhs_code (g
))
5065 != GIMPLE_SINGLE_RHS
)
5068 t
= gimple_assign_rhs1 (g
);
5072 /* We are only interested in addresses of ARRAY_REF's. */
5073 if (TREE_CODE (t
) != ADDR_EXPR
)
5076 /* Check each ARRAY_REFs in the reference chain. */
5079 if (TREE_CODE (t
) == ARRAY_REF
)
5080 check_array_ref (location
, t
, true /*ignore_off_by_one*/);
5082 t
= TREE_OPERAND (t
, 0);
5084 while (handled_component_p (t
));
5087 /* walk_tree() callback that checks if *TP is
5088 an ARRAY_REF inside an ADDR_EXPR (in which an array
5089 subscript one outside the valid range is allowed). Call
5090 check_array_ref for each ARRAY_REF found. The location is
5094 check_array_bounds (tree
*tp
, int *walk_subtree
, void *data
)
5097 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5098 location_t location
;
5100 if (EXPR_HAS_LOCATION (t
))
5101 location
= EXPR_LOCATION (t
);
5104 location_t
*locp
= (location_t
*) wi
->info
;
5108 *walk_subtree
= TRUE
;
5110 if (TREE_CODE (t
) == ARRAY_REF
)
5111 check_array_ref (location
, t
, false /*ignore_off_by_one*/);
5113 if (TREE_CODE (t
) == INDIRECT_REF
5114 || (TREE_CODE (t
) == RETURN_EXPR
&& TREE_OPERAND (t
, 0)))
5115 search_for_addr_array (TREE_OPERAND (t
, 0), location
);
5117 if (TREE_CODE (t
) == ADDR_EXPR
)
5118 *walk_subtree
= FALSE
;
5123 /* Walk over all statements of all reachable BBs and call check_array_bounds
5127 check_all_array_refs (void)
5130 gimple_stmt_iterator si
;
5136 bool executable
= false;
5138 /* Skip blocks that were found to be unreachable. */
5139 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5140 executable
|= !!(e
->flags
& EDGE_EXECUTABLE
);
5144 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5146 gimple stmt
= gsi_stmt (si
);
5147 struct walk_stmt_info wi
;
5148 if (!gimple_has_location (stmt
))
5151 if (is_gimple_call (stmt
))
5154 size_t n
= gimple_call_num_args (stmt
);
5155 for (i
= 0; i
< n
; i
++)
5157 tree arg
= gimple_call_arg (stmt
, i
);
5158 search_for_addr_array (arg
, gimple_location (stmt
));
5163 memset (&wi
, 0, sizeof (wi
));
5164 wi
.info
= CONST_CAST (void *, (const void *)
5165 gimple_location_ptr (stmt
));
5167 walk_gimple_op (gsi_stmt (si
),
5175 /* Convert range assertion expressions into the implied copies and
5176 copy propagate away the copies. Doing the trivial copy propagation
5177 here avoids the need to run the full copy propagation pass after
5180 FIXME, this will eventually lead to copy propagation removing the
5181 names that had useful range information attached to them. For
5182 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5183 then N_i will have the range [3, +INF].
5185 However, by converting the assertion into the implied copy
5186 operation N_i = N_j, we will then copy-propagate N_j into the uses
5187 of N_i and lose the range information. We may want to hold on to
5188 ASSERT_EXPRs a little while longer as the ranges could be used in
5189 things like jump threading.
5191 The problem with keeping ASSERT_EXPRs around is that passes after
5192 VRP need to handle them appropriately.
5194 Another approach would be to make the range information a first
5195 class property of the SSA_NAME so that it can be queried from
5196 any pass. This is made somewhat more complex by the need for
5197 multiple ranges to be associated with one SSA_NAME. */
5200 remove_range_assertions (void)
5203 gimple_stmt_iterator si
;
5205 /* Note that the BSI iterator bump happens at the bottom of the
5206 loop and no bump is necessary if we're removing the statement
5207 referenced by the current BSI. */
5209 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
);)
5211 gimple stmt
= gsi_stmt (si
);
5214 if (is_gimple_assign (stmt
)
5215 && gimple_assign_rhs_code (stmt
) == ASSERT_EXPR
)
5217 tree rhs
= gimple_assign_rhs1 (stmt
);
5219 tree cond
= fold (ASSERT_EXPR_COND (rhs
));
5220 use_operand_p use_p
;
5221 imm_use_iterator iter
;
5223 gcc_assert (cond
!= boolean_false_node
);
5225 /* Propagate the RHS into every use of the LHS. */
5226 var
= ASSERT_EXPR_VAR (rhs
);
5227 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
,
5228 gimple_assign_lhs (stmt
))
5229 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
5231 SET_USE (use_p
, var
);
5232 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
5235 /* And finally, remove the copy, it is not needed. */
5236 gsi_remove (&si
, true);
5237 release_defs (stmt
);
5245 /* Return true if STMT is interesting for VRP. */
5248 stmt_interesting_for_vrp (gimple stmt
)
5250 if (gimple_code (stmt
) == GIMPLE_PHI
5251 && is_gimple_reg (gimple_phi_result (stmt
))
5252 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt
)))
5253 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt
)))))
5255 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
5257 tree lhs
= gimple_get_lhs (stmt
);
5259 /* In general, assignments with virtual operands are not useful
5260 for deriving ranges, with the obvious exception of calls to
5261 builtin functions. */
5262 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
5263 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
5264 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
5265 && ((is_gimple_call (stmt
)
5266 && gimple_call_fndecl (stmt
) != NULL_TREE
5267 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt
)))
5268 || !gimple_vuse (stmt
)))
5271 else if (gimple_code (stmt
) == GIMPLE_COND
5272 || gimple_code (stmt
) == GIMPLE_SWITCH
)
5279 /* Initialize local data structures for VRP. */
5282 vrp_initialize (void)
5286 vr_value
= XCNEWVEC (value_range_t
*, num_ssa_names
);
5287 vr_phi_edge_counts
= XCNEWVEC (int, num_ssa_names
);
5291 gimple_stmt_iterator si
;
5293 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
5295 gimple phi
= gsi_stmt (si
);
5296 if (!stmt_interesting_for_vrp (phi
))
5298 tree lhs
= PHI_RESULT (phi
);
5299 set_value_range_to_varying (get_value_range (lhs
));
5300 prop_set_simulate_again (phi
, false);
5303 prop_set_simulate_again (phi
, true);
5306 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5308 gimple stmt
= gsi_stmt (si
);
5310 /* If the statement is a control insn, then we do not
5311 want to avoid simulating the statement once. Failure
5312 to do so means that those edges will never get added. */
5313 if (stmt_ends_bb_p (stmt
))
5314 prop_set_simulate_again (stmt
, true);
5315 else if (!stmt_interesting_for_vrp (stmt
))
5319 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, i
, SSA_OP_DEF
)
5320 set_value_range_to_varying (get_value_range (def
));
5321 prop_set_simulate_again (stmt
, false);
5324 prop_set_simulate_again (stmt
, true);
5330 /* Visit assignment STMT. If it produces an interesting range, record
5331 the SSA name in *OUTPUT_P. */
5333 static enum ssa_prop_result
5334 vrp_visit_assignment_or_call (gimple stmt
, tree
*output_p
)
5338 enum gimple_code code
= gimple_code (stmt
);
5339 lhs
= gimple_get_lhs (stmt
);
5341 /* We only keep track of ranges in integral and pointer types. */
5342 if (TREE_CODE (lhs
) == SSA_NAME
5343 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
5344 /* It is valid to have NULL MIN/MAX values on a type. See
5345 build_range_type. */
5346 && TYPE_MIN_VALUE (TREE_TYPE (lhs
))
5347 && TYPE_MAX_VALUE (TREE_TYPE (lhs
)))
5348 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
5350 value_range_t new_vr
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
5352 if (code
== GIMPLE_CALL
)
5353 extract_range_basic (&new_vr
, stmt
);
5355 extract_range_from_assignment (&new_vr
, stmt
);
5357 if (update_value_range (lhs
, &new_vr
))
5361 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5363 fprintf (dump_file
, "Found new range for ");
