1 /* Gimple IR support functions.
3 Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
33 #include "diagnostic.h"
34 #include "tree-flow.h"
35 #include "value-prof.h"
40 /* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
44 static htab_t gimple_types
;
45 static struct pointer_map_t
*type_hash_cache
;
47 /* Global type comparison cache. */
48 static htab_t gtc_visited
;
49 static struct obstack gtc_ob
;
51 /* All the tuples have their operand vector (if present) at the very bottom
52 of the structure. Therefore, the offset required to find the
53 operands vector the size of the structure minus the size of the 1
54 element tree array at the end (see gimple_ops). */
55 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
56 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
57 EXPORTED_CONST
size_t gimple_ops_offset_
[] = {
58 #include "gsstruct.def"
62 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
63 static const size_t gsstruct_code_size
[] = {
64 #include "gsstruct.def"
68 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
69 const char *const gimple_code_name
[] = {
74 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
75 EXPORTED_CONST
enum gimple_statement_structure_enum gss_for_code_
[] = {
80 #ifdef GATHER_STATISTICS
83 int gimple_alloc_counts
[(int) gimple_alloc_kind_all
];
84 int gimple_alloc_sizes
[(int) gimple_alloc_kind_all
];
86 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
87 static const char * const gimple_alloc_kind_names
[] = {
95 #endif /* GATHER_STATISTICS */
97 /* A cache of gimple_seq objects. Sequences are created and destroyed
98 fairly often during gimplification. */
99 static GTY ((deletable
)) struct gimple_seq_d
*gimple_seq_cache
;
101 /* Private API manipulation functions shared only with some
103 extern void gimple_set_stored_syms (gimple
, bitmap
, bitmap_obstack
*);
104 extern void gimple_set_loaded_syms (gimple
, bitmap
, bitmap_obstack
*);
106 /* Gimple tuple constructors.
107 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
108 be passed a NULL to start with an empty sequence. */
110 /* Set the code for statement G to CODE. */
113 gimple_set_code (gimple g
, enum gimple_code code
)
115 g
->gsbase
.code
= code
;
118 /* Return the number of bytes needed to hold a GIMPLE statement with
122 gimple_size (enum gimple_code code
)
124 return gsstruct_code_size
[gss_for_code (code
)];
127 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
131 gimple_alloc_stat (enum gimple_code code
, unsigned num_ops MEM_STAT_DECL
)
136 size
= gimple_size (code
);
138 size
+= sizeof (tree
) * (num_ops
- 1);
140 #ifdef GATHER_STATISTICS
142 enum gimple_alloc_kind kind
= gimple_alloc_kind (code
);
143 gimple_alloc_counts
[(int) kind
]++;
144 gimple_alloc_sizes
[(int) kind
] += size
;
148 stmt
= (gimple
) ggc_alloc_cleared_stat (size PASS_MEM_STAT
);
149 gimple_set_code (stmt
, code
);
150 gimple_set_num_ops (stmt
, num_ops
);
152 /* Do not call gimple_set_modified here as it has other side
153 effects and this tuple is still not completely built. */
154 stmt
->gsbase
.modified
= 1;
159 /* Set SUBCODE to be the code of the expression computed by statement G. */
162 gimple_set_subcode (gimple g
, unsigned subcode
)
164 /* We only have 16 bits for the RHS code. Assert that we are not
166 gcc_assert (subcode
< (1 << 16));
167 g
->gsbase
.subcode
= subcode
;
172 /* Build a tuple with operands. CODE is the statement to build (which
173 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
174 for the new tuple. NUM_OPS is the number of operands to allocate. */
176 #define gimple_build_with_ops(c, s, n) \
177 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
180 gimple_build_with_ops_stat (enum gimple_code code
, unsigned subcode
,
181 unsigned num_ops MEM_STAT_DECL
)
183 gimple s
= gimple_alloc_stat (code
, num_ops PASS_MEM_STAT
);
184 gimple_set_subcode (s
, subcode
);
190 /* Build a GIMPLE_RETURN statement returning RETVAL. */
193 gimple_build_return (tree retval
)
195 gimple s
= gimple_build_with_ops (GIMPLE_RETURN
, ERROR_MARK
, 1);
197 gimple_return_set_retval (s
, retval
);
201 /* Helper for gimple_build_call, gimple_build_call_vec and
202 gimple_build_call_from_tree. Build the basic components of a
203 GIMPLE_CALL statement to function FN with NARGS arguments. */
206 gimple_build_call_1 (tree fn
, unsigned nargs
)
208 gimple s
= gimple_build_with_ops (GIMPLE_CALL
, ERROR_MARK
, nargs
+ 3);
209 if (TREE_CODE (fn
) == FUNCTION_DECL
)
210 fn
= build_fold_addr_expr (fn
);
211 gimple_set_op (s
, 1, fn
);
216 /* Build a GIMPLE_CALL statement to function FN with the arguments
217 specified in vector ARGS. */
220 gimple_build_call_vec (tree fn
, VEC(tree
, heap
) *args
)
223 unsigned nargs
= VEC_length (tree
, args
);
224 gimple call
= gimple_build_call_1 (fn
, nargs
);
226 for (i
= 0; i
< nargs
; i
++)
227 gimple_call_set_arg (call
, i
, VEC_index (tree
, args
, i
));
233 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
234 arguments. The ... are the arguments. */
237 gimple_build_call (tree fn
, unsigned nargs
, ...)
243 gcc_assert (TREE_CODE (fn
) == FUNCTION_DECL
|| is_gimple_call_addr (fn
));
245 call
= gimple_build_call_1 (fn
, nargs
);
247 va_start (ap
, nargs
);
248 for (i
= 0; i
< nargs
; i
++)
249 gimple_call_set_arg (call
, i
, va_arg (ap
, tree
));
256 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
257 assumed to be in GIMPLE form already. Minimal checking is done of
261 gimple_build_call_from_tree (tree t
)
265 tree fndecl
= get_callee_fndecl (t
);
267 gcc_assert (TREE_CODE (t
) == CALL_EXPR
);
269 nargs
= call_expr_nargs (t
);
270 call
= gimple_build_call_1 (fndecl
? fndecl
: CALL_EXPR_FN (t
), nargs
);
272 for (i
= 0; i
< nargs
; i
++)
273 gimple_call_set_arg (call
, i
, CALL_EXPR_ARG (t
, i
));
275 gimple_set_block (call
, TREE_BLOCK (t
));
277 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
278 gimple_call_set_chain (call
, CALL_EXPR_STATIC_CHAIN (t
));
279 gimple_call_set_tail (call
, CALL_EXPR_TAILCALL (t
));
280 gimple_call_set_cannot_inline (call
, CALL_CANNOT_INLINE_P (t
));
281 gimple_call_set_return_slot_opt (call
, CALL_EXPR_RETURN_SLOT_OPT (t
));
282 gimple_call_set_from_thunk (call
, CALL_FROM_THUNK_P (t
));
283 gimple_call_set_va_arg_pack (call
, CALL_EXPR_VA_ARG_PACK (t
));
284 gimple_set_no_warning (call
, TREE_NO_WARNING (t
));
290 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
291 *OP1_P and *OP2_P respectively. */
294 extract_ops_from_tree (tree expr
, enum tree_code
*subcode_p
, tree
*op1_p
,
297 enum gimple_rhs_class grhs_class
;
299 *subcode_p
= TREE_CODE (expr
);
300 grhs_class
= get_gimple_rhs_class (*subcode_p
);
302 if (grhs_class
== GIMPLE_BINARY_RHS
)
304 *op1_p
= TREE_OPERAND (expr
, 0);
305 *op2_p
= TREE_OPERAND (expr
, 1);
307 else if (grhs_class
== GIMPLE_UNARY_RHS
)
309 *op1_p
= TREE_OPERAND (expr
, 0);
312 else if (grhs_class
== GIMPLE_SINGLE_RHS
)
322 /* Build a GIMPLE_ASSIGN statement.
324 LHS of the assignment.
325 RHS of the assignment which can be unary or binary. */
328 gimple_build_assign_stat (tree lhs
, tree rhs MEM_STAT_DECL
)
330 enum tree_code subcode
;
333 extract_ops_from_tree (rhs
, &subcode
, &op1
, &op2
);
334 return gimple_build_assign_with_ops_stat (subcode
, lhs
, op1
, op2
339 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
340 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
341 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
344 gimple_build_assign_with_ops_stat (enum tree_code subcode
, tree lhs
, tree op1
,
345 tree op2 MEM_STAT_DECL
)
350 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
352 num_ops
= get_gimple_rhs_num_ops (subcode
) + 1;
354 p
= gimple_build_with_ops_stat (GIMPLE_ASSIGN
, (unsigned)subcode
, num_ops
356 gimple_assign_set_lhs (p
, lhs
);
357 gimple_assign_set_rhs1 (p
, op1
);
360 gcc_assert (num_ops
> 2);
361 gimple_assign_set_rhs2 (p
, op2
);
368 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
370 DST/SRC are the destination and source respectively. You can pass
371 ungimplified trees in DST or SRC, in which case they will be
372 converted to a gimple operand if necessary.
374 This function returns the newly created GIMPLE_ASSIGN tuple. */
377 gimplify_assign (tree dst
, tree src
, gimple_seq
*seq_p
)
379 tree t
= build2 (MODIFY_EXPR
, TREE_TYPE (dst
), dst
, src
);
380 gimplify_and_add (t
, seq_p
);
382 return gimple_seq_last_stmt (*seq_p
);
386 /* Build a GIMPLE_COND statement.
388 PRED is the condition used to compare LHS and the RHS.
389 T_LABEL is the label to jump to if the condition is true.
390 F_LABEL is the label to jump to otherwise. */
393 gimple_build_cond (enum tree_code pred_code
, tree lhs
, tree rhs
,
394 tree t_label
, tree f_label
)
398 gcc_assert (TREE_CODE_CLASS (pred_code
) == tcc_comparison
);
399 p
= gimple_build_with_ops (GIMPLE_COND
, pred_code
, 4);
400 gimple_cond_set_lhs (p
, lhs
);
401 gimple_cond_set_rhs (p
, rhs
);
402 gimple_cond_set_true_label (p
, t_label
);
403 gimple_cond_set_false_label (p
, f_label
);
408 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
411 gimple_cond_get_ops_from_tree (tree cond
, enum tree_code
*code_p
,
412 tree
*lhs_p
, tree
*rhs_p
)
414 location_t loc
= EXPR_LOCATION (cond
);
415 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond
)) == tcc_comparison
416 || TREE_CODE (cond
) == TRUTH_NOT_EXPR
417 || is_gimple_min_invariant (cond
)
418 || SSA_VAR_P (cond
));
420 extract_ops_from_tree (cond
, code_p
, lhs_p
, rhs_p
);
422 /* Canonicalize conditionals of the form 'if (!VAL)'. */
423 if (*code_p
== TRUTH_NOT_EXPR
)
426 gcc_assert (*lhs_p
&& *rhs_p
== NULL_TREE
);
427 *rhs_p
= fold_convert_loc (loc
, TREE_TYPE (*lhs_p
), integer_zero_node
);
429 /* Canonicalize conditionals of the form 'if (VAL)' */
430 else if (TREE_CODE_CLASS (*code_p
) != tcc_comparison
)
433 gcc_assert (*lhs_p
&& *rhs_p
== NULL_TREE
);
434 *rhs_p
= fold_convert_loc (loc
, TREE_TYPE (*lhs_p
), integer_zero_node
);
439 /* Build a GIMPLE_COND statement from the conditional expression tree
440 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
443 gimple_build_cond_from_tree (tree cond
, tree t_label
, tree f_label
)
448 gimple_cond_get_ops_from_tree (cond
, &code
, &lhs
, &rhs
);
449 return gimple_build_cond (code
, lhs
, rhs
, t_label
, f_label
);
452 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
453 boolean expression tree COND. */
456 gimple_cond_set_condition_from_tree (gimple stmt
, tree cond
)
461 gimple_cond_get_ops_from_tree (cond
, &code
, &lhs
, &rhs
);
462 gimple_cond_set_condition (stmt
, code
, lhs
, rhs
);
465 /* Build a GIMPLE_LABEL statement for LABEL. */
468 gimple_build_label (tree label
)
470 gimple p
= gimple_build_with_ops (GIMPLE_LABEL
, ERROR_MARK
, 1);
471 gimple_label_set_label (p
, label
);
475 /* Build a GIMPLE_GOTO statement to label DEST. */
478 gimple_build_goto (tree dest
)
480 gimple p
= gimple_build_with_ops (GIMPLE_GOTO
, ERROR_MARK
, 1);
481 gimple_goto_set_dest (p
, dest
);
486 /* Build a GIMPLE_NOP statement. */
489 gimple_build_nop (void)
491 return gimple_alloc (GIMPLE_NOP
, 0);
495 /* Build a GIMPLE_BIND statement.
496 VARS are the variables in BODY.
497 BLOCK is the containing block. */
500 gimple_build_bind (tree vars
, gimple_seq body
, tree block
)
502 gimple p
= gimple_alloc (GIMPLE_BIND
, 0);
503 gimple_bind_set_vars (p
, vars
);
505 gimple_bind_set_body (p
, body
);
507 gimple_bind_set_block (p
, block
);
511 /* Helper function to set the simple fields of a asm stmt.
513 STRING is a pointer to a string that is the asm blocks assembly code.
514 NINPUT is the number of register inputs.
515 NOUTPUT is the number of register outputs.
516 NCLOBBERS is the number of clobbered registers.
520 gimple_build_asm_1 (const char *string
, unsigned ninputs
, unsigned noutputs
,
521 unsigned nclobbers
, unsigned nlabels
)
524 int size
= strlen (string
);
526 /* ASMs with labels cannot have outputs. This should have been
527 enforced by the front end. */
528 gcc_assert (nlabels
== 0 || noutputs
== 0);
530 p
= gimple_build_with_ops (GIMPLE_ASM
, ERROR_MARK
,
531 ninputs
+ noutputs
+ nclobbers
+ nlabels
);
533 p
->gimple_asm
.ni
= ninputs
;
534 p
->gimple_asm
.no
= noutputs
;
535 p
->gimple_asm
.nc
= nclobbers
;
536 p
->gimple_asm
.nl
= nlabels
;
537 p
->gimple_asm
.string
= ggc_alloc_string (string
, size
);
539 #ifdef GATHER_STATISTICS
540 gimple_alloc_sizes
[(int) gimple_alloc_kind (GIMPLE_ASM
)] += size
;
546 /* Build a GIMPLE_ASM statement.
548 STRING is the assembly code.
549 NINPUT is the number of register inputs.
550 NOUTPUT is the number of register outputs.
551 NCLOBBERS is the number of clobbered registers.
552 INPUTS is a vector of the input register parameters.
553 OUTPUTS is a vector of the output register parameters.
554 CLOBBERS is a vector of the clobbered register parameters.
555 LABELS is a vector of destination labels. */
558 gimple_build_asm_vec (const char *string
, VEC(tree
,gc
)* inputs
,
559 VEC(tree
,gc
)* outputs
, VEC(tree
,gc
)* clobbers
,
560 VEC(tree
,gc
)* labels
)
565 p
= gimple_build_asm_1 (string
,
566 VEC_length (tree
, inputs
),
567 VEC_length (tree
, outputs
),
568 VEC_length (tree
, clobbers
),
569 VEC_length (tree
, labels
));
571 for (i
= 0; i
< VEC_length (tree
, inputs
); i
++)
572 gimple_asm_set_input_op (p
, i
, VEC_index (tree
, inputs
, i
));
574 for (i
= 0; i
< VEC_length (tree
, outputs
); i
++)
575 gimple_asm_set_output_op (p
, i
, VEC_index (tree
, outputs
, i
));
577 for (i
= 0; i
< VEC_length (tree
, clobbers
); i
++)
578 gimple_asm_set_clobber_op (p
, i
, VEC_index (tree
, clobbers
, i
));
580 for (i
= 0; i
< VEC_length (tree
, labels
); i
++)
581 gimple_asm_set_label_op (p
, i
, VEC_index (tree
, labels
, i
));
586 /* Build a GIMPLE_CATCH statement.
588 TYPES are the catch types.
589 HANDLER is the exception handler. */
592 gimple_build_catch (tree types
, gimple_seq handler
)
594 gimple p
= gimple_alloc (GIMPLE_CATCH
, 0);
595 gimple_catch_set_types (p
, types
);
597 gimple_catch_set_handler (p
, handler
);
602 /* Build a GIMPLE_EH_FILTER statement.
604 TYPES are the filter's types.
605 FAILURE is the filter's failure action. */
608 gimple_build_eh_filter (tree types
, gimple_seq failure
)
610 gimple p
= gimple_alloc (GIMPLE_EH_FILTER
, 0);
611 gimple_eh_filter_set_types (p
, types
);
613 gimple_eh_filter_set_failure (p
, failure
);
618 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
621 gimple_build_eh_must_not_throw (tree decl
)
623 gimple p
= gimple_alloc (GIMPLE_EH_MUST_NOT_THROW
, 1);
625 gcc_assert (TREE_CODE (decl
) == FUNCTION_DECL
);
626 gcc_assert (flags_from_decl_or_type (decl
) & ECF_NORETURN
);
627 gimple_eh_must_not_throw_set_fndecl (p
, decl
);
632 /* Build a GIMPLE_TRY statement.