5364 print_generic_expr (dump_file
, lhs
, 0);
5365 fprintf (dump_file
, ": ");
5366 dump_value_range (dump_file
, &new_vr
);
5367 fprintf (dump_file
, "\n\n");
5370 if (new_vr
.type
== VR_VARYING
)
5371 return SSA_PROP_VARYING
;
5373 return SSA_PROP_INTERESTING
;
5376 return SSA_PROP_NOT_INTERESTING
;
5379 /* Every other statement produces no useful ranges. */
5380 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
5381 set_value_range_to_varying (get_value_range (def
));
5383 return SSA_PROP_VARYING
;
5386 /* Helper that gets the value range of the SSA_NAME with version I
5387 or a symbolic range containing the SSA_NAME only if the value range
5388 is varying or undefined. */
5390 static inline value_range_t
5391 get_vr_for_comparison (int i
)
5393 value_range_t vr
= *(vr_value
[i
]);
5395 /* If name N_i does not have a valid range, use N_i as its own
5396 range. This allows us to compare against names that may
5397 have N_i in their ranges. */
5398 if (vr
.type
== VR_VARYING
|| vr
.type
== VR_UNDEFINED
)
5401 vr
.min
= ssa_name (i
);
5402 vr
.max
= ssa_name (i
);
5408 /* Compare all the value ranges for names equivalent to VAR with VAL
5409 using comparison code COMP. Return the same value returned by
5410 compare_range_with_value, including the setting of
5411 *STRICT_OVERFLOW_P. */
5414 compare_name_with_value (enum tree_code comp
, tree var
, tree val
,
5415 bool *strict_overflow_p
)
5421 int used_strict_overflow
;
5423 value_range_t equiv_vr
;
5425 /* Get the set of equivalences for VAR. */
5426 e
= get_value_range (var
)->equiv
;
5428 /* Start at -1. Set it to 0 if we do a comparison without relying
5429 on overflow, or 1 if all comparisons rely on overflow. */
5430 used_strict_overflow
= -1;
5432 /* Compare vars' value range with val. */
5433 equiv_vr
= get_vr_for_comparison (SSA_NAME_VERSION (var
));
5435 retval
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
5437 used_strict_overflow
= sop
? 1 : 0;
5439 /* If the equiv set is empty we have done all work we need to do. */
5443 && used_strict_overflow
> 0)
5444 *strict_overflow_p
= true;
5448 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
5450 equiv_vr
= get_vr_for_comparison (i
);
5452 t
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
5455 /* If we get different answers from different members
5456 of the equivalence set this check must be in a dead
5457 code region. Folding it to a trap representation
5458 would be correct here. For now just return don't-know. */
5468 used_strict_overflow
= 0;
5469 else if (used_strict_overflow
< 0)
5470 used_strict_overflow
= 1;
5475 && used_strict_overflow
> 0)
5476 *strict_overflow_p
= true;
5482 /* Given a comparison code COMP and names N1 and N2, compare all the
5483 ranges equivalent to N1 against all the ranges equivalent to N2
5484 to determine the value of N1 COMP N2. Return the same value
5485 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5486 whether we relied on an overflow infinity in the comparison. */
5490 compare_names (enum tree_code comp
, tree n1
, tree n2
,
5491 bool *strict_overflow_p
)
5495 bitmap_iterator bi1
, bi2
;
5497 int used_strict_overflow
;
5498 static bitmap_obstack
*s_obstack
= NULL
;
5499 static bitmap s_e1
= NULL
, s_e2
= NULL
;
5501 /* Compare the ranges of every name equivalent to N1 against the
5502 ranges of every name equivalent to N2. */
5503 e1
= get_value_range (n1
)->equiv
;
5504 e2
= get_value_range (n2
)->equiv
;
5506 /* Use the fake bitmaps if e1 or e2 are not available. */
5507 if (s_obstack
== NULL
)
5509 s_obstack
= XNEW (bitmap_obstack
);
5510 bitmap_obstack_initialize (s_obstack
);
5511 s_e1
= BITMAP_ALLOC (s_obstack
);
5512 s_e2
= BITMAP_ALLOC (s_obstack
);
5519 /* Add N1 and N2 to their own set of equivalences to avoid
5520 duplicating the body of the loop just to check N1 and N2
5522 bitmap_set_bit (e1
, SSA_NAME_VERSION (n1
));
5523 bitmap_set_bit (e2
, SSA_NAME_VERSION (n2
));
5525 /* If the equivalence sets have a common intersection, then the two
5526 names can be compared without checking their ranges. */
5527 if (bitmap_intersect_p (e1
, e2
))
5529 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5530 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5532 return (comp
== EQ_EXPR
|| comp
== GE_EXPR
|| comp
== LE_EXPR
)
5534 : boolean_false_node
;
5537 /* Start at -1. Set it to 0 if we do a comparison without relying
5538 on overflow, or 1 if all comparisons rely on overflow. */
5539 used_strict_overflow
= -1;
5541 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5542 N2 to their own set of equivalences to avoid duplicating the body
5543 of the loop just to check N1 and N2 ranges. */
5544 EXECUTE_IF_SET_IN_BITMAP (e1
, 0, i1
, bi1
)
5546 value_range_t vr1
= get_vr_for_comparison (i1
);
5548 t
= retval
= NULL_TREE
;
5549 EXECUTE_IF_SET_IN_BITMAP (e2
, 0, i2
, bi2
)
5553 value_range_t vr2
= get_vr_for_comparison (i2
);
5555 t
= compare_ranges (comp
, &vr1
, &vr2
, &sop
);
5558 /* If we get different answers from different members
5559 of the equivalence set this check must be in a dead
5560 code region. Folding it to a trap representation
5561 would be correct here. For now just return don't-know. */
5565 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5566 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5572 used_strict_overflow
= 0;
5573 else if (used_strict_overflow
< 0)
5574 used_strict_overflow
= 1;
5580 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5581 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5582 if (used_strict_overflow
> 0)
5583 *strict_overflow_p
= true;
5588 /* None of the equivalent ranges are useful in computing this
5590 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5591 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5595 /* Helper function for vrp_evaluate_conditional_warnv. */
5598 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code
,
5600 bool * strict_overflow_p
)
5602 value_range_t
*vr0
, *vr1
;
5604 vr0
= (TREE_CODE (op0
) == SSA_NAME
) ? get_value_range (op0
) : NULL
;
5605 vr1
= (TREE_CODE (op1
) == SSA_NAME
) ? get_value_range (op1
) : NULL
;
5608 return compare_ranges (code
, vr0
, vr1
, strict_overflow_p
);
5609 else if (vr0
&& vr1
== NULL
)
5610 return compare_range_with_value (code
, vr0
, op1
, strict_overflow_p
);
5611 else if (vr0
== NULL
&& vr1
)
5612 return (compare_range_with_value
5613 (swap_tree_comparison (code
), vr1
, op0
, strict_overflow_p
));
5617 /* Helper function for vrp_evaluate_conditional_warnv. */
5620 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code
, tree op0
,
5621 tree op1
, bool use_equiv_p
,
5622 bool *strict_overflow_p
, bool *only_ranges
)
5626 *only_ranges
= true;
5628 /* We only deal with integral and pointer types. */
5629 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
5630 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
5636 && (ret
= vrp_evaluate_conditional_warnv_with_ops_using_ranges
5637 (code
, op0
, op1
, strict_overflow_p
)))
5639 *only_ranges
= false;
5640 if (TREE_CODE (op0
) == SSA_NAME
&& TREE_CODE (op1
) == SSA_NAME
)
5641 return compare_names (code
, op0
, op1
, strict_overflow_p
);
5642 else if (TREE_CODE (op0
) == SSA_NAME
)
5643 return compare_name_with_value (code
, op0
, op1
, strict_overflow_p
);
5644 else if (TREE_CODE (op1
) == SSA_NAME
)
5645 return (compare_name_with_value
5646 (swap_tree_comparison (code
), op1
, op0
, strict_overflow_p
));
5649 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code
, op0
, op1
,
5654 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5655 information. Return NULL if the conditional can not be evaluated.
5656 The ranges of all the names equivalent with the operands in COND
5657 will be used when trying to compute the value. If the result is
5658 based on undefined signed overflow, issue a warning if
5662 vrp_evaluate_conditional (enum tree_code code
, tree op0
, tree op1
, gimple stmt
)
5668 /* Some passes and foldings leak constants with overflow flag set
5669 into the IL. Avoid doing wrong things with these and bail out. */
5670 if ((TREE_CODE (op0
) == INTEGER_CST
5671 && TREE_OVERFLOW (op0
))
5672 || (TREE_CODE (op1
) == INTEGER_CST
5673 && TREE_OVERFLOW (op1
)))
5677 ret
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, true, &sop
,
5682 enum warn_strict_overflow_code wc
;
5683 const char* warnmsg
;
5685 if (is_gimple_min_invariant (ret
))
5687 wc
= WARN_STRICT_OVERFLOW_CONDITIONAL
;
5688 warnmsg
= G_("assuming signed overflow does not occur when "
5689 "simplifying conditional to constant");
5693 wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
5694 warnmsg
= G_("assuming signed overflow does not occur when "
5695 "simplifying conditional");
5698 if (issue_strict_overflow_warning (wc
))
5700 location_t location
;
5702 if (!gimple_has_location (stmt
))
5703 location
= input_location
;
5705 location
= gimple_location (stmt
);
5706 warning_at (location
, OPT_Wstrict_overflow
, "%s", warnmsg
);
5710 if (warn_type_limits
5711 && ret
&& only_ranges
5712 && TREE_CODE_CLASS (code
) == tcc_comparison
5713 && TREE_CODE (op0
) == SSA_NAME
)
5715 /* If the comparison is being folded and the operand on the LHS
5716 is being compared against a constant value that is outside of
5717 the natural range of OP0's type, then the predicate will
5718 always fold regardless of the value of OP0. If -Wtype-limits
5719 was specified, emit a warning. */
5720 tree type
= TREE_TYPE (op0
);
5721 value_range_t
*vr0
= get_value_range (op0
);
5723 if (vr0
->type
!= VR_VARYING
5724 && INTEGRAL_TYPE_P (type
)
5725 && vrp_val_is_min (vr0
->min
)
5726 && vrp_val_is_max (vr0
->max
)
5727 && is_gimple_min_invariant (op1
))
5729 location_t location
;
5731 if (!gimple_has_location (stmt
))
5732 location
= input_location
;
5734 location
= gimple_location (stmt
);
5736 warning_at (location
, OPT_Wtype_limits
,
5738 ? G_("comparison always false "
5739 "due to limited range of data type")
5740 : G_("comparison always true "
5741 "due to limited range of data type"));
5749 /* Visit conditional statement STMT. If we can determine which edge
5750 will be taken out of STMT's basic block, record it in
5751 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5752 SSA_PROP_VARYING. */
5754 static enum ssa_prop_result
5755 vrp_visit_cond_stmt (gimple stmt
, edge
*taken_edge_p
)
5760 *taken_edge_p
= NULL
;
5762 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5767 fprintf (dump_file
, "\nVisiting conditional with predicate: ");
5768 print_gimple_stmt (dump_file
, stmt
, 0, 0);
5769 fprintf (dump_file
, "\nWith known ranges\n");
5771 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
5773 fprintf (dump_file
, "\t");
5774 print_generic_expr (dump_file
, use
, 0);
5775 fprintf (dump_file
, ": ");
5776 dump_value_range (dump_file
, vr_value
[SSA_NAME_VERSION (use
)]);
5779 fprintf (dump_file
, "\n");
5782 /* Compute the value of the predicate COND by checking the known
5783 ranges of each of its operands.
5785 Note that we cannot evaluate all the equivalent ranges here
5786 because those ranges may not yet be final and with the current
5787 propagation strategy, we cannot determine when the value ranges
5788 of the names in the equivalence set have changed.
5790 For instance, given the following code fragment
5794 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
5798 Assume that on the first visit to i_14, i_5 has the temporary
5799 range [8, 8] because the second argument to the PHI function is
5800 not yet executable. We derive the range ~[0, 0] for i_14 and the
5801 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
5802 the first time, since i_14 is equivalent to the range [8, 8], we
5803 determine that the predicate is always false.
5805 On the next round of propagation, i_13 is determined to be
5806 VARYING, which causes i_5 to drop down to VARYING. So, another
5807 visit to i_14 is scheduled. In this second visit, we compute the
5808 exact same range and equivalence set for i_14, namely ~[0, 0] and
5809 { i_5 }. But we did not have the previous range for i_5
5810 registered, so vrp_visit_assignment thinks that the range for
5811 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
5812 is not visited again, which stops propagation from visiting
5813 statements in the THEN clause of that if().
5815 To properly fix this we would need to keep the previous range
5816 value for the names in the equivalence set. This way we would've
5817 discovered that from one visit to the other i_5 changed from
5818 range [8, 8] to VR_VARYING.
5820 However, fixing this apparent limitation may not be worth the
5821 additional checking. Testing on several code bases (GCC, DLV,
5822 MICO, TRAMP3D and SPEC2000) showed that doing this results in
5823 4 more predicates folded in SPEC. */
5826 val
= vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt
),
5827 gimple_cond_lhs (stmt
),
5828 gimple_cond_rhs (stmt
),
5833 *taken_edge_p
= find_taken_edge (gimple_bb (stmt
), val
);
5836 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5838 "\nIgnoring predicate evaluation because "
5839 "it assumes that signed overflow is undefined");
5844 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5846 fprintf (dump_file
, "\nPredicate evaluates to: ");
5847 if (val
== NULL_TREE
)
5848 fprintf (dump_file
, "DON'T KNOW\n");
5850 print_generic_stmt (dump_file
, val
, 0);
5853 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
5856 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
5857 that includes the value VAL. The search is restricted to the range
5858 [START_IDX, n - 1] where n is the size of VEC.
5860 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
5863 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
5864 it is placed in IDX and false is returned.
5866 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
5870 find_case_label_index (gimple stmt
, size_t start_idx
, tree val
, size_t *idx
)
5872 size_t n
= gimple_switch_num_labels (stmt
);
5875 /* Find case label for minimum of the value range or the next one.
5876 At each iteration we are searching in [low, high - 1]. */
5878 for (low
= start_idx
, high
= n
; high
!= low
; )
5882 /* Note that i != high, so we never ask for n. */
5883 size_t i
= (high
+ low
) / 2;
5884 t
= gimple_switch_label (stmt
, i
);
5886 /* Cache the result of comparing CASE_LOW and val. */
5887 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
5891 /* Ranges cannot be empty. */
5900 if (CASE_HIGH (t
) != NULL
5901 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
5913 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
5914 for values between MIN and MAX. The first index is placed in MIN_IDX. The
5915 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
5916 then MAX_IDX < MIN_IDX.
5917 Returns true if the default label is not needed. */
5920 find_case_label_range (gimple stmt
, tree min
, tree max
, size_t *min_idx
,
5924 bool min_take_default
= !find_case_label_index (stmt
, 1, min
, &i
);
5925 bool max_take_default
= !find_case_label_index (stmt
, i
, max
, &j
);
5929 && max_take_default
)
5931 /* Only the default case label reached.