634 EVAL is the expression to evaluate.
635 CLEANUP is the cleanup expression.
636 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
637 whether this is a try/catch or a try/finally respectively. */
640 gimple_build_try (gimple_seq eval
, gimple_seq cleanup
,
641 enum gimple_try_flags kind
)
645 gcc_assert (kind
== GIMPLE_TRY_CATCH
|| kind
== GIMPLE_TRY_FINALLY
);
646 p
= gimple_alloc (GIMPLE_TRY
, 0);
647 gimple_set_subcode (p
, kind
);
649 gimple_try_set_eval (p
, eval
);
651 gimple_try_set_cleanup (p
, cleanup
);
656 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
658 CLEANUP is the cleanup expression. */
661 gimple_build_wce (gimple_seq cleanup
)
663 gimple p
= gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR
, 0);
665 gimple_wce_set_cleanup (p
, cleanup
);
671 /* Build a GIMPLE_RESX statement. */
674 gimple_build_resx (int region
)
676 gimple p
= gimple_build_with_ops (GIMPLE_RESX
, ERROR_MARK
, 0);
677 p
->gimple_eh_ctrl
.region
= region
;
682 /* The helper for constructing a gimple switch statement.
683 INDEX is the switch's index.
684 NLABELS is the number of labels in the switch excluding the default.
685 DEFAULT_LABEL is the default label for the switch statement. */
688 gimple_build_switch_nlabels (unsigned nlabels
, tree index
, tree default_label
)
690 /* nlabels + 1 default label + 1 index. */
691 gimple p
= gimple_build_with_ops (GIMPLE_SWITCH
, ERROR_MARK
,
692 1 + (default_label
!= NULL
) + nlabels
);
693 gimple_switch_set_index (p
, index
);
695 gimple_switch_set_default_label (p
, default_label
);
700 /* Build a GIMPLE_SWITCH statement.
702 INDEX is the switch's index.
703 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
704 ... are the labels excluding the default. */
707 gimple_build_switch (unsigned nlabels
, tree index
, tree default_label
, ...)
711 gimple p
= gimple_build_switch_nlabels (nlabels
, index
, default_label
);
713 /* Store the rest of the labels. */
714 va_start (al
, default_label
);
715 offset
= (default_label
!= NULL
);
716 for (i
= 0; i
< nlabels
; i
++)
717 gimple_switch_set_label (p
, i
+ offset
, va_arg (al
, tree
));
724 /* Build a GIMPLE_SWITCH statement.
726 INDEX is the switch's index.
727 DEFAULT_LABEL is the default label
728 ARGS is a vector of labels excluding the default. */
731 gimple_build_switch_vec (tree index
, tree default_label
, VEC(tree
, heap
) *args
)
733 unsigned i
, offset
, nlabels
= VEC_length (tree
, args
);
734 gimple p
= gimple_build_switch_nlabels (nlabels
, index
, default_label
);
736 /* Copy the labels from the vector to the switch statement. */
737 offset
= (default_label
!= NULL
);
738 for (i
= 0; i
< nlabels
; i
++)
739 gimple_switch_set_label (p
, i
+ offset
, VEC_index (tree
, args
, i
));
744 /* Build a GIMPLE_EH_DISPATCH statement. */
747 gimple_build_eh_dispatch (int region
)
749 gimple p
= gimple_build_with_ops (GIMPLE_EH_DISPATCH
, ERROR_MARK
, 0);
750 p
->gimple_eh_ctrl
.region
= region
;
754 /* Build a new GIMPLE_DEBUG_BIND statement.
756 VAR is bound to VALUE; block and location are taken from STMT. */
759 gimple_build_debug_bind_stat (tree var
, tree value
, gimple stmt MEM_STAT_DECL
)
761 gimple p
= gimple_build_with_ops_stat (GIMPLE_DEBUG
,
762 (unsigned)GIMPLE_DEBUG_BIND
, 2
765 gimple_debug_bind_set_var (p
, var
);
766 gimple_debug_bind_set_value (p
, value
);
769 gimple_set_block (p
, gimple_block (stmt
));
770 gimple_set_location (p
, gimple_location (stmt
));
777 /* Build a GIMPLE_OMP_CRITICAL statement.
779 BODY is the sequence of statements for which only one thread can execute.
780 NAME is optional identifier for this critical block. */
783 gimple_build_omp_critical (gimple_seq body
, tree name
)
785 gimple p
= gimple_alloc (GIMPLE_OMP_CRITICAL
, 0);
786 gimple_omp_critical_set_name (p
, name
);
788 gimple_omp_set_body (p
, body
);
793 /* Build a GIMPLE_OMP_FOR statement.
795 BODY is sequence of statements inside the for loop.
796 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
797 lastprivate, reductions, ordered, schedule, and nowait.
798 COLLAPSE is the collapse count.
799 PRE_BODY is the sequence of statements that are loop invariant. */
802 gimple_build_omp_for (gimple_seq body
, tree clauses
, size_t collapse
,
805 gimple p
= gimple_alloc (GIMPLE_OMP_FOR
, 0);
807 gimple_omp_set_body (p
, body
);
808 gimple_omp_for_set_clauses (p
, clauses
);
809 p
->gimple_omp_for
.collapse
= collapse
;
810 p
->gimple_omp_for
.iter
= GGC_CNEWVEC (struct gimple_omp_for_iter
, collapse
);
812 gimple_omp_for_set_pre_body (p
, pre_body
);
818 /* Build a GIMPLE_OMP_PARALLEL statement.
820 BODY is sequence of statements which are executed in parallel.
821 CLAUSES, are the OMP parallel construct's clauses.
822 CHILD_FN is the function created for the parallel threads to execute.
823 DATA_ARG are the shared data argument(s). */
826 gimple_build_omp_parallel (gimple_seq body
, tree clauses
, tree child_fn
,
829 gimple p
= gimple_alloc (GIMPLE_OMP_PARALLEL
, 0);
831 gimple_omp_set_body (p
, body
);
832 gimple_omp_parallel_set_clauses (p
, clauses
);
833 gimple_omp_parallel_set_child_fn (p
, child_fn
);
834 gimple_omp_parallel_set_data_arg (p
, data_arg
);
840 /* Build a GIMPLE_OMP_TASK statement.
842 BODY is sequence of statements which are executed by the explicit task.
843 CLAUSES, are the OMP parallel construct's clauses.
844 CHILD_FN is the function created for the parallel threads to execute.
845 DATA_ARG are the shared data argument(s).
846 COPY_FN is the optional function for firstprivate initialization.
847 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
850 gimple_build_omp_task (gimple_seq body
, tree clauses
, tree child_fn
,
851 tree data_arg
, tree copy_fn
, tree arg_size
,
854 gimple p
= gimple_alloc (GIMPLE_OMP_TASK
, 0);
856 gimple_omp_set_body (p
, body
);
857 gimple_omp_task_set_clauses (p
, clauses
);
858 gimple_omp_task_set_child_fn (p
, child_fn
);
859 gimple_omp_task_set_data_arg (p
, data_arg
);
860 gimple_omp_task_set_copy_fn (p
, copy_fn
);
861 gimple_omp_task_set_arg_size (p
, arg_size
);
862 gimple_omp_task_set_arg_align (p
, arg_align
);
868 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
870 BODY is the sequence of statements in the section. */
873 gimple_build_omp_section (gimple_seq body
)
875 gimple p
= gimple_alloc (GIMPLE_OMP_SECTION
, 0);
877 gimple_omp_set_body (p
, body
);
883 /* Build a GIMPLE_OMP_MASTER statement.
885 BODY is the sequence of statements to be executed by just the master. */
888 gimple_build_omp_master (gimple_seq body
)
890 gimple p
= gimple_alloc (GIMPLE_OMP_MASTER
, 0);
892 gimple_omp_set_body (p
, body
);
898 /* Build a GIMPLE_OMP_CONTINUE statement.
900 CONTROL_DEF is the definition of the control variable.
901 CONTROL_USE is the use of the control variable. */
904 gimple_build_omp_continue (tree control_def
, tree control_use
)
906 gimple p
= gimple_alloc (GIMPLE_OMP_CONTINUE
, 0);
907 gimple_omp_continue_set_control_def (p
, control_def
);
908 gimple_omp_continue_set_control_use (p
, control_use
);
912 /* Build a GIMPLE_OMP_ORDERED statement.
914 BODY is the sequence of statements inside a loop that will executed in
918 gimple_build_omp_ordered (gimple_seq body
)
920 gimple p
= gimple_alloc (GIMPLE_OMP_ORDERED
, 0);
922 gimple_omp_set_body (p
, body
);
928 /* Build a GIMPLE_OMP_RETURN statement.
929 WAIT_P is true if this is a non-waiting return. */
932 gimple_build_omp_return (bool wait_p
)
934 gimple p
= gimple_alloc (GIMPLE_OMP_RETURN
, 0);
936 gimple_omp_return_set_nowait (p
);
942 /* Build a GIMPLE_OMP_SECTIONS statement.
944 BODY is a sequence of section statements.
945 CLAUSES are any of the OMP sections contsruct's clauses: private,
946 firstprivate, lastprivate, reduction, and nowait. */
949 gimple_build_omp_sections (gimple_seq body
, tree clauses
)
951 gimple p
= gimple_alloc (GIMPLE_OMP_SECTIONS
, 0);
953 gimple_omp_set_body (p
, body
);
954 gimple_omp_sections_set_clauses (p
, clauses
);
960 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
963 gimple_build_omp_sections_switch (void)
965 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH
, 0);
969 /* Build a GIMPLE_OMP_SINGLE statement.
971 BODY is the sequence of statements that will be executed once.
972 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
973 copyprivate, nowait. */
976 gimple_build_omp_single (gimple_seq body
, tree clauses
)
978 gimple p
= gimple_alloc (GIMPLE_OMP_SINGLE
, 0);
980 gimple_omp_set_body (p
, body
);
981 gimple_omp_single_set_clauses (p
, clauses
);
987 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
990 gimple_build_omp_atomic_load (tree lhs
, tree rhs
)
992 gimple p
= gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD
, 0);
993 gimple_omp_atomic_load_set_lhs (p
, lhs
);
994 gimple_omp_atomic_load_set_rhs (p
, rhs
);
998 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1000 VAL is the value we are storing. */
1003 gimple_build_omp_atomic_store (tree val
)
1005 gimple p
= gimple_alloc (GIMPLE_OMP_ATOMIC_STORE
, 0);
1006 gimple_omp_atomic_store_set_val (p
, val
);
1010 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1011 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1014 gimple_build_predict (enum br_predictor predictor
, enum prediction outcome
)
1016 gimple p
= gimple_alloc (GIMPLE_PREDICT
, 0);
1017 /* Ensure all the predictors fit into the lower bits of the subcode. */
1018 gcc_assert ((int) END_PREDICTORS
<= GF_PREDICT_TAKEN
);
1019 gimple_predict_set_predictor (p
, predictor
);
1020 gimple_predict_set_outcome (p
, outcome
);
1024 #if defined ENABLE_GIMPLE_CHECKING
1025 /* Complain of a gimple type mismatch and die. */
1028 gimple_check_failed (const_gimple gs
, const char *file
, int line
,
1029 const char *function
, enum gimple_code code
,
1030 enum tree_code subcode
)
1032 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1033 gimple_code_name
[code
],
1034 tree_code_name
[subcode
],
1035 gimple_code_name
[gimple_code (gs
)],
1036 gs
->gsbase
.subcode
> 0
1037 ? tree_code_name
[gs
->gsbase
.subcode
]
1039 function
, trim_filename (file
), line
);
1041 #endif /* ENABLE_GIMPLE_CHECKING */
1044 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1045 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1049 gimple_seq_alloc (void)
1051 gimple_seq seq
= gimple_seq_cache
;
1054 gimple_seq_cache
= gimple_seq_cache
->next_free
;
1055 gcc_assert (gimple_seq_cache
!= seq
);
1056 memset (seq
, 0, sizeof (*seq
));
1060 seq
= (gimple_seq
) ggc_alloc_cleared (sizeof (*seq
));
1061 #ifdef GATHER_STATISTICS
1062 gimple_alloc_counts
[(int) gimple_alloc_kind_seq
]++;
1063 gimple_alloc_sizes
[(int) gimple_alloc_kind_seq
] += sizeof (*seq
);
1070 /* Return SEQ to the free pool of GIMPLE sequences. */
1073 gimple_seq_free (gimple_seq seq
)
1078 gcc_assert (gimple_seq_first (seq
) == NULL
);
1079 gcc_assert (gimple_seq_last (seq
) == NULL
);
1081 /* If this triggers, it's a sign that the same list is being freed
1083 gcc_assert (seq
!= gimple_seq_cache
|| gimple_seq_cache
== NULL
);
1085 /* Add SEQ to the pool of free sequences. */
1086 seq
->next_free
= gimple_seq_cache
;
1087 gimple_seq_cache
= seq
;
1091 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1092 *SEQ_P is NULL, a new sequence is allocated. */
1095 gimple_seq_add_stmt (gimple_seq
*seq_p
, gimple gs
)
1097 gimple_stmt_iterator si
;
1103 *seq_p
= gimple_seq_alloc ();
1105 si
= gsi_last (*seq_p
);
1106 gsi_insert_after (&si
, gs
, GSI_NEW_STMT
);
1110 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1111 NULL, a new sequence is allocated. */
1114 gimple_seq_add_seq (gimple_seq
*dst_p
, gimple_seq src
)
1116 gimple_stmt_iterator si
;
1122 *dst_p
= gimple_seq_alloc ();
1124 si
= gsi_last (*dst_p
);
1125 gsi_insert_seq_after (&si
, src
, GSI_NEW_STMT
);
1129 /* Helper function of empty_body_p. Return true if STMT is an empty
1133 empty_stmt_p (gimple stmt
)
1135 if (gimple_code (stmt
) == GIMPLE_NOP
)
1137 if (gimple_code (stmt
) == GIMPLE_BIND
)
1138 return empty_body_p (gimple_bind_body (stmt
));
1143 /* Return true if BODY contains nothing but empty statements. */
1146 empty_body_p (gimple_seq body
)
1148 gimple_stmt_iterator i
;
1150 if (gimple_seq_empty_p (body
))
1152 for (i
= gsi_start (body
); !gsi_end_p (i
); gsi_next (&i
))
1153 if (!empty_stmt_p (gsi_stmt (i
))
1154 && !is_gimple_debug (gsi_stmt (i
)))
1161 /* Perform a deep copy of sequence SRC and return the result. */
1164 gimple_seq_copy (gimple_seq src
)
1166 gimple_stmt_iterator gsi
;
1167 gimple_seq new_seq
= gimple_seq_alloc ();
1170 for (gsi
= gsi_start (src
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1172 stmt
= gimple_copy (gsi_stmt (gsi
));
1173 gimple_seq_add_stmt (&new_seq
, stmt
);
1180 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1181 on each one. WI is as in walk_gimple_stmt.
1183 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1184 value is stored in WI->CALLBACK_RESULT and the statement that
1185 produced the value is returned.
1187 Otherwise, all the statements are walked and NULL returned. */
1190 walk_gimple_seq (gimple_seq seq
, walk_stmt_fn callback_stmt
,
1191 walk_tree_fn callback_op
, struct walk_stmt_info
*wi
)
1193 gimple_stmt_iterator gsi
;
1195 for (gsi
= gsi_start (seq
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1197 tree ret
= walk_gimple_stmt (&gsi
, callback_stmt
, callback_op
, wi
);
1200 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1203 wi
->callback_result
= ret
;
1204 return gsi_stmt (gsi
);
1209 wi
->callback_result
= NULL_TREE
;
1215 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1218 walk_gimple_asm (gimple stmt
, walk_tree_fn callback_op
,
1219 struct walk_stmt_info
*wi
)
1223 const char **oconstraints
;
1225 const char *constraint
;
1226 bool allows_mem
, allows_reg
, is_inout
;
1228 noutputs
= gimple_asm_noutputs (stmt
);
1229 oconstraints
= (const char **) alloca ((noutputs
) * sizeof (const char *));
1234 for (i
= 0; i
< noutputs
; i
++)
1236 op
= gimple_asm_output_op (stmt
, i
);
1237 constraint
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op
)));
1238 oconstraints
[i
] = constraint
;
1239 parse_output_constraint (&constraint
, i
, 0, 0, &allows_mem
, &allows_reg
,
1242 wi
->val_only
= (allows_reg
|| !allows_mem
);
1243 ret
= walk_tree (&TREE_VALUE (op
), callback_op
, wi
, NULL
);
1248 n
= gimple_asm_ninputs (stmt
);
1249 for (i
= 0; i
< n
; i
++)
1251 op
= gimple_asm_input_op (stmt
, i
);
1252 constraint
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op
)));
1253 parse_input_constraint (&constraint
, 0, 0, noutputs
, 0,
1254 oconstraints
, &allows_mem
, &allows_reg
);
1257 wi
->val_only
= (allows_reg
|| !allows_mem
);
1258 /* Although input "m" is not really a LHS, we need a lvalue. */
1259 wi
->is_lhs
= !wi
->val_only
;
1261 ret
= walk_tree (&TREE_VALUE (op
), callback_op
, wi
, NULL
);
1269 wi
->val_only
= true;
1272 n
= gimple_asm_nlabels (stmt
);
1273 for (i
= 0; i
< n
; i
++)
1275 op
= gimple_asm_label_op (stmt
, i
);
1276 ret
= walk_tree (&TREE_VALUE (op
), callback_op
, wi
, NULL
);
1285 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1286 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1288 CALLBACK_OP is called on each operand of STMT via walk_tree.
1289 Additional parameters to walk_tree must be stored in WI. For each operand
1290 OP, walk_tree is called as:
1292 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1294 If CALLBACK_OP returns non-NULL for an operand, the remaining
1295 operands are not scanned.
1297 The return value is that returned by the last call to walk_tree, or
1298 NULL_TREE if no CALLBACK_OP is specified. */
1301 walk_gimple_op (gimple stmt
, walk_tree_fn callback_op
,
1302 struct walk_stmt_info
*wi
)
1304 struct pointer_set_t
*pset
= (wi
) ? wi
->pset
: NULL
;
1306 tree ret
= NULL_TREE
;
1308 switch (gimple_code (stmt
))
1311 /* Walk the RHS operands. A formal temporary LHS may use a
1312 COMPONENT_REF RHS. */
1314 wi
->val_only
= !is_gimple_reg (gimple_assign_lhs (stmt
))
1315 || !gimple_assign_single_p (stmt
);
1317 for (i
= 1; i
< gimple_num_ops (stmt
); i
++)
1319 ret
= walk_tree (gimple_op_ptr (stmt
, i
), callback_op
, wi
,
1325 /* Walk the LHS. If the RHS is appropriate for a memory, we
1326 may use a COMPONENT_REF on the LHS. */
1329 /* If the RHS has more than 1 operand, it is not appropriate
1331 wi
->val_only
= !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt
))
1332 || !gimple_assign_single_p (stmt
);
1336 ret
= walk_tree (gimple_op_ptr (stmt
, 0), callback_op
, wi
, pset
);
1342 wi
->val_only
= true;
1351 ret
= walk_tree (gimple_call_chain_ptr (stmt
), callback_op
, wi
, pset
);
1355 ret
= walk_tree (gimple_call_fn_ptr (stmt
), callback_op
, wi
, pset
);
1359 for (i
= 0; i
< gimple_call_num_args (stmt
); i
++)
1361 ret
= walk_tree (gimple_call_arg_ptr (stmt
, i
), callback_op
, wi
,
1370 ret
= walk_tree (gimple_call_lhs_ptr (stmt
), callback_op
, wi
, pset
);
1379 ret
= walk_tree (gimple_catch_types_ptr (stmt
), callback_op
, wi
,
1385 case GIMPLE_EH_FILTER
:
1386 ret
= walk_tree (gimple_eh_filter_types_ptr (stmt
), callback_op
, wi
,
1393 ret
= walk_gimple_asm (stmt
, callback_op
, wi
);
1398 case GIMPLE_OMP_CONTINUE
:
1399 ret
= walk_tree (gimple_omp_continue_control_def_ptr (stmt
),
1400 callback_op
, wi
, pset
);
1404 ret
= walk_tree (gimple_omp_continue_control_use_ptr (stmt
),
1405 callback_op
, wi
, pset
);
1410 case GIMPLE_OMP_CRITICAL
:
1411 ret
= walk_tree (gimple_omp_critical_name_ptr (stmt
), callback_op
, wi
,
1417 case GIMPLE_OMP_FOR
:
1418 ret
= walk_tree (gimple_omp_for_clauses_ptr (stmt
), callback_op
, wi
,
1422 for (i
= 0; i
< gimple_omp_for_collapse (stmt
); i
++)
1424 ret
= walk_tree (gimple_omp_for_index_ptr (stmt
, i
), callback_op
,
1428 ret
= walk_tree (gimple_omp_for_initial_ptr (stmt
, i
), callback_op
,
1432 ret
= walk_tree (gimple_omp_for_final_ptr (stmt
, i
), callback_op
,
1436 ret
= walk_tree (gimple_omp_for_incr_ptr (stmt
, i
), callback_op
,
1443 case GIMPLE_OMP_PARALLEL
:
1444 ret
= walk_tree (gimple_omp_parallel_clauses_ptr (stmt
), callback_op
,
1448 ret
= walk_tree (gimple_omp_parallel_child_fn_ptr (stmt
), callback_op
,
1452 ret
= walk_tree (gimple_omp_parallel_data_arg_ptr (stmt
), callback_op
,
1458 case GIMPLE_OMP_TASK
:
1459 ret
= walk_tree (gimple_omp_task_clauses_ptr (stmt
), callback_op
,
1463 ret
= walk_tree (gimple_omp_task_child_fn_ptr (stmt
), callback_op
,
1467 ret
= walk_tree (gimple_omp_task_data_arg_ptr (stmt
), callback_op
,
1471 ret
= walk_tree (gimple_omp_task_copy_fn_ptr (stmt
), callback_op
,
1475 ret
= walk_tree (gimple_omp_task_arg_size_ptr (stmt
), callback_op
,
1479 ret
= walk_tree (gimple_omp_task_arg_align_ptr (stmt
), callback_op
,
1485 case GIMPLE_OMP_SECTIONS
:
1486 ret
= walk_tree (gimple_omp_sections_clauses_ptr (stmt
), callback_op
,
1491 ret
= walk_tree (gimple_omp_sections_control_ptr (stmt
), callback_op
,
1498 case GIMPLE_OMP_SINGLE
:
1499 ret
= walk_tree (gimple_omp_single_clauses_ptr (stmt
), callback_op
, wi
,
1505 case GIMPLE_OMP_ATOMIC_LOAD
:
1506 ret
= walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt
), callback_op
, wi
,
1511 ret
= walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt
), callback_op
, wi
,
1517 case GIMPLE_OMP_ATOMIC_STORE
:
1518 ret
= walk_tree (gimple_omp_atomic_store_val_ptr (stmt
), callback_op
,
1524 /* Tuples that do not have operands. */
1527 case GIMPLE_OMP_RETURN
:
1528 case GIMPLE_PREDICT
:
1533 enum gimple_statement_structure_enum gss
;
1534 gss
= gimple_statement_structure (stmt
);
1535 if (gss
== GSS_WITH_OPS
|| gss
== GSS_WITH_MEM_OPS
)
1536 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1538 ret
= walk_tree (gimple_op_ptr (stmt
, i
), callback_op
, wi
, pset
);
1550 /* Walk the current statement in GSI (optionally using traversal state
1551 stored in WI). If WI is NULL, no state is kept during traversal.
1552 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1553 that it has handled all the operands of the statement, its return
1554 value is returned. Otherwise, the return value from CALLBACK_STMT
1555 is discarded and its operands are scanned.
1557 If CALLBACK_STMT is NULL or it didn't handle the operands,
1558 CALLBACK_OP is called on each operand of the statement via
1559 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1560 operand, the remaining operands are not scanned. In this case, the
1561 return value from CALLBACK_OP is returned.
1563 In any other case, NULL_TREE is returned. */
1566 walk_gimple_stmt (gimple_stmt_iterator
*gsi
, walk_stmt_fn callback_stmt
,
1567 walk_tree_fn callback_op
, struct walk_stmt_info
*wi
)
1571 gimple stmt
= gsi_stmt (*gsi
);
1576 if (wi
&& wi
->want_locations
&& gimple_has_location (stmt
))
1577 input_location
= gimple_location (stmt
);
1581 /* Invoke the statement callback. Return if the callback handled
1582 all of STMT operands by itself. */
1585 bool handled_ops
= false;
1586 tree_ret
= callback_stmt (gsi
, &handled_ops
, wi
);
1590 /* If CALLBACK_STMT did not handle operands, it should not have
1591 a value to return. */
1592 gcc_assert (tree_ret
== NULL
);
1594 /* Re-read stmt in case the callback changed it. */
1595 stmt
= gsi_stmt (*gsi
);
1598 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1601 tree_ret
= walk_gimple_op (stmt
, callback_op
, wi
);
1606 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1607 switch (gimple_code (stmt
))
1610 ret
= walk_gimple_seq (gimple_bind_body (stmt
), callback_stmt
,
1613 return wi
->callback_result
;
1617 ret
= walk_gimple_seq (gimple_catch_handler (stmt
), callback_stmt
,
1620 return wi
->callback_result
;
1623 case GIMPLE_EH_FILTER
:
1624 ret
= walk_gimple_seq (gimple_eh_filter_failure (stmt
), callback_stmt
,
1627 return wi
->callback_result
;
1631 ret
= walk_gimple_seq (gimple_try_eval (stmt
), callback_stmt
, callback_op
,
1634 return wi
->callback_result
;
1636 ret
= walk_gimple_seq (gimple_try_cleanup (stmt
), callback_stmt
,
1639 return wi
->callback_result
;
1642 case GIMPLE_OMP_FOR
:
1643 ret
= walk_gimple_seq (gimple_omp_for_pre_body (stmt
), callback_stmt
,
1646 return wi
->callback_result
;
1649 case GIMPLE_OMP_CRITICAL
:
1650 case GIMPLE_OMP_MASTER
:
1651 case GIMPLE_OMP_ORDERED
:
1652 case GIMPLE_OMP_SECTION
:
1653 case GIMPLE_OMP_PARALLEL
:
1654 case GIMPLE_OMP_TASK
:
1655 case GIMPLE_OMP_SECTIONS
:
1656 case GIMPLE_OMP_SINGLE
:
1657 ret
= walk_gimple_seq (gimple_omp_body (stmt
), callback_stmt
, callback_op
,
1660 return wi
->callback_result
;
1663 case GIMPLE_WITH_CLEANUP_EXPR
:
1664 ret
= walk_gimple_seq (gimple_wce_cleanup (stmt
), callback_stmt
,
1667 return wi
->callback_result
;
1671 gcc_assert (!gimple_has_substatements (stmt
));
1679 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1682 gimple_set_body (tree fndecl
, gimple_seq seq
)
1684 struct function
*fn
= DECL_STRUCT_FUNCTION (fndecl
);
1687 /* If FNDECL still does not have a function structure associated
1688 with it, then it does not make sense for it to receive a
1690 gcc_assert (seq
== NULL
);
1693 fn
->gimple_body
= seq
;
1697 /* Return the body of GIMPLE statements for function FN. */
1700 gimple_body (tree fndecl
)
1702 struct function
*fn
= DECL_STRUCT_FUNCTION (fndecl
);
1703 return fn
? fn
->gimple_body
: NULL
;
1706 /* Return true when FNDECL has Gimple body either in unlowered
1709 gimple_has_body_p (tree fndecl
)
1711 struct function
*fn
= DECL_STRUCT_FUNCTION (fndecl
);
1712 return (gimple_body (fndecl
) || (fn
&& fn
->cfg
));
1715 /* Detect flags from a GIMPLE_CALL. This is just like
1716 call_expr_flags, but for gimple tuples. */
1719 gimple_call_flags (const_gimple stmt
)
1722 tree decl
= gimple_call_fndecl (stmt
);
1726 flags
= flags_from_decl_or_type (decl
);
1729 t
= TREE_TYPE (gimple_call_fn (stmt
));
1730 if (t
&& TREE_CODE (t
) == POINTER_TYPE
)
1731 flags
= flags_from_decl_or_type (TREE_TYPE (t
));
1740 /* Return true if GS is a copy assignment. */
1743 gimple_assign_copy_p (gimple gs
)
1745 return gimple_code (gs
) == GIMPLE_ASSIGN
1746 && get_gimple_rhs_class (gimple_assign_rhs_code (gs
))
1747 == GIMPLE_SINGLE_RHS
1748 && is_gimple_val (gimple_op (gs
, 1));
1752 /* Return true if GS is a SSA_NAME copy assignment. */
1755 gimple_assign_ssa_name_copy_p (gimple gs
)
1757 return (gimple_code (gs
) == GIMPLE_ASSIGN
1758 && (get_gimple_rhs_class (gimple_assign_rhs_code (gs
))
1759 == GIMPLE_SINGLE_RHS
)
1760 && TREE_CODE (gimple_assign_lhs (gs
)) == SSA_NAME
1761 && TREE_CODE (gimple_assign_rhs1 (gs
)) == SSA_NAME
);
1765 /* Return true if GS is an assignment with a singleton RHS, i.e.,
1766 there is no operator associated with the assignment itself.
1767 Unlike gimple_assign_copy_p, this predicate returns true for
1768 any RHS operand, including those that perform an operation
1769 and do not have the semantics of a copy, such as COND_EXPR. */
1772 gimple_assign_single_p (gimple gs
)
1774 return (gimple_code (gs
) == GIMPLE_ASSIGN
1775 && get_gimple_rhs_class (gimple_assign_rhs_code (gs
))
1776 == GIMPLE_SINGLE_RHS
);
1779 /* Return true if GS is an assignment with a unary RHS, but the
1780 operator has no effect on the assigned value. The logic is adapted
1781 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1782 instances in which STRIP_NOPS was previously applied to the RHS of
1785 NOTE: In the use cases that led to the creation of this function
1786 and of gimple_assign_single_p, it is typical to test for either
1787 condition and to proceed in the same manner. In each case, the
1788 assigned value is represented by the single RHS operand of the
1789 assignment. I suspect there may be cases where gimple_assign_copy_p,
1790 gimple_assign_single_p, or equivalent logic is used where a similar
1791 treatment of unary NOPs is appropriate. */
1794 gimple_assign_unary_nop_p (gimple gs
)
1796 return (gimple_code (gs
) == GIMPLE_ASSIGN
1797 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs
))
1798 || gimple_assign_rhs_code (gs
) == NON_LVALUE_EXPR
)
1799 && gimple_assign_rhs1 (gs
) != error_mark_node
1800 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs
)))
1801 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs
)))));
1804 /* Set BB to be the basic block holding G. */
1807 gimple_set_bb (gimple stmt
, basic_block bb
)
1809 stmt
->gsbase
.bb
= bb
;
1811 /* If the statement is a label, add the label to block-to-labels map
1812 so that we can speed up edge creation for GIMPLE_GOTOs. */
1813 if (cfun
->cfg
&& gimple_code (stmt
) == GIMPLE_LABEL
)
1818 t
= gimple_label_label (stmt
);
1819 uid
= LABEL_DECL_UID (t
);
1822 unsigned old_len
= VEC_length (basic_block
, label_to_block_map
);
1823 LABEL_DECL_UID (t
) = uid
= cfun
->cfg
->last_label_uid
++;
1824 if (old_len
<= (unsigned) uid
)
1826 unsigned new_len
= 3 * uid
/ 2 + 1;
1828 VEC_safe_grow_cleared (basic_block
, gc
, label_to_block_map
,
1833 VEC_replace (basic_block
, label_to_block_map
, uid
, bb
);
1838 /* Modify the RHS of the assignment pointed-to by GSI using the
1839 operands in the expression tree EXPR.
1841 NOTE: The statement pointed-to by GSI may be reallocated if it
1842 did not have enough operand slots.
1844 This function is useful to convert an existing tree expression into
1845 the flat representation used for the RHS of a GIMPLE assignment.
1846 It will reallocate memory as needed to expand or shrink the number
1847 of operand slots needed to represent EXPR.
1849 NOTE: If you find yourself building a tree and then calling this
1850 function, you are most certainly doing it the slow way. It is much
1851 better to build a new assignment or to use the function
1852 gimple_assign_set_rhs_with_ops, which does not require an
1853 expression tree to be built. */
1856 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator
*gsi
, tree expr
)
1858 enum tree_code subcode
;
1861 extract_ops_from_tree (expr
, &subcode
, &op1
, &op2
);
1862 gimple_assign_set_rhs_with_ops (gsi
, subcode
, op1
, op2
);
1866 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1867 operands OP1 and OP2.
1869 NOTE: The statement pointed-to by GSI may be reallocated if it
1870 did not have enough operand slots. */
1873 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator
*gsi
, enum tree_code code
,
1876 unsigned new_rhs_ops
= get_gimple_rhs_num_ops (code
);
1877 gimple stmt
= gsi_stmt (*gsi
);
1879 /* If the new CODE needs more operands, allocate a new statement. */
1880 if (gimple_num_ops (stmt
) < new_rhs_ops
+ 1)
1882 tree lhs
= gimple_assign_lhs (stmt
);
1883 gimple new_stmt
= gimple_alloc (gimple_code (stmt
), new_rhs_ops
+ 1);
1884 memcpy (new_stmt
, stmt
, gimple_size (gimple_code (stmt
)));
1885 gsi_replace (gsi
, new_stmt
, true);
1888 /* The LHS needs to be reset as this also changes the SSA name
1890 gimple_assign_set_lhs (stmt
, lhs
);
1893 gimple_set_num_ops (stmt
, new_rhs_ops
+ 1);
1894 gimple_set_subcode (stmt
, code
);
1895 gimple_assign_set_rhs1 (stmt
, op1
);
1896 if (new_rhs_ops
> 1)
1897 gimple_assign_set_rhs2 (stmt
, op2
);
1901 /* Return the LHS of a statement that performs an assignment,
1902 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1903 for a call to a function that returns no value, or for a
1904 statement other than an assignment or a call. */
1907 gimple_get_lhs (const_gimple stmt
)
1909 enum gimple_code code
= gimple_code (stmt
);
1911 if (code
== GIMPLE_ASSIGN
)
1912 return gimple_assign_lhs (stmt
);
1913 else if (code
== GIMPLE_CALL
)
1914 return gimple_call_lhs (stmt
);
1920 /* Set the LHS of a statement that performs an assignment,
1921 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1924 gimple_set_lhs (gimple stmt
, tree lhs
)
1926 enum gimple_code code
= gimple_code (stmt
);
1928 if (code
== GIMPLE_ASSIGN
)
1929 gimple_assign_set_lhs (stmt
, lhs
);
1930 else if (code
== GIMPLE_CALL
)
1931 gimple_call_set_lhs (stmt
, lhs
);
1936 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
1937 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
1938 expression with a different value.
1940 This will update any annotations (say debug bind stmts) referring
1941 to the original LHS, so that they use the RHS instead. This is
1942 done even if NLHS and LHS are the same, for it is understood that
1943 the RHS will be modified afterwards, and NLHS will not be assigned
1944 an equivalent value.
1946 Adjusting any non-annotation uses of the LHS, if needed, is a
1947 responsibility of the caller.