5932 Return an empty range. */
5939 bool take_default
= min_take_default
|| max_take_default
;
5943 if (max_take_default
)
5946 /* If the case label range is continuous, we do not need
5947 the default case label. Verify that. */
5948 high
= CASE_LOW (gimple_switch_label (stmt
, i
));
5949 if (CASE_HIGH (gimple_switch_label (stmt
, i
)))
5950 high
= CASE_HIGH (gimple_switch_label (stmt
, i
));
5951 for (k
= i
+ 1; k
<= j
; ++k
)
5953 low
= CASE_LOW (gimple_switch_label (stmt
, k
));
5954 if (!integer_onep (int_const_binop (MINUS_EXPR
, low
, high
, 0)))
5956 take_default
= true;
5960 if (CASE_HIGH (gimple_switch_label (stmt
, k
)))
5961 high
= CASE_HIGH (gimple_switch_label (stmt
, k
));
5966 return !take_default
;
5970 /* Visit switch statement STMT. If we can determine which edge
5971 will be taken out of STMT's basic block, record it in
5972 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5973 SSA_PROP_VARYING. */
5975 static enum ssa_prop_result
5976 vrp_visit_switch_stmt (gimple stmt
, edge
*taken_edge_p
)
5980 size_t i
= 0, j
= 0;
5983 *taken_edge_p
= NULL
;
5984 op
= gimple_switch_index (stmt
);
5985 if (TREE_CODE (op
) != SSA_NAME
)
5986 return SSA_PROP_VARYING
;
5988 vr
= get_value_range (op
);
5989 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5991 fprintf (dump_file
, "\nVisiting switch expression with operand ");
5992 print_generic_expr (dump_file
, op
, 0);
5993 fprintf (dump_file
, " with known range ");
5994 dump_value_range (dump_file
, vr
);
5995 fprintf (dump_file
, "\n");
5998 if (vr
->type
!= VR_RANGE
5999 || symbolic_range_p (vr
))
6000 return SSA_PROP_VARYING
;
6002 /* Find the single edge that is taken from the switch expression. */
6003 take_default
= !find_case_label_range (stmt
, vr
->min
, vr
->max
, &i
, &j
);
6005 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6009 gcc_assert (take_default
);
6010 val
= gimple_switch_default_label (stmt
);
6014 /* Check if labels with index i to j and maybe the default label
6015 are all reaching the same label. */
6017 val
= gimple_switch_label (stmt
, i
);
6019 && CASE_LABEL (gimple_switch_default_label (stmt
))
6020 != CASE_LABEL (val
))
6022 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6023 fprintf (dump_file
, " not a single destination for this "
6025 return SSA_PROP_VARYING
;
6027 for (++i
; i
<= j
; ++i
)
6029 if (CASE_LABEL (gimple_switch_label (stmt
, i
)) != CASE_LABEL (val
))
6031 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6032 fprintf (dump_file
, " not a single destination for this "
6034 return SSA_PROP_VARYING
;
6039 *taken_edge_p
= find_edge (gimple_bb (stmt
),
6040 label_to_block (CASE_LABEL (val
)));
6042 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6044 fprintf (dump_file
, " will take edge to ");
6045 print_generic_stmt (dump_file
, CASE_LABEL (val
), 0);
6048 return SSA_PROP_INTERESTING
;
6052 /* Evaluate statement STMT. If the statement produces a useful range,
6053 return SSA_PROP_INTERESTING and record the SSA name with the
6054 interesting range into *OUTPUT_P.
6056 If STMT is a conditional branch and we can determine its truth
6057 value, the taken edge is recorded in *TAKEN_EDGE_P.
6059 If STMT produces a varying value, return SSA_PROP_VARYING. */
6061 static enum ssa_prop_result
6062 vrp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
6067 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6069 fprintf (dump_file
, "\nVisiting statement:\n");
6070 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
6071 fprintf (dump_file
, "\n");
6074 if (!stmt_interesting_for_vrp (stmt
))
6075 gcc_assert (stmt_ends_bb_p (stmt
));
6076 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
6078 /* In general, assignments with virtual operands are not useful
6079 for deriving ranges, with the obvious exception of calls to
6080 builtin functions. */
6082 if ((is_gimple_call (stmt
)
6083 && gimple_call_fndecl (stmt
) != NULL_TREE
6084 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt
)))
6085 || !gimple_vuse (stmt
))
6086 return vrp_visit_assignment_or_call (stmt
, output_p
);
6088 else if (gimple_code (stmt
) == GIMPLE_COND
)
6089 return vrp_visit_cond_stmt (stmt
, taken_edge_p
);
6090 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
6091 return vrp_visit_switch_stmt (stmt
, taken_edge_p
);
6093 /* All other statements produce nothing of interest for VRP, so mark
6094 their outputs varying and prevent further simulation. */
6095 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
6096 set_value_range_to_varying (get_value_range (def
));
6098 return SSA_PROP_VARYING
;
6102 /* Meet operation for value ranges. Given two value ranges VR0 and
6103 VR1, store in VR0 a range that contains both VR0 and VR1. This
6104 may not be the smallest possible such range. */
6107 vrp_meet (value_range_t
*vr0
, value_range_t
*vr1
)
6109 if (vr0
->type
== VR_UNDEFINED
)
6111 copy_value_range (vr0
, vr1
);
6115 if (vr1
->type
== VR_UNDEFINED
)
6117 /* Nothing to do. VR0 already has the resulting range. */
6121 if (vr0
->type
== VR_VARYING
)
6123 /* Nothing to do. VR0 already has the resulting range. */
6127 if (vr1
->type
== VR_VARYING
)
6129 set_value_range_to_varying (vr0
);
6133 if (vr0
->type
== VR_RANGE
&& vr1
->type
== VR_RANGE
)
6138 /* Compute the convex hull of the ranges. The lower limit of
6139 the new range is the minimum of the two ranges. If they
6140 cannot be compared, then give up. */
6141 cmp
= compare_values (vr0
->min
, vr1
->min
);
6142 if (cmp
== 0 || cmp
== 1)
6149 /* Similarly, the upper limit of the new range is the maximum
6150 of the two ranges. If they cannot be compared, then
6152 cmp
= compare_values (vr0
->max
, vr1
->max
);
6153 if (cmp
== 0 || cmp
== -1)
6160 /* Check for useless ranges. */
6161 if (INTEGRAL_TYPE_P (TREE_TYPE (min
))
6162 && ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
6163 && (vrp_val_is_max (max
) || is_overflow_infinity (max
))))
6166 /* The resulting set of equivalences is the intersection of
6168 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
6169 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
6170 else if (vr0
->equiv
&& !vr1
->equiv
)
6171 bitmap_clear (vr0
->equiv
);
6173 set_value_range (vr0
, vr0
->type
, min
, max
, vr0
->equiv
);
6175 else if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
6177 /* Two anti-ranges meet only if their complements intersect.
6178 Only handle the case of identical ranges. */
6179 if (compare_values (vr0
->min
, vr1
->min
) == 0
6180 && compare_values (vr0
->max
, vr1
->max
) == 0
6181 && compare_values (vr0
->min
, vr0
->max
) == 0)
6183 /* The resulting set of equivalences is the intersection of
6185 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
6186 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
6187 else if (vr0
->equiv
&& !vr1
->equiv
)
6188 bitmap_clear (vr0
->equiv
);
6193 else if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
6195 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6196 only handle the case where the ranges have an empty intersection.