1949 The effect of this call should be pretty much the same as that of
1950 inserting a copy of STMT before STMT, and then removing the
1951 original stmt, at which time gsi_remove() would have update
1952 annotations, but using this function saves all the inserting,
1953 copying and removing. */
1956 gimple_replace_lhs (gimple stmt
, tree nlhs
)
1958 if (MAY_HAVE_DEBUG_STMTS
)
1960 tree lhs
= gimple_get_lhs (stmt
);
1962 gcc_assert (SSA_NAME_DEF_STMT (lhs
) == stmt
);
1964 insert_debug_temp_for_var_def (NULL
, lhs
);
1967 gimple_set_lhs (stmt
, nlhs
);
1970 /* Return a deep copy of statement STMT. All the operands from STMT
1971 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1972 and VUSE operand arrays are set to empty in the new copy. */
1975 gimple_copy (gimple stmt
)
1977 enum gimple_code code
= gimple_code (stmt
);
1978 unsigned num_ops
= gimple_num_ops (stmt
);
1979 gimple copy
= gimple_alloc (code
, num_ops
);
1982 /* Shallow copy all the fields from STMT. */
1983 memcpy (copy
, stmt
, gimple_size (code
));
1985 /* If STMT has sub-statements, deep-copy them as well. */
1986 if (gimple_has_substatements (stmt
))
1991 switch (gimple_code (stmt
))
1994 new_seq
= gimple_seq_copy (gimple_bind_body (stmt
));
1995 gimple_bind_set_body (copy
, new_seq
);
1996 gimple_bind_set_vars (copy
, unshare_expr (gimple_bind_vars (stmt
)));
1997 gimple_bind_set_block (copy
, gimple_bind_block (stmt
));
2001 new_seq
= gimple_seq_copy (gimple_catch_handler (stmt
));
2002 gimple_catch_set_handler (copy
, new_seq
);
2003 t
= unshare_expr (gimple_catch_types (stmt
));
2004 gimple_catch_set_types (copy
, t
);
2007 case GIMPLE_EH_FILTER
:
2008 new_seq
= gimple_seq_copy (gimple_eh_filter_failure (stmt
));
2009 gimple_eh_filter_set_failure (copy
, new_seq
);
2010 t
= unshare_expr (gimple_eh_filter_types (stmt
));
2011 gimple_eh_filter_set_types (copy
, t
);
2015 new_seq
= gimple_seq_copy (gimple_try_eval (stmt
));
2016 gimple_try_set_eval (copy
, new_seq
);
2017 new_seq
= gimple_seq_copy (gimple_try_cleanup (stmt
));
2018 gimple_try_set_cleanup (copy
, new_seq
);
2021 case GIMPLE_OMP_FOR
:
2022 new_seq
= gimple_seq_copy (gimple_omp_for_pre_body (stmt
));
2023 gimple_omp_for_set_pre_body (copy
, new_seq
);
2024 t
= unshare_expr (gimple_omp_for_clauses (stmt
));
2025 gimple_omp_for_set_clauses (copy
, t
);
2026 copy
->gimple_omp_for
.iter
2027 = GGC_NEWVEC (struct gimple_omp_for_iter
,
2028 gimple_omp_for_collapse (stmt
));
2029 for (i
= 0; i
< gimple_omp_for_collapse (stmt
); i
++)
2031 gimple_omp_for_set_cond (copy
, i
,
2032 gimple_omp_for_cond (stmt
, i
));
2033 gimple_omp_for_set_index (copy
, i
,
2034 gimple_omp_for_index (stmt
, i
));
2035 t
= unshare_expr (gimple_omp_for_initial (stmt
, i
));
2036 gimple_omp_for_set_initial (copy
, i
, t
);
2037 t
= unshare_expr (gimple_omp_for_final (stmt
, i
));
2038 gimple_omp_for_set_final (copy
, i
, t
);
2039 t
= unshare_expr (gimple_omp_for_incr (stmt
, i
));
2040 gimple_omp_for_set_incr (copy
, i
, t
);
2044 case GIMPLE_OMP_PARALLEL
:
2045 t
= unshare_expr (gimple_omp_parallel_clauses (stmt
));
2046 gimple_omp_parallel_set_clauses (copy
, t
);
2047 t
= unshare_expr (gimple_omp_parallel_child_fn (stmt
));
2048 gimple_omp_parallel_set_child_fn (copy
, t
);
2049 t
= unshare_expr (gimple_omp_parallel_data_arg (stmt
));
2050 gimple_omp_parallel_set_data_arg (copy
, t
);
2053 case GIMPLE_OMP_TASK
:
2054 t
= unshare_expr (gimple_omp_task_clauses (stmt
));
2055 gimple_omp_task_set_clauses (copy
, t
);
2056 t
= unshare_expr (gimple_omp_task_child_fn (stmt
));
2057 gimple_omp_task_set_child_fn (copy
, t
);
2058 t
= unshare_expr (gimple_omp_task_data_arg (stmt
));
2059 gimple_omp_task_set_data_arg (copy
, t
);
2060 t
= unshare_expr (gimple_omp_task_copy_fn (stmt
));
2061 gimple_omp_task_set_copy_fn (copy
, t
);
2062 t
= unshare_expr (gimple_omp_task_arg_size (stmt
));
2063 gimple_omp_task_set_arg_size (copy
, t
);
2064 t
= unshare_expr (gimple_omp_task_arg_align (stmt
));
2065 gimple_omp_task_set_arg_align (copy
, t
);
2068 case GIMPLE_OMP_CRITICAL
:
2069 t
= unshare_expr (gimple_omp_critical_name (stmt
));
2070 gimple_omp_critical_set_name (copy
, t
);
2073 case GIMPLE_OMP_SECTIONS
:
2074 t
= unshare_expr (gimple_omp_sections_clauses (stmt
));
2075 gimple_omp_sections_set_clauses (copy
, t
);
2076 t
= unshare_expr (gimple_omp_sections_control (stmt
));
2077 gimple_omp_sections_set_control (copy
, t
);
2080 case GIMPLE_OMP_SINGLE
:
2081 case GIMPLE_OMP_SECTION
:
2082 case GIMPLE_OMP_MASTER
:
2083 case GIMPLE_OMP_ORDERED
:
2085 new_seq
= gimple_seq_copy (gimple_omp_body (stmt
));
2086 gimple_omp_set_body (copy
, new_seq
);
2089 case GIMPLE_WITH_CLEANUP_EXPR
:
2090 new_seq
= gimple_seq_copy (gimple_wce_cleanup (stmt
));
2091 gimple_wce_set_cleanup (copy
, new_seq
);
2099 /* Make copy of operands. */
2102 for (i
= 0; i
< num_ops
; i
++)
2103 gimple_set_op (copy
, i
, unshare_expr (gimple_op (stmt
, i
)));
2105 /* Clear out SSA operand vectors on COPY. */
2106 if (gimple_has_ops (stmt
))
2108 gimple_set_def_ops (copy
, NULL
);
2109 gimple_set_use_ops (copy
, NULL
);
2112 if (gimple_has_mem_ops (stmt
))
2114 gimple_set_vdef (copy
, gimple_vdef (stmt
));
2115 gimple_set_vuse (copy
, gimple_vuse (stmt
));
2118 /* SSA operands need to be updated. */
2119 gimple_set_modified (copy
, true);
2126 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2127 a MODIFIED field. */
2130 gimple_set_modified (gimple s
, bool modifiedp
)
2132 if (gimple_has_ops (s
))
2134 s
->gsbase
.modified
= (unsigned) modifiedp
;
2138 && is_gimple_call (s
)
2139 && gimple_call_noreturn_p (s
))
2140 VEC_safe_push (gimple
, gc
, MODIFIED_NORETURN_CALLS (cfun
), s
);
2145 /* Return true if statement S has side-effects. We consider a
2146 statement to have side effects if:
2148 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2149 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2152 gimple_has_side_effects (const_gimple s
)
2156 if (is_gimple_debug (s
))
2159 /* We don't have to scan the arguments to check for
2160 volatile arguments, though, at present, we still
2161 do a scan to check for TREE_SIDE_EFFECTS. */
2162 if (gimple_has_volatile_ops (s
))
2165 if (is_gimple_call (s
))
2167 unsigned nargs
= gimple_call_num_args (s
);
2169 if (!(gimple_call_flags (s
) & (ECF_CONST
| ECF_PURE
)))
2171 else if (gimple_call_flags (s
) & ECF_LOOPING_CONST_OR_PURE
)
2172 /* An infinite loop is considered a side effect. */
2175 if (gimple_call_lhs (s
)
2176 && TREE_SIDE_EFFECTS (gimple_call_lhs (s
)))
2178 gcc_assert (gimple_has_volatile_ops (s
));
2182 if (TREE_SIDE_EFFECTS (gimple_call_fn (s
)))
2185 for (i
= 0; i
< nargs
; i
++)
2186 if (TREE_SIDE_EFFECTS (gimple_call_arg (s
, i
)))
2188 gcc_assert (gimple_has_volatile_ops (s
));
2196 for (i
= 0; i
< gimple_num_ops (s
); i
++)
2197 if (TREE_SIDE_EFFECTS (gimple_op (s
, i
)))
2199 gcc_assert (gimple_has_volatile_ops (s
));
2207 /* Return true if the RHS of statement S has side effects.
2208 We may use it to determine if it is admissable to replace
2209 an assignment or call with a copy of a previously-computed
2210 value. In such cases, side-effects due the the LHS are
2214 gimple_rhs_has_side_effects (const_gimple s
)
2218 if (is_gimple_call (s
))
2220 unsigned nargs
= gimple_call_num_args (s
);
2222 if (!(gimple_call_flags (s
) & (ECF_CONST
| ECF_PURE
)))
2225 /* We cannot use gimple_has_volatile_ops here,
2226 because we must ignore a volatile LHS. */
2227 if (TREE_SIDE_EFFECTS (gimple_call_fn (s
))
2228 || TREE_THIS_VOLATILE (gimple_call_fn (s
)))
2230 gcc_assert (gimple_has_volatile_ops (s
));
2234 for (i
= 0; i
< nargs
; i
++)
2235 if (TREE_SIDE_EFFECTS (gimple_call_arg (s
, i
))
2236 || TREE_THIS_VOLATILE (gimple_call_arg (s
, i
)))
2241 else if (is_gimple_assign (s
))
2243 /* Skip the first operand, the LHS. */
2244 for (i
= 1; i
< gimple_num_ops (s
); i
++)
2245 if (TREE_SIDE_EFFECTS (gimple_op (s
, i
))
2246 || TREE_THIS_VOLATILE (gimple_op (s
, i
)))
2248 gcc_assert (gimple_has_volatile_ops (s
));
2252 else if (is_gimple_debug (s
))
2256 /* For statements without an LHS, examine all arguments. */
2257 for (i
= 0; i
< gimple_num_ops (s
); i
++)
2258 if (TREE_SIDE_EFFECTS (gimple_op (s
, i
))
2259 || TREE_THIS_VOLATILE (gimple_op (s
, i
)))
2261 gcc_assert (gimple_has_volatile_ops (s
));
2270 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2271 Return true if S can trap. If INCLUDE_LHS is true and S is a
2272 GIMPLE_ASSIGN, the LHS of the assignment is also checked.
2273 Otherwise, only the RHS of the assignment is checked. */
2276 gimple_could_trap_p_1 (gimple s
, bool include_lhs
)
2279 tree t
, div
= NULL_TREE
;
2282 start
= (is_gimple_assign (s
) && !include_lhs
) ? 1 : 0;
2284 for (i
= start
; i
< gimple_num_ops (s
); i
++)
2285 if (tree_could_trap_p (gimple_op (s
, i
)))
2288 switch (gimple_code (s
))
2291 return gimple_asm_volatile_p (s
);
2294 t
= gimple_call_fndecl (s
);
2295 /* Assume that calls to weak functions may trap. */
2296 if (!t
|| !DECL_P (t
) || DECL_WEAK (t
))
2301 t
= gimple_expr_type (s
);
2302 op
= gimple_assign_rhs_code (s
);
2303 if (get_gimple_rhs_class (op
) == GIMPLE_BINARY_RHS
)
2304 div
= gimple_assign_rhs2 (s
);
2305 return (operation_could_trap_p (op
, FLOAT_TYPE_P (t
),
2306 (INTEGRAL_TYPE_P (t
)
2307 && TYPE_OVERFLOW_TRAPS (t
)),
2319 /* Return true if statement S can trap. */
2322 gimple_could_trap_p (gimple s
)
2324 return gimple_could_trap_p_1 (s
, true);
2328 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2331 gimple_assign_rhs_could_trap_p (gimple s
)
2333 gcc_assert (is_gimple_assign (s
));
2334 return gimple_could_trap_p_1 (s
, false);
2338 /* Print debugging information for gimple stmts generated. */
2341 dump_gimple_statistics (void)
2343 #ifdef GATHER_STATISTICS
2344 int i
, total_tuples
= 0, total_bytes
= 0;
2346 fprintf (stderr
, "\nGIMPLE statements\n");
2347 fprintf (stderr
, "Kind Stmts Bytes\n");
2348 fprintf (stderr
, "---------------------------------------\n");
2349 for (i
= 0; i
< (int) gimple_alloc_kind_all
; ++i
)
2351 fprintf (stderr
, "%-20s %7d %10d\n", gimple_alloc_kind_names
[i
],
2352 gimple_alloc_counts
[i
], gimple_alloc_sizes
[i
]);
2353 total_tuples
+= gimple_alloc_counts
[i
];
2354 total_bytes
+= gimple_alloc_sizes
[i
];
2356 fprintf (stderr
, "---------------------------------------\n");
2357 fprintf (stderr
, "%-20s %7d %10d\n", "Total", total_tuples
, total_bytes
);
2358 fprintf (stderr
, "---------------------------------------\n");
2360 fprintf (stderr
, "No gimple statistics\n");
2365 /* Return the number of operands needed on the RHS of a GIMPLE
2366 assignment for an expression with tree code CODE. */
2369 get_gimple_rhs_num_ops (enum tree_code code
)
2371 enum gimple_rhs_class rhs_class
= get_gimple_rhs_class (code
);
2373 if (rhs_class
== GIMPLE_UNARY_RHS
|| rhs_class
== GIMPLE_SINGLE_RHS
)
2375 else if (rhs_class
== GIMPLE_BINARY_RHS
)
2381 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2383 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2384 : ((TYPE) == tcc_binary \
2385 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2386 : ((TYPE) == tcc_constant \
2387 || (TYPE) == tcc_declaration \
2388 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2389 : ((SYM) == TRUTH_AND_EXPR \
2390 || (SYM) == TRUTH_OR_EXPR \
2391 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2392 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2393 : ((SYM) == COND_EXPR \
2394 || (SYM) == CONSTRUCTOR \
2395 || (SYM) == OBJ_TYPE_REF \
2396 || (SYM) == ASSERT_EXPR \
2397 || (SYM) == ADDR_EXPR \
2398 || (SYM) == WITH_SIZE_EXPR \
2399 || (SYM) == SSA_NAME \
2400 || (SYM) == POLYNOMIAL_CHREC \
2401 || (SYM) == DOT_PROD_EXPR \
2402 || (SYM) == VEC_COND_EXPR \
2403 || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \
2404 : GIMPLE_INVALID_RHS),
2405 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2407 const unsigned char gimple_rhs_class_table
[] = {
2408 #include "all-tree.def"
2412 #undef END_OF_BASE_TREE_CODES
2414 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2416 /* Validation of GIMPLE expressions. */
2418 /* Return true if OP is an acceptable tree node to be used as a GIMPLE
2422 is_gimple_operand (const_tree op
)
2424 return op
&& get_gimple_rhs_class (TREE_CODE (op
)) == GIMPLE_SINGLE_RHS
;
2427 /* Returns true iff T is a valid RHS for an assignment to a renamed
2428 user -- or front-end generated artificial -- variable. */
2431 is_gimple_reg_rhs (tree t
)
2433 return get_gimple_rhs_class (TREE_CODE (t
)) != GIMPLE_INVALID_RHS
;
2436 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2437 LHS, or for a call argument. */
2440 is_gimple_mem_rhs (tree t
)
2442 /* If we're dealing with a renamable type, either source or dest must be
2443 a renamed variable. */
2444 if (is_gimple_reg_type (TREE_TYPE (t
)))
2445 return is_gimple_val (t
);
2447 return is_gimple_val (t
) || is_gimple_lvalue (t
);
2450 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2453 is_gimple_lvalue (tree t
)
2455 return (is_gimple_addressable (t
)
2456 || TREE_CODE (t
) == WITH_SIZE_EXPR
2457 /* These are complex lvalues, but don't have addresses, so they
2459 || TREE_CODE (t
) == BIT_FIELD_REF
);
2462 /* Return true if T is a GIMPLE condition. */
2465 is_gimple_condexpr (tree t
)
2467 return (is_gimple_val (t
) || (COMPARISON_CLASS_P (t
)
2468 && !tree_could_trap_p (t
)
2469 && is_gimple_val (TREE_OPERAND (t
, 0))
2470 && is_gimple_val (TREE_OPERAND (t
, 1))));
2473 /* Return true if T is something whose address can be taken. */
2476 is_gimple_addressable (tree t
)
2478 return (is_gimple_id (t
) || handled_component_p (t
) || INDIRECT_REF_P (t
));
2481 /* Return true if T is a valid gimple constant. */
2484 is_gimple_constant (const_tree t
)
2486 switch (TREE_CODE (t
))
2496 /* Vector constant constructors are gimple invariant. */
2498 if (TREE_TYPE (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
2499 return TREE_CONSTANT (t
);
2508 /* Return true if T is a gimple address. */
2511 is_gimple_address (const_tree t
)
2515 if (TREE_CODE (t
) != ADDR_EXPR
)
2518 op
= TREE_OPERAND (t
, 0);
2519 while (handled_component_p (op
))
2521 if ((TREE_CODE (op
) == ARRAY_REF
2522 || TREE_CODE (op
) == ARRAY_RANGE_REF
)
2523 && !is_gimple_val (TREE_OPERAND (op
, 1)))
2526 op
= TREE_OPERAND (op
, 0);
2529 if (CONSTANT_CLASS_P (op
) || INDIRECT_REF_P (op
))
2532 switch (TREE_CODE (op
))
2547 /* Strip out all handled components that produce invariant
2551 strip_invariant_refs (const_tree op
)
2553 while (handled_component_p (op
))
2555 switch (TREE_CODE (op
))
2558 case ARRAY_RANGE_REF
:
2559 if (!is_gimple_constant (TREE_OPERAND (op
, 1))
2560 || TREE_OPERAND (op
, 2) != NULL_TREE
2561 || TREE_OPERAND (op
, 3) != NULL_TREE
)
2566 if (TREE_OPERAND (op
, 2) != NULL_TREE
)
2572 op
= TREE_OPERAND (op
, 0);
2578 /* Return true if T is a gimple invariant address. */
2581 is_gimple_invariant_address (const_tree t
)
2585 if (TREE_CODE (t
) != ADDR_EXPR
)
2588 op
= strip_invariant_refs (TREE_OPERAND (t
, 0));
2590 return op
&& (CONSTANT_CLASS_P (op
) || decl_address_invariant_p (op
));
2593 /* Return true if T is a gimple invariant address at IPA level
2594 (so addresses of variables on stack are not allowed). */
2597 is_gimple_ip_invariant_address (const_tree t
)
2601 if (TREE_CODE (t
) != ADDR_EXPR
)
2604 op
= strip_invariant_refs (TREE_OPERAND (t
, 0));
2606 return op
&& (CONSTANT_CLASS_P (op
) || decl_address_ip_invariant_p (op
));
2609 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2610 form of function invariant. */
2613 is_gimple_min_invariant (const_tree t
)
2615 if (TREE_CODE (t
) == ADDR_EXPR
)
2616 return is_gimple_invariant_address (t
);
2618 return is_gimple_constant (t
);
2621 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2622 form of gimple minimal invariant. */
2625 is_gimple_ip_invariant (const_tree t
)
2627 if (TREE_CODE (t
) == ADDR_EXPR
)
2628 return is_gimple_ip_invariant_address (t
);
2630 return is_gimple_constant (t
);
2633 /* Return true if T looks like a valid GIMPLE statement. */
2636 is_gimple_stmt (tree t
)
2638 const enum tree_code code
= TREE_CODE (t
);
2643 /* The only valid NOP_EXPR is the empty statement. */
2644 return IS_EMPTY_STMT (t
);
2648 /* These are only valid if they're void. */
2649 return TREE_TYPE (t
) == NULL
|| VOID_TYPE_P (TREE_TYPE (t
));
2655 case CASE_LABEL_EXPR
:
2656 case TRY_CATCH_EXPR
:
2657 case TRY_FINALLY_EXPR
:
2658 case EH_FILTER_EXPR
:
2661 case STATEMENT_LIST
:
2671 /* These are always void. */
2677 /* These are valid regardless of their type. */
2685 /* Return true if T is a variable. */
2688 is_gimple_variable (tree t
)
2690 return (TREE_CODE (t
) == VAR_DECL
2691 || TREE_CODE (t
) == PARM_DECL
2692 || TREE_CODE (t
) == RESULT_DECL
2693 || TREE_CODE (t
) == SSA_NAME
);
2696 /* Return true if T is a GIMPLE identifier (something with an address). */
2699 is_gimple_id (tree t
)
2701 return (is_gimple_variable (t
)
2702 || TREE_CODE (t
) == FUNCTION_DECL
2703 || TREE_CODE (t
) == LABEL_DECL
2704 || TREE_CODE (t
) == CONST_DECL
2705 /* Allow string constants, since they are addressable. */
2706 || TREE_CODE (t
) == STRING_CST
);
2709 /* Return true if TYPE is a suitable type for a scalar register variable. */
2712 is_gimple_reg_type (tree type
)
2714 return !AGGREGATE_TYPE_P (type
);
2717 /* Return true if T is a non-aggregate register variable. */
2720 is_gimple_reg (tree t
)
2722 if (TREE_CODE (t
) == SSA_NAME
)
2723 t
= SSA_NAME_VAR (t
);
2725 if (!is_gimple_variable (t
))
2728 if (!is_gimple_reg_type (TREE_TYPE (t
)))
2731 /* A volatile decl is not acceptable because we can't reuse it as
2732 needed. We need to copy it into a temp first. */
2733 if (TREE_THIS_VOLATILE (t
))
2736 /* We define "registers" as things that can be renamed as needed,
2737 which with our infrastructure does not apply to memory. */
2738 if (needs_to_live_in_memory (t
))
2741 /* Hard register variables are an interesting case. For those that
2742 are call-clobbered, we don't know where all the calls are, since
2743 we don't (want to) take into account which operations will turn
2744 into libcalls at the rtl level. For those that are call-saved,
2745 we don't currently model the fact that calls may in fact change
2746 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2747 level, and so miss variable changes that might imply. All around,
2748 it seems safest to not do too much optimization with these at the
2749 tree level at all. We'll have to rely on the rtl optimizers to
2750 clean this up, as there we've got all the appropriate bits exposed. */
2751 if (TREE_CODE (t
) == VAR_DECL
&& DECL_HARD_REGISTER (t
))
2754 /* Complex and vector values must have been put into SSA-like form.
2755 That is, no assignments to the individual components. */
2756 if (TREE_CODE (TREE_TYPE (t
)) == COMPLEX_TYPE
2757 || TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
2758 return DECL_GIMPLE_REG_P (t
);
2764 /* Return true if T is a GIMPLE variable whose address is not needed. */
2767 is_gimple_non_addressable (tree t
)
2769 if (TREE_CODE (t
) == SSA_NAME
)
2770 t
= SSA_NAME_VAR (t
);
2772 return (is_gimple_variable (t
) && ! needs_to_live_in_memory (t
));
2775 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2778 is_gimple_val (tree t
)
2780 /* Make loads from volatiles and memory vars explicit. */
2781 if (is_gimple_variable (t
)
2782 && is_gimple_reg_type (TREE_TYPE (t
))
2783 && !is_gimple_reg (t
))
2786 return (is_gimple_variable (t
) || is_gimple_min_invariant (t
));
2789 /* Similarly, but accept hard registers as inputs to asm statements. */
2792 is_gimple_asm_val (tree t
)
2794 if (TREE_CODE (t
) == VAR_DECL
&& DECL_HARD_REGISTER (t
))
2797 return is_gimple_val (t
);
2800 /* Return true if T is a GIMPLE minimal lvalue. */
2803 is_gimple_min_lval (tree t
)
2805 if (!(t
= CONST_CAST_TREE (strip_invariant_refs (t
))))
2807 return (is_gimple_id (t
) || TREE_CODE (t
) == INDIRECT_REF
);
2810 /* Return true if T is a typecast operation. */
2813 is_gimple_cast (tree t
)
2815 return (CONVERT_EXPR_P (t
)
2816 || TREE_CODE (t
) == FIX_TRUNC_EXPR
);
2819 /* Return true if T is a valid function operand of a CALL_EXPR. */
2822 is_gimple_call_addr (tree t
)
2824 return (TREE_CODE (t
) == OBJ_TYPE_REF
|| is_gimple_val (t
));
2827 /* If T makes a function call, return the corresponding CALL_EXPR operand.
2828 Otherwise, return NULL_TREE. */
2831 get_call_expr_in (tree t
)
2833 if (TREE_CODE (t
) == MODIFY_EXPR
)
2834 t
= TREE_OPERAND (t
, 1);
2835 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
2836 t
= TREE_OPERAND (t
, 0);
2837 if (TREE_CODE (t
) == CALL_EXPR
)
2843 /* Given a memory reference expression T, return its base address.
2844 The base address of a memory reference expression is the main
2845 object being referenced. For instance, the base address for
2846 'array[i].fld[j]' is 'array'. You can think of this as stripping
2847 away the offset part from a memory address.
2849 This function calls handled_component_p to strip away all the inner
2850 parts of the memory reference until it reaches the base object. */
2853 get_base_address (tree t
)
2855 while (handled_component_p (t
))
2856 t
= TREE_OPERAND (t
, 0);
2859 || TREE_CODE (t
) == STRING_CST
2860 || TREE_CODE (t
) == CONSTRUCTOR
2861 || INDIRECT_REF_P (t
))
2868 recalculate_side_effects (tree t
)
2870 enum tree_code code
= TREE_CODE (t
);
2871 int len
= TREE_OPERAND_LENGTH (t
);
2874 switch (TREE_CODE_CLASS (code
))
2876 case tcc_expression
:
2882 case PREDECREMENT_EXPR
:
2883 case PREINCREMENT_EXPR
:
2884 case POSTDECREMENT_EXPR
:
2885 case POSTINCREMENT_EXPR
:
2886 /* All of these have side-effects, no matter what their
2895 case tcc_comparison
: /* a comparison expression */
2896 case tcc_unary
: /* a unary arithmetic expression */
2897 case tcc_binary
: /* a binary arithmetic expression */
2898 case tcc_reference
: /* a reference */
2899 case tcc_vl_exp
: /* a function call */
2900 TREE_SIDE_EFFECTS (t
) = TREE_THIS_VOLATILE (t
);
2901 for (i
= 0; i
< len
; ++i
)
2903 tree op
= TREE_OPERAND (t
, i
);
2904 if (op
&& TREE_SIDE_EFFECTS (op
))
2905 TREE_SIDE_EFFECTS (t
) = 1;
2910 /* No side-effects. */
2918 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2919 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2920 we failed to create one. */
2923 canonicalize_cond_expr_cond (tree t
)
2925 /* Strip conversions around boolean operations. */
2926 if (CONVERT_EXPR_P (t
)
2927 && truth_value_p (TREE_CODE (TREE_OPERAND (t
, 0))))
2928 t
= TREE_OPERAND (t
, 0);
2930 /* For (bool)x use x != 0. */
2931 if (CONVERT_EXPR_P (t
)
2932 && TREE_CODE (TREE_TYPE (t
)) == BOOLEAN_TYPE
)
2934 tree top0
= TREE_OPERAND (t
, 0);
2935 t
= build2 (NE_EXPR
, TREE_TYPE (t
),
2936 top0
, build_int_cst (TREE_TYPE (top0
), 0));
2938 /* For !x use x == 0. */
2939 else if (TREE_CODE (t
) == TRUTH_NOT_EXPR
)
2941 tree top0
= TREE_OPERAND (t
, 0);
2942 t
= build2 (EQ_EXPR
, TREE_TYPE (t
),
2943 top0
, build_int_cst (TREE_TYPE (top0
), 0));
2945 /* For cmp ? 1 : 0 use cmp. */
2946 else if (TREE_CODE (t
) == COND_EXPR
2947 && COMPARISON_CLASS_P (TREE_OPERAND (t
, 0))
2948 && integer_onep (TREE_OPERAND (t
, 1))
2949 && integer_zerop (TREE_OPERAND (t
, 2)))
2951 tree top0
= TREE_OPERAND (t
, 0);
2952 t
= build2 (TREE_CODE (top0
), TREE_TYPE (t
),
2953 TREE_OPERAND (top0
, 0), TREE_OPERAND (top0
, 1));
2956 if (is_gimple_condexpr (t
))
2962 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2963 the positions marked by the set ARGS_TO_SKIP. */
2966 gimple_call_copy_skip_args (gimple stmt
, bitmap args_to_skip
)
2969 tree fn
= gimple_call_fn (stmt
);
2970 int nargs
= gimple_call_num_args (stmt
);
2971 VEC(tree
, heap
) *vargs
= VEC_alloc (tree
, heap
, nargs
);
2974 for (i
= 0; i
< nargs
; i
++)
2975 if (!bitmap_bit_p (args_to_skip
, i
))
2976 VEC_quick_push (tree
, vargs
, gimple_call_arg (stmt
, i
));
2978 new_stmt
= gimple_build_call_vec (fn
, vargs
);
2979 VEC_free (tree
, heap
, vargs
);
2980 if (gimple_call_lhs (stmt
))
2981 gimple_call_set_lhs (new_stmt
, gimple_call_lhs (stmt
));
2983 gimple_set_vuse (new_stmt
, gimple_vuse (stmt
));
2984 gimple_set_vdef (new_stmt
, gimple_vdef (stmt
));
2986 gimple_set_block (new_stmt
, gimple_block (stmt
));
2987 if (gimple_has_location (stmt
))
2988 gimple_set_location (new_stmt
, gimple_location (stmt
));
2990 /* Carry all the flags to the new GIMPLE_CALL. */
2991 gimple_call_set_chain (new_stmt
, gimple_call_chain (stmt
));
2992 gimple_call_set_tail (new_stmt
, gimple_call_tail_p (stmt
));
2993 gimple_call_set_cannot_inline (new_stmt
, gimple_call_cannot_inline_p (stmt
));
2994 gimple_call_set_return_slot_opt (new_stmt
, gimple_call_return_slot_opt_p (stmt
));
2995 gimple_call_set_from_thunk (new_stmt
, gimple_call_from_thunk_p (stmt
));
2996 gimple_call_set_va_arg_pack (new_stmt
, gimple_call_va_arg_pack_p (stmt
));
2998 gimple_set_modified (new_stmt
, true);
3004 static hashval_t
gimple_type_hash (const void *);
3006 /* Structure used to maintain a cache of some type pairs compared by
3007 gimple_types_compatible_p when comparing aggregate types. There are
3008 four possible values for SAME_P:
3010 -2: The pair (T1, T2) has just been inserted in the table.
3011 -1: The pair (T1, T2) is currently being compared.
3012 0: T1 and T2 are different types.
3013 1: T1 and T2 are the same type.
3015 This table is only used when comparing aggregate types to avoid
3016 infinite recursion due to self-referential types. */
3023 typedef struct type_pair_d
*type_pair_t
;
3025 /* Return a hash value for the type pair pointed-to by P. */
3028 type_pair_hash (const void *p
)
3030 const struct type_pair_d
*pair
= (const struct type_pair_d
*) p
;
3031 hashval_t val1
= pair
->uid1
;
3032 hashval_t val2
= pair
->uid2
;
3033 return (iterative_hash_hashval_t (val2
, val1
)
3034 ^ iterative_hash_hashval_t (val1
, val2
));
3037 /* Compare two type pairs pointed-to by P1 and P2. */
3040 type_pair_eq (const void *p1
, const void *p2
)
3042 const struct type_pair_d
*pair1
= (const struct type_pair_d
*) p1
;
3043 const struct type_pair_d
*pair2
= (const struct type_pair_d
*) p2
;
3044 return ((pair1
->uid1
== pair2
->uid1
&& pair1
->uid2
== pair2
->uid2
)
3045 || (pair1
->uid1
== pair2
->uid2
&& pair1
->uid2
== pair2
->uid1
));
3048 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3049 entry if none existed. */
3052 lookup_type_pair (tree t1
, tree t2
, htab_t
*visited_p
, struct obstack
*ob_p
)
3054 struct type_pair_d pair
;
3058 if (*visited_p
== NULL
)
3060 *visited_p
= htab_create (251, type_pair_hash
, type_pair_eq
, NULL
);
3061 gcc_obstack_init (ob_p
);
3064 pair
.uid1
= TYPE_UID (t1
);
3065 pair
.uid2
= TYPE_UID (t2
);
3066 slot
= htab_find_slot (*visited_p
, &pair
, INSERT
);
3069 p
= *((type_pair_t
*) slot
);
3072 p
= XOBNEW (ob_p
, struct type_pair_d
);
3073 p
->uid1
= TYPE_UID (t1
);
3074 p
->uid2
= TYPE_UID (t2
);
3083 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3084 true then if any type has no name return false, otherwise return
3085 true if both types have no names. */
3088 compare_type_names_p (tree t1
, tree t2
, bool for_completion_p
)
3090 tree name1
= TYPE_NAME (t1
);
3091 tree name2
= TYPE_NAME (t2
);
3093 /* Consider anonymous types all unique for completion. */
3094 if (for_completion_p
3095 && (!name1
|| !name2
))
3098 if (name1
&& TREE_CODE (name1
) == TYPE_DECL
)
3100 name1
= DECL_NAME (name1
);
3101 if (for_completion_p
3105 gcc_assert (!name1
|| TREE_CODE (name1
) == IDENTIFIER_NODE
);
3107 if (name2
&& TREE_CODE (name2
) == TYPE_DECL
)
3109 name2
= DECL_NAME (name2
);
3110 if (for_completion_p
3114 gcc_assert (!name2
|| TREE_CODE (name2
) == IDENTIFIER_NODE
);
3116 /* Identifiers can be compared with pointer equality rather
3117 than a string comparison. */
3124 /* Return true if the field decls F1 and F2 are at the same offset. */
3127 compare_field_offset (tree f1
, tree f2
)
3129 if (DECL_OFFSET_ALIGN (f1
) == DECL_OFFSET_ALIGN (f2
))
3130 return (operand_equal_p (DECL_FIELD_OFFSET (f1
),
3131 DECL_FIELD_OFFSET (f2
), 0)
3132 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1
),
3133 DECL_FIELD_BIT_OFFSET (f2
)));
3135 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3136 should be, so handle differing ones specially by decomposing
3137 the offset into a byte and bit offset manually. */
3138 if (host_integerp (DECL_FIELD_OFFSET (f1
), 0)
3139 && host_integerp (DECL_FIELD_OFFSET (f2
), 0))
3141 unsigned HOST_WIDE_INT byte_offset1
, byte_offset2
;
3142 unsigned HOST_WIDE_INT bit_offset1
, bit_offset2
;
3143 bit_offset1
= TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1
));
3144 byte_offset1
= (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1
))
3145 + bit_offset1
/ BITS_PER_UNIT
);
3146 bit_offset2
= TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2
));
3147 byte_offset2
= (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2
))
3148 + bit_offset2
/ BITS_PER_UNIT
);
3149 if (byte_offset1
!= byte_offset2
)
3151 return bit_offset1
% BITS_PER_UNIT
== bit_offset2
% BITS_PER_UNIT
;
3157 /* Return 1 iff T1 and T2 are structurally identical.