6197 The result of the meet operation is the anti-range. */
6198 if (!symbolic_range_p (vr0
)
6199 && !symbolic_range_p (vr1
)
6200 && !value_ranges_intersect_p (vr0
, vr1
))
6202 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6203 set. We need to compute the intersection of the two
6204 equivalence sets. */
6205 if (vr1
->type
== VR_ANTI_RANGE
)
6206 set_value_range (vr0
, vr1
->type
, vr1
->min
, vr1
->max
, vr0
->equiv
);
6208 /* The resulting set of equivalences is the intersection of
6210 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
6211 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
6212 else if (vr0
->equiv
&& !vr1
->equiv
)
6213 bitmap_clear (vr0
->equiv
);
6224 /* Failed to find an efficient meet. Before giving up and setting
6225 the result to VARYING, see if we can at least derive a useful
6226 anti-range. FIXME, all this nonsense about distinguishing
6227 anti-ranges from ranges is necessary because of the odd
6228 semantics of range_includes_zero_p and friends. */
6229 if (!symbolic_range_p (vr0
)
6230 && ((vr0
->type
== VR_RANGE
&& !range_includes_zero_p (vr0
))
6231 || (vr0
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr0
)))
6232 && !symbolic_range_p (vr1
)
6233 && ((vr1
->type
== VR_RANGE
&& !range_includes_zero_p (vr1
))
6234 || (vr1
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr1
))))
6236 set_value_range_to_nonnull (vr0
, TREE_TYPE (vr0
->min
));
6238 /* Since this meet operation did not result from the meeting of
6239 two equivalent names, VR0 cannot have any equivalences. */
6241 bitmap_clear (vr0
->equiv
);
6244 set_value_range_to_varying (vr0
);
6248 /* Visit all arguments for PHI node PHI that flow through executable
6249 edges. If a valid value range can be derived from all the incoming
6250 value ranges, set a new range for the LHS of PHI. */
6252 static enum ssa_prop_result
6253 vrp_visit_phi_node (gimple phi
)
6256 tree lhs
= PHI_RESULT (phi
);
6257 value_range_t
*lhs_vr
= get_value_range (lhs
);
6258 value_range_t vr_result
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
6259 int edges
, old_edges
;
6262 copy_value_range (&vr_result
, lhs_vr
);
6264 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6266 fprintf (dump_file
, "\nVisiting PHI node: ");
6267 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
6271 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
6273 edge e
= gimple_phi_arg_edge (phi
, i
);
6275 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6278 "\n Argument #%d (%d -> %d %sexecutable)\n",
6279 (int) i
, e
->src
->index
, e
->dest
->index
,
6280 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
6283 if (e
->flags
& EDGE_EXECUTABLE
)
6285 tree arg
= PHI_ARG_DEF (phi
, i
);
6286 value_range_t vr_arg
;
6290 if (TREE_CODE (arg
) == SSA_NAME
)
6292 vr_arg
= *(get_value_range (arg
));
6296 if (is_overflow_infinity (arg
))
6298 arg
= copy_node (arg
);
6299 TREE_OVERFLOW (arg
) = 0;
6302 vr_arg
.type
= VR_RANGE
;
6305 vr_arg
.equiv
= NULL
;
6308 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6310 fprintf (dump_file
, "\t");
6311 print_generic_expr (dump_file
, arg
, dump_flags
);
6312 fprintf (dump_file
, "\n\tValue: ");
6313 dump_value_range (dump_file
, &vr_arg
);
6314 fprintf (dump_file
, "\n");
6317 vrp_meet (&vr_result
, &vr_arg
);
6319 if (vr_result
.type
== VR_VARYING
)
6324 /* If this is a loop PHI node SCEV may known more about its
6327 && (l
= loop_containing_stmt (phi
))
6328 && l
->header
== gimple_bb (phi
))
6329 adjust_range_with_scev (&vr_result
, l
, phi
, lhs
);
6331 if (vr_result
.type
== VR_VARYING
)
6334 old_edges
= vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)];
6335 vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)] = edges
;
6337 /* To prevent infinite iterations in the algorithm, derive ranges
6338 when the new value is slightly bigger or smaller than the
6339 previous one. We don't do this if we have seen a new executable
6340 edge; this helps us avoid an overflow infinity for conditionals
6341 which are not in a loop. */
6342 if (lhs_vr
->type
== VR_RANGE
&& vr_result
.type
== VR_RANGE
6343 && edges
<= old_edges
)
6345 if (!POINTER_TYPE_P (TREE_TYPE (lhs
)))
6347 int cmp_min
= compare_values (lhs_vr
->min
, vr_result
.min
);
6348 int cmp_max
= compare_values (lhs_vr
->max
, vr_result
.max
);
6350 /* If the new minimum is smaller or larger than the previous
6351 one, go all the way to -INF. In the first case, to avoid
6352 iterating millions of times to reach -INF, and in the
6353 other case to avoid infinite bouncing between different
6355 if (cmp_min
> 0 || cmp_min
< 0)
6357 /* If we will end up with a (-INF, +INF) range, set it to
6358 VARYING. Same if the previous max value was invalid for
6359 the type and we'd end up with vr_result.min > vr_result.max. */
6360 if (vrp_val_is_max (vr_result
.max
)
6361 || compare_values (TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
)),
6365 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.min
))
6366 || !vrp_var_may_overflow (lhs
, phi
))
6367 vr_result
.min
= TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
));
6368 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.min
)))
6370 negative_overflow_infinity (TREE_TYPE (vr_result
.min
));
6375 /* Similarly, if the new maximum is smaller or larger than
6376 the previous one, go all the way to +INF. */
6377 if (cmp_max
< 0 || cmp_max
> 0)
6379 /* If we will end up with a (-INF, +INF) range, set it to
6380 VARYING. Same if the previous min value was invalid for
6381 the type and we'd end up with vr_result.max < vr_result.min. */
6382 if (vrp_val_is_min (vr_result
.min
)
6383 || compare_values (TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
)),
6387 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.max
))
6388 || !vrp_var_may_overflow (lhs
, phi
))
6389 vr_result
.max
= TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
));
6390 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.max
)))
6392 positive_overflow_infinity (TREE_TYPE (vr_result
.max
));
6399 /* If the new range is different than the previous value, keep
6401 if (update_value_range (lhs
, &vr_result
))
6402 return SSA_PROP_INTERESTING
;
6404 /* Nothing changed, don't add outgoing edges. */
6405 return SSA_PROP_NOT_INTERESTING
;
6407 /* No match found. Set the LHS to VARYING. */
6409 set_value_range_to_varying (lhs_vr
);
6410 return SSA_PROP_VARYING
;
6413 /* Simplify boolean operations if the source is known
6414 to be already a boolean. */
6416 simplify_truth_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
6418 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
6423 bool need_conversion
;
6425 op0
= gimple_assign_rhs1 (stmt
);
6426 if (TYPE_PRECISION (TREE_TYPE (op0
)) != 1)
6428 if (TREE_CODE (op0
) != SSA_NAME
)
6430 vr
= get_value_range (op0
);
6432 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
6433 if (!val
|| !integer_onep (val
))
6436 val
= compare_range_with_value (LE_EXPR
, vr
, integer_one_node
, &sop
);
6437 if (!val
|| !integer_onep (val
))
6441 if (rhs_code
== TRUTH_NOT_EXPR
)
6444 op1
= build_int_cst (TREE_TYPE (op0
), 1);
6448 op1
= gimple_assign_rhs2 (stmt
);
6450 /* Reduce number of cases to handle. */
6451 if (is_gimple_min_invariant (op1
))
6453 /* Exclude anything that should have been already folded. */
6454 if (rhs_code
!= EQ_EXPR
6455 && rhs_code
!= NE_EXPR
6456 && rhs_code
!= TRUTH_XOR_EXPR
)
6459 if (!integer_zerop (op1
)
6460 && !integer_onep (op1
)
6461 && !integer_all_onesp (op1
))
6464 /* Limit the number of cases we have to consider. */
6465 if (rhs_code
== EQ_EXPR
)
6468 op1
= fold_unary (TRUTH_NOT_EXPR
, TREE_TYPE (op1
), op1
);
6473 /* Punt on A == B as there is no BIT_XNOR_EXPR. */
6474 if (rhs_code
== EQ_EXPR
)
6477 if (TYPE_PRECISION (TREE_TYPE (op1
)) != 1)
6479 vr
= get_value_range (op1
);
6480 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
6481 if (!val
|| !integer_onep (val
))
6484 val
= compare_range_with_value (LE_EXPR
, vr
, integer_one_node
, &sop
);
6485 if (!val
|| !integer_onep (val
))
6491 if (sop
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
6493 location_t location
;
6495 if (!gimple_has_location (stmt
))
6496 location
= input_location
;
6498 location
= gimple_location (stmt
);
6500 if (rhs_code
== TRUTH_AND_EXPR
|| rhs_code
== TRUTH_OR_EXPR
)
6501 warning_at (location
, OPT_Wstrict_overflow
,
6502 _("assuming signed overflow does not occur when "
6503 "simplifying && or || to & or |"));
6505 warning_at (location
, OPT_Wstrict_overflow
,
6506 _("assuming signed overflow does not occur when "
6507 "simplifying ==, != or ! to identity or ^"));
6511 !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt
)),
6514 /* Make sure to not sign-extend -1 as a boolean value. */
6516 && !TYPE_UNSIGNED (TREE_TYPE (op0
))
6517 && TYPE_PRECISION (TREE_TYPE (op0
)) == 1)
6522 case TRUTH_AND_EXPR
:
6523 rhs_code
= BIT_AND_EXPR
;
6526 rhs_code
= BIT_IOR_EXPR
;
6528 case TRUTH_XOR_EXPR
:
6530 if (integer_zerop (op1
))
6532 gimple_assign_set_rhs_with_ops (gsi
,
6533 need_conversion
? NOP_EXPR
: SSA_NAME
,
6535 update_stmt (gsi_stmt (*gsi
));
6539 rhs_code
= BIT_XOR_EXPR
;
6545 if (need_conversion
)
6548 gimple_assign_set_rhs_with_ops (gsi
, rhs_code
, op0
, op1
);
6549 update_stmt (gsi_stmt (*gsi
));
6553 /* Simplify a division or modulo operator to a right shift or
6554 bitwise and if the first operand is unsigned or is greater
6555 than zero and the second operand is an exact power of two. */
6558 simplify_div_or_mod_using_ranges (gimple stmt
)
6560 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
6562 tree op0
= gimple_assign_rhs1 (stmt
);
6563 tree op1
= gimple_assign_rhs2 (stmt
);
6564 value_range_t
*vr
= get_value_range (gimple_assign_rhs1 (stmt
));
6566 if (TYPE_UNSIGNED (TREE_TYPE (op0
)))
6568 val
= integer_one_node
;
6574 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
6578 && integer_onep (val
)
6579 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
6581 location_t location
;
6583 if (!gimple_has_location (stmt
))
6584 location
= input_location
;
6586 location
= gimple_location (stmt
);
6587 warning_at (location
, OPT_Wstrict_overflow
,
6588 "assuming signed overflow does not occur when "
6589 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
6593 if (val
&& integer_onep (val
))
6597 if (rhs_code
== TRUNC_DIV_EXPR
)
6599 t
= build_int_cst (NULL_TREE
, tree_log2 (op1
));
6600 gimple_assign_set_rhs_code (stmt
, RSHIFT_EXPR
);
6601 gimple_assign_set_rhs1 (stmt
, op0
);
6602 gimple_assign_set_rhs2 (stmt
, t
);
6606 t
= build_int_cst (TREE_TYPE (op1
), 1);
6607 t
= int_const_binop (MINUS_EXPR
, op1
, t
, 0);
6608 t
= fold_convert (TREE_TYPE (op0
), t
);
6610 gimple_assign_set_rhs_code (stmt
, BIT_AND_EXPR
);
6611 gimple_assign_set_rhs1 (stmt
, op0
);
6612 gimple_assign_set_rhs2 (stmt
, t
);
6622 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6623 ABS_EXPR. If the operand is <= 0, then simplify the
6624 ABS_EXPR into a NEGATE_EXPR. */
6627 simplify_abs_using_ranges (gimple stmt
)
6630 tree op
= gimple_assign_rhs1 (stmt
);
6631 tree type
= TREE_TYPE (op
);
6632 value_range_t
*vr
= get_value_range (op
);
6634 if (TYPE_UNSIGNED (type
))
6636 val
= integer_zero_node
;
6642 val
= compare_range_with_value (LE_EXPR
, vr
, integer_zero_node
, &sop
);
6646 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
,
6651 if (integer_zerop (val
))
6652 val
= integer_one_node
;
6653 else if (integer_onep (val
))
6654 val
= integer_zero_node
;
6659 && (integer_onep (val
) || integer_zerop (val
)))
6661 if (sop
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
6663 location_t location
;
6665 if (!gimple_has_location (stmt
))
6666 location
= input_location
;
6668 location
= gimple_location (stmt
);
6669 warning_at (location
, OPT_Wstrict_overflow
,
6670 "assuming signed overflow does not occur when "
6671 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
6674 gimple_assign_set_rhs1 (stmt
, op
);
6675 if (integer_onep (val
))
6676 gimple_assign_set_rhs_code (stmt
, NEGATE_EXPR
);
6678 gimple_assign_set_rhs_code (stmt
, SSA_NAME
);
6687 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
6688 a known value range VR.
6690 If there is one and only one value which will satisfy the
6691 conditional, then return that value. Else return NULL. */
6694 test_for_singularity (enum tree_code cond_code
, tree op0
,
6695 tree op1
, value_range_t
*vr
)
6700 /* Extract minimum/maximum values which satisfy the
6701 the conditional as it was written. */
6702 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
6704 /* This should not be negative infinity; there is no overflow
6706 min
= TYPE_MIN_VALUE (TREE_TYPE (op0
));
6709 if (cond_code
== LT_EXPR
&& !is_overflow_infinity (max
))
6711 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
6712 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (op0
), max
, one
);
6714 TREE_NO_WARNING (max
) = 1;
6717 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
6719 /* This should not be positive infinity; there is no overflow
6721 max
= TYPE_MAX_VALUE (TREE_TYPE (op0
));
6724 if (cond_code
== GT_EXPR
&& !is_overflow_infinity (min
))
6726 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
6727 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (op0
), min
, one
);
6729 TREE_NO_WARNING (min
) = 1;
6733 /* Now refine the minimum and maximum values using any
6734 value range information we have for op0. */
6737 if (compare_values (vr
->min
, min
) == 1)
6739 if (compare_values (vr
->max
, max
) == -1)
6742 /* If the new min/max values have converged to a single value,
6743 then there is only one value which can satisfy the condition,
6744 return that value. */
6745 if (operand_equal_p (min
, max
, 0) && is_gimple_min_invariant (min
))
6751 /* Simplify a conditional using a relational operator to an equality
6752 test if the range information indicates only one value can satisfy
6753 the original conditional. */
6756 simplify_cond_using_ranges (gimple stmt
)
6758 tree op0
= gimple_cond_lhs (stmt
);
6759 tree op1
= gimple_cond_rhs (stmt
);
6760 enum tree_code cond_code
= gimple_cond_code (stmt
);
6762 if (cond_code
!= NE_EXPR
6763 && cond_code
!= EQ_EXPR
6764 && TREE_CODE (op0
) == SSA_NAME
6765 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6766 && is_gimple_min_invariant (op1
))
6768 value_range_t
*vr
= get_value_range (op0
);
6770 /* If we have range information for OP0, then we might be
6771 able to simplify this conditional. */
6772 if (vr
->type
== VR_RANGE
)
6774 tree new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
);
6780 fprintf (dump_file
, "Simplified relational ");
6781 print_gimple_stmt (dump_file
, stmt
, 0, 0);
6782 fprintf (dump_file
, " into ");
6785 gimple_cond_set_code (stmt
, EQ_EXPR
);
6786 gimple_cond_set_lhs (stmt
, op0
);