3158 Otherwise, return 0. */
3161 gimple_types_compatible_p (tree t1
, tree t2
)
3163 type_pair_t p
= NULL
;
3165 /* Check first for the obvious case of pointer identity. */
3169 /* Check that we have two types to compare. */
3170 if (t1
== NULL_TREE
|| t2
== NULL_TREE
)
3173 /* Can't be the same type if the types don't have the same code. */
3174 if (TREE_CODE (t1
) != TREE_CODE (t2
))
3177 /* Can't be the same type if they have different CV qualifiers. */
3178 if (TYPE_QUALS (t1
) != TYPE_QUALS (t2
))
3181 /* Void types are always the same. */
3182 if (TREE_CODE (t1
) == VOID_TYPE
)
3185 /* For numerical types do some simple checks before doing three
3186 hashtable queries. */
3187 if (INTEGRAL_TYPE_P (t1
)
3188 || SCALAR_FLOAT_TYPE_P (t1
)
3189 || FIXED_POINT_TYPE_P (t1
)
3190 || TREE_CODE (t1
) == VECTOR_TYPE
3191 || TREE_CODE (t1
) == COMPLEX_TYPE
3192 || TREE_CODE (t1
) == OFFSET_TYPE
)
3194 /* Can't be the same type if they have different alignment,
3195 sign, precision or mode. */
3196 if (TYPE_ALIGN (t1
) != TYPE_ALIGN (t2
)
3197 || TYPE_PRECISION (t1
) != TYPE_PRECISION (t2
)
3198 || TYPE_MODE (t1
) != TYPE_MODE (t2
)
3199 || TYPE_UNSIGNED (t1
) != TYPE_UNSIGNED (t2
))
3202 if (TREE_CODE (t1
) == INTEGER_TYPE
3203 && (TYPE_IS_SIZETYPE (t1
) != TYPE_IS_SIZETYPE (t2
)
3204 || TYPE_STRING_FLAG (t1
) != TYPE_STRING_FLAG (t2
)))
3207 /* That's all we need to check for float and fixed-point types. */
3208 if (SCALAR_FLOAT_TYPE_P (t1
)
3209 || FIXED_POINT_TYPE_P (t1
))
3212 /* Perform cheap tail-recursion for vector and complex types. */
3213 if (TREE_CODE (t1
) == VECTOR_TYPE
3214 || TREE_CODE (t1
) == COMPLEX_TYPE
)
3215 return gimple_types_compatible_p (TREE_TYPE (t1
), TREE_TYPE (t2
));
3217 /* For integral types fall thru to more complex checks. */
3220 /* If the hash values of t1 and t2 are different the types can't
3221 possibly be the same. This helps keeping the type-pair hashtable
3222 small, only tracking comparisons for hash collisions. */
3223 if (gimple_type_hash (t1
) != gimple_type_hash (t2
))
3226 /* If we've visited this type pair before (in the case of aggregates
3227 with self-referential types), and we made a decision, return it. */
3228 p
= lookup_type_pair (t1
, t2
, >c_visited
, >c_ob
);
3229 if (p
->same_p
== 0 || p
->same_p
== 1)
3231 /* We have already decided whether T1 and T2 are the
3232 same, return the cached result. */
3233 return p
->same_p
== 1;
3235 else if (p
->same_p
== -1)
3237 /* We are currently comparing this pair of types, assume
3238 that they are the same and let the caller decide. */
3242 gcc_assert (p
->same_p
== -2);
3244 /* Mark the (T1, T2) comparison in progress. */
3247 /* If their attributes are not the same they can't be the same type. */
3248 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1
), TYPE_ATTRIBUTES (t2
)))
3249 goto different_types
;
3251 /* Do type-specific comparisons. */
3252 switch (TREE_CODE (t1
))
3255 /* Array types are the same if the element types are the same and
3256 the number of elements are the same. */
3257 if (!gimple_types_compatible_p (TREE_TYPE (t1
), TREE_TYPE (t2
))
3258 || TYPE_STRING_FLAG (t1
) != TYPE_STRING_FLAG (t2
)
3259 || TYPE_NONALIASED_COMPONENT (t1
) != TYPE_NONALIASED_COMPONENT (t2
))
3260 goto different_types
;
3263 tree i1
= TYPE_DOMAIN (t1
);
3264 tree i2
= TYPE_DOMAIN (t2
);
3266 /* For an incomplete external array, the type domain can be
3267 NULL_TREE. Check this condition also. */
3268 if (i1
== NULL_TREE
&& i2
== NULL_TREE
)
3270 else if (i1
== NULL_TREE
|| i2
== NULL_TREE
)
3271 goto different_types
;
3272 /* If for a complete array type the possibly gimplified sizes
3273 are different the types are different. */
3274 else if (((TYPE_SIZE (i1
) != NULL
) ^ (TYPE_SIZE (i2
) != NULL
))
3277 && !operand_equal_p (TYPE_SIZE (i1
), TYPE_SIZE (i2
), 0)))
3278 goto different_types
;
3281 tree min1
= TYPE_MIN_VALUE (i1
);
3282 tree min2
= TYPE_MIN_VALUE (i2
);
3283 tree max1
= TYPE_MAX_VALUE (i1
);
3284 tree max2
= TYPE_MAX_VALUE (i2
);
3286 /* The minimum/maximum values have to be the same. */
3288 || (min1
&& min2
&& operand_equal_p (min1
, min2
, 0)))
3290 || (max1
&& max2
&& operand_equal_p (max1
, max2
, 0))))
3293 goto different_types
;
3298 /* Method types should belong to the same class. */
3299 if (!gimple_types_compatible_p (TYPE_METHOD_BASETYPE (t1
),
3300 TYPE_METHOD_BASETYPE (t2
)))
3301 goto different_types
;
3306 /* Function types are the same if the return type and arguments types
3308 if (!gimple_types_compatible_p (TREE_TYPE (t1
), TREE_TYPE (t2
)))
3309 goto different_types
;
3312 if (!targetm
.comp_type_attributes (t1
, t2
))
3313 goto different_types
;
3315 if (TYPE_ARG_TYPES (t1
) == TYPE_ARG_TYPES (t2
))
3319 tree parms1
, parms2
;
3321 for (parms1
= TYPE_ARG_TYPES (t1
), parms2
= TYPE_ARG_TYPES (t2
);
3323 parms1
= TREE_CHAIN (parms1
), parms2
= TREE_CHAIN (parms2
))
3325 if (!gimple_types_compatible_p (TREE_VALUE (parms1
),
3326 TREE_VALUE (parms2
)))
3327 goto different_types
;
3330 if (parms1
|| parms2
)
3331 goto different_types
;
3339 if (!gimple_types_compatible_p (TREE_TYPE (t1
), TREE_TYPE (t2
))
3340 || !gimple_types_compatible_p (TYPE_OFFSET_BASETYPE (t1
),
3341 TYPE_OFFSET_BASETYPE (t2
)))
3342 goto different_types
;
3348 case REFERENCE_TYPE
:
3350 /* If the two pointers have different ref-all attributes,
3351 they can't be the same type. */
3352 if (TYPE_REF_CAN_ALIAS_ALL (t1
) != TYPE_REF_CAN_ALIAS_ALL (t2
))
3353 goto different_types
;
3355 /* If one pointer points to an incomplete type variant of
3356 the other pointed-to type they are the same. */
3357 if (TREE_CODE (TREE_TYPE (t1
)) == TREE_CODE (TREE_TYPE (t2
))
3358 && RECORD_OR_UNION_TYPE_P (TREE_TYPE (t1
))
3359 && (!COMPLETE_TYPE_P (TREE_TYPE (t1
))
3360 || !COMPLETE_TYPE_P (TREE_TYPE (t2
)))
3361 && compare_type_names_p (TYPE_MAIN_VARIANT (TREE_TYPE (t1
)),
3362 TYPE_MAIN_VARIANT (TREE_TYPE (t2
)), true))
3364 /* Replace the pointed-to incomplete type with the
3366 if (COMPLETE_TYPE_P (TREE_TYPE (t2
)))
3367 TREE_TYPE (t1
) = TREE_TYPE (t2
);
3369 TREE_TYPE (t2
) = TREE_TYPE (t1
);
3373 /* Otherwise, pointer and reference types are the same if the
3374 pointed-to types are the same. */
3375 if (gimple_types_compatible_p (TREE_TYPE (t1
), TREE_TYPE (t2
)))
3378 goto different_types
;
3384 tree min1
= TYPE_MIN_VALUE (t1
);
3385 tree max1
= TYPE_MAX_VALUE (t1
);
3386 tree min2
= TYPE_MIN_VALUE (t2
);
3387 tree max2
= TYPE_MAX_VALUE (t2
);
3388 bool min_equal_p
= false;
3389 bool max_equal_p
= false;
3391 /* If either type has a minimum value, the other type must
3393 if (min1
== NULL_TREE
&& min2
== NULL_TREE
)
3395 else if (min1
&& min2
&& operand_equal_p (min1
, min2
, 0))
3398 /* Likewise, if either type has a maximum value, the other
3399 type must have the same. */
3400 if (max1
== NULL_TREE
&& max2
== NULL_TREE
)
3402 else if (max1
&& max2
&& operand_equal_p (max1
, max2
, 0))
3405 if (!min_equal_p
|| !max_equal_p
)
3406 goto different_types
;
3413 /* FIXME lto, we cannot check bounds on enumeral types because
3414 different front ends will produce different values.
3415 In C, enumeral types are integers, while in C++ each element
3416 will have its own symbolic value. We should decide how enums
3417 are to be represented in GIMPLE and have each front end lower
3421 /* For enumeral types, all the values must be the same. */
3422 if (TYPE_VALUES (t1
) == TYPE_VALUES (t2
))
3425 for (v1
= TYPE_VALUES (t1
), v2
= TYPE_VALUES (t2
);
3427 v1
= TREE_CHAIN (v1
), v2
= TREE_CHAIN (v2
))
3429 tree c1
= TREE_VALUE (v1
);
3430 tree c2
= TREE_VALUE (v2
);
3432 if (TREE_CODE (c1
) == CONST_DECL
)
3433 c1
= DECL_INITIAL (c1
);
3435 if (TREE_CODE (c2
) == CONST_DECL
)
3436 c2
= DECL_INITIAL (c2
);
3438 if (tree_int_cst_equal (c1
, c2
) != 1)
3439 goto different_types
;
3442 /* If one enumeration has more values than the other, they
3443 are not the same. */
3445 goto different_types
;
3452 case QUAL_UNION_TYPE
:
3456 /* If one type requires structural equality checks and the
3457 other doesn't, do not merge the types. */
3458 if (TYPE_STRUCTURAL_EQUALITY_P (t1
)
3459 != TYPE_STRUCTURAL_EQUALITY_P (t2
))
3460 goto different_types
;
3462 /* The struct tags shall compare equal. */
3463 if (!compare_type_names_p (TYPE_MAIN_VARIANT (t1
),
3464 TYPE_MAIN_VARIANT (t2
), false))
3465 goto different_types
;
3467 /* For aggregate types, all the fields must be the same. */
3468 for (f1
= TYPE_FIELDS (t1
), f2
= TYPE_FIELDS (t2
);
3470 f1
= TREE_CHAIN (f1
), f2
= TREE_CHAIN (f2
))
3472 /* The fields must have the same name, offset and type. */
3473 if (DECL_NAME (f1
) != DECL_NAME (f2
)
3474 || DECL_NONADDRESSABLE_P (f1
) != DECL_NONADDRESSABLE_P (f2
)
3475 || !compare_field_offset (f1
, f2
)
3476 || !gimple_types_compatible_p (TREE_TYPE (f1
),
3478 goto different_types
;
3481 /* If one aggregate has more fields than the other, they
3482 are not the same. */
3484 goto different_types
;
3493 /* Common exit path for types that are not compatible. */
3498 /* Common exit path for types that are compatible. */
3507 /* Per pointer state for the SCC finding. The on_sccstack flag
3508 is not strictly required, it is true when there is no hash value
3509 recorded for the type and false otherwise. But querying that
3514 unsigned int dfsnum
;
3520 static unsigned int next_dfs_num
;
3523 iterative_hash_gimple_type (tree
, hashval_t
, VEC(tree
, heap
) **,
3524 struct pointer_map_t
*, struct obstack
*);
3526 /* DFS visit the edge from the callers type with state *STATE to T.
3527 Update the callers type hash V with the hash for T if it is not part
3528 of the SCC containing the callers type and return it.
3529 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3532 visit (tree t
, struct sccs
*state
, hashval_t v
,
3533 VEC (tree
, heap
) **sccstack
,
3534 struct pointer_map_t
*sccstate
,
3535 struct obstack
*sccstate_obstack
)
3537 struct sccs
*cstate
= NULL
;
3540 /* If there is a hash value recorded for this type then it can't
3541 possibly be part of our parent SCC. Simply mix in its hash. */
3542 if ((slot
= pointer_map_contains (type_hash_cache
, t
)))
3543 return iterative_hash_hashval_t ((hashval_t
) (size_t) *slot
, v
);
3545 if ((slot
= pointer_map_contains (sccstate
, t
)) != NULL
)
3546 cstate
= (struct sccs
*)*slot
;
3550 /* Not yet visited. DFS recurse. */
3551 tem
= iterative_hash_gimple_type (t
, v
,
3552 sccstack
, sccstate
, sccstate_obstack
);
3554 cstate
= (struct sccs
*)* pointer_map_contains (sccstate
, t
);
3555 state
->low
= MIN (state
->low
, cstate
->low
);
3556 /* If the type is no longer on the SCC stack and thus is not part
3557 of the parents SCC mix in its hash value. Otherwise we will
3558 ignore the type for hashing purposes and return the unaltered
3560 if (!cstate
->on_sccstack
)
3563 if (cstate
->dfsnum
< state
->dfsnum
3564 && cstate
->on_sccstack
)
3565 state
->low
= MIN (cstate
->dfsnum
, state
->low
);
3567 /* We are part of our parents SCC, skip this type during hashing
3568 and return the unaltered hash value. */
3572 /* Hash NAME with the previous hash value V and return it. */
3575 iterative_hash_name (tree name
, hashval_t v
)
3579 if (TREE_CODE (name
) == TYPE_DECL
)
3580 name
= DECL_NAME (name
);
3583 gcc_assert (TREE_CODE (name
) == IDENTIFIER_NODE
);
3584 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name
), v
);
3587 /* Returning a hash value for gimple type TYPE combined with VAL.