6787 gimple_cond_set_rhs (stmt
, new_tree
);
6793 print_gimple_stmt (dump_file
, stmt
, 0, 0);
6794 fprintf (dump_file
, "\n");
6800 /* Try again after inverting the condition. We only deal
6801 with integral types here, so no need to worry about
6802 issues with inverting FP comparisons. */
6803 cond_code
= invert_tree_comparison (cond_code
, false);
6804 new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
);
6810 fprintf (dump_file
, "Simplified relational ");
6811 print_gimple_stmt (dump_file
, stmt
, 0, 0);
6812 fprintf (dump_file
, " into ");
6815 gimple_cond_set_code (stmt
, NE_EXPR
);
6816 gimple_cond_set_lhs (stmt
, op0
);
6817 gimple_cond_set_rhs (stmt
, new_tree
);
6823 print_gimple_stmt (dump_file
, stmt
, 0, 0);
6824 fprintf (dump_file
, "\n");
6835 /* Simplify a switch statement using the value range of the switch
6839 simplify_switch_using_ranges (gimple stmt
)
6841 tree op
= gimple_switch_index (stmt
);
6846 size_t i
= 0, j
= 0, n
, n2
;
6850 if (TREE_CODE (op
) == SSA_NAME
)
6852 vr
= get_value_range (op
);
6854 /* We can only handle integer ranges. */
6855 if (vr
->type
!= VR_RANGE
6856 || symbolic_range_p (vr
))
6859 /* Find case label for min/max of the value range. */
6860 take_default
= !find_case_label_range (stmt
, vr
->min
, vr
->max
, &i
, &j
);
6862 else if (TREE_CODE (op
) == INTEGER_CST
)
6864 take_default
= !find_case_label_index (stmt
, 1, op
, &i
);
6878 n
= gimple_switch_num_labels (stmt
);
6880 /* Bail out if this is just all edges taken. */
6886 /* Build a new vector of taken case labels. */
6887 vec2
= make_tree_vec (j
- i
+ 1 + (int)take_default
);
6890 /* Add the default edge, if necessary. */
6892 TREE_VEC_ELT (vec2
, n2
++) = gimple_switch_default_label (stmt
);
6894 for (; i
<= j
; ++i
, ++n2
)
6895 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, i
);
6897 /* Mark needed edges. */
6898 for (i
= 0; i
< n2
; ++i
)
6900 e
= find_edge (gimple_bb (stmt
),
6901 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2
, i
))));
6902 e
->aux
= (void *)-1;
6905 /* Queue not needed edges for later removal. */
6906 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
6908 if (e
->aux
== (void *)-1)
6914 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6916 fprintf (dump_file
, "removing unreachable case label\n");
6918 VEC_safe_push (edge
, heap
, to_remove_edges
, e
);
6919 e
->flags
&= ~EDGE_EXECUTABLE
;
6922 /* And queue an update for the stmt. */
6925 VEC_safe_push (switch_update
, heap
, to_update_switch_stmts
, &su
);
6929 /* Simplify STMT using ranges if possible. */
6932 simplify_stmt_using_ranges (gimple_stmt_iterator
*gsi
)
6934 gimple stmt
= gsi_stmt (*gsi
);
6935 if (is_gimple_assign (stmt
))
6937 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
6943 case TRUTH_NOT_EXPR
:
6944 case TRUTH_AND_EXPR
:
6946 case TRUTH_XOR_EXPR
:
6947 /* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
6948 or identity if the RHS is zero or one, and the LHS are known
6949 to be boolean values. Transform all TRUTH_*_EXPR into
6950 BIT_*_EXPR if both arguments are known to be boolean values. */
6951 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt
))))
6952 return simplify_truth_ops_using_ranges (gsi
, stmt
);
6955 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
6956 and BIT_AND_EXPR respectively if the first operand is greater
6957 than zero and the second operand is an exact power of two. */
6958 case TRUNC_DIV_EXPR
:
6959 case TRUNC_MOD_EXPR
:
6960 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt
)))
6961 && integer_pow2p (gimple_assign_rhs2 (stmt
)))
6962 return simplify_div_or_mod_using_ranges (stmt
);
6965 /* Transform ABS (X) into X or -X as appropriate. */
6967 if (TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
6968 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt
))))
6969 return simplify_abs_using_ranges (stmt
);
6976 else if (gimple_code (stmt
) == GIMPLE_COND
)
6977 return simplify_cond_using_ranges (stmt
);
6978 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
6979 return simplify_switch_using_ranges (stmt
);
6984 /* If the statement pointed by SI has a predicate whose value can be
6985 computed using the value range information computed by VRP, compute
6986 its value and return true. Otherwise, return false. */
6989 fold_predicate_in (gimple_stmt_iterator
*si
)
6991 bool assignment_p
= false;
6993 gimple stmt
= gsi_stmt (*si
);
6995 if (is_gimple_assign (stmt
)
6996 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)) == tcc_comparison
)
6998 assignment_p
= true;
6999 val
= vrp_evaluate_conditional (gimple_assign_rhs_code (stmt
),
7000 gimple_assign_rhs1 (stmt
),
7001 gimple_assign_rhs2 (stmt
),
7004 else if (gimple_code (stmt
) == GIMPLE_COND
)
7005 val
= vrp_evaluate_conditional (gimple_cond_code (stmt
),
7006 gimple_cond_lhs (stmt
),
7007 gimple_cond_rhs (stmt
),
7015 val
= fold_convert (gimple_expr_type (stmt
), val
);
7019 fprintf (dump_file
, "Folding predicate ");
7020 print_gimple_expr (dump_file
, stmt
, 0, 0);
7021 fprintf (dump_file
, " to ");
7022 print_generic_expr (dump_file
, val
, 0);
7023 fprintf (dump_file
, "\n");
7026 if (is_gimple_assign (stmt
))
7027 gimple_assign_set_rhs_from_tree (si
, val
);
7030 gcc_assert (gimple_code (stmt
) == GIMPLE_COND
);
7031 if (integer_zerop (val
))
7032 gimple_cond_make_false (stmt
);
7033 else if (integer_onep (val
))
7034 gimple_cond_make_true (stmt
);
7045 /* Callback for substitute_and_fold folding the stmt at *SI. */
7048 vrp_fold_stmt (gimple_stmt_iterator
*si
)
7050 if (fold_predicate_in (si
))
7053 return simplify_stmt_using_ranges (si
);
7056 /* Stack of dest,src equivalency pairs that need to be restored after
7057 each attempt to thread a block's incoming edge to an outgoing edge.
7059 A NULL entry is used to mark the end of pairs which need to be
7061 static VEC(tree
,heap
) *stack
;
7063 /* A trivial wrapper so that we can present the generic jump threading
7064 code with a simple API for simplifying statements. STMT is the
7065 statement we want to simplify, WITHIN_STMT provides the location
7066 for any overflow warnings. */
7069 simplify_stmt_for_jump_threading (gimple stmt
, gimple within_stmt
)
7071 /* We only use VRP information to simplify conditionals. This is
7072 overly conservative, but it's unclear if doing more would be
7073 worth the compile time cost. */
7074 if (gimple_code (stmt
) != GIMPLE_COND
)
7077 return vrp_evaluate_conditional (gimple_cond_code (stmt
),
7078 gimple_cond_lhs (stmt
),
7079 gimple_cond_rhs (stmt
), within_stmt
);
7082 /* Blocks which have more than one predecessor and more than
7083 one successor present jump threading opportunities, i.e.,
7084 when the block is reached from a specific predecessor, we
7085 may be able to determine which of the outgoing edges will
7086 be traversed. When this optimization applies, we are able
7087 to avoid conditionals at runtime and we may expose secondary
7088 optimization opportunities.
7090 This routine is effectively a driver for the generic jump
7091 threading code. It basically just presents the generic code
7092 with edges that may be suitable for jump threading.
7094 Unlike DOM, we do not iterate VRP if jump threading was successful.
7095 While iterating may expose new opportunities for VRP, it is expected
7096 those opportunities would be very limited and the compile time cost
7097 to expose those opportunities would be significant.
7099 As jump threading opportunities are discovered, they are registered
7100 for later realization. */
7103 identify_jump_threads (void)
7110 /* Ugh. When substituting values earlier in this pass we can
7111 wipe the dominance information. So rebuild the dominator
7112 information as we need it within the jump threading code. */
7113 calculate_dominance_info (CDI_DOMINATORS
);
7115 /* We do not allow VRP information to be used for jump threading
7116 across a back edge in the CFG. Otherwise it becomes too
7117 difficult to avoid eliminating loop exit tests. Of course
7118 EDGE_DFS_BACK is not accurate at this time so we have to
7120 mark_dfs_back_edges ();
7122 /* Do not thread across edges we are about to remove. Just marking
7123 them as EDGE_DFS_BACK will do. */
7124 for (i
= 0; VEC_iterate (edge
, to_remove_edges
, i
, e
); ++i
)
7125 e
->flags
|= EDGE_DFS_BACK
;
7127 /* Allocate our unwinder stack to unwind any temporary equivalences
7128 that might be recorded. */
7129 stack
= VEC_alloc (tree
, heap
, 20);
7131 /* To avoid lots of silly node creation, we create a single
7132 conditional and just modify it in-place when attempting to
7134 dummy
= gimple_build_cond (EQ_EXPR
,
7135 integer_zero_node
, integer_zero_node
,
7138 /* Walk through all the blocks finding those which present a
7139 potential jump threading opportunity. We could set this up
7140 as a dominator walker and record data during the walk, but
7141 I doubt it's worth the effort for the classes of jump
7142 threading opportunities we are trying to identify at this
7143 point in compilation. */
7148 /* If the generic jump threading code does not find this block
7149 interesting, then there is nothing to do. */
7150 if (! potentially_threadable_block (bb
))
7153 /* We only care about blocks ending in a COND_EXPR. While there
7154 may be some value in handling SWITCH_EXPR here, I doubt it's
7155 terribly important. */
7156 last
= gsi_stmt (gsi_last_bb (bb
));
7157 if (gimple_code (last
) != GIMPLE_COND
)
7160 /* We're basically looking for any kind of conditional with
7161 integral type arguments. */
7162 if (TREE_CODE (gimple_cond_lhs (last
)) == SSA_NAME
7163 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
)))
7164 && (TREE_CODE (gimple_cond_rhs (last
)) == SSA_NAME
7165 || is_gimple_min_invariant (gimple_cond_rhs (last
)))
7166 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_rhs (last
))))
7170 /* We've got a block with multiple predecessors and multiple
7171 successors which also ends in a suitable conditional. For
7172 each predecessor, see if we can thread it to a specific
7174 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7176 /* Do not thread across back edges or abnormal edges
7178 if (e
->flags
& (EDGE_DFS_BACK
| EDGE_COMPLEX
))
7181 thread_across_edge (dummy
, e
, true, &stack
,
7182 simplify_stmt_for_jump_threading
);
7187 /* We do not actually update the CFG or SSA graphs at this point as
7188 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7189 handle ASSERT_EXPRs gracefully. */
7192 /* We identified all the jump threading opportunities earlier, but could
7193 not transform the CFG at that time. This routine transforms the
7194 CFG and arranges for the dominator tree to be rebuilt if necessary.
7196 Note the SSA graph update will occur during the normal TODO
7197 processing by the pass manager. */
7199 finalize_jump_threads (void)
7201 thread_through_all_blocks (false);
7202 VEC_free (tree
, heap
, stack
);
7206 /* Traverse all the blocks folding conditionals with known ranges. */
7212 prop_value_t
*single_val_range
;
7213 bool do_value_subst_p
;
7217 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
7218 dump_all_value_ranges (dump_file
);
7219 fprintf (dump_file
, "\n");
7222 /* We may have ended with ranges that have exactly one value. Those
7223 values can be substituted as any other const propagated
7224 value using substitute_and_fold. */
7225 single_val_range
= XCNEWVEC (prop_value_t
, num_ssa_names
);
7227 do_value_subst_p
= false;
7228 for (i
= 0; i
< num_ssa_names
; i
++)
7230 && vr_value
[i
]->type
== VR_RANGE
7231 && vr_value
[i
]->min
== vr_value
[i
]->max
7232 && is_gimple_min_invariant (vr_value
[i
]->min
))
7234 single_val_range
[i
].value
= vr_value
[i
]->min
;
7235 do_value_subst_p
= true;
7238 if (!do_value_subst_p
)
7240 /* We found no single-valued ranges, don't waste time trying to
7241 do single value substitution in substitute_and_fold. */
7242 free (single_val_range
);
7243 single_val_range
= NULL
;
7246 substitute_and_fold (single_val_range
, vrp_fold_stmt
);
7248 if (warn_array_bounds
)
7249 check_all_array_refs ();
7251 /* We must identify jump threading opportunities before we release
7252 the datastructures built by VRP. */
7253 identify_jump_threads ();
7255 /* Free allocated memory. */
7256 for (i
= 0; i
< num_ssa_names
; i
++)
7259 BITMAP_FREE (vr_value
[i
]->equiv
);
7263 free (single_val_range
);
7265 free (vr_phi_edge_counts
);
7267 /* So that we can distinguish between VRP data being available
7268 and not available. */
7270 vr_phi_edge_counts
= NULL
;
7274 /* Main entry point to VRP (Value Range Propagation). This pass is
7275 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7276 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7277 Programming Language Design and Implementation, pp. 67-78, 1995.
7278 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7280 This is essentially an SSA-CCP pass modified to deal with ranges
7281 instead of constants.
7283 While propagating ranges, we may find that two or more SSA name
7284 have equivalent, though distinct ranges. For instance,
7287 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7289 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7293 In the code above, pointer p_5 has range [q_2, q_2], but from the
7294 code we can also determine that p_5 cannot be NULL and, if q_2 had
7295 a non-varying range, p_5's range should also be compatible with it.
7297 These equivalences are created by two expressions: ASSERT_EXPR and
7298 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7299 result of another assertion, then we can use the fact that p_5 and
7300 p_4 are equivalent when evaluating p_5's range.
7302 Together with value ranges, we also propagate these equivalences
7303 between names so that we can take advantage of information from
7304 multiple ranges when doing final replacement. Note that this
7305 equivalency relation is transitive but not symmetric.
7307 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7308 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7309 in contexts where that assertion does not hold (e.g., in line 6).
7311 TODO, the main difference between this pass and Patterson's is that
7312 we do not propagate edge probabilities. We only compute whether
7313 edges can be taken or not. That is, instead of having a spectrum
7314 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7315 DON'T KNOW. In the future, it may be worthwhile to propagate
7316 probabilities to aid branch prediction. */
7325 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
7326 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
7329 insert_range_assertions ();
7331 to_remove_edges
= VEC_alloc (edge
, heap
, 10);
7332 to_update_switch_stmts
= VEC_alloc (switch_update
, heap
, 5);
7333 threadedge_initialize_values ();
7336 ssa_propagate (vrp_visit_stmt
, vrp_visit_phi_node
);
7339 /* ASSERT_EXPRs must be removed before finalizing jump threads
7340 as finalizing jump threads calls the CFG cleanup code which
7341 does not properly handle ASSERT_EXPRs. */
7342 remove_range_assertions ();
7344 /* If we exposed any new variables, go ahead and put them into
7345 SSA form now, before we handle jump threading. This simplifies
7346 interactions between rewriting of _DECL nodes into SSA form
7347 and rewriting SSA_NAME nodes into SSA form after block
7348 duplication and CFG manipulation. */
7349 update_ssa (TODO_update_ssa
);
7351 finalize_jump_threads ();
7353 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7354 CFG in a broken state and requires a cfg_cleanup run. */
7355 for (i
= 0; VEC_iterate (edge
, to_remove_edges
, i
, e
); ++i
)
7357 /* Update SWITCH_EXPR case label vector. */
7358 for (i
= 0; VEC_iterate (switch_update
, to_update_switch_stmts
, i
, su
); ++i
)
7361 size_t n
= TREE_VEC_LENGTH (su
->vec
);
7363 gimple_switch_set_num_labels (su
->stmt
, n
);
7364 for (j
= 0; j
< n
; j
++)
7365 gimple_switch_set_label (su
->stmt
, j
, TREE_VEC_ELT (su
->vec
, j
));
7366 /* As we may have replaced the default label with a regular one
7367 make sure to make it a real default label again. This ensures
7368 optimal expansion. */
7369 label
= gimple_switch_default_label (su
->stmt
);
7370 CASE_LOW (label
) = NULL_TREE
;
7371 CASE_HIGH (label
) = NULL_TREE
;
7374 if (VEC_length (edge
, to_remove_edges
) > 0)
7375 free_dominance_info (CDI_DOMINATORS
);
7377 VEC_free (edge
, heap
, to_remove_edges
);
7378 VEC_free (switch_update
, heap
, to_update_switch_stmts
);
7379 threadedge_finalize_values ();
7382 loop_optimizer_finalize ();
7389 return flag_tree_vrp
!= 0;
7392 struct gimple_opt_pass pass_vrp
=
7397 gate_vrp
, /* gate */
7398 execute_vrp
, /* execute */
7401 0, /* static_pass_number */
7402 TV_TREE_VRP
, /* tv_id */
7403 PROP_ssa
, /* properties_required */
7404 0, /* properties_provided */
7405 0, /* properties_destroyed */
7406 0, /* todo_flags_start */
7411 | TODO_update_ssa
/* todo_flags_finish */