3588 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
3590 To hash a type we end up hashing in types that are reachable.
3591 Through pointers we can end up with cycles which messes up the
3592 required property that we need to compute the same hash value
3593 for structurally equivalent types. To avoid this we have to
3594 hash all types in a cycle (the SCC) in a commutative way. The
3595 easiest way is to not mix in the hashes of the SCC members at
3596 all. To make this work we have to delay setting the hash
3597 values of the SCC until it is complete. */
3600 iterative_hash_gimple_type (tree type
, hashval_t val
,
3601 VEC(tree
, heap
) **sccstack
,
3602 struct pointer_map_t
*sccstate
,
3603 struct obstack
*sccstate_obstack
)
3609 #ifdef ENABLE_CHECKING
3610 /* Not visited during this DFS walk nor during previous walks. */
3611 gcc_assert (!pointer_map_contains (type_hash_cache
, type
)
3612 && !pointer_map_contains (sccstate
, type
));
3614 state
= XOBNEW (sccstate_obstack
, struct sccs
);
3615 *pointer_map_insert (sccstate
, type
) = state
;
3617 VEC_safe_push (tree
, heap
, *sccstack
, type
);
3618 state
->dfsnum
= next_dfs_num
++;
3619 state
->low
= state
->dfsnum
;
3620 state
->on_sccstack
= true;
3622 /* Combine a few common features of types so that types are grouped into
3623 smaller sets; when searching for existing matching types to merge,
3624 only existing types having the same features as the new type will be
3626 v
= iterative_hash_hashval_t (TREE_CODE (type
), 0);
3627 v
= iterative_hash_hashval_t (TYPE_QUALS (type
), v
);
3628 v
= iterative_hash_hashval_t (TREE_ADDRESSABLE (type
), v
);
3630 /* Do not hash the types size as this will cause differences in
3631 hash values for the complete vs. the incomplete type variant. */
3633 /* Incorporate common features of numerical types. */
3634 if (INTEGRAL_TYPE_P (type
)
3635 || SCALAR_FLOAT_TYPE_P (type
)
3636 || FIXED_POINT_TYPE_P (type
))
3638 v
= iterative_hash_hashval_t (TYPE_PRECISION (type
), v
);
3639 v
= iterative_hash_hashval_t (TYPE_MODE (type
), v
);
3640 v
= iterative_hash_hashval_t (TYPE_UNSIGNED (type
), v
);
3643 /* For pointer and reference types, fold in information about the type
3644 pointed to but do not recurse into possibly incomplete types to
3645 avoid hash differences for complete vs. incomplete types. */
3646 if (POINTER_TYPE_P (type
))
3648 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type
)))
3650 v
= iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type
)), v
);
3651 v
= iterative_hash_name
3652 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type
))), v
);
3655 v
= visit (TREE_TYPE (type
), state
, v
,
3656 sccstack
, sccstate
, sccstate_obstack
);
3659 /* For integer types hash the types min/max values and the string flag. */
3660 if (TREE_CODE (type
) == INTEGER_TYPE
)
3662 /* OMP lowering can introduce error_mark_node in place of
3663 random local decls in types. */
3664 if (TYPE_MIN_VALUE (type
) != error_mark_node
)
3665 v
= iterative_hash_expr (TYPE_MIN_VALUE (type
), v
);
3666 if (TYPE_MAX_VALUE (type
) != error_mark_node
)
3667 v
= iterative_hash_expr (TYPE_MAX_VALUE (type
), v
);
3668 v
= iterative_hash_hashval_t (TYPE_STRING_FLAG (type
), v
);
3671 /* For array types hash their domain and the string flag. */
3672 if (TREE_CODE (type
) == ARRAY_TYPE
3673 && TYPE_DOMAIN (type
))
3675 v
= iterative_hash_hashval_t (TYPE_STRING_FLAG (type
), v
);
3676 v
= visit (TYPE_DOMAIN (type
), state
, v
,
3677 sccstack
, sccstate
, sccstate_obstack
);
3680 /* Recurse for aggregates with a single element type. */
3681 if (TREE_CODE (type
) == ARRAY_TYPE
3682 || TREE_CODE (type
) == COMPLEX_TYPE
3683 || TREE_CODE (type
) == VECTOR_TYPE
)
3684 v
= visit (TREE_TYPE (type
), state
, v
,
3685 sccstack
, sccstate
, sccstate_obstack
);
3687 /* Incorporate function return and argument types. */
3688 if (TREE_CODE (type
) == FUNCTION_TYPE
|| TREE_CODE (type
) == METHOD_TYPE
)
3693 /* For method types also incorporate their parent class. */
3694 if (TREE_CODE (type
) == METHOD_TYPE
)
3695 v
= visit (TYPE_METHOD_BASETYPE (type
), state
, v
,
3696 sccstack
, sccstate
, sccstate_obstack
);
3698 v
= visit (TREE_TYPE (type
), state
, v
,
3699 sccstack
, sccstate
, sccstate_obstack
);
3701 for (p
= TYPE_ARG_TYPES (type
), na
= 0; p
; p
= TREE_CHAIN (p
))
3703 v
= visit (TREE_VALUE (p
), state
, v
,
3704 sccstack
, sccstate
, sccstate_obstack
);
3708 v
= iterative_hash_hashval_t (na
, v
);
3711 if (TREE_CODE (type
) == RECORD_TYPE
3712 || TREE_CODE (type
) == UNION_TYPE
3713 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
3718 v
= iterative_hash_name (TYPE_NAME (TYPE_MAIN_VARIANT (type
)), v
);
3720 for (f
= TYPE_FIELDS (type
), nf
= 0; f
; f
= TREE_CHAIN (f
))
3722 v
= iterative_hash_name (DECL_NAME (f
), v
);
3723 v
= visit (TREE_TYPE (f
), state
, v
,
3724 sccstack
, sccstate
, sccstate_obstack
);
3728 v
= iterative_hash_hashval_t (nf
, v
);
3731 /* Record hash for us. */
3734 /* See if we found an SCC. */
3735 if (state
->low
== state
->dfsnum
)
3739 /* Pop off the SCC and set its hash values. */
3742 struct sccs
*cstate
;
3743 x
= VEC_pop (tree
, *sccstack
);
3744 gcc_assert (!pointer_map_contains (type_hash_cache
, x
));
3745 cstate
= (struct sccs
*)*pointer_map_contains (sccstate
, x
);
3746 cstate
->on_sccstack
= false;
3747 slot
= pointer_map_insert (type_hash_cache
, x
);
3748 *slot
= (void *) (size_t) cstate
->hash
;
3753 return iterative_hash_hashval_t (v
, val
);
3757 /* Returns a hash value for P (assumed to be a type). The hash value
3758 is computed using some distinguishing features of the type. Note
3759 that we cannot use pointer hashing here as we may be dealing with
3760 two distinct instances of the same type.
3762 This function should produce the same hash value for two compatible
3763 types according to gimple_types_compatible_p. */
3766 gimple_type_hash (const void *p
)
3768 const_tree t
= (const_tree
) p
;
3769 VEC(tree
, heap
) *sccstack
= NULL
;
3770 struct pointer_map_t
*sccstate
;
3771 struct obstack sccstate_obstack
;
3775 if (type_hash_cache
== NULL
)
3776 type_hash_cache
= pointer_map_create ();
3778 if ((slot
= pointer_map_contains (type_hash_cache
, p
)) != NULL
)
3779 return iterative_hash_hashval_t ((hashval_t
) (size_t) *slot
, 0);
3781 /* Perform a DFS walk and pre-hash all reachable types. */
3783 sccstate
= pointer_map_create ();
3784 gcc_obstack_init (&sccstate_obstack
);
3785 val
= iterative_hash_gimple_type (CONST_CAST_TREE (t
), 0,
3786 &sccstack
, sccstate
, &sccstate_obstack
);
3787 VEC_free (tree
, heap
, sccstack
);
3788 pointer_map_destroy (sccstate
);
3789 obstack_free (&sccstate_obstack
, NULL
);
3795 /* Returns nonzero if P1 and P2 are equal. */
3798 gimple_type_eq (const void *p1
, const void *p2
)
3800 const_tree t1
= (const_tree
) p1
;
3801 const_tree t2
= (const_tree
) p2
;
3802 return gimple_types_compatible_p (CONST_CAST_TREE (t1
), CONST_CAST_TREE (t2
));
3806 /* Register type T in the global type table gimple_types.
3807 If another type T', compatible with T, already existed in
3808 gimple_types then return T', otherwise return T. This is used by
3809 LTO to merge identical types read from different TUs. */
3812 gimple_register_type (tree t
)
3816 gcc_assert (TYPE_P (t
));
3818 /* Always register the main variant first. This is important so we
3819 pick up the non-typedef variants as canonical, otherwise we'll end
3820 up taking typedef ids for structure tags during comparison. */
3821 if (TYPE_MAIN_VARIANT (t
) != t
)
3822 gimple_register_type (TYPE_MAIN_VARIANT (t
));
3824 if (gimple_types
== NULL
)
3825 gimple_types
= htab_create (16381, gimple_type_hash
, gimple_type_eq
, 0);
3827 slot
= htab_find_slot (gimple_types
, t
, INSERT
);
3829 && *(tree
*)slot
!= t
)
3831 tree new_type
= (tree
) *((tree
*) slot
);
3833 /* Do not merge types with different addressability. */
3834 gcc_assert (TREE_ADDRESSABLE (t
) == TREE_ADDRESSABLE (new_type
));
3836 /* If t is not its main variant then make t unreachable from its
3837 main variant list. Otherwise we'd queue up a lot of duplicates
3839 if (t
!= TYPE_MAIN_VARIANT (t
))
3841 tree tem
= TYPE_MAIN_VARIANT (t
);
3842 while (tem
&& TYPE_NEXT_VARIANT (tem
) != t
)
3843 tem
= TYPE_NEXT_VARIANT (tem
);
3845 TYPE_NEXT_VARIANT (tem
) = TYPE_NEXT_VARIANT (t
);
3846 TYPE_NEXT_VARIANT (t
) = NULL_TREE
;
3849 /* If we are a pointer then remove us from the pointer-to or
3850 reference-to chain. Otherwise we'd queue up a lot of duplicates
3852 if (TREE_CODE (t
) == POINTER_TYPE
)
3854 if (TYPE_POINTER_TO (TREE_TYPE (t
)) == t
)
3855 TYPE_POINTER_TO (TREE_TYPE (t
)) = TYPE_NEXT_PTR_TO (t
);
3858 tree tem
= TYPE_POINTER_TO (TREE_TYPE (t
));
3859 while (tem
&& TYPE_NEXT_PTR_TO (tem
) != t
)
3860 tem
= TYPE_NEXT_PTR_TO (tem
);
3862 TYPE_NEXT_PTR_TO (tem
) = TYPE_NEXT_PTR_TO (t
);
3864 TYPE_NEXT_PTR_TO (t
) = NULL_TREE
;
3866 else if (TREE_CODE (t
) == REFERENCE_TYPE
)
3868 if (TYPE_REFERENCE_TO (TREE_TYPE (t
)) == t
)
3869 TYPE_REFERENCE_TO (TREE_TYPE (t
)) = TYPE_NEXT_REF_TO (t
);
3872 tree tem
= TYPE_REFERENCE_TO (TREE_TYPE (t
));
3873 while (tem
&& TYPE_NEXT_REF_TO (tem
) != t
)
3874 tem
= TYPE_NEXT_REF_TO (tem
);
3876 TYPE_NEXT_REF_TO (tem
) = TYPE_NEXT_REF_TO (t
);
3878 TYPE_NEXT_REF_TO (t
) = NULL_TREE
;
3890 /* Show statistics on references to the global type table gimple_types. */
3893 print_gimple_types_stats (void)
3896 fprintf (stderr
, "GIMPLE type table: size %ld, %ld elements, "
3897 "%ld searches, %ld collisions (ratio: %f)\n",
3898 (long) htab_size (gimple_types
),
3899 (long) htab_elements (gimple_types
),
3900 (long) gimple_types
->searches
,
3901 (long) gimple_types
->collisions
,
3902 htab_collisions (gimple_types
));
3904 fprintf (stderr
, "GIMPLE type table is empty\n");
3906 fprintf (stderr
, "GIMPLE type comparison table: size %ld, %ld "
3907 "elements, %ld searches, %ld collisions (ratio: %f)\n",
3908 (long) htab_size (gtc_visited
),
3909 (long) htab_elements (gtc_visited
),
3910 (long) gtc_visited
->searches
,
3911 (long) gtc_visited
->collisions
,
3912 htab_collisions (gtc_visited
));
3914 fprintf (stderr
, "GIMPLE type comparison table is empty\n");
3917 /* Free the gimple type hashtables used for LTO type merging. */
3920 free_gimple_type_tables (void)
3922 /* Last chance to print stats for the tables. */
3923 if (flag_lto_report
)
3924 print_gimple_types_stats ();
3928 htab_delete (gimple_types
);
3929 gimple_types
= NULL
;
3931 if (type_hash_cache
)
3933 pointer_map_destroy (type_hash_cache
);
3934 type_hash_cache
= NULL
;
3938 htab_delete (gtc_visited
);
3939 obstack_free (>c_ob
, NULL
);
3945 /* Return a type the same as TYPE except unsigned or
3946 signed according to UNSIGNEDP. */
3949 gimple_signed_or_unsigned_type (bool unsignedp
, tree type
)
3953 type1
= TYPE_MAIN_VARIANT (type
);
3954 if (type1
== signed_char_type_node
3955 || type1
== char_type_node
3956 || type1
== unsigned_char_type_node
)
3957 return unsignedp
? unsigned_char_type_node
: signed_char_type_node
;
3958 if (type1
== integer_type_node
|| type1
== unsigned_type_node
)
3959 return unsignedp
? unsigned_type_node
: integer_type_node
;
3960 if (type1
== short_integer_type_node
|| type1
== short_unsigned_type_node
)
3961 return unsignedp
? short_unsigned_type_node
: short_integer_type_node
;
3962 if (type1
== long_integer_type_node
|| type1
== long_unsigned_type_node
)
3963 return unsignedp
? long_unsigned_type_node
: long_integer_type_node
;
3964 if (type1
== long_long_integer_type_node
3965 || type1
== long_long_unsigned_type_node
)
3967 ? long_long_unsigned_type_node
3968 : long_long_integer_type_node
;
3969 #if HOST_BITS_PER_WIDE_INT >= 64
3970 if (type1
== intTI_type_node
|| type1
== unsigned_intTI_type_node
)
3971 return unsignedp
? unsigned_intTI_type_node
: intTI_type_node
;
3973 if (type1
== intDI_type_node
|| type1
== unsigned_intDI_type_node
)
3974 return unsignedp
? unsigned_intDI_type_node
: intDI_type_node
;
3975 if (type1
== intSI_type_node
|| type1
== unsigned_intSI_type_node
)
3976 return unsignedp
? unsigned_intSI_type_node
: intSI_type_node
;
3977 if (type1
== intHI_type_node
|| type1
== unsigned_intHI_type_node
)
3978 return unsignedp
? unsigned_intHI_type_node
: intHI_type_node
;
3979 if (type1
== intQI_type_node
|| type1
== unsigned_intQI_type_node
)
3980 return unsignedp
? unsigned_intQI_type_node
: intQI_type_node
;
3982 #define GIMPLE_FIXED_TYPES(NAME) \
3983 if (type1 == short_ ## NAME ## _type_node \
3984 || type1 == unsigned_short_ ## NAME ## _type_node) \
3985 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
3986 : short_ ## NAME ## _type_node; \
3987 if (type1 == NAME ## _type_node \
3988 || type1 == unsigned_ ## NAME ## _type_node) \
3989 return unsignedp ? unsigned_ ## NAME ## _type_node \
3990 : NAME ## _type_node; \
3991 if (type1 == long_ ## NAME ## _type_node \
3992 || type1 == unsigned_long_ ## NAME ## _type_node) \
3993 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
3994 : long_ ## NAME ## _type_node; \
3995 if (type1 == long_long_ ## NAME ## _type_node \
3996 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
3997 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
3998 : long_long_ ## NAME ## _type_node;
4000 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
4001 if (type1 == NAME ## _type_node \
4002 || type1 == u ## NAME ## _type_node) \
4003 return unsignedp ? u ## NAME ## _type_node \
4004 : NAME ## _type_node;
4006 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
4007 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4008 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4009 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4010 : sat_ ## short_ ## NAME ## _type_node; \
4011 if (type1 == sat_ ## NAME ## _type_node \
4012 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4013 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4014 : sat_ ## NAME ## _type_node; \
4015 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4016 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4017 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4018 : sat_ ## long_ ## NAME ## _type_node; \
4019 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4020 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4021 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4022 : sat_ ## long_long_ ## NAME ## _type_node;
4024 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4025 if (type1 == sat_ ## NAME ## _type_node \
4026 || type1 == sat_ ## u ## NAME ## _type_node) \
4027 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4028 : sat_ ## NAME ## _type_node;
4030 GIMPLE_FIXED_TYPES (fract
);
4031 GIMPLE_FIXED_TYPES_SAT (fract
);
4032 GIMPLE_FIXED_TYPES (accum
);
4033 GIMPLE_FIXED_TYPES_SAT (accum
);
4035 GIMPLE_FIXED_MODE_TYPES (qq
);
4036 GIMPLE_FIXED_MODE_TYPES (hq
);
4037 GIMPLE_FIXED_MODE_TYPES (sq
);
4038 GIMPLE_FIXED_MODE_TYPES (dq
);
4039 GIMPLE_FIXED_MODE_TYPES (tq
);
4040 GIMPLE_FIXED_MODE_TYPES_SAT (qq
);
4041 GIMPLE_FIXED_MODE_TYPES_SAT (hq
);
4042 GIMPLE_FIXED_MODE_TYPES_SAT (sq
);
4043 GIMPLE_FIXED_MODE_TYPES_SAT (dq
);
4044 GIMPLE_FIXED_MODE_TYPES_SAT (tq
);
4045 GIMPLE_FIXED_MODE_TYPES (ha
);
4046 GIMPLE_FIXED_MODE_TYPES (sa
);
4047 GIMPLE_FIXED_MODE_TYPES (da
);
4048 GIMPLE_FIXED_MODE_TYPES (ta
);
4049 GIMPLE_FIXED_MODE_TYPES_SAT (ha
);
4050 GIMPLE_FIXED_MODE_TYPES_SAT (sa
);
4051 GIMPLE_FIXED_MODE_TYPES_SAT (da
);
4052 GIMPLE_FIXED_MODE_TYPES_SAT (ta
);
4054 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4055 the precision; they have precision set to match their range, but
4056 may use a wider mode to match an ABI. If we change modes, we may
4057 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4058 the precision as well, so as to yield correct results for
4059 bit-field types. C++ does not have these separate bit-field
4060 types, and producing a signed or unsigned variant of an
4061 ENUMERAL_TYPE may cause other problems as well. */
4062 if (!INTEGRAL_TYPE_P (type
)
4063 || TYPE_UNSIGNED (type
) == unsignedp
)
4066 #define TYPE_OK(node) \
4067 (TYPE_MODE (type) == TYPE_MODE (node) \
4068 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4069 if (TYPE_OK (signed_char_type_node
))
4070 return unsignedp
? unsigned_char_type_node
: signed_char_type_node
;
4071 if (TYPE_OK (integer_type_node
))
4072 return unsignedp
? unsigned_type_node
: integer_type_node
;
4073 if (TYPE_OK (short_integer_type_node
))
4074 return unsignedp
? short_unsigned_type_node
: short_integer_type_node
;
4075 if (TYPE_OK (long_integer_type_node
))
4076 return unsignedp
? long_unsigned_type_node
: long_integer_type_node
;
4077 if (TYPE_OK (long_long_integer_type_node
))
4079 ? long_long_unsigned_type_node
4080 : long_long_integer_type_node
);
4082 #if HOST_BITS_PER_WIDE_INT >= 64
4083 if (TYPE_OK (intTI_type_node
))
4084 return unsignedp
? unsigned_intTI_type_node
: intTI_type_node
;
4086 if (TYPE_OK (intDI_type_node
))
4087 return unsignedp
? unsigned_intDI_type_node
: intDI_type_node
;
4088 if (TYPE_OK (intSI_type_node
))
4089 return unsignedp
? unsigned_intSI_type_node
: intSI_type_node
;
4090 if (TYPE_OK (intHI_type_node
))
4091 return unsignedp
? unsigned_intHI_type_node
: intHI_type_node
;
4092 if (TYPE_OK (intQI_type_node
))
4093 return unsignedp
? unsigned_intQI_type_node
: intQI_type_node
;
4095 #undef GIMPLE_FIXED_TYPES
4096 #undef GIMPLE_FIXED_MODE_TYPES
4097 #undef GIMPLE_FIXED_TYPES_SAT
4098 #undef GIMPLE_FIXED_MODE_TYPES_SAT
4101 return build_nonstandard_integer_type (TYPE_PRECISION (type
), unsignedp
);
4105 /* Return an unsigned type the same as TYPE in other respects. */
4108 gimple_unsigned_type (tree type
)
4110 return gimple_signed_or_unsigned_type (true, type
);
4114 /* Return a signed type the same as TYPE in other respects. */
4117 gimple_signed_type (tree type
)
4119 return gimple_signed_or_unsigned_type (false, type
);
4123 /* Return the typed-based alias set for T, which may be an expression
4124 or a type. Return -1 if we don't do anything special. */
4127 gimple_get_alias_set (tree t
)
4131 /* Permit type-punning when accessing a union, provided the access
4132 is directly through the union. For example, this code does not
4133 permit taking the address of a union member and then storing
4134 through it. Even the type-punning allowed here is a GCC
4135 extension, albeit a common and useful one; the C standard says
4136 that such accesses have implementation-defined behavior. */
4138 TREE_CODE (u
) == COMPONENT_REF
|| TREE_CODE (u
) == ARRAY_REF
;
4139 u
= TREE_OPERAND (u
, 0))
4140 if (TREE_CODE (u
) == COMPONENT_REF
4141 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u
, 0))) == UNION_TYPE
)
4144 /* That's all the expressions we handle specially. */
4148 /* For convenience, follow the C standard when dealing with
4149 character types. Any object may be accessed via an lvalue that
4150 has character type. */
4151 if (t
== char_type_node
4152 || t
== signed_char_type_node
4153 || t
== unsigned_char_type_node
)
4156 /* Allow aliasing between signed and unsigned variants of the same
4157 type. We treat the signed variant as canonical. */
4158 if (TREE_CODE (t
) == INTEGER_TYPE
&& TYPE_UNSIGNED (t
))
4160 tree t1
= gimple_signed_type (t
);
4162 /* t1 == t can happen for boolean nodes which are always unsigned. */
4164 return get_alias_set (t1
);
4166 else if (POINTER_TYPE_P (t
))
4168 /* From the common C and C++ langhook implementation:
4170 Unfortunately, there is no canonical form of a pointer type.
4171 In particular, if we have `typedef int I', then `int *', and
4172 `I *' are different types. So, we have to pick a canonical
4173 representative. We do this below.
4175 Technically, this approach is actually more conservative that
4176 it needs to be. In particular, `const int *' and `int *'
4177 should be in different alias sets, according to the C and C++
4178 standard, since their types are not the same, and so,
4179 technically, an `int **' and `const int **' cannot point at
4182 But, the standard is wrong. In particular, this code is
4187 const int* const* cipp = ipp;
4188 And, it doesn't make sense for that to be legal unless you
4189 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
4190 the pointed-to types. This issue has been reported to the
4193 /* In addition to the above canonicalization issue with LTO
4194 we should also canonicalize `T (*)[]' to `T *' avoiding
4195 alias issues with pointer-to element types and pointer-to
4198 Likewise we need to deal with the situation of incomplete
4199 pointed-to types and make `*(struct X **)&a' and
4200 `*(struct X {} **)&a' alias. Otherwise we will have to
4201 guarantee that all pointer-to incomplete type variants
4202 will be replaced by pointer-to complete type variants if
4205 With LTO the convenient situation of using `void *' to
4206 access and store any pointer type will also become
4207 more apparent (and `void *' is just another pointer-to
4208 incomplete type). Assigning alias-set zero to `void *'
4209 and all pointer-to incomplete types is a not appealing
4210 solution. Assigning an effective alias-set zero only
4211 affecting pointers might be - by recording proper subset
4212 relationships of all pointer alias-sets.
4214 Pointer-to function types are another grey area which
4215 needs caution. Globbing them all into one alias-set
4216 or the above effective zero set would work. */
4218 /* For now just assign the same alias-set to all pointers.
4219 That's simple and avoids all the above problems. */
4220 if (t
!= ptr_type_node
)
4221 return get_alias_set (ptr_type_node
);
4228 /* Data structure used to count the number of dereferences to PTR
4229 inside an expression. */
4233 unsigned num_stores
;
4237 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
4238 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
4241 count_ptr_derefs (tree
*tp
, int *walk_subtrees
, void *data
)
4243 struct walk_stmt_info
*wi_p
= (struct walk_stmt_info
*) data
;
4244 struct count_ptr_d
*count_p
= (struct count_ptr_d
*) wi_p
->info
;
4246 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
4247 pointer 'ptr' is *not* dereferenced, it is simply used to compute
4248 the address of 'fld' as 'ptr + offsetof(fld)'. */
4249 if (TREE_CODE (*tp
) == ADDR_EXPR
)
4255 if (INDIRECT_REF_P (*tp
) && TREE_OPERAND (*tp
, 0) == count_p
->ptr
)
4258 count_p
->num_stores
++;
4260 count_p
->num_loads
++;
4266 /* Count the number of direct and indirect uses for pointer PTR in
4267 statement STMT. The number of direct uses is stored in
4268 *NUM_USES_P. Indirect references are counted separately depending
4269 on whether they are store or load operations. The counts are
4270 stored in *NUM_STORES_P and *NUM_LOADS_P. */
4273 count_uses_and_derefs (tree ptr
, gimple stmt
, unsigned *num_uses_p
,
4274 unsigned *num_loads_p
, unsigned *num_stores_p
)
4283 /* Find out the total number of uses of PTR in STMT. */
4284 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
4288 /* Now count the number of indirect references to PTR. This is
4289 truly awful, but we don't have much choice. There are no parent
4290 pointers inside INDIRECT_REFs, so an expression like
4291 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
4292 find all the indirect and direct uses of x_1 inside. The only
4293 shortcut we can take is the fact that GIMPLE only allows
4294 INDIRECT_REFs inside the expressions below. */
4295 if (is_gimple_assign (stmt
)
4296 || gimple_code (stmt
) == GIMPLE_RETURN
4297 || gimple_code (stmt
) == GIMPLE_ASM
4298 || is_gimple_call (stmt
))
4300 struct walk_stmt_info wi
;
4301 struct count_ptr_d count
;
4304 count
.num_stores
= 0;
4305 count
.num_loads
= 0;
4307 memset (&wi
, 0, sizeof (wi
));
4309 walk_gimple_op (stmt
, count_ptr_derefs
, &wi
);
4311 *num_stores_p
= count
.num_stores
;
4312 *num_loads_p
= count
.num_loads
;
4315 gcc_assert (*num_uses_p
>= *num_loads_p
+ *num_stores_p
);
4318 /* From a tree operand OP return the base of a load or store operation
4319 or NULL_TREE if OP is not a load or a store. */
4322 get_base_loadstore (tree op
)
4324 while (handled_component_p (op
))
4325 op
= TREE_OPERAND (op
, 0);
4327 || INDIRECT_REF_P (op
)
4328 || TREE_CODE (op
) == TARGET_MEM_REF
)
4333 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
4334 VISIT_ADDR if non-NULL on loads, store and address-taken operands
4335 passing the STMT, the base of the operand and DATA to it. The base
4336 will be either a decl, an indirect reference (including TARGET_MEM_REF)
4337 or the argument of an address expression.
4338 Returns the results of these callbacks or'ed. */
4341 walk_stmt_load_store_addr_ops (gimple stmt
, void *data
,
4342 bool (*visit_load
)(gimple
, tree
, void *),
4343 bool (*visit_store
)(gimple
, tree
, void *),
4344 bool (*visit_addr
)(gimple
, tree
, void *))
4348 if (gimple_assign_single_p (stmt
))
4353 lhs
= get_base_loadstore (gimple_assign_lhs (stmt
));
4355 ret
|= visit_store (stmt
, lhs
, data
);
4357 rhs
= gimple_assign_rhs1 (stmt
);
4358 while (handled_component_p (rhs
))
4359 rhs
= TREE_OPERAND (rhs
, 0);
4362 if (TREE_CODE (rhs
) == ADDR_EXPR
)
4363 ret
|= visit_addr (stmt
, TREE_OPERAND (rhs
, 0), data
);
4364 else if (TREE_CODE (rhs
) == TARGET_MEM_REF
4365 && TMR_BASE (rhs
) != NULL_TREE
4366 && TREE_CODE (TMR_BASE (rhs
)) == ADDR_EXPR
)
4367 ret
|= visit_addr (stmt
, TREE_OPERAND (TMR_BASE (rhs
), 0), data
);
4368 else if (TREE_CODE (rhs
) == OBJ_TYPE_REF
4369 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs
)) == ADDR_EXPR
)
4370 ret
|= visit_addr (stmt
, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs
),
4372 lhs
= gimple_assign_lhs (stmt
);
4373 if (TREE_CODE (lhs
) == TARGET_MEM_REF
4374 && TMR_BASE (lhs
) != NULL_TREE
4375 && TREE_CODE (TMR_BASE (lhs
)) == ADDR_EXPR
)
4376 ret
|= visit_addr (stmt
, TREE_OPERAND (TMR_BASE (lhs
), 0), data
);
4380 rhs
= get_base_loadstore (rhs
);
4382 ret
|= visit_load (stmt
, rhs
, data
);
4386 && (is_gimple_assign (stmt
)
4387 || gimple_code (stmt
) == GIMPLE_COND
))
4389 for (i
= 0; i
< gimple_num_ops (stmt
); ++i
)
4390 if (gimple_op (stmt
, i
)
4391 && TREE_CODE (gimple_op (stmt
, i
)) == ADDR_EXPR
)
4392 ret
|= visit_addr (stmt
, TREE_OPERAND (gimple_op (stmt
, i
), 0), data
);
4394 else if (is_gimple_call (stmt
))
4398 tree lhs
= gimple_call_lhs (stmt
);
4401 lhs
= get_base_loadstore (lhs
);
4403 ret
|= visit_store (stmt
, lhs
, data
);
4406 if (visit_load
|| visit_addr
)
4407 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
4409 tree rhs
= gimple_call_arg (stmt
, i
);
4411 && TREE_CODE (rhs
) == ADDR_EXPR
)
4412 ret
|= visit_addr (stmt
, TREE_OPERAND (rhs
, 0), data
);
4413 else if (visit_load
)
4415 rhs
= get_base_loadstore (rhs
);
4417 ret
|= visit_load (stmt
, rhs
, data
);
4421 && gimple_call_chain (stmt
)
4422 && TREE_CODE (gimple_call_chain (stmt
)) == ADDR_EXPR
)
4423 ret
|= visit_addr (stmt
, TREE_OPERAND (gimple_call_chain (stmt
), 0),
4426 && gimple_call_return_slot_opt_p (stmt
)
4427 && gimple_call_lhs (stmt
) != NULL_TREE
4428 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt
))))
4429 ret
|= visit_addr (stmt
, gimple_call_lhs (stmt
), data
);
4431 else if (gimple_code (stmt
) == GIMPLE_ASM
)
4434 const char *constraint
;
4435 const char **oconstraints
;
4436 bool allows_mem
, allows_reg
, is_inout
;
4437 noutputs
= gimple_asm_noutputs (stmt
);
4438 oconstraints
= XALLOCAVEC (const char *, noutputs
);
4439 if (visit_store
|| visit_addr
)
4440 for (i
= 0; i
< gimple_asm_noutputs (stmt
); ++i
)
4442 tree link
= gimple_asm_output_op (stmt
, i
);
4443 tree op
= get_base_loadstore (TREE_VALUE (link
));
4444 if (op
&& visit_store
)
4445 ret
|= visit_store (stmt
, op
, data
);
4448 constraint
= TREE_STRING_POINTER
4449 (TREE_VALUE (TREE_PURPOSE (link
)));
4450 oconstraints
[i
] = constraint
;
4451 parse_output_constraint (&constraint
, i
, 0, 0, &allows_mem
,
4452 &allows_reg
, &is_inout
);
4453 if (op
&& !allows_reg
&& allows_mem
)
4454 ret
|= visit_addr (stmt
, op
, data
);
4457 if (visit_load
|| visit_addr
)
4458 for (i
= 0; i
< gimple_asm_ninputs (stmt
); ++i
)
4460 tree link
= gimple_asm_input_op (stmt
, i
);
4461 tree op
= TREE_VALUE (link
);
4463 && TREE_CODE (op
) == ADDR_EXPR
)
4464 ret
|= visit_addr (stmt
, TREE_OPERAND (op
, 0), data
);
4465 else if (visit_load
|| visit_addr
)
4467 op
= get_base_loadstore (op
);
4471 ret
|= visit_load (stmt
, op
, data
);
4474 constraint
= TREE_STRING_POINTER
4475 (TREE_VALUE (TREE_PURPOSE (link
)));
4476 parse_input_constraint (&constraint
, 0, 0, noutputs
,
4478 &allows_mem
, &allows_reg
);
4479 if (!allows_reg
&& allows_mem
)
4480 ret
|= visit_addr (stmt
, op
, data
);
4486 else if (gimple_code (stmt
) == GIMPLE_RETURN
)
4488 tree op
= gimple_return_retval (stmt
);
4492 && TREE_CODE (op
) == ADDR_EXPR
)
4493 ret
|= visit_addr (stmt
, TREE_OPERAND (op
, 0), data
);
4494 else if (visit_load
)
4496 op
= get_base_loadstore (op
);
4498 ret
|= visit_load (stmt
, op
, data
);
4503 && gimple_code (stmt
) == GIMPLE_PHI
)
4505 for (i
= 0; i
< gimple_phi_num_args (stmt
); ++i
)
4507 tree op
= PHI_ARG_DEF (stmt
, i
);
4508 if (TREE_CODE (op
) == ADDR_EXPR
)
4509 ret
|= visit_addr (stmt
, TREE_OPERAND (op
, 0), data
);
4516 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
4517 should make a faster clone for this case. */
4520 walk_stmt_load_store_ops (gimple stmt
, void *data
,
4521 bool (*visit_load
)(gimple
, tree
, void *),
4522 bool (*visit_store
)(gimple
, tree
, void *))
4524 return walk_stmt_load_store_addr_ops (stmt
, data
,
4525 visit_load
, visit_store
, NULL
);
4528 /* Helper for gimple_ior_addresses_taken_1. */
4531 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED
,
4532 tree addr
, void *data
)
4534 bitmap addresses_taken
= (bitmap
)data
;
4535 while (handled_component_p (addr
))
4536 addr
= TREE_OPERAND (addr
, 0);
4539 bitmap_set_bit (addresses_taken
, DECL_UID (addr
));
4545 /* Set the bit for the uid of all decls that have their address taken
4546 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
4547 were any in this stmt. */
4550 gimple_ior_addresses_taken (bitmap addresses_taken
, gimple stmt
)
4552 return walk_stmt_load_store_addr_ops (stmt
, addresses_taken
, NULL
, NULL
,
4553 gimple_ior_addresses_taken_1
);
4557 /* Return a printable name for symbol DECL. */
4560 gimple_decl_printable_name (tree decl
, int verbosity
)
4562 gcc_assert (decl
&& DECL_NAME (decl
));
4564 if (DECL_ASSEMBLER_NAME_SET_P (decl
))
4566 const char *str
, *mangled_str
;
4567 int dmgl_opts
= DMGL_NO_OPTS
;
4571 dmgl_opts
= DMGL_VERBOSE
4575 if (TREE_CODE (decl
) == FUNCTION_DECL
)
4576 dmgl_opts
|= DMGL_PARAMS
;
4579 mangled_str
= IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
));
4580 str
= cplus_demangle_v3 (mangled_str
, dmgl_opts
);
4581 return (str
) ? str
: mangled_str
;
4584 return IDENTIFIER_POINTER (DECL_NAME (decl
));
4588 /* Fold a OBJ_TYPE_REF expression to the address of a function.
4589 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). Adapted
4590 from cp_fold_obj_type_ref, but it tolerates types with no binfo
4594 gimple_fold_obj_type_ref (tree ref
, tree known_type
)
4596 HOST_WIDE_INT index
;
4601 if (TYPE_BINFO (known_type
) == NULL_TREE
)
4604 v
= BINFO_VIRTUALS (TYPE_BINFO (known_type
));
4605 index
= tree_low_cst (OBJ_TYPE_REF_TOKEN (ref
), 1);
4609 i
+= (TARGET_VTABLE_USES_DESCRIPTORS
4610 ? TARGET_VTABLE_USES_DESCRIPTORS
: 1);
4614 fndecl
= TREE_VALUE (v
);
4616 #ifdef ENABLE_CHECKING
4617 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref
),
4618 DECL_VINDEX (fndecl
)));
4621 cgraph_node (fndecl
)->local
.vtable_method
= true;
4623 return build_fold_addr_expr (fndecl
);
4626 #include "gt-gimple.h